

Programming the TI-83 Plus/TI-84 Plus

Programming
the TI-83 Plus/

TI-84 Plus
CHRISTOPHER R. MITCHELL

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Elizabeth Lexleigh
20 Baldwin Road Copyeditor: Linda Recktenwald
PO Box 261 Technical proofreader: Dan Cook
Shelter Island, NY 11964 Proofreader: Elizabeth Martin

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617290770
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12

www.manning.com

brief contents
PART 1 GETTING STARTED WITH PROGRAMMING........................1

1 ■ Diving into calculator programming 3

2 ■ Communication: basic input and output 25

3 ■ Conditionals and Boolean logic 55

4 ■ Control structures 76

5 ■ Theory interlude: problem solving and debugging 107

PART 2 BECOMING A TI-BASIC MASTER133
6 ■ Advanced input and events 135

7 ■ Pixels and the graphscreen 167

8 ■ Graphs, shapes, and points 184

9 ■ Manipulating numbers and data types 205

PART 3 ADVANCED CONCEPTS; WHAT’S NEXT..........................225
10 ■ Optimizing TI-BASIC programs 227

11 ■ Using hybrid TI-BASIC libraries 243

12 ■ Introducing z80 assembly 260

13 ■ Now what? Expanding your programming horizons 282
v

contents
foreword xiii
preface xvi
acknowledgments xix
about this book xxi

PART 1 GETTING STARTED WITH PROGRAMMING1

1 Diving into calculator programming 3
1.1 Your calculator: the pocket computer you already own 5
1.2 Hello World: your first program 8

Before you begin: notes on the TI-BASIC language 8
Displaying “Hello, World” 9 ■ Running the
Hello World program 12

1.3 Math programming: a quadratic solver 13
Building the quadratic solver 14 ■ Testing the solver 17

1.4 Game programming: a guessing game 18
Guessing game source and function 18
Lessons of the guessing game 23

1.5 Summary 23
vii

CONTENTSviii
2 Communication: basic input and output 25
2.1 Getting to know the program editor and homescreen 26

The program editor: typing source code 27
The homescreen: your canvas for input and output 32

2.2 Output: displaying text 34
Displaying text and numbers on the homescreen 34
Positioning text with the Output command 38

2.3 Input from users: the Prompt and Input commands 42
Prompting for numbers 42 ■ Fancier Input for numbers
and strings 44 ■ Exercise: making conversation 48

2.4 Troubleshooting tips 50
Easy-to-spot errors: TI-OS error messages 51 ■ The subtle errors:
why isn’t my program working the way I want? 53

2.5 Summary 54

3 Conditionals and Boolean logic 55
3.1 Introduction to comparisons 56
3.2 Conditional statements 59

The one-statement conditional: If 59 ■ Conditional blocks:
Then/End 62 ■ Conditionals with alternatives: Else 66

3.3 Boolean logic 68
Truth of logical operators 69 ■ Using logical
grouping parentheses 71 ■ Applying Boolean logic:
bounds checking 72

3.4 Summary 75

4 Control structures 76
4.1 Labels and Goto 77

Understanding Lbl and Goto 77 ■ Exercise: convert
the guessing game to use Lbl/Goto 80

4.2 Menus 82
Using the Menu command 82 ■ Example: add a menu
to the guessing game 84

4.3 For, While, and Repeat 86
Repetition with For loops 86 ■ Using While to loop 91
The Repeat loop 95

CONTENTS ix
4.4 Subprograms and termination 98
Putting repeated code in subprograms 99
Termination: Return and Stop 104

4.5 Summary 106

5 Theory interlude: problem solving and debugging 107
5.1 Introduction: idea to program 108

High-level design: features and interface 109 ■ Structuring your
code: diagrams to commands 112 ■ Testing and debugging 114

5.2 Planning a program’s structure 115
Idea and details: first steps 116
Diagrams and pseudocode 116

5.3 Headache-free coding and testing 120
Flowchart to code chunks 120 ■ Performing unit and
full testing 121 ■ The final Pythagorean Triplet solver 123

5.4 Understanding TI-BASIC errors 127
5.5 Tracing malfunctioning code 129
5.6 Summary 131

PART 2 BECOMING A TI-BASIC MASTER.....................133

6 Advanced input and events 135
6.1 Event loop concepts 136
6.2 getKey 140

Using getKey for nonblocking input 140
Learning getKey keycodes: the chart and the memorization 144
Exercise: eight-directional movement 145

6.3 The Mouse and Cheese game 151
Writing and running the game 152 ■ Understanding
the game 153 ■ Tweaking the game 159
Exercise: going further by moving the cheese 160

6.4 getKey odds and ends 164
Quirks and limitations of getKey 164
What about modifier keys? 165

6.5 Summary 166

CONTENTSx
7 Pixels and the graphscreen 167
7.1 Introducing the graphscreen 168
7.2 Drawing text: first steps on the graphscreen 170

Introducing Text: a MOVETEXT program 171
The Text command 173

7.3 Playing with pixels 175
Pixel commands 175 ■ Drawing a cursor 177
Exercise: the moveable mouse cursor 178

7.4 A painting program 180
7.5 Summary 183

8 Graphs, shapes, and points 184
8.1 Another coordinate system: points versus pixels 185

Pixel-point coordinate system conversion 187

8.2 Graphing from programs 188
Creating graphs 189 ■ Manipulating graphs
and functions 191 ■ Other graph tools and tricks 193

8.3 Drawing with points 194
Example: a point-drawing screensaver 195

8.4 Lines and shapes 197
The drawing commands 197 ■ Using lines to
draw polygons 198 ■ Extras: Text and the polygon 201

8.5 Working with pictures 202
What’s a picture? 202 ■ Interfaces, optimization,
and layering with pictures 203

8.6 Summary 204

9 Manipulating numbers and data types 205
9.1 Using strings 206

Defining and manipulating strings 206
String sub example: Xth letter of the alphabet 208

9.2 Lists and matrices 209
9.3 Working with integers and complex numbers 211
9.4 Revisiting randomness 213

Generating random numbers 214
Applying the random number commands 215

CONTENTS xi
9.5 Fun with data types: a single-screen RPG 217
9.6 Summary 223

PART 3 ADVANCED CONCEPTS; WHAT’S NEXT225

10 Optimizing TI-BASIC programs 227
10.1 Implicit conditionals 228

Converting explicit conditionals to implicit conditionals 228
Implicit conditionals for four-directional movement 231

10.2 Exploiting Ans 232
Ans to save variables and conditionals 232
Ans with subprograms 234

10.3 Compressing numbers and choices 235
Compressing numbers 235 ■ Compressing string options 237
Compressing or and and 238

10.4 Space-saving tips and tricks 239
Shortening your programs 240

10.5 Summary 242

11 Using hybrid TI-BASIC libraries 243
11.1 Introducing hybrid TI-BASIC 244

Downloading the hybrid libraries 245
Calling hybrid functions 246

11.2 Working with hybrid sprites 246
Defining and drawing sprites 247 ■ Sprites as hexadecimal 248
The hybrid BASIC mouse: CURSORH 250

11.3 Tilemapping and scrolling 250
Expanded TI-BASIC tilemapping with scrolling 251
Hybrid tilemapping 254

11.4 Finding and executing programs 256
Finding files 256 ■ Running subprograms from Archive 257

11.5 Other hybrid tools 257
Manipulating files and data 258
Hybrid TI-BASIC I/O and GUIs 258

11.6 Summary 259

CONTENTSxii
12 Introducing z80 assembly 260
12.1 What is assembly? 261

z80 assembly versus TI-BASIC 262
z80 assembly programming tools 263

12.2 “Hello, World” 264
Running Hello World 268

12.3 Bases and registers 268
Working with binary, hex, and registers 269
The stack: saving registers 272 ■ Integers in memory:
long-term storage 273

12.4 z80 math with registers 275
Register math and flags 275 ■ Masking and using bits 276

12.5 Functions and control flow 278
Using bcalls and ASM functions 278
Conditionals and jumps 279 ■ Loops in z80 assembly 279

12.6 Summary 280

13 Now what? Expanding your programming horizons 282
13.1 Taking your calculator programming further 283

Continuing with TI-83+/SE and TI-84+/SE programming 283
Programming other graphing calculators 284

13.2 Expanding your programming horizons 285
13.3 Working with hardware 287

Calculator hardware and modifications 287
The wonderful world of microcontrollers 289

13.4 Final thoughts 290

appendix A Review: using your calculator 291
appendix B TI-BASIC command reference 304
appendix C Resource list 313

index 317

foreword
As a professional computer software developer, I can tell you that some of the greatest
programmers start with the simplest of hardware and the most fervent determination.

 Mastering a small computer system (such as the Texas Instruments graphing calcula-
tor) not only feels fantastic, but also teaches core programming concepts and solidifies
ways of thinking that mediocre programmers seldom grasp. I have been in the TI graph-
ing calculator community for well over a decade, as has Christopher (known among us as
“Kerm Martian”). Throughout that time we have watched each other’s humble begin-
nings, been amazed as our successful (and at times overly ambitious) projects flourished,
and even watched others learn from us. I can think of no one more capable of teaching
the basics of programming the TI-83 Plus series graphing calculators, and ensuring you
have fun along the way, than Christopher “Kerm Martian” Mitchell.

 My own fascination with graphing calculators, and particularly the TI-83 and TI-84
Plus series, began in the late 1990s, when only cripplingly slow dial-up and mailing
lists bound us together. The TI-GRAPH LINK cable allowing connection between a
computer and a graphing calculator had only recently made its debut, eliminating the
need to painstakingly hand-type TI-BASIC games and utilities. At the time, I thought
the program editor was merely for typing notes. It wasn’t until I discovered the pro-
gramming chapter of the thick, cryptic TI-83 manual that I realized it could do so
much more.

 I spent many days reading the entire manual over and over, striving to understand
every command I could execute from within a TI-BASIC program. I became enamored
with the concept of taking a limited set of instructions and transforming the calculator
xiii

FOREWORDxiv
into anything I could imagine. Before I knew it, I was spending 7th grade math class
happily playing my own random number guessing game while others struggled to stay
awake at their desks. The idea of sculpting complex applications (and let’s face it,
games) in my own mind and then pouring them out onto the calculator keys capti-
vated me and pulled me into the world of software development.

 Once I had mastered TI-BASIC, my curiosity did not cease. How does TI-BASIC
work? What happens when the calculator executes a TI-BASIC command? What hap-
pens behind the scenes? How does the calculator know how to display graphs, or what
to do when a key is pressed or a menu item chosen? I discovered that the answers lay
within a mysterious second programming language that was all the rage—assembly
language. This language consists of the raw instructions that the calculator’s processor
executes; it was used to write the calculator’s OS and the interpreter that makes TI-
BASIC possible.

 For years, programmers had been writing in assembly language to create programs
even more powerful and flexible than what TI-BASIC allowed. To share in the fun and
understand all of the TI-83 Plus’ inner workings, I knew I had to learn it. From that
moment on, I made it my goal to learn everything there was to learn about the under-
lying software that makes the TI-83 Plus series tick. Even after years of reverse engi-
neering the OS (and, on occasion, exploiting some of its more interesting security
vulnerabilities), it remains an elusive goal.

 For as long as I can remember, Christopher (or Kerm) has humbly granted himself
the title of “world’s most prolific calculator programmer,” which as it turns out, is a well-
deserved description. Despite TI-BASIC’s reputation as a relatively limited language
compared to the calculator’s native assembly language, Christopher started cranking
out programs soon after learning it and has never stopped—from TI-BASIC to assem-
bly programs to FLASH applications.

 Christopher’s crowning achievement in the world of programming TI-83 Plus applica-
tions is Doors CS, a powerful, versatile calculator shell (a program that provides a user
interface for running other programs). I can still recall the first version of Doors CS, writ-
ten in pure TI-BASIC and requiring tedious manual configuration to overcome some (but
not all) of TI-BASIC’s shortcomings. As a calculator shell requires total access to the calcu-
lator’s memory and the variables contained within for management and execution of
programs, TI-BASIC is not a language conducive to producing a great shell. Despite this
and a bit of negative criticism, Christopher persevered and strove to improve upon it no
matter the cost, eventually implementing it in assembly language and adding many use-
ful features and tight integration with the TI operating system. Some of my favorite mem-
ories are of staying up very late at night (and into the early morning) with Christopher,
reverse engineering some of the more mysterious parts of the OS to diagnose linger-
ing issues in Doors CS’ interaction with existing calculator functionality.

 Today, Christopher has produced one of the community’s leading shells, software
to allow using a calculator over the internet for chatting and playing calculator games
with others, and other projects too numerous to mention. Cemetech.net has evolved

FOREWORD xv
from his personal website into a haven for anyone interested in programming TI
graphing calculators or receiving help in doing so.

 Some of the greatest members of the calculator community—longtime developers
like Dan Englender, Michael Vincent, Benjamin Moody, and countless others—made
calculator programming the great learning experience and joy it is for so many, and it
is safe to say that Christopher stands with them.

 I have no doubt that Christopher’s unique understanding of the TI-83 Plus series,
the TI-BASIC language, and all that lies beyond will prove to be a valuable asset as you
go through this book. It will teach you all there is to know about TI-BASIC, assembly
language, and everything in between. And it will help you explore the wonder and
awe that can be found in calculator programming.

 Enjoy!

BRANDON WILSON

SENIOR SOFTWARE DEVELOPER

ADVANCED CALL CENTER TECHNOLOGIES (ACT)

preface
When I was 13 years old, I received my first graphing calculator. It was Christmas, and
my biggest present under the tree was a TI-83. I was thrilled. I first used it just for
math, but over several months, I became more curious and discovered that I could
write programs directly on the calculator. The guidebook included with the calculator
didn’t really help with programming, other than demonstrating an interesting Sier-
pinski Triangle. Undeterred, I set off to teach myself calculator programming, although
I never thought of it in such definite terms.

 I first learned to display text on the screen and then to make simple animations. I
discovered that I could also ask the user for input and thus make simple math programs
to check my homework results. Soon classmates began passing around arcade games they
had found for their calculators, so I dug into the source code for those games and found
out how they worked, using my new skills to create games of my own. Over the years I
grew more competent, including learning to write z80 assembly, a more complex but
much more powerful language than TI-BASIC. I started an online community around
graphing calculator programming called Cemetech (pronounced “KEH-meh-tek”) that
thrives as a hardware and software development haven to this day. I continued to pursue
programming as well as my lifelong love of hardware and electronics. I earned two
degrees in electrical engineering and one in computer science; I’m now working toward
my doctorate. I credit much of my love of programming and engineering to those first
faltering steps with my graphing calculator.

 Having helped new calculator programmers to learn the tricks of the trade for
close to 13 years on Cemetech’s forum, I’ve heard countless variations on my story.
xvi

PREFACE xvii
I’ve worked with students who got a calculator and started to play with its math fea-
tures, only to discover it was programmable. I’ve helped others who downloaded
games from their peers, then took the games apart to see what made them tick. I’ve
seen like-minded students form small programming groups to make math pro-
grams and games for their friends. Many of these students are now in college or
graduate school, studying engineering or computer science; others work in the
industry as professional programmers or as teachers and professors. Almost all of
them credit their first forays into calculator coding for their current love of technol-
ogy and programming.

 When I show off my latest projects, there’s bound to be at least one person who
asks, “why?” Why would I bother working with such a low-powered, primitive device,
when I have the equipment and skills to write more complex software for vastly more
capable systems? The answer is that I love the utility of graphing calculators as an
introductory programming platform and I love a challenge. When I’m writing a TI-
83+ program, every byte of the calculator’s 24 K of RAM is important, and every cycle
of its 6 MHz processor must be carefully rationed.

 When I wear my other hats as an electrical engineer, a computer scientist, a web-
master, and a researcher, I work with systems that have many more capabilities. These
systems provide their own performance and design challenges, but none are quite as
simultaneously simple and complex as graphing calculators. From a teaching perspec-
tive, I believe calculators are an accessible platform on which to learn the problem-
solving skills vital to becoming a good programmer. You can write and test code
directly on a device that many students already own, and, with only the capabilities
built into your $100 calculator, create surprisingly complex projects. In a very real
sense, you’re working with a full-fledged if slightly antiquated computer.

 These dual attractions of graphing calculator programming have driven me to
continue to pursue my own calculator projects and to build a community of like-
minded coders and teachers. Throughout the years, I’ve sporadically hoped to docu-
ment my extensive calculator programming experience in some way. In 2003, I wrote
a rudimentary TI-BASIC tutorial. Two years later, I wrote and published a guide to
advanced TI-BASIC optimizations with a fellow Cemetech administrator, which
14,000 coders have read to date. Between 2005 and 2006, I attempted to motivate the
community to document their TI-BASIC knowledge in a wiki, a project that never
gained much traction, but I continued to wish there was a way to write an exhaustive,
thorough guide to TI-BASIC programming.

 So it was with excitement that I received Manning’s request that I write a book
about graphing calculator programming. I’ve tried to transcribe as many of the les-
sons that I learned over the years onto these pages, from basic lessons to advanced tips
and tricks. I’ve found that calculator programming has helped me to think more criti-
cally as a programmer and as an engineer and made it easier for me to pick up other
languages. I’ve tried to pass along many of the general problem-solving lessons I’ve
accumulated in these pages, and I hope that regardless of whether you are learning

PREFACExviii
calculator programming as its own goal or as a stepping-stone toward another lan-
guage, you’ll have as much fun reading the coming chapters as I had writing them.

 Any good programmer, engineer, or scientist knows that there’s always more to
learn, so I hope to hear from many of you and find out what role calculators played in
your life and how this book helped you. Perhaps you’ll show off some tips and projects
of your own on Cemetech or in the larger programming community. I hope in the future
to continue to help you with your programming, through other books, Cemetech, or
indirectly through the rest of the programming community.

 Good luck, and enjoy!

acknowledgments
Thanks must first go to the friends, family, and loved ones who’ve supported my pro-
gramming and engineering career throughout the years. I’d especially like to
acknowledge my mother, Maria Mitchell, for getting me my first calculator, always sup-
porting my education, and offering moral support during this book’s creation. My
friends and loved ones have been patient with my hobbies and projects and have
always been ready with words of encouragement; my girlfriend, Sara Nodroff, was
there for me throughout the many hours I spent on this project. I’m also grateful to
teachers and advisers current and past who helped me get where I am today, especially
to Jinyang Li, who was understanding of my threading the writing of this book around
my PhD research.

 Although my first forays into calculator programming took place on my own, the
members of the worldwide graphing calculator enthusiast community have been my
colleagues and friends for close to a decade. It’s hard to name all of the individuals
who have made a difference for me, so if I don’t specifically acknowledge you, know
that I treasure your help, inspiration, and camaraderie nonetheless. I must first tip my
hat to my Cemetech administrators, staff, and friends, who have stood by me through
my technical and personal struggles and achievements. Thomas “Elfprince13”
Dickerson and Daniel “TIFreak8x” Thorneycroft have been with Cemetech since its early
days and have encouraged my projects for more than seven years. Shaun “Merthsoft”
Mcfall and Jon “Jonimus/TheStorm” Sturm, more recent additions to Cemetech, have
become my valued friends and colleagues. Other Cemetech staff past and present
have been my teachers, students, and friends, including Theodore Davis, Alex Glanville,
xix

ACKNOWLEDGMENTSxx
Kenneth Hammond, Catherine Hobson, Peter Marheine, Jonathan Pezzino, and John
Reck. I’m grateful to all of the Cemetechians who provided feedback and corrections
for this book, including Dan “Shkaboinka” Cook, the technical proofreader.

 The staff of the community mainstay website www.ticalc.org have over the years
been advisers and friends, including Travis Evans, Nikky Southerland, and Michael
Vincent; Ryan Boyd and Duncan Smith also assisted in this book’s review process.
Many of my assembly accomplishments would have been a more painful struggle with-
out the vast knowledge of Brandon Wilson and Ben Ryves, and the prior work of Joe
Wingbermuehle on Ion and other programs, Dan Englender and Jason Kovacs on
Doors CS’s archrival MirageOS, Sean McLaughlin on his excellent ASM tutorial, and
James Matthews on the first ASM tutorial I ever read. Thanks also to Brandon for pen-
ning the foreword to my book.

 Special thanks to the following reviewers who read the manuscript at different
stages during its development and provided invaluable feedback: Amethyst Ramsey,
David Robertson, Gabriel Martin, Jared McNeil, Jonathan Walker, Julien Savard, Kyle
Beck, Louis Becquey, Peter Beck, Travis Evans, and Xavier Andréani.

 This book would have been impossible without the tireless efforts of many at Man-
ning. Thanks to my publisher, Marjan Bace, and to Michael Stephens, who first found
me for this project. In chronological order, Bert Bates, Renae Gregoire, and Elizabeth
Lexleigh contributed a great deal of their time and effort to make this work the best
that it could be. My gratitude also goes to the Manning marketing, editorial, and pro-
duction teams for every aspect of their contributions that combined to make the vir-
tual or physical pages you now hold in your hand possible.

www.ticalc.org

about this book
Graphing calculator programming is a rewarding way to get started in computer pro-
gramming, to develop your existing skills, or just to have fun with the challenge of
working with such a device. If you’re a student or teacher, especially of math or sci-
ence, the programs you write for your calculator can speed up annoying, repetitive
calculations or help you check your work. You can enjoy the feeling of accomplish-
ment from completing a useful utility or a fast-paced game for your calculator.

 From this book, you’ll learn everything you need to know to progress from a non-
programmer to a TI-BASIC pro. If you have programming experience, or even
TI-BASIC skills, it will teach you advanced tricks and hopefully help you see the lan-
guage in a new way. The problem-solving skills in each chapter can be applied to
almost any programming language that you might encounter.

 If you’re a beginner, I recommend that you read this book front to back, starting
from the first chapter and working your way to the end. If you have some experi-
ence or are looking for answers to specific questions, you can skip to the relevant
chapter. I assume beginning in chapter 2 that every reader has the same basic set of
calculator skills and knows how to perform math, draw graphs, and use lists and
matrices. If you’re uncomfortable with any of those concepts, I strongly recommend
that you read through appendix A before you get to chapter 2. In case you forget the
syntax for any TI-BASIC command that you learn, you can look at appendix B, which
is arranged to parallel the organization of the chapters. No programmer should have
to code in a vacuum, so when you get stuck, be sure to visit the Author Online
forum, Cemetech, or any of the other forums and websites listed in appendix C.
xxi

ABOUT THIS BOOKxxii
 Throughout this book, you’ll look at both educational and fun programs that test
each new idea and cobble it together with the things that you’ve already learned. In
many places, I’ll talk about some program that you might want to write but don’t yet
know how to create and then introduce new concepts that will provide those skills.

Roadmap
This book consists of 13 chapters, divided into three parts. It also has three appendi-
xes, which summarize skills, commands, and resources that any calculator program-
mer might need. Part 1 focuses on introducing programming skills that are important
for TI-BASIC programming but apply to almost any language you might want to learn.

■ Chapter 1 introduces graphing calculators and calculator programming, outlining
why learning TI-BASIC is important and relevant. It presents your first three pro-
grams: a Hello World program, a guessing game, and a quadratic equation solver.

■ Chapter 2 presents input and output on the homescreen, including displaying
text and numbers and getting strings and values from the user.

■ Chapter 3 covers conditionals and comparisons, the building blocks for creat-
ing programs that make decisions.

■ Chapter 4 completes the picture of controlling program flow in TI-BASIC with
labels, loops, menus, and subprograms, all of the structural features that you’ll
need to create arbitrarily complex programs.

■ Chapter 5 steps back to detail the process of designing, creating, and debugging a
program in any language. It illustrates each step with a running TI-BASIC example.

Part 2 takes the basic framework from part 1 and teaches additional commands and
features necessary for more professional and complete programs. These include
graphics, interactivity, and the proper use of the many data types your calculator
understands, such as matrices, lists, strings, and pictures.

■ Chapter 6 teaches you how to create fun, interactive programs and games with
event loops. As with many other lessons, it wraps the TI-BASIC focus in skills
you’ll be able to bring to many other languages. This chapter culminates in a
full Mouse and Cheese game for your edification.

■ Chapter 7 discusses your first true graphics tools, presenting the concepts and
commands for turning individual pixels on and off. It shows how to draw small
and large text anywhere on the screen and reinforces the lessons of the chapter
with two demo programs: a painting tool and a mouse cursor subprogram.

■ Chapter 8 expands further on graphics and graphing, covering creating and
manipulating graphs from inside programs, as well as drawing with points,
lines, circles, and other shapes. It introduces the commands for storing and
recalling pictures on the graphscreen.

■ Chapter 9 rounds out part 2 with an overview of the many data types your calcula-
tor can handle and the important commands for manipulating each. It walks
through strings, lists, matrices, real and complex numbers, and random numbers,

ABOUT THIS BOOK xxiii
and it concludes with a complete framework for a role-playing game (RPG) that
you can expand and enhance on your own.

Part 3 goes into advanced concepts and may be particularly engaging even if you have
prior TI-BASIC or programming experience. It covers optimization, hybrid BASIC, and
the rudiments of assembly.

■ Chapter 10 details how to optimize your programs for speed and size, present-
ing TI-BASIC–specific tips without losing sight of the more general program-
ming lessons for proper optimization.

■ Chapter 11 shows hybrid TI-BASIC and the hybrid BASIC libraries and includes a
discussion of the major libraries, where to find them, and how to use them.

■ Chapter 12 introduces a new programming language, z80 assembly, giving you
enough detail about binary, decimal, hexadecimal, and assembly commands
and program flow to spur you to explore it more on your own.

■ Chapter 13 concludes with ideas about where you can go with programming
and calculator programming from here. It also discusses hardware develop-
ment and hacking and how such a hobby ties into calculator programming.

The appendixes provide a quick reference to material supplementing and coalescing
the contents of the chapters:

■ Appendix A is a crash course in using your graphing calculator. Chapters 2
onward assume a basic set of general calculator skills, and appendix A reviews
all of these skills in case you don’t feel entirely comfortable with your device.

■ Appendix B summarizes all of the commands found throughout the chapters
and includes usage examples and syntax.

■ Appendix C lists valuable resources for seeking programming help, finding
additional programs for inspiration and source code examination, and tools to
facilitate BASIC and assembly programming.

Who should read this book
Who are you? You might be a student who is getting a graphing calculator for the
first time or recently started using one and wants to unlock your device’s full poten-
tial. Perhaps you are a teacher, an engineer, a programmer, or just curious. If
you’ve never before programmed anything, you have a whole world of amazing
things that programming can enable you to do and learn in front of you, and I’ll
be honored to guide you forward. This book is primarily aimed at you, the bud-
ding programmer. I’ll lead you through graphing calculator programming, but I’ll
also help you keep an eye on programming in general and teach you concepts you
can apply to almost any language.

 If you’ve toyed with programming before, for calculators, computers, or another
platform, I hope this book can teach you how to learn more, to write and understand
complete programs, and to have fun doing so. If you’re an advanced programmer,

ABOUT THIS BOOKxxiv
either for calculators or something else, I want to provide you with a great reference
guide for calculator programming, advanced topics and optimization tricks, perhaps
get you interested in z80 assembly programming, and give you another perspective on
programming as a hobby and as a career.

 I’ll teach you everything you need to know to write complete programs for your
graphing calculator (and everyone else’s); I assume that you have no prior knowledge
of calculator programming or any sort of programming. I’ll teach you how to think
like a programmer and how to apply problem-solving skills to take any program you
might want to write, break it down into pieces, and code each one. If you have some prior
programming skill, great; if you have previous graphing calculator programming skill, all
the better. The chapters ahead are designed to teach you everything you need to know,
from the basics up to the most advanced tricks for creating very fast, very small, very fancy
programs. If you have some experience, you may end up skimming sections, but even if
you feel like you know your way around a simple TI-BASIC program, you’re likely to run
across new tricks and features that you hadn’t previously played with.

 Why write calculator programs; why not just jump straight to programming a com-
puter? The short answer: the opportunity to learn quickly, have fun, surmount the chal-
lenges of a programming platform, and get started right away. If you’re reading this
book, chances are you already have a graphing calculator. If you don’t, then you can
get one for less than $100. The TI-83+, TI-83+ Silver Edition, TI-84+, and TI-84+ Silver
Edition covered in this book are all cheap, widely available, and widely owned graph-
ing calculators and can all run each other’s programs. The TI-83 can run very similar
programs and is similarly inexpensive and ubiquitous. Although their programming
languages are somewhat different, many of the same skills can be applied to program-
ming other TI graphing calculators and to Casio calculators such as the color-screen
Casio Prizm. Calculators are small and portable, great to carry around and whip out
when you have some downtime to work on your programming but don’t have or want
to carry around a laptop. They last for months, not a few hours, on a single charge or
set of batteries.

Typographic conventions and code
Looking at code examples as you learn is vital to a full understanding of a language.
Examples large and small, along with occasional exercises, are scattered far and wide
through this text. Full programs are often presented in listings, though shorter pro-
grams may be interspersed between paragraphs in monospaced font. Several other
conventions are followed:

■ All keypresses are enclosed in square brackets, such as [ENTER] or [2nd]. The text
between the brackets is the text printed on your calculator’s keys. Chapter 2
explains more about the key convention used and how to type key combinations.

■ Commands and tokens are mentioned in the text by their name in monospaced
font, like Disp or For or Line. Some commands have parentheses after them,
such as For(and Line(, but for neatness in text, these parentheses are often

ABOUT THIS BOOK xxv
omitted. The requisite parentheses are shown in code examples and when each
such command is first presented.

■ All code herein applies to the TI-83+, TI-83+ Silver Edition, TI-84+, and TI-84+
Silver Edition. These calculator families are formally named TI-83 Plus and
TI-84 Plus, respectively, but I’ll call them the TI-83+ and TI-84+ throughout,
because that has become accepted parlance in the programming community. I
strongly recommend that you have one of these four calculators to accompany
your adventure through this book. Much of the code and almost all of the con-
cepts also apply to the TI-82 and TI-83 and to a lesser extent to the TI-85 and TI-86.
The TI-89 uses a different, more complex variant of the TI-BASIC language.

The code for all of the programs presented in this book can be found on the pub-
lisher’s website, www.manning.com/ProgrammingtheTI-83Plus/TI-84Plus. Each pro-
gram can be tested on your calculator or emulator; a list of the top TI calculator
emulation software packages is included in appendix C. You can also view the source
of programs on your computer using SourceCoder, at http://sc.cemetech.net.

 All screenshots in this book were taken with the Wabbitemu or jsTIfied emulators
and adjusted and annotated in GIMP. All source code listings were generated from the
original programs by SourceCoder or written in that IDE and checked in an emulator.

Online resources
The purchase of Programming the TI-83 Plus/TI-84 Plus includes free access to a private web
forum run by Manning Publications, where you can make comments about this book, ask
technical questions, and receive help from both the author and from other readers. The
Author Online forum can be found at www.manning.com/ProgrammingtheTI-83Plus/
TI-84Plus. This page contains information on how to register on and use the forum,
what kind of help is available, and the rules of conduct.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

 You can also ask technical questions on the author’s forum, Cemetech, which has a
special subforum for this book at www.cemetech.net/forum/f/70 (or http://cemete
.ch/f70). Appendix C lists many more online resources, including places to download
and publish programs, development tools, and emulators.

About the author
Christopher Mitchell is a graduate student of computer science and electrical engi-
neering, a teacher, and a recognized leader in the TI and Casio graphing calculator
programming communities. Christopher started programming Logo and QBasic

www.manning.com/ProgrammingtheTI-83Plus/TI-84Plus
www.manning.com/ProgrammingtheTI-83Plus/TI-84Plus
www.manning.com/ProgrammingtheTI-83Plus/TI-84Plus
www.cemetech.net/forum/f/70
http://sc.cemetech.net
http://cemete.ch/f70
http://cemete.ch/f70

ABOUT THIS BOOKxxvi
when he was seven years old, taught himself TI-BASIC at the age of 13, and has since
branched out into hardware and software development for many platforms. He is the
graphing calculator community’s most prolific author, with well over 300 completed
programs. Today, Christopher hosts discussions and collaboration on calculator pro-
grams and projects at his website, Cemetech. Christopher is proud to be a born-and-
raised New Yorker. He has bachelor’s and master’s degrees in electrical engineering
from Cooper Union and is now pursuing a PhD in computer science at the Courant
Institute of NYU.

About the title
While we refer to the calculator by its shortened name TI-83+/TI-84+ throughout the
book in order to save space and avoid repetition, the official name of the calculator is
TI-83 Plus/TI-84 Plus and we do use this name written out in full in the title and in
other official references to the book or the calculator.

About the cover
Manning has a tradition of using illustrations from 18th- and 19th-century collections
of regional dress customs on their covers. After feedback from many students in this
book’s target audience, however, an alternative was created for this book, combining
classical art with the instantly recognizable outline of a TI-83+ graphing calculator.
The final design on the cover of this book, refined through many creative iterations, is
inspired by Leonardo da Vinci’s “Vitruvian Man,” in which the human figure is replaced
with calculators.

Part 1

Getting started
with programming

Graphing calculator programming is a great way to dive into the world of
programming, to learn more about your calculator, and to enhance your aca-
demic prowess and problem-solving skills.

 The five chapters in part 1 immerse you in everything you need to know to
start writing full, powerful programs. It begins with your first three graphing cal-
culator programs, shows you how to input and output numbers and text, and
teaches you conditional and structural commands. By the end of this part, you’ll
be able to write programs and games that can interact with the user, make deci-
sions, display menus, perform calculations, and call other programs. In each
chapter, you’ll see examples large and small that you can test and play with to
cement your understanding of each new concept, and you’ll occasionally be
challenged to write your own application.

 Chapter 1 introduces your calculator as a math and programming tool. You’ll
see how closely it resembles a full computer, and you’ll explore a Hello World
program, a quadratic equation solver, and a guessing game. Chapter 2 shows you
a systematic approach to writing, editing, and running programs on your calcu-
lator, then teaches you commands to interact with the user. Chapters 3 and 4
show increasingly complex program-flow tools, from performing comparisons
and using the results to make decisions, to jumping from place to place inside a
program, to creating loops and calling subprograms.

2 PART 1 Getting started with programming
 If you have a vested interest in learning other programming languages besides
TI-BASIC, you’ll find chapter 5 particularly enlightening. It takes you through the pro-
cess of imagining, designing, writing, and debugging a program from start to finish in
any language. In the process, you’ll learn to design your programs’ interfaces, sketch
flowcharts of program structure, and turn those diagrams into code.

 If you’re comfortable using a graphing calculator for math and graphing and have
previously used lists and matrices, then you can jump directly from chapter 1 to chap-
ter 2. If you want to make sure you understand the nonprogramming basics, you
should review appendix A for a crash course in using your calculator as a math and sci-
ence tool before beginning chapter 2.

Diving into
calculator programming
In the past 40 years, programming has gone from being a highly specialized niche
career to being a popular hobby and job. Today’s programmers write applications and
games for fun and profit, creating everything from the programs that run on your
phone to the frameworks that underpin the entire internet. When you think of pro-
gramming, however, you probably don’t envision a graphing calculator. So why should
you read this book, and why should you learn to program a graphing calculator?

 Simply put, graphing calculators are a rewarding and easy way to immerse your-
self in the world of programming. Graphing calculators like the ones in figure 1.1
can be found in almost every high school and college student’s backpack, and
though few of them know it, they’re carrying around a full-fledged computer.
Directly on your calculator, with nothing else required, you can write games, math
programs that will help you check your work, and science programs to solve hard
problems. You’ll learn to think like a programmer, to apply problem-solving skills

This chapter covers
■ Why you should program graphing calculators
■ How calculator programming skills apply to

computer coding
■ Three sample programs so you can dive right in
3

4 CHAPTER 1 Diving into calculator programming
to surmount obstacles, and to optimize and stream-
line your software. But you might be asking yourself
why you should bother learning calculator program-
ming instead of starting with a computer language
like Java or Python or C.

 The answer is that besides offering a simple yet
powerful way to get started with programming and
besides being a portable computer you can slip into
your pocket, your calculator will make it much easier
for you to learn computer programming. To a large
extent, you’ll be applying the same set of critical
thinking skills to any programming language that you
write, and the TI-BASIC calculator language you’ll
learn throughout this book is a rewarding and easy
way to learn those skills. By the end of this chapter,
you’ll have already written three programs, including
a game and a math program.

 Just from using your graphing calculator for math,
you already know some programming. The math operations in TI-BASIC programs are
identical to the math operations you type at the homescreen, and with many opera-
tions, such as manipulating graphs, you can build off the skills you’ve already learned
using your calculator for school or work. The programming commands have names
taken directly from English, such as Input, Repeat, and many others. The calculator
even makes it easy to track down your programming mistakes, taking you directly to
errors it finds so that you can correct them.

 In this chapter, you’ll take your first programming steps, diving right in with your first
three calculator programs. After we discuss how similar your calculator and a computer

Why program, and why program calculators?
Programming is a fun and rewarding career or hobby. It’s great to hone problem-
solving skills and to learn to think more analytically. It’s gratifying to develop an idea
for a program and, after planning and hard work, to successfully bring that idea to
fruition. You may find that you enjoy the satisfaction of surmounting challenges, of
learning to optimize your programs to make them small and fast, and of sharing your
finished work with friends and with users around the world.

Programming calculators is a great pursuit on its own and will teach you most of the
skills you’ll need to easily pick up computer programming languages. Many of the past
and present graphing calculator programming stars started as bored or curious stu-
dents and now have advanced degrees or high-paying jobs in programming and engineer-
ing. This book will teach you everything you need to know to think like a programmer,
instilling an intuition for translating an idea into a program and thinking your way
around challenges that you’ll find useful in a wide variety of technical pursuits.

Figure 1.1 Common Texas
Instruments graphing calculators,
the TI-83+ (left) and TI-84+ Silver
Edition; the lessons in this book
apply to these calculators as well
as the TI-83+ Silver Edition, the
TI-84+, the TI-Nspire with a
TI-84+ keypad, and, to a large
extent, the TI-83.

5Your calculator: the pocket computer you already own
are, you’ll meet your calculator’s ancestors and proceed to your first program. You’ll
learn to display the text “Hello, World” on your calculator’s screen and then create a
math program to solve the quadratic equation and a number-guessing game. Ready?
Let’s get started!

1.1 Your calculator: the pocket computer you already own
To understand how a graphing calculator is a small, handheld computer and can be
programmed to do many of things that a computer can be made to do, you must look
at what exactly a computer is. The traditional idea of a computer terminal with a
tower, a monitor, a keyboard, and a mouse is your first clue. A computer has input and
output devices, a processor, and long-term and short-term storage, as you can see in
the top half of figure 1.2. The dashed line indicates the portion of the computer
inside the box on your desk, while the input and output devices are usually attached
via cables. The processor at the center of everything mediates communication
between long-term memory, short-term memory, and input and output devices. The
role of each component is summarized in table 1.1.

 As you can see in the bottom half of figure 1.2, a graphing calculator also con-
tains these major blocks. Table 1.1 compares each aspect of a calculator with its com-
puter counterpart.

Figure 1.2 The basic building blocks of a computer and a calculator. Both have input and
output; both have long-term and short-term storage. Both have a processor (CPU) that acts
as the brains and mediates communication between the other pieces. The two types of
devices are similar; the ovals highlight the main differences, such as that a calculator has
flash memory for long-term storage instead of a hard drive.

6 CHAPTER 1 Diving into calculator programming
So why is a graphing calculator a computer, and a simple four-function calculator, like
the cheap nongraphing calculator that you probably have in a desk drawer and that
can only perform the simplest math, is not? The difference is that the simple calcula-
tor can only run its built-in software, which tells it how to do basic math. A graphing
calculator also has a built-in OS that tells it how to do math, draw graphs, and store
and recall variables but can accept brand-new programs that you or others create.

 These programs can be loaded from other calculators, written on a computer
using one of several applications designed for the purpose, or most conveniently and
importantly, written by you, directly on the calculator itself. The programs you add to
your calculator can do almost anything, including augmenting or supplementing the
calculator’s math and graphing tools and providing full suites for math, science, word
processing, and more. Games can make graphing calculators a lot more fun: Arcade
games, role-playing games (RPG), puzzle and board games, and thousands of others
are possible with the calculator you have right now!

 These are fun applications to write and use, but why bother writing calculator pro-
grams when you have more powerful computers available to you? Why learn to make
programs that look good on a 96- by 64-pixel screen when even the lowest end mod-
ern laptop has 100 times as many pixels, or to fit a program into 20 KB of RAM when
your computer has at least 50 million times as much? The answer is that calculators
offer a much easier learning experience to budding programmers and a more reward-
ing challenge for seasoned coders. They’ll give you a fun hobby, provide more control
over your math and science tool, and can act as a stepping-stone to other program-
ming languages. I’d like to introduce you to some of your calculator’s extended fam-
ily, including its shared ancestors with modern computers.

THE EVOLUTION OF THE MODERN GRAPHING CALCULATOR

The graphing calculator as a popular tool for math, science, and programming is now
entering its fourth decade of widespread usage. Calculators for simple math gained
public traction in the 1970s, and the first programmable calculators such as the TI-59
(programmed using punched cards) were produced in the late 1970s. But graphing

Table 1.1 A side-by-side comparison of a calculator and computer

Calculator Computer

Input devices Mouse/keyboard to control operating sys-
tem and programs

Built-in keypad to control operating
system and programs

Output devices Monitor to display graphics and text LCD screen to display graphs, text,
and images

Inside the box Power supply, processor, RAM (short-term
storage), hard drive (long-term storage)

Batteries, processor, RAM (short-term
storage), Flash/Archive (long-term
storage)

When you run
a program

Copied from hard drive to RAM, executed by
processor from RAM

May be copied from Flash to RAM; run
by processor from RAM

7Your calculator: the pocket computer you already own
calculators are distinguished by having a much bigger screen, suitable for displaying
graphs, and have much more powerful math and programming features than their
nongraphing counterparts. Texas Instruments, currently leading Casio and HP in
modern graphing calculator market share, released the TI-81 in 1990, with a 2 MHz
processor and 2.4 KB (2400 bytes) of RAM. To put that in perspective, this paragraph
up to the end of this sentence would already take 20% of a TI-81’s memory. Other
models were released in the following five years with gradually increasing capabilities.
The TI-83+ (introduced in 1999) and TI-84+ (first available in 2004), were the prede-
cessors to the TI-83+ Silver Edition and TI-84+ Silver Edition; I’ll be focusing on these
four models throughout the coming chapters.

 The TI-83+, TI-83+ Silver Edition, TI-84+, and TI-84+ Silver Edition are similar cal-
culators; their technical specifications are summarized in table 1.2. All four models
run a Zilog z80 processor. They all have about 24 KB of RAM to store programs and
data and between 163 KB and 1.5 MB of Archive, longer-term permanent storage. All
four models have a 96- x 64-pixel monochrome (black-and-white) LCD screen. To put
these sorts of technical specifications in perspective, a popular personal computer
from 1982, the ZX Spectrum, had a 3.5 MHz z80 processor, between 16 KB and 128 KB
of RAM, and used a TV as a 256 x 192 display. The Spectrum had about 20,000 software
titles published for it, whereas over 38,000 programs and projects have been pub-
lished for TI graphing calculators.

Table 1.2 Specifications of the modern graphing calculators taught in the coming chapters. You’ll need
at least one of these to be able to follow along.

TI-83+ TI-83+ SE TI-84+ TI-84+ SE

Zilog z80 processor 6 MHz 15 MHz 15 MHz 15 MHz

Screen 96- x 64-pixel monochrome passive-matrix liquid crystal display

RAM 24 KB user/
32 KB total

24 KB user/
128 KB total

24 KB user/
128 KB total

24 KB user/
128 KB total

Archive/flash 163 KB user/
512 KB total

1.5 MB user/
2 MB total

480 KB user/1
MB total

1.5 MB user/
2 MB total

Communication 9.6 Kbps serial 9.6 Kbps serial 9.6 Kbps serial,
mini USB

9.6 Kbps serial,
mini USB

8 CHAPTER 1 Diving into calculator programming
TIP You’ll need at least one of the calculators in table 1.2 to work through
the material in this book. It’s recommended that you have a physical calcula-
tor, so you can work wherever the mood strikes you. But if you so choose, you
could use one of the emulators listed in appendix C instead.

Specifications and numbers are all well and good, but they can’t teach you nearly as
much as getting your hands dirty with concrete examples. In the next sections, you’ll
work through your first programs: a Hello World program, a math program, and a
game. You can type the code for each program directly into your calculator or read
the descriptions and look at the screenshots to see some of the simplest (yet useful)
programs your calculator can run. First up, Hello World.

1.2 Hello World: your first program
No instruction in a new language would be complete without plenty of well-annotated
example programs to demonstrate each new concept learned. To jump directly into
TI-BASIC programming, this section shows you the TI-BASIC version of the simplest
program imaginable, universally called Hello World because it prints that phrase on
the screen. I’ll present an overview of the two major types of programming languages,
interpreted languages and compiled languages, while showing you TI-BASIC, the lan-
guage you’ll learn in most of the coming chapters. You’ll see the source code for the
program, and I’ll teach you how to test it on your own calculator. First, you need to know
a few background details about the TI-BASIC language and how it compares to other
languages you may know or have heard about.

1.2.1 Before you begin: notes on the TI-BASIC language

The programming language that’s commonly known as TI-BASIC isn’t officially called by
any name by Texas Instruments itself and isn’t technically a variant of the BASIC (Begin-
ners All-Purpose Symbolic Instruction Code) language. But like BASIC, it’s an interpreted
language and shares many traits with that inspiration, so the name TI-BASIC has stuck.

 Almost every language can be classified either as an interpreted or a compiled lan-
guage; a high-level comparison of the two is provided in table 1.3 along with a few rep-
resentative examples of each. See the sidebars “What’s an interpreted language?” and
“What’s a compiled language?” for more details.

Table 1.3 Interpreted versus compiled programming languages

Interpreted language Compiled language

Execution speed Slower Faster

Preprocessing None needed Source code compilation

Syntax error checking During execution Before execution

Executed by Interpreter program Computer’s processor

Examples TI-BASIC, JavaScript, Java, Python C, C++, Haskell, Fortran

9Hello World: your first program
For both types of languages, programmers type in the series of commands that will
make up the program in a list of lines, a list called the program’s source code. For
both types, execution generally proceeds from the top of the program downward,
although you’ll see in section 1.4 and in later chapters how conditional commands,
loops, and jumps can redirect execution.

You’ll now see the first of three TI-BASIC programs meant to immerse you in the basics
of the language. I’ll present the source code of a Hello World program and explain it.
I’ll walk you through the steps to type it and test it on your own calculator. If you have
prior experience with TI-BASIC, some of the details in the coming examples may be
extraneous, but you’ll certainly still learn more about each command, its proper use,
and special tricks and features of each as you read. Appendix A and the beginning of
chapter 2 review using your calculator’s menus and features, typing and editing pro-
grams, and other basic calculator skills, so don’t worry if some of the concepts seem
foreign. Let’s jump into your first program: Hello World.

1.2.2 Displaying “Hello, World”

The source code for the Hello World program in TI-BASIC is among the simplest pro-
grams you can write, consisting of a single line of code. In any language, Hello World

What’s an interpreted language?
A calculator or computer directly reads these programs, interpreting on the fly
what the program will do. It reads each line of the program, figures out what
that line is directing it to do, acts on it, and moves to the next line. If there are
syntactical errors, such as sequences of commands that don’t make sense,
missing pieces of commands, and the like, the interpreter won’t find these until
it reaches the error while running the program. Interpreted programs are gener-
ally slower than compiled programs, because the interpreter must translate
each line of the program into a form the computer’s processor can understand
and make sure the line has no errors before it gives that line of the program to
the processor.

What’s a compiled language?
A compiled program goes through an intermediate process called compilation
before being run. A compiler’s job is to take the code the programmer has typed
and convert it into a program that can be run directly by the computer or calculator’s
processor before it’s run. Because the compiler must examine a program for errors
and translate it, much as an interpreter does, it can find some programming errors
during the compilation process. After they’re compiled, these programs generally
run faster, because they’re directly executed by the processor with no interpreter
spending processor time.

10 CHAPTER 1 Diving into calculator programming
is traditionally the first program presented, and it
shows “Hello, World” or some variation thereof on
the screen; our version of this program is shown in
action in figure 1.3.

 Even though it’s a tiny toy program, it’s useful
for introducing the fundamentals of what a pro-
gram is, how you create a program, and what hap-
pens when you run a program. Without further
ado, here’s the source code for Hello World.

PROGRAM:HIWORLD
:Disp "HELLO, WORLD"

The program shown consists of two pieces: the name of the program (the first line)
and the source code for the program (in this case, the second line). Every command
has a one-word name and takes zero, one, or more arguments. The command here is
Disp, short for display, and instructs the calculator to display a line of text on the
screen. I give it one argument here, the text to be displayed: "HELLO, WORLD." In pro-
gramming parlance, a piece of text to be used or displayed is called a string. This line
displays the string “HELLO, WORLD” on the screen. Notice that there’s no explicit
instruction telling the calculator to stop executing the program. Instead, whenever
the interpreter reaches the end of a program, it takes that as an implicit command to
end the program.

TYPING THE PROGRAM ON YOUR CALCULATOR
If you’d like to type this program into your calculator to try it, you’ll first need to
create a program named HIWORLD. Start at the homescreen of the calculator, the
area where the cursor flashes, and where you can type math and perform the follow-
ing steps:

1 Press [PRGM] to get to the Program menu, where you’ll spend much of your
time as you learn to program your calculator.

2 Press [�][�] (the right arrow key twice) to switch to the NEW tab, and
press [ENTER].

Why “HIWORLD”, not “HELLO WORLD”?
In the example code, you can see that the Hello World program is named HIWORLD
rather than HELLO WORLD, which seems a bit confusing. There’s a good reason: cal-
culator programs can have only uppercase names of at most eight characters, con-
taining letters and numbers (but no spaces). Every program name must also start
with a letter. Therefore, a name like HELLO or HELLOWOR or HIWORLD is allowed,
but 1HELLO and HELLOWORLD and HELLO WORLD are all invalid.

Name of the program, not a line of code

A line of code, with a command (Disp)
taking one argument ("HELLO, WORLD")

Figure 1.3 Output of Hello World
program

11Hello World: your first program
3 The calculator will ask you for a name for
your new program; you can type HIWORLD
with the keys [^][x2][–][7][×][)][x–1], the
keys over which the letters H, I, W, O, R, L,
D are written in green.

4 Press [ENTER] again to create a blank pro-
gram with the name HIWORLD, as shown in
figure 1.4.

You’ll then be able to type lines into your program.

To type the one line of code in this particular program after you created the new,
blank program, continue to follow these steps:

5 Press [PRGM] from the program editor, which brings up a menu full of pro-
gramming commands that you can use. It has three tabs, labeled CTL (Con-
trol), I/O (Input/Output), and EXEC (Execute program). You can press the
left- and right-arrow keys to switch which of the three tabs is visible and the up
and down arrows to scroll through each menu. You first need Disp, which
is the third item in I/O. Press [�] to go to the I/O tab; then press
[�][�][ENTER] or just [3] to select 3:Disp. In every menu, you can either
move the highlight over the number of the item you want and press [Enter] or
press the number itself on the keypad, in this case [3]. This will paste the Disp
command into your program.

6 After you have the Disp in the program editor, you need to type the string you
want it to display. To type “HELLO, WORLD”, you’ll first need the quotation mark,
[ALPHA][+]. HELLO is [ALPHA][^], [ALPHA][SIN], [ALPHA][)], [ALPHA][)],
[ALPHA][7]. Notice that unlike a computer keyboard, you don’t hold down
[ALPHA] and tap the key from which you want a letter; instead, you press and
release [ALPHA] and then press and release the other key. Chapter 2 will review
typing and editing on your calculator if you’re confused. The space character is
[ALPHA][0]; see if you can find the letters for “WORLD” on your own, and don’t
forget the ending quotation mark. When you’ve finished, your program should
look like figure 1.5.

Typing out tokens: Disp vs. “D” “i" “s” “p”
As I will remind you several times in your early experiences with TI-BASIC, commands
are something called tokens, which means that the "Disp " command is a single
entity, not the series of characters “D,” “I,” “s,” “p,” and a following space. One
important side effect of this is that you can’t type out DISP as letters and expect it
to work; the calculator won’t understand what you’re trying to do. You must use the
tokens found in each of the menus.

Figure 1.4 Creating a program named
HIWORLD

12 CHAPTER 1 Diving into calculator programming
When you’ve finished, press [2nd][MODE] to quit the program editor and go back to
the homescreen.

 With the source code of the Hello World program entered into your calculator,
you can now run it.

1.2.3 Running the Hello World program

Your experience with any programming language including TI-BASIC will be cycles of
coding, testing, and fixing bugs and errors. If you’re still in the program editor, press
[2nd][MODE] to quit back to the calculator’s homescreen so that you can run this
program to test it. Press [PRGM] to open the Program menu, this time to the list of
programs you have on your calculator. Notice that the function of the [PRGM] key
depends on context. From the homescreen, it brings up a list of programs, whereas
from the program editor, it shows a list of commands. A few of the other keys on the
calculator have similar context-dependent functions.

 Use the arrow keys to find HIWORLD in the list of programs, and press [ENTER].
This pastes prgmHIWORLD to the homescreen, a command to the calculator to run the
program named HIWORLD. Press [ENTER] again to execute the command and run the
program. You should see something like the screenshot back in figure 1.3, repro-
duced in figure 1.6.

I made a typo! Now what?
If you make any errors while typing, press the [DEL] key, which will erase whatever is
currently under the cursor (not before it, like Backspace on a computer keyboard).
The normal mode of the program editor is Replace, which means if you move the cur-
sor over a character or token and press something else, it will be replaced. If you
instead want to insert at the current cursor position, press [2nd][DEL] to go into
Insert mode. Once again, this will all be reviewed in chapter 2 as you begin to get
more comfortable with entering programs and running them.

Figure 1.5 The source of HIWORLD,
on a calculator

Alpha and second functions of keys
To type out the letters in the string, you need to
know that each key on the calculator has three
functions, with a few exceptions. The normal
function of each key is written on the key itself,
such as [9] or [SIN] or [GRAPH]. Most also have
a second function, accessed by pressing the
[2nd] key followed by the key in question. Most
have an alpha function too, found by pressing
[ALPHA] and then the key. The second and
alpha functions are labeled above each key and
color-coded to match the modifier ([2nd] or
[ALPHA]) key.

13Math programming: a quadratic solver
 When you run this or any other TI-BASIC pro-
gram, the interpreter starts at the beginning of the
program and executes each line sequentially
unless instructed otherwise. For this program, it
first sees the Disp command and knows the pro-
gram wants to display something. You can display
matrices, lists, numbers, or strings; the quotation
mark immediately after Disp tells the calculator that
you want to display a string, so it searches for the sec-
ond, concluding quotation mark. Once the inter-
preter finds that second quotation mark, it knows
what the string to be displayed is (HELLO, WORLD) and puts the string on the screen. It
then goes to the next line of the program, but because there’s no next line, the pro-
gram ends. When a program ends and returns to the homescreen, the calculator
almost always prints “Done,” shown in the screenshot in figure 1.6.

LESSONS OF THE HELLO WORLD PROGRAM

The Hello World program is close to the simplest TI-BASIC program you can write, but
it’s a useful stepping-stone for becoming more familiar with entering and running
programs, as well as getting a first glance at what happens when a program is run. You
have now been introduced to the difference between compiled and interpreted pro-
grams; as you move into more complex programs in later chapters, you’ll gain an
insight into the strengths and weaknesses of TI-BASIC as an interpreted language.

 How about a program that might be useful to you in math class?

1.3 Math programming: a quadratic solver
A quadratic equation solver is a great first math program and is often the first math
application that budding calculator programmers teach themselves. The equation is
universally taught in algebra or geometry classes when many students first receive
their graphing calculators, and the program itself is short and simple. Most important,
when you finish typing what in our case is a nine-line program, you have a tool that
you can use.

 If you’re unfamiliar with the quadratic equation, it’s a method to find the two roots
of an equation in the form ax2 + bx + c = 0, or the values of x that make the equation
true given values for a, b, and c. Letters a, b, and c represent the three parameters to
the quadratic equation in math notation, corresponding to variables A, B, and C in
TI-BASIC. The quadratic equation is written as shown in figure 1.7, along with two sam-
ple sets of a, b, and c values.

 To solve the equation, a simple program should ask the user for values for a, b, and
c, store them in A, B, and C, then plug them into the equation in figure 1.7, and print
the values found for x to the user. Unfortunately, there are complications. Suppose
that a = 1, b = 4, and c = 5. When you do the math, you’ll need to take the square root
of 42 – 4(1)(5) = 16 – 20 = –4. As you may know, taking the square root of a negative

Figure 1.6 The output of the Hello
World program again, as in figure 1.3

14 CHAPTER 1 Diving into calculator programming
number yields an imaginary result. Therefore, if 4ac > b2, then both roots are imagi-
nary, because b2 – 4ac will be negative and the square root of a negative number is imag-
inary. If b2 = 4ac, then the equation has a double root, and if b2 > 4ac, making b2 – 4ac
greater than zero, the quadratic equation will have two distinct (different) real roots.
A competent quadratic equation solver would detect double roots and imaginary
roots and adjust accordingly. For your first math program, you’ll write a simple solver
that doesn’t try to determine imaginary roots (but does warn you about the imagi-
nary roots) and doesn’t check for double roots. Once you’re a few chapters in, you’ll
know enough to write a version of this program that has both of these features on
your own.

1.3.1 Building the quadratic solver

The TI-BASIC code for the simple quadratic equation solver is presented here:

PROGRAM:QUAD
:Prompt A,B,C
:If 4AC>B2

:Then
:Disp "IMAGINARY ROOTS"
:Else
:Disp (-B+√(B2-4AC))/(2A)
:Disp (-B-√(B2-4AC))/(2A)
:End
:Return

Let’s work through this program line by line so you can understand how it works.
When the calculator executes a program, it starts at the beginning and works its way
down line by line, so you’re reading the program just as the calculator does. I’ll tell
you the key sequences used to type each line of code, so that you can test this program
on your own calculator. You can also download the source code for all the programs
in this book from the book’s website, www.manning.com/ProgrammingtheTI-83Plus/
TI-84Plus. As you progress through the book, you’ll learn many commands; if at any
point you need a quick reference, appendix B summarizes every TI-BASIC command
you’ll learn in this book.

PROGRAM:QUAD

Figure 1.7 The quadratic equation for finding the roots of 0 = ax2 + bx + c (top).
The samples show a = 1, b = 2, c = 1 (left), which yields a single real root, and
a = 1, b = 4, c = 5 (right), which yields distinct but imaginary roots.

www.manning.com/ProgrammingtheTI-83Plus/TI-84Plus
www.manning.com/ProgrammingtheTI-83Plus/TI-84Plus

15Math programming: a quadratic solver
This first line isn’t a piece of the source code; it’s the name of the program. The TI-BASIC
editor displays the name at the top of every program, so I’ll adopt the same convention.
For most programs it doesn’t matter what you call the program, as long as it’s at most
eight uppercase letters and numbers and starts with a letter. For obvious reasons, this pro-
gram will be called QUAD. If you’d like to type this program into your calculator to try it,
you should start by creating a program named QUAD. From the homescreen, press
[PRGM], then [�][�] to get to NEW, and press [ENTER]. You can type QUAD with
[9][5][MATH][X–1], and then press [ENTER] again. I won’t walk you through typing this
program key by key, but I’ll give you plenty of hints to help you type it yourself.

[Line 1] :Prompt A,B,C

The first line of code of this sample program is a Prompt command. This instructs the
calculator to prompt, or ask, the user for three variables, named A, B, and C. As men-
tioned with the Hello World program, commands, sometimes also called functions,
consist of a name and take one or more arguments. These arguments can be inside
parentheses or, as with Prompt, placed after the command. This particular Prompt has
three arguments, A, B, and C. Users will be asked to enter a number at each of the
three prompts that will appear, one each for A, B, and C. If users type anything that
isn’t a number, the calculator will produce an error message. After this command
runs, the three values the user entered will be stored in three variables, or memory
locations, labeled A, B, and C. This will allow you to use these values later in your pro-
gram by referring to the variable names A, B, and C. You can type this line with
[PRGM][�][2] [ALPHA][MATH][,] [ALPHA][APPS][,] [ALPHA][PRGM][,] [ENTER].

[Line 2] :If 4AC>B2

The second line of the program is a conditional statement, indicated by the If at the
beginning of the line. Every If is followed by a statement that must evaluate to either
logical true or false. Obviously, true indicates that the conditional statement that fol-
lows is correct, and false indicates that it’s incorrect. If 4AC is greater than B2, then
the statement 4AC > B2 is true. Otherwise, it’s false. Conditional statements dictate
which pieces of the program, or code, are executed. If this case, the section between
Then and Else is run only if the condition evaluates to true, whereas the section from
the Else to the End is run only if the condition is false. From here onward, I’ll
assume that you understand that [ALPHA][MATH] types the A character and that
[ALPHA][anything] types the letter printed at the upper right of the key. I’ll there-
fore represent [ALPHA][MATH] as [“A”] from now on. You can type this line using
[PRGM][1][4][“A”][“C”][2nd][MATH][3][“B”][x2].

[Line 3] :Then

Then, therefore, marks the beginning of the code to run if the conditional is true, or if
the roots will be imaginary because B2 – 4AC will be less than zero. Then can be found
under [PRGM][2].

[Line 4] :Disp "IMAGINARY ROOTS"

16 CHAPTER 1 Diving into calculator programming
The fourth line draws or prints a string (a sequence of text characters) onto the
screen. In this case, the Disp command writes text onto the homescreen. The string to be
displayed is offset by quotation marks, so that the calculator knows where the string starts
and ends and is "IMAGINARY ROOTS". Disp can be typed by pressing [PRGM][�][3], and
the quotation mark is [ALPHA][+]. For this line, it’s worth noting that [2nd][ALPHA]
will “lock” the calculator in ALPHA mode, letting you type letters without needing to
prefix each with [ALPHA], until you press [ALPHA] again. I’ll remind you of this in
chapter 2 in case you happen to forget.

[Line 5] :Else

Else on the fifth line marks the boundary between the true and false sections of code
for the conditional on line 2. If, when executing the program, the calculator finds the
condition on line 2 to be true, it will skip directly from the Else to the End and con-
tinue executing downward. If the condition is false, it will skip directly from Then to
Else and execute the code in between the Else and the End instead of skipping it. You
can find Else in [PRGM][3].

[Line 6] :Disp (-B+√(B2-4AC))/(2A)
[Line 7] :Disp (-B-√(B2-4AC))/(2A)

Lines 6 and 7 perform the quadratic equation, calculating the two possible roots. The
calculator needs two separate equations because it doesn’t know what ± is; you must
explicitly tell it to calculate the + case and the – case. An important lesson from typing
these two lines, something that trips up many beginner programmers, is that the neg-
ative sign, such as -B, isn’t the same as the subtraction sign, as in 2–1. The negative sign
is written here as a superscript to distinguish it, and is also sometimes shown as (-) in
tutorials. It’s typed with the [(-)] key, between [.] and [ENTER]. The subtraction sign
is typed with the subtraction key [–]. The radical or square root symbol is [2nd][x2];
notice that just as [ALPHA][key] types the item shown at right above the key,
[2nd][key] types the item shown at left above the key.

[Line 8] :End
[Line 9] :Return

The final two lines end the conditional statement and then end the program. The End
marks the end of the conditional that started with the If on line 2 and continued with
the Then and Else. The Return tells the calculator that the current program has com-
pleted and that it can return you to the homescreen (or, as you’ll later learn, to
another program that called this program). End is under [PRGM][7], and Return is
near the bottom of [PRGM], at item E. To save time, you can press [PRGM] and then
[�] until you reach it.

 If you are following along and typing in this program, you can now press
[2nd][MODE] to quit to the homescreen. Press [PRGM] and scroll down to QUAD and
press [ENTER] twice, once to paste prgmQUAD to the homescreen, which is an instruction
to the calculator to run QUAD, and the second time to start running it. If everything went

17Math programming: a quadratic solver
well, you should see the prompt A=? on the screen. If you have problems, double-check
that your program exactly matches the code shown. Later in this book, I’ll teach you
everything you need to know about understanding the calculator’s error messages and
how they can help you quickly pinpoint your (or the calculator’s) error in a program.

 In case you’re having difficulty entering the QUAD program on your calculator or
it’s not working properly, figure 1.8 shows the source code as it should look typed into
a calculator.

 Next, we’ll look at testing the program.

1.3.2 Testing the solver

When you test the program, it will prompt you for three separate numbers, the val-
ues for the variables A, B, and C that it will plug into the quadratic equation. At each
prompt, you can use the number, decimal point, and negative sign keys to type a
value; then press [ENTER]. After you provide a value for C, the program will either
display the two roots of the equation ax2 + bx + c or tell you that the roots are imagi-
nary. In chapter 9, I’ll expand this simple quadratic equation solver to solve for the
imaginary roots and to detect when the equation has a double root, where both
roots are equal.

 You can see the results of testing the program for two samples sets of A, B, and C
values in figure 1.9. In your journey through the coming chapters, you’ll run into

Figure 1.8 Source code for prgmQUAD typed into a calculator

Figure 1.9 Two tests of the quadratic solver for different values of A, B, and C.
The left image shows the roots of the equation 2X2 + X – 3 = 0, which are 1 and
–1.5. The right image shows the roots of the equation 5X2 + 4X + 3 = 0, which
are imaginary roots.

18 CHAPTER 1 Diving into calculator programming
many more useful program examples, and you’ll likely discover problems of your own
that you’ll be able to translate into programs.

 Graphing calculator programming without games would be no fun. I’ll present a
variety of increasingly complex games that you can write as your programming skills
progress, but to get you started, let’s jump right into a simple guessing game.

1.4 Game programming: a guessing game
Although graphing calculators are math devices, and they can be used to write com-
plex and powerful math programs, game programming is a perennially popular rea-
son why students and other users start exploring calculator programming. Among
the vast range and variety of games that can be written are everything from sim-
ple text-based RPGs to complex arcade and 3D games. Here, we’ll start with a simple
example, a number-guessing game in which the calculator picks a random number
and then asks users to guess numbers until they find the correct one. To make it
more fun, the program tells users whether to guess higher or lower and challenges
them to try to find the number in the fewest possible guesses. This program is non-
linear: execution doesn’t simply flow from the top of the program to the bottom and
then stop. First, you’ll see the source code for the program, and I’ll explain it piece
by piece. You’ll then have an opportunity to type the game into your own calculator
and play it.

 As in the previous example, if you’d like to try this program on your own calcula-
tor, you should start by creating a program, perhaps called GUESS. I’ll provide slightly
less key-by-key detail on how to type in this particular program, hopefully giving you a
chance to exercise the knowledge you gained from the Hello World and quadratic
solver programs.

1.4.1 Guessing game source and function

The source code of the guessing game is 13 lines of code and fairly straightforward. It
introduces two commands that haven’t been presented previously, namely randInt
and Repeat; it also is the first of our three examples to demonstrate the store (→)
operator. Glance over the following code and try to get a general idea of how it works.
Although the commands are probably new to you, their names should give you a vague
intuition into their function.

PROGRAM:GUESS
:randInt(1,50)→N
:0→M
:Repeat G=N
:Prompt G
:If G>N
:Disp "TOO HIGH"
:If G<N
:Disp "TOO LOW"
:M+1→M
:End

Generate the number
the player will guess

Repeat the loop from here
to the End until G = N

Ask the player
to type a guess

Increment the number
of guesses used

19Game programming: a guessing game
:Disp "CORRECT AFTER:"
:Disp M
:Disp "GUESSES"

UNDERSTANDING THE PROGRAM

To get a basic idea of the flow of this program, look at figure 1.10. Although you might
not be familiar with reading flowcharts, I’ll try to explain how this shows what the pro-
gram does by putting you in the shoes of the calculator (specifically, its interpreter).
As the calculator, you start at the top of the program at the box labeled START in fig-
ure 1.10 and keep executing the lines in order unless told otherwise. Let’s follow the
figure: First, you pick a number at random, the number the player will be trying to
guess. Next, you “Ask player for guess.” There, you wait for the player to input a num-
ber, their guess for the secret number. When the player enters a number, you can then
take one of three paths. If the player guessed correctly, take the path labeled “Cor-
rect” and display how many guesses it took the player to get the number; then stop. If
the number is wrong, then display either “TOO HIGH” or “TOO LOW,” and ask the
player for another guess.

 The arrows that make you, the calculator, return to the same point in the program
over and over are part of what is called a loop. Notice that the arrows from “Ask player
for guess” to “TOO LOW” and “TOO HIGH” then lead back to “Ask player for guess”
and that if the player keeps making guesses that are too high or too low, the program
will continue to cycle back to the oval in figure 1.10. In the code, the End command
returns to the Repeat command, closing the loop that starts with the section of code
between the Repeat and the End. This program uses the loop to make the program
keep running until the player’s guess is correct, so that the player will be able to keep
guessing. Keeping the flowchart in figure 1.10 in mind, we’ll now take a more method-
ical look through the source code of the program.

GUESSING GAME SOURCE CODE: A WALKTHROUGH

As I take you through the code for this program line by line, you may wish to type it
into your own calculator so that you can test it. For each line, I’ll provide extra tips
about where to find commands or symbols that you haven’t seen before.

Figure 1.10 Guessing-
game program flow.
The program will keep
displaying “TOO HIGH”
or “TOO LOW” and
returning to ask the
player for another guess
(a loop) until the player
guesses correctly.

20 CHAPTER 1 Diving into calculator programming
The first line of the program contains the randInt command, which takes two argu-
ments. In this case, the two arguments are the minimum and maximum possible num-
ber that the function should generate.

:randInt(1,50)→N

As the name suggests, the randInt command gener-
ates a random integer (whole number) between and
including 1 and 50. Figure 1.11 demonstrates that this
random number is the number the player will guess.

 The small arrow indicates that the random num-
ber it returns should be stored into variable N, just as
Prompt N would ask the user for a number and store it
into N. In this case, the calculator generates the num-
ber that’s stored into the variable, rather than asking
the user to type it in. You can find randInt under [MATH]; then use the right- (or
left-) arrow key to get to the PRB submenu, and choose 5: randInt(. The closing
parenthesis needed to complete the command is the key above the [9] key. You may
also not know that the store operator (→), used to update the contents of variables, is
on the lower left of the keypad above the [ON] key, labeled the [STO>] key.

:0→M

Similarly, the second line stores a value to M, but this is simply a zero. The program
will be using M to store the number of guesses that the user has made and N to store
the target number that the user is trying to guess.

:Repeat G=N
:Prompt G
:If G>N
:Disp "TOO HIGH"
:If G<N
:Disp "TOO LOW"
:M+1→M
:End

The majority of the program is between the Repeat and End commands, which together
enclose what is called a repeat loop. In a repeat loop, execution will repeatedly restart at the
Repeat command every time the End command is reached, allowing the code inside

Choosing variables to use
It doesn’t matter what variables a program uses to store numbers; in this example,
the program could easily use A and B or S and T or C and Z instead of M and N. You
have A–Z and many other variables available to you, and it’s up to you as a program-
mer to choose variables that make sense to you. The only exception is the variable
Y, which many programmers avoid because certain programming features change the
value in Y as a side-effect.

Figure 1.11 The randInt
command serves to pick a number
to be guessed.

Repeat the loop from here
to the End until G = N

21Game programming: a guessing game
the loop to be run over and over again. The program eventually needs a way to get out
of the loop; otherwise it’ll be looping forever. The solution is a condition on the loop, just
as If takes a condition. Notice the G = N condition on the Repeat; stated more verbosely,
this Repeat command says “Repeat the loop from here to the End until G = N.” That means
that as long as G isn’t equal to N, the loop will continue, but when G becomes N, which
means that the user finally guessed the number correctly, the loop will end. You’ll learn
more about Repeat and its cousins While and For in chapter 4. The greater than, less than,
and equals symbols are all in [2nd][MATH], the Test menu. Repeat is [PRGM][6].

:Prompt G

You have previously seen the Prompt command, which will ask the user to enter a
value for G (their guess) and then store it into variable G.

:If G>N
:Disp "TOO HIGH"
:If G<N
:Disp "TOO LOW"

The next four lines will display a message to the user based on the guess that the user
entered. If the value for G is larger than the target number (N), the program will dis-
play “TOO HIGH.” If it’s smaller than the target number, the program will display
“TOO LOW.” Figure 1.12 shows the parts of the diagram representing Prompt and
these two conditional constructs.

 Notice that if the user guessed the correct number, then both G > N and G < N are
false, and nothing will be displayed.

:M+1→M

Execution will continue downward, taking the value in M, adding 1 to it, and storing
this value back into M. As we discussed, M contains the number of guesses the user has
made so far and is incremented each time the Repeat loop is run because the loop
runs once per guess.

:End

Figure 1.12 The loop that alternates
between asking players for guesses and
telling them whether the guesses are too
high or too low

22 CHAPTER 1 Diving into calculator programming
The next command read and executed is End. End triggers the interpreter to reexam-
ine the Repeat condition to decide whether to go back and start executing at the
Repeat again, prompting for another guess, or continue directly to the code under
End, finishing the looping process. If the condition is true, that is, G = N, then the
code after End will be executed. If the condition is false, or G isn’t equal to N (written
as G ≠ N), then the user has still not guessed the correct number, and execution will
return to the Repeat, Prompt section of the code.

:Disp "CORRECT AFTER:"
:Disp M
:Disp "GUESSES"

The last three lines of the program tell the user that
they guessed correctly and also display the number of
guesses that the user made before finding the correct
answer, as shown in figure 1.13.

 Notice that although you have only seen Disp used
with strings so far, Disp can also be used to check what
number is currently stored inside a variable, in this
case M. As with the Hello World program, you don’t
need to explicitly add the Return at the end of the pro-
gram to tell the calculator that the program has
reached its end; instead, the end of execution is sig-
naled by the end of the program file.

 With a full understanding of how the program
works, you should now try out the program on your
own calculator to see it in action.

TYPING AND TESTING THE PROGRAM

If you haven’t done so already and would like to type this program into your calcula-
tor and try it out, you already know where to find many of the commands, such as
Disp, End, Prompt, and If. Throughout the discussion of the source code, I pro-
vided tips about where to find the commands you saw for the first time in this pro-
gram. As with the two previous examples, you can run prgmGUESS by quitting to the
homescreen, finding GUESS in the Program menu, and pressing [ENTER] twice. Fig-
ure 1.14 shows an example of a game where the player got the correct number in
four guesses.

 As I discussed in walking through the program’s code, the program will pick a ran-
dom number and repeatedly wait for the user to guess a number and tell them if it’s
higher or lower than the target number. Once the user guesses the correct number,
the program will display the number of guesses made and exit.

Figure 1.13 Displaying the
notification that the player won
and how many guesses they
needed

23Summary
1.4.2 Lessons of the guessing game

One of the most important lessons of this particular example is that programs
can have arbitrarily complex flows of execution depending on the user’s or
player’s input. Put more simply, what happens inside the program and which
pieces of the program are executed in which order are often based on user input.
If the user guesses the correct number right away, the program will only go
through the Repeat/End loop once and will never loop back to the Repeat. If the
user guesses the same incorrect guess over and over, the program will keep loop-
ing over and over. Depending on whether each guess a user makes is higher or
lower than the target value, one of two possible Disp commands is executed.
Indeed, complex games and utilities can be built up from simple pieces such as
loops and conditionals combined with concepts you’ll learn later such as subpro-
grams and jumps.

1.5 Summary
Perhaps by now, after seeing example programs in action, you’ve started to get a
vague understanding of the general programming process, but if not, don’t worry;
I’ll be covering all the lessons of this chapter in more depth in later chapters.
Graphing calculator programs can be as complex or as simple as you want and are
limited only by your imagination and problem-solving skills. As a temptation to
motivate you to continue your calculator programming journey, enjoy the screen-
shots in figure 1.15 of various programs and games for the TI-83+/84+ series of
graphing calculators that have been written in TI-BASIC, the main language you’ll be
learning, some created by the author and some written by other members of the
graphing calculator enthusiast community.

 Chapter 2 will introduce input and output commands, which you’ve seen briefly in
the three examples in this chapter. Starting in chapter 2, you’ll be diving right into
programming, with the assumption that you’re fairly comfortable with using a graph-
ing calculator. If you’re not, you should review general calculator features, including

Figure 1.14 Playing the guessing game to the correct answer of 22 in
four guesses

24 CHAPTER 1 Diving into calculator programming
numeric functions and graphing skills and the types of variables and data that can be
stored. These are discussed in appendix A. If you’re shaky about the nonprogram-
ming features of your calculator, I recommend that you peruse appendix A before get-
ting too far into chapter 2. Onward to programming basics!

Figure 1.15 Screenshots from assorted examples of completed and freely
available TI-BASIC calculator programs and games. Top row: “Donut Quest II” by
Mikhail Lavrov, “Midnight” by Zachary Tuller. The middle and bottom rows both
contain screenshots from programs by the author, Christopher “Kerm Martian”
Mitchell. Middle row: “DFS Maze Generator” and “DCSQuad Solver”; bottom row:
“ParSim Particle Simulator” and “World Domination I.”

Communication:
basic input and output
An important part of any program is interacting with the user. For almost any pro-
gram or game you might want to create, you’ll need to accept numbers, strings, or
input from the user, display or draw output back to the user, or both. This chapter
will teach you how to get strings and numbers from the user and write strings and
numbers back.

 As you learned in chapter 1, your calculator shares its architecture with any
common computer. You may recall that calculators and computers both have con-
nected devices called input and output devices, as shown in figure 2.1. For computers,
things like the monitor, the speakers, and the printer are the output. They’re devices
the computer can instruct to communicate something to the user. Computers’ input
devices, such as the keyboard, the mouse, and a microphone, let the user talk back

This chapter covers
■ Using the program editor to write programs
■ Using the homescreen as a canvas for input

and output
■ Displaying text and numbers on the homescreen
■ Using numbers and text typed by the user

in programs
25

26 CHAPTER 2 Communication: basic input and output
to a computer. In much the same way, calculators have input and output devices for
communication with the user: the keypad gives the user a way to instruct the calcula-
tor; the LCD screen lets the calculator show things back to the user.

 In this chapter, you’ll be learning the rudiments of reading input from the key-
board and writing output back to the screen. In later chapters, you’ll learn more
complex types of input and output, such as checking to see if specific keys were
pressed or drawing a line on the screen. Imagine any simple math program, such
as the quadratic solver that you created in chapter 1. It lets the user type in a few
numbers, performs simple math on the values, and displays results to the user. In
this chapter, you’ll learn to construct similar applications. You’ll write an anima-
tion, a program to raise a number to a power, and a program to calculate the slope
of a line, among many others. You’ll even learn about accepting strings from the
user, which will give you the skills to write a program to converse with your calcula-
tor. In the hope that you’ll start playing around with a few programs of your own
as soon as possible, I’ll teach you the basics of troubleshooting errors or bugs in
your programs.

 The title of this chapter refers to “input and output,” a standard programming
phrase, but you’ll learn how to output text and numbers to the screen first. If you
learned input first, your program would be able to accept input from the user but
wouldn’t be able to display anything back to the user to show that it had been able to
do something useful with that input! Therefore, you’ll learn output first, so that when
you learn input, you can output something based on the numbers or text the user just
provided as input.

 Before any of this, you need to meet the program editor and the homescreen, the
pieces of your calculator’s built-in software that you’ll be using in this chapter.

2.1 Getting to know the program editor and homescreen
As someone who has used a graphing calculator to some extent for math and graph-
ing, you should have the vague impression that there are different areas of the calcula-
tor’s built-in software, called its operating system, or OS. There’s the portion where

Figure 2.1 The input and output devices of a computer (left) and a calculator (right),
excerpted from figure 1.2

27Getting to know the program editor and homescreen
you type math and get results, there’s the screen where you type equations to graph,
and then there’s where you see your graphs drawn and can examine them. You may
have even encountered menus such as the Statistics menu, the Window or Zoom
menu, or the Memory menu. This and all the subsequent chapters will be largely
spent in the program editor, where you type in the TI-BASIC source code for programs
to run on your calculator.

 We’ll begin with a look at the program editor, the section of your calculator’s OS
you use to write software on the device itself. This section is about you, the program-
mer, typing source code into a program, which in a sense is input. But this isn’t the
section on the input named in the chapter’s title; that input, where the user types data
that your programs can then use, will be covered in section 2.3.

2.1.1 The program editor: typing source code
You first saw the Program menu
and the program editor in chap-
ter 1. You can access the Program
menu by pressing the [PRGM]
(program) key from the home-
screen, the graph screen, or from
almost anywhere else within the
calculator’s OS. The Program
menu holds three tabs labeled
EXEC, EDIT, and NEW, as shown in
figure 2.2.

 You’ll find yourself using each
of these three tabs often through-
out the coming chapters; the
function of each is summarized in
table 2.1.

 If you choose either to edit some existing program or create a program, you’ll find
yourself within the program editor.

Table 2.1 The functions of the EXEC, EDIT, and NEW tabs of the Program menu, along with what
happens when you hit [ENTER] in each tab

Menu tab Menu contains… When you hit [ENTER] in it…

EXEC A list of all programs on
your calculator

Pastes the name of the currently selected program to the
homescreen. Press [ENTER] again to run it.

EDIT Same contents as EXEC Opens the program editor so you edit the currently selected
program. You must unarchive archived programs (marked
with a *) to edit them.

NEW A prompt to let you start a
new program

You enter the name of your new program and then hit
[ENTER] again to enter the program editor.

Figure 2.2 The three tabs of the TI-83+/84+ calculator’s
Program menu. The first tab, EXEC, lets you run programs.
The second, EDIT, allows you to edit a program’s source
code. The third tab, NEW, provides a way to create a
new program.

28 CHAPTER 2 Communication: basic input and output
INSIDE THE PROGRAM EDITOR

The program editor is the area you use to type in the source code for your program. It
contains up to eight lines of text, which normally consist of one line showing the
name of your program and seven lines of source code, as shown at the left side of fig-
ure 2.3. If your program is more than seven lines long, you can use the up- and down-
arrow keys to move throughout the code.

 As you type the programs in this and coming chapters into your calculator, and
when you begin to make your own programs, you’ll spend a great deal of time inside
the program editor. To use it effectively, you’ll need to know how exactly to type the
different commands, letters, numbers, and symbols that make up the source code of
any TI-BASIC program.

UNDERSTANDING KEYS AND THEIR FUNCTIONS

The program editor is similar to any text editor you may have used on a computer.
You use the keys on the calculator’s keypad to type in numbers, letters, and symbols.
As I explained in chapter 1, each key has up to three functions. When you press the
key, you perform whatever function is printed directly on the key itself, which in some
cases brings up a menu and in other cases types a token or a character. Table 2.2 shows
how to access the (up to) three different functions for each key.

 The keys and their functions are more or less the same throughout the entire calcu-
lator. You can use [2nd] and [ALPHA] the same way regardless of whether or not you’re

How do I save?
In text editors on your computer, you create or open a document, make changes, and
then save. The program editor on your graphing calculator is different. Each change
you make is instantly saved, so when you’re finished, you just quit. You also can’t
undo any changes, so be careful using the [CLEAR] key.

Figure 2.3 The view inside the program editor when you open prgmAVERAGE (see section 4.3.3) in the
program editor. On the left is the standard view, with the program’s name on the top and the source code
in the bottom seven lines. If you install the Doors CS shell (see appendix C) and use it to edit programs,
you get to use all eight lines to edit, as shown at right, but you don’t get to see the name of the program.

29Getting to know the program editor and homescreen
in the program editor, so what do you need to know that’s specific to the program edi-
tor? You need to know where to find all of the commands used in programming.

TYPING COMMANDS INTO PROGRAMS

When you’re in the program editor, the meaning of the [PRGM] key changes and
won’t show the set of three tabs, EXEC, EDIT, and NEW, that you see when you press

Table 2.2 Accessing the different functions that each key on your calculator can perform inside the
program editor. Notice that for the key sequence, you press and release the first key before pressing and
releasing the second key. You don’t hold the two keys together, as you might with the [Shift] or [Ctrl]
key on a computer.

Key sequence Example Function

[KEY] [SIN] types the sin(token into your program.
[STO>] pastes the → symbol into your program.
Pressing [MATH] opens up the MATH menu full of
more commands and symbols.
[CLEAR] erases the entire line that you’re typing.

Insert the symbol or number
printed on the key, or open
the menu named on the key,
depending on the key.

[2nd][KEY] [2nd][(] types an opening curly brace, {.
[2nd][^] produces the pi symbol, π.

Press the yellow or blue
[2nd] key followed by
another key to type the
symbol or open the menu
named in yellow or blue
above the key.

[ALPHA][KEY] [ALPHA][PRGM] types a C.
[ALPHA][LN] types an S.
[ALPHA][0] types a space.

You can type A–Z, theta (θ),
", :, ?, and space by press-
ing the [ALPHA] key followed
by one of the other keys.

[2nd][ALPHA] [2nd][ALPHA][PRGM][MATH][)][PRGM] types the
word CALC. Saves you typing [ALPHA][PRGM] for C,
[ALPHA][MATH] for A, [ALPHA][)] for L, and finally
[ALPHA][PRGM] for C.

Lock ALPHA mode until
you press [ALPHA] or an
arrow key. Lets you type
a series of letters without
pressing [ALPHA] before
each one.

Tokens versus text: typing commands in the program editor
As mentioned in chapter 1, you don’t type out each command letter by letter. If I tell
you to use the Prompt command in a program, you don’t merrily turn on Alpha Lock
and start typing P-R-O-…. Instead, you find the token that represents this command
by pressing the [PRGM] key again while inside the program editor. Once you find the
token you need, press [ENTER] to paste that token into your program. You can check
if something in your program is a token by trying to move the cursor over it. If it jumps
from the beginning of the command to the end (from the P in Prompt to the end of
the word, for instance), it’s a token. If you can instead put the cursor over each letter
in the word, it’s separate letters and won’t work as a command.

30 CHAPTER 2 Communication: basic input and output
the [PRGM] key from the homescreen. When you press [PRGM] from inside the pro-
gram editor, it will instead show a different three-tab menu, the first two tabs of which,
CTL and I/O, are displayed in figure 2.4. The EXEC tab contains a list of the programs
on your calculator, which differs from calculator to calculator, so I don’t show you that
tab. In section 4.4, I’ll show you how to use the contents of the EXEC tab.

 You can scroll up and down each of the three tabs with the up- and down-arrow
keys and move between the tabs using the left and right arrows. When you find the
command you want, press [ENTER] to paste it into your program or press [CLEAR] to
go back to the program editor without pasting any of the tokens. Table 2.3 explains
what each tab is for.

CORRECTING MISTAKES

Typing out programs line by line would be straightforward if humans were perfect,
but we’re not. We need a way to correct our mistakes, to remove or add pieces to the

Table 2.3 The three tabs of the PRGM command menu and what each tab contains and is used for

PRGM command menu tab Contains

CTL The CTL tab contains control-flow commands, which you’ll learn all about
in chapter 3. These let your program run in loops, jump around your code,
call other programs, and more.

I/O The I/O tab contains input and output functions that let your program
interact with users. You’ll learn how to use some of these commands in
this chapter.

EXEC This tab lists all the programs on your calculator. Choosing a program
named NAME from this menu pastes prgmNAME into your program; in
section 4.4 you’ll learn how this calls prgmNAME from inside your cur-
rent program and how that’s used.

