Ronald T. Kneuse I

Numbers
and
Computers

Second Edition

N Springer

Numbers and Computers

Ronald T. Kneusel

Numbers and Computers

Second Edition

@ Springer

Ronald T. Kneusel
Broomfield, Colorado, USA

ISBN 978-3-319-50507-7 ISBN 978-3-319-50508-4 (eBook)
DOI 10.1007/978-3-319-50508-4

Library of Congress Control Number: 2016960676

© Springer International Publishing AG 2015, 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my parents, Janet and Tom, for fostering
my love of science.

Preface to the Second Edition

This book is about numbers and how they are represented and manipulated by
computers. In this second edition, we expand on the coverage of the first edition
by adding three new chapters and new material to several sections.

Broomfield, CO, USA Ronald T. Kneusel
November 2016

vii

Preface

This is a book about numbers and how those numbers are represented in and
operated on by computers.

Of course, numbers are fundamental to how computers operate because, in the
end, everything a computer works with is a number. It is crucial that people who
develop a code understand this area because the numerical operations allowed by
computers and the limitations of those operations, especially in the area of floating
point math, affect virtually everything people try to do with computers. This book
aims to help by exploring, in sufficient, but not overwhelming, detail, just what it is
that computers do with numbers.

Who Should Read This Book

This book is for anyone who develops software including software engineers, sci-
entists, computer science students, engineering students, and anyone who programs
for fun.

If you are a software engineer, you should already be familiar with many of the
topics in this book, especially if you have been in the field for any length of time.
Still, I urge you to press on, for perhaps you will find a gem or two which are new
to you.

If you are old enough, you will remember the days of Fortran and mainframes.
If so, like the software engineers above, you are probably also familiar with the
basics of how computers represent and operate on numbers, but, also like the
software engineers above, you will likely find a gem or two of your own. Scientists
in particular should be aware of the limitations and pitfalls associated with using
floating point numbers since few things in science are restricted to integers.

Students need this book because it is essential to know what the computer is
doing under the hood. After all, if you are going to make a career of computers,
why would you not want to know how the machine works?

ix

X Preface
How to Use This Book

This book consists of two main parts. The first deals with standard representations of
integers and floating point numbers, while the second details several other number
representations which are nice to know about and handy from time to time. Either
partis a good place to start, though it is probably best if the parts themselves are read
from start to end. Later, after the book has been read, you can use it as a reference.

There are exercises at the end of each chapter. Most of these are of the
straightforward pencil and paper kind, just to test your understanding, while others
are small programming projects meant to increase your familiarity with the material.
Exercises that are (subjectively) more difficult will be marked with either one or two
stars (* or **) to indicate the level of difficulty.

Example code is in C and/or Python version 2.7 though earlier 2.x versions
should work just as well. Intimate knowledge of these programming languages is
not necessary in order to understand the concepts being discussed. If something
is not easy to see in the code, it will be described in the text. Why C? Because
C is a low-level language, close to the numbers we will be working with, and
because C is the grandfather of most common programming languages in current
use including Python. In general, code will be offset from text and in a monospace
font. For readers not familiar with C and/or Python, there are a plethora of tutorials
on the web and reference books by the bookcase. Two examples, geared toward
people less familiar with programming, are Beginning C by Ivor Horton and Python
Programming Fundamentals by Kent Lee. Both of these texts are available from
Springer in print or e-book format.

At the end of each chapter are references for material presented in the chapter.
Much can be learned by looking at these references. Almost by instinct we tend to
ignore sections like this as we are now programmed to ignore advertisements on
web pages. In this former case, resist temptation; in the latter case, keep calm and
carry on.

Acknowledgments

This book was not written in a vacuum. Here, I want to acknowledge those who
helped make it a reality. First the reviewers, who gave of their time and talent to
give me extremely valuable comments and friendly criticism: Robert Kneusel, M.S.;
Jim Pendleton; Ed Scott, Ph.D.; and Michael Galloy, Ph.D. Gentlemen, thank you.
Second, thank you to Springer, especially my editor, Courtney Clark, for moving
ahead with this book. Lastly, and most importantly, thank you to my wife, Maria,
and our children: David, Peter, Paul, Monica, Joseph, and Francis. Without your
patience and encouragement, none of this would have been written.

Broomfield, CO, USA Ronald T. Kneusel
December 2016 AM+DG

Contents

PartI Standard Representations

1

Number SyStemsuu e 3
1.1 Representing NUMDErSovvviiiiiiiiiiiiiiiiiiiiiieeenns 3
1.2 The Big Three (and One Old Guy)ovvvvviiiiiiiiiiiiiiinnnnnnns 8
1.3 Converting Between Number Bases.............ccceeiiiiinnn 10
1.4 Chapter SUMMATYvvutiretietttettettteeteeeeeeeeeeeeeeeenens 16
EXCICISES ..ttt ettt e et 16
RefEIeNCES. ..o ee et 17
It TS ... 19
2.1 Bits, Nibbles, Bytes, and Words ..., 19
2.2 Unsigned INtEEErSuvuuuriiiiiieeees 21
2.2.1 Representationoovvviiiiiiiiiiiiiiiiiiiiiiiiiiiennnnn. 21
2.2.2 Storage in Memory: Endiannessoooo... 22
2.3 Operations on Unsigned Integerscoovviiiiiiiinininnnnnns 25
2.3.1 Bitwise Logical Operations..................oovvveeeeenn.... 25
2.3.2 Testing, Setting, Clearing, and Toggling Bits............... 30
2.3.3 Shiftsand Rotatescoeeeiiiiiiiiiiiiiiiiiiiieen. 33
2.3.4 COMPATISONS tveeeeeteeetetteeeeeeeeeeeeeeeeeeeeeeeeeaennnnn, 37
235 Arthmeticooouvviiiiiiiiii i 41
2.3.6 SqUare ROOLS ...ovvviiiiiiiiii 52
2.4 What About Negative Integers?ccoeiiiiiiiiiiiiiiinnnnnns 54
2.4.1 Sign-Magnitude ...t 54
242 One’sComplement..........ooovvvviiiiiiiiinnnnnnnnnnnnnnn.. 55
243 Two'sComplementoovviiiiiiiiiiiiiininnnnnnnnn... 55
2.5 Operations on Signed INteZers........covvviiiiiiiiiiiiiiiiiiiennnnns 56
2T B @) 111 13 10) U 56
2.5.2 Arithmeticooueiiiiiiiiiii i 58
2.6 Binary-Coded Decimal.........c.ccvviiiiiiiiiiiiiiiiiiiinnnnnns 67
2.6.1 Introductioncoooiiiiiiiiiiiiiiiieiiiiiiiiieen. 67
2.6.2 ArithmeticwithBCDooooL L, 69

xi

xii

5

Contents

2.6.3 Conversion Routinesccooiiiiiiiiiiiiiiiiiienn. 70

2.6.4 Other BCD Encodingscccovviiiiiiiiiiiiiiieeennn. 73

2.7 Chapter SUMMATYeeteiinntiiteeenie e eaeeeaaaas 76
EXEICISES ...ttt ettt et et 77
REfEIONCES . ..t ettt 79
Floating Point 81
3.1 Floating-Point Numberscccoviiiiiiiiiiiiiiiiiiinninn. 81
3.2 An Exceedingly Brief History of Floating-Point Numbers......... 84
3.3 Comparing Floating-Point Representations..................c.ovvee. 85
3.4 IEEE 754 Floating-Point Representations 89
3.5 Rounding Floating-Point Numbers (IEEE 754)..................... 97
3.6 Comparing Floating-Point Numbers (IEEE 754) 100
3.7 Basic Arithmetic IEEE 754)cooiiiiiiiiii i 102
3.8 Handling Exceptions (IEEE 754) ... 105
3.9 Floating-Point Hardware (IEEE 754)ccooiiiiiiiiiiiinnnnn. 108
3.10 Binary Coded Decimal Floating-Point Numbers 110
311 Chapter SUMMATYvvueeieeiitititeeeeeeeeeeeeeeees 113
EXCICISES ..ttt ettt e et et 114
REfEIeNCES . .. e eeit e 115
Pitfalls of Floating-Point Numbers (and How to Avoid Them) 117
4.1 What Pitfalls?. ... 117
4.2 Some EXPErimentsuuuuuuunniiiiiiiiiiiieiiians 119
4.3 Avoiding the Pitfalls.........ccooiiiiiiiiiiii 130
4.4 Chapter SUMMATY 134
EXGICISES ...ttt ettt et e 135
RefeIeNCeS. ... eeiei e 135

Part I Other Representations

Big Integers and Rational Arithmetic.................................... 139
5.1 WhatisaBigInteger? ... 139
5.2 Representing Big Integersccoooiiiiiiiiiiiiiiiiiiiii 140
5.3 Arithmetic with Big Integerscooiiiiii 146
5.4 Alternative Multiplication and Division Routines 158
5.5 Implementations..........eeeeeeteiiiiiiiiiiiiiiiiiiieiieeieeeeeeeeens 167
5.6 Rational Arithmetic with Big Integers 171
5.7 When to Use Big Integers and Rational Arithmetic 177
5.8 Chapter SUMMATYuuiiiiiiiiiiiiiiiiiiiieeeees 180
EXEICISES ...ttt ettt e e 180
References. .. .oovvnn i 181
Fixed-Point Numbers. ... 183
6.1 Representation (Q NOtation)cevvviiiiiiiiiiiiiiiiiieneeeneenns 183
6.2 Arithmetic with Fixed-Point Numbersooooooiiiii, 188

6.3 Trigonometric and Other Functionsoo.. 194

Contents xiii

10

6.4 AnEmerging Use Casecouviiiiiiiiiiiiiiiiiiiiiiiieenninns 204
6.5 When to Use Fixed-Point Numbersooooiieiiiiiie. 211
6.6 Chapter SUMMATYcoetiiniiiieeeii e e eaias 212
EXEICISES ..ttt ettt e e 212
RETEIONCES . . .t ettt 213
Decimal Floating Point............, 215
7.1 What is Decimal Floating-Point?ccooiiiiiiiiininnnnn. 215
7.2 The IEEE 754-2008 Decimal Floating-Point Format............... 216
7.3 Decimal Floating-Point in Software................cooovviiiiinnn.. 225
7.4 Thoughts on Decimal Floating-Point........................ooo... 232
7.5 Chapter SUMMATYuu e 233
EXCICISES - .vvtetttttttt ettt ettt et 234
REfEIONCES . .. ee it 234
Interval Arithmetic............ ... 235
8.1 Defining Intervals ...ttt 235
8.2 Basic Operationseeviiiiiiiiiieiiiiiiieiieieieeeeeeeeeeeenes 237
8.3 Functions and Intervals ..o 253
8.4 ImplementationS........cvvieeiiiiiiiiiiiiiieeieeiieieeeeeeeeeeeeeeees 258
8.5 Thoughts on Interval Arithmeticoooiiiiiiiiiiininn. 262
8.6 Chapter SUMMATYovvttitiiittiittttteeeeeeeeeeeees 263
EXCICISES - .vvttttettt ettt e e e et 263
REfeIeNCES. ..o ee e 263
Arbitrary Precision Floating-Point 265
9.1 What is Arbitrary Precision Floating-Point? 265
9.2 Representing Arbitrary Precision Floating-Point Numbers 265
9.3 Basic Arithmetic with Arbitrary Precision

Floating-Point NUMDbersccciiiiiiiiiiiiiiiiiiiiiinnnnnns 270
9.4 Comparison and Other Methods..........ccoeviiiiiiiiiiinnnnnn. 273
9.5 Trigonometric and Transcendental Functions....................... 274
9.6 Arbitrary Precision Floating-Point Libraries........................ 278
9.7 Thoughts on Arbitrary Precision Floating-Point.................... 290
9.8 Chapter SUMMATYuuiiiiiiiiiieeeeees 291
EXEICISES - .vtvetttttt ettt e e 291
ReferenCes. ... covii e 292
Other Number Systemscooiiiiiiiiiiiiie e, 293
10.1 INtrodUCtion......ooeuuieiei it 293
10.2 Logarithmic Number Systemcccoiiiiiiiiiiiiiiiiiiieiennns 293
10.3 Double-Base Number Systemcccoviiiiiiiiiiiiiiieeiennns 307
10.4 Residue Number Systemccvviiiiiiiiiiiiiiiiiiiiieeiieeeenens 324
10.5 Redundant Signed-Digit Number System.............ccoevvveen... 332
10.6 Chapter SUMMATYevueeetttttiiitiieeteeeeeeeeeeees 339
EXICISES ..ttt ettt e ettt 340
ReferenCes. .. covii e 341

Part I
Standard Representations

Chapter 1
Number Systems

Abstract Computers use number bases other than the traditional base 10. In this
chapter we take a look at number bases focusing on those most frequently used in
association with computers. We look at how to construct numbers in these bases as
well as how to move numbers between different bases.

1.1 Representing Numbers

The ancient Romans used letters to represent their numbers. These are the “Roman
numerals” which are often taught to children,

I1

Im2

III 3

IV 4 (1 before 5)
V5

X 10

L 50

C 100

D 500

M 1000

By grouping these numbers we can build larger numbers (integers),
MCMXCVIII = 1998

The Romans built their numbers from earlier Egyptian numbers as seen in Fig. 1.1.
Of course, we do not use either of these number systems for serious computation
today for the simple reason that they are hard to work with.

For example, the Egyptians multiplied by successive doubling and adding. So, to
multiply 17 x 18 to get 306 the Egyptians would make a table with two columns.
The first column consists of the powers of two: 2°,21,22,23,2% =1,2,4,8, 16,
etc. and the second column is the first number to be multiplied and its doublings.

© Springer International Publishing AG 2017 3
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-50508-4_1

Fig. 1.1 Egyptian numbers. r_'
The ancient Egyptians wrote r— 1

4 1 Number Systems
numbers by summing units, 1 0
tens, and hundreds. There

were also larger valued ()

symbols which are not 2 ﬂ 2 O
shown. Numbers were written

by grouping symbols until the

sum equaled the desired ()

number. The order in which 3 3 0
together. In this example, the 9

smallest units are written first

when writing from left to

right to represent 224 Illl ﬂﬂ! E)E E): 224
In this case, 17 is the first number in the problem so the second column would be

the symbols were written,
17,34,68,136, 272, etc. where the next number in the sequence is two times the

largest first or smallest first,
did not matter, but common l l

previous number. Therefore, the table would look like this (ignore the starred rows
for the moment),

symbols were grouped

1 17
2 34 %
4 68
8 136
16 272 *

Next, the Egyptians would mark the rows of the table that make the sum of the
entries in the first column equal to the second number to multiply, in this case 18.
These are marked in the table already and we see that 2 + 16 = 18. Lastly, the
final answer is found by summing the entries in the second column for the marked
rows, 34 + 272 = 306.

This technique works for any pair of integers. If one were to ask the opposite
question, what number times 17 gives 306, one would construct the table as before
and then mark rows until the sum of the numbers in the second column is 306.
The answer, then, is to sum the corresponding numbers in the first column to get
18. Hence, division was accomplished by the same trick. In the end, since we have
algebra at our disposal, we can see that what the Egyptians were really doing was
applying the distributive property of multiplication over addition,

17(18) = 17(2 + 16) = 34 4 272 = 306

1.1 Representing Numbers 5

But, still, this is a lot of effort. Fortunately, there is another way to represent
numbers: place notation (or, more formally, place-value notation). In place notation,
each digit represents the number of times that power of the base is present
in the number with the powers increasing by one for each digit position we move to
the left. Negative powers of the base are used to represent fractions less than one.
The digit values we typically use range from 0 to 9 with 10 as the base. Here we
write 10 to mean 1 x 10" 4 0 x 10° thereby expressing the base of our numbers in
the place notation using that base. Naturally, this fact is true regardless of the base,
so 105 is the base B for all B > 1. Computers do use base 10 numbers but not very
often though we will see a few examples of this later in the book.

In general, if the base of a number system is B then numbers in that base are
written with digits which run from O to B — 1. These digits, in turn, count how many
instances of the base raised to some integer power are present in the number. Lots
of words, but an equation may clarify,

abcdg =axB +bxB*+cxB' +dxB°

for digits a, b, ¢, and d. Notice how the exponent of the base is counting down. This
counting continues after zero to negative exponents which are just fractions,

B =
Bl‘l

So, we can introduce a “decimal point” to represent fractions of the base. Formally,

this is known as the radix point and is the character which separates the integer part

of a number in a particular base from the fractional part. In this book, we will use

the “.” (period) character and indicate the base of the number with a subscript after

the number,

abed.efgy =axB +bxB +cxB'+dxB +exB ' +fxB?+gxB

for additional digits e, f, g and base B. If no explicit base is given, assume the base
is 10.

Before moving on to modern number systems let’s take a quick look at two
ancient number systems that used place notation. The first is the Babylonian number
system which used base 60 (sexagesimal) but constructed its digits by grouping sets
of symbols representing ones and tens. The second is the Mayan number system
which used base 20 and constructed digits by combining dots for one and bars for
five.

Figure 1.2 illustrates Babylonian numbers and performs some simple additions
with them. One interesting thing to note is that the ancient Babylonians did not
have a symbol for zero or the radix point. Instead, they used spaces and context
from the text of the document to imply where the radix point should be inserted.
Figure 1.2b shows examples of decimal numbers written in base 60 and as the
Babylonians would have written them. Since it is difficult to work with the actual

6 1 Number Systems

AN

10
70 =110 =T «

140 =220 =1T «
30 «“ | 4934 = 20,34

it

e 4
50 = 3.14159
¥ = 3: 8, 29. 44

M ¥« 4F

~N~N OO o0 B~ W DN -
« H €| = H H A
AN
o
R
;‘E
|

©
H
1l

(a) (c)

Fig. 1.2 (a) Sexagesimal numbers in ancient Babylon used groups of symbols for one and ten
to be the digits of their base 60 numbers as opposed to our use of ten different symbols for our
digits. (b) Decimal numbers written in sexagesimal. The left column is the decimal number, the
middle column is the equivalent base 60 number using decimal digits and *,” to separate the digits.
The right column shows the Babylonian number which matches directly with the middle column
representation. (¢) The Babylonians were able to write numbers with fractional parts by using a
space to separate it from the integer part. Here we show a three place representation of

notation, scholars use a shorthand which combines our decimal notation with base
60. In this notation, a number is written with “,” (comma) separating the digits and,

[T

if necessary, a ““;” (semicolon) to serve as the radix point. For example,
123419 = 20 x 60" + 34 x 60° = 20,34
or

3.14159 = 3 x 60° + 8 x 60! + 29 x 6072 + 44 x 60>
= 3;8,29,44

The fact that the ancient Babylonians had a place notation is all the more
impressive given that they wrote and performed their calculations on clay tablets
which were allowed to dry in the sun. This is a good thing as it preserved
thousands of tablets for us to investigate today. Figure 1.3 is a particularly important
mathematical tablet. This tablet shows a square with its diagonals marked. The side
of the square is marked as 30 which is interpreted to be % There are two numbers

1.1 Representing Numbers 7

Fig. 1.3 YBC 7289 showing
the calculation of the
diagonal of a square with a
side of length % Note that
this calculation makes use of
a particularly good value for
V2. Image copyright Bill
Casselman and is used with
permission, see http://www.
math.ubc.ca/~cass/Euclid/
ybc/ybe.html. The original
tablet is in the Yale
Babylonian Collection

written by one of the diagonals. The firstis 1, 24, 51, 10 and the one below it
is 42, 25, 35.The length of the diagonal of a square is +/2 times the length of
the side. If we multiply 30 by 1, 24, 51, 10wedoget42, 25, 35.This
means that the Babylonians used 1, 24, 51, 10 as an approximation to V2.
How good was this approximation? Squaring 1, 24, 51, 10 gives 1, 59,
59, 59, 38, 1, 40 which is, in decimal, about 1.99999830, a very good
approximation indeed.

The Mayan people developed their own place notation in base 20 using com-
binations of dots (one) and bars (five) to form digits. The numbers were written
vertically from bottom to top of the page. Figure 1.4 shows on the left an addition
problem written with this notation. Unlike the Babylonians, the Mayans did use a
symbol for zero, shaped like a shell, and this is seen in Fig. 1.4 on the right.

It is interesting to see how the Maya, like the Babylonians before them, did not
create unique symbols for all possible base 20 digits but instead used combinations
of likely base symbols. This might imply that place notation evolved from an early
tally system, which is a reasonable things to imagine. Addition in the Mayan system
worked by grouping digits, replacing five dots with a bar and carrying to the next
higher digit if the total in the lower digit was twenty or more.

For more background on the fascinating history of numbers and number systems,
including Mayan numbers, see [1] and [3]. For a detailed look at Babylonian
numbers and mathematics, see [4] and [5]. Lastly, for a look at Egyptian numbers
and mathematics see [2].

http://www.math.ubc.ca/~cass/Euclid/ybc/ybc.html
http://www.math.ubc.ca/~cass/Euclid/ybc/ybc.html
http://www.math.ubc.ca/~cass/Euclid/ybc/ybc.html

8 1 Number Systems

Y
S

®
° I <>
® 0000

I
I N I
25 + 108 = 133 8014

Fig. 1.4 Mayan numbers in base 20 written from bottom to top. Bars represent five, dots represent
ones, with groups of bars and dots used to show the numbers 1 through 19. The zero symbol, shown
on the right, is a shaped like a shell and holds empty places in the same way zero is used in base
10 so that the number on the right is 1 X 203 + 0 X 202 + 0 X 20! + 14 x 20° = 8014

1.2 The Big Three (and One Old Guy)

In this book we are concerned, primarily, with three number bases: base 2 (binary),
base 10 (decimal), and base 16 (hexadecimal). These are the “big three” number
bases when it comes to computers. In the past, base 8 (octal) was also used
frequently, so we will mention it here. This is the “one old guy”. In this section we
take a look at how to represent numbers in these bases and how to move a number
between these bases. Operations such as arithmetic, will be covered in subsequent
chapters from the point of view of how the computer works with numbers of a
particular type.

Decimal Numbers Relatively little needs to be said about decimal numbers as we
have been using them all our lives to the point where working with them is second
nature. Of course, the reason for this frequent appearance of ten is that we have
ten fingers and ten toes. Decimal numbers, however, are not a good choice for
computers. Digital logic circuits have two states, “on” or “off”. Since computers
are built of these circuits it makes sense to represent the “on” state (logical True)
as a 1 and the “off” state (logical False) as a 0. If your digits are 0 and 1 then the
natural number base to pick is 2, or binary numbers.

Binary Numbers In the end, computers work with nothing more than binary
numbers which is really quite interesting to think about: all the activities of the
computer rely on numbers represented as ones and zeros. Following the notation
above, we can see that a binary number such as 10115 is really,

1011, =1x224+0x22+1x2'+1x2°=11

Thinking back to the example of ancient Egyptian multiplication above we can
now see that the left-hand column was nothing more than the powers of two which

1.2 The Big Three (and One Old Guy) 9

are the place values of a binary number. Since each power of two appears only once
in a given number (integer) it is always possible to find a sum of powers of two
that equals any number. The 1 values in a binary integer are nothing more than tick
marks indicating which power of two is present. We know that each power of two
appears at most once in a given integer because it is possible to represent any integer
in binary and the only digits allowed in a binary number are 0 and 1.

Hexadecimal Numbers If you work with computers long enough, you will
eventually encounter hexadecimal numbers. These are base 16 numbers since “hex”
refers to six and “dec” refers to ten. One question might immediately present itself:
if we need ten separate symbols for the ten decimal digits, we need 16 symbols
for hexadecimal digits. Zero through nine can be reused, but what should we use
for 10 through 157 The flippant answer is, whatever symbols you want, you could
even make up sixteen entirely new symbols, but typically we follow the convention
the ancient Greeks used (see [1] Chap.4) and take the first six letters of the Latin
alphabet as the missing symbols,

10
11
12
13
14
15

T O A®m >

In this case, counting runs as 1,2,3,4,5,6,7,8,9,A,B,C,D, E, F, 10. It should
be no surprise that when writing hexadecimal numbers one often sees lowercase
letters, a—f, instead of A—F. Additionally, computer scientists, like most English
speakers, tend to shorten words whenever possible. So, you will often hear or
see hexadecimal numbers referred to as “hex” numbers. No reference to magic is
intended unless it is the magic by which computers work at all.

If we break down a hex number,

FDED s = 15 x 16® 4+ 13 x 16 + 14 x 16! + 13 x 16° = 65005

we see that it is a compact notation compared to binary. This should not be surprising
as in place of simply indicating which power of 2 is in a number, as binary does, we
are here allowed up to 16 possible multipliers on each power of 16.

Octal Numbers While much less common than in the past, octal (base 8) numbers
still show up from time to time. Since these are base 8 numbers we already know
that we only need the digits 0 — 7 to write numbers in this base. In Sect. 1.3 we
will see why, if computers are really working in binary, people bother to use other
number bases like octal or hexadecimal.

We should expect by now that octal numbers break down in a familiar way,

1234 = 1 x 8 +2x 8 +3x8' +4x8" =668

10 1 Number Systems

and we will not be disappointed. In modern programming languages, octal numbers
are typically reserved for character codes and will be rarely seen outside of that
context.

1.3 Converting Between Number Bases

Representing numbers is a good thing but sometimes we need to convert a
number between bases. In this section we look at converting between the bases we
introduced above. Table 1.1 will be handy when converting numbers between bases.
It shows the first 16 integers in binary, octal, hexadecimal and decimal.

Hexadecimal and Binary Hexadecimal numbers are base 16 while binary num-
bers are base 2. We see that 2* = 16 so the conversion between hexadecimal and
binary, either direction, will involve groups of four binary digits. To convert a binary
number to hexadecimal, simply separate the digits into groups of four, from right to
left, and write each group as a hex digit referring to Table 1.1 if necessary,

101110010011110, = 101 1100 1001 1110
= 5 C 9 E
= 5C9E¢

Table 1.1 The first 16

. . ; . Decimal | Binary | Octal | Hexadecimal
integers in decimal, binary,

octal, and hexadecimal 0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

1.3 Converting Between Number Bases 11

Turning a hexadecimal number into binary is simply the reverse process,

FDDAjg = F D D A
= 111111011101 1010
=1111110111011010;

This conversion process is simple enough, but why does it work? The key is in
the fact already noted, that 2* = 16. Recall that in a place notation system each
digit position to the left is one power of the base larger just as the hundreds place in
decimal is a factor of ten, the base, larger than the tens place. If we look at base 2 and
instead of moving one digit to the left, which is two times larger than the original
digit value, we move four digits we are now 2x2 x2x 2 larger or 16. But, in base 16,
each digit position is 16 times larger than the next place to the right. Therefore, we
have an equivalence between moving one digit to the left in a hexadecimal number
and four digits to the left in a binary number. This is why we can group the binary
digits in sets of four to get the equivalent hexadecimal digit.

Octal and Binary If 2* = 16 implies we group binary digits in sets of four, then
23 = 8 implies we should group binary digits in sets of three to convert between
binary and octal, and this is indeed the case,

101110010011110;, 101110 010 011 110
5 6 2 3 6

= 562364

Likewise, we can reverse the process to get,

52431g= 5 2 4 3 1
101 010 110 011 001
101010110011001,

Lastly, should the need arise, conversion between hexadecimal and octal, or vice
versa, is easily accomplished by first moving to binary and then to the other base
from binary.

Decimal and Binary The simple conversion technique above falls apart when
moving between decimal and binary. We already know the reason, 2* = 10 does
not have an integer solution so we cannot simply group digits. Instead, we handle
the conversions in a more cumbersome way.

Decimal to Binary Perhaps the simplest way to convert a decimal number to binary
by hand is to repeatedly divide the number by two and keep track of the quotient and
remainder. The quotient gives the next number to divide by two and the remainder,
always either 1 or 0, is one binary digit of the result. If the numbers are not too big,
dividing by two is easy enough to do without paper and pencil.

12 1 Number Systems

For example, to convert 123 to binary,

123 +2=611r1
61l+-2=30r1l
30+-2=15r 0
15+-2= 7r1l
7+-2= 3rl
3+-2= 1r1l
1+-2= 0rl

Now, to get the binary representation, read from bottom to top: 123 = 1111011,.

The conversion works but it is good to know why it works so let’s take a closer
look. If we write a seven digit binary number, bgbsbsb3b,b1 by, with by, the k-th digit,
in expanded form we get,

box2° + by x2' 4+ by x 22+ by x 23 + by x 2% + bs x 2° + bg x 2°
which, since 2° = 1 and every other term is a multiple of two, can be written as,
bo + 2(by x 2° + by x 21 4 b3 x 2% + by x 23 + bs x 2* + b x 2°)
If we divide the above by 2 we get the quotient,
by x2° 4+ by x 2V 4+ by x 22+ by x 22 4+ bs x 24 + b x 2°

and a remainder of by. Therefore, it is clear that performing an integer division of
a number by two leads to a new quotient and a remainder of either zero or one
since by is a binary digit. Further, this remainder is in fact the right-most digit in the
binary representation of the number. If we look at the quotient above it has the same
form as the initial binary representation of the number but with every binary digit
now shifted to the next lowest power of two. Therefore, if we take this quotient and
divide it by two we will repeat the calculation above and get b; as the remainder.
This is then the next digit in the binary representation of the number. Lastly, if we
repeat this over and over until the quotient is simply zero we will generate all the
digits in the binary representation of the number in reverse order. Finally, writing
the stream of binary digits backwards will put them in the proper sequence and give
the desired binary representation.

Another method for converting a decimal number to binary involves making a
table of the powers of two and asking repeated questions about sums from that table.
This method works because the conversion process is really tallying the powers of
two that add up to the decimal number.

For example, to convert 79 to binary make a table like this,

64 32 16 8 4 2 1

1.3 Converting Between Number Bases 13

with the powers of two written highest to lowest from left to right. Next, ask the
question, “Is 64 > 797 If the answer is yes, put a 0 under the 64. If the answer is
no, put a 1 under the 64 because there is a 64 in 79,

64 32 16 8 4 2 1
1

Now add a new line to the table and ask the question “Is 64 + 32 > 797" Since the
answer is yes, we know that there is no 32 in the binary representation of 79 so we
put a 0 below the 32,

64 32 16 8 4 2 1
1

We continue the process, now asking “Is 64 + 16 > 797 In this case, the answer is
again yes so we put a 0,

64 32 16 8 4 2 1
1

We continue for each remaining power of two asking whether that power of two,
plus all the previous powers of two that have a 1 under them, is greater or less
than 79,

64 32 16 8 4 2 1

1

To complete the conversion we collapse the table vertically and write the binary
answer, 79 = 1001111,.

Binary to Decimal If a binary number is small the fastest way to convert it to a
decimal is to simply remember Table 1.1. Barring that, there is a straightforward
iterative way to convert binary to decimal. If we have a k digit binary number,

14 1 Number Systems

bab3byb1 by, where in this case k = 5, we can use the following recurrence relation
to find the decimal equivalent,

dy =0

d,‘ = bk—i+2di_1,i= 1...k

For example, let’s convert 11001, to decimal using the recurrence relation. In this
case we get,

i d

00
1/142(0)=1
2/ 14+21)=3
3/04+423)=6+6
4 042(6)=12
51+ 2(12) =25

This technique is easily implemented in a computer program. Why does it work?
Consider the five digit binary number we started this section with, byb3bybby. If
we write the algebraic expression that represents the recurrence relation after five
iterations we get,

ds = by + 2(b1 + 2(by + 2(b3 + 2(bs + 2(0)))))
Which, if we work it out step by step, becomes,

by + 2(b1 + 2(by + 2(b3 + 2(bs + 2(0)))))
= bo + 2(by + 2(by + 2(b3 + 2by)))
= by + 2(b; + 2(by + 2b3 + 2%by))
= by + 2(by + 2by + 2%b3 + 2°Dy)
= bo + 2by + 2%by + 2°b3 + 2%D,
:b0X20+b1 X21 +b2X22+b3X23+b4X24

which is the expanded form of a binary number with digits b4b3b,bby.

Others to Decimal The recurrence relation for converting binary numbers to
decimal works for any number base. For example,

dy=0
di=bi_i+Bdi_,i=1...k

for a base B number with digits b;.

Armed with this knowledge it becomes straightforward to convert hexadecimal
or octal numbers to decimal. Simply use B = 16 for hexadecimal and B = 8 for
octal. In the case of hexadecimal, which is a base greater than 10, the additional
digits, A — F, take on their actual decimal values 10 — 15.

1.3 Converting Between Number Bases 15

As an example, let’s convert 56AD; ¢ to decimal. Since this is a four digit number
k = 4 and the recurrence relation becomes,

dy=20
di=b_i+16di_1,i=1...k

and calculation proceeds as,

d

0

5+16(0)=5

6+ 16(5) = 86

10 + 16(86) = 1386 (since Ag = 10)

13 + 16(1386) = 22189 (since D1 = 13)

S W N R o~

SO 56AD16 = 22189.
Finally, a similar calculation works for octal numbers. Convert 75025 to
decimal. Again, k = 4 and the recurrence relation is now,

dy =0
di=b—i +8di—1,i=1...k

giving,

d;

0

7+ 8(0) =7
5+8(7) =61

0+ 8(61) = 488
2+ 8(488) = 3906

B W N R O~

with a final result of 75023 = 3906.

Frequent use of hexadecimal and octal numbers will quickly teach you to simply
remember the first few powers of each base. Embedded systems programmers learn
this early on for at least the first four digits. For hexadecimal, the powers of 16 are,

16°1
1616
162256
1634096

16 1 Number Systems

and similarly for octal,

8%1
818
8264
8% 512

with these, small hexadecimal and octal integers can be converted to decimal
quickly,

1234, =1Xx4096 +2 X256 +3X16+4X1=14660
1234y =1Xx5124+2X64+3X8+4x1 = 668

With a little practice such conversion can be performed mentally and quickly.

1.4 Chapter Summary

In this chapter we briefly reviewed numbers, how they were represented historically,
how place notation works, and how to manipulate numbers in the bases most
frequently used by computers. It is helpful to become comfortable working with the
conversion between number bases and it is especially helpful to memorize the binary
representation of the first 16 integers. The exercises will help build this confidence
and the skill will be used frequently in the remainder of this book.

Exercises

1.1 Using Egyptian notation and method calculate 22 x 48 and 713 =+ 31.

1.2 Using Babylonian notation calculate 405 + 768. (Hint: carry on sixty, not
ten.)

1.3 Using Mayan notation calculate 419 + 2105. (Hint: carry on twenty, not ten.)

1.4 Convert the following hexadecimal numbers to binary: A9C1l;s, 20ED;g,
FD60 .

1.5 Convert the following octal numbers to binary: 773, 2035, 6565.
1.6 Using the table method, convert 6502 to binary.
1.7 Using the division method, convert 8008 to binary.

1.8 Write e = 2.71828182845904 ... to at least four decimal places using
Babylonian notation. (Hint: You will need to use three negative powers of sixty.) **

References 17

1.9 Write a program to convert a number in any base < 37 to its decimal equivalent
using the recurrence relation. Use a string to hold the number itself and use 0 — 9
and capital letters A — Z for the digits. *

References

1. Boyer, C.B.: A History of Mathematics. Princeton University Press, Princeton, New Jersey
(1985)

2. Gillings, R.: Mathematics in the Time of the Pharaohs. Dover Publications, New York (1982)

3. Menninger, K.: Number Words and Number Symbols. Dover Publications, New York (1992)

4. Neugebauer, O.: Mathematical Cuneiform Texts. American Oriental Series, vol. 29. New Haven:
American Oriental Society (1945)

5. Neugebauer, O.: The Exact Sciences in Antiquity. Princeton University Press, Princeton, New
Jersey (1952)

Chapter 2
Integers

Abstract Integers are perhaps the most important class of numbers. This is
certainly true in the case of computers. In this chapter we dive into the integers
and how computers represent and operate on them. Without these operations,
digital computers would not function. We begin with some preliminary notation
and terminology. Next we take a detailed look at the unsigned integers. We follow
this with an examination of negative integers and their operations. Lastly, we finish
with a look at binary coded decimals.

2.1 Bits, Nibbles, Bytes, and Words

Our tour of integers will be easier if we get some terminology out of the way first.
This will make it just that much easier to talk about the way numbers are actually
represented inside a computer. We’ll start small and work our way up.

Bits As we have seen, computers work with binary numbers. A single binary digit
is known affectionately as a bit. This bit is either zero or one, off or on, false or true.
The word bit is short for binary digit and appears in Claude Shannon’s classic 1948
paper A Mathematical Theory of Communication [2]. Shannon attributed bit to John
Tukey who used it in a Bell Labs memo dated January 9, 1947. Note, throughout
this book we will play fast and loose with the bit terminology and freely alternate
between “on” and “true” for when a bit is set to one and “off” or “false” when a bit
is set to zero. The choice of word will depend on the context.

Since a bit is so simple, just a zero or a one, it is the smallest unit of information
in the digital world. Still, this small unit can be very important. A status bit set to one
may indicate that the rocket is ready to launch while a status bit set to zero indicates
a fault. Indeed, some microcontroller devices, like the 8051, make excellent use
of their limited resources and support single bit data. We will make extensive use
of bits in the remainder of this chapter. Zero or one, how hard can it be? Still, as
useful as a bit is, it is just, well, a bit. You need to group them together to get more
expressive numbers.

Nibbles A nibble (sometimes nybble) is a four bit number. As a four bit number a
nibble can represent the first 16 integers with 0000, = 0 and 1111, = 15. And,
as we now know, the numbers 0 through 15 are exactly the digits of a hexadecimal

© Springer International Publishing AG 2017 19
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-50508-4_2

20 2 Integers

number. So, a nibble is a single hexadecimal digit. This makes sense since with
four bits we can represent 2* = 16 possible values. A nibble is also the amount
of information necessary to represent a single binary-coded decimal digit but we
are getting ahead of ourselves and will talk about binary-coded decimal later in this
chapter. The origin of the word nibble is related to the origin of the word byte so we
will expand on it below.

Modern computers do not use nibbles as a unit of data for processing. However,
the very first microprocessors, like the TMS 1000 by Texas Instruments and the
4004 by Intel, both introduced in 1971, were 4-bit devices and operated on 4-bit
data. This makes the nibble a bit like octal numbers: appearing in the shadows but
not a real player in modern computing.

Bytes For a modern computer, the smallest unit of data that it will work with is
the byte which is an eight bit binary number. This means that the integers from
0...255 can be represented in a single byte. We’ll ignore the concept of negative
numbers for the time being.

The term byte was first used by Werner Buchholz in July 1956 during the design
of the IBM Stretch computer and was an intentional misspelling of “bite” to avoid
confusion with “bit” [3]. Since byfe came from “bite” it is natural to be tempted to
call half a byte, which is a four bit number, a “nibble” since a nibble is a small bite.
Hence the origin of nibble above.

Buchholz intended a byte to represent a character. We still use bytes to represent
characters in ASCII, but have since moved on to larger numbers for characters in
Unicode. In this book, however, to keep things simple, we will make an implicit
assumption that characters are bytes. So, a text that contains 1000 characters will
take 1000 bytes of memory to store. The universal use of bytes when working
with computers leads to the frequent appearance of the numbers 28 = 256 and
28 — 1 = 255. For example, colors on computers are often represented as triplets
of numbers to indicate the amount of red, green, and blue that make up the color.
Typically, these triplets are given as a set of three bytes to indicate the amount so
that 000000;¢ is black and 00FF00;¢ is bright green. This is just one example,
bytes are everywhere. The relationship between bits, nibbles and bytes is visualized
in Fig.2.1. Here we see that a byte can be thought of as two nibbles, each a
hexadecimal digit, or as eight bits, each a binary digit.

Fig. 2.1 A byte which ;
consists of two nibbles and nlbble

eight bits. The number is 211
which is made up of two

| 4
nibbles, D1 and 3;¢ giving
e 11010011
11010011,

L

f

/ /
byte bit

2.2 Unsigned Integers 21

Words A byte is two nibbles, so, is a word two bytes? Well, sometimes, yes. And
sometimes it is four bytes, or eight, or some other value. Unfortunately, the term
word is not generic like bit and byte, instead it is tied to a particular computer
architecture and describes the basic data size of the architecture.

Historically, the word size of a computer could be anywhere from four bits for
early microprocessors (Intel 4004) to 60 bits for early mainframes (CDC 6600) but
modern computers have settled on powers of two for their word sizes, typically 32
or 64 bits with some second generation microprocessors using 16 bit words (Intel
8086, WDC 65816). For our purposes, we can assume a 32 bit word size when
describing data formats. On occasion we will need to be more careful and explicitly
declare the word size we are working with.

With these preliminaries now under our belt, it is time to start working with actual
data representations. We start naturally with unsigned integers.

2.2 Unsigned Integers

Unsigned integers are our first foray into the depths of the computer as far as
numbers are concerned. These are the basic numbers, the positive integers, that find
frequent use in representing characters, as counters, or as constants, really anything
that can be mapped to the set {0, 1,2, .. .}. Of course, computers have finite memory
so there is a limit to the size of an unsigned integer and we will get to that in the
next section.

2.2.1 Representation

Integers are stored in memory in binary using one or more bytes depending on the
range of the integer. The example in Fig. 2.1 is a one byte unsigned integer. If we
are working in a typed language like C we need to declare a variable that will store
one byte. Typically, this would mean using an unsigned char data type,

unsigned char myByte;

which can store a positive integer from 00000000, = 0t0 11111111, = 255.
This is therefore the range of the unsigned char data type. Note how C betrays
its age by referring to a byte number as a character. Unsigned integers larger than
255 require more than one byte, but we will get to that in the next section.

Table 2.1 shows standard C types for unsigned integers and the allowed range for
that type. These are fixed in the sense that numbers must fit into this many bits at all
times. If not, an underflow or overflow will occur. Languages like Python abstract
integers for the programmer and only support the concept of integer as opposed
to a floating-point number. The unsigned integer operations discussed later in the
chapter work nicely with Python but the concept of range is a little nebulous in that
case since Python will move between internal representations as necessary.

22 2 Integers

Table 2.1 Unsigned integer declarations in C

Declaration Minimum Maximum | Number of bits
unsigned char 0 255 8
unsigned short 0 65,535|16
unsigned int 0 4,294,967,295 |32
unsigned long 0 4,294,967,295 |32
unsigned long long 0 18,446,744,073,709,551,615 |64

The declaration, minimum value, maximum value and number of data bits are given

If a number like 11111111, = 255 is the largest unsigned number that fits in
a single byte how many bytes will be needed to store 2567 If we move to the next
number we see that we will need nine bits to store 256 which implies that we will
need two bytes. However, there is a subtlety here that needs to be addressed. This
is, if the number is to be stored in the computer’s memory, say starting at address
1200, how should the individual bits be written to memory location 1200 and the
one following (1201, since each memory location is a byte)? This question has
more than one answer.

2.2.2 Storage in Memory: Endianness

Addresses In order to talk about how we store unsigned integers in computer
memory we have to first talk a bit about how memory is addressed. In this book,
we have a working assumption of a 32-bit Intel-based computer running the Linux
operating system. Additionally, we assume gcc to be our C compiler. In this case,
we have byte-addressable memory meaning that even though the word size is four
bytes, we can refer to memory addresses using bytes. For example, this small C
program,

1 /#include <stdio.h>

2

3/int main() {

4 unsigned char =*p;

5 unsigned short n = 256;

6

7 p = (unsigned char «)é&n;

8 printf ("address of first byte = %p\n", &pl0]);
9 printf ("address of second byte = %p\n", &pll]);
10

11 return 0;

12/}

when compiled and run produces output similar to,

address of first byte = 0xbfdafe9e
address of second byte = Oxbfdafedf

2.2 Unsigned Integers 23

where the specific addresses, given in hexadecimal and starting with the ox prefix
used by C, will vary from system to system and run to run. The key point is that
the difference between the addresses is one byte. This is what is meant by a byte-
addressable memory. If you don’t know the particulars of the C language, don’t
worry. The program is defining a two byte number in line 5 (n) and a pointer to a
single byte number in line 4 (p). The pointer stores a memory address which we
set to the beginning of the memory used by # in line 7. We then ask the computer
to print the numeric address of the memory location (line 8) and of the next byte
(line 9) using the & operator and indexing for the first (p [0]) and second (p [1])
bytes. With this in mind, let’s look at actually storing unsigned integers.

Bit Order To store the number 11011101, = 221 in memory we use the eight
bits of the byte at a particular memory address. The question then becomes, which
bits of 221 map to which bits of the memory? If we number the bits from 0 for the
lowest-order bit, which is the right-most bit when writing the number in binary, to
7 for the highest-order bit, which is the left-most bit when writing in binary, we get
a one-to-one mapping,

7 6 5 4 3 2 1 0
11 0 1 1 1 o0 1

so that the highest-order bit of the number is put into the highest-order bit of the
memory address. This seems sensible enough but one could imagine doing the
reverse as well,

7 6 5 4 3 2 1 0
1 0 1 1 1 o 1 1

So, which is correct? The answer depends on how bits are read from the memory
location. In modern computer systems, the bits are read low to high meaning the
low-order bit is read first (bit 0) followed by the next higher bit (bit 1) so that the
computer will use the first ordering of bits that maps 76543210 t0 11011101.