Figure 2.4 CTL and I/O, the first two tabs of the PRGM command menu,
accessed by pressing [PRGM] from inside the program editor. The CTL tab
contains control-flow commands, which you’ll learn in chapter 3. This chapter will
cover some of the input and output (I/O) commands shown in the I/O tab. I don’t
show you the EXEC tab because its contents are different on each calculator: it
lists all of the programs your calculator holds, like the [EXEC] tab of the original
Program menu.

31Getting to know the program editor and homescreen
program later, to insert text between existing text, and to create new lines or remove
them. You might even find yourself wanting to paste the contents of one program
into another. Luckily, the calculator’s program editor has easy ways to perform all of
these tasks.

 The [DEL] key will delete whatever is directly under the cursor, be it a token or a
letter or symbol. You’ll notice that when you delete a token, the entire token is
deleted at once, instead of letter by letter.

 You can clear the contents of an entire line with [CLEAR], which you’ll probably
soon learn the frustration of doing by accident.

 On the flip side, you can insert text in the middle of lines. Press [2nd][DEL] to go
into Insert mode: the cursor will change from a solid black box to an underscore.
Now, when you type, the things you type will be inserted instead of replacing what was
already there. You can insert new lines in the middle of your program by entering
Insert mode and pressing [ENTER]. To leave Insert mode, press any of the arrow keys,
and the cursor will change back to a black rectangle.

COPYING CODE

Now you’ll learn how to paste the contents of one program into another. It’s a trick
used to rename a program: create a program with the new name, paste the contents of
the program with the old name into the new program, and delete the old program
from the calculator’s memory menu. You can also use it to prototype a piece of a pro-
gram in a small program, test it out separately from the main program, then paste it
into your program when you know it works without needing to type it out again. To
paste a program into another program, follow these steps:

1 Switch your editing mode from the normal Replace mode to Insert mode by
pressing [2nd][DEL] (remember, [2nd] and then [DEL], not [2nd] and
[DEL] together).

2 Next, activate the Rcl (Recall) function by pressing [2nd][STO>].
3 Press [PRGM], move to the [EXEC] tab, and choose the name of the program

that you want to paste in.
4 Hit [ENTER] to perform the Recall.

As well as adding code to programs and copying and pasting code between programs,
you also occasionally need to delete old programs that you don’t need any more or
that you merely created as an experiment.

DELETING A PROGRAM

Although it’s not strictly a task of the program editor, sooner or later you will want to
know how to delete a program. After creating or editing programs, you may find
your PRGM menu clogged with small test programs that you no longer need and that
you’d like to clean off of your calculator. Deleting a program involves entering the
Memory menu, which you may have encountered in your preprogramming use of
your calculator:

32 CHAPTER 2 Communication: basic input and output
1 Quit to the homescreen if you’re not already there with [2nd][MODE].
2 Press [2nd][+] to open the Memory menu, since the [+] key has MEM listed as

its [2nd] function.
3 Choose 2:Mem Mgmt/Del…, 7:Prgm…; move the arrow down to the program

you want to delete and press [DEL].
4 Once you confirm that you do indeed want to delete that program, the calcula-

tor will delete it.

Programs that have been deleted can’t be recovered, so make sure that you’re sure
you don’t need a program any longer before you remove it. If your calculator is get-
ting full, I recommend you back up old programs to your computer (see section A.6)
before you delete them.

 Don’t worry if you didn’t absorb all this information about using the program editor.
As you type out the programs in this chapter and then start to write your own programs,
you’ll swiftly become accustomed to using the editor. It’s intuitive, and even if you make
errors, there’s little you can do to damage your calculator. As you work through the
many programs presented in every chapter and write your own programs, you’ll spend a
great deal of time inside the program editor, and you’ll gain proficiency in typing more
quickly, remembering where to find each command, and moving around your code.

 Now that you’ve learned the basics of using the program editor to type programs,
I’ll introduce you to the homescreen. Just as the program editor is where you’ll create
programs, the homescreen is the area where your program will interact with users as it
runs by displaying output and accepting input.

2.1.2 The homescreen: your canvas for input and output

You already know the homescreen as the place where you do math and, if you’ve ever
run programs on your calculator, as the place to where you paste programs’ names
from the [PRGM] menu in order to run them. What you’ll learn in this chapter is how
to display text and numbers on the homescreen and how to get the user to type in text
and numbers for your program to use. The homescreen itself is an array of characters,
8 rows tall and 16 columns wide, as shown in figure 2.5. You can use it one line at a
time, such as when you perform math calculations; you’ll also learn how to individu-
ally change each of the 128 spaces (16 ∗ 8 = 128) in this chapter.

CLEARING THE HOMESCREEN

It’s fine to display text, numbers, equations, and the like on the homescreen, but
you’ll occasionally want to start with a clean slate. To remove everything on the home-
screen, there’s a simple command called ClrHome. It will erase all 128 spaces in the
homescreen and return the cursor to the top-left corner of the homescreen. If you
then use functions to display text or ask for user input, those new contents will appear
on this now-blank homescreen.

 To demonstrate the effects of the ClrHome command, you can try the following pro-
gram, CLRHOME. This may be the simplest TI-BASIC program you’ll ever try, containing a

33Getting to know the program editor and homescreen
single command with no arguments. When you run this program, the only thing it will
do is clear the contents of the homescreen. To enter this into your calculator, you need to
know that the ClrHome command is under [PRGM][�][8] or [PRGM][�] 8:ClrHome.

PROGRAM:CLRHOME
:ClrHome

Unfortunately, because every program ends by displaying “Done” on the homescreen,
aligned at the right edge of the screen, the homescreen won’t be completely blank
after you run this program. Figure 2.6 shows two screenshots, the first taken before
the CLRHOME program is run, the second after.

 You now know what the homescreen is, that you’ll be able to use it to communicate
with the user in your programs, and how to clear it. The programs you will examine,
write, and test in the remainder of this chapter, as well as chapters 3 and 4, will operate
entirely on the homescreen, so you’ll continue to build your familiarity with it as you

Figure 2.5 The 16-column, 8-row layout of the homescreen contains 128 total characters,
each of which can be letters, numbers, symbols, or blank. In this chapter you’ll learn to
manipulate the contents of the homescreen.

Figure 2.6 Before (left) and after running prgmCLRHOME. Notice that the
program clears everything, including the line typed to make it run. Because
“Done” is always displayed after any program finishes, that text remains on the
screen when prgmCLRHOME ends.

34 CHAPTER 2 Communication: basic input and output
read on. Now you need to learn your first real set of calculator programming skills:
displaying text on the homescreen.

2.2 Output: displaying text
Almost any program needs to display something back to the user to provide feedback
on what’s happening inside the program. This might range from something as
advanced as a graphical part of a game to something as simple as the numeric result of
a calculation. I’ll start by teaching you the simpler end of the spectrum, displaying
numbers and strings on the homescreen; in chapter 7, I’ll introduce programs with
more game-like graphical abilities. In this chapter, you’ll learn to display output on
the homescreen in two stages:

1 I’ll show you how to use the Disp (Display) command, which makes it easy to dis-
play text and numbers but doesn’t let you fine-tune where the output appears.
Your calculator will show each thing you display on a new line on the screen.

2 I’ll explain the Output command, which adds the ability to place the output
text or numbers at specific locations on the screen.

I’ll teach you how you can use these newfound skills to make your own fun or useful
programs, starting with Disp.

 This chapter has “input and output” in the title, and if you’re familiar with com-
puter hardware or software, you have heard the abbreviation I/O, which means the
same thing. But I’m presenting the output concept first and input later, because with-
out a way to produce output, your program has no way of showing the user what it has
done with the input the user provided to the program. Without further ado, let’s look
at the Disp command.

2.2.1 Displaying text and numbers on the homescreen
The homescreen will be your primary palette for displaying text, numbers, and sym-
bols over the next two chapters, and we must start somewhere: Disp. The Disp com-
mand can perform a surprising number of different tasks for you, including
displaying a line of text, a number, a string, a list, a matrix, or even multiple such
items together. You first saw Disp in action in the Hello World program in chapter 1.
Recall from the GUESS game that you could put a line of text in quotes after the Disp
command, and that line of text would be written to the screen:

:Disp "TOO LOW"

Each time you use Disp, the cursor advances down one line, even if you can’t see the
cursor itself; when the eight lines of the homescreen are full, the whole screen scrolls
upward to make room for more contents. From the Quadratic Solver program, you
also saw that you could put a number after the Disp command to make it display that
number (or the results of a calculation):

:Disp (–B+√(B2-4AC))/(2A)

Displays “TOO LOW” on the screen

The numeric result of this calculation will
be displayed, not the equation itself

35Output: displaying text
With those two uses of the Disp function in mind, take a look at the HIWORLD2 pro-
gram at the end of this paragraph. It uses the ClrHome command you just learned to
move the cursor to the top of the screen and clear everything off the homescreen;
then it displays three lines on the screen using three subsequent Disp commands:

PROGRAM:HIWORLD2
:ClrHome
:Disp "HELLO, WORLD"
:Disp 1337.42
:Disp 6*9

This demonstrates first a line of text (“HELLO, WORLD”) being displayed, then a num-
ber (1337.42), and finally the result of a calculation (6 ∗ 9 = 54). The code for the
HIWORLD2 program can be seen typed into the program editor at the left side of fig-
ure 2.7, whereas the output of the program is shown at the right side of figure 2.7.

 One important item to note is that Disp performs slightly differently on strings
and numbers. For anything that’s a number, including a literal number like 1337.42
or the result of a calculation like 6 * 9, that line is aligned to the right edge of the
screen. For anything that’s a string, the line is aligned to the left edge of the screen.
In addition, there’s no way to put a string together with a number on the same line
with the Disp command, although the Output command in the next section will pro-
vide a solution.

Disp is easy to use and straightforward, but it still has a few tricks up its sleeve that
you as a programmer can use to make your programs smaller and faster, such as dis-
playing multiple numbers or strings with a single Disp command, which is the next
concept I’ll teach you.

DISPLAYING MULTIPLE ITEMS

I’ve previously discussed, and will continue to remind you throughout the coming
chapters, that optimization is important on any platform. Whether you’re writing a
calculator program, a computer program, or a program to run on a smartphone, you
should always be aware of how you can make your program be as small and as fast as
possible. The Disp command gives you a way to optimize by allowing you to combine

Figure 2.7 The source code (left) and output when the program is run (right) of
a more complex Hello World program that clears the homescreen, displays “Hello,
World,” and then displays two numbers. Disp is capable of performing math on
numbers before it displays them; note that Disp 6*9 produces “54” rather
than “6*9.”

36 CHAPTER 2 Communication: basic input and output
multiple Disp commands. You can use a single Disp
command to display several lines of text, numbers,
or some mix thereof by providing each item to dis-
play as an argument to the same Disp command
and separating each argument with commas. The
output of such a command might look something
like figure 2.8.

 To see this technique in action, consider the
following program, which uses four Disp com-
mands to display three strings and one number as
in figure 2.8:

PROGRAM:DISPDISP
:Disp "WHEN YOU MULTIPL"
:Disp "Y SIX BY NINE,"
:Disp "YOU GET:"
:Disp 6*9

Program DISPDISP contains four Disp commands. But this will produce precisely the
same output as if you had used a single Disp command containing three strings and
one mathematical expression separated by commas:

PROGRAM:DISP4
:Disp "WHEN YOU MULTIPL",

➥ "Y SIX BY NINE,",

➥ "YOU GET:",6*9

In either case, the program will produce the output seen in figure 2.8, consisting of
four sequential lines, three of text at the left margin and one number at the right mar-
gin. You can mix any set of strings, numbers, and even lists and matrices within the
same Disp command, in any order, to produce this sort of a result.

 Now you know the basics of displaying text on the screen. But what if you have a lot
to display? Consider a case where you want to display ten lines, but you can only fit

The homescreen and the MathPrint OSs
In early 2010, Texas Instruments released an overhauled version of the TI-84+/Silver
Edition operating system called 2.53 MP (MathPrint). It adds so-called pretty printing
to the homescreen to make typed equations more closely resemble what you might
see on a textbook page: exponents appear raised, fractions are displayed with a dis-
tinct numerator and denominator, and more. Unfortunately, the OS was poorly tested
and is buggy and slow. A successor, 2.55MP, was also released, but it fails to fix
many of the problems of 2.53MP. If you have a calculator with a MathPrint OS, your
BASIC programs will run noticeably slower unless you use the CLASSIC command at
the beginning of your programs to turn off the MathPrint features. If you want to turn
them back on, use the MATHPRINT command. These two commands are only found
on MathPrint OSs and can be pasted from the [MODE] menu or the Catalog, [2nd][0].

Figure 2.8 Adding multiple
arguments separated by commas to a
Disp command to display multiple
lines. The DISPDISP and DISP4
programs produce the same output,
shown in this screenshot.

37Output: displaying text
eight at a time. You could display five, stop in some way to let the user read, and then
display the next five. Here’s how you could pause the program.

PAUSE: TAKING A BREATH

Sometimes you want to display something and let the user stare at it for a while
before your program continues. Luckily, there’s a command for this, aptly named
Pause. When the Pause command is active, the run indicator, that crawling line in
the top-right corner of the screen, turns into dots that flash to indicate that the pro-
gram is paused. The user can then take their time reading the screen and press
[ENTER] when they’re ready to continue the program. Figure 2.9 demonstrates just
such a program.

 The TRYPAUSE program shown here displays one line of text, uses a Pause com-
mand to wait for the user to press [ENTER], then displays a second line of text. It dis-
plays the results seen on the left side of figure 2.9 while the Pause command is active;
then it displays the results shown on the right side of figure 2.9 when the user presses
[ENTER] and the program ends:

PROGRAM:TRYPAUSE
:ClrHome
:Disp "PRESS [ENTER]"
:Pause
:Disp "WELL DONE"

In more complicated programs, you could use the same sort of technique to display
pieces of a math program’s results one by one, to wait between displaying steps of a
solution, to wait after displaying the player’s final score in the game, or any of thou-
sands of similar tasks. I’ll conclude this discussion of Pause with one final trick that
the command can perform: display a line of text, a number, or a variable during the
pause. You can use Pause in place of the Disp command in some cases, for example,
in the program PAUSE2, shown next, which consolidates the first Disp with the Pause

Figure 2.9 The TRYPAUSE program demonstrates the functionality of the Pause
command. Of particular interest is the special dotted run indicator at the top right of
the left screenshot that indicates the program is waiting for the user to press [ENTER].
The PAUSE2 program behaves exactly the same way.

38 CHAPTER 2 Communication: basic input and output
command. This program behaves the same way and outputs the exact same things as
the TRYPAUSE program:

PROGRAM:PAUSE2
:ClrHome
:Pause "PRESS [ENTER]"
:Disp "WELL DONE"

You will see many more uses of Pause throughout the rest of the chapter. But to
expand the finesse with which you can display things on the homescreen, you’ll now
learn a command that lets your program display a letter, number, or string at any spe-
cific row and column of the homescreen.

2.2.2 Positioning text with the Output command

Sometimes it’s not good enough to make the next number or string appear on the
next line. Consider a program where you want to display eight different labels, such as
“X=,” “Y=,” “VX=,” and so on, for eight lines and then next to each of those display a
number. With what you know so far, you can’t do that. You’d have to display the first
four labels and their associated numbers, pause, and then display the next four labels
and numbers. Needless to say, this is a bit messy, so you need a better way to do this,
something that would let you place the labels at the left edge of the screen and then
go back and put the numbers at arbitrary locations on the screen without making the
labels scroll away.

 Luckily, you have just such a tool, the Output command! Remember, as shown in
figure 2.5, the homescreen has 16 columns and 8 rows, each of which can contain a
space (to make it blank) or a character such as a letter, number, or symbol. Output lets
your program put any text at any location on the screen. It takes three arguments.
The first is the row on which to display the text, from 1 to 8. The second is the column
on which to start displaying the text, from 1 to 16; if the text or number is longer than
1 character, it displays the second character in the next column, moving across until it
hits the right edge of the screen, at which point it stops. The third argument is the
string or number to display. The following are four ways you could use Output:

:Output(<Row>,<Column>,"STRING")
:Output(<Row>,<Column>,<Number>)
:Output(<Row>,<Column>,<Mathematical expression>)
:Output(<Row>,<Column>,<Variable>)

The Output command is like Disp in that Disp can also display strings, numbers, vari-
ables, and the results of a math expression, but Output gives your program the power
to put these at some precise location on the homescreen rather than whichever line is
free next. When you use the Output command, nothing gets moved around and the
screen doesn’t scroll, so you can repeatedly use the Output command as much as you
want to write things on the screen. You could even use it 128 times, displaying a one-
character string at each position on the homescreen, to fill up the whole screen,
although that might be inefficient.

39Output: displaying text
 For something more realistic, say you want to
expand your Hello World program to center the
text “HELLO, WORLD” on the screen, split
between two lines. When run, this program will
display “HELLO,” starting at row 4, column 6 of
the homescreen and the string “WORLD,” starting
at row 5, column 6. This roughly centers the lines
on the screen, as you can see in figure 2.10.

 How can you do this? With two simple Output
commands, as demonstrated in the following
source code. The program clears the screen, the
first Output command displays the word “HELLO,”
and the second displays “WORLD”; the program
pauses before exiting.

PROGRAM:HIWORLD3
:ClrHome
:Output(4,6,"HELLO,"
:Output(5,6,"WORLD"
:Pause

This is a step forward as far as the finesse you can use in displaying output to the user.
I mentioned at the beginning of this section that you could use Output to display
some text and a number together on one line, so let me show you how to do just that.

PUTTING TEXT AND NUMBERS TOGETHER

Previously, you saw one of the shortcomings of Disp in its inability to put text and
numbers together on the same line of the homescreen. Output solves that problem,
because you can display some text at a given row and column and then a number at a
later column of the same row. Consider the following program that displays the
answer to an easy math problem:

PROGRAM:SAMELINE
:ClrHome
:Output(1,1,"ANSWER IS:"
:Output(1,12,42

Omitting parentheses and quotes
One confusing style change you might notice in the HIWORLD3 program is the miss-
ing parentheses at the end of the two Output commands. This isn’t a mistake. As
we’ve previously discussed, calculators have limited quantities of memory, so we try to
save space wherever possible. Any parenthesis that’s immediately followed by a new
line can be removed; the calculator’s interpreter will understand and not flag the line as
having an error. The same trick can be used for string-ending quote marks that immedi-
ately precede a new line, as you’ll see in the FRSTANIM program in this chapter.

Figure 2.10 The output of
the HIWORLD3 program, using the
Output() command twice to center
the “HELLO, WORLD” text on
the homescreen

40 CHAPTER 2 Communication: basic input and output
The program will display the text “ANSWER IS: 42”
on the top line of the homescreen. For this exam-
ple, you could have put the 42 into the string, but
in subsequent programs that solve an equation
given numbers input by the user, you won’t know
what the number to be displayed is ahead of time.
The output of the SAMELINE program is shown in
figure 2.11.

USING OUTPUT FOR A SIMPLE ANIMATION

The Output command can be used both to draw
and, if made to output space characters, to erase.
By repeatedly drawing and erasing, you can create
crude animations on the homescreen. In this sec-
tion, I’ll show you a simple scrolling symbol; in
chapters 4 and 6, you’ll see more advanced animations and games made with Output.

 Consider a program that performs complex math that takes a long time to com-
plete. One thing you might want your program to do is display some sort of progress
bar so that your users know the calculation is still running and the calculator hasn’t
simply frozen. I’ll teach you in later chapters how to use fancy graphics to do this, but
for now, here’s a program that creates a progress bar out of equals signs and square
brackets, FRSTANIM (First Animation):

PROGRAM:FRSTANIM
:ClrHome
:Output(1,1,"[]
:Output(1,2,"=
:Pause
:Output(1,2," =
:Pause
:Output(1,3," =
:Pause
:Output(1,4," =
:Pause
:Output(1,5," =

When examining and entering this program, notice that many of the Output com-
mands display both a space and an equals sign. In each case, the space erases the
equals sign from the previous Output while displaying a new equals sign that’s shifted
one column to the right. The first Output command creates a pair of brackets to
bound the equals signs that will be created; if you type this program into your calcula-
tor, note that there are five spaces between the brackets.

:ClrHome
:Output(1,1,"[]

These two lines clear the screen and then display an opening bracket, five spaces, and
a closing bracket.

Figure 2.11 Using Output() to
display two different things, such as a
string of text and a number, on the
same line. This trick can be used for
neatly formatted math solutions,
games, and much more.

41Output: displaying text
:Output(1,2,"=
:Pause

These lines output an equals sign to the right of the opening bracket and then pause
until the user presses [ENTER] to continue.

:Output(1,2," =
:Pause

Now the program displays a space and an equals sign at (1,2). This means that a space
gets displayed at (1,2), placing it over the equals sign that the previous Output com-
mand wrote there and erasing that equals sign. It also means that an equals sign is dis-
played at (1,3), because Output moves left to right if you give it a string of more than
one letter. To the user, it looks as though the equals sign has moved over from the sec-
ond to the third column of the homescreen.

:Output(1,3," =
:Pause

This code does the same trick again, erasing the equals sign in the third column and
drawing it in the fourth column.

:Output(1,4," =
:Pause
:Output(1,5," =

The last three lines of this program repeat the procedure to move the equals sign
twice more by erasing it in the fourth column and redrawing it in the fifth column,
pausing a final time, and then moving it to the sixth column.

 One final item of interest is the missing quote marks (and parenthesis) at the end
of each of the Output lines. The sidebar “Omitting parentheses and quotes” explains
this. Once you type this program, FRSTANIM, and execute it, you’ll see the results
shown in figure 2.12 among the five frames of the animation.

 The code for this program is somewhat repetitive; in chapter 4 you’ll learn the For
loop, which would let you turn this into two Output commands and a loop instead of
six output commands executed one after the other.

Figure 2.12 Some of the frames of the animation created by the FRSTANIM
program, which scrolls an equals sign between the brackets. In chapter 4 you’ll
see a program with a similar concept that loops infinitely, flashing between two
different screens, until stopped.

42 CHAPTER 2 Communication: basic input and output
With the ability to display text and numbers to the user, you now need a way to get
feedback from the user in the form of numbers, strings, and other types of data. The
next section will teach you two TI-BASIC commands that let you do just that.

2.3 Input from users: the Prompt and Input commands
A program that can only display things to users isn’t useful at all unless it also has a
way of getting feedback, or input, from users. In computer programs, you provide
input by moving the mouse, by clicking, and by typing on the keyboard. In much the
same way, calculator users can type in numbers, strings, and other variables for pro-
grams to use. You’ve already seen this twice in chapter 1. In the QUAD quadratic equa-
tion solver, the Prompt command was used to ask the user for three numbers, A, B,
and C, which the program then plugged into the quadratic equation. Similarly, the
GUESS game used Prompt to ask the player for a numeric guess. This section will teach
you more about the Prompt command and how it can be used to get numbers from
the user. It will also introduce the Input command, which provides more control over
what your program displays to a user when it asks them for input. I’ll show you how
you can also get nonnumerical input such as strings and how you can build a simple
conversational program with these commands.

 The simplest input task is using Prompt to get a number from the user and save it
into a variable, so I’ll present that first.

2.3.1 Prompting for numbers

Many programs, both games and utilities written for educational purposes, need a way
to get numbers from the user. You already saw two such examples in chapter 1. Of the
two commands that the calculator has for the purpose, we’ll first examine Prompt,
the command you’ve already seen. You can find Prompt under [PRGM][�][2]. After the
command, you must put at least one variable that Prompt will ask the user to type in.
This can be a numeric (“real”) variable such as B or R or N, which you’ll see demon-
strated in this section. It can also be other types such as strings, lists, or matrices,
which I’ll cover in chapter 9. Let’s jump right into a simple two-line program that
prompts the user to type in the variable X and then squares it and displays the result-
ing value. The source code for this program is as follows:

PROGRAM:PRMPTSQR
:Prompt X
:Disp X²

Recall from section 2.2.1 that you can perform math within a Disp statement, here
squaring X before displaying it, rather than needing to square X, store the result back
in X, and display that. You can see the output of this program for a sample input of
X = 5 in figure 2.13.

 There’s not much to this command, as you can see. It displays the X=? prompt at the
left margin of the calculator’s screen, then flashes the cursor and waits for the user to
type in a number. When the user does so and presses [ENTER], the program continues

43Input from users: the Prompt and Input commands
at the next line. Prompt is a blocking input com-
mand, which means that your program can’t con-
tinue to the next line of the program until the
user types in their number and presses [ENTER].

Prompt has only one other feature that you’ll
find handy, because it’s a simple command to use.
Recall from chapter 1 that I used Prompt to get
three numbers at once in prgmQUAD, the three
coefficients needed for the quadratic formula.
The naïve way to ask the user for variables A, B,
and C might be as follows:

:Prompt A
:Prompt B
:Prompt C

Luckily, because every extra command is wasted space that makes a program bigger,
we have a way to compress these three commands into a single command:

Prompt A,B,C

Notice that there are no spaces between the commas or the variables in that com-
mand. To see this technique being used for something slightly more useful, glance at
prgmPRMPTPWR. This program asks the user for two numbers, P and Q, and then raises
P to the Qth power.

PROGRAM:PRMPTPWR
:Prompt P,Q
:Disp P^Q

The PRMPTPWR program is demonstrated in figure 2.14. Here, 10 is raised to the fifth
power, returning the value P^Q = 10^5 = 100000. Notice that the P=? and Q=? prompts
appear on two lines, just as if two separate Prompt commands had been used to build
the program.

 For PRMPTPWR, you start to see a shortcoming of the Prompt command in action.
Although the name of the program hints that it
will deal with powers or exponents in some way,
it’s not clear from the program itself what P and
Q represent. The best programs of any sort,
including calculator programs, will be intuitive
and understandable to their users even if the
users haven’t bothered to read the manuals for
the programs. It would be better to add a way for
the program to explain itself to the user. You
could add the following line to the beginning of
the program:

:Disp "RAISES P TO QTH","POWER

Figure 2.13 Testing the program
PRMPTSQR, which prompts the user
for a value of X and then displays that
value squared

Figure 2.14 A program that prompts
for two different variables, P and Q,
and raises P to the Qth power

44 CHAPTER 2 Communication: basic input and output
But you might want to instead give the user more explicit instructions to replace the
text “P=?” and “Q=?.” The Input command will give you exactly that power.

2.3.2 Fancier Input for numbers and strings

The Prompt command lets you ask the user to type in a value and then stores it in a
variable, as you have seen, but it has one notable shortcoming. As a programmer, you
can’t control what text appears when a Prompt command occurs. If you’re prompting
for variable A, the prompt will always be A=?. This isn’t always helpful. If, for example,
you want the user to type in his or her age, the “A=?” text isn’t going to provide many
clues that’s what the user is expected to type. If you’ve explored the commands in the
three tabs of the PROGRAM ([PRGM]) menu shown in figure 2.4 and described in
table 2.3, you may have noticed the Input command right before the Prompt com-
mand. For the sake of curiosity, try replacing the Prompt in my previous program
PRMPTSQR (shown in figure 2.13 and again in figure 2.15) with the Input command,
and see what happens:

PROGRAM:INPTSQR
:Input X
:Disp X²

You can see the output of the INPTSQR program in figure 2.15 in comparison to the
similar PRMPTSQR program in section 2.3.1. As you may notice, the output of
INPTSQR that it displays before asking the user to type a number isn’t quite as descrip-
tive as the output of the Prompt command, which at least lets users know the name of
the variable into which the value they’re typing will be stored. This may seem like a
disadvantage in many cases, because your program is giving the users even less infor-
mation about what it expects them to type in. You could use Disp to display a line of
text explaining what the user needs to enter before the Input, but then you could still
use the Prompt command, so what’s the point?

 The point of the Input command is that you can make it display anything you want
on the same line as where the user types in input. Just as Output lets you display two

Figure 2.15 Using Input (left) versus Prompt (right) to ask the user for
a number to be squared. The Prompt command always displays the name of
the variable being stored, whereas Input displays a question mark and an
optional string. The right screenshot is a copy of figure 2.13, the output of
the PRMPTSQR program.

45Input from users: the Prompt and Input commands
different things on the same line, Input lets you do output and input on the same
line. Used with a string to display before the user types their input, Input takes the fol-
lowing arguments:

:Input "STRING",Variable

The calculator will display the string “STRING” and immediately wait for the user to type
in a value that will be stored into the variable Variable. Variable can be a real (num-
ber) variable, like A, M, X, or θ, a string like Str3, or even a list like L3 or a matrix such
as [B]. Appendix A reviews the numeric and string variable concepts with which this and
coming chapters assume you’re at least marginally familiar. You’ll learn more about
using and manipulating strings, lists, and matrices in later chapters, especially chapter 9.

 Besides the INPTSQR program you just saw that demonstrates how you can replace
a Prompt command with an Input command, you’ll see two more examples of Input
in this section. First, I’ll show you how to add a descriptive line to be displayed before
the user can type in their input, which can be used to explain to the user what they
should type. I’ll end the section with a more elaborate program that calculates the
slope of a line, using the Input command to get a pair of (X,Y) coordinates for two
points on the line from the user.

 To demonstrate what sort of things you can make Input do, I’ll first show you a ver-
sion of the INPTSQR program that asks “SQUARE OF?” before the user can type in a
number, as shown in the following source code for INPTSQR2:

PROGRAM:INPTSQR2
:Input "SQUARE OF?",X
:Disp X²

When executed on your calculator, the program’s output should resemble figure 2.16.
You could put an extra space after the question mark on the first line of the program to
separate the “SQUARE OF?” query and the number
the user enters to make the program a little clearer,
but you can see that we’ve already made a substan-
tial improvement to the program as far as explain-
ing to users what the program expects from them.

 These smaller examples are a perfect way to
introduce the Input command, indeed any com-
mand, because they show how the particular com-
mand works with little other code around it to
confuse matters. In addition, throughout this and
coming chapters, I’ll occasionally stop in the
midst of introducing commands and concepts to
work through a complex, useful program or fun
game that you might use day to day. Next, I’ll
present a program that uses the Input, Disp, and
ClrHome commands to calculate and display the
slope of a line.

Figure 2.16 Using the Input
command to display a line of text
before the user can type something in.
As you can see, Input allows you to
customize the text displayed before
the space where the user can type in
their input, be it a number, string, or
other data type. Here, that string is
“SQUARE OF?,” and the user has typed
the number 5.

46 CHAPTER 2 Communication: basic input and output
USING INPUT: CALCULATING SLOPE

The final math program of this section asks the user for the coordinates of a first point
and the coordinates of a second point and displays the slope of the line that joins
those two points. You’ll see that I’ve used a few optimization tricks that you’ll get
used to as I go through more examples, including omitting a closing parenthesis
that’s immediately followed by the end of the line, as well as two quotation marks that
also immediately precede the end of two lines. If you’re not familiar with the slope of
a line, it describes how steep it is; the larger the slope, the steeper the line. It’s calcu-
lated from the quotient of how far the line rises over a certain horizontal distance
divided by that horizontal distance, or in common math-class parlance, “rise over
run.” Figure 2.17 demonstrates the concept of a line’s slope, calculated from any two
points on the line.

 In the following program, the (X, Y) coordinates of the first point are stored in
variables (A, B), and the (X, Y) coordinates of the second point are in (C, D). The rise
is the change in Y between the two points, or (D – B), and the run is the change in X
between the two points, or (C – A). The slope is then (D – B)/(C – A), which you can
see calculated on the last line of prgmSLOPE with the same formula as in figure 2.17:

PROGRAM:SLOPE
:ClrHome
:Disp "FIRST POINT
:Input "X1: ",A
:Input "Y1: ",B
:Disp "SECOND POINT
:Input "X2: ",C
:Input "Y2: ",D
:Disp "SLOPE:",(D-B)/(C-A

As always, you can run this by finding SLOPE in the [PRGM] menu, pasting prgmSLOPE
to the homescreen by pressing [ENTER], and running it by pressing [ENTER] a second
time. The horizontal line going through (1,1) and (5,1) will have a slope of 0, because

Figure 2.17 Calculating the
slope of a line. Divide the
vertical distance between the
two points (the “rise”) by the
horizontal distance (the “run”)
to get a value for the slope.
A horizontal line has a slope
of 0, a diagonal line has a slope
of 1, and a vertical line has a
slope of infinity.

47Input from users: the Prompt and Input commands
its Y changes by 0 as it travels 4 horizontally; the results of the program for those two
values are shown in figure 2.18. In this figure, a calculator-generated graph of the line
in question is shown next to the output of the SLOPE program for your edification.

 The program can easily calculate less trivial (obvious) slopes of tilted lines. The
diagonal line passing through (-3,-3) and (4,4) rises 7 while it runs 7, so its slope
should be 7/7 = 1. You can see this accurate result from the SLOPE program in fig-
ure 2.19.

 Once again, a graph is shown at the right side of figure 2.19 that demonstrates the
results from the SLOPE program. You can see how this sort of combination of input,
calculation, and output could be expanded into all sorts of mathematical and scien-
tific solvers, such as the quadratic solver, prgmQUAD, from chapter 1.

 Now that you’ve seen how Input, Prompt, Output, and Disp can be used for a few
math programs, how about a simple “conversation” program that lets you talk to
your calculator?

Figure 2.18 Testing prgmSLOPE on the line passing through points (1,1) and
(5,1), shown on the left. The program correctly calculates a slope of 0 (a
horizontal line), proven by the graph drawn at right.

Figure 2.19 Calculating the slope of the line between (-3,-3) and (4,4) using the
SLOPE program, at left. A graph of the line is at right.

48 CHAPTER 2 Communication: basic input and output
2.3.3 Exercise: making conversation

Because you now know how to get input from the user and display that input (or some
modified form of it, such as the input with additional math performed on it) on the
screen, you can start using your knowledge to make more complex programs. In this
exercise, you’ll make a small program that pretends to chat with the user. It will ask
users to type in their name and their age, and then it will greet them by name and
repeat their age back to them. A transcript from a sample conversation with the pro-
gram should look something like this:

HELLO, WHAT IS YOUR NAME?<User types name and presses [ENTER]>
AGE?<User types age and presses [ENTER]>
HELLO, <Name>
YOU ARE <Age> YEARS OLD

YOUR ASSIGNMENT

Your task is to write a program called CONVO that can hold a conversation like this.
You’ll definitely want to use Input in this program, and you’ll also need Output
and/or Disp. For the age, you can use a simple numeric variable such as A, X, D,
and the like.

Although we haven’t discussed them much before, we’ll use a string variable in the
CONVO program, specifically Str1 (short for String 1). In your program, Str1 will be
used with Input, so that once the user types a value to be stored into the string, it can
in turn be used for display. You can type Str1 with [VARS][7]1: Str1.

 To give you a bit of a visual idea of how this program might look when run, take
a look at figure 2.20. The user has typed in Kerm for his name and 24 as his age.
Good luck!

SOLUTION

The source code for one possible solution CONVO program is shown here. It consists
of six lines of code, all of which you should be able to easily type into your calculator

What’s a string variable?
There are 10 string variables, Str1 through Str9 and Str0. Each one can hold any
sequence of characters enclosed in quotes, like “HELLO” or “3.1415” or “THIS IS A
VERY, VERY LONG SENTENCE THAT WASTES SPACE.” Just as numbers can be stored
into numeric variables and those variables can be used as if they were numbers,
strings can be stored into Str variables, and the Str variables can then be used as
if they were the strings themselves. For example, this code:

:Disp "HELLO

is equivalent to storing “HELLO” into a string variable and then using that instead:

:"HELLO"→Str6:Disp Str6

49Input from users: the Prompt and Input commands
by now. As noted, the one thing you might not be easily able to find is the Str1 token,
which is under [VARS][7]1: Str1.

PROGRAM:CONVO
:ClrHome
:Disp "HELLO, WHAT IS"
:Input "YOUR NAME?",Str1
:Input "AGE?",A
:ClrHome
:Disp "HELLO, ",Str1,"YOU ARE",A,"YEARS OLD"

Once you type in this program and run it, you should see something resembling fig-
ure 2.20. The program will first ask you to type in your name; you should be able to
type anything at this prompt. When you press [ENTER], it will ask you for your age,
which must be a number. If you type anything other than a number, you’ll get an
error message from the calculator’s OS. In that case, you can choose to quit the pro-
gram, or if you select 2: Goto at the error screen, you’ll have an opportunity to retype
your age.

 After you type your age and press [ENTER], the program will greet you by name
and state your age, as shown at the right side of figure 2.20. As you can see, the output
is correct, and the Input-based prompts are descriptive, showing the strings “YOUR
NAME?” and “AGE?” right before the user has an opportunity to type in each of those
items. If this program has one shortcoming, it’s that the output shown in the right side
of figure 2.20 is less than neat.

 You could go further and try to neaten up the lines of text that the program out-
puts at the end. The most obvious change would be to put the user’s age right next
to the string “YOU ARE” rather than all the way over at the right edge of the screen
one line down. But if you do that, you might even be able to fit the word “YEARS”
on the same line. This fix is particularly easy because you know that the user’s age
probably has two digits in it and definitely has one, two, or three digits. Therefore,
if you put four spaces between “ARE” and “YEARS”, you know you’ll have room for a
space, then one or two digits, and then the word “YEARS.” Let’s try that out and see
what happens.

Figure 2.20 Running the CONVO program. Here, the user enters “KERM” as the
string for his name and the number 24 as his age.

50 CHAPTER 2 Communication: basic input and output
 The program named CONVO2, shown here, makes this change. Notice that the
Output command is used for all of the age-related display now instead of Disp,
although Disp is still used for the “HELLO, <Name>.”

PROGRAM:CONVO2
:ClrHome
:Disp "HELLO, WHAT IS"
:Input "YOUR NAME?",Str1
:Input "AGE?",A
:ClrHome
:Disp "HELLO, ",Str1
:Output(3,1,"YOU ARE
:Output(3,9,A
:Output(3,12,"YEARS
:Output(4,1,"OLD

You can see the output of this program in figure 2.21
for two possible age inputs, one with two digits,
and one with one digit. As you can see, in both
cases we have left enough space for the age to fit
neatly in between “ARE” and “YEARS.” Unfortu-
nately, if the user enters a one-digit age, there’s
still an ugly extra space between the age and
“YEARS.” In chapter 3, you’ll see how to use condi-
tional statements to execute different commands
based on values that the user types in, so that you
could make the word “YEARS” be one space to the
left if the user enters a one-digit age.

 You now have enough knowledge to put
together simple programs with input and output.
You can make simple math solvers and perhaps
even a few small, fun programs. In the remainder
of this chapter, I’ll give you a few extra details that will help you start to write your own
programs. If you create your own programs that put some of the concepts in this chap-
ter together, you might suddenly discover that your program isn’t working correctly;
I’ll briefly introduce the concept of troubleshooting your programs.

2.4 Troubleshooting tips
As you start programming your own original programs, it’s inevitable that you’ll make
mistakes or create programs that don’t work as you intend. Typing out the programs in
this chapter and chapter 1, hopefully everything worked properly. If you made typos,
chances are you were able to look back at the source code I provided and find your
errors. You may have gotten lost finding a few of the commands in the calculator’s menu,
but my clarifications about where to find each new command should have solved that.

 But now you’ll start writing your own programs. When you start creating your own
projects, you’ll be responsible for double-checking your own code, and you’ll swiftly

Figure 2.21 Using the Output
command to turn the messy CONVO
program into the neater CONVO2
program. It tidily displays both one-
and two-digit ages in a sentence.

51Troubleshooting tips
experience a program you’ve written that produces an error message, or worse,
doesn’t generate an error but still doesn’t function correctly. Maybe your program will
display the wrong thing in the wrong place, or maybe it performs math incorrectly,
but in some way it doesn’t function the way you designed it to work. When this hap-
pens, you need not panic, because there are well-established guidelines to help you
track down the problem. As you learn the general troubleshooting guidelines in this
section, you’ll likely start to think of your own methods of finding errors, which
is excellent.

 In sections 5.3 and 5.4, I’ll present an in-depth guide to the various error messages
that your calculator produces and how to track down solutions, as well as detailed
guidelines for figuring out what part of a program is at fault when the program
doesn’t work as you planned. For now, I want to give you a few tips for debugging your
own programs so that you can get started creating new programs as quickly as possible
and so that you can have fun with it and not get frustrated.

2.4.1 Easy-to-spot errors: TI-OS error messages

Your calculator’s operating system, the TI-OS, throws (generates) errors when your
program has a mistake such as a typo, a command missing its arguments, a string
where there should be a number, or any of a multitude of similar minor problems.
Figure 2.22 shows an example of one of these messages, ERR:SYNTAX, which appears
when you’ve made a typo in your program. Your calculator has 50 such error mes-
sages, about 25 of which may be generated by programs that you write, but there are 3
in particular I’d like to focus on here. With the programming skills you’ve been build-
ing so far, your own programs are likely to generate SYNTAX, BREAK, or INVALID DIM
errors. Section 2.4 will explain the other types of error messages your programs might
generate as they use a larger set of programming commands.

 When you see any of these sorts of TI-OS errors shown in figure 2.22, you’re gener-
ally invited either to Quit (which returns you to the calculator’s homescreen) or, in
some cases, to Goto the error. This latter option opens the program editor and brings
you to the line in the program where the error occurred. You therefore have a chance
to try to fix the error and then either continue to edit the program or quit the editor
and try to run the program again.

Figure 2.22 The error message shown when a TI-BASIC program produces a
SYNTAX error, normally (at left) and when a shell is installed (at right)

52 CHAPTER 2 Communication: basic input and output
Incidentally, these are the same error messages that appear when a user types some-
thing illegal at an Input or Prompt. In that case, the Goto option brings the user back
to the Input or Prompt rather than into the source code of your program. Another
error that users (rather than your program) may trigger is ERR:BREAK, which happens
when they press the [ON] key to stop a program. In some cases, if you (or another pro-
grammer) have written a program that doesn’t end, or that you don’t want to wait to
end, or even that you want to stop in its tracks and look at the source code for that
portion of the program, you can press the [ON] key. This signals the interpreter to
stop what it’s doing and bring up a BREAK error similar to figure 2.22; just as with the
SYNTAX error, you can choose to quit to the homescreen or to go to the line of code
the interpreter was at in the program when the user pressed [ON].

TI-OS ERRORS: SYNTAX
As briefly discussed, the problems in your program that trigger a SYNTAX error might
be as simple as a typo. You may have typed too many closing parentheses, forgotten to
start a string with a quotation mark, or typed a token out letter by letter as, for exam-
ple, “D” “i” “s” “p” instead of going to [PRGM][�][3] for Disp. It might be something
more complex, like forgetting one of the arguments to a command, in which case
you’ll have to refer to the command’s relevant chapter herein or to appendix B. It
might be something more obscure still, like using an imaginary or complex number
where only a real number will work.

 For the programs you’ve examined in this and the previous chapter and will con-
tinue to work with in chapters 3 and 4, your errors will be mostly limited to the sim-
plest kinds. When we get to chapter 5, I’ll introduce a systematic approach that
addresses the many error messages the calculator can generate in response to typos
and incorrectly typed commands.

TI-OS ERRORS: INVALID DIM
There’s one final TI-OS error message that I’ll address before moving on to trouble-
shooting problems in your program that don’t produce messages yet still affect their
functionality: the INVALID DIM error. ERR:INVALID DIM usually appears as shown in
the left side of figure 2.23 when a list variable (which you’ll learn to use in your pro-
grams in chapter 9) contains the wrong number of elements. Even nonprogrammers

Figure 2.23 The INVALID DIM error (left) that results from accidentally turning
on one of the statistics plots (right). The text describes the simple fix for this
problem.

53Troubleshooting tips
can become frustrated with this error, which frequently happens when one of the sta-
tistics plots (Plot1, Plot2, or Plot3) gets accidentally selected in the [Y=] screen, a
mistake shown on the right side of figure 2.23. I’ll mention this again when you start
learning about using the graphscreen in chapter 7, but it’s worthwhile to know the
quick fix for this problem. Press [Y=], use the arrows to move the cursor up to which-
ever plot label is highlighted (white text on a black background), and press [ENTER]
to deselect the plot label, turning it back to black on white. The ERR:INVALID DIM
should now not appear when you press [GRAPH].

2.4.2 The subtle errors: why isn’t my program working the way I want?

Unfortunately, not every problem is quite so obvious. There are many issues your pro-
grams will develop that won’t advertise themselves with a big ERR message. Indeed,
the vast majority of bugs in programs are far more subtle, including anything from
small mistakes in the formatting of output to calculation mistakes that happen only in
limited circumstances. Because these bugs don’t come with bold messages advertising
their presence, including a handy Goto option that takes you directly to the line of the
program responsible, tracking down exactly what’s causing them can often be as hard
or harder than implementing the actual fix.

 The most helpful thing you can do in such a circumstance is try to keep in mind
the relation between the code that you wrote and the way the program works. Recall the
program called CONVO2 from section 2.3, which made your calculator hold a rudi-
mentary conversation; here I’ve made a slight change in it to introduce a bug:

PROGRAM:CONVO2
:ClrHome
:Disp "HELLO, WHAT IS"
:Input "YOUR NAME?",Str1
:Input "AGE?",A
:ClrHome
:Disp "HELLO, ",Str1
:Output(3,1,"YOU ARE
:Output(3,9,A
:Output(5,12,"YEARS
:Output(4,1,"OLD

If the text at the end of the program ended up for-
matted improperly, as shown in figure 2.24, you’d
know that the line that printed the word “YEARS”
on the screen was at fault. Not every bug is this
obvious to spot. There are bugs where you may
accidentally switch variables around, such as asking
the user to input their age in A but then displaying
B at coordinate (3,9). You might put parentheses in
the wrong place in parts of programs that perform
calculations or forget about Order of Operations
(also known as PEMDAS). You might omit a line

Figure 2.24 A bug introduced into the
conversational program CONVO2.
Luckily, because the word “YEARS” is
displayed by itself, it’s easy to see
where in the source code the mistake
lies that caused “YEARS” to move
down two lines.

54 CHAPTER 2 Communication: basic input and output
you meant to type or insert another one by mistake. The worst bugs are caused by a
fundamental confusion about the structure of your program, where you have
designed it in a way that can’t work unless you redesign it. Hopefully, you won’t find
yourself in such a quandary until the end of the next chapter, at which point you’ll be
ready to read chapter 5 and learn how to extricate yourself from such a mess.

 You now know much of what there is to know about your graphing calculator’s
homescreen, displaying output and accepting input in your programs, and you’ve
seen a few sample applications. I presented some lessons about the rudiments of
debugging, so let’s move on to learn more complex program structure.

2.5 Summary
You’ve now seen how to create basic programs that can use Disp and Output to write
text and numbers on your calculator’s screen and use Input and Prompt to get the
user to enter values to be stored in variables. With these two sets of commands, you
can write a great number of simple programs, especially those that ask a user for a set of
values and then solve equations based on the numbers the user inputs. You already have
enough information to make solvers for equations such as the quadratic equation, the
Pythagorean Theorem, any of many physics equations such as those for kinematics, and
even some engineering equations. You might be able to put together simple games.

 But with the new programming skills you’ll learn in chapter 3, you can go vastly fur-
ther. In this chapter, all of your programs start at the first line of the program and con-
tinue straight through to the last line without any sort of detour. You have no way to skip
any lines, to loop back up to another section of the program, or to skip over to a dif-
ferent part of the program if the user enters something that warrants it. Chapter 3 will
introduce logic, comparisons, and conditional statements; by the end of chapter 3,
you’ll have the knowledge to put together the QUAD example from chapter 1 all by
yourself, as well as many more programs.

Conditionals
and Boolean logic
Although you may have never thought about it before, almost every computer pro-
gram you’ve used in your life reacts and makes decisions. Any program you run will
execute different sections of code depending on what you type and click, what your
files contain, and even what files on other computers contain. Calculator programs
are no different, and most programs you’ll want to write will need to have rules and
the ability to make decisions. You’ve already seen a quadratic equation solver,
QUAD, that displayed a warning about imaginary roots only if it determined that it
would encounter imaginary roots. You also saw the GUESS guessing game’s decision
making in deciding whether to reloop (on an incorrect guess) or end the game (on
a correct guess).

 When I’m writing or testing or designing a program, I think of it in terms of
flow, of pieces connected by arrows, through which the program’s flow of execu-
tion proceeds. If a certain variable contains a specific value, then the flow proceeds

This chapter covers
■ Representing rules and facts in a program
■ How programs can make decisions
■ Running code conditionally based on

comparisons
55

56 CHAPTER 3 Conditionals and Boolean logic
from one part of the program to another along an imaginary arrow. If it contains a dif-
ferent value, the flow proceeds down a different arrow to a different part of the pro-
gram. As you get further into programming, you’ll find it intuitive to think about
programs the same way, as a flow of execution rather than code on a screen. When
you think about a program that way, you think of it just as the computer sees it, and
you’ll remove the need to translate the design you imagine in your head into some-
thing your computer or calculator can understand.

 In this chapter, you’ll learn about comparisons and conditional statements, which
empower you to create programs that make decisions. By the end of the chapter,
you’ll have explored examples that determine and display the sign of numbers, draw
patterns on the calculator’s screen, and more. I’ll show you comparisons, the decision-
making rules that your calculator reduces to true or false to decide how to proceed.
We’ll work with conditional statements, which give the program a way to execute dif-
ferent pieces of code based on the truth or falsehood of comparisons. I’ll build on the
commands you learned in chapter 2, including Disp, Output, Input, and Prompt.

 Just as you make decisions given facts and rules (“I am hungry, so I will eat”; “I am
not hungry, so I will not eat”), you need to be able to express rules in your programs
that the calculator can plug facts into as it runs your programs. Let’s get started with
comparisons, your calculator’s basis for making decisions.

3.1 Introduction to comparisons
The rules that programs follow to direct the flow of execu-
tion are called conditions. To simplify the terminology, I’ll
call an expression that compares two numbers or strings a
comparison. Anything that’s either true or false, such as a
simple comparison or a logical combination of several
comparisons, is a condition. When I combine a condition
with the command called If, and optionally Then, Else,
and/or End, I’ll call that combination a conditional statement
or conditional. If you’ve ever taken a class like Algebra I, you
should be familiar with the concept of the comparison. A
comparison consists of three things: a left side, a compari-
son operator in the middle, and a right side, as in figure 3.1.

 The sample comparison in figure 3.1 demonstrates comparing two numerical quan-
tities, X + 32 (the contents of variable X plus 32) and Z (the contents of variable Z). If the
value (X + 32) is indeed larger than the value of Z, then the comparison is true; if
(X + 32) is equal to Z or smaller than Z (that is, (X + 32) is not greater than Z), then the
comparison is false. Every comparison you’ll see in TI-BASIC or any other programming
language must evaluate (reduce) to true or false. Programming languages have no con-
cept of fuzzy logic, wherein something might be sort of true, or kinda true.

 Although the comparison in figure 3.1 is numerical, you can compare other things
too. Depending on what language you’re writing, you might be able to compare

Figure 3.1 The three
pieces of a comparison: the
left and right sides, which
both have numerical values,
and the comparison
operator, which defines how
the left and right sides will
be compared

57Introduction to comparisons
strings, to see if they contain the same text; lists or arrays (sequences of numbers), in
which case you compare respective elements of two lists; and many other data types.
TI-BASIC lets you compare a number of different data types, although we’ll discuss
only numbers and strings in this chapter:

■ Numbers—Two numeric expressions such as 32 or -5.4 or X^2 + 9.3 can
be compared.

■ Strings—Two strings can be compared. If they’re the same length and contain
the same letters, then they’re equal; otherwise, they’re not.

You can’t compare two items of different types; for example, you can’t compare a
string and a number.

 Numbers can be compared using one of six comparison operators, all of which
can be found in the TEST menu, under [2nd][MATH]. All six should be familiar
from any math or algebra class. Two of the operators test equality: = and ≠. Four of
the operators test inequality: >, <, ≥, and ≤. For strings you use only the two equality
operators, = and ≠. As you read on, keep in mind that every comparison is either true
or false, depending on whether or not the comparison expression represents some-
thing factual.

TRUE AND FALSE IN TI-BASIC
In some languages, true and false are the two possible values of a data type called a
Boolean or Boolean variable. Although a number can be -4 or 0 or 947,821.803,
a Boolean can only indicate truth (or falsehood) and can only hold the values true or
false. In TI-BASIC, there is no such thing as a Boolean variable; instead, the values true
and false are themselves represented by numbers. The result of every comparison and
every condition is therefore a number denoting true or false. In TI-BASIC, true is rep-
resented as 1 and false as 0. You can test this out yourself with a simple program,
shown at the left side of figure 3.2 as TESTCMP.

PROGRAM:TESTCMP
:Disp 3=5
:Disp 3<5

Because I just said that the calculator uses the number 0 for false and the number 1
to represent true, this program should display 0 and then 1 on the homescreen. Lo
and behold, as you can see in figure 3.2, it does exactly that. If you want to type this
program to test it, remember that you can find the comparison operators under
[2nd][MATH].

Figure 3.2 Displaying the values of
the comparisons 3 = 5 and 3 < 5,
demonstrating that 0 is false and 1 is
true in TI-BASIC. Because the first
comparison is clearly false (3 is not
equal to 5) and the second is true (3
certainly is smaller than 5), the
program displays the value 0 for false
and then the value 1 for true.

58 CHAPTER 3 Conditionals and Boolean logic
To get a further idea of what various equality and inequality operations return, take a
look at table 3.1, which shows a few comparisons, their truth values, and their numeri-
cal values.

 Table 3.1 demonstrates a number of interesting features about comparisons. In the
leftmost column, BASIC code that you could try on your calculator is shown. The sim-
plified equivalent of each is shown in the second column. In the first comparison, X is
replaced with 8 and the multiplication 3 ∗ 8 is performed, leaving the equivalent com-
parison 24 < 20. Because 24 is not less than 20, the comparison is false, and because
false is represented as 0 in TI-BASIC, the comparison 24 < 20 is equal to 0, shown in the
last column.

 By the same token, the expression in the second row reduces to 2.2 ≥ 0. Because
this is true, the value is 1.

 The third comparison introduces string comparison. The two strings are not iden-
tical, so they’re not equal, and the value of the comparison is false or 0.

 The fourth comparison shows that the negative of -5, in other words just 5, is equal
to 5, an expression that’s true (or 1).

 The fifth comparison demonstrates the not-equals symbol, which may take a
second glance to understand. The comparison shown compares 99 and 6 and
asserts that they’re not equal. This is certainly true; 99 is not equal to 6. There-
fore, the comparison is correct, true, and equal to 1. This may be initially confus-
ing because the resulting Boolean value is true when the two numbers are unequal,
but remember that the truth value of the statement only expresses whether the
comparison operator as shown in figure 3.1 represents an accurate relationship
between the left and right sides. Here, that correct relationship is that the two num-
bers are not equal.

 Now that you know how the calculator evaluates a comparison and expresses the
truth or falsehood of that comparison, you can move on to expand your comparisons

Table 3.1 Five comparison operations, with their equivalents, their truth values, and the numerical
values of those truth values. Comparisons between two numbers and comparisons between two strings
are shown.

Comparison code Equivalent to… Boolean truth value Numerical value

:8→X
:3X<20

24 < 20 False 0

:-3.2→X
:X+5≥0

2.2 ≥ 0 True 1

:"HELLO"="HI" "HELLO" = "HI" False 0

:-5→X
:-X=5

5 = 5 True 1

:99→N
:N≠6

99 ≠ 6 True 1

59Conditional statements
into conditional statements. These conditionals can be used to control the flow of exe-
cution in a program, whether certain commands get executed, and what parts of your
program are run.

3.2 Conditional statements
With a knowledge of how to compare numbers and strings, you can write code that
does different things based on the values of variables and the inputs that users enter.
You already know how to, for example, display numbers that depend on a value that a
user types in. Consider a simple program named DOUBLE that displays two times the
number a user enters:

PROGRAM:DOUBLE
:Input "DOUBLE OF:",X
:Disp 2X

No matter what number the user enters, this program will double it and then display
that value. What if you only want to display that doubled value if X is positive, though?
In the GUESS game in chapter 1, the text “TOO HIGH” was displayed only if the guess
was higher than the target number, and the text “TOO LOW” was displayed only if the
guess was lower. To present a more complex but more useful case, remember that in the
QUAD program in chapter 1 that solved the quadratic formula, the text “IMAGINARY
ROOTS” was displayed if and only if the coefficients entered by the user yielded a qua-
dratic formula with imaginary roots.

 In this section, you’ll learn increasingly complex ways to execute different com-
mands based on whether a comparison statement is true or false. First, you’ll learn
how a conditional containing a comparison can control the execution of a single line
of code (If). Next, I’ll demonstrate conditionally executing a chunk of several lines of
code (If/Then/End). Finally, you’ll see how to run one piece of code if the condition
is true and another if it’s false (If/Then/Else/End). I’ll start by showing you the sim-
plest case, executing a single command if and only if a comparison is true.

3.2.1 The one-statement conditional: If
With TI-BASIC, you can conditionally execute a one-line command when a given com-
parison is true. As in the GUESS and the QUAD programs, a one-statement conditional
uses the If command. Like Prompt and Disp, it takes one argument: a comparison
statement. If can be found in the first tab of the [PRGM] menu containing program-
ming commands and is the first item, 1: If. The general form of the simple one-line If
conditional looks like this:

:If <condition>
:<statement to execute when condition is true>

The statement (the second line of this template) can be a simple command like Disp,
a mathematical expression such as B+3→B, or one of the many commands you’ll learn
in later chapters. If you are still vague on the idea of a command that’s conditionally
executed, look at figure 3.3. On the left side of the figure are two lines of code. In this

60 CHAPTER 3 Conditionals and Boolean logic
example, the statement Statement if true is executed only if the variable N is indeed
greater than 8, the comparison for the If command. The right side of the figure
shows a flowchart representing the flow of execution when the calculator’s TI-BASIC
interpreter encounters these two lines of code. Hopefully flowcharts are becoming
easier for you to read, but let’s work through the chart piece by piece.

 I assume either that there’s more code before this chunk or that it’s the first two
lines of the program. In either case, the interpreter takes the first red arrow down into
the If/Statement box, first examining the comparison expression N > 8. It checks the
value of N, and if it’s greater than 8, it knows the comparison is true. If it’s true, and
therefore N > 8, then it continues on to execute the Statement if true line (which is,
of course, pseudocode; there’s no actual command called Statement). If N is equal to
or smaller than 8, then N > 8 is false, and the interpreter skips the Statement if true
line and goes to the next line under that. In either case, the interpreter then contin-
ues by running whatever code immediately follows the two lines shown in figure 3.3.

 With that in mind, let me show you the conditional statements from GUESS and
QUAD again, and hopefully with your newfound knowledge you’ll understand them
better than from my brief chapter 1 explanations. First, from GUESS:

:If G>N
:Disp "TOO HIGH"
:If G<N
:Disp "TOO LOW"

This is a pair of conditional If commands with associated statements. The first one
checks if G > N, and if so, executes the Disp "TOO HIGH" command. Similarly, in the
second conditional, “TOO LOW” is displayed if and only if G < N. Notice that if G = N,
neither of the comparisons will be true, and neither of the Disp commands will be
executed, because G < N is false and G > N is also false. Recall that if G = N, the player
guessed N correctly, so this behavior makes sense. Although these two If/Statement
constructions are adjacent, they’re two separate pairs of commands, and either If/
Statement would work properly without the other.

 Now to look at the code from QUAD, simpler in form but with a more complex
comparison. Actually, the code in the original program used an If/Then/Else/End
block, which you’ll learn later in this section; a simplified version of the If statement
would look like this:

Figure 3.3 The
structure of a simple
If/Statement
construct. If the condition
(here, N > 8) is true, the
statement is executed.
Otherwise, it is not. A more
detailed explanation of this
diagram is given in the text.

61Conditional statements
:If 4AC>B²
:Disp "IMAGINARY ROOTS"

As you might expect, this displays the text “IMAGINARY ROOTS” only if the value of A
times C times 4 is greater than B squared. Though both these examples happen to use
Disp as the conditionally executed command, it’s far from the only command you can
use. You’ll see two programs that use If to control a single statement, in one case to
perform math and in the other to run a command, before we move on to more com-
plex conditional constructs.

EXAMPLES: ABSOLUTES AND SIGNEDNESS

I will show you two examples of If in action, both of which happen to deal with the
sign (positive or negative) of numbers. In both programs, the user will be asked to
input a number. In the first program, an If will be used to generate the absolute value
of the number, by negating it (switching its sign) if it’s negative to convert it to positive
or leaving it alone if it’s already positive. In the second program, the word “POSITIVE”
or “NEGATIVE” will be displayed depending on the sign of the number the user enters.

 The first program is called IFABS, because it takes the absolute value of a number
using the If command. It’s a simple four-line program and will produce something
like the results shown in figure 3.4. The code uses the Input command with which
you’re already familiar, then has an If/Statement construct, and finally has a Disp
command to display the final absolute value.

PROGRAM:IFABS
:Input "ABS OF ",X
:If X<0
:-X→X
:Disp "IS",X

If you type this program into your calculator, make sure that in the third line you use
the negative key, marked (-), rather than the subtraction operator. TI-BASIC differenti-
ates between negation and subtraction, and if you type a subtraction symbol instead of
a negate symbol, the interpreter will produce a SYNTAX error.

 Although you’ve already seen one such example with the guessing game, GUESS,
I’ll show you another instance of using If to control whether one, both, or neither of

Figure 3.4 Two screenshots from the IFABS program that uses an If statement
to produce the absolute value of a number. If the user inputs a negative number,
it negates it to produce a positive; otherwise, it lets it be.

62 CHAPTER 3 Conditionals and Boolean logic
a pair of Disp commands are executed. In this case, the user will input a number, and
the program will say if it’s negative or positive/zero. The code might look like this:

PROGRAM:IFSIGN
:Disp "DISPLAY SIGN OF
:Input X
:If X<0
:Disp "NEGATIVE
:If X≥0
:Disp "POS/ZERO

The two If statements run independently, but the comparisons are mutually exclu-
sive, so the program always displays exactly one of the strings. If X < 0, then it displays
“NEGATIVE”; otherwise, it displays “POS/ZERO.” There is no number that’s both less
than zero and greater than or equal to zero, nor is there any number that makes nei-
ther comparison true. You can see this program working in figure 3.5, for a negative
input number on the left and a positive input number on the right.

 Now you know how to execute a line of code (or not) based on whether a compar-
ison is true or false, but what if you want to run more than one line of code condition-
ally? If you want to control whether a large block of code runs based on the truth of a
comparison or conditional, you’d have to give each line its own identical If state-
ment, which certainly seems like a waste of space. I’ve said several times thus far that
making your programs as fast and as small as possible is important, and luckily there’s
a better solution to conditionally executing larger chunks of code.

3.2.2 Conditional blocks: Then/End

There are many cases when you’ll want to conditionally execute more than one line of
code. To drive the Disp examples farther into the ground, imagine that you might
want to call the Disp command a few times, Pause, and then ClrHome, all based on a
single conditional. For a more practical example, you might instead want to update
several variables’ contents in that conditional block. TI-BASIC provides a solution in
the form of the Then and End commands. Instead of a single statement under an If
line, you wrap many statements inside a Then/End block. The Then command is in
[PRGM][2], and End is [PRGM][7]. When the TI-BASIC interpreter sees a Then, it

Figure 3.5 The IFSIGN program displaying the sign of a number using two If/
Statement constructs

63Conditional statements
knows that every line after that Then until the corresponding End is part of the same
conditional block. You can even nest conditional blocks inside of conditional blocks!
First, the simpler case:

:If <condition>
:Then
:Statement 1
:Statement 2
:...
:Statement N
:End

When <condition> is true, all of the statements between Then and End are executed. If
<condition> is instead false, none of the statements between Then and End are executed.

 Check out figure 3.6 for the same concept again, in a more graphical flowchart for-
mat. As with single-statement If commands, you either have some code before the
If/Then/End block or it falls at the beginning of the program. Either way, the If/
Then/End code begins with an If statement. If the conditional statement is true, and
the next line is a Then, the TI-BASIC interpreter executes all the lines after the Then
until it reaches a corresponding End command. If it’s instead false, the interpreter
skips the Then, the End, and everything in between, continuing directly to the first line
of code after the End, or ending the program if there are no more lines after End.

USING THEN AND END: BUILDING A PROGRAM TO PRINT AND MIRROR O
Let’s build an example program that uses If/Then/End together. Consider a program
that lets you type a pair of numbers, a row and column on the homescreen, which will
then Output an O at those coordinates. The code for this might look this:

:Input "ROW=",A
:Input "COLUMN=",B
:ClrHome
:Output(A,B,"O

As you’ll learn when I discuss defensive programming in chapter 6, this code has a
problem. If the user types in 0 or -3 or 9999 for the column or the row, the program

Figure 3.6 The structure
of an If/Then/End
construct. It differs from
If/Statement only in
that multiple statements
can be conditionally
executed at once.

64 CHAPTER 3 Conditionals and Boolean logic
will cause a TI-BASIC error, in this case ERR:DOMAIN, because the coordinates would
be off the screen somewhere. We could improve this program as follows:

:Input "ROW=",A
:Input "COLUMN=",B
:If A<1
:1→A
:If A>8
:8→A
:If B<1
:1→B
:If B>16
:16→B
:ClrHome
:Output(A,B,"O

Now the program is coded defensively. If the user enters a row less than 1 or greater
than 8, the program will correct the invalid row to something valid. Similarly, if the
user enters a column less than 1 or greater than 16, the program will correct it. Great,
but where does the Then/End come into play?

 Suppose we add one more condition to this program. It will ask the user if they
want to mirror the O four times around the screen, to turn it from something like the
left side of figure 3.7 to something like the right side.

 Now you can see where you could use an If/Then/End block: to contain three
more Output commands to draw these extra Os! One of them will be at row A, column
(17 – B), another at row (9 – A), column B, and the third at row (9 – A), column (17 – B).
Where did these numbers come from? If the O is in the first row and column, then
mirrored horizontally it should be in the first row (A) and the last column (16, or
17 – A = 17 – 1). Mirrored vertically, it should be in the first column (B) and the last
row (8, or 9 – B = 9 – 1). The third copy should be in the last row and the last column,
or 17 – A and 9 – B. Here’s the code for these three Output statements:

Output(A,17-B,"O
:Output(9-A,B,"O
:Output(9-A,17-B,"O

Figure 3.7 Taking a single O output at one point on the screen at left and
mirroring it to three other locations on the screen. Conceptually, this is like first
mirroring the screen horizontally and overlaying it on itself, producing two Os,
then mirroring it vertically and overlaying it, producing four Os.

65Conditional statements
And now, the coup de grâce: you put this inside an If/Then/End block, add another
Input command to ask the user whether or not they want to draw the mirrored Os,
and get the full program. I call this program THENEND for obvious reasons; you can
see the full source code in the next listing.

PROGRAM:THENEND
:Input "ROW=",A
:Input "COLUMN=",B
:If A<1
:1→A
:If A>8
:8→A
:If B<1
:1→B
:If B>16
:16→B
:Disp "MIRROR 4 TIMES?
:Input "(1=YES)?",M
:ClrHome
:Output(A,B,"O
:If M=1
:Then
:Output(A,17-B,"O
:Output(9-A,B,"O
:Output(9-A,17-B,"O
:End
:Pause

Because the final Pause is outside the Then/End block, the program pauses whether or
not the user types 1 at the MIRROR? prompt. The top two screenshots in figure 3.8
show a user trying out prgmTHENEND; the bottom two screenshots show the result of the
values for row, column, and mirror that the user enters.

 As you can see, the user enters a number for M; if that number is 1, then the pro-
gram executes the body of the Then/End block and draws the three extra Os. If the
user enters anything other than 1, such as 0 or 2 or 999, the program will skip the body
of the Then/End loop. Following the usual steps for examples, you can type this pro-
gram into your calculator and test it. You should be able to find all of the commands
for this particular program, remembering that If, Then, and End are all in the first tab
of the [PRGM] menu.

 The If command has one final trick up its sleeve to help you write smaller, better
programs. Up to this point, every If, whether controlling the execution of one or
more statements, will run the associated code only if the condition is true. You’ll now
learn how to run one block of code if the condition is true and another if the condi-
tion is false.

Listing 3.1 The THENEND program, demonstrating If/Then/End conditional blocks

Change the row variable to be within the bounds
of the screen if the user entered an offscreen
value, namely less than 1 or greater than 8

Keep the column variable within
the bounds of the screen

A simple type of “menu,” where the user types
1 for yes and 0 (or something else) for no

Display three more Os in a single conditional
block if the user requested this

66 CHAPTER 3 Conditionals and Boolean logic
3.2.3 Conditionals with alternatives: Else

Consider the IFSIGN program presented in section 3.2.1. It uses two conditional state-
ments to display either “NEGATIVE” or “POS/ZERO” based on the sign of a number the
user inputs. Here’s the code again for review:

PROGRAM:IFSIGN
:Disp "DISPLAY SIGN OF
:Input X
:If X<0
:Disp "NEGATIVE
:If X≥0
:Disp "POS/ZERO

This program would be easier to read if we had some way to say, “If X < 0, display
‘NEGATIVE’; otherwise, display ‘POS/ZERO’.” That would mean we’d need only one
comparison rather than two. We already know that both comparisons won’t be true
and that both won’t be false: if one is true, the other must be false. As you might
expect because we’re discussing this, TI-BASIC has just such a trick up its sleeve, the
Else command.

 Found under [PRGM][3], the Else command goes between Then and End. It sepa-
rates a block of code above it that’s executed when the associated conditional compari-
son is true and the block of code below it that’s executed only when the comparison is
false. You can’t use Else without Then and End, so every If/Then/Else/End construct

Figure 3.8 Running the THENEND program for a given row and column value, to
draw an O onto the screen. An If/Then/End block controls whether the
program also mirrors the O horizontally and vertically, as shown on the left side
of the figure. The left side shows the user entering values (top) and the result
(bottom) for mirroring turned on. The right side of the figure shows the same, but
the user turns mirroring off.

The two comparisons are mutually exclusive, so both lines
will never be displayed at the same time for the same X

67Conditional statements
must look something like the left side of figure 3.9. You can see the flow of execution
inside the code on the right side of the figure, which certainly has gotten more com-
plicated looking at first glance than the simple one-line If conditional you saw dia-
grammed in figure 3.3. If you take a second look, you’ll soon see it’s not quite as bad
as it appears. If you compare if to figure 3.6, where I taught you about Then/End, it’s
quite similar. Instead of the code between Then and End getting executed when the
condition (here, N > 8) is true, now it’s the code between Then and Else that’s run.
The other difference is that when the condition is false, the TI-BASIC interpreter
doesn’t jump straight to the code after the End. Instead, it runs the code between Else
and End and then continues with the code after the End.

 You might already be starting to see how you can use this to improve the IFSIGN
program, executing one of the Disp statements between Then and Else and the other
Disp between Else and End. If you wrote the program out in full, it would look
like this:

PROGRAM:IFSIGN2
:Disp "DISPLAY SIGN OF
:Input X
:If X<0
:Then
:Disp "NEGATIVE
:Else
:Disp "POS/ZERO
:End

Figure 3.9 The flow of an If/Then/Else/End construct. When the condition
is true, the statements between Then and Else are executed. When the
condition is false, the statements between Else and End are executed instead.

68 CHAPTER 3 Conditionals and Boolean logic
Notice that even though there’s only one statement executed if the condition is true
and one statement if it’s false, you can’t omit the Then and the End. If you want to use
Else, you have to use Then and End as well. Here, if X < 0, then “NEGATIVE” is dis-
played; otherwise (that is, if X ≥ 0), “POS/ZERO” is displayed. One of the interesting
things about using Else is that if you reverse the conditions under which the compari-
son is true and swap the code between Then and Else and the code between Else and
End, the program works exactly the same way. Here’s the same program with that
switch made:

PROGRAM:IFSIGN3
:Disp "DISPLAY SIGN OF
:Input X
:If X≥0
:Then
:Disp "POS/ZERO
:Else
:Disp "NEGATIVE
:End

The condition is now X ≥ 0 instead of X < 0, the code to be executed when the condition
is true is Disp "POS/ZERO, and the code for false is Disp "NEGATIVE. Because both the
comparison and the conditionally executed statements were reversed, the program
performs exactly the same way. There’s no right or wrong order to choose; it’s entirely
up to you.

 You now know many things that you can do with conditions and the If command,
executing code only when a given condition is true or false. But you’ll find that in
many cases, checking a single condition isn’t good enough. You might want to run a
section of code if only two different conditions are true or if any of three conditions
are true. Maybe you even want to change the behavior of the simple one-line If com-
mand to execute its associated line of code when the condition is false instead of true.
With Boolean logic, you can do all of this and more.

3.3 Boolean logic
Every conditional statement I’ve shown you up to this point has used a single compar-
ison to decide whether to run a piece of code. What if you want to execute a piece of
code if either of two conditions is true? Say you ask the user to type their name, and
you want to tell them “THAT’S MY NAME TOO” if they type either “CALCULATOR” or
“TI-83+.” You could use the same Disp command twice, once a comparison against
“CALCULATOR” and once with a comparison to “TI-83+.” But this makes you repeat
pieces of code, something you should avoid if you want to make your program as small
as possible. What if instead you want to ask a user for a value and two bounding num-
bers and tell them if the number is between those two bounds? You would need to
make sure that it was both below the upper bound and above the lower bound, but
you don’t have a good way to do that yet. You could put one If/Then block inside
another block, so that the innermost code would only run if both If conditions were
true, but again, there’s a better way.

69Boolean logic
 The solution is Boolean logic. Your TI-83+ or TI-84+ calculator provides four
logical operators: and, or, xor, and not. The first three operators join two sepa-
rate conditions into one large condition, whereas the not operator reverses the
truth of a single condition. In this section, I’ll first show you how each of the four
logical operators works. I’ll continue by introducing grouping parentheses as used
for logic and conclude with a practical Boolean logic application, performing
bounds checking.

 I’ll begin by showing you each of the logical operators and showing examples of
them in action, along with truth tables for each operator.

3.3.1 Truth of logical operators

Every logical operator takes either one or two operands, which have already been eval-
uated as either true or false, and produces either true or false. In the following discus-
sion, A and B both represent comparisons that produce true or false. These could be
something like X<5, or A+3B=99, or even Str3="MATH". They don’t represent the literal
variables A and B.

 The functions of the and and or operators are fairly intuitive and are summarized
in table 3.2. First, an explanation of each of the four operators:

■ and—If some comparison A is true, and another comparison B is also true, then
A and B is also true. If either A or B is false, the expression A and B is false. In
other words, both A and B must be true for A and B to be true.

■ or—By the same token, A or B is true if either one of A or B is true. If A is false and
B is true, A or B is still true. The expression is false only if A is false and B is false.

■ xor—The xor operator is more confusing to most new programmers; it’s true
when exactly one of its two comparisons is true. If A is true and B is true, or A is
false and B is false, then A xor B is false. If exactly one of the comparisons is true
and the other is false, then A xor B is true.

■ not—The not operator takes only one comparison and reverses its truth. If A is
true, then not(A) is false; if A is false, not(A) is true.

To see how the logical operators work more clearly, listing 3.2 shows a program
called TRUTH that will let you enter values for two variables, C and D, and produces

Table 3.2 The truth tables for and, or, xor, and not. Given some Boolean value for A and another
Boolean value for B (shown in the left column), each of the four logical operators produces either true or
false, as shown in the remaining columns.

Truth of A/B A and B A or B A xor B not(A)

A false, B false False False False True

A true, B false False True True False

A false, B true False True True True

A true, B true True True False False

70 CHAPTER 3 Conditionals and Boolean logic
the values of the four logical operations on those values. Here, you (as the pro-
gram’s user) will be asked to enter 0 or 1 for C and D, representing the logical val-
ues false and true.

PROGRAM:TRUTH
:ClrHome
:Disp "ENTER 0 OR 1 FOR","C AND D
:Prompt C,D
:Output(5,1,"C and D=
:Output(5,9,C and D
:Output(6,1,"C or D=
:Output(6,8,C or D
:Output(7,1,"C xor D=
:Output(7,9,C xor D
:Output(8,1,"not(C)=
:Output(8,8,not(C
:Pause

You can find the four logical operators in the LOGIC menu, under [2nd][MATH][�].
As with all of the commands I’ve shown you thus far, you can’t type in the words and,
or, xor, and not letter by letter; you have to paste them from the LOGIC menu as men-
tioned in the sidebar “Tokens versus text” in section 2.1.1. The TRUTH program in list-
ing 3.2 displays the four logical operators on the bottom four lines of the homescreen
and then shows the value of each operator on A and B (or just A for not). To see more
clearly what I mean, look at figure 3.10. If any of the values produced in figure 3.10
don’t make sense to you, or indeed if any of the source code of TRUTH is confusing,
take a look back at table 3.2.

 You can even join multiple operations. With and and or, you might want to either
require all three of a set of conditions to be true or allow one of three true compari-
sons to make the entire statement true:

:If A=1 and B=3 and C=6
:<Command>
:If K=12 or K=13 or K=14
:<Command>

Listing 3.2 Testing the truth values of the four Boolean logical operators

Display the string “C and D=” followed by the actual
value (0 or 1, false or true) of that logical operation)

Repeat for or, then xor and not

Figure 3.10 Two sample runs of the TRUTH program to generate truth values for
Boolean logical operators applied to two logical values. The left screenshot
shows C = false, D = true; the right screenshot shows both C and D equal to true.

71Boolean logic
If you start mixing and, or, and xor operations together, though, you might get unex-
pected results. The designers of TI-BASIC anticipated this, so after I show you details of
the problem, I’ll show you the logical solution.

3.3.2 Using logical grouping parentheses

Imagine a game where the player controls a ship fighting in space and wants to fire a
special weapon. Say that the amount of ammo the player has for that particular
weapon is in variable A and the player’s level is in variable L. You want the player to be
able to shoot the weapon as long as they have ammo and are also level 2 or level 3.
Before you knew and and or, you might have written the code like this:

:If A>0
:Then
:If L=2
:Then
:<Shoot weapon>
:End
:If L=3
:Then
:<Shoot weapon>
:End
:End

Now that you know and and or, you might realize that you can condense the three If
statements into a single conditional:

:If A>0 and L=2 or L=3
:Then
:<Shoot weapon>
:End

This is neat and tidy code, but it has a problem. What exactly is it trying to express?
Can you fire the weapon if L = 3 but A = 0, for example? TI-BASIC lets you use group-
ing parentheses to control the order of operations, which is used to clarify this sort of
code. Because you want L=2 or L=3 to be evaluated first and then anded with A > 0, you
can group L=2 or L=3 with parentheses:

:If A>0 and (L=2 or L=3)
:Then
:<Shoot weapon>
:End

The parentheses for grouping logical operations work just like parentheses in mathe-
matical equations: the contents of the parentheses are evaluated before the rest of
the equation.

 What if you instead wanted the player to have at least two pieces of ammo if they’re
level 2 in order to fire but let one piece of ammo be sufficient for level 3? You could join
two grouped and expressions with an or. The resulting code would look like the following:

:If (A>1 and L=2) or (A>0 and L=3)
:Then

Only check the level L if
the player has ammo

Putting If/Then/End
statements inside If/Then/End
statements is called nesting

End the outer ammo
check conditional

72 CHAPTER 3 Conditionals and Boolean logic
:<Shoot weapon>
:End

In chapter 10, you’ll see how you could reduce that from four to two comparisons; for
now, the preceding statement is compact enough.

 Most concepts make more sense when used in full programs, so let me show you
Boolean logical operators used to make the THENEND character-mirroring program
from section 3.2.2 more compact.

3.3.3 Applying Boolean logic: bounds checking

If you refer back to listing 3.1, you’ll see that I presented a program called THENEND
that lets the user pick a row and column location on the homescreen and then dis-
plays an O there. If you tell the program to do so, it also mirrors the O horizontally
and vertically on the homescreen. In order to make the program more defensively pro-
grammed, a concept I’ll touch on in more detail in chapter 5, the code checks that
the row and column that the user enters are actually valid homescreen coordinates.
That excerpt from prgmTHENEND is as follows:

:Input "ROW=",A
:Input "COLUMN=",B
:If A<1
:1→A
:If A>8
:8→A
:If B<1
:1→B
:If B>16
:16→B

Of course, this makes the character appear at some point on the screen no matter
what numbers the user enters. If they type “-999” for the row and “-999” for the col-
umn, the conditional statements will modify the row to 1 and the column to 1. (Refer
to the four conditional statements just shown if you don’t immediately see why that
is.) That might not be the desired behavior for your program, though. Instead, in this
section I’ll make it reject the coordinates if they’re invalid and not draw anything.

 A valid set of homescreen coordinates must consist of a row from 1 to 8 and a col-
umn from 1 to 16. You could combine the four comparisons in the code fragment
from the THENEND mirror program to create a conditional that’s true when the coor-
dinate pair (row,column) = (A,B) is invalid:

:If A<1 or A>8 or B<1 or B>16
:Then
:Disp "OFF-SCREEN
:Else
:<Draw the "O"s>
:End

The conditional statement on the first line of this code is true if at least one of the
individual comparisons is true, because they’re all joined with or logic. This is what

73Boolean logic
you want to happen, because any of the four comparisons being true means one of the
coordinates is offscreen. An important skill is to be able to flip around a conditional
statement to reverse when it’s true and false. One possible solution is the not opera-
tor, which I haven’t used much so far. not would make the code look like this instead:

:If not(A<1 or A>8 or B<1 or B>16)
:Then
:<Draw the "O"s>
:Else
:Disp "OFF-SCREEN
:End

There is another solution that doesn’t involve not. If you want the condition to be
true only when all of the coordinates are valid and false otherwise, you’ll use four
comparisons joined with and. Each of the comparisons refers to one edge of the
screen, a concept shown in figure 3.11.

 If you want a conditional checking the character coordinates against each edge of the
screen to be true when the character is onscreen and false if the coordinates are past any
of the edges of the screen, you can and together four comparisons that are each true if the
character is on the correct side of one edge. In figure 3.11, the character is above the bot-
tom edge of the homescreen if the comparison A ≤ 8 is true. Because you want the full
conditional statement (indicating whether the coordinates are valid) to be false if any of
the four individual comparisons is false, you’ll use the and command to join them:

:If A≥1 and A≤8 and B≥1 and B≤16
:Then
:<Draw the "O"s>
:Else
:Disp "OFF-SCREEN
:End

Keep in mind that all three of these formulations to determine if row and column A
and B are on- or offscreen function identically and that none is any more correct that
the others.

 With the third of the three formulations, we can put together the full program,
which we’ll call MIRROR2 (although it could also be THENEND2). It will ask the user
for coordinates and whether to mirror the character, draw the character(s) if they’re

Figure 3.11 Performing a
bounds check on the coordinates
of a character on the
homescreen. If all four of the
comparisons shown are true, then
the character is on the screen. If
any one of them is false, the
character is past at least one
edge of the screen and should not
be displayed.

74 CHAPTER 3 Conditionals and Boolean logic
onscreen, or display an error message if they would be off the screen. The code for
this program is in listing 3.3, and when run it resembles figure 3.12 with invalid (left)
and valid (right) coordinates.

PROGRAM:MIRROR2
:Input "ROW=",A
:Input "COLUMN=",B
:Disp "MIRROR 4 TIMES?
:Input "(1=YES)?",M
:If A≥1 and A≤8 and B≥1 and B≤16
:Then
:ClrHome
:Output(A,B,"O
:If M=1
:Then
:Output(A,17-B,"O
:Output(9-A,B,"O
:Output(9-A,17-B,"O
:End
:Pause
:Else
:Disp "OFF-SCREEN
:End

As you can see, the drawing code runs if the four comparisons that check for the edges
of the screen are all true. If any one of them is false, then the conditional is false, and
the code between the Else and the End at the end of the program runs instead.

 You now have a toolset to skip pieces of a program, to jump forward across pieces
of code without executing all of it line by line. What if you want to arbitrarily jump for-
ward through a program or even jump backward to a previous line? This, too, you can
do in TI-BASIC, and the next chapter will teach you all about how to do this.

Listing 3.3 MIRROR2, demonstrating bounds checking added to THENEND

Figure 3.12 In the left screenshot, the bounds checking for the MIRROR2
program has detected that both the row and the column are invalid homescreen
coordinates. For the right screenshot, a row of 5 and column of 3 were entered,
and 1 (yes) was chosen for mirror. Because the row and column are valid, the
proper output image shown was generated.

If the coordinates are within all
four screen edges, draw the Os

Otherwise, warn the user
that the coordinates
entered were invalid

Close the If/Then/
Else/End structure

75Summary
3.4 Summary
You have now learned how rules for decisions are expressed in TI-BASIC, in the form
of comparisons that are part of conditional structures. In any programming language,
such comparisons are used to control the flow of execution and to dictate which
pieces of code are executed and which are skipped. I discussed storing truth values as
numbers in TI-BASIC, the different comparison operators, and the types of logical
operators used to combine Boolean truth values. You also saw three increasingly com-
plex ways to conditionally execute code, starting from a single line of code controlled
by an If statement. The second method was the Then and End commands to condi-
tionally execute a chunk of several lines of code. I concluded with the If/Then/Else/
End structure that runs one of two chunks of code based on whether a comparison is
true or false.

 In chapter 4, you’ll learn about more ways to control the flow of execution. The
chapter you’ve just read introduced ways to skip forward past code; in chapter 4, you’ll
learn to jump backward, forward, and to arbitrary locations in your programs. You’ll
see how to generate loops that will cycle until some condition is reached. I’ll show the
value of executing programs from inside other programs and how you can add spiffy
menus to your programs. The material in the next chapter depends on understanding
conditional flow and comparisons, so with that material under your belt, onward.

Control structures
Conditional statements allow your program to make decisions given rules and
facts, as you now know from chapter 3. If your programs could use these decisions
to jump around within their source code and execute different sections, they
could become vastly more powerful. With such commands, you could create whole
new classes of programs and games. You’d be able to write your own programs like
the GUESS guessing game in chapter 1 that we touched on briefly again in chap-
ters 2 and 3. With loop and jump commands, you’d be able to write a science pro-
gram that simulates the solar system, repeatedly stepping the planets along their
orbits around the sun until told to stop. A math program could offer a menu of
possible types of equations it could help you solve, and it could use jumps to go to
different parts of the program to solve that equation depending on which option
the user chooses.

This chapter covers
■ Jumping to other pieces of code inside a program
■ Creating attractive, usable menus
■ Using For, While, and Repeat loops to create

complex programs
■ Using subprograms for recursion and code reuse
76

77Labels and Goto
 In this chapter, you’ll learn a plethora of control-flow commands that let your pro-
grams change their flow based on the value of variables. You’ll learn how to make the
program jump from one part to another with Lbl and Goto, skipping chunks of code
or even going backward. I’ll present the Menu, a shortcut to give users a visually attrac-
tive choice for jumping to several different parts of your program. I’ll devote a large
chunk of the chapter to showing you the three types of loops: For, While, and Repeat,
which you may recall from chapters 1 and 3. Finally, I’ll teach you the concept of
recursion and termination using subprograms. By the end of this chapter, you’ll have
created several programs that use each of these techniques, including programs to cal-
culate Fibonacci numbers and factorials, math tools that take averages and check if a
number is prime, and a “screensaver” program that generates a virtual ownership
sticker, demonstrated in section 4.4.1. More importantly, you’ll have gained the skills
to create your own such programs.

 The first control structure we’ll discuss is Lbl and Goto, which together allow you
to create unconditional loops or, when combined with conditionals, loops that can
choose to recycle or to end after each cycle.

4.1 Labels and Goto
As your programs get longer and more complicated, you’ll find that different areas of
your program are responsible for different functions. You might create a math pro-
gram that solves a number of different equations for its users. You might have a game
with a help section, the game itself, and a third bit of code that runs when the game
exits. In both cases, you need a way for your program to jump around from area to
area of the code. Lbl and Goto offer such a system, respectively a way to name a line in
your code and to jump to a named line of code. In this section, I’ll teach you how to
use these two commands and demonstrate them with an exercise in which you make a
conditional loop using Lbl and Goto.

 Let’s begin with an explanation of the two commands, how to use them, and what
they can enable your program to do.

4.1.1 Understanding Lbl and Goto

TI-BASIC handles jumps using two paired commands, Lbl and Goto. Lbl, short for
Label, creates a named location in your program’s source code to which the program
can jump. Goto correspondingly tells the program to jump to a particular Lbl and
resume executing at that point. The Lbl and Goto commands are both in the [PRGM]
menu, in the first tab, CTL. Lbl is found at [PRGM][9] and Goto at [PRGM][0]. The
two commands each take a single argument, the name of the current label or the
name of the label to which the program should jump. To keep programs small, label
names have strict limits. They should be:

■ Short—One or two uppercase letters and/or numbers.
■ Meaningful—I have a pattern of Lbl names that I use in many of my programs,

including Lbl AA at the beginning of the program for the main menu, Lbl H at

78 CHAPTER 4 Control structures
the start of the Help section, and Lbl Q at the code that prints credits before the
program quits. You can use this system or create your own.

■ Unique—You shouldn’t have two labels with the same name in the same pro-
gram. You can have two labels with the same name only if they’re in differ-
ent programs.

That last bullet point in the label name
guidelines brings up a limitation of
Lbl/Goto. You can only use the com-
mands to jump to a point in the current
program; you can’t jump into any other
program. But there are techniques to
run programs from other programs,
which I’ll explain before the end of
this chapter.

 Figure 4.1 provides a graphical view
of using Lbl and Goto in a program.
When the TI-BASIC interpreter reaches a
Goto command, it searches for the corre-
sponding Lbl with the name the Goto
specifies, here Lbl A. If it can’t find the
Lbl, it produces an error message.
The Lbl can be either before or after the
Goto; here, it happens to be before.
Another important feature to note is that if the Goto command runs, execution will
jump to the corresponding Lbl, but executing a Lbl has no effect on the flow of the
program. In figure 4.1, after the first line of the program is run, the Lbl and the third
line will also be run, but passing through Lbl A won’t affect the flow of execution in
any way.

 One silly and occasionally useful thing to do with Lbl and Goto is create an infinite
loop, a loop that never stops on its own. The following program, when run, will pro-
duce an infinite series of the phrase “INFINITE LOOP” alternating with the number 42
down the calculator’s screen. You can stop it only by pressing [ON], the emergency
interrupt key that you can use if a TI-BASIC program isn’t ending on its own. The left
side of figure 4.2 shows this program running.

PROGRAM:INFLOOP
:Lbl S
:Disp "INFINITE LOOP",42
:Goto S

Every time this program reaches the last line, Goto S, it searches for Lbl S, which it
finds at the beginning of the program. It starts the program over, eventually reaches
Goto S again, and starts over, ad infinitum.

Figure 4.1 A label or Lbl is like a flag stuck at a
point in your program, a marker that the TI-BASIC
interpreter jumps to when it sees a Goto command.
It knows which Lbl to go to from the matching
label name (here, A) on the Goto and Lbl.

79Labels and Goto
You can also use Goto in a more controlled manner by combining it with If. The fol-
lowing simple program GOTOTIL0 (Goto Until Zero) asks the user for a number and
loops as long as the number is not zero:

PROGRAM:GOTOTIL0
:Lbl SO
:Prompt X
:If X≠0
:Goto SO
:Disp "TERMINATED

Each time this program goes through the code between the Lbl and the Goto, it asks
the user for a value for X. If the value the user enters is not zero, then the Goto SO
(named thusly to stand for “Start Over”) command is executed. If X is zero, the Goto
is skipped, the Disp runs, and the program ends. You can see it in action at the right
side of figure 4.2.

Lbl, Goto, and memory leaks
The most common problem new programmers encounter when starting to use Lbl
and Goto is memory leaks. As their programs run for a few minutes, they get slower
and slower and eventually stop with an ERR:MEMORY error. When you first encounter
this error, it can be quite baffling. The culprit is using Goto inside any of the control
structures that include an End command, such as Then/End, Then/Else/End, For/
End, While/End, and Repeat/End. If you put Goto inside any of those programming
constructs, the calculator will be keeping track of an End it will never see. Every time
the interpreter runs across a For, Then, or While, it knows it will eventually need to
find the corresponding End and will make a note of where the For, Then, or While
was. If the program jumps out of one of these, loops around, and jumps out of that
same construct again, it will then be searching for two Ends that it will never see. As
it loops repeatedly, it will be looking for more and more End commands that it will
never find, eventually running out of memory to list them all. Luckily, when such a
program finally ends, normally or with an error, you get the memory back, but you still
should fix the program so that the offending Goto is paired with an If in the one-line
If/Statement format introduced in section 3.2.1.

Figure 4.2 Two uses of Lbl/Goto to create loops. At left, the uncontrolled
infinite loop of the INFLOOP program. The right side shows a conditional loop that
ends when X = 0, prgmGOTOTIL0.

Loop back to Lbl SO
if X is not zero

80 CHAPTER 4 Control structures
These two new commands can be used to replace the loop in the guessing game from
chapter 1, creating your first full program with control-flow commands that you’ll
write yourself.

4.1.2 Exercise: convert the guessing game to use Lbl/Goto

One nice way to demonstrate the parallels between Lbl/Goto and looping constructs
like the Repeat loop, mentioned in chapter 1 and covered thoroughly in section 4.3.3,
is to convert a program with a loop to use a Lbl and a Goto instead. Recall from chap-
ter 1 that the code for GUESS, the guessing game, looked like this:

PROGRAM:GUESS
:randInt(1,50)→N
:0→M
:Repeat G=N
:Prompt G
:If G>N
:Disp "TOO HIGH
:If G<N
:Disp "TOO LOW
:M+1→M
:End
:Disp "CORRECT AFTER:
:Disp M
:Disp "GUESSES

My challenge to you is to take this code and remove both the Repeat and the End.
You’ll need to use a condition with an If, and you’ll need one Lbl and one Goto. You’ll
need to figure out how you can reconfigure the program to work exactly as it did
before, asking the player to guess an unknown number and telling them higher or
lower until a correct guess is made. Remember that every Repeat loop runs at least
once; the condition with the Repeat doesn’t get checked until the calculator encoun-
ters the corresponding End command. A Repeat loop is equivalent to writing “Repeat
until <condition> is true”; this will help you avoid frustration when you’re working
with the GUESS source.

 Once you think you have the correct solution, read on to the next section and see
if your solution matches mine.

LBL/GOTO GUESSING GAME: THE SOLUTION

Predictably, the necessary changes belong where the Repeat and the End commands
were in the original program. As I reiterated, the condition on Repeat is checked
when the corresponding End is encountered. Therefore, the If with its conditional
and the Goto will be placed where the End was before, so that the End will cause the
program to loop if no correct guess has been made yet. It will need somewhere to
loop to: just as Goto tells the calculator to jump to a location in the program, recall
that Lbl gives a specific location a name that Goto can jump to. Because you know that
the End caused the TI-BASIC interpreter to jump back up to the Repeat if the condi-
tion wasn’t true yet, here you can make the conditional If jump back up to a Lbl
where the Repeat used to be if the condition is still false.

Repeat the loop from here
to the End until G = N.

81Labels and Goto
 To summarize: the End command becomes an If/Goto pair, and the Repeat
becomes a Lbl. This means that the loop structure remains intact, because after Goto
jumps to the Lbl, execution will continue at the Prompt, flow downward, and eventu-
ally return to the If/Goto. If the Repeat condition is still false, the Goto will jump
again, and the loop continues once again. The loop ends only when the condition
becomes true. So far so good, presumably? There is, however, one gotcha. Because
Repeat repeats a loop until the condition is true, I phrased the Repeat condition as
G = N. The loop continues until G = N or as long as G ≠ N. Because If executes the
statement directly underneath it only when its condition is true, and our statement to
be conditionally executed is the Goto that jumps when no correct guess has yet been
made, then the condition on If must be true if the guess is wrong. The comparison
G ≠ N is true when the guess is not equal to the actual number (which would make the
Goto jump to reloop) and false when the guess is equal to the actual number (which
would skip the Goto and make the program Disp the guess statistics and end).

 With these pieces of information in mind, and without further ado, the solution to
this exercise is presented in listing 4.1. There’s the Lbl A, a label name chosen to be
short and simple, to which the Goto jumps after an incorrect guess. There’s also the If
G≠N/Goto A that reloops back to Lbl A as long as each guess is wrong and lets the pro-
gram complete when the guess is correct.

PROGRAM:GUESSLBL
:randInt(1,50)→N
:0→M
:Lbl A
:Prompt G
:If G>N
:Disp "TOO HIGH
:If G<N
:Disp "TOO LOW
:M+1→M
:If G≠N
:Goto A
:Disp "CORRECT AFTER:
:Disp M
:Disp "GUESSES"

Comparing the code for GUESSLBL to GUESS, you can see that a Repeat/End loop is
equivalent to a Lbl and a conditionally executed Goto. When you get to section 4.3
and learn For, While, and Repeat, you’ll see that each of these looping constructs is
equivalent to a conditionally executed jump combined with a label that makes one of
three unique sorts of loops. Before we get to the three types of loops, I’d like to show
you a feature of TI-BASIC related to Lbl and Goto, the Menu command.

Listing 4.1 GUESSLBL, the GUESS program with Lbl/Goto instead of Repeat/End

Return here after an incorrect
guess; the Repeat is here

If this guess is wrong, return to
Lbl A to reloop; the End is here

82 CHAPTER 4 Control structures
4.2 Menus
In many programs, you’ll want to give the user a choice. Perhaps you want to list sev-
eral areas of your program that the user can choose to jump to, such as one of several
math or physics equation solvers, or to different levels of a game. Perhaps you want to
ask the user or player for a yes/no answer or to choose a difficulty level for a game. In
each of these cases, you could display a set of items with corresponding numbers and
ask the user to type a number corresponding to their choice, an alternative shown at
the left side of figure 4.3. But a more elegant solution would be a menu of choices
from which they can make a selection by pressing [ENTER].

 The solution is the Menu command in TI-BASIC, which lets you create simple and
attractive menus that operate like the TI-OS’s own menus. I’ll show you how to use the
Menu command, then move on to expand the now-classic GUESS game with a main menu.

4.2.1 Using the Menu command

The TI-BASIC Menu command offers a fast and visually attractive solution to giving
users a choice. An example is shown to the right of its more rudimentary cousin in fig-
ure 4.3.

 Observe that the Menu-based menu at the right side of figure 4.3 looks a lot like the
calculator’s own menus. You can use the up- and down-arrow keys to move the high-
light up and down the menu, you press [ENTER] to select an item, and you can even
press one of the number keys to pick an option faster. For example, pressing the [4]
key would choose the QUIT option in this menu. There are two things that distinguish
TI-BASIC menus from the menus in the rest of the calculator’s OS. First, unlike menus
such as the [PRGM] or [MATH] menus, TI-BASIC menus can have only one tab, so that
you can’t move left and right to other menus. Second, they can have at most only
seven items and therefore can’t scroll the entire list up or down.

 The Menu command is in the first tab of the [PRGM] menu, the twelfth item in the
list. You can scroll down to it or press [PRGM][ALPHA][PRGM] ([PRGM]"C") to paste
it into your program. The Menu command takes at least 3 arguments and at most 15

Figure 4.3 A crude menu that asks users to type a number corresponding to their choice,
at left, with its fancier Menu equivalent at right

83Menus

If the
ty

somet
other t

1–4, jump b
to the m
arguments. The first argument is always the title displayed at the top of the menu. The
remaining arguments are in pairs, containing the text to display for an option and the
Lbl to jump to if that option is chosen. Here are a few examples:

Menu("TITLE OF MENU","ONLY OPTION",AA
Menu("MENU TITLE","FIRST OPTION",T6,"SECOND ONE",OO
Menu("PICK A LETTER","A",0,"B",1,"C",2,"D",3,"E",4,"F",5,"G",6

The first example Menu line has one option, the second has two options, and the third
has the maximum of seven options. The one- or two-character item after each option
is the name of the corresponding Lbl for that option.

 I needed to teach you Goto/Lbl before you could learn about the Menu command
because selecting any item in a menu is like having the program run a Goto: it will
jump to a Lbl in your program. To show you what I mean, here are the code segments
side by side to produce the two screenshots in figure 4.3:

At the left side, the code for the menu that doesn’t use the Menu command must check
the value of X that the user types and jump to one of several Lbls based on its value. If
it’s not 1, 2, 3, or 4, then the program loops back and displays the menu again. It also
displays the menu again after running any of the three math-related functions of the
program. The Menu-based code on the right side, by contrast, uses the Menu itself to
specify where to jump. Notice that each item in the menu such as TRIG IDENTS is
followed by another argument such as L1, the name of the Lbl to jump to if that
option is selected.

PROGRAM:MENUA1
:ClrHome
:Lbl A
:Disp "1: TRIG IDENTS","2: PYTHAG

➥ THEORM","3: QUAD SOLVER",

➥ "4: QUIT
:Input "1–4? ",X
:If X=1
:Goto L1
:If X=2
:Goto L2
:If X=3
:Goto L3
:If X=4
:Return
:Goto A
:Lbl L1
:<...Trig identities...>
:Goto A
:Lbl L2
:<...Pythagorean Theorem solver...>
:Goto A
:Lbl L3
:<...Quadratic equation solver...>
:Goto A

PROGRAM:MENUA2
:Lbl A
:Menu("MATH INFO","TRIG IDENTS",

➥ L1,"PYTHAG THEORM",L2,"QUAD

➥ SOLVER",L3,"QUIT",Q
:Lbl Q
:Return
:Lbl L1
:<...Trig identities...>
:Goto A
:Lbl L2
:<...Pythagorean Theorem solver...>
:Goto A
:Lbl L3
:<...Quadratic equation solver...>
:Goto A

This means “end
the program”

user
ped
hing
han
ack
enu

This means “end
the program”

84 CHAPTER 4 Control structures
4.2.2 Example: add a menu to the guessing game

As the name implies, the Menu command works well for the so-called main menu, the
area of a program where you choose what particular feature you want to go to. For a
calculus program, this might be whether you want to take an integral or a derivative or
look at reference tables. For a physics program, it might be choosing what class of
function you want to solve. For a game, it could be whether to play the game, view a
help file, or quit. I’ll show you how you can expand the modified guessing game,
GUESSLBL, to have a main menu. I’ll title the menu “GUESS A NUMBER,” which is
luckily less than the 16-character limit for a Menu title, and it will have three options.
PLAY will go to Lbl G, the beginning of the game itself, where it picks a random inte-
ger to store into N. HELP will go to Lbl H, which will display help, pause, and then
return to the main menu. QUIT will go to Lbl Q,
which will display some ending text and then ter-
minate the program. Since both PLAY and HELP
will eventually lead back to the main menu, we
need the main menu to have its own label; let’s
call it AA. This menu will resemble the screenshot
in figure 4.4.

 To get an idea of what this program will look
like, here it is with only the Lbls, Gotos, and Menu
in place. Don’t forget that you can omit parenthe-
ses that are immediately followed by the end of
a line!

:Lbl AA
:Menu("GUESS A NUMBER","PLAY",G,"HELP",H,"QUIT",Q
:Lbl H
:<display help information and Pause>
:Goto AA
:Lbl G
:<the GUESSLBL program>
:Goto AA
:Lbl Q
:<display credits>

After the user plays a game, or the Help section ends, the program uses Goto AA to
return to Lbl AA, where the main menu is displayed once again. If the user chooses
Quit instead, then the program jumps to Lbl Q, the ending credits are displayed, and
the end of the program file is reached, causing the program to terminate.

 Now I’ll show you the same program again with the three omitted sections
included. The Help section is a simple Disp and Pause, the credits at the end reiterate
the name of the program in this case (although for your own programs and games
they might include your name), and the GUESSLBL program will be inserted from the
code presented a short time ago. If you’re typing this into your calculator, remember
that you can paste the contents of one program into another using the Rcl (recall)

Figure 4.4 The main menu of the
GUESSMNU program, created by
adding a Menu command and a few
other pieces to the GUESSLBL program

85Menus

The game j
here whe

user ch
the

menu o
feature found by pressing [2nd][STO>]; details on this were in section 2.1.1. At any
rate, the full source of the GUESSMNU (GUESS with main menu) program is in shown
in the following listing.

PROGRAM:GUESSMNU
:Lbl AA
:Menu("GUESS A NUMBER","PLAY",G,"HELP",H,"QUIT",Q
:Lbl H
:ClrHome
:Disp "GUESS A NUMBER","BETWEEN 1 AND 50","GO FOR FEWEST","GUESSES
:Pause
:Goto AA
:Lbl G
:randInt(1,50)→N
:0→M
:Lbl A
:Prompt G
:If G>N
:Disp "TOO HIGH
:If G<N
:Disp "TOO LOW
:M+1→M
:If G≠N
:Goto A
:Disp "CORRECT AFTER:
:Disp M
:Pause "GUESSES
:Goto AA
:Lbl Q
:ClrHome
:Disp "THANKS FOR","PLAYING.

Figure 4.4 showed what the Menu command in this program will produce; for com-
pleteness, figure 4.5 shows the results from choosing the Help (left) and Quit (right)
options from the main menu in GUESSMNU, because those sections are also new.

 The Menu command is a good tool for many programs you’ll write and is handy in
making your programs both more professional looking and easier for your users to use.

Listing 4.2 GUESSMNU, the GUESS game with a main menu and Lbl/Goto

Label AA is the main
menu; control returns
here when a game ends

umps
n the
ooses
HELP
ption Return to the main menu after

displaying Help informationThe game starts here
when the PLAY menu
option is chosen

This is the inner loop;
control returns here
after each wrong guess

Loop again if the guess was wrong (or
continue downward if it was correct)

After a completed game,
go back to the main menu

Control comes here if the
QUIT menu option is chosen

Figure 4.5 The Help section at Lbl H in the GUESSMNU program (left) and the
Quit section at Lbl Q (right)

86 CHAPTER 4 Control structures
The Lbl and Goto concepts that underlie the Menu command can be used to make
unconditional and conditional jumps and loops, as I’ve shown you. But using Goto
can be a slow proposal; refer to the “Speed of Loops and Gotos” sidebar for more
information. What if you want to create faster loops? What if you want to easily loop a
specific number of times? How can you use a loop to do some sort of counting or iter-
ating over a pattern of numbers? You’ll now learn the For, While, and Repeat loops;
loops are one of the last pieces controlling program flow that you need to know to cre-
ate powerful, dynamic programs.

4.3 For, While, and Repeat
Your first exposure to loops in chapter 1 showed you how the Repeat command could
create a looping guessing game that would continue to ask players for guesses until they
guessed the correct number. In this chapter, you learned how you could create looping
flow in your program with Lbl and Goto, which let you return to an earlier point in your
program. TI-BASIC has three other ways to make loops besides using Goto, and you’ll
learn all three in this section. In almost every programming language, there are similar
loop commands; for example, the C and Java languages both have for and while that
match their TI-BASIC equivalents and something called do/while that’s similar to Repeat.

 The three TI-BASIC loop commands, For, While, and Repeat, all have distinct tasks
that they’re good at. For is good for loops that should execute a specific number of
times and for counting up or down from one value to another. While is used to make
loops that continue while a specific condition stays true. Repeat is used for loops that
must continue until a condition becomes true. Each of the three types of loops begins
with its respective command and some arguments, continues with the commands to
be run in the body of the loop, and ends with the End command.

 I’ll begin with the For loop, which runs a predictable number of times based on
the arguments provided to it; it’s used for repetition and counting.

4.3.1 Repetition with For loops

Imagine that you want to make a program that can count up from 1 to 10, displaying
all the numbers in between. Consider trying to write a program that iterates (cycles)
through the numbers from -50 to 50, taking the multiples of 5 along the way and run-
ning them through some equation. Now that you’ve learned Goto and Lbl, you might
be able to cobble these two programs together, but Lbl and Goto aren’t the best solu-
tion in this case. The For command offers a simple way to create any sort of loop that
either needs to count up or down or needs to run a procedure a fixed number of
times. For loops always start with a For command, contain one or more lines of com-
mands and statements, and conclude with an End command that tells the program to
loop back up to the For command. It can be found under [PRGM][4], and as you
already know, its corresponding End command can be typed with the keys [PRGM][7].

 The For command takes three or four arguments: a variable to use to store the cur-
rent counting value, the number to start counting at, the number to finish counting

87For, While, and Repeat
at, and optionally, how much to add to the variable each time the loop runs through a
full iteration (or pass). If the fourth argument is omitted, 1 is added to the variable
after each iteration. The Add argument is more commonly called the step in program-
ming parlance, as it defines how big of a “step” to take between Start and End after
each iteration. The syntax of For looks like this, including its loop body and End:

:For(<Variable>,<Start>,<End>[,<Add>])
:Commands forming body of loop
:More commands
:End

To help you understand what happens inside the program when a For loop runs,
I’ve provided the flowchart of a simple For loop in figure 4.6. This particular loop
starts at 1 and ends at 5, with an increment (or add) argument of 2. The variable to
be used for the loop, specified as the first argument to For, is X. This means that the
first time the code between the For and the End runs, X will contain 1. When the End

is reached the first time, the calculator will add 2 to X, so it will now contain 3. It will
run the loop again, add 2 so that X contains 5, and run the loop a third time. When
it finishes the third loop, it will see that X is already equal to the ending value for
the loop, and will continue with the code after the End rather than running the loop
a fourth time.

The speed of loops and Gotos
As long as you manage to avoid creating memory leaks (see “Lbl, Goto, and memory
leaks” earlier in this chapter), Goto and Lbl can be powerful and versatile tools for
redirecting the flow of execution through your program. Unfortunately, with them
comes the possibility of abuse. The Goto command is good but in many cases isn’t
the best tool for the job. Just because you can use a pair of tweezers to unscrew a
screw doesn’t mean you should use them instead of a screwdriver, and by the same
token, Goto is often a slow choice compared with For, While, or Repeat.

When your program executes a Goto command, it saves its place, rewinds to the
beginning of the program, and starts searching for the requested Lbl. If that Lbl is
near the beginning of the program, the search will end quickly and the jump will occur.
If the Lbl is after many lines of code, the program will have to spend a long time
searching. Since your loop probably runs many times, and the calculator doesn’t try
to remember where it found the Lbl, it will go back to the beginning of the program
and start searching for the Lbl again every time it reaches a Goto command.

When your program begins a Repeat, For, or While loop, on the other hand, it makes
a note to itself that it may need to return to that point. When it reaches the corre-
sponding End, it already knows exactly to where to jump in order to restart the loop,
no matter where that Repeat/For/While is and how far it is from the beginning of
the program or the End command. When you create a loop that you want to run often
and fast, you should use one of the three looping constructs you’ll learn in section 4.3.
For jumps that are taken infrequently or aren’t really loops, such as the menu exam-
ples shown in sections 4.1 and 4.2, Lbl and Goto are a good tool for the job.

88 CHAPTER 4 Control structures
For loops can count either up or down; if the end argument is smaller than the start
argument and the increment or add argument is negative, then For will decrease the
variable each time through the loop. To start you off with a simple example, I’ll show
you how For can be used to simply count, displaying the value of the For loop’s vari-
able on each iteration through the loop.

EXAMPLE: USING FOR LOOPS TO COUNT

Let’s jump right into a simple counting program that will display the numbers from 1 to
10 on the calculator’s screen. It will use the variable X for the loop, a common choice,
start from 1, and end at 10. Notice that in the first line of the COUNTUP program shown,
only three arguments are given; as I mentioned, omitting the fourth argument, variously
called the step, increment, or add value, makes the calculator assume you want it to be
equal to 1. This little optimization lets you save some space in your program.

PROGRAM:COUNTUP
:For(X,1,10
:Disp X
:End

As you might expect from the description of
prgmCOUNTUP and from reading the three lines of its
source code, the output when the program finishes
executing looks like the screenshot in figure 4.7.

 How about if you want to make the program
ever so slightly more advanced to test out more of
For’s features? Let’s say you decide to start count-
ing at -10 instead of 1, and you want to step by 2
instead of by 1. This will make the program set X
to -10, -8, -6, …, 8, 10, a total of 11 numbers; the
source would be as follows:

Figure 4.6 The structure
of a For loop. The loop
variable, X, is initialized to
the start value (1) before
the loop begins. Each time
through the loop, the
increment (2) is added to
X. The loop ends when the
loop variable X exceeds
the termination value (5).

Figure 4.7 The simple COUNTUP
program that counts from 1 to 10 using
a For loop. Because the output is
longer than seven lines, the first four
numbers have scrolled off the top of
the screen.

89For, While, and Repeat
PROGRAM:COUNTUP2
:For(X,–10,10,2
:Disp X
:End

If you decide to test this program, remember that
the negative sign in front of the 10 that makes -10
is the [(-)] key in the bottom row of the calcula-
tor’s keypad, not the minus or subtraction sign.
Predictably, the middle of the output from run-
ning this program looks like figure 4.8.

 Now that you’ve seen two examples where the
program decides the values to use in the For loop,
how about something more flexible that instead asks the user for each of the values?
The code for such a program, COUNTASK, is shown here. It asks the user for A, B, and
C, which respectively hold the start, end, and step values, and then uses those variables
as the second, third, and fourth arguments to For. If you entered 1, 10, and 1, you’d
replicate the output from COUNTUP; if you entered -10, 10, and 2, you’d reproduce
the function of the COUNTUP2 program.

PROGRAM:COUNTASK
:Input "START=",A
:Input "STOP=",B
:Input "STEP=",C
:For(X,A,B,C
:Disp X
:End

If you haven’t already tried it on your own, you could also enter something like 10, 0,
-1 to watch the program count down from 10 to 0, or 0, -100, -4 to count down from 0
to -100 in multiples of 4. An example for running the loop from 8 to 128 in incre-
ments of 16 is shown in figure 4.9. As an interesting experiment, try giving values that
don’t make sense, such as Start = 40, Stop = 10, Step = 1. You’ll see that the calculator
responds by running the loop zero times, since it will never reach 10 from 40 adding 1 at
each iteration. On a related note, if you enter 0 for the step, the calculator will produce

Figure 4.8 A screenshot from the
middle of running program COUNTUP2,
counting from -10 to 10 in steps of 2

Figure 4.9 Running the COUNTASK program. The user enters a start value of 8,
a stop value of 128, and a step of 16, so the For loop iterates from X = 8 to X =
128, adding 16 to X at each iteration.

90 CHAPTER 4 Control structures
an INCREMENT error, indicating that it will get stuck in an infinite loop trying to add
0 each time the loop restarts.

 These smaller programs are nifty for demonstrating what happens to the For
loop’s specified variable as it runs, and they’re great for leading to more complex
and useful examples, as in previous chapters. I mentioned that For loops can be
used for running a loop a set number of times as well as counting, so I’ll show you a
For loop used to repeat a chunk of code a precise number of times with a Fibonacci
number solver.

EXAMPLE: FINDING FIBONACCI NUMBERS

The Fibonacci numbers are a series. For this particular series, each number is the sum
of the two previous numbers of the series. The first two Fibonacci numbers are 1, which
means the third number is 1 + 1 = 2, the fourth is 1 + 2 = 3, and the fifth is 2 + 3 = 5.
The series continues infinitely. Fibonacci numbers appear in nature in the patterns at
the center of sunflowers and as the areas of the squares forming the Golden Spiral
(from the Golden Ratio). You can easily calculate the Nth Fibonacci number in the
series with a For loop, as I’ll show you.

 This program will ask the user which Fibonacci number they want to calculate. For
the first or the second number, the program displays 1, because the first two Fibonacci
numbers are equal to 1. Otherwise, it stores 1 to A and B; A will represent the Fibo-
nacci number two cycles ago, and B will hold the Fibonacci number one cycle ago.
The current Fibonacci number will be in F. The program then runs N – 2 cycles for
the Nth Fibonacci number; for the third number, it runs once, for the fourth, twice,
and so on. Each iteration through the For loop, it calculates the current Fibonacci
number from the sum of the previous two, which it stores in F. It then updates A and B
to get ready for the next cycle. The purpose of the For loop here is to count exactly
how many times it should calculate Fibonacci numbers before stopping and displaying
the result.

 The code for this FIBONACC program is shown in listing 4.3. As discussed, it first
asks the user which number to calculate and then calculates and displays the result
using a For loop. If you have any uncertainties either about how to calculate Fibonacci
numbers or how this program does so, review what the limits on a For loop mean and
how many cycles a loop from 3 to N will run for different values of N, and try following
(in your mind) the flow of execution around and around the For loop. How defensive is
this program? Will it work properly if the user enters N = 999? How about N = 0 or N = -3?
The results of running the program for N = 6 and N = 20 are shown in figure 4.10.

PROGRAM:FIBONACC
:Disp "CALCULATES NTH","FIBONACCI NUM
:Prompt N
:If N=1 or N=2
:Then
:Pause 1

Listing 4.3 Calculating Fibonacci numbers with a For loop

Equivalent to Disp 1
followed by Pause

91For, While, and Repeat
:Else
:1→A
:1→B
:For(X,3,N
:A+B→F
:B→A
:F→B
:End
:Pause F
:End

The For loop is a powerful tool for counting, for controlled repetition, and as you
may even discover on your own, for short pauses in your program. Unfortunately, if
you don’t know when you’re writing your program how many times a loop should run,
then For isn’t a good choice. Instead, you should consider one of two loops that are
controlled by a condition instead of a count, While or Repeat. Executed at least zero
times and repeated as long as its governing condition remains true, While is a versatile
option for such loops.

4.3.2 Using While to loop

The While loop is simpler than the For loop: instead of start and end values, a vari-
able to modify, and a per-iteration increment value, the only argument a While com-
mand takes is a simple condition, which can be a plain comparison, several
comparisons combined with logical (Boolean) operators, or even just a variable by
itself. Simply put, each time an iteration of a While loop begins, it tests the condi-
tion given as its only argument. If the statement is true, the body of the loop runs
and then returns to the While once it reaches its End. If the statement is false,
however, it jumps directly to the first line following the End command. Because a
While loop checks its condition at the beginning of each iteration, if the condi-
tion is false (zero) the first time it checks, the body of the loop will never run at
all. This means that if the condition involves a value that you calculate inside the
loop, you must initialize the variable used in the condition to a value designed to
make the loop run its first iteration. It will then be able to calculate a “real” value
for the variable inside the loop body and check the condition at the beginning of
the second iteration.

A will be the (X – 2)th Fibonacci
number, and B will be the (X – 1)th

F is the Xth
Fibonacci number

Stop when X = N, when F holds
the Xth = Nth Fibonacci number

Figure 4.10 Calculating the 6th and 20th Fibonacci numbers using a For loop

92 CHAPTER 4 Control structures
The While command can be found with For and Repeat in the [PRGM] menu, the
fifth item in the first tab; to quickly type it, press [PRGM][5]. As with the For loop,
other than a quick three-line template for using the While command, I think the
clearest explanation of what exactly happens in a While loop is the flow diagram in fig-
ure 4.11. First, the syntax:

:While <condition that will continue the loop until it is false>
:Statements and code forming body of loop
:End

Figure 4.11 shows how While loops are processed by your calculator’s TI-BASIC inter-
preter. As with each of the loop and conditional diagrams I’ve shown you thus far, exe-
cution either starts in the code preceding the While loop or starts at the While
command if it’s the first line of the program. The first thing the loop does is check the
condition attached to the While: if it’s false, the program jumps directly to the code
after the loop’s End command, skipping the contents of the While loop. If the condi-
tion is true, the calculator executes the body of the loop, and once it reaches the End,
it returns to the While with its associated condition to check if it needs to run the loop
again. It will continue looping around until the condition becomes false.

 You’ll learn starting in chapter 5 that both While and Repeat loops are frequently
used in games, where your program will want to keep checking if the player pressed a
key but has no way of knowing when the user is going to press anything. They’re also
used for any sort of math or science equation where you need to run an iterative algo-
rithm, an equation or set of equations that you have to run repeatedly until they pro-
duce numbers indicating they have converged, or found a solution.

 One such equation checks if a given number is prime. It starts with 2 and checks
whether each integer up to the square root of the given number is a factor of that
number. If any such integer is a factor, then the user-supplied number is not prime.
If the program finds no integer factors, then the number is prime. A While loop is
perfect for this; it can be made to end prematurely if a factor is found or to stop
when it reaches the end of the possible factors of the number and declares the num-
ber to be prime.

Figure 4.11 The
structure of a While loop.
The statements inside the
loop are run while the
condition is true. If the
condition is already false
when the loop first starts,
the statements inside
won’t get executed at all.

93For, While, and Repeat
EXAMPLE: CHECKING PRIME NUMBERS

In this example, I’ll show you how to determine if a number is prime using a While
loop. It uses a naïve algorithm that tests each possible integer factor of the number
and continues until it either runs out of possible factors or finds a number that’s
indeed a factor. An integer factor is an integer that when multiplied by some other
integer will produce the number in question. Prime numbers have only 1 and them-
selves as integer factors. Nonprimes have at least one other integer factor; the inte-
ger factors of 6 are 1, 2, 3, and 6, because by the commutative property 3 ∗ 2 = 6 and
2 ∗ 3 = 6.

 The structure of the ISPRIME program, shown in listing 4.4, follows a common pat-
tern that you’ve seen a few times before. It first displays instructions and asks the user
to enter a value, initializes other values it will need, and runs a loop to execute the
desired algorithm. When the loop terminates, it displays the results to the user in
some readable format. This particular program uses three variables: X, T, and P.

 The variable X holds the number that the user wishes to check for primality
(whether it is prime). This number doesn’t change after the user enters it.

 The program uses T to hold the current test factor, the number in the sequence
from 2 to the square root of X that are possible factors; each time it goes through the
While loop, it adds 1 to T. Why only test up to the square root of X instead of up to X?
Because if there’s an integer factor of X larger than √(X), then it must be multiplied
by some value less than √(X) to get X, and so the program would have already found
that factor between 2 and √(X). As always, you want your programs to be as small and
fast as possible, so reducing the number of possible factors tested to a bare minimum
is a good way to make the program fast.

 The third variable, P, is used as a flag to represent whether or not the user-supplied
number X is prime. The program starts with the assumption that X is in fact prime, so
it initializes P to 1. If it runs through every possible factor and doesn’t find any integer
factors, then P is still 1, which means the number is prime. If it finds a valid integer
factor while it’s searching through factors, it sets P to 0, indicating X is not prime. As
you might have guessed, 0 and 1 are chosen because 0 is false and 1 is true, so the con-
tents of P are the truth value of the assertion “X is prime.” To save further time when
running this program, as soon as it finds one factor that means X is not prime, it can
stop the While loop and not check any further potential factors. To add this condition
to the While loop, ISPRIME introduces a new trick that I haven’t shown you in any pre-
vious programs.

 The loop in the ISPRIME program should end immediately if P becomes zero.
Therefore, the condition on the loop could be written as follows:

:While P=1 and T≤√(X

Alternatively, since the program sets P to zero when a factor T is found that proves X is
not prime, the condition could be rewritten as follows:

:While P≠0 and T≤√(X

94 CHAPTER 4 Control structures
In other words, continue the loop as long as P is not equal to zero and T is less than or
equal to the square root of X. If P becomes equal to zero, or T becomes larger than
√(X), end the loop immediately. But if you think carefully, the comparison P≠0 is false
(that is, 0) when P is 0 and true (1) when P is 1. Therefore, since P≠0 is the same thing
as P when P is 0 or 1, there’s no point adding the ≠0 at all, and P can be used directly as
a Boolean value.

 Take a look at the ISPRIME program in listing 4.4, test it, and try to understand how
it works. There are two tokens here that you might not yet know how to type.
Although you have hopefully run across the square root symbol on your calculator at
least in your nonprogramming use or perhaps in the QUAD program, you can type the
symbol with [2nd][x2]. The other token you may not know is int, which returns its
input rounded down to the nearest integer; it’s in the second tab of the [MATH]
menu, at [MATH][�][5].

PROGRAM:ISPRIME
:Disp "CHECKS WHETHER X","IS PRIME
:Prompt X
:2→T
:1→P
:While P and T≤√(X
:If X/T=int(X/T
:0→P
:T+1→T
:End
:If P=0
:Then
:Disp "IS NOT PRIME
:Else
:Disp "IS PRIME
:End

Based on the description I’ve already provided, the code outside the While loop
should be clear, including getting the value of X from the user, initializing P and T,
then displaying whether or not X is prime with an If/Then/Else/End construct after
the loop. The five lines of the While loop itself should also be straightforward. The
loop continues either until the possible factor being tested is greater than the square
root of X or until the loop determines that the number is not prime. If X/T is an inte-
ger, then X is the product of two integers other than 1 and itself: because the loop
starts at 2 and ends at √(X), 1 and X are never tested as possible factors. T is then
incremented so that the next potential factor can be tested on the next iteration of
the loop. The results of the ISPRIME program for X = 50 and X = 101 are shown in fig-
ure 4.12.

 Like most of the programs I’ve shown you so far, there are plenty of additions and
changes that you could make to this program to make it more powerful or more correct.
What if the user enters 0, 1, 2, or 3 as X into this program? Since T starts at 2, T will never

Listing 4.4 The ISPRIME program for checking if a number is prime

Continue while the
number might still
be prime and there
are potential factors
left to check

This comparison is true if X/T is an integer; int()
removes anything after the decimal point, so if
the number was an integer, it doesn’t change it

When this loop ends, the
number is either definitely
prime or definitely not prime

95For, While, and Repeat
be smaller than the square root of 0, 1, 2, or 3, so the program will correctly declare them
all prime. But what about negative numbers? This program will fail with a NONREAL ANS
error, because taking the square root of a negative number yields an imaginary number,
one of the cases you need to worry about for a quadratic solver like QUAD. Because a neg-
ative number is prime if the negated (positive) equivalent is prime, you could solve this
by taking the absolute value of X on the line after the Prompt command:

:Prompt X
:abs(X→X

The abs command is also in the MATH menu with the int command, at [MATH][�][1].
I’m sure that you could find other things that could be done to this program, such
as making it print all the factors of nonprime numbers, which would require
changing the While loop’s condition to not stop immediately when it finds the first
integer factor.

While loops are the best choice of program flow construct when you want to create
a loop that ends when a certain condition stops being true and you don’t know in
advance how many times you’ll need to loop. If you still don’t know the number of
iterations you’ll need but instead want to wait for a condition to become true that’s
initially false, then you should instead use a Repeat loop.

4.3.3 The Repeat loop
The Repeat loop is the final of the four ways you can create loops in TI-BASIC. I
showed you the slow but flexible Lbl/Goto loop, which lets you jump arbitrarily for-
ward or backward. I continued with the For loop, good for generating patterns of
numbers or looping a set number of times. I just presented the While loop, which con-
tinues running indefinitely as long as a specified condition remains true. Like the
While Loop, the Repeat loop starts with a command taking a single condition argu-
ment, continues with a loop body, and concludes with an End. Then what distin-
guishes it from a While loop? Two things:

■ A Repeat loop continues until its governing condition becomes true. In other
words, it loops only as long as the condition is false.

Figure 4.12 Testing the ISPRIME prime-number tester program with a nonprime
number (50) and a prime number (101). This program uses a While loop to test
possible factors.

96 CHAPTER 4 Control structures
■ The condition on a Repeat loop is checked after each iteration instead of
before. This means that no matter what the condition is, even if it’s the obvi-
ously true comparison 1 = 1, the loop will run at least once.

Once again, a diagram such as figure 4.13 is the best way to explain the concept of the
Repeat loop. As you might expect from the two points I just mentioned, it strongly
resembles the flow diagram of the While loop shown in figure 4.11. The main differ-
ence is that the condition, X≠5, is checked at the conclusion of each iteration of the
loop rather than at the beginning. In addition, the “Yes” (true) case causes the loop to
exit, because a Repeat loop runs until its condition is true.

EXAMPLE: AVERAGING AN ARBITRARY SET OF NUMBERS

One simple task well suited to a Repeat loop is getting a series of numbers from a user
without having to ask them in advance how many numbers they’ll enter. The program
shown in listing 4.5, AVERAGE, surprisingly enough calculates the average of several
numbers. Because the definition of an average is the sum of the numbers divided by
the number of values, this program tracks the sum collected thus far in variable S and
the number of values entered in N. Each time its loop repeats, it adds the newest value
to S and increments N by one. The loop needs to end sometime, so the program
defines 9999 as a special value. When the user enters the number 9999, it doesn’t get
added to the average. Instead, the Repeat loop ends, and the quotient S/N, the aver-
age, is displayed.

 Notice that on the fourth line of AVERAGE in listing 4.5, the Repeat loop is defined
to continue until X = 9999, but what if X is already 9999 before the AVERAGE program
even begins executing? If this was a While loop, and the condition was While X≠9999,
the loop wouldn’t run a single time. To make matters worse, because S and N would
both be zero, the last line of the program would try to calculate the undefined value
0/0, which would make the calculator produce a Division by Zero (DIVBY0) error.
Luckily, Repeat saves the day. Because every Repeat loop runs at least once, X will be
initialized during the Input command; there’s no need for the program to set X equal
to anything before the loop begins.

Figure 4.13 The
structure of a Repeat
loop. It’s similar to a
While loop, except that
the condition is checked
after the loop, not before,
so the statements that
form the body of the loop
always run at least once.
Also, it repeats until the
condition becomes true.

97For, While, and Repeat
PROGRAM:AVERAGE
:Disp "CALCULATES AVG","ENTER VALUES,","TYPE 9999 WHEN","DONE
:0→S
:0→N
:Repeat X=9999
:Input "VALUE=",X
:If X≠9999
:Then
:X+S→S
:N+1→N
:End
:End
:Disp "AVERAGE=",S/N

The sequence of two screenshots in figure 4.14 shows prgmAVERAGE calculating the
average of three numbers. The program carefully does not average the special “I am
done entering numbers” value 9999 into the final average. Although avoiding initializ-
ing X saves some space in this program, there’s still a danger of a divide-by-zero error
if the user enters 9999 as the first value. Adding :If N≠0 as the second-to-last line of the
program would fix this easily. Finally, there’s also the obvious problem that if the user
wants to enter the value 9999 as part of an average, it’s impossible with this program,
but that’s of minor concern.

CONVERTING BETWEEN WHILE AND REPEAT LOOPS

It’s important to realize that most programs written using a Repeat loop could easily
be switched to use a While loop instead, and vice versa. The AVERAGE program just
presented could be changed to have a While X≠9999 statement replacing the Repeat
line. But because While conditions are checked before the first iteration through the
loop, you would have to be careful what value X had before the loop started. If X was
9999 before your program even started, then the program wouldn’t work. You’d there-
fore need to initialize X to some value other than 9999, such as 0:

Listing 4.5 The AVERAGE program that demonstrates a Repeat loop

Figure 4.14 Using a Repeat loop to calculate averages. The Repeat loop lets
the user enter a long list of numbers and stops only when the user enters a
“magic” number, 9999, that indicates all the numbers to be averaged have
been entered.

Repeat this loop until
the user enters 9999;
it always runs at
least onceDon’t average the 9999

that marks the end of
the numbers to average This End is part of

the If/Then/End

This End loops back to the Repeat statement if X is not equal to 9999

98 CHAPTER 4 Control structures
PROGRAM:AVERAGE
:Disp "CALCULATES AVG","ENTER VALUES,","TYPE 9999 WHEN","DONE
:0→S
:0→N
:0→X
:While X≠9999
:Input "VALUE=",X
:<remainder of program>

Following the same logic, the ISPRIME prime number tester from section 4.3.2 could
be modified to use a Repeat instead of a While loop. Its original While loop runs while
P and T≤√(X), equivalent to While P≠0 and T≤√(X); here’s the code again:

:While P and T≤√(X
:If X/T=int(X/T
:0→P
:T+1→T
:End

In other words, the loop needs to repeat until either P = 0 or T > √(X). As you might
imagine, that’s exactly the condition to be used with the Repeat form of this loop:

:Repeat P=0 or T≤√(X
:If X/T=int(X/T
:0→P
:T+1→T
:End

There’s no initialization code that can be removed from making this change, and the
extra =0 takes up more space, so unfortunately this program is better with a While
loop. You’ll find cases in your own programs where even though most Repeat and
While loops can be converted into the opposite type, one or the other is better suited
for the specific situation. Indeed, the different types of loop structures in every pro-
gramming language each have places where they’re the most elegant solution out of
their siblings, as you’ll learn if you pursue programming past calculators.

 What if instead of running the same piece of code over and over with no breaks in
between, you want to occasionally run a repeated chunk of code in the middle of oth-
erwise linear code? Perhaps you’ve considered how you might make your program
end in the middle, without having to let it get to the end of the source code to stop.
You’ll now learn how these two related concepts fit together, the final major tool in
your arsenal of flow pieces you can fit into full, powerful programs.

4.4 Subprograms and termination
Every program that you’ve written so far has contained its entire code within itself,
which may seem like an odd statement. Each program contains itself; where else
would it be contained? If you’re familiar with any other languages besides TI-BASIC,
you might know about the concepts of libraries and subprograms. If not, both terms
refer to putting pieces of your program’s code into other reusable programs; these
new programs are called libraries or subprograms. This lets you reuse the same code

99Subprograms and termination
in several programs without having to type out that code all over again each time you
need it. Instead, you tell your program to call the program that has the function
you need, meaning that it pauses its own execution, runs the contents of the other
program, and resumes where it left off. Subprograms can also be used for a technique
known as recursion, where a program calls itself repeatedly.

 In order to use subprograms, you need to know two main concepts: how to have a
program call another program and how to have any program (including a subpro-
gram) terminate before the TI-BASIC interpreter reaches the last line of the program.
In this section, you’ll learn both of these skills.

4.4.1 Putting repeated code in subprograms

Though you may not know it yet, you’ve been running the command to call a pro-
gram from another program since chapter 1. Every time you paste "prgmNAME" to the
homescreen from the [PRGM] menu and press [ENTER] to execute that command,
you’re running exactly the command that your programs will use to call other pro-
grams, including themselves. When the name of a program appears in another
program on a line by itself, prefixed with the prgm token, it signals the TI-BASIC inter-
preter to run that named program and return to the next line of code after the call in
the program that caused the subprogram to be executed. The program that runs or
calls the subprogram is called the caller, and the subprogram that’s executed is
termed the callee. The command in the caller program to execute a callee named
MYPROG might look like this:

:prgmMYPROG

To type this on your calculator, you’ll need to be able to type prgmMYPROG into your
caller program. You can either go to the third tab of the [PRGM] menu, the EXEC tab,
and choose MYPROG (assuming it already exists on your calculator), or you can type
the prgm token with [PRGM]D (the 13th item), then type the letters of the callee pro-
gram’s name.

 One of the primary uses for subprograms is to hold sections of repeated code
that would be wasteful to type over and over again. As a first demonstration of sub-
programs, I’ll show you a routine that draws a border of zeroes around the edges
of the homescreen so that you can output text of your choosing in the center of
the homescreen.

SUBPROGRAMS FOR CONCISE CODE

Because a subprogram can contain a single copy of a frequently used section of code,
and the programs that would otherwise have many copies of that code can instead
simply call the subprogram, subprograms save space. Here, I’ll show you a subpro-
gram that uses two For loops to draw zeroes along the edges of the homescreen. I’ll
also present a demo program that calls the subprogram several times, then writes text
inside the border the program draws, displaying your name as your calculator’s owner.
I’ll aim for results that look like figure 4.15.

100 CHAPTER 4 Control structures
First, let’s look at the subprogram. This program will draw borders around the edges
of the screen, filling up columns 1 and 16 and rows 1 and 8 of the homescreen with
zeroes. But it will want to erase it first. How shall we fill the edges? Because we know in
advance exactly how many zeroes we need to draw, a pair of For loops would work per-
fectly. The first loop will draw horizontally along the rows, and the second will draw
vertically along the columns. We’ll call this program ZBORDERS:

PROGRAM:ZBORDERS
:ClrHome
:For(C,2,15
:Output(1,C,"0
:Output(8,C,"0
:End
:For(R,1,8
:Output(R,1,"0
:Output(R,16,"0
:End

Why does C go from 2 to 15 instead of 1 to 16? Because the second loop fills in the
four extreme corners of the screen as it draws the vertical edges, there’s no point writ-
ing over those zeroes again. This small optimization will save a few dozen millisec-
onds; in a larger program, the savings would be more substantial.

 Now you need a main program that will take advantage of this subprogram,
ZBORDERS. We’ll call this program OWNEDBY, and it will alternately flash the text
“CALCULATOR OWNED BY” and your name. I’ll fill in my own name, and I’ll leave it
up to you to modify the program to include your own name.

PROGRAM:OWNEDBY
:While 1
:prgmZBORDERS
:Output(4,4,"CALCULATOR
:Output(5,5,"OWNED BY
:For(X,1,500
:End
:prgmZBORDERS

Figure 4.15 The OWNEDBY program demonstrates the use of a subprogram, ZBORDERS,
to draw the borders of these screens, as well as an infinite While loop and variable delays
created by For loops. The [ON] key can be used to terminate this program.

Draw Os along the top and
bottom edges of the screen

Draw Os along the left and
right edges of the screen

Erase the screen and draw
borders along all the edges

Erase the screen and
draw the borders again

101Subprograms and termination
:Output(4,3,"CHRISTOPHER
:Output(5,5,"MITCHELL
:For(X,1,500
:End
:End

Other than calling the ZBORDERS subprogram twice to erase the screen and redraw
the border at the edge of the screen, this program demonstrates two relatively new
concepts. The first is the condition on the While loop, namely the plain number 1.
Recall that a While loop continues as long as the condition on the loop is true and
that 1 represents true in TI-BASIC. This means that the condition on this loop, a con-
stant true, can never be false, and the loop can never end: it’s an infinite loop. The
only way to end this program is to press the [ON] key. The second new concept is
the two empty For loops. Both count from 1 to 500, but neither has anything inside the
body of the For loop, so you might be questioning why the loops are there at all. I
added them to generate a slight pause in the program by wasting time, but they end
without requiring the user to press [ENTER], which is why I’m using this technique
instead of the Pause command. If you experiment with the ending value for the cycle,
you’ll find that the amount of time the program pauses before updating the screen
changes as well. Change the 500 to a 1000, and each screen will be displayed for twice as
long. In a later chapter, I’ll teach you a better and smaller way to create this sort of a
delay. A final note: the outer While loop is an infinite loop, so you must use [ON] to ter-
minate the program (which triggers an ERR:BREAK message). You can stop any program
at any point with [ON], which will be particularly useful when we discuss debugging.

 Assuming that using subprograms to save space and your own time by removing
the need to type out the same piece of code over and over again seems reasonable, I
want to show you another trick that subprograms can be used for. Recursion is a tech-
nique in computer programming where a function or program calls itself repeatedly,
and it’s used for calculating certain types of numbers and mathematical series.

SUBPROGRAMS FOR RECURSION

One trick that subprograms can be used for is to create recursion. In a recursive algo-
rithm, a routine calls itself, getting deeper and deeper into copies of itself calling cop-
ies of itself. Eventually, it reaches some condition, called a termination condition or
base case, that tells it to stop calling itself and instead return back up through all its
calls, finishing each call to itself and returning some final answer. A typical example
algorithm to demonstrate recursion is the factorial function, represented with the
exclamation point (!). Fibonacci numbers can also be calculated with a recursive pro-
gram, although I demonstrated using a loop to determine such numbers.

 Returning to the factorial function, the value of N! (pronounced “N factorial”) of
any positive integer N is equal to the product of every integer from 1 to N, inclusive:

N! = N ∗ (N – 1) ∗ (N – 2)∗…∗ 2 ∗ 1

You can calculate this value with recursion, because N! is also equal to N * (N – 1)!, or
the product of N and the factorial of N – 1. If you write a routine that can calculate N!,

102 CHAPTER 4 Control structures
you can call it from itself for N – 1, multiply that number by N, and read out the
answer. This seems like a confusing concept: if the function calls itself to perform
most of the math, when do you actually do the calculation? Let me show you the algo-
rithm in pseudocode first, and then I’ll explain it in TI-BASIC:

Factorial(N):
 If N=1:
 Return 1
 Else:
 Return N*Factorial(N–1)

This function has two possible cases. The termination condition is N = 1, because that
case does not and should not call further down into more copies of the Fibonacci
function. If N is anything else, then the function calls itself with N – 1 and multiplies
that by N before returning upward. Recursion is a powerful technique for solving sev-
eral different types of programs, which you’ll likely encounter as you learn about algo-
rithms in calculator or computer programming.

With that background, let’s create the full program now. We’re going to need two pro-
grams here. The first program is called the driver program. It’s the main function that
the user runs; it sets up variables and other parameters for the recursive function,
calls the second program that contains the recursive function itself, and then handles
postrecursion tasks like displaying the results from the recursive algorithm. The driver
function, which I’ll call FACTORL (short for factorial) should look like this:

PROGRAM:FACTORL
:Input "FACTORIAL OF :",X
:prgmZFACT
:Disp "FACTORIAL IS",F

This program introduces a naming convention often used for subprograms that are
pieces of other programs but shouldn’t generally be run themselves by the user. The
names of such programs should start with Z or θ; because the calculator displays the
programs in the [PRGM] menu in ascending alphabetic order, these subprograms will
fall at the bottom of the program list.

 To guide you toward the contents of the subprogram that performs the factorial
function itself, prgmZFACT, I’ll start with figure 4.16; refer to the figure as you read this

Return 1? What’s that?
Thus far, all of our programs simply stop when they’re finished. But the Factorial
pseudocode program, as well as the ZFACT program we’ll write in TI-BASIC, are func-
tions. Functions in most languages can have return values. Consider the randInt
function you explored earlier in the guessing game: it returns a random integer that
the program then stores into a variable with the assignment or store (→) operator.
Although TI-BASIC doesn’t have a good way to express return values, one variable
commonly used by convention to hold the return value from a program is the special
variable Ans (or Answer). Chapter 10 will teach you more tricks with Ans.

A special case called
the base case

103Subprograms and termination
paragraph. Each of the boxes in this diagram represents one program being run.
Since programs can call themselves, conceptually pausing one copy of themselves before
diving into another copy, the same program can appear multiple times in this diagram.
Here, the FACTORL function is the outermost function, because it’s run first. It asks the
user for X, and for simplicity, I’ve written the diagram as if X is always 5. It then calls
ZFACT, which subtracts 1 from X to get X = X – 1, and then calls (another copy of)
ZFACT. This repeats, with each ZFACT calling under ZFACT (comments A, B, and C in
figure 4.16), until in the fifth ZFACT down with four other ZFACTs still waiting, X is equal
to 1. This innermost ZFACT sets F, the output number, to 1, because 1! = 1. It then ends,
and the last few lines of the fourth ZFACT down run. These add 1 to X again, because this
ZFACT corresponds to X = 2 and multiplies 1! by 2 to produce 2! = 2 (comment D in fig-
ure 4.16). This ZFACT ends, returning to the third ZFACT, which was patiently waiting.
The third ZFACT sets X = X + 1 = 3 and ends with F = 3! = 3 ∗ 2! = 6 (comment E in fig-
ure 4.16). The second ZFACT resumes and repeats the same task, concluding with X = 4
and F = 24. Finally, the outermost ZFACT returns with X = 5 and F = 120. With the
prgmZFACT it called finished, prgmFACTORL concludes by displaying F = X! = 5! = 120.

Figure 4.16 A diagram of what happens when prgmFACTORL is run to find the factorial of 5 (or 5!).
FACTORL calls ZFACT, which keeps calling additional copies of itself and subtracting one from X
until X = 1. It then sets the output value F to 1 and starts returning up through the copies of ZFACT,
multiplying the current X by F and saving the result in F before ending that copy of ZFACT. Eventually,
the last copy of ZFACT ends, and FACTORL regains control, displaying the value of F. The items after
the // marks are comments, which aren’t part of the code that you type onto your calculator, and
are there for your edification.

104 CHAPTER 4 Control structures
From this description and figure 4.16, the code inside the ZFACT program might be
written as follows. Many languages have something called variable scope, which means
that if prgmFACTORL has a variable F and calls prgmZFACT, ZFACT will have its own ver-
sion of variable F that doesn’t change the value of F that prgmFACTORL sees. In
TI-BASIC, every program sees the same versions of the variables, so you’ll need to do
some tricks to avoid accidentally erasing the numbers you’re trying to calculate. Try
this on for size:

PROGRAM:ZFACT
:If X=1
:Then
:1→F
:Else
:X-1→X
:prgmZFACT
:X+1→X
:XF→F
:End

As you can see, the input to this function is X, the number to calculate the factorial of.
If X = 1, it returns 1! = 1 stored in F. Otherwise, it calls itself on X – 1 to find F = (X – 1)!,
then multiplies X by F to produce F = X!

 To type this on your calculator, you’ll need to be able to type prgmZFACT into your
two programs. As I mentioned, you can type out the program name yourself prefixed
with the prgm token from the first tab of the [PRGM] menu or find prgmZFACT in the
third tab if you already created it.

 This recursion discussion was likely one of the most challenging concepts to
understand that I’ve covered thus far, so I encourage you to review it and make sure
you understand it before you continue. As an exercise, see if you can translate the
Fibonacci solver into a simple recursive program or, conversely, calculate the factorial
function iteratively with a For or While loop. Both can be done efficiently and cleanly.
If you’ve absorbed the several roles of subprograms in TI-BASIC, join me for the final
concept in the chapter, termination, which will be a breeze compared with recursion.

 All programs need to end sometime, and although you’re now familiar with pro-
grams that stop after they reach the last line of code, there are ways to make programs
end sooner. The Return and Stop commands are cousins with similar behavior that
you can use to prematurely stop a program from executing.

4.4.2 Termination: Return and Stop

For quite a few sections, you’ve learned increasingly elaborate ways to make execution
proceed through your programs, to loop and jump around, to iterate, and to recurse.
All good things must come to an end, and sooner or later you’ll want your programs
to relinquish control and cease running. For the most part, the programs I’ve been
showing you have been crafted to read the last line of the program, at which point the
calculator realizes that there’s no more code in the program that can be run and
promptly terminates it. But you’ll want other ways to make your programs end.

105Subprograms and termination
 For one thing, you may want to be able to end a program without making it flow to
or jump to the last line of the program. In the two programs MENUA1 and MENUA2 in
section 4.2, I briefly presented the Return command for the first time, which is the
sole command at Lbl Q and which is run when the user chooses the QUIT menu
option. That command is one of the two I’ll explain in slightly more detail here. The
other reason you might want to make a program stop is if something unexpected or
unwanted happens, or your program reaches a condition that should make it stop
before it gets to the last line of code.

 Two similar commands will give you the power to do this: Return and Stop. Both of
these commands are in the first tab of the [PRGM] menu, items E and F respectively.
From a cursory examination, both programs do the same thing: they stop the pro-
gram in its tracks, making it immediately terminate. But they have one difference. If
you use it in a subprogram, Return will only make the current program end, letting
whichever program called the subprogram continue unimpeded. On the other hand,
Stop will immediately halt the current program, any program that called it, and any
program that called that program, all the way up the chain. If you added a Stop in the
innermost prgmZFACT in figure 4.16, all of the programs within programs would end
immediately, without running the remainder of their code.

 To demonstrate the differences between Return and Stop more distinctly, look at
the following pair of programs, TESTRET and TESTSTOP. The main driver programs,
TESTRET and TESTSTOP, have corresponding subprograms, ZRETURN and ZSTOP,
respectively. ZRETURN has a Disp command at either side of a Return command, and
ZSTOP has the same structure with a Stop command replacing the Return. Here are
the four programs; the bottom program in each of the two columns is called by the
program directly above it:

Observe what happens when prgmTESTRET and prgmTESTSTOP are run, as shown in fig-
ure 4.17. In both pairs of programs, the last line of the subprogram doesn’t run, so
neither “AFTER RETURN” nor “AFTER STOP” is displayed. But because Return only
ends the current program, “AFTER PRGM CALL” is still displayed in TESTRET. I said
that Stop ends every program running, even ones that called subprograms, so “INSIDE
CALL” is the last line displayed when TESTSTOP is run, and the Disp "AFTER PRGM CALL
in TESTSTOP is never executed.

 I strongly recommend that you use Return whenever possible and try to avoid
using Stop. Although the Doors CS shell for the TI-83+/84+ (see appendix C) works
properly with TI-BASIC programs that use Stop, the older MirageOS shell crashes

PROGRAM:TESTRET
:Disp "BEFORE PRGM CALL
:prgmZRETURN
:Disp "AFTER PRGM CALL

PROGRAM:ZRETURN
:Disp "INSIDE CALL
:Return
:Disp "AFTER RETURN

PROGRAM:TESTSTOP
:Disp "BEFORE PRGM CALL
:prgmZSTOP
:Disp "AFTER PRGM CALL

PROGRAM:ZSTOP
:Disp "INSIDE CALL
:Stop
:Disp "AFTER STOP

106 CHAPTER 4 Control structures
when it encounters a Stop token in a BASIC program. In some cases only the Stop
command will produce the desired effect, but when subprograms aren’t involved,
always use Return.

4.5 Summary
In the past few sections, I’ve introduced the various ways to repeat sections of code,
from loops to subprograms, and shown you jumping around programs with labels,
Goto, and menus. The examples provided go a long way toward making the concepts
more concrete and understandable, but there’s no substitute for designing, writing,
and testing your own programs. You’ll absolutely find things that don’t work or that
you don’t understand, work through the problems, and learn more about trouble-
shooting your own programs.

 Before you move on to the next chapter, I hope that you’ve tried running most of
the programs in this chapter, and I encourage you to think of some games or math or
science programs that you can try to write with the concepts you learned in this chap-
ter. If you don’t understand the difference between a While and a Repeat loop, make
a four-line program with each command and see how they behave differently. Stick
Disp commands in so you can see the contents of variables. Once you’re satisfied, let’s
continue to a set of methodical guidelines for imagining and creating your own pro-
grams and projects. In the next chapter, I’ll give you a short break from learning new
programming commands and concepts in lieu of discussing tips and tricks for design-
ing, writing, and troubleshooting your own programs.

Figure 4.17 Two programs that call subprograms. The left program uses a
Return command to end the subprogram; the right program uses a Stop. Notice
that the Stop command quits directly to the homescreen without allowing the
caller program to complete.

Theory interlude:
problem solving
and debugging
In the past three chapters, you’ve been immersed in the essentials of TI-BASIC.
From input and output commands to conditional statements and flow control, you
now know the essential building blocks that go into any calculator (or computer)
program. But if knowing the commands is like knowing the vocabulary of a lan-
guage, and knowing how to use each command is like learning sentence structure,
there’s one more step that’s key: you need to know how to put your sentences
together into a coherent, flowing essay or novel. In addition, there’s a world of dif-
ference between a story that makes sense and a story that is action-packed and full of
detail without wasting a single word. In this chapter, you’ll learn to construct the TI-
BASIC equivalent of an enthralling story: a program that is fast, small, well-planned,

This chapter covers
■ Confidently building your own programs
■ Bringing ideas all the way from concept to

finished program
■ Testing and debugging techniques to find and

fix errors
■ The program-building progression in a full

running program
107

108 CHAPTER 5 Theory interlude: problem solving and debugging
and well-written. You’ll learn to track down the programming equivalents of spelling and
grammatical errors: typos and mistakes in how your program works; I’ll also show you
how to cut out unnecessary filler to optimize your programs.

 This chapter will teach all the generalities you need to write good programs for any
platform, including calculators. You’ll learn to go from idea to design to diagramming
program flow and sketching interfaces to coding and testing. After I discuss general
skills you can apply to any program in section 5.1, I’ll take you through the process
applied to a specific example in sections 5.2 and 5.3. The example I’ll show you is a
math program that solves for Pythagorean Triplets (A, B, C) that satisfy the constraint
A + B + C = N, given a value for N that the user enters. I’ll walk you through planning,
diagramming, coding, and testing this calculator program, as well as the steps any
good programmer goes through after completing a program: trying to think how it
could be made better, faster, or smaller. The remainder of the chapter will be spent on
tracking down and solving errors in your code, both things like typos and missing
function arguments that make the calculator produce an error message and the more
difficult, subtler errors that come from numerical, structural, or planning mistakes.

 Let’s begin with an overview of taking any program idea from the conceptual
phases through to a complete, polished program.

5.1 Introduction: idea to program
Creating great programs that are fun, useful, small, and fast isn’t magic that happens
in an instant, nor is it a mysterious task that only years of training can perfect.
Although simple programs can be created easily with moderate experience and skill,
and the best programmers and engineers spend many years and thousands of hours
practicing their art, good programs can be brought from idea to completion by fol-
lowing a short series of simple steps.

 In this section, I’ll describe these steps as they might apply to writing any program
or game. Figure 5.1 shows how this discussion will proceed. First, I’ll discuss the four

Figure 5.1 Taking a program from idea to completion, as covered in sections 5.1.1 through 5.1.3.
After you brainstorm a good idea for a program or game and work out the details, you should diagram
and outline as much as you need to have a firm idea of how the program will be constructed. If necessary,
you can turn these plans into pseudocode before you write the actual program. You should alternate
writing and testing rather than writing an entire large program in one go, so you can catch errors early.
When you finish, thorough testing and debugging will ensure you’ve made a fast, reliable program.

109Introduction: idea to program
possible pieces of the planning progress in section 5.1.1. Section 5.1.2 will discuss how
to turn that plan into code, including choosing when to use loops like For, While, and
Repeat, where Lbl and Goto might be appropriate, and how the different conditional
constructs and input and output commands could be used to realize your plan. Sec-
tion 5.1.3 will cover the important step of testing your program piece by piece as you
write it and then as a complete whole once you have a completed preliminary program.

 Before you begin writing any code, you should start with a clear plan of how your
program will be structured, what features you want it to have, and how the user or
player will interact with it.

5.1.1 High-level design: features and interface

The first stage in creating a great program is deciding on the features, flow, and inter-
face for your program. Your planning process should follow this basic outline:

1 Decide what your program or game is or will do.
2 Design further details: decide the specific features set or game mechanics.
3 If applicable, sketch out the interface. If you’re making a math program, for

instance, decide how you’ll present answers to the user.
4 Use diagrams and pseudocode to design the structure and flow of your program.

Once you’ve completed these steps, you can move on to turning your plans into code.
In this section, I’ll be discussing each of the four items in this outline for any general
program you might wish to write, so that you’ll know how to bring a program idea
from conception through detailed diagrams and pseudocode.

 At the beginning of your planning, the first thing you need to do is figure out what
you want your program or game to do. It might sound obvious, but if you don’t have a
clear vision about what your program is going to offer to players or users, you’ll find
yourself floundering as you try to complete the rest of the planning and coding of
your project. There’s no hard-and-fast rule about how much detail you need to go into
before you can start diagramming, designing, or coding; you should do as much plan-
ning as you feel you need to have a clear vision of how you’ll proceed. What you want
the program to be or do can be as easy as “a Pong game” or “a program to solve a sys-
tem of equations.” On the flip side, it could be as complex as figuring out what
power-ups you want your Pong game to have and how the scoring would work, or
designing exactly what sort of interface into which your users will be entering num-
bers for the equation solver. When in doubt, I recommend you err toward more
detail, because you’ll have left that much less to decide when you’re in the middle of
writing your code.

 Between deciding details about your program idea and starting to design the flow
of the program’s code drawn as flowcharts or written as pseudocode, you may want to
sketch out the interface for the program, how the screens where the user interacts
with your program will look. This will become more important once you learn to draw
complex interfaces, graphs, and games on the graphscreen, but it’s still important

110 CHAPTER 5 Theory interlude: problem solving and debugging
when you’re dealing solely with the calculator’s homescreen. With a basic idea of how
your program will look to the person using it, you can move on to design the flow of
your program’s logic and code.

 If you chose to draw diagrams, the diagrams should show enough detail about how
your program works as a whole or how a specific piece works that you’ll be able to use
the diagram to help you create the program’s code. For very simple programs, the dia-
gram can be simpler, and as you become an experienced programmer, you may
decide to do this stage in your head. No matter your skill level, if you have time to
quickly sketch out the highest-level overview of your program in some sort of diagram
such as figure 5.2 or figure 5.3, your programming will go much faster and involve less
frustrating rewriting and reconfiguration of features.

 If you compare figures 5.2 and 5.3, you’ll notice that figure 5.2 describes all of the
different pieces of the program, such as the help screen, the ending credits, and the in-
game portion, but is vague on the actual gameplay. Figure 5.3, which refers to the system-
of-equations solver, is much more specific but focuses entirely on the mechanics of
solving the system of equations. This particular application uses a matrix-based
method to solve a system of equations, putting the coefficients in a matrix and using
the rref solution (you’ll learn more about matrices in chapter 9). It’s up to you to
work out a good balance between the number and detail of your diagrams; you’ll
likely discover over time when you haven’t planned enough and learn to fine-tune
how much of your time is worth spending on planning.

 Besides drawing interfaces and diagramming how the program will work, you may
wish to also (or instead) write pseudocode, especially if you’re not a visual person and
diagrams like figures 5.2 and 5.3 confuse you rather than help you. As I’ve mentioned
once or twice in previous chapters, pseudocode is a way of writing something that
looks like code, describes code, but omits some of the annoying details of actual code.
Pseudocode style varies widely from person to person, and there’s no single right way

Figure 5.2 A high-level diagram of a theoretical Pong game, perhaps too high-level. In this particular
diagram, you can see that the program will have a game section (reached from Play), a help section,
and a section that displays credits and quits. If you’re a beginner programmer, it would be good to
also diagram more specifics of the boxes describing the gameplay, here surrounded by the large box
at right.

111Introduction: idea to program
to create pseudocode. I’ll show you a style that resembles TI-BASIC. Consider this
chunk of real TI-BASIC code:

:Input "NO. OF VALUES=",V
:0→T
:For(X,1,V
:Input "VALUE=",N
:N+T→T
:End
:Disp "TOTAL IS”,T

You could express this in pseudocode as

:Ask user for number of values, store in V
:Ask the user for V values, and sum them in T
:Display the total

Your own pseudocode could more closely resemble TI-BASIC, look like another lan-
guage if you know a language like C or Python or Java already, or be your own per-
sonal style. The most important attribute of the pseudocode you write and the
diagrams and sketches that you make is that they make sense to you. They should give
you a clear mental picture of how you’ll have to proceed to turn your plan into code
that will form a working program.

 I’ll now move on to taking your fleshed-out plan and turning it into a program or
game, which although a hard task should be eased by the preplanning that you’ve done.

Figure 5.3 This diagram for a hypothetical system-of-equations solver describes how the
program will get variables from the user, store coefficients in a matrix, and use the rref
command to solve the system but omits information about things like menus, how the
solution will be displayed, and whether the program can also solve other types of problems.
Compare this to the amount of detail in figure 5.2.

112 CHAPTER 5 Theory interlude: problem solving and debugging
5.1.2 Structuring your code: diagrams to commands

There are no hard-and-fast rules to teach you how to properly take any planned idea
and turn it into code that will work. I can’t possibly list even a tiny fraction of the pos-
sible programs you might want to make or the possible pieces you might design to
combine into a finished project. But I can give you some general guidelines for the
commands you learned in chapters 2, 3, and 4 and how those might map to diagrams
and pseudocode you’ve created. From your diagrams, you might work with one rect-
angle at a time being converted to code; with pseudocode, you’d likely translate line
by line.

INPUT AND OUTPUT COMMANDS

Input and output commands, as I explained in chapter 2, are among the easiest to rea-
son about:

■ When you want to revert to a blank homescreen, you use ClrHome.
■ If you need to display a single line of text and then pause, you could use Pause

"TEXT HERE." If you need to display a lot of text, or text and numbers, and then
pause, you can use Disp with several items separated by commas and then a
lone Pause command.

■ To display numbers or text when you don’t care about placement, use Disp.
■ If you want a neater display, you’ll have to specify the position as well as the

number or string to display as arguments to the Output command.
■ To get a number or string from the user, Prompt is easy, but Input lets you

specify the text displayed right before the program pauses to wait for the
user’s value.

In chapters 6, 7, and 8, you’ll learn other input and output commands, dealing with
directly reading keys and drawing and graphing on the graphscreen.

COMPARISONS AND CONDITIONALS

When your program needs to make a decision, it will probably need to use a compari-
son, as you learned in chapter 3. These comparisons can be used with If, If/Then,
and If/Then/Else constructs or with While and Repeat loops.

■ If you need a comparison that compares the numeric values of two variables, or
a variable and a number, put one of the six inequality operators from the TEST
menu between them.

■ You can also use the equals sign (=) to check if two strings match.
■ If your program specifies that all of several conditions must be true, you should

join the different comparisons with the and Boolean logic operator.
■ If only one of several conditions needs to be true, use or.
■ If a condition needs to be false instead of true, wrap it in the not Boolean oper-

ator or reverse the inequality symbol (for example, turn > into ≤).
■ If you have a complex combination of and, or, not, and xor, you’ll probably

need to use grouping parentheses.

113Introduction: idea to program
Recall the lessons about the three different types of If constructs from chapter 3:

■ If only one extra line of code needs to be executed when a condition is true,
pair that line with a lone If statement.

■ If several lines need to be run only when a condition is true, add a Then
and End.

■ The cleanest way to run one chunk of code when the condition is true and
another when it is false is to use If/Then/Else/End.

FLOW CONTROL: LOOPS, JUMPS, SUBPROGRAMS, AND MENUS

Whenever your program needs to jump to one of several areas, needs to repeat a
chunk of code over and over, has to reuse the same piece of code in several places, or
needs to present the user with choices, you’ll need the flow-control commands from
chapter 4.

■ If you need a menu, the easiest solution is the Menu command paired with sev-
eral Lbl commands. You could also make your own menu with Disp/Output/
Input if the Menu command isn’t flexible enough for your purposes.

■ If your plan specifies that you’ll need to jump from one place to one of several
places in your program, use several If/Goto statements with corresponding Lbls.

■ If you need to go from any of several places in the program to one place, then
use Gotos all pointing to the same Lbl.

■ Any jump in your program can be formed with a Lbl and a Goto, but be sure to
avoid memory leaks by not putting a Goto inside loops, If/Then, or If/Then/
Else statements.

■ If you need to run one section of code repeatedly, you should use a loop. If you
can count the number of times the loop will run, or you want a variable to take
each of several predictable, evenly spaced values, use a For loop.

■ If the loop should run until a certain condition becomes true, or if you want a
loop that always runs at least once, use a Repeat loop.

■ If the loop should run only while a condition stays true, or you want a loop that
can run zero times, use a While loop.

Terminating your program and properly using subprograms follow more cut-and-
dried guidelines than many of the other commands just mentioned:

■ If you want a program that could be called from another program to imme-
diately make every program quit, including itself and its caller(s), use the
Stop command.

■ In any other circumstances, use Return. If you want a subprogram to stop
and return to its caller, use Return. If you want a standalone program to stop,
use Return.

■ A subprogram should be used when you would instead be rewriting the same
section of code in several places in your program. It should be code that stands
on its own and doesn’t need to jump anywhere else in the program. If it’s the

114 CHAPTER 5 Theory interlude: problem solving and debugging
same code in several places, use a subprogram, but if it’s one piece of code in
one place to be run several times, use a loop.

FINAL THOUGHTS

As with most of the material in this chapter, these are general rules for the proper use
of the programming commands and techniques you’ve learned up to this chapter.
They aren’t unbreakable rules, and you’ll hopefully discover many other clever things
you can do with the various commands as you continue to program. But they’ll be a
good guide for you as you dive ever deeper into programming, with calculators or
with any language that uses similar commands and constructs such as C, C++, Java,
Python, and PHP.

 As you work through converting your ideas into code, you should always test your
program piece by piece, and when you have a complete program, test again. I’ll pres-
ent this vital step to you as the third piece of developing a polished program.

5.1.3 Testing and debugging

A good coder will thoroughly test a program when it’s finished to make sure it will
work well for users. A great coder will write the program a piece at a time, testing
each piece as it’s added in case it contains errors. This latter technique is part of an
approach called unit testing, and it helps you avoid writing a lot of code, finding
that it doesn’t work, and being unable to find the problem. When you build a com-
plex program, it’s likely you’ll make a mistake, so in some cases you create other
programs that will individually test the pieces of the first program. This isn’t gener-
ally feasible for your TI-BASIC programs, but you can get the same effect by alternat-
ing coding and testing. When you test as you create, you catch errors close to where
you make them, and you can usually solve them easily. If the error isn’t easily
solved, and you need to rearrange your original program plan, you at least have the
opportunity to do so before you exert yourself completing the rest of the code. If
you wait until you finish, you risk pain and suffering as you try to narrow down a
pesky bug.

 How you decide to test your program also depends a lot on how you write your pro-
gram. A common approach is to write the overall structure first, such as the main
menu and labels for each section. You can then work from the easiest bits, like the
high-score display, the help section, the credits, and the settings, to the harder bits,
usually the core gameplay or features of the particular program. This way, you can
leave a dummy Lbl for the hardest portion that Gotos right back to the main menu
but test out the menu and other areas before diving into writing the hardest part.

 Alternatively, if writing pieces of the program out of order is likely to cause you to
make errors, lose your place, or accidentally omit bits of the program, you can write
your code from top to bottom. You can and should still test your program as you go, so
that you don’t reach the end and discover that somewhere deep within your code
you made an error. But if you try writing your programs feature by feature rather
than top to bottom, you’ll find that it’s easier and makes more sense, because you’ll

115Planning a program’s structure
be completing conceptual chunks one by one rather than working top to bottom,
which generally only makes sense if the program doesn’t loop or jump.

 If as you’re unit testing you do find problems, or if you find errors when you’ve
completed the program, refer to sections 5.4 and 5.5 of this chapter. You’ll find tips
on tracking down the simple mistakes that throw TI-OS errors and the subtle blunders
that break your program in harder-to-trace ways. Instead of trying to describe the
decision-making process behind deciding the order in which to write your program’s
components, I’ll dive right into this chapter’s big running example, and you’ll see
how it works.

 I’ll begin with planning the structure of the Pythagorean Triplet solver using flow
diagrams, interface sketches, and pseudocode.

5.2 Planning a program’s structure
The previous section described the general steps to take to build a program easily and
without getting lost in throwing away and rewriting wrong and confusing code. This
section will follow the same outline and progression but will follow a specific running
math example. I’ll show you the planning process for a real program, a tool to search
for certain sets of numbers called Pythagorean Triplets. Figure 5.4 shows how this dis-
cussion will proceed; notice that this is the same diagram as figure 5.1, with the sec-
tion numbers modified to help you navigate through the material.

 I’ll first discuss the problem we’ll be solving; explaining to yourself what you want
your program to do or be is in some ways just as important as typing out the program’s
commands. I’ll then show you two different diagrams of how the program will work:
one a general overview and the other a specific look at how the program will be look-
ing for acceptable triplets. I’ll conclude with pseudocode and an interface sketch.

 Let’s begin with the process of coming up with a concrete idea and basic plan for
the Pythagorean Triplet solver.

Figure 5.4 Planning, creating, and testing the Pythagorean Triplet solver, which will be known as
PYTHTRIP. The subsections of section 5.2 walk you through the planning process for this program,
whereas section 5.3 works through writing and testing the program piece by piece and then
optimizing it.

116 CHAPTER 5 Theory interlude: problem solving and debugging
5.2.1 Idea and details: first steps

For the project I’ll carry through this chapter,
we’ll be solving a subset of the problem known
as Pythagorean triples. As you may know, the
Pythagorean Theorem describes the relation-
ship between the lengths of the legs of a right
triangle, as shown in figure 5.5. A triangle is
called a right triangle when it has a 90-degree
right angle between two of the edges, here,
between A and B.

 The two legs of the right triangle with
lengths A and B are related to the length of the
hypotenuse C by the Pythagorean Theorem:

A2 + B2 = C2

For the program I’ll show you how to write in this and the next sections, we want to
find Pythagorean Triplets, sets of (A, B, C) values that fulfill the Pythagorean Theo-
rem. We want this program to find triplets only where A + B + C = N, for any N that the
user enters. Two valid values of N that we might try are N = 12, which works for the
triplet (3, 4, 5), and N = 198, which can be formed from the triplet (36, 77, 85). If the
program finds values for A, B, and C that sum to N, it will show the user the first solu-
tion it finds and quit. If it instead finds no such values, it will alert the user that it was
unsuccessful before exiting. The values A, B, and C will be subjected to the additional
constraint that 0 < A < B < C. That is, all of the values are positive, all are distinct, and
all are integers.

 My design therefore will need to have the following pieces:

■ My program will need to get a value for N from the user.
■ The program can then look for values of A and B that create a Pythagorean tri-

ple and check each such set of numbers to see if they add up to N.
■ It should tell the user if it finds one. It should also detect if no such numbers

were found and tell the user when that happens.

I’ll use the homescreen for input and output. For this program, I’m choosing to save
the details of how exactly to solve for A, B, and C for the next planning stage, where
I’ll create diagrams and pseudocode to plan the program. Let’s therefore move on to
discuss creating the appropriate diagrams, pseudocode, and sketches to help me write
this program to be both correct and well written.

5.2.2 Diagrams and pseudocode

Diagrams and pseudocode to help you plan your program can take many forms, as I
introduced in section 5.1.1. I’ll show you several ways I could choose to plan the
Pythagorean Triplet solver. If this was your program, you could choose to use all of

Figure 5.5 A right triangle with legs A
and B and hypotenuse C, where the
lengths of the legs and hypotenuse fulfill
the Pythagorean Theorem, A2 + B2 = C2

117Planning a program’s structure
these to plan the program, use none of them, or pick which planning methods are
most helpful to you. Remember that the goal is to help you write a good program as
quickly as possible but not to weigh you down with so much preplanning that it takes
you hours to get to writing the program. The amount of planning you do should gen-
erally be proportional to the complexity of the program you’re writing. In addition, as
you become a more experienced programmer, you’ll discover that it takes less and less
planning to form a clear mental picture of what your completed program will contain.

 I’ll show you a diagram that provides a general overview of the entire Pythagorean
Triplet solver, which I’ll call PYTHTRIP to fit into the 8-character limit on TI-83+/84+
program names. I’ll show you the pseudocode that you could write to match that dia-
gram and then a figure and pseudocode that provide a more detailed look at the core
math functionality of the solver. Finally, I’ll show you how you could sketch out the
interface for this program.

A FULL-PROGRAM STRUCTURE DIAGRAM AND PSEUDOCODE

First, you could decide that you want to get a general idea of how the program as a
whole will be structured and that you don’t need to worry about the specifics until you
start writing the program. For this particular program, you know that you need to get
a value for N from the user, solve for A, B, and C, and report the results (or failure) of
the program to the user. If you tried to draw a diagram for this in the general flow-
chart form that I’ve been showing you throughout this book, you might end up with
something like figure 5.6.

 Alternatively, you may decide to write the structure for this program in pseudo-
code. Pseudocode isn’t a real programming language; instead, it’s a way of represent-
ing program flow in something that looks like but isn’t code. Everyone’s personal
pseudocode style differs, and there’s no right or wrong way to write pseudocode. For
the sake of this book, I’ll write pseudocode that resembles TI-BASIC, and I recom-
mend you do the same. Remember, I’m not trying to write actual TI-BASIC here but
to sketch out what a simplified version of the program might look like, omitting
details like how to solve for A, B, and C. Try to compare this to figure 5.6 and see how
it almost directly corresponds.

Figure 5.6 A simple block overview of the Pythagorean Triplet program. It explains the program to
the user, prompts for a value for N, and solves for A, B, and C. It tells the user the values if it finds
them or warns them it failed and then quits.

118 CHAPTER 5 Theory interlude: problem solving and debugging
:Disp instructions
:Prompt N
:Search for A,B,C where A+B+C=N
:If found
:Then
:Disp A,B,C,N
:Else
:Disp "NO RESULTS"
:End

As you can see, this pseudocode resembles TI-BASIC but obviously would never run. It
expresses the flow of the program, in this case first showing the user information
about how the program works and prompting for a value for N, then searching for a
valid triplet, and finally informing the user of the program’s results.

A DETAILED DIAGRAM AND PSEUDOCODE

After you write your highest-level plan for your program, which makes lots of general-
izations, you might decide to add more specificity and detail. For this program, the
vagueness comes from the Search for A, B, C line, which compresses the entire math-
ematical process of searching for Pythagorean Triplets into one line without describ-
ing how it’s done. If as a beginner programmer you tried to write the program from
the diagram in figure 5.6 or the pseudocode just shown, you might get lost and frus-
trated. Indeed, I’d argue that the details of how exactly the program will search for
value for A and B (and therefore C) are more important than writing out what this
particular program will Input and Disp, because the math to search for Pythagorean
Triplets is the core of the program’s useful functionality. For each new program you
write, you should balance how much (and which parts) you want to decide before-
hand and what you want to leave to figure out while you write the program itself.

 The more detailed examination of the Look for values box in figure 5.6 expands
to the contents of figure 5.7, which also includes the two ending display boxes and the
Return box. To understand the contents of the large dark box labeled Look for
values in this diagram, you must consider what we want this program to do. It should
find, if they exist, values for A, B, and C that make the equation A + B + C = N true and
must also be a Pythagorean triple. If you pick values for A and B, then you already
have C as well, because A, B, and C follow the equation A2 + B2 = C2; in other words, if
you pick A and B, then C must be √(A2 + B2). Therefore, we now know one fact: we
must pick A and B and use these to calculate C.

 With our valid Pythagorean triple, we’ll have to check if A + B + C = N, and if not,
keep trying more values for A and B. The logical next question then is which values of
A and B to test. I specified the constraint 0 < A < B < C. This means A, B, and C are all
positive, and none is equal to any of the others. We could make A vary between 1 (the
smallest possible value larger than zero) and N. Why stop at N? Because if B and C are
positive, then A can’t possibly be larger than N to make A + B + C = N be true. We can
stop at N – 2, because neither B nor C can be smaller than 1.

 We can follow a similar process to pick the bounds on B. We’ll say that it can go as
high as N – 2 as with A, but for the lower bound, I’ll pick A + 1, because we know that

119Planning a program’s structure
A < B and that A and B must both be integers. Therefore, A can be 1 through N – 2,
and B can be A + 1 through N – 2. This leaves us with this search process:

■ Try varying A from 1 to N – 2.
■ For each A, try a range of B values, from A + 1 through N – 2.
■ With each pair of A and B values, calculate C.
■ If A + B + C = N, display and stop; otherwise, try another pair of values.

Figure 5.7 shows this written out as two nested For loops. The outer For loop will run
its body for each possible A value. In the body, an inner For loop will try a range of B
values for each A. In the inner loop’s body, the program calculates C and tests if
A + B + C = N. You could also write this out in pseudocode:

:For every A in the range 1 to N–2:
:Vary B for that A between A+1 and N–2:
:Now for A and B, set √(A2+B2)→C
:Display results and quit if A+B+C=N
:End B loop
:End A loop

This pseudocode in particular will be helpful when we’re ready to turn the plan into
actual TI-BASIC code.

 As a final short lesson, I’ll review the task of sketching out program interfaces.

DESIGNING AN INTERFACE

If your program will be simple, you might not need to think about the interface. If it
has several different features, is a game, or is designed to look especially professional

Figure 5.7 Expanding the outline of the core math of the PYTHTRIP program. Instead of simply a
“black box” that finds if there’s a solution triplet (A,B,C) to A + B + C = N for a given N, we now
expand the program plan to think about how to test each possible A and B value to see if they form
a Pythagorean Triplet that satisfies the given desired target N value.