Byte Order Within a byte, bits are stored low to high. What about the bytes of
a multibyte integer? We know that the number 100000000, = 256 requires two
bytes of memory, one storing the low set of eight bits 00000000, and another
storing the high set of eight bits 00000001, where leading zeros are used to
indicate that it is the first bit position set and the rest of the bits in the byte are
clear (set to zero). But, what order in memory should we use,

Memory address: 1200 1201
Low first: 00000000 00000001
High first: 00000001 00000000

low first or high first? The answer is either. If we put the low order bytes of a
multibyte number in memory first we are using little-endian storage. If we put
the high order bytes first we are using big-endian or network order. The choice
is the endianness of the number and both are in use typically as a function of the

24 2 Integers

microprocessor, which has a preferred ordering. The terms little-endian and big-
endian are derived from the book Gulliver’s Travels by satirist Jonathan Swift [4].
Published in 1726 the book tells the story of Gulliver and his travels throughout
a fictional world. When Gulliver comes to the land of Lilliput he encounters two
religious sects who are at odds over whether to crack open their soft-boiled eggs
little end first or big end first. Intel based computers use little-endian when storing
multibyte integers. Motorola based computers use big-endian. Additionally, big-
endian is called network order because the Internet Protocol standard [5] requires
that numeric values in packet headers be stored in big-endian order.

Let’s look at some examples of little and big endian numbers. To save space, we
will use a 32-bit number but represent the numbers showing only the hexadecimal
values of the four bytes such a number would occupy. For example, if the 32-bit
number is,

10101110111100000101011010010110, = AE;¢ FO16 5616 9616

we will write it as AEF05696 dropping the 16 base indicator for the time being.
Putting this number into memory starting with byte address zero and using big-
ending ordering gives,

Address: 0 1 2 3
Value: AE FO 56 96

where the first byte one would read, pulling bytes from address zero first, is the
high-order byte. If we want to use little-endian we would instead put the lowest
order byte first to fill in memory with,

Address: 0 1 2 3
Value: 96 56 FO AE

which will give us the low-order byte first when reading from address zero. Note,
within a particular byte we always still use the bit ordering that maps the high-order
bit (bit 7) to the high-order bit of the number. Reversing the bits within a byte when
using little-endian is an error.

When we are working with data on a single computer within a single program,
we typically do not need to pay attention to endianness. However, when transmitting
data over the network or using data files written on other machines it is a good idea
to consider what the endianness of the data is. For example, when reading sensor
values from a CCD camera, which are typically 16-bit numbers requiring two bytes
to store, it is essential to know the endianness otherwise the image generated from
the raw data will look strange because the high-order bits which contain the majority
of the information about the image will be in the wrong place. From the examples
above, we see that correcting for endianness differences is straightforward, simply
flip the order of the bytes in memory to convert from little-endian to big-endian and
vice versa.

2.3 Operations on Unsigned Integers 25
2.3 Operations on Unsigned Integers

Binary and unary operations on unsigned integers is the heart of what computers do.
In this section we go over all the common operations, bit by bit, and mention some
of the key things to look out for when working with unsigned integers of fixed bit
width. Examples will use byte values to keep it simple but in some cases multibyte
numbers will be shown. Specific operations will be shown in C and Python. Though
the Python syntax is often the same as C, the results may differ because the Python
interpreter will change the internal representation as necessary.

2.3.1 Bitwise Logical Operations

Bitwise operators are binary operators, meaning they operate on two numbers
(called operands), to produce a new binary number. In the previous sentence the first
instance of “binary” refers to the number of operands or arguments to the operation
while the second instance of “binary” refers to the base of the operands themselves.
This is an unfortunate but common abuse of notation.

Digital logic circuits, which are fascinating to study but well beyond the purview
of this book, are built from logic gates which implement in hardware the logical
operations we are discussing here. The basic set of logic operators are given names
which relate to Boolean logic: AND, OR, XOR, and the unary NOT. Negated versions
of AND and OR, called NAND and NOR, are also in use but these are easily constructed
by taking the output of AND and OR and passing it through a NOT so we will ignore
them here.

Logical operations are most easily understood by looking at their truth tables
which illustrate the function of the operator by enumerating the possible set of inputs
and giving the corresponding output. They are called truth tables because of the
correspondence between the 1 and 0 of a bit and the logical concept of true
and false which goes back to Boolean algebra developed by George Boole in the
nineteenth century [6].

A truth table shows, for each row, the explicit inputs to the operator followed by
the output for those inputs. For example, the truth table for the AND operator is,

AND

0
1
0

R P O O
R O O O

1

which says that if the two inputs to the AND, recall the inputs are single bits, are 0
and 0 that the output bit will also be 0. Likewise, if the inputs are 1 and 1 the output
will also be 1. In fact, for the AND operation the only way to get an output of 1 is
for both input bits to be set. We can think of this as meaning “only both”.

26 2 Integers

The two other most commonly used binary logic operators are OR and XOR. The
latter is a called exclusive-OR and is sometimes indicated with EOR instead of XOR.
Their truth tables are,

OR XOR

0 0 0 0 0 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

where we see that OR means “at least one” and XOR means “one or the other but
not both”. The last of the common bitwise logical operators is NOT and it has a very
simple truth table,

NOT
0 1
1 0

where the operation is simply turn 1 to 0 and 0 to 1.

If we look again at the truth tables for AND, OR and XOR we see that there are
four rows in each table which match the four possible sets of inputs. Looking at these
rows we can interpret the four bits in the output as a single four bit number. A four bit
number has sixteen possible values from 00005 to 1111, which implies that there
are sixteen possible truth tables for a binary bitwise operator. Three of them are AND,
OR and XOR and another three are the tables made by negating the output of these
operators. That leaves ten other possible truth tables. What do these correspond to
and are they useful in computer programming? The full set of possible binary truth
tables is given in Table 2.2 along with an interpretation of each operation. While all
of these operators have a name and use in logic many are clearly of limited utility in
terms of computer programming. For example, always outputting 0 or 1 regardless
of the input (FALSE and TRUE in the table) is of no practical use in helping the
programmer. The negated versions of the three main operators, NAND, NOR and
XNOR, are naturally built by adding a “not” word to the positive versions and are
therefore useful.

Now that we know the basic operators and why this set is most useful to computer
programmers let’s look at a few examples. First the AND operator,

10111101 = 189
AND 11011110 = 222
10011100 = 156

where the binary representation of the number is in the first column and the decimal
is in the second. We see that for each bit in the two operands, 189 and 222, the
output bit is on only if the corresponding bits in the operand were on. If the operands
were simply zero or one the output would be one only if the inputs were both one.
Since this is exactly what we mean when we use “and” in a sentence we can use this
operator to decide if two things are both true. A natural place to use this ability is in

2.3 Operations on Unsigned Integers

27

Table 2.2 The sixteen possible binary bitwise logical operators

o

XOR
OR
NOR
XNOR

PR lRr|kRr|RP PR olojlojlojloo|lo|lo|lo o
PRk ko ololor|PR|IR R O O oO|O|R

Ploor R olokr R ooO|R R oO|lolo R
or|lor|lor ok or o r|lor ol R

NAND
TRUE

H
-
-
-

always false

pandgq

if p then not g else false
14

if not p and ¢

q

p or g but not (p and q)
P> qor(pand g)

not OR

not XOR

not ¢

if g then p else true
not p

if p then g else true
not AND

always true

If a common name exists for the operation it is given in the first
column. The top two rows labeled p and ¢ refer to the operands
or inputs to the operator. A 0 is considered false while 1 is true.
A description of the operator is given in the last column. In the
description the appearance of p or ¢ in an if-statement implies that

the operand is true

an if-statement and many programming languages, C and Python included, use the
concept that zero is false and one is true. Actually, C and Python extend this concept
and declare anything that is not zero to be true. It should be noted that Python also
supports Boolean variables and treats the keywords True and False as true and

false respectively.

We look next at the OR and XOR operators. For OR we have,

10111101
OR 11011110
11111111

189
222
= 255

which means at every bit position at least one of the operands has a bit set. The XOR

operator will give us,

10111101
XOR 11011110
01100011

189
222
= 99

One useful property of the XOR operator is that it undoes itself if applied a second
time. Above, we calculated 189 XOR 222 to get 99. If we now perform 99 XOR

28 2 Integers

222 we get, giving us back what we started with. As an aside, this is a useful

01100011 = 99
XOR 11011110 = 222
10111101 = 189

simple way to encrypt data. If Alice wishes to encrypt a stream of n bytes (M), which
may represent any data at all, so that she can send it (relatively) securely to Bob, all
she need do is generate a stream of n random bytes (S) and apply XOR, byte by byte,
to the original stream M to produce a new stream, M’. Alice can then transmit M’
to Bob any way she wishes knowing that if Carol intercepts the message she cannot
easily decode it without the same random stream S. Of course, Bob must somehow
have S as well in order to recover the original message M. If § is truly random, used
only once and then discarded, this is known as a one-time pad encryption. The keys
are that S is truly random and that it is only used once. Of course, this does not cover
the possibility that Carol may get her hands on S as well, but if she cannot, there is
(relatively) little chance she will be able to recover M from just M’.

Another handy use for XOR is that it allows us to swap two unsigned integers
without using a third variable. So, in C, instead of,

unsigned char a,b,t;

t = a;

a = b;
b = t;
‘We can use,

unsigned char a,b;

“=b; // a=a"Db;

a
b *= a;
a *= b;

where * is the C operator for XOR and a *= bis shorthand fora = a * b. Why
does this work? If we write out an example in binary, we will see,

a = 01011101
b = 11011011

a "= b 01011101 * 11011011 — a=10000110
b *= a 10000110 * 11011011 - b=01011101
a *=b 10000110 * 01011101 - a=11011011

As mentioned above, if we do @ XOR b — ¢ and then ¢ XOR b we will get a back.
If we instead do ¢ XOR a we will get b back. So, the trick makes use of this by first
doing @ XOR b and then using that result, stored temporarily in a, to get a back

2.3 Operations on Unsigned Integers 29

but this time storing it in b and likewise for getting b back and storing it in a. This,
then, swaps the two values in memory. This trick works for unsigned integers of
any size. Another common use of XOR is in parity calculations. The parity of an
integer is the number of 1 bits in its binary representation. If the number is odd,
the parity is 1, otherwise it is 0. This can be used as a simple checksum when
transmitting a series of bytes. A checksum is a indicator of the integrity of the data.
If the checksum calculated on the receiving end does not match then there has been
an error in transmission. If the last byte of data is the running XOR of all previous
bytes the parity of this byte can be used to determine if a bit was changed during
transmission. In order to see how to use XOR for parity calculations we need to wait
a little bit until we talk about shifts below.
The effect of NOT is straightforward to illustrate,

NOT 10111101 = 189
01000010 66

it simply flips the bits from 0 to 1 and 1 to 0. We will see this operation again when
we investigate signed integers.

Figure 2.2 gives a C program that implements the AND, OR, XOR and NOT logical
operators. This illustrates the syntax. Note that the C example uses the unsigned
char data type. This is an 8-bit unsigned integer like we saw in the examples above.
The operators work with any size integer type so we could just as well have used
unsigned short orunsigned int, etc. Figure 2.3 gives the corresponding
Python code.

The standard C language does not support direct output of numbers in binary
so the example in Fig. 2.2 instead outputs in decimal and hexadecimal. Recall that
in Chap. 1 we learned how to easily change hexadecimal numbers into binary by
replacing each hexadecimal digit with four bits representing that digit. The Python

1|#include <stdio.h>

2

3|void pp(unsigned char z) {

4 printf ("$3d (%02x)\n", z, z);

5|}

6

7lint main() {

8 unsigned char z;

9
10 z = 189 & 222; ppl(z); // '&" is AND
11 z = 189 | 222; vpp(z); // "]’ is OR
12 z = 189 ~ 222; pp(z); // '"' is XOR
13 z =z ~ 222; pp(z); // returns 189
14 z = "z; pp(z); // '~' is NOT
15
16 return 0;
17|}

Fig. 2.2 Bitwise logical operators in C

30 2 Integers

Fig. 2.3 Bitwise logical 1|def pp(z):

operators in Python 2 print "{0:08b}".format (z & Oxff)
3
4|def main () :
5 z = 189 & 222; pp(z) # '&" is AND
6 z = 189 | 222; pp(z) # '|’ is OR
7 z = 189 ~ 222; pp(z) # '"’ is XOR
8 z =z © 222; pp(z) # returns 189
9 z = "z; pp(z) # "7’ is NOT
10
11|{main ()

code makes use of standard string formatting language features to output in binary
directly. As Python is itself written in C and the language was designed to show
that heritage, the syntax for the bitwise logical operators is the same. There is one
subtlety with the Python code you may have noticed. The function pp () uses “z
& 0xff”inthe format () method call where you might have expected only “z”.
If we do not AND the output value with FF;, we will output a full range integer
and as we will see later in this chapter, that would be a negative number to Python.
The AND keeps only the lowest eight bits and gives us the output we would expect

matching the C code in Fig. 2.2.

2.3.2 Testing, Setting, Clearing, and Toggling Bits

A common operation on unsigned integers is the setting, clearing and testing of
particular bits. Setting a bit means to turn that bit on (1) while clearing is to turn the
bit off (0). Testing a bit simply returns its current state, 0 or 1, without changing
its value. In the embedded computing world this is often done to set an output line
high or low or to read the state of an input line. For example, a microcontroller uses
specific pins on the device as digital inputs or outputs. Typically, this requires setting
bits in a control register or reading bits in a register to know whether a voltage is
present or not on pins of the device.

The bitwise logical operators introduced above are the key to working with bits.
As Fig. 2.3 already alluded to, the AND operator can be used to mask bits. Masking
sets certain bits to zero and some examples will make this clear. First, consider a
situation similar to the Python code of Fig. 2.3 that keeps the lower nibble of a byte
while it clears the upper nibble. To do this, we AND the byte with 0F ¢,

10111101 = BD
AND 00001111 = OF
00001101 = OD

where we now display the binary and hexadecimal equivalent. The output byte will
have all zeros in the upper nibble because AND is only true when both operands are

2.3 Operations on Unsigned Integers 31

one. Since the second operand has all zeros in the upper nibble there is no situation
where the output can be one. Likewise, the lower nibble is unaffected by the AND
operation since every position where the first operand has a one the second operand
will also have a one leading to an output of one but every position where the first
operand has a zero the second operand will still have a one leading to an output of
zero, which is just what the first operand has in that position. A quick look back at
the truth table for AND (above) will clarify why this masking works.

This property of AND can be used to test if a bit is set. Say we wish to see if bit
3 of BDy is set. All we need to do is create a mask that has a one in bit position 3
and zeros in all other bit positions (recall that bit positions count from zero, right to
left),

10111101 = BD
AND 00001000 = 08
00001000 = 08

if the result of the AND is not zero we know that the bit in position 3 of BD;¢ is
indeed set. If the bit was clear, the output of the entire operation would be exactly
zero which would indicate that the bit was clear. Since C and Python treat nonzero
as true the following C code would output “bit 3 on”,

if (0xBD & 0x08) {
printf ("bit 3 on\n");
}

as would this Python code,
if (0xBD & 0x08):
print "bit 3 on"

We use AND to test bits and mask bits but we use OR to actually set bits. For
example, to actually set bit 3 and leave all other bits as they were we would do
something like this, which works because OR returns true when either operand

10110101 = BS
OR 00001000 = 08
10111101 = BD

or both have a one in a particular bit position. Just as AND with an operand of all
ones will return the other operand, so an OR with all zeros will do likewise. In order
to set bits, then, we need OR, a bit mask, and assignment as this C code shows,

#include <stdio.h>

int main()
unsigned char z = 0xB5;

z = z | 0x08; // set bit 3

°

printf ("$x\n", z);

32 2 Integers

z |= 0x40; // set bit 6

°

printf ("$x\n", z);

return 0;

}

which outputs BD;¢ and FDy ¢ after setting bits 3 and 6. Since we updated z each
time the set operations are cumulative.

We’ve seen how to test and set bits now let’s look at clearing bits without
affecting other bits. We know that if we AND with a mask of all ones we will get
back our first operand. So, if we AND with a mask of all ones that has a zero in the
bit position we want to clear we will turn off that bit and leave all other bits as they
were. For example, to turn off bit 3 we do something like this, where the mask

10111101 = BD
AND 11110111 = F7
10110101 = BS

value for AND is F7;4. But, this begs the question of how we get the magic F7¢
in the first place? This is where NOT comes into play. We know that to set bit 3 we
need a mask with only bit 3 on and all others set to zero. This mask value is easy to
calculate because the bit positions are simply powers of two so that the third position
is 2° = 8 implying that the mask is just 8 = 00001000,. If we apply NOT to this
mask we will invert all the bits giving us the mask we need: 11110111,. This is
readily accomplished in C,

unsigned char z = 0xBD;
z =z & (~0x08);
printf ("$x\n", z);

which outputs B5; = 10110101, with bit 3 clear. The same syntax will also
work in Python.

Our last example toggles bits. When a bit is toggled its value is changed from
off to on or on to off. We can use NOT to quickly toggle all the bits, since this is
what NOT does, but how to toggle only one bit and leave the rest unchanged? The
answer lies in using XOR. The XOR operator returns true only when the operands
are different. If both are zero or one, the output is zero. This is what we need. If we
XOR our value with a mask that has a one in the bit position we desire to toggle we
will get something like this for bit 1,

10111101 = BD
XOR 00000010 = 02
10111111 = BF

where we have turned bit 1 on when previously it was off. If bit 1 was already on
we would have 1 XOR 1 = 0 which would turn it off in the output. Clearly, we can
toggle multiple bits by setting the positions we want to toggle in the mask and then
apply the XOR. In C we have,

2.3 Operations on Unsigned Integers 33

unsigned char z = 0xBD;
z =z ~ 0x02;
printf ("$x\n", z);

which will output BF;4 = 10111111, as expected.

2.3.3 Shifts and Rotates

So far we have looked at operations that manipulate bits more or less independently
of other bits. Now we take a look at sliding bits from one position to another within
the same value. These manipulations are accomplished through the shift and rotate
operators. A shift is as straightforward as it sounds, just move bits from lower
positions in the value to higher, if shifting to the left, or from higher positions to
lower if shifting to the right. When shifting, bits simply “fall off” the left or right
if they hit the end of the integer. This implies something, namely, that we impose
a specific number of bits on the integer. For our examples we will stick with 8-bit
unsigned integers though all of these operations work equally well on integers of any
size. Let’s look at what happens when we shift a value to the left one bit position
using binary notation,

10101111 «- 1 =01011110

where we use the <— symbol to mean shift to the left and the 1 is the number of bit
positions. The leading 1 drops off the left end and a zero moves in from the right
end to fill in the empty space. All other bits move up one bit position. Now, what
happens when only a single bit is set and we shift one position to the left,

00000010 <1 =00000100

we see that we started with a value of 2! = 2 and we ended with a value of 2> = 4.
Therefore, a single position shift to the left will move each bit to the next highest
bit position which is the same as multiplying it by two. Since this will happen to all
bits, the net effect is to multiply the number by two. Of course, if bits that were set
fall off the left end we will lose precision but the remaining bits will be multiplied
by two. For example,

00101110« 1 =01011100

which takes 00101110, = 46 t0 01011100, = 92 which is 46 x 2. Shifting to
the left by more than one bit position is equivalent to repeated shifts by one position
so shifting by two positions will multiply the number by 2 x 2 = 4,

00101110 «-2 =10111000

giving 10111000, = 184 as expected.
It is natural to think that if a left shift multiplies by two a right shift would divide
by two and this is indeed the case,

00101110 -1 =00010111

34 2 Integers

gives 00010111, = 23 which is 46 = 2. Just as bits falling off the left end of the
number will result in a loss of precision so will bits falling off the right end with
one significant difference. If a bit falls off the right end of the number it is lost from
the ones position. If the ones position is set, that means the number is odd and not
evenly divisible by two. If the bit is lost the result is still the number divided by two
but the division is integer division which ignores any remainder. Information is lost
since a right shift followed by a left shift results in a number that is one less than
what we started with if the original number was odd. We can see this by shifting two
positions to the right,

00101110 — 2 = 00001011

to get 00001011, = 11 which is 46 + 4 ignoring the remainder of 2.

Both C and Python support shifts using the << and >> operators for left and
right shifts respectively. The « operator is frequently used with an argument of 1 in
order to quickly build bit masks,

1 << 3=00001000,
1l << 5=00100000;

which is a pretty handy way to move bits into position.

Before we leave shifts, let’s return to the parity calculation mentioned above.
Recall that the parity of a number is determined by the number of 1 bits in its binary
representation. If odd, the parity is 1, otherwise it is 0. The key observation here
is that XOR preserves the parity of its arguments. For example, if, in binary, a =
1101 and b = 0111 then the parity of the two together is zero since there are a
total of six on bits. If we apply XOR we geta XOR b = 1010 which also has an
even number of on bits and therefore has the same parity. This suggests the trick. If
we XOR a number with itself but first shift the number half its bit width the resulting
bits of the lower half of the output of XOR will have the same parity as the original
number. We can see this if we lookat a = 01011101 and XOR it with itself after
shifting down by four bits, which is half the width of the number,

01011101
XOR 00000101
xxxx1000

where we are ignoring the upper four bits. The original number has 5 on bits
therefore the parity is 1. If we look at the lower four bits after the XOR we see it
also has a parity of 1. If we repeat the process but using the new value and this time
shifting by half its effective width, which is 4 bits, we will end up with a number that
has the same parity as we started with and the same parity as the original number. If
we repeat this all the way the final result will be a one bit number that is the parity
of the original number. Therefore, for 01011101,

2.3 Operations on Unsigned Integers 35

original 01011101
right shift4 00000101
XOR 01011000
right shift2 00010110
XOR 01001110
right shift I 00100111
XOR 01101001
parity bit XXXXXKX1

For an 8-bit number we can define a parity function in C as,

unsigned char parity(unsigned char x) ({

A

X = (x >> 4) X;
X = (x >> 2) ©~ x;
x = (x >> 1) ©~ x;

return x & 1;

}

where the return x & 1; line returns only the lowest order bit since all other
bits are meaningless at this point. The extension of this function to wider integers is
straightforward.

Shifting moves bits left or right and drops them at the ends. This is not the only
option. Instead of dropping the bits we might want to move the bits that would have
fallen off to the opposite end. This is a rotation which like a shift can be to the
left or right. Unfortunately, while many microprocessors contain rotate instructions
as primitive machine language operations neither C nor Python support rotations
directly. However, they can be simulated easily enough in code and an intelligent
compiler will even turn the simulation into a single machine instruction (eg, gcc).

Again, to keep things simple, we will work with 8-bit numbers. For an 8-bit
number, say AB;s = 10101011,, a rotation to the right of one bit looks like this,

10101011 =1 =11010101

where we introduce the = symbol to mean rotation to the right instead of simple
shifting (—). Rotation to the left one bit position gives,

10101011 <1 =01010111

where we see that the bit that would have fallen off at the left end has now moved
around to the right side.

To simulate rotation operators in C and Python we use a combination of << and
>> with an OR operator. We need to pay attention to the number of bits in the data
type in this case. For example, in C, we can define rotations to the right by any
number of bits using,

unsigned char rotr (unsigned char x, int n) {
return (x >> n) | (x << 8 - n);
}

36 2 Integers

with a similar definition for rotations to the left,

unsigned char rotl (unsigned char x, int n) {
return (x << n) | (x >> 8 - n);
}

where we have changed << to >> and vice versa. One thing to note is the 8
in the second line of these functions. This number represents the number of bits
used to store the data value. Since we have declared the argument x to be of
type unsigned char we know it uses eight bits. If we wanted to modify the
functions for 32-bit integers we would replace the 8 with 32 or, in general, use
sizeof (x) =« 8 toconvert the byte size to bits.

The Python versions of the C rotation functions are similar.

def rotr(x,s):
return ((x >> s) | (x << 8 - 8)) & Oxff

and,

def rotl(x,s):
return ((x << s) | (x >> 8 - 8)) & Oxff

where the only change is that the return value is AND’ed with FF;¢ which as we
have seen will keep the lowest eight bits and set all the others to zero. This is again
because Python uses 32-bit integers internally and we are interested in keeping the
output in the 8-bit range. If we wanted these functions to work with 16-bit integers,
we would replace the 8 with 16, as in the C versions, but we would also need to
make the mask keep the lowest 16 bits by replacing Oxff with Oxffff.

The rotation functions are helpful, but why do they work? Let’s take a look by
breaking the operations up individually and seeing how they combine to produce the
final result. We start with the original input, AB;s = 10101011,, and show, row
by row, the first shift to the left, then the second shift to the right, and finally the OR
to combine them. The values between the vertical lines are those that fit within the
8-bit range of the number, the other bits are those that are lost in the shift operations,

10101011 AB,

01010101 1 ABic >> 1
1010101 @ 10000000 ABjs <<8—1

11010101 OR

where we see that the bit lost when shifting to the right one position has been added
back at the front of the number by the shift to the left and the OR operation. Since the
shifts always introduce a zero bit the OR will always set the output bit to the proper
valuebecausel OR 0 = land0 OR 0 = 0. This works for any number of bits
to rotate,

10101011 AB.,
00101010 @ 11 ABis >> 2
1010101 @ 11000000 ABjs << 8—2

11101010 OR

2.3 Operations on Unsigned Integers 37

A
A>B
NOT AND
A=B
NOR
A<B
B
AND

Fig. 2.4 A 1-bit digital comparator. The three output values represent the three possible relation-
ships between the input values A and B. Recall that input values are 0 or 1. The output is 1 for the
relationship that is true and 0 for those that are not meet. Cascades of this basic form can be used
to create multi-bit comparators

2.3.4 Comparisons

Magnitude comparison operators take two unsigned integers and return a truth value
about whether or not the relationship implied by the operator holds for the operands.
Here we look at the basic three, equality (A = B), greater than (A > B), and less
than (A < B). There is a second set which can be created easily from the first: not
equal (A # B), greater than or equal (A > B), and less than or equal (A < B) by
using NOT and AND operators.

At its core, a computer uses digital logic circuits to compare bits. Figure 2.4
illustrates the layout of a 1-bit comparator. Comparators for larger numbers of bits
are repeated instances of this basic pattern. As this not a book on digital logic we
will go no further down this avenue but will instead talk about comparing unsigned
integers from a more abstract point of view.

Most microprocessors have primitive instructions for comparison of integers as
this operation is so fundamental to computing. In addition to direct comparison,
many instructions affect processor flags based on privileged numbers like zero. For
example, to keep things simple, the 8-bit 6502 microprocessor, which has a single
accumulator, A, for arithmetic, performs comparisons with the CMP instruction but
also sets processor status flags whenever a value is loaded from memory using the
LDA instruction. There are other registers and instructions, of course, but we focus
on the accumulator to keep the example simple. The 6502 uses branch instructions
like BEQ and BNE to branch on equal or not equal respectively. This also applies
to the implied comparison with the special value 0 which happens when the LDA
instruction loads the accumulator.

Armed with this brief review of an old 8-bit microprocessor we can see that the
following set of instructions would indeed perform an 8-bit comparison between
2214 already in the accumulator via the first LDA instruction and 12, stored in
memory location 203514 and branch if they are not equal. Additionally, we will
also perform an implicit comparison of the value of memory location 20FE;¢ with
zero and branch if it is,

38 2 Integers

LDA #522 ;i A= $22

CMP $2035 ; compare to location $2035

BNE noteql ; branch to "noteqgl" if not equal
LDA #S$20FE ; A = contents of $20FE

BEQ iszero ; branch to "iszero" if zero

where we use the classic notation of $22 = 225.

Why bring up this example? In part to show that comparison is very fundamental
to computers and is done as efficiently as possible in hardware and to set the stage for
our less efficient alternatives to digital logic. The comparisons we are implementing
in code are pure hardware even in the simplest of microprocessors.

Since for any two integers A and B exactly one of the following is true: A = B,
A < B, or A > B, it follows that if we know how to test for any two the last
condition is simply when neither of the two we can test for applies. In our case, we
look at the situation where we know how to test for equality (A = B) and greater
than (A > B). We do this with two predicate functions that simply return 1 if the
relationship holds for the arguments and 0 otherwise. Let’s call these predicates
isZero(A) and isGreater (A,B) and see how we might implement them
directly in C for 8-bit values using the unsigned char data type.

You may be wondering why we chose to use isZero (A) instead of the perhaps
more obvious isEqual (A, B). If so, good, you are paying attention. Given our
experience with the XOR operator we now know that,

a XOR a—0

so we can immediately see that,
isEqual (A,B) = isZero (A XOR B)

but how do we implement isZero (A) ? One approach in code would be to shift
the bits and test the lowest order one. If we find one that is not zero then the number
is not zero. The test is via an OR which is only zero when both operands are zero.
We use AND to do the bit comparison and then shift the result down so that the
compared bit is in the lowest position. Then, the OR of all these tests will be 1 if any
bits are set and 0 if not. This is the exact opposite of what we want so we add a NOT
to reverse the sense of the logic and a final AND with 1 to mask out all other bits
and return the state of the lowest bit only. This, then, is the full predicate function
isZero(x),

unsigned char isZero (unsigned char x) ({
unsigned char ans;

return ~(((x & (1<<7)) >> 7) | // test bit 7
((x & (1<<6)) >> 6) ‘
((x & (1<<5)) >> 5) ‘
((x & (1<<4)) >> 4) ‘
((x & (1<<3)) >> 3) ‘
((x & (1<<2)) >> 2) ‘
((x & (1<<1)) >> 1) ‘
(x & 1)) & 1; // test bit 1

2.3 Operations on Unsigned Integers 39

Notice that there are no actual comparison operators in this function, only logical
bitwise operators. With this we can quickly implement isEqual (x,y),

unsigned char isEqual (unsigned char x,
unsigned char y) {
return isZero(x " vy);

}

We now need isGreater (A,B) which is implemented with bit operators,
shifts,and acallto isZero (x).Thisis why we started with isZero (x) instead
of isEqual (x,y). The C code for our function is given first followed by the
explanation of why it works,

ljunsigned char isGreater (unsigned char a,

2 unsigned char b) {
3 unsigned char x,y;

4

5 X = ~a & b;

6 y = a & ~b;

7

8 x=x | (x > 1);

9 X = X | (x >> 2);

10 X =x | (x >> 4);

11

12 return ~isZero(~x & y) & 1;
12/}

In order to tell if a is greater than b we need to know the first place where their
respective bits do not agree. Once we know this bit position we know that a is
greater than b if at that bit position a has a 1 while b has a 0. So, we need to find
the locations of where the bits differ. To make the example concrete, we let a be
00011101, =29andbbe 00011010, = 26. If we look at line 5 we see,

X = ~a & b;

which sets x to the AND of the NOT of a and b. This leaves x with a 1 in all the
positions where the bit in a is less than the same bit in b. For our example this
sets x to 00000010, which tells us that the only bit position in a that is less than
the corresponding bit position in b is bit 1. Likewise, line 6 asks where are the bit
positions where a is greater than b? In this case, we set y to 00000101, to indicate
that in bit 0 and bit 2 the value of a is greater than b. In order to see if a is greater
than b we need to find the highest bit position where the two differ and see if that bit
is set. We can do this if we take the value in x, which tells us where a bits are less
than b bits, and build a mask which is 1 for all bit positions at or below the highest
bit position where a is first less than b. We do this with lines 8 through 10. This
operation which ORs the value with shifted versions of itself duplicates the highest
1 bit among all the lower bits. In this case,

40 2 Integers

x — 00000010
x =x | (x >> 1) — 00000011
x =x | (x > 2) — 00000011
x =x | (x >>4) — 00000011

where the last two steps add nothing new since x >> 2 and x >> 4 both result in
zero which will set no new bits. We now have a mask in x that tells us all the bit
positions below the first place where the bit in a is less than the bit in b. If we NOT
this mask, = 00000011 — 11111100, we can use the new mask to tell us all
the bit positions where a was not less than b. Lastly, with this mask and the value in
y which tells us where the bits in a were greater than the bits in b, we can perform
one final AND, ~x & y, which will result in zero if a < b since no bits will be
set in y in the region where the bits of a were greater than those of b, or a nonzero
value since at least one bit will be set in y in that region. Line 12, then, asks if this
result is zero by passing the output to isZero. It then applies NOT to change the
output of isZero since the result is zero when a < b and not zero when a > b.
The final AND with 1 gives us only the final bit since the NOT will change all the
bits of the result of i sZero.

We are nearly finished with our comparison operators. We have equality
(isEqual) and greater than (isGreater). With these we see that isLess
would be,

unsigned char isLess (unsigned char x,

unsigned char y) {
return (!isEqual(x,y)) && (!isGreater(x,vy));

}

which is reasonable since for any two unsigned integers A and B, if A # B then
A < B must be true. Testing for not equal is even simpler,
unsigned char isNotEqual (unsigned char x,

unsigned char y) {
return !isEqual (x,V);

}

since the only way for A to not not equal B is if the two are indeed equal. Less than
or equal and greater than or equal follow directly from the functions already defined,
unsigned char isLessOrEqual (unsigned char x,

unsigned char y) {
return isEqual(x,y) || isLess(x,y);

1
and

unsigned char isGreaterOrEqual (unsigned char x,
unsigned char y) {
return isEqual (x,y) || isGreater(x,y);

}

which completes our implementation of comparison operators using only bitwise
operations.

2.3 Operations on Unsigned Integers 41
2.3.5 Arithmetic

Just as comparison is a fundamental microprocessor operation, so is arithmetic. In
this section we look at arithmetic with unsigned binary integers, first from the point
of view of doing it “by hand” and then from the point of view of a simple 8-bit
microprocessor. These two approaches should illustrate the mechanism behind the
operations. We will not, however, attempt to implement these operations in C as
we did above for the comparison operators though we will use C to demonstrate
overflow and underflow conditions.

The addition facts in binary are,

0O + 0 = 0
o + 1 = 1
1 + 0 = 1
1 4+ 1 = Ocarryl

from which we see that one of them produces a carry since it results in a two digit
number. Just as in decimal, the carry is applied to the next digit over to the left. So,
to add two unsigned 8-bit binary numbers we move right to left, bit by bit, adding
and moving any carry to the next digit to the left,

11111 < carry
01101110 < first operand

4+ 00110101 <« second operand
10100011 < answer

where the carry from the second to leftmost bit does not cause difficulty since the
highest bits of each number are zero. However, what would happen if there was a
carry from the leftmost bit? In mathematics, nothing special would happen, there
would simply be a new leftmost bit, but in computers this is not the case. Recall
that we are working with 8-bit unsigned numbers which means that all numbers
fit in eight bits in memory. If we use eight bits for numbers we have no place in
which to put any final carry bit. This results in an overflow condition. The computer
simply discards this new highest value bit and retains the lowest eight bits which fit
in memory,

11111
11101110 EEq¢
+ 00110101 3516

1 00100011 12316

which is stored as 2314 discarding the carry on the leftmost bit. This is precisely
what we see with the following C code,

42 2 Integers

#include <stdio.h>

int main() {
unsigned char x, vy, z;

x = OxEE;
y = 0x35;
Z =X + V;

printf ("$x\n", z);

}

Let’s take a look at how a simple 8-bit microprocessor would implement an addition.
In this case, we look at an unsigned 16-bit addition which requires two addition
operations. Working again with the 6502 processor mentioned above we see that
an 8-bit addition between a value in memory locations 2314 and 25,4 will involve
a load into the accumulator (LDA), a clearing of the carry flag which catches any
overflow bit (CLC) and an addition with memory (ADC). Specifically, we assume
memory location 234 contains EE;¢, memory location 2514 contains 3515. We
then load the accumulator, clear the carry and add,

LDA $23 A < EE

CLC C<0

ADC $25 A<—A+35+C
A<23,C«1

with the accumulator set to 231 ¢, the lowest eight bits of the sum of EE;5 and 35,
and the carry flag set to 1 to indicate an overflow happened. This setting of the carry
flag is the key to implementing multibyte addition. In C, we would simply declare
the variables to be of data type unsigned short which is 16-bits and add as
before. For example, in C we have,

#include <stdio.h>

int main()
unsigned short x, y, z;

X = O0xEE;
y = 0x35;
Z =X +Y;

printf ("$x\n", z);

}

which gives us a 16-bit answer of 123;¢. In memory, using little-endian represen-
tation for multibyte numbers, we have,

memory location $24 : 23
$25 : o1

since we store the lowest byte first.
In the simpler world of the 8-bit microprocessor we store the lowest part of the
sum, the low byte, and add the high bytes without clearing the carry. Assuming

2.3 Operations on Unsigned Integers 43

memory is set to

memory location $23 : EE
$24 : o0
$25 : 35
$26 : 00

we clear the carry flag, add the two low bytes, store the partial sum, add the high
bytes with any carry, and store the final part of the sum like this,

LDA $23 A < EE

CLC C<0

ADC $25 A<—A+35+C, A=23
STA $27 $27 «—23,C«1

LDA $24 A<0

ADC $26 A<—A+0+C, A=1]
STA $28 $28 <« 1

where we have introduced a new instruction, STA, which stores the accumulator in
memory. When this sequence of instructions is complete we have the final answer
in memory locations $27 and $28 as 23,¢ and 1,4 respectively, as we expect for a
little-endian number.

The addition above is equivalent to this single 16-bit addition

1 11111
00000000 11101110 EEi6
+ 00000000 00110101 3516

00000001 00100011 12316

where we have separated the upper eight bits of the high byte from the lower eight
bits of the low byte.

Addition of unsigned binary numbers is by now straightforward. We add, left to
right, bit by bit with carry bit when necessary. If the result is too large, we overflow
and retain the lowest n bits where 7 is the width of the number in bits. We now move
on to subtraction of unsigned binary numbers.

The subtraction facts in binary are,

o — 0 = 0
0 — 1 = 1,underflow
1 - 0 = 1
1 - 1 = 0

where the underflow condition will require a borrow from the next higher bit
position. Like overflow, underflow is the situation where we cannot properly
represent the number using the number of bits we have to work with. In this case,
the underflow happens when we attempt to subtract a larger number from a smaller
and we have no way to represent the resulting negative number. We’ll address this
issue below.

44 2 Integers

To continue with the example we used for addition, we now evaluate EE;4—351¢
to get B91¢. In binary, using the subtraction facts, we have,

01
01 01
11101110 EEq¢
- 00110101 3516
10111001 B9¢
with each borrow written above the bit and the next bit set to one less than it was. If

a second borrow is necessary for a bit position, we write it above again. Let’s look
at the subtraction again, bit by bit, right to left, we are computing,

bit 0 10 — 1 = 1,borrow
bit 1 0O — 0 0
bit 2 1 - 1 0
bit 3 1 — 0 1
bit 4 10 — 1 1, borrow
bit5 10 — 1 1, borrow
bit 6 0O — 0 =0
bit 7 1 — 0 = 1

which, reading from bottom to top, gives 10111001, = B9, as expected.
What happens if we need to borrow across more than one bit position? For
example, in base 10 a problem like,

7003
— 972
6031

involves borrowing across two digits in order to subtract the 7 of 972 which we can
write as,

69'03
- 9 72
6031

where we change the 700 into 69'0 to subtract 9 7 giving the partial result 603.
We subtracted one from the next two digits and added it in as a ten to the digit we
were working with. The same thing happens in binary. Consider this subtraction
problem,

01
101016'01 A9,
- 101001 10 A6,
00000011 0316

2.3 Operations on Unsigned Integers 45

where we attempt to subtract 1 from 0 in the second bit position (bit 1, since we
always count from zero and from right to left). We need to borrow from bit 2, but
since this is also zero, we instead borrow from bit 3 and change 100 into 01'0 in
order to do the subtraction.

As we are working with 8-bit unsigned integers one will eventually be tempted
to ask what happens if we try to subtract 1 from 0 since we cannot represent - 1.
What happens is we get the result we would get if we had an extra bit at left-most
position and borrowed from it like so,

0 1111111
1 66600066'0

— 0000000 1
11111111

meaning that subtracting one from the smallest number we can represent, namely
zero, results in the largest number we can represent which for an 8-bit unsigned
integer is every bit set, 28 — 1 = 255. Another way to think about it is that the
numbers form a loop with 00000000 and 11111111 set next to each other. If
we move one position down below zero we wrap around to the top and get 255.
Likewise, if we move one position up from 255 we will wrap around to the bottom
and get zero. Moving down below zero is an underflow condition while moving up
above 255 is an overflow.

Before we move on to multiplication and division of unsigned integers, let’s look
at one more subtraction example that would result in a negative number. We’ll use
our running example but swap the operands,

1 00110101 354
- 11101110 EEis
01000111 4746

where we have indicated the implied 1 bit from which we can borrow. This implied
1 bit is in the bit position for 28 = 256 which suggests another way to think
about the answer we would expect if we go negative in a subtraction of unsigned
numbers. For our example, 35, — EE;¢ = —185, but if we add in 256 which is
essentially what we are doing in thinking there is an implied extra high bit, we get
—185 4 256 = 71 = 4714 which is the answer we found previously. We have
been working with 8-bit wide unsigned integers. If we are using 16-bit integers
the implied bit 16 (recall, we count bits from zero) is 216 = 65536 which means
we would add 65536 to any negative value to get the result we would expect from
unsigned subtraction.

The following C example demonstrates that what we have been discussing is
indeed the case,

#include <stdio.h>

int main()
unsigned char x=0xEE, y=0x35, z;

zZ =X - Y;

46 2 Integers

printf ("$X\n", z);

Z =y - X;
printf ("$X\n", z);

z =0 -1;

printf ("$X\n", z);

}

The output of this program is,

B9, = 10111001,
47,6 = 01001110,
FF¢ = 11111111,

which is exactly what we saw in the examples above.

Now that we know how to subtract in binary we can examine a useful trick
involving AND. If one bit in a number is set this implies that the number is a power of
two since every position in a binary number is, by definition, a power of two. If we
know which bit we want to test for, which power of two, it is straightforward to use
a mask and check that bit. But, what if we wanted to know if the number in question
was any power of two? We can use AND here along with an observation about bits
that are on in a number that is a power of two. For example, if the number we want
to testis 00100000, = 32 we see that it is a power of two and only one bit is on.
Now, subtract one from this number. In this case, we will get 00011111, = 31.
What has happened is that the single bit that was on is now off and some of the
bits that were off are now on. Finally, what happens if we AND these two values
together? We get,

00100000 = 32
AND 00011111 = 31
00000000 = 0O

which is exactly zero. From this we see that we will only get exactly zero when one
of two conditions are met: either the number is itself zero or it is a power of two
which had only one bit set. This is nicely captured in a simple C function,

unsigned char is power of two (unsigned char n) ({
return (n == 0) ? 0
: (n & (n-1)) == 0;

}

which returns 1 if the argument is a power of two and 0 otherwise. The function
checks if the argument is zero, if so, return 0. If not, then check whethern & (n-1)
is exactly 0. If it is, the expression is true and the function returns 1 to indicate a
power of two, otherwise it returns 0. While written for unsigned char datatype
the function will work for any unsigned integer type.

We’ve looked in detail at addition and subtraction, now we turn our attention
to multiplication and division. Modern microprocessors perform multiplication and
division as operations in hardware. This is a very good thing but makes it difficult

2.3 Operations on Unsigned Integers 47

for us in a sense so we will, as before, look at more primitive approaches which
might be used in small 8-bit microcontrollers that lack hardware instructions for
multiplication and division. To keep things simple we will illustrate the algorithms
in C even though this would never be done in practice.

Since multiplication is really repeated addition one approach to finding n x m,
where n and m are unsigned integers, would be to add n to itself m times or vice
versa. Naturally, it would make sense to run the loop as few times as possible so we
would loop over the smaller of n or m adding the other number. In C we have,

unsigned short multl(unsigned char n, unsigned char m) {
unsigned char i;
unsigned short ans = 0;

if (n < m) {
for(i=0; i < n; i++)
ans += m;
} else {
for(i=0; 1 < m; 1i++)
ans += n;

}

return ans;

}

which leaves the product of the 8-bit numbers in n and m in the now possibly 16-bit
value p. Why is the product possibly 16-bits? Because the largest possible number
we can get by multiplying two 8-bit numbers requires 16-bits to store it in memory
since 255 x 255 = 65025 which is above 28 — 1 = 255 meaning it needs more
than 8-bits to store but is below 2'¢ — 1 = 65535 which is the maximum for a
16-bit unsigned integer.

Is this really a good way to multiply numbers, however? Probably not. The loop
needs to be repeated for the smaller of n or m which may be up to 255 times. Given
we must do 16-bit addition inside the loop, recalling the example above, we see
that the simple multiplication may turn into many thousands of individual machine
instructions. Surely we can do better than this? To answer this question, let’s look a
little more closely at multiplication in binary as we might do it by hand,

00010100 14, = 20
x 00001110 0Eic = 14
00000000
00010100
00010100
+ 00010100
00100011000 118, = 280
in which we see that if the binary digit in the multiplier is 0 we simply copy down

all zeros and if it is a 1 we copy the multiplicand lining it up beneath the multiplier
bit as we would do in decimal. Then, again as in decimal multiplication, we add all

48 2 Integers

the partial products to arrive at the final answer. For simplicity we did not write the
leading zeros which would be present if showing all 16-bits of the result.