120 CHAPTER 5 Theory interlude: problem solving and debugging
and spiffy, designing the interface is a helpful part of the planning process. You’ll have
a chance to see how your program will look before you write it, and you’ll be able to
see if the way your program presents itself to and interacts with the user might be con-
fusing or frustrating. The Pythagorean Triplet solver is a relatively simple program
and so the interface is fairly straightforward: some input commands and some output
commands. But to give you an idea of what parts you might want to sketch for more
complex programs and games, take a look at figure 5.8.

 With a solid plan for how this program will look and be structured written down,
we can move on to turn the plan into code.

5.3 Headache-free coding and testing
After considering different ways to formulate a program and have a complete design
drawn out in diagrams and/or pseudocode, you’re ready to begin to write real code.
Ideally, this should be one of the easiest phases. If you simply dove into writing code,
you’d likely have to deal with rethinking pieces as you went, redesigning the flow of
the program, deleting and re-creating pieces, and spending time frustrated. With a
well-thought-out plan, all you need to be able to do is take your diagrams and/or
pseudocode and turn it into actual code. You’ll still need to test and debug your pro-
gram as you go, but the process will have been made vastly easier by your initial plan-
ning and brainstorming.

 In this section, I’ll first teach you how to turn the flowcharts, interface sketches,
and pseudocode for PYTHTRIP into actual code. I’ll show how this program can be
unit tested and how final testing will be performed. Finally, I’ll show the finished pro-
gram and take it one step further. But first, although you may have already gained
some insight into the process from previous chapters’ examples, I’ll show you how to
turn this program’s plan into code.

5.3.1 Flowchart to code chunks

This section will draw from figures 5.6, 5.7, and 5.8 as well as the list of concept-to-
command mappings in section 5.1.2 to turn the PYTHTRIP plan into code. As men-
tioned in this chapter, it’s generally preferable to work in chunks, coding one feature
before adding more features around it. For this program, the core is calculating an A,

Figure 5.8 Designing the UI. The starting screen is at left; depending whether or not the
program finds a solution, one of the screens at the right is shown.

121Headache-free coding and testing
B, and C for a given N. Therefore, we’ll start there and then add extra code around
that core to create the program’s UI.

 If you review section 5.2, you’ll see that figure 5.7 details the math necessary to cal-
culate an A, B, and C that sum to a given N and also form a valid Pythagorean Triplet.
That figure was used to create a fragment of pseudocode that describes the same con-
cept, reproduced here:

:For every A in the range 1 to N–2:
:Vary B for that A between A+1 and N–2:
:Now for A and B, set √(A2+B2)→C
:Display results and quit if A+B+C=N
:End B loop
:End A loop

We can turn this pseudocode into true TI-BASIC code. First, let’s construct the loops
that will vary A and B. In this case, we want to use every integer between 1 and N – 2
for A and every integer between A + 1 and N – 2 for B. The logical choice here is a pair
of For loops: For loops are good when you need to count or examine each element in
a regularly spaced series. The two For loops can be written as follows:

:For(A,1,N–2
:For(B,A+1,N–2
:End
:End

Inside the inner For loop, A and B will take a full range of possible values that could
form acceptable triplets. To complete the triplet, we need the third number, C. We
know from the pseudocode that we could write this as √(A2 + B2)→C and then check if
A + B + C = N. But we can save ourselves a variable by creating a conditional that
checks instead if A + B + √(A2 + B2) = N and if so displays A and B and stops:

:If A+B+√(A2+B2)=N
:Then
:Disp A,B
:Return
:End

This If/Then conditional executes its code block only if A, B, and C sum to N, which
means this is a valid triplet that correctly completes A + B + C = N. For now, we make
the program display A and B and immediately return if a solution is found.

 At this point, we have all of the code necessary to solve the problem specified for
this program. We’ll do some unit testing to make sure it works right before adding UI
components to it and testing the full PYTHTRIG program.

5.3.2 Performing unit and full testing

The two chunks of code just presented form a full (if rudimentary) Pythagorean Trip-
let solver. We can combine them into a preliminary PYTHTRIP program, as shown in
the following listing. The program is shown as PYTHPREL, but if you’re following

Vary A between 1
and N – 2, with an
implied (omitted)
increment of 1

For each A, try B values between
A + 1 and N – 2, with increment
1. The ending parentheses are
omitted to save space.

End the For
loop for BEnd the For

loop for A

Equivalent to If
A + B + C = NDon’t check any more A, B pairs

because a solution has been found

122 CHAPTER 5 Theory interlude: problem solving and debugging
along on your calculator, name it PYTHTRIP so you’ll be able to add the final compo-
nents to it to complete the program.

PROGRAM:PYTHPREL
:For(A,1,N–2
:For(B,A+1,N–2
:If A+B+√(A2+B2)=N
:Then
:Disp A,B
:Return
:End
:End
:End

To test this program on your calculator, you’ll have to do something I haven’t previ-
ously shown you: manually set up a variable. Figure 5.9 shows how to set up variable N
for this program and then execute the simple program (note that it’s PYTHPREL here
but can be PYTHTRIP on your calculator). I already said that (3, 4, 5) is a valid triplet;
because 32 + 42 = 52 and because 3 + 4 + 5 = 12, this program should display 3 and 4 for
N = 12. Lo and behold, that’s precisely what it does.

 If you try N = 198, another sum that can be formed with a triplet, the program
should work for about two minutes before spitting out A = 36 and B = 77.

 Because this core code works, we can proceed to wrap it in an interface. The inter-
face diagram in figure 5.9 indicates that the program should display a short explana-
tion before prompting for N. We can clear the screen with ClrHome and write out the
explanation and prompt with a multipart Disp command and an Input command.
Figure 5.10 shows how this will look.

 Notice that I’ve cut up the explanation into pieces based on the fact that the
homescreen is 16 characters wide:

:ClrHome
:Disp "FINDS A PYTHAGOR","EAN TRIPLET","A B C (A2+B2=C2)",

➥ "WHERE A+B+C=N","AND 0<A<B<C
:Input "TARGET N=",N

Listing 5.1 Preliminary PYTHPREL program

Vary A and B over all
possible valid values

Check if they create a Pythagorean
Triplet summing to N

End the conditional block
and the two For loops

Figure 5.9 Unit testing the core of the Pythagorean Triplet solver. At left, setting up
N = 12; then at right, prgmPYTHPREL correctly finds that A = 3 and B = 4 (and C = 5)
form a valid triplet that sums to 12.

123Headache-free coding and testing
Next, we need to display “NO RESULTS” at the end if we didn’t already Return after
showing a valid solution. That’s a simple Disp command with a ClrHome:

:ClrHome
:Disp "NO RESULTS

Finally, the slightly fancy display of A, B, C, and N shown in figure 5.10 can be made
with a Disp command and four output commands:

:Disp "FOUND:","A=","B=","C=","N=
:Output(2,3,A
:Output(3,3,B
:Output(4,3,√(A2+B2
:Output(5,3,N

Notice that all four output commands start on the third column of their respective
lines, making the values appear neatly after the four equals signs as in figure 5.10.

 Now that we’ve created all the pieces we need for the final program, we can glue
them all together into prgmPYTHTRIP.

5.3.3 The final Pythagorean Triplet solver
Now that we’ve designed the different pieces of our PYTHTRIP program, we can finally
put it all together, as shown in listing 5.2 and demonstrated in figure 5.10. This pro-
gram will ask the user for a value for the sum of A + B + C, called N, and use the two
nested For loops we designed to loop for Pythagorean Triplets. If it finds a solution, it
informs the user and quits; if it doesn’t find any solution, it also tells the user about
that before quitting.

PROGRAM:PYTHTRIP
:ClrHome
:Disp "FINDS A PYTHAGOR","EAN TRIPLET","A B C (A2+B2=C2)",

➥ "WHERE A+B+C=N","AND 0<A<B<C
:Input "TARGET N=",N
:For(A,1,N–2
:For(B,A+1,N–2

Listing 5.2 Final PYTHTRIP program

Figure 5.10 The completed interface for displaying instructions (left) and
results (right) for PYTHTRIP

Variable A can
be at least 1 and
at most N (or
more like N – 2)

A < B, so don’t bother testing any
B that is less than or equal to A

124 CHAPTER 5 Theory interlude: problem solving and debugging
:If A+B+√(A2+B2)=N
:Then
:ClrHome
:Disp "FOUND:","A=","B=","C=","N=
:Output(2,3,A
:Output(3,3,B
:Output(4,3,√(A2+B2
:Output(5,3,N
:Pause
:Return
:End
:End
:End
:ClrHome
:Disp "NO RESULTS

MAKING YOUR PROGRAMS BETTER

With rare exceptions, you’ll find that no program is ever truly finished. You or your
users will find new bugs to fix, users and players will suggest features to add, or you’ll
think of new ways to optimize or improve the program. Just as it’s best to consider a
few ways you could construct a program before you begin to write code, you should
avoid convincing yourself that any program is in the best form it could ever take once
you finish putting it together. The program PYTHTRIP in listing 5.2 is a short, correct,
and optimized implementation of the original specification to find a Pythagorean
Triplet (A,B,C) such that A + B + C = N. But you should always, even for this program,
try to think how you could make it faster, smaller, more user friendly, and more fun.
Chapter 10 will take you through all kinds of optimization tips and tricks, but let’s
quickly look at a handful of them now.

 Here, you might start at improving the speed of the program. Though optimized,
it still takes four times as long to run if you double N, because the two For loops now
cover twice as many values for A and B, respectively. Ideally, you’d be able to come up
with a way to reduce this: what if there was a way you could use a single For loop to
solve the problem? That might at first seem impossible: you have two independent
variables, A and B, one dependent variable, C, and one known quantity, N. It would
seem that you would need to try all possible values for A and B. But if you think care-
fully, you can express A in terms of B or B in terms of A. When you pick values for A, for
example, then the only unknown left in the equation A + B + C = A + B + √(A2 + B2) = N
is B, and hence there’s only a single value of B that completes the equation. This
means that you’d only have to test a single B for each A value, reducing the two For
loops to a single For loop!

 The following algebra is a little convoluted if you’re not used to this sort of manip-
ulation, but I’ve annotated it to help clarify some of the more complicated steps.
Remember, the goal is to get either A or B all by itself.

A + B + C = N
A + B + √(A2 + B2) = N
√(A2 + B2) = N – A – B

The Pythagorean
formula says
A2 + B2 = C2, so
C = √(A2 + B2)

Quit without running
the rest of the loop;
we found the solution

End the If/Then
statement

Close the two
For loops

Replace C with √(A2 + B2),
because A2 + B2 = C2

125Headache-free coding and testing
A2 + B2 = (N – A – B)2
A2 + B2 = N2 – NA – NB – NA + A2 + AB – NB + AB + B2
A2 – A2 + B2 – B2 = N2 – 2NA – 2NB + 2AB
0 = N2 – 2NA – 2NB + 2AB
2NB – 2AB = N2 – 2NA
2B (N – A) = N2 – 2NA
2B (N – A)/[2(N – A)] = (N2 – 2NA)/[2(N – A)]
B = (N2 – 2NA)/[2(N – A)]

With this final equation, we have an expression for B in terms of A and N. Now for
each A value between 1 and N, there’s only a single corresponding B value that could
possibly make the equation A + B + C = N correct.

 So why aren’t there N different solutions? The majority of the values for B that the
equation will generate won’t be integers; they’ll instead have decimal parts. The prob-
lem statement requires that A, B, C, and N are all integers, so we can discard all possi-
ble values for B that aren’t integers. Using a form you’ve seen once or twice before,
the following comparison is true only when B is an integer:

int(B)=B

Now that we can extract a value for B from each possible A value without running
through every possible B, we can rewrite PYTHTRIP with a single For loop, as in the fol-
lowing listing.

PROGRAM:PYTHFAST
:ClrHome
:Disp "FINDS A PYTHAGOR","EAN TRIPLET","A B C (A2+B2=C2)",

➥ "WHERE A+B+C=N","AND 0<A<B<C
:Input "TARGET N=",N
:For(A,1,N-2
:(N2–2NA)/(2(N–A))→B
:If int(B)=B and A<B
:Then
:ClrHome
:Disp "FOUND:","A=","B=","C=","N=
:Output(2,3,A

What’s with all the algebra?
Sometimes rethinking your program involves rethinking the structure; other times it’s
rearranging the math. Here, we’re realizing that each value of A has only one possible
B value that makes A + B + C = N for the Pythagorean Triplet (A,B,C), not a range of
possible values between A + 1 and N as we assume in prgmPYTHTRIP. By rearranging
the equation that relates A, B, and N, we’re able to solve for the B that matches each
A in a single step. We can then see if A and B form a valid Pythagorean Triplet (A,B,C).

Listing 5.3 A faster PYTHTRIP program, called PYTHFAST

Square both sides

Expand the right
side of the equationMove and

combine
terms Factor out 2B

from the left side

Divide both sides by 2(N + A)
to get B by itself

For each A, only
a single B value
satisfies B=
(N2 – 2NA)/(2(N + A))

Calculate
and store
that B value

Check if B is an integer and
0 < A < B. It’s unnecessary to
check B < C because if either
A > 0 or B > 1 (both necessary for
0 < A < B), then A2 + B2 > B.

126 CHAPTER 5 Theory interlude: problem solving and debugging
:Output(3,3,B
:Output(4,3,√(A2+B2
:Output(5,3,N
:Pause
:Return
:End
:End
:ClrHome
:Disp "NO RESULTS

Why is this better? The fewer loops, or the shorter the loops, the faster the program will
run. If you’re clever, you can even reduce the number of A values that PYTHFAST tries,
because there are fewer possible values for A that make A + B + C = N and 0 < A < B < C
than A = [1,N – 2]. As I’ve mentioned several times, the best code is both fast and short.
Therefore, let’s check that this new version is either faster or shorter, or ideally both!

 One approximate way to measure the length of programs is the number of lines of
code. PYTHFAST is 19 lines, and PYTHTRIP is 20 lines. If you look in your calculator’s
Memory ⇒ Management ⇒ Programs menu ([2nd][+][2][7]), you’ll see that as in fig-
ure 5.11, PYTHFAST is only 5 bytes larger than PYTHTRIP, a good tradeoff if, as we
expect, PYTHFAST is much faster. Table 5.1 illustrates the extreme speed advantages of
the optimized PYTHFAST program.

For N = 12, the simplest Pythagorean Triplet where 0 < A < B < C and A, B, and C are
integers, the PYTHFAST version runs only twice as fast as the slower PYTHTRIP version.
For N = 198, the faster version goes about one hundred times faster than the original
implementation. For N = 1000, the PYTHFAST program beats out PYTHTRIP by more
than a thousand times, completing in 5.1 seconds instead of over an hour and a half.

 As you can see, there can be huge rewards from constantly considering how a good
program might be made better, even if the first, second, or tenth version of the program

Table 5.1 Timing the PYTHTRIP and PYTHFAST programs for some target N values

Target N = A + B + C value Time for PYTHTRIP Time for PYTHFAST

N = 12 (A = 3, B = 4, C = 5) 0.9 seconds 0.4 seconds

N = 198 (A = 36, B = 77, C = 85) 113.1 seconds 1.1 seconds

N = 1000 (A = 200, B = 375, C = 425) 5728 seconds 5.1 seconds

As before, quit early if
a solution is found

Figure 5.11 The Memory menu shows that
the faster version of the Pythagorean Triplet
solver programs is only 5 bytes larger (244
bytes as opposed to 239 bytes) than the
slower PYTHTRIP program.

127Understanding TI-BASIC errors
is good or even great. You can almost always find ways to make your math and science
programs run faster or show the user more information, your utilities to have more
features while taking less space, or your games to be faster and more fun. Here, we
tried to see where the program might be wasting time, specifically trying to reduce the
number of B values we try for each A. We looked carefully at the equation and saw that
there’s only one B value possible for each A value; we used a simple check can deter-
mine if that B is an integer and thus forms a Pythagorean Triplet. We could have
derived an equation to get A for a given B instead; either way, we’d have gotten the
impressive speedup in table 5.1. Reconsidering the mathematical or structural design
of a program even when it’s complete is key to creating fast, small, reliable programs.

 Things don’t always work out quite this well, and more often than not you’ll find
that when you run your programs, even if you’ve carefully planned and unit tested,
things don’t work right. There are two major types of errors your programs can have:
errors that produce an error message and those that are more subtle, making your
program work differently than you intended without revealing what exactly has gone
wrong. I’ll first show you TI-OS BASIC errors, introduce the most important types, and
explain general approaches to resolving such errors.

5.4 Understanding TI-BASIC errors
If every program worked correctly, programming would be a wonderfully stress-free
job and hobby, though there would be little challenge. For better or worse, errors are
inevitable with any programming language; as you become more experienced, you’ll
encounter fewer errors. The easiest errors to track down are those that come with a
clear warning sign to tell you what went wrong. TI-BASIC programs can throw many
such errors.

 When you do something that your calculator can tell is obviously wrong, such as
putting too many closing parentheses, the wrong number of arguments to a com-
mand, or trying to add 3 + “HELLO”, your calculator will notify you with errors such as
those listed in table 5.2.

Table 5.2 The TI-OS error codes you’re most likely to see when writing TI-BASIC programs. The table
shows each TI-OS error, the equivalent Doors CS code, and an explanation of each.

TI-OS Error Code Doors CS Error Meaning

ERR: OVERFLOW Error 507: OVR Attempted to store a number larger than ±1099 in a variable.

ERR: DIVBY0 Error 508: DV0 A math expression divided by zero.

ERR: DOMAIN Error 510: DOM Either you tried to use a math function undefined for that
value (such as log of a nonpositive number) or you specified
an offscreen coordinate for Output, Text, etc.

ERR: INCREMENT Error 511: INC The increment for a For loop or a seq command was zero.

ERR: BREAK Error 512: BRK The user pressed [ON] to stop a TI-BASIC program.

128 CHAPTER 5 Theory interlude: problem solving and debugging
When you receive one of these errors, as shown in figure 5.12, you can choose to
immediately quit or to go to where in the source the error occurred. This latter option
lets you see exactly where you made your mistake and attempt to correct it. Most
errors are fairly self-explanatory if you compare your code with the errors in table 5.2.

ERR: NONREAL Error 513: NRL A calculation was made in Real mode but returned a complex
number as an answer.

ERR: SYNTAX Error 514: SYN Generic typo in a program, such as missing quotes, colons,
parentheses, etc. Also can occur when using the wrong vari-
able type in a function (like a Str in a For loop).

ERR: DATATYPE Error 515: TYP A literal number, string, matrix, picture, list, etc. is used where
another data type must be used instead.

ERR: ARGUMENT Error 516: ARG Most likely, you specified the wrong number of arguments to
a function.

ERR: MISMATCH Error 517: MSM You tried to perform math on two lists or two matrices that
have incompatible dimensions.

ERR: INVALID DIM Error 518: DIM You tried to get or set an element outside the size of a matrix
or list or tried to create a list or matrix of an invalid size.

ERR: UNDEFINED Error 519: UND You referenced a numeric, list, string, picture, matrix, etc. vari-
able that hasn’t been given a value or doesn’t exist.

ERR: MEMORY Error 520: MEM Your calculator is out of memory, either because of lots of pro-
grams/files/data or because of a memory leak (see the “Lbl,
Goto, and memory leaks” sidebar in chapter 4).

ERR: ILLEGAL NEST Error 522: ILN You used a seq inside a seq command, a fnInt inside a
fnInt command, or an expr inside an expr command.

ERR: LABEL Error 526: LBL A Goto command tried to jump, but the target Lbl it speci-
fies doesn’t exist in this program.

Table 5.2 The TI-OS error codes you’re most likely to see when writing TI-BASIC programs. The table
shows each TI-OS error, the equivalent Doors CS code, and an explanation of each. (continued)

TI-OS Error Code Doors CS Error Meaning

Figure 5.12 A SYNTAX error. If you choose 2: Goto in the error message at
left, the calculator shows you the source code of your program with the cursor
placed over the error; here you need the name of a variable instead of a number
after Prompt.

129Tracing malfunctioning code
The least-clear errors are those that stem from the values of variables, rather than
directly from your code. If you read a DIVBY0 error, the TI-OS will take you to a line
with division; you could quit to the homescreen, type in the name of the variable in
the denominator of the division, and hit [ENTER] to see that it’s zero. For a MEMORY
error, you could check if the Memory menu ([2nd][+][2]) shows you to be low on
RAM, and if not, check if you’ve created a memory leak. On the other hand, errors
like ERR: LABEL are easy to solve, because choosing Goto at the error message will take
you directly to the offending Goto or Menu command, from which you’ll know the
name of the missing Lbl.

 Unfortunately, not every mistake you make will produce an error message; the
majority of your debugging time will be spent tracing code that doesn’t do what it’s
meant to do but doesn’t produce any obvious error messages.

5.5 Tracing malfunctioning code
When you don’t see any error messages, but your program is still failing to display the
correct output, do math properly, or run your game as you intended, you must fall
back on a utility belt full of debugging skills. Don’t despair! Practically no program-
ming error is insurmountable. You’ll develop your own particular techniques as you
make coding mistakes and learn to find them, but most methods fall into one or more
of three categories:

■ Add code to narrow down the line or section in error.
■ Pluck out a section of code into a separate program for analysis or rewriting.
■ Analyze the values of variables at different points in the program.

Many techniques fall into more than one category. You can strategically stop the pro-
gram with the [ON] key and check the value of variables, or you can insert Disp/
Pause statements in code you suspect to be broken to trace the value of that code’s
variables as it executes. You can even combine all three, by pulling out a malfunction-
ing section, adding code to display values and help you understand what isn’t work-
ing, then return to the original program and fix the problem.

 To debug a program, you must first recognize that it has a bug. Ideally, you’ll dis-
cover problems during testing. You should always thoroughly test your programs and
games to make sure they work well for you, and if you can, give them to your friends to
test as well. Try to think like a user, not like a programmer. Enter invalid numbers at
prompts. Press random keys during a game. Enter values into a math program that
you know should produce certain output values, and make sure that they do, as we did
for our unit testing of PYTHTRIP via the intermediary PYTHPREL program. Once
you’ve determined that an error exists, your remaining tasks are twofold, as will be
covered in this section. First, you need to determine where the problem lies. Second,
you need to figure out how to fix the issue.

 I’ll begin by outlining techniques to find malfunctioning code.

130 CHAPTER 5 Theory interlude: problem solving and debugging
TRACING: WHICH LINE IS IT, ANYWAY?
If you made a good set of plans describing your program, they’ll come in handy to
help you debug. You’ll usually be able to tell in what portion of your program an error
occurs from how the error manifests itself. If the player isn’t getting points for shoot-
ing down enemy spaceships in a game, then you’ll probably need to look at the code
that handles the destruction of the enemy ships and see if you forgot to make it
update the score variable. If a math program displays a correct solution for one of two
variables but not the second, you can probably focus on the equations that solve for
the second variable. You may remember enough of your code to be able to start edit-
ing the program immediately and find the error and perhaps even fix it. If not, you’ll
need to narrow down the problem area to determine if you can just fix one or two
lines or if the fundamental program design is flawed.

 Once you know the general area of the program where the error occurs, you can
apply tracing techniques to determine where the problem occurs:

■ If the issue appears to be a mathematical error, examine your equations, and if
possible, compare them as written in your program to your reference materials,
either books or your notes. Make sure that you didn’t omit a step in the solution.

■ If code that should run isn’t running, or code that shouldn’t run is, check your
conditional statements, particularly your comparisons. Make sure you used the
proper variables, the proper values for comparison, and the correct operators.
If you’re using logical operators such as and and or, did you omit necessary
grouping parentheses?

■ If loops aren’t running properly, check their conditions and variables. Do your
For loops have incorrect arguments? Did you remember to initialize the vari-
ables for your While loops? If your loops are running forever, did you add
proper code inside the loops to update variables used in loop conditions so that
the loops will know when to stop?

■ If code takes much longer to run than expected, make sure that it isn’t stuck in
an infinite loop, and if not, try to rethink your solution to see where it might be
optimized, as we did earlier in this chapter.

■ If variables suddenly have unexpected values, look for lines of code where you
might have mixed up variable names.

These are a small subset of the many possible issues you may encounter. For any error,
tracing the error should involve first understanding the symptoms of the problem and
then using those symptoms to identify what portion of the code might be wrong.

 For errors where you find the problem and the fix isn’t an easy addition or removal
of a few numbers or commands, you may also have to think hard about your solution.

RESOLVING BUGS: BREADCRUMBS AND OTHER TECHNIQUES

Fixing bugs and mistakes may be as simple as fixing a mistyped number or correcting
the target label specified in a Goto. In many cases, even once you’ve identified the mal-
functioning code, the solution may not be immediately apparent. If the techniques in

131Summary
the previous section have failed to pinpoint the problem, you can use techniques such
as the addition of breadcrumbs, adding extra output to your program to trace prob-
lems. From your planning, diagrams, pseudocode, and the ideas for your program
that you have in your head, you know how it should work, and you can presumably tell
when it deviates from that plan. Therefore, you can add Disp commands, Pause
instructions, or both to your program and examine the values of variables as the pro-
gram proceeds through suspect code. You could start with widely spaced debugging
code, check when your variables get unexpected values, and then add more Disp/
Pause commands to further narrow down the problem.

 You may also find that when you reach a certain Pause, you want to stop the pro-
gram with BREAK and either examine the code at that point or return to the home-
screen, where you can manually check the contents of your program’s variables.
TI-BASIC is easier than many languages to debug in that variables retain their contents
even after the program ends, which makes performing a “postmortem” investigation
of problems simpler. On the flip side, applications written specifically to help you
debug problematic programs in languages such as C can step line by line through
your code, showing you the contents of the program’s variables and memory at each
step, whereas with TI-BASIC you need to add extra commands to your program to
achieve the same effect.

 If all else fails, your last resort is to try rewriting that particular section of code or to
confer with other programmers. If you decide to rewrite the code, it’s important that
you keep the original code, in case you suddenly realize what was wrong with the first
implementation while you write the new one. Such sudden revelations are more com-
mon than you might think, so retaining your original is invaluable. If you need other
programmers to talk to, feel free to refer to the forums listed in appendix C.

 Once you successfully track down and solve any problems in your program, you’ll
find that you almost always learn some new tricks that will help you complete your
next project that much more easily. Remember, virtually every coding error is solvable
with a bit of patience and careful examination.

5.6 Summary
In this chapter, I reviewed the skills necessary for you to become confident writing
your own calculator programs, skills you can apply to any programming language. I
introduced you to the steps for taking a program all the way from idea to a finished
product and the pitfalls you might stumble upon along your journey. I then made
these lessons more concrete with a Pythagorean Triplet solver, showing how to deduce
the necessary math to solve the problem, create corresponding diagrams and pseudo-
code, and finally translate those into code. I demonstrated how a bit of consideration
and optimizing can make a fast, small program even better. This chapter presented
the skills to create programs from scratch and fix any problems that you need in order
to boldly experiment with your own great programs. Learning programming isn’t a
passive activity, and I strongly urge you to start toying with program ideas of your own,

132 CHAPTER 5 Theory interlude: problem solving and debugging
to start fine-tuning the lessons I’ve presented here into intuitive understanding of
writing and debugging programs.

 With these skills, you can start writing your own programs and games in earnest,
exploring the features your calculator has to offer to programmers. In the next chap-
ter, you’ll learn to write dynamic, interactive programs and games that can directly
read the calculator’s keypad.

Part 2

Becoming a
TI-BASIC master

Part 1 of this book teaches you skills that can easily be applied to any language,
part 2 focuses on commands available specifically in TI-BASIC. Although event
loops are useful for any programmer writing interactive programs, in TI-BASIC
they’ll let you create fun, real-time games. You’ll learn about drawing and graph-
ing from within programs and how to use real and complex numbers, random-
ization, lists, and matrices to build more advanced utilities and games.

 In chapter 6, you’ll learn about the event loop, a way to simultaneously check
if the user has pressed keys and to update graphics and program state. Together
with the skills you developed in part 1, you’ll be able to build and test a full,
interactive Mouse and Cheese game. Chapters 7 and 8 teach you about the many
graphical tools available to TI-BASIC programs, including manipulating points
and pixels; drawing lines, shapes, and text on the screen; and working with
graphed equations. Examples include moving text and a mouse cursor around
the screen, creating a painting program, and rendering polygons.

 Chapter 9, the final chapter of part 2, provides a broad overview of strings,
matrices, and lists as well as real, complex, and random numbers. These data
types can be used in many different ways in your own program; the chapter pres-
ents a simple RPG (role-playing game) that you can expand with your own ideas
and challenges you to write some of your own complete games.

Advanced input
and events
One day, you pick up your calculator, having made yourself several games and pro-
grams. You’ve shared them with your friends, and they think you’ve done a good
job. You’re frustrated, though, because the games aren’t very interactive. You want
something more immersive, where you move a hungry mouse around the screen,
trying to collect pieces of cheese. You want to make the game challenging, so you
need to add a way to lose: you add a hunger bar. You decide that the hunger bar
will gradually fill and that the player will lose if the hunger bar fills up. In sketching
out your game, you envision something like the screenshot in figure 6.1, with a
moving mouse (M) chasing a piece of cheese (square).

 Excitedly, you create a file on your calculator and get ready to create this fast-
paced game, only to suddenly discover that you have no idea how to start. You real-
ize that you don’t know any way to check if keys on the keyboard have been

This chapter covers
■ Monitoring for events with event loops
■ Getting keypresses directly with getKey
■ Moving characters around the homescreen
■ Building a fun, interactive game with

event loops
135

136 CHAPTER 6 Advanced input and events
pressed, other than using the Input or Prompt
command to ask the user for a letter or number.
For your game, you need a way to simultaneously
check if the user pressed keys to move the mouse
around and to fill up the hunger bar. If the player
inputs nothing, you still want the hunger bar to
continue filling up.

 Needless to say, your adventures in program-
ming don’t stop there, leaving you unable to turn
the game in your mind into a program. Like many
other programming languages, TI-BASIC doesn’t
limit programmers to programs where the user types in input and gets the output in
the form of a Disp or math programs that can only calculate results and display them
in boring numerical form.

 Sure, you could use Input and Prompt, but those would limit you to a static pro-
gram, one that would stop completely every time you want to get input from the user.
If you want to create something more fluid, such as an arcade-style Mouse and Cheese
game or a math program where the user can move a cursor along a graphed function
to examine properties of the function, you need something better. The solution is the
getKey function, which allows you to check if any of the keys on the keyboard are
being pressed without stopping the program, even if nothing is being pressed.

 In this chapter, you’ll learn about getKey, the command you use to check for key-
presses, and you’ll see how to move a letter around the screen with the arrow keys.
With those skills, you’ll move on to build the full Mouse and Cheese game with your
new getKey knowledge and then look at ways to expand the game. The chapter will
conclude with useful facts about getKey. But first, before you can effectively use
getKey, you need to learn about an important programming concept: event loops,
their purpose and construction, and how you can use them to create programs that
can respond to events such as keypresses.

6.1 Event loop concepts
In its simplest form, the event loop lets your program do two things at the same time:
occasionally check for and react to asynchronous events and execute other code repeatedly
at the same time. As you’ll see in our Mouse and Cheese game at the end of the chapter,
the program can wait for the player to press a key and gradually increase the mouse’s
hunger at the same time.

 An asynchronous event is something that happens that the program can’t control,
in this case the user pressing keys. The user chooses when to press a key, so a keypress
is an event that occurs asynchronously. In other sorts of programs, asynchronous
events might also include data arriving from a network.

 Fortunately, you can catch asynchronous keypresses in your TI-BASIC programs.
You use a construct called the event loop, the structure of which is shown in figure 6.2,

Figure 6.1 You imagine making a
Mouse and Cheese game.

137Event loop concepts
which repeatedly checks for certain events to occur while running other code at the
same time.

 The ideal event loop contains as little code as possible, as you’ll see in the Mouse
and Cheese game that concludes this chapter. The less code in the event loop, the
more often the loop will check for events (in this case, keypresses), and the faster
your program will be able to respond to the events. If you try to cram a lot of code
into the event loop, it will take your program longer to run each iteration of the
loop, proportional to the amount of extra code you’re putting in the loop, and
the user will notice a delay between pressing a button and your program respond-
ing to the key.

A note on asynchronicity and computers
On some platforms, computers running OSs such as Linux, Windows, or Mac OS, you
can divide your program into several threads or use related concepts called signals
or interrupts, which let you handle asynchronous events completely separately from
the rest of your program. One thread executes a loop looking for events to happen,
while another thread might be responsible for updating the contents of the screen.
With signals or interrupts, the OS will temporarily pause whatever part of your pro-
gram is running and execute a different part that understands what to do with what-
ever asynchronous event just arrived. For example, when a TI-BASIC program stops
with ERR:BREAK because the user pressed [ON], an asynchronous event has
occurred that triggers an interrupt, stopping your program from executing and letting
the calculator’s own software take over again.

Unfortunately, TI graphing calculators and TI-BASIC in particular aren’t quite as com-
plex as computers, despite their power, and with TI-BASIC you can’t use your own
threads, signals, or interrupts. You can’t tell the TI-OS that you want your own pro-
gram to be notified when [ON] is pressed, which is part of the reason why [ON] has
no keycode for getKey in figure 6.4 (more on that later).

Figure 6.2 The structure of an event loop

138 CHAPTER 6 Advanced input and events
Every event loop contains at least two basic parts: the section of code that looks for
events and handles them and an escape condition. Most event loops have a third part:
a section of code that executes other commands that are independent of events that
are occurring. In figure 6.2, you can see the basic structure of the event loop; for the
loops that only check for events, the “Do nonevent work” step is omitted.

 I’ll show you an example of each type of event loop in the next section, and later in
this chapter, when you’ve learned to read events in the form of keypresses, you’ll code
your own event loops.

EVENT LOOP SKELETON

All event loops must check for events and act on events that occur. They must also
have a certain set of conditions that end the repetition of the event loop; otherwise,
the loop would run forever. Nearly all event loops use the Repeat command. As you
learned two chapters ago, Repeat [condition] will repeat the code between the
Repeat and its associated End command until the [condition] becomes true. Repeat
loops are always guaranteed to execute at least once, which saves you the trouble of
initializing the variables used in the condition. Because you know that the loop won’t
end unless the condition becomes true, it stands to reason that you need to modify at
least one of the variables used in the condition inside the event loop. If written in
pseudocode, the simplest event loop is structured like this:

:Repeat A=1
:Check for events
:If some event
:1→A
:End

If you’re instead willing to escape the event loop if either of two events happens, you
could expand that pseudocode example as follows:

:Repeat A=1 or B=1
:Check for events
:If some event
:1→A
:If some other event
:1→B
:End

As you can see, this will keep checking for events until one of the events that the pro-
gram is looking for happens. At that point A or B will be set to 1, the Repeat condition
will become true, and the program will continue onward, executing whatever code is
after the End command.

 Event loops can be more powerful than this. They don’t need to only check for
events; because the program doesn’t stop at the Check for events line, continuing
even if no event has happened (unlike Input or Prompt), the program can do other
things inside the loop. This addition will expand the pseudocode event loop to look
something like this:

139Event loop concepts
:Repeat A=1 or B=1
:Run some non-event-related code
:Check for events
:If some event
:1→A
:If some other event
:1→B
:End

This piece of code could be made more realistic with a loop that will count upward
until the [CLEAR] key is pressed. You don’t yet know exactly how to check for the
[CLEAR] key, so I’ll write that part of the program in pseudocode:

:0→X
:ClrHome
:Repeat KEY=[CLEAR]
:X+1→X
:Output(1,1,X
:Check for keypresses
:Store any keys pressed into KEY
:End

This code will repeatedly loop through, adding 1 to X and displaying this new value on
the screen, until the event loop notices that [CLEAR] was pressed. When this happens, the
event loop ends, and the program continues with the code after the End command.

A REAL EVENT LOOP

I’ll now take this pseudocode one step further so that you can try running an actual
event loop, although one piece of it will be unfamiliar. The following chunk of code, the
program EVNTLOOP, uses the getKey command, even though you haven’t seen it yet. It
returns a number indicating what key, if any, has been pressed, which it stores in K. Take
my word that it works properly for now; in section 6.2 I’ll go in depth into the details of
cajoling getKey to do your bidding. Here getKey is used to check for the [CLEAR] key.
The Repeat condition has become Repeat K = 45; you’ll see later that the [CLEAR]
key corresponds to a value of 45 returned from getKey. The event loop now looks like this:

PROGRAM:EVNTLOOP
:0→X
:ClrHome
:Repeat K=45
:X+1→X
:Output(1,1,X
:getKey→K
:End

This is the simplest instance of an event loop that both looks for events and performs
other tasks. Once you see how to use getKey, you’ll be able to write more interactive
programs than any other examples you’ve explored thus far. Later in this chapter,
you’ll create such a game.

 Now that you’ve seen the basic structure of an event loop, you need to find out
how you can check for events, which for most graphing calculator programming will

The variable used
for counting

140 CHAPTER 6 Advanced input and events
be keys being pressed on the keyboard. Armed with that knowledge, you’ll be able to
write event loops that can read the keyboard, and then you’ll expand your event loops
to do other things while dealing with keypresses. This is a necessary detour from event
loops themselves to give you the tools you need to construct your own event loops that
can respond to almost any key on the calculator’s keypad.

6.2 getKey
Say that you want to make a simple game where you control a character on the home-
screen. You want to be able to move the character around the homescreen to any posi-
tion, say to get to items it can pick up or to run away from some enemy that’s trying to
attack it. You know how to use the Output command to draw the player’s character,
the items to pick up, and the enemy and even how to make the enemy move around the
screen by erasing it and updating its position variables. But what if you want to let
the player move their own character around the screen? From what you know already,
you could use Input or Prompt, perhaps to make the user type a letter (U, D, L, or R)
to move the player’s character up, down, left, or right. Perhaps the player could
instead type a number, such as 2, 4, 6, or 8. But neither of these solutions is good for a
fun, interactive, real-time game. The game would end up being more like a turn-based
game, pausing every time it needs to ask the user where (or if!) they want to move
their character. A better solution would be to read the calculator’s keypad and be able
to see if the user is pressing any keys without having to stop the rest of the program.

 In this section, you’ll first learn what getKey is and how to use it to check for
keys pressed on the keyboard; then we’ll move on to a few example programs that
let you move characters around the screen of the calculator to get some experience
using getKey.

6.2.1 Using getKey for nonblocking input

In this perfect solution, the enemy would be able to continue to move toward the player
while the program does other things. At the same time as the calculator repeatedly checks
for pressed keys, items could appear or disappear, a time limit could count down, and any-
thing else the program can do could run. In common computer terminology, this type of
input is called nonblocking input, which means that the device checks for input but doesn’t
wait if there’s no input, continuing regardless and allowing it to work on other things
while it waits. By contrast, Input and Prompt are blocking input, which means that the pro-
gram stops in its tracks while waiting for the user to do something, such as enter a number
or a string and press [ENTER]. If the user does nothing, blocking input commands like
Prompt and Input continue to wait. Luckily the TI-BASIC language has a nonblocking
input command that you can use to make the game work perfectly, a command called
getKey. When run, this command checks to see if any keys on the keyboard have been
pressed; if so, it returns a number indicating which key was pressed. If no key has been
pressed since the last time that getKey was called, it returns zero. It’s a nonblocking func-
tion because it returns zero when no key is pressed instead of waiting for a key.

141getKey
A SAMPLE GETKEY PROGRAM: MOVING AN M
To see the getKey command in action, I’ll start with the solution to the player-movement
game. You’ll begin by creating a small program to move a single letter M around the
screen. It will start the M at an initial position near the middle of the screen and then
move the letter around as the user presses the [up], [down], [left], and [right]
arrows. [CLEAR] is the exit key for this particular program. Your program will prevent
the character from moving outside the edges of the screen. Should you wish to try this
program, the only command you might not yet know how to find is getKey, which is
under [PRGM], I/O, 7: getKey ([PRGM][RIGHT][7]).

 This program, shown in listing 6.1, will introduce three new concepts that you
haven’t seen before or that we’ve only briefly discussed:

■ Using getKey to read keys from the keyboard. Figure 6.4 shows the codes for
the arrow keys used in this program.

■ Outputting a space character over another character to erase the previous
character.

■ Performing bounds checking to ensure nothing goes off the edge of the screen.

After you have a chance to look at the program in the following listing and try it out,
I’ll describe each of the pieces in detail to help you understand how it works.

PROGRAM:MOVECHAR
:8→A:4→B
:ClrHome
:Repeat K=45
:Output(B,A,"M
:getKey→K
:If K
:Output(B,A,"[one space]
:If K=24 and A>1
:A-1→A
:If K=26 and A<16
:A+1→A
:If K=25 and B>1
:B-1→B
:If K=34 and B<8
:B+1→B
:End

NOTE If you’re an intermediate or experienced programmer, the use of A and B
for the coordinates of the M in the code in listing 6.1 may seem weird to you. You
may be asking why I didn’t use the more obvious variables X and Y, so that I could
write things like Output(Y,X,"M. Unfortunately, as I’ll reiterate in chapters 7 and
8 when I introduce the graphscreen, the calculator’s OS has a bug that sets Y to
zero every time you clear the screen, which, although it won’t break the
MOVECHAR program, will be something you’ll need to be aware of. Better to start
training yourself not to use Y in graphical programs now and set good habits.

Listing 6.1 Four-directional movement of an M around the homescreen

Initialize X and Y
coordinates (A is X, B is Y) Repeatedly check for

keys and move the M
until [CLEAR] is pressed

Recall that this is
shorthand for If K≠0

If any key was pressed,
erase the M, because it
will be redrawn in
another spot. This is one
literal space written with
[ALPHA][0].

For each of the four
directions, move in
that direction only if
the corresponding
arrow key was pressed
and the M isn’t at the
edge of the screen Loop back to the Repeat command

and recheck the condition

142 CHAPTER 6 Advanced input and events
The flow of the program should be fairly clear. If not, look at figure 6.3, and try to
match the pieces in the diagram to the source code in listing 6.1. It initializes A and B,
which you’ll use as your X and Y coordinates on the homescreen (column and row)
respectively, and then begins a Repeat loop. The Repeat loop continues until K = 45;
you can see that K is assigned from the output of getKey, so the loop continues until
getKey returns 45. If you take a look at the specification above the program, you’ll see
that the program should exit, in this case leave the program loop and reach the end
of the program, when [CLEAR] is pressed. And indeed, 45 is the number that getKey
returns when [CLEAR] is pressed. Inside the loop, the program displays an M charac-
ter at the current row and column and then checks the keyboard, moving the M
accordingly if any keys were pressed. Remember that If K is the same as saying If K≠0:
the Output command immediately after the getKey erases the character just drawn if
any key was pressed. We do this so the program doesn’t leave a trail of Ms behind the
character as it moves. You could clear the screen instead of outputting a space charac-
ter to overwrite the M, but you’ll see in more complex examples that it’s usually better
to erase a single character rather than erase everything on the screen only to draw
most of it back in.

 The four sets of conditionals each cover one of the four directions in which the
M can move: left, right, up, and down, in order. Each conditional has an and
because it can only move if both the key for that direction was pressed and moving
in that direction isn’t going to make the M fall off the edge of the screen. The rela-
tionship between the keys and their conditionals and edge conditions is shown in
figure 6.4.

Figure 6.3 Flowchart of functionality for the four-direction M-moving program,
MOVECHAR

143getKey
If both conditions are true for a given direction, then the coordinates stored in the
column (A) or row (B) variable change accordingly; the program then loops back to
the Repeat, where the M will be redrawn.

DEFENSIVE PROGRAMMING

If the program didn’t have that check for the edge of the screen, and you tried to use
the Output command with coordinates outside the edges of the screen, the calculator
would throw an ERR:DOMAIN error. This safety checking is an example of defensive
programming and is good practice to get used to for any programming language. The
main concept of defensive programming is to not trust the sanity of any input from
outside the program. A programmer should assume that any input to their program is
potentially wrong, unexpected, or could break the program. An example of sanity
checking to program defensively is checking that input typed into a Prompt where you
expect a number is not instead a symbol, a string, or even a blank line. Luckily, the
TI-OS performs sanity checking with Prompt and Input for you and will display errors
such as ERR:SYNTAX if the user types non-numbers into a numeric input field. But the
OS can’t catch every error: if you ask the user for a number between 1 and 10, it’s up
to your program to check the value the user has typed and make sure that it is
between 1 and 10. A defensively written program would continue asking the user for a
number until the user typed a value between 1 and 10. A program lacking these
defenses might break if the user typed in a bad value and it didn’t check the sanity of
the input. A great example would be our ISPRIME prime number checker from chap-
ter 4, which originally broke when the user entered a negative number.

 Because TI-BASIC is a language written for both beginners and advanced users, it does
a lot of error checking on its own and is thus itself defensively programmed. It will pro-
duce an error instead of crashing if you try to draw off the edge of the screen. Fortu-
nately, this way you won’t crash your calculator every time you make a programming
error, which could be frustrating for new programmers. Unfortunately, unless you
defend against and handle the errors yourself, your program will be stopped by the TI-OS
when one of these errors occurs, meaning your user or player will have to start over.
Errors in your program also make it appear less professional and polished to the user or
player. Programming defensively keeps your program in control of the calculator unless
the user presses [ON] to interrupt it and ensures a much better user experience.

Figure 6.4 Arrow keys and their
respective conditional blocks for the
MOVECHAR program

144 CHAPTER 6 Advanced input and events
 With your first getKey-based movement program under your belt, we can move on
to a more systematic explanation of the values that getKey uses to represent each key.

6.2.2 Learning getKey keycodes: the chart and the memorization

As you may have seen from the sample program in
listing 6.1, the keycodes that getKey returns, indicat-
ing which (if any) key was pressed, are all integers,
whole numbers above zero. getKey also can return
0, which means that no keys were pressed since the
last time your program called getKey. The keycodes
are all two-digit or three-digit numbers and follow a
simple pattern. It’s so simple that I’ll first give you
a diagram of the TI-83+ calculator showing the codes
for all the keys, so that you can try to see the pattern
for yourself, and then I’ll tell you what the pattern is.
Notice that the only key that’s missing a keycode is
[ON]; it has no corresponding code. Figure 6.5 dis-
plays the keycode for each key on top of the key.

 As you can see, each key has only one code. You
might ask how you can check for modifier keys, such
as [2nd][key] or [ALPHA][key]: I’ll discuss this in
more detail in section 6.4.2. For now, assume that
you can only detect unmodified keys.

 Looking at the calculator’s keypad in figure 6.5,
and working on the programs that you’ve tried that
include getKey thus far, you may have started to
notice the pattern in the keycodes. Disregarding the
arrow keys, you’ll notice that every keycode for
the first column ends in 1, every keycode in the sec-
ond column ends in 2, and so on. Going down the
rows, every graph key starts with a 1; the second row
including [2nd], [MODE], and [DEL] all begin with 2; and the keys on the last row of
the keypad all begin with 10. To calculate the keycode for any key, count which num-
ber row it’s in from the top, multiply by 10, and add the number of the column that
it’s in, starting from the left. For example, to find the keycode for [SIN] you see that it’s
in the fifth row and second column of the keypad. Because (5 ∗ 10) + 2 = 52, the key-
code for [SIN] should be 52, and indeed it is. The only exceptions, other than the
missing keycode for [ON], are the arrow keys, which are 24 and 26 for [left] and
[right] and 25 and 34 for [up] and [down]. Because the arrow keys don’t follow the
same obvious pattern as the other keys, you may decide to memorize the four arrow
keys’ codes, but once you write a few games, you’ll find the codes to be second nature.
If you look closely at the diagram, you may notice that the [down] arrow has a first

Figure 6.5 getKey keycodes for
each of the keys on a TI-83+ or
TI-84+ keypad. [ON] has no keycode.

145getKey
digit of 3, as if it was in the row with [STAT]. The [left], [up], and [right] arrows are
numbered as if they follow the [DEL] key, so even with the arrows some pattern
is maintained.

 Another question you might ask is how you can check for two keys at once, (hold-
ing down [left] and [up] at the same time to make a character move diagonally across
the screen). Sadly, without advanced functions that I’ll discuss in chapter 11, getKey
can only tell the program calling it about one key being pressed. There are still clever
ways to allow the user to move diagonally. One sly solution uses eight of the nine num-
ber keys of the calculator as if they were arrow keys. [8] is used as up, [2] as down, [4]
as left, and [6] as right. The corner keys ([1], [3], [7], and [9]) are then used as the
diagonal movement keys. Figure 6.6 shows the layout of keys for diagonal movement.

 I’ll finish with a simple program that will tell you the keycode for any key on the
keyboard. Run it, press the key that you want, and it will display the code for that key:

PROGRAM:KEYCODE
:Repeat Ans
:getKey
:End
:Disp Ans

This program saves a variable by using the special Ans variable, typed with [2nd][(-)].
When getKey is run without an assignment (→Variable), it stores the code of the key
returned into Ans. A Repeat loop is wrapped around this, forcing getKey to continue
to run and store keycodes in Ans until Ans≠0. At this point, the user must have pressed
a key, so the program displays Ans, thus displaying the keycode of whichever key was
pressed as reported by getKey. Chapter 10 will teach you more about using Ans.

 With the essentials of event loops and getKey laid out before you, I’ll give you
a problem to solve yourself. Based on figure 6.6 and your newfound knowledge of
the getKey keycodes (if you must, you may refer to figure 6.5), the first exercise
of this chapter will have you take the MOVECHAR program and modify it for eight-
directional movement.

6.2.3 Exercise: eight-directional movement

This exercise asks you to modify the code given for the MOVECHAR program in sec-
tion 6.2.1 to allow for eight-directional movement of the M character around the

Figure 6.6 Using the number keys for diagonal
movement, as shown on the bottom four rows of
a TI-83+ calculator’s keypad

146 CHAPTER 6 Advanced input and events
homescreen using the number keys as arrow keys, as shown in figure 6.6. Remember to
think about what should happen if the character reaches the edge of the screen, espe-
cially because each diagonal movement requires checking two edges. For example, if the
character is at the top edge of the screen and the player presses [7] to move up and left,
think about whether you should let the player just move left or not move at all. There are
two main approaches to solve this problem. One involves using a set of eight conditional
statements (one for each of the possible directions), whereas the second possible solu-
tion integrates the tests for diagonal keys into the four conditional statements already
given in the MOVECHAR program. Remember also to change the four cardinal direc-
tions (up, down, left, and right) to use number keys instead of the arrow keys.

SOLUTION 1: FOUR CONDITIONALS

As usual, there are many possible ways that this exercise could be solved, which fall
into one of two major approaches. You’ll see these two possible approaches presented
here, the first of which uses four conditional statements and the second of which uses
eight different statements. You’ll see that the first of the programs is much shorter
and cleaner; the second is longer. The two programs work slightly differently when
the player presses a diagonal movement key at the edge of the screen. In the first,
shorter program, if the player is at the left edge and presses [7] (up-left), the charac-
ter will move up (but not left off the edge). In the second program, the character
won’t move unless it can go both up and left.

 The first program functions based on the fact that three keys can be used to go in
each direction. That sounds confusing, so let’s look at what I mean. The three up keys
(up-left, up, and up-right), [7], [8], and [9], are all used to move the player’s charac-
ter upward. For now, we won’t worry about the fact that [7] also needs to move it left
and [9] also needs to move it right. Because the keycodes for [7], [8], and [9] are 72,
73, and 74, you could write

:If K=72 or K=73 or K=74
:B-1→B

Recall that B is the variable holding the Y-coordinate, so decreasing it moves the char-
acter up the screen. That set of two lines of code will let the player move off the top
edge of the screen, so you need to add a condition checking if the character is already
at the top edge. One possible solution could be

:If K=72 or K=73 or K=74 and B>1

Why B > 1? Because the character should move up only if the M isn’t already at the top
of the screen, which has Y-coordinate B = 1. Unfortunately, this full line of code has
the flaw that the B > 1 condition might be anded with K = 74 and thus only apply to
moving up and right, whereas you want it to be applied to all three possible keys. You
can solve the problem by using grouping parentheses to make sure the three ored key
conditions are checked before being anded with the edge-detection condition:

:If (K=72 or K=73 or K=74) and B>1

147getKey
A visual explanation of this concept is shown in figure 6.7, for leftward movement of
the M character. You can see this solution in action in the source code of the program
MOVE8D1 in listing 6.2, used four different times for the four cardinal directions.
Each of the diagonal keys appears in two of the statements, so that the up and left con-
ditions both include, for example, the keycode for up-left (K = 72).

 Because the two directions for each diagonal are checked separately, each with sep-
arate edge checking, the player can move along an edge by pressing one of the diago-
nal keys.

PROGRAM:MOVE8D1
:8→A:4→B
:ClrHome
:Repeat K=45
:Output(B,A,"M
:getKey→K
:If K
:Output(B,A,"[one space]
:If (K=82 or K=72 or K=92) and A>1
:A-1→A
:If (K=84 or K=74 or K=94) and A<16
:A+1→A
:If (K=72 or K=73 or K=74) and B>1
:B-1→B
:If (K=92 or K=93 or K=94) and B<8
:B+1→B
:End

ADDING A SPECIFICATION CONSTRAINT

This solution works well but reveals an omission in the original exercise that I
assigned. I never specified what should happen when the character reaches an edge
and the user tries to press an arrow key. In the code in listing 6.2, it’s easiest to allow

Listing 6.2 One possible 8-directional movement solution

Figure 6.7 Conditional checks for arrow key pressed and M not at the edge of the screen

Keys [1], [4], or [7] and
not at the left edge

Keys [7], [8], or [9] and
not at the top edge

148 CHAPTER 6 Advanced input and events
the character to slide along edges, but when you design programs like this, it’s much
better to define exactly what will happen in cases such as this. You need to pick
whether you want a diagonal key at an edge to let the character slide along that edge
or to force it to stay in the same place. For the sake of the second example solution,
I’ll add the additional constraint that if the character can’t move diagonally when a
diagonal key is pressed, it should not move at all. After I go through this solution, I’ll
switch the constraint back to allowing the character to slide along edges with diagonal
keys, and you’ll see what changes.

SOLUTION 2: EIGHT CONDITIONALS

The second possible solution program is longer and less elegant, but it follows this
extra new requirement more closely. The code for this second solution is shown in list-
ing 6.3. It includes eight separate sets of conditionals, one for each of the eight move-
ment keys, and checks all the necessary edges with each key. For the down key, it
checks that the player isn’t at the bottom edge, whereas for the down-right key, it checks
that the player is at neither the right edge nor the bottom edge. For the diagonal keys,
both the X and Y variables (A and B) are updated. As you learned in chapter 3, when a
conditional controls more than one statement being executed, you can’t use the short
form of If and must instead wrap the statements in Then and End. As with the original
example and the first solution, a Repeat loop is used to continue running the program
until the player presses [CLEAR] or breaks the program with [ON].

PROGRAM:MOVE8D2
:8→A:4→B
:ClrHome
:Repeat K=45
:Output(B,A,"M
:getKey→K
:If K
:Output(B,A,"[one space]
:If K=72 and A>1 and B>1
:Then
:A-1→A:B-1→B
:End
:If K=82 and A>1
:A-1→A
:If K=92 and A>1 and B<8
:Then
:A-1→A:B+1→B
:End
:If K=73 and B>1
:B-1→B
:If K=93 and B<8
:B+1→B
:If K=74 and A<16 and B>1
:Then
:A+1→A:B-1→B
:End

Listing 6.3 MOVE8D2, another possible eight-directional movement solution

Separating commands
with a colon is the
same as hitting
[ENTER] in between

Left, right, up, and down movement
only needs to update one variable

Diagonal movement
updates both X and Y,
so it needs a Then/End

149getKey
:If K=84 and A<16
:A+1→A
:If K=94 and A<16 and B<8
:Then
:A+1→A:B+1→B
:End
:End

As promised, I’ll conclude this exercise by removing the constraint that diagonal keys
must cause diagonal movement or nothing at all. You’ll see that this rearranges the second
solution in program MOVE8D2 in listing 6.3, moving the conditional edge checks for the
diagonal keys inside the conditional block for that particular key. As expected, because
I’m only changing the requirements for diagonal movement, the code for vertical and
horizontal movement doesn’t change. This code as presented omits the larger loop struc-
ture, showing only the variable update section (or event-handling code, if you will):

:If K=72:Then
:If A>1:A-1→A
:If B>1:B-1→B
:End
:If K=74:Then
:If A<16:A+1→A
:If B>1:B-1→B
:End
:If K=92:Then
:If A>1:A-1→A
:If B<8:B+1→B
:End
:If K=94:Then
:If A<16:A+1→A
:If B<8:B+1→B
:End
:If K=73 and B>1
:B-1→B
:if K=93 and B<8
:B+1→B
:If K=82 and A>1
:A-1→A
:If K=84 and A<16
:A+1→A

Here, I keep the four conditional blocks that I had in MOVE8D2, one per diagonal key,
but the edge conditions are no longer anded with the checks for the keys themselves.
Instead, they’re moved inside the block and used by themselves to conditionally con-
trol movement horizontally and vertically. For example, if the up-left diagonal key is
pressed, then the character may move up, left, both, or neither, depending on the val-
ues of A and B. You’ll notice that several redundant conditional variable updates
remain, such as decrementing B as long as B > 1 for both K = 72 and K = 74. Imagine
what would happen if I rearranged these pieces of code to remove the redundancies:

:If (K=72 or K=74) and B>1
:B-1→B

150 CHAPTER 6 Advanced input and events
:If (K=92 or K=94) and B<8
:B+1→B
:If (K=72 or K=92) and A>1
:A-1→A
:If (K=74 or K=94) and A<16
:A+1→A
:If K=73 and B>1
:B-1→B
:if K=93 and B<8
:B+1→B
:If K=82 and A>1
:A-1→A
:If K=84 and A<16
:A+1→A

Noticing that the two halves of this code block do the same thing for different key
codes, I can consolidate once more. I can add the K = 73 to the first conditional, the
K = 93 to the second, and so on, to combine eight conditional updates into four condi-
tional updates. But if you look carefully, you’ll see that this program is now back at
exactly the first solution to the exercise, which means I came up with the same solu-
tion again, albeit in a different form.

:If (K=72 or K=73 or K=74) and B>1
:B-1→B
:If (K=92 or K=93 or K=94) and B<8
:B+1→B
:If (K=72 or K=82 or K=92) and A>1
:A-1→A
:If (K=74 or K=84 or K=94) and A<16
:A+1→A

Notice that this exactly matches the key-handling code in listing 6.2, with the condi-
tionals rearranged. Because the four separate conditional statements don’t depend on
each other, the rearrangement makes no difference to how the code works.

PROGRAMMING FLEXIBLY

Ideally, as a programmer writing any language, you’ll begin to see different ways to
think about the same problem and to solve it given whatever constraints the prob-
lem might have. This will also help you learn to see things in conditionals, logic,
and program flow that can be simplified, combined, or rearranged to save com-
mands and thus reduce size and increase program speed. As discussed previously,
it’s best to think about two or three ways to solve the problem and pick the one that
seems like it will be the fastest and most efficient. If you find yourself halfway into
writing something like the second example just shown, and you suddenly think of
how to write the program the first way, it would be better to either switch to the new
method or try out both than to become enamored of your first attempt and unwill-
ing to try alternative solutions. Although you’ll spend more time writing the pro-
gram, in the end you’ll have a better product, your users will be happier, and you’ll
feel more pride as a programmer.

151The Mouse and Cheese game
 In this particular example, the second program, in enforcing that diagonal keys move
the M diagonally or not at all, has to be longer. Longer code is generally bad, because it
usually takes longer for the calculator to run. But if the longer code is necessary to fulfill
additional constraints, as happened here, writing more code to satisfy the program’s
requirements can be unavoidable. In addition, if the longer version is easier to under-
stand, it will be easier for you to remember what you did if you need to go back into your
code to expand it, solve a bug, add a new feature, or tweak the way it works. For the second
solution, it’s clear how the program is checking for the keys corresponding to each of the
eight directions, while carefully checking if the M is at the edges that each movement
direction could cause the M to cross. As you become a more experienced programmer
and start to get a more intuitive feel for reading even complex code, you’ll find yourself
leaning more toward the shorter, more-cryptic solutions to things. You’ll see some extreme
examples of efficient, somewhat obfuscated code in part 3, especially in chapter 10.

 Because you’ve seen how to use getKey for interactive, responsive programs, you’re
ready to create a more complex event loop that utilizes getKey as part of a full game.
You’ll combine your new skills with event loops and getKey with other things you now
know about using loops, conditionals, and output to write a fun, if cheesy (groan), game.

6.3 The Mouse and Cheese game
It’s time to combine the concepts you’ve been learning for moving a letter around the
homescreen with the discussion of event loops to create a game. In this game, the player
controls a mouse, represented by the trusty capital M. The player will use the arrow
keys to move the M around the screen, chasing after pieces of cheese, represented by
a small square. To make the game competitive, the mouse’s hunger will increase as
time passes, regardless of whether or not keys are pressed, which is where your event-
loop knowledge will become necessary. To display the hunger, the program will draw a
bar at the right edge of the screen made of equals (=) characters. When the hunger bar
fills all the way up, the game will end and will tell the player how many pieces of
cheese they were able to eat before the game ended. You can see a game in progress
and the end of a game in figure 6.8.

Figure 6.8 Screenshots of the Mouse and Cheese game. The mouse (M) is
moved by the player to chase after the pieces of cheese (the square). The player
loses if the hunger bar (right edge of the screen) fills up, at which point the game
tells the player how many pieces of cheese the mouse ate (right).

152 CHAPTER 6 Advanced input and events
The program will be structured with two nested Repeat loops; the following pseudo-
code outlines the structure of the program that you’ll create:

:Repeat until hunger bar fills or [CLEAR] pressed
:[initialize cheese and hunger bar]
:Repeat until hunger bar fills or [CLEAR] pressed or mouse reaches cheese
:[move mouse and increase hunger]
:End
:[handle eating cheese]
:End

At the beginning, the mouse’s hunger and coordinates will be initialized, and a start-
ing score of zero will be set. At the end, the final score will be displayed to the player.
The outer loop will run once per piece of cheese, so it will first create a piece of
cheese at random coordinates and display it, then draw the hunger bar, and then start
the inner loop. At the end of the outer loop, the player’s score will be increased
and the mouse’s hunger removed if it reaches the piece of cheese. The outer loop
ends if the hunger bar is full or the user presses [CLEAR]. The inner Repeat loop runs
the heart of the game. On every iteration, it checks for keys and moves the mouse
accordingly, increases the mouse’s hunger, and, if necessary, draws another = sign on
top of the hunger bar.

 With this basic skeleton in mind as a guide, you can move on to looking at the full
TI-BASIC source code for the game.

6.3.1 Writing and running the game

You know where to find getKey now, and all of the other commands in the code in list-
ing 6.4 should be familiar to you as well. The square symbol on the seventh line of the
code might be unfamiliar; you can find it under the MARK menu, [2nd][Y=][�][�].
You should type this game into your calculator so that you can try it out and better
understand the discussion of how the code works. You’ll also want to use it as a
base to experiment with tweaks and changes. As with all other programs you’ve
worked with so far, run the program from the homescreen (or your favorite shell).
You can press the arrow keys to move the mouse around and press [CLEAR] to end
a game early.

PROGRAM:CHEESE
:7→A:4→B
:0→H:0→S
:Repeat H≥8 or K=45
:randInt(1,15→C
:randInt(1,8→D
:ClrHome
:Output(D,C,"�
:For(X,1,int(H
:Output(8-X,16,"=
:End

Listing 6.4 The Mouse and Cheese game

X and Y coordinates
of the mouse

Hunger (H) ranges from 0 to 8;
score (S) increases for each
piece of cheese eaten

Outer loop: one
iteration per piece
of cheese, ends
when game ends

Initialize coordinates of piece of cheese
to a random spot on the screen

Only display the cheese once
(this symbol is under the MARK
tab of [2nd][Y=])

Draw the current
hunger bar

153The Mouse and Cheese game
:Repeat H≥8 or K=45 or (C=A and B=D
:If H=int(H
:Output(8-H,16,"=
:Output(B,A,"M
:getKey→K
:If K
:Output(B,A,"[one space]
:If K=24 and A>1
:A-1→A
:If K=26 and A<15
:A+1→A
:If K=25 and B>1
:B-1→B
:If K=34 and B<8
:B+1→B
:H+.1→H
:End
:If C=A and B=D
:Then
:0→H
:S+1→S
:End:End
:Output(3,1,"----------------
:Output(4,1," YOU ATE
:Output(4,10,S
:Output(5,1,"PIECES OF CHEESE
:Output(6,1,"----------------
:Pause
:ClrHome

6.3.2 Understanding the game

The Mouse and Cheese game draws on many of the skills that I’ve discussed thus far,
including conditionals, nested Repeat loops, using getKey in asynchronous event
loops, using Output to display strings, characters, and numbers, and dealing with inte-
ger and decimal numbers. I’ll start a detailed look at the code with the initialization at
the beginning of the program, work my way through the outer loop and the inner
loop, and conclude with the game-ending score display.

 The Mouse and Cheese game uses six major variables. The player’s mouse is at
some (X,Y) coordinates, which are stored in the variable pair (A,B), and each piece of
cheese is at coordinates (C,D). Because only one piece of cheese is displayed at a time,
it doesn’t need to keep track of multiple pieces of cheese. It does need to keep track
of the mouse’s hunger, which it puts in H, and the player’s score, in S.

:7→A:4→B
:0→H:0→S

:randInt(1,15→C
:randInt(1,8→D

Because the homescreen is 8 characters tall, I decided to make H = 0 mean no hunger,
and H = 8 mean full hunger. The score S will increase by 1 with each piece of cheese

Inner loop: runs repeatedly until
hunger bar fills, [CLEAR] is pressed,
or mouse reaches cheese

Increase hunger on
every loop, whether or
not a key is pressed

If mouse is at same coordinates as cheese,
increase score and remove hunger

End outer loop and finish the
game by displaying score

154 CHAPTER 6 Advanced input and events
eaten, but you could easily change it to some other value. You could even give the
player more points for getting the cheese faster, or some other more complicated
scoring scheme.

INITIALIZATION AND PROGRAM STRUCTURE

You might start writing this game by figuring out exactly how the screen will be laid
out. Because the hunger bar will be the last column of the homescreen, the 16th col-
umn, the mouse and cheese can both be anywhere in the 15-column by 8-row area
starting at the left edge of the screen. The mouse’s position can be initialized near the
center of that area, at (X,Y) = (A,B) = (7,4). The hunger H should start at 0, and
the score S will also be initialized to 0. Next come the two nested Repeat loops that
form the body of the game.

 One excellent question would be why the program uses two nested loops instead of
one giant loop. A single giant loop could indeed be used instead, in which you’d have
a conditional that would generate new coordinates for the cheese (creating a new
piece) every time the mouse reached the cheese, but this would be slow, because the
program would have to jump over that piece of code every time through the getKey
loop, regardless of whether or not the mouse reached the cheese. The left side of fig-
ure 6.9 shows this incorrect structure, where all of the main game code including cre-
ating new pieces of cheese is inside the event loop. The right side of the diagram
shows the proper structure, where only updating the hunger bar and updating the
mouse’s position are inside the event loop. Creating and destroying the cheese are
part of the outer loop.

Figure 6.9 Putting the full game loop including cheese management inside the event loop (left) and
properly reducing the amount of work in the inner event loop (right)

155The Mouse and Cheese game
The outer loop starts by creating the cheese and ends by handling the mouse reach-
ing the cheese; the inner loop only handles moving the mouse around and adjusting
the hunger bar. The inner loop terminates when the mouse reaches the cheese to
let the outer loop handle the mouse eating the cheese. This is shown in the follow-
ing pseudocode:

:Repeat H≥8 or K=45
:[initialize cheese and hunger bar]
:Repeat H≥8 or K=45 or (C=A and B=D
:[move mouse and increase hunger]
:End
:[handle eating cheese]
:End

Look at the conditionals on each of the loops first. You know that Repeat [condition] is
like telling the program “repeatedly run this loop until [condition] is true” from
chapter 4. For the outer loop, the program keeps creating pieces of cheese and letting
the mouse chase them until the hunger bar is full or the user presses [CLEAR].
Because the hunger bar will get full or the [CLEAR] key will be pressed when the pro-
gram is inside the inner loop, both the inner and outer loops need to have these two
conditions. Therefore, when the hunger bar fills or [CLEAR] is pressed, the inner
loop will end, the end of the outer loop will run, and then the outer loop will end too.

THE OUTER LOOP: CHEESE MAINTENANCE

Because one new piece of cheese should be created every time the outer loop starts,
the program generates the cheese at random coordinates between the start of the
outer loop and the beginning of the inner loop. The randInt command can be used
to do this:

:randInt(1,15→C
:randInt(1,8→D

Notice that because the mouse and cheese can only be between X = 1 and X = 15, and
Y = 1 and Y = 8, you use these values as the limits for the randInt command. After the
program generates a new piece of cheese, it should clear the screen, draw the cheese,
and draw the hunger bar. Why do you clear the screen instead of just erasing the old
piece of cheese using the Output(D,C,”[one space] trick? Because when the mouse
eats a piece of cheese, the hunger bar becomes empty, and it might have been nearly
full. It’s much easier in this case to clear the screen, then draw the cheese and empty
hunger bar. The space trick would work fine in this case; it would be more compli-
cated. In many of your programs, just as in the eight-direction program, you’ll run
into several possible ways to do something. In many cases, one of the options will be
fast, one will use a small amount of code, and the smallest version may not necessarily
be the fastest.

 Clearing the screen is easy enough with ClrHome, but how shall the hunger bar be
drawn? Because I decided hunger can go from 0 through 8, the program could loop X
from 0 to H, drawing an equals sign at (X,Y) = (15,X + 1), which would make the hunger

156 CHAPTER 6 Advanced input and events
bar grow from the top of the screen downward as the mouse’s hunger increases (here,
X is being used as a throwaway looping variable; the program doesn’t use it after the
hunger-bar-drawing loop ends). The program needs to display at row X + 1 instead of
row X because 0 isn’t a valid Y coordinate on the homescreen: the first row is 1, not 0.
But to be extra fancy, we’ll make the hunger bar grow from the bottom of the screen to
the top. The coordinates can be flipped over from the top to the bottom of the screen
by subtracting them from 8. Therefore, 8 – X will be 8 when X = 0, then 7 when X = 1,
and so on, so it will grow upward from the last row. Because the hunger always gets reset
to H = 0 when the mouse eats a piece of cheese, making the hunger bar nearly empty, the
program doesn’t need a loop here to redraw the hunger. It could instead have a single
Output(8,16,"= command. In case you decide to modify the game, to only decrease the
mouse’s hunger rather than removing it completely when the mouse gets a piece of
cheese, this loop will be able to correctly handle drawing any hunger level.

THE EVENT LOOP: HUNGER AND THE SCURRY OF THE MOUSE

Continuing through the program, next comes the inner loop, which is the event loop
of the game. This loop will continue to execute, checking the keyboard for activity
and moving the mouse accordingly, while simultaneously updating the mouse’s hun-
ger and filling the hunger bar displayed onscreen. The hunger bar update is the
“other code” section of the event loop, whereas the keypresses that cause the mouse to
move are the events that it acts upon. For the sake of analysis, take a look at the body
of the inner loop by itself:

:Repeat H≥8 or K=45 or (C=A and B=D
:If H=int(H
:Output(8-H,16,"=
:Output(B,A,"M
:getKey→K
:If K
:Output(B,A,"[one space]
:If K=24 and A>1
:A-1→A
:If K=26 and A<15
:A+1→A
:If K=25 and B>1
:B-1→B
:If K=34 and B<8
:B+1→B
:H+.1→H
:End

As you can see, the event loop will terminate on any of three conditions. First, if H is at
least 8, the mouse’s hunger bar is full, and the game is over. Because the outer and
inner loop share this condition, the outer loop will also end if this is true. The second
condition is K = 45, which means, as shown in figure 6.10 (an excerpt of figure 6.5),
that the [CLEAR] key has been pressed.

 This will end the outer loop as well once the program reaches the outer loop’s End,
because the outer loop has K = 45 as one of its ored termination conditions. The third

Repeat until
hunger bar is
full, [CLEAR] is
pressed, or
mouse reaches
cheese

Add another notch to hunger bar
if hunger has increased enough

Only erase mouse
if it might move

157The Mouse and Cheese game
condition is unique to the inner loop, namely C=A and B=D. This expression gets put
inside parentheses so that it’s evaluated as a whole, which means that the event loop
will only end if both C = A, the X coordinates of the mouse and the cheese match, and
B = D, the Y coordinates of the mouse and the cheese match. If these grouping paren-
theses were omitted, or instead the program ored A = C or B = D with the other termi-
nation conditions, the event loop would end if the mouse moved into the same
column of the screen as the cheese, even if it wasn’t also in the same row, occupying
the same spot as the cheese.

 Next is the somewhat mysterious conditional
If H=int(H. I said previously that the valid range
for the hunger variable H is from 0 to 8. The
screen is conveniently 8 rows of characters tall, so
H = 0 is the bottommost row, H = 1 is the second
to bottom, H = 7 is the top row, and you never
have to worry about drawing the hunger bar for
H = 8, because that means the game is already
over. These mappings of homescreen row to hun-
ger value are shown in figure 6.11.

 The conditional is there to ensure the program
only draws the next notch upward on the hunger
bar when the value of H reaches another integer. Because hunger ranges from 0 to 8,
if the program added 1 to H every time it went through the event loop, the player
would lose quickly, because it would take only 8 iterations of the event loop for H to
reach 8. To give the player more of a sporting chance, the program only increases H
by 0.1 each time through the event loop; it takes 80 individual 0.1s to make 8 (8/0.1 =
80 or 0.1 ∗ 80 = 8), so this gives the player 80 iterations of the event loop to reach the
cheese. One thing you can play with, which I’ll discuss later, is that if you change
H+.1→H to H+.2→H, for example, the user will only have 40 iterations of the event loop
to get to the cheese, and the game will be harder.

 Anyway, because the program increases H by these small values, there’s no point in
displaying the highest notch in the hunger bar every time the calculator executes the
event loop, because it will be redrawing the same equals sign 10 times before H
reaches another integer. In addition, it would have to use Output(8-int(H),16,"=,
because the calculator can’t output at decimal locations on the screen, such as (3.4,16).
If you don’t believe me, try it: you’ll get a Domain error. Therefore, the program only

Figure 6.10 An excerpt of the keycode chart
showing that the [CLEAR] key is code 45

Figure 6.11 The Mouse and Cheese
hunger bar and its relationship to the
value of variable H

158 CHAPTER 6 Advanced input and events
displays a new notch on the hunger bar when H reaches an integer. Because int(3.4) = 3,
int(5.8) = 5, and int(4) = 4, the only time int(H) = H will be true is when H is an inte-
ger already.

 After displaying the hunger bar, the program executes what should by now be a
familiar set of event-handling commands. It reads the current key being pressed into
variable K, erases the mouse if K is nonzero (meaning that a key is being pressed),
then handles the arrow keys. As usual, it checks the four arrow keys for the four major
directions and also performs defensive boundary checks so that the mouse doesn’t
move off the edge of the screen. The body of the event loop ends with the update to
the hunger value that I’ve been discussing.

ENDING THE OUTER LOOP AND ENDING THE GAME

The last piece of the outer loop runs after the inner loop ends. Recall that the inner
loop can end as a result of three possible conditions:

■ The hunger bar is full, meaning that H = 8.
■ The user pressed [CLEAR], so K = 45.
■ The mouse and the cheese are at the same coordinates, so A = C and B = D.

You only want to award the player another point and reset the mouse’s hunger if the
inner loop ended because of the third condition. As a reminder, the end of the outer
loop and the end of the program look like this:

:If C=A and B=D
:Then
:0→H
:S+1→S
:End:End
:Output(3,1,"----------------
:Output(4,1," YOU ATE
:Output(4,10,S
:Output(5,1,"PIECES OF CHEESE
:Output(6,1,"----------------
:Pause
:ClrHome

As you can see, the program only resets H to 0 and increments S by 1 if C = A and B = D.
If, on the other hand, K = 45 or H ≥ 8, which means that the inner event loop didn’t end
because the mouse reached the cheese, this conditional code doesn’t execute.

 The next line of code is a pair of End commands. The first End closes the If/Then
statement, whereas the second End completes the outer Repeat loop. If K = 45 or
H ≥ 8, then the outer loop will also end. If neither of those statements is true, which
means the inner loop ended because A = C and B = D, then the outer Repeat loop will
start again, generating a new piece of cheese and redrawing the game screen. If either
K = 45 or H ≥ 8, the last seven lines of the program will run. These first output the
number of pieces of cheese eaten during the game and then pause until the player
hits [ENTER]. The game concludes by clearing the screen with ClrHome, and because
the end of the program file is reached, the program ends.

159The Mouse and Cheese game
6.3.3 Tweaking the game

Play with this program as much as you want, to try to change the way it works, make
it have more features, or even adapt it into a whole new game of your own. The
most important lesson of the Mouse and Cheese game is for you to feel comfort-
able about getKey and event loops and create your own games and programs, but a
good starting point to fully grasp the concepts here is to first experiment with an
existing program like CHEESE. Don’t worry about breaking things; you can always
start with a fresh copy of CHEESE if you irreparably break the original in your exper-
imentation, or you could exercise and refine your debugging skills to try to track
down what happened.

 Among the many possible things you could do to expand the program with new
features or adjust the existing gameplay, the following stand out:

■ Use the lessons of section 6.2.3 to convert the Mouse and Cheese program to do
eight-directional movement. You could lift the key-processing sections of code
almost directly from program MOVE8D1 or MOVE8D2; you’d only need to adjust
it to stop at column 15 instead of column 16, because the hunger bar is in the
rightmost column of the homescreen now.

■ Make the game have multiple pieces of cheese on the screen at the same time.
How would you go about doing this? You could use (E,F) in addition to (C,D)
for a second piece of cheese, and then you’d have to change both conditional
checks for the mouse and the cheese being at the same coordinates (A=C and
B=D) to also check for this second piece of cheese. What if you wanted the
player to be able to specify the number of pieces of cheese?

■ Make the hunger bar run out faster (or slower). There’s a single value in the
program that you need to adjust to make this happen. Hint: it’s the line where
the hunger variable H gets set to a larger value. What sort of values could you
use? What if the values you use don’t add up exactly to 8? Why does the pro-
gram crash with an ERR:DOMAIN in that case? Or why does the hunger bar not
get updated properly?

■ Instead of adding more cheese, add a piece of poison or a mouse trap that the
mouse must not touch. How could you implement this? What if even being in
one of the squares next to the trap could harm the mouse? How about if you
made it only slow down the mouse instead of ending the game?

■ Make the cheese move randomly around to make it harder to get.
■ Make the cheese move specifically away from the mouse at all times. How could

you adjust this so that it’s still always possible to get the cheese? Among other
things, you’d have to add bounds checking for the cheese, too, so that it
wouldn’t move off the screen in trying to avoid the mouse.

■ Make the screen wrap around, so that when the mouse reaches the right edge
and goes right, it reappears at the left edge, or it goes to the top edge when it
crosses the bottom edge.

160 CHAPTER 6 Advanced input and events
The game as presented could be adapted to other themes besides a mouse and pieces
of cheese; you could easily make it any sort of game where a character of some sort
needs to collect (or avoid) some sort of object.

6.3.4 Exercise: going further by moving the cheese

As a final exercise for this chapter, you’ll try to spe-
cifically implement one of the suggestions in the
preceding list to see how modifying this program
can be done. I’ll pick the feature of making the
cheese move randomly around the screen to make
it harder for the mouse to reach it, as demon-
strated in figure 6.12. As with all programs you
write, you should briefly decide how you’ll imple-
ment this feature before you dive into the code.
Once you know what you want to change, you can
then write the new pieces of code. In general,
you’ll want to directly modify a program when you add new features, but for the sake
of this example, I’ll first show you the new pieces of code you’re adding on their own
and then the whole program again with the changes inserted.

 The program still deals with one piece of cheese, so it will continue to use (C,D)
for the coordinates of the cheese. A new piece of cheese should still appear when the
mouse and the cheese reach the same place on the homescreen, so the inner loop can
still end when (A=C and B=D). The main change that you need to make is to have the
coordinates C and D get randomly modified. Because this must happen at the same
time that the mouse is being moved around by the player, these coordinate updates
must be in the inner loop. If you put them in the outer loop somewhere, the cheese
wouldn’t move around until after the player caught it, in which case the feature would
be pointless. You know that you want to insert a piece of code somewhere in the inner
loop. You should reexamine the original piece of pseudocode for the Mouse and
Cheese game to see where you’ll need to insert code:

:Repeat until hunger bar fills or [CLEAR] pressed
:[initialize cheese and hunger bar]
:Repeat until hunger bar fills or [CLEAR] pressed or mouse reaches cheese
:[move mouse and increase hunger]
:[move cheese]
:End
:[handle eating cheese]
:End

As you can see, the cheese must be moved around in the innermost loop at [move
cheese], where the program moves the mouse in response to keypresses. Because the
inner loop continues to run whether or not the player presses keys, thanks to the non-
blocking quality of getKey that I discussed earlier, you can make the cheese continu-
ously move by updating its coordinates in the inner loop.

Figure 6.12 By allowing the cheese to
move randomly around the screen, the
game starts to get more challenging.

161The Mouse and Cheese game
 How can you make it move? I specified that it should move randomly, so you know
that you need to use one of the commands that generate randomness, such as rand or
randInt. One possible solution is to add a random integer between -1 and 1 to C and
another random integer between -1 and 1 to D. This will make the cheese move in any
of the possible eight directions from its starting point or stay in the same place if both
random numbers are 0. That should work well, but you still need to make sure that
the cheese doesn’t go off the screen. Because it’s moving around randomly, it could
easily get to one of the edges and try to cross the edge, which would yield an exciting
ERR:DOMAIN error.

 You’ll therefore need to do bounds checking. In the previous examples in this
chapter, the programs perform bounds checking before updating the position coordi-
nates. In the original four-direction getKey test program, the M only moved to the left
(by subtracting 1 from A) if the user pressed the left-arrow key and the M was not
already at the left edge:

:If K=24 and A≠1
:A-1→A

PRELIMINARY MOVEMENT SOLUTION

Your program could do that here, by temporarily putting the two random values into
separate variables and then only updating C and D if the updates would keep the
cheese on the screen. This particular implementation might look like as follows
(remember, in this case the -1 uses the negative sign, the [(-)] key, not the subtraction
sign, the [–] key):

:randInt(-1,1→E
:randInt(-1,1→F
:If E+C≥1 and E+C≤15
:C+E→C
:If F+D≥1 and F+D≤8
:D+F→D

Here the random updates are stored into E and F, and then the program checks if
adding those values to C and D will still keep the cheese on the screen. If they will,
then the program updates the coordinates with the random changes in E and F;
otherwise they’re discarded. But for argument’s sake, I’ll show you an alternative,
more efficient method.

EFFICIENT MOVEMENT SOLUTION

Here you’ll try a different approach, where C and D are blindly updated with random
adjustments and fixed afterward if the random updates accidentally made the cheese
go off the edge of the screen. This method saves the use of variables E and F, because
you don’t need to worry about temporarily storing the results of the two randInt com-
mands. But it’s a longer segment of code, so it might run more slowly than the previ-
ous option. In part 3 of this book, you’ll learn optimization tricks that let you combine
the best parts of both solutions into a fast and small piece of code that also doesn’t
require using extra variables. Before we get to that, here’s the piece of code that fixes

162 CHAPTER 6 Advanced input and events
C and D after potentially setting them to values outside the edges of the game space,
as just described:

:C+randInt(-1,1→C
:D+randInt(-1,1→D
:If C<1:1→C
:If C>15:15→C
:If D<1:1→D
:If D>8:8→D

To reduce vertical scrolling while editing the source code, you put the conditional If
statements and their conditionally executed command (the stores to C and D) on the
same line, separated by a colon, rather than hitting [ENTER] in between. As discussed,
this is a stylistic choice, and it doesn’t change the size or speed of the program. It also
has two advantages. First, it saves vertical scrolling, because the set of four direction
conditionals are four lines instead of the eight lines they’d take if the program had
[ENTER]s instead of colons. This means that this chunk of code is six lines in total
instead of ten, so you can see the entire thing on one screen without scrolling at all. Sec-
ond, it’s a way of thinking like a programmer: you know that each If statement and the
statement that it controls (here, the stores to C and D) are closely related, and you get a
visual hint from the two statements being together on the same line of the program.

 You can see in the code that C and D are first updated with random values, which
might put them outside the game area. The program then runs four separate checks
to correct the value of C and D, one for each of the four edges of the area. If C is less
than 1, which means the cheese is farther left than the left edge of the screen, the
program fixes the problem by setting C equal to 1, the leftmost column of the screen.
If C is greater than 15, which means it’s either in the column reserved for the hunger
bar or off the right edge of the screen, the program sets it to 15 to move it back to
the rightmost useable column of the homescreen. The program performs similar
checks on D.

REDRAWING THE CHEESE

You need to add one final item: erasing and redrawing the cheese. That’s easy
enough; you know you need to erase the cheese before updating its coordinates; oth-
erwise the program will be erasing in the wrong place. It then needs to redraw the
cheese after updating its coordinates. That leaves the following section of code:

:Output(D,C,"[one space]
:C+randInt(-1,1→C
:D+randInt(-1,1→D
:If C<1:1→C
:If C>15:15→C
:If D<1:1→D
:If D>8:8→D
:Output(D,C,"�

And that’s all the code you need to erase the cheese, randomly move it, and redraw it.
You can insert this into the inner loop of the CHEESE program, which we’ll now call

Conditional and conditionally
executed command pairs
combined on each line

163The Mouse and Cheese game
CHEESE2. You can either put this new block of code before the getKey, after all the
key-update conditionals, or even after the update to the hunger variable. For the sake
of keeping related pieces of code together, we’ll put it after all the keypresses have
been processed but before the hunger variable H is updated. The final CHEESE2 pro-
gram will look like the following listing.

PROGRAM:CHEESE2
:7→A:4→B
:0→H:0→S
:Repeat H≥8 or K=45
:randInt(1,15→C
:randInt(1,8→D
:ClrHome
:Output(D,C,"�
:For(X,1,int(H
:Output(8-X,16,"=
:End
:Repeat H≥8 or K=45 or (C=A and B=D
:If H=int(H
:Output(8-H,16,"=
:Output(B,A,"M
:getKey→K
:If K
:Output(B,A,"[one space]
:If K=24 and A>1
:A-1→A
:If K=26 and A<15
:A+1→A
:If K=25 and B>1
:B-1→B
:If K=34 and B<8
:B+1→B
:Output(D,C,"[one space]
:C+randInt(-1,1→C
:D+randInt(-1,1→D
:If C<1:1→C
:If C>15:15→C
:If D<1:1→D
:If D>8:8→D
:Output(D,C,"�
:H+.1→H
:End
:If C=A and B=D
:Then
:0→H
:S+1→S
:End:End
:Output(3,1,"----------------
:Output(4,1," YOU ATE
:Output(4,10,S
:Output(5,1,"PIECES OF CHEESE

Listing 6.5 The Mouse and Cheese game with randomly moving cheese

The newly inserted
cheese-moving code

164 CHAPTER 6 Advanced input and events
:Output(6,1,"----------------
:Pause
:ClrHome

If you’d like to experiment further with the idea of the randomly moving cheese, you
could try the other section of random cheese movement code, where I showed you how
to provide preemptive protection against the cheese going out of bounds. You could
also try making the game slightly easier by running the random updates only some-
times or changing only one of the two coordinates in each inner loop.

 With your newfound knowledge about getKey, event loops, and more interactive
TI-BASIC games, have fun with this example! If you’re stuck, try looking at it from a
different perspective, or put it down and come back to it later. If you’re having trouble
seeing how it all fits together, try looking at it in smaller pieces: how the mouse’s hun-
ger, score, and coordinates get initialized; how the cheese is placed; how the inner
getKey loop works; what happens when the mouse gets the cheese; and what happens
when the game ends. In particular, look at why this program is written as two nested
loops rather than a single big loop with conditional statements. When you write your
own getKey-based programs, you’ll want to be careful to put only the things that must
be run repeatedly in your event loop, as discussed in section 6.1.

6.4 getKey odds and ends
getKey is a powerful function, but as I touched briefly on at several earlier places in
this chapter, it has a handful of limitations. In the two following brief sections, we’ll
explore these limitations in more depth. I’ll show you a programmatic solution to one
of them, the lack of an ability to read the [2nd] and [ALPHA] modifier keys used
along with one of the other keys. In chapter 12, you’ll see a solution for another of the
problems, the missing ability to read more than one key pressed at the same time.

6.4.1 Quirks and limitations of getKey

Although getKey can do many things, and it will enable you to make many new pro-
grams and games, there are a few obvious things that it can’t do, two of which are tech-
nical limitations that can’t be worked around. A third is a software decision on Texas
Instruments’ part that programmers have found ways to change.

 First, getKey can’t tell when the user presses the [ON] key on the calculator’s key-
pad. If the user presses [ON], the program will stop with an ERR:BREAK error, even if
you use getKey.

 Second, getKey remembers only the last key that the user pressed. If your program
executes the getKey command, then the user presses [1], [2], and [3], and finally
your program runs getKey again, it will only return the keycode for the [3] key and
will have forgotten about the [1] and the [2].

 Third is that the getKey command can’t tell when the user presses two keys at the
same time. In many programs and games, you might like your users to be able to move
a game character or a cursor diagonally across the screen; the obvious way to do this

165getKey odds and ends
would be holding down two of the arrow keys at the same time, such as [up] and
[right] to move diagonally toward the top-right corner of the screen. Unfortunately,
just as getKey can’t remember two different keys pressed one after the other, it has no
way of telling your program that two keys were pressed at the same time.

 In sections 6.2.2 and 6.2.3, I discussed one solution, in which you use the num-
ber keys as an eight-directional pad. The second solution, which lets you read multi-
ple arrow keys at the same time, uses a hybrid BASIC function from the library xLIB,
written in z80 assembly. In part 3, I’ll discuss these hBASIC libraries and work with
the xLIB functions as provided by the Doors CS shell. With that special hybrid func-
tion, four special keycodes are used to represent up-left, up-right, down-left, and
down-right.

6.4.2 What about modifier keys?

As discussed in section 6.2.2, getKey can’t directly tell a program if a user pressed a
modifier before another key. If you press [2nd] and then [3], or just [3], getKey will
return exactly the same keycode for the [3]. Luckily, you can get around this, because
[2nd] returns its own keycode. You can track modifier keys in your own program, set-
ting a variable to 1 if [2nd] is pressed and a second variable to 1 if [ALPHA] is pressed.
I’ll demonstrate a simple program in listing 6.5 that implements this concept.

 To read modifier keys, you look for first [2nd] (keycode 21) or [ALPHA] (key-
code 31), then the key that you want to check for. You could maintain a variable for
whether one of the modifier keys has been pressed. The sample program in the fol-
lowing listing will let you press [2nd][3], [ALPHA][3], or just [3]. The keycode for [3]
is 94, so the Repeat loop runs until getKey returns 94.

PROGRAM:MODKEYS
:0→A:0→S
:Repeat K=94
:getKey→K
:If K=21
:1-S→S
:If K=31
:1-A→A
:End
:If A=1 and S=1
:Then
:Disp "[2ND][ALPHA][3]
:Else
:If A=1
:Disp "[ALPHA][3]
:If S=1
:Disp "[2ND][3]
:End
:If A=0 and S=0
:Disp "[3]

Listing 6.6 getKey example for modifier keys

A is 1 if the ALPHA modifier is currently
set. S is 1 if the 2nd modifier is set.

Repeatedly look for keys
until [3] is pressed

This turns 0 into 1 and 1 into 0 (try
doing the math for S = 0 and S = 1!)

Loop back to the Repeat if [3]
hasn’t been pressed yet

The code
from here on
runs only
once, when
the program
ends

166 CHAPTER 6 Advanced input and events
This program runs a Repeat loop, checking for keys, until the [3] key is pressed. In
the meantime, it looks specifically for either the [2nd] or [ALPHA] key. The A variable
is set to 1 whenever [ALPHA] is toggled on, and the S variable is set to 1 whenever
[2nd] is toggled on. So why, for example, is the expression to set A with 1-A→A instead
of simple 1→A? The latter assignment would work fine but wouldn’t allow [ALPHA] to be
toggled on and off. With 1-A→A, when A = 0, 1 – 0 = 1→A, and when A = 1, 1 – 1 = 0→A.
Therefore if you press [ALPHA] twice, it will be as if you didn’t press it at all, just like
when you press [ALPHA] twice on the calculator’s homescreen.

 This is a nifty trick, but in all likelihood there will be few places where you’ll need
to use it, unless you’re planning on writing something like a text editor. In the next
two chapters, you’ll learn even more things that you can do with interactive programs
that use getKey. For the first time, you’ll have a way to manipulate every single pixel
on the screen individually, which will allow you to create some complex educational
programs and fun games indeed.

6.5 Summary
When you’ve finished reading and understanding this chapter, you should have a
basic understanding of using the getKey function as a tool for interactive, fast-paced
games. More broadly, you should have a passing familiarity with the idea of the event
loop, used to concurrently check for input from the user in the form of keypresses
while performing other tasks, such as increasing a hunger level and displaying a hun-
ger bar with that value, running timers, or updating the positions of enemies or items.
You should understand the basic differences between an asynchronous event and a
synchronous event, because these are important concepts in programming at large.
An indirectly related pair of terms that you might have picked up is blocking and non-
blocking input, another distinction you’ll find yourself using in your calculator pro-
grams and in your later programming languages, should you continue on to other
platforms. But you may well be a bit overwhelmed after going through all this mate-
rial. If you are, don’t worry: take a break, relax, and come back to this tomorrow. It
might take you a few reads to own some of the concepts, but once it all makes sense to
you, you’ll have programming and problem-solving intuition that will serve you well
throughout your endeavors.

 The next chapter will introduce the graphscreen and will teach you how to manip-
ulate individual pixels in the LCD screen including setting, changing, and reading
them. You’ll find out how to draw text on the graphscreen. These plus your new event
loop knowledge will enable you to create interactive games that also look a lot fancier
than anything else you’ve made.

Pixels and the graphscreen
Say that with your newfound knowledge of getKey and event loops, you want to
challenge yourself, and you decide to be ambitious. You want to move a mouselike
cursor around your calculator’s screen. You let your imagination run free, and you
envision something like the left side of figure 7.1. Perhaps you keep brainstorming
and want to be able to doodle on the calculator’s LCD, so that you can draw things
like the right side of figure 7.1. But you don’t yet know how to manipulate individ-
ual pixels. What you do know is how to draw characters on the homescreen, but
that won’t help you write these programs.

 The homescreen is a versatile canvas on which to paint your programs and games,
and it’s familiar even to most nonprogrammers who use a graphing calculator. But an
array of 16 x 8 characters can be quite limiting for programmers, particularly for creat-
ing advanced games with good graphics and for rendering mathematical concepts

This chapter covers
■ Understanding the pixel coordinate system and

the graphscreen
■ Reading and writing pixel values and

drawing text
■ Testing your skills with a mouse cursor routine

and a paint program
167

168 CHAPTER 7 Pixels and the graphscreen
such as annotated graphs, geometrical diagrams, and the like. Say that you want to
create a game where you can draw a large, complex maze for the player to navigate or
a fast-paced space-themed game. Consider a program in which you want to render 3D
objects by drawing a series of lines or a game where you draw 3D corridors for your
players to explore. Imagine trying to write a program that labels the minimums and
maximums of a graphed function or draws its slopefield.

 You now have the experience to think about designing the program structure and
flow for some of these types of programs and games, but all of them are impossible to
program well on the homescreen. If you tried to represent a graph, a 3D corridor, a
puzzle game with expansive puzzles, or any of similar components of thousands of
available TI-BASIC programs and games on the homescreen, you’d be disappointed.

 Luckily, you need not lose hope: your trusty TI-83+/84+ calculators have the
answers you need in the form of controlling individual pixels in the LCD, the dots that
make up any character or image. Although many computer programmers might scoff
at having 96 x 64 pixels to work with, you’ll soon find that after using the home-
screen’s 16 x 8 characters, this is more than enough expanse to build complex and
feature-rich math and science programs and games that you’ll want to play over and over.
In this chapter, I’ll tell you about the graphscreen, which, contrary to its name, is good
for images, not just for working with graphs. I’ll then show you one simple thing you
can do with it: display text in a smaller font than the homescreen uses. I’ll then move
on to the trickier task of turning the individual pixels on and off and demonstrate two
full example programs that use the technique, the same two programs illustrated in
figure 7.1.

 I’ll begin by explaining what exactly the graphscreen is, how you’ll be using it, and
what sets it apart from the homescreen manipulation you’ve been doing so far.

7.1 Introducing the graphscreen
As we’ve previously explored while using input and output commands, the home-
screen is 16 columns by 8 rows of characters. The homescreen can be manipulated
with commands such as Output, Disp, Input, Prompt, and ClrHome. Programs that cre-
ate graphics with letters and symbols can only get you so far, though; at some point

Figure 7.1 Moving a mouse around the graphscreen (left) and using a painting
program to doodle (right)

169Introducing the graphscreen
you want to be able to manipulate the individual pixels on the screen. The calculator’s
LCD is 96 x 64 pixels, small by any modern computing standards but luxurious com-
pared with being constrained to what you can represent with characters. With access
to turn individual pixels on and off, you get the ability to draw anything you can imag-
ine. You can combine lines, points, large and small text, graphs, and shapes to render
anything your program might need. Unfortunately, this freedom comes with a cost in
speed: it’s slower to manipulate pixels on the graphscreen than to draw characters on
the homescreen.

 To understand the difference between the graphscreen and the homescreen,
imagine two separate canvases and an easel, as shown at each side of figure 7.2. The
two canvases are the graphscreen and the homescreen, respectively, and the easel is
the screen of the calculator. You can switch which canvas you’re displaying on the
easel, and every time you switch, the respective canvases contain the last thing you
drew on them unless you’ve explicitly erased one. But you can’t put both canvases on
the easel at the same time and be able to overlap them, so you must choose to use one
or the other at any given time. From a more technical point of view, the homescreen
and the graphscreen are two buffers (areas) in the memory of the calculator, and
depending on which is currently being displayed, the content of one or the other buf-
fer is copied to the screen.

 The LCD itself is 96 pixels wide and 64 pixels tall, but the OS doesn’t let BASIC pro-
grams use the last column or the last row of the screen, so you really only have 95 col-
umns and 63 rows with which to work, as shown at the left side of figure 7.2. The top-
left corner has coordinates (0,0); the rows increase as you go down the LCD, and the
columns increase as you move to the right. As with the homescreen, when you use com-
mands that reference pixel coordinates, you put the row first and the column second, so

Figure 7.2 Size and coordinates of the graphscreen (left) versus the homescreen (right). You can’t show
the graphscreen and the homescreen at the same time; one must be tucked behind the other.

170 CHAPTER 7 Pixels and the graphscreen
(62,94) is the bottom-right corner, but (94,62) isn’t valid, because it would be below
the bottom edge of the screen.

 Before I teach you your first commands to draw on the graphscreen, I’d like to
introduce three commands that deal with preparing the graphscreen for use and
cleaning up when you’re finished with it. First, there’s the ClrDraw command, which
clears any drawings off the graphscreen just as ClrHome clears the homescreen. The
ClrDraw command can be found in the DRAW tab of the DRAW menu, accessed with
[2nd][PRGM]. If there are currently functions entered in the [Y=] menu, ClrDraw
regraphs the equations after clearing the screen. In addition, if the axes were enabled,
they’re redrawn.

 This brings us to the two other setup/cleanup commands, AxesOff and AxesOn.
When you’re editing a program, you can access both commands from the FORMAT
menu, in [2nd][ZOOM]. If you’re not editing a program, the FORMAT menu lets you
turn the axes on and off, but if you’re currently creating a program, the AxesOn and
AxesOff options in the menu instead paste the AxesOn and AxesOff tokens into your
program. As you’ll see again when we work with graphing functions, the graph axes
can be turned on and off, and these are the two commands we’ll use. Figure 7.3 shows
a program called MOVETEXT running while two functions entered as Y1 and Y2
are active, namely 8sin(X/π) and 8sin(1.3X/π). In the left screenshot, the axes are
enabled; in the right screenshot, AxesOff has been used to remove the axes. In most
of your programs that use the graphscreen, you’ll want to turn off the axes before you
begin to draw on the graphscreen with AxesOff and then turn them back on with
AxesOn at the end of your program as a courtesy to the user.

 Now you know what the graphscreen is, as well as three commands that will get you
started using it effectively. We’ll begin your exploration of commands to manipulate
the pixels on the graphscreen with the Text command, the graphscreen equivalent
of Output.

7.2 Drawing text: first steps on the graphscreen
At the beginning of this chapter, I introduced the graphscreen as a blank canvas in
which you can individually manipulate each pixel, rather than being limited to putting

Figure 7.3 An example program, MOVETEXT, running with the graph axes turned
on (left) and off (right)

171Drawing text: first steps on the graphscreen
letters and numbers in an 8 x 16 array on the homescreen. One of the simplest ways to
ease into using the graphscreen is to consider what it means to draw text on the
graphscreen. Think back to the MOVECHAR program from section 6.2.1, which lets
you use the arrow keys with getKey to move an M around the homescreen. Imagine
that you’ve played with that program for a while and have decided it has limitations.
You tell yourself that you want the M to move only a single pixel up, down, left, or
right when you press an arrow key. But how do you do that? You know of no way to
draw text to the screen with such precision. Luckily, the graphscreen and Text pro-
vide the solution you need.

 I’ll show you a program called MOVETEXT, which will let you get your feet wet
about the differences between writing text on the homescreen with Output and on the
graphscreen with Text. I’ll then give you a more formal introduction to the Text com-
mand. Let’s begin with MOVETEXT.

7.2.1 Introducing Text: a MOVETEXT program

In figure 7.3, I showed you a pro-
gram called MOVETEXT working
with the axes on and off. Figure 7.4
shows another view of the MOVE-
TEXT program in action, with the
functions that were graphed over
the program in figure 7.3 deleted.
The code for this particular pro-
gram is shown in listing 7.1; it
introduces a new command, Text,
alongside ClrDraw, AxesOn, and
AxesOff. This program is a slight
modification of the MOVECHAR pro-
gram from chapter 2, differing only
in those four new commands and in the values used to detect when the M is about to
run off the edge of the screen.

 If you test prgmMOVETEXT, you’ll see it does just what I described: it lets you move a
letter M (slightly smaller than a homescreen M) around the screen, but when you
press any arrow key, it moves by only a single pixel in that direction. If you have any
graph functions active, you may see them behind the M symbol; in chapter 8 I’ll teach
you how to handle that in your program.

PROGRAM:MOVETEXT
:45→A:28→B
:AxesOff:ClrDraw
:Repeat K=45
:Text(B,A,"M

Listing 7.1 MOVETEXT, a modified MOVECHAR on the graphscreen

Figure 7.4 An annotated view of the MOVETEXT
program in action with no graphed functions and no axes.
The letter M moves one pixel for each arrow key and can
therefore be in any of 92 columns and 58 rows
(accounting for its width and height) instead of the
16 columns and 8 rows of the homescreen.

Repeat this loop until
the [CLEAR] key is
pressed, at which
point the loop ends

172 CHAPTER 7 Pixels and the graphscreen
:getKey→K
:If K
:Text(B,A,"[three spaces]
:If K=24 and A≠0
:A-1→A
:If K=26 and A≠91
:A+1→A
:If K=25 and B≠0
:B-1→B
:If K=34 and B≠57
:B+1→B
:End
:AxesOn

TIP If the MOVETEXT program throws an ERR:INVALID DIM or ERR:DIM
MISMATCH error when you try to run it, check that you haven’t accidentally
turned on Stat Plots. Quit to the homescreen, press the [Y=] key, and see if
Plot1, Plot2, or Plot3 is white text on a black background; if so, Stat Plots is
active. To fix this, move the cursor up to whichever plot is active and press
[ENTER]. This will turn it back to disabled, shown as black text on a white
background. Try rerunning the program.

The first change you’ll notice from the MOVECHAR program is that although A and B
are still X- and Y-coordinates, we’re now initializing them to A = 45 and B = 28. These
are roughly the center of the graphscreen, just as A = 8 and B = 4 are roughly the cen-
ter of the homescreen. Why not A = 47 and B = 31, the middle row between 0 and 62
(62 / 2 = 31) and the middle column between 0 and 94 (94 / 2 = 47)? Because when
you draw text on the graphscreen, you tell the calculator the coordinates of the top-
left corner where you want to put the text; the calculator will draw what you specify
below and to the right of that point.

 The character that we want to center on the graphscreen is effectively 6 pixels tall and
3 pixels wide (plus one padding column of width), so we’ll say that its top-left corner is 3
pixels above and 2 pixels to the left of its center. Because we said the center of the screen
was (31,47), we can place the M character at the center, and its top-left corner will be at
(31 – 3,47 – 2), which is (28,45) and which is why we initialized A to 45 and B to 28.

 Other changes include switching the usual space used to erase a character to three
spaces, because each space is only 1 pixel wide. This provides the three columns of white

Help! There are graphs on my text!
Not to worry; in the next chapter, you’ll learn how to turn some or all of the graph
functions on or off within your programs to avoid this problem. The FnOff and FnOn
commands will come to your rescue. For now, know that FnOff by itself will tempo-
rarily disable all Y= functions, just as if you had pressed [Y=] and turned off each of
the functions by hand.

Text uses a variable-width font: an M is three pixels wide plus
one padding column, a space is one pixel wide. Three spaces
are needed to draw over the Ms three pixels of width.

Left-right movement and bounds checking. The M is four
pixels total, and the columns range from 0 to 94, so the
M can start in column 0 through column 91 safely.

Up-down movement. The M is 6 pixels tall, 5 plus 1
padding row, and the LCD’s rows range from 0 to 62.
The M can start in rows 0 through 57 safely.

When the Repeat loop ends, be polite and
turn the axes back on before terminating.

173Drawing text: first steps on the graphscreen
pixels to write over the M. A final difference is the coordinates for bounds checking,
as noted in the code’s annotations. With this initial immersion in a Text-based pro-
gram, we’ll move to a more complete description of Text and its features.

7.2.2 The Text command

Numerical differences aside, the most glaring new feature of prgmMOVETEXT is the
Text command. It can be found under [2nd][PRGM][0], at the bottom of the DRAW
menu. It takes at least three arguments: the row or Y-coordinate of the top left of
the text to be displayed, the column or X-coordinate of the top left of the text to be
displayed, and then either a string or a number. The following Text commands are
all valid:

:Text(1,1,"Hello World
:Text(7,1,1337
:56→A
:Text(13,1,A
:Text(19,1,"ABCDEFGHIJKLMNOPQRSTUVW
:Text(25,1,"abcdefghijklmnopqrstuvwx
:Text(31,1,"()+-*/[]{},.

—:?

TIP To access lowercase letters, press [ALPHA] twice; [2nd][ALPHA][ALPHA]
locks lowercase alpha mode. If pressing [ALPHA] twice doesn’t do anything,
you need to enable lowercase letters. Shells such as Doors CS (see appendix
C) will unlock lowercase mode for you.

If you turn off the axes and all functions, clear the screen, and run the seven lines just
shown, you’ll get the output shown in figure 7.5. One of the biggest differences
between displaying text on the graphscreen and the homescreen is that although the
homescreen uses fixed-width font, the graphscreen uses a smaller variable-width font.
As you may have noticed, every character on the homescreen—whether it’s a space, a
letter, a number, or a symbol—is the same width. On the graphscreen, different charac-
ters have different widths. On the positive side, this
gives you more flexibility with what you can do with
graphscreen text; on the negative side, you need to
be more careful if you want items of text to line up
with each other and when erasing using spaces.

 Almost every graphscreen character is 6 pixels
high, where the top row of the character is blank,
and has one “extra” column at its right edge that’s
blank. This blank column is used to separate adja-
cent letters, as you can see in figure 7.6. Although
the capital A character looks like it should be only
five rows tall and three columns high, the extra
row at the top and the extra column at the right
make it six rows tall and four columns wide.

Figure 7.5 Six sample Text lines on
the graphscreen. Notice that you can
fit more text on the screen than with
Output and that the font is variable
width. Characters that don’t fit at the
right edges disappear.

174 CHAPTER 7 Pixels and the graphscreen
A lowercase i is two columns wide and six columns tall for the same reason. The main
exception is the space character, which is precisely 1 pixel wide.

 Text written with the Text command doesn’t wrap around to the next line, which
means when it reaches the right edge of the screen, it stops. Any letters that don’t fit
onto the screen aren’t displayed. Even if a letter would partially fit on the screen, it
won’t be shown. You could also think of the text as flowing invisibly off the right edge
of the screen, if that’s easier to imagine. If you want to continue what you were writing
onto a second line, you need to use more Text commands. In addition, if you try to
draw a line of text farther down the screen than Y = 57, or starting at X = 94 or farther
right, the command will throw an ERR:DOMAIN error. This means that at least one of
the coordinates for the text is invalid. One particularly common mistake that can
cause this is reversing the Y and X arguments to the text, for example Text(80,5,"HI
instead of Text(5,80,"HI.

 Text drawn with the Text command erases whatever was underneath in a 6-pixel-
tall swath of the screen. In addition, strings ending in everything except a space erase
one extra pixel column to the right of the text because of the one pixel of padding
next to every character (see figure 7.6 for a more explicit illustration of this).
Although this can be annoying, it’s useful for removing a string of text from the
screen without having to ClrDraw the whole screen. We used this trick in the
MOVETEXT program previously: instead of clearing the whole screen every time we
wanted to erase the M, we wrote three spaces over it, which erased it to white.

Figure 7.6 Relative size of small-font and large-font characters

175Playing with pixels
EXTRAS AND QUIRKS

At the beginning of this section, I mentioned that the Text command takes at least
three arguments, but thus far we’ve only seen Text used with exactly three arguments:
the (Y,X) coordinates plus a string or number to display. Multiple arguments are used
to concatenate, or join, multiple items such as numbers and strings together. For
example, you could use

:Text(14,1,"PI IS ROUGHLY ",22/7

This will display the string “PI IS ROUGHLY 3.1428571” on the graphscreen. You can
add as many arguments to the end, both strings and numbers, as long as they all fit on
one line of the graphscreen:

:Text(14,1,"PI IS ABOUT ",22/7," OR ",3.1416

Text has one more useful quirk: the ability to put large homescreen-style text on the
graphscreen at arbitrary pixel coordinates. Figure 7.6 shows a comparison of the small
and large fonts that the calculator uses. For the large font, you insert a −1 as the first
argument to Text, before the Y- and X-coordinates of the text. This will make it use
the large font, with 8-pixel by 6-pixel characters, rather than the 6-pixel-tall small font,
for example:

:Text(-1,14,1,"Hello World
:Text(-1,40,65,"42: ",42

You can combine large and small font on the graphscreen for attractive interfaces and
games, and in the next chapter, I’ll show you how to combine Text with lines and shapes.

 Now that you’ve seen the Text command on the graphscreen, which lets you turn
many pixels on or off at once, I’ll show you the fine-grained commands for turning
individual pixels on the graphscreen on and off.

7.3 Playing with pixels
The TI-83+/TI-84+ LCD is made up of 6,144 pixels, tiny points that can be either white
or black. Clever assembly-language programmers have managed to turn the pixels on
and off fast enough to make grayscale, but for TI-BASIC purposes, your programs will
be setting pixels to either black or white. I’ll introduce four commands that will let
you directly manipulate pixels: three to change the color of individual pixels and one
to determine the current color of a specified pixel. In this section, we’ll begin with the
four pixel commands, Pxl-On, Pxl-Off, Pxl-Change, and pxl-Test. You’ll see how to
draw a simple mouse cursor with these commands, then how, in two steps, to make it a
moveable mouse.

 The first step to combining Pxl- commands with your existing knowledge is
understanding what Pxl- commands exist and how to use them.

7.3.1 Pixel commands
The four pixel-based drawing commands are all quite straightforward. They all take pre-
cisely two arguments, and those two arguments are all (row, column), or if you prefer,

176 CHAPTER 7 Pixels and the graphscreen
(y, x). They’re all found in the POINTS tab of the DRAW menu, [2nd][PRGM][�],
demonstrated at the left side of figure 7.7. Options [4], [5], and [6], the Pxl-On, Pxl-
Off, and Pxl-Change commands, all modify the state of a pixel, also shown at left in
figure 7.7. The pxl-Test command is the odd one out, returning a 1 if the specified
coordinates contain a black pixel and a 0 for a white pixel. The right side of figure 7.7
shows the results from using blocks of nine Pxl-On, Pxl-Off, and Pxl-Change com-
mands on black and white backgrounds, as well as the output value of pxl-Test on
black and white pixels. As you can see, black pixels are considered on (or 1) and white
pixels are off (or 0).

 The following snippet of code demonstrates each of the four commands in use:

:Pxl-On(1,1
:Pxl-Off(42,80
:Pxl-Change(13,37
:If pxl-Test(42,80
:Then
:Disp "(42,80) BLCK PXL
:Else
:Disp "(42,80) WHT PXL
:End

This would turn a pixel near the top-left black, one near the lower-right white, and
switch a pixel near the middle of the top edge from black to white or white to black.
Because the Pxl-Off command turns the pixel at row 42, column 80 to white (off),
which is 0 or false, the If/Then/Else/End condition displays “(42,80) WHT PXL.”
Recall that the If line is equivalent to the following and that pxl-Test returns 1 for
black pixels and 0 for white:

:If 1=pxl-Test(42,80

With the basics of the commands in hand, let’s do something fun with them: draw a
mouse-style cursor.

Figure 7.7 The four pixel-based commands we’ll be using from the DRAW menu’s
POINTS tab (left) and their effects on black-and-white backgrounds (right)

177Playing with pixels
7.3.2 Drawing a cursor

By the end of the next section, I want you to have a cursor that you can move around
your calculator’s screen with the arrow keys. A program like MOVETEXT already gives
you a good framework to work with, because it lets you move an M around and already
handles turning the axes on and off, clearing the screen when appropriate, and work-
ing with keys. But the Text commands to draw and erase the M will no longer do the
trick. For starters, you need to figure out how you’ll draw a mouse cursor. Figure 7.8
shows a simple example sketched in black and white pixels, spanning eight rows and
five columns. Because you know that you want to draw this cursor with Pxl-Off/On/
Change commands (because that’s the only way you know to manipulate individual
pixels), you need to start by figuring out the coordinates of each pixel.

 You always label graphscreen pixels with the lowest row and column numbers at
the top left, so the tip of the cursor is (0,0); the full list of pixel coordinates for this
mouse relative to (0,0) is shown at right in figure 7.8. If you rendered this entirely with
Pxl-On commands, it might look something like the left side of the code in the follow-
ing listing.

Listing 7.2 Two versions of a cursor-drawing subprogram, ZCURSORA/ZCURSORB

PROGRAM:ZCURSORA
:Pxl-On(0,0
:Pxl-On(1,0
:Pxl-On(1,1
:Pxl-On(2,0
:Pxl-On(2,2
:Pxl-On(3,0
:Pxl-On(3,3
:Pxl-On(4,0
:Pxl-On(4,4
:Pxl-On(5,0
:Pxl-On(5,1
:Pxl-On(5,3
:Pxl-On(6,0
:Pxl-On(6,2
:Pxl-On(6,4
:Pxl-On(7,3
:Pxl-On(7,4

PROGRAM:ZCURSORB
:Pxl-Change(B,A
:Pxl-Change(B+1,A
:Pxl-Change(B+1,A+1
:Pxl-Change(B+2,A
:Pxl-Change(B+2,A+2
:Pxl-Change(B+3,A
:Pxl-Change(B+3,A+3
:Pxl-Change(B+4,A
:Pxl-Change(B+4,A+4
:Pxl-Change(B+5,A
:Pxl-Change(B+5,A+1
:Pxl-Change(B+5,A+3
:Pxl-Change(B+6,A
:Pxl-Change(B+6,A+2
:Pxl-Change(B+6,A+4
:Pxl-Change(B+7,A+3
:Pxl-Change(B+7,A+4

Figure 7.8 A “sprite,” or set of pixels,
used to create a mouse cursor. The
right side of the figure shows the
(row, column) coordinates of each
black pixel.

178 CHAPTER 7 Pixels and the graphscreen
But this only allows you to draw the cursor at the top-left corner of the LCD and gives
you no way to erase it again without clearing the screen, which is often something
you’ll want to avoid if you have many things on the screen and want to erase only one.
The program at the right side of listing 7.2, ZCURSORB, solves both of these problems.
By using Pxl-Change commands, running the program once will draw a mouse, chang-
ing all the white pixels to black in the shape of the cursor. If you run the program again,
Pxl-Change will change all those black pixels back to white, erasing the cursor. In addi-
tion, the insertion of the A (X-coordinate or column) and B (Y-coordinate or row) vari-
ables, here used as offsets, means that instead of being drawn relative to (0,0), the
cursor is now drawn relative to (B,A). If you change A and/or B, the cursor will be
drawn at a different location.

 Now that you have a small program that can both draw and, if called again, erase a
mouse cursor at some coordinates (B,A), you can combine this with fragments from
MOVETEXT. In the final subsection of this section, I’ll challenge you to put this
together yourself and then show you how it’s done.

7.3.3 Exercise: the moveable mouse cursor

For this exercise, you’ll create a program to move
a mouselike cursor around the graphscreen, as in
figure 7.9. You’ll be modifying the MOVETEXT
program from listing 7.1 into a new program
called CURSOR; if you want to copy and paste the
contents of MOVETEXT, recall the lessons with the
Rcl function from section 2.1.1. For the actual
drawing and erasing of the mouse cursor, use the
ZCURSORB program as a subprogram; if you need
to review subprograms, glance back at the end of
chapter 4. Because it’s slower to call prgmZCURSORB
than to use a single Text command, try making
the mouse move 2 pixels at a time. As a hint, your program will need to have the two
Text commands in prgmMOVETEXT changed, as well as the numbers used for bounds
checking and the numbers for updating A and B, but the structure will remain more
or less the same. The only structural change should be putting the getKey in a tight
Repeat loop, because running ZCURSORB repeatedly won’t repeatedly draw the M
over itself with no visual change, as running Text(B,A,"M did. Instead, it will repeat-
edly draw and erase the mouse in place, an unwanted side effect.

 Once you have an idea of what your program will look like, or better yet, have writ-
ten and tested it, read on for my solution.

THE MOVEABLE CURSOR: SOLUTION

My proposed solution for CURSOR is shown in listing 7.3, and it requires that you also
have ZCURSORB from listing 7.2 on your calculator.

Figure 7.9 The results of the
CURSOR program you’ll write in
section 7.3.3, a mouse cursor
that moves

179Playing with pixels
PROGRAM:CURSOR
:44→A:28→B
:AxesOff:ClrDraw
:Repeat K=45
:prgmZCURSORB
:Repeat K
:getKey→K
:End
:prgmZCURSORB
:If K=24 and A≠0
:A-2→A
:If K=26 and A<88
:A+2→A
:If K=25 and B≠0
:B-2→B
:If K=34 and B<54
:B+2→B
:End
:AxesOn

The best way to explain a program like this would be to step through it line by line,
explaining each chunk.

:44→A:28→B
:AxesOff:ClrDraw

Initialize A (the X-coordinate) and B (the Y-coordinate) to roughly the center of the
screen; then turn off the axes and clear the screen.

:Repeat K=45

Repeat the main loop of this program until the [CLEAR] key is pressed.

:prgmZCURSORB

Call prgmZCURSORB to draw the cursor on the screen at row B, column A.

:Repeat K
:getKey→K
:End

Listing 7.3 The moveable cursor program, CURSOR

Multiple commands on the same line
I introduced putting two commands together on the same line in chapter 6. When you
insert a colon between two or more commands, you can put them next to each other with-
out adding a line return (new line) between each command. The only caveat is that you
can no longer omit ending parentheses and quotes to save space. The following four com-
mands fit on two lines. This technique is used to save vertical scrolling in long programs.

:45→A:28→B
:AxesOff:ClrDraw

180 CHAPTER 7 Pixels and the graphscreen
With the cursor on the screen, run a tight Repeat loop, which repeats until K is not 0
(there’s an implicit =1 or ≠0 when you have a variable by itself as a conditional).
Because Repeat loops are guaranteed to run at least once, the first run through the
loop with no key pressed will set K to 0, allowing the loop to continue without needing
to set K to 0 before the beginning of the loop.

:prgmZCURSORB

When the Repeat K loop ends, a key has been pressed; erase the cursor by running
prgmZCURSORB again:

:If K=24 and A≠0
:A-2→A
:If K=26 and A<88
:A+2→A
:If K=25 and B≠0
:B-2→B
:If K=34 and B<54
:B+2→B

Perform bounds checking while updating A and B. The left- and right-arrow keys
move the X-coordinate A as far left as 0 or as far right as 88. Technically, because the
cursor is 6 pixels wide, it could begin in column 89 and span only as far as column 94.
Because the program moves the cursor 2 pixels at a time, it would jump from 88 to 90,
at which point the program would throw an ERR:DOMAIN when it tried to change a
pixel in column 95, the 96th column. This code also moves the cursor as high as row 0
or as low as row 54. A and B are initialized to even numbers, all updates are in incre-
ments of 2, and bounds are checked with even numbers, so all coordinates in this pro-
gram are always even numbers.

:End
:AxesOn

End the outer Repeat loop, and if it terminates, turn the axes back on (which clears
the graphscreen) and reach the end of the program to conclude it.

 As with any program you write or that I show you, if there’s anything you don’t
understand, try it out on your calculator, examine and tweak the code, and even add
debug statements as taught in chapter 5. If you’re still vague on any of the concepts,
read on to the next section, where I’ll show you a program that lets you doodle on
the screen.

7.4 A painting program
For the final full program of this chapter, I’ll expand the concepts of the CURSOR pro-
gram to let you doodle on the screen. Instead of moving a mouse cursor around the
screen that erases after itself as it goes, you’ll be moving a single flashing pixel around
the screen with the arrow keys. But pressing [ENTER] in this program is like putting a
pencil or pen down on a piece of paper: now the flashing pixel will draw a line behind
it as it moves. Press [ENTER] again to lift up the writing implement, and when you’ve

181A painting program
finished, press [CLEAR] to quit. To start, take a look at figure 7.10, which from left to
right shows a sample session using the program.

 I’ll begin by showing you the code for this PAINT program and explain a bit about
how it works. At this point, the flow of such programs should be gradually getting clearer
to you, so I’ll pick out specific features to highlight rather than tracing it line by line.

CODING A PAINTING PROGRAM

The source code for prgmPAINT is shown in listing 7.4. It follows the structure of many
programs you’ve examined in the past two chapters that are based on moving some-
thing around with getKey. Like the CURSOR program, it uses two nested Repeat
loops, an outer one to handle keypresses until [CLEAR] is pressed and an inner
Repeat loop to flash a pixel on and off while it waits for any keypress. It does graph
setup and variable initialization before the outer loop and cleans up after the end of
the outer loop.

PROGRAM:PAINT
:AxesOff:ClrDraw
:48→A:32→B
:0→P
:Repeat K=45
:Repeat K
:Pxl-Change(B,A
:getKey→K
:Pxl-Change(B,A
:End
:If K=24 and A>0
:A-1→A
:If K=26 and A<94
:A+1→A
:If K=25 and B>0
:B-1→B
:If K=34 and B<62
:B+1→B
:If K=105
:1-P→P

Listing 7.4 A painting program, prgmPAINT, using Pxl commands and getKey

Figure 7.10 A demonstration of prgmPAINT in action. Moving the pointer around at far left without
drawing and then pressing [ENTER] to hold the pen against the “paper,” as in the middle screenshot.
Pressing [ENTER] again to lift the pen again, as in the far-right screenshot.

Turn off the axes and
clear the graphscreen

Initialize the (B,A) =
(row, column) to about
the center of the screen

Initialize the P variable,
indicating whether the
“pen” is touching the
“paper,” to 0, or false

Flash a pixel to show the
currently selected pixel while
waiting for a keypress

Toggle the “pen” touching (P = 1) or
not touching (P = 0) the “paper”

182 CHAPTER 7 Pixels and the graphscreen
:If P
:Pxl-On(B,A
:End
:AxesOn

Like the MOVETEXT and CURSOR programs, this program uses variables A and B to
store the X- (column) and Y- (row) coordinates of the pixel currently selected. It also
uses variable P to store the current state of the virtual “pen,” whether it’s touching the
paper (P = 1) or not (P = 0). It controls whether a Pxl-On command runs right after
any movement command, so that when P = 1, the program turns on the pixel each
time it moves to a new pixel:

:If P
:Pxl-On(B,A

The [ENTER] key toggles P between 0 and 1 using the same math trick as prgmMODKEYS
in listing 6.5 . When the [ENTER] key is pressed, P is set to 1 – P.

:If K=105
:1-P→P

If P is 0, 1 – P = 1 – 0 = 1, so P switches to 1. If P is 1, 1 – P = 1 – 1 = 0, so P switches to 0.
 The final interesting bit of code is the inner loop that displays the swiftly flashing

cursor while the program waits for the user to press a key:

:Repeat K
:Pxl-Change(B,A
:getKey→K
:Pxl-Change(B,A
:End

This code is designed to leave the pixel as it originally was when it ends. As figure 7.7 and
the CURSOR program showed, applying Pxl-Change twice to the same pixel changes it
back to whatever it started as. The first Pxl-Change either changes a white pixel to black
or a black pixel to white, and the second Pxl-Change switches it back. Because there are
two Pxl-Change commands inside the Repeat loop, no matter how many times the loop
runs, an even number of Pxl-Changes occur, and the pixel at (row,column) = (B,A) will
always be the same after the loop ends as before the loop began. While inside the loop,
the pixel will flash on and off fast to indicate that that’s the currently selected pixel.

 As a final note, let me clarify the logic on the Pxl-On command that runs when
P = 1 is placed at the end of the outer Repeat loop. As always, we want our programs to
be as small and fast as possible. Therefore, we only want to run the Pxl-On command
that draws on the virtual paper when either the “pen” is toggled to P = 1 (touching the
paper) or the “pen” moves to a new location due to the user pressing the arrow keys.
Both of these conditions are handled when the end of the outer Repeat loop runs,
because the inner loop ends when K ≠ 0, or a key has been pressed. Thus, the end of
the outer Repeat loop is a logical place for the Pxl-On command.

 You’ve now seen programs that let you draw pixels and text on the graphscreen, as
well as clear it and turn the axes on and off. You’ll soon learn more that you can do

If the “pen” is touching the
“paper,” turn this pixel on

183Summary
with points, lines, and graphs on the graphscreen, and you should, as in all previous
chapters, play with the new skills you’ve learned in this chapter on your own. Only
through practice can you discover the holes in your knowledge and start to appreciate
the fun of designing and creating your own programs.

7.5 Summary
This chapter covered your first steps of programming with the graphscreen. It intro-
duced working with individual pixels and how you can use the graphscreen in your
own programs and games. You saw a few example programs, including a program to
move a mouselike cursor around the screen and a doodling program, both of which
combined the event loop lessons of the previous chapter with the precision and con-
trol of the graphscreen.

 The next chapter will continue your exploration of the graphscreen with a sepa-
rate coordinate system, one based on points and Cartesian coordinates instead of
pixel coordinates. You’ll learn to draw graphs, lines, circles, and other shapes and how
to combine these with the lessons of chapter 7.

Graphs, shapes, and points
For the first six chapters, you worked with the homescreen, an 8-row, 16-column
matrix of characters. In chapter 7, you learned about manipulating the individual
pixels of the graphscreen, turning them on and off and checking if certain pixels
were on. If you wanted to draw a line, a polygon, or a circle, render a graph, or save
a full-screen picture, you’d be stuck with many, many pixel commands. Figure 8.1
shows some of the things you might want to draw in programs.

 Once again, TI-BASIC comes to your rescue. There’s a second coordinate system
on the graphscreen, the one used whenever you plot a graph, a system overlaid on
the pixel coordinates you learned in chapter 7. In this chapter, you’ll learn all about
this coordinate system, called Cartesian coordinates, and the commands TI-BASIC
provides to draw lines, circles, points, and graphs and even store and recall whole
screen images. Although there’s some gentle use of trigonometry and geometry
concepts, don’t worry if you haven’t seen them before: I’ll explain anything that
your math classes may not have yet introduced.

This chapter covers
■ Drawing lines, shapes, and points
■ Creating and annotating graphs from programs
■ Techniques for making graphical programs

and games
184

185Another coordinate system: points versus pixels
We’ll start with a comparison of the pixel and point coordinate systems, then examine
how and why you can manipulate what part of the Cartesian coordinate plane is
shown onscreen at any given time. Because your graphing calculator was originally
designed for graphing, I’ll explain how your programs can generate and annotate
graphs, and then I’ll move on to drawing with shapes, lines, and points. Finally, we’ll
explore the picture commands that let you store and recall whole screenfuls of pixels.

 We’ll begin by discussing the Cartesian coordinate system and seeing some of the sim-
ilarities and differences between it and the pixel coordinates from the previous chapter.

8.1 Another coordinate system: points versus pixels
If you display anything on the screen, you need to be able to turn the individual pixels
in the LCD on and off. To do that, you need a way to address or distinguish the pixels so
that you can properly specify which ones you want to turn on or off. In the previous
chapter, that addressing method was the pixel coordinate system where the top-left
pixel in the LCD is (0,0), and the bottom-right one is (62,94). That system always
defines the coordinates of each pixel and doesn’t change. But on a device used for
math where you might want to draw graphs, this pixel coordinate system isn’t quite
good enough on its own.

 The key concept of this chapter is that the graphscreen has a second coordinate
system, one that can map different coordinates to the same pixels. Imagine a two-
dimensional plane (flat sheet) that extends infinitely up, down, left, and right, as illus-
trated in figure 8.2.

 When you display part of that plane on your calculator’s LCD, it’s as if you set the
calculator down on top of the plane and looked through the LCD at the underlying
plane, including whatever graph might be sketched on that plane. Your calculator
would be a literal window through which you could see a graph. You could slide your
calculator around on the plane to see different parts of the graph through the LCD
“window.” You could lift it away from the plane to see more of the plane (thus zoom-
ing out) or move it closer to zoom in.

 And lo and behold, as you might expect because I’m making this analogy, the
Cartesian or point coordinate system in your TI-83+/84+ is just like this. As shown in

Figure 8.1 Two examples of what you can do with this chapter’s lessons. The left
screenshot is from the program POLYGON, which section 8.4 will show. The right
screenshot is from a TI-BASIC 3D graphing program called Graph3D v4.0.

186 CHAPTER 8 Graphs, shapes, and points
figure 8.3, you specify which part of the Cartesian coordinate system is mapped to
your calculator’s display with several window variables. The left-to-right axis is the X
axis; as you move farther to the right, the X-coordinate increases. The bottom-to-top
axis is the Y axis; the Y-coordinate increases as you move up. In the pixel coordinate
system, column 0 always refers to the leftmost column of pixels, whereas in the point
coordinate system, X = Xmin is the leftmost column, X = Xmax is the rightmost, and
Y = Ymin and Y = Ymax are the bottom and top rows.

 Table 8.1 shows more about the six variables that govern the size of the point coor-
dinate window. When you’re not in a program, you can adjust these in the WINDOW
menu, accessed with the [WINDOW] key. If you’re writing a program, you can find
them in [VARS][1] (Window Variables). They’re like the numeric variables A, M, Z,
and their 24 siblings (numeric variables can be A–Z and θ, a total of 27 variables) in
that you can store to them or read their values back.

Figure 8.2 The analogy presented in the text about the 2D coordinate plane, which extends
infinitely in every direction. Your calculator’s screen shows a small portion of that plane at any
time, including any axes and graph that may be drawn on the plane; panning and zooming the
window is like moving the calculator to see different parts of the plane.

Figure 8.3 Comparing
the pixel and point
coordinate systems.
The pixel coordinates
exist only on the screen,
whereas the point
coordinates map a certain
area of the Cartesian
plane onto the LCD, but
the plane still extends
infinitely offscreen in
every direction.

187Another coordinate system: points versus pixels
In addition, modifying some of the window variables automatically updates others to
keep the set of six consistent with each other. If you change ΔX or ΔY, the calculator
changes Xmax or Ymax to Xmin+ΔX or Ymin+ΔY, respectively. Conversely, if you change
Xmax, Xmin, Ymax, or Ymin, then ΔX and/or ΔY are automatically adjusted. You may
notice Xscl and Yscl in the Window Variables menu as well, but TI-BASIC programs
don’t often use these.

8.1.1 Pixel-point coordinate system conversion

In some programs, you’ll want to combine pixel-based commands such as Text with
point-based commands such as Line, which you’ll learn about later in this chapter. For
such programs, you may want to convert between the two coordinate systems or adjust
the point coordinate window to match the pixel coordinates.

 To translate a pixel coordinate (row, column) = (B,A) to point coordinates (X,Y),
you translate the row (B) and column (A) separately, as shown in figure 8.4. The
resulting point will have X value Xmin+A*ΔX, because Xmin is the leftmost column and
each pixel column is ΔX from the previous one. The Y value, by similar reasoning, will
have Y value Ymax-B*ΔY, so pixel (B,A) is point (Xmin+A*ΔX, Ymax-B*ΔY).

 You can also go the other way around, translating a point (X,Y) to a pixel (B,A);
this is also shown in figure 8.4. The row variable B will have pixel coordinate
(Ymax-Y)/ΔY, and the column variable A will have pixel coordinate (X-Xmin)/ΔX.
Inaccuracies in the way your calculator does math may cause those new A and B coor-
dinates to not be exactly integers, so the round command, found in the NUM tab of
the [MATH] menu, should be used. Point (X,Y) maps to pixel (round((Ymax-Y)/
ΔY),round((X-Xmin)/ΔX)).

 You can adjust the point coordinate window to almost match the pixel coordinates,
making translation largely unnecessary. For the X-coordinate, you can set Xmin to 0
and ΔX to 1, making point coordinate X perfectly match the pixel coordinate col-
umns. The Y-coordinate is more complicated, because point coordinates increase
from bottom to top, whereas pixel rows increase from top to bottom. You can set Ymin

Table 8.1 The six useful variables that govern the size of the coordinate window. You can see how four
of these six (Xmin, Xmax, Ymin, Ymax) relate to their pixel cousins in figure 8.2.

Variable Function

Xmin The left edge of the screen, or the lowest onscreen X value

Xmax The right edge of the screen, or the highest onscreen X value

ΔX The difference between horizontally adjacent pixels, equal to (Xmax-Xmin)/94

Ymin The bottom edge of the screen, or the lowest onscreen Y value

Ymax The top edge of the screen, or the highest onscreen Y value

ΔY The difference between vertically adjacent pixels, equal to (Ymax-Ymin)/62

188 CHAPTER 8 Graphs, shapes, and points
to -62 and ΔY to 1, which will make Ymax=0. Thus you can negate the row of a pixel to
get its point Y-coordinate or negate a point’s Y-coordinate to get its pixel Y-coordinate.
I’ll reiterate the commands to make the pixel and point coordinates match:

:0→Xmin:1→ΔX
:-62→Ymin:1→ΔY

This means that the pixel at, for example, (row, column) = (45,20) would be the same
as the point at (X,Y) = (20, -45), because the column and X match and the Y and row
are negatives of each other.

TIP Pixel coordinates are written (row, column), whereas point coordinates
are written (X, Y), where X is related to the column and Y to the row. Remem-
ber to not mix these up, or the examples herein (as well as your own pro-
grams) may be confusing.

Now that you have the basics of the point coordinate system, you’ll learn how to
make your program generate and manipulate graphs, as befits a program on a graph-
ing calculator.

8.2 Graphing from programs
Graphing calculators stand apart from other educational tools like scientific calcula-
tors and computers in that they excel at displaying graphs. Considering what an
important feature this is, it should come as no great surprise that programs can draw
graphs too. You can use your programs to define Y= equations (and equations for the
three other graph modes the TI-83+and TI-84+ support), render graphs, pan and
zoom, and annotate and draw on top of graphs. You’ll learn about all these capabili-
ties in this section and how to use them in your own programs. I assume that you have
a moderate familiarity with drawing graphs on your calculator manually; if not, I rec-
ommend you refer to the graphing section in appendix A.

 I’ll begin with the basics of graphing: defining equations that you want to graph
and displaying them. I’ll teach you about predefined equations and equations that
your program can modify on the fly.

Figure 8.4 Converting between pixel
coordinates and point coordinates for
an arbitrary point/pixel on the
graphscreen, as described in the text.
You can get the point coordinates
(x = X, y = Y) for a point given the
pixel coordinates (row = B,
column = A) for the same point or
rearrange the equations for X and Y to
get pixel coordinates A and B back
from a point coordinate pair (X,Y).

189Graphing from programs
8.2.1 Creating graphs
For all graphs, including those created by a student using a graphing calculator in
math and those generated by programs, a two-step process is required. First, the calcu-
lator must be given the equation or equations that it should graph. Second, the calcu-
lator is instructed in some way to display the graph or graphs, or to at least do some
sort of math on the equations entered. For the student, step 1 would be typing in an
equation in the [Y=] menu, and step 2 would be pressing the [GRAPH] button or
using the tools in the CALC menu under [2nd][CALC]. If any of that sounds unfamil-
iar, you can review appendix A.

 A program can enter equations into the function equation variables, Y1 through Y9

as well as Y0 for rectangular or function mode (Y0 is the tenth variable, so we list it after
Y9). Like a human user, the program can then instruct the calculator’s OS to display
the graph or perform calculations on the equations entered.

 The simplest way for programs to generate graphs is to store them into a variable,
one of the equation variables under [VARS][�][1]. You must store equations as if
they’re strings, enclosed in quotes:

3X+4→Y3
"3X+4"→Y3
"3X+4→Y3

Entering the equations into graph variables isn’t enough: you then need to instruct the
calculator to draw the graph. For this, you can use the DispGraph command under
the I/O tab of the PRGM menu, [PRGM][�][4]. Section 8.5 will tell you more about using
the DispGraph command with Disp to switch between the homescreen and graphscreen.

 When you don’t want to render an equation that’s stored verbatim (as is) inside
the program, however, things start to get more complicated.

VARIABLES IN STORED EQUATIONS

One technique you can use to programmatically “modify” stored equations is to include
coefficients inside the equation, coefficients stored as variables. Consider the classic lin-
ear equation Y = MX + B, where M is the slope of the line and B is the Y-intercept. The
statement "3X+4"→Y3 would store a line with slope = 3 and Y-intercept B = 4 into the
graph equation (function) Y3, but the slope and the Y-intercept would be constant, and
the program wouldn’t have a good way to change them. But the program could instead
use variables M and B inside the equation and choose values for M and B, as in figure 8.5.

 This program, LINCOEF1 (for Linear equation with Coefficients 1), uses just such
a technique:

PROGRAM:LINCOEF1
:"MX+B→Y3
:3→M:4→B
:DispGraph
:Pause
:0.5→M:-1→B
:DispGraph
:Pause

Wrong; this will produce
an ERR: DATA TYPE errorCorrect

Also correct; closing
quotes and parentheses
can be omitted before the
store (→) operator

Omitting the closing parenthesis, because
it comes before a store (→) symbol

Pause works on the
graphscreen too!

This is the negative
symbol, not the
minus operator

The line will be regraphed
because the coefficients changed

190 CHAPTER 8 Graphs, shapes, and points
If you try this on your calculator and you don’t see any graphs, try choosing 6:
ZStandard from the [ZOOM] menu and running it again.

 This might still not be enough: you might want to convert whole strings containing
custom equations into graphs. In chapter 9, you’ll learn to work with strings, includ-
ing concatenating (joining) pieces of strings together and pulling pieces of strings
into other strings. For now, I’ll show you how to get a string from a user, turn that into
an equation, and graph it.

GRAPHS FROM STRINGS

Strings are created by putting characters like letters and numbers between pairs of
quote marks. Graph equations are similar, except that the expression between the
quotes needs to be a valid equation for a graph. To convert a string into an equation,
you can use the String�Equ command. It can be found by pressing [2nd][0][4] for
the T section of the Catalog and scrolling up three or four lines. It takes two argu-
ments, the string to convert and the equation into which to store the converted equa-
tion. There’s the reverse command, Equ�String, which can also be found in the
Catalog ([2nd][0]) under the E section. Here are the two commands in action:

:"1.4sin(X)-2→Str2
:String�Equ(Str2,Y1
:Equ�String(Y1,Str8

After this code completes, Str8 and Str2 will be identical, and Y1 will hold the equation
as well. You can quickly test these commands with a new program, CUSTOMEQ, which
prompts the user for a string and then graphs it as an equation.

PROGRAM:CUSTOMEQ
:ClrHome
:Disp "ENTER AN EQUATIO","N TO GRAPH
:Input "Y=",Str1
:String�Equ(Str1,Y1
:DispGraph
:Pause

Why not just directly use Prompt or Input with Y1 and its kin? The TI-OS doesn’t accept
graph equation variables as arguments to Prompt and Input and will produce an
ERR:DATA TYPE error if you try.

Figure 8.5 Two linear graphs drawn by prgmLINCOEF1, both using the linear
graph equation Y = MX + B. At left, slope M = 3 and Y-intercept B = 4. At right,
M = 0.5 and B = –1.

Now Y1 = 1.4sin(X) – 2

191Graphing from programs
 Once you’ve defined some functions to graph, there’s much more you can do in
your programs. You can zoom and pan around the graph and add annotations. You
can change extra items shown with the graph, including the axes and something
called the grid. I’ll even show you formulaic “prolog” and “epilog” code that will
ensure your graphscreen programs don’t frustrate users who want to render graphs
after using your programs and games.

8.2.2 Manipulating graphs and functions

Drawing graphs on the graphscreen is just the tip of the iceberg as far as your calcula-
tor’s graphing features go. Your programs can also manipulate graphs the way you can
by hand from your calculator’s menus. In section 8.1, you learned how to zoom and
pan around graphs by changing the window variables, Xmin, Xmax, Ymin, Ymax, ΔX, and
ΔY. In the coming sections, you’ll learn to draw shapes, lines, and points on the graph-
screen, which you can use to annotate graphs or for drawings without any graphed
functions. In this section, you’ll now learn commands to zoom, modify graph settings
and modes, and prolog and epilog code you can apply to your own programs to make
them play nice with your users’ calculators.

 An overview of several useful graphscreen manipulation commands is shown in
table 8.2. There are two zoom commands, two commands to control which (if any)

Table 8.2 A small subset of the TI-BASIC commands you can use to manipulate the graphscreen from
inside your programs. Explore the [ZOOM] (Zoom), [MODE] (Mode), and [2nd][ZOOM] (Format) menus
for more commands.

Command In menu… What it does

ZStandard [ZOOM] Sets the default window: Xmin=Ymin=-10, Xmax=Ymax=10.

ZSquare [ZOOM] Adjusts Xmin and Xmax or Ymin and Ymax so that ΔX=ΔY (which
means squares look square and diagonals are displayed accurately).

FnOff [2nd][0] or
[VAR][�][4]

Disables all Y= functions (but doesn’t delete them). If you specify a
number, like FnOff 4, it only disables that Y= equation, for example, Y4.

FnOn [2nd][0]
(Catalog)

Enables all Y= functions, or with a numeric argument, only enables
that Y= equation.

StoreGDB [2nd][PRGM]
[�][�][3]

With a number 0–9, saves the current graph functions, the graph set-
tings (axes, window, and grid) to a variable such as GDB0, GDB5, or
GDB9. Example: StoreGDB 7.

RecallGDB [2nd][PRGM]
[�][�][4]

With a number 0–9, recalls that GDB variable, restoring the graph set-
tings and functions. Example: RecallGDB 3.

GridOn
GridOff

[2nd][ZOOM] Enables or disables a grid of dots on the graphscreen at every (X,Y)
location where X and Y are both integers.

Func Par
Pol Seq

[MODE] Changes between Function, Parametric, Polar, and Sequential graph-
ing modes. We work only with Function (Y=) graphing in this chapter,
but programs can also graph in the other three modes. Check the
resources in appendix C for info.

192 CHAPTER 8 Graphs, shapes, and points
Y= equations are graphed, two commands to save and restore graph settings with a data
structure called a graph database (GDB), and commands to change graph settings and
modes. Besides these, you can find more zoom commands in [ZOOM], other graph for-
matting options in [2nd][ZOOM], and graph mode commands in [MODE].

 Figure 8.6 illustrates the difference between ZStandard, which sets Xmin=Ymin=-10
and Xmax=Ymax=10, and ZSquare, which increases the Xmin and Xmax or Ymin and Ymax
of the current window to make ΔX=ΔY. Because the screen is rectangular, ZStandard
makes the circle at the left side of figure 8.6 appear stretched and the diagonal line
appear as not a true diagonal. When the ZSquare command is added, the circle looks
round and the diagonal looks properly angled. The program that draws these four
shapes, DRAWDEMO, is presented in section 8.4. The [ZOOM] menu also contains
commands to zoom in and out and set a window that shows trigonometric functions
well, among others.

 Besides equations in the form Y=, your calculator can graph parametric functions
where both X and Y are parameterized, polar functions in the form r=f(θ), and
sequential (recursive) functions. You can switch the graphing mode with the Func,
Par, Pol, and Seq commands, all of which are found under [MODE]. If you want to
define equations for each of those graphing modes, the necessary equation names can
be found in [VARS][�], where the Y0 through Y9 tokens also reside.

 The StoreGDB/RecallGDB and FnOn/FnOff commands are particularly useful for
helping programs roll back any changes they make to the graphscreen to leave the
graphscreen settings of the user’s calculator as they were before the program was run.

POLITE GRAPHSCREEN PROGRAMS

Hastily written graphscreen programs may turn off the axes, change the window, dis-
able functions, and generally frustrate the user who may not be savvy enough about
their calculator to understand what has happened and how to fix it. To save your pro-
grams’ users and players that aggravation, I’ll show you commands you can put at the
beginning and end of your programs to avoid this problem. These prolog and epilog
commands will make your life easier by letting your program work with a clean slate
and will also restore graph settings and functions when the program is complete for
the sake of politeness.

Figure 8.6 The difference between ZStandard (left) and ZStandard followed
by ZSquare (right)

193Graphing from programs

Set Xm
Ymin

Xm
Yma
 The StoreGDB and RecallGDB commands respectively save and recall a file that
records the current graph mode, any and all equations the user has entered, and the
graph settings such as the window and whether the axes are disabled. If you store a
GDB (Graph Database), your program can then safely turn off all the equations so that
you can use a blank graphscreen unmarred by graphed functions, change the window
as your program’s needs dictate, and turn off the axes. A simple RecallGDB function
will then undo all of those changes. If you want to be able to draw on the graphscreen
with no graphs and no axes and the standard window settings, your prolog, the first
few lines of your program, might look like this:

:StoreGDB 0
:FnOff :AxesOff
:ZStandard

At the end of the program, you need only have a single line as an epilog to undo all
of that:

:RecallGDB 0

The GDB number used with the RecallGDB command must match the number used
with StoreGDB, because there are 10 GDBs named GDB1 through GDB9 plus GDB0, just
like Y1 through Y9 plus Y0. Keep in mind that any single GDB stores all of the functions
Y1 through Y9 and Y0, as well as the current window and zoom settings.

 As you’ve seen, your calculator offers programs many tools to manipulate the
graphscreen. We’ll conclude this section with a few miscellaneous commands and
tricks that you’ll be able to use in your own programs.

8.2.3 Other graph tools and tricks

There are a few odds and ends that don’t fit elsewhere in this chapter but may come
in handy in your own program. First, there are a few drawing commands that can
annotate or augment graphed functions. Next, there are commands to calculate val-
ues and properties of graphed functions. Finally, there’s the way to plug a value for X
into a Y= equation to get the corresponding Y for that X.

 In the remainder of this chapter, I’ll be showing you how to use many of the drawing
commands in the DRAW menu ([2nd][PRGM]) of your calculator. But there are several
useful functions that I won’t have space to discuss in detail but are still worth mention-
ing. The Shade command is used to shade the graphscreen, drawing an area of black
pixels between two functions, a function and a Y value, or two Y values, for example:

:Shade(Y1,10
:Shade(-5,Y3
:Shade(Xmin,Xmax

The Tangent command takes a Y= function as the first of two arguments and an X
value as the second and draws the line tangent to the Y= function at that point, as in
Tangent(Y1,4.5). DrawInv is used to graph functions that are of the form X = f(Y)
instead of the normal Y = f(X). DrawInv X² draws the sideways parabola X = Y2.

Chosen because it’s at the bottom of the
GDB list and likely won’t conflict with any
GDBs that the user manually saved

Turn off all functions,
and turn off the axes

in=
=-10,
ax=
x=10

Fills the graphscreen
with black

194 CHAPTER 8 Graphs, shapes, and points
 You can calculate the minimum, maximum, and integral of a function within a
given interval, as well as the derivative of a function at a point. All four of these com-
mands, fMin, fMax, fnInt, and nDeriv, are found at the bottom of the MATH tab of
the [MATH] menu. fnInt, fMin, and fMax each take as arguments the function to ana-
lyze, the name of the independent variable (usually X), and the two bounds for the
interval. nDeriv takes the function, the independent variable, and the point at which
to calculate the derivative:

:fMin(Y3,X,-8,6
:fMax(Y5,X,5,8.3
:fnInt(Y1,X,1.5,2.5
:nDeriv(Y9,X,84

If your program needs to calculate the Y-value of a function at a given X, it can use one
of two code “idioms.” First, it can set X to the desired value and can then use Y1 as if it
was a number:

:3.4→X
:Disp Y1

Alternatively, you can put the X value in parentheses after the Y= function name to cal-
culate the same value:

:Disp Y1(3.4

You now have seen all the basics of graphing from your programs. I’ll move on to the
many drawing commands your calculator offers to let your programs create fun
games, attractive math programs, and much more.

8.3 Drawing with points
In chapter 7, I introduced the concept of drawing with pixels. You learned how you
could turn pixels on and off, how to flip the color of a pixel, and even how to make a
program check if a pixel is black or white. In much the same manner, you can manip-
ulate points in the coordinate plane to turn them on or off. The primary difference
from the pixel coordinate system is that a single coordinate pair, such as (0,0) or (-5,6.3)
or (992,-496) may refer to different physical pixels depending on how the window is
set. If you tried to draw pixels offscreen when I introduced them in chapter 7, you
might have discovered that your calculator throws an ERR:DOMAIN error, indicating
that you can’t use pixel coordinates that are offscreen. Points, however, work differ-
ently: no matter where you draw a point, it will “work,” even if the point is offscreen.
Offscreen points won’t be drawn, but an error won’t be shown either.

 At the end of section 8.1, I mentioned specific window settings that would make
pixels and points overlap exactly, save for the fact that the Y-coordinate of each
point would be the negative of the row of each pixel. Thus, the pixel at row 30, col-
umn 78 would be the point (X,Y)=(78,-30). This is handy if you want to mix points,
pixels, and other commands such as Text and the Line and Circle commands from
the next section.

195Drawing with points
 The three point commands are Pt-On, Pt-Off, and Pt-Change. All three can be
found in the POINTS tab of the DRAW menu with the Pxl commands, accessed with
[2nd][PRGM][�]; table 8.3 lists the three commands and their arguments.

Pt-On and Pt-Off (but not Pt-Change) can accept an optional third argument, which
specifies a point style to use for rendering. If the extra argument is a 2, then Pt-On
and Pt-Off draw a 3-by-3-pixel box centered on the given coordinates. If the argu-
ment is a 3, the two commands draw a 3-by-3-pixel cross or plus symbol. If the argument
is anything else, the commands draw a single point. The left side of figure 8.7 shows
the difference between the three point-drawing modes.

8.3.1 Example: a point-drawing screensaver

To demonstrate the point commands, I’ll show you a simple screensaver-style pro-
gram; a demo is presented at the right side of figure 8.7. It sets the window to
Xmin→Ymin→0, Xmax→47, and Ymax→31. This means that every two pixels up or across
the display is an increase of 1 in X or Y or that each pixel is 0.5 in the X and Y direc-
tions. This is a square window, which means that going the same number of pixels in
the X and Y direction is also the same increase in X or Y. This screensaver randomly
draws points on or off at integer X and Y locations, using the three possible point
styles, until you press a key.

Table 8.3 The syntax and usage of the Pt-On, Pt-Off, and Pt-Change commands

Command Example Explanation

Pt-On(X,Y) or
Pt-On(X,Y,style)

Pt-On(4,4 Always turns the point at (X,Y) on (to black),
even if it was already on

Pt-Off(X,Y) or
Pt-Off(X,Y,style)

Pt-Off(9.5,0.5 Always turns the point at (X,Y) off (to white),
even if it was off

Pt-Change(X,Y) Pt-Change(-4.2,1 Switches a black point to white and a white
point to black

Figure 8.7 The three Pt- commands and their optional styles (left) and the output of
the PTSAVER screensaver demo (right)

196 CHAPTER 8 Graphs, shapes, and points
The code for this program is in listing 8.1. After performing the normal prolog func-
tions to set up the graphscreen, StoreGDB, and FnOff, it turns the axes off and clears
the screen. It sets Xmin, Xmax, Ymin, and Ymax as specified previously and uses a While
loop to loop until a key is pressed. The loop chooses X- and Y-coordinates (stored in A
and B), a style (S), and then “flips a coin” to decide whether to turn the point with
those coordinates on or off with the style S. It cleans up and displays the homescreen
when a key is pressed.

PROGRAM:PTSAVER
:StoreGDB 0
:FnOff :AxesOff
:ClrDraw
:0→Xmin:47→Xmax
:0→Ymin:31→Ymax
:While not(getKey
:randInt(0,47→A
:randInt(0,31→B
:randInt(1,3→S
:If rand>0.5
:Then
:Pt-On(A,B,S
:Else
:Pt-Off(A,B,S
:End
:End
:RecallGDB 0
:Disp

Points are powerful, especially because you can draw them offscreen without worrying
about errors and can use various styles for the Pt-On and Pt-Off commands. The
graphscreen has even more in store for you, as you’ll see next. From lines to circles to
shapes, the next section will teach you more about your calculator’s graphscreen
drawing commands.

Listing 8.1 Program PTSAVER

A warning against variable Y
As you begin to create programs that use the point coordinate system, you may be
tempted to store arguments in variables X and Y, so that you can call commands like
Pt-On(X,Y) or Line(X,Y,X+4,Y). You should avoid using the variable Y. In all of the
chapters up to here, I’ve used variables such as (A,B) to represent coordinates,
because your calculator’s OS has a bug, and I wanted to train you not to use Y as a
coordinate. Every time you call the ClrDraw command, the Y variable is reset to 0,
and whatever you may have stored in Y is lost. Whenever you’re writing a program
that uses the graphscreen, you shouldn’t use the numeric variable Y for anything.

Prolog to save the graph equations
and state for later restoration and
clear the screen and turn off the axes

Set up the window
as discussed

Loop until getKey
returns non-zero
(i.e., a key is pressed)

randInt(M,N) returns a random integer
between and including M and N; rand
returns a random decimal between 0 and 1.
Half the random numbers will be above and
half below 0.5, so this is like flipping a coin.

Restore the graph settings
and display the homescreen

197Lines and shapes
8.4 Lines and shapes
Points, either by themselves or combined with graphs, pixels, and text, are a useful
tool, but it’s still tedious to try to draw larger images when tools like lines could
make the job easier. TI-BASIC offers a number of drawing commands to help you
draw such images, of which I’ll cover four in this section, shown in figure 8.8. First,
I’ll tell you about the Line command, which can be used to draw or erase lines. I’ll
talk about two commands that make vertical and horizontal lines fast and easy, and
I’ll introduce the Circle command. Because the commands themselves are fairly
self-explanatory, I’ll swiftly move on to a small demo program that uses the four
commands and a larger example program, POLYGON, that uses the Line command
to draw polygons.

8.4.1 The drawing commands

The four drawing commands we’ll explore in this section all take point coordinates,
expressed as X and Y values. Each of the four commands obeys the current graph win-
dow. You can draw lines and circles that are partially offscreen and cross an edge, and
just as with points, you even draw things that are entirely offscreen without worrying
about error messages. First, to draw a line from point (X1,Y1) to point (X2,Y2) use the
Line command:

:Line(X1,Y1,X2,Y2)

You could also omit the ending parenthesis, because saving space in your programs is
always important. The Line command can also be used to erase lines, essentially draw-
ing a line but in white pixels (like Pt-Off) instead of black pixels, by adding a fifth
argument that’s a zero:

:Line(X1,Y1,X2,Y2,0)

You can make the fifth argument a 1 instead of a 0 to draw a black line, and you can
even use a variable instead of 0 or 1, allowing your program to draw either a white or
black line depending on the value of the variable.

Figure 8.8 The DRAWDEMO program used to make a circle, a diagonal line, a
vertical line, and a horizontal line drawn with a centered window (left) and an off-
center window (right). Drawing commands will work properly even if the result is
partially or entirely offscreen, unlike Pxl commands.

198 CHAPTER 8 Graphs, shapes, and points
The Horizontal and Vertical commands each take only a single argument and are
among the commands that are separated from their argument with a space instead of
parentheses. The argument to Horizontal is a Y-coordinate, and the argument to
Vertical is an X-coordinate. The Horizontal command draws a line from Xmin
to Xmax at the specified Y value, as long as the Y value is onscreen. The Vertical
command follows the same logic but draws a line between Ymin and Ymax at the given
X-coordinate:

:Horizontal Y1
:Vertical X1

The Circle command does what you might expect, given an (X,Y) coordinate for the
center of the circle and a radius. Of the four commands mentioned in this section, it’s
noticeably slower, taking about two seconds to complete a circle:

:Circle(X,Y,R

Clever TI-BASIC programmers have noticed that if you put a list containing the imagi-
nary number i (typed with [2nd][.]) as a fourth argument to Circle, you can force
circles to be drawn about four times faster than normal. This is likely an Easter egg
(hidden feature) added by the calculator’s OS programmers:

:Circle(X,Y,R,{i})

To demonstrate all four of these commands together, here’s a tiny program that clears
the screen and draws a slow circle, a diagonal line, a vertical line, and a horizontal
line. It doesn’t do anything with the window, the axes, or any functions entered in [Y=],
so you can modify the window in [WINDOW] and graph settings in [2nd][ZOOM] (as
the two sides of figure 8.8 showed) to see how the drawn circle and lines change.
You’ll see a more complete program in the next section that carefully handles the
axes, functions, and window.

PROGRAM:DRAWDEMO
:ClrDraw
:Circle(2,2,8
:Line(2,2,-5,-5
:Vertical 10
:Horizontal -6

With those basic commands under your belt, I’ll show you an example program that
uses the Line command to render polygons on the graphscreen. You’ll see defensive
programming techniques I’ve discussed previously, as well as a few notes about using
trigonometric commands in your programs.

8.4.2 Using lines to draw polygons
This particular example program is both a demonstration of using the Line command
and an example of how you can draw polygons in your own programs. It prompts the
user for how many sides the polygon should have and the distance between each ver-
tex (where the sides meet) and the center, which it refers to as the radius. It makes

199Lines and shapes

Adjus
window t

ΔX=Δ
that squ

appear sq
sure that the user enters a positive integer for the number of sides and a positive
number for the radius, a defensive programming technique (demonstrated at left in
figure 8.9). If the checks pass, it draws the resultant polygon and pauses on the graph-
screen, as the center and right of figure 8.9 show.

 The code for this program is presented in listing 8.2. All of the commands have been
presented previously with the exception of Degree, but the trigonometric math to calcu-
late the coordinates of each polygon’s corners might be new to you, as might be the
combination of commands that comes before and after the polygon is drawn. For typing
the program in listing 8.2, the Degree command is in [MODE]. sin(and cos(are on
their respective keys, and the graph commands such as AxesOff and FnOff are in
[2nd][ZOOM] (the Format menu). ZStandard and ZSquare are under [ZOOM], and
RecallGDB and StoreGDB are in the STO tab of the DRAW menu ([2nd][PRGM]).

PROGRAM:POLYGON
:Input "SIDES=",S
:Input "RADIUS=",R
:If R<0 or S<3 or S≠int(S
:Then
:Disp "BAD ARGUMENTS
:Return
:End
:StoreGDB 0
:FnOff :AxesOff
:ZStandard
:ZSquare
:Degree
:For(θ,0,359,360/S
:Line(Rcos(θ),Rsin(θ),Rcos(θ +(360/S)),Rsin(θ +(360/S
:End:Pause
:RecallGDB 0

The Input commands and the conditional logic that performs sanity checking should be
fairly familiar to you by this point in your TI-BASIC programming journey. The majority

Listing 8.2 The POLYGON program to draw S-sided polygons with the Line command

Figure 8.9 Using the Line and other graphscreen manipulation commands
to draw polygons. The leftmost screenshot demonstrates sanity checking on
the inputs; the middle and right screenshots show a pentagon and an
octagon, respectively.

Defensive programming: don’t try to draw the
polygon if the user specified fewer than three sides,
a noninteger number of sides, or a negative radius

Store the graph
settings so that axes
and functions can
easily be restored

Turn off all Y= functions, turn off the axes,
zoom to Xmin=Ymin=-10 and Xmax=Ymax=10

t the
o set
Y, so
ares
uare

Enter Degree
(not Radian) mode

Restore the window, axes, and functions from before prgmPOLYGON ran

200 CHAPTER 8 Graphs, shapes, and points
of the new commands are those that set up the necessary graph properties (the pro-
log) before drawing the polygon and the one that cleans up afterward (the epilog). As
in previous examples, I’ll explain the latter half of this program line by line:

:StoreGDB 0

StoreGDB 0 will save which functions are enabled, what the current graphscreen win-
dow is, and whether the axes are shown or hidden.

:FnOff :AxesOff
:ZStandard
:ZSquare

Change the graph properties to the way you want them. AxesOff and FnOff respec-
tively turn off the axes and disable the drawing of any and all functions that may be
entered in [Y=]. The pair of zoom commands, ZStandard and ZSquare, first sets the
window to the standard or default size and then adjusts the Xmin and Xmax values so
that ΔX=ΔY.

:Degree

The Degree command means that sine, cosine, and tangent will interpret arguments
as if they were written in degrees. Conversely, the Radian command instructs trig com-
mands to interpret arguments as written in radians. Just as 360 degrees is a full circle,
2π radians are a full circle.

:For(θ,0,359,360/S
:Line(Rcos(θ),Rsin(θ),Rcos(θ +(360/S)),Rsin(θ +(360/S
:End:Pause

This loop will iterate S number of times, stepping 360/S each time. If S = 3, then it will
run with θ = 0, θ = 120, and θ = 240, three equally spaced angles along a circle. For S = 6,
a hexagon, it would iterate through θ = 0, θ = 60, θ = 120, θ = 150, θ = 180, θ = 240, and
θ = 300. Notice that I made the ending angle 359, not 360, because if it was 360 it
would also run with θ = 360, which would redraw the segment it drew when θ = 0.

 The arguments to the Line command use the fact that if you have an angle θ and a
radius R, then Rcos(θ) is the X-coordinate of the point a distance R from (0,0) in the
θ direction, and Rsin(θ) is the Y-coordinate, as shown in figure 8.10. Therefore,
(Rcos(θ), Rsin(θ)) are the coordinates of the current vertex at each iteration, and
(Rcos(θ + 360/S), Rsin(θ + 360/S)) are the coordinates of the next vertex. Drawing
lines between the current and next vertices for every vertex of a polygon as it goes

Figure 8.10 Calculating the (x,y) positions
of two points from their respective angles θ.
In this polygon-drawing program, each
θ2 = θ1 + (360/S), so that θ1 and θ2 are
the angles to adjacent vertices.

201Lines and shapes
through the loop will then draw all the sides of the polygon, producing outputs such
as those in figure 8.9.

:RecallGDB 0

Recall GDB0, which will restore the axes, functions, and window to the way they were
before prgmPOLYGON started running.

8.4.3 Extras: Text and the polygon

If you want to make your prgmPOLYGON output look like the left side of figure 8.1, all
you need to add are two extra lines of code to the program. You can add these two
lines between the Degree command and the For loop in listing 8.2, so that the text will
be drawn right before the polygon itself is rendered. You could equally correctly put
them between the End and Pause commands; the only difference is that if the polygon
overlapped the text, it would be placed underneath the text. Recall that text and lines
both overwrite whatever is already on the screen, so the order in which you render
items in your programs dictates how they’re layered. Here’s the code:

Text(0,0,S," SIDES
Text(7,0,"RADIUS ",R

Notice that these two lines of Text each provide both a number and a string as argu-
ments to display, which Text concatenates together, shown in figure 8.1.

 Now you know how to draw shapes, how to write text, and how to create points and
pixels. What if you’ve created a great image on the graphscreen and you want to save
it? What if you want to repeatedly and quickly show something on the screen in your

Program politeness and the angle mode
In many of the programs you’ve seen throughout the chapters so far, attempts have
been made to make “polite” programs. Such programs try to restore the user’s or
player’s calculator to its state before the program was run, including cleaning the
homescreen, fixing the axes, and restoring window settings. The angle mode
(whether the calculator is in Radian or Degree mode) should be no exception to this.
A given program may need to set Degree or Radian, but a polite program would
remember the original setting and restore it when the program ends. Luckily, a clever
trick exists that will reveal the current mode setting. When the calculator is in
Radian mode, any angle measure with a degree symbol (that is, 3°) is converted to
its Radian equivalent (in this case, 0.052…). In Degree mode, it will remain 3. If
3° = 3, then the calculator is currently in Degree mode; if not, it’s in Radian mode.
The following code uses this trick to store the current angle mode in the program’s
prolog and restore it in the epilog:

:(3°≠3)→M
:Degree
:...program code...
:If M:Radian

202 CHAPTER 8 Graphs, shapes, and points
program without having to painstakingly redraw it each time? Saving and recalling
picture variables is what you need.

8.5 Working with pictures
Shape, pixel, text, and graph-drawing commands in TI-BASIC are reasonably fast, but
if you have a lot of items to draw at once, the time can add up. Because you always
want to make sure your programs are both fast and small, an adage I’ve mentioned
many times before, it’s sometimes worthwhile to save the current graphscreen image
to memory so you can open it again later without needing to redraw it. The tradeoff is
that each such picture takes 767 bytes of memory, but in many cases, the memory
is worth the saved drawing time.

 In this section, you’ll learn about the 10 picture variables your calculator can
store, how to store and recall each picture, and how they can be used in your pro-
grams and games. First, you’ll find out what a picture variable is and how to store and
recall such variables.

8.5.1 What’s a picture?

The old axiom says that a picture is worth a thousand words, but for a calculator pro-
grammer, pictures aren’t quite as costly. Each picture variable is 767 bytes out of the
24,000 bytes or so of RAM (and 160 KB to 1.5 MB of Archive, depending on calculator
model). Your calculator has 10 picture variables, Pic0, Pic1, Pic2, through Pic9. Each
time you save to a picture, it overwrites the previous contents of that picture. If you try
to recall a picture that doesn’t exist, you’ll get an ERR:UNDEFINED error. As with other
commands that create variables, if you don’t have enough memory to fit a new pic-
ture, you’ll may get an ERR:MEMORY error when you store a picture.

 The two commands for pictures are StorePic and RecallPic, and both com-
mands take a single number as an argument, the number of the picture variable to
store or recall:

:StorePic 1
:RecallPic 6

There are several things to note with this pair of commands. First, you can’t use a
numeric variable with StorePic and RecallPic, so something like RecallPic N is
invalid. Unfortunately, if you want to use the contents of some variable like N to
determine which picture to store or recall, you’ll have to use a long set of condi-
tional statements:

:If N=0
:RecallPic 0
:If N=1
:RecallPic 1
:...etc...

Interestingly, for both commands’ argument, you can either use a number like 3 or 7
or the name of the picture variable, such as Pic3 or Pic7. These variable names can be

203Working with pictures
found under [VARS][4]. The RecallPic command will restore the given picture to the
graphscreen and set that to the foreground. This brings us to a pair of commands that
can flip between the homescreen and foreground without displaying anything new:

■ Disp—When run with no arguments, the Disp command shows the homescreen.
■ DispGraph—Found in the I/O tab of the PRGM menu ([PRGM][�][4]), the

DispGraph command brings the graphscreen to the foreground.

Recall from figure 7.2 that your calculator’s LCD is like an easel, on which you can
place either the graphscreen or the homescreen but not both at the same time. You
can use Disp and DispGraph to flip between the two. To return to the motivating
example, if you want to recall a picture but continue to show the homescreen for now,
run the Disp command after RecallPic.

 Now that you know the mechanics of storing and recalling pictures, I’ll discuss how
pictures can be useful in your programs.

8.5.2 Interfaces, optimization, and layering with pictures
Picture variables can be useful in many types of programs. In math and science pro-
grams and in games, any time you want to save a graphscreen image and later restore
it, StorePic and RecallPic will help. If you want to swap among several different
graphscreen images, you can store each in a picture and use ClrDraw and recall a dif-
ferent picture for each different image you want to display. You can also combine sev-
eral images. If you don’t use ClrDraw between recalling pictures, then they’re layered
together, as demonstrated in figure 8.11; any number of pictures can be combined
this way. One real-world example of this is a “3D” first-person shooter game that con-
structs 3D corridors on the calculator’s LCD with pieces stored in different pictures.
One picture contains a solid left wall, another a branch to the left, a third a box of
health on the ground, and so on. By combining pictures, the game can quickly draw
complex environments, rather than painstakingly redrawing the walls and other ele-
ments with point/pixel and Line commands every time the player moves.

 Picture variables are often used for things like splash screens, complex hand-drawn
images displayed when a game is started that represent the author of the game or the
game itself. Such images can also be part of the program’s main menu. When you’re
designing a program or game, be aware that all of your programs, and all the programs

Figure 8.11 Layering two pictures by recalling them without an intervening ClrDraw command.
Here, Pic1 and Pic2 are layered together, but any number of pictures can be combined with the
same technique.

204 CHAPTER 8 Graphs, shapes, and points
that anyone writes, use the same Pic0 through Pic9, and so if your game and another
game both use (for example) Pic3, one of the two games won’t work properly. If pos-
sible, it’s better to have your program generate any pictures it needs when it’s run,
save them to Pic variables, and use those as necessary. This ensures that even if
another program has overwritten the pictures your program needs, your program
regenerates the images and fixes them. A TI-BASIC 3D racing game could draw a fancy
car dashboard and windshield and save that to a picture, then clear the screen and
recall the picture every time the road in front of the car needs to be redrawn.

 You now have seen many of the different graphscreen drawing and graphing tools
your calculator offers to TI-BASIC programmers, and in the next chapter, you’ll learn
more about the types of variables and data your calculator can store and use.

8.6 Summary
The past two chapters have presented a wide cross-section of commands to draw on
the graphscreen, from text and pixel manipulation to graphs, shapes, and lines. In
this chapter, you first learned about the point coordinate system and how it provides a
window onto an infinite plane on which functions are graphed, the axes are rendered,
and drawings are drawn. I presented commands to create and manipulate graphs
from programs and to draw from programs. Although I didn’t yet show a specific
example, you can create attractive and easy-to-use programs by combining pixel-based
commands such as Text with point-based commands such as Line. As with every con-
cept I’ve shown you, it’s vital that you play with the drawing and graphing commands
yourself, think of program ideas you want to try, and put them together. You should
also try out any DRAW menu commands that I didn’t discuss.

 In the next chapter you’ll learn about the many types of data beyond numbers and
pictures that your calculator can store, including matrices, strings, and lists. I’ll show
you some rudimentary games you can expand on and talk about complex numbers
and randomness.

Manipulating
numbers and data types
Numbers can take on many roles in your programs. They can represent integers
or decimal numbers, they can represent the Boolean values true and false, and
they can be used to hold angles or coordinates or health or time or any number
of other things. But in TI-BASIC, as in almost any other programming language,
numbers aren’t expressive enough for everything. Single numbers can’t store
information about the sequences of characters that form words and sentences.
The numeric variables that you’ve used so far can only clumsily be used for stor-
ing sequences of numbers. If you’ve read appendix A, you already know that
TI-BASIC has solutions for these and other problems in the form of strings, lists,
and matrices.

 In chapter 8, you learned about the picture, GDB, and Y= equation data types; in
this chapter, I’ll introduce strings, matrices, and lists. I’ll show you how each of

This chapter covers
■ Working with strings and real and

complex numbers
■ Making programs use random numbers
■ Creating games and programs with matrices

and lists
205

206 CHAPTER 9 Manipulating numbers and data types
these three data types might be used in your own programs and what commands you
should know for working with each. The latter half of this chapter will return to num-
bers, teaching you commands to manipulate real and complex numbers and to gener-
ate random numbers. I’ll combine the lessons from these three data types to show you
how to write the framework of a simple RPG (role-playing game) and challenge you to
expand it with features like enemies, pickups, health, and scoring.

 A good starting point is the TI-BASIC string, which can store sequences of letters,
symbols, and tokens. You’ll see how you can create and manipulate strings.

9.1 Using strings
The first data type that you’ll learn about in this chapter is the string. You’ve seen
strings scattered throughout the preceding chapters, first with Input, Prompt, and
Disp and then with each of the commands that have used letters or words enclosed in
quotes. In a few places I introduced the string variables, named Str1 through Str9
plus Str0, most recently when discussing defining equations to be graphed from
within a program. In this section, you’ll learn how to define strings, join and cut apart
strings, and find substrings within strings. I’ll also show you how you can execute
TI-BASIC code stored inside strings.

9.1.1 Defining and manipulating strings

A string (in any programming language) is a sequence of characters stored together,
such as letters, numbers, and symbols. In TI-BASIC, you can even put commands and
tokens, like Disp, sin(, and Y2 into strings as if they were single letters. For example:

:"HELLO WORLD→Str1
:"32+sin(X"→Str4
:"SOMETHING or OTHER→Str0

You can’t put quote marks or the store symbol (→) into a string, because both are
used to signal the end of a string. You can put lowercase letters in strings if you use
a tool or shell such as Doors CS to enable lowercase, but keep in mind that each
lowercase letter takes 2 bytes, whereas each uppercase letter takes only 1 byte.
Although “HELLO WORLD” and “hello world” are both 11-character strings, the for-
mer is 11 bytes; the latter is 22 bytes. You should use lowercase sparingly in your pro-
grams, if at all.

FINDING THE LENGTH OF A STRING

To get the length of a string, you can use the length command, which is in the Cata-
log under [2nd][0][)] (for the L section of the Catalog). It takes either a string vari-
able or a literal string as an argument and returns a number representing the length
of that string. Each letter, number, or symbol counts as 1, and each token like Circle(
or ClrHome or getKey also counts as 1. Here’s a simple program to display the length
of a string the user enters:

As always, note the omitted closing
quote before the → to save space

It also
works if
you include
the closing
quote

The “ or ” here is from the
LOGIC menu, [2nd][MATH][�]

207Using strings
PROGRAM:STRLEN
:Input "STRING:",Str1
:Disp "LENGTH IS:",length(Str1

The length of the string that the user can type in for this program (or that your pro-
gram can store into a string) is limited only by the amount of free RAM in your calcula-
tor. If your program tries to store a bigger string than the calculator’s RAM can hold,
the TI-OS will throw an ERR:MEMORY error.