This method suggests a possible improvement over our existing multiplication
function, mult 1. Rather than repeatedly add the multiplier or multiplicand, we can
copy the process just shown by shifting the multiplicand into position and adding it
to the partial product if the multiplier bit is 1 otherwise ignore those that are 0. This
leads to a second multiplication function in C,

unsigned short mult2 (unsigned char n, unsigned char m) {
unsigned char i;
unsigned short ans = 0;

for(i=0; i < 8; i++) {
if (m & 1) {
ans += n << 1i;

return ans;

}

which, when compared to mult1 and run ten million times proves to be about 1.6x
faster. Let’s look at what mult?2 is actually doing.

We are multiplying two 8-bit numbers so we need to look at each bit in the
multiplier, m. This is the source of the for loop. The if statement AND’s the
multiplier with 1 to extract the lowest bit. If this bit is set, we want to add the
multiplicand, n, to the partial product stored in ans. Note, though, that before we
add the multiplicand, we need to shift it up to the proper bit position. Note also that
this works because the result of the operation is a 16-bit value which will not lose
any of the bits of n when we do the shift. Regardless of whether we add anything
to the partial product we need to shift the multiplier down one bit so that in the next
pass through the loop the if will be looking at the next highest bit of the original
m. Lastly, we see that there are no side-effects to this function because C passes all
arguments by value meaning n and m are copies local to the function.

The speed improvement between multl and mult2 becomes much more
dramatic when we move from multiplying two 8-bit numbers to multiplying two
16-bit numbers. To do this, we take the source for multl and mult2 and replace
all instances of unsigned char by unsigned short and all instances of
unsigned short by unsigned int. Lastly, we change the loop limit in
mult?2 from 8 to 16 since we are multiplying two 16-bit numbers. When this done
we see that mult2 is nearly 3500x faster than mult1l for the same arguments
(assuming both to be near the limit of 65535).

What about division? We cover two operations with division since the algorithm
returns the quotient and any remainder. The operations are integer division (/) which
returns the quotient and modulo (%) which returns the remainder. For example, we
need an algorithm that produces these answers,

2.3 Operations on Unsigned Integers 49

123 / 4 = 30
123 5 4 = 3

since 123 /4 = 30 with a remainder of 3.

We could implement division by repeated subtraction. If we count the number of
times we can subtract the divisor from the dividend before we get a partial result
that is less than the divisor we will have the quotient and the remainder. We might
code this in C as,

unsigned char divl (unsigned char n,
unsigned char m,
unsigned char *r) ({

unsigned char g=0;

while (xr > m) {

q++;
*r -= m;
return q;

}
and test it with,

int main()
unsigned char n=123, m=7;
unsigned char g, r;

g = divl(n, m, &r);
printf ("quotient=%d, remainder=%d\n", q,r);

}

which prints quotient=30, remainder=3 which is the answer we are expecting.

This function requires three arguments since we want to return the quotient as
the function value and the remainder as a side-effect value. This is why we pass the
remainder as a third argument using a pointer. Inside of div1 we set the remainder
(r) to our dividend and continually subtract the divisor (m) until we get a result less
than the divisor. While doing this we keep count of the number of times we subtract
in g which we return as the quotient.

Like our multl example above, divl is an inefficient way to implement
division. What happens if the dividend is large and the divisor is small? We must
loop many times in that case before we are done. The problem is even worse if we
use integers larger than 8-bits. What to do, then?

Just as we did for multiplication, let’s look at binary division by hand. Unlike
decimal long division, binary division is rather simple, either the divisor is less than
or equal to the dividend in which case the quotient bit is 1, otherwise, the quotient bit
is 0; there are no trial multiplications. Dividing 123 = 01111011, by 4 = 100,
in this way gives,

50 2 Integers

00011110
100)01111011
0
01
0
011
0
0111
100
0111
100
0110
100
0101
100
11
0
11

with 00011110, = 30 and a remainder of 11, = 3 as expected.

As we have seen several times already, modern microprocessors implement such
a fundamental operation as division in hardware, but we can look at unsigned
division in the way it might be implemented in a more primitive microprocessor
or microcontroller. For simplicity, we again implement the algorithm in C. With all
of this in mind, we get Fig. 2.5 which will require a bit of explanation.

The key to understanding what Fig. 2.5 is doing it to observe that binary division
by hand is really a matter of testing whether or not we can subtract the divisor from
the partial dividend. If so, we set a one in that bit of the quotient, otherwise we set
a zero. The algorithm of Fig.2.5 is setup for 8-bit division using 8-bit dividends
and divisors, and by implication quotients. Therefore, we need to examine all eight
bits of the dividend starting with the highest bit. To do this, and to save space as
this algorithm is often implemented in hardware, we take advantage of the fact that
C passes arguments by value and use n to be both dividend and quotient. When
we have examined all eight bits the value in n will be the quotient. We can do this
because as we look at each bit of the dividend we shift it out to the left while shifting
in the new bit of the quotient from the right.

We store the remainder in r and pass it back out of the function by using a pointer.
To start the division process we set r to zero and the quotient to the dividend in n.
Since n already has the dividend there is no explicit operation to do this, we get it for
free. If we call div2 (123, 4, &r) to continue with our running division example,
the state of affairs in binary after the execution of line 6 in Fig. 2.5 is,

2.3 Operations on Unsigned Integers 51

1| unsigned char div2 (unsigned char n,
2 unsigned char m,
3 unsigned char *r) {
4 unsigned char i;
5
6 *r = 0;
7
8 for (i=0; 1i<8; i++) {
9 *r = (xr << 1) 4+ ((n & 0x80) != 0);
10 n <<= 1;
11
12 if ((*r-m) >= 0) {
13 n |=1;
14 *r —= m;
15 }
16 }
17
18 return n;
19| 1}

Fig. 2.5 Shift, test, and restore unsigned integer division

i r n m
undefined 00000000 01111011 100

where the dividend is in n and the remainder is zero. We next hit the loop starting
in line 8. This loop executes eight times, once for each bit of the dividend. Lines 9
and 10 perform a double left shift. This is the equivalent of treating r and n as a
single 16-bit variable with r the high order bits. First we shift r one bit to the left
(xr << 1) and then comes the rather cryptic expression,

((n & 0x80) != 0)

which tests whether the highest bit in n, our dividend and quotient is set. Recall our
discussion of AND above. If it is set, we add it into r. This is because we are about
to left shift n one bit and if the bit we are shifting out of n is set, we need to move
it to r to complete the virtual 16-bit shift of r and n. We then shift n in line 10.

Line 12 checks whether or not we can subtract the divisor in m from the partial
dividend which is being built, bit by bit, in r. If we can, we set the first bit of n, our
quotient, in line 13 and then update the partial dividend by subtracting the divisor in
line 14. Recall, we are examining the dividend one bit at a time by moving itinto r.
We are simultaneously storing the quotient in n one bit at a time by putting it in on
the right side. Since we already shifted to the left the first bit in nn is always zero, we
only update it if the subtraction succeeds. After this first pass through the loop we
have,

i r n m
0 00000000 11110110 100

52 2 Integers

with the first bit of the quotient, a zero, in the first bit of n. If we continue through
the loop we will get the following sequence of values,

i r n m

1 00000001 11101100 100
2 00000011 11011000 100
3 00000011 10110001 100
4 00000011 01100011 100
5 00000010 11000111 100
6 00000001 10001111 100
7 00000011 00011110 100

where we end with a quotient of 30 in n which is the return value of the function and
a remainder in r of 3. Notice how n changes as we move through the loop. Each
binary digit is shifted into r from the right as the new quotient bits are assigned
from the left until all bits are examined. This algorithm, unlike the div1 example,
operates in constant time. There are a fixed number of operations needed regardless
of the input values.

2.3.6 Square Roots

We briefly consider here a simple integer square root algorithm which makes use
of an interesting mathematical fact. This algorithm works by counting the number
of times an ever increasing odd number can be subtracted before reaching or going
below zero. The algorithm itself is easy to implement in C,

unsigned char sqr (unsigned char n)
unsigned char c=0, p=1;

while (n >= p) {

n -=pj

p += 2;

C++;
return c;

}

where we again make use of the fact that C passes arguments by value which allows
us to modify n in the function without changing it outside of the function. Our
count, which will be the square root of n, is initialized to zero in c. We start our odd
number in p at 1 and then move to 3, 5, 7, and so on. The while loop is checking
to see if our n value is still larger or the same as p and if so, we subtract p and count
one more subtraction in c. When n is less than p we are done counting and return ¢
as the square root. Naturally, this algorithm is only approximate by underestimating
when n is not actually a perfect square.

If we call sqr with 64 as the argument, we get the following sequence of values
in the while loop,

2.3 Operations on Unsigned Integers 53

n P c
63 3 1
60 5 2
55 7 3
48 9 4
39 11 5
28 13 6
15 15 7
0 17 8

where the final value of n is zero since 64 is a perfect square and c is 8, which is
the square root of 64. We see that the algorithm works, but why?

The trick is the observation that the sum of the sequence of odd numbers is always
a perfect square. For example,

1 = 1
143 = 4

14345 = 9
143+5+7 = 16
143454749 = 25

or more compactly,

ﬁim—lzﬁ
i=1

where n? is the argument to sqr and 7 is the square root.

Another way to see this, courtesy of Eric Spellman, is to consider the difference
between n? and (n + 1)2. The latter is n> 4+ 2n + 1 which implies that the difference
between a squared integer and the next integer squared is 2n + 1 which is, always,
an odd number. For example, we can apply this same observation to computing
the unsigned cube root of an integer. In this case, we have n’ and (n + 1)° =
n® + 3n? 4+ 3n 4+ 1 implying that the difference between cubes is 372 4 3n + 1. With
this in mind a simple modification of the square root code above will now return the
cube root of the argument,

unsigned int cbroot (unsigned int n) {
unsigned int c=0, p=1;

while (n >= p) {
n -=pj
C++;
P = 3xCxC+3%C+1;

}

return c;

}

where instead of adding 2 to p every iteration we compute p = 3¢* + 3¢ + 1.

54 2 Integers
2.4 What About Negative Integers?

In the previous section we took a thorough look at unsigned integers and the sorts of
operations computers typically perform on them. Without a doubt, unsigned integers
are the mainstay of computers, but often it is necessary to represent quantities
that are less than zero. What do we do about that? In this section we examine
three options, two in detail, for tracking the sign of an integer and performing
operations with signed integers. We will naturally build on what we have learned
about unsigned integers and bear in mind that, as before, while we may show
examples using 8-bit numbers for simplicity, everything immediately translates to
numbers with more bits, be they 16, 32, or larger.

The most common techniques for handling signs are sign-magnitude, one’s
complement, and two’s complement.

2.4.1 Sign-Magnitude

Perhaps the most natural way to represent the sign of an integer is to reserve one bit
of its representation for the sign and this is precisely what early computers did. If
we decide that we will keep the highest-order bit of the number for the sign we can
use the remainder of the bits to represent the magnitude as an unsigned integer and
this is the sign-magnitude form,

01111111 = 127
00000010 = 2
00000001 = 1
00000000 = 0
10000001 = -1
10000010 = -2
11111111 = -127

This seems to be a perfectly reasonable way to store a signed integer but notice a
few things,

* We lose range in terms of magnitude. An unsigned 8-bit number can take values
from 0 to 255 while a sign-magnitude number is restricted to -127 to +127.
As we will see, keeping track of the sign always results in a loss of magnitude
range.

2.4 What About Negative Integers? 55

e There are two ways to represent zero: +0 = 00000000 and -0 = 10000000.
This seems unnecessary and wasteful of a bit pattern.

* Arithmetic becomes more tedious since we need to bear the sign of the number
in mind at all times. It would be nice to be able to do some arithmetic without
requiring separate logic for the sign.

For the reasons given above, especially the additional hardware logic, the sign-
magnitude representation for integers has been abandoned by modern computer
systems. Let us now turn our attention to possible replacements.

2.4.2 One’s Complement

Our first candidate for a suitable replacement to the sign-magnitude form is called
one’s complement. In this notation we represent negative numbers by taking the
positive form and calculating the one’s complement. The one’s complement is
simple to do, just negate (logical NOT) every bit in the positive form of the number.
So, we have,

01111111 = 127
00000010 = 2
00000001 = 1
00000000 = 0
11111110 = -1
11111101 = -2
10000000 = -127

which again seems good in that we can look at the highest order bit to see if the
number is negative or not and as we will shortly see, we can use this notation for
arithmetic without too much trouble, but we do still have two ways to represent zero
since 00000000 — 11111111.

2.4.3 Two’s Complement

The one’s complement of a positive number is the bit pattern we get when we change
all the zero bits to one and all the one bits to zero. The two’s complement of a positive
number is the bit pattern we get when we take the one’s complement and then add
one to it. This is the notation that has been accepted as the way to represent negative
integers and the advantages will be come clear when we look at operations on signed

56 2 Integers

integers. As with one’s complement integers, a positive two’s complement integer
is represented in just the same way as an unsigned integer. With two’s complement
we have,

01111111 = 127
00000010 = 2
00000001 = 1
00000000 = 0
11111111 = -1
11111110 = -2
10000000 = -128

where we now have only one way to represent zero,

00000000 — 11111111 — 00000000
positive one’s complement two’s complement

since adding one to 11111111 maps back around to 00000000 with the overflow
bit ignored. Additionally, we have increased our range by one since we can represent
numbers from -128 to +127 instead of -127 to 127 as with one’s complement or
sign-magnitude.

2.5 Operations on Signed Integers

We would like to be able to perform operations on signed integers. The bit level
operations like AND, OR and NOT work the same way with signed integers as with
unsigned integers. To these operators, the bits are just bits, the “fact” of a negative
integer is just a convention forced on certain bit patterns. Since this is the case, we
need only look at how to compare negative integers, how to perform arithmetic on
negative integers, and, as a special operation, how to deal with the sign of a two’s
complement integer when changing the number of bits used to represent the number.
Let us first start with comparing two signed integers.

2.5.1 Comparison

Comparison of two signed integers, A and B, implies determining which relational
operator, <, >, or =, should be put between them. When we compared unsigned
integers we looked at the bits from highest to lowest. We still do that for signed
integers but we need to first consider the signs of the two numbers. If the signs differ
we know very quickly the relationship between the numbers without considering
all the bits. If the signs match, either both positive or both negative, we need to

2.5 Operations on Signed Integers 57

1|signed char bset (signed char v,

2 signed char n) {

3 return (v & (1 << n)) != 0;

4|}

5

6|signed char scomp (signed char a,

7 signed char b) {

8 unsigned char i;

9

10 if ((bset(a,7) == 0) && (bset(b,7) == 1))
11 return 1;

12 if ((bset(a,7) == 1) && (bset(b,7) == 0))
13 return -1;

14

15 for (i=0; 1i<7; i++) |

16 if ((bset(a,6-1) == 0) && (bset(b,6-1) == 1))
17 return -1;

18 if ((bset(a,6-1) == 1) && (bset(b,6-1) == 0))
19 return 1;
20 }
21
22 return 0;
23|}

Fig. 2.6 Comparison of two signed integers a and b. The function returns 0 ifa = b, 1ifa > b
and -1ifa< b

look at the magnitude bits to see where they might be different. This will tell us
the relationship between the two numbers. Naturally, if the bits are all the same,
position for position, then the two numbers are equal.

We can use a C function like the one in Fig. 2.6, with included helper function
to determine whether or not a particular bit position is on, to compare two signed
numbers in two’s complement notation. Note that we are now working with
variables of type signed char which are 8-bit signed integers.

The helper function (bset, lines 1-4) returns 1 if the nth bit of v is on, otherwise
it returns a 0. It uses the shift and AND mask trick we saw above to test a bit position
value. The main function, scomp, looks first at the signs of the arguments (lines
10-13) and returns the relationship if they differ. If the sign bit of a is zero, a is
positive. If the sign bit of b is one, then b is negative and a must be greater than b
so return 1 to indicate a > b. If the signs are reversed, a is less than b so return -1
to indicate a < b.

If the signs of a and b match, either positive or negative, we then look at the
remaining bits from highest to lowest to see where there are any differences. This is
the loop of lines 15 through 20 in Fig.2.6. If we find a bit position where a has a
zero and b has a one we know that a < b must be true so we return -1. Likewise,
if we find that a is one and b is zero at that bit position we know that a > b so we
return 1. Finally, if we make it through all the bits and find no differences the two
integers are equal so we return 0. With a comparison function like scomp it is easy

58 2 Integers

to create predicate functions checking for equal, less than and greater than. Recall
that a predicate function is a function that returns true or false. For example,

unsigned char isEqual (signed char a,
signed char b) {
return scomp(a,b) == 0;

}

unsigned char isLessThan(signed char a,
signed char b) {
return scomp(a,b) == -1;

}

unsigned char isGreaterThan(signed char a,
signed char b) {
return scomp(a,b) == 1;

}

define functions which return true (1) when a = b, a < b, and a > b, respectively.

2.5.2 Arithmetic

Let’s take a look at the basic arithmetic operations (4,—,x,+, and %) as they
apply to signed numbers. For addition and subtraction we will consider both
one’s and two’s complement negative numbers to show why two’s complement is
often preferable. We focus on operations involving negative numbers as operations
involving positive numbers follow the techniques described earlier in the chapter for
unsigned integers.

Addition and Subtraction Addition in one’s complement notation is nearly
identical to unsigned addition with one extra operation should there be a final carry.
To see this, let’s take a look at adding two negative integers represented in one’s
complement,

11000000 -63

+ 11000010 -61
1 10000010 -125
10000011 -124

(one’s complement)

where the carry at the end, shown by the extra 1 on the left, is added back into the
result to get the correct answer of -124. This adding in of any carry is called the
end-around carry and is the extra twist necessary when adding one’s complement
numbers.

The same addition in two’s complement notation produces a carry which we
ignore,

2.5 Operations on Signed Integers 59

11000001 -63
+ 11000011 -61 (two’s complement)
1 10000100 -124

since we see that 10000100 is -124 by making it positive,

01111011
+ 00000001
01111100 124

Addition of a positive and negative number works in the same way for both one’s
and two’s complement numbers. For example, in one’s complement we have,

+ 01111100 124
11000010 -61

1 00111110 62
00111111 63

(one’s complement)

where we have again made use of the end-around carry to give us the correct answer.
The two’s complement version is similar,

+ 01111100 124
11000011 -61 (two’s complement)
1 00111111 63

where we again ignore the carry and keep only the lower eight bits. Recall, we are
giving all examples as signed or unsigned 8-bit numbers. If we were working with
16-bit or 32-bit numbers we would keep that many bits in the answer.

Computers implement subtraction by negation and addition. This allows for only
one set of hardware circuits to be used for both operations. With that in mind,
subtraction becomes particularly simple. If we want to calculate 124 — 61 = 63 we
actually calculate 124 4 (—61) = 63 which is exactly the example calculated above.
For calculation by hand it is helpful to think of subtraction as an actual operation
but, as we see here, when done with the appropriate notation for negative numbers,
subtraction is really an “illusion” and is nothing more than addition with a negative
number.

While addition and subtraction are straightforward, especially with two’s com-
plement notation, we have to consider one question: what happens if the result of the
operation does not fit in the number of bits we are working with? For our examples,
this means that the result does not fit in eight bits taking the sign into account. Let’s
consider only two’s complement numbers. We already saw in the examples above
that we could ignore the carry to the 9th bit and saw that the lower eight bits were
correct. Is this always the case?

A signed 8-bit two’s complement number has a range from -128 to 127. If we
attempt an operation that falls outside of this range we will not be able to properly

60 2 Integers

represent the answer. We call this condition an overflow. How can we detect this?
By following two simple rules,

1. If the sum of two positive numbers is negative, overflow has happened.
2. If the sum of two negative numbers is positive, overflow has happened.

We need not worry about the sum of a positive and negative number because both the
positive and negative number are already in the allowed range and it is impossible,
because of the difference in sign, for the sum to be outside the allowed range. This
is why we ignored the last carry bit when adding —61 to 124. Let’s look at cases that
prove the rules. If we try to calculate 124+ 124 = 248 we know we will have trouble
because 248 is greater than 127 which is the largest 8-bit positive two’s complement
number. We get,

+ 01111100 124
01111100 124 (two’s complement)
11111000 -8

which is clearly a wrong answer. According to our rule for addition of two positive
numbers we know overflow has happened because the sign bit, bit 7, is one,
indicating a negative answer. Similarly, two large negative numbers added will prove
our second rule,

+ 10000100 -124
10000100 -124 (two’s complement)
00001000 8

where we have ignored the carry to the 9th bit. We see that the result is positive since
bit 7 is zero. This proves our second rule and we know that overflow has happened.

Multiplication We now consider multiplication of signed integers. One approach
to signed multiplication would be to make use of the rules for products to track
the sign of the result. If we do this, we can make any negative number positive,
do unsigned integer multiplication as described above in Sect.2.3.5, and negate
the result if necessary to make it negative. This approach will work for both one’s
and two’s complement numbers. As we recall from school, when multiplying two
numbers there are four possible scenarios related to the signs,

. positive X positive = positive

. positive X negative = negative
. negative X positive = negative
. negative X negative = positive

AW N =

with this in mind it is simple to extend our mult2 example from Sect.2.3.5 to
check the signs of the inputs and negate the negative numbers to make them positive
before multiplying. Then, the result can be negated to make it negative if the result
should be negative. In C this gives us Fig. 2.7

where the main loop in lines 18 through 21 has not changed but before we run it we
check the signs of the inputs to see if we need to negate any negative numbers to

2.5 Operations on Signed Integers 61

1| signed short signed mult2(signed char n, signed char m) {
2 unsigned char i, s=0;

3 signed short ans=0;

4

5 if ((n > 0) && (m < 0)) |
6 s = 1;

7 m = -m;

8 }

9 if ((n < 0) && (m > 0)) |
10 s 1;

11 n = -n;

12 }

13 if ((n < 0) && (m < 0)) |
14 n -n;

15 m = -m;

16 }

17

18 for(1=0; i < 8; 1i++) {

19 if (m & 1) ans += n << i;
20 m >>= 1;
21 }
22
23 if (s) ans = -ans;
24 return ans;
251 1}

Fig. 2.7 Unsigned integer multiplication modified for signed numbers

make them positive. The variable s holds the flag to tell us that the answer needs to
be negative. We initially set it to O with the assumption that the inputs, n and m, will
both be positive. In lines 5 through 16 we check this assumption. If n is positive and
m is negative, we set s in line 6 and make m positive. Likewise, in line 9 we check
to see if n is negative and m is positive and make n positive if this is the case. We
also set the flag in s since we know the answer needs to be negative. Lastly, if both
n and m are negative we make them both positive and leave the flag in s unset. Then
we multiply as before. In line 23 we check to see if the negative flag is set, if so, we
make the answer negative before returning it.

In this example we have taken advantage of the fact that the C compiler will
properly negate a value as in line 7 regardless of the underlying notation used for
negative numbers. We know, however, in practice that this will typically be two’s
complement. Can we multiply numbers directly in two’s complement? Yes, in fact,
there are several existing algorithms which to exactly that. Let’s consider one of the
more popular of them, the Booth algorithm [1] which was developed by Andrew
Booth in 1950. A C implementation of this algorithm for multiplying two signed
8-bit integers is given in Fig. 2.8. Let’s take a look at what it is doing.

Booth’s essential insight was that when we multiply two binary numbers a string
of ones can be replaced by a positive and negative sum in the same way that 16 x6 =

62 2 Integers

1| signed short multb8 (signed char m, signed char r) {
2 signed int A, S, P;
3 unsigned char i;
4
5 A =m << 9;
9 S = (-m) << 9;
7 P = (r & Oxff) << 1;
8
9 for (i=0; 1 < 8; i++) {
10 switch (P & 3) {
11 case 1: // 01
12 P += A;
13 break;
14 case 2: // 10
15 P += S;
16 break;
17 default: // 11 or 00
18 break;
19 }
20 P >>= 1;
21 }
22
23 return P>>1;
241 }

Fig. 2.8 The Booth algorithm for multiplication of two’s complement 8-bit integers

16 x (8 —2) but since we are in binary we can always write any string of ones as the
next higher bit minus one. So, we have,

00011100=00100000+000000-10

where we have written a -1 for a specific bit position to indicate subtraction. This
means, if we scan across the multiplicand and see that at bit position i and i — 1 there
is a 0 and 1, respectively, we can add the multiplier. Similarly, when we see a 1 and
0, respectively, we can subtract the multiplier. At other times, we neither add nor
subtract the multiplier. After each pair of bits, we shift to the right.

In Fig. 2.8 we initialize the algorithm by setting A to the multiplier, m, shifted
nine places to the left, and similarly set S to the negative of the multiplier (two’s
complement form), also shifted nine positions to the left. The product, P, is
initialized to the multiplicand in r but shifted one position to the left. This is done
in lines 5 through 7. Why all the shifting? We are multiplying two eight bit signed
numbers so the result may have as many as 16 bits, hence using signed int for
A, S and P. This is the origin of eight of the nine bit positions. The extra bit position
for A and S, and the single extra bit for P (line 7), is so that we can look at the
last bit position and the one that would come after which we always set to zero.
This means that the last bit position, bit 0, and the next, bit —1, could be 1 and 0 to
signal the end of a string of ones. We mask the multiplicand, r, with 0XFF to ensure

2.5 Operations on Signed Integers 63

that the sign is not extended when we move from the signed char to signed int
data type. See the next section for a description of sign extension.

The loop in lines 9 through 21 examines the first two bits of P, which are the
two we are currently considering, and decides what to do based on their values. Our
options are,

bit i biti—1 operation
0 0 do nothing
0 1 add multiplier to product
1 0 subtract multiplier from product
1 1 do nothing

which is reflected in the switch statement of line 10. The phrase P & 3 masks
off the first two bits of P, which is what we want to examine. After the operation,
we shift the product (P) to the right to examine the next pair of bits. When the loop
finishes, we shift P once more to the right to remove the extra bit we added at the
beginning in line 7. This completes the algorithm and we have the product in P,
which we return. This algorithm substitutes a starting add and ending subtraction
for what might be a long string of additions for each 1 bit in a string of 1 bits.
Also, when not adding or subtracting, we simply shift bits. This makes the algorithm
particularly efficient.

Sign Extension and Signed Division Just as we did for multiplication above, we
can modify the unsigned integer algorithm for division in Fig.2.5 to work with
signed integers by determining the proper sign of the output, then making all
arguments positive and dividing, negating the answer if necessary. However, before
we do that, let’s take a quick look at sign extension.

Sign Extension What happens if we take an 8-bit number and make it a 16-bit
number? If the number is positive, we simply set the upper eight bits of the new
16-bit number to zero and the lower eight bits to our original number like so,

00010110 — 0000000000010110

which is pretty straightforward. Now, if we have a negative 8-bit signed integer in
two’s complement notation we know that the leading bit will be a 1. If we simply
add leading zeros we will get,

11011101 — 0000000011011101

which is no longer a negative number because the leading bit is now a 0. To avoid
this problem and preserve the value we extend the sign when we form the 16-bit
number by making all the new higher bits 1 instead of 0,

11011101 — 1111111111011101

which we know is the same value numerically and we can check it by looking at the
magnitude of the number. Recall, we convert between positive and negative two’s

64 2 Integers

complement by flipping the bits and adding one. So, the 8-bit version becomes,

11011101 — 00100010 + 1 — 00100011 = 35

and the 16-bit version becomes,

1111111111011101—>0000000000100010+1—>0000000000100011 = 35

which means that both bit patterns represent —35 as desired. We intentionally
frustrated sign extension in Fig.2.8 by masking r with OxXFF before assigning it
to P which was a 32-bit integer.

Signed Division Figure 2.5 implements unsigned division. If we track the signs
properly we can modify it to work with signed integers. Division actually returns
two results. The first is the quotient and the second is any remainder. The sign we
should use for the quotient is straightforward enough,

Dividend Divisor Quotient
+ + +
+ — —
— + —
- - +

ambiguity arises when we think about what sign to apply to the remainder. It turns
out that different programming languages have adopted different conventions. For
example, C chooses to make the remainder have the same sign as the dividend while
Python gives the remainder the sign of the divisor. Unfortunately, the situation is
more complicated still. When dividing negative numbers we are often returning an
approximate quotient (unless the remainder is zero) and that approximate quotient
has to be rounded in a particular direction. All division algorithms in programming
languages satisfy d = ng + r which means that the quotient, ¢, times the divisor, n,
plus the remainder, r, equals the dividend, d. However, we have choices regarding
how to set the signs and values of g and r. There are three options,

1. Round towards zero. In this case, we select g to be the integer closest to zero that
when multiplied by »n is less than or equal to d. In this case, if d is negative, r
will also be negative. For example, —33/5 = —6 with a remainder of —3 so that
—33 = 5(—6) + (—3). This is the option used by C.

2. Round towards negative infinity. Here we round the quotient down and end up
with a remainder that has the same sign as the divisor. In this case, —33/5 = —7
with a remainder of 2 giving —33 = 5(—7)+2. This is the option used by Python.

3. Euclidean definition. This definition makes the remainder always positive. If n >
0 then g = floor(d/n) and if n < 0 then g = ceil(d/n). In either case, r is always
positive, 0 < r < |n|.

Let’s make these definitions more concrete. The table below shows the quotient
and remainder for several examples in both C and Python. These will give us an
intuitive feel for how these operations work.

2.5 Operations on Signed Integers 65

Dividend Divisor Quotient Remainder

33 7 4 5 C
4 5 Python

-33 7 —4 -5 C
-5 2 Python

33 =7 —4 5 C
=5 -2 Python

-33 =7 4 -5 C
4 -5 Python

We see that differences only arise when the signs of the dividend and divisor
are opposite. It is here that the C choice of rounding towards zero and the Python
choice of rounding towards negative infinity come into play. The C choice seems
more consistent at first because it always results in quotients and remainders with
the same magnitude, only the signs change, but from a mathematical point of view
it is less desirable because certain expected operations do not give valid results.
For example, to test whether or not an integer is even it is common to check if the
remainder is zero or one when dividing by two. If the remainder is zero, the number
is even, if one, it is odd. This works in Python for negative integers since -43 %
2 = 1 as expected, but in C this fails since we get -43 % 2 = -1 because of the
convention to give the remainder the sign of the dividend.

With all of the above in mind, we can now update our div2 algorithm in
Fig.2.5 to handle signed integers. We show the updated algorithm, now called
signed div2,in Fig.2.9. Let’s look at what has changed.

The actual division algorithm in lines 20 through 30 is the same as in Fig.2.5
since we are still performing unsigned division. Lines 6 through 18 check whether
any of the arguments, dividend (n) or divisor (m) or both, are negative. We use
two auxiliary variables, sign and rsign, to track how we deal with the sign
of the answer. If the dividend is negative but the divisor is positive the quotient
should be negative so we set sign to 1. If the dividend is positive but the divisor
is negative, we also need to make the quotient negative. If both the dividend and
divisor are negative, the quotient is positive. In all cases we make the dividend and
divisor positive after we know how to account for the sign of the quotient. For the
remainder, we use the variable rsign to decide when to make it negative. The
division algorithm itself will make the remainder, in *r, positive but in order for
our answer to be sound we must sometimes make *r negative. When to do this? A
sound answer will always satisfy,

n=mxq-+r

so if the dividend in n was negative, we will require the remainder to be negative as
well. In this case we follow the C convention.

If we run signed_div2 onn = 123 andm = 4 with all combinations of
signs, we get the following output,

66 2 Integers

1| signed char signed div2(signed char n,
2 signed char m,
3 signed char xr) {
4 unsigned char i, sign=0, rsign=0;
5
6 if ((n < 0) && (m > 0)) {
7 sign = rsign = 1;
8 n = -n;
9 }
10 if ((n > 0) && (m < 0)) {
11 sign = 1;
12 m = -m;
13 }
14 if ((n < 0) && (m < 0)) {
15 rsign = 1;
16 n = -nj;
17 m = -m;
18 }
19
20 *r = 0;
21
22 for (i=0; i<8; i++) {
23 *r = (xr << 1) + ((n & 0x80) != 0);
24 n <<= 1;
25
26 if ((*r-m) >= 0) {
27 n |=1;
28 *r —= m;
29 }
30 }
31
32 if (sign) n = -n;
33 if (rsign) *xr = -»r;
34
35 return n;
36| 1}

Fig. 2.9 Shift, test, and restore unsigned integer division updated to handle signed integers

n m q r mxgq-—+r
123 4 30 3 4(30)+3
-123 4 -30 -3 4(-30)-3
123 -4 -30 3 -4 (-30)+3
-123 -4 30 -3 -4(30)-3

where the column on the right shows that our choice of sign for the remainder is
correct.

In this section we have reviewed implementations of signed arithmetic on
integers. In some cases we were able to build directly on existing algorithms for
unsigned arithmetic while in some we worked directly in two’s complement format.

2.6 Binary-Coded Decimal 67

There is no need to talk about signed integer square root since the square root of
a negative number is imaginary and we are not yet ready to work with complex
numbers.

2.6 Binary-Coded Decimal

Binary-Coded Decimal (BCD) numbers make use of specific bit patterns corre-
sponding to the digits 0...9 in order to store one or two decimal digits in each
byte. Storing numbers in this format allows for decimal operations in place of binary
and, indeed, some early microprocessors such as the Western Digital 6502 had BCD
modes. In this section we describe how to encode numbers in BCD and how to do
simple arithmetic with those numbers.

2.6.1 Introduction

As we saw earlier in this chapter, working with numbers expressed in binary can be
cumbersome. Binary is the natural base for a computer to use given its construction
but humans, with ten fingers and ten toes, generally prefer to work in decimal.
One possibility is to encode decimal digits in binary and let the computer work
with data in this format. Binary-coded decimal does just this. For our purposes we
will work with what is generally called packed BCD where we use each nibble of
a byte to represent exactly one decimal digit. Historically, other sizes were used,
one digit per byte (unpacked) for example, or even other values, typically with
early computers. We will examine one of these formats below (zoned decimal). In
addition, while any set of distinct bit patterns can be used to represent decimal digits
we will use the obvious choice, 0 = 0000,1 = 0001, ...,9 = 1001, so there is a
direct conversion between a decimal digit and its BCD bit pattern. The remaining
six bit patterns, 1010... 1111 are not used or allowed in properly formatted BCD
numbers. In the previous sections we ignored the difficulties of converting human
entered decimal data to binary and vice versa. BCD simplifies this process. BCD is
no longer frequently used but it will turn up again when we consider some of the
more specialized ways in which computers represent numbers, particularly Decimal
Floating-Point numbers, Chap. 7.

If we consider only positive numbers, a single byte can represent decimal
numbers from 0 through 99 as so,

68 2 Integers

BCD | Decimal

00 0
01 1
02 2
10 10
11 11
98 98
99 99

where the two digits in the BCD column on the left represent the two 4-bit nibbles of
the byte. This works but does not allow for negative numbers. Historically, several
variations were used for storing a sign with a BCD number. The form we will use
is directly analogous to signed binary integers but instead of two’s complement we
will use fen’s complement with a leading nibble to represent the sign. If the leading
nibble is 0000 the number is positive, if 1001 the number is negative and the
value is in ten’s complement format. We use the leading sign nibble because unlike
two’s complement where the leading bit is always 1 if the number is negative, ten’s
complement has no such quick test.

In two’s complement we negate a number by flipping all the digits making 0 —
1 and 1 — 0 and then add one. For the ten’s complement of a decimal number we
first find the nine’s complement which involves subtracting the number from 99, for
a single byte, and then add one. So, we see that the BCD number 51 can be thought
of as —49 because,

99 —51 =48, 484+1=49

A multidigit BCD number is represented with multiple bytes. Endian issues arise
again in this case and we chose to use big-endian so that it is easier to see the decimal
numbers in the binary bit patterns. With this convention, including the sign nibble,
the decimal number 123 is represented in BCD as,

+ 0 1 2 3
0000 | 0000 0001 | 0010 0011

where we need the leading 0 digit to fill out the byte representing the leading two
digits. Similarly, using the negative sign nibble we can represent —732 as,

- 0 2 6 8
1001 | 0000 0010 | 0110 1000

because 999 — 732 = 267, 267 4+ 1 = 268 is the ten’s complement of 732.

2.6 Binary-Coded Decimal 69

2.6.2 Arithmetic with BCD

Let’s look at arithmetic using BCD numbers. We only consider addition and subtrac-
tion as multiplication and division are rarely performed in BCD. For performance
reasons in software it is faster to convert from BCD to binary, do the multiplication
or division in binary, and then convert the answer back to BCD.

Addition of two BCD numbers is straightforward at first glance. We simply add
nibble by nibble since each nibble is a digit,

123 0000 0001 0010 0011
+ 732 + 0000 0111 0011 0010
855 0000 1000 0101 0101

where for each nibble we simply add in binary as if the numbers were unsigned
binary integers. For this example, everything works out nicely. But consider this,

123 0000 0001 0010 0011
+ 738 + 0000 0111 0011 1000
861 0000 1000 0101 1011

here we have a small problem, the sum of the first digits gives us 1011 which is
11, not an allowed bit pattern in BCD. We see the source of the problem which is
that 3 + 8 = 11 so we have produced a carry. A simple way to deal with any carries
is to take the resulting bit pattern, 1011, and add six, 0110, which will give us
the correct bit pattern for the decimal digit and a carry of 1 for the next digit. This
correction gives,

1011 + 0110 =1 0001

with the carry separated from the remaining digit which is now the BCD represen-
tation of 1. Applying this correction to the addition leads to the correct result,

123 0000 0001 0010 0011

+ 738 + 0000 0111 0011 1000
0000 1000 0101 1011

861 0000 1000 0110 0001

where we have added the carry into the next digit to change the 5 to a 6. Why add
six? There are 16 possible 4-bit nibbles but we are only using the first 10 of them
for decimal digits. If we exceed 10 for any single digit adding six will wrap the bit
pattern around to the digit we would get if we, in decimal, subtracted ten. It also
leaves the carry set for the next digit. If adding the carry to the next higher digit
results in 10 or greater the “add six” trick can be used again and repeated as many
times as necessary until the BCD number is in the proper form, each time moving
to the next higher digit position.

We have chosen to represent negative BCD numbers using ten’s complement.
This format works in the same way as two’s complement so that in order to subtract
we simply add. For example, consider,

70 2 Integers

123 0000 0001 0010 oOO011

- 732 + 1001 0010 0110 1000
1001 0011 1000 1011

—609 1001 0011 1001 o001

where the overflow in the first digit was addressed by adding six and then adding
the carry to the next higher digit. The sign is negative and the BCD number reads as
391. Since the number is negative, we expect that 391 is the ten’s complement form
of —609 which is the actual answer. To see that it is, we negate it,

999 — 391 = 608, 608 + 1 = 609

so we know that we have, in fact, reached the correct result.

2.6.3 Conversion Routines

Binary to BCD and BCD to binary conversion is straightforward. First, let’s consider
binary to BCD. This routine could be used during multiplication or division of BCD
numbers or might be used on its own to prepare for output of a binary value as
a decimal number. Once the value is in BCD conversion to ASCII for output is
straightforward, simply examine each nibble, add it to 48 which is the ASCII code
for “0” and output the resulting byte as an ASCII character.

Our binary to BCD conversion routine will convert an 8-bit unsigned binary
number to a three digit BCD number. It goes by the amusing name of the “double
dabble” algorithm and we present our implementation in Fig. 2.10. The routine itself
is referred to briefly in [7].

What is this code doing? We have an unsigned 8-bit binary number passed in as b.
We will return the three digit BCD number in p. Since a single byte can hold any
value from 0 to 255 we need exactly 12 bits to store the equivalent BCD number.
Using an unsigned short as a return value gives us 16 bits, the top four of
which we leave as zero. Inside the algorithm we work with p as an unsigned
int so that we have 32-bits to work with. The algorithm is going to perform eight
shifts to the left so that it can examine each of the eight bits in b. For example, if
bis 123 = 01111011, we initialize p with b so that at the start p looks like,

p
0000 0000 0000 0000 O00O0OO0O 0000 0111 10112
100s 10s Is

where the bit positions of the hundreds, tens and ones digits for our BCD
representation are indicated.

The loop in lines 7 through 24 runs eight times and shifts p one bit position
to the left each time. However, before the shift we look at each of the BCD digit
locations to see if the value there is five or greater. If it is, we add three before
shifting to the left. Line 8 pulls out the four bits representing the ones value in the

2.6 Binary-Coded Decimal 71

1| unsigned short bin2bcd8 (unsigned char b) {
2 unsigned int p=0;
3 unsigned char 1i,t;
4
5 p = (unsigned int)b;
6
7 for (i=0; 1i<8; 1i++) {
8 t = (p & 0x£f00) >> 8;
9 if (£ >= 5) {
10 t += 3;
11 P = ((p>>12)<<12) | (t<<8) | (p&Oxff);
12 }
13 t = (p & 0x£000) >> 12;
14 if (t >= 5) {
15 t += 3;
16 p = ((p>>16)<<16) | (t<<12) | (p&Oxfff);
17 }
18 t = (p & 0x£0000) >> 16;
19 if (t >= 5) {
20 t += 3;
21 p = ((p>>20)>>20) | (£t<<16) | (p"Oxffff);
22 }
23 p <<= 1;
24 }
25
26 return (unsigned short) (p>>8);
271 1}

Fig. 2.10 Unsigned 8-bit binary to three digit BCD conversion

BCD representation. Specifically, it first masks p with 0x£00 which leaves only the
four bits in the ones place nonzero. It then shifts to the right eight bits and assigns
this value to t. This sets t to the ones value. Line 9 asks if this value is greater than
or equal to five. If so, line 10 increments t by three. Line 11 then updates the proper
position in p with the new value of t. Let’s look at this line more closely. Recall that
OR combines bits and here three pieces are combined to replace the proper four bits
of p with the value of t. First, ((p>>12)<<12) loses the lower 12 bits of p, which
includes the four bits of the BCD ones digit along with the eight bits originally set to
b. It then shifts back up so that the net result is a value that has the lowest 12 bits set
to zero and the remaining bits set to whatever they were previously. This is OR-ed
with t shifted up eight bits so that the lower four bits of t, which are the only ones
to have a nonzero value, are in the proper position to be the BCD ones digit. Lastly,
p & 0xff keeps the lowest eight bits of p and OR’s them in as well. When each of
these operations is complete p is the same as it was previously with the exception
that the four bits in the BCD ones position have been increased by three. We will
see below why three was added and why five was the cutoff value. Lines 13 through
22 perform the same check for the BCD tens and BCD hundreds digits. The only
change is the mask and shift values to isolate and work with the correct four bits of
p. Lastly, line 23 shifts all of p one position to the left to move the next bit of b (in

72 2 Integers

the lowest eight bits of p) into position. After all bits of b have been examined the
final BCD result is in bits 9 through 20 so we shift down eight positions to get the
final BCD value.

The operation of the entire algorithm is shown below for b = 123. For
convenience we ignore the top three nibbles of p, a 32-bit unsigned integer. This
leaves us with,

100s 10s Is b comment
0000 0000 0000 0111 1011 initial
0000 0000 0000 1111 0110 shift 1
0000 0000 0001 1110 1100 shift 2
0000 0000 0011 1101 1000 shift 3
0000 0000 0111 1011 0000 shift 4
0000 0000 1010 1011 0000 add 3, ones
0000 0001 0101 0110 0000 shift 5
0000 0001 1000 0110 0000 add 3, ones
0000 0011 0000 1100 0000 shift 6
0000 0110 0001 1000 0000 shift 7
0000 1001 0001 1000 0000 add 3, tens
0001 0010 0011 0000 0000 shift 8

which after the last left shift has 123 as a BCD number in the indicated columns.
The return statement shifts this value to the right eight bits to return the final
three digit BCD number.

This shows us that the algorithm works but not why it works. The key to
understanding the algorithm is to recall that to convert a BCD digit that is not a
proper digit, say 1011 which is 11, to a proper digit is to add six, 0110. This will
produce a carry bit to the next BCD digit position while preserving the proper value
in the existing digit. So, one way to think of how to convert binary to BCD is to look
at each digit position and if it is greater than ten subtract ten before doubling. This
is to say, calculate,

2x+6
for cases where the digit, x, is ten or greater before looking at the next bit of our

binary number. This is equivalent to considering if the value is greater than five and
if so adding three and then doubling because,

2x+ 6 =2(x+ 3)
which has the added advantage of not requiring an extra bit since 2x + 6 may be

greater than 15 while x4-3 never will be for x a valid BCD digit. This is the approach
of the double-dabble algorithm shown in Fig. 2.10.

2.6 Binary-Coded Decimal 73

Conversion from a three digit BCD number to binary is especially straightfor-
ward. We simply examine each nibble, multiply it by the proper power of 10, and
accumulate the result,

unsigned char bcd2bin8 (unsigned short b)
unsigned char n;

= (b & 0x0f) ;

>>= 4;

+= 10%x (b & 0xO0f) ;
>>= 4;

+= 100% (b & 0x0f) ;

B oBUOB

return n;

}

The phrase b & 0x0f masks off the lowest nibble of b. This is the ones digit, so
we simply set the output value in n to it. We then shift b to the right by four bits
to make the lowest nibble the tens digit. We add this to the running total after first
multiplying it by ten. We then shift one last time to make the hundreds digit the first
nibble, multiply it by 100 and add to n to get the final value of the three digit BCD
number.