TIP Rather than saying “Str0 through Str9,” the text says “Str1 through
Str9 plus Str0.” Pic and GDB variables in chapter 8 were the same, for good
reason. Although numerically Str0 would come before Str1, on the TI-83+/
84+ Str0, GDB0, Pic0, and so on are the tenth of their variable type, appearing
at the end of the list after Str9, GDB9, and Pic9.

EXECUTING STRINGS AS CODE

You can even put certain types of TI-BASIC code into a string and execute the contents
of the string as if it was its own subprogram. The expr command, also found in the
Catalog under [2nd][0][SIN] (the E section), will execute any string containing a
math expression and return the result, but it won’t work with commands like Disp or
RecallPic. The following FAKEHOME program acts like a fake homescreen, display-
ing the results of math expressions that the user enters until the user types 999:

PROGRAM:FAKEHOME
:ClrHome
:Repeat Str1="999"
:Input "",Str1
:Disp expr(Str1
:End

If you’re clever, you could slightly modify this as a prank program to make your calcu-
lator appear to do math wrong, but I’ll leave figuring that out to you, and I caution
you to use your expertise with tact and discretion.

JOINING STRINGS

Joining strings, called concatenation, is performed with the plus operator. Putting +
between numbers means to add them, putting + between two strings, whether literal
strings or Str variables, means to join them. Here are some examples:

:Str1+Str4→Str4
:"---"+Str1→Str4
:Disp "H"+"3770"+Str5

But you can’t concatenate a string with a nonstring, such as a number. The expression
"H"+3770 (notice the missing quotes) would yield an ERR:DATA TYPE message.

CUTTING AND SPLITTING STRINGS

You can take out a substring of a string, a piece of that string, using the sub command,
once again found in the Catalog under S via [2nd][0][LN]. The sub command takes
three arguments: the string from which to take a substring, the offset at which to start

Repeatedly get a math
expression and evaluate it
until the user types 999

This line prompts for a
string but displays
nothing before waiting

Evaluate the contents of Str1 as if
it was math, and display the result

208 CHAPTER 9 Manipulating numbers and data types
the substring, and the length of the substring. The first character of a string in
TI-BASIC is offset 1, the second is 2, and the tenth is 10, in contrast to most other lan-
guages, where the first element of a string or list is usually 0 instead of 1. To give you a
concrete example, sub("HELLO",5,1) would produce O, and sub("FOLD",2,2) would
return OL. If a program tries to get a substring that goes past the end of the string,
either because the offset argument is too large or the length is too large, you’ll get an
INVALID DIM error.

FINDING SUBSTRINGS

A final command, inString, is used to find a string in another string; to keep straight
how it works, programmers commonly use the idiom “search for a needle in a hay-
stack.” The first argument is the string to search inside (the “haystack”), the second is
the string to look for (“the needle”); inString looks for the needle in the haystack
and returns the offset of the substring, if it finds it. If it doesn’t find a match, it returns 0.
There’s an optional third argument that specifies the offset at which to start:

:inString("HAYSTACK","NEEDLE"
:inString("HAYSTACK","NEEDLE",Offset

If Str1 contains a single letter, the following line of code would produce a number 1
through 26 corresponding to that letter’s place in the alphabet:

:Disp inString("ABCDEFGHIJKLMNOPQRSTUVWXYZ",Str1

I’ll conclude this section with an example of sub, but I recommend you play around
with combining sub, inString, length, and string concatenate to give yourself a more
intuitive understanding of how they fit together.

9.1.2 String sub example: Xth letter of the alphabet

You can use the sub command to manipulate strings to figure out the Xth letter of the
alphabet, just as I showed you how to find the position X in the alphabet of an arbi-
trary letter. The results of such a program might look something like the two sides of
figure 9.1.

HAYSTACK and NEEDLE are each either
strings or Str variables; offset is a number

Figure 9.1 Two uses of the sub command to manipulate strings demonstrated
in prgmLTRNUM

209Lists and matrices
Not only does this program display the Xth letter of the alphabet, it also appends cus-
tom ordinal suffixes (ST, ND, RD, TH) to the number on the first line of the final output,
the third line in the screenshots in the figure. If you examine the code in listing 9.1,
you’ll see that it always uses TH to start, but if the input number X is less than 4, it
selects a custom suffix. For X = 1, it plucks the substring of length 2 at offset 2 – 1 = 1,
or “TH.” For X = 2, it chooses “ND,” and for X = 3, “RD.”

PROGRAM:LTRNUM
:ClrHome
:Disp "ENTER A NUMBER
:Repeat X≥1 and X≤26 and X=int(X
:Input "1 TO 26:",X
:End
:ClrHome
:Disp "THE TH LETTER","OF THE ALPHABET","IS:
:Output(1,5,X
:If X<4
:Output(1,7,sub("STNDRD",2X-1,2
:Output(3,5,sub("ABCDEFGHIJKLMNOPQRSTUVWXYZ",X,1
:Pause

Just as strings are sequences of letters, your calculator has data types that can store one-
dimensional and two-dimensional sequences of numbers, called lists and matrices.

9.2 Lists and matrices
Now you know that strings let you store sequences of letters together, and numeric
variables let you store single numbers. Consider something like a high scores table,
where it would be helpful to be able to store a set of numbers together in a single vari-
able. Imagine a game on the homescreen, where each of the character spots on the
screen could be something like a tree, a piece of wall, or an enemy, where a two-
dimensional set of numbers representing each item would be a great way to store the
map. Once again, TI-BASIC comes to the rescue with lists and matrices. I introduce
lists and matrices in appendix A, which you may have reviewed before reading chapter 2
if you hadn’t previously heard of matrices and lists. If this section is the first you’re
hearing about them, I strongly encourage you to review the lessons of appendix A,
especially how you type lists and matrices. Otherwise, let’s start with the usage and
manipulation of lists.

 Lists, sometimes called vectors or arrays in other programming languages, store
between 1 and 999 numbers in a single variable. There are six built-in lists, named L1
through L6, but you can also create custom lists named with one to five letters, such as
LA or LSCORE or LMINE8. These so-called custom lists can be used in your TI-BASIC pro-
grams to save settings, save games, and save high scores between runs of your program;
the custom names mean that another program is unlikely to overwrite those lists. You
can type L1 through L6 with [2nd][1] through [2nd][6]; for custom lists, the subscript L

Listing 9.1 Program LTRNUM to display the Xth letter of the alphabet

Three spaces
between “THE”
and “TH”

For X = 1, 2, and 3,
displays a special prefix:
“1ST,” “2ND,” “3RD”

210 CHAPTER 9 Manipulating numbers and data types
is under [2nd][STAT][�][�]. You use the dim command to create a list of a given size,
resize an existing list, or check a list’s size.

:5→dim(L3
:800→dim(LBIG
:Disp dim(LBIG

You can also create a list by specifying its contents, such as {1,2,3}→L6. Other com-
mands include Fill(number,list), which sets every element of list equal to number,
and SortA(list) and SortD(list), used to sort the contents of a list in ascending or
descending order. These and other commands to manipulate lists can be found in the
OPS tab of the LIST menu, or [2nd][STAT][�].

 Matrices, or two-dimensional arrays, store a grid of between 1 x 1 and 99 x 99 num-
bers in a single variable. Unfortunately, there are only 10 matrices, named [A]
through [J]; you can find them all under the NAMES tab of the MATRX menu, at
[2nd][x–1]. The dim command works with matrices as well as lists and can be used to
create or resize matrices and find the size of an existing matrix, for example:

:{8,16}→dim([G]
:{10,10}→dim([F]

The Fill command can be used on a matrix, as can the many other matrix math com-
mands in the MATH tab of the MATRX menu, [2nd][x–1][�]. You can take the deter-
minant of a matrix with det and flip (or transpose) a matrix with the T command.

 You can get or set the value of the first element of a list with LTHIS(1), the second
using LTHIS(2), and so on. You can get or set the last element (if you’re not sure of the
list’s size) with LTHIS(dim(LTHIS. Matrices are similar, but you must supply a pair of
numbers for the element index, ordered as (row, column). [A](1,1) is the top-left
corner of matrix [A], [A](2,1) is the first column of the second row, and [A](1,3) is
the third column of the first row. You can use single elements of lists or matrices as if
they were numeric variables like B or T, including as values for math and for com-
mands and as storage for the return value of any command or expression.

 You can also manipulate whole lists or matrices by adding, subtracting, multiply-
ing, or dividing a single value from an entire list or matrix. You can add or subtract
two lists of equal sizes, and you can add, subtract, multiply, and divide matrices of
equal sizes. You can use comparison operators to compare single elements of lists or
matrices or to compare entire lists or matrices with other lists or matrices of the same
dimensions (size).

 Although this is a greatly abbreviated overview, lists and matrices are straightfor-
ward and powerful, and you’ll find them to be especially useful in your games.
Between the information in this section, the sample game you’ll see at the end of this
chapter, and appendix A, you have the essentials of using lists and matrices; I leave it
up to your explorations (or your online forum posts; see appendix C) to brainstorm
efficient and clever uses for these data types.

displays 800

8 rows, 16 columns, just
like the homescreenA 10 x 10 square matrix

211Working with integers and complex numbers
9.3 Working with integers and complex numbers
Thus far, you’ve worked extensively with numbers and with variables that can hold
numbers, such as A through Z and θ. Other than the arithmetic operators like addi-
tion, subtraction, multiplication, division, and raising to a power, your calculator can
manipulate numbers in many useful ways. I’ll reintroduce the int command along
with iPart, fPart, round, and abs. I’ll then introduce you (or remind you, depending
on how extensively you’ve used your calculator) to complex numbers and the several
commands your TI-83+ or TI-84+ offers to work with complex numbers. Let’s begin
with the most important of the commands TI-BASIC offers for manipulating numbers,
especially in dealing with integers and decimal numbers.

 The numeric variables you’ve been working with thus far in this book, A through Z
and θ, are called the Reals, in that they hold real (noncomplex, nonimaginary) num-
bers. Each contains a single value, a positive or negative number that may have many
digits before and after the decimal point. The smallest allowed value is around 10–99

(that is, a decimal point, 99 zeroes, and a 1); the largest is 1099 (a 1 followed by 99
zeroes). Your calculator can’t store that much precision, though, and for very large
and very small numbers it stores their approximate value. Your calculator offers
numerous commands to work with real numbers, mostly found in the NUM tab of the
[MATH] menu. Table 9.1 highlights a few of the most useful commands.

 Notice that for positive numbers, int and iPart work the same way; the differ-
ence between the two is for negative numbers. int rounds down to the next integer,

Table 9.1 New commands to manipulate the integer and decimal parts of numbers

Command In menu… What it does

int [MATH][�] Rounds down to the next integer and returns it. int(6.9) = int(6.1)
= 6; int(-6.1) = int(-6.9) = -7.

iPart [MATH][�] Plucks out the part of the number before the decimal point and returns it.
iPart(6.9) = 6; iPart(-6.1) = -6.

fPart [MATH][�] Plucks out the part of the number after (and including) the decimal point
and returns it; also maintains the sign of the number. fPart(6.9) = 0.9;
fPart(-6.1) = -0.1.

round [MATH][�] Rounds to the nearest integer. Takes two arguments: the number to round
and the number of digits to round to. round(1.75,0) is 2;
round(1.75,1) is 1.8.

abs [MATH][�] Returns the absolute value of its argument. abs(X) returns X if X is posi-
tive or the positive version of X if X is negative.

Float [MODE] The normal number display mode; shows as many digits after the decimal
place (if any) as necessary.

Fix [MODE] Followed by a number 0–9, such as Fix 3. Always displays exactly that
many digits after the decimal point, regardless of the number.

212 CHAPTER 9 Manipulating numbers and data types
iPart plucks out the integer part (the bit before the decimal point) of the current
number, so if X is a negative decimal (and not an integer) such as -6.1 or -590.04,
iPart(X)–1 = int(X). fPart is more straightforward, returning the decimal part of
the number; the only gotcha is that it also maintains the sign of the number. The
round and abs commands work as any math student might expect. The Float and Fix
commands control the number of digits displayed after the decimal point when a dec-
imal number is displayed.

 You’ve previously seen the int command used to check if some number is an inte-
ger with the following formulation:

:If X=int(X
:Disp "X IS INTEGER

You’ll find yourself using that in your programs, particularly when you want to check if
a number that a user typed for Input or Prompt is an integer. The iPart and fPart
commands can also be used for “compression,” letting you compress two numbers
into a single number by storing one before the decimal point and the other after it.

 There are a few other useful commands for working with numbers in the MATH
and NUM tabs of the [MATH] menu, which I leave you to explore on your own. Let’s
spend the remainder of this section looking at complex numbers and how you can
work with them.

COMPLEX NUMBERS

To understand complex numbers, you must first understand imaginary numbers. You
may be familiar with the idea that you can’t take the square root of a negative number,
which is only partially true. In mathematics, the square root of -1, or √(–1), is defined as a
number called i, the imaginary unit. Because i = √(–1), i2 = -1. You can use i to help you
take the square root of other negative numbers by the rules for simplifying square roots:

√(A ∗ B) = √(A) ∗ √(B)
√(–4) = √(–1) ∗ √(4) = i ∗ 2 = 2i

Keep in mind that i isn’t a variable here; it’s part of
the number itself, just as a negative sign placed
before a number is part of that number. Any imag-
inary number is written in the form Ni, where N is
a positive or negative decimal number. A real num-
ber, as distinguished from an imaginary number, is
any number that doesn’t include i.

 You can also have complex numbers, which are
numbers that have both real and imaginary parts. A
complex number is written a + bi, where a is the
real part and b is the imaginary part. One way to
think about complex numbers is as a pair of coordi-
nates (a, b) in a plane, just as (x, y) is a point in the
Cartesian plane. Figure 9.2 shows this concept:

Figure 9.2 Plotting a complex
number as a point in a two-
dimensional plane. The point 3+2i is
at 3 on the real axis and 2 on the
imaginary axis.

213Revisiting randomness
the x-axis is the real axis (corresponding to the value of a in a + bi), and the y-axis
is the imaginary axis (corresponding to b). The point plotted, 3 + 2i, is at 3 on the real
axis and 2 on the imaginary axis.

 You can type the imaginary i with [2nd][.]. Complex numbers can be stored inside
the usual numeric variables A–Z and θ. Your calculator offers five commands to
manipulate complex numbers, found in the CPX tab of the [MATH] menu. They are

■ real—Returns the real part of a complex number. real(3+2i) returns 3.
■ imag—Returns the imaginary part of a complex number. imag(3+2i) is 2.
■ conj—Calculates the complex conjugate of a complex number. This is like flip-

ping it over the real axis, or negating the imaginary part. conj(3+2i) is 3 – 2i.
■ angle—Calculates the angle a line would make relative to the real (x) axis if

you drew the line from the origin at 0 + 0i to the point in question. If you’re in
Degree mode (from the [MODE]) menu), then angle(4+4i) = 45 (degrees). In
Radian mode, it’s π/4 or 0.7854….

■ abs—Returns the magnitude of a complex number; abs(2+3i) = √(22 + 32) =
√(13). This is the very same abs command used to take the absolute value of
a Real.

As a final note, taking the square root of a negative number returns ERR:NONREAL
ANS from a program or on the homescreen, if your calculator is in Real mode from
the [MODE] menu. If your program switches to a + bi mode instead, it will properly
calculate the square roots of negative numbers. For politeness, if your program uses
the a+bi command to switch to complex mode to avoid the NONREAL ANS error, it
may wish to switch back to Real mode before it terminates. Be aware that the real,
imag, conj, angle, and abs commands work in Real mode; a + bi mode is only needed
for taking the square root of negative numbers.

 Your math programs may need to take advantage of complex and imaginary num-
bers, but it’s unlikely you’ll need them for games. Both games and math programs can
make effective use of your TI-83+/84+’s commands for generating random numbers,
the final topic we’ll cover in this chapter before an example game that summarizes the
lessons of the chapter.

9.4 Revisiting randomness
In chapter 1, I showed you a simple number-guessing game as your first TI-BASIC
game. In chapter 8, you saw a program called PTSAVER that drew points with random
positions and styles on the graphscreen. Both programs used the randInt command
to generate randomness, and the latter also introduced the rand command. Both
commands generate some sort of random number, a number selected arbitrarily. Ran-
dom numbers are the same sort of numbers you might get from rolling dice or flip-
ping a coin. In this section, I’ll show you how to use randInt and rand, as in figure 9.3,
and mention other commands for generating random numbers. I’ll show you what it
means to seed the random number generator and why that’s useful, and I’ll conclude

214 CHAPTER 9 Manipulating numbers and data types
with a coin-flipping program and an exercise for you to create a program that rolls
and displays a die.

 First, I’ll explain the various commands you can use to generate random numbers.

9.4.1 Generating random numbers

Both the randInt and rand commands generate what are known as uniformly distrib-
uted random numbers. Every number in the set of possible numbers is as likely to be
selected at a given call to rand and randInt as any other, as figure 9.3 illustrates. The
rand command picks a random decimal number between 0 and 1; it takes no argu-
ments. randInt generates an integer with a value somewhere between (and includ-
ing) the values of its two arguments. Both rand and randInt can be found in the PRB
tab of the MATH menu, accessed with [MATH][�].

:randInt(-10,15→A
:Disp rand
:rand(50

As you can see from the third line of these examples, although randInt and rand are
usually used to get a single random number, you can add an extra argument to rand
to get a list of that many random numbers, generated as if you called rand that num-
ber of times. rand(42) generates a list of 42 random numbers. You’ll see in chapter 10
that this trick is also sometimes used as a good way to create a delay.

 Your calculator offers two commands that generate nonuniformly distributed ran-
dom numbers. That is, each of the numbers isn’t equally likely to be selected. The first
is randBin, which generates binomially distributed random numbers; the second is
randNorm, which generates numbers selected from a Gaussian distribution. You’re not
likely to need those for your own programs unless you’re working with engineering or
statistics programs.

SEEDING THE RANDOM NUMBER GENERATOR

In some cases, you may want to be able to generate the same sequence of random
numbers more than once. This sounds counterintuitive, because by definition sequences

Figure 9.3 Demonstrating the randInt and rand commands on the
homescreen, without a program. randInt generates random integers between
and including the two specified numbers, whereas rand generates random
decimal numbers between 0 and 1.

You can also create a list of N random
numbers, by adding (N at the end

215Revisiting randomness
of random numbers shouldn’t repeat. But your calculator uses something called a
pseudorandom number generator, which means that even though it looks as though
the numbers are random, they’re being calculated by an algorithm. The calculations
are based on a number called the random seed, which defines the sequence of num-
bers that commands such as rand will generate. Figure 9.4 demonstrates setting the
random seed by storing the new seed to the rand command as if rand was a variable.
Notice that the sequence of numbers repeats the same values after reseeding with the
same seed, here 13.37.

 Because I mentioned how random numbers are conceptually equivalent to the
real-world problems of flipping a coin or rolling a die, I’ll conclude this section with
a program that shows you coin flipping and a challenge for you to create your own
die roller.

9.4.2 Applying the random number commands

I’ll begin by showing you a simple program to flip a virtual coin, and then I’ll chal-
lenge you to create your own die-rolling program, complete with a graphical output.
The left side of figure 9.5 shows the output of the former program, the right side
shows the latter. Let’s first dive right into the coin-flipping program, which consists of
three lines of code, only one of which forms the core of the program.

PROGRAM:FLIPCOIN
:ClrHome
:Disp "COIN FLIP:
:Disp sub("HEADSTAILS",1+5(rand>0.5),5

The first two lines of the program clear the screen and display an introductory line; the
third line is the meat of the program. It combines a sub command, which you learned in
the first section of this chapter, with a trick you’ll learn more about in the next chapter
called an implicit conditional. The rand command will return a random decimal
between 0 and 1, which means that it’s equally likely that its value will be greater than or
less than 0.5. You could create a weighted coin by modifying this value, called the
threshold, which chooses whether the program displays “HEADS” or “TAILS.”

Figure 9.4 Setting the random number generator’s seed lets you create the same series
of three random numbers twice. This also works with using rand and randInt to generate
single numbers.

216 CHAPTER 9 Manipulating numbers and data types
When the return value of rand is greater than 0.5, then (rand>0.5) is true, which
you’ll recall is represented in TI-BASIC by the number 1. Thus 1 + 5(1) = 6, which is the
offset to the “TAILS” substring. If rand returns a value equal to or less than 0.5, then
(rand>0.5) is false, which is 0; 1 + 5(0) is 1, the offset to the “HEADS” substring. Both
“TAILS” and “HEADS” are five characters long, so the third argument is always 5. If this
implicit conditional trick, using a conditional in a math expression as if it was a num-
ber, doesn’t make sense to you yet, don’t worry. I’ll review it once more in chapter 10.

EXERCISE: ROLL A DIE

As a final exercise for this chapter, I task you with making a program that rolls a six-
sided die. As an output, it should display that die on the graphscreen, with dots on the
upward-facing face representing what value the die has landed upon. You need not
animate the die rolling, though if you’re able to do that, I encourage you to try. The
output should look something like figure 9.5 when you finish writing the program.
Don’t forget to use the “polite” prolog and epilog from section 8.2.2 and to add a
Pause right before the epilog cleans up the screen so that the user can see what the die
roll yielded. You can also use Text to write “ROLL IS 3” (the value the die rolled) in the
upper-left corner of the screen.

DIE-ROLLING SOLUTION

The solution to this exercise is shown in listing 9.2. Nothing in this program should be
particularly new. The first line selects a random integer between 1 and 6, the value
that the die will display. The program then does a standard prolog to save and set up
graphscreen settings. It draws a square to form the edges of the die and draws the dots
as per the right side of figure 9.5. Finally, it pauses, cleans up, and ends after switching
to the homescreen.

:randInt(1,6→X
:StoreGDB 0
:FnOff
:AxesOff:ClrDraw
:0→Xmin:1→ΔX
:–62→Ymin:1→ΔY

Listing 9.2 ROLLDIE, a dice-rolling program

Figure 9.5 The output of the coin-flipping demo (left) and the die-rolling exercise (right). The large
die is marked with which die values cause which dots on the die to be drawn for your reference.

Choose the value
the die will display

Standard
prolog and
window setup

217Fun with data types: a single-screen RPG
:Text(1,1,"ROLL IS ",X
:Line(39,-22,55,-22
:Line(38,-23,38,-39
:Line(56,-39,56,-23
:Line(55,-40,39,-40
:If X≥4:Then
:Pt-On(42,-26,2
:Pt-On(52,-36,2
:End
:If X=6:Then
:Pt-On(42,-31,2
:Pt-On(52,-31,2
:End
:If X≠1
:Then
:Pt-On(42,-36,2
:Pt-On(52,-26,2
:End
:If X=1 or X=3 or X=5
:Pt-On(47,-31,2
:Pause
:RecallGDB 0
:Disp

As an additional challenge, try making this program ask the user for a number
between 1 and 5 and roll and display that many dice. For this extra step, you should
make a separate program ZDIE that takes arguments in variables A and B (the position
of one corner of this die on the graphscreen) and X (the value of the die). You could
also try working with fancier dice that have more than six faces. For an extra chal-
lenge, you can try animating the roll of each die. From this program, you could make
a simple game quite easily.

 The last section of this chapter will present a different game, a single-screen role-
playing game (RPG) in which you move a player around a map and have to find a coin
while avoiding an enemy.

9.5 Fun with data types: a single-screen RPG
You’ve reached the end of the built-in TI-BASIC commands you’ve been learning for
the past nine chapters. In the remaining chapters, you’ll be learning about optimizing
your programs, using hybrid BASIC, a little bit of z80 assembly, and you’ll conclude
with where you can go from there. In the chapters up to this point, you’ve built up
knowledge of using the homescreen, working with conditionals and program flow,
creating graphics on the homescreen and graphscreen, using getKey and event loops
for interactive programs, and most recently, manipulating data types. As a capstone on
all that learning, let’s look at a game that applies many of the lessons you’ve learned.

 The game I’ll show you in this section, called MATRXRPG, challenges players to get
to a spot in the map while avoiding an enemy that’s actively hunting them. The game
has a map, which includes the walls, the blank spaces, and the goal that players need
to safely reach. Figure 9.6 shows this game in action. The pi symbol (π) is the player,

Draw the
outside of
the die

All the Pt-On commands use
style 2, which draws a box

218 CHAPTER 9 Manipulating numbers and data types
the transpose T is the enemy, and the walls are Os. The goal is the degree symbol at the
lower right.

 To build this game, you’ll work with many of the skills you’ve learned so far. As the
name of the game suggests, a matrix will be used to hold the map. An event loop will
be used to get keypresses from the player; the non-key code inside the event loop
will handle moving the enemy toward the player. I’ll use Menu and Lbl/Goto to create
a main menu that can jump to the Help section, to the Quit section, or to the game
itself. The sub string command will make the map-drawing code fast and small.
Before we get into the specifics of how this game works, let’s look at the flowchart in
figure 9.7. This flowchart, the description of the game, and the interface design in fig-
ure 9.6 form our plan for the MATRXRPG program.

 As you can see from the flowchart, the game will start by creating the matrix that
will hold the map, [C]. Because the map is the same size as the homescreen, the
matrix will be 8 rows by 16 columns, making each element of the matrix correspond
to one character on the homescreen. The main menu can lead to a Quit function,
which currently only displays credits, a Help section, which does what it says on the
tin, and Play, which leads to the main gameplay. In the gameplay area, it first sets up
variables and draws the map, then enters the main loop. This loop draws the player
and enemy, runs an event loop, and then ends with erasing the player and performing
relatively standard arrow key–handling code. The main loop for this game should con-
tinue until any of three things becomes true:

■ The player’s health drops to zero, or H ≤ 0.
■ The player presses clear, or K = 45.
■ The player reaches the goal.

We can use a Repeat loop for this outer loop to avoid having to initialize K. Inside the
event loop, we’ll need to use getKey to search for keys, but we also need to move
the enemy toward the player. To make the game slightly easier, the enemy will only

Figure 9.6 The matrix-based homescreen RPG. A matrix contains the
map, including the walls, blank spaces, and the goal. The player at (B,A)
and the enemy at (N,M) are drawn when needed; the player must move to
get to the goal while avoiding the enemy. Touching the enemy hurts the
player, and if the player’s health drops to zero, the game ends.

219Fun with data types: a single-screen RPG
move in roughly one of every five event loop iterations; we can use rand to achieve
this. For both moving the player and moving the enemy, we need to perform bounds-
checking to ensure neither character goes offscreen or into a wall. Luckily, because
the map’s walls form a border around the entire screen, we only need to make sure
that the characters aren’t going into walls. Because we have the entire map stored in a
matrix, we can check the object at the position to which the player or enemy is about
to move and see if it’s a wall, a blank space, or something else.

 A matrix can only store numbers, so how are we going to use the matrix to draw a
map that’s clearly made of characters? The easy solution would be to come up with
a system where each element of the matrix would store a number and have each of
those numbers represent one possible character (or item). Here’s the system we’ll
use, a rudimentary version of a technique called tilemapping:

■ 1 = A blank space (a space character)
■ 2 = A wall (O)
■ 3 = A health pickup (+)
■ 4 = The goal (a degree symbol)

You can use the sub command to turn a number X into one of these characters
like this:

:sub(" O+º",X,1)

With these basic lessons, take a look at the following listing, the code for this game.

Figure 9.7 A flowchart of the MATRXRPG game. The left side is the main menu, Help, and Quit.
The top is pregame setup; the right side is the main game loop. Inside the main loop is an event
loop, as you learned in chapter 6.

220 CHAPTER 9 Manipulating numbers and data types

Abou
of the t

rand
be

than
s

mo
the en
PROGRAM:MATRXRPG
:{8,16→dim([C]
:Fill(1,[C]
:For(X,1,16
:2→[C](1,X
:2→[C](5,X
:2→[C](8,X
:End
:1→[C](5,8
:For(X,1,8
:2→[C](X,1
:2→[C](X,16
:End
:4→[C](7,15
:Lbl MM
:Menu("MATRIX RPG","PLAY",A,"HELP",H,"QUIT",Q
:Lbl Q:ClrHome
:Disp "MATRIX RPG 1.0","CHAPTER 9
:Return
:Lbl H
:Pause "HELP GOES HERE
:Goto MM
:Lbl A
:100→H:2→A:2→B
:14→M:7→N
:ClrHome
:For(D,1,8
:For(C,1,16
:Output(D,C,sub(" O+º",[C](D,C),1
:End:End
:Repeat K=45 or H≤0 or 4=[C](B,A
:Output(B,A,"Π
:Output(N,M,"T
:Repeat K or H≤0
:If rand<0.2
:Then
:Output(N,M,"[one space]
:If rand>0.5
:Then
:If A<M and 2≠[C](N,M-1
:M-1→M
:If A>M and 2≠[C](N,M+1
:M+1→M
:Else
:If B<N and 2≠[C](N-1,M
:N-1→N
:If B>N and 2≠[C](N+1,M
:N+1→N
:End
:Output(N,M,"T
:End
:If N=B and M=A
:H-30→H

Listing 9.3 The framework of a simple homescreen RPG, MATRXRPG

Create matrix [C] for the map,
with 8 rows and 16 columns Fill the whole matrix

with 1s, or blank space

Add walls at the
top, bottom, and
middle of the map Replace the center of

the middle wall with
a single blank space

Add walls at the
left and right
sides of the map

Add the final goal to
the bottom-right
corner of the map

The main gameplay
starts here

Initialize player’s health
to 100 and the player’s
position to (2,2)

Initialize the
enemy’s position
to (7,14) (row 7,
column 14)

Clear the screen and draw
the map. Use the sub
command to turn the
numbers 1–4 into letters.

The outer game loop,
which continues until
[CLEAR] is pressed, or
the player dies or wins

Draw the player
and the enemy

Repeat the inner event loop
until a key is pressed or the
player dies

t 1/5
ime,
 will
 less
 0.2,
o try
ving
emy

If we’re moving the
enemy, erase it firstRandomly try to move

the enemy either left or
right toward the player,
as long as it won’t be
moving into a wall

Alternatively, try moving
the enemy up and down
toward the player (but
not into a wall)Now that the

enemy moved,
redraw it

If the enemy has reached the player,
removed health from the player

221Fun with data types: a single-screen RPG
:getKey→K:End
:Output(B,A,"[one space]
:If K=24 and 2≠[C](B,A-1
:A-1→A
:If K=26 and 2≠[C](B,A+1
:A+1→A
:If K=25 and 2≠[C](B-1,A
:B-1→B
:If K=34 and 2≠[C](B+1,A
:B+1→B
:End
:If H≤0
:Pause "====YOU LOSE!===
:If 4=[C](B,A
:Pause "====YOU WIN!====
:Goto MM

Rather than go through this entire program line by line, I’ll pick out a few sections in
particular that you should notice:

:For(D,1,8
:For(C,1,16
:Output(D,C,sub(" O+º",[C](D,C),1
:End:End

This double For loop draws the map on the screen. It loops the row (D) from 1 to 8,
and for each D, it loops column C from 1 to 16. The homescreen is 8 rows tall and 16
column wide, and matrix [C] is the same size, so the map can be drawn by figuring
out what character the number in each element of [C] represents and drawing that
character at the same coordinates on the homescreen.

:Repeat K=45 or H≤0 or 4=[C](B,A

Repeat the main outer loop until [CLEAR] is pressed, the player’s health hits zero, or
the player reaches the goal (represented by a 4 in the matrix). The comparison
[C](B,A)=4 is written reversed so that the closing parenthesis can be omitted, a sim-
ple optimization.

:Repeat K or H≤0

If the program is currently inside the inner loop, and the outer loop needs to end
because the player died, the inner loop has to end too. The inner loop has to end either
when a key is pressed or when the player’s health hits zero.

:If rand<0.2
:Then
:Output(N,M,"[one space]
:...code...
:Output(N,M,"T
:End

The body of this If/Then/End will only run if rand returns a value below 0.2. Because
rand selects a random number between 0 and 1, about one-fifth of the time it will pick

End the inner
event loop

Adjust player’s position based on
arrow keys. Instead of bounds-
checking, check that the spot the
player will be moving to isn’t a
wall (2) spot.

If players finish with zero or
negative health, they died

If the game ends with players on
the degree symbol, they won

222 CHAPTER 9 Manipulating numbers and data types
a value below 0.2 (1 / 5 = 0.2), so during roughly one out of every five inner loop itera-
tions the game will try to move the enemy. The Output statements ensure that the
enemy gets erased before it moves, because the program doesn’t remember where it
used to be, which would be needed to erase the enemy after moving it.

:If rand>0.5
:Then
:...code...
:Else
:...code...
:End

Instead of moving both horizontally and vertically toward the player, flip a coin to
determine whether to try moving closer in the horizontal or vertical direction.

:If K=24 and 2≠[C](B,A–1
:A-1→A

If the player presses an arrow key, only let the player move if the matrix [C] says that
the new location doesn’t contain a wall piece. This formulation is used three more
times for the three other arrow keys, as well as for the four conditional statements that
try to move the enemy.

 As always, you should examine and understand this code, and you should also try
out the program. If there are pieces you don’t understand, try changing them and see-
ing how the program’s behavior changes. If you understand it well, you can try modifying
and expanding this game to make it more expansive and more complex. I encourage
you to make a full, fun game out of this and release it to the public!

MATRIX RPG: YOUR CHALLENGE

The MATRXRPG program presents a simple framework for an RPG-like game (or, per-
haps, an arcade game). But in its current shape, it’s far from complete. Here are a few
ideas of items you could add to it or a similar game to make it more fun, more com-
plex, and more challenging, and I’m sure you can think of many of your own ideas.

■ What if you or the enemy moves over something like a pickup that stays there?
It would get erased! Change how the Output command is used to erase the
player/enemy when it moves.

■ Make the map larger than the homescreen, perhaps multiple homescreens
wide and tall. Figure out how to select which piece of the map the player is in at
any given point, and figure out how to redraw the map when the player moves
between sections. Hint: maintain both the onscreen position of the player and
the offset of the top-left corner of the current screen from the top-left corner of
the matrix.

■ Try adding pickups, more items to be collected, and more obstacles.
■ Add doors and puzzle minigames that must be solved to get through those doors.
■ Give the player a weapon with which to fight the enemy.

223Summary
This is certainly the longest program I’ve shown you so far, but it’s on the shorter end
of the spectrum for a complete TI-BASIC game. As you grow to write longer and more
complex programs, remember to plan thoroughly and keep notes to avoid becoming
confused and frustrated. As you try to expand this game or create your own programs
and games, be methodical and careful, but above all, have fun!

 I’ll wrap up this chapter with a summary of what you’ve learned and give you a
chance to take a deep breath before we begin the third and final part of the book.

9.6 Summary
As you read through this chapter, you learned about many of the numeric features
and data types that are specific to your TI graphing calculator. Almost every program-
ming language has For loops of some sort, conditional statements, and subprograms,
concepts that you learned in previous chapters. Many have graphics commands to
draw pixels or shapes. Most can also store one-dimensional and two-dimensional
arrays of numbers or letters (lists and matrices) and have ways to store and manipulate
strings of letters. Your TI-83+/TI-84+’s TI-BASIC language is unique in that it can per-
form math on full matrices and lists, understand real, complex, and imaginary num-
bers, and generate different types of random numbers with just the software with
which it originally shipped. For such mathematically aligned features, most other pro-
gramming languages require extra software or libraries to be installed.

 But even with TI-BASIC these data types and numeric features aren’t easy, and to
understand them, you must try writing your own programs. In particular, to under-
stand how lists can be vital to your programs and games, and to a lesser extent matri-
ces, you must try using them in your games and see how they can help you. Try
creating a custom-named list that holds information about a player’s progress, such as
health, levels, and current weapons. Experiment with using a list to hold a high scores
table, and figure out the loop you’d need to use to insert a new high score at the
proper place in the list. Lists and matrices have direct applications in math and sci-
ence programs, so if those are more your cup of tea, I encourage you to give such pro-
grams a try with your newfound knowledge as well.

 In the final chapters, I’ll be discussing optimizing pure TI-BASIC, hybrid BASIC,
and where you can progress from here with your programming hobby or career, so I
once more encourage you to experiment, try, fail, and eventually succeed. Don’t hesi-
tate to post questions at the forums listed in appendix C, because you may well meet a
concept that you can’t wrap your head around without someone offering you a new
perspective. With that in mind, let’s move on to a recap and further lessons on opti-
mizing your programs to be fast and small.

Part 3

Advanced concepts;
what’s next

By the time you reach this section, you’ll have created many TI-BASIC pro-
grams, and you may feel you’ve learned practically everything there is to know
about graphing calculator programming. Not so fast! There’s more in store
for you!

 Alternatively, you may have picked up this book with some preexisting TI-
BASIC knowledge, so this part is where you’ll really start encountering those
moments of inspiration. Part 3 shows you cutting-edge optimization tips to speed
up and slim down your programs, explains how to use hybrid BASIC libraries to
bring a whole new bag of tricks to your programs, and introduces the z80 assem-
bly programming language. It concludes with a look forward at how you can go
further with general programming, calculator programming, and hardware
development with the skill set you built throughout this book.

 Chapter 10 introduces techniques to optimize TI-BASIC programs, includ-
ing removing extraneous characters, simplifying logic, compressing stored
data, and using the Ans variable. The extra features of hybrid BASIC are the
first features you’ll explore that aren’t built into your calculator and are intro-
duced in chapter 11. You’ll see how the hybrid BASIC libraries can help you
draw faster, fancier graphics, find and manipulate programs and files, and
more. The language used to create those hybrid BASIC libraries, z80 assembly,
is the topic of chapter 12. I’ll show you enough about the underpinnings of
assembly and a high-level view of the instructions and program-flow constructs

226 PART 3 Advanced concepts; what’s next
in z80 assembly to whet your appetite. The final chapter takes a look at where you
can go from here as a graphing calculator programmer and how you might use your
TI-BASIC knowledge as a stepping-stone into computer, mobile, and web program-
ming. It also introduces hardware development as a field you might like to pursue.

Optimizing
TI-BASIC programs
Being a programmer means knowing not only how to write programs but how to
write them well. In all of the chapters so far, I’ve emphasized the importance of
creating programs that are not only correct but are also fast and small. Your TI-83+
or TI-84+ calculator has either a 6 MHz or 15 MHz processor, 24 KB of RAM, and
somewhere between 160 KB and 1.5 MB of Archive (ROM). You can archive pro-
grams to free up RAM. When you run a program, it must fit entirely in RAM, which
means that the largest TI-BASIC program you can run is smaller than 24 KB. It’s
important to be clever in order to fit complex interfaces on the relatively tiny
screen of your calculator, but being sufficiently skilled to write small, fast code is at
least as valuable. If your programs are faster, they can do more; if they’re smaller,
you can cram in more features. You’ve been learning skills up to this point to write
code that’s correct and efficient; in this chapter, you’ll learn more tips to fit your
programs within your calculator’s RAM and make them fast enough to impress
your programs’ users.

This chapter covers
■ Making programs smaller and faster
■ Using implicit conditionals, Ans, and other tricks
■ Compressing numbers and lists of strings
227

228 CHAPTER 10 Optimizing TI-BASIC programs
 In the chapters so far, you’ve seen optimization tips woven throughout the pro-
gramming lessons. I showed you how you could omit ending quotes and closing
parentheses that fall at the end of a line or right before a store (→) operator. You also
saw the idea of putting two commands on the same line separated by a colon, which
doesn’t save space but does reduce the amount of scrolling you need to use to get
around your program.

 In this chapter, you’ll learn general optimization methods that you can apply to any
TI-BASIC program. The first topic discussed is implicit conditionals, a way to compress
conditional statements together. We’ll look at the Ans variable, which I mentioned once
before, and how it can save using other variables. You’ll see how to compress multiple
numbers and strings together, similar to how the FLIPCOIN program at the end of chap-
ter 9 worked. I’ll conclude with assorted tips that don’t fit well into other categories.

 You’ll first learn about implicit conditionals. This trick takes variable updates con-
trolled by conditional statements and combines them with their comparisons to save
space and accelerate programs.

10.1 Implicit conditionals
The conditional constructions that you learned about in chapter 3 can also be called
explicit conditionals. Here, the “explicit” means that there’s a clearly defined compar-
ison and one or more commands that run based on the value of the comparison. The
conditional If statements that you’ve often seen are explicit conditionals. Implicit
conditionals are usually used when you have an If statement that controls a single
variable update, such as adding or subtracting a number or variable from a variable.
In this section, I’ll show you how to convert an explicit conditional statement to an
implicit conditional, present two small examples, and show you a new version of the
MOVECHAR program from chapter 6.

 Let’s begin with how to convert explicit conditionals into implicit conditionals.

10.1.1 Converting explicit conditionals to implicit conditionals

Implicit conditionals can easily be written from scratch once you understand the con-
cept, but to get started, it’s easier to convert an explicit conditional. Implicit condi-
tionals take advantage of the fact that a Boolean false in TI-BASIC is just the number 0
and that true is the number 1. With an implicit conditional, you combine an If state-
ment and an assignment statement that together form an explicit conditional. This
conversion can be completed in two steps:

1 Identify the condition, the variable that’s conditionally updated, and by how
much the variable is updated when the original condition is true.

2 Write the implicit conditional so that the variable is updated to itself if the con-
dition is false or to itself plus/minus/times/divided by the desired update value
if it’s true.

These two steps are applied slightly differently whether you’re converting addition or
subtraction or are instead working with multiplication or division.

229Implicit conditionals
CONVERTING CONDITIONAL ADDITION AND SUBTRACTION

For conditional addition and subtraction, you want your new code to add or subtract
the value of the desired change multiplied by the conditional, as shown in figure 10.1.
When the conditional is false, this is like adding or subtracting 0 times the update
value to/from the variable or adding or subtracting 0.

CONVERTING CONDITIONAL MULTIPLICATION AND DIVISION

For multiplication and division, you need a slightly more complex formulation,
because you need to multiply or divide by 1 if the condition is false or divide by the
desired update value if the condition is true. Figure 10.2 shows two more examples,
the one at left demonstrating multiplication and the one at right showing division.

 To determine the implicit conditional’s coefficient on the target variable, subtract
1 from the desired multiplicand or divisor, use that as the coefficient for the true-or-
false comparison, and add 1. Figure 10.2 shows how this works. If you want to multiply
A by 3 when the comparison is true, you also want to multiply by 1 if the comparison is
false. Similarly, you want to divide M by 5 when T > 5 and divide it by 1 otherwise,
because division by 1 leaves M as it was.

Figure 10.1 Turning explicit conditionals (first row) that control addition (left) and subtraction
(right) into implicit conditionals, and how they work when the comparison is false (third row) or
true (fourth row)

Figure 10.2 A demonstration of turning explicit conditionals for multiplication (left) and
division (right) into implicit conditionals. Note that in order to preserve the original variable
when the condition is false, the implicit conditional must either multiply or divide by 1.

230 CHAPTER 10 Optimizing TI-BASIC programs
EXPLICIT TO IMPLICIT EXAMPLES: ABSOLUTE VALUE AND A MENU

Assume your calculator had no abs command, and you wanted to take the absolute
value of variable V and store in back into V in a single line. The two-line code might
be something like this:

:If V<0
:-V→V

If you wanted to change this to an addition/subtraction update, it might look as follows:

:If V<0
:V-2V→V

V – V = 0, and V – 2V = -V, so this update is identical to -V→V. You now have a compari-
son (V<0) and an update (V-2V→V), so you can build an implicit conditional:

:V-(V<0)2V→V

Another example might be a menu that displays three items on the screen, such as Play,
Help, and Quit, using the Text command. The left side of figure 10.3 shows such a menu.

 A variable X, holding 0, 1, or 2, could be used to indicate which option was cur-
rently selected, and an arrow such as > or -> could be drawn next to the selected
option with Text based on X. Assuming that you already have code to update X when
[�] (key code 25) or [�] (code 34) was pressed, you also need to deal with what hap-
pens when X is moved above the first item (X = -1) or below the third item (X = 3).
One popular option is to make the pointer wrap around: if the user presses [�] at the
last option, the arrow should reappear at the first option, and vice versa. Here it is
with explicit conditionals:

:If X=-1
:2→X
:If X=3
:0→X

Once again, converting these straight stores to updates:

:If X=-1
:X+3→X

Figure 10.3 A menu with a cursor that can wrap around the top and bottom of the menu (left),
and the 4-directional ICMVCHAR program using implicit conditionals (right), both described in
the text

X must be -1, so -1 + 3 = 2

231Implicit conditionals
:If X=3
:X-3→X

The conversion to implicit conditionals follows the same strategy you’ve seen thus far:

:X+(X=-1)3→X
:X-(X=3)3→X

As a final optimization, you can even combine these, because the second update
doesn’t depend on the result of the first:

:X+(X=-1)3-(X=3)3→X

Now that you’ve seen the mechanism behind creating implicit conditionals out of
explicit conditionals, plus a few example fragments, let’s move on to a full program
that uses implicit conditionals to move an M around the homescreen.

10.1.2 Implicit conditionals for four-directional movement

In chapter 6, you worked with the Mouse and Cheese game, in which you learned how
to move an M around the homescreen. The mouse was at column A, row B on the
homescreen, and its position was updated by a keypress in K. The code for updating A
and B based on K looked something like this:

:If K=24 and A>1
:A-1→A
:If K=26 and A<16
:A+1→A
:If K=25 and B>1
:B-1→B
:If K=34 and B<8
:B+1→B

As you can see, each position update is dependent on two checks. The proper key
must have been pressed, and the bounds check must be true to avoid the mouse going
out of bounds off the edge of the screen. Because true and false are just numbers,
something like (K = 24 and A > 1) is equal to 1 if true or 0 if false. With the first update,
decreasing column A, you want to leave A as it is if K ≠ 24 or A = 1 or subtract 1 if the
anded comparisons are both true. Therefore, you can just subtract the pair of compar-
isons from A and store that back into A. When K = 24 and A > 1, then the anded condi-
tion statement is equal to 1, and A will decrease. If not, the line is equivalent to
A-0→A, and A doesn’t change. You can follow the same logic for the other three condi-
tional/update statements, as also illustrated on the right in figure 10.2:

:A-(K=24 and A>1→A
:A+(K=26 and A<16→A
:B-(K=25 and B>1→B
:B+(K=34 and B<8→B

You can compress this even further by recognizing that even though there are two
lines that work with A, it’s not necessary for the first update to A to occur in order for
the second to run, because your program will never be moving A both left and right in

By the same logic, X must be 3, so 3 – 3 = 0

232 CHAPTER 10 Optimizing TI-BASIC programs
the same iteration of the game loop. Therefore, you can combine the two A updates
and the two B updates:

:A+(K=26 and A<16)-(K=24 and A>1→A
:B+(K=34 and B<8)-(K=25 and B>1→B

Let’s put this into a program to demonstrate the implicit conditional in action, a ver-
sion of the MOVECHAR program from chapter 6 called ICMVCHAR. The following list-
ing shows the source code for this program, complete with two compound implicit
conditional lines that update the row and column of the M.

PROGRAM:ICMVCHAR
:8→A:4→B
:ClrHome
:Repeat K=45
:Output(B,A,"M
:getKey→K
:If K
:Output(B,A,"[one space]
:A+(K=26 and A<16)-(K=24 and A>1→A
:B+(K=34 and B<8)-(K=25 and B>1→B
:End

As always, you should try this out on your calculator to understand how it works. As an
extra challenge, you could try converting one of the eight-direction character move-
ment programs from chapter 6 to use implicit conditionals, and see how small you
could make it.

 Implicit conditionals are merely one space-saving/time-saving trick in our bag of
optimizations. The next technique I’ll show you is the Ans variable and how it can
be used.

10.2 Exploiting Ans
The Ans variable is perhaps the most versatile variable your calculator offers to
TI-BASIC programmers. Unlike other variables, it can be any type: a real or complex
number, a string, a list, or a matrix. In this section, I’ll show you three cases where Ans
can be used to save variables and shorten your programs. You’ll first see the simple
usage of Ans to save intermediate variables. I’ll then demonstrate how Ans can be used
to simplify If/Then/Else/End conditionals and finally how Ans is used as the argu-
ment and return value to and from subprograms.

 First, we’ll look at using Ans to simplify mathematical expressions and conditionals.

10.2.1 Ans to save variables and conditionals

In many programs, you’ll need to calculate the value of an expression and use that
value in the next line of your program. You could use a variable, but if you’re not
going to use that value again, it’s a waste of a variable and a waste of the bytes that a
storage operation like →T takes in the source code of your program. Any time you

Listing 10.1 An implicit conditional program to move a character, program ICMVCHAR

Adjust
column Adjust

row

233Exploiting Ans
have a math expression or an assignment (store) expression, the value of the Ans vari-
able is changed to the result. All of these expressions modify Ans:

:3
:4(X+5→N
:"HELLO"
:Ans+" WORLD"→Str3

Notice that it’s never necessary to explicitly store to Ans, and if you try to do so, you’ll
get an ERR:SYNTAX:and storing Ans error. You can use Ans to save variables and sim-
plify expressions, as I’ll show you in three steps.

SIMPLIFYING MATH EXPRESSIONS WITH ANS

Consider some fictitious equation involving the trigonometric functions sin and cos:

:sin(3cos(θ))+4sin(3cos(θ))sin(3cos(θ))+5→X

This is a fairly long expression. You could use a temporary variable to help yourself:

:sin(3cos(θ→T
:T+4T2+5→X

With Ans, you can shorten this even more while removing the use of the T variable:

:sin(3cos(θ
:Ans+4Ans2+5→X

This final pair of lines is 13 bytes together; the original single line was 24 bytes. The
intermediate solution using temporary variable T was 15 bytes and wasted T.

 You can also use the fact that a number, string, list, or matrix expression by itself
on a line, even if it’s not explicitly stored into anything, will update the contents and
type of Ans. Let’s now examine how If/Then/Else/End expressions can be shortened
with this trick.

SIMPLIFYING CONDITIONALS WITH ANS

In many programs, the value of a comparison or conditional statement will dictate
which of two similar commands is executed. Consider the following two examples,
both of which use If/Then/Else/End constructs:

The code on the left determines whether the roots of a quadratic equation AX2 + BX
+ C = 0 are real or imaginary. The code on the right might be one way to check if the
user won in the mini-RPG from chapter 9.

 The key insight to simplifying these conditionals is that you can start by assuming
that the false case will occur, modify Ans based on that assumption, and then only
modify it again if the true case is executed. In the left-hand code, assume that the

:If B2-4AC<0
:Then
:Text(4,18,"IMAGINARY ROOTS
:Else
:Text(4,18,"REAL ROOTS
:End

:If A=15 and B=7
:Then
:3→W
:Else
:0→W
:End

Now Ans is a number, and Ans = 3 Now Ans is a number, and N and
Ans contain the same value

Now Ans is the
string “HELLO”

Now Ans and Str3 are the
string “HELLO WORLD”

Because sin(3cos(θ))sin(3cos(θ)) = T * T = T2

234 CHAPTER 10 Optimizing TI-BASIC programs
“REAL ROOTS” case will occur, so put "REAL ROOTS" on a line by itself to store that to
Ans. Then, only overwrite Ans with "IMAGINARY ROOTS" if it turns out that B2 – 4AC is
indeed negative. Ans can then be used in a single Text command, as shown here at left:

By the same token, for the code at right, start by setting Ans to 0, on the assumption
that the conditional won’t be true. If it is, Ans can be overwritten with 3, and whatever
Ans contains (be it 0 or 3) is stored to W. Why not use an implicit conditional for the
explicit conditional on the right side? You could indeed, and it would be up to you
the programmer to decide whether to use the explicit form shown previously or this
implicit form:

:3(A=15 and B=7→W

Ans is a powerful optimization for simplifying mathematical, string, list, and matrix
manipulation and for shortening conditional constructs. Another common use is as
the argument and/or return value to and from subprograms.

10.2.2 Ans with subprograms

As introduced in chapter 4, subprograms are a great way to avoid having to repeatedly
type out sections of code. By putting the code in question into a separate program and
calling that program, you can execute the code inside the subprogram. In some cases
you may want to give your subprograms an argument, a number, string, or other data
type that dictates what the subprogram does. In some cases, you’ll want your subpro-
grams to provide a value back to the main program. Ans can be used effectively for
both these cases.

 Your subprograms may be responsible for displaying some graphical element, as in
chapter 4, where a subprogram was used to draw a border around the homescreen. A
subprogram may be used to repeatedly apply some formula to input values to get
some output value or values. You could use a variable such as Q or L1 or Str8 as input
to the subprogram and another variable for output, but as with any program or piece
of code, this is wasteful if you can exploit Ans instead. A good solution is to use Ans as
the argument or arguments to the subprogram and reuse Ans as the return value or
output value of the program.

 Consider a simple subprogram that calculates the length of the hypotenuse of a trian-
gle, given the lengths of the other two sides. As you saw in chapter 5, when we discussed
Pythagorean Triplets, the Pythagorean Theorem (A2 + B2 = C2) can be used to calculate
the length of the hypotenuse of a right triangle. Indeed, a subprogram might take A and
B as arguments, apply the Pythagorean Theorem to calculate C, and return C:

PROGRAM:ZHYPTNS1
:sqrt(A2+B2→C

:"REAL ROOTS
:If B2-4AC<0
:"IMAGINARY ROOTS
:Text(4,18,Ans

:0
:If A=15 and B=7
:3
:Ans→W

235Compressing numbers and choices
Using Ans as the arguments and return value would save the use of variables A, B, and
C. But wait! This program takes two arguments, and there’s only one Ans. What will
we do?

 We can solve this conundrum by using Ans as a two-element list, the first element
of which is A and the second of which is B. Remember, Ans can be just about any data
type, such as a number, a list, a matrix, or a string. When the code that calculates the
length of the hypotenuse executes, it will update Ans to be a number, the return value:

PROGRAM:ZHYPTNS2
:sqrt(Ans(1)2+Ans(2)2

As you can see, just as you can select elements from lists L1 or LTHIS, you can select ele-
ments from Ans as Ans(1) and Ans(2) when it’s a list. If Ans contains the lengths of
two triangle legs, this code calculates the length of the third, and because it doesn’t
specifically store it anywhere, only Ans is updated and in this case changed to a num-
ber first as well. A simple “driver” program to use this subprogram might look like the
following listing.

PROGRAM:HYPOTNUS
:Prompt A,B
:{A,B
:prgmZHYPTNS2
:Disp "HYPN LENGTH:",Ans

This is a small subprogram, but this technique could be applied to much more com-
plex subprograms as needed.

Ans is useful for reducing the numbers of variables that you use and shaving off a
few bytes here and there from your code. In the next section, we’ll look at larger-scale
techniques for compressing data and code.

10.3 Compressing numbers and choices
A recurring theme throughout the preceding chapters has been using the limited
memory and processing speed of your graphing calculator efficiently. On any plat-
form, it’s important to optimize your code for size and speed, but it’s also important to
shrink the external data that your program uses or creates; a graphing calculator is no
different. In this section, I’ll show you a trick to fit several numbers into a single
numeric variable (or list or matrix element). You’ll then learn two ways to shrink your
code, one for selecting different strings based on conditionals and a second for
shrinking a long series of and and or operations.

 Let’s first look at fitting multiple integers into a single number.

10.3.1 Compressing numbers

From scores and positions to health and coefficients, numeric variables serve a multi-
tude of duties in your TI-BASIC programs. You’ve already seen lists and matrices in

Listing 10.2 Using an Ans-based subprogram to calculate a triangle’s hypotenuse

“Store” a two-element list to Ans as the
argument to the subprogram, just like {A,B→L1

Display the return value, also Ans

236 CHAPTER 10 Optimizing TI-BASIC programs
appendix A and chapter 9 and how they can be used to store many numbers together.
But every number, whether it’s in a variable, a list, or a matrix, takes up memory.
Numeric variables are 18 bytes each, whereas lists and matrices are 9 bytes per ele-
ment, regardless of what sorts of numbers are stored in each element. If a list contains
{0, 0, 1}, it’s the same size as a list holding {0.45246, 1.553, -4569.31}. When you need to
store a lot of simple numbers at once, you can compress multiple numbers into single
variables or list elements.

 Because your calculator can store up to 14 digits for each number, plus an expo-
nent and a sign, you can compress several integers into a single variable or list or
matrix element. The key to the technique is that if you multiply one integer by a
power of 10 (such as 100 or 10000), you effectively insert zeroes at the end of the
number. If you then add that to another integer, the digits of the two numbers will
appear concatenated, but you’re still working with a single number. The left side of
figure 10.4 demonstrates multiplying 42 by 100 to insert two zeros at the end, then
adding 93, so that both 42 and 93 are compressed into the single number 4293. If you
wanted to fit more integers into that number, you could multiply by 100 again, making
it 429300, and add another one- or two-digit integer. prgmCOMPRESS in listing 10.2
shows packing seven such integers into the number N.

 The right side of figure 10.4 shows how you can extract those numbers out again.
You first divide by 100, so that the number you want to remove is on the right side of
the decimal point, then use fPart to extract it, and multiply by 100 to return the orig-
inal number. As with compression, you can repeat this process to extract as many inte-
gers as you have compressed into the longer number. prgmDECMPRSS in listing 10.3
takes the number N generated by prgmCOMPRESS and extracts the seven integers

 You need not deal with only two-digit integers. You could easily fit in three four-
digit numbers instead, but you’d need to multiply and divide by 10000 instead of 100,
because you’ll need to shift left and right by four digits at a time rather than two. This
technique is most easily applied to integers, but many of the variables in your pro-
grams will be integers anyway.

Figure 10.4 Compressing two
integers into a single number and
then decompressing them. You can
safely fit 14 digits into a Real, list
element, or matrix element, so you
could fit 2 seven-digit integers,
7 two-digit integers, or even
14 single-digit integers.

237Compressing numbers and choices
This particular technique is good for data that will be compressed infrequently, stored
for a while, and decompressed infrequently. It’s generally too slow for real-time use
within your programs and games. But the remaining two topics in this section should
be used as often as possible to slim down and speed up your programs. First, I’ll show
you how to combine string options.

10.3.2 Compressing string options

In many programs, you’ll want to display one of several strings based on some num-
ber. In chapter 9, you saw a program that displayed “HEAD” or “TAILS” depending on
whether rand returned a number above or below 0.5. Another example might be an
RPG that could display a class such as “WIZARD,” “ROGUE,” or “FIGHTER.” Consider a
program that puts one of these three strings in Ans depending on whether X is 1, 2, or
3. This program might look like the code at left; if you use the optimizations from sec-
tion 10.2, you’ll get the code at right:

But you can use the sub command to algorithmically select one of these three strings.
You need to perform three steps to use this trick:

1 Find the length of the longest string among the choices. Put spaces at the end
of the shorter string choices to make all the choices equal in length. For exam-
ple, "WIZARD ", "ROGUE ", and "FIGHTER ", are all seven characters long.

2 Concatenate the strings into a single string: "WIZARD ROGUE FIGHTER"
3 Use the length of each choice as the length argument for sub, and design the

offset argument to select the correct substring based on the number used to
choose which string should be returned.

The third step is the most challenging. For our example, we want seven characters
beginning at character 1 to get “WIZARD” if X = 1, seven characters at character 8 if X = 2,
and seven characters at character 15 if X = 3. The final command looks like this:

:sub("WIZARD ROGUE FIGHTER",7X-6,7

Listing 10.3 A pair of programs to pack/unpack seven integers into a single number

PROGRAM:COMPRESS
:0→N
:For(A,1,7
:Disp "ONE OR TWO-DIGIT
:Input " INT:",X
:100N+X→N
:End

PROGRAM:DECMPRSS
:For(X,1,7
:100fPart(N/100
:Disp Ans
:iPart(N/100→N
:End

:If X=1
:"WIZARD
:If X=2
:"ROGUE
:If X=3
:"FIGHTER

:"WIZARD
:If X=2
:"ROGUE
:If X=3
:"FIGHTER

238 CHAPTER 10 Optimizing TI-BASIC programs
The 7X-6 takes care of properly mapping X = {1,2,3} to the desired {1,8,15}. I got this
expression from knowing that each substring we’ll want to grab is seven characters
long, so 7X will return a number (an offset into the string) that’s 7 characters further
as X is increased by 1. But 7X by itself would yield {7, 14, 21} for X = {1, 2, 3}. We want
{1, 8, 15}, so we can subtract 6 each time, hence 7X – 6. Note that this general tech-
nique only works well if the spaces at the end aren’t a problem for your program or
game; if they are, you should stick with the explicit conditional code.

 Here’s the “HEADS”/“TAILS” solution from chapter 9, demonstrating the same
technique:

:sub("HEADSTAILS",1+5(rand>0.5),5

Here, each option is 5 characters long, and the conditional (rand>0.5) is either 0 or
1, so 1+5(rand>0.5) maps {0,1} to {1,6}, as needed to display “HEADS” or “TAILS.”
Here are some extra examples from real programs:

:sub("0123456789",1+X,1
:sub("SUNMONTUEWEDTHUFRISAT",3X-2,3
:sub("FALSETRUE ",5(X>Y)+1,5
:sub("EASYMED HARD",4D-3,4

For a final compression tip, let’s look at how you can shorten long conditionals that
include a series of comparisons ored or anded together.

10.3.3 Compressing or and and

As your programs get more complex, you’ll find conditional structures that you want
to execute when one of a range of comparisons is true or that require a set of compar-
isons to all be true. Your training thus far from chapter 3 forward indicates that you’ll
need several comparisons separated either with or or and. But this can get quite cum-
bersome. Consider the following code, which will display “NUMBER KEY” if you press
any of the number keys, [0] through [9]:

:Repeat K
:getKey→K
:End
:If K=102 or K=92 or K=93 or K=94 or K=82 or K=83 or K=84

➥ or K=72 or K=73 or K=74
:Disp "NUMBER KEY

This code waits until a key is pressed; once a key is pressed, the loop ends, and if the key
was a number key, the Disp line executes. It would be far preferable to be able to com-
press this line. Fortunately, min and max from the LIST MATH menu, [2nd][STAT][�],
can come to the rescue.

 You can compress or and and whenever you have a single variable (or number)
that you’re comparing to several numbers (or variables), where the comparisons are
joined by and or or operators. To replace and, use the min command; for or, use max.
The steps require starting with the convoluted conditional as shown previously and
breaking it into pieces:

Keycodes for [0]
through [9] as in
chapter 6

239Space-saving tips and tricks
1 Identify the common number or variable in all of the equality comparisons. In
the previous example, this is variable K. If there’s no such commonality, you
can’t use this.

2 Construct a list of all the things you’re comparing to that variable (or number).
For the number key example, this would be {102, 92, 93, 94, 82, 83, 84, 72,
73, 74}.

3 Complete the new conditional with If max(or If min(followed by the item
from step 1, an equals symbol, and the list from step 2, for example:

:If max(K={102,92,93,94,82,83,84,72,73,74

For another example, consider making sure that variables A, B, and C are all equal to
2. The long form of this conditional might be

:If A=2 and B=2 and C=2

To simplify this, you can follow the same three steps. As per step 1, the common item
in all of the equality comparisons is the number 2. Step 2 instructs you to make a list of
all the things being compared to 2, specifically {A,B,C}. As step 3 directs, you put it
together, using min because the original used and:

:If min(2={A,B,C

HOW DOES IT WORK?
When you compare a number or variable to a list, you create a new list of the same
length. This new list contains the Boolean values (0 or 1) indicating what the results
would be if you individually compared each list element to the outside value. Every
true comparison will result in a 1 in this new list; false comparisons will yield a 0.
When you and several comparisons together, you want to make sure that all of the
comparisons are true, which would mean the new temporary list generated from
the new comparison you constructed would have to contain all 1s. The minimum
(and maximum) value in this list would be 1. But if any of the comparisons was false,
there would be a 0 in the new list, and the minimum of the list would be 0. Thus, If
min(…) would yield 0, because it implies If min(…)≠0.

 If at least one of the comparisons is true, there will be one or more 1s in the new
list. For or, you use the max operator, because any 1s in the new list will make If
max(…) also true. As you master TI-BASIC, you may even discover ways to expand this
trick to cover more ways to manipulate multiple comparisons as lists. In the interest of
space, rather than go deeper into these compression techniques, we’ll conclude with a
medley of optimization tips and tricks.

10.4 Space-saving tips and tricks
In the preceding chapters, I mentioned tips to speed up and slim down your pro-
grams; these tips are important enough to bear repeating. In this section, I’ll reiterate
those tips as well as present a few other techniques that will add up to more efficient
and user-friendly programs.

240 CHAPTER 10 Optimizing TI-BASIC programs
 In the preceding chapters, I repeated two particular “best practices” that makes
your programs smaller and easier to maintain.

10.4.1 Shortening your programs

Of these two tips, the first will help you make your completed programs fit into fewer
bytes, the second leaves your program the same size but will make it easier for you to
scroll up and down your program and reach errors. The first tip is to remove closing
quotes and closing parentheses that are immediately followed by a store operator
([STO], or →) or a new line ([ENTER]). You can also remove closing square brackets
and curly braces (] and }). Each removed symbol will save 1 byte in the program, and
you can even remove several closing symbols at the same time. The following two
lines are equivalent:

:Text(4,5,"HELLO")
:Text(4,5,"HELLO

You can also rearrange lines to help you remove more closing punctuation, such as
switching the items on either side of an equals or not-equal sign. Here are another two
equivalent lines:

:If L1(3)=3 or L1(3)=4
:If L1(3)=3 or 4=L1(3

By reversing 4 and L1(3) that are being compared, the closing parenthesis can be
removed. A final note: you can’t remove closing punctuation before a comma, such as
the commas that separate the arguments to a command.

 The other tip is that you can put two or more commands on the same line by sepa-
rating them with the colon (:) character, under [ALPHA][.]. A colon is similar to a
new line in TI-BASIC; the only difference is that you can’t remove closing parentheses
and quotes before a colon. Combining multiple lines using colons doesn’t make your
program faster or smaller (though the technique also doesn’t make your program
slower or larger). Instead, by reducing the number of lines in your program, it
reduces how far you need to scroll in order to reach an error or to insert more code.
You can also scroll more quickly by entering Alpha-Lock mode before pressing the
[�] and [�] arrows.

 You’ve seen both of these tips before, but there are many more methods of remov-
ing bytes from programs while making them faster and more efficient that program-
mers have developed over the years. Let’s take a brief look at some of the outstanding
ones.

DELETING VARIABLES AND SETTING VARIABLES EQUAL TO ZERO

In many of your programs, you may want to set a variable equal to 0, such as 0→V. This
takes 3 bytes (4 if you include the colon or [ENTER] after the assignment). TI-BASIC
has a command called DelVar which can be used for the same purpose, and which
takes only 2 bytes in your program. DelVar is used to delete one of the number vari-
ables, namely A–Z and θ, which not only saves 21 bytes of your calculator’s RAM if you

Closing parenthesis removed first, which
means closing quote can be removed too

241Space-saving tips and tricks
don’t use it again but also makes the TI-OS act as if that variable exists and is equal to 0
if you use it again. DelVar is also unique in that you can put any command directly
after it without needing a new line or a colon. These two pieces of code both set A and
B to 0 and display “HELLO” on the screen.

REMOVING =0 AND ≠0
You’ve seen this particular tip once or twice before, but I only discussed it in passing.
If you’re comparing a variable or an expression to 0, using either an = or ≠ symbol, you
can remove the =0 or ≠0 thanks to the fact that Boolean true and false values are
equivalent to the numbers 1 (or any nonzero number) and 0 respectively in TI-BASIC.
If you want to ensure that a variable or expression is non-zero, you could use If A
instead of If A≠0. Because any non-zero number is true, If A will execute its condi-
tionally controlled statement or block whenever A is not 0. If you want to instead
make sure that a variable or expression is equal to 0, you might try If A=0. To save
space, you can instead use If not(A, because the not operator converts any non-zero
number to 0 and 0 to 1. When A is 0, not(A) is 1 (or true), just as A=0 is true when A is
0. When A is not 0, not(A) is 0 (or false).

HIDING THE RUN INDICATOR

The run indicator, the scrolling group of pixels that appears at the top-right of the
LCD when a TI-BASIC program is busy, as shown at the left in figure 10.5, can be help-
ful for users to know when your program is working hard. But it can also be distracting
in some cases or make your program look less professional. Luckily, the large-font fea-
ture of the Text command can be used to draw over the run indicator, as at the right
in figure 10.5, but this command must be run repeatedly in your inner event loop:

:Text(-1,0,90,"[one space]

USING UPPERCASE LETTERS

If you use a shell that lets you put lowercase letters in your programs, the programs
can look more refined to users. But be aware that lowercase letters take 2 bytes, upper-
case letters take 1 byte. This means that a string written in all lowercase letters will take

:0→A:0→B
:Disp "HELLO

:DelVar ADelVar BDisp "HELLO

Figure 10.5 The run indicator (left) and using the Text command to remove
it (right)

242 CHAPTER 10 Optimizing TI-BASIC programs
twice as much memory as a string written entirely in uppercase letters. Lowercase can
be used effectively and is often worth the space, but be sure you’re using it judiciously.
In addition, every token such as Disp, Degree, or and takes up either 1 or 2 bytes, no
matter how long it is. You can use these tokens in your strings to save space.

FINAL OPTIMIZATION THOUGHTS

There are many more optimization tricks that you’ll see in others’ code or that you
may discover on your own. At the risk of sounding like a broken record, experiment
with your code and with others’ code, don’t be afraid to break programs, and learn to
see what makes programs fast and small and what just makes your code confusing.
Shorter programs are often also faster, but this isn’t always the case, so choose for yourself
whether speed or size is more important to you for each of the programs you write.

10.5 Summary
Throughout the preceding chapters, you’ve read repeatedly about the importance of
making programs for any platform fast and small and how writing good calculator
programs in particular requires careful attention to such details. In this chapter, we
worked through simple and through advanced tricks to shorten and accelerate your
programs, from removing extraneous punctuation to compressing comparisons into
lists. It’s vital to practice these techniques in your own programs to fully internalize
them, even more than for the programming commands you’ve learned. In addition,
unlike many of the lessons you’ve learned to date, the optimization tricks in this chap-
ter are customized for the TI-83+/TI-84+, although the important lesson of thinking
creatively when trying to improve your code is a universal constant in programming.

 This chapter concludes your introduction to pure TI-BASIC. The next chapter will
begin an all-too-brief look at how TI-BASIC can be expanded with extra tools, what
other languages you can write in, and what else besides software development you can
do with your calculator.

Using hybrid
TI-BASIC libraries
The TI-BASIC language provided by your calculator has been the focus of the chap-
ters thus far. We’ve been working with only the capabilities that your calculator
included when you first bought it, and you’ve seen many features you can use in
your programs, from simple to complex. You’ve been able to do math, write games,
get input and display output, and work with graphics. But if you’ve tried to get par-
ticularly advanced with your graphics as in figure 11.1, you may have found that it’s
impossible to make an extremely graphical game also be very fast. If you’ve investi-
gated working with subprograms, you may have been frustrated to find you have no
way of moving files between RAM and Archive. The limitation of having only 10 pic-
ture variables to use might have led you to scale back ambitious program designs.
Around 2004, TI-BASIC coders just like you decided to do something about those
limitations, and hybrid BASIC was born.

This chapter covers
■ Understanding the xLIB, Celtic III, DCSB,

PicArc, and Omnicalc libraries
■ Using sprites and tilemaps in hybrid TI-BASIC,

demonstrated with a full game
■ Manipulating programs and data files via

hybrid libraries
243

244 CHAPTER 11 Using hybrid TI-BASIC libraries
Hybrid BASIC is a term describing a TI-BASIC program that makes use of hybrid librar-
ies. Hybrid libraries are written in z80 assembly, a more complex but more powerful
programming language that I’ll show you in chapter 12. These libraries offer many
functions to TI-BASIC programs that the programs wouldn’t otherwise be able to
access, including quickly drawing small pictures to the graphscreen, copying archived
programs to RAM, modifying the contents of programs, getting a list of all the pro-
grams on the user’s calculator, accessing up to 255 picture variables, and much more.

 In this chapter, you’ll learn some of the particularly attractive functions of the
hybrid BASIC libraries xLIB and Celtic III, both of which are included inside the Doors
CS shell. I’ll first explain getting Doors CS on your calculator and where to read full
documentation about the functions it offers TI-BASIC programmers. We’ll then look at
two hybrid BASIC techniques you can use for fast, complex graphics in your programs
and games, followed by a section on finding and running programs from other pro-
grams. The chapter will conclude with an abbreviated introduction to a few of the
other handy features of hybrid libraries.

 Let’s begin with a more in-depth look at what exactly hybrid TI-BASIC is, what it
means for you as a programmer, and what it means for your users.

11.1 Introducing hybrid TI-BASIC
The simplest explanation of hybrid BASIC is TI-BASIC expanded with functions from
third-party libraries (that is, those not written by Texas Instruments). Each library is a
collection of related functions that a TI-BASIC program can use but is not itself a pro-
gram that can be run. The five major libraries are xLIB, Celtic III, the DCSB Libs
(“Libraries”), PicArc, and Omnicalc, listed in table 11.1. All five have been rolled into
a single entity, the shell called Doors CS 7, incidentally written by me. You’re more
than welcome to download each of these individually, but some of the original ver-
sions are known to have bugs and incompatibilities. xLIB and Celtic III don’t work
properly under the latest TI-84+ OS versions, the so-called MathPrint versions 2.53MP
and 2.55MP.

 For this reason, I’ll walk you through using Doors CS for your hybrid BASIC needs. I’ll
show you how to get Doors CS and make sure the hybrid BASIC library tools are enabled,
and then I’ll show you what you need to add to the beginning of your programs so that

Figure 11.1 Examples of graphics created with hybrid BASIC libraries by coders
Kevin Ouellet (left) and Patrick Prendergast

245Introducing hybrid TI-BASIC
they can ensure the libraries they need are present on the user’s calculator. For your
reference as you go through this chapter, the two most important documentation
links are these:

■ http://dcs.cemetech.net/?title=Hybrid_Libs
■ http://dcs.cemetech.net/?title=DCSB_Libs

11.1.1 Downloading the hybrid libraries

Four of the five libraries in table 11.1 were originally released as separate applications,
each of which takes up memory on your calculator. To save space and add even more
functions for TI-BASIC programmers to use, the Doors CS shell, version 7.0 and higher,
includes all five libraries.

You need to send DoorsCS7.8xk to your graphing calculator. You can download Doors
CS from http://dcs.cemetech.net; at the time of writing, Doors CS 7 is the latest ver-
sion, although further versions may be developed in the future. Appendix A describes
how to send files to your TI graphing calculator, either with a USB SilverLink if you
have a TI-83+ or TI-83+SE, or with a mini-USB cable for a TI-84+ or TI-84+SE.

 Unfortunately, if you can’t send files from your computer to your calculator, or you
can’t get Doors CS or other hybrid library apps from a friend’s calculator, you won’t be
able to write (or run) hybrid BASIC programs. Doors CS and all of hybrid libraries are
assembled applications, which means that their content would be meaningless viewed in
the TI-BASIC editor. A TI-BASIC program, on the other hand, could be copied out line by
line. Therefore, there’s no way to type out Doors CS by hand on your calculator.

 Once you have Doors CS, run it once from the [APPS] menu, and hybrid programs
will work. You can run programs from inside Doors CS; the shell also installs a HomeRun

Table 11.1 The hybrid libraries you’ll need from Doors CS, including each library’s main purpose. Each
library is a group of related functions, and all of these libraries are built into the single Doors CS
application.

Library Original author Functions

xLIB Patrick Prendergast
(“tr1p1ea”)

Graphics functions for games: extra pictures, tilemaps, sprites,
scroll the screen. Also special text-output modes and the ability
to run archived programs.

Celtic III Rodger Weisman
(“Iambian”)

Primarily manipulating data, strings, numbers, and programs.

DCSB Libs Christopher Mitchell
(“Kerm Martian”)

Primarily GUI (graphical user interface) functions, including
mouse functions, windows, and forms.

PicArc Rodger Weisman
(“Iambian”)

Like xLIB, graphics functions for programs, including “databases”
of pictures, sprites, screen scrolling, and advanced text drawing.

Omnicalc Michael Vincent
(“Michael_V”)

(Partial support in Doors CS) Sprites and executing
assembly code.

http://dcs.cemetech.net/?title=Hybrid_Libs
http://dcs.cemetech.net/?title=DCSB_Libs
http://dcs.cemetech.net

246 CHAPTER 11 Using hybrid TI-BASIC libraries
hook that lets Doors CS intercept programs when they’re run from the homescreen
and provide the hybrid libraries to them. If you have any difficulties, the Doors CS
manual zipped with the .8xk file can help. The Doors CS SDK linked in appendix C,
section C.2, also contains in-depth documentation of the hybrid functions, as do the
links at the top of section 11.1.

11.1.2 Calling hybrid functions

Two pieces are required to use hybrid BASIC library functions in your programs. One
is that whenever you want to run a hybrid command, you need to call it. The five
hybrid libraries listed in table 11.1 all reuse TI-BASIC commands, so you use the sum
command to call DCSB Lib functions or the real command to call xLIB functions. In
the following sections, you’ll see the arguments for each command.

 The second piece is to make sure that the hybrid libraries that provide the func-
tions your program needs are on the user’s calculator. If you distribute your programs
over the internet, you can add a readme.txt file that explains how to use your pro-
gram, that it needs a shell for hybrid libraries, and how to contact you with questions.
Because many programs are shared between calculators, your programs need to check
if all required hybrid libraries are available and refuse to run if not. I use the following
code at the beginning of my programs:

:If 1337≠det([[42
:Then
:Disp "NEED DOORS CS","DCS.CEMETECH.NET
:Return
:End

You could instead have this code instruct the user to read your readme or to contact
you for help. The first line of this section of code is one of the hybrid commands. The
1 x 1 matrix [[42]] is passed to the det (determinant) command, which returns 42 if
no libraries are present or 1337 if Doors CS intercepts the function, indicating that all
five of the libraries in table 11.1 are available.

 Now that you have Doors CS on your calculator for its hybrid libraries and know
how to make sure your programs’ users know how to get it too, let’s look at how to
draw small pictures quickly with hybrid libraries.

11.2 Working with hybrid sprites
In game design, a sprite is a small picture that you frequently draw (and perhaps
erase) at different locations on the screen. If you were writing an RPG game, then
your character and enemy characters would be sprites. If you worked with our mouse
program from chapter 7, the cursor was a sprite as well. On a TI-83+ or TI-84+, sprites
are always multiples of 8 pixels wide and any number of pixels tall. The most common
size is an 8-pixel by 8-pixel sprite. In this section, I’ll teach you the two ways you can
encode and draw sprites with hybrid BASIC, focusing on the method where you encode
sprites in your program in hexadecimal format. I’ll then show you how to update the

247Working with hybrid sprites
CURSOR program from chapter 7 to be smaller and run faster using the hybrid BASIC
sprite commands.

 Let’s begin with the two ways you can define and draw sprites in hybrid BASIC.

11.2.1 Defining and drawing sprites

Sprites in hybrid TI-BASIC can be drawn two possible ways. You can either copy a sprite
from a predefined image called a spritesheet onto the screen, or you can directly draw
a single sprite’s worth of data onto the screen.

 As shown at left in figure 11.2, you can define a picture variable containing all of
the sprites you want to use. This picture is called a spritesheet, and you specify one
of the sprites in the sheet to be drawn at a given place on the screen. The xLIB func-
tion known as DrawSprite is used for this method; real is under the CPX tab of the
[MATH] menu:

:real(1,Sprite_X,Sprite_Y,Sprite_Width,Sprite_Height,Pic_Num,

➥ Pic_X,Pic_Y,Method,Flip,Update_LCD)

All xLIB functions are accessed through the overridden real command; DrawSprite is
command number 1 in the xLIB library. The other arguments are:

■ Sprite_X—The pixel column for the upper-left corner of the sprite, 0 to 95.
■ Sprite_Y—The pixel row for the upper-left corner of the sprite, 0 to 63.
■ Sprite_Width—The width (in 8-pixel groups) of the sprite. An 8-pixel-wide

sprite would have width 1 here, and a 24-pixel-wide sprite would have width 3.
■ Sprite_Height—The height (in rows) of the sprite. An 8-pixel-tall sprite has

height 8.
■ Pic_Num—The number of the Pic variable used as the spritesheet containing

the desired sprite.
■ Pic_X—The X-position of the desired sprite within the spritesheet. Also in 8-pixel

groups, so Pic_X=4 means that the sprite starts at column 32 in the spritesheet.
■ Pic_Y—The Y-position of the sprite in the spritesheet. Doesn’t need to be aligned.

Figure 11.2 An example of a spritesheet (by Brad Sparks) made of many 8-pixel
by 8-pixel sprites (left) used in one method of drawing sprites with hybrid BASIC.
Sample source code (right) that defines a sprite as hexadecimal code (see
figures 11.3 and 11.4) and draws the sprite.

248 CHAPTER 11 Using hybrid TI-BASIC libraries
■ Method—How to draw the sprite, a value 0–4. 0 overwrites the background, and
3 is XOR, the method to use to draw and erase a sprite with the same command.

■ Flip—Normally 0, or 1 if you want to horizontally flip the sprite.
■ Update_LCD—1 if you want to update the LCD immediately. You can draw sev-

eral sprites by setting this to 0 and then make them all appear at once by setting
this to 1 instead of 0 for the last sprite.

The other method, shown at the right side of figure 11.2, is to define the sprite in
hexadecimal form. The sprite is then stored as a string within your code, and you
don’t need to use a Pic. In the remainder of this section, I’ll focus on the latter
method. This method is from the PicArc library, so it uses the identity command,
from the MATH tab of the MATRIX menu, accessed with [2nd][x-1]:

:identity(5,"SPRITE HEX",Sprite_X,Sprite_Y,Sprite_Width,

➥ Sprite_Height,Method,Flip,Update_LCD

As you can see, this command and its arguments are similar to the real(1 command
that uses a spritesheet, differing in that the sprite is directly defined within the com-
mand. It also omits the Pic_Num, Pic_X, and Pic_Y arguments, because those are now
meaningless. But you need to learn how to represent sprites in hexadecimal format.

11.2.2 Sprites as hexadecimal

Hexadecimal (or “hex”) is a way to represent numbers, just as decimal is a way to repre-
sent numbers. You may also have heard of binary and octal, two other number formats.
Hex is good for representing numbers in computers. If you consider the decimal num-
ber system, there are 10 digits, 0 to 9. Each successive number place as you move from
right to left is worth 10 times as much as the previous place. For example, in the number
98, the 8 is worth 8, but the 9 is worth 90. The 3 in 345 is worth 300.

 Hexadecimal numbers have 16 digits. The digits 0–9 mean 0–9, just as in decimal,
but A means 10, B is 11, C is 12, D is 13, E is 14, and F is 15. In hex, each successive
place as you move from right to left is worth 16 times more than the previous place.
The hex number 0x10 (0x is a prefix indicating “this is a hex number”) is equal to 16
in decimal, because it’s 1 ∗ 16 + 0. 0x123 would be 1 ∗ 16 ∗ 16 + 2 ∗ 16 + 3 = 256 + 32 +
3 = 291. Hex will become important to you for numbers in assembly in chapter 12, as
well as for different types of computer programming, but here we’ll use hex to repre-
sent sprites.

 If you looked carefully at the arguments to the identity(5 and real(1 functions
in section 11.2.1, you may have noticed that both take widths in multiples of 8. If you
pass the number 1 as the width of a sprite, it means it’s 8 pixels wide; a width of 2 is 16
pixels, 3 is 24 pixels, and so on. This is because sprites are made up of 8-pixel-wide,
1-pixel-tall chunks, as shown in figure 11.3. Each pixel can be one of two states, off
(white or 0) or on (black or 1). Conveniently, bytes in computers and calculators are
also 8 bits, each of which can be a 0 or a 1, so sprites are made up of bytes. Each 8-bit
byte can be broken up into two 4-bit nibbles, also shown in figure 11.3. Remember,

249Working with hybrid sprites
we’re representing each pixel with 1 bit, and just as a bit can be either a 0 or a 1, each
pixel can be off (0) or on (1). Because each byte is 8 bits and each nibble is 4 bits, an
8 x 8 sprite is 8 bytes, or 16 nibbles.

 You now know that each horizontal group of 4 pixels is a nibble and that sprites
must be multiples of 8 pixels wide; to that, I’ll add that each nibble is represented by
one hexadecimal digit, 0 through F. There are 16 hex digits 0 through F, and there
are also 16 possible ways to arrange 4 pixels that are either on or off. The bottom of
figure 11.3 shows each of these 16 possible arrangements, along with the hex digit
used for that particular arrangement. In each group of 4 pixels, the rightmost is
worth 1, the next 2, the third 4, and the leftmost 8. If all 4 pixels are black, then the
hex digit for that nibble is 8 + 4 + 2 + 1 = 15, which is an F in hex. If the pattern is
white-black-white-black, the pixels worth 4 and 1 are on (black), so the nibble is worth 5
in decimal and hex.

 As a further example of converting a sprite to hex, look at figure 11.4. The mouse
cursor sprite shown is 8 pixels wide and 8 pixels tall, so because a byte is 8 bits, this
sprite is 1 byte wide and 8 high. Recall also that each byte is 2 nibbles, so this sprite will
be 16 nibbles (or 16 hex digits). You convert each group of 4 pixels to a hex digit as
the text and figure 11.3 demonstrated, treating each black pixel as a 1 and each white
pixel as a 0, and converting each 4-bit nibble to its hexadecimal form.

 This particular sprite gets converted to the 16-nibble hex string
“80C0A09088D0A818”, which can be used with identity(5 to draw or erase a mouse
cursor sprite on the screen. Let’s conclude this section with an improvement to
prgmCURSOR from chapter 7 that demonstrates the speed and space improvements of
this technique in action.

Figure 11.3 Each 8-pixel chunk of the sprite is
divided into two 4-pixel chunks called nibbles.
Each nibble is converted into a hex digit, 0–F.
Summing the value of the spot for each black
pixel in the nibble yields the equivalent value of
that nibble; the spots are worth 1, 2, 4, and 8,
from right to left.

Figure 11.4 Turning the mouse cursor
into binary and then hexadecimal. The
final hexadecimal string encodes the
sprite left to right, top to bottom as
"80C0A09088D0A818". Notice the
nibble encoding matching figure 11.2,
where each black pixel is worth 1 and
each white pixel 0.

250 CHAPTER 11 Using hybrid TI-BASIC libraries
11.2.3 The hybrid BASIC mouse: CURSORH

We can take the CURSOR program from chapter 7 and convert it to use hybrid BASIC
commands to draw the cursor instead of a series of Pxl-Change commands. Listing 11.1
shows the completed code for this program. In the original CURSOR program, a sub-
program called ZCURSORB containing many pixel commands was called to draw or
erase the cursor. Because we can now draw or erase the cursor with a single command,
I’ve removed the subprogram, instead putting the identity(5 command directly into
prgmCURSORH. Just as Pxl-Changeing a sprite over itself causes it to be erased, XORing a
sprite over itself erases it, hence the identity(5 call in CURSORH.

 Like CURSOR in chapter 7, prgmCURSORH in the following listing provides a mouse
cursor that you can move around the screen with the arrow keys. [CLEAR] ends
the program.