2.6.4 Other BCD Encodings

So far in this section we have used packed BCD encoding. Here we explore two
others: zoned decimal and densely packed decimal (DPD). We will only briefly
discuss densely packed decimal because we cover it in detail in Sect. 7.2 as it is a
critical part of the IEEE decimal floating-point format.

Densely Packed Decimal The DPD format encodes three decimal digits using ten
bits. It is a refined version of Chen-Ho encoding [8] and is used by the IEEE 754-
2008 Decimal Floating-Point Format [9] to encode the significand in base ten. There
is a two bit savings in storage over packed BCD which requires 12 bits to encode
three decimal digits.

Packing three BCD numbers into a DPD declet is straightforward. We label the
bits of each BCD digit as abcd, efgh, and ijkm. Using these labels for the bits we
can take any set of three BCD digits and encode them into a DPD declet using Table
2.3. The ten bits of the declet are labeled pgr stu v wxy which can be read from the
table by finding the row matching the aei bit values from the input BCD numbers.

For example, to create a declet encoding the number 359 we first encode the
digits in packed BCD as 0011, 0101, and 1001, and then look for the row in
Table 2.3 that starts with 001 (the first bits of each packed BCD digit). This directs
us to line 2 so that we can map the remaining input bits to the output DPD bits
like so,

74

Table 2.3 Packing three
BCD numbers (abcd efgh
ijkm) into a declet (pgr stu v
wxy)

Table 2.4 Unpacking a
declet (pgr stu v wxy) by
translating it into three groups
of binary digits representing
three decimal digits (abcd

efgh ijkm)

N R

bed

fgh
1

00m

2 Integers
aei | pqr |stu |v |wxy
000 |bed |fgh |0 |jkm
001 |bed |fgh |1 |00m
010 |bed |jkh |1 |Olm
011 |bed [10h |1 |11m
100 |jkd |fgh |1 |10m
101 |[fgd [Olh |1 |1lm
110 |jkd |[00h |1 |11m
111 |00d [11h |1 |11lm

Locate the row by matching the
first bit of each BCD number
to the value under the aei col-
umn, then, the bits of the declet
are read from the remaining
columns of that row. After [11]

vxwst abed | efgh | ijkm

0---- |Opgr |Ostu |Owxy
100-- |Opgr |Ostu | 100y
101-- |Opgr |100u |Osty
110-- | 100r |Ostu |Opqy
11100 |100r |Opqu | 100y
11110 |Opgr |100u | 100y

11111

100r | 100u | 100y

After [11]

011
101
1
001

so that the final output decletis 011 101 1 001.

A declet can be unpacked using Table 2.4 by forming the value vxwst and
locating the matching row. For example, to undo the example above where 359 —
011 101 1 001 (pgr stuv wxy), we form vxwst = 10010 which matches line 2
of Table 2.4 so that the bits of the unencoded declet become,

abcd — Opqr
efegh —

ijkm

as we expect.

Ostu
100y

0011
0101
1001

3
= 5
= 9

Zoned Decimal Zoned decimal is a storage format that was supported on early
IBM mainframes starting with the IBM 360, if not earlier. The format is still used,
in fact, and is supported by certain programming languages, for example, RPG

IV [10].

2.6 Binary-Coded Decimal 75

Zoned decimal is a BCD format used primarily during input and output. While
packed BCD stores two decimal digits per byte, zoned decimal stores only one in
the lower nibble. The upper nibble, the “zone”, is used to store a value that makes
the entire byte a valid EBCDIC or ASCII character code for the number itself. In
this way, output is made simple. The only twist is storing the sign of the decimal
number. In this case, the upper nibble of the lowest order digit is altered to indicate
that the entire number is negative. We will implement zoned decimal routines that
store up to eight digits in an unsigned 64-bit integer. If we do this we see that,

8 — FOFOFOFOFOFOFOF8

—8 — FOFOFOFOFOFOFODS
8675309 — FOF8F6F7F5F3F0OF9
—8675309 — FOF8F6F7F5F3F0D9

where we are using the EBCDIC representation which uses F for the high nibble
and D if the number is negative. For ASCII the conversion is similar but 3 is used
for the high nibble and 7 if the number is negative.

For example, the single decimal digit, 8, maps to FOFOFOFOFOFOFOF8 where
the number is stored in the 64-bit unsigned integer with leading zeros, seven of
them, as F0, the EBCDIC code for “0”, followed by F8 for the digit, “8”. For —8
the conversion is the much the same but the lowest order byte is now D8 to indicate
that the entire number is negative. Notice that an unsigned 64-bit integer can store
eight bytes and that each zoned decimal digit is a byte so the range of representable
integers is [—99999999, +99999999], which fits in a standard C signed integer. The
code for converting a signed integer to zoned decimal is,

1 #include <inttypes.h>
2 #define PNIB OxFO
3 |#define NNIB 0xDO

4
5 luint64_t bin2zoned(int b)

6 uint8 t i,s = (b<0) 2 1:0;

7 uint64 t d,z=0,p=10000000;

8

9 b = abs(b);

10 for(i=7; i>0; i--) {

11 d=Db/ p;

12 b -=4d * p;

13 p /= 10;

14 z += (PNIB+d) << (uinté4_t) (ix8);
15 }

16 z += (s) ? (NNIB+b) : (PNIB+b);

17 return z;

18}

where we include the inttypes standard C library to access the uinte4 t data
type. Lines 2 and 3 define the upper nibbles for the EBCDIC representation. Replace
these with 0x30 and 0x70 respectively for ASCII. The bin2zoned function

76 2 Integers

(line 5) accepts a standard signed integer value (b) and returns the eight digit
zoned decimal representation. Line 6 sets the sign of the input (s) and then works
with the positive version (line 9). The loop starting in line 10 sets the highest seven
digits of the output. The last digit is a special case because the upper nibble changes
if the input is negative. The output value is in z.

Line 11 sets d to the integer part of the input divided by the power of ten the
current zoned digit represents (p, initialized in line 7). The loop counts down so
that we process the input from most-significant to least-significant digit. Line 12
subtracts the digit value from the input. Line 13 drops p to the next lower power of
ten. Finally, line 14 adds the digit value to the positive upper nibble value, PNIB+d,
and shifts it into the proper byte position, 1+ 8.

The lowest-order digit in handled in line 16. At this point the value in b is the
digit we need so we check the sign in s to decide which upper nibble to add before
adding the final digit value to z. Line 17 returns the zoned decimal representation.

Converting a zoned decimal back to binary is similarly straightforward,

1 |int zoned2bin(uinté64 t z) {
2 int32 t b=0,p=1;

3 int8 t i,s=1;

4

5 for (i=0; i<8; i++) {

6 b += (z & 0xF) * p;
7 p *= 10

8 if ((z & OxFO0) == NNIB) s=-1;
9 zZ >>= 8;

10 }

11 return sxb;

12/}

where we loop over each digit in the input, lowest to highest, starting in line 5.
The output is stored in b and we mask off the lowest nibble of the input, z, and
multiply it by the current power of ten represented by that digit, p (line 6). Line 7
moves to the next higher power of ten. Line 8 checks if the current zoned digit’s
high nibble is negative. If so, it sets the sign in s. Line 9 shifts the input down so
that the highest zoned digit is now in the first byte. The binary value is multiplied
by the sign and returned (line 11). Conversion from zoned decimal to packed BCD
is left as an exercise for the reader (see Problem 2.9).

2.7 Chapter Summary

In this lengthy but essential chapter we covered a lot of important topics. We
learned key terminology regarding bits, bytes, and words. We explored unsigned
integers at length learning how to perform such low-level functions as manipulation
of individual bits to the basic logic operations of AND, OR, NOT and XOR.

2.7 Chapter Summary 77

We completed our tour of low-level manipulation by studying shifts and rotates and
how they affect the value of an unsigned integer. We then examined how to compare
the magnitude of two unsigned integers.

Unsigned integer arithmetic was our next topic and with it we learned how to
implement the basic operations of addition, subtraction, multiplication and division
with remainder. To round out the unsigned integers we reviewed one approach for
calculating the square root of a number.

Signed integers were our next target. We built upon what we learned with
unsigned integers and delved into the main ways signed data is stored: sign-
magnitude, one’s complement and two’s complement. We learned how to compare
signed integers and how to either extend existing unsigned arithmetic routines to
handle signed arguments or how to implement algorithms that operate on two’s
complement numbers directly.

To round out our examination we took a look at binary-coded decimal numbers,
how to add and subtract them, in ten’s complement, and how to convert between
binary-coded decimal and pure binary as well as vice versa.

It would not be too much to say that integers are the heart of computers.
We now know how to work with them at any level. There are more specialized
representations of integers, and we will examine them in other chapters, but for
the vast majority of computer work involving data that does not need fractions,
including characters which are represented as integer codes, fixed-width integers
are our main tools and understanding them in some detail is well worth the effort.

Exercises

2.1 Interpret the following bit patterns first as little-endian then as big-endian
unsigned short integers. Convert your answer to decimal.

¢ 1101011100101110
e 1101010101100101
e 0010101011010101
e 1010101011010111

2.2 Given A = 6B;¢ and B = D6, write the result of each expression in binary
and hexadecimal.

* (A AND B) OR (NOT A)
e (A XOR B) OR (A AND (NOT B))
* ((NOT A) OR (NOT B)) XOR (A AND B)

2.3 Using C syntax write an expression that achieves each of the following. Assume
that the unsigned char A = 0x8A.

e Set bits 3 and 6 of A.
* Keep only the low nibble of A.

78 2 Integers

e Set unsigned char B to 100 if bit 3 of A is not set.
* Clear bit 1 of A.
* Toggle bits 4 and 5 of A.

2.4 Using C syntax write an expression for each of the following.

* Swap the upper and lower nibbles of unsigned char v = 0xC4.
e Multiply v by 5 using at least one shift operation.

2.5 Express each of the following numbers in one’s and two’s complement notation.
Write your answer in binary and hexadecimal. Assume 8-bit signed integers.

. —14
. —127
. -1

2.6 Write a function to reverse the bits of an unsigned 8-bit integer. *
2.7 Write a function to count the number of 1 bits in an unsigned 32-bit integer. *

2.8 Modify the cube root algorithm in Sect.2.3.6 to work properly with signed
integers.

2.9 Modify the zoned2bin function of Sect.2.6.4 to return a packed BCD repre-
sentation of the input. Call this new function zoned2bcd. Note, the input is an
unsigned 64-bit integer representing 8 digits so the packed BCD representation will
require 32-bits and will fit in an unsigned 32-bit integer.

2.10 The Hamming distance between two integers is the number of places where
their corresponding bits differ. For example, the Hamming distance between 1011
and 0010 is 2 because the numbers differ in bits O and 3. Write a function to
calculate the Hamming distance between two unsigned short integers. *

2.11 A Gray code is a sequence of bit patterns in which any two adjacent patterns
in the sequence differ by only one bit. Gray codes were developed to aid in error
correction of mechanical switches but are used more generally in digital systems.
For example, for four bits, the first six values in the Gray code are: 0000, 0001,
0011, 0010, 0110, 0111. The rule to convert a binary number »n into the
corresponding Gray code g is to move bit by bit, from lowest bit to highest bit,
setting the output bit to the original bit or inverted if the next higher bit is 1. So, to
change n = 0011 to g = 0010 we output a 0 for bit O of g since bit 1 of n is set and
output the existing bit value of n for all other positions since the next higher bit is
not set.

Using this rule, write a C function that calculates the Gray code g for any
unsigned short n input. (Hint: there are many ways to write a function that works
but in the end it can be accomplished in one line of code. Think about how to check
if the next higher bit of the input is set by shifting and how to invert the output bit if
it is.) **

References 79

References

—

. Booth, A.D., A signed multiplication technique. The Quarterly Journal of Mechanics and

Applied Mathematics, Vol IV, Part 2 (1951)

. Shannon, C., “A mathematical theory of communication.” ACM SIGMOBILE Mobile Com-

puting and Communications Review 5.1 (2001): 3-55.

. As mentioned in Anecdotes, Annals of the History of Computing, Vol 6, No 2, April pp 152—

156 (1984)

. Swift, J., Gulliver’s Travels (1726). Reprinted Dover Publications; Unabridged edition (1996)
. The Internet Protocol. RFC 791 (1981)
. Boole, G., An Investigation of the Laws of Thought (1854). Reprinted with corrections, Dover

Publications, New York, NY, 1958. (reissued by Cambridge University Press, 2009)

. Gao, S., Al-Khalili, D., Chabini, N., “An improved BCD adder using 6-LUT FPGAs”, IEEE

10th International New Circuits and Systems Conference (NEWCAS 2012), pp. 13-16 (2012)

. Chen, T. C., “Decimal Number Compression (Internal memo to Irving T. Ho)”, San Jose

Research Laboratory: IBM: 1-4 (1971).

. IEEE Standards Association. Standard for Floating-Point Arithmetic. IEEE 754-2008 (2008).
10.
11.

IBM Rational Development Studio for i, ILE RPG Language Reference 7.1 (2010).
Duale, A., et al. Decimal floating-point in z9: An implementation and testing perspective. IBM
Journal of Research and Development 51.1.2 (2007): 217-227.

Chapter 3
Floating Point

Abstract We live in a world of floating-point numbers and we make frequent use
of floating-point numbers when working with computers. In this chapter we dive
deeply into how floating-point numbers are represented in a computer. We briefly
review the distinction between real numbers and floating-point numbers. Then
comes a brief historical look at the development of floating-point numbers. After this
we compare two popular floating-point representations and then focus exclusively
on the IEEE 754 standard. For IEEE 754 we consider representation, rounding,
arithmetic, exception handling, and hardware implementations. We conclude the
chapter with some comments about binary-coded decimal floating-point numbers.

3.1 Floating-Point Numbers

This chapter is about floating-point numbers. This is a highly complex area
with active research even today. As such, we can only scratch the surface of
representation and computation with floating-point numbers in a single chapter.
Therefore, we will, after some preliminaries, focus on the current Institute of
Electrical and Electronics Engineers (IEEE) 754-2008 standard which we will refer
to simply as “IEEE 754”. For a more in-depth treatment of floating-point numbers
and arithmetic please see Muller et al. [1].

It would be good to have an idea of what, exactly, a “floating-point” number
actually is and how it differs from a “real” number. Let’s start with the latter concept.
This one we know from school: a real number is a number that can be found on the
real number line. We have an intuitive feel for what a real number is, and we know
many of them because we also know that all integers (Z) and rationals (Q) are also
real numbers. But, of course there are still many more real numbers besides these.
For example, 7 is transcendental and therefore a real number but it is neither an
integer nor a rational (capable of being written as p/q with p, g € Z).

How, then, to define the real numbers, R? Formally, there are several ways to
define R. The one we will consider is the synthetic approach with specifies R by
defining several axioms which hold only for R. The set of numbers which satisfy
these axioms is, by definition, R. Specifically, R may be defined by considering a
set (R), two special elements of R, 0 and 1, two operations called addition (+) and
multiplication (x), and finally a relation on R called < which orders the elements

© Springer International Publishing AG 2017 81
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-50508-4_3

82 3 Floating Point

of R. With this and the following four axioms, we have arrived at a specification of
the real numbers. The axioms are,

1. (R, +, x) forms a field.

2. (R, <) forms a totally ordered set.

3. + and x maintain <.

4. The order < is complete in a formal sense.

where a full description of their meaning and implications are beyond the scope
of this text. The interested reader is directed to [2] for a presentation on fields and
rings. For the present, in this sense, 4 is simply normal addition and X is normal
multiplication. The order < also acts as expected. A floating-point number is an
approximation of a real number that is representable on a computer. It is “close
enough” (we’ll see below what that means) to the actual real number we wish to
represent to be useful and lead to meaningful results.

To be specific, in this chapter a floating-point number is a number which is
represented in exponential form as,

+dy.didyrd; .. .dp_l X /36, 0<d; < ﬂ

where dy.didad; . . . d,— is the p digit significand (or mantissa), f is the base and e
is the integer exponent. For the above we follow the notation given in [3]. While it
is possible for the base 8 to be any integer for this chapter we restrict ourselves to
B = 2 so that our numbers are binary and the only allowed digits are 0 and 1.

If there are p digits in the significand then this part of the floating-point number
can have S” unique values. This defines the precision with which values can be
represented for a particular exponent. To complete the format we need to also
specify the range for the exponent from e,,;, to e,,,,. Before moving on to a brief
history of floating-point numbers in computers let’s take a quick look at working
with floating-point numbers in base 2.

The significand, dy.dd>d5 . . . d,—1 is a number with the value of

do + d1,371 + d2,372 + d3,373 4+t dp—l,Bi(pil)
which is then scaled by the exponent 8¢, so that the final value of the number is,
do+dif +dop P+ dsp >+ +dy VDB

where we have ignored a possible minus sign to make the entire number negative.
The above means that the distribution of floating-point numbers on the real
number line is not uniform as shown in Fig. 3.1.
This is the case because as we saw above the digits of the significand become
multipliers on the exponent value 8¢. So, for a fixed exponent, the smallest interval
between two floating-point numbers is 37"~ 8¢ which is of fixed size as long as the

3.1 Floating-Point Numbers 83

exponent 0 1 2

/
| |1 ||
1 2 3 4 5
| | [I
I I I I I
?AHHKAH&AA? A A A A A 4 ?

1.000 T

1.001

1.010

1.011

1.100

1.101

1.110

1.111

significand (3 bits)

Fig. 3.1 The distribution of floating-point numbers. For this figure the number of significand
bits is three with an implied leading bit of one: 1.mom;m, X 2¢. The location of representable
numbers for exponents of e = 0, 1,2 are shown. For each increase in the exponent the number
of representable numbers is halved. So, between [1, 2) there are eight values while between [2, 3)
there are only four and between [4, 5) there are only two

exponent does not change. Once the exponent changes from e to e 4 1 the minimum
interval becomes,

ﬂ_(p_l),Be N ﬁ_(p_l)ﬁe+] — (IB—(IJ—I)IB")’B

which is B times larger than the previous smallest interval.

Above we said that there are 87 possible significands. However, not all of them
are useful if we want to make floating-point numbers unique. For example, in
decimal 1.0 x 102 is the same as 0.1 x 10° and the same holds true for any base
B. Therefore, to make floating-point numbers uniquely representable we add a
condition which states that the first digit of the significand must be nonzero. For
binary floating-point this means that the first digit of the significand must be a
1. Floating-point numbers with this convention are said to be normalized. This
requirement also buys us one extra digit of precision when the base is 2 because
the only nonzero digit is 1 which means all normal binary floating-point numbers
have a known leading digit for the significand. This known digit need not be stored
in memory leaving room for a p 4+ 1-th digit in the significand.

To make all of this concrete, let’s look at expressing some binary floating-point
numbers (8 = 2). We will calculate the actual decimal values for the floating-point
numbers shown in Fig. 3.1. They are,

84 3 Floating Point

Significand | Exponent | Expanded Decimal value
1.000 0 (1) x 1 1.0000
1.001 0 (1+3)x1 1.1250
1.010 0 (14 7)x1 1.2500
1.011 0 (I+1+Hx1 1.3750
1.100 0 (1+1)x1 1.5000
1.101 0 (14+1+43)x1 1.6250
1.110 0 (1+5+px1 1.7500
1111 0 (I+34+51+3Hx1 18750
1.000 1 (1) x 2 2.0000
1.001 1 (14 3)x2 2.2500
1.010 1 (1+1Hx2 2.5000
1.011 1 (1+1+3)x2 2.7500
1.100 1 (14+1)x2 3.0000
1.101 1 (1+3+3)x2 3.2500
1.110 1 (1+35+7)x2 3.5000
1111 1 (1+34+51+3)x2 3750
1.000 2 (1) x 4 4.0000
1.001 2 (14 3) x4 4.5000
1.010 2 (14 1) x4 5.0000

where we see that the three bits of the significand has indeed set the precision of
each number for a fixed exponent but that the larger the exponent the greater the
delta between successive floating-point numbers.

3.2 An Exceedingly Brief History of Floating-Point Numbers

Perhaps the first description of floating-point numbers, meaning a method for
storing and manipulating real numbers with a machine, is that of Leonardo Torres
y Quevedo in his paper “Essays on Automatics” (1914). This paper is included
in Randell’s book “The Origins of Digital Computers” [4]. Torres y Quevedo
implemented an electromechanical calculating machine, the “electromechanical
arithmometer”, inspired by the work of Charles Babbage, which was capable of
accepting typed statements such as 365 x 256 via a typewriter and would respond,
by typing on the same line, with = 93440 and then advance to the next line. This
machine was demonstrated at a conference in Paris in 1920.

As for floating-point, Torres describes a way to store floating-point numbers in a
consistent manner in his “Essays” paper. First he states that numbers will be stored
in exponential format as n x 10™. He then offers three rules by which consistent
manipulation of floating-point numbers by a machine could be implemented. They
are, in his own words (as translated into English),

3.3 Comparing Floating-Point Representations 85

1. nwill always be the same number of digits (six for example).
2. The first digit of n will be of order of tenths, the second of hundredths, etc.
3. One will write each quantity in the form: n; m.

On the whole this is quite remarkable for 1914. The format he proposed shows that
he understood the need for a fixed-sized significand as is presently used for floating-
point data. He also fixed the location of the decimal point in the significand so that
each representation was unique. Finally, he even showed concern for how to format
such numbers by specifying a syntax to be used that could be entered through a
typewriter, as was the case for his “electromechanical arithmometer” some years
later. We use essentially the same syntax for most programming languages today;
simply replace the ““;” with an “E” or “e” so that where he would have written
0.314159;1 we now write 0.314159E1. It is unfortunate that Torres y Quevedo’s
work is not more widely known outside his native Spain.

Konrad Zuse is typically credited with being first to implement practical floating-
point numbers for his ZI and Z3 computers [5]. The Z1 was developed in 1938 with
the Z3 completed in 1941. These computers used binary floating-point numbers with
one bit for the sign, 14 bits for the significand, and a signed exponent of 7 bits. Zuse
also recognized the value of an implicit “1” bit in the significand and stored the
numbers in normalized format. This format is in many ways identical to the modern
floating-point formats we will be investigating in this chapter and is a testament to
Zuse’s often unrecognized brilliance.

According to [5] Zuse called any number with an exponent of —64 “zero”
and any number with an exponent of 63 “infinity”. This means that the smallest
number possible on the Z3 was 279 = 1.08 x 107!° while the largest was
1.999 x 262 = 9.2 x 10'®. Numbers were entered in decimal and converted to
binary format. Similarly, output was converted from binary to decimal. However,
this conversion did not cover the entire range of the machine and the user was limited
to a much smaller floating-point range for input and output.

Computers in the 1950s through the 1970s used a wide variety of floating-point
formats. For example, the Burroughs B6700 used a base 8 (8 = 8) format while the
IBM System/360 used a base 16 (8 = 16) format. Many other computers copied
the IBM format including the Data General Nova and Eclipse computers.

In 1985 IEEE released a standard for floating-point arithmetic. This standard has
since dominated the industry and has been implemented in hardware by the Intel
x86 series of microprocessors. This standard is the main focus of this chapter and
we begin by comparing its floating-point representation to the older IBM format.

3.3 Comparing Floating-Point Representations

In this section we examine the 32-bit IBM S/360 format for floating-point numbers
and compare it to the 32-bit IEEE 754 format. We then focus exclusively on the
IEEE format for the remainder of the section and chapter. By this comparison we
will see that the choice of B = 16 was not a particularly good one and why the
B = 2 of IEEE is a better one.

86 3 Floating Point

A single-precision floating-point number in the IBM S/360 format was stored in
memory as,

31 24 23 0 Dbit#
1 7 24
S E M

with 1 bit for the sign (S), 7 bits for the exponent (E), and 24 bits for the significand
(M). The exponent was stored in excess-64 format meaning an exponent of 0
represented —64 and an exponent of 127 represented 63. The significand was in
binary but manipulated in groups of four bits since the base was 16 and 2* = 16.
Because of this, one can think of the significand as representing six hexadecimal
digits for the first six negative powers of 16.

In order to normalize a floating-point number at least one of the first four high bits
of the significand had to be nonzero. Because of this the smallest positive floating-
point number that could be represented was,

0 0000000 0001 0000 0000 0000 0000 0000

which is, in base 16, 0.1;6 x 1697 =1 x 167! x 167% = 5.397605 x 10~7°.
Similarly, the largest positive number was,

0 1111111 1111 111 1111 1111 1111 111

equal to 0.FFFFFF 5x 16277 = 15x167!+15x1672+15x1673+15x16"*+15x
1675 4+15x1670x16% = (1—-1670) x 16%° = 7.237005 x 107 since the significand
of 0.FFFFFF ¢ is only one 167 away from 1, hence 0.FFFFFF ;s = 1 — 167°. The
number zero was represented by all bits set to zero.

The IEEE 754 standard defines a number of different floating-point sizes. For
the moment we consider only the binary32 single-precision format which fits in a
32-bit number. On modern x86-based hardware this is the format used when one
declares a variable to be of type £1oat in C, for example. This format is stored in
memory as,

3.3 Comparing Floating-Point Representations 87

31 2322 0 Dbit#
1 8 23
S E M

with 1 bit for the sign (S), 8 bits for the exponent (E), and 23 bits for the significand
(M). The exponent is stored in excess-127 format with two special exponent values
of 0 and FF¢ reserved. The base is 2 (8 = 2) and the significand has an implied
leading 1 bit always for a normalized number. So, in this format, a number is
stored as,

il.bzzbzlbzo . b[) X 2E_127

where b, is the value of that bit of the significand. Since the base is 2 the bits are
interpreted as individual bits as opposed to groups of four bits for the base 16 IBM
format.

Because of the implied 1 bit, the smallest allowed binary32 number is,

0| 00000001 000 0000 0000 0000 0000 0000

which is 1 x 2!7127 = 1.1754944 x 10738, Similarly, the largest positive number is,

0 11111110 111 1111 1111 1111 1111 1111

which, using the reasoning above for the significand of the largest IBM S/360 format
number, is (2 — 272) x 2247127 = 3.4028235 x 10°®. The mantissa is (2 — 272%)
instead of (1—272%) because of the implied leading 1 bit of the binary32 significand.

Immediately we see that the IBM format has a much larger range than the IEEE
format, approximately [1077%,107%] versus [1073%, 10°®]. This is encouraging in
terms of expressing large numbers using fewer bits of memory but there is a problem
hidden in the significand. Namely, for the IBM format, a normalized number is
one in which the first hexadecimal digit of the six hexadecimal digit significand
is non-zero. This means that any of the possible bit patterns for 1 through 15 are
allowed. If the bit pattern is 0001, then there are three fewer significant bits in the
significand than if the leading digit is 1000, up to 1111,. This represents a potential
lost of precision of up to one decimal digit and is due entirely to the way in which
the number is represented in base 16. This loss of precision as a function of the
representation of the number in the selected base is known as wobbling precision

88 3 Floating Point

and is more severe when the base is larger, as it is for the IBM format. This wobbling
precision can lead to very inaccurate results as the following example illustrates
(borrowed from Cody and Waite [7]).

The approximate value of /2 in hexadecimal is 1.9224 x 16°. We get this from
Python using the f1oat .hex () class method:

float.hex(pi/2.0)

0x1.921fb54442d18p + 0
1.921fb54442d18,¢ x 2°

where we must be careful because Python expresses floats in hexadecimal with a
base of 16, not 2. The conversion to binary is straightforward, however, simply
replace each hexadecimal digit with four binary digits equal to the hexadecimal
digit. In this case, the exponent is zero so the actual value is just the mantissa.
Similarly, the approximate value of 2/7 in hexadecimal is a.2f9;5 x 167! since,

float.hex(2.0/pi) = 0x1.45£306dc9c883p—1
= 1.45f306dc9c8835 x 27!
= 1.45f306dc9c8836/2
~ a.2f9;6 x 167!

with the important point being the leading digit of the base 16 representation of these
two numbers. This would be the leading digit of the IBM floating-point format for
these numbers and in the case of 71/2 we see that it is a 0001, while for 2 /7 we get
1010;. The former has three leading zeros meaning only 21 significant bits in the
IBM representation while the latter has no leading zeros meaning all 24 significand
bits are important. This difference of three bits is a loss of about one decimal digit
of accuracy.

What is the case for the IEEE base 2 format? In this case there is no loss of
precision at all which we can see immediately from the Python output. For 7/2 we
get 1.921fb54442d18,6 x 2° while for 2/ we have 1.45f306dc9c883 6 x 27! both
of which have a leading 1 digit as the IEEE format specifies. This means that all
the bits of the significand are meaningful and there is no wobbling precision effect
when B = 2. This is the reason why the IEEE 754 format is to be preferred to the
older IBM S/360 floating-point format.

As an aside, before we leave this section, we describe a small C function for
converting 32-bit IBM S/360 floating point numbers to IEEE double precision
numbers. Double precision is necessary as we have seen that the single precision
IEEE format does not have the numeric range necessary to hold all 32-bit IBM
floats. The IBM format is assumed to be stored in an unsigned 32-bit integer which
allows all bit patterns. The function is,

3.4 IEEE 754 Floating-Point Representations 89

1 double ibm to ieee 64 (uint32 t n) {
2 int s, e, m;

3 double ans;

4

5 s = (n & (1<<31)) != 0;

6 e = (n >> 24) & O0xX7F;

7 m = n & OXFFFFFF;

8

9 ans = m * pow(l6,-6) * pow(l6,e-64);
10 return (s == 1) ? -ans : ans;
11/}

This function may be useful if one encounters an old data file in IBM format.
The sign of the IBM float is extracted in line 5, the exponent in line 6, and the
significand in line 7 using simple masking and shifting operations. The resulting
double precision floating point number is calculated in line 9. The significand of
the IBM format is of the form 0.hoh;hyh3hahs so the value in m must be multiplied
by 16~ before the final multiplication by 16°~%* where we subtract 64 because the
exponent is in excess-64 format. Line 10 simply sets the sign of the output and
returns it. This function assumes that it is running on a system which uses IEEE
floating-point by default.

3.4 1EEE 754 Floating-Point Representations

The IEEE 754 standard defines multiple floating-point formats for binary (8 = 2)
and decimal (8 = 10) numbers. We are only concerned with the binary formats
here. These are, with their ranges,

Name Minimum Maximum

binaryl6 2714~ 6.104 x 1072 (2 —2719 x 215 = 65504.0
binary32 = 27126~ 1.175 x 10738 (2—-2"2) x 277 a 3.403 x 103
binary64 271022 2225 x 107308 | (2 —2792) x 21923 ~ 1,798 x 1008

where binaryl6 is half precision, binary32 is single precision (C £1oat), binary64
is double precision (C double), and binaryl28 (not shown) is quadruple precision,
sometimes called “quad precision”. The binaryl28 format uses 128-bits and some
C compilers implement it in software. More often, however, compilers for x86
architectures will use the 80-bit extended precision hardware type instead. Because
of this we will largely ignore binaryl28 in this chapter. If you are familiar with
Fortran, the binary32 format is roughly equivalent to a REAL, while the binary64
format is similar to REAL« 8 and the binaryl28 format is like REALx16.

The binary32 format was illustrated above in Sect.3.3. For completeness we
illustrate binaryl6,

90 3 Floating Point

15 109 0 Dbit#
1 5 10
S E M

and binary64,
63 52 51 0 bit#
1 11 52
S E M

which follow the same format as binary32 but differ in the exponent and significand
bits. For binaryl6 the exponent is 5 bits and is stored in excess-15 format. The
exponent for binary32 is 8 bits and uses excess-127 format. Lastly, binary64 uses
an exponent of 11 bits stored in excess-1023 format.

The observant reader will see that the exponent ranges in the table above do
not cover the full range of bit values possible. For example, the binary32 format
uses 8 bits for the exponent which means any exponent from 0 — 127 = —127
to 255 — 127 = 128 should be possible but the actual exponent range is from
—126 to 127 instead. This is because IEEE 754 uses the smallest and largest
exponent values for specific purposes. The smallest exponent value, the bit pattern
of all zeros, designates either zero itself, or a subnormal number. We will deal
with subnormal numbers shortly. The largest exponent bit pattern, either 111115,
11111111, or 11111111111, for binaryl6, binary32, or binary64, respectively,
is reserved for infinity or NaN (not-a-number). The selection between zero and a
subnormal number or infinity or NaN depends upon the value of the significand
(M). Specifically,

Exponent M=0 | M#0
largest +oo NaN
smallest (=0) | £0 subnormal

where the sign bit sets positive or negative. Note carefully that this convention
implies that zero itself is signed but the standard requires +0 = —O0, i.e., zero is
interpreted as zero, regardless of the sign bit.

Most readers are likely familiar with the single and double precision floating
point numbers, binary32 and binary64, respectively. These generally map to the
well used C data types of £loat and double. Note, however, that the Python
data type £1loat is really a binary64 number. The addition of binary16 to the IEEE
standard seems a bit odd as it does not map to any primitive data type typically used
in modern programming languages.

3.4 IEEE 754 Floating-Point Representations 91

Half precision floats, another common name for binaryl6 numbers, are supported
in recent versions of gcc for ARM targets. Newer Intel microprocessors also
have instructions for working with binaryl6 numbers. In both cases the storage in
memory uses half precision but once read from memory the numbers are converted
to 32-bit floats. The main use for these numbers is to increase the precision of
values that are stored on graphics processors. Indeed, OpenGL supports binaryl6
numbers. Naturally, however, this comes with a price, which is a rapidly increasing
loss of precision as the value stored gets further and further from zero. As illustrated
in Fig.3.1 the difference between floating-point values increases as one moves
further away from zero. On the plus side, this means that if one needs to work with
numbers in the range [0, 1] then unless very high precision is required binaryl6 is
a reasonable way to keep relatively high precision (about 6 or 7 decimals) while
using half the memory of a 32-bit float and one quarter the memory of a 64-bit float.
This might be significant if there are large arrays of these values to work with as
the bandwidth to move that memory is much less than it might otherwise be. It also
may help by allowing more data to fit in a processor cache thereby reducing the
number of expensive and slow accesses from main memory. Recall that images are
typically stored as large arrays so it makes sense to want to be as efficient as possible
with memory while not sacrificing precision or dynamic range. It is worth noting
that NVIDIA CUDA, starting with version 7.5, supports half precision floating-
point storage and arithmetic. CUDA is heavily used for implementing modern
neural networks, see Sect. 6.4, and these networks typically do not require extreme
precision.

Infinity For any of the IEEE formats, if the exponent is maximum, i.e., all bits
set to 1, and the significand is zero, then the number is infinite (co0) and positive
or negative depending upon the sign bit. Infinity is produced when the result of an
operation would exceed the range of numbers that can be expressed in the given
floating-point format. For example,

exp (1000000.0)
-exp(1000000.0)

Inf = 40
-Inf = —o©

Infinity is also returned for certain other operations such as,

1.0/0.0= Inf =400
log(0.0) = -Inf = —o0

which follow the usual rules of arithmetic. The —oo result for 1og (0.0) makes
sense as a limit as x — O from the right.

As mentioned in the IEEE standard, the following operations are valid and work
as expected when using oo as an argument and x finite (and not zero),

92 3 Floating Point

X+ XxX=00,x+0= &
00, X—00 = —00
COXX=00, XX00= 00
oo, x+o0= 0

Additionally, the square root of infinity is also defined to be infinity.

Not-A-Number While infinity is straightforward, Not-a-Number or NaN, gets a
little messy. A NaN is stored as a floating-point number with the largest possible
exponent (all bits 1) and a significand that is not zero. There are two kinds of NaNs,
quiet and signaling. We will discuss this distinction more fully below when we talk
about floating-point exceptions. For now we are concerned with how these two kinds
of NaNs are stored so that we can distinguish between them.

According to the standard, the first bit of the significand, which is d; in the
representation £dy.d dads . . . d,—1 % B¢ since dj is always implied and 1, determines
the NaN type. If this bit is zero the NaN is a signaling NaN, otherwise it is a quiet
NaN. Note that this implies that a signaling NaN must have at least one other bit
of the significand be nonzero otherwise the number is not a NaN but infinity. The
remaining p — 2 digits of the significand are available for a “payload”, to use the
standard’s term, which may contain diagnostic information about what caused the
NaN in the first place.

The standard is intentionally fuzzy about what, if anything, should constitute the
payload of a NaN. However, the standard is explicit that NaNs, when used as an
argument in an operation, should preserve the payload of at least one of the NaNs,
or the NaN, if it is the only NaN in the operation. Operations on NaNs produce
NaNs as output. The vague nature of the NaN payload invites creative use. Indeed,
some groups and companies have used NaNs for their own purposes. Since it is
not specified, beyond indicating a bit for quiet or signaling, users are free to use
NaNs as they see fit. One possibility might be to use NaNs as symbols in a symbolic
expression parser. Another would be to use NaNs as missing data values and the
payload to indicate a source for the missing data or its class.

The following set of C functions can be used to check for NaN and to set and get
a payload from a NaN of up to 22 bits,

1 typedef union {

2 float £f;

3 unsigned int d;

4} fp_t;

5

6 char nan_isnan(float nan) {

7 fp t x;

8 x.f = nan;

9 return (((x.d >> 23) & OxFF) == OxFF) &&
((x.d & Ox7FFFFF) != 0);

10/}

11

3.4 IEEE 754 Floating-Point Representations 93

12|float nan set payload(float nan, unsigned int payload) {

13 fp_t x;

14 x.f = nan;

15 x.d |= (payload & Ox3FFFFF);
16 return x.f;

17/}

18

19|/unsigned int nan get payload(float nan) ({
20 fp t x;

21 x.f = nan;

22 return (x.d & Ox3FFFFF) ;
23}

where nan_isnan checks to see if a float is actually a NaN, nan_set payload
sets the free 22-bits of a NaN to a user-specified value and nan_get payload
returns this value from a NaN. Most systems already have a isnan function, we
include it here for completeness. The functions make use of a trick to work with
the same piece of memory as both a float and an unsigned integer, both of which
occupy 32-bits. This is the fp_t data type defined in lines 1 through 4. The function
nan_isnan accepts a binary32 number and puts it into x (line 8). We then interpret
the memory of the float as an unsigned integer by accessing the d field. Line 9 is
the magic in two parts both of which come directly from the definition of a NaN.
The first part, (((x.d >> 23) & 0xFF) == OxFF), examines the exponent field
of the number. Recall that a binary32 number has 23 bits in the significand. We
shift 23 bits down to move the exponent field into bit position 0. We then mask this
to keep the first eight bits (the AND with 0xFF). This removes any sign bit which
the standard ignores for NaNs. If this is the exponent of an actual NaN then, by
definition, the exponent is all 1 bits, which is 0OxFF so we check if the value is equal
to OXFF. An exponent of all 1 bits is not enough to define a NaN, however, as the
number could still be infinity. We must consider the significand itself. This is the
second part of line 9, ((x.d & 0x7FFFFF) != 0), which masks off the 23-bits of
the significand by the AND with 0x7FFFFF and then checks to see if this value is
zero. If the number is a NaN, this value will not be zero. If it is a quiet NaN the
highest bit will be set, at a minimum, and if it is a signal NaN, at least one of the
other 22-bits will need to be set. If both of these parts are true, the number is a NaN
and the result of the final logical AND is returned.

The nan_set payload function accepts a NaN and a payload which must fit
in 22-bits. A fp_t is used to hold the NaN. The payload is masked with Ox3FFFFF
to keep it in range and then OR’ed into the bits of the NaN in line 15. The updated
NaN is returned in line 16. To access the NaN value use nan _get payload
which accepts a NaN and after setting x to it, returns the lowest 22-bits by again
masking with 0x3FFFFF.

To illustrate the idea of NaN propagation consider the following code snippet,
compiled on a 32-bit Linux system using gcc,

94 3 Floating Point

1 lconst char *pp(unsigned int x) {

2 static char b[33];

3 unsigned int z;

4 b[0] = "\0’;

5 for (z = (1<<31); z > 0; z >>= 1)

6 strcat (b, ((x & z) == z) ? "1" : "0");

7 return b;

8}

9

10 int main() {

11 fp t x;

12 float n = log(-1);

13 unsigned int d;

14

15 x.f = n;

16 printf ("$d original = %s\n", nan_isnan(n),pp(x.d));
17 n = nan_set_payload(n, 12345);

18

19 x.f = n;

20 printf ("$d set payload = %$s\n", nan_isnan(n),pp(x.d));
21 d = nan _get payload(n) ;

22 printf ("payload is %d (%s)\n", 4, pp(d));

23

24 n = 123 + n;

25

26 d = nan_get payload(n) ;

27 printf ("payload is still %d (%s)\n", d, pp(d));
28}

where the function pp simply prints the given 32-bit unsigned integer in binary as
a string. In line 12 we define n and set it so 1og (-1) which is a NaN. In line 15
we put this NaN into x and print the result of asking whether n is a NaN (it is) and
showing the bits of n,

1 original = 01111111110000000000000000000000

Line 17 sets the payload for the NaN to the unimaginative air-shield combination
number of 12345. Lines 19 through 22 show that the NaN is still a NaN but now has
a payload,

1 set payload = 01111111110000000011000000111001
payload is 12345 (00000000000000000011000000111001)

where 11000000111001, = 12345. So far, this isn’t anything particularly impres-
sive. Line 24, however, multiplies n by 123 and assigns back to nn. This is to illustrate
NaN propagation, which the IEEE standard strongly encourages. The output of line
27 is,

payload is still 12345 (00000000000000000011000000111001)

which clearly demonstrates that the payload was propagated.

3.4 IEEE 754 Floating-Point Representations 95

Subnormal Numbers As we previously stated, a normal number is one in which
the leading bit of the significand is an implied 1 and the exponent, e, is 0 < e <
m, for m the maximum exponent value which depends upon the precision of the
number. For binary32, m = 255 since eight bits are used to store the exponent.
Therefore, the smallest normal binary32 number is,

0 00000001 00000000000000000000000, = 27126 = 1.1754944 x 10738

where we have separated the binary representation into the sign, exponent and
significand. If we insist on using an implied leading 1 bit for the significand the
next smallest number we can represent is immediately zero. However, if we are
willing to suffer a loss of precision in the significant we can drop the exponent to
zero and change the implied leading digit of the significand from 1 to O to represent
numbers as,

+0.d1d, .. .dy; X 2126

where numbers of this form are called subnormal or denormal. Subnormal numbers
allow us to work with very small numbers around zero but at the small cost of a
loss of precision in the significand. However, there is a very large cost in terms
of performance as modern floating-point hardware does not work with subnormal
numbers implying calculations must be done in software.

The program in Fig. 3.2 illustrates the transition between normal and subnormal
numbers for 32-bit floats. It initializes a float to 1.0 and then repeatedly divides
it by 2 until the result is zero. The function ppx prints the bits of the floating
point number with a space between the sign and exponent and the exponent and
the significand. If we run this program the tail end of the output is,

00000010 00000000000000000000000
00000001 00000000000000000000000
00000000 1000000000000000000QC0Q0O0OO0
00000000 01000000000000000000000
00000000 00100000000000000000000
00000000 00010000000000000000000
00000000 00001000000000000000000
00000000 00000100000000000000000

) 2.3509887e-38
)
)
)
)
)
)
)
00000000 00000010000000000000000)
)
)
)
)
)
)
)
)

.1754944e-38
.8774718e-39
.9387359e-39
.4693679e-39
.3468397e-40
.6734198e-40
.8367099e-40
.1835496e-41
.5917748e-41
.2958874e-41
.1479437e-41
.7397185e-42
.8698593e-42
.4349296e-42
.1746481le-43
.5873241e-43

00000000 00000001000000000000000
00000000 00000000100000000000000
00000000 00000000010000000000000
00000000 00000000001000000000000
00000000 00000000000100000000000
00000000 00000000000010000000000
00000000 00000000000001000000000
00000000 00000000000000100000000

I O I T T T I O T R R I ST
]
Soococococoocoocoocooooooo
W I P NDU RN O WIEFEDNDOOEREDN

96 3 Floating Point

x = (0 00000000 00000000000000010000000) 1.793662e-43
x = (0 00000000 00000000000000001000000) 8.9683102e-44
x = (0 00000000 00000000000000000100000) 4.4841551e-44
x = (0 00000000 00000000000000000010000) 2.2420775e-44
x = (0 00000000 00000000000000000001000) 1.1210388e-44
x = (0 00000000 00000000000000000000100) 5.6051939e-45
x = (0 00000000 00000000000000000000010) 2.8025969e-45
x = (0 00000000 00000000000000000000001) 1.4012985e-45
x = (0 00000000 00000000000000000000000) O

where the first two numbers are normalized, the exponent is nonzero. After these
start the subnormalized numbers the first of which is,

0 00000000 10000000000000000000000, = 27! x 27126 = 58774718 x 107*°

and the smallest positive subnormal number is therefore 272> x27126 = 1.4012985x
107,

1 |[#include <stdio.h>

2 [#include <string.h>

3

4 |const char *ppx(unsigned int x) {

5 static char b[36];

6 unsigned int z, 1=0;

7 b[0] = "\0";

8 for (z = (1<<31); z > 0; z >>= 1) {
9 strcat (b, ((x & z) == z) 2 "1" : "0");
10 if ((L ==0) [(1 == 8))

11 strcat(b, " ");

12 i++;

13 }

14 return Db;

15|}

16

17|typedef union {

18 float f;

19 unsigned int d;

20|}y fp_t;

21

22|int main () {

23 fp t x;

24 int i;

25 x.f =1.0;

26 for(i=0; 1 < 151; i++) {

27 printf("x = (%s) %0.8g\n", ppx(x.d), x.f);
28 x.f /= 2.0;

29 }

30|}

Fig. 3.2 A program to display the transition from normal to subnormal floating-point numbers

3.5 Rounding Floating-Point Numbers (IEEE 754) 97

The penalty in performance for using subnormal numbers can be found by timing
how long it takes to run 10 million iterations of a simple multiplication of x by 1
where x is first the smallest normal number and then the largest subnormal number.
If we do this, being careful to make sure the loop is actually performed and not
optimized away by the compiler, we see that subnormal numbers are about 23
times slower than normal numbers on the machine used. This reflects the difference
between hardware and software support.