PROGRAM:CURSORH
:If 1337≠det([[42
:Then
:Disp "NEED DOORS CS","DCS.CEMETECH.NET
:Return
:End
:44→A:28→B
:StoreGDB 0
:AxesOff:ClrDraw
:Repeat K=45
:identity(5,"80C0A09088D0A818",A,B,1,8,3,0,1
:Repeat K
:getKey→K
:End
:identity(5,"80C0A09088D0A818",A,B,1,8,3,0,1
:A-2(K=24 and A≠0)+2(K=26 and A<88→A
:B-2(K=25 and B≠0)+2(K=34 and B<54→B
:End
:RecallGDB 0

As a final improvement, the four explicit conditional statements in prgmCURSOR have
been converted to a pair of implicit conditionals. This final CURSORH program is a
mere 18 lines of code and very fast, compared to the slower CURSOR and ZCURSORB,
which together were 35 lines. If prgmCURSORH is called from another program or game,
you could save five more lines by removing the check for libraries at the beginning of
this program.

 Sprites are great for quickly drawing and erasing small icons or pictures of objects
or characters that need to move around the screen, but what about static full-screen
collages of sprites, such as might be used to draw the map and house in figure 11.1?

11.3 Tilemapping and scrolling
In many games, you draw a background and then move characters, ships, or other
sprites around on top of that background. Such games might include space shooters,

Listing 11.1 The hybrid cursor program, CURSORH

Make sure required
libraries are present

Draw the cursor with
XOR logic (Method = 3)
at X = A, Y = B

XORing a sprite over itself
erases it, so do that here

Explicit conditionals converted
to implicit conditionals

251Tilemapping and scrolling
where you must survive waves of enemy ships, RPGs where you explore a large world,
or even puzzle games or platformers. In each case, it would be helpful to have a fast
way to build that background out of a collection of sprites (collectively called a
spritesheet). Given a set of sprites and some data that define which sprite to put at
each location on the screen, the routine could build the complete background and
draw it to the screen.

 Such a routine is a tilemapper, and you’ve already seen a rudimentary tilemapper
in the RPG game in chapter 9. A matrix was used to define a number corresponding to
each character spot on the homescreen, and a sub command turned those numbers
into characters. A 1 was a blank spot, a 2 was a wall, and so on. We’ll review that tile-
mapper and how it can be made to smoothly scroll with hybrid BASIC. You’ll then see
the hybrid BASIC tilemapping command and how it uses a similar matrix method to
your pure TI-BASIC tilemapper. We’ll begin with a review of the single-screen tilemap-
per from chapter 9 and how it can be expanded to draw a map larger than a single
16 x 8–character array.

11.3.1 Expanded TI-BASIC tilemapping with scrolling

The simple game we worked with in the final section of chapter 9 used the contents of
an 8-row, 16-column matrix to draw a map on the homescreen. The code to draw the
tilemap looked something like the following:

:ClrHome
:For(D,1,8
:For(C,1,16
:Output(D,C,sub(" O+º",[C](D,C),1
:End:End

I briefly mentioned after presenting the program that you could expand it even further
by allowing larger, scrollable maps. You could use one of two techniques to do this:

■ You could scroll the map by one row or column horizontally or vertically if the
player walks over one of the four edges of the screen, as shown in figure 11.5.
With this method, the map could be any size, from 8 rows by 16 columns up to
the maximum size of a matrix, 99 by 99 elements.

■ You could scroll the map by an entire screen (16 columns and 8 rows) each
time the player crosses an edge. This means that the map must be a multiple of
16 columns and 8 rows.

We’ll pursue the first technique. I’ll show you a tilemapper that will move two home-
screen rows or columns each time the player moves off one of the edges. It will use
hybrid BASIC to smoothly scroll the screen when the player reaches an edge.

 Let’s first look at what you’d need to do to make this sort of smooth-scrolling tilemap-
per, and then I’ll show you the program that generated the screenshots in figure 11.5.

Loop over 8 rows of
the homescreen Loop over

16 columns

Display one of
four possible
characters,
depending on
matrix element
[C] (D,C)

252 CHAPTER 11 Using hybrid TI-BASIC libraries
WRITING A HOMESCREEN TILEMAPPER WITH COMPLEX SCROLLING

In chapter 9, we dealt with a simple tilemapping engine. Its job was to take the num-
bers in a matrix, each element of which corresponded to one character on the home-
screen, and draw those characters onto the homescreen. If we expand such an engine
to handle a map larger than the homescreen, then to use the hybrid BASIC smooth-
scroll function, we need to change a number of characteristics of the engine:

■ The map matrix [C] is now bigger than 8 rows by 16 columns but is still a multi-
ple of two columns and rows, because our design will scroll the map two rows/
columns at a time.

■ It will need to track the X and Y offsets of the top-left of the screen into the map
matrix. We’ll use variables C and D respectively for this.

■ It will use hybrid BASIC to smoothly scroll the screen. This means that the
graphscreen rather than the homescreen must be used.

■ The Text(-1 command is used instead of Output to draw large text on
the graphscreen.

■ More nested loops are needed, because the map now needs to be drawn more
than once. The outermost loop redraws the entire screenful of the map when the
map is scrolled, the next inner one draws and erases the player’s character as it
moves around the screen, and the innermost loop tightly waits for a keypress.

We can continue to use (A,B) for the (X,Y) position of the player on the screen. For a
rudimentary map, we’ll put a border around the edges and a partial horizontal wall in
the middle. Let’s now look at the code for this program to see how it can be put together.

FINAL TILEMAPPER CODE

The code for prgmBTILE1, the hybrid BASIC tilemapper, is presented in listing 11.2. It
uses the standard five-line construct to make sure that the required hybrid libraries
are present. Because it operates on the graphscreen, it begins and ends with code to
save and restore graphscreen settings. It sets up a matrix [C] as a 12-row by 20-column
map, then runs the three main nested loops. The outermost draws the map, the next

Figure 11.5 A smooth-scrolling homescreen-style tilemapper, showing reaching
an edge and scrolling the map by two columns

253Tilemapping and scrolling

he

e it
obably

inner one moves the player around the map, and the innermost waits for keypresses.
This program has to use the graphscreen for the hybrid screen-scrolling function to
work, so the Text(-1 lines draws the map and the player. All characters are drawn at
multiples of 6 in the X direction and 8 in the Y direction, because homescreen charac-
ters are each 6 pixels wide and 8 pixels tall.

:If 1337≠det([[42
:Then
:Disp "NEED DOORS CS","DCS.CEMETECH.NET
:Return
:End
:StoreGDB 0
:FnOff :AxesOff
:ClrDraw
:{12,20→dim([C]
:Fill(1,[C]
:For(X,1,12
:2→[C](X,1
:2→[C](X,20
:End
:For(X,2,19
:2→[C](1,X
:2→[C](12,X
:If X>4 and X<17
:2→[C](6,X
:End
:DelVar CDelVar D2→A:2→B
:Repeat K=45
:For(M,1,16
:For(N,1,8
:Text(-1,8N-8,6M-6,sub(" O+o",[C](N+D,M+C),1
:End:End
:C→E:D→F
:Repeat C≠E or D≠F or K=45
:Text(-1,8B-8,6A-6,"Π
:Repeat K
:getKey→K:End
:Text(-1,8B-8,6A-6,"[one space]
:A-(K=24 and 2≠[C](D+B,C+A-1))+(K=26 and 2≠[C](D+B,C+A+1→A
:B-(K=25 and 2≠[C](D+B-1,C+A))+(K=34 and 2≠[C](D+B+1,C+A→B
:If B=0:Then
:2→B:For(X,1,16
:real(4,1,1,1
:End:D-2→D
:End
:If B=9:Then
:7→B:For(X,1,16
:real(4,0,1,1
:End:D+2→D
:End
:If A=0:Then

Listing 11.2 A scrolling homescreen-style hybrid BASIC tilemapper

Set up the
graphscreen

Define a 12-row,
20-column map and
fill in rudimentary
contents

Set (C,D), map offsets, to 0;
(A,B) is the player location
onscreen

Repeat outer
loop until
[CLEAR] is
pressed

Draw the map.
Need to offset by D
rows and C columns
into the matrix.

Repeat inner loop
until map needs to
be redrawn or
[CLEAR] is pressed

Draw the
player on
the screen

Repeatedly loop until
a key is pressed

Erase t
player,
becaus
will pr
move

Implicit conditionals
to move the player

If player walked off top edge,
scroll two rows, with real(4…;
then fix player coordinate
and update map offset D

Scroll the graphscreen
16 pixels (two rows) up
if the player walked off
the bottom edge

254 CHAPTER 11 Using hybrid TI-BASIC libraries
:2→A:For(X,1,12
:real(4,3,1,1
:End:C-2→C
:End
:If A=17:Then
:15→A:For(X,1,12
:real(4,2,1,1
:End:C+2→C
:End
:End:End
:RecallGDB 0
:Disp

The main new command in this code is the xLIB command real(4, which is used to
smoothly scroll the graphscreen. It requires the following arguments:

:real(4,Direction,Number_of_Pixels,Update_LCD

Number_of_Pixels is how many pixels to scroll the display in the given direction.
Update_LCD is identical in function to the argument of the same name to the sprite
functions, dictating whether the image on the LCD should be updated when the
scrolling is complete. Direction is a number between 0 and 7: 0 = up, 1 = down,
2 = left, 3 = right, 4 = up-left, 5 = up-right, 6 = down-left, and 7 = down-right.

 One weakness of this program is that that’s an unnecessarily long delay when the
map is scrolled. This lag is due to the program redrawing the bulk of the map that’s
already onscreen from being scrolled. A faster game that would be less frustrating for
the player might keep track of which way the screen had been scrolled and redraw
only that part of the map.

 As a final note, you’ll see how this can be easily converted to the second type of
BASIC homescreen-style tilemapper, which scrolls the map by one screen at a time.

CREATING THE SCREEN-BY-SCREEN SCROLLING TILEMAPPER

A few simple changes will turn this into a tilemapper that scrolls an entire screen at a
time. Other than changing the setup of [C] to define a map matrix that’s a multiple of
16 columns wide and a multiple of 8 rows tall, the only parts that must be changed are
the four conditionals that scroll the map. Each should scroll the entire screen away,
either 96 pixels horizontally or 64 pixels vertically. Each should set the player to be on
the opposite edge, to move to row 1 if it walked off the bottom of the map. The left
and right edge cases will have to add or subtract 16 from C; the top and bottom edge
cases will have to add or subtract 8 from D.

 Hybrid BASIC also provides a graphscreen function to let you make even more
complex tilemaps constructed from sprites.

11.3.2 Hybrid tilemapping

Imagine that you want to create a city-simulator game for your calculator. You design
types of buildings, zoning, roads, environment sprites, and even railroads. But once
you go to create the routine that renders the player’s city, you have a decision to make.

Scroll the graphscreen
12 pixels (two columns)
right if the player
walked off the left edge

Scroll the graphscreen
12 pixels (two columns)
left if the player walked
off the right edge

End the inner
and outer loops

End by displaying
the homescreen

255Tilemapping and scrolling
Presumably, you’ll decide to store the city in a matrix. You’ll need to decide what num-
bers put into the matrix define which sprite, and you’ll have to decide how to draw the
actual map. Figure 11.6 shows an example of the sort of spritesheet you might be using at
left, along with a city that might be created from the spritesheet, shown at right.

 The solution for drawing the map is the real(2 command, the xLIB hybrid BASIC
command sometimes called DrawTileMap. This lets you pass a matrix containing val-
ues, matrix offsets, and a tilemap and will draw the tilemap onto the screen like the
right side of figure 11.6. The arguments are as follows:

:real(2,Matrix_num,Col_offset,Row_offset,Width,Height,SStartX,

➥ SEndX,SStartY,SEndY,Pic#,Logic,TileSize,Update_LCD)

The Matrix_num argument indicates which matrix holds the map data being accessed;
Matrix_num=0 is matrix [A], 1 is [B], and up to 9 for [J]. Col_offset and Row_offset
specify the offset of the current screen’s data in the given matrix. Width and Height
are the dimensions of the tilemap, in pixels. Pic# indicates which picture contains the
spritesheet, such as 1 for Pic1, 5 for Pic5, and 0 for Pic0. The Logic arguments are
the same as for sprites, including 0 for overwrite and 3 for XOR. Update_LCD is also the
same as for sprites, refreshing the contents of the screen when this argument is 1.
Spr_Flip defines whether or not to flip each sprite horizontally, and TileSize defines
whether this routine works with 8 x 8 sprites (when TileSize = 8) or 16 x 16 sprites
(when TileSize = 16).

 The remaining four arguments specify where the resulting sprites will be drawn on
the graphscreen and are in numbers of sprites (not in numbers of pixels). SStartX
and SStartY define the top left of the area to be drawn; if you specify TileSize = 8,
then SStartX = 3 and SStartY = 1 would mean the area drawn would be offset 8 pixels
down and 24 pixels across. By the same token, SEndX and SEndY define the bottom
right of the area to be drawn, also in sprite coordinates.

 This concludes the introduction to the graphical tools available in the hybrid BASIC
libraries. If you want to learn more about the many graphics features of hybrid BASIC, the
resources listed in section 11.1.1 and appendix C have additional information and a

Figure 11.6 A spritesheet (left) for a city-building game; used with the
real(2, ...) tilemapping command

256 CHAPTER 11 Using hybrid TI-BASIC libraries
full listing of the functions provided by the five major libraries. The remainder of this
chapter will explore nongraphical hybrid BASIC features, starting with tools to manip-
ulate programs.

11.4 Finding and executing programs
Several of the hybrid BASIC libraries, particularly Celtic III and xLIB (both built into
Doors CS), offer functions to find, modify, and execute programs. Celtic III functions
can read and write programs in RAM and ROM, generate lists of programs meeting
certain criteria, and lock, archive, and delete programs and AppVars. xLIB can tempo-
rarily copy programs from Archive to RAM and delete the temporary copies after
they’re used as subprograms.

 This section will first cover listing and finding files and then will show you how to
copy and execute programs from Archive. Let’s begin with finding programs, App-
Vars, and groups.

11.4.1 Finding files

You can find files either by name or by contents with hybrid BASIC. The commands for
both types of searches are in the Celtic III portion of the libraries, so they’re accessed via
the det command. The first function we’ll examine finds all programs on your calculator.

 This function det(9) returns a list of all programs on your calculator as a string.
The names are separated by spaces, so by repeatedly applying inString and sub to the
result with space as the search character, you can get each program’s name in a sepa-
rate string.

:det(9

You can also search for programs, AppVars, or groups by name using the det(32 com-
mand. The arguments to det(32 specify the beginning of the name of the desired
item, plus the type of file:

:det(32,"NAME",Type)

The string "NAME" must be at least one character long and must match the beginning
of the name of each file returned. This function will also return a space-delimited list
of names or an error such as the code “.7” if no such programs are found. The Type
argument must be 0 to look for programs, 1 to find AppVars, and 2 for groups.

 You can search for programs by contents with an optional second argument to
det(9:

:det(9,"STARTS_WITH

The string "STARTS_WITH" must be the beginning of each of the programs for which
you’re searching, so it can be text or commands. You can use this feature to make level
files for your games or save files for programs. If you make the beginning of each level or
save a special string, you can use det(9 to return a space-separated string containing
the names of all the programs holding levels or saves.

257Other hybrid tools
 Celtic III also exposes commands to examine and extract groups, to read, write,
insert, and erase lines from programs and files, and much more. The resources in
appendix C, especially http://dcs.cemetech.net/?title=Hybrid_Libs, list them all.

11.4.2 Running subprograms from Archive

As your programs and games get more elaborate and complex, they’ll also become
larger and larger. You’ll need more lists, pictures, and matrices, but you’ll also need
many more subprograms. For sufficiently large projects, the total size of all of your
programs, subprograms, and level and data files may grow to overwhelm the meager
24 KB of RAM that your calculator offers. One solution might be to start archiving pro-
grams and files, and then selectively unarchive subprograms as needed, run them, and
rearchive them.

 To save wear and tear on your calculator’s Flash memory, which can fail if written
more than about 100,000 times, xLIB offers a function to copy out an archived program
to a temporary program without unarchiving it and then can delete the temporary pro-
gram after it’s executed. The real(10 command provides three separate subfunctions:

:"PROGNAME":real(10,0,Temp_Number
:real(10,1,Temp_Number
:real(10,2

xLIB offers up to 16 different temporary programs, named prgmXTEMP000 through
prgmXTEMP015. Your programs can copy an archived program to RAM by putting the
name of the program as a string in Ans and calling real(10,0 with the number of
the target temporary program. If there’s room in RAM, and the specified XTEMP0XX
program doesn’t already exist, it will be created. You can then run each of these tem-
porary programs as you would any other subprogram, as, for example,

:prgmXTEMP004

When your program no longer needs one of the temporary programs, it can delete
temporary program XX using the command real(10,1,XX) or delete every tempo-
rary program XTEMP000 through XTEMP015 with real(10,2).

 Many other hybrid BASIC functions exist in the five main libraries; we’ll now review
some of the most useful ones.

11.5 Other hybrid tools
In the preceding sections, you saw tools to draw sprites and tilemaps on the graph-
screen, to scroll the screen, and to find and execute programs using hybrid libraries.
The hybrid libraries contain more functions too numerous to cover fairly, so this sec-
tion lists other useful functions that you may wish to explore in depth on your own.

 We’ll discuss functions that manipulate files and data in your calculator’s memory,
as well as tools to read information about the calculator itself. I’ll then present func-
tions for advanced I/O and for working with complex GUIs.

Copy prgmPROGRAM
to a temporary RAM
program

Delete one
temporary
program

Delete all temporary
programs

http://dcs.cemetech.net/?title=Hybrid_Libs

258 CHAPTER 11 Using hybrid TI-BASIC libraries
11.5.1 Manipulating files and data

You can work with files and programs using Celtic III functions. These are of particu-
lar use for games that need to read or write a lot of data, including levels, stats, and
sprites, and to save files. They would also be helpful for office-type programs, such as
text editors.

■ Read, modify, insert, or erase lines in programs with det(5), det(6), det(7),
and det(8).

■ Read binary data from programs with det(14). Insert data with det(15), or
delete data with det(16).

■ When reading and writing binary data, you may want to convert raw binary to and
from ASCII-encoded hexadecimal. det(17) converts ASCII-encoded hex to binary,
and det(18) converts binary read from a file back to ASCII-encoded hex. This is
particularly useful if you store many sprites as compressed lines in files.

Several functions return statistics or information about files and the current calculator
or can modify the state of the calculator:

■ You can use det(4) to find out information about the calculator. det(4,0)
returns the number of bytes of free RAM, det(4,1) returns the bytes of free
Archive, and det(4,2) returns this calculator’s OS version.

■ real(5) can check or change the contrast of the calculator’s LCD. real(5,1,0)
returns the current contrast, 0 through 39 where 0 = very light and 39 = very
dark. real(5,0,X) sets the current contrast to X, also 0 to 39.

■ The type of the current calculator can be determined with real(11). This will
return 0 for a TI-83+, 1 for a TI-83+SE, 2 for a TI-84+, and 3 for a TI-84+SE.

One particularly useful function for working with numbers and strings is real(1,X),
which converts the number X into a string. To perform the reverse function, use
expr("10.2"), which turns a string back into a number, if it indeed represents
a number.

 A final category of useful hybrid functions facilitates input and output.

11.5.2 Hybrid TI-BASIC I/O and GUIs

Hybrid BASIC can be used for more expressive input and for GUIs. Here are the func-
tions for input:

■ xLIB provides a getKey that can handle all keypresses as well as diagonal move-
ment, real(8). This outputs its own set of keycodes, different from getKey’s
keycodes. The documentation for real(8) shows the full set of keycodes.

■ You can use a very fast mouse cursor in your programs with sum(6,X,Y), where
X and Y are the starting location of the mouse. This will return a list containing
{X,Y,Click}, where X and Y are the final coordinates of the mouse, and Click is 1
for a left click ([2nd] or [TRACE] or [ENTER]) or 2 for a right click ([ALPHA]
or [GRAPH]).

259Summary
Complex GUIs are also possible with the DCSB Libs. sum(9) and sum(7) are used to cre-
ate a GUI containing layered windows, buttons, text input elements, and more. sum(12)
will then call a special mouse routine that can interact with all of those elements and
notify the program about text entered and form elements and buttons clicked.

11.6 Summary
You’ve now seen the extra power your programs can gain from using hybrid TI-BASIC,
or TI-BASIC augmented with special community-created libraries. From fast graphics
drawing to diagonal key input, from executing archived programs to changing the
LCD’s contrast, hybrid libraries can make your programs much more advanced. But
you’re still working within the limitations of the TI-BASIC language.

 If you want to go further and write programs that are even more powerful, fast,
and complex, you can learn z80 assembly, the language in which the hybrid libraries
are written. The following chapter will give you a first taste of z80 assembly, as well as
resources where you can learn more.

Introducing z80 assembly
TI-BASIC can be used to create programs and games running the gamut from
extremely simple to very complex. After spending some time with TI-BASIC and
running into some of its limitations, you might have wanted to reach for more
power and more features, which the hybrid TI-BASIC libraries introduced in chap-
ter 11 provided. Perhaps you’ve used the hybrid libraries for a while, and have won-
dered why those libraries can do so much. Why are they so fast, and how come they
can access so many features that your TI-BASIC programs can’t use? The answer is
that they’re written in z80 assembly, a more-powerful, less-restrictive language that
can take full control of your calculator. You too can learn how to write programs
in assembly!

 In chapter 1, you learned the difference between an interpreted language like
BASIC and a compiled language. Interpreted languages are processed as they’re

This chapter covers
■ The basics of numbers and commands in

z80 assembly
■ Your first z80 assembly programs
■ All the tools to get started with assembly

programming
260

261What is assembly?
run by an interpreter, which translates each command into something that the
device’s CPU can execute. For TI-BASIC, the TI-OS’s interpreter translates each com-
mand into z80 assembly, which then runs on your calculator’s processor. The inter-
preter can detect if you’ve made an error in your program and alert you accordingly.
On the flip side of the coin, it limits what you can do with the hardware and doesn’t
let you arbitrarily access memory and features of the calculator. The interpreter slows
your programs way down, because it must do a great deal of work to run each com-
mand in your TI-BASIC programs.

 Assembly (ASM) runs directly on the processor. It can run much, much faster and
can manipulate the hardware to do almost anything, including working with the screen,
the memory, the keyboard, and even the link port and USB port on your calculator. The
downside is having to be more careful to check for mistakes, because now coding errors
will at best make your program misbehave and at worst crash your calculator.

 In this chapter you’ll learn the basics of z80 assembly programming. I’ll introduce the
tools used to write assembly code and the similarities and differences between assembly
and BASIC. We’ll look at the classic Hello World program as written in z80 assembly and
then walk through important concepts such as binary and hexadecimal, manipulating
bits and bytes, and performing math in assembly. You’ll see how to control program
flow and work with input and output in z80 assembly. I’ll leave you with a few final
thoughts on ASM and how you can pursue it further.

 Let’s begin with the tools you’ll need to work with z80 assembly, hereafter also
known as ASM, and how ASM compares to TI-BASIC.

12.1 What is assembly?
TI-BASIC is one programming language; C, Java, PHP, JavaScript, Python, C#, C++,
and Lua are also programming languages. z80 assembly is yet another programming
language, one that runs on your calculator. Assembly language is a low-level lan-
guage; unlike languages such as C or C++, where a compiler translates your code into
simpler instructions that will be executed on the processor, you directly write instruc-
tions for the CPU. Each different CPU architecture (x86, ARM, and z80, to name a
few) has a different assembly language, corresponding to the instructions available
for that CPU.

 We’ll be working with the z80 CPU. First created by the Zilog Corporation in 1976,
it’s an 8-bit processor, which means it deals mostly with 8-bit integers. It can handle
16-bit addresses, which means it can handle at most 64 KB of RAM. Figure 12.1 shows a
simple block diagram of the z80 processor connected to memory, the LCD, the key-
pad, and your calculator’s serial or I/O link port; this is a more detailed version of fig-
ure 1.1 from chapter 1. The CPU is responsible for executing commands, which may
perform math and read in or write out to memory and hardware, and also maintains a
set of internal variables called registers.

 In this section, I’ll talk about the differences between TI-BASIC and z80 assembly,
particularly as they pertain to programming directly for the hardware in figure 12.1.

262 CHAPTER 12 Introducing z80 assembly
I’ll also introduce the tools you’ll need to write z80 assembly on your computer. Let’s
begin with a comparison of ASM and TI-BASIC.

12.1.1 z80 assembly versus TI-BASIC

You learned in chapter 1 that TI-BASIC is an interpreted language, in which the calcu-
lator reads and translates each line of code into instructions the underlying hardware
can understand. You gain peace of mind, because the interpreter will catch mistakes
in what you or the user types and display error messages. On the downside, the lan-
guage is slow, because it needs to spend time examining and translating each line
before executing it.

 z80 assembly is an assembled language, which means you’re directly writing the
instructions that will run on the processor. The only thing the assembler does is trans-
late human-readable instructions (like add, ld, call, and push) into numbers that the
processor understands. Each of these instructions is much simpler than the TI-BASIC
commands you’ve been using. Because it runs directly on the CPU, z80 assembly is fast.
The minuses are that it’s more complex to understand than TI-BASIC and if you make
a coding error, your calculator might crash. Luckily, because the language has been in
use for over 30 years, and calculator programmers have been using it for more than 15
years, there are many tools to make your life as an ASM programmer easier, several of
which I’ll discuss in this section.

 To get an idea of some of the similarities and differences between z80 assembly
and TI-BASIC, glance at table 12.1. As you can see, you’re working with much lower-
level concepts, such as registers and memory instead of variables, lists, matrices, and
pictures. Some of the TI-OS functions are still available to assist your programs, and if
you choose to make your programs run under a shell like Doors CS or Ion, you have
an additional set of functions available.

 With z80 assembly, you can’t (easily) access any of the variables and data types to
which you’re accustomed in TI-BASIC. You use the registers, a set of 8-bit or 16-bit inte-
gers, to hold temporary values. Where you might use several of the 27 numeric vari-
ables A–Z and θ to hold values used throughout your TI-BASIC programs, you’ll now
store those values directly at memory locations. Instead of referring to data locations

Figure 12.1 How the z80 CPU in your calculator talks to the memory and hardware. The
CPU performs computation and talks to RAM and hardware devices; the registers are built-
in variables.

263What is assembly?
by name and letting TI-BASIC figure out where exactly that data resides, you’ll now
work with numeric memory addresses (although you can name them to make your life
easier). Most z80 ASM programs you’ll write will use positive integers, holding values
between either 0 and 255 or 0 and 65535. You can also use signed integers, ranging
from -128 to 127 or -32768 to 32767.

 Another significant difference is that most z80 ASM programs are written on your
computer, then assembled and sent to your calculator via a link cable and linking soft-
ware. This makes programming easier, because you can use a text editor on your com-
puter’s big screen to work with your code. You can also use lots of comments, notes to
yourself that describe how nearby code works and what it does but that isn’t included
in your assembled programs. You’ll need tools to help you write, assemble, transfer,
and run assembly programs, which we’ll now discuss.

12.1.2 z80 assembly programming tools
You need a few tools in your utility belt in order to program z80 assembly in a way that
will be fun and minimally frustrating. You need an editor to help you create, edit, and
organize your code. You need an assembler and linker to turn your code into a format
your calculator can understand. You need link software to send programs to your cal-
culator. You can protect your calculator from crashes and lost data if you use an emu-
lator instead of your physical calculator to test your programs.

 I recommend the following toolset:

■ Editor—Notepad++, which can keep many files open in different tabs, is an
excellent text editor. Programmer’s Notepad is another alternative, or if you’re
using Linux, you should try to learn how to use vim. (http://notepad-plus-
plus.org/)

Table 12.1 A comparison of features and concepts between TI-BASIC and z80 assembly

In TI-BASIC In z80 assembly

27 real variables that store floating-point
numbers.

Eight registers that store 8-bit integers (0 to 255 or -128 to
127) or three registers that store 16-bit integers (0 to
65535 or -32768 to 32767).

Subprograms that can be called. Functions within the same program that can be called.

Access TI-OS features via commands. Access TI-OS features via bcalls.

Store external data in matrices
and strings.

Store permanent data in memory chunks of the program
itself. Temporary data can be placed in special areas of the
calculator’s memory.

Separate homescreen and graphscreen. Single gbuf stores all LCD contents.

Programs are interpreted; no compilation
is necessary.

Programs must be assembled from a human-readable for-
mat down to machine code.

Comments in code are discouraged; they
slow down and bloat programs.

Extensive comments are encouraged: they’re removed dur-
ing assembly and don’t affect the final assembled program.

http://notepad-plus-plus.org/
http://notepad-plus-plus.org/

264 CHAPTER 12 Introducing z80 assembly
■ Assembler/linker—The Doors CS SDK (http://cemete.ch/DL470) can be used to
create ASM programs that run under Doors CS, but it also can create any ASM
programs, including those that require no shell at all (called nostub programs).
I recommend it because it includes an assembler called Brass and a linker called
BinPac8x, and it works on 32- and 64-bit OSs. It works on Windows, Mac OS, and
Linux, requiring only Python (and, if you’re on Mac OS or Linux, Mono).

■ Linking software—TI-Connect or TILP. See appendices A and C for more
information.

■ Emulators—jsTIfied, Wabbitemu, or PindurTI. See appendix C.

There are other assemblers and linkers, but I chose the Doors CS SDK despite my
bias because it packages everything together neatly to help beginners start program-
ming quickly.

 Once you have linking software and/or an emulator installed, unpack your assem-
bler and linker. If you’re using the DCS SDK, you can unzip it in a location of your
choice. To create a program, pick a name between one and eight letters, such as proj-
ect, and create project.asm in the /source/ folder of the SDK. Be careful not to use the
Windows Notepad program, because this will give your file the name project.asm.txt
(which is wrong). To help yourself quickly build your project from its ASM source into
a .8xp program you can load onto your calculator, make a batch file in the main SDK
directory called project.bat (again, where project is the name of this program):

compile project
pause

The pause will let you see any errors that the assembler found, so that you can cor-
rect them.

 If you have any difficulties with setting up or using these tools, or by the time you
read this you can’t find the tools mentioned, try asking for assistance on one of the
forums mentioned in appendix C. Assuming that you were successful in setting up
your environment and can create projects, let’s look at your first z80 ASM program.

12.2 “Hello, World”
A Hello World program was your first TI-BASIC program, and it will be your first z80
assembly program as well. The source code for this program is shown in listing 12.1;
remember that this needs to be assembled before it can be tested on your calculator.
This program clears the screen, moves the cursor to the top-left corner, and prints
“Hello, World!” It then moves the cursor to the second line and ends.

.nolist
#include "ti83plus.inc"
#include "dcs7.inc"
.list
.org progstart
 .db $BB,$6D

Listing 12.1 Hello World in z80 assembly, your first ASM program

Every z80 ASM program starts
with something like this

http://cemete.ch/DL470

265“Hello, World”
Start:
 bcall(_ClrLCDFull)
 ld a,0
 ld (curcol),a
 ld (currow),a
 ld hl,HelloWorldMessage
 bcall(_puts)
 bcall(_newline)
 ret
HelloWorldMessage:
 .db "Hello, World!",0
.end
END

As we did with your first few TI-BASIC programs, let’s walk through this code line
by line.

.nolist
#include "ti83plus.inc"
#include "dcs7.inc"
.list

The ti83plus.inc and dcs7.inc files (in the /tasm/ folder of the DCS SDK) define a lot
of constants for you and the assembler to use. ti83plus.inc tells the assembler where in
the calculator’s OS the _puts, _ClrLCDFull, and _newline bcalls can be found. dcs7.inc
defines things such as the address at which programs start in memory, progstart, so
that you don’t have to type its hexadecimal equivalent $9D93 instead.

When the assembler turns your program into a .8xp file, it also creates a second file
called a listing, which shows your source code side by side with the hexadecimal equiv-
alents of each line of the program, as well as the address of each line (see the “Labels”
sidebar). The .nolist/.list tells the assembler that the files included after .nolist
and before .list should not be shown in the listing file, because they aren’t specific
to the program and would just clutter the listing file.

.org progstart
 .db $BB,$6D

Labels, addresses, and hexadecimal
Every assembly program starts from an address in memory, generally 0x9D93. This
is usually written as $9D93 for assembly programs; $ indicates to the assembler that
the following number is hexadecimal. Every instruction in your program takes between
1 and 4 bytes, and data that you store in the program (including strings such as
“Hello, World!”) also take up bytes. Each line of the program is at some memory
address, which the assembler determines by counting bytes from the beginning of
the program and adding $9D93. When you add a label to your program, such as
Start: or HelloWorldMessage: in listing 12.1, you’re assigning the memory
address for that line a name that you can then use to refer to it. To the assembler,
though, you’re still referencing 2-byte addresses consisting of 4 hexadecimal digits.

a is the accumulator, the most
frequently used 8-bit register

This is a 2-byte
pointer to the string
“Hello, World!”; the
actual string can’t fit
into the hl register

bcalls are like commands in
TI-BASIC; _puts, is like Disp

Every z80 ASM program should end with these two lines so
that the assembler knows where the end of the source code is

266 CHAPTER 12 Introducing z80 assembly
.org, for “origin,” tells the assembler to start counting addresses at progstart,
defined in dcs7.inc as address $9D93. The first command that’s actually part of the
program is the .db $BB,$6D. This tells the assembler to put the two literal bytes $BB
and $6D into the program as the first 2 bytes. These special bytes signal the TI-OS that
this is an assembly program instead of a BASIC program, necessary because ASM pro-
grams show up in the [PRGM] menu just like TI-BASIC programs.

Start:

The label Start: isn’t used in this program, in the sense that nothing jumps to it, but
in other programs, it would be necessary if you wanted to restart the program. Labels
are named locations in the program, so defining labels doesn’t raise program size.
The program could jump to this label, just like a Goto/Lbl in TI-BASIC.

 bcall(_ClrLCDFull)

bcall() tells the calculator to execute a ROM call, which means to go into the TI-OS and
run some function that the OS provides. In this case, the command is _ClrLCDFull,
which clears the screen.

 ld a,0

The accumulator, register a, is the most frequently used register in z80 assembly. Used
somewhat like variables in TI-BASIC, you can store to and read from the accumulator.
The ld command is short for “load” and works from right to left. ld a,0 means to load
0 into the accumulator; in TI-BASIC, the line might look like 0→a.

 ld (curcol),a
 ld (currow),a

These two lines use the zero stored in a to set the cursor row and cursor column, used
to define where text is printed. These work similar to the row and column arguments
to Output, except that you must set curcol and currow before calling command to
display text. In z80 ASM, the homescreen columns range from 0 to 15 and the rows
from 0 to 7; in TI-BASIC the columns and rows start at 1.

 The z80 processor can’t directly load a number into a numeric memory address, so
you can’t write ld (curcol),0. Instead, you must first load the number to be stored
into a register, then store the contents of that register into memory. curcol and
currow are the addresses in memory where the value of the cursor column and row
are stored; the parentheses are used for an operation called indirection. They tell the

Formatting code
All labels must be aligned on the left margin, and all commands must be tabbed or
spaced into from the margin. I recommend a single tab. Comments are placed after
semicolons; the assembler ignores everything from the semicolon to the end of
the line.

267“Hello, World”
processor that you want to access the byte stored at that location, not the actual num-
ber of the address. Whenever you want to store directly to locations in memory or
read back from memory, you need to use indirection.

 ld hl,HelloWorldMessage

HelloWorldMessage is the address in the program of the first byte of the string “Hello,
World!” Because you don’t use parentheses, this refers to the address of the byte
rather than the contents (which would be the single character H). Whenever a pro-
gram deals with a string, you refer to the string by the address of its first character; you
can then move forward in memory from that point to find the remainder of the
string. This line of code loads that address (once again, a 2-byte number represented
by four hex digits) into the 2-byte register hl. The accumulator a holds 1 byte; hl
holds 2, and because addresses in memory are 2 bytes, you can’t put an address in a.

 bcall(_puts)
 bcall(_newline)

Remember that bcall()s are like commands; here, you call the _puts command and
then the _newline command. In TI-BASIC, you put the arguments to commands in
parentheses after the name of the command, but in z80 ASM, you first put the argu-
ments in registers and then bcall the command. _puts takes one argument, the
string to be displayed, in hl. It displays that string in homescreen font at currow and
curcol, which is why you set both to 0. _newline takes no arguments, so you call it
directly after _puts.

 ret

Short for “return,” the ret command is similar to its TI-BASIC counterpart. If you’re in
the main body of code for a program, it makes the program quit; if it’s inside a func-
tion called with call, it returns to the point from where the function was called.

HelloWorldMessage:
 .db "Hello, World!",0

This is an example of a string embedded in a program. .db (data bytes) embeds the
characters in the string into the final program, one character per byte. The last byte of
the string, a 0, is called a zero-terminator and marks the end of the string. When the
string is displayed, _puts keeps displaying characters until it reaches a 0.

.end
END

These two lines are always required at the end of your program. They’re used to tell
the assembler when it reaches the end of the source file but don’t become part of the
final program.

268 CHAPTER 12 Introducing z80 assembly
12.2.1 Running Hello World

If you save the source code as hiworld.asm in the /source/ folder of your DCS SDK
directory, you can assemble it as described in the previous section. If you make no
errors, hiworld.8xp will appear in the /exec/ directory, which you can send to your
calculator or emulator. If you have Doors CS on your calculator, you can run the
HIWORLD program from your calculator’s [PRGM] menu; if you have any other shell,
enter the shell and then run HIWORLD. If you have no shell, go to the Catalog under
[2nd][0], select Asm(, and paste prgmHIWORLD from the [PRGM] menu. Hit [ENTER]
to run the Asm(prgmHIWORLD command.

Now that you’ve seen a simple z80 assembly program, let’s step back and go through
the skills you’ll need to write ASM programs. First, we’ll discuss how numbers in assem-
bly work.

12.3 Bases and registers
We discussed the concept of hexadecimal once before, as it relates to encoding
sprites, in chapter 11. With z80 assembly, you’ll need to frequently work with binary,
hexadecimal, and decimal, three different bases used to represent numbers. A good
assembly programmer must be able to intuitively understand binary and hexadecimal,
so this section will introduce the two bases and how they relate to decimal. We’ll then
look at how you can work with the individual bits within bytes, as well as why you’d
want to, and how to do math with registers.

 Let’s begin with the relationship between the three bases you’ll be using most fre-
quently: hexadecimal, binary, and decimal.

I wrote my own program and my calculator froze!
z80 assembly gives you complete control over your calculator. There’s no longer a
safety system that will pop up error messages when you make a mistake; instead,
errors will be a bit more dramatic. At best, programs will unexpectedly quit to the
homescreen. If the error is a bit worse, your calculator will freeze. If you make partic-
ularly egregious errors, you can even get your calculator to get stuck displaying ran-
dom gibberish.

In most cases the fix is easy. Just pull out one of the four AAA batteries, reinsert it,
and you should be met with a RAM clear. If you still have no luck, pull the battery
again, hold down the [CLEAR] button, and with [CLEAR] still held, reinsert the battery.
Tap [ON] and release [CLEAR], and the calculator should be fixed. In the worst cases,
you might need to take out all five batteries (including the button cell under its cover)
for a few hours or even resend the OS.

To put your mind at ease, there are few known instances of destroying (“bricking”) a
TI-83+/84+ with a bad assembly program, and almost every such case involved an inten-
tionally malicious program. With that said, be careful, and understand that by writing or
even using z80 ASM programs you’re indeed risking the well-being of your calculator.

269Bases and registers
12.3.1 Working with binary, hex, and registers
In TI-BASIC, you’re almost always dealing with decimal numbers, the familiar numbers
you use in everyday life. Such numbers are made up of the digits 0–9 and may include
portions before and after the decimal point. The farther left in a number a digit is,
the more it’s worth; the farther right, the less it’s worth. Hexadecimal and binary are
two more ways of representing the exact same numbers but in a way that’s closer to
how numbers are stored in a calculator’s (or computer’s) memory. We’ll be working
with integers, numbers that have no decimal point or fractional parts.

 I’ll first show you how to convert between binary and decimal and to read binary num-
bers and then move on to hexadecimal. We’ll also look in more detail at registers, the vari-
ables inside your calculator’s processor where numbers are stored during calculations.

BINARY AND CONVERSION

Binary numbers are made up of only the digits 0 and 1; decimal numbers consist of
the digits 0–9. In decimal, each digit as you move from right to left is worth 10 times as
much as the preceding digit. The 3 in 123 is worth 3 ∗ 1, whereas the 2 is worth 2 ∗ 10
and the 1 is worth 1 ∗ 100. Each digit in a binary number is worth twice as much as the
previous digit, as shown in figure 12.2.

 To convert a decimal number into a binary number, find the largest power of 2 less
than or equal to the decimal number, and set that digit in your binary number to 1. Sub-
tract the value of that place from the decimal, and continue setting 0 bits (digits) in your
binary number to 1 and subtracting from the decimal until the decimal number is equal
to 0. As you can see in figure 12.2, 3 bits must be set to 1 in order to make the binary rep-
resentation of the number 42. 32 is the highest power of 2 less than or equal to 42, leaving
42 – 32 = 10. Next, 8 is the highest power of 2 less than or equal to 10, leaving 10 – 8 = 2.
Finally, 2 is the highest power of 2 less than or equal to 2, leaving 0, so the process is com-
plete. Note that just as putting zeroes at the left end of a decimal number doesn’t change
its value, putting zeroes at the left end of a binary number also makes no difference.

 Converting back to decimal is easier; all you have to do is sum the place values of
all the “1” bits in the binary number. Technically, you can multiply each bit by its place
value and sum all the products together, which might look like this:

0 ∗ 1 + 1 ∗ 2 + 0 ∗ 4 + 1 ∗ 8 + 0 ∗ 16 + 1 ∗ 32 = 0 + 2 + 0 + 8 + 0 + 32 = 42

Figure 12.2 Converting
the decimal number 42 to
binary 00101010 and back
to decimal

270 CHAPTER 12 Introducing z80 assembly
But you can also simply add up the bit values of the places with “1” bits, namely 2 + 8 +
32 = 42.

 In figure 12.2, the binary numbers are all written with 8 bits (digits). In general,
computers, calculators, and all electronic devices store numbers in series of bytes,
each 8 bits long. The largest value that can be stored in a byte is 11111111b, or 255
(the b suffix indicates binary); the smallest is 00000000b, or 0. To store bigger num-
bers, you put several bytes together. Two bytes are 16 bits and can store up to
1111111111111111b = 65535.

BINARY AND HEXADECIMAL

Converting between binary and hexadecimal is similar to converting between binary
and decimal. Hex numbers consist of hex digits, which can be 0–9 and A–F. As men-
tioned in chapter 11, 0 to 9 are 0 to 9, A is 10, B is 11, and up to F is 15. Just as each
binary digit is worth twice as much as the previous digit, and each decimal digit is
worth 10 times the one to its right, each hex digit is worth 16 times as much as the pre-
ceding digit.

 For example, the hexadecimal number $A5 (also written as 0 x A5 or 0A5h) is
A ∗ 16 + 5 ∗ 1 = 10 ∗ 16 + 5 ∗ 1 = 160 + 5 = 165. By the same token, $3F is 3 ∗ 16 + 15 ∗ 1 =
48 + 15 = 63. Finally, $105B is 1 ∗ 16 ^ 3 + 0 ∗ 16 ^ 2 + 5 ∗ 16 ^ 1 + 11 ∗ 16 ^ 0 = 4096 + 0
+ 80 + 11 = 4187. Hex numbers are easy to convert to and from binary and decimal:

■ To convert a hex number to decimal, you can follow the process in the preceding
paragraph, multiplying each digit by its place value.

■ To turn a decimal number into hex, repeatedly divide it by 16. Each remainder
will be one digit of the hexadecimal number; stop when the decimal number is
less than 16. Say you want to convert 500 to hex. First divide by 16, yielding 31
remainder 4: the rightmost digit is thus 4. Divide 31 by 16 again, yielding 1
remainder 15, so the next digit is 15, or F. Finally, 1 is less than 16, so it’s the
final digit: $1F4.

■ Converting hex into binary is easy, because each hex digit is equivalent to exactly
four binary bits. Convert each hex digit 0–F to binary as if it was a single num-
ber by itself, with its binary bits worth 8, 4, 2, and 1 left to right. For example
$195B becomes 0001 1001 0101 1011 = 0001100101011011b.

■ Binary into hex follows the same procedure in reverse. The binary number to be
converted must be a multiple of 4 bits long and is converted 4 bits at a time.

Endian-ness
Your calculator’s z80 CPU can work with 1- and 2-byte numbers and is little-endian.
This means that when you have a 2-byte number in the calculator’s memory, the first
byte is the less significant byte (LSB, with places worth 128 through 1), and the sec-
ond is the more significant byte (MSB, with places worth 32768 through 256). Big-
endian machines store the MSB before the LSB.

271Bases and registers
Each set of 4 bits should be treated as a separate 4-bit binary number and con-
verted to a hex digit. For example, 01101100 would be 0110 1100, or $6C in hex
(because 1100 is 12 is C).

All of these different types of numbers would be more useful to your z80 program-
ming education if you knew where you could store them, which we’ll now discuss.

Z80 REGISTERS

In TI-BASIC, you’re accustomed to storing most of the numbers needed for programs
and games in variables, each named by a letter A–Z or θ. These variables can hold pos-
itive or negative integers and floating-point (decimal) numbers covering a huge range
of values. In z80 ASM, you store values temporarily in registers, small variables inside
the processor itself, as shown in figure 12.1. Values that are used and modified more
occasionally in your program should be stored at named locations in memory areas
called SafeRAM, which we’ll discuss shortly.

 Registers are all either 8 bits or 16 bits and hold integers. They’re usually used to
hold positive integers, 0–255 ($00 to $FF) for 8-bit registers and 0–65535 ($0000 to $FFFF)
for 16-bit registers. Because the processor doesn’t care what you’re storing in registers,
they can also be used to hold flags: each bit of an 8-bit or 16-bit register is one flag
holding 0 or 1, so you can fit 8 or 16 flags per register. The TI-OS uses flags for things
like whether text is drawn normally or inverted and whether or not the Polar graph
mode is set.

Table 12.2 lists most of the registers you’ll be using in your z80 ASM programs. Note
that although you can often use all the registers for general-purpose math, almost all
have special meanings. The most important registers are a and hl. If you want to load
a byte into a fixed memory address, for instance, it has to be in a.

 Although there are 8-bit registers like b and c and 16-bit registers like bc, you can’t
use the three independently. If you modify b, you’re also modifying the highest 8 bits
of bc, and if you modify c, you’re also changing the lowest 8 bits of bc. You can use this
to your advantage, as long as you don’t accidentally think you have more (unique)
registers available to use than you actually do. For example, to check if bc holds

Negative numbers in z80 assembly
You can use registers to hold signed (positive or negative) instead of unsigned (pos-
itive only) numbers. If you make the leftmost bit in an 8-bit or 16-bit number indicate
that the number is negative, you can instead make 8-bit registers hold -128 to 127
and 16-bit registers hold -32768 to 32767, but the difference is purely in how you
make your programs read the registers. The processor has no way of knowing how
you’ve decided to interpret the bits in each register. To convert a negative number to
a positive or a positive number to negative, you invert all the bits to change 1s to 0s
and 0s to 1s with the cpl instruction and then add 1. You could also use the neg
instruction, or you could subtract the number from 0.

272 CHAPTER 12 Introducing z80 assembly
$0000, it’s convenient to check if b contains $00 and c contains $00. The same rules
apply to d/e/de, h/l/hl, and a/f/af.

 There are several more registers that you won’t be using in most cases, including
sp (the stack pointer), pc (the program counter), i (the interrupt register), and r
(the refresh register). I’ve mentioned that values you’re not currently using can be
put in special memory addresses, but you can also use the stack to save them.

12.3.2 The stack: saving registers

The stack is a type of data structure (and an area of memory) used for saving and
restoring registers. It’s also used to track which functions have called which, so that
when a function ends, it can properly return to the code that called it. The stack has
several unique characteristics:

■ It grows from higher memory addresses down into lower addresses. Most stor-
age in memory is from low to high addresses.

■ The stack has two operations: push (onto the stack) and pop (off the stack).
■ You can only push and pop 16-bit registers: af, bc, de, hl, ix, or iy.
■ When a function returns, it should always have performed the same number of

pushes and pops, leaving the stack level where it was when the function started.
■ You should never put more than about 200 items (400 bytes) on the stack.

Figure 12.3 demonstrates the z80’s stack, with three pushes and one pop performed.
Each push pushes the contents of that register onto the “top” of the stack, and pop
always pops off (and removes) the “top” element of the stack.

Table 12.2 8-bit and 16-bit registers in z80 assembly. Note that if you modify a 16-bit register like bc,
you also modify registers b and c, and vice versa.

8-bit register 16-bit register Description

a af The accumulator, a, is the most frequently used 8-bit register for
8-bit math. f is the flags register and can’t be directly modified. af
is generally not used to hold a 16-bit value but can be used to save
and restore a and/or f using the stack.

f

b bc b is used as a loop counter, especially with the djnz instruction. b
and c are also general-purpose 8-bit registers. bc is a general-purpose
16-bit register, also often used for counting.

c

d de d and e are general-purpose 8-bit registers. de is used as the desti-
nation address for copies with ldir as well as general use.e

h hl hl is the 16-bit equivalent of the accumulator, used for most 16-bit
math operations. h and l can be used separately as 8-bit registers.l

ix ix and iy are index registers, used to access various bytes of
memory near a given point. iy should not be modified, because the
TI-OS uses it for its flags. ix may be modified.

iy

273Bases and registers

 next
ry
Notice that the stack only stores the numbers that you push onto it but doesn’t remem-
ber which register that number came from. Therefore, if you push hl and then pop de,
the value pushed onto the stack from hl will end up in de. The stack is often used to
hold the value of intermediate calculations while additional calculations are carried
out, after which the intermediate values can be restored to registers and used in some
final computation. When you pop to a register, keep in mind that its previous value is
wiped out, unsaved.

 If you want to save the contents of a register after a function ends, or without bury-
ing it deep in the stack, you can save it in memory.

12.3.3 Integers in memory: long-term storage
If you need to store integers for longer than they can survive on the stack or in a regis-
ter, given that you have few registers to juggle and that the stack must be restored
before a function can exit, you can use memory. The TI-OS and shells like Doors CS
define several areas called SafeRAM that can be used to hold variables while your pro-
gram is running but that are wiped out when your program ends.

STORING VALUES IN MEMORY FOR THE DURATION OF YOUR PROGRAM

The largest of these SafeRAM areas is AppBackupScreen, also called SafeRAM1, and is
768 bytes long. It can hold one saved LCD image, because a monochrome 96 x 64-pixel
image is 768 bytes, or up to 768 bytes of variables. The following code placed in the
header of a game called Invalid Tangram defines a variety of spots in which to place 1-
and 2-byte variables:

ShotsOnscreen .equ AppBackupScreen ;1 byte
EnemiesOnscreen .equ ShotsOnScreen+1 ;1 byte
CurrentLevel .equ EnemiesOnScreen+1 ;1 byte
TotalScore .equ CurrentLevel+1 ;2 bytes
ShipX .equ TotalScore+2 ;1 byte
ShipY .equ CraftX+1 ;1 byte

Figure 12.3 The z80 stack, going through three pushes and one pop. Each push expands the stack
lower into memory, while pops contract the stack into higher memory. All pushes and pops are 16-bit
values and must be performed on 16-bit registers, namely af, bc, de, hl, ix, or iy.

Comments, everything
from a semicolon (;) to
the end of the line, are
ignored by the assembler

For 1-byte memory variables, the
variable is 1 byte higher in memo

For a 2-byte variable
(TotalScore), the next
variable (ShipX) is 2

bytes higher in memory

274 CHAPTER 12 Introducing z80 assembly
Just as adding labels to your code associates a name with the memory location where
that code will be, the .equ statements in this code name memory addresses inside
AppBackupScreen. When you assemble the program, those names will no longer exist
and will become the numeric addresses that they represent.

 You can use these variable names in your code like this:

ld a,4
ld (ShipX),a
ld hl,9001
ld (TotalScore),hl
;...more code...
ld hl,(TotalScore)
inc hl
ld (TotalScore),hl

As first introduced in the Hello World program, the ld (“load”) instruction works
from right to left, meaning that the first line of this code loads 4 into a, not a into 4.
You must use the accumulator a to load an 8-bit value from a register into memory; if
the value is in another register, you must load that register into the accumulator a
first. You usually use hl to load and store 16-bit values to and from memory, although
you can also use de or ix.

 If you want variables to persist between sequential runs of your program, you need
to use a different technique.

STORING VALUES IN MEMORY BETWEEN PROGRAM RUNS

You can store 8-bit and 16-bit values, and even arrays and strings, inside your pro-
gram’s own memory. This means that when you’re writing the code, you could have
something like this:

SomeStaticString:
 .db "This contains text",0
StorageByte:
 .db 0
StorageWord:
 .dw 0

You can use these named memory locations just like the ones for SafeRAM locations,
but the values will be within your program itself. When your program ends, shells like
Doors CS, Ion, or MirageOS will store the updated program with an operation called
writeback, so that when it’s run once more, StorageByte and StorageWord will con-
tain the same contents that they did after it ran the first time. It’s important to note
that the TI-OS’s Asm(command won’t perform writeback, which means that this tech-
nique won’t work. The special program headers listed on http://dcs.cemetech.net/
?title=ASM_Header will force your programs to only run with, for example, Doors CS
to avoid this problem.

 Now you know the basics of representing numbers and passing them around in
your programs. Let’s discuss the basics of register math.

Load decimal 4 in accumulator a,
then load a into (Ship)

Load 2-byte decimal 9001
into (TotalScore) via hl

Load, increment, and
store TotalScore via hl

Every string ends with a 0 to mark
the end (zero-terminated string)

A word means
2 bytes/16 bits

http://dcs.cemetech.net/?title=ASM_Header
http://dcs.cemetech.net/?title=ASM_Header

275z80 math with registers
12.4 z80 math with registers
Math was relatively easy in TI-BASIC: you used the same sorts of equations you used on
the homescreen for math. You could use operators including +, -, *, and /, you could
group with parentheses, and you could even use exponents, square roots, and func-
tions. z80 assembly is much lower level, so performing math is more challenging. As
you know, you’ll usually be working with integers, although if you choose to pursue
assembly, you’ll find you can also use some of the TI-OS’s tools for floating-point math.
You can only perform one operation at a time, and multiplication and division
instructions don’t exist.

 Let’s first look at basic register math and then explore a few ASM-specific bit tricks.

12.4.1 Register math and flags

Integer math is performed using instructions and registers. Although you can per-
form similar math on both 8-bit bytes in 8-bit registers and 16-bit words in 16-bit regis-
ters, the instructions for each aren’t exactly the same. In this section, you’ll see
addition and subtraction as well as the z80’s flags; next, I’ll talk about multiplication
and division.

ADDITION AND SUBTRACTION

One of the simplest operations you can perform is adding or subtracting 1, also called
incrementing and decrementing. You can inc or dec any 8-bit or 16-bit register
like this:

 inc hl
 dec b
 dec ix
 inc a

If you increment from the maximum value ($FF or $FFFF) or decrement from the min-
imum ($00 or $0000), the registers will loop around to the minimum or maximum,
respectively.

 You can also add or subtract in assembly. Addition or subtraction for 8-bit registers
always must use a as the destination register and one of the operand registers, for
example:

 add a,b
 sub c
 add a,5
 sub 42

Notice that for the 8-bit sub command, the a is implied. If the value you want to add to
or subtract from isn’t in the accumulator, you must use ld command(s) to put it there.
16-bit addition is similar, but instead of a, it’s hl and ix that must be the destination
and one of the operands.

 add hl,de
 add ix,bc

Add a + b and store the result in a Subtract a – c and
store the result in c

You can also add
“immediates,” or numbers......and subtract them too

hl + de → hl
ix + bc → ix

276 CHAPTER 12 Introducing z80 assembly
Also, you can’t add an immediate (number) to hl or ix; you must first load it to a reg-
ister, for example:

 ld de,5004
 add hl,de
 ld bc,-999
 add hl,bc

You can add a negative number to hl to subtract from it, but what if you want to actu-
ally subtract? You can’t just sub from hl; you have to use a different instruction called
subtract with carry, or sbc. An example is sbc hl,de. This subtracts de from hl, as you
might expect, but if the carry flag is set, it will subtract one more. You can set the carry
flag with scf, clear (reset) the carry flag with or a, and change (flip) the carry flag
with ccf. Therefore, this code would properly subtract de from hl:

 or a
 sbc hl,de

But wait, carry flag? Setting and resetting flags? This isn’t something we’ve discussed.

FLAGS: THE F REGISTER

Good point! We haven’t gone over flags before; let’s remedy that. The flags are stored
in 6 of the 8 bits of register f. You can’t directly modify the f register, but most mathe-
matical operations affect 1 or more bits within f, each of which has a special meaning:

■ Sign (S)—Stores the rightmost bit of the result of the last math operation.
Because negative numbers are represented as having this bit set as 1, flag S set
(equal to 1) means that the result of the last math operation could be taken
as negative.

■ Zero (Z)—Set (1) when the last math operation yielded 0. Reset (0) otherwise.
■ Carry (C)—Set (1) if addition caused a register to overflow from large to small num-

bers or if subtraction caused a register to underflow from small to large numbers.
■ Parity/Overflow (P/V)—For some instructions, counts the number of 1 bits in the

accumulator a; an even number of 1 bits sets this flag, and an odd number
resets it. For other instructions, it tracks signed overflow and is set if a math
operation made the highest bit of the destination register change from 0 to 1 or
1 to 0.

These flags are often used to affect the flow of an assembly program and may also be
useful with math and bitmath.

 You have seen addition, subtraction, and flags; speaking of bitmath, let’s look at
what you can do with manipulation of the individual bits in registers and numbers.

12.4.2 Masking and using bits

The low-level characteristics of ASM are a double-edged sword, giving the programmer
a great deal of power with significant additional complexity compared with TI-BASIC.
Nowhere is this exemplified as well as with bitmath. It’s entirely absent from TI-BASIC, and

Set de to 5004, and add to
hl (and store back into hl)

Set bc to -999, or
65536 – 999 = 64537.
Numbers wrap around!

Subtract 999 from hl and store back into hl

You could substitute scf (set carry flag) followed by ccf
(change carry flag). There’s no “clear carry flag” instruction.

277z80 math with registers
if used correctly, it can make many operations in ASM effortless and fast. If ignored,
the operations it’s meant to simplify can be laborious. What can bitmath do?

■ Fast multiplication and division by powers of 2
■ Turn single or groups of bits on or off
■ Flip single or groups of bits between on and off
■ Shift or rotate whole bytes and words

Let’s briefly discuss the instructions for manipulating bits and then see one specific
application, performing multiplication and division.

BIT MANIPULATION OPERATIONS

An abridged listing of the important instructions for bit manipulation is provided in
table 12.3, along with relevant examples.

Bit manipulation can be used for a wide variety of operations, including masking
(setting a group of bits to 0 or 1), packing (putting multiple numbers into the same
byte/word), and working with flags. If you get into assembly programming, you’ll
have a chance to explore the many uses of these instructions, but one in particular
stands out.

MULTIPLICATION AND DIVISION

Recall from our discussion of binary that each place in a binary number is worth twice
as much as the place to its right and half as much as the place to its left. If you move all
the bits in a number one place to the left, you’re making each worth twice as much:
you’ve doubled the number. If you move all the bits one place to the right instead,

Table 12.3 Major groups of instructions for manipulating bits, with examples

Type Instructions Description

Bitwise Boolean
operations

and b
or 5
xor h

Perform the bitwise and/or/xor operation between the accu-
mulator a and a register or number, and put the result in a. Bit-
wise operations individually and/or/xor the corresponding
bits in the two operands.

Changing bits in
registers

set 4,a
res 0,d

Set or reset the Nth bit of an 8-bit register. The rightmost bit is
bit 0, and the leftmost is bit 7.

Changing bits in
memory

set 7,(ix+5)
res 5,(iy-9)
set 1,(hl)

Set or reset the Nth bit of a byte in memory. The address can
be in hl or an offset from the index registers ix and iy.

Shifting registers srl b
sla a
sra e

srl and sla mean “shift right logical” and “shift left arithme-
tic.” Move each bit one place left or right, and put in a 0 at the
end. sra, or “shift right arithmetic,” performs sign extension,
which makes it work like signed division.

Rotating registers rr h / rrc h
rl c / rlc c

Rotate left/right without or with carry. rlc and rrc directly
rotate bytes as groups of 8 bits. rr and rl rotate as groups of
9 bits, with the carry flag forming the 9th bit.

278 CHAPTER 12 Introducing z80 assembly
each is now worth half as much, and you’ve halved the number. Therefore, you can
use srl, sla, and sra to perform multiplication and division by powers of 2.

 Working with numbers and data is great but isn’t particularly useful without pro-
gram flow features like loops, jumps, and functions. Let’s take a high-level look at pro-
gram flow control in z80 assembly.

12.5 Functions and control flow
No real-world programming language would be complete without jumps and loops,
commands that you can use to avoid reinventing the wheel in every program, and
functions (subprograms) to hold code you use frequently. Assembly offers all of these
features, and in this final section you’ll see how each can be used. We’ll begin with
functions and commands.

12.5.1 Using bcalls and ASM functions

When I discussed math and numbers in assembly, you saw instructions such as add,
set, and ld. These instructions correspond directly to operations your calculator’s
CPU performs. Often, you’ll want to repeatedly run a more complex operation in your
code; in TI-BASIC, you might have used a command or made a subprogram for this.
You’ll see the ASM equivalents to both commands and subprograms in this section.

A BCALL REFRESHER

In TI-BASIC, you learned to use commands, things like Disp, Output, ClrDraw,
randInt, and Menu. Each of these commands performed some moderately complex
function, certainly something that the processor couldn’t do with a single simple math
operation like a load or an add. These commands are composed of large chunks of
code inside the TI-OS.

 Your calculator’s OS exposes many similar commands that can be used from within
your assembly programs. Called ROM calls or bcalls, each reads arguments from regis-
ters and/or memory, performs some operation, and may return values back to regis-
ters and/or memory. The following code from the Hello World program runs one
bcall that takes a pointer to a string in the hl register and displays it at the cursor coor-
dinates defined in memory locations currow and curcol, and it runs a second bcall
that takes no arguments but moves the cursor down one row.

 ld hl,HelloWorldMessage
 bcall(_puts)
 bcall(_newline)

You can find a full listing of the available bcalls in a PDF called “TI-83 Plus System
Routines” released by Texas Instruments.

MAKING AND USING FUNCTIONS

Bcalls are a complex sort of function, similar to the subprograms you created in
TI-BASIC. In TI-BASIC, you probably used subprograms sparingly; in assembly, you
should use functions as liberally as possible. You can call functions from other func-
tions with wild abandon; the main caveat is that when a function finally ends, it should

279Functions and control flow
almost always leave the stack as it originally found it, by making sure it pushed and
popped the same number of times. Every function begins with a left-aligned label that
names the function and can include arbitrary instructions, loops, jumps, calls, and
bcalls. To call a function, you use the call instruction; the ret instruction ends a func-
tion and makes it return to whatever function called it.

 You’re still stuck with code that runs exactly the same way every time. For code that
can make choices, you used comparisons and conditions in TI-BASIC.

12.5.2 Conditionals and jumps

In assembly, you still use comparisons and conditionals to control the flow of your pro-
grams. There aren’t even built-in loops; you create your loops with conditionals,
labels, and jumps. You can conditionally do several things in z80 assembly: conditional
jumps, conditional calls, conditional bcalls, and conditional returns. Every condi-
tional instruction runs—or not—based on one of the six flags in the f register. You
must either use a math operation or a comparison operation to set or reset flags in f.
Comparisons must be performed between the accumulator a and some 8-bit register
or number using the cp instruction; a comparison is similar to a subtraction, except
that a isn’t changed. For example, cp 5 when a is 5 will set the z (zero) flag; cp 7 when
a is 5 will set the carry flag, because 5–7 causes an underflow.

 Jumps in z80 assembly are performed with the jr or jp instruction, both of which
operate like Goto in TI-BASIC. Both instructions will jump to a named label; jr takes
up fewer bytes in your program but can only jump a short distance forward and back-
ward. jp takes up an extra byte but can jump anywhere in memory. This code will
compare a to 42 and then jump to MeaningOfLife if a holds 42:

 cp 42
 jr z,MeaningOfLife

Just as you saw For, While, and Repeat loops written in terms of comparisons and
jumps in chapter 4, you compose loops out of comparisons and jumps in z80 assembly.

12.5.3 Loops in z80 assembly

Assembly loops are composed by figuring out the initialization needed, what should
happen in each iteration of the loop, and what condition should make the loop end.
It’s up to you as a programmer to decide whether to have the comparison at the
beginning of the loop, like a While loop, or at the end, like a Repeat loop. The left
side of figure 12.4 shows a Repeat-style loop in z80 assembly.

 One final instruction is great for loops that run a specific number of times, similar
in function to a For loop in TI-BASIC. The djnz instruction, short for “Decrement and
Jump If Not Zero,” takes a label as an argument. Each time it runs, it decrements the b
register and jumps to the specified label if b is not zero. You set b to the number of
times you want the loop to run before the loop, as shown at right in figure 12.4.

 Program flow in z80 assembly can range from simple combinations of calls and
jumps to complex stack manipulation, but once you learn to think like an assembly

280 CHAPTER 12 Introducing z80 assembly
programmer, you’ll likely discover that program flow is at least as intuitive as in
TI-BASIC and perhaps easier.

12.6 Summary
z80 assembly is a topic to which you’d need an entire book to do justice, or at least a
few chapters to build the fluency to create programs like those in figure 12.5. In this
chapter you saw a brief overview of numbers, registers, math, and program flow in
assembly, as well as tools and resources for ASM development. By now you should have
enough insight into the language to pursue more extensive tutorials and references

Figure 12.4 Conditional Repeat/While-style loops in z80 ASM (left) and one type of For-style
loop (right)

Figure 12.5 Four examples of assembly games and programs in action.
Clockwise from top right: “Invalid Tangram” (a puzzle/space shooter),
“Obliterate” (a scorched-earth game), and “Sandpaper” (an FTP client/server) by
the author; “Phantom Star” by Joe Pemberton.

281Summary
and to start writing your own programs. As with TI-BASIC and any other language,
reading others’ code is one of the best ways to deepen your understanding of the
structure and flow of assembly code. If you want to learn more about assembly, visit
the forums listed in appendix A for additional resources.

 In the next and final chapter, we’ll explore where you might want to go from here.
We’ll examine the calculator projects you could attempt in BASIC and ASM and the
hardware projects you might try. I’ll introduce new programming languages that you
might want to take for a spin and platforms that you might enjoy working with.

Now what?
Expanding your

programming horizons
TI-BASIC can be used to create programs and games running the gamut from
extremely simple to surprisingly complex on your calculator. You learned input and
output, program flow and logic, and event loops, graphics, and the use of strings,
matrices, and lists. You proceeded to advanced topics like optimization, programming
hybrid TI-BASIC, and a toe dip into the pool of z80 assembly. From here, you have lim-
itless programming possibilities open to you, from increasingly complex calculator
programs and participation in the larger calculator programming and development
community to computer programming and electronics hardware development.

 This capstone chapter will teach you about the many places you can go from here
with programming and engineering. We’ll begin with a look at how you can continue
the calculator programming journey, from pursuing more TI-BASIC experience
and learning z80 assembly to publishing your programs, sharing your knowledge, and

This chapter covers
■ Going further with calculator programming
■ Exploring programming for computers, mobile

devices, and the internet
■ Working with hardware development

and modification
282

283Taking your calculator programming further
working with other calculators besides the TI-83+/84+. I’ll discuss computer and web
programming, enumerate some of the popular languages currently used for each, and
explain how the programming and problem-solving skills you’ve learned will carry
over to new languages and platforms. You’ll see how you might explore hardware
development, both with your calculator and with popular microcontroller develop-
ment kits like the Arduino.

 Because you’ve spent the last 12 chapters learning to master the programming
capabilities of your TI-83+/84+ graphing calculator, let’s begin with how you can guide
yourself toward further calculator programming knowledge and achievements.

13.1 Taking your calculator programming further
The primary topic of the past 12 chapters has been TI-BASIC programming, starting
with the simplest lessons on input/output and leading up to complex, optimized,
interactive programs and games. You may well consider yourself quite experienced
with TI-BASIC, particularly if you’ve been working independently to write increasingly
complex programs and games of your own with the new lessons of each chapter as you
read along. We also spent a chapter on some of the highlights of hybrid TI-BASIC, and
I told you where you could find additional reference materials on the many functions
that hybrid BASIC offers to your programs. Chapter 12 gave you a solid framework on
which to build an education in z80 assembly, including the importance of hex, binary,
decimal, bits, and flags, and let you window-shop through the types of commands and
program flow used with ASM.

 We’ll start with how you can take your TI-83+/84+ programming further and then
look at other graphing calculator platforms you might choose to investigate.

13.1.1 Continuing with TI-83+/SE and TI-84+/SE programming

I recommend that you continue to aggressively pursue at least one of the programming
languages that we’ve worked through in the preceding chapters. You can continue to
write TI-BASIC programs, discover additional features and tricks you can use, and
expand to more fun and more useful projects. You can play with hybrid TI-BASIC librar-
ies and read up on their features. You can explore the extensive power of z80 assembly,
which comes at the cost of more complexity compared with writing TI-BASIC.

 If you work by yourself, you can certainly find a wealth of good tutorials and
resources to help you along, including those listed in appendix C. If you work with pure
or hybrid TI-BASIC, you have a number of references available to you. If you choose to
pursue z80 assembly, the current leading tutorial is “Learn TI-83 Plus Assembly in 28 Days
v2.0,” available at www.ticalc.org/archives/files/fileinfo/268/26877.html. Written in
2003 and revised in 2004, this comprehensive tutorial covers everything from the sim-
plest assembly instructions to manipulating programs, creating graphics, and working
with the keyboard. Unfortunately, it has several weaknesses, including recommending
an outdated toolchain for assembling (I recommend the DCS SDK, as mentioned in
chapter 12) and few sample programs to assemble and test.

www.ticalc.org/archives/files/fileinfo/268/26877.html

284 CHAPTER 13 Now what? Expanding your programming horizons
GETTING HELP AND SHARING PROJECTS: FORUMS

For writing TI-BASIC, hybrid BASIC, and z80 assembly, most programmers find it more
rewarding to participate in the several vibrant TI graphing calculator programming
community forums. Appendix C lists the top forums, each of which is free to join and
has a staff and membership of friendly, dedicated users. You can ask for help with your
BASIC and ASM programs, show off your latest projects, and discuss the finer points of
programming. Several of the forums also have a large subset of members who have
expanded into web and computer programming and hardware development after
their initial involvement with calculators and would be happy to help you get into
those fields.

 On these forums, you can search for threads that cover subjects you want to learn
more about. If you can’t find what you’re looking for, choose a subforum that closely
matches what you want to discuss, such as TI-BASIC or Your Projects, and start a thread
of your own. Most forums follow common “netiquette,” dictating being respectful,
helpful, and writing with proper spelling and grammar, but be aware that each forum
has its own userbase and set of specific rules.

PUBLISHING YOUR WORK

One of the great things about graphing calculator programming is that programs
spread from calculator to calculator, student to student, and school to school. In addi-
tion, there are large archives of calculator programs online. The most complete
archives are at www.ticalc.org/pub; the end of appendix C lists other archives that you
might want to consider for uploading your programs and finding others’ source code
to learn from. Issues you might want to consider are keeping your programs and
games you publish original, to avoid infringing on companies’ copyrights or trade-
marks, including a readme.txt file that explains how to use your program or game,
and whether you want to release your projects under your real name or a pseudonym.
I, for example, have used the pseudonym “Kerm Martian” for many years to avoid
publishing my real name online.

13.1.2 Programming other graphing calculators

The TI-83+/SE and TI-84+/SE are great calculators to use for math and for program-
ming. They’re easy to use, and everything you need to get started as a TI-BASIC pro-
grammer is built into the calculator. Once you master TI-83+/84+ coding, you may
decide to look at what other alternatives are out there.

 The TI-89 is an older TI calculator but one of the most revered for advanced math-
ematics and engineering, because it can do symbolic algebra, trigonometry, and calcu-
lus. It has since been replaced by the TI-Nspire CX CAS calculator. The two calculators
that directly follow from the TI-83+/84+ in terms of target audience and features are
the Casio Prizm and the TI-Nspire CX, both compared to the TI-84+SE in table 13.1.
The Casio Prizm is the less-expensive option, with a slightly weaker processor but a
bigger screen. The TI-Nspire CX is more expensive but has a faster processor and
more memory.

www.ticalc.org/pub

285Expanding your programming horizons
From a programmer’s perspective, the TI-Nspire CX is more locked down than its
Casio counterpart. The Nspire CX offers a BASIC language that can’t perform the
input and output of TI-83+/84+ BASIC, though it supports the more powerful Lua lan-
guage. You can’t write C, C++, or assembly for the calculator without “jailbreaking” it,
and anyone who wants to use your programs must go through the same jailbreaking
process. The Casio Prizm offers a built-in BASIC language, plus you can write C, C++,
or even SH3/4 assembly for the calculator using community-developed tools. As of
this writing, I recommend the Prizm over the Nspire for programmers, but as the two
lines of calculators develop, the balance may well change. Be sure to research both
and make your own decision if you choose to explore a new model of calculator for
math or for programming.

 Calculators certainly provide far from the only programming opportunity out
there; computers, the internet, and even mobile devices offer many more ways to
stretch your coding expertise.

13.2 Expanding your programming horizons
Hearken back to chapter 1, where you first learned the characteristics of TI-BASIC. In
introducing the fact that it’s an interpreted language, I presented the distinctions

Table 13.1 Other graphing calculators you might explore, the Casio Prizm and the TI-Nspire CX, as
compared to the TI-84+ Silver Edition

TI-84+ SE Casio Prizm TI-Nspire CX

Processor and
speed

6 MHz Zilog z80 58–102 MHz Renesas
SH3/4

132 MHz ARM

Screen 96 x 64 monochrome 396 x 224 full color 320 x 240 full color

RAM 24 KB user/32 KB total 61 KB user/2 MB total 16 MB user/64 MB total

Archive/Flash 163 KB user/512 KB total 16 MB user/32 MB total 20 MB user/100 MB total

Communication 9.6 Kbps serial/mini USB Serial/mini USB Serial/mini USB/
dock connector

Programming
Languages

TI-BASIC, z80 ASM Casio BASIC, C, C++ Lua

286 CHAPTER 13 Now what? Expanding your programming horizons
between interpreted and compiled languages and gave a few examples of each. Lan-
guages like C, C++, Python, Java, and JavaScript were mentioned, languages that are
currently popular for computer programming. The programming and problem-
solving lessons that you’ve learned throughout these chapters can be applied to
almost any programming language you might try to learn, and I encourage you to see if
computer or web programming might be right for you. Calculator programming is
fun for the challenges it provides, especially making powerful, fun, and useful pro-
grams with little memory and processing power and a tiny screen, whereas com-
puter/web programming is rewarding in seeing what you can do with more
capabilities and a wider audience.

 A summary of programming languages you may want to consider is shown in
table 13.2. It’s far from exhaustive; there are hundreds or thousands of languages cur-
rently in use. If you’re particularly interested in one platform, such as computers, the
internet, or mobile devices like smartphones, then your options will be limited by
the platform.

 You’ll find that as you learn more programming languages, each new language is
easier to learn, because at a certain point you’re just learning new syntax to apply to
your existing knowledge about building the structure and flow of programs. Which

Table 13.2 Popular programming languages with their target platforms and significance

Language Platform Description

C Computers One of the most widely used of all modern programming lan-
guages. Similar to TI-BASIC in program flow but with functions
used extensively to run repeated sections of code. Used for
programs and games on almost every operating system.

C++ Computers An object-oriented extension of C. Code and data are often con-
tained in instances of objects, containers that can hold member
functions and data fields. Used for programs and games.

C#
(“C Sharp”)

Computers (mainly
for Windows)

A relative newcomer, a just-in-time (JIT) compiled language,
similar to Java. Easy to create graphical games and GUI pro-
grams, but mostly used for Windows programs.

Java Computers and
mobile devices

Java is object-oriented and is used for a huge range of games
and programs. It can run on computers, smartphones, and
even in web pages as Java applets.

JavaScript Web programming
(client side)

Javascript is used to write dynamic web pages. It runs inside
the user’s browser when a page is loaded.

PHP Web programming
(server side)

PHP is usually used to create web pages, generating HTML
(Hypertext Markup Language, which is not a programming lan-
guage) to construct web pages. It’s often used with a database
program that organizes data, such as MySQL.

Python Computer and web
programming

An interpreted language used to write command-line and
graphical programs and games. Well suited for beginners, with
lots of libraries for many types of programs.

287Working with hardware
language you choose to start with depends on your personal preferences and your
programming goals, such as whether you want to eventually get a programming job,
write programs and games for yourself, or build websites. If you want to get a gen-
eral feel for computer programming without making too much of a commitment to
a language, I recommend Python. The syntax is somewhat familiar for a TI-BASIC
programmer, and all you need is a Python interpreter and an editor like Note-
pad++ to try writing programs. It runs on all major operating systems. Programs are
interpreted and are usually distributed as source code, so it’s easy to learn from
others’ projects.

 Another popular beginner choice is Java, because it not only runs on computers
but can also be executed on many mobiles devices including tablets and phones and
can be embedded in web pages. If you prefer to work at a lower level, and the power
and control of something like z80 assembly appeals to you, then C or C++ might be
more your speed. If your interest lies more in creating interactive web pages or web
applications, you’ll want to learn PHP and Javascript, as well as how to design the look
and feel of web pages with the descriptive “languages” HTML and CSS.

 For many programmers, it’s not enough to make devices do your bidding through
software. Hardware development is a fun and increasingly accessible field to explore if
you have an interest in electrical engineering or are just curious about what makes
gadgets tick.

13.3 Working with hardware
Hardware development describes the broad field of building and programming cir-
cuits, microcontrollers, or embedded devices. Embedded processors and microcon-
trollers are generally slower and lower powered than computers or mobile devices,
and they have the processor, memory, and other circuitry combined into a single inte-
grated circuit. Hardware development often involves building hardware that connects
to one of these microcontrollers or embedded systems and then writing software to
control your hardware.

TI-83+/84+ graphing calculators can be used for hardware development, because
they have a serial port at the bottom that you can control with z80 assembly. Among
the many projects that have used this port are sound and music programs, networking
systems, and attempts to enhance the calculator with more memory. The TI-84+/Silver
Edition’s USB port has been used to connect to USB flash drives and to Bluetooth and
Wi-Fi modules. More ambitious developers have opened the calculator and added
backlights, touchpads, and extra ports and have overclocked the processor.

 Let’s begin with a few hardware projects that could start you on hardware develop-
ment with your calculator, along with a few important warnings, disclaimers, and caveats.

13.3.1 Calculator hardware and modifications

Recall from chapter 1 that your calculator is essentially a full computer. It has a pro-
cessor, long- and short-term memory, and input and output devices. It also has the

288 CHAPTER 13 Now what? Expanding your programming horizons
ability to connect to the outside world using its serial I/O port and on some calcula-
tors a mini-USB port. If you’re careful and respectful of your calculator, you can safely
use it to get started with simple electronics development, communicating with exter-
nal hardware or even modifying your calculator itself.

 Be aware that if you do pursue hardware development, you can damage or destroy
your hardware. With programming, the worst you can do is generally crash your calcu-
lator and be forced to reset it or reload the operating system. When you start connect-
ing hardware or opening the calculator, you risk permanently and irreparably
breaking the device. If you’re not willing to potentially break your calculator if you’re
not careful, you should probably steer clear of using it for hardware development and
instead take a look at some of the microcontroller development options presented in
the next section. You can moderately safely test audio output and networking with
your calculator’s link port, but if you start attaching more complex hardware like
LEDs, circuits, and especially batteries, you risk damaging the device. If you open the
case, you might accidentally damage the mainboard or the delicate cables that con-
nect the screen to the mainboard.

 If you want to test sound output, all you need is a 2.5mm to 3.5mm stereo adapter,
available from some audio or electronics stores. Programs like Piano83, mobileTunes 3,
and QuadPlayer play sound through the link port by oscillating it quickly between 0 and
5 volts, which you can hear through headphones attached to an adapter. Networking
is straightforward with the CALCnet protocol, which requires no extra hardware other
than the link cables that come with the calculator. It can also be used to connect your
calculator to the internet and to other calculators across the internet. With a few tran-
sistors, resistors, and batteries, you can make your calculator turn LEDs on and off.
The right side of figure 13.1 shows testing a circuit that flashes LEDs when link activity
occurs on a CALCnet network.

 Hardware modifications for TI-83+ calculators, which are easier to modify than
TI-84+ calculators, have included overclocking, backlights, case modifications, PS/2
and 3.5mm audio ports, and touchpads. The left and middle of figure 13.1 show an
example of a calculator modified by the author with a PS/2 port, a repainted case, a
backlight, and a touchpad. If you want to attempt modifications of your own, be aware
that the TI-83+ has more space inside to fit additional electronics and a simpler LCD

Figure 13.1 Calculator hardware projects in action. The “Ultimate Calculator 2,” left and center,
with several hardware modifications; experimenting with calculator networking using CALCnet,
at right.

289Working with hardware
mainboard cable, which is somewhat repairable if you have a steady hand and good
soldering skills. You’ll also need a Torx-6 screwdriver to remove six of the seven screws
that secure the case.

 Why bother working with calculators and hardware? It’s a great way to understand
more about what makes your calculator or any piece of computing technology tick,
and as you get into more complex projects, you’ll have to delve further into memory,
registers, busses, synchronization, and the many aspects of building hardware devices.
If you want to get more serious about developing complex devices that don’t rely on a
computer for control, you should consider working with microcontrollers or embed-
ded hardware.

13.3.2 The wonderful world of microcontrollers

A range of easy-to-use kits have been created to introduce beginners to microcon-
trollers and embedded development. Figure 13.2 shows three of the most popular cur-
rent systems, the Arduino, BeagleBone, and Raspberry Pi.

 The Arduino is a simple platform, built around an 8-bit Atmega microcontroller
and shown at left in figure 13.2. It runs at 16 MHz, contains 32 KB of ROM and 2 KB of
RAM, and has a host of digital and analog inputs and outputs to interface with hard-
ware. You can connect LEDs, LCDs, sensors, and extra boards called shields that
add functionality.

 The BeagleBone is a much more powerful device, with a 720 MHz ARM processor,
similar to the CPU in many smartphones. Pictured at center in figure 13.2, it has
256 MB of RAM and uses a 4 GB SD card as a hard drive. It has USB ports, an Ethernet
port, and more than 60 I/O pins to connect to hardware, and it runs a full version of
Linux. But it’s about three times as expensive as the Arduino and is overkill for many
simple projects.

 The Raspberry Pi is somewhere in between the two. It’s closer to the price of the
BeagleBone than the Arduino but runs a 700 MHz ARM processor with 256 MB of
RAM. The final version is the size of a credit card and roughly resembles the prototype
at right in figure 13.2. It has USB, Ethernet, and HDMI ports and also has I/O pins to
connect hardware.

Figure 13.2 Three microcontroller/embedded development platforms. From left,
the Arduino Uno, the BeagleBone, and an early prototype of the Raspberry Pi.

290 CHAPTER 13 Now what? Expanding your programming horizons
WHY WORK WITH EMBEDDED HARDWARE?
With an embedded system like any of the three discussed here, you’re responsible for
constructing peripheral hardware and writing the software to control and interface
with that hardware. Although you have a basic set of software and functions to help
you, you must make most of the hardware and software design decisions that will dic-
tate how the complete system works. Indeed, with a bit of work, you can make any of
the three function like a real computer (or calculator), complete with input devices
and a screen. If you want to test the basics of microcontroller development, I recom-
mend starting with the Arduino. It’s much simpler than the BeagleBone or Rasp-
berry Pi, and the C-like language that you use to write your programs, or “sketches,”
is straightforward.

 You’ve now seen how you can go further with calculator software and hardware
development and with the wider fields of programming and embedded hardware; I’ll
leave you with a few final thoughts.

13.4 Final thoughts
We’ve taken quite a journey together, from the rudimentary basics of graphing calcu-
lator programming up through the complexity of highly optimized programs, using
assembly-powered hybrid libraries, and even experimenting with ASM itself. In this
chapter, we looked at new horizons you can explore from here, including continuing
to program calculators, working with calculators and hardware, and learning with
embedded devices. I hope that it has been as fun and rewarding for you to follow and
learn from as it has been for me to write, and I hope I’ve given you some of my enthu-
siasm for programming. The skills you need to be an effective calculator programmer
can help you become a great programmer of other languages, a better problem solver,
and perhaps even a great engineer.

 I wish you fun and success in continuing to pursue programming calculators and
perhaps programming computers and other devices and working with hardware. I
encourage you to publish programs you create in the community and to seek out fel-
low programmers and developers at the forums listed in appendix C to present your
work and ask for or offer assistance as necessary; perhaps I’ll see you around Ceme-
tech. Good luck!

appendix A
Review: using

your calculator

Your graphing calculator is a powerful piece of computing hardware, able to per-
form many of the functions of a full-sized computer, as discussed in chapter 1. As
you embark on learning to program, in particular to program on a calculator,
you’ll find yourself drawing on many of the skills that you developed as a calculator
user. You’ll need to be able to navigate around the calculator’s menus and be familiar
with storing data in variables. You should have a basic familiarity with how the calcula-
tor does math, including typing in equations for the calculator to solve, its rules for
grouping and order of operations, and the strengths and limitations of the device.

 From the moment you unwrap a new TI-83+ or TI-84+ graphing calculator, you
can use it to make math and science easier and more understandable even without
programming. As befits a calculator, it can do arithmetic, trigonometry, and alge-
bra. It can be used to solve equations and systems of equations. To fulfill the other
half of its name, “graphing,” your calculator can draw rectangular, polar, parametric,
and recursive graphs and even perform numerical calculus on the graphscreen,
including differentiation and integration. You can examine multiple lines graphed at
once, calculate areas and points of intersection, and generate tables of graphed
points. You can perform statistical analysis on collections of numbers and points. You
can use a range of drawing tools to annotate graphs and to draw on the graphscreen.

 In this appendix, I’ll review common calculator skills every beginner programmer
should know, so you’ll have the necessary basic skill set when you begin to read chap-
ter 2. If you feel that you already are proficient with the lessons of this appendix,
you’re more than welcome to jump straight to chapter 2 and begin to learn about the
output and input commands used in programs. If you run across a concept that you
don’t understand, you can flip back to this appendix as a reference section.
291

292 APPENDIX A Review: using your calculator
 I’ll begin by discussing what your calculator is and can do and, equally important,
what it can’t do. I’ll continue with an overview of navigating through your calculator’s
menus and present the function of each of the menus you’ll need as a programmer, to
familiarize you with where to find each of the calculator’s features. I’ll proceed to how
to do math on the calculator and how to use variables that store a single number and
then expand to variables that can store one-dimensional and two-dimensional sets of
numbers as well as sequences of letters. I’ll conclude with a review of using your
graphing calculator to graph equations and the basics of the important skill of moving
programs and files between your calculator and your computer.

 As you start out on your calculator-programming career, you’ll find yourself con-
stantly drawing on your preprogramming calculator skills. One of the most funda-
mental is navigating the calculator’s menus to find commands and features, and thus
this is the first skill that I’ll review.

A.1 Navigation and menus
As you use your calculator, you’ll find that not everything can be accessed from the home-
screen, the main screen your calculator goes to when you turn it on, the screen where you
do math. Many functions and tokens are hidden inside menus, which you access by press-
ing certain keys on the calculator. One such menu you may have encountered before is
the Y= menu, where you enter equations that you can then graph by pressing the
[GRAPH] key. There are numerous menus, exemplified by the six shown in figure A.1.

 Almost every menu in your calculator has either the name of the menu or a set
of tabs in the first row of the screen, followed by items to be selected. In figure A.1,
the Catalog menu has no tabs, just a menu title (CATALOG) and a list of tokens. You
can use the arrow keys to scroll up and down the items and press [ENTER] to select
one of the entries. The Math menu, by contrast, has four tabs: MATH, NUM (Numeri-
cal), CPX (Complex), and PRB (Probability). You can use the left- and right-arrow
keys to switch between the tabs; the currently selected tab is drawn in white text on a
black background.

 The items in a menu may be commands or symbols that when selected will be
pasted into the homescreen, the program editor, the Y= menu, or wherever you were
before you entered that particular menu. They may also be nested menus with their
own options. Whenever you see a menu item that ends in an ellipsis (…, three dots), it
means that that option leads to another menu. In figure A.2, which shows the Link
menu accessed with [2nd][X,T,θ,n], all seven of the onscreen options shown lead to
other menus, because they each end with an ellipsis. In addition, you know that there
are more items to be found if you scroll down, because the last item on the screen
shows a down-arrow symbol instead of a colon between its item number and its name.
Similarly, there are more menu items above, because the first item has an up-arrow
symbol between its number and name.

 To select an item in a menu, you can use the up and down arrows to move the white-
on-black highlight to that item and press [ENTER], or you can directly type the number

293Navigation and menus
or letter at the left margin of the screen next to the item. As mentioned, selecting
most items that don’t lead to additional menus will paste the item shown into the edi-
tor you were using most recently. If you enter a menu from the Y= equation editor,
and you select a token like int from the NUM tab of the Math menu, then int(will
be pasted into whichever equation you’re currently editing. If you select the same
option after entering the Math menu from the program editor, then int(will
instead be pasted at the current cursor location inside that program. If you’re not in
any editor, the command or symbol will end up on the homescreen. If you wish to exit

Figure A.1 Six examples of the many menus of the TI-83+/TI-84+ graphing calculator.
Clockwise from upper right, the Statistics menu, containing three tabs for working with
statistics; the Variables menu; the Catalog menu with a list of all the typeable
commands on your calculator; the Matrix menu with the names of the matrix variables
and a matrix editor; the Math menu; and the Y= menu for entering functions to graph.
Some of these are accessed by pressing a single key ([VARS] or [MATH], for example);
others are accessed with a combination of keys ([2nd][0] to access Catalog, marked
in yellow (TI-83+) or blue (TI-84+) above the [0] key on your real calculator’s keypad).

Figure A.2 The anatomy of any
menu on your TI-83+/84+ (in this
case the Link menu). The left- and
right-arrow keys change tabs, the
up- and down-arrow keys scroll
the menu, and pressing [ENTER]
selects the highlighted option.
The number keys and the letter
key combinations can be used to
select items as well.

294 APPENDIX A Review: using your calculator
a menu without selecting an option, you can press [2nd][MODE] (Quit), or in some
cases [CLEAR].

 As a reference, table A.1 summarizes the TI-83+/TI-84+’s menus, including the key
sequence to access each menu, the tabs within that menu, and for what the different
items in that particular menu can be used.

Table A.1 The major menus of the TI-83+/TI-84+ calculator series and the purpose of each menu.
Some menus have submenus, which are mentioned in the descriptions in the right column.

Menu Access key(s) Function

Y= [Y=] Enter functions to graph.

Stat
Plots

[2nd][Y=] Modify which, if any, statistical plots are displayed on the graph screen.

Window [WINDOW] Change the limits displayed on the graph. In rectangular mode, these are
the X and Y values of the edges of the screen.

TblSet [2nd][WINDOW] Modify the settings for the table feature in [2nd][GRAPH].

Zoom [ZOOM] Zoom in and out, or reset the zoom to one of several presets.

Format [2nd][ZOOM] Change how graphs look, including turning the axes and grid on and off.

Calc [2nd][TRACE] Features that can be calculated from graphed functions, such as minima
and maxima and intersections.

Mode [MODE] Modify settings, such as the graph mode, number of digits of precision in
calculations, Real/Complex mode, Degree/Radian mode, and more. On
the TI-84+/SE, also used for setting the time and date.

Link [2nd][X,T,θ,n] Select variables including programs to send to another calculator, or go
into Receive mode to accept variables from another calculator.

Stat [STAT] Commands to calculate statistics from lists of numbers.

List [2nd][STAT] Shows all the lists on your calculator in the NAMES tab and commands
for manipulating lists in the OPS and MATH tabs.

Math [MATH] The four tabs of the Math menu, MATH, NUM, CPX, and PRB, contain
commands for working with real and complex numbers and for generating
random numbers.

Test [2nd][MATH] Contains two tabs: TEST with the equality-testing symbols (=, ≠, >, <, ≥,
≤) and LOGIC with the Boolean operators (and, or, xor, not).

Apps [APPS] A list of all applications (not programs) on your calculator. Select any of
them to run that app.

Angle [2nd][APPS] Angle entry and conversion commands and symbols.

Prgm [PRGM] If accessed from the program editor, contains three tabs (CTL, I/O, and
EXEC) containing programming commands. From anywhere else, lists pro-
grams to run or edit and allows you to create new programs.

Draw [2nd][PRGM] Three tabs, DRAW, POINTS, and STO, for drawing shapes, points, and pix-
els and for storing and recalling pictures.

295Navigation and menus
You may have used some of the menus previously; we explore many more starting in
chapter 2. Of particular interest for basic math is the Mode menu, found by pressing
the [MODE] key.

A.1.1 Changing modes
Your calculator has a number of modes that govern how it performs math, handles com-
plex numbers, and displays graphs. Almost all such modes are switched from the Mode
menu, accessed by pressing the [MODE] key in the upper-left corner of the keypad.
Figure A.3 shows the Mode menu on a TI-83+/SE (left) and TI-84+/SE (right); notice
that the TI-84+ series also has a space to set the date and time for its internal clock.

 In general, these modes need only be changed if you need to use engineering or
scientific notation, you wish to change whether you calculate trig functions from
angles in radians or degrees, you need to enter a different kind of graph equation, or
you have to work with complex numbers.

 Modifying these modes is not particularly useful if you don’t know how to use your
calculator for general math calculations, so let’s continue with a review of how to per-
form math on your calculator and use different types of data storage.

Vars [VARS] Access most of the string, picture, GDB, and statistics variables in the
VARS tab and the graph equation variables in the Y-VARS tab.

Distr [2nd][VARS] Calculate and draw probabilistic distributions from the DISTR and
DRAW tabs.

Matrix [2nd][x-1] Access the names of the 10 matrices in NAMES, commands to manipu-
late matrices under MATH, and a matrix editor in EDIT.

Mem [2nd][+] View, archive/unarchive, and delete any program, file, or variable on your
calculator. Check the used and available RAM and archive.

Catalog [2nd][0] A nearly complete alphabetic list of the tokens in other menus.

Table A.1 The major menus of the TI-83+/TI-84+ calculator series and the purpose of each menu.
Some menus have submenus, which are mentioned in the descriptions in the right column. (continued)

Menu Access key(s) Function

Figure A.3 The Mode menu for the TI-83+ (left) and TI-84+ (right). The options
control the display of numbers, calculation of angles and trig functions, how
graphs are drawn, how complex numbers are handled, and on the TI-84+ and
TI-84+ SE, the current time and date.

296 APPENDIX A Review: using your calculator
A.2 Simple math, variables, and data types
Your graphing calculator excels at many tasks, particularly, as its name might lead you
to believe, calculating and graphing. In this section, I’ll provide a brief overview on
using your calculator for arithmetic, for simple numbers as well as for one-dimensional
lists of numbers and two-dimensional arrays of numbers. I’ll also review storing num-
bers for later use and a related data storage task, saving and loading sequences of
characters, called strings.

A.2.1 Math, Ans, and numeric variables

Every calculation performed on your calculator involves at least numbers and the
homescreen. The homescreen, the blank area of your calculator with a blinking cur-
sor that first appears when you turn the device on, is used for the majority of calcula-
tions for which you might need your graphing calculator. As you perform calculations,
the equations that you enter accumulate along the left edge of the screen, and the
results from numerical calculations appear along the right edge. If you fill up the screen,
it will scroll to make room for new equations.

EQUATIONS AND KEYS

Other than entering equations and viewing the results of calculations, several useful
key combinations help you use the homescreen:

■ [CLEAR] wipes the homescreen and returns the cursor to the top-left corner.
When you’re typing in a mathematical expression, one tap on [CLEAR] blanks
only the current line, and a second [CLEAR] clears the screen.

■ [2nd][ENTER], or Entry, recalls the last equation that you typed in. You can
press [2nd][ENTER] up to 10 times to move backward through the history of
equations that you typed; only at most 10 entries are saved.

■ If the result of a calculation is a long list or a large matrix, you can use the arrow
keys to scroll around the list or matrix. Once you start entering the next equa-
tion you can no longer scroll around the previous answer.

Expressions that involve simple math, such as 2 + 2, or 3 ∗ (5 -- 2), or 6.13 ∗ π, are all
entered just as you might write them on paper or see written in a math book. Your cal-
culator supports implicit multiplication, which means that 3 (5 -- 2) is interpreted as
3 ∗ (5 – 2) and that 2π is equal to 6.283185…. Your graphing calculator follows the
“PEMDAS” order of operations rules, meaning that in order, it evaluates parenthetical
expressions, exponents, multiplication, division, addition, and subtraction. Take a
look at the left side of figure A.4 for a gotcha when using things like division with
a complex denominator, because the division operator takes precedence over (is eval-
uated before) the addition operator.

 The right side of figure A.4 shows the proper use of implicit multiplication and the dif-
ference between subtraction and negation. The subtraction key, [–], produces the larger
horizontal bar symbol; the negative key, [(-)], produces the smaller, superscripted minus

297Simple math, variables, and data types
sign. If you confuse which is which, either your calculator will produce a syntax error
or you’ll get an incorrect result.

VARIABLES AND ANS

As you perform calculations, you may need to reuse the results of your previous calcu-
lations. You could look upward and type the numbers in again or write them down on
a piece of paper and retype them, but those are both rather inefficient solutions, not
to mention that you could make an error writing and typing the numbers. To save you
from such problems, your calculator has a set of 28 variables that it can use to store
numbers. Each variable is like a named box that you can put a number into; when you
want to use that number, you can just refer to the name of the box. The variables are A
through Z, θ (theta), and Ans. Each can hold a single number, and if you store
another number into it, the first one is lost. You can store the result of a calculation by
adding the [STO>] key’s symbol, →, followed by the variable name to the end of an
equation. The left side of figure A.5 demonstrates storing to the C variable and the M
variable and then using those two variables in an equation.

Figure A.4 The importance of remembering operator precedence (left) and the
proper use of implicit multiplication and the negative symbol (right). At the left
side, PEMDAS precedence means that 6/3 is evaluated first, so 6 / 3 + 3 = 2 +
3 = 5. Using parentheses forces the result to be 6 / 6 = 1. On the right side, the
negative symbol, the [(-)] key, is used to denote a negative number, and the
subtraction key, [–], is used for subtraction.

Figure A.5 Using variables. The left side shows storing the results of two
different calculations in C and M and then using those two variables. The quotient
C/M is 10, so 32 + (C / M) = 42. On the right side, the value of C is stored as
before, but the Ans variable is used instead of M, which in a program is a faster,
space-saving alternative.

298 APPENDIX A Review: using your calculator
Ans is a special variable: the result of every calculation performed is automatically
stored into Ans, even if it’s also stored into another named variable. Conversely, you
can’t explicitly add →Ans to the end of an equation, because this will produce an
error. The right side of figure A.5 shows how you can use Ans instead of the M variable
in the equations shown at the left side of figure A.5. You’ll find that you can use vari-
ables and Ans in exactly the same way in your programs and that each line in your pro-
gram that performs a calculation will set the Ans variable just as calculations on the
homescreen store to Ans.

 Just as variables can store single numbers, there are other data structures called
lists and matrices, which also can be stored in their own special variables.

A.2.2 Working with lists and matrices

In TI-BASIC, sometimes a variable that can hold one number isn’t enough. Consider
tracking your earnings each month of the year for one year. For that, you’d need a
sequence of twelve numbers. You could store them in variables A through L, but it
would be easier to have a single structure or variable of some sort to store them. Such
a variable is called a list, and it can hold between 1 and 999 numbers as a single unit.
The names of six lists are written directly on the calculator’s keypad, L1 through L6,
typed by pressing [2nd][1] through [2nd][6]. You can also create your own lists with
names between one and five characters long, which must be prefaced with the small L
character at the bottom of [2nd][STAT][�]. Lists are typed between curly braces,
with commas separating elements:

{1,2,8}
{-9.3}
{-5,-3,-1,1,3,5}

The rules for math on lists are:

■ Adding, subtracting, multiplying, and dividing lists perform the given opera-
tion on respective elements of two lists, for example, {1,2} + {5,6} = {6,8}.

■ You can perform math on two lists only when they’re the same length.
■ You can perform the same operations between a list and a single number, for

example, 3 ∗ {1,2,3} = {3,6,9} and {10,15,20} / 5 = {2,3,4}.
■ You access individual elements of a list with the name of the list followed by a

number in parentheses. L1(2) is the second element of L1, LMINE(799) is the
799th element of LMINE, and L5(M) is the Mth element of list L5.

When you store a list to a list variable, that list variable holds the list just as with
numeric variables discussed in section A.2.1. Because lists can be of any size between 1
and 999 elements, there’s a command that’s used to get and set the length of lists, dim.
If you type the following two commands,

{5,8,9,100}→L1
dim(L1)

A three-element list A one-element
list A six-element

list

299Simple math, variables, and data types
your calculator will display 4. If you store a number to the dim of a list, you’ll manually
change its size to that number. If the list grows as a result, any new elements will be
filled with zeros; if the list shrinks, elements will be deleted from the end. There are
many additional commands for working with lists in the three tabs of the List menu in
[2nd][STATS].

 A list holds a sequence of numbers; a matrix (sometimes called an array) stores a
two-dimensional set of numbers. The matrix variables are named [A] through [J], and
you’re limited to only those 10 matrices. The matrix names can be accessed from the
NAMES tab of the [2nd][x-1] Matrix menu; typing the three characters “[”, “A”, “]” is
not the [A] matrix (see the “Tokens versus text” sidebar in chapter 2). The MATH tab
of the [2nd][x-1] menu contains functions for working with matrices, and the EDIT
tab lets you directly edit matrices.

 If you’d like to type out a matrix from the homescreen instead of using the matrix
editor, you’d type each successive row as a pair of square brackets enclosing elements
separated by commas and wrap the whole thing in a pair of square braces. A few exam-
ples with their properly drawn equivalents are shown in figure A.6. Matrices can con-
tain up to 99 by 99 elements, and individual elements of a matrix may be extracted or
stored to with the syntax [matrix](row,column), for example:

54→[B](4,2)
[B](4,2)/8

Like lists, matrices work with the dim command, except for matrices the dimension is
a two-element list, {rows,columns}. As with lists, you can use the dim command to
check or change the size of a matrix. Adding and subtracting matrices is performed
element-wise and thus must be performed with two matrices of the same size, but
matrix multiplication and division are performed on full matrices.

 A graphing calculator must excel at calculations, and your trusty TI-83+/SE or
TI-84+/SE graphing calculator certainly does. But it must also be a pro at graphing,
and I’ll now move on to rendering graphs.

Stores to row 4, column 2 of matrix B This will return 7,
since 54 / 8 = 7

Figure A.6 The TI-83+/84+ representation of several matrices, along with their
properly drawn forms. Notice how row and column matrices are represented and that the
elements of rows are grouped together.

300 APPENDIX A Review: using your calculator
A.3 Graphing and the graphscreen
Your calculator can take various kinds of equations, plug in values for the indepen-
dent variable(s), and display the results as one or more graphed lines. In this section,
I’ll remind you of the skills for entering such equations, viewing the graph, and modi-
fying how the resulting graph appears.

 Before you can render a graph, you must first enter the equation(s) that define
that graph. Your calculator can render graphs in four different modes:

■ In Function (Func) mode, you can enter up to 10 equations in the form Y = f(X),
that is, equations that use X as the independent variable and produce values for Y.

■ Parametric (Par) mode lets you specify up to six pairs of equations for X and Y,
parameterized by the variable T.

■ For Polar (Pol) mode, you enter up to six equations for the dependent variable
r (radius) in terms of the angle θ (theta).

■ Sequential (Seq) mode calculates iterative functions, where each value of the
series depends on previous values.

Function mode is by far the most commonly used mode, so it’s on that mode that I’ll
focus. If your calculator isn’t already in Function mode, you can press [MODE] to
choose the current graph mode.

 To enter one or more equations to graph, you first press the [Y=] key at the top of
the keypad. You’ll see several rows of Y= functions. If any of them already has an equa-
tion entered, moving the cursor to that line and pressing [CLEAR] will remove it.
When you enter an equation for one of the Y= functions, the equals sign will turn to
white on black to indicate that that function is enabled, as shown at the left side of fig-
ure A.7. If at some point you want to disable a function without deleting it, move the
cursor over its equals sign and press [ENTER] to toggle the function on and off. Once
you’re satisfied with the equations you’ve entered, press the [GRAPH] key and wait
while the graph is drawn. The right side of figure A.7 shows the graph for the equa-
tions in the same figure, with the calculator’s default graph window.

Figure A.7 Entering equations in the Y= equation editor and viewing the
respective graph. Note the highlighted equal signs that indicate enabled
functions. If you change the line type at the far left of each equation, you can
make that function be drawn in a bolder line or shaded above or below.

301Uploading and downloading programs and files
A.3.1 Zooming and modifying the window

If you’d like to change the window, the X and Y values of the edges of the screen, you
can use the Window menu or the Zoom menu. In the Window menu, you can manu-
ally set the Xmin, Xmax, Ymin, and Ymax values of the screen edges, as well as the
graphing step and the spacing between the ticks on the axes. You can zoom in and out
or reset to the default zoom from the Zoom menu. The Window and Zoom menus are
accessed respectively with the [WINDOW] and [ZOOM] keys directly below the screen;
figure A.8 shows these menus.

 One final set of skills that is important for any calculator user, especially a program-
mer, is the ability to transfer files and programs between your calculator and computer.

A.4 Uploading and downloading programs and files
As a programmer and a calculator user, you’ll find that saving your own programs and
using others’ programs are valuable skills to have. If you want to share your programs
with other people across the internet or even just back them up in case your calculator
crashes, you need a way to transfer them to your computer. Likewise, if you want to try
other programmers’ works or examine the source code of other TI-BASIC programs to
learn from them (which I strongly encourage), you need a way to get programs from
your computer or the internet onto your calculator.

 Like any good computer, your calculator has a way to communicate with the out-
side world. If it is a TI-83, TI-83+, or TI-83+ Silver Edition, the bottom edge of the case
will have a hole slightly smaller than a headphone jack that you can plug a cable into.
If you have a TI-84+ or TI-84+ Silver Edition, the top edge of your calculator will have
that jack as well as a standard mini-USB socket. Figure A.9 shows the respective con-
nection ports of the four different main calculator models I address in this section.

 To transfer files between your calculator and a computer, you need two things: a
cable and software. You need a cable to connect your calculator and your computer;
two types of cables are in wide use. For any of the calculators mentioned in the previ-
ous paragraph, you can use a SilverLink cable. It has a 2.5mm stereo plug at one end
(a smaller version of a headphone plug) and a full-sized USB plug at the other end. As

Figure A.8 Modifying the window used for graphing from the Window menu
(left), and zooming in, out, and to one of several presets from the Zoom
window (right).

302 APPENDIX A Review: using your calculator
the name implies, it is silver, with a silver box halfway along its length. With the intro-
duction of the TI-84+ and TI-84+ Silver Edition, graphing calculators entered the mod-
ern world of USB; both of the TI-84+ calculator models have a mini-USB port at the
top-right edge of the calculator. For those models, you can use any standard mini-USB
cable to connect your calculator to your computer.

 The second thing you need is a piece of software on your computer that lets it talk
to your calculator. Unfortunately, regardless of which cable you use, your computer
can’t automatically talk to your calculator. Unlike Casio’s Prizm graphing calculator,
TI’s calculators can’t appear as a folder, what you might see if you plugged a USB flash
drive into your computer. On Windows and Mac OS, you can use Texas Instruments’
own TI-Connect software. Alternatively, you can use TiLP II, a piece of software written
by the calculator programming community, which works on Linux as well as on Win-
dows and Mac OS. You can get TI-Connect from in the Downloads section of http://
education.ti.com/, or if you’d prefer TiLP, from www.ticalc.org/pub/win/link/.
TI-Connect is the official TI software. If you have problems with it, you can contact
Texas Instruments for help, but it is known among calculator programmers as occa-
sionally having bugs and problems, especially with the direct USB (mini-USB) cable.

A.4.1 Installing and using linking software

Both TI-Connect and TiLP have a fairly simple installation process; both contain docu-
mentation that explains how to install them. Both require installing special drivers
that let your computer understand how to communicate with the cable and/or calcu-
lator, so make sure that you install the software before you plug your calculator cable
into your computer.

 Both TI-Connect and TiLP have a simple two-pane interface to send files between
your calculator and your computer, as shown in figure A.10. With TI-Connect, you use
the TI DeviceExplorer program. If it finds your calculator, it will display the full con-
tents of the device, including programs, pictures, strings, and settings. You can either
drag items out of this window into folders on your computer or drag files into the win-
dow to transfer them to your calculator. If you are instead using TiLP, start TiLP and
select the appropriate cable from the menu that appears; the program will connect to
your calculator. In the two-pane window that appears, you will need to press the
DirList button to get a list of all the files on your calculator, after which you can drag

Figure A.9 The serial (I/O) and/or mini-USB ports at the edges of, from left to right, the
TI-83+, the TI-83+ Silver Edition, the TI-84+, and the TI-84+ Silver Edition

www.ticalc.org/pub/win/link/
http://education.ti.com/
http://education.ti.com/

303Summary
programs from right to left to transfer them to your calculator or left to right to trans-
fer them to your computer. If you have TI-Connect, you can also quickly send a file to
your calculator by right-clicking it in its folder and choosing Send to TI Device.

 Calculator programs and games are generally distributed either as .8xg (group)
files, which contain multiple programs and can also hold pictures, strings, and lists, or
individual programs and other files with .8x* extensions (such as .8xp, .8xl, .8xs, .8xi,
and others). Most programs include a file called a readme that explains which files to
transfer to your calculator and how to use the particular program or game.

 If you have difficulty installing or using TI-Connect or TiLP, I strongly encourage
you to visit this book’s forum or my website’s forum (see appendix C) and post a topic
describing your difficulties.

 You now know how to save your programs to your computer, how to restore them
to your calculator, and how to find and load other programmers’ projects onto your
calculator for testing and examination. You can certainly learn a lot from others’
code, but you can also learn a lot about becoming a better and more efficient pro-
grammer from troubleshooting your own code, a vital skill for any programmer.

A.5 Summary
In this appendix, I reviewed basic calculator skills for the TI-83+/SE and TI-84+/SE
lines of graphing calculators. I discussed navigating menus, doing math, using the
graphing features, and transferring files and programs between your calculator and a
computer. With these skills under your belt, you have most of the background that you
need to be an effective calculator programmer and to use your calculator to learn the
general concepts of programming. Your remaining training will come from using your
calculator in everyday life, perhaps occasionally exploring new features and/or while
learning to program beginning in chapter 2.

Figure A.10 TI-Connect’s TI DeviceExplorer software (left) and the open-source TiLP software (right).
Both are used to transfer files between a computer and a graphing calculator.

appendix B
TI-BASIC

command reference

TI-BASIC comprises many commands for interacting with users, creating graphics,
manipulating program flows, and working with math concepts. Throughout the
first 11 chapters, many commands are discussed; this appendix presents all of these
commands, plus extras, as an easy-to-use tabular reference. Each section references
the chapters where the concepts in that section are first introduced, so that you can
look back for more detail.

 This appendix is organized to mirror the progression of the chapters. Input and
output are first introduced, followed by the control-flow commands. The third sec-
tion focuses on the many TI-BASIC commands to manipulate graphics and func-
tions on the graphscreen. Math and data manipulation commands are presented
fourth, and the appendix concludes with the hybrid BASIC commands.

 Each command is presented with a short description and a sample usage sce-
nario. For some commands, the arguments are shown separately where I feel addi-
tional clarity is necessary. Unless otherwise specified, arguments shown in square
brackets ([and]) are optional and may be omitted. To prevent confusion, opti-
mizations such as omitting closing quotes and parentheses are not performed in
the Usage column. Many commands can be found in their own menus. Most can be
found in the Catalog, [2nd][0]. Variables such as strings and pictures are in the
[VARS] menu.

B.1 Input and output
Most of the commands in table B.1 work only on the homescreen; getKey, Input,
and Pause also work on the graphscreen. Chapters 2 and 6 cover this content.
304

305Conditionals and control flow
B.2 Conditionals and control flow
The conditional and control-flow commands in table B.2 are covered in chapters 3
and 4. The Boolean logic commands in table B.3 are discussed in detail in chapter 3.

Table B.1 Input and output commands

Command Description Usage

ClrHome Clears the homescreen and resets the cursor for Disp to
the top row.

:ClrHome

Disp Displays a number, string, matrix, list, or line of text. If
you separate several items with commas, each will go on
a line of its own. Strings are left-aligned on the LCD; all
other items are right-aligned.

:Disp 32
:Disp "HELLO, SARA"
:Disp 5,L1,[A],"CODE"

getKey Checks if any keys are pressed in a nonblocking manner
(always returns immediately). Returns 0 for no key or one
of the key codes listed in chapter 6 if a key is pressed.
Can detect only one key at a time.

:Repeat K=45
:getKey→K
:End

Input Displays a string and waits for the user to type in a value
to store in a string, variable, matrix, or list. If used on the
graphscreen (with no arguments), will allow the user to
move a cursor, and sets X and Y.

:Input "VALUE:",X
:Input "HOW MANY?",N
:Input M
:Input

Output Displays a number, string, numeric variable, matrix, or list
at a specified row and column on the homescreen. Row
can be 1 to 8; column can be 1 to 16.
Output(row,column,item_to_display)

:Output(4,7,"ROSE")
:Output(8,15,42)
:Output(7,2,Str5)

Pause Stops execution and waits for the user to press [ENTER].
Optionally, can be given a string, number, or variable to
display during the pause. If the item is a long string, list,
or matrix, the user can scroll left, right, up, and down.

:Pause
:Pause 3
:Pause "PRESS ENTER"
:Pause [C]
:Pause LALIST

Prompt Displays the name of a variable, and asks the user to
enter a value for that variable. Works with numeric vari-
ables, strings, lists, and matrices.

:Prompt X
:Prompt Str8
:Prompt [C]
:Prompt L4

Table B.2 Conditional and control-flow commands

Command Description Usage

Else Marks the end of the true block of code and the begin-
ning of the false block of code for an If/Then/
Else/End conditional.

:If X=2:Then
:Disp "X IS 2"
:Else
:Disp "X IS NOT 2"
:End

End Marks the end of a Repeat, While, or For loop or
the end of the false block for an If/Then/Else/
End conditional.

:For(R,-10,10,2)
:Disp R
:End

306 APPENDIX B TI-BASIC command reference
For Loops a fixed number of times, modifying a variable
called the loop variable on each iteration. For loops
end with an End command and can contain zero or
more commands inside the body of the loop.
For(variable,start,end[, step])

:For(X,1,10)
:Disp X
:End
:For(M,3.0,0.5,-0.1)
:N+M→N
:End

Goto Jumps forward or backward to a named label in the
same program and continues executing there. Throws
an error if the label is not found.
Goto label

:Goto NX
:Lbl 1
:...code...
:Goto AA
:Lbl NX
:...code...

If Evaluates a comparison or conditional statement and
determines if it is true or false. If can be used to run
or not run a single line of code or with Then/End or
Else/Then/End, multiple lines of code.

:If X<0
:Disp "NEGATIVE"
:If N=42
:Then
:X+1→X
:3N→N
:End

Lbl Marks a spot in the program to which a Goto can
jump. Execution flows straight through this command if
there is code before it.

:5→M
:Lbl A
:M^4→M
:If M<999999
:Goto A

Menu Draws a menu of one to seven items with a title. Lets
the user use the arrows, number keys, and [ENTER] key
to select an item. Each item in the menu, when
selected, makes the program jump to a named Lbl.
Menu("TITLE","OPTION 1",label_1
[,"OPTION 2",label_2,...]

:Menu("MY GAME 1.0",
➥ "PLAY",P,"HELP",
➥ H,"QUIT",Q1)

prgm When followed by the name of a program, runs that pro-
gram as a subprogram from the current program.

:Disp "RUNNING SUBPRGM"
:prgmSUBPRGM
:Disp "RAN SUBPRGM"

Repeat A loop that continues to execute until the specified
condition becomes true (“repeat until…”). The condi-
tion is checked at the end of each iteration, so the loop
always runs at least once.
Repeat condition

:Repeat K=105
:getKey→K
:End
:Disp "ENTER PRESSED"

Return Exits from the current program to the program that
called it. If it was run from the homescreen or shell,
returns there instead.

:Return

Stop Exits from this program and every program that called
this program, back to the homescreen. If the program
was run by MirageOS, returns to the homescreen; if
from Doors CS, returns to Doors CS.

:Stop

Table B.2 Conditional and control-flow commands (continued)

Command Description Usage

307Working with graphics
B.3 Working with graphics
The TI-BASIC commands to manipulate graphs and graphics on the graphscreen in
table B.4 are introduced in chapters 7 and 8. Pixel-based (Pxl-) commands and Text
are presented in chapter 7, and graphs and the point coordinate system and com-
mands are discussed in chapter 8.

Then Separates an If command with a condition from a
block of two or more statements run only if the If con-
dition is true. The block must end with End.

:If X>3 and X<6
:Then
:ClrHome
:Disp "X IS 4 OR 5?"
:End

While Begins a loop that loops only while the given condition
is true. The condition is checked at the beginning of
each loop, unlike Repeat, so it might be run zero
times.
While condition

:1→X
:While X<999
:2X→X
:End

Table B.3 Boolean logical operators

Command Description Usage

and Returns the logical and of the operands on either side.
Returns true (1) if both operands are nonzero.
Boolean and Boolean

:If 2<3 and 6>5
:Disp "SANITY RETAINED!"

not Returns the logical not of the argument: true (1) if the
argument is false (0), false (0) otherwise.
not(boolean_value)

:If not(X>0)
:Disp "X IS NEG/ZERO"

or Returns the logical or of the operands on either side.
Returns true (1) if either operand is nonzero, false (0)
otherwise.
Boolean or Boolean

:If X<10 or X≥100
:Disp "X DOES NOT HAVE",
➥ "TWO DIGITS"

xor Returns the logical xor of the two operands. This is
true (1) if exactly one operand is false and false (0) if
both are true or both are false.

:If X=0 xor Y=0
:Disp "X OR Y MUST BE",
➥ "0, BUT NOT BOTH"

Table B.4 Graphics commands for manipulating and drawing on the graphscreen

Command Description Usage

AxesOn
AxesOff

Turns the graphscreen axes on or off. :AxesOn
:AxesOff

Circle Draws a circle with center (X,Y) and radius R. Spe-
cial feature: extra argument {i} makes it fast.
Circle(X,Y,R[,{i}])

:Circle(0,0,8)
:Circle(5,-2.4,5.5)
:Circle(0,0,8,{i})

Table B.2 Conditional and control-flow commands (continued)

Command Description Usage

308 APPENDIX B TI-BASIC command reference
ClrDraw Clears the graphscreen and possibly redraws the
axes, grid, and any enabled equations.

:ClrDraw

DispGraph Switches to displaying the graphscreen. :DispGraph

fMin
fMax

Finds the minimum or maximum of a function
within given bounds.
fMin(equation,var,low,high)

:fMax(3sin(X),X,0,1)
:fMin(4cos(T),T,5,5.1)

fnInt Calculates the integral of (area under) a function
between given bounds.
fnInt(equation,var,low,high)

:fnInt(sin(U),U,0,Π)

FnOff
FnOn

Turns one or all graph functions on or off. With a
numeric argument, toggles that equation.

:FnOff
:FnOn 2

Func Sets the graph mode to Function mode. :Func

GridOff
GridOn

Turns the graphscreen grid on or off. :GridOff
:GridOn

Horizontal Draws a horizontal line at the specified Y
coordinate.

:Horizontal 6.5

Line Draws a line from (X1,Y1) to (X2,Y2). Either coordi-
nate can be offscreen. A fifth argument of 0
erases the line instead of drawing it.
Line(X1,Y1,X2,Y2[,0])

:Line(5,5,4,6)
:Line(0,0,4,-2.6,0)

nDeriv Takes the derivative (slope) of a function at a point.
nDeriv(equation,var,X)

:nDeriv(X2,X,5)

Par Sets the graph mode to Parametric mode. :Par

Pol Sets the graph mode to Polar mode. :Pol

Pt-On
Pt-Off

Turns a point (X,Y) on (black) or off (white). Point
may be offscreen.

:Pt-On(6.04,90)
:Pt-Off(3.11,87)

Pt-Change Turn a point (X,Y) from white to black or vice versa. :Pt-Change(B,C)

Pxl-On
Pxl-Off

Turns a pixel at (row, column) on or off. Must be
onscreen.

:Pxl-On(31,47)
:Pxl-Off(62,94)

Pxl-Change Switches a pixel (row, column) between on and off. :Pxl-Change(13,37)

Pxl-Test Returns 1 if a pixel (row, column) is black, 0 if
white.

:If Pxl-Test(4,5)
:Disp "PXL IS ON"

StoreGDB
RecallGDB

Stores or recalls a graph database of current func-
tions and graph settings (axes, grid, window,
zoom, etc).

:StoreGDB 5
:RecallGDB 0

StorePic
RecallPic

Stores or recalls a picture of the graphscreen. :StorePic 9
:RecallPic 1

Table B.4 Graphics commands for manipulating and drawing on the graphscreen (continued)

Command Description Usage

309Number and data type commands
B.4 Number and data type commands
Chapter 9 introduces commands to work with real and complex numbers, strings,
lists, and matrices. Those commands are summarized in this section, grouped by the
type of data they manipulate.

B.4.1 Numbers

Commands to manipulate and generate numbers are presented in table B.5.

Seq Sets the graph mode to Sequential. :Seq

Shade Shades the graphscreen between two functions.
Optionally specifies min and max X.
Shade(low_f,high_f[,min_x,max_x])

:Shade(-10,10)
:Shade(X,X2,1,5)

String�Equ
Equ�String

Converts a string to a Y equation, or back. :String�Equ(Str0,Y1)
:Equ�String(Y4,Str5)

Tangent Draws the line tangent to a curve at a given X.
Tangent(equation,X)

:Tangent(Y1,5.5
:Tangent(X2+4X+1,0.5)

Text Draws a string (or number) at (row,column). Inserts
-1 as the first argument to draw using large font.
Text([-1,]row,column,string[,...])

:Text(6,6,"42=",42)
:Text(-1,5,4,"HELLO")

Vertical Draws a vertical line at the given X-coordinate. :Vertical -5.693

ZStandard Sets the standard window, with Xmin=Ymin=-10
and Xmax=Ymax=10.

:ZStandard

ZSquare Increases the Xmin and Xmax values or the Ymin
and Ymax values to make each pixel represent a
square (not a rectangle).

:ZSquare

Table B.5 Number generation and manipulation commands

Command Description Usage

abs Returns the absolute value of the argument: itself if it
is positive, or its positive version if it is negative.

:If abs(5)=abs(-5)
:Disp "ABS WORKS"

angle Returns the angle of a complex number in the complex
plane, equal to tan-1(imag(X)/real(X)).

:angle(3i+4)→θ

conj Returns the complex conjugate of a complex number,
found by negating the complex part.

:If conj(1+2i)=1-2i
:Disp "CONJ WORKS"

Degree Sets the angle mode to Degree. :Degree

DelVar Deletes a numeric variable, which can also be used to
set a numeric variable to zero.

:DelVar A
:DelVar M

Table B.4 Graphics commands for manipulating and drawing on the graphscreen (continued)

Command Description Usage

310 APPENDIX B TI-BASIC command reference
B.4.2 Strings

The few commands for working with strings are in table B.6.

Fix Fixes the number of decimal places displayed, regard-
less of the precision of the number.

:Fix 0
:Fix 6

Float Sets the number display format to floating-point: the
number of decimal places displayed changes.

:Float

fPart Returns the fractional part of a real number, the part
after the decimal point.

:fPart(52.409)

imag Returns the imaginary part of a complex number. :imag(8.3i-9)

int Rounds down to the nearest integer. :int(-95.2)

iPart Returns the integer part of a number. Works like int
for positive numbers, differently for negative numbers.

:iPart(5.3)

Radian Sets the angle mode to Radian. :Radian

rand Returns a random decimal between 0 and 1. If given
an argument, returns a list of that many numbers. Also
used to seed the random number generator.

:If rand>0.5
:Disp "50-50 CHANCE"
:6.45→rand
:rand(99)

randBin Returns one or a list of binomially distributed numbers
with binomial parameters n and p.
randBin(n,p,[count])

:randBin(4,0.4)
:randBin(8,0.25,5)

randInt Returns one or a list of random integers between and
including two bounds, low and high.
randInt(low,high[,count])

:randInt(5,10)
:randInt(-10,10,40)

randNorm Returns one or a list of normal or Gaussian-distributed
random numbers.
randNorm(mu,sigma[,count])

:randNorm(0.5,1)
:randNorm(0,1.5,6)

real Returns the real part of a complex number. :real(-2+4.1i)

round Rounds up or down. Specifies the number of decimal
places, 0 to round to the nearest integer.
round(value,decimal_places)

:round(5.5,0)
:3.14159→X
:round(X,3)

Table B.6 Manipulating string variables and data

Command Description Usage

expr Evaluates a string as if it was a math equation, and
returns the resulting value.

:expr("3X+2")→B

inString Searches for a substring in a string. Returns the
index of the substring if found, or zero otherwise.
inString(haystack,needle[,start])

:inString("HELLO","LO")
:inString("CATC","C",2)

Table B.5 Number generation and manipulation commands

Command Description Usage

311Number and data type commands
B.4.3 Lists and matrices

Some commands are unique to lists or matrices, but other commands can be used
with both data types. Both classes of commands are presented in table B.7.

length Returns the length of a string, in tokens. :Disp length("HELLO")
:length("NODROFF")→D

sub Returns a substring of a larger string.
sub(string,start,length)

:sub("THRESH",3,3)

Table B.7 Some helpful commands for manipulating lists and matrices

Command Description Usage

dim Gets or sets the size of a list or matrix. Always takes
the name of the list or matrix as an argument. If you
store to it, changes size. If you use it as a value,
returns size. Lists have numeric sizes 1 to 999;
matrices have sizes that are two-element lists format-
ted as {rows, columns}. Matrices can be 1 x 1 up to
99 x 99.

:Disp dim(L5)
:45→dim(LAREA)
:dim(LGROW)+1→dim(LGROW)
:{5,3}→dim([E])
:dim([A])→LMSIZE

Fill Sets every element of a list or matrix to a given real
or complex value.

:Fill(0,LAREA
:Fill(4i-6.2,[G]

min
max

Finds the smallest or largest element of a list. Also
used for optimization tricks with strings of or or and
logic. See chapter 10 for more information.

:If min(LVALS)>0
:max({4,1,9,0})→X

seq Creates a list by plugging values to an equation.
Specifies the equation, variable to plug into, and
start and end values. Optionally, specifies a step, as
with For.
seq(equation,var,start,end[,step])

:seq(4X+3,X,0,8,2)
:seq(9-B,B,-7,7)

SortA
SortD

Sorts a list in ascending or descending order, and
returns the list. Does not modify the original list, so
you must use the store (→) operator.

:SortA(L1)→L1
:SortD(LHS)→LHS

sum Returns the sum of all the elements in a list. If given
optional start and end arguments, calculates the
sum of a portion of the list. If you specify just a start
index, sums to the end of the list.
sum(list[,start_index[,end_index]])

:sum(L3)→B
:Disp sum({A,B,C})
:sum(L5,5,10)→D

rref Reduces a matrix to Reduced Row-Echelon form. This
can be used to solve a system of simultaneous equa-
tions, by putting the coefficients in a matrix and call-
ing rref on the matrix.

:[[5,1,2][1,5,3]]
:Pause rref(Ans)

Table B.6 Manipulating string variables and data (continued)

Command Description Usage

312 APPENDIX B TI-BASIC command reference
B.5 Hybrid BASIC commands
The four commands in table B.8 are used to run hybrid library functions. A number is
supplied as the first argument to each to choose which of the library’s functions will
actually be run. det can be used with a single argument to check which libraries
are present.

Table B.8 Accessing commands from the major hybrid BASIC libraries

Command Description Usage

det If used with a 1 x 1 matrix [[42]], checks for
hybrid libraries. If det([[42]]) is 1337, all libraries
are available. If 0, all except the DCSB Libs are
available. If 42, no libraries are available.
Also used to call Celtic III functions, mostly used
for data, file, and program manipulation.

:If 1337=det([[42]])
:Then
:Disp "NEED HYBRID LIBS"
➥ ,"DCS.CEMETECH.NET"
:Return
:End

:det(20,"C9C9")

identity Runs a function from the PicArc library of hybrid
BASIC commands.

:identity(10,6,2,2,
➥ "INVERTED TEXT")

real Executes a function from xLIB, mostly graphics,
keyboard, and program commands.

:real(12,8,5,5,40,40,1)

sum Runs a DCSB Libs function, which works with
graphical user interface (GUI) elements, among
miscellaneous other features.

:sum(6,47,31)

appendix C
Resource list

Over the past two decades, Texas Instruments and a dedicated, vibrant community
of third-party hackers and programmers have independently built a large variety of
their own tools, tutorials, reference materials, and perhaps most important, pro-
grams and games. From Texas Instruments, you can download OS updates and soft-
ware to connect your calculator to your computer, but the company offers no
programming assistance. The author’s website, Cemetech (“KEH-meh-tek”), pro-
vides program downloads, tutorials, a forum for programming help and project dis-
cussions, an online TI-BASIC editor and TI-83+ emulator, and news about recent
calculator developments. The third major resource is www.ticalc.org, which has the
definitive archive of programs and games for your graphing calculator. This appen-
dix provides links to these three websites and a few other smaller sites with handy
resources, and it lists specific highlights within the various websites that you might
find useful, including tools, program downloads, and tutorials.

 First, I’ll enumerate links to some of the most useful resources if you get stuck
with learning to program or working on a project: discussion forums to talk to
experts.

C.1 Programming and project help and discussions
Although you might work hard to learn the contents of this book and rigorously
apply the debugging and planning lessons in chapter 5, you may find yourself with
a problem you don’t know how to fix. You might also discover that you’re stuck on
a particular command or concept that doesn’t make sense to you, no matter how
many times you stare at it used in programs. When that happens, your best
recourse is to reach out to experts. One of the best things about the graphing cal-
culator programming community is that its members are, on the whole, friendly
and willing to help out new users. My own website, Cemetech, has for over a decade
been helping thousands of users with calculator programming, computer and web
313

www.ticalc.org

314 APPENDIX C Resource list
programming, and DIY hardware and electrical engineering. As far as discussions, a
few areas of the site may be particularly helpful:

■ Discussion subforum specifically for this book, Programming the TI-83 Plus/TI-84
Plus (www.cemetech.net/forum/f/70 or http://cemete.ch/f70)

■ Discussion for TI-BASIC topics (www.cemetech.net/forum/f/19 or http://
cemete.ch/f19)

■ General list of discussion forums (www.cemetech.net/forum)

There are other discussion forums online as well, with varying degrees of experience
and numbers of users. In addition, there are assorted sites that specialize in program-
ming help in different languages. Some of these websites:

■ TI-Planet—French projects and programming help (http://tiplanet.org)
■ TI-Freakware—TI-89/83+/84+ help and tutorials (http://tifreakware.net)
■ Omnimaga—TI-Nspire/83+/84+ programming help (www.omnimaga.org)
■ MaxCoderz—Inactive reference for z80 ASM (www.maxcoderz.org)
■ United-TI—Inactive BASIC and ASM reference, now absorbed by Cemetech

(www.unitedti.org)

The flagship calculator community downloads site, www.ticalc.org, unfortunately does
not have general discussion boards.

 As you begin to program, you may find that you need more resources than just
your calculator. These might include a virtual calculator to test programs or to work
on projects when your calculator is far from you.

C.2 Tools and emulators
Over the two decades that enterprising programmers and hackers have been trying to
make their graphing calculators do more, the community has created a number of
polished tools, from emulators to IDEs (integrated development environments) to
linking software.

 An emulator is a piece of software that lets you run a virtual device on another
device; figure C.1 shows screenshots of several emulators. These emulators let you run
a virtual calculator on your computer (or, for jsTIfied, on anything with a web
browser):

■ jsTIfied—An online emulator written in JavaScript that emulates the TI-83+ and
TI-84+ calculators (www.cemetech.net/projects/jstified)

■ Wabbitemu—An emulator that runs on your computer; also emulates the TI-83+
and TI-84+ calculators (http://wabbit.codeplex.com)

■ PindurTI—A more accurate emulator and has four linked calculators, but you
need to memorize all the keys (http://sgate.emt.bme.hu/patai/pindurti)

To use an emulator you need a ROM image, a copy of your calculator’s OS. Legally, you
must get the ROM image from your own calculator. The best tool for the job is called
ROM8x (www.ticalc.org/pub/dos/rom8x.zip).

www.cemetech.net/forum/f/70
www.cemetech.net/forum/f/19
www.cemetech.net/forum
www.omnimaga.org
www.maxcoderz.org
www.unitedti.org
www.cemetech.net/projects/jstified
www.ticalc.org/pub/dos/rom8x.zip
http://cemete.ch/f70
http://cemete.ch/f19
http://cemete.ch/f19
http://tiplanet.org
http://tifreakware.net
http://wabbit.codeplex.com
http://sgate.emt.bme.hu/patai/pindurti
www.ticalc.org

315Tools and emulators
Just as an emulator lets you use a virtual calculator, an IDE lets you edit TI-BASIC (or
z80 ASM) programs on your computer. For TI-BASIC, two options exist: SourceCoder
and TokenIDE. For z80 ASM, the Doors CS SDK and WabbitCode are both good options.

■ SourceCoder 2.5—An online TI-BASIC IDE, connected to the jsTIfied emulator;
also can turn .8xp into text source code and vice versa and can convert lists, pic-
tures, matrices, and other files (http://sc.cemetech.net)

■ TokenIDE—An offline TI-BASIC IDE; includes a sprite editor (http://cemete
.ch/DL515)

■ Doors CS 7 SDK—A complete z80 ASM assembly toolkit for TI-83+/84+ calcula-
tors; works well with the Notepad++ text editor (http://cemete.ch/DL470)

■ WabbitCode—Part of the Wabbitemu project (http://wabbit.codeplex.com)

If you use an emulator and/or an IDE, you’ll want to transfer programs and files
between your computer and calculator. As a programmer, it’s a good idea to back up
your projects from your calculator, and as a calculator user, you’ll want to try programs
you find online. Two major options for linking software exist:

■ TI-Connect—Texas Instruments’ official software, used to transfer files and take
screenshots (http://education.ti.com/calculators/downloads)

■ TiLP—Community-made linking software that works on Linux, Windows, and
Mac OS (http://lpg.ticalc.org/prj_tilp/)

These are specific excellent tools, but many other tools exist. In addition, there are
tens of thousands of calculator games and programs available for free download,
plans and videos of hardware projects for calculator projects, and tutorials for specific
skills. The next section presents these resources.

Figure C.1 TI-83+/84+ emulators, from left to right, jsTIfied, Wabbitemu, and PindurTI

http://sc.cemetech.net
http://cemete.ch/DL515
http://cemete.ch/DL515
http://cemete.ch/DL470
http://wabbit.codeplex.com
http://education.ti.com/calculators/downloads
http://lpg.ticalc.org/prj_tilp/

316 APPENDIX C Resource list
C.3 Downloads and tutorials
In the heyday of the budding TI graphing calculator community, quite a few program
archives were maintained on different websites. As the community matured, the
archives gradually merged or fell into obsolescence; at present, two main websites
maintain archives, ticalc.org (www.ticalc.org) and Cemetech (www.cemetech.net).
Ticalc.org, the flagship community website, has about 40,000 programs for graphing
calculators; www.ticalc.org/pub/83plus has math and science programs, games,
graphics and sound programs, and more. The Cemetech archives are smaller and
more specialized and can be found at www.cemetech.net/programs.

 Many programs need to be executed with a special program called a shell rather
than directly from the homescreen, because shells add extra functions for programs
to use. Although a shell called MirageOS was at one time the popular choice, it’s now
outdated and doesn’t work properly on many modern calculators. The recommended
shell du jour is Doors CS (currently Doors CS 7, figure C.2), which can be found at
http://dcs.cemetech.net. Its interface uses a mouse, just like most computer operating
systems, and it can run almost every kind of TI-83+/84+ program.

 Besides the TI-Connect software, Texas Instruments’ official website (http://
education.ti.com) also has OS updates and other downloads and documentation. It
has no tutorials; for those you should visit Cemetech, www.ticalc.org, and TI-Freakware’s
collection of TI-BASIC, hybrid BASIC, and z80 ASM tutorials (http://tifreakware.net/
tutorials/).

Figure C.2 Two sample screenshots of the Doors CS 7 desktop, showing
programs and folders

www.ticalc.org
www.cemetech.net
www.ticalc.org/pub/83plus
www.cemetech.net/programs
http://dcs.cemetech.net
http://tifreakware.net/tutorials/
http://tifreakware.net/tutorials/
http://education.ti.com
http://education.ti.com
www.ticalc.org

index
Symbols

→ (store operator) 18, 20
ΔX (delta X) 187
ΔY (delta Y) 187
θ (theta) 102
±, omitting 142, 180, 241

Numerics

16-bit registers, z80
assembly 271, 275

[2nd][ALPHA] 29
[2nd] key 12, 28
3D corridors 203
3D objects 168
4-directional movement. See

four-directional movement
8-bit registers, z80 assembly 271,

275
8-directional movement. See

eight-directional movement
.8x* extensions 303
.8xp program 264

A

abs 95, 211, 213, 230, 309
absolute value 61, 230, 309
accumulator 266–267, 272
addresses, memory 261
[ALPHA] key 12, 28, 173
and 112, 146, 307

compressing multiple
comparisons 238

operator 69

angle 213, 309
mode, detecting 201

animations 40, 216
annotate graphs 193
Ans 102, 145, 232–235, 297–298

and subprograms 234
any data type 235
as a list 235
compressing conditional

statements 234
saving variables with 233
simplifying equations 233

applications 294
AppVars 256
arcade games 222
Archive 7, 256, 295

free 258
Arduino 289

sketches (programs) 290
arguments 52, 86, 127
ARM (processor

architecture) 261, 285, 289
arrays 32, 209
arrow keys 28, 136, 142, 171,

222, 292
keycodes for 144

Asm (TI-BASIC token) 268
ASM. See z80 assembly
aspect ratio 192
assembly

tutorials 281
See also z80 assembly

assertion 93
asynchronous events 136–137,

153, 166
AVERAGE program 28, 96–97

axes 170, 186, 307
turn on 180

AxesOff 170, 307
AxesOn 170, 307

B

background 250
backing up programs 32
backlighting 288
base case 101
bases and registers 268–274
BASIC 8
bcalls 265, 278

arguments to 267
BeagleBone 289
big-endian 270
binary 248, 268

converting to decimal 269
converting to

hexadecimal 270
data 258
suffix (z80 assembly) 270

BinPac8x 264
bitmath 276–277
bits 269, 276

manipulation. See bitmath
black pixels 176
blocking input 140
Boolean

false 241
logic operators 112
true 241
variable 57, 239, 241

Boolean logic 68–74, 307
in z80 assembly 277
317

INDEX318
bounds checking 69, 72, 141,
146, 158, 180, 231

box symbol. See square symbol
Brass 264
BTILE1 program 252
bugs 53

C

C 8, 86, 111, 114, 261, 285–286
C# 261, 286
C++ 8, 114, 261, 285–286
cable, transfer 301
CALCnet 288
calculators

compared to computers 6
naming programs 10
why program on 6
See also graphing calculator

calculus 84
caller/callee 99
canvas (analogy) 169–170
carry flag 276
Cartesian

coordinate system 183, 185
plane 212

case modding 288
Casio Prizm 302

compared to TI-84+ Silver
Edition 284

Catalog 206
Celtic III 244, 312

commands for searching 256
Cemetech 313–314, 316
character, mirroring 64
chat bot 48
check keys 135
CHEESE program 152, 159
cheese, pieces of 151, 153, 160
CHEESE2 program 163
Circle 197–198, 307
circles, drawn quickly 198
circuits 287
city-simulator game 254
CLASSIC 36
[CLEAR] key 155–156
clock 295
ClrDraw 170, 308
ClrHome 32, 45, 112, 122, 155,

305
CLRHOME program 32
code

conditionally executed 59
copying 31

coding and testing 114

coefficients 43, 110, 189, 229,
235

coin flip 215
column 38

pixel 187
point (X-coordinate) 186

commands
multiple on same line 179
pixel-based 176

comparison operators 56–57
comparisons 62, 112, 228

debugging 130
evaluation of 58
examples of 58
of numbers 56
of strings 57
true or false 56

compiled language 8
definition 9

compiled programs
faster than compiled

programs 9
complex conjugate 309
complex numbers 211, 232, 294,

309
plotting 212

COMPRESS program 236
computer

compared to calculator 6
programming 286, 313

concatenation 207
conditional blocks, nesting 63
conditional commands 305
conditional statements 50, 59, 76

dictate what is executed 15
conditionally executed code 59
conditionals 279

explicit. See explicit condition-
als

implicit. See implicit condi-
tionals

removing redundancy 149
reversing 68–69, 73

conditions, compound 68
conj 213, 309
constraints 118, 148, 151
contrast 258
control flow commands 9, 30,

86, 109, 304–305
in z80 assembly 279

control structures 77
controlled repetition 91
convergence 92
conversation 48
CONVO program 48

CONVO2 program 50, 53
coordinates 45–46, 156

offscreen (homescreen) 64, 74
plane 194
row/column ordering 188
system 185, 187

copyright 284
cos 199–200, 233
COUNTASK program 89
COUNTUP program 88
COUNTUP2 program 88
CPU architecture. See processor

architecture
CPU. See processor
credits 84, 110, 114
CSS 287
CTL menu 30
curcol 266–267, 278
currow 266–267, 278
cursor 31–32, 34

row/column (z80
assembly) 266

swiftly flashing 182
CURSOR program 178, 181–

182, 249
CURSORH program 250
custom lists. See named lists
CUSTOMEQ program 190

D

data types, mismatch of 128
date and time, set 295
DCS. See Doors CS
dcs7.inc 265
DCSB Libs 244, 259, 312
debugging 12, 51, 53, 159, 313

ask a friend 131
coding and testing 114
examining variables/code 131
finding exact location 130
identifying bugs 129
resolving bugs 130

decimal 268
converting to binary 269
converting to

hexadecimal 270
DECOMPRESS program 236
decompressing numbers 236
decrement 275, 279
defensive programming 72, 90,

143, 198
defining equations 188
Degree 200–201, 309
[DEL] key 12, 31

INDEX 319
DelVar 240, 309
dependent variables 124
derivative 194
design constraints. See constrants
det 210, 246, 256, 312
detect calculator type 258
diagonal line 47

distortion 192
diagonal movement 145
diagrams 109

converting to code 112
dice 216
dim 210, 298, 311
direct USB 302
discriminant 233
Disp 10, 16, 34, 45, 112, 305

and Output command 38
combine multiple 36
line alignment 35
math within 42
with variables 22

DISP4 program 36
DISPDISP program 36
DispGraph 189, 203, 308
Done 33
Doors CS 105, 173, 316

and SafeRAM 273
and writeback 274
downloading 245
TI-BASIC error codes 127

Doors CS SDK 246, 283, 315
and ASM programs 264

DoorsCS7.8xk 245
double

negative 58
roots 14

DOUBLE program 59
downloading programs 316
DRAWDEMO program 192, 198
drawing commands 194–197

point coordinates 197
drawing text 170
DrawInv 193
DrawSprite 247
DrawTileMap 255
driver program 235
dummy Lbl 114

E

easel (analogy) 169, 203
eight-directional movement 165

with 4 conditionals 146
with 8 conditionals 148
with implicit conditionals 232

electrical engineering 287
ellipsis 292
Else 16, 66, 112–113, 305
embedded development. See

microcontrollers
embedded devices 287
emulators 264, 313–314
End 16, 62, 91, 95, 113, 305

becomes an If/Goto pair 81
loop 86

end of execution 22, 84,
104

enemy “AI” 218
engineering 314

notation 295
[ENTER] key 37
epilog

graphscreen program 191,
193, 216

equality operators 57
equals sign 112

graph enable/disable 300
Equ�String 190, 309
erasing characters 40, 141, 155,

162
on the graphscreen 172

erasing lines 197
ERR:BREAK 51, 137

using getKey 164
ERR:DATA TYPE 190
ERR:DIM MISMATCH 172
ERR:DIVBY0 96, 129
ERR:DOMAIN 64, 143, 157,

159, 194
invalid coordinate 174

ERR:INCREMENT 90
ERR:INVALID DIM 51–52, 172,

208
ERR:MEMORY 79, 202

strings 207
ERR:NONREAL ANS 95, 213
ERR:SYNTAX 51, 61, 143
ERR:UNDEFINED 202
errors

mathematical 130
messages 17, 51
subtle 53
TI-OS 51

escape condition 138
event loops 136–140, 164, 178,

218, 241
accelerating 154
minimizing delay 137
multiple escape

conditions 138

repeated nonevent code 139
simplest form 138
types 138

EVNTLOOP program 139
EXEC menu 30
explicit conditionals 250

converting to implicit
conditionals 228

exponent. See power
expr 128, 207, 310

F

factorial 101
FACTORL program 102
FAKEHOME program 207
false 15, 57
fast circles 198, 307
FIBONACC program 90
Fibonacci numbers 90
files

manipulating 257
Fill 210, 311
Fix 211, 310
fixed-width font 173
flags 93

in z80 assembly 271, 279
toggling 166, 182

Flash memory 257
flashing cursor 182
flexible programming 150
flip a coin 215, 222
FLIPCOIN program 215
Float 211, 310
flow control commands

113
fMax 194, 308
fMin 194, 308
fnInt 128, 194, 308
FnOff 172, 191, 308
FnOn 172, 191, 308
fonts, fixed width 173
For 279, 306
For loop 77, 86

count direction 88
counting with 88
flow diagram of 87
nested 119
pausing with 91
step 87
structure 88
takes arguments 86
when to use 113

Fortran 8
forums 284, 303, 313–314

INDEX320
four-directional movement 142,
158, 171

diagram of keys 143
flow diagram of 142
with implicit conditionals

231
fPart 211, 236, 310
FPS (first-person shooter) 203
free

Archive 258, 295
RAM 258, 295

FRSTANIM program 40
Func 191, 308
functions 15, 278
fuzzy logic 56

G

game programming. See games
games 127, 168

city-simulator 254
number-guessing 18–23
on graphing computers 6
saves 209

Gaussian distribution 214
GDB (Graph Database) 191,

193, 295
getKey 136, 140–151, 218, 305

and nonblocking input 140
checking for multiple

keys 145
full game with 151–164
keycodes 144
limitations 164
no keys pressed 144
quirks of 164

Golden Ratio 90
Goto 77, 113, 306

and memory leaks 79
conditionally executed 81
create infinite loop 78
error message option 49, 52,

128
how it works 87
inside control structure with

End command 79
shortcoming 78
speed of 86

GOTOTIL0 program 79
GPIO 289
graphical user interface. See GUI
graphics commands 307
graphing 307

function 189, 300, 308
parametric 300, 308

polar 192, 300, 308
sequential 192, 300, 309

graphing calculators 283
block diagram 5
hardware modding 287–289
history of 6
specifications 7
vs. nongraphing calculator 6

graphs
annotate 193
creating 189–191
equations 190
from programs 188–194
window 197, 301

graphscreen 189
center of 172, 179
clearing 308
erasing characters on

172
introduction 168–170
large font on 175, 252
preparing and cleaning

170
program politeness 192
size of 169
text on 171
tilemapping on 254
vs. homescreen 169
with/without axes 170

grid 191
GridOff/GridOn 191, 308
grouping parentheses 69, 71,

112, 130, 157
groups 256
GUESS program 18, 42, 59, 61,

76, 80
guessing game 18–23

arguments 20
source and function 18

GUESSLBL program 81, 84
GUESSMNU program 85
GUI 245, 312

H

hardware development
287

Haskell 8
health 203
Hello World 8–13, 22

in z80 assembly 261
help section of a program 84,

110, 114
Hewlett-Packard (HP) 7
hex. See hexadecimal

hexadecimal 248, 258, 268
converting to binary 270
converting to decimal 270
encoding sprites 246, 249

high scores 209
HIWORLD program 10, 268
hiworld.asm program 264, 268
HIWORLD2 program 35
HIWORLD3 program 39
homescreen 4, 32–33, 189

and MathPrint 36
border around 100
centered text on 39, 99
clearing 32, 296
dimensions 32, 38, 168
displaying numbers and

strings 34
entering matrices 299
moving a character

around 140
positioning text on 38
vs. graphscreen 169
z80 assembly coordinates 266

Horizontal 198, 308
HTML 286
hunger bar 151

updating 156
hybrid BASIC 217

commands 312
definition of 244

hypotenuse 116, 234

I

I/O commands 30, 109, 304
ICMVCHAR program 232
icons 250
idea to program

debugging 129
diagram 117, 119
diagram of steps 115
diagram to code 120
diagrams 109–110
diagrams to code 112
interface design 109, 119
iterative improvements 124
optimizing 124
planning 109
pseudocode 109–110, 117, 119
selecting feature set 109

identity 248–249, 312
IDEs 313–314
If 59, 113, 306

conditional 59–62
flow diagram of 60

INDEX 321
If (continued)
construct 112
dealing with sign of

numbers 61
If/Then construct 112
IFABS program 61
IFSIGN program 62, 66–67
IFSIGN2 program 67
IFSIGN3 program 68
If-Then conditional 62–65, 148

flow diagram of 63
If-Then-Else conditional 66–68

flow diagram of 67
imag 213, 310
image. See picture variables
imaginary

axis 213
numbers 14, 212
roots 14
unit i 212

immediate value 276
implicit conditionals 215, 228–

232, 250
compound 232
converting from explicit

conditionals 228
increment 275
independent variables 124
index registers (z80

assembly) 272
indirection 266
inequality operators 57, 112
infinite loop 78, 90, 101
INFLOOP program 78
inner loop 119, 152, 155, 164,

221
INPTSQR program 44
INPTSQR2 program 45
Input 4, 44–47, 49, 112, 136, 305

allows output and input on
same line 45

calculate slope 45
with graph equations 190
with strings 48

input 26
devices 25, 42
inline instructions 44

insert mode 31
inString 208, 256, 310
int 94–95, 158, 211, 310
integer packing. See compressing

numbers
integers 269

check if number is 212
in z80 assembly 263

integrated circuits 287
interface design 108–109
interpreted language 8, 262

definition 9
interpreted programs

slower than compiled
programs 9

interpreter 19, 52
interrupt register 272
interrupts 137
Invalid Tangram 273
Ion 262

and writeback 274
iPart 211, 310
ISPRIME program 93–94, 98,

143
iterations 86–87, 89–91, 95
iterative algorithms 92
iterative solver 93

J

jailbreaking 285
Java 8, 86, 111, 114, 261, 286
Javascript 8, 261, 286
jsTIfied 264, 314
jumps 9, 306

conditional 86
in z80 assembly 278

K

Kerm Martian 284
KEYCODE program 145
keycodes

checking with a program 145
patterns in 144

keypresses 136
as events 137

keys
arrow 142
context-dependent

functions 12
functions 12

L

L (list prefix) 209, 298
label names 77
labels

aligned on the left
margin 266

See also z80 assembly
language

interpreted 262

Lbl 77, 113, 306
and memory leaks 79
control flow through 78
create infinite loop 78
dummy 114
flag analogy 78
shortcoming 78

Lbl/Goto
guessing game solution 80
See also Goto
See also Lbl

LCD 273
ld (load) 266, 274
Learn TI-83 Plus Assembly in 28

Days (tutorial) 283
length 206, 311
libraries 312
LINCOEF1 program 189
Line 187, 197, 203

drawing a polygon 198
erasing 308

link port 288
linking software. See TI-Connect

or TILP
.list 265
listing file 265
lists 209, 232, 294

accessing elements 298
creating 298
displaying 34
input 45
math with 298
per-element size 236
size limits 298
sorting 210, 311

little-endian 270
logic operators 112, 130
logical operators 307

truth tables of 69
loops 9, 20, 77, 80, 86–98, 113,

306–307
converting between Repeat

and While 97
how they work 87
in z80 assembly 272, 278–279
infinite 78, 101
loop body 86
nested 121, 252

lowercase letters
accessing 173
use sparingly 206

LTRNUM program 209
Lua 261

INDEX322
M

main loop. See outer loop
main menu 84, 114
manipulating files 257
map 250

held by matrix 218
larger than homescreen 222

mathematical
errors 130
solver 47

MathPrint 36, 244
matrices 110, 209–210, 232,

295
accessing elements 210
commands 311
displaying 34
editing 299
maximum size 251, 299
multiplication of 299
per-element size 236

MATRXRPG program 217, 219
max 238, 311
Maxcoderz 314
maximum 294, 308
memory

addresses 263
leaks 79, 113

Menu 218, 306
compared to TI-OS menus 82
limitations 82
paired with Lbl

command 113
MENUA1 program 83, 105
MENUA2 program 83, 105
menus 292–295

Apps 245
Catalog 292
custom 82
Draw 170
Format 170
list of 294
LOGIC 70
Math 95, 292
Memory 32, 126, 129
on the graphscreen 230
PRGM command tabs 30
Program 10, 30, 44
Program. See also Program

menu
Window 186, 301
Zoom 301

microcontrollers 287
development 288

min 238, 311

minigames 222
minimum 294, 308
mini-USB cable 245, 301
MirageOS 105, 306, 316

and writeback 274
mirror a character 64
MIRROR2 program 73
missing punctuation 128
mistakes

correcting 30
modes

changing 295
Degree 309
graph 192
Radian 295, 310

modifier keys 164
detecting 144, 165

MODKEYS program 165, 182
Mouse and Cheese game 151–

164, 231
cheese 160–164
code for 152
diagram of 154
ending 158
tweaking 159

mouse cursor 167, 246, 250
drawing 177
fast 258
sprite of 249

MOVE8D1 program 147, 159
MOVE8D2 program 148, 159
MOVECHAR program 141, 232

modification 171
MOVETEXT program 170–171,

177–178
multiple items, displaying 35
music programs 287
mutual exclusion 62

N

named lists 209
nDeriv 194, 308
negation key

vs. subtraction key 61
negative 89

key 296
not subtraction sign 16, 61
numbers (z80 assembly) 271

nested loops 252
two instead of one giant

loop 154
netiquette 284
networking systems 287
nibbles 249

.nolist 265
nonblocking input 140
nonlinear flow 18
nostub programs 264
not 241, 307
not operator 69, 73, 112
Notepad++ 263, 287
not-equals symbol 58
number keys as arrow keys 146
numbers

complex, working with 294
compressing 235–239
compression 212
decompressing 236
imaginary 14, 212
manipulating 211
random, working with 294
real 212
real, working with 294

O

obfuscation 151
obstacles 222
octal 248
offscreen points 194
omitting

closing punctuation 39, 240
± 142, 180, 241

Omnicalc 244
Omnimaga 314
[ON] key 52, 78, 101

missing keycode 144
operating system updates 316
optimizing 36, 304

compressing and/or 238
compressing numbers 235
compressing string

options 237
For loops 88
identifying redundancies

149
implicit conditionals 228–232
loop bounds 100
speed-size tradeoff 242
with Ans 161, 232–235

or 72, 112, 146, 307
compressing multiple

comparisons 238
operator 69

order of operations 53, 71, 296
ordinal suffixes 209
.org 266
outer loop 119, 152, 155, 218,

221

INDEX 323
Output 40, 112, 222, 305
age-related display 50
four ways to use 38
like Disp 38

output 26
devices 25
on the homescreen 34

overclocking 288
OWNEDBY program 100

P

PAINT program 181
Par 191, 308
parametric functions 192
parentheses

grouping 157
matching 127
using logical grouping 71

parity/overflow flag 276
Pause 37, 112, 216, 305
PAUSE2 program 37
PEMDAS. See order of opera-

tions
pencil (drawing style) 180
PHP 114, 261, 286
physics 84
pi 29
PicArc 244, 248, 312
picture variables 202, 295

extra 245
layering 203
permanence 204
size of 202

pictures. See picture variables
PindurTI 264, 314
pixels

black 176
coordinates 169, 176, 185
flashing 180
in sprites 249
inverting 176
manipulating individually 175
numerical values of 176

place values 269
plane 185
platformers 251
point coordinates

drawing commands 197
point to pixel mapping 187
points

offscreen 194
translating to pixel 187

Pol 191, 308
polar coordinates 200

POLYGON program 197, 199,
201

polygons
drawing 198

Pong 109
porting 284
power 43
precision 236
prgm 99, 104, 306
[PRGM] key

function depends on
context 12

prgmMOVETEXT
Text command 173

prime numbers, finding 93
PRMPTPWR program 43
PRMPTSQR program 42, 44
probabilistic commands. See ran-

dom numbers
problem-solving 286
processor 5

architecture 261
program

counter (z80 assembly) 272
deleting 31

program editor 11, 27–31
correcting mistakes 30
finding an error 51
normal mode 12
similar to text editor 28

Program menu 10
tab functions 27

programming
community 284
defensive 72
languages, comparison of

286
tools 314

programs
backing up 32, 301
calling 99
creating new 10, 27
deleting 31
manipulating 245

with xLIB 258
naming 10, 102
pausing 37
publishing 284, 290
renaming 31
running 12
sample TI-BASIC

screenshots 24
saving 28
terminating 104

progress bar 40

prolog, graphscreen
program 191, 193, 196, 216

Prompt 15, 42–44, 112, 136,
305

ask for multiple variables 43
blocking input 43
with graph equations 190

pseudocode 109, 152
explained 110

pseudonyms 284
pseudorandom numbers 215
Pt-Change 195, 308
Pt-Off 195, 308
Pt-On 195, 308
PTSAVER program 195, 213
punctuation, omitting

closing 240
puzzle games 168, 222, 251
Pxl-Change 175, 182, 250, 308

draw/erase sprite 178
Pxl-Off 175, 308
Pxl-On 175, 182, 308
pxl-Test 175, 308
Pythagorean Theorem 54, 234

defined 116
Pythagorean Triplet solver 115,

131
complete code 123
diagram for 116–118
interface design 119
optimizing 124
pseudocode for 117–119
unit testing of 121

Pythagorean Triplets 108
searching for 115

PYTHFAST program 125
Python 8, 111, 114, 261, 286
PYTHPREL program 121
PYTHTRIP program 122–123

Q

QUAD program 14, 59, 95
difficulty entering 17

quadratic equation solver 13–
18, 26, 34, 42, 233

quotation marks 11, 16, 189

R

racing game 204
Radian 200–201, 310
radius

circles 198
of polygons 198

INDEX324
RAM
free 258

rand 213, 215, 219, 237, 310
to create a delay 214

randBin 214, 310
randInt 20, 155, 161, 213, 310
randNorm 214, 310
random movement 159

bounds checking 162
code 161
drawing 162
erasing 162
pseudocode 160
tweak difficulty 164

random numbers 213–217,
294

binomial distribution 214
creating list of 214
Gaussian distribution 214
uniform distribution 214

random seed 215
Raspberry Pi 289
Rcl function 31
readme 246, 284
real 213, 246–247, 310, 312
real axis 213
real command 257
real numbers 211–212, 294,

309
real roots 14
Reals. See variables
RecallGDB 191, 193, 308
RecallPic 202, 308
recursion 99

diagram of 103
driver program 102
subprograms for 101

Reduced Row-Echelon
form 311

refactoring code 124
refresh register 272
registers 266

and bases 268–274
flag register 276
long-term storage 273
math with 275
saving and restoring 272
shifting and rotating 277

remainder, in base
conversion 270

Repeat 4, 20, 218, 279, 306
and event loops 138
becomes a Lbl 81
converting to Goto/Lbl 80
with getKey 139

Repeat loop 77, 86
flow diagram of 96
optimizing variable

initialization 96
termination condition 95
when to use 113

repeating code 86
replace mode 31
Return 16, 105, 306

when to use 113
return values 234
rise over run. See slope of a line
roll a die 216
ROLLDIE program 216
ROM calls. See bcalls
ROM image 314
ROM8x 314
round 187, 211, 310
rounding 94
row 38

pixel 188
point (Y-coordinate) 186

RPG (Role-Playing Game) 217
adding scrolling 252
character classes 237
code for 219
diagram of 218
tweaking/expanding 222

rref 110, 311
run indicator 37, 241

S

SafeRAM 271, 273–274
SAMELINE program 39
sanity-checking 199

built into TI-BASIC 143
scientific notation 295
scope. See variable scope
screensaver 195
seed, random 215
sending programs 294, 301
Seq 191, 309
seq 128, 311
serial port 287
settings section of a

program 114
settings, saving 209
SH3/4 (processor

architecture) 285
SH3/4 assembly 285
Shade 193, 309
shapes 191
shell 152, 244, 306, 316
[SHIFT] key 29

sign flag 276
sign of numbers

and If 61
signals 137
SilverLink 245, 301
sin 29, 170, 199–200, 233
slope of a line 45

calculating 46
SLOPE program 46–47
solver 84
SortA 210, 311
SortD 210, 311
SourceCoder 315
space shooters 250
splashscreens 203
sprites 245–250

with hybrid BASIC 247
spritesheets 247, 251, 255
square root 16, 94, 212
square symbol 152
stack

pointer (z80 assembly) 272
push and pop 272

Stat Plots 172
statistics 294

plots 53
Stop 4, 105, 306

MirageOS crash 106
when to use 113

store (→) operator 18, 20
StoreGDB 191, 193, 308
StorePic 202, 308
string commands 310
String�Equ 190, 309
strings 10, 206–209, 295–296, 310

compressing options into 237
creating 48
executing as code 207
illegal characters 206
in z80 assembly 265, 267
input 45
length 207, 311
name tokens 49
size limit 207
string variables 206

studying code 242
sub 207, 215, 218, 221, 256, 311

compressing string
options 237

subprograms 278
inserting repeated code 99
save space 99
unarchive 257
when to use 113

substrings 207, 216, 311

INDEX 325
subtraction key
vs. negative key 61

sum 246, 258, 311–312
symbols

grouping parentheses 69, 71
not-equals 58

synchronous events 166
syntactical errors 9
SYNTAX error

triggering 52

T

T (transpose) 210, 218
Tangent 193, 309
termination condition 101–102

of Repeat loop 95
of While loop 91

termination. See end of execu-
tion

TESTCMP program 57
TESTRET program 105
TESTSTOP program 105
Texas Instruments 7
Text 171, 201, 216, 230, 241, 309

character size 172
combine with point-based

commands 187
erasing with spaces 174
multiple display items 175
wrapping text 174

text
drawing 170

text editor 166
text input 259
Then 15, 62, 113, 307
Then construct 112
THENEND program 65, 72
THENEND2 program 73
third-party libraries 244
threads 137
TI DeviceExplorer 302
TI-59 6
TI-81 7
TI-83 Plus 7

specifications 7
TI-83 Plus Silver Edition 7

specifications 7
ti83plus.inc 265
TI-84 Plus 7

specifications 7
TI-84 Plus Silver Edition 7

compared to Casio Prizm and
TI-Nspire CX 285

specifications 7

TI-89 284
TI-BASIC

defensively programmed 143
why name stuck 8

TI-BASIC program
no bigger than 24 KB 227

ticalc.org 314, 316
TI-Connect 264, 302, 315–316
TI-Freakware 314, 316
Tilemapping 219, 250–256

screen scrolling 254
TileSize 255
with hybrid BASIC 255
with scrolling 251

TILP 264, 302, 315
time limit 140
TI-Nspire CX

compared to TI-84 Plus Silver
Edition 284

TI-Nspire CX CAS 284
TI-OS errors 51, 115, 127
TI-Planet 314
TokenIDE 315
tokens 11, 28, 52, 206, 293

deleting 31
versus text 29

tracing errors 129
post-mortem 131
with Disp/Pause 131

transfer files 301
triangle, right 116, 234
trigonometric functions 192,

198
troubleshooting. See debugging
true 15, 57
TRUTH program 70
TRYPAUSE program 37
tutorials 283, 316
typing commands 29
typos, fixing 12

U

unarchive 257
unit testing 114–115, 120–121,

127
UnitedTI 314
uppercase letters 241
USB port 287

V

variable scope 104
variables 42, 232

Ans 233

as coefficients 189
as flags 93
choosing 20
conditionally updating 62
consistent use of 130
initializing 91, 94, 153–154
initializing to zero 240
invalid values 129
manually initializing 122
numeric 213
strings 48
z80 ASM equivalent 262

variable-width font 173
vectors 209
Vertical 198, 309
vertices of polygons 198

W

WabbitCode 315
WabbitEmu 264, 314
web programming 286, 314

interactive 287
markup languages 287

While 279, 307
flow diagram of 92
termination condition 91

While loops 77, 86
when best choice 95
when to use 113

white pixels 176
windows

rendering 259
square 195
variables 186, 191

X

X and Y, avoiding 20, 141, 196
X axis 186
X= equations 193
x86 (processor

architecture) 261
xLIB 165, 244, 312

manipulate programs 258
temporary programs 257

Xmax 186
Xmin 186
xor 69, 112, 307
Xscl 187

Y

Y axis 186
Y= equations 188

INDEX326
y-intercept 189
Ymax 186
Ymin 186
Yscl 187

Z

z80 assembly 165, 245, 260–
264

arithmetic operations 275
indirection 266

labels in 265–266, 279
programming tools 263
registers in 272
strings 265, 267
vs. TI-BASIC 262

ZBORDERS program 100–101
ZCURSORA program 177
ZCURSORB program 177–178,

250
zero flag 276
zero termination 267

ZFACT program 102, 104
ZHYPTNS1 program 234
Zilog 261
zoom commands 192
zoom in 294, 301
zoom out 294, 301
ZRETURN program 105
ZSquare 191, 309
ZStandard 190–191, 309
ZSTOP program 105

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read this book
	Typographic conventions and code
	Online resources
	About the author
	About the title
	About the cover

	Part 1—Getting started with programming
	1 Diving into calculator programming
	1.1 Your calculator: the pocket computer you already own
	1.2 Hello World: your first program
	1.2.1 Before you begin: notes on the TI-BASIC language
	1.2.2 Displaying “Hello, World”
	1.2.3 Running the Hello World program

	1.3 Math programming: a quadratic solver
	1.3.1 Building the quadratic solver
	1.3.2 Testing the solver

	1.4 Game programming: a guessing game
	1.4.1 Guessing game source and function
	1.4.2 Lessons of the guessing game

	1.5 Summary

	2 Communication: basic input and output
	2.1 Getting to know the program editor and homescreen
	2.1.1 The program editor: typing source code
	2.1.2 The homescreen: your canvas for input and output

	2.2 Output: displaying text
	2.2.1 Displaying text and numbers on the homescreen
	2.2.2 Positioning text with the Output command

	2.3 Input from users: the Prompt and Input commands
	2.3.1 Prompting for numbers
	2.3.2 Fancier Input for numbers and strings
	2.3.3 Exercise: making conversation

	2.4 Troubleshooting tips
	2.4.1 Easy-to-spot errors: TI-OS error messages
	2.4.2 The subtle errors: why isn’t my program working the way I want?

	2.5 Summary

	3 Conditionals and Boolean logic
	3.1 Introduction to comparisons
	3.2 Conditional statements
	3.2.1 The one-statement conditional: If
	3.2.2 Conditional blocks: Then/End
	3.2.3 Conditionals with alternatives: Else

	3.3 Boolean logic
	3.3.1 Truth of logical operators
	3.3.2 Using logical grouping parentheses
	3.3.3 Applying Boolean logic: bounds checking

	3.4 Summary

	4 Control structures
	4.1 Labels and Goto
	4.1.1 Understanding Lbl and Goto
	4.1.2 Exercise: convert the guessing game to use Lbl/Goto

	4.2 Menus
	4.2.1 Using the Menu command
	4.2.2 Example: add a menu to the guessing game

	4.3 For, While, and Repeat
	4.3.1 Repetition with For loops
	4.3.2 Using While to loop
	4.3.3 The Repeat loop

	4.4 Subprograms and termination
	4.4.1 Putting repeated code in subprograms
	4.4.2 Termination: Return and Stop

	4.5 Summary

	5 Theory interlude: problem solving and debugging
	5.1 Introduction: idea to program
	5.1.1 High-level design: features and interface
	5.1.2 Structuring your code: diagrams to commands
	5.1.3 Testing and debugging

	5.2 Planning a program’s structure
	5.2.1 Idea and details: first steps
	5.2.2 Diagrams and pseudocode

	5.3 Headache-free coding and testing
	5.3.1 Flowchart to code chunks
	5.3.2 Performing unit and full testing
	5.3.3 The final Pythagorean Triplet solver

	5.4 Understanding TI-BASIC errors
	5.5 Tracing malfunctioning code
	5.6 Summary

	Part 2—Becoming a TI-BASIC master
	6 Advanced input and events
	6.1 Event loop concepts
	6.2 getKey
	6.2.1 Using getKey for nonblocking input
	6.2.2 Learning getKey keycodes: the chart and the memorization
	6.2.3 Exercise: eight-directional movement

	6.3 The Mouse and Cheese game
	6.3.1 Writing and running the game
	6.3.2 Understanding the game
	6.3.3 Tweaking the game
	6.3.4 Exercise: going further by moving the cheese

	6.4 getKey odds and ends
	6.4.1 Quirks and limitations of getKey
	6.4.2 What about modifier keys?

	6.5 Summary

	7 Pixels and the graphscreen
	7.1 Introducing the graphscreen
	7.2 Drawing text: first steps on the graphscreen
	7.2.1 Introducing Text: a MOVETEXT program
	7.2.2 The Text command

	7.3 Playing with pixels
	7.3.1 Pixel commands
	7.3.2 Drawing a cursor
	7.3.3 Exercise: the moveable mouse cursor

	7.4 A painting program
	7.5 Summary

	8 Graphs, shapes, and points
	8.1 Another coordinate system: points versus pixels
	8.1.1 Pixel-point coordinate system conversion

	8.2 Graphing from programs
	8.2.1 Creating graphs
	8.2.2 Manipulating graphs and functions
	8.2.3 Other graph tools and tricks

	8.3 Drawing with points
	8.3.1 Example: a point-drawing screensaver

	8.4 Lines and shapes
	8.4.1 The drawing commands
	8.4.2 Using lines to draw polygons
	8.4.3 Extras: Text and the polygon

	8.5 Working with pictures
	8.5.1 What’s a picture?
	8.5.2 Interfaces, optimization, and layering with pictures

	8.6 Summary

	9 Manipulating numbers and data types
	9.1 Using strings
	9.1.1 Defining and manipulating strings
	9.1.2 String sub example: Xth letter of the alphabet

	9.2 Lists and matrices
	9.3 Working with integers and complex numbers
	9.4 Revisiting randomness
	9.4.1 Generating random numbers
	9.4.2 Applying the random number commands

	9.5 Fun with data types: a single-screen RPG
	9.6 Summary

	Part 3—Advanced concepts; what’s next
	10 Optimizing TI-BASIC programs
	10.1 Implicit conditionals
	10.1.1 Converting explicit conditionals to implicit conditionals
	10.1.2 Implicit conditionals for four-directional movement

	10.2 Exploiting Ans
	10.2.1 Ans to save variables and conditionals
	10.2.2 Ans with subprograms

	10.3 Compressing numbers and choices
	10.3.1 Compressing numbers
	10.3.2 Compressing string options
	10.3.3 Compressing or and and

	10.4 Space-saving tips and tricks
	10.4.1 Shortening your programs

	10.5 Summary

	11 Using hybrid TI-BASIC libraries
	11.1 Introducing hybrid TI-BASIC
	11.1.1 Downloading the hybrid libraries
	11.1.2 Calling hybrid functions

	11.2 Working with hybrid sprites
	11.2.1 Defining and drawing sprites
	11.2.2 Sprites as hexadecimal
	11.2.3 The hybrid BASIC mouse: CURSORH

	11.3 Tilemapping and scrolling
	11.3.1 Expanded TI-BASIC tilemapping with scrolling
	11.3.2 Hybrid tilemapping

	11.4 Finding and executing programs
	11.4.1 Finding files
	11.4.2 Running subprograms from Archive

	11.5 Other hybrid tools
	11.5.1 Manipulating files and data
	11.5.2 Hybrid TI-BASIC I/O and GUIs

	11.6 Summary

	12 Introducing z80 assembly
	12.1 What is assembly?
	12.1.1 z80 assembly versus TI-BASIC
	12.1.2 z80 assembly programming tools

	12.2 “Hello, World”
	12.2.1 Running Hello World

	12.3 Bases and registers
	12.3.1 Working with binary, hex, and registers
	12.3.2 The stack: saving registers
	12.3.3 Integers in memory: long-term storage

	12.4 z80 math with registers
	12.4.1 Register math and flags
	12.4.2 Masking and using bits

	12.5 Functions and control flow
	12.5.1 Using bcalls and ASM functions
	12.5.2 Conditionals and jumps
	12.5.3 Loops in z80 assembly

	12.6 Summary

	13 Now what? Expanding your programming horizons
	13.1 Taking your calculator programming further
	13.1.1 Continuing with TI-83+/SE and TI-84+/SE programming
	13.1.2 Programming other graphing calculators

	13.2 Expanding your programming horizons
	13.3 Working with hardware
	13.3.1 Calculator hardware and modifications
	13.3.2 The wonderful world of microcontrollers

	13.4 Final thoughts

	appendix A Review: using your calculator
	A.1 Navigation and menus
	A.1.1 Changing modes

	A.2 Simple math, variables, and data types
	A.2.1 Math, Ans, and numeric variables
	A.2.2 Working with lists and matrices

	A.3 Graphing and the graphscreen
	A.3.1 Zooming and modifying the window

	A.4 Uploading and downloading programs and files
	A.4.1 Installing and using linking software

	A.5 Summary

	appendix B TI-BASIC command reference
	B.1 Input and output
	B.2 Conditionals and control flow
	B.3 Working with graphics
	B.4 Number and data type commands
	B.4.1 Numbers
	B.4.2 Strings
	B.4.3 Lists and matrices

	B.5 Hybrid BASIC commands

	appendix C Resource list
	C.1 Programming and project help and discussions
	C.2 Tools and emulators
	C.3 Downloads and tutorials

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