3.5 Rounding Floating-Point Numbers (IEEE 754)

Often when a real number is expressed in floating-point format it is necessary to
round it so that it can be stored as a valid floating-point number. The IEEE standard
defines four rounding modes, or rules, for binary floating-point. These are available
to programmers in C on Linux if using the gcc compiler (among others). The
rounding modes are listed in Fig. 3.3.

The default mode for gcc, and the one recommended by the IEEE standard, is to
round towards the nearest value with ties rounding towards the even value. The even
value is the one with a zero in the lowest order bit of the significand. For example,
using decimal and rounding to an integer value “round to nearest” would act in this
way,

+123.7 — 4124
+123.4 — +123
+123.5 — +124

—123.7 - —124
—123.4 — —123
—123.5 — —124

which is more or less the way we would expect rounding to work. The stipulation of
rounding ties to even helps prevent the accumulation of rounding errors as in binary
this will happen about 50% of the time.

The other, directed, rounding modes work in this way,

Round to Nearest Round to the nearest floating-point number. Ties round to even.
Round Towards Zero [Round down, if positive, or up, if negative, always towards zero.
Round Towards +o0 |[Round up, always towards positive infinity.

Round Towards —o |Round down, always towards negative infinity.

Fig. 3.3 The four IEEE 754 binary floating-point rounding modes

98 3 Floating Point

Value Round towards zero | Round towards +00 | Round towards —oo

+123.7 | +123 +124 +123
+1234 | +123 +124 +123
+123.5 | +123 +124 +123
-123.7 | -123 -123 -124
-1234 | -123 -123 -124
-123.5 | -123 -123 -124

The directed rounding modes always shift results, consistently up or down for
rounding towards F00, regardless of sign, or up or down for negative and positive
numbers in the case of “round towards zero”. The default mode is used so often
that many software libraries do not function properly if one of the directed modes is
used [8].

It is possible to alter the rounding mode programmatically. Figure 3.4 is a
Linux program that changes the rounding mode while displaying the floating-point
representation of exp (1.1) and -exp (1.1).

This program produces the following output,

FE_TONEAREST:

exp(l1.1) = (0 10000000 10000000100010001000010) 3.00416613

-exp(l1.1) = (1 10000000 10000000100010001000010) -3.00416613
FE_UPWARD:

exp(l.1) = (0 10000000 10000000100010001000010) 3.00416613

-exp(l1.1) = (1 10000000 10000000100010001000001) -3.00416589
FE_DOWNWARD:

exp(l.1) = (0 10000000 10000000100010001000001) 3.00416589

-exp(1l.1) = (1 10000000 10000000100010001000010) -3.00416613
FE_TOWARDZERO:

exp(l.1) = (0 10000000 10000000100010001000001) 3.00416589

-exp(1.1) = (1 10000000 10000000100010001000001) -3.00416589

which shows the floating-point number in decimal as well as the actual bits used
to store the value. Note that Fig.3.4 includes a comment line describing the
actual command used to compile the program. The - frounding-math option is
required otherwise fesetround () will not actually change the rounding mode.

If we look at the output we see that FE_ TONEAREST, which is the default rounding
mode, produces results which match what we expect since negating the value is not
expected to alter the result other than the sign bit. We see this clearly by looking at
the bits of the results; they are all the same except for the sign bit.

The remaining directed modes act as expected. For FE_UPWARD we see that
the negative result is smaller than the positive, in magnitude, because it has been
rounded towards positive infinity. Similarly, we see the magnitudes reversed for
FE_DOWNWARD which is rounding towards negative infinity. Lastly, FE_ TOWARDZERO
rounds towards zero giving the smaller magnitude result for both positive and neg-
ative cases. The floating-point bit patterns for FE_ TONEAREST and FE_TOWARDZERO

3.5 Rounding Floating-Point Numbers (IEEE 754)

O 00 J o U W

#include
#include
#include
#include

<stdio.h>
<fenv.h>
<math.h>
<string.h>

int main() {

fp t fp;

printf ("\nFE_TONEAREST:\n");

fesetround (FE_TONEAREST) ;

fp.f = exp(l1.1);

printf (" exp(l.1l) = (%s)
fp.f = —exp(l.1);

printf (" -exp(l.1l) = (%s)

printf ("FE_UPWARD:\n");
fesetround (FE_UPWARD) ;

fp.f = exp(l1.1);

printf (" exp(l.1l) = (%s)
fp.f = —exp(1.1);

printf (" -exp(l.1l) = (%s)

printf ("FE DOWNWARD:\n") ;
fesetround (FE DOWNWARD) ;

fp.f = exp(l.1);

printf (" exp(l.1l) = (%s)
fp.f = —exp(l1.1);

printf (" -exp(l.1l) = (%s)

printf("FEiTOWARDZERO:\n");
fesetround (FE TOWARDZERO) ;

fp.f = exp(l.1);

printf (" exp(l.1l) = (%s)
fp.f = —exp(1l.1);

printf (" -exp(l.1l) = (%s)

’

o\©
o

o©
o

oe
o

o
o

oe
o

o\
o

o
o

oe
o

.8f\n",

.8f\n\n",

.8f\n",

.8f\n\n",

.8f\n",

.8f\n\n",

.8f\n",

.8f\n\n",

99

// compile: gcc rounding.c -o rounding -1lm -frounding-math

ppx (fp.d), fp.f);

ppx (fp.d), fp.f);

ppx (fp.d), fp.f);

ppx (fp.d), fp.f);

ppx (fp.d), fp.f);

ppx (fp.d), fp.f);

ppx (fp.d), fp.f);

ppx (fp.d), fp.f);

Fig. 3.4 A program to display the effect of different rounding modes. Note that fp _t and ppx ()
are defined in Fig. 3.2

are the same in each case except for the sign bit while the other two cases are similar
but the positive and negative bit patters are flipped (for the significand).

If the default of “round to nearest” is so widely used, why are the other rounding

modes present in the IEEE standard? One example of why can be found in [9] where
directed rounding significantly improved the accuracy of the calculations. We will
make use of rounding modes in Chap.8 when we implement interval arithmetic.
However, specialized uses aside, in most cases it is completely unnecessary to
modify the rounding mode from the default.

100 3 Floating Point
3.6 Comparing Floating-Point Numbers (IEEE 754)

The IEEE standard requires that floating-point numbers maintain an explicit order-
ing for comparisons. The simplest way to compare two floating-point numbers is to
look at their bit patterns. For example, the following two numbers are as close as
two 32-bit floating-point numbers can be without being equal. This means there are
no representable floating point numbers between them. The numbers are,

0.500000000 = 0 01111110 00000000000000000000000 = 1056964608
0.500000060 = 0 01111110 00000000000000000000001 = 1056964609

where the floating-point value is on the left, the actual bit patterns are in the center
and the equivalent 32-bit signed integer is on the right. Note that when viewed
as an integer the smaller number, 0.5, is also smaller. This is no accident. The
floating-point format is designed to make comparison of floating-point numbers
as straightforward as comparing two signed integers where negative floating-point
numbers are interpreted in two’s-complement format. The only exception is zero
since it can be signed or unsigned. But it is easy to check for this single case.

The C code for a floating-point comparison function that checks for the special
case of signed zero is,

1 typedef union {

2 float £;

3 int d;

4} sp_t;

5

6 |int fp compare (float a, float b) {
7 sp_t X,y

8

9 x.f=a;

10 y.fE=b;

11

12 if ((x.d == (int)0x80000000) &&
13 (y.d == 0)) return 0;

14 if ((y.d == (int)0x80000000) &&
15 (x.d == 0)) return 0;

16

17 if (x.d == y.d) return 0;

18 if (x.d < y.d) return -1;

19 return 1;

20}

where we introduce sp_t instead of £p_t which we used previously. The difference
is we now use a signed integer instead of an unsigned integer. The signed integer is
necessary so that the integer comparisons will treat negative floating-point numbers

properly.

3.6 Comparing Floating-Point Numbers (IEEE 754) 101

The £p_compare function accepts two floats, a and b, as input and returns —1
ifa < b,0ifa = b, and +1 if @ > b. In lines 9 and 10 the input floats are
placed into two sp_t variables, x and y. This is so we can get the equivalent signed
integer from the floating-point bit pattern. Lines 12 and 13 are the special check for
negative zero compared to positive zero. In this case we want a return value of 0
since the standard says these values are equal. The cryptic (int) 0x80000000 is the
bit pattern for a negative zero number cast to a signed integer. If this is the first value
and the second is positive zero, consider them the same. Lines 14 and 15 make the
same comparison with the arguments reversed. Line 17 checks if the bit patterns are
the same and returns zero if they are to declare the values equal. Line 18 checks to
see if a < b and returns —1 if they are. The only option left is that a > b so we
return +1 in line 19. This completes the predicate function to compare two floating
point numbers using their integer bit patterns.

For completeness, let’s define functions for the basic comparison operators. We
can then check these against the intrinsic operators in C for floating-point numbers.
The functions are,

1 |int fp_eq(float a, float b) {
2 return fp compare(a,b) == 0;
3}
4
5 |int fp lt(float a, float b) {
6 return fp compare(a,b) == -1;
7}
8
9 |int fp gt (float a, float b) {
10 return fp compare(a,b) == 1;
11/}
And we can use them with the following code,
1 int main() {
2 float a,b;
3
4 a =3.13; b = 3.13;
5 printf ("3.13 == 3.13: %d %d\n", fp eg(a,b), a==b);
6
7 a = 3.1; b = 3.13;
8 printf("3.1 < 3.13: %d %d\n", fp lt(a,b), a<b);
9
10 a = 3.2; b = 3.13;
11 printf("3.2 > 3.13: %d %d\n", fp gt(a,b), a>b);
12
13 a=-1; b =1;
14 printf("-1 < 1: %4 %d\n", fp 1lt(a,b), a<b);

15/}

102 3 Floating Point

which shows that comparing the integer representations gives the results we would
expect,

3.13=3.13:11
3.10< 3.13:11
3.20 >3.13:11
—1.00 < 1.00:11

In this discussion we have ignored NaNs and infinity. NaNs, according to the
standard, are unordered even when compared to themselves. Infinities of the same
sign compare as equal while those of opposite signs should compare as expected.
This is not the case with the simple example above in fp compare which would
need to be updated to compare infinities properly.

3.7 Basic Arithmetic (IEEE 754)

The standard mandates that conforming implementations supply the expected
addition (+), subtraction (—), multiplication (x) and division (/) operators. It
also requires square root of a positive number and a fused multiply-add which
implements (xy) + z with no exceptions thrown during the multiplication. This
combined operation only involves one rounding step, not the two that would happen
if the multiplication was done separately from the addition.

Addition and Subtraction The addition of two floating-point numbers is straight-
forward. Let’s consider the steps necessary to calculate 8.76 + 1.34. First, we
represent each number in binary as:

8.76 — 8.760000229=010000010 00011000010100011110110
1.34 —-1.340000033=00111111101010111000010100011111

where we immediately see that neither 1.34 nor 8.76 can be exactly represented
using a 32-bit float and that we have again shown the binary representation
separating the sign, exponent and significand. If we convert the bit pattern to actual
binary we get,

8.76 — 1.00011000010100011110110 x 23
1.34 — 1.01010111000010100011111 x 2°

where we see that the exponents are not the same. In order to add the significands
we need to make the exponents the same first. So, we rewrite the smaller number so
that it has the same exponent as the larger. This means we add the difference of the
exponents to the exponent of the smaller number, 3—0 = 3 — 34 0 = 3, and shift
the significand of the smaller number that many bit positions to the left to get,

3.7 Basic Arithmetic (IEEE 754) 103

8.76 — 1.00011000010100011110110 000 x 23
1.34 — 0.00101010111000010100011 111 x 23

with the bits that would have been shifted out of the 32-bit float separated from the
rest of the significand by a space. Normally, the calculation is done with a higher
precision than the storage format and rounding is applied. The top value is filled in
by three zeros for the extended precision bits.

With the exponents the same the addition is simple, add the significand, bit by
bit, just as one would add 2.5 x 10° and 4.6 x 103 to get 7.1 x 103,

8.76 — 1.00011000010100011110110 000 x 23
+ 1.34 — 0.00101010111000010100011 111 x 23
1.01000011001100110011001 111 x 23

If the answer does not have a single 1 to the left of the decimal point we shift the
significand to the right until it does so that our answer is a normalized number.
Naturally, if we shift the significand » bits to the right we need to raise the exponent
by adding » to it. In the example above the answer is already normalized since the
first, and only, bit to the left of the decimal point is 1.

There is one step remaining, which is to account for rounding. Assuming that
the rounding mode is the default of “round to nearest” we need to consider the first
1 in the three lowest order bits of the answer, the three bits on the far right of the
significand. In order to round up to the nearest floating-point number we add one to
the right-most bit on the significand, before the space, to make 001 — 010. In this
case, then, the final answer is,

10.100000381 — 1.01000011001100110011010 x 23

Subtraction works in the same way. Specifically, the steps to add or subtract two
floating-point numbers x and y are,

1. Raise the exponent of the number with the smaller exponent by the difference
between the larger and smaller exponent. Also, shift the significand of the smaller
number to the right by the same number of bits. This causes both numbers to have
the same exponent. If the smaller number was y the shifted number is y'.

2. Add or subtract the significands of x and y’ as they now have the same exponent.
Put the answer in z.

3. If there is not a single 1 to the left of the decimal point in z, shift the significand
of z to the right until there is. Increase the exponent of z by the number of bits
shifted.

Multiplication If we want to multiply two numbers in scientific notation we
multiply the significands and add the exponents,

(ax 10%) (b x 10°) = ab x 10°T>

104 3 Floating Point

similarly, for two floating-point numbers expressed in binary, we multiply the
significands and add exponents then normalize. So, to multiply 3.141592 by 2.1,
we have,

3.141592 — 3.141592026 — 0 10000000 10010010000111111011000
2.1 — 2.099999905 — 0 10000000 00001100110011001100110

where the first column is the real number we want to multiply, the second column is
the actual floating-point number we get when using binary32 and the last column is
the actual bit pattern in memory. Using the bit pattern we can write these values in
binary as,

3.141592 — 1.10010010000111111011000 x 2!
2.1 — 1.00001100110011001100110 x 2!

which means that our product will have an exponent of 1 + 1 = 2. We can multiply
the significands, bit by bit, which is tedious on paper so instead we approximate the
product using only seven bits after the radix point,

1.1001001

X 1.0000110
0

1110010010
11100100100

110010010000000
+ 1.10100100110110

where we have already moved the radix point to the proper position in the final sum.
The . .. represents a series of all zero places corresponding to the string of four
zeros in the multiplier. The last line shows the last partial product. The full product
of the significandsis 1.10100110001110101101111.

Since the significand product already has a leading value of one we do not need
to shift in order to get a leading bit of one. For example, if the significand product
started with 10.00101. . . we would shift the radix point one position to the left
so make the significand 1.000101 . . . and increase the exponent by one position.

So, finally, our now approximate product (because we dropped many significand
bits) can be represented as,

1.10100100110110 x 22 — 6.5756835938

while the full precision product is 3.141592 x 2.1 = 6.5973429545.

3.8 Handling Exceptions (IEEE 754) 105

In summary, then, the steps to multiply two floating-point numbers x and y are,

1. Add the exponents of x and y.

2. Multiply the significands of x and y.

3. Shift the product of the significands to get a single leading one bit to the left of
the radix point. Adjust the exponent as well by adding one for every bit position
the product of the significands is shifted to the right. This is equivalent to shifting
the radix point to the left.

4. Reconcile the signs so that final product has the expected sign.

This concludes our look at floating-point arithmetic. Next we consider an
important part of the IEEE 754 standard we have neglected until now, exceptions.

3.8 Handling Exceptions (IEEE 754)

Not all floating-point operations produce meaningful results for all operands. An
important part of the IEEE 754 standard addresses what to do when exceptions to
normal floating-point processing arise. The standard recommends a default set of
actions for these cases and then allows implementations to give users the power to
trap and respond to exceptions. In this section we learn what these exceptions are,
the default responses the standard recommends for them, and how to trap exceptions
to bring them under user control in C. It is important to remember that floating-
point exception handling is distinct from the concept of exceptions in programming
languages, though they are, of course, related and could be intermingled. Modern
processors, including the x86 line, process floating-point exceptions in hardware
and as such are programming language independent.

Exceptions and Default Handling The standard defines five types of exceptions:
inexact, invalid, underflow, overflowand divide-by-zero:

Exception type | Description Examples

inexact When the result is not exact | 2.0/3.0
due to rounding.

invalid When the operands are not | 0/0, 0 x 00, /x,x <0
valid for the operation.

underflow When the result is too small | (1.17549435 x 1073%)/3.0
to be accurate or when sub-
normal.

overflow When the result is too large = (3.40282347 x 10°%)2

to represent
divide-by-zero | When a finite number is | 1/0
divided by zero

106 3 Floating Point

The standard also defines default behavior for these exceptions. The goal of the
default behavior is to allow the computation to proceed by substituting a particular
value for the exception or to just ignore the exception altogether. For example,
the default behavior for an inexact exception is to ignore it and continue with the
calculation. The default behavior for an invalid exception is to generate a NaN and
then propagate the NaN through the remainder of the calculation. If divide-by-zero
happens the result is passed on as 00 depending upon the signs of the operands.

The overflow exception is raised when the result does not fit. What the default
behavior is depends upon the rounding mode in effect at the time as well as the sign
of the number. Specifically,

Round to Nearest Return £o00 depending upon the sign of the result.

Round Towards Zero | Return the largest number for the format with the
sign of the result.

Round Towards 400 | Return 400 if positive, largest negative number if
negative.

Round Towards —oo | Return —oo if negative, largest positive number if
positive.

Lastly, underflow is raised when the number is too small. The implementer is
allowed to determine what “too small” means. The default result returned will be
the subnormal number or zero.

Trapping Exceptions For many programs the default behavior is perfectly accept-
able. However, for total control over floating-point operations the standard allows
for traps which run user code when an exception happens. For x86 architectures,
traps are in hardware but can be used from programming languages such as C. When
a trap executes, or is used by a higher-level library, the programmer is able to control
what happens when exceptions occur. Let’s take a look at how one can do this using
gcc.

The first thing to be aware of is that by default, the gcc compiler is not 100%
compliant with IEEE 754. So, to get the performance we expect we need to be sure
to use -frounding-math and -fsignaling-nans when we compile. Also,
we need to include the fenv . h library. With these caveats, the set of functions we
can use depends upon the way in which we want to control floating-point exceptions.
We can throw a signal when they happen (SIGFPE) or we can test individual
operations for individual exceptions. Let’s look at using a signal first.

A signal is a Unix concept, recall we assume a 32-bit Linux implementation,
which is a message to a program to indicate that a particular event has happened.
There are many possible signals, but the one we want is SIGFPE to signal a
floating-point error. We need to enable floating-point exceptions, then arrange a
signal handler like so,

3.8 Handling Exceptions (IEEE 754) 107

1 |#include <stdlib.h>
2 |#include <stdio.h>
3 |#include <signal.h>
4 |#include <fenv.h>

5

6 |[void fpe handler (int sig) {

7 if (sig != SIGFPE) return;

8 printf ("Floating point exception!\n");

9 exit (1) ;

10/}

11

12/int main() {

13 float a=1, b=0, c;

14

15 feenableexcept (FE_INVALID | FE_DIVBYZERO |
16 FE_OVERFLOW | FE_UNDERFLOW) ;
17 signal (SIGFPE, fpe handler) ;

18

19 c = a/b;

20}

where lines 1 through 4 include necessary libraries. Lines 6 through 10 define our
signal handler. We check to see if the signal is actually a floating-point exception
(line 7) and then report it and exit. In main we define some floats and then enable
floating-point exception traps by calling feenableexcept () with the bit masks
for the floating-point exceptions we want to trap. Line 17 ties the SIGFPE signal to
our handler, fpe _handler (). Finally, line 19 tries to divide by zero which will
trigger the exception. This code should be compiled with,

$ gcc fpe.c -o fpe -1lm -frounding-math -fsignaling-nans
assuming fpe . ¢ to be the name of the file.

Another way to work with floating-point exceptions is to explicitly check if any
were raised during a calculation. In this case we need the feclearexcept () and
fetestexcept () functions to clear any exceptions prior to the calculation and
then to test for particular exceptions after. For example, this program,

#include <stdio.h>
#include <signal.h>
#include <fenv.hs>

int main() {
float c;

0 0 Ul bW N

feclearexcept (FE_ALL EXCEPT) ;

c =0.0/0.0;

if (fetestexcept (FE_INVALID) != 0)
printf ("FE_INVALID happened\n") ;

[N
v R o P

108 3 Floating Point

13 feclearexcept (FE_ALL EXCEPT) ;

14 c =2.0/3.0;

15 if (fetestexcept (FE_INEXACT) != 0)

16 printf ("FE INEXACT happened\n") ;
17

18 feclearexcept (FE_ALL_ EXCEPT) ;

19 c = 1.17549435e-38 / 3.0;

20 if (fetestexcept (FE_UNDERFLOW) != 0)
21 printf ("FE UNDERFLOW happened\n") ;
22

23 feclearexcept (FE_ALL_ EXCEPT) ;

24 c = 3.40282347e+38 % 3.40282347e+38;
25 if (fetestexcept (FE_OVERFLOW) != 0)

26 printf ("FE_OVERFLOW happened\n") ;
27

28 feclearexcept (FE_ALL EXCEPT) ;

29 c=1.0/ 0.0;

30 if (fetestexcept (FE_DIVBYZERO) != 0)
31 printf ("FE DIVBYZERO happened\n") ;
32}

will produce this output,

FE_INVALID happened
FE_INEXACT happened
FE_UNDERFLOW happened
FE_OVERFLOW happened
FE _DIVBYZERO happened

when compiled with,

$ gcc fpe traps.c -o fpe_ traps -1lm -frounding-math -fsignaling-nans
thereby showing how to explicitly test for floating-point exceptions. Note, just as
feenableexcept () took an argument that was the bitwise OR of one or more
exceptions, so too will fetestexcept () so that in order to test for invalid and
divide-by-zero one would call,

int i = fetestexcept (FE_INVALID | FE_DIVBYZERO)
and then check for either with i != 0 or one explicitly with (i & FE INVALID)
I= 0.

3.9 Floating-Point Hardware (IEEE 754)

For this section we assume a system using modern x86 processors. These processors
implement an 80-bit extended precision version of floating-point in hardware. This
is why floating-point calculations are so fast when in the past floating-point was
generally, especially for smaller systems, done in software. This is still true in the
large embedded processor world which we will of necessity neglect entirely.

3.9 Floating-Point Hardware (IEEE 754) 109

An x86 extended precision float is stored in registers as,

79 64 63 62 0 Dbit#
1 15 1 63
S E | M

where it is very important to note that unlike the IEEE storage formats, there is no
implied leading 1 bit for the significand. Instead, it is given explicitly as the first bit
marked a “I”” above. The sign (S) is 0 for positive and 1 for negative. The exponent
(E) is stored as excess-16383 and the fractional part of the significand (M) is 63-bits
long. This means that a floating-point number (n) is,

n = (=1)%i.dede . . .dy x 26716383

where there is now an explicit integer part (i) and the binary significand (dg; . . . dp).
How many bits of the significand are actually used in a particular calculation is
a function of the processor (32-bit vs 64-bit), the compiler, and various compiler
settings. We ignore these important but intricate details here and instead focus on
the representation.

Just as an IEEE binary32 or binary64 float uses certain bit combinations to
indicate NaN and infinity so does the hardware version. The explicit integer part
helps in quickly determining the type of number that is being worked with. Table 3.1
illustrates how to decide whether or not the float is normal, subnormal, zero, infinity,
NaN or invalid.

The top part of the table illustrates normal, subnormal and zero. As is the case for
IEEE, there are two possible representations for zero, signed and unsigned. The sign
is ignored in calculations. An integer part of zero indicates a subnormal number. If
the integer part is 1 and the exponent is any value except all zeros or all ones the
number is a normalized floating-point number. In the bottom part of the table are
the exceptional values. All of these have the integer part set to 1 and the exponent
set to all ones. These values are distinguished based on the value of the leading
fractional part of the significand and the remaining bits of the significand. If the
leading bit, Mg;, is zero the number is infinity (all remaining significand bits zero)
or a signaling NaN. Recall that a signaling NaN raises an exception. If Mg, is set
the number is either a quiet NaN (remainder of the significand bits are not zero) or
an invalid number (all zero bits).

The bit patterns covered in Table 3.1 are not exhaustive. There are other
combinations which could be present. In the past some of these were used but now
all are considered invalid and will not be generated by the floating-point hardware.

The large number of bits in the significand means that 32-bit and 64-bit floating
point operations can be performed with full precision and proper rounding of results.
Above we discussed the basic arithmetic operations called out by the IEEE 754

110 3 Floating Point

Table 3.1 How to interpret the bit patterns of an x86
extended precision floating-point number

(a) Normal, subnormal and zero

Exponent I M Value
000000000000000 |0 |AllO | Zero (sign ignored)
000000000000000 | 0 | Non-O | Subnormal
1

Any but all 1’s Any Normal

(b) Infinity, not-a-number, and invalid (exponent = 111111111111111)
1 M62 M61 .. .M() Value

10 0 F00 (uses sign)

10 Non-0 Signaling NaN

1|1 0 Invalid result (e.g., 0/0)
11 Non-0 Quiet NaN

Only the meaningful combinations of bits are shown, all others should be interpreted as invalid.
When the CPU performs floating-point calculations it uses this format converting to and from IEEE
754 formats like binary32 and binary64 as needed. In (a) the exponent and integer part are used
to decide between zero, subnormal numbers and normal numbers. All normal numbers have an
integer part of 1 matching the implied leading 1 bit of the IEEE formats. For (b) the exponent is the
special case of all ones. The integer part and leading bit of the significand determine the number

type

standard. There is one we intentionally ignored at the time. This is the fused
multiply-add operation, xy + z, which first calculates xy and then adds z without
rounding after the multiplication. If this were not done the expression would involve
two roundings, one for the multiplication and another for the addition. This is
unnecessary and with the extended precision of the x86 floating-point format will
result in fewer rounding artifacts. The xy + z form was chosen because it appears
frequently in expressions and a smart compiler would look for these expressions so
as to use the fused multiply-add capability whenever possible.

3.10 Binary Coded Decimal Floating-Point Numbers

In this section we take a look at a seemingly obscure representation which is, in
fact, one of the most widely used representations in the world: binary coded decimal
floating-point or “BCD float”. BCD floats use packed BCD for the significand and
ten as the exponent to represent numbers. The integer BCD format is described in
detail in Chap. 2, Sect.2.6. The floating-point version described here is found in
a similar form in virtually all desktop calculators making it one of the most widely
used number formats in the world. Specifically, here we will describe two BCD float
formats and provide conversion routines for one of them.

The first format is the one used by the popular line of TI calculators (Texas
Instruments). This format uses nine bytes to store a floating-point number. This
seems excessive but desktop calculators only operate on a few numbers at a time

3.10 Binary Coded Decimal Floating-Point Numbers 111

so the price in processing time is well-worth the precision gained. The format is
described in more detail in [10]. As a C structure the format is, ignoring guard
digits used to minimize rounding error during calculations,

struct FP {
uint8_t sign;
uint8_ t exponent;
uint8_ t significandl[7];

}i

where the overall sign of the number is stored as 0x00 for positive and 0x80 for
negative. Other values are used for complex numbers but we’ll ignore those here.
The exponent is stored with a bias of 0x80 giving a range of [—128, +127]. L.e., the
actual exponent is found by subtracting 0x80 from the value stored in the exponent
field. The significand is stored in packed BCD format in seven bytes giving 14
decimal digits of precision.

The second BCD float format is one found in compilers for microcontrollers. For
example, the Raisonance RC-51 C compiler for the 8051 microcontroller supports
three sizes of BCD floats: 32-bits (6 decimal digits), 48-bits (10 decimal digits), and
56-bits (14 decimal digits). We will describe the 32-bit format in detail and develop
conversion routines to and from IEEE doubles.

A BCD float-32 number is stored in four bytes as:

31 87 65 0 bit#
S, IS, S,|S, S, 1S, S|N| EE EEEE
significand - 0.S S S S S S signs exponent

07172737475

where the significand is 3 bytes long (6 decimal digits) and one byte is used to store
the signs and exponent. The first sign (“S” above) is the overall sign of the number
where S=1 means the number is negative. The exponent, instead of being stored as
a two’s-complement number, uses a sign bit as well (“N”” above). However, in this
case the sense of the sign bit is reversed so that N=0 means that the exponent is
negative. The magnitude of the exponent is stored in 6 bits which means that the
BCD float-32 format can store numbers with exponents in the range [—63, +63].
This same format is used for the other BCD floats, only the number of digits in the
significand changes.

For example, the number —3.14159x 10 would be stored in BCD float-32 format
as 0x314159¢7 = 001100010100000101011001110001115,

—3.14159 x 10 — 0011 0001 0100 0001 0101 1001 1 1 000111
3 1 4 1 5 9SN 7

112 3 Floating Point

where the significand is stored so that there is no integer part: 0.314159 instead of
3.14159. Therefore the number is stored as 0.314159 x 107 with S=1 because it is
negative and N=1 because the exponent is positive.

Conversion from BCD float-32 to double precision (to allow for exponents > 38)
is straightforward,

1 |double bcdfloat32_to_double (uint32 t bed) {
2 uint32_t sig = bcd >> 8;

3 uint8 t i, sexp = bcd & OXFF;

4 double ans=0, exp;

5

6 for(i=6; i > 0; i--) {

7 ans += (sig & O0xF) * pow(10,-1i);

8 sig >>= 4;

9 }

10

11 exp = (sexp & 0x40) ? (sexp & 0x3F) : -(sexp & O0x3F);
12 ans *= pow (10, exp) ;

13

14 return (sexp & 0x80) ? -ans : ans;

15/}

where sig stores the significand (all but lowest order byte, line 2). We store the
sign and exponent byte in sexp (line 3). Lines 6 through 9 process the nibbles
of the significand and add them into the output (ans) after scaling them by the
appropriate power of ten. Line 7 looks at the lowest significand nibble and multiplies
it by 10~ and adds it to the output. Line 8 shifts the next most-significand digit of
the significand into place. At the end of the loop, ans contains the significand so we
only need now look at the exponent. Line 11 extracts the exponent by masking off
the lowest-order bits (AND with 0x3F) and also sets the exponent sign by looking to
seeif bit 6is set (sexp & 0x40). Line 12 then scales the significand by the exponent.
Line 14 checks the overall sign of the number and returns it negating if necessary.

Conversion from a double to a BCD float-32 is also straightforward. For
simplicity, we ignore range checks and implement the conversion as,

1 |uint32_t double to bcdfloat32(double d) {
2 char s[20];

3 uint327t ans=0, nsgn=1, sgn=0, sexp=0;

4 int32_t exp;

5

6 sprintf (s, "%+0.5e", d);

7 if (s[0] == ’"-') sgn=1;

8 if (s[9] == ’-') nsgn=0;

9 exp = 10x%(s[10]1-'0") + (s[1l1]-'0");

10 exp = (s[9]=='-') ? -exp : exp;

11 exp++;

12 sexp = (abs(exp) & 0x3F) + (sgnx0x80) + (nsgn*0x40) ;

3.11 Chapter Summary 113

14 ans += (s[1]-'0") << 7%4;
15 ans += (s[3]1-'0") << 6%4;
16 ans += (s[4]1-'0") << 5%4;
17 ans += (s[5]-'0") << 4%4;
18 ans += (s[6]1-'0") << 3%4;
19 ans += (s[7]1-'0") << 2%4;
20 ans += sexp;

21

22 return ans;

23}

where we cheat a bit by using a call to sprintf to convert the double input to a
formatted base-10 character string (line 6). Once we have the string representation
we need only pull it apart to set the fields of the BCD float-32 number. Lines 7 and 8
set the bits for the signs. Lines 9 through 11 extract the exponent. We add one to the
exponent (line 11) because the conversion expresses the significand as “3.14159”
and not “0.314159”. Line 12 sets the bits of the lowest-order byte of the output
using the absolute value of the exponent and the signs. Lines 14 through 19 extract
the digits of the significand from the string representation. The numeric value is the
digit character minus the ASCII code for zero. Each of these is then shifted to the
proper nibble position and added into the output. Finally, the signs and exponent are
added (line 20) and the resulting value is returned.

So, why do calculators use BCD floating-point? The best answer to that question
is found in Chap. 7 which discusses the IEEE decimal floating-point format which
uses a variation on packed BCD. Here we will give an example which shows that
decimal calculations in a calculator are generally more precise, if slower, than binary
floating-point calculations.

Consider this expression,

(1001 x 0.01 — 10) x 100 — 1

which is exactly the answer we would expect to get mathematically. However, as
we now understand from this chapter, when we use IEEE floating-point for the
calculation we do not get 1 but instead get 0.9999999999999787 (double precision).
If we try this same calculation using an inexpensive Rockwell 9TR calculator from
1976 we do get exactly 1 for the answer because the calculator is using BCD
floating-point.

3.11 Chapter Summary

In this chapter we took a thorough look at floating-point numbers and how they are
represented in a computer. We discussed just what we mean by “floating-point”
and talked about some of the history surrounding floating-point and computers.

114 3 Floating Point

We compared two popular (though one is largely disused now) floating-point
representations. We then explored the main parts of the IEEE 754 standard covering
representations, rounding modes, comparisons, basic arithmetic, and exceptions.
Next, we discussed the relationship between the standard and common floating-
point hardware. Lastly, we explored packed BCD decimal floating-point which is
often implemented in desktop and pocket calculators.

Exercises

3.1 Convert the following 32-bit IEEE bit patterns to their corresponding floating-
point values:

(a) 0 10000000 10010010000111111011011
(b) 0 10000000 01011011111100001010100
(¢c) 0 01111111 10011110001101110111101
(d) 0 01111110 01100010111001000011000
(¢) 0 01111111 01101010000010011110011

Where the first number is the sign, the second group of 8 bits is the exponent and
the remaining bits are the significand. It will help to write a computer program to
handle the powers of two in the significand.

3.2 Assume a simple floating-point representation that uses four bits in the
significand, three bits for the exponent, and one for the sign. The exponent is
stored in excess-3 format and all exponent values are valid. In this case we have
the following representations,

4.25=0 101 0100

1.5=0 011 1000
-1.5=1 011 1000
-4.25=1 101 0100

Work out the following sums and express the answer in bits. Use a floating-point
intermediate with eight bits for the significand and then round your answer to the
nearest expressible value. Find 4.25 + 1.5and -4.25 + -1.5. %%

3.3 Modify fp_compare to handle infinities properly.

3.4 Summing the values of an array is a common operation. If the naive implemen-
tation is used, simply adding each new array element to the accumulated sum of all
the previous, there will be an overall round-off error proportional to the number of
terms added. For a small array this is negligible but for a large array it may matter.
One way to avoid the accumulated round-off error is to use pairwise summation [6].
This is a recursive divide-and-conquer algorithm which checks to see if the input
array length is below a cutoff value, say five elements, and if so it returns their sum
by simply adding them together. Otherwise, it takes the length of the input array,

References 115

divides it by two using integer division, and calls itself on each of those subarrays
adding the return values together to form the final output value. In pseudo-code,

function pairwise (x) ({
if (length(x) <= 5) {
s = x[0] + x[1] +
} else {
n = length(x) / 2
s = pairwise(x[0..n-1]) + pairwise(x[n..])
}

return s

}

Implement this function in C and Python. Demonstrate the effect of round-off by
comparing the output of this function with the naive summation for input arrays
of 10,000 elements or more. Use a pseudo-random number generator to generate
values in the range [0, 1). **

3.5 Extend the BCD float-32 routines in Sect.3.10 to process BCD float-48 and
BCD float-56. For simplicity, store these in 64-bit unsigned integers and convert to
and from C doubles.

References

10.

. Muller, J., Brisebarre, N., et al. Handbook of Floating-Point Arithmetic, Birkhiduser Boston

(2010).

. Saracino D., Abstract Algebra: A First Course, Addison-Wesley (1980).
. Goldberg, D., “What every computer scientist should know about floating-point arithmetic.”

ACM Computing Surveys (CSUR) 23.1 (1991): 5-48.

. Randell, B., The Origins of Digital Computers-Selected Papers. Springer-Verlag, (1982).
. Rojas, R., “Konrad Zuse’s legacy: the architecture of the Z1 and Z3.” Annals of the History of

Computing, IEEE 19.2 (1997): 5-16.

. Higham, N. Accuracy and stability of numerical algorithms, Siam, (2002).
. Cody, W., Waite, W. Software Manual for the Elementary Functions, Prentice-Hall, (1980).
. Monniaux, D., “The pitfalls of verifying floating-point computations.” ACM Transactions on

Programming Languages and Systems (TOPLAS) 30.3 (2008): 12.

. Rump, SM., “Accurate solution of dense linear systems, Part II: Algorithms using directed

rounding.” Journal of Computational and Applied Mathematics 242 (2013): 185-212.
McLaughlin, S., Learn TI-83 Plus Assembly In 28 Days, http://tutorials.eeems.ca/
ASMin28Days/lesson/day 18.html. (retrieved 09 Sep 2016).

http://tutorials.eeems.ca/ASMin28Days/lesson/day18.html
http://tutorials.eeems.ca/ASMin28Days/lesson/day18.html

Chapter 4
Pitfalls of Floating-Point Numbers
(and How to Avoid Them)

Abstract Floating-point numbers can be hazardous. In this chapter we take a look
at some of the pitfalls of floating-point computation and develop rules of thumb
through which we can (hopefully) avoid most of them. We first examine some of
the catastrophic and even deadly consequences of using floating-point computation
poorly. We then bring things down a bit and examine expressions and processes that
can lead to a loss of precision. Next we enumerate some rules of thumb which can
help us design code less susceptible to these pitfalls thereby leading to more robust
software. Finally, we end with a description of a software tool that can help refactor
floating-point code to be more reliable.

4.1 What Pitfalls?

Programmers use floating-point numbers very frequently and sometimes without
careful consideration of the consequences of the imprecision which may arise.
In this chapter we will look at several examples of where floating-point numbers
have led to disaster, often with the loss of human life. After these cautionary tales
we will run some experiments illustrating the effects of casual floating-point use. We
end by offering some general (and hopefully helpful) advice on how to improve our
chances of creating a correctly functioning program involving floating-point values
and describe a software tool that can help improve the reliability of floating-point
expressions.

Throughout this chapter it will be good to keep this quote from Kahan as given
by Krémer [1] in mind,

Significant discrepancies [between the computed and the true result] are very rare, too rare

to worry about all the time, yet not rare enough to ignore. [2]

meaning that in general floating-point calculations “just work™” but that it is
important to pay at least a little bit of attention to what you are doing. Naturally, if
the application is a homework assignment the level of concern about the reliability
of the floating-point results is considerably less than if the application is a radiation
therapy machine with the potential to seriously injure or kill a patient.

© Springer International Publishing AG 2017 117
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-50508-4_4

118 4 Pitfalls of Floating-Point Numbers (and How to Avoid Them)

With this in mind, let’s look at some instances of catastrophic failures of floating-
point computation.

Patriot Missile Failure During the Gulf War (August 1990 through February
1991) the Iraqi army employed Soviet-built Scud missiles. The United States
responded by installing Patriot anti-missile batteries to shoot down approaching
Scuds. On February 25, 1991 a Scud missile hit a US army barracks in Dharan,
Saudi Arabia, killing 28 solders. The base was protected by Patriot missile batteries
yet the battery in range of the Scud failed to fire. The reason why is due to round-
off error in floating-point calculations. The full report of the incident is available
from the United States General Accounting Office (GAO) [4] but the essence of
the problem has to do with trying to represent a simple value, in this case 0.1, in a
floating-point format which was itself then truncated to fit into a fixed-point number.
The Patriot missile software tracked the position of incoming Scuds using radar.
It tracked time by counting tenths of a second and used a 24-bit fixed-point
representation of the floating-point value for 0.1 to convert to seconds. The only
problem is that in binary the value of 0.1 is an infinitely repeating decimal,

0.1 =0.0001100110011001100110011001100.. .,

that simply truncating at 24-bits gives, 0.00011001100110011001100, meaning an
error of 0.000000000000000000000000110011001100. .., ~ 0.000000095 s was
in introduced for each truncation. This is not much, but if the missile battery was
left in operation for a long period of time the error would accumulate.

The GAO report indicates that Israeli forces, also operating Patriot batteries,
noticed that after approximately 8 h of operation targeting was off by about 20%.
A software fix was created and scheduled to be sent to the batteries. However, no
long running tests were performed to see how long the battery could be in operation
before the timing error was catastrophic. Battery operators were warned that long
runtimes might cause inaccuracy in targeting but were not given any notion of what
“long runtime” might mean. On February 25, 1991 the Patriot battery in Dharan
had been in continuous operation for about 100 h. This means the small timing error
introduced by the truncation of 0.1 to 24-bits was now multiplied by the number
of tenths of a second in 100 h or 3,600,000 causing a discrepancy of about 0.34s.
During this time a Scud missile would cover about half of a kilometer putting it out
of range of the battery. Since the battery thought the missile was out of range it did
not fire and the missile went on to kill 28 soldiers. The software patch arrived at
Dharan on February 26th.

Ariane 5 Explosion The European Space Agency has a successful track record
when it comes to launching sophisticated spacecraft. However, the maiden flight of
its Ariane 5 rocket on June 4, 1996, was a total loss, to the tune of $500 million
USD, all because one of the software modules attempted to put a 64-bit floating-
point value into a 16-bit signed integer.

4.2 Some Experiments 119

Just under 40s after its launch from Kourou, French Guiana, the rocket self-
destructed. The software putting a 64-bit floating-point value into the signed 16-bit
integer had caused an overflow (ie, the value exceeded 32,767) which caused the
rocket to believe it was off-course. It therefore fired thrusters to “correct” its course
which put so much stress on the rocket that its self-destruct was triggered. The final
report of the inquiry board summarizes the events [5].

Schleswig-Holstein Parliament Election This story does not involve loss of life
or property but was politically troubling. In the German state of Schleswig-Holstein
no party receiving less than 5% of the vote is seated in parliament. In the election
of 1992 it looked like the Green party had precisely 5% of the vote allowing them
a seat. This was according to the software that prints the results. However, closer
examination showed that the Green party only had 4.97% of the vote, less than the
required 5%, and that the software had simply rounded to one decimal so that 4.97%
— 5.0%. Because of this, the Green party votes were dropped and the net result was
a one seat majority for the Social Democrats [6].

Vancouver Stock Exchange This story does not involve loss of life or property,
either, but was rather embarrassing all the same. In 1982 the Vancouver Stock
Exchange created a new index set to an initial value of 1000.000 [7]. The “000”
is meaningful, the index was calculated to three decimals. However, a programming
error simply truncated the index to three decimals without rounding so, to use the
example from the original Wall Street Journal article, if the actual index value was
540.32567 the software simply truncated the index to 540.325 dropping the final
“67 digits. Of course, this is not a good idea as the proper three decimal value
is 540.326 rounding the “5” up to “6” based on the value of the fourth decimal.
The error is small but cumulative and as the index was updated some 2800 times
per day it didn’t take long before the index value was completely meaningless. Re-
calculation of the index by hand, when the error was realized, put the value at over
1098 instead of the 574 or so that was being reported.

4.2 Some Experiments

The examples above show that floating-point can sometimes lead to fatal and costly
disasters. More practically, floating-point, in combination with compilers, hardware,
and even the form of the equations used, can lead to wildly inaccurate results as the
experiments in this section illustrate.

The Logistic Map A favorite equation used to illustrate the onset of chaotic
behavior is the logistic map, x;+; = rx;(1 —x;) with r a constant between 1 and < 4
and x a value from (0, 1). This map exhibits very interesting behavior as an initial
X is iterated repeatedly and as r varies from say 2 up to just under 4. If one were to

120 4 Pitfalls of Floating-Point Numbers (and How to Avoid Them)

1.0 =
111‘"
131"'7'}” \
0.8 QU
) |
\\I.
0.6 d'fI1N %
2 2 .
0.4 {
Y
G
0.2 \
N
N
0.0 A

2.4 2.6 28 3.0 3;_2 3.4 3.6 3.8 4.0

Fig. 4.1 The bifurcation plot of the logistic map. The plot shows several hundred x values from the
iterated logistic map for each r value as a function of r. This map illustrates the period-doubling
route to chaotic behavior. For the experiment » = 3.8 which is in the chaotic region (“Logistic
Map” by Jordan Pierce, Creative Commons CCO 1.0 Universal Public Domain Dedication License)

select a starting value of 0.1 (or any other) and run the iteration forward a thousand
times and then plot the next thousand as a function of r one would get Fig. 4.1 which
is known as a bifurcation plot. This plot shows the period-doubling route to chaotic
behavior as r increases. There is a deep correlation between the structure of this plot
and the famous Mandelbrot set. Of interest to us is the sequence of values one gets
if 7 is in the chaotic regime for different but algebraically equivalent forms of the
logistic equation. This experiment is inspired by previous work by Colonna [8].
We can rewrite the logistic equation as,

Xit1 = rxi(1 —x;) = rx; — rxix; = x;(r —rxy) = rx; — rxi2

where each of the four forms will be computed in our test program. The program
itself is straightforward,

4.2 Some Experiments

1 |#include <stdio.h>
2 |#include <math.h>
3

4 |int main() {

5 double x0,x1,x2,x%x3;

6 double r = 3.8;

7 int 1i;

8

9 X0 = x1 = x2 = x3 = 0.25;

10

11 for(i=0; 1 < 100000; i++) {
12 x0 = r*x0%x (1.0 - x0);

13 x1 = r*x1l - r*xl*xl;

14 X2 = X2*%(r - r*x2);

15 X3 = r*x3 - r*pow(x3,2);
16 }

17

18 printf (" x0 x1
19

20 for(i=0; 1 < 8; i++) {

21 x0 = r+x0%x (1.0 - x0);

22 x1 = r*x1l - r*xl*xl;

23 X2 = X2 (r - r*X2);

24 X3 = r*x3 - r*pow(x3,2);
25 printf ("%$0.8f %0.8f %0.8f
26 }

27/}

x2

%$0.8f\n",

x0,x1,x2,x%x3);

121

This program iterates each of the four versions of the logistic map and outputs
the final eight iterates after an initial burn in of 100,000 iterations. Note that the
program uses double precision values and that the initial value is 0.25 which is not
a repeating binary. The program produces this as output,

x0 x1 x2
0.76670670 0.65123778 0.80925715
0.67969664 0.86308311 0.58656806
0.82729465 0.44904848 0.92152269
0.54293721 0.94013498 0.27481077
0.94299431 0.21386855 0.75730128
0.20427297 0.63888941 0.69842500
0.61767300 0.87669699 0.80038457
0.89738165 0.41077765 0.60712262

when compiled with,
$ gcc logistic.c -o logistic -1m

O O O O O O O o

x3

.38542453
.90011535
.34164928
.85471519
.47187310
.94699374
.19074708
.58657800

where we already see the effect of the different way the compiler has decided to
evaluate the logistic expressions even though algebraically they are identical. If we

compile again with optimization,

$ gcc logistic.c -o logistic -1lm -02

122 4 Pitfalls of Floating-Point Numbers (and How to Avoid Them)

we get,
x0 x1 x2 x3
0.18402020 0.67978266 0.32056222 0.92875529
0.57059572 0.82717714 0.82764792 0.25144182
0.93106173 0.54322944 0.54205800 0.71523156
0.24390598 0.94289862 0.94327827 0.77396643
0.70078024 0.20459509 0.20331661 0.66478109
0.79681171 0.61839658 0.61552007 0.84681933
0.61523066 0.89673255 0.89928943 0.49292215
0.89954320 0.35189247 0.34415822 0.94980964

which is different still. Clearly, the way in which an expression is coded matters
significantly. Which value, if any, is most correct? How can one tell? One way would
be to use arbitrary precision floating-point which we discuss in detail in Chap. 9.
Alternatively, one could use rational arithmetic and convert back to floating-point at
the end. For an explanation of rational arithmetic see Chap. 5 but be warned that the
iteration will quickly lead to fractions with very large numerators and denominators
and require a great deal of memory.

Taylor Series for e When x < 0 Let’s consider another experiment. In this case
we want to compute e* for any x using the Taylor series expansion,

2 3

oo
T SO ot
e=1+x+ ET_+ gi +..-=1 +"_1 i

which we translate into Python as,

1 |def fact(n):

2 if (n == 1):

3 return 1.0

4 return n * fact(n-1)

5

6 |def exponential (x, tol=1le-10):
7 ans = 0.0

8 term= 1.0

9 p=1.0

10

11 while (abs(term) > tol):
12 ans += term

13 term = x*xxp / fact(p)
14 p +=1

15

16 return ans

where we accumulate terms of the series until one of the terms is smaller than a
given threshold. If we run this program for positive values of x and compare them
with the output of a gold standard exp (x) function (recall that Python floats are
double precision), we get,

4.2 Some Experiments 123

20 4.8516519540979016e+08 4.8516519540979028e+08
21 1.3188157344832141e+09 1.3188157344832146e+09
22 3.5849128461315928e+09 3.5849128461315918e+09
23 9.7448034462489052e+09 9.7448034462489033e+09
24 2.6489122129843472e+10 2.6489122129843472e+10
25 7.2004899337385880e+10 7.2004899337385880e+10

where the first column is the argument, the second is the output of exponential ()
and the third is the output of our gold standard function. Clearly, our Taylor series
approximation for ¢* is working quite well.

Now, let’s run again but this time make x < 0. In this case we get,

-20 4.9926392547479328e-09
-21 2.7819487708032662e-08
-22 -2.4369901527907362e-08
-23 3.1518333727167153e-09
-24 3.7814382919759864e-07
-25 1.1662837734562158e-06

.0611536224385579e-09
.5825604279119066e-10
.7894680928689246e-10
.0261879631701890e-10
.7751345442790977e-11
.3887943864964021e-11

[ol S RN I)

Not so good. What happened and how can we fix it? What happened is that the
Taylor series for e*,x < 0 is made up of terms that are alternately even and odd
powers of x. This means that the sign of the term changes from term to term. In
other words, the series sum is made up of values that are wildly different from each
other. Consider the approximation for =2,

20 — 1 _20 + 202 _ 203 + 204 _ 200 200

2 6 24 T 120 720
1—20+ 200 — 1333.3 4+ 6666.7 — 26666.7 + 88888.9 — - - -

e

where the effect of each term changing sign is that the sum to term »n is always the
opposite sign as term n + 1. This addition of two very different numbers leads to a
rapid loss of precision making the approximation functionally useless even though
mathematically it is valid.

The fix in this case is to use only positive x and to recall that e™ = 1/¢*. If we
run our Python program again with only positive x and report 1. 0/exponential (x)
we greatly improve our final results,

-20 2.0611536224385583e-09 2.0611536224385579e-09
-21 7.5825604279119097e-10 7.5825604279119066e-10
-22 2.7894680928689241e-10 2.7894680928689246e-10
-23 1.0261879631701888e-10 1.0261879631701890e-10
-24 3.7751345442790977e-11 3.7751345442790977e-11
-25 1.3887943864964019%e-11 1.3887943864964021e-11

thereby proving that thought is always required when expecting meaningful results
from floating-point operations.

Summing an Array of Numbers Summing the elements of an array is a frequent
operation with floating-point numbers. For example, calculation of the mean of a
collection of data points typically involves storing the data in an array and then

124 4 Pitfalls of Floating-Point Numbers (and How to Avoid Them)

processing the elements of the array to calculate the mean by summing the array
elements and then dividing by the number of elements.

The straightforward way to sum an array is to simply add the elements one after
the other to an overall sum. As we will see, this simple approach suffers quite a bit
from round-off error. We can do better and compensate for the error by using Kahan
summation [3] which is a form of compensated summation [9]. For example, this
code will generate a vector of random values and sum them using simple summation
and Kahan summation,

1 |#include <stdio.h>

2 #include <time.h>

3 |#include <stdlib.h>

4

5 |#define N 10001

6 double A[N];

7

8 'int main() {

9 double sum, ¢, y, t;

10 int 1i;

11

12 srand (time (NULL)) ;

13 for (i=0; 1i<N; 1i++)

14 A[i] = 1001.0*((double)rand()/ (double)RAND MAX) ;
15

16 sum = 0.0;

17 for(i=0; 1i<N; i++)

18 sum += A[i];

19 printf ("simple sum = %0.16f\n", sum);
20

21 sum = ¢ = 0.0;

22 for(i=0; i<N; i++) {

23 y = A[i]l - c;

24 t = sum + y;

25 c = (t - sum) - y;

26 sum = t;

27 }

28 printf ("Kahan sum = %0.16f\n", sum);
29 return 0;

30}

where lines 12 through 14 fill the array a with random numbers in the range
[0, 1001]. The simple sum code is in lines 16 through 18. It is self-explanatory.
We print the result in line 19. Kahan summation is implemented in lines 21
through 27. These lines need some explanation. The main goal of Kahan summation
is to preserve some notion of the error (c) and compensate for it. Line 23 adjusts the
to-be-added value (2 [1]) by the current value of c. This subtracts off the estimated

4.2 Some Experiments 125

error from the previous value which may actually be negative. Line 24 stores the
new sum adding in the current value (t). Line 25 would, in the absence of error,
be exactly zero. The difference t - sum should be exactly A[i] -c as is y so the
value of the expression should be zero. However, round-off error will (sometimes)
make this value nonzero. This is the estimated error introduced by adding A [1i]
and we compensate for it when the next term is added (line 23). Line 26 updates the
actual returned sum.

How well does Kahan summation work? We can calculate it. If we sum an array
of 10001 random values, each in the range [0,1001], using simple summation and
Kahan summation we can compare the result with a high-precision sum of the same
array using 100 decimal digits. Taking the 100 decimal digit answer as the gold
standard we can calculate the deviation for the simple and Kahan sums. If we repeat
this process, say 300 times, we can calculate an average deviation. Doing just this
gives,

simple sum|A| = 0.0000000103093065730
Kahan sum|A| = 0.0000000002381457745

where running the test again will give slightly different results but it will consistently
show that Kahan summation is approximately two orders of magnitude more precise
than the simple summation code. The high-precision floating-point library used is
the one developed in Chap. 9.

Comparing Floating-Point Numbers Our final example involves one of the most
common of activities with floating-point numbers: testing for equality.

To illustrate the problem, consider the simple expression 0.140.2 == (0.3 where
== implies a test for equality. This expression fails when using 32-bit or 64-bit
IEEE floating-point. However, this expression does not fail for IEEE floating-point:
0.1 x 10" + 0.2 x 10! == 0.3 x 10'. So, for what values of x in 10* will the
test pass? If we test empirically using only positive exponents to avoid cluttering
the final plot, we get Fig. 4.2 where we plot 1 if the test passes for that particular
exponent x and plot 0 if not. The results for negative exponents are similar. Looking
at the figure we plainly see islands where the expression works as expected but also
many places where it fails. Comfortingly, there is a large set of exponents covering
what is probably a very common range of values encountered in practice where the
expression is evaluated correctly with the notable exception of x = 0.

Why is the expression not always evaluated properly? Round-off error is to
blame. We have seen previously that 0.1 is infinitely repeating in binary so the
requirement to fit it in a finite number of bits will inevitably result in error that
can make a mathematically true expression appear false on the computer.

126 4 Pitfalls of Floating-Point Numbers (and How to Avoid Them)

0_

0 50 100 150 200

Fig. 4.2 Comparing 0.1 X 10 + 0.2 x 10* = 0.3 x 10*,x € [0,200] using double precision
floating-point numbers. If the comparison passes plot 1, otherwise plot O for exponent x. It is clear
that there are islands where the comparison works as expected but also many places where it fails

Another area where round-off error in comparisons comes into play is inside of
a loop. It is not uncommon to want to iterate over a range of floating-point values,

for(d=start; d < end; d += inc)

where start is a starting value, end is an ending value and inc is an increment. For
example, we can set inc using inc = (end - start) / n in order to calculate
n values in the loop. This seems straightforward but round-off error and the test
d < end will not let us easily predict whether the loop will execute n or n + 1
times. This is bad if we hope in the loop body to fill an array of exactly n elements.

We can determine the frequency of this error with a simple program that counts
the number of times the body of a loop defined in this way actually executes for
random start and end values fixing n,

1 int main()

2 double start, end, inc, d, s=0.0;

3 int i=0,j=0,n,m;

4

5 srand (time (NULL)) ;

6 n = 100;

7 m = 10000000;

8

9 for (j=0; j<m; J++) {

10 start = 100001.0x* ((double)rand()/ (double)RAND MAX) ;
11 end = start + 1001.0%* ((double)rand()/(double)RAND MAX) ;
12 inc = (end - start) / n;

13 i=0;

14

15 for(d=start; d < end; d += inc)

16 1++;

17 s += i-n;

18 }

19

20 printf ("fraction with extra loop = %0.9f\n", s/ (double)m) ;
21 return O;

221}

4.2 Some Experiments 127

where we set start to a random value in the range [0, 100001] and end to start
plus a value in the range [0, 1001]. We fix n at 100 meaning we expect the loop
in lines 15 and 16 to execute exactly n times. We count the actual number of loop
iterations in i and accumulate a running total in s (line 17). When we’ve run m tests
we report the fraction of loops that actually executed n + 1 times (line 20). Running
this program many times always reports a fraction very close to 49.5% meaning
for any arbitrary start and end conditions, expecting exactly 100 iterations, we are
actually getting 101 iterations nearly half the time. So, this issue is a real one and
must be considered when developing code. In this case we can correct the problem
by rewriting the loop,

for(j=0; j < n; j++) {

d = start + jinc;

where we are now assured of executing exactly n times and we set d at the beginning
of each iteration so we can use it in the body of the loop.

What about comparing for equality in general? Can we be accurate when using
floating-point values? The answer is “yes” with some attention paid to what we
mean by equality. We saw in Chap. 3 that the bit representation of IEEE floating-
point values are ordered and when two values are the same their bit values are the
same, with one notable exception. So, a simple, highly strict, test for floating-point
equality is to look at the bits of the representation. If they are the same the numbers
must be the same. The exception is zero which may be signed or unsigned according
to IEEE 754. In this case the numbers are the same but the bit values are different.
We should also be careful in the case of NaNs. Recall that a NaN has a payload
which is intended to convey application-specific information about the source of the
NaN. So, while we might want to say that NaNs are equal they might have different
payloads. Infinity, positive or negative, is not an issue because, by definition, there
is only one bit pattern that represents each of them.

With this in mind, we can define a very strict equality test as,

1 uint8 t equal strict(float a, float b) ({
uint32 t A = x(uint32_t «*)&a;
uint32 t B = (uint32_t «)&b;

if ((a == 0.0) && (b == 0.0)) return 1;
if (isnan(a) && isnan(b)) return 1;
return (A == B);

o J o0 Ul b W N

}

where we take the inputs and re-interpret them as unsigned integers (lines 2
and 3). This will let us compare the bits directly. Line 5 checks for zero since
the IEEE standard demands that 0.0 == —0.0. Line 6 looks at NaNs, regardless
of the payload. Lastly, line 7 compares the bits directly now that we know the inputs
are not NaNs or zero. This is the strictest possible test for floating-point equality
and is probably not what we want since it requires exact equality for all bits.

128 4 Pitfalls of Floating-Point Numbers (and How to Avoid Them)

A common technique is to use a tolerance value. If we know the range of values
we are working with, for example, the result of actual physical measurements, we
can usually set a tolerance below which we are willing to call the values the same.
In this case we can use an expression like,

if (fabs(a-b) < t)

to check if the difference between two floating-point values, here doubles because
we are using fabs, is less than a tolerance value, t. In many cases this is a perfectly
reasonable thing to do. However, this is not a general solution because in the general
case the magnitudes of a and b may be way out of concordance with the given
tolerance. To be more accurate and still allow a tolerance over which we are willing
to call two floating-point values equal we can return to the integer representation
and measure the difference between the two values in integer space and as long as
that is within a certain tolerance we can call the numbers “equal” (with the tests
above for zero and NaN cases).

We introduce a new term, “ulps”, which means “units in the last place”. An
ulp is the smallest difference between two consecutive floating-point numbers.
In integer space, this is the difference between a floating-point number with integer
representation n and the floating-point number with representation n + 1. We can
use this to test for equality by passing, along with the two numbers, the maximum
number of ulps difference we are willing to tolerate and still call the numbers equal.
This difference may be quite large if we are in a situation where we are willing to
call two very different numbers equal. However, in that case, we may be able to
intelligently use the tolerance approach above.

Our ulps equality routine is a simple modification of the strict equality routine
above,

3

lluint8 t equal ulps(float a, float b, uint32_t ulps)
uint32 t A = *(uint32 t *)&a;
uint32 t B = *(uint32_t «*)&b;

if ((a == 0.0) && (b == 0.0)) return 1;
if (isnan(a) && isnan(b)) return 1;
return abs (A-B) < ulps;

W g o0 Ul b W N

}

where the only change, besides passing in a tolerance value (ulps) is line 7 which
checks if the difference between the two inputs, as integers, is less than the max
tolerance. Note that equal ulps will not be correct for numbers that are very close
to zero. This is because the high bit of an IEEE float is the sign and even if the
numbers are both very close together, if one is negative and the other positive,
then the raw difference in ulps will be very large indeed. We leave correcting
equal ulps as an exercise for the reader, see Problem 4.1.

4.2 Some Experiments

We can test our new function with this program,

129

1 int main() {

2 float a,b;

3 uint32 t A,B,i;

4 uint32_t S=0, UMAX=0, UMIN=80000000;

5 uint32_t p0=0,£f0=0,p1=0,£f1=0, M=50000000;

6

7 srand (time (NULL)) ;

8

9 for(i=0; i < M; 1i++) {

10 a = (float) (1001.0* (double)rand()/

(double) RAND MAX) ;

11 b = 2.1«a;

12 b =Db - 2.0xa;

13 b = 10.0xb;

14 A = x(uint32_t=«)&a;

15 B = x(uint32 t«)&b;

16 S += abs(A-B);

17 if (abs(A-B) > UMAX) UMAX = abs(A-B);

18 if (abs(A-B) < UMIN) UMIN = abs(A-B);

19 if (equal ulps(a,b,30)) pO++; else f0++;

20 if (a==b) pl++; else fl++;

21 }

22

23 printf ("p0=%8d, f0=%8d, passed=%0.8f\n", p0, fO,
(double)p0/ (double)M) ;

24 printf ("pl=%8d, f1=%8d, passed=%0.8f\n", pl, f1,
(double)pl/ (double)M) ;

25 printf ("mean difference=%0.8f, [%u,%ul\n", (double)S/
(double)M, UMIN, UMAX) ;

26

27 return 0;

28}

This program performs many tests of the difference between a random floating-point
value (a) and b which is set to (2.1a — 2.0a) x 10 which, mathematically, should
be exactly equal to a but which we know will not be because of round-off error.
We split the formula up among several lines to stymie the compiler lest it do any
advanced optimizations. The variable s accumulates the difference between a and b
in ulps. The largest and smallest difference encountered is stored in UMAX and UMIN
respectively. Line 19 calls the new equality routine and increments the counters for

passed and failed. Line 20 does the same for the straightforward equality test.

When the loop completes the program outputs the totals for each case along
with the fraction of tests that passed, the mean difference, minimum difference and
maximum difference in ulps. A typical run produces output like,

130 4 Pitfalls of Floating-Point Numbers (and How to Avoid Them)

p0=50000000, foO= 0, passed=1.00000000
pl= 2408450, £1=47591550, passed=0.04816900
mean difference=5.37257440, [0,20]

where all the calls to equal ulps have passed because we set the tolerance to 30
ulps and in this case the maximum difference encountered was 20 ulps. Notice that
only 4.8% of the direct comparisons were actually successful. These percentages
are maintained when the range of a is changed across many orders of magnitude.

Note that the routines above work for double precision floating-point as well.
Simply map float — double and uint32_t — uinté4_t. The results found are
still valid in the double precision case.

4.3 Avoiding the Pitfalls

The previous section illustrated through empirical experiments some of the pitfalls
of floating-point computation. The topics addressed are not exhaustive by any
means. However, we can now put together a short list of “rules of thumb” that
are worth keeping in mind when writing floating-point code. After this list we
take a quick look at a software tool that can automatically improve floating-point
expressions as another approach to avoiding pitfalls.

Rules of Thumb We end this chapter with some “rules of thumb” regarding the
use of floating-point numbers. These rules are not absolute, of course, and others
could be given, but they will hopefully be found helpful and cause you to pause and
consider carefully when writing floating-point programs.

1. Do not use floating-point numbers if integers will suffice. As a corollary, do not
use floating-point numbers if exact computation is required, rather, scale if a fixed
number of decimals will always be used. For example, if the values are dollars
do the computations in cents and divide by 100 when done.

2. Do not represent floating-point numbers in text form in files or as strings unless
absolutely necessary. If necessary, use scientific notation and be sure to have
enough digits after the decimal point of the mantissa to represent the significand
accurately. For a 32-bit float use at least 8 digits. For a 64-bit float use at least 16.
For example, in Python,

>>> from math import pi

>>> float ("%0.15g" % pi) == pi
False
>>> float ("%0.16g" % pi) == pi
True

where the 0.15g format specifier uses 15 digits after the decimal which is not
enough, 16 are required so that the text representation of w, when converted
back to a floating-point number, matches the original. Floating-point numbers are
often found in XML and JSON files and frequently without enough precision.

4.3 Avoiding the Pitfalls 131

3. The spacing between floating-point numbers increases as the number increases.
If working with large numbers, rescale, if possible, to map to values closer to one.

4. Comparing two floating-point values for equality can be problematic if they were
computed using a different code sequence. If possible, replace expressions like
a == bwithabs (a-b) < e where e is a tolerance value or use the equality
functions defined above. Even the tolerance value is dangerous in that the choice
of e depends upon the scale of the values being worked with.

5. Subtracting two nearly equal numbers results in a large loss of precision as the
result is made up of only the lowest order bits of the significand. Generally, this
should be avoided. Naturally, the rule above does just this which is why it is best
to compare integer representations directly when possible and absolute precision
is needed.

6. For real numbers we know that (ab)c = a(bc) however this is sometimes not
the case for floating-point numbers due to rounding. Use care when assuming
associativity.

The rules above are ad hoc examples of a large research area known as numerical
methods. An important part of numerical methods involves the analysis of the
equations being implemented by the computer and a reworking of those equations
to minimize floating-point errors to improve the stability of the program. The
stability of numerical algorithms is a vast field as might be expected. For a scholarly
introduction, especially its early chapters, see Higham [9]. For a more popular
treatment see Acton [10].

Using a Tool: Herbie One emerging area of research in numerical methods is the
automatic rewriting of floating-point expressions to improve their reliability. Here
we will take a look at one such tool, Herbie. The description of how Herbie works is
beyond the scope of this book, see [11] for more information. We will describe how
to install and test Herbie and how to use it to simplify expressions. There is also a
web demo of Herbie that uses a more familiar syntax, see http://herbie.uwplse.org/
demo/ (retrieved 14-Sep-2016).

Herbie is written in Racket. Racket is a programming language derived from
Scheme which itself is derived from Lisp. In a previous life, Racket was called
MzScheme, though Racket goes well beyond MzScheme. In order to use Herbie
we need to install Racket. We can install Racket by downloading it from here:
http://download.racket-lang.org/racket-v6.5.html (retrieved 14-Sep-2016). After we
install Racket we can get Herbie from github with:

git clone https://github.com/uwplse/herbie
where can test the installation with,
racket src/reports/run.rkt bench/hamming/

If 24 or more tests pass we can assume that Herbie is working properly (patience, it
takes a while). Compile Herbie with,

raco make src/reports/run.rkt

http://herbie.uwplse.org/demo/
http://herbie.uwplse.org/demo/
http://download.racket-lang.org/racket-v6.5.html

132 4 Pitfalls of Floating-Point Numbers (and How to Avoid Them)

to improve performance. We are now ready to use Herbie to improve some floating-
point expressions.

In order to use Herbie we need to enter the expressions we wish to optimize in
an external file using Lisp syntax. This syntax is prefix-order meaning operators
come before the operands using parentheses to group operators and operands. For
example, consider the following translations from standard infix to prefix format,

Infix Prefix
X+y (+ x v)
xX—y (- xy)
202 —3x+ 4 (+ (- (+ 2 (sqgr x)) (* 3 x)) 4)
100(10.01x — 10) | (+ 100 (- (+ 10.01 x) 10))
VX2 4 y? (sgrt (+ (sgr x) (sgr y)))
Coszx-+-ﬁn2x (+ (sgr (cos x)) (sgr (sin x)))
The set of intrinsic functions Herbie understands is: +, —, *, /, abs, sqrt, sqr, exp,

log, expt, sin, cos, tan, cot, asin, acos, atan, sinh, cosh, and tanh where the functions
have their usual meaning. Use (expt x y) for x’. Herbie also knows PI for 7 and
E for e.

The expressions need to be entered into the file as follows,

(FPCore (x)

(#+ 100 (- (% 10.01 x) 10)))

where the expression is, using Lisp syntax, the second line. The expression is
wrapped with

(FPCore (x) ...)

where (x) is a list of the variables in the expression and . . . is the expression.
So, to use Herbie to process the expression x(+/x — 1 — 4/x) we enter,

(FPCore (x) (* x (- (sgrt (- x 1)) (sgrt x))))

into a file named expr. fpcore (the £pcore extension is suggested) and evaluate it
with,

racket src/herbie.rkt expr.fpcore
to produce Herbie’s rewritten expression,

(FPCore (x) (/ (- x) (+ (sqgrt x)

(sart (- x 1)))))

indicating that, according to Herbie, we should change,

—X
MVx 1=V = — e

to maximize our accuracy. Let’s test Herbie’s claims using a simple Python program,

4.3 Avoiding the Pitfalls 133

1 |import random
2 |[from APFP import =
3 |from math import sqgrt

4

5 |def £(x):

6 return xx (sqgrt(x-1) - sqrt(x))

7

8 |def g(x):

9 return (-x) / (sgrt(x) + sqrt(x-1))
10

11/ def main() :

12 APFP.dprec = 100

13 M = 10000

14 SA = APFP(0)

15 SB = APFP(0)

16

17 for i in xrange (M) :

18 X = 1001.0xrandom.random() + 1.0
19 a = f(x)

20 b = g(x)

21 X0 = (APFP(x) - APFP(1)) .sqgrt()
22 X1 = APFP(x) .sqrt()

23 B = APFP(x)* (X0 - X1)

24 DA = abs(B - APFP("%0.18f" % a))
25 DB = abs(B - APFP("%0.18f" % b))
26 SA += DA

27 SB += DB

28

29 print "Running %d tests:" $ M

30 /print " mean deviation using f() = %s" % (SA / APFP(M))
32|print " mean deviation using g() = %s" % (SB / APFP(M))

where the apFp library is the fixed-point arbitrary precision floating-point library
developed in Chap. 9 which is capable of performing calculations with an arbitrary
number of digits after the decimal point. Here we use 100 digits after the decimal
point. There is no practical limit to the size of the integer portion. The functions
£() and g () are the two forms of the expression we are testing, the original and
the version Herbie suggests. The main loop (line 17) draws a random value, gets the
output of the two forms of the expression and then calculates the original expression
using arbitrary precision (lines 21 through 23). We determine the deviation from the
arbitrary precision result for each expression (lines 24 and 25) and accumulate the
deviation so we can calculate the mean (lines 30 and 32).

Running this program produces output similar to (truncating the 100 digits in the
actual display),

Running 10000 tests:
mean deviation using f ()
mean deviation using g()

0.0000000000005792391185219435
0.0000000000000006209725959118

134 4 Pitfalls of Floating-Point Numbers (and How to Avoid Them)

where £ () is x(+/x — 1 — /x), the original expression, and g () is ﬁﬁ’ the
expression Herbie suggested we use instead. Indeed, Herbie is correct, the rewritten
expression produces on average 1/1000-th the deviation from the arbitrary precision
result when compared to the original expression. Note that the arbitrary precision
result uses the original expression.

From this simple test is appears that tools like Herbie can be used profitably to
improve floating-point accuracy in programs. In its present form Herbie is a tad
tedious to use because of the requirement to convert expressions to prefix format or
to enter them manually in the web interface. It would be nice if Herbie was infix-
aware and multi-language aware so that we can mark expressions we want Herbie
to automatically process directly in the source code. For example, a preprocessor
using Herbie for C programs might look for special comments such as,

double f (double x)
double vy;

// herbie-input({
y = X*(sqrt(x-1) - sqgrt(x));
// }herbie-input

return y;

}

and produce new source code with,

double f (double x)
double y;

// herbie-output(
y = (-x) / (sgrt(x) + sgrt(x-1));
// }herbie-output

return y;

}

or something similar.

4.4 Chapter Summary

In this chapter we examined some real-world instances where floating-point errors
caused severe damage and loss of life or property. We then used empirical exper-
iments to understand some of the issues found in the application of floating-point
numbers. These helped us formulate some rules of thumb for using floating-point.
Lastly, we examined a powerful software tool for the automatic rewriting of floating-
point expressions to improve their accuracy and demonstrated the efficacy of the
rewritten expressions.

References 135
Exercises

4.1 Correct the deficiency in equal ulps above by treating the input floating-point
numbers as sign-magnitude integers. L.e., bit 31 of the integer representation is the
sign and needs to be explicitly examined in some fashion.

4.2 The function equal ulps uses a tolerance value to indicate equality. One
could also use a tolerance value to help in deciding whether a floating-point
number, a, is greater than or less than another number, b. Write a new function,
compare ulps (a,b,u), which returns —1 if a < b, zero if a = b, and +1 if a > b.
The third argument, u, is a tolerance in ulps. If a and b are within this tolerance they
are considered equal. If not, and a is larger than b, return +1 otherwise return —1.
(Hint: recall that bit 31 of an IEEE float is the sign bit. You will need to take this
into account in your function.)

4.3 Experiment using Herbie to rewrite other expressions. Test them using the
Python code in Sect.4.3. In particular, consider expressions using /f(x), ¢/,
logf(x), and trig functions like sinf(x), etc. Is Herbie most effective with any
specific transcendental function?

References

1. Krdmer, Walter. “A priori worst case error bounds for floating-point computations.” IEEE
transactions on computers 47.7 (1998): 750-756.

2. Kahan, W. M., “The Regrettable Failure of Automated Error Analysis.” mini-course, Conf.
Computers and Mathematics, Massachusetts Inst. of Technology. 1989.

3. Kahan, W. M., “Further remarks on reducing truncation errors”, Communications of the ACM,
8 (1): 40 (January 1965).

4. B-247094, Report to the House of Representatives. Washington, D.C.: GAO, Information
Management and Technology Division, 4 Feb. 1992, url: www.fas.org/spp/starwars/gao/
im92026.htm (retrieved 15 Oct 2014).

5. Lions, JL (chair), ARIANE 5 Flight 501 Failure Report by the Inquiry Board, Paris, 19 July
1996.

6. Weber-Wulff, D., The Risks Digest, Volume 13, Issue 37, 1992.

7. Quinn, K., Ever Had Problems Rounding Off Figures? This Stock Exchange Has, The Wall
Street Journal, p 37, November 8, 1983.

8. Colonna, JF, The Subjectivity of Computers, http://www.lactamme.polytechnique.fr/
descripteurs/subject.01..html. (retrieved 15 Oct 2014).

9. Higham, N. Accuracy and stability of numerical algorithms, Siam, (2002).

10. Acton, F., Real computing made real: Preventing Errors in Scientific and Engineering
calculations, Courier Dover Publications, (2013).

11. Panchekha, P, et al. “Automatically improving accuracy for floating point expressions.” ACM
SIGPLAN Notices 50.6 (2015): 1-11.

www.fas.org/spp/starwars/gao/im92026.htm
www.fas.org/spp/starwars/gao/im92026.htm
http://www.lactamme.polytechnique.fr/descripteurs/subject.01..html
http://www.lactamme.polytechnique.fr/descripteurs/subject.01..html

Part 11
Other Representations

Chapter 5
Big Integers and Rational Arithmetic

Abstract Big integers differ from standard integers in that they are of arbitrary
size; the number of digits used is limited only by the memory available. In this
chapter we look at how big integers are represented in memory and how to perform
arithmetic with them. We also discuss some implementations which might be of use
when using programming languages that do not support big integers natively. Next
we examine rational arithmetic with big integers. Finally, we conclude with some
advice on when it might be advantageous to use big integers and rational numbers.

5.1 What is a Big Integer?

Big integers, also known as bignums, bigints, multiple precision, arbitrary precision,
or infinite precision integers, are integers that are not limited to a fixed number of
bits. The standard representation for integers in computers involves a fixed number
of bits, typically 8, 16, 32, or 64. These numbers therefore have a fixed range. A big
integer, however, uses as much memory as is necessary to represent the digits and
therefore is only limited in range by the memory available to it.

Several programming languages include big integers as part of their specification
including Python. In Python we have an interpreter that seamlessly moves between
fixed-width integers and big integers, of data type 1ong, depending upon the result
of a calculation. The transition point depends upon the version of the Python
interpreter in use. The easy way to check this limit is to import the sys library
and get the value for sys.maxint. This value is the largest positive integer which
the interpreter will store in the standard representation. If this value is exceeded,
the interpreter will switch to a big integer representation. For example, on a 32-bit
system we have the following,

>>> import sys

>>> sys.maxint
2147483647

>>> sys.maxint + 1
2147483648L

>>> -sys.maxint
-2147483647

© Springer International Publishing AG 2017 139
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-50508-4_5

140 5 Big Integers and Rational Arithmetic

>>> -sys.maxint - 1
-2147483648

>>> -gys.maxint - 2
-2147483649L

where the Python prompt is given as >>> and replies from the interpreter are shown
without the prompt and indented for clarity.

Several important things to note are happening in this example. First, we import
the sys library and ask for the value of maxint to which Python replies it is
2,147,483, 647 which we recognize as the largest positive two’s complement
32-bit integer. This is to be expected on a 32-bit system. If we take this value
and add one, which results in a value that cannot be represented by a 32-bit two’s
complement integer, we get the answer we expect with an extra “L” after it. This
extra letter is Python’s way of saying the data type is now long, meaning a big
integer. If we negate the maxint value we get a two’s complement integer. If we
then subtract one from this value we still get a two’s complement integer, which is
expected because a two’s complement integer gives us one extra negative number
compared to one’s complement notation. However, if we subtract two we get our
expected answer but this time Python has moved to a big integer representation.

In this chapter we will look at ways in which big integers are represented
in memory and some algorithms for dealing with big integer input and output
when the base is a convenient one. We then look at arithmetic and explore
some of the more common big integer algorithms. Next, we look at some more
sophisticated big integer algorithms which are suitable when the numbers involved
become quite large. We then look at rational arithmetic, a natural place to use big
integers. We follow this with a, by necessity, time-sensitive view of key big integer
implementations covering libraries for languages without big integers which we
expect to be long-lived and certain languages which implement big integers natively.
We conclude with some comments on when one might wish to resort to big integers
or rational arithmetic.

5.2 Representing Big Integers

We know that place notation represents numbers using a given base, B, and the
coefficients of the powers of that base which sum to the number we want to
represent. Specifically, we can represent a number in any base with,

abcd.efgg =ax B +bxB* +cxB' +dxB" +exB ' +fxB?+gxB
where we typically use B = 10 as the base. When we represent a big integer in

memory we would like to use a base which allows us to accomplish two things
simultaneously,

5.2 Representing Big Integers 141

1. Use a base which makes conversion between text input and output straightfor-
ward.
2. Use a base in which products of the “digits” of our base fit in a standard word.

If we have a 32-bit system and look at using signed 32-bit integers as the way
to represent digits we need a base where any two digits, when multiplied, give us
a value that fits in a 32-bit integer. We will consider representation of signs for big
integers later. This will satisfy the second requirement above. What about the first?
If one looks at the common number bases used in computer systems we see that
they are all powers of two. Octal is base 2* = 8 while hexadecimal is base 2* = 16.
In these cases we saw that it was particularly simple to change a binary number
into an octal or hexadecimal number and vice versa. This is a clue we can use when
choosing a base for our big integers. Since we would like to make things convenient
for users we want to be able to input and output base ten numbers. This suggests
using a power of ten for our big integer base, but which power? Since in this book
we are assuming a 32-bit computer we want a base such that the base squared fits
in a signed 32-bit integer. If we choose B = 10,000 we see that B2 = 100,000,000
which does fit nicely in a signed 32-bit integer. However, if we go to the next power
of ten, B = 100,000 we see that B2 = 10,000,000,000 which is too large to fit in
32-bits. So, let’s work with B = 10,000. Why choose such a large base? Why not
simply use B = 10? The answer is that the larger the base the smaller the number of
unique digits which are required to represent a large number. In binary we need eight
bits to represent a number which in base ten is only three digits long and is only two
digits in hexadecimal. So, the larger the base, the less memory we will need to store
our numbers. As we are, by definition, working with big numbers we would like to
be as economical as possible. If we were willing to work harder to handle input and
output we could, naturally, use an even larger base. The largest value that fits in an
unsigned 32-bit integer is 4294,967,295 and we see that 65,535% = 4294,836,225
will fit meaning that is the largest base we could use. However, as it is not a power
of ten, we would have to work harder in input and output and since the larger base
does not change the algorithms we will be exploring in this chapter we are justified
in working with the smaller but handier base of 10,000. An additional nice feature
of our choice of base is that it fits in a signed 32-bit integer allowing us to make our
internal representation quite compact as we will see.

We have selected to represent our big integers in memory as base 10,000 numbers
with 10,000 digits. We will simply use standard binary to represent the digit with
each word in memory being one digit of the number. When we want to output a
big integer, then, we only need output each signed 32-bit integer as a group of four
decimal digits, again, because our base is 10* = 10,000. Similarly, when getting
a number from a user, we will take the input, as a string of ASCII characters, and
group it in sets of four characters to form the digits of our base 10,000 number in
memory.

The previous paragraph contains a subtle piece of information. It implies that our
big integers will be stored in memory in big-endian format. This means that if we
use an array of signed integers to hold the digits that the first integer in that array
will be the largest power of the base, not the smallest as it would be in little-endian
format. This choice again simplifies our input and output operations.

142 5 Big Integers and Rational Arithmetic

At this point, we are able to write down how we will represent big integers for the
examples that follow. We will use arrays of signed integers to represent the digits.
Additionally, the very first element of the array will contain the number of digits in
the number and the sign of this element will be the sign of the integer. Pictorially,

-3 123 4567 8910
sign/length d, d, d,

which illustrates how the number “—12,345,678,910” would be stored in memory
using an array of four signed 32-bit integers. The first element of the array contains
“—3” which says there are three digits in this number and that it is negative. The
remaining three elements of the array are the digit values themselves in base 10,000.
This simple format is what we will be using going forward in this chapter.

Input and Output With all of these preliminaries in place, Fig. 5.1 shows a simple
C routine to convert a string into a base 10,000 number. Similarly, Fig. 5.2 shows a
C routine for output of a base 10,000 number as a decimal number.

Figure 5.1 accepts a string in s and returns a pointer to a newly allocated big
integer. Note that this memory must be released by a call to free. Let’s look in
detail at what this particular function is doing.

Line 10 checks to see if the input is negative. If it is we set the sign to 1 (default
is 0) and skip past the sign character by incrementing our character index j. Line
15 calculates the number of digits that will be in the big integer. The input string is
in base 10 while the output integer is in base 10,000 so we divide the length of the
input, accounting for the sign character, by four to see how many digits we need. We
take the ceiling of this to avoid truncating the length. Line 16 allocates new memory
on the heap for the number, using n+1 to add in one element for the length and sign.
For clarity we skip any check on the return value of malloc to see if the allocation
succeeded. In line 17 the sign and length are set.

Lines 19 through 36 work through the big integer, digit by digit, using sets of four
characters from s to set the value. The first digit, which is the highest order digit, is a
special case and is handled by lines 21 through 29. This is because the highest order
digit is the only digit which might have fewer than four digits in the element. The
digit is set to zero, then the switch statement determines how many excess digits
there are in the input string. These are digits that will be in the first output digit and
there can be between one to four of them. Notice there are no break statements in
the switch. This will cause the first matched condition to fall through to all the
lower ones. This is what we want. Lines 31 through 34 handle all other digits of
the output big integer. In this case, since we know there are actually four characters
matched to this digit we do not need the switch statement and the logic is easier
to see. We successively add in each character multiplied by the proper power of
ten and converted to a digit value by subtracting the ASCII value for zero. When
the loop over output digits completes the number is complete and a pointer to the
memory is returned in line 38.

5.2 Representing Big Integers

0 ~J oy U b WN -

X}

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

#include
#include
#include
finclude

<stdio.h>
<stdlib.h>
<math.h>
<string.h>

signed int =xbigint input(char s) {
int i, j=0, n, sign=0;
signed int x*b;

if (s[0] == "-") {
sign = 1;
Jt++;

n = (int)ceil ((strlen(s)-sign) / 4.0);

b = (signed int *)malloc((n+l)*sizeof (signed int));

b[0] = (sign) ? -n : n;

for(i=1; i <= n; i++) {
if ((i==1) && (((strlen(s)-sign)%4)

bli] 0;
switch ((strlen(s)-sign)%4) {
case 3:
b[i] += (s[J++]-"0") * 100;
case 2:
DIi] += (s[J++]-70") *
case 1:
bli] += (s[J++]-"0");
}
} else {
b[i] = (s[j++]-"0") = 1000;
b[i] += (s[j++]-"0") = 100;
b[i] += (s[j++]-"0") * 10;
b[i] += (s[j++]1-"0");

return b;

{

143

Fig. 5.1 Big integer input in C. This routine takes a string representing a big integer in decimal

and converts it to a base 10,000 number. The required standard C libraries are also listed

Figure 5.2 takes a pointer to a big integer in b and a pointer to an output string
buffer in s. The big integer is then put into s as an ASCII string. This conversion
is simpler than going the other way as in Fig.5.1. If the first element of the big
integer is negative the number is negative so we output the sign in line 8 bumping
the output character index, j. Lines 10 through 16 pass over the big integer, digit by
digit, and convert each digit to a set of up to four ASCII characters. To save space
we use a temporary string, t, and the C library function sprintf which prints
into a string. This changes the i-th big integer digit into a four character string. This

144 5 Big Integers and Rational Arithmetic

1|#include <stdio.h>

2

3|void bigint output (signed int b, char =*s) {

4 int i, j=0;

5 char t[5];

6

7 if (b[0] < 0)

8 s[j++] = "-';

9

10 for(i=1; i <= abs(b[0]); i++) {

11 sprintf (t, "%$04d", bl[i]);

12 if (P ((t[0] == "70") && (1 == 1))) s[j++] = t[0];
13 if (P ((t[l] == "'0") && (1 == 1))) s[j++] = t[1l];
14 if (1 ((t[2] == '0") && (1 == 1))) s[j++] = t[2];
15 s[j++] = tI3];

16 }

17

18 s[3] = "\0";

191}

Fig. 5.2 Big integer output in C. This routine takes a base 10,000 big integer and outputs it as a
decimal string

string, because of the $04d format statement may have leading zeros. If 1 is one,
not zero because we skip the sign/length element, then we do not want leading zeros.
This is the origin of the somewhat cryptic code in lines 12 through 14. Each of these
if statements asks if we are working with the highest order digit, when i is one,
and if that digit is zero. It then negates this to execute when we are not working with
the highest order digit and the digit is zero. In that case, we want to copy the proper
character from the temporary string, t, to the output string, s. Since we always have
at least one character in the digit we are working with line 15 has no 1 f statement, it
is always executed. When the loop in lines 10 through 16 completes we have filled
in all of the output string, character by character, with the decimal representation
of the input big integer. All that remains is to add a null at the end of the output to
make a valid C-style string out of it (line 18). With this the conversion is complete.

Comparisons Before we jump into arithmetic routines for big integers we need to
take a quick look at comparisons using big integers.

Figure 5.3 shows basic big integer comparison in C. The function bigint com-
pare takes two big integer arguments, a and b, and returns —1 if a < b, 0 if a = b,
and +1 if a > b. Let’s take a look at what it is doing.

Lines 4 and 5 do a quick comparison to see if the signs of the numbers are
different. If they are we already know the proper value to return and we do not
need to look at the actual data values. Lines 7 through 10 do similar quick tests. We
already know that the signs of @ and b are the same so we look to see which has
a larger number of digits. In line 7 we look to see if a has more digits than b and
that they are both positive. If so, we know that a is larger so we return 1. If both are

5.2 Representing Big Integers 145

1|int bigint compare(signed int =*a, signed int =*b) {
2 signed int i;
3
4 if ((a[0] > 0) && (b[0] < 0)) return 1;
5 if ((a[0] < 0) && (b[0] > 0)) return -1;
6
7 if ((abs(a[0]) > abs(b[0])) && (a[0] > 0)) return 1;
8 if ((abs(b[0]) > abs(al0])) && (a[0] > 0)) return -1;
9 if ((abs(al0]) > abs(b[0])) && (al[0] < 0)) return -1;
10 if ((abs(b[0]) > abs(a[0])) && (a[0] < 0)) return 1;
11
12 if (af0] > 0) {
13 for(i=1; 1 <= abs(al0]); i++) {
14 if (a[i] > bl[i]) return 1;
15 if (b[i] > al[il]) return -1;
16 }
17 } else {
18 for(i=1; 1 <= abs(a[0]); i++) {
19 if (a[i] > b[i]) return -1;
20 if (b[i] > a[i]) return 1;
21 }
22 }
23
24 return 0;
25|}

Fig. 5.3 Big integer comparison. The function compares two big integers, a and b, and returns —1
ifa < b,0if a = b, and +1 if a > b. With this basic comparison function it is straightforward to
define <, >, =, <=, >= and ! = via small wrapper functions

positive and b has more digits, the case in line 8, we return —1 because that means
that a is the smaller value and we are determining the relationship between a and b
(not b and a). Lines 9 and 10 do the same comparison but for both a and b negative.
In this case, the return values are flipped since if @ has more digits than b it must be
larger in magnitude and negative making it smaller than b.

Line 12 looks at the sign of a. At this point we know a and b have the same sign
and same number of digits. We must therefore look digit by digit, largest power of
10,000 first, to see where they might be different. This tells us which of the two is
larger. The loop in lines 13 through 16 moves through a and b and uses digit values
to decide if one is larger than the other. The loop in lines 19 through 21 does the
same but in this case we know that @ and b are both negative and have the same
number of digits so the return values are reversed. Lastly, if we reach line 24 we
know that the numbers have the same sign, same number of digits, and same digit
values so we know that they must be equal and we return 0.

The function in Fig. 5.3 makes it easy to define wrapper functions to implement
the actual comparison operations. If we were using C++ we would define a big
integer class and overload <, >, =, etc to implement the comparisons. As we are

146 5 Big Integers and Rational Arithmetic

using plain C we instead implement a function library. A possible definition for the
equal function is,

int bigint equal (signed int =xa, signed int xb) {
return bigint compare(a,b) == 0;
}

We leave the definition of the remaining operators as an exercise.

Now that we know how to store big integers, how to read them from strings and
how to write them to strings, and how to compare them, we are ready to look at
basic arithmetic with big integers.

5.3 Arithmetic with Big Integers

Basic arithmetic with big integers generally follows the school book methods though
as we will see there are some alternatives for multiplication that are effective if the
number of digits is very large. We will continue with our implementation of big
integers as above and develop routines for addition, subtraction, multiplication and
division. We will not implement C versions of the alternative multiplication routines
but we will discuss the operation of the algorithms. Note that the routines given here
are bare-bones only. We are omitting necessary checks for memory allocation, etc.,
in order to make the routines as concise and easy to follow as possible. We proceed
then with the understanding that a true big integer package would have all of these
checks in place.

Addition and Subtraction Before we look at implementing addition and subtrac-
tion let’s think a bit about how we will handle negative numbers. We are using
a sign-magnitude representation of our big integers because using a complement
notation might mean manipulating all the digits of the number when we can be more
clever about handling operations with regard to the signs. For addition we have the
following situations in Table 5.1 where we always work with the absolute value of
the integers a and b. Similarly for subtraction we have Table 5.2 where it becomes
apparent that for addition and subtraction we need the ability to compare the
absolute value of two big integers, the ability to negate a big integer, and the ability
to add and subtract two positive big integers. Therefore, to properly implement
addition and subtraction we need two helper functions: bigint ucompare to
compare the absolute value of two big integers, and bigint negate to negate a
big integer. These are given in Fig. 5.4.

These functions are straightforward. Indeed, bigint negate is about as simple
as can be given the efficient way we have selected to represent our big integers in
memory. To change the sign we need only negate the first element of the array.
In addition we return a reference to the array so that we can compose the negate
call with other big integer operations. The function bigint ucompare is a reduced
version of bigint compare as given in Fig. 5.3 where we do not pay attention to

5.3 Arithmetic with Big Integers

Table 5.1 Steps to add two big integers paying attention to their
signs

Signof a| Sign of b| Steps to find a + b

+
+

+ Add |a| and |b|.
- |a] > |b|, subtract |b| from |a].
|a| < |b|, subtract |a| from |b|. Negate answer.
+ |a] > |b|, subtract |b| from |a|. Negate answer.
la] < |b|, subtract |a| from |b].
- Add |a| and |b|. Negate answer.

Table 5.2 Steps to subtract two big integers paying attention to their
signs

Sign of a| Sign of | Steps to find a — b

+

}

int

+ |a| > |b|, subtract |b| from |al.

|a| < |b]|, subtract |a| from |b|. Negate answer.
- Add |a] + [b].
+ Add |a| + |b|. Negate answer.

- |a] < |b|, subtract |a| from |b|.

|a| > |b|, subtract |b| from |a|. Negate answer.

signed int xbigint negate(signed int xa) {

al0] = -a[0];
return a;

bigint ucompare (signed int =*a, signed int =xb)
signed int i;

if (abs(a[0]) < abs(b[0])) return -1;
if (abs(a[0]) > abs(b[0])) return 1;

for (i=1; i <= abs(
if (af[i] > bli
if (b[i] > ali

al0l); i++) |
1) return 1;
1) return -1;

}

return 0;

147

Fig. 5.4 Big integer helper functions to compare the absolute value of two big integers,
bigint ucompare, and to negate a big integer, bigint negate

the sign. It returns —1 if |a| < |b|, 0 if |a| = |b|, and +1 if |a| > |b|. With these
in hand, we can implement addition and subtraction using low-level functions that
ignore the sign of their arguments. After that, we will use a higher level version of
addition and subtraction that does look at the sign of the arguments to decide how

to proceed.

148 5 Big Integers and Rational Arithmetic

l{signed int *bigint uadd(signed int =xa, signed int xb) {
2 signed int *c, *x, *y, *xt;

3 int i, m, n, yy, carry=0;

4

5 if (abs(a[0]) > abs(b[0])) {

6 n = abs(a[0]); m = abs(b[0]);

7 X = a; y = b;

8 } else {

9 n = abs(b[0]); m = abs(al[0]);

10 x = b; y = a;

11 }

12

13 c = (signed int x)malloc((n+l)*sizeof(signed int));
14 c[0] = n;

15

16 for (i=n; i>0; i--) {

17 yy = (i>(n-m)) ? y[i-(n-m)] : O;
18 cl[i] = x[1] + yy + carry;

19 if (c[i] > 9999) {
20 carry = 1;
21 c[i] -= 10000;
22 } else
23 carry = 0;
24 }
25
26 if (carry) {
27 t = (signed int x)malloc((n+2)+sizeof (signed int));
28 for (i=1; i<=n; i++) t[i+l] = c[i];
29 t[0] = n+1;
30 t[1l] = 1;
31 free(c);
32 c =t
33 }
34 return c;
35|}

Fig. 5.5 Low-level big integer addition using the school method

Our low-level addition routine will pay no attention to the sign of the arguments.
It will assume they are positive. This routine implements addition using the simple
method we learned in school. We add digits, from right to left, carrying on every
10,000. We will add a new first digit to the output, if necessary, based on any carry
in the top digit position. This is directly analogous to addition in any other base. We
call the routine bigint uadd and it is given in Fig. 5.5.

Recall that we will be using a high-level driver routine to decide when to call the
low-level add and subtract routines. Because of this, bigint uadd will ignore the
sign of its input and treat all arguments as positive. Lines 5 through 11 set up the
addition. We use extra pointers, x, and y, and assign them the arguments a or b so

5.3 Arithmetic with Big Integers 149

that x will always point to the larger number (line 5). We also use n and m to hold
the number of digits in these numbers. We do this to align the digits properly when
we move from right to left across the number adding as we go. Since y will always
have as many or fewer digits as x we can use this fact in the addition to substitute
zero for digits that do not exist in y. Line 13 allocates memory for the addition while
line 14 sets the length of the output. We know that when adding two big integers it is
possible that we overflow in the most significant digit. If that happens, we adjust for
it later in the routine and initially assume that the answer will fit in n digits which is
the number of digits in the larger of a or b. Lines 16 through 24 perform the actual
addition, digit by digit, from the least significant digit to the most significant. We
use yy to hold the digit value of the lesser of a and b (in terms of number of digits).
Line 17 either returns the actual digit of y or zero if we are looking at digits of x
that have no match in y. Line 18 sets the output digit in c. We add the current digit
of x and y and any carry that came over from the previous digit addition. Note that
we set carry to zero in line 3 when it was declared.

After the addition of the digits we need to check if we caused a carry. We are
using base 10,000 so we know that any two digits added together will still fit in a
single signed int. We simply need to see if the result is larger than 9999. If so,
we subtract the base and set the carry for the next digit. Otherwise, we ensure that
the carry is clear (line 23).

The addition loop continues until all the digits of x have been examined. At the
end of this we have the answer in ¢ but we need to do one more check. We need
to check for overflow of the most significant digit of c. This is line 26. If the carry
is set from the last digit addition we have overflowed the n digits we allotted to ¢
and need to add one more most significant digit. Lines 27 through 33 do this by
creating a new output array in t with n+1 digits. Line 28 copies the digits from c to
t leaving room for the new most significant digit. Lines 29 and 30 set the number of
digits in t and set the most significant digit to 1 since that is the carry. Lines 31 and
32 release the old memory used by ¢ and point ¢ to t. Line 34 returns the pointer
to the new big integer which holds the sum of a and b. This addition routine can,
temporarily, use double the memory because of the copy when c overflows. For our
present purposes this inefficiency is tolerable and will seldom happen in practice
(how often? we don’t really know, but we believe it will be infrequent).

In a similar fashion, we implement the low-level subtraction routine,
bigint usub, in Fig.5.6. This routine, like bigint uadd, ignores the sign of
its inputs. It also assumes that a is always larger, in terms of magnitude, than b.
This means that we will never underflow and end up with a negative answer. Our
high-level driver routine will arrange things so that this assumption is always true.
Lines 5 through 8 get the number of digits of our arguments in n and m and allocate
room for our answer in ¢ which will always need n+1 digits. We set ¢ [0] to the
number of digits.

Lines 10 through 19 perform the subtraction, from least significant digit to most
significant using the same trick we used in bigint uadd to get the digit of the
smaller number in y, which may be zero if we are looking at digits b does not
have. Line 12 does the subtraction for the current digit and puts it in c. Note that we

150 5 Big Integers and Rational Arithmetic

l|signed int xbigint usub(signed int =xa, signed int xb) {
2 signed int *c, *t;
3 int i, m, n, vy, borrow=0, zero=0;
4
5 n = abs(al[0]);
6 m = abs(b[0]);
7 c = (signed int x)malloc((n+l)=xsizeof (signed int));
8 c[0] = n;
9
10 for (i=n; 1>0; 1i--) {
11 y = ((i-(n-m)) > 0) ? b[i-(n-m)] : 0;
12 c[i] = ali] - y - borrow;
13 if (c[i] < 0) |
14 borrow = 1;
15 cl[i] += 10000;
16 } else
17 borrow = 0;
18 zero += cl[i];
19 }
20
21 if ((c[1l] == 0) && (zero != 0)) {
22 t = (signed int x)malloc(nxsizeof (signed int));
23 for (i=2; i<=n; i++) t[i-1] = c[i];
24 t[0] = n-1;
25 free(c);
26 c = t;
27 }
28
29 if (zero == 0) {
30 free(c);
31 c = (signed int x)malloc (2+«sizeof (signed int));
32 c[0] = 1;
33 cl[l] = 0;
34 }
35
36 return c;
37|}

Fig. 5.6 Low-level big integer subtraction using the school method

subtract any borrow that happened in the previous digit subtraction. We set borrow
to zero when it is defined in line 3. How do we know if we borrowed? If the digit
answer is negative, we need to borrow a base value (10,000) from the next higher
digit. The check for this is in line 13. If true, borrow is set to 1 (we only ever
need to borrow 10,000) and we add the borrow into the current digit value to bring
it positive. If no borrow is needed, we set borrow to zero and continue to the next
most significant digit. Line 18 appears to be curious. It adds the current digit value
to a single variable we are calling zero. This is set to zero when defined in line 3.
We use this variable to decide if the result of the subtraction is exactly zero. This

5.3 Arithmetic with Big Integers 151

l|signed int =*bigint add(signed int =*a, signed int xb) {
2
3 if ((a[0]1>0) && (b[0]>0))
4 return bigint uadd(a,b);
5
6 if ((a[0]<0) && (b[0]<0))
7 return bigint negate (bigint uadd(a,b));
8
9 if ((af[0]1>0) && (b[0]1<0)) {
10 if (bigint ucompare(a,b) == -1)
11 return bigint negate(bigint usub(b,a));
12 else
13 return bigint usub(a,b);
14 }
15
16 if ((a[0]<0) && (b[0]1>0)) {
17 if (bigint ucompare(a,b) == 1)
18 return bigint negate(bigint usub(a,b));
19 else
20 return bigint usub(b,a);
21 }
221}

Fig. 5.7 High-level big integer addition

allows us to simplify the return value, c, in lines 29 through 34, if possible. If we
are subtracting two large integers and they happen to be exactly the same value the
result, without this check, would use as much memory as the arguments themselves
with every digit set to zero. This check lets us save that memory and return a very
simple result that is only one digit long. The new result releases the memory used by
the initial result and sets up a single digit big integer that is exactly zero instead. We
also check to see if the subtraction has left us with a leading zero. This is purpose of
lines 21 through 27. If the leading digit is zero, but the entire value is not zero, the
leading digit is removed by allocating a new value in line 22 and copying the digits
from c to this value ignoring the initial zero. Once the loop in lines 10 through 19
ends the answer is in ¢ and we return it in line 36.

Our final bigint add and bigint sub routines look at the signs of their
arguments and proceed to call the low-level versions of add and subtract as
appropriate. Figure 5.7 shows bigint add while Fig. 5.8 shows bigint sub.

Our high-level addition routine examines the signs and magnitudes of the
arguments to determine how to get the proper result. The checks in the code are
directly analogous to those of Tables 5.1 and 5.2. For addition, if the arguments are
both positive we simply add (line 3). If the arguments are both negative, we add
and make the answer negative (line 6). If the signs are mixed we need to consider
the relationship between the magnitudes of the numbers. If a is positive and b is
negative (line 9) we see two cases: |a| < |b| which is handled in line 11 and |a| > |b|
which is handled in line 13. Similarly, for a negative and b positive (line 16) we
consider cases when |a| > |b| in line 17 and when |a| < || in line 20.

152 5 Big Integers and Rational Arithmetic

l|signed int *bigint sub(signed int =*a, signed int xb) {
2
3 if ((af[0]1>0) && (b[0]1>0)) {
4 if (bigint ucompare(a,b) == -1)
5 return bigint negate(bigint usub(b,a));
6 else
7 return bigint usub(a,b);
8 }
9
10 if ((a[0]<0) && (b[0]<0)) {
11 if (bigint ucompare(a,b) == 1)
12 return bigint negate (bigint usub(a,b));
13 else
14 return bigint usub(b,a);
15 }
16
17 if ((a[0]1>0) && (b[01<0))
18 return bigint uadd(a,b);
19
20 if ((a[0]<0) && (b[0]1>0))
21 return bigint negate (bigint uadd(a,b));
22|}

Fig. 5.8 High-level big integer subtraction

For high-level subtraction in Fig. 5.8 we follow Table 5.2. If both a and b are
positive we look at |a| < |b| in line 4 or otherwise in line 7. Similarly, if both are
negative we look at |a| > |b| in line 11 and otherwise in line 14. The simpler cases
here are if a is positive and b is negative, line 17, or a is negative and b is positive,
line 20. The signs of the arguments will fit one of these cases for both addition and
subtraction so we know that all possibilities have been considered. Note that for
subtraction we always ensure that the first argument to bigint usub is the same
size or larger than the second.

Multiplication Big integer multiplication can be implemented using the school
method without much difficulty. We do that in Fig. 5.9 where we pay no attention
to the signs of the arguments. Figure 5.10 is our high-level routine that manages the
signs. Let’s look at Fig. 5.10 first. The rules of multiplication say that when the signs
of the multiplicand and multiplier are the same, either both positive or negative, that
the answer is positive. This check is made in line 3. If the signs are the same, we
simply call bigint umult as that will always give a positive result. If the signs are
different, we drop to line 7 and negate the result since the result should be negative.

Figure 5.9 is really three separate functions all of which are used to multiply the
numbers stored in a and b. Lines 1 through 7 define a simple helper function that
duplicates an existing big integer. It allocates space for the new integer and copies
all the bytes of a to b by calling the C library function, memcpy. It then returns the
reference to this new big integer.

5.3 Arithmetic with Big Integers

signed int xbigint copy(signed int =a) {
signed int «b;

b = (signed int x)malloc((abs(a[0])+1)*sizeof (signed int));
memcpy ((void)b, (void x)a, (abs(a[0])+1)xsizeof(signed int));
return b;

}

signed int xbigint umultd(signed int =*a, signed int d, unsigned int s)
signed int *p, carry=0, n;
int 1i;

n = abs(a[0]) + s + 2;

p = (signed int x)malloc(n*sizeof (signed int));
memset ((void x)p, 0, n*sizeof(signed int));
pl0] = n-1;

for (i=abs(a[0]); i>=1; i--) {
pli+l] = al[i] » d + carry;
if (p[i+1] > 9999) {
carry = p[i+1] / 10000;
pli+l] = p[i+1] % 10000;
} else
carry = 0;

}

if (carry) pl[l] = carry;
return p;

}

signed int xbigint umult (signed int =*a, signed int xb) {
int i, n;
signed int *m, *x, *y;
signed int *p=(signed int *)NULL, *g=(signed int *)NULL;

if (abs(a[0]) > abs(b[0])) {
X = a; y = b;
} else {
x =Db; y=a;
}
m = (signed int x)malloc(2%sizeof (signed int));
m[0] = 1; m[1l] = 0;
for (i=abs(y[0]); i>=1; i--) {
if (p != NULL) free(p):;
if (g !'= NULL) free(q);
p = bigint_umultd(x, y[i], abs(y[0])-1i);
g = bigint uadd(m, p);
if (m != NULL) free(m);
m = bigint copy(q);
}

if (p !'= NULL) free(p);
if (g !'= NULL) free(q);
return m;

Fig. 5.9 Low-level big integer multiplication using the school method

153

{

154 5 Big Integers and Rational Arithmetic

signed int xbigint mult (signed int =*a, signed int xb) {
if (((al0]>0) && (b[0]>0)) I
((a[0]<0) && (b[0]<0)))

return bigint umult(a,b);

return bigint negate (bigint umult(a,b));

O J oUW

}

Fig. 5.10 High-level big integer multiplication

Lines 9 through 29 define bigint_umultd which multiplies a big integer in a
by a single digit, d. When we multiply two numbers using the school method we
accumulate partial products, shifting them for the power of the base we are currently
multiplying by. We then add these together to get the final result. For example,

1776 < multiplicand
X 1492 <« multiplier
3552 <« Ist partial product
159,840
710,400
+ 1776,000 < 4th partial product
2649,792

We can get the same result by starting with a product of zero and adding each digit
times the multiplicand after shifting to the left as many places as the location of
the digit in the multiplier. This is exactly what we are doing when we write and
then sum the partial products. This same approach works regardless of base. In
bigint umultd we do the same thing. The multiplicand is in a, the digit to multiply
by is in d and the number of places to shift the result to the left is in s. In Line 13
of Fig. 5.9 n is set to the number of output digits. We need to have room for all the
digits in a, which we get with abs (a [0]) . To this we add s, these are extra digits
at the end of the number that we will initialize to zero. This takes the place of the
zeros added to the end of the partial products in the example above. We need to add
one more array element to hold the sign and length of the number and to this we add
still one more digit to handle any overflow (carry in the last digit multiplied). This
is the origin of the + 2 in line 13. Line 14 allocates the product and points p to it.
Line 15 erases the entire number and sets it to zero while line 16 sets the length of
the number. This initializes the partial product.

Lines 18 through 25 do the multiplication by the digit, d. We look at all the digits
of the multiplicand a from least significant to most significant. This defines the loop
in line 18. Line 19 does the multiplication of the digit of a by d. There are two
things to note in this line. First, we add in carry, just as we did for addition, but in
this case the carry may be more than one. Second, we assign this result to p [1+1]

5.3 Arithmetic with Big Integers 155

and not p [1]. This is done to leave a leading zero in p to handle any final overflow.
Recall that array elements further from p [0] are less significant. Lines 20 and 24
handle any carry. If the resulting multiplication is greater than 9999 we have a carry.
Unlike addition, the carry is not simply one but is the value of p [1+1] divided by
the base. The actual value that should beinp [1+1] is the remainder when dividing
by the base. If the carry has not happened, line 24 clears carry.

When the loop exits it is possible that carry is not zero. Line 27 checks for this
and sets the leading zero already allocated to the carry. Line 28 returns the partial
product. A full implementation would do something about the leading zero in p, but
we ignore it here.

The function that does the actual unsigned multiplication is bigint umult. The
result of the multiplication will be in m which we initialize to zero in lines 42 and
43 of Fig. 5.9. Before this, lines 36 through 40 set pointers x and y so that x always
points to the input with the largest number of digits, which may be the same as the
other input. We do this because we need fewer passes through the loop in line 45 if
we make the multiplier the value with the least number of digits.

The loop in lines 45 through 52 accumulates the partial products of the digits of
y (the shorter of a and b) with x. This code is inefficient because it requires copying
and free-ing memory more than is necessary but this makes the algorithm easier to
follow. We use p and g to point to temporary results. In this case, p points to the
partial product returned by the call to bigint umultd. This call multiplies x by
the current digit of y and shifts the result abs (y [0]) -1 places to the left. As we
move from right to left over the digits of y we need to shift each partial product
the current digit position to the left and this is exactly abs (y [0]) -1. When this
call finishes the partial product is in p and it must be added to our accumulated
product. We reuse bigint_uadd to do this and store the new running product value
in g. We really want this result in m so we release memory used by m and call
bigint copy to copy g to m. This is necessary so that the next pass through the
loop can update qg. This is a consequence of using plain C and not a language with
automatic garbage collection. At the end of the loop we have the final product in m.
To avoid leaking memory we must free p and g at the end of the loop. Finally, we
return the product in line 56.

Clearly this implementation is pedagogical as there are more efficient ways to
implement the multiplication routine. The school approach is well known to be
of order n*> which is denoted O(n?). Below we will discuss alternate big integer
multiplication routines that do better than this. If a routines runs in O(n?) time it
means that as n, here the number of the digits, increases the running time increases
as the square of the number of digits (with an unstated multiplier that is generally
ignored). An O(n?) routine may be perfectly acceptable for small inputs (relatively
few digits) but quickly becomes unusable when the number of digits becomes large.

Division Division of big integers is rather difficult to implement quickly. The
school algorithm for division is typically implemented but for the purposes of this
book even that is too long. So, in order to provide a minimalist but complete package
for big integer arithmetic we will instead implement the simplest approach possible.
Fear not, however, we will discuss more comprehensive algorithms for division,
along with multiplication, in the next section.

156 5 Big Integers and Rational Arithmetic

So, how to implement division with big integers? Thinking back to the simplest
possible ways of working with numbers we remember that division of two integers is
really counting the number of times the divisor can be subtracted from the dividend
before we hit zero or go below zero if the division would leave a remainder. In this
case, we ignore the remainder and leave implementing it as an exercise.

As with multiplication, we implement division as a high-level function that
handles the signs of the numbers and a low-level function that deals with the
magnitude only. Figure 5.11 shows our “division by repeated subtraction” approach.
We divide a by b, ignoring signs, by counting the number of times we can subtract
b from a, updating a in the process, before we hit zero or go negative. This is the
quotient which we store in g. Lines 4 through 6 initialize the quotient and set it to
zero. Likewise, lines 8 through 10 initialize a constant value of 1 which is added to
g each time through the loop.

Line 12 copies a so we can subtract from it without altering it in memory. The
loop of lines 14 through 26 do the work. We need to manage memory carefully to
avoid leaks so we use auxiliary pointers x and y to hold intermediate results. Line
17 subtracts the divisor in b from t which is the portion of a remaining. Line 18
bumps the quotient counter by adding the constant 1 in c. Lines 21 and 22 copy
the partial results of the loop to t and g. We do this so we can free memory before
we lose the pointer address. Languages with automatic garbage collection can avoid
this sort of inelegance. Line 24 checks to see if we have reached a point where the
remainder in t is less than b, the divisor. If so, we are done and break out of the
loop. After cleaning up memory the quotient is returned.

It is well-known that this approach to division, while correct, is terribly inef-
ficient, especially for fixed length integers. Be that as it may, the algorithm is
straightforward and simple to understand. All we need do now is account for the
signs of the dividend and divisor. This is done in Fig. 5.12 through the bigint div
routine.

In order to handle the signs of a and b it is necessary to check several conditions.
Along the way we check for situations that result in invalid outputs for the case
of integer division or division by zero. Lines 5 through 11 do this. If the divisor is
zero (bigint_iszero(b) == 0)or the dividend is less than the divisor, we return a
constant value of zero. For the second case this is correct but division by zero should
instead signal an error. For clarity, we ignore the error and return the incorrect value
of zero instead. This would be corrected if implementing a full big integer package.

We extract the signs of the arguments in lines 13 and 14. We then ensure that
they are positive so we can pass the values to bigint udiv. We will reset the signs
of the arguments when done, see lines 25 and 26. We know from school that if the
signs of a and b are the same, either both positive or both negative, that the quotient
must be positive. So, if this is the case, we execute line 20 to perform the division.
If the signs of the arguments are opposite, either a positive and b negative or vice
versa, we must make the answer negative as well. In this case, line 22 is what gets
executed. After restoring the proper signs of the arguments we return the quotient
in line 28.

5.3 Arithmetic with Big Integers 157

l|signed int xbigint udiv(signed int =xa, signed int xb) {
2 signed int *qgq, *t, *c, *x=NULL, *y=NULL;
3

4 q = (signed int x)malloc(2xsizeof (signed int));
S ql0] = 1;

6 qll]l = 0;

7

8 c = (signed int x)malloc(2xsizeof (signed int));
9 c[0] = 1;

10 cl[l] = 1;

11

12 t = bigint copy(a);

13

14 while (1) {

15 if (x != NULL) free(x);

16 if (y != NULL) free(y);

17 x = bigint usub(t,b);

18 y = bigint uadd(qg,c);

19 free(t);

20 free(q);

21 t = bigint copy(x);

22 g = bigint copy(y):

23

24 if (bigint ucompare(t,b) < 1)

25 break;

26 }

27

28 free(x);

29 free(y);

30 free(t);

31 free(c);

32 return qg;

33|}

Fig. 5.11 Low-level big integer division

Division by repeated subtraction is unsatisfying in the long run and can be
incredibly inefficient. However, it completes our implementation of basic arithmetic
for big integers and therefore is worth looking at even if it is not how things would
be done if we were developing a big integer package for wide-spread use.

The algorithms we implemented above are adequate for simple purposes but,
especially for multiplication and division, people have certainly done far better.
In the next section we look at some of these improved algorithms without imple-
menting them. This will give an appreciation for what goes into efficient algorithm
implementation and design and will give us a background we will use when
discussing particular big integer libraries that you may someday wish to use in your
Own programs.

158 5 Big Integers and Rational Arithmetic

l|signed int xbigint divide(signed int xa, signed int xb) {
2 int sa, sb;

3 signed int =xc;

4

5 if ((bigint iszero(b)) ||

6 (bigint ucompare(a,b) == -1)) {

7 c = (signed int x)malloc (2+«sizeof (signed int));
8 cl[0] = 1;

9 c[l] = 0;
10 return c;
11 }
12
13 sa = (a[0] < 0) 2 -1 1;
14 sb = (b[0] < 0) 2 -1 1;
15 al0] = abs(al0]);
16 b[0] = abs(b[0]):
17
18 if (((sa<0) && (sb<0)) ||
19 ((sa>0) && (sb>0))) {
20 c = bigint udiv(a,b);
21 } else {
22 c = bigint negate (bigint udiv(a,b));
23 }
24
25 al0] = sa*a[0];
26 b[0] = sa*b[0];
27
28 return c;
291}

Fig. 5.12 High-level big integer division

5.4 Alternative Multiplication and Division Routines

In this section we take a look at some alternate algorithms for multiplication and
division. A true big integer package would implement some if not all of these
alternatives. By necessity we are cherry-picking algorithms. A particularly nice
treatment of big integer algorithms is found in Chap. 9 of Crandall and Pomerance
[1] and readers interested in a more thorough mathematical treatment are directed
there.

Multiplication In the previous section we implemented the school method for
multiplication of big integers. As we noted, this method runs O(n?) in the size
of the inputs. While this is adequate for numbers with perhaps a thousand digits,
it becomes intractable if we are working with very large numbers with tens of
thousands, hundreds of thousands or even millions of digits. To work with truly
large big integers we need to improve our multiplication algorithm. Fortunately, this
problem has been investigated and a number of alternate multiplication algorithms

5.4 Alternative Multiplication and Division Routines 159

exist. Here we will look at three of them: Comba multiplication, Karatsuba
multiplication and FFT multiplication. Each has an advantage over the simple school
method and with respect to each other.

Our first possible improvement to multiplication is the Comba algorithm [2].
Comba noted that the school method of multiplication is geared towards humans
and not computers. After each single digit multiplication of a column we carry to
the next column. In Comba multiplication we instead do not carry but store the
entire product for each column position. We then repeat for the next digit to multiply
adding in any existing value in that column (from a previous digit multiplication).
When all single digit multiplications have been performed the resulting vector of
column values is adjusted from left to right by adding any carry to the next digit
to the left and leaving the remainder in the column. When this is done the vector
will contain the output value. This process is described in Fig. 5.13 where we work
in base 10 for clarity. If we were implementing this algorithm for our big integer
representation we would be using base 10,000 instead.

In (a) we work out the multiplication using the school method but instead of
carrying after each multiplier digit multiplication we keep the value in the proper
column. When each digit of the multiplier has been used we sum the results to get
an intermediate answer that still needs to be adjusted for the carries we did not
perform in the previous steps. The last step is to move from right to left replacing
each column value, n, with n%10, and adding to the next digit the result of n/10

16 124 |56 «— 237x8
8|12 |28 — 237x4

+ 2 7 — 237x1
2 (11 (351(52 |56 « column sums
3 0 |7 |6 « carries, right to left
21317
X 14| 8

16 124 |56 «— column 1
8128 (52 |56 « column 2
2 (113552 |56 « column 3
31510 |7 |6 <« carries, right to left

Fig. 5.13 Comba column-wise multiplication of 237 X 148 in base 10. (a) Writing out the
multiplication by hand keeping each column without carries to the next. After all digits have been
multiplied we add the columns. Finally, we perform the carries from right to left. (b) The same but
as would be implemented in a computer. In this case, a single output number stores the columns
adding the new value for that column to the previous. Once all the digits of the multiplier have been
visited the output is adjusted by carrying from right to left to achieve the same answer as in (a)

160 5 Big Integers and Rational Arithmetic

using integer division. This handles all the carries we did not do in the lines above.
In (b) we do the same as in (a) but each time we multiply a digit we immediately
add the result to the proper column of the single output value. Then, when done, we
handle the carries.

Comba multiplication is generally believed to be about 30% more efficient than
the school method. However, there are some things to keep in mind before using
it. Depending upon the way digits of the big integer are stored it is possible to
overflow a particular digit value because a column may need to sum the single
digit multiplication for n digits where n is the minimum number of digits in the
multiplicand and multiplier. For that reason, Comba multiplication is limited in
the number of digits in the product and is not suitable for multiplying truly large
numbers. Additionally, while a 30% improvement is helpful, the algorithm is still
essentially the school method and therefore is still O(n%). We can do better than this.

Karatsuba multiplication [3] improves on the school method by simplifying the
multiplication. The essential insight involves simplifying the multiplication of two
large integers, a and b, by replacing the multiplication with three multiplications of
numbers with about half as many digits as a and b. If we choose m, m < n, where n
is the number of digits, we can rewrite a and b as,

a=aB"+aq
b = bB" + by

where ay, a;, by, and b; are all less than B™ where B is the base of our numbers, for
example, B = 10, 000. If we then calculate ab we get,

ab = (a1B" + ap)(b1B" + by) = alblem + (ar1by + aoby)B™ + agby
which we can rewrite as,

Olem-i-,BBm—}—)/

with,
o = albl
B = aiby + apb,
¥ = aobo

This is seemingly no improvement. Instead of the single multiplication ab we now
have four multiplications to get «, 8 and y, but we press on anyway and will soon
see the benefit. We can remove one of the four multiplications by rewriting our
expressions. First we look at (a; + ag)(b; + bo),

(a1 + ap)(by + by) = a1by + a1by + agb; + apby
= (a1bo + apby) + a1b; + apby

5.4 Alternative Multiplication and Division Routines 161

where the first term on the right is 8. This means we can determine 8 with one less
multiplication,

aiby + apby = (a1 + ap) (b1 + bo) — aiby — apby
B = (a1 +ap)(by +by) —a—y

One thing to note is that (a; + ag) (b1 + bg) can itself be calculated using Karatsuba
multiplication meaning this algorithm is recursive. This is one of its strong suits.

So, where is the benefit? It comes from the fact that the three multiplications we
have replaced ab with are numbers with roughly half the number of digits as a or b.
While a formal complexity analysis is beyond the scope of this book we see that
the additions and subtractions are linear, O(n), and as n grows they become less
important. The recursive nature makes the analysis a bit tricky but the final result is
that the algorithm as a whole is O(n/¢®) where Ig(3) is the log base 2 of 3. Compare
this to the O(n?) of the school method and as Fig. 5.14 shows, this difference quickly
becomes important for large n.

If n is too small, say less than four digits, it is more efficient to use the school
method to multiply ab. This means we can use the school method as the terminating
condition of the recursive application of Karatsuba multiplication.

Our final multiplication algorithm is that of Schonhage and Strassen [4]. This
algorithm is based deeply in abstract algebra and Fourier transform theory but

400

350 /
300}
250}
£ 200}
150 |
100 -

50t .7

0 5 10 15 20
Fig. 5.14 O(n*®) (solid blue line) versus O(n?) (dashed green line) growth as n increases. This

plot shows that the Karatsuba method is a significant improvement over the school method for
suitable input lengths (1)

162 5 Big Integers and Rational Arithmetic

we will describe it at a high level. Here we discuss the variant presented as
Algorithm 9.5.23 in [1].

Before diving into the algorithm itself we need to address a few concepts related
to the operation of the algorithm which are its connection to abstract algebra and a
bit about convolution, multiplication, and Fourier transforms.

The algorithm actually calculates multiplication modulo a specific integer, 2"+ 1.
This means that the result, which is an integer, is really a number from Zy: ;. If you
are not familiar with the notation, Z refers to the set of integers and Z,, refers to the
set of integers modulo m. For example, Z4 = 0, 1, 2, 3 and operations that go above
or below “wrap around” as needed so that in Z, we have 2 + 3 = 1. This is not
a problem, really, since we select n so that 2" 4 1 is larger than the product of our
arguments. Call the arguments x and y so we select n such that 2" + 1 > xy. In this
case, we never “wrap around” and we get the desired product.

In reality, the algorithm operates on a ring [5] defined in Zy . and uses
only integer operations. A ring is an enhancement of a group which is itself a
generalization of a binary operation acting on a set. In a ring, along with the
first binary operation of the group, which is often denoted as + even though it
need not be addition, we add a second operation, e, which need not really be
multiplication. This is the abstract algebra connection. In our case, addition is
addition, multiplication is multiplication and the set is Zy:, which is a (possibly
very large) set of integers. If we select n so thatn > [Igx] + [Igy] then 2" + 1 > xy
which is what we want so that the algorithm produces the actual product.

In the Comba algorithm for multiplication we saw that multiplying the mul-
tiplicand by a digit of the multiplier, especially when we collected the resulting
value without carrying, was in essence doing convolution. A convolution is passing
one value over another, so here we “pass” the single multiplier digit “over” the
multiplicand digits, and collect the product. This means that multiplication of two
numbers is related to convolution. This is where the Fourier connection comes from.
We need not know anything about Fourier transforms at present beyond the fact
that they map a sequence of values from one space to another space. We denote a
Fourier transform of x, where x is a vector of values, by .% (x) and recognize that
this forward transform has an inverse transform, .# !, so that ' (% (x)) = x.
In truth, the Fourier transform is such a powerful mathematical tool that all readers
should be familiar with it. Please take a look at Bracewell [6] or a similar text to
familiarize yourself with this elegant addition to the mathematical toolbox.

One of the many properties of the Fourier transform is that multiplication in one
space is equivalent to convolution in another. This is a key hint in understanding
what the Schonhage and Strassen algorithm is doing. It will calculate the convolu-
tion of x and y through the Fourier transform and multiplication when in Fourier
space. In essence, the algorithm does,

X =.7(X),Y = #(Y) < map to Fourier space
7 =XY <« calculate a product
Z=7"12) <« return to X and Y space

5.4 Alternative Multiplication and Division Routines 163

1. [Initialize]
Choose an FFT size, D = 2¥ dividing n.
Set a recursion length, ' > 2M + k, n = DM such that D divides n’, ' = DM'.

2. [Decomposition]
Split x and y into arrays A and B of length D such that A = Ag,Ay,...,Ap—1 and B =
By,Bj,...,Bp_ as residues modulo ' 4,

3. [Prepare FFT]
Weight A and B by (2/™'A;) mod (2" +1) and (2 B;) mod (2" + 1) respectively for j =
0,1,....D—1.

4. [Perform FFT]
A = .7 (A) and B = .7 (B) done in-place.

5. [Dyadic stage]
Aj=A;Bjmod (2" +1) for j=0,1,...,D— 1. Storing product in Fourier space in A.

6. [Inverse FFT]
A = Z7(A). A now contains the convolution of the decomposition of x and y. This is the
product.

7. [Normalization and Sign Adjustment]
Scale A assigning to C to account for scale factor in Fourier transform.

8. [Composition]
Perform carry operations to C to give final sum: xy mod (2" +1) = Z][.’;()l C;2'M mod (2" +1)
which is the desired product.

Fig. 5.15 The Schonhage and Strassen big integer multiplication algorithm as presented in [1]
with paraphrasing and explanatory text added

which at first seems backwards but isn’t because the result in z is the convolution of
X and Y which is what we want. It is important to note that X and Y are not x and y,
the numbers to be multiplied, but decompositions of them as performed in the first
part of the algorithm. We are intentionally glossing over the fact that the Fourier
transform referred to by . is not the one familiar to scientists and engineers but
a generalization of it that operates via integer operations only. See Definition 9.5.3
of [1], particularly the integer-ring DFT variant. We are now ready to look at the
Schonhage and Strassen algorithm which we present in Fig. 5.15 with apologies to
Crandall and Pomerance for the paraphrasing.

In step 1 we select a size for our Fourier transforms and n’. The selection of
n’ is not arbitrary. It is selected so that the algorithm will work on smaller sets in
step 5 should the multiplication there, which is also of the form xy mod N where
N = 2" + 1, be done by a recursive call to the algorithm itself. In step 2 we then
split the input values, x and y, into vectors A and B. It is these vector representations
that will be mapped to Fourier space to perform the convolution. Recall that the
convolution in this space will mimic the school method of multiplication.

In Step 3 we weight the vectors A and B to prepare for the FFT, remembering
that the FFT here implements integer-only operations. The multiplication can
be performed using only shifts in a binary representation of the numbers. Also,
the modulo operation can likewise be implemented efficiently as Crandall and
Pomerance also show in [1].

Step 4 performs the actual FFT in-place to save memory as these numbers may
be very large. Step 5 multiplies the components in Fourier space, again this is

164 5 Big Integers and Rational Arithmetic

convolution in the original space, and it is this step that requires something other
than shifts and basic integer operations. Notice that the form of this multiplication
matches what this very algorithm does so it is possible to make a recursive call
here which is the motivation for selecting n’ properly. Other multiplication methods
could be used here as well including the basic school method. Notice that the result
is stored in A, again to save memory. Step 6 performs the inverse FFT to return
to the original space and Step 7 normalizes the result by applying a scale factor
that is typical of the FFT, either split between the two transforms or applied in one
direction. During this process the vector C is created. Lastly, step 8 accounts for
the carries (ala Comba above) and returns the result which is the desired product. A
complexity analysis of this algorithm shows that it runs in O(n log nlog log n) which
is significantly better than the O(n?) of the school method.

Division For division we look at two algorithms. The first is that found in Knuth
[7] known as Algorithm D which is an implementation of long division suitable for
application to big integers. The second is the divide-and-conquer division algorithm
of Burnikel and Ziegler [8].

In [7] Knuth gives a thorough description his long division algorithm which
follows the school method except for one twist. The twist has to do with trial
divisions based on an observation, which he proves, that assuming the quotient of
an n + 1 digit number x divided by an n digit number y to be the quotient of the top
two digits of x by the leading digit of y means that your assumption will never be
more than 2 away from the true value. A few examples of this fact,

24,356/5439 = 424/5= 4]0

95,433/6796 = 14 95/6 = 15 1
12,345,678/9876,543 = 112/9= 1 0
8888,888,888/777,777,777 = 11 88/7 = 12 1

where the right-most column is the difference between the exact quotient and the
trial quotient. It is important to note, however, that this fact is only true if the divisor
is greater than or equal to the one half the base, here base is 10 so the divisors are
all 5 or larger. The normalization step of the algorithm takes case of this case by
multiplying both dividend and divisor by a value, which can be done with a simple
shift, since the quotient will be the same and the remainder can be unnormalized at
the end.
The essence of the Knuth algorithm, paraphrased from [7], is given below,

1. [Normalize]

Scale inputs u and v by a single digit, d so that the leading digit of v, called
vy, i8 vy > |b/2| where b is the base. Note that u and v are big-endian vectors
representing the digits of the numbers in base b.

2. [Initialize]

Loop m times where m is the difference between the number of digits in u
and v. Naturally, if m is negative the quotient is 0 and the remainder is v since
v > u. Each pass through the loop is division of the n digits of u starting at j, the
loop index, by v.

5.4 Alternative Multiplication and Division Routines 165

3. [Calculate Trial Quotient]

Set g = [(u;b + ujy1)/v1], the trial quotient. If u; = v, set ¢ = b — 1. Knuth
adds a test here that will ensure that the trial quotient is never more than one
greater than it should be.

4. [Multiply and Subtract]

Subtract g times v from the n digits of u, starting at position j, replacing those
digits. This is the subtraction normally done in long division by hand. Since it
is possible ¢ is too large this result may be negative. If so, it will be handled in
step 6.

5. [Test Remainder]

Set the j-th digit of the quotient to the trial value in g. If the result of step 4

was negative, do to Step 6, otherwise, go to Step 7.
6. [Add Back]
Decrease the j-th digit of the quotient by one and add v back to u starting with
the j-th digit. This accounts for the few times the trial quotient is too large.
7. [Loop]
Go back to Step 2 while j < m.
8. [Unnormalize]

The correct quotient is in g and the remainder is u,,+; through u,,+, divided

by d, the scale factor used in the first step.

The run time of this algorithm is O(mn) which is adequate for smaller input sizes
but becomes cumbersome if the inputs are very large in much the same way the
school multiplication algorithm does.

Burnikel and Ziegler [8] implement two algorithms which work together to
perform division of big integers with specific numbers of digits. They then describe
how to apply these algorithms to arbitrary division problems. The first algorithm,
which they name D,,1,, divides a number of 2n digits by a number of n digits.
They do this by breaking the number up into super digits. If we wish to find A/B
and use this algorithm we must break A into four digits, (A, A,, A3,A4) and break
B into two digits (B;, B>) so that each digit has a length of n/2. In other words,

A =Alﬂ3n/2 +A2ﬁn _I_A3ﬂn/2 +A4
B =B + B

With this separation of A and B into super digits we can examine the D,
algorithm,

This algorithm is deceptively simple. The recursive nature of it becomes clear
when we look at algorithm D3,,/5, which in turn calls D5,/1, again. First we present
D3,,/2, and then we discuss them together,

The pair of algorithms, D, /1, and D3,/5,, work together on successively smaller
inputs to return the final solution to the division problem. We know that D, 1,
requires A to have twice as many digits as B and when it is called in the first [Case 1]
of D3y, we are also passing it arguments that meet the 2n to n digit requirement so
the recursion will end.

166 5 Big Integers and Rational Arithmetic

Algorithm D,,;,,

1. [Given]
A < B"B, B/2 < B < 8", neven, B is the base. Find Q = |A/B] and remainder R = A — QOB.
2. [High Part]
Compute Q; as Q1 = [[A},A,,A3]/[B2, B]] with remainder R; = [R) 1, R, »] using algorithm
D311/2n~
3. [Low Part]
Compute Q> as Q> = [[R1,1, R12,A4]/[B2, B1]] with remainder R using algorithm D3,,/2,,.
4. [Return]
Return Q = [0, 0»] as the quotient and R as the remainder.

Algorithm D3/,

1. [Givens]
A = [A},As,A3] and B = [By, B,] from D5, /1,. Find Q = |A/B] and remainder R = A — 0B.
2. [Case 1]
If A; < By compute Q = |[A,A5]/B:] with remainder R, using D2, /1.
3. [Case 2]))
IfA] > B| set Q = ﬂ" — 1 and set R] = [A],Az] - [B],O] + [0,31] = [A],Az] - QB]
4. [Multiply]
Compute D = QBZ using Karatsuba multiplication.
5. [Remainder]
Compute R = R, " + A4 — D.
6. [Correct]
As long as R < 0 repeat:

a R=R+B
b.0=0-1
7. [Return]

Return Q and R.

It is interesting to compare the steps in Ds,/», with those of the Knuth algorithm
above. We get a “trial” quotient, Q, from one of the cases and then determine the
remainder in step 5. Then in step 6 we correct the quotient in case we selected too
large of an answer. This is exactly what is done in the Knuth algorithm in step 6.
Here we are structuring the problem in such a way that the digits always match the
desired pattern and using recursion to divide up the work. In the Knuth algorithm
we move through the divisor digit by digit.

The school division method of Knuth is O(mn) which would be O(n?) for the
case we are considering here since the dividend has twice as many digits as the
divisor. What about the Burnikel and Ziegler algorithm? As they discuss in [8]
the performance of this algorithm depends upon the type of multiplication used in
step 4 of Ds,/2,. If using Karatsuba multiplication they determine the performance
to be 2K (n) + O(nlogn) with K(n) the performance of Karatsuba multiplication
itself. As they note, if the school method of multiplication is used instead we get
n* + O(nlog n) which is actually worse than long division itself. So, the choice of
multiplication algorithm is crucial in determining the performance.

5.5 Implementations 167

We have examined, superficially, several alternatives to the basic arithmetic
algorithms we developed for our big integer implementation. We have seen that they
out perform the naive algorithms and that they extend our abilities in working with
big integers to those that are much larger than what we would be able to work with
otherwise. Computer memory is inexpensive so the limiting factor is now algorithm
performance. Every small improvement counts. There are many other algorithms we
could have examined but cannot for space considerations. There is ongoing research
in this area and tweaks and small improvements are happening all the time. But, for
now, we leave the algorithms and move on to more practical considerations, namely,
implementations. It is fun to implement some of these basic algorithms ourselves,
but the complex and highly performant ones are often tricky and it is wise to use
proven libraries when speed and accuracy count.

5.5 Implementations

Most programming languages do not define big integer operations as intrinsic to
the language. In this section we will look at some that do, specifically Python and
Scheme. We will also look at some extensions to existing languages such as C/C++,
Java and JavaScript which give big integer functionality to developers using these
languages. We start first with the extensions.

Libraries When discussing software libraries time is naturally a factor. Projects
start and finish and are often abandoned as people move on to other work making
an orphan of the library which becomes less and less relevant as time moves on.
Here we will look at one library that has considerable popular support and is a
member of the Gnu Software suite, namely, the GNU Multiple Precision Arithmetic
Library or GMP for short [9]. This library is open source software and is distributed
via the GNU LPGL and GNU GPL licenses which allows the library to be used in
its existing form in commercial code while enabling additions to the library to be
passed on to other users. It has been in constant development since 1991 which is
why we include it here as it is likely to be supported for some time to come.

GMP is a C and C++ library for a wide-range of mathematical operations
involving multi-precision numbers. At its core it consists of several main packages:
signed integer arithmetic functions (mpz), rational arithmetic functions (mpgq),
floating-point functions (mpf), and a low-level implementation (mpn). Additionally,
a C++ class wrapper is available for the mpz, mpg and mpf packages. Here we will
consider only the integer operations of the mpz package. The GMP library goes to
great lengths to ensure efficiency and optimal performance.

The mpz package uses much the same format for numbers as we have used above.
It defines a structure in gmp . h called _mpz struct which is typedef-ed to
mpz_t. The struct is,

168 5 Big Integers and Rational Arithmetic

typedef struct

{ int mp alloc;

int mp size;
mp_limb t * _mp_d;

} __mpz_struct;
wheremp limb t pointsto a “limb” or digit. Its actual size depends on the system
the code is compiled for but is typically an unsigned long int which is 4 bytes on the
32-bit system we assume in this book. The mp alloc field counts the number
of limbs allocated while mp_size is the number of limbs used. As we did above,
the sign of the number is stored in the sign of mp size.If mp size is zero
the number is zero. This saves allocating a limb and setting it to zero.

Input of big integers is via strings as was done in our code above. Output is to file
streams or strings depending upon the function used. Integers must be created and
initialized before being assigned but may be freely assigned after that. When done,
they must be cleared. This code initializes a big integer, assigns it a value and then
prints the value to stdout in two different number bases,

1 |#include <stdio.h>
2 |#include <gmp.h>

3

4 |int main()

5 mpz_t A;

6

7 mpz_init (A) ;

8

9 mpz_set_str (A, "1234567890123456789", 0);
10 mpz_out_ str(NULL, 10, A);
11 printf ("\n") ;

12 mpz_out str(NULL, 2, A);
13 printf ("\n") ;

14

15 mpz_clear () ;

16}

The GMP library is included in line 2 (linking with - 1gmp is also required). A new
big integer, A, is defined in line 5 and initialized in line 7. Note that A is not passed
as an address. The definition of mpz_t is a one element array of mp struct
which passes it as an address already. In line 9 we assign A from a string, the 0
means use the string itself to determine the base, in this case base 10. Lines 10 and
12 output A first as a base 10 number and then in binary. Finally, we release A in
line 15.

Basic big integer functions in mpz include the expected addition (mpz_add),
subtraction (mpz_ sub) and multiply (mpz_mul). Also included are negation
(mpz_neg) and absolute value (mpz_abs). For efficiency there are also special
functions that combine operations as it is sometimes better to combine them than
perform them individually. For example, there are mpz addmul which adds the
product of two numbers to an existing number as well as mpz_submul which
subtracts the product.

5.5 Implementations 169

For division mpz gives us many options. These options reflect various rounding
methods and implement different algorithms which may be much faster than general
algorithms if certain conditions are met. If we select only the tdiv functions, which
round towards zero, like C does, we have three functions,

mpz_tdiv_g - divide n by d returning only the quotient, g.
mpz_tdiv_r - divide n by d returning only the remainder, r.
mpz_tdiv_gr - divide n by d returning both quotient, g, and remainder, r.

There is also a general mod function which always returns a positive result
(mpz_mod). If it is known in advance that the numerator 7 is exactly divisible by the
denominator d one may use mpz_divexact which is much faster than the generic
division routines. Filling out the division options are mpz_divisible to check if
n is exactly divisible by d and mpz_congruent_p to check if n is congruent to ¢
modulo d meaning there is an integer g such that n = ¢ + ¢d.

What algorithms are implemented by these top-level functions? For addition
and subtraction, which are at the lowest level for Intel architecture implemented
in assembly, we can expect the normal school method. What about multiplication?
As we are now well aware, there are many options.

The GMP library uses one of seven multiplication algorithms for N digit by N
digit multiplication (as of GMP version 6.0.0). Which is used depends upon the size
of N and whether or not it exceeds a preset threshold. The algorithms are, in order
of use (i.e., larger N uses algorithms further down the list),

. School method. This is the algorithm we implemented above.
. Karatsuba. The Karatsuba method discussed above.

. Toom-3. A three-way Toom extension to Karatsuba. See [7].

. Toom-4. A four-way Toom algorithm.

. Toom-6.5. A six-way Toom-like algorithm.

. Toom-8.5. An eight-way Toom-like algorithm.

. FFT. The Schonhage and Strassen method as discussed above.

~N NN

All of these algorithms are optimized by the authors of GMP and at a lowest level
are somewhat different than might be found in the original papers. If the operands
to the multiplication are of very different sizes, N digits by M digits, then below one
threshold the school method is used while FFT is used for very large numbers. In
between, the Toom algorithms are used based on heuristics given the sizes N and M.

For division, four main algorithms are in use. For numbers below a threshold
(50 digits) the long division method of Knuth is used. Above this threshold the
divide-and-conquer method of Burnikel and Ziegler (modified) is used. Division
by very large numbers uses an algorithm based on Barrett reduction [10]. Exact
division uses Jebelean’s method [11]. Switching between methods is automatic, the
user need only call the top-level functions.

If GMP is for C and C++, what about other languages that lack intrinsic big
integer functionality? Java uses the BigInteger class. This class comes with its
own implementations, in Java, for low-level operations which exactly match those
found in GMP’s mpn package. This was done to make it possible to easily replace

170 5 Big Integers and Rational Arithmetic

the Java code with high performance C code if desired. So, we see that C, C++ and
Java all make use of the GMP library.

For JavaScript a common choice to add support for big integers is the
BigInteger. js library which is distributed via the MIT License and implements
all functionality in pure JavaScript so it can run within a web browser. This
implementation is very generic and uses a base of 10,000,000 to take advantage of
the simplicity this provides input and output just as we did with our implementation
above. Addition and subtraction use the school method as does multiplication.
There is a comment in version 0.9 to add Karatsuba in the future. Division uses the
Knuth algorithm.

Languages We know that Python has intrinsic support for big integers. Let’s take a
look at what it is doing under the hood. The Python interpreter is written in plain C
and big integers are found in the source code file (Python 2.7) longobject.c.
This file contains implementations for all the operations supported by Python long
integers, it does not use the GMP or other libraries. For addition and subtraction
the expected school method is used. For multiplication only two algorithms are
available, the school method and Karatsuba if the number of digits exceeds 70.
Division is long division ala Knuth. The numbers themselves use a base of 2!°.
While the native implementations are adequate, for serious work in Python with
big integers one would do well to wrap the GMP library. Surprisingly, given the
current popularity of Python, this does not appear to have been done with any level
of seriousness.

Another language which requires in its very definition the support of big
integers is Scheme [12]. This is a small dialect of Lisp and has been used widely
for instruction in computer programming. Indeed, it is used in the very popular
Structure and Interpretation of Computer Programs by Abelson and Sussman [13]
which has trained a generation of programmers from MIT though it has fallen out
of style in recent years. Regardless, the text comes highly recommended.

The version of Scheme we will consider is Scheme48 available online from
s48.org. This version of Scheme conforms to the R5RS version of the language
[14] and includes big integer support for exact numeric computation. Section 6.2.3
of the R5RS report strongly encourages implementations to support “exact integers
and exact rationals of practically unlimited size and precision” which Scheme48
does.

The Scheme interpreter itself is written in C and places big integer operations in
the file bignum. c. Looking at this file we see that the implementations are based
on earlier work from MIT. As expected, the addition and subtraction routines use
the school method. The multiplication routine is limited to the school method as
well, regardless of the size of the input. This limits the usefulness of Scheme for
high-performance work with big integers unless using an external library like GMP.
Similarly, we see that division is the Knuth algorithm, again regardless of the size
of the operands.

5.6 Rational Arithmetic with Big Integers 171
5.6 Rational Arithmetic with Big Integers

Once we have the ability to represent any integer p with an arbitrary number of
digits it logically follows that one might consider how to represent fractions, which
are the ratio of two integers, using big integers. In this section we look at rational
arithmetic with big integer components. If we group two big integers together, p
and ¢, we can treat them as the numerator and denominator of a fraction, p/g, and
perform arithmetic with them. For this section we will take advantage of the big
integers provided by Python and extend them to implement basic rational arithmetic
of arbitrary precision. It is proper to consider rational numbers in computers in
a chapter on big integers because rational arithmetic involves fractions that grow
quickly to have large numerators and denominators which implies that they will
quickly exceed the capacity of fixed-length integers.

Elementary mathematics tell us how to implement the four basic arithmetic
operations using fractions. They are,

Addition 44 <= addebc
Subtraction g_¢<= adb;dbc
Multiplication % X f‘] = Z_(CI
Division % - 5 = cbl_il

where a,b,c, and d are themselves big integers. However, there is one twist we
must bear in mind. If we were to implement these operations directly we would
quickly find our numerators and denominators are becoming very large indeed. This
is because after every operation we need to reduce the resulting fraction to lowest
terms, as no doubt our grade school teachers mentioned to us many times! In order
to do this we need to find, for each numerator and denominator, the greatest common
divisor or GCD. Thankfully, this is straightforward to find as we will soon see.

Storing Rationals in Python Python is a modern object-oriented language. To
store a rational number we need to store two integers, the numerator and the
denominators. Since we are developing a rational arithmetic class, we will store
the numerator and denominator as member variables n and d. Additionally, we
will overload the basic math operations so that we can work with rationals in a
manner similar to other numbers. Input and output will be straightforward as we
simply display the number by printing the numerator, the fraction symbol (/), and
the denominator. We will adopt the convention that the sign of the rational is stored
in the numerator.

A Basic Rational Arithmetic Class The first part of our Rational class defines
the class and the constructor, _ init . Since Python uses automatic garbage
collection we do not need in this case to define a specific destructor. So far, then,
our class looks like this,

172 5 Big Integers and Rational Arithmetic

1 from types import =

2

3|/class Rational:

4

5 def init_(self, n,d=None):
6 if (d == None) :

7 t = float(n).as_integer ratio()
8 n = t[0]

9 d = t[1]

10 g = self. gcd(n,d)

11 self.n = n/g

12 self.d = d/g

13 if (self.d < 0):

14 self.n x= -1

15 self.d = abs(self.d)

where we consistently use four spaces for indenting as is the Python standard. In
line 1 we include the types module which is part of the standard Python library.
We will use this to determine whether or not arguments are Rational objects or
integers. Our constructor is in __init and takes self as the first argument as
all Python methods do. This is a reference to the object itself and this is how we
will access member data and call other class methods. The constructor takes two
arguments, n and d, which are the numerator and denominator of the new rational
object. Lines 6 through 9 check to see if a single argument was given. If so, it
is assumed to be a floating-point number and converted to a rational by calling
the as_integer ratio method of the float class. In line 10 we call the gcd
method to calculate the GCD of the given numbers. We will explore this method in
more detail shortly. Note that we are using the standard Python naming convention
of two leading underscores (__) which marks the method as being private to our
class. The important point here is that each method in our class representing an
operation will return a new Rational object. This means that the only time we need
consider reducing the fraction is when the new object is created as it is not changed
once created. In lines 11 and 12 we set the local values for the numerator (self.n)
and denominator (self .d) dividing each by the GCD so that the fraction is stored
in lowest terms. For simplicity, we ignore error states such as a denominator of zero.
Lines 13, 14 and 15 ensure that the new fraction places its sign in the numerator as
is our convention. As this point, we have a new Rational object and it is initialized
with the given numerator and denominator in lowest terms. Now lets look at the
__gcd method itself.

Reducing Fractions Using the GCD In school we learned that fractions are not
unique. For example, p/q is a fraction with a particular value which we can say,
when expressed as a decimal number, is ¢ since ¢ = p/q. But, if we multiply our
fraction by a new fraction which is equal to 1, ¢/ = 1, we get ap/ag which
is, of course, still c¢. Therefore, when working with fractions we were constantly
encouraged to express our answers in lowest terms (factor out the). When working
with rational numbers on a computer this is especially important to prevent our

5.6 Rational Arithmetic with Big Integers 173

numerators and denominators from growing too large too quickly. To reduce the
fraction we need to find & which is the greatest common divisor of both p and g and
divide p and ¢ by it.

The iterative form of the algorithm of Euclid [15] is a good way to calculate the
GCD even for large numbers. Our implementation of it is,

l/def _ gcd(self, a,b):

2 while b:
3 a,b=Db, a%$b
4 return abs(a)

Arithmetic and Other Methods We are now ready to implement basic arithmetic
operations. Python defines a set of methods that users can override in their own
classes to capture situations which syntactically look like more ordinary operations.
For example, the seemingly simple statement,

is really equivalent to,

which means that a Python class which overrides the _add _ method will be able
to participate in mathematical expressions. This is exactly what we require in order
to make using the Rational class as natural as possible.

Python has a large set of methods that we could override in our class. We will
do some here and leave others to the exercises. In particular, we will override the
following methods,

__add__ Addition (+)
__sub Subtraction (—)
~ mul Multiplication (%)
_div__ Division (/)
_ str String output for str () and print
__repr_ _ String output for repr ()
_ _float__ Floating-point value for £loat ()
__int Integer value for int ()
__long _Integer value for long ()

In addition, we will override the “reverse” forms for the arithmetic operators. These
are called if instead of a+2 we write 2+a. For operators that commute, addition
and multiplication, we really only need call the non-reversed form. For division and
subtraction we have to be more careful.

174 5 Big Integers and Rational Arithmetic

So, how do we implement addition? Like so,

l/def _ add (self, b):

2 t = type (b)

3 if (t == InstanceType):

4 n = self.n+b.d + self.d+xb.n

5 d = self.dxb.d

6 elif (t == IntType) or (t == LongType) :
7 n = self.n + self.d*b

8 d = self.d

9 return Rational (n,d)
10

ll/def _ radd_(self, Db):
12 return self. add (b)

where we first look at the type of the argument, b, in line 2. We not only want to work
with other rational numbers but also with integers and long integers. If the argument
is another rational number we move to line 4 and add to get the numerator followed
by the denominator. Otherwise, if the argument is an integer, we move to line 7 to
add the integer to the fraction. Line 9 returns the new rational answer. Recall that
the constructor is what applies the GCD so it is not explicitly called here. Line 11
defines the reverse case method. Since addition is commutative, a + b = b + a, we
simply fall back to the main addition method.
Subtraction is virtually identical except for the reversed call,

lldef _ sub_(self, b):

2 t = type (b)

3 if (t == InstanceType) :

4 n = self.nxb.d - self.d+b.n

5 d = self.dxb.d

6 elif (t == IntType) or (t == LongType) :
7 n = self.n - self.d«b

8 d = self.d

9 return Rational (n,d)
10
ll/def rsub (self, Db):
12 t = type (b)
13 if (t == IntType) or (t == LongType) :
14 n = bxself.d - self.n
15 d = self.d
16 return Rational (n,d)

where sub_ isidenticalto add except for the change from + to —. However,
as subtraction is not commutative, we must implement it explicitly for the reverse
case. This is done in lines 13 through 16. Why is there no check for InstanceType?
Because Python is smart enough to know that if both arguments are objects the main
method will be called instead.

5.6 Rational Arithmetic with Big Integers

Multiplication follows addition,

def

0 J 0 Ul b W N

=
[@2Ne]

11 def
12

mul (self, b):
t = type(b)
if (t == InstanceType):
n = self.n » b.n
d = self.d » b.d
elif (t == IntType) or (t == LongType) :
n = self.n » b
d = self.d

return Rational (n,d)

__rmul__ (self, b):

return self. mul (b)

while division follows subtraction in implementing the reverse call explicitly,

def

W J 0 Ul bW N

o

10
11 def
12
13
14
15

__div__ (self, b):
t = type(b)
if (t == InstanceType) :
n = self.n » b.d
d = self.d » b.n
elif (t == IntType) or (t == LongType) :
n = self.n
d = self.d » b

return Rational (n,d)

__rdiv__ (self, Db):

if (type(b) == IntType):
n =b % self.d
d = self.n

return Rational (n,d)

175

and in both cases the proper steps for multiplication and division of fractions are

performed.

176 5 Big Integers and Rational Arithmetic

The remaining methods are convenience methods,

lldef _ str (self):

2 if (self.n == 0):

3 return "O"

4 elif (self.d == 1):

5 return "%d" % self.n

6 else:

7 return "%d/%d" % (self.n, self.d)
8

9/def _ repr_ (self):

10 return self. str ()

11

12|/def float (self):

13 return float (self.n) / float(self.d)
14

15/def _ int_ (self):

16 return int (self. float ())

17

18/def long (self):

19 return long(self._ float_ ())

which allow us to interact with Python in a more natural way. Use _ str to
return a string representation of the fraction as the output of str () or print. In
this method we check for special cases like zero or an integer (denominator of one).
The repr method responds to the repr () function by returning exactly the
same string print would receive. The float , int and long methods
perform the necessary conversion to return the rational as a float, integer, or long
integer, respectively. These are used by the float (), int (), and long () functions.
These are the minimal set of methods for our Rational class.

Using the Rational Class Because of our design choices in overriding key default
Python methods we can use the Rational class in a quite natural way. The
following examples are from an interactive session and illustrate how to use the
class,

5.7 When to Use Big Integers and Rational Arithmetic 177

>>> from Rational import =
Rational (2, 3)
Rational (355,113)
>>> Cc =a + b

>>> a

>>> b

>>> C

1291/339

>>> (a+b) *x ¢
1666681/114921
>>>d = (a + b) x ¢
>>> d = 2xd

>>> d
3333362/114921

>>> float (b)

14| 3.1415929203539825
15/ >>>d / d

16| 1

17 >>> 1/4

18/ 114921/3333362

19| >>>

0w J o0 Ul W N

R
W N R oW

where >>> is the Python interactive shell prompt and replies from Python are lines
without the prompt.

In line 1 we import the Rational class. Lines 2 and 3 define a and b to be 2/3
and 355/113, respectively. Line 4 adds a and b and assigns the result to ¢ which is
then displayed in line 6. Line 9 uses all three rationals in an expression and displays
it. Note already how the numerator and denominator are growing. We define d in
line 9 and multiply it by an integer in line 10. Line 13 shows us that 355/113 is a
good approximation of & by requesting the floating point version of it. We use line
15 as a sanity check to make sure that a rational number acts rationally. Finally, line
17 checks that the inverse of a rational is, in fact, what you get when you flip the
numerator and the denominator.

This concludes our simple Python Rational class. As promised, the exercises
will offer you the opportunity to extend the class even further.

5.7 When to Use Big Integers and Rational Arithmetic

The sections above demonstrate how to implement big integers, how to operate on
them efficiently, and where to find performant big integer libraries, however, none
of the above actually talks about when and why one might want to use big integers.
We remedy that in this section.

In modern computing undoubtedly the largest use of big integers is in cryptogra-
phy. Cryptographic systems depend upon the fact that certain operations are easy to
do in one direction but next to impossible to do, in a reasonable period of time, in
the other direction. Most of these systems depend upon the following two facts,

178 5 Big Integers and Rational Arithmetic

1. The fundamental theorem of arithmetic states that all numbers are either prime
or can be factored, uniquely, into a specific set of primes.

2. Factoring large integers is a tedious process even though multiplying them is
straightforward.

This means that while it is easy to find n = pg with p and ¢ both integers it is
hard to factor n to see that it is in fact what you get if you multiply p and ¢. This is
the second fact above. The first says that if p and g are prime then indeed the only
way to factor n is to find the specific pair, p and g. If p and g are too small, trial
and error will eventually find them, but if they are very large, on the order of several
hundred bits or about 100 decimal digits, then finding the factors of their product
will take a very long time. This is the heart of modern cryptography. Let’s see briefly
how multiplying large integers plays into it.

First we consider classic Diffie-Hellman key exchange [16]. This system allows
two parties, traditionally known as Alice and Bob, to exchange a secret number to
be used as a key to encrypt a message shared between them. We are not concerned
with the encryption but rather how they exchange the secret key so that an outsider
(traditionally known as Carol or Eve) cannot learn what it is. Let’s look at the steps
and then we will see where big integers play into it,

The heart of the exchange relies on the choice of p and g. We must choose p to
be prime and g to be a primitive root modulo p. The exact definition of a “primitive
root modulo p” does not concern us here but it a number theory concept. What
does concern us is that p and g are public and known by Alice, Bob and Carol.
Additionally, Alice and Bob each select a secret number only they know. We’ll
call Alice’s number a and Bob’s number b. These numbers are known only to the
respective person. For our example, we will select p = 37 and g = 13, whichis a
primitive root of 37. With this setup, the steps necessary to exchange a secret key
are,

. Alice chooses a = 4. Only Alice knows this number.

. Bob chooses b = 11. Only Bob knows this number.

. Alice sends Bob A = 13* mod 37 = 34. Carol sees A.

. Bob sends Alice B = 13'! mod 37 = 15. Carol sees B.

. Alice computes the secret key, s = 15* mod 37 = 9. Carol cannot compute s.
. Bob computes the secret key, s = 34! mod 37 = 9.

. Alice and Bob both use s as the key for their encryption system.

~N NN R W=

Recall that a and b are secret but p = 37, g = 13, A = 34 and B = 15 are public.
When the exchange is complete, Alice and Bob have both calculated s = (g%)” mod
37 = (g”)*mod 37 = 9 which they will use as the secret key for their encryption
system without Carol knowing what s is.

Big integers come into this system with the choice of p, a and b. If these are very
large, hundreds of digits long instead of small as in our example above, it becomes
virtually impossible to determine s from the values that are known publicly. Even
though A is known and it is known that A = g% mod p, the reverse operation, known
as the discrete logarithm, is very hard to do so a remains unknown publicly. It is this

5.7 When to Use Big Integers and Rational Arithmetic 179

difficulty that makes the key exchange system secure and big integers are essential
because without them the numbers involved would be too small to offer security
against brute force attacks.

Another cryptographic system that relies on big integers is RSA public key
encryption [17]. This system was published by Rivest, Shamir, and Adelman (hence
RSA) of MIT in 1977. In this system users generate two keys, a public key and a
private key. They then publish their public key allowing anyone to encrypt a message
using it. The holder of the corresponding private key, however, is the only one who
can decrypt it. For simplicity we ignore the extra twist of signing the message using
the sender’s private key. The essence of the algorithm depends upon two primes, p
and g, their product, n = pq, a public key exponent, e, and its multiplicative inverse,
d. The person generating the keys keeps d as the private key and releases both n and
e together to be the public key. With this public key anyone can encrypt a message
but only the holder of the private key as decrypt it. The length of # is the key length
which is related to the strength of the algorithm.

If Bob has released his public key, the pair n and e, then Alice can send Bob
a secure message by turning her message into an integer, m, the exact method for
this is irrelevant but must be agreed upon by both Alice and Bob, and computing
¢ = m° mod n. She then sends c to Bob. Bob, in turn, recovers Alice’s message by
computing m = ¢4 mod n using the private key, d. Since only Bob has d, he is the
only one who can recover the message.

As in Diffie-Hellman, the security of the encryption depends upon the choice
of large primes for p and g. When these are very large numbers it becomes
virtually impossible to recover them from knowledge of just n. The exponent, e,
and private key, d are calculated from p and g so knowledge of p and ¢ would
lead to a breakdown of the entire algorithm. Fortunately, big integers come to the
rescue and let us work with the very large primes that make the system secure.
Practical implementations of encryption algorithms which rely on big integers are
found in OpenSSL [18] which implements the secure socket layer for internet data
transfer and libgcrypt [19] which is an open source package implementing numerous
algorithms including RSA.

Big integers are of practical importance to cryptography but they are also used
for research purposes by mathematicians. For example, the open source package
Pari [20] has been in existence for some time and it supports arbitrary precision
calculations for mathematicians interested in number theory and other disciplines.
Additionally, sometimes it is helpful to have the ability to restrict the precision of
calculations in order to explore the effect of mathematical operations. In the paper
Chaos, Number Theory and Computers [21] Adler, Kneusel and Younger explored
the effect of the precision used when calculating values for the logistic map, x,+; =
Ax,(1—x,), A <4, 0 < x < 1, which can lead to anomalous behavior. The software
for this paper made use of the intrinsic big integer arithmetic found in the Scheme
language to calculate logistic map values with a set precision.

What about rational arithmetic? As we’ve seen, adding rational arithmetic
once big integers are available is straightforward. Many languages and libraries
do support rational arithmetic. For example, the mpg part of GMP implements

180 5 Big Integers and Rational Arithmetic

rational functions and while Python supports big integers natively, Scheme supports
rationals natively including syntactically so that (+ 2/3 3/4) is a perfectly valid
function call yielding 17/12 as its answer. Another use for rational arithmetic would
be as a way to increase the precision of calculations beyond that of native floating
point.

5.8 Chapter Summary

In this chapter we introduced the concept of a big integer by which we mean an
integer larger than any native type supported by the computer. We implemented
basic big integer operations in C and discussed improved algorithms for these
basic operations which are of more practical utility. Next we looked at important
implementations of big integer libraries as well as programming languages which
support big integers intrinsically. We then examined rational numbers built from
big integers and implemented a simple rational number class in Python. Lastly, we
discussed some prominent uses of big integers to give examples of when big integers
might be the tool of choice.

Exercises

5.1 Big integer libraries typically represent integers in sign-magnitude format as
we did in this chapter. Another possibility would be to use a complement notation,
call it B’s-complement where B is the base, which is the analog of 2’s-complement
used almost exclusively for fixed-length integers. However, very few big integer
packages actually do this. Why?

5.2 In Sect.5.2 we gave a C function for bigint equal to test if two big integers
are equal. This function made use of bigint compare. Write the remaining
comparison functions for <, >, <, > and #. *

5.3 Figure 5.11 implements a function to perform big integer division. Extend this
function to return the remainder as well. *

5.4 Add a new function to our library, bigint pow(a,b), which returns a’. Be
sure to handle signs and special cases. *

5.5 Add another new function to our library, bigint_fact (a), which returns a!.
Recall that the argument must be > 0. *

5.6 Using the big integer functions defined in this chapter create a simple arbitrary
precision desk calculator in C which takes as input expressions of the form “A
op B”, as a string, where A and B are big integers and op is one of the four
basic arithmetic operations and returns the result. If you wish, you may use postfix
notation and a stack. In postfix notation the operands come first followed by the
operation, “A B op”. You can use Python to check your answers. **

References 181

5.7 Extend the basic Rational Python class outlined above to compare rational
numbers by overridingthe 1t , le , gt , ge , eq ,and ne
methods to implement comparison operators <, <, >, >, ==, and #. *

5.8 Extend the basic Rational Python class outlined above by adding neg
__abs__ methods for negation and absolute value. *

5.9 Extend the basic Rational Python class outlined above by adding methods to
handle shortcut operations. N.B., these, unlike all the others, destructively update
the existing rational object. They do not return a new object. The method names
are: _iadd , isub , imul ,and _ idiv__ corresponding to operators
+=, -=, »=, and /=. Be careful when handling integer arguments and be aware that
the updated value may no longer be in lowest terms. *

5.10 Use the rational class to create a simple interactive rational desk calculator.
This should take as input expressions of the form “A op B”, as a string, where A
and B are rationals (with a “/” character) or integers and op is one of the four basic
arithmetic operations and return the result. If you wish, you may use postfix notation
and a stack. **

References

1. Crandall R., Pomerance C., Prime Numbers: a Computational Perspective, Springer (2005).

2. Comba P., Exponentiation Cryptosystems on the IBM PC. IBM Systems Journal 29, 4:526-536
(1990).

3. Karatsuba, A., Ofman, Y., Multiplication of Many-Digital Numbers by Automatic Computers,
Proceedings of the USSR Academy of Sciences 145: 293-294 (1962). Translation in the
academic journal Physics-Doklady, 7, pp. 595-596 (1963).

4. Schonhage, D., Strassen, V., Schnelle multiplikation grosser zahlen, Computing, 7(3—4),

281-292 (1971).
. Saracino D., Abstract Algebra: A First Course, Addison-Wesley (1980).
. Bracewell, R., The Fourier transform and its applications, New York: McGraw-Hill (1986).
7. Knuth, D., The Art of Computer Programming, Volume 2: Seminumerical Algorithms,
Addison-Wesley Professional (2014).
8. Burnikel, C., Ziegler, J., Im Stadtwald, D., Fast recursive division (1998).
9. Granlund, T., gmp-GNU multiprecision library, Version 6.0.0 (2014).
10. Barrett, P, Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm
on a Standard Digital Signal Processor, Advances in Cryptology - CRYPTO’ 86. Lecture Notes
in Computer Science 263. pp. 311-323 (2006).
11. Jebelean T., An algorithm for exact division, Journal of Symbolic Computation, volume 15,
169-180 (1993).
12. Sussman, G. Steele, Jr, G., The First Report on Scheme Revisited, Higher-Order and Symbolic
Computation 11 (4): 399—-404 (1998).
13. Abelson, H., Sussman, G., Structure and interpretation of computer programs, 2nd Ed, MIT
Press (1996).
14. Kelsey, R., Clinger, W., Rees, J. (eds.), Revised5 Report on the Algorithmic Language Scheme,
Higher-Order and Symbolic Computation, Vol. 11, No. 1, (1998).
15. Heath T., The Thirteen Books of Euclid’s Elements, 2nd ed. (Facsimile. Original publication:
Cambridge University Press, 1925), Dover Publications (1956).

A W

182 5 Big Integers and Rational Arithmetic

16. Diffie, W., Hellman, M., New directions in cryptography, Information Theory, IEEE Transac-
tions on, 22(6), 644-654 (1976).

17. Rivest, R., Shamir, A., Adleman, L., A method for obtaining digital signatures and public-key
cryptosystems, Communications of the ACM, 21(2), 120-126 (1978).

18. http://www.openssl.org/.

19. http://www.gnu.org/software/libgcrypt/.

20. The PARI Group, PARI/GP version 2 . 7 . 0, Bordeaux, 2014, http://pari.math.u-bordeaux.fr/.

21. Adler C., Kneusel R., Younger, B., Chaos, Number Theory, and Computers, Journal of
Computational Physics, 166, 165-172 (2001).

http://www.openssl.org/
http://www.gnu.org/software/libgcrypt/
http://pari.math.u-bordeaux.fr/

Chapter 6
Fixed-Point Numbers

Abstract Fixed-point numbers implement floating-point operations using ordinary
integers. This is accomplished through clever use of scaling and allows systems
without explicit floating-point hardware to work with floating-point values effec-
tively. In this chapter we explore how to define and store fixed-point numbers, how
to perform signed arithmetic with fixed-point numbers, how to implement common
trigonometric and transcendental functions using fixed-point numbers, and, lastly,
discuss when one might wish to use fixed-point numbers in place of floating-point
numbers including an example of an emerging use case involving modern neural
networks.

6.1 Representation (Q Notation)

A fixed-point number is a scaled floating-point number. The scaling can be in
decimal or binary. We will focus on binary here because this makes the scaling a
power of two which means scaling up or down is simply a matter of shifting bits
up or down. One reason to use fixed-point arithmetic is speed versus floating-point
in software, so this rapid shifting is an advantage. Let’s take a look at what scaled
arithmetic actually entails.

If we are working with numbers in a known range, say between —3 and +3, we
normally use a £1loat or double to represent the numbers and go on our merry
way. However, what if we are in a situation where floating-point math is expensive
in terms of speed or memory? One option is to use scaled arithmetic, which is
fixed-point arithmetic. Before we can implement any arithmetic functions, however,
we need to understand the way scaling is used so let’s look at an example. If we
have 16-bit integers, C short int, we can represent values between —65,536
and 65,535, including the end points, if we use two’s-complement notation. This
means that we need to scale our —3 to +3 range numbers so that they fit in the
range —65,536 to 65,535. Additionally, we want to make the scale factor a power of
two and make it as large as possible while still keeping our scaled integer in the 16-
bit range. In this case, we need two bits to store the integer part and one additional
bit to store the sign for a total of three bits. This leaves 16 —(2 + 1) = 13 bits
for representing the fractional part. This means that the scale factor is 2!3 = 8192
and the resolution of our fixed-point numbers will be 273 or about 0.000122. Here
“resolution” means that the difference between any two consecutive 16-bit integers,

© Springer International Publishing AG 2017 183
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-50508-4_6

184 6 Fixed-Point Numbers

in this interpretation, is a fixed difference of 0.000122. More formally, to implement
scaled arithmetic, we are really using integers to represent rational numbers with an
implied denominator which is the scale factor. So, for our example, we are using
16-bit integers to represent fractions where the integer is the numerator and the
denominator is fixed at 2> = 8192. We will look at how to convert floating-point
numbers to and from fixed-point notation and then things should be clearer but
before doing that, let’s introduce some notation that will make discussing fixed-
point numbers much easier, this is Q notation.

The Q notation was introduced by Texas Instruments (for example, see [1]) as
a shorthand for specifying the size of the integer used to represent a fixed-point
number as well as the number of bits reserved for the integer and fractional part.
Formally, the notation is Qm.n where m is the number of bits used in the integer
part while 7 is the number of bits in the fractional part. Signs are stored using two’s-
complement notation meaning the entire integer is a two’s-complement number.
As this is the expected way fixed-length integers are stored in modern computers
this is a good thing. This also means that there must be one additional bit for the
sign of the fixed-point number and the entire length of the fixed-point number is
m + n + 1 bits. Our example above used two bits for the integer part and 13 for the
fractional part. In Q notation this is 02.13 which uses 2 + 13 + 1 = 16 bits, exactly
the number of bits in a C signed short integer. If the number of integer bits is
zero it is dropped from the Q notation so that Q31 means a 32-bit integer with no
integer part and 31 bits reserved for the fractional part.

Armed with Q notation we can see that our example above is a good choice for
representing numbers in the range —3 to +3 using 16 bits. The range of a fixed-
point number Qm.n is [-2",2" — 27"] which for 02.13 is about [—4, 3.999878],
beyond the [—3, 3] range we required. By picking the smallest number of bits for the
integer part we maximize the number of bits for the fractional part thereby making
the fixed-point numbers as accurate as possible over the desired range for the given
total number of bits.

What if instead of selecting 02.13 we select Q7.87 In this case the interval
between values is 2% or about 0.0040 which is 32x larger than 02.13 meaning
our numbers are much less accurate. To see this, consider a number line such as that
of Fig. 6.1 which shows graphically the reduced accuracy we would have if we did
not keep the integer part of the fixed-point number as close to the working range as
possible.

We now understand that a fixed-point number is a fraction with a denominator
that is a power of two. We also know how to indicate, via the Q notation, how
we are interpreting this fraction so that the entire range of the fixed-width integer
we are using to represent the fraction is used. With this in mind, we can begin to
piece together our own library of fixed-point functions in C. In this case C is a very
natural choice as one of the primary uses of fixed-point is in embedded development
where often one is working with microcontrollers without floating-point hardware.
While it is possible, and often done in the past, to emulate floating-point hardware
in software, in general, fixed-point math is much faster. And in the microcontroller
world, C is still the language of choice.

6.1 Representation (Q Notation) 185

(@
Ax = 0.000122

I I I I
(®) I I I I
I AXx = 0.004

Fig. 6.1 The difference between numbers representable in (a) 02.13 and (b) Q7.8. For 02.13
each hash mark is 0.000122 apart while for Q7.8 the hash marks are 0.0040 apart. If we want to
represent a floating point value, indicated by the double arrow, we must select the closest hash
mark in each subfigure (small arrows). This is why if the range is known we should select the
smallest integer width encompassing that range

Existing fixed-point libraries are highly optimized to take full advantage of the
performance found in small systems. To this end, they often implement one or two
types of fixed-point numbers. For example, the open source [libfixmath project [2]
implements Q15.16 only using signed 32-bit integers. This is a reasonable choice for
a general-purpose library, actually, as it covers the range [—32,768, 32,767.99998]
which likely includes many of the values one would encounter in daily practice,
especially in the embedded development world. The resolution is 27'° or about
0.0000153 which is also quite reasonable. For our library, however, we will opt to
implement a variable set of fixed-point numbers. This means that when the library
is initialized we will pass in our desired Qm.n by passing m explicitly. This will
determine how we will interpret values internally and allow us to tailor the library to
maximize the floating-point accuracy of our numbers. The library will always use a
signed 32-bit integer to represent the number. This means that we need only specify
m, the number of bits for the integer part, and we know that n will be 32— (m+1) bits
so that the total number of bits used is always 32 (recall one extra bit for the sign).
Additionally, when the library is initialized for a particular configuration we will
recalculate certain constants which will be used when we implement trigonometric
and transcendental functions. Naturally, this recalculation of floating-point constants
is a cheat if we are using hardware that lacks floating-point but one could imagine
calculating these ahead of time or a situation where slow software-based floating-
point is used by the compiler and we wish to use faster fixed-point routines. In the
end, our library is meant to be pedagogical, after all.

We start the library with code to set up for a particular Qm.n and to calculate
some constants in that representation for future use. Note that we create a new type,
fix_t, to distinguish between ordinary integers and integers we mean to interpret
as fixed-point numbers as well as £ixx_t for a double precision 64-bit version. So,
our initialization routine becomes,

186

W J o0 Ul bW N

2R e e
w N R o

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

6 Fixed-Point Numbers

#define
#define
#define
#define
#define

MASK_SIGN 0x80000000
DEG2RAD 0.0174532925
PI 3.141592653589793
EXP_ITER_MAX 50
EXP_TOLERANCE 0.000001

typedef int32 t fix t;

typedef inte64_t fixx t;

int32 t M=0,N=31;

fix t PIh, PId, d2r, r2d;

fix t £90,£180,£270,£360;

fix t stl,st2,st3,st4;

fix t p0,pl,p2,p3,p4,pP5;

fix t sin tbl[91]; // sine lookup table

void Q init (int32 t m)
int i;

M
N

((m >= 0) &&
32 - (m+1);

(m < 32)) ? m

for (i=0; 1<91;
sin_tbl[i]

i++)
Q to fixed(sin (i«DEG2RAD)) ;

PId
PIh
d2r
r2d
£90
£180=
£270=
£360=

Q to fixed(2xPI);

Q to fixed(PI/2)

Q to fixed DEG2RAD)

Q to fixed(1.0/DEG2RAD) ;
Q to fixed (90%DEG2RAD) ;

Q to fixed(180+DEG2RAD) ;
Q to fixed(270%DEG2RAD) ;
Q to_ fixed (360+DEG2RAD) ;

st
st
st
st
PO
pl
p2
p3
p4
p5

}

1
2
3
4

(
(
(
(
(9
(
(
(
Q to fixed(
Q to fixed(
Q to fixed(
Q to fixed(
Q to fixed(
Q to fixed(
Q to fixed(
Q to fixed(-
Q to fixed (5.
Q to fixed(5.

1.0/6)
1.0/120)
1.0/5040)
1.
1
9
2

0/362880) ;

.17708643e-05
.99655930e-01
.19822760e-03

.72068031e-0
87493727e-03
79939713e-03

7

;
i

)i
;

)i
) ;i
)
1
) ;i
)

i

where Q_init takes the number of integer bits in m. We check that m is reasonable
in line 19 and set our global M (line 9) to it. In line 20 we set N so that we always use
32 bits for the entire number. Note that we are including two standard libraries (not
listed). The math.h library is necessary for our conversion routines between floating-
point and fixed-point and to be explicit about integer types we include stdint.h.

6.1 Representation (Q Notation) 187

This latter library defines the integer types in a consistent way so that int32 tis
a signed int of 32-bits while uint32 tisan unsigned int of 32-bits.

We introduce several #define values. We use MASK_SIGN to mask values to get
the sign of the number. This will be handy when we check for overflow. DEG2RAD
is the constant that converts an angle in degrees to radians. This is used in line 23
to build the sine look up table. We define pI to be & for convenience. We will use
EXP_ITER MAX and EXP TOLERANCE when we implement the exponential function.

Besides M and N there are several other globals which in a fixed library would
themselves be constants. Here they are variables so that we can adapt to different QO
representations. In line 10 we define variables to hold fixed-point representations of
27, /2, DEG2RAD, and its reciprocal, respectively. The specific assignments for a
new Q notation are in lines 25 through 28.

The variables £90, £180, £270, and £360 are set to 7/2, 7, 37/2 and 2x
radians. These values are needed when implementing the sine function. Variables
stl, st2, st3,and st4 are set to coefficients of the Taylor series expansion of
sinx. Lastly, p0 through p5 are the coefficients of the 5-th degree polynomial fit to
sinx. These values are determined empirically by curve fitting.

We will add two convenience functions to the library which one would likely not
include if working in a constrained environment. These functions let us easily map a
floating-point value (C double) to a fixed-point value and back. To find the Qm.n
representation of a floating-point value simply scale it by the denominator, 2", and
round to the nearest integer,

Zfixed = LGz_ﬂoar + OSJ

Similarly, to change fixed-point back to floating-point simply multiply by the
reciprocal of the denominator,

Zfloat = 2_nzﬁxed

These functions are easily implemented in C as,

fix t Q to_fixed(double z) ({
return (fix t)floor (pow(2.0,N)*z + 0.5);

}

1
2
3
4
5| double Q to double(fix t z)

6 return (double)z * pow(2.0,-N);
7

}

What about comparisons of fixed-point numbers? In this case, since we are scaling
by a fixed power of two (ignoring the case of comparing different Q notations),
normal integer comparisons will still work as expected so we do not need to
implement anything specific for fixed-point numbers. An example will illustrate.
If we use an eight bit integer and Q3.4 notation to store 2.6875 we interpret each bit
as follows,

188 6 Fixed-Point Numbers

bit value — O o010/ 1T 0 1 1
place value — sign|2% 2! 20271 272273 =4

where the integer we store has the value 2b;s = 43. If we then look at storing
2.3125 in the same format we get an integer with the value of 37. Clearly, since
2.3125 < 2.6875 we also have 37 < 43 following directly from the fact that if
the Q notation is the same then the place value for each bit is the same and we can
compare bit by bit as is done when comparing two signed integers. Negative values
are stored in two’s-complement format so we again see that the comparison of two
signed integers arrives at the same relationship as the two floating-point values those
integers represent when interpreted as fixed-point numbers. With this understood,
we are now ready to look at implementing basic arithmetic.

6.2 Arithmetic with Fixed-Point Numbers

Arithmetic with fixed-point numbers is arithmetic using fractions with an implied
denominator. Another way to consider fixed-point numbers is that they are scaled
by the fractional part. So, if x is a fixed-point representation of X, a floating-point
number, then x = Xd where d = 2" is the scale factor, with rounding to the nearest
integer. Similarly, for fixed-point number y = Yd, where Y is the actual floating-
point number, we have,

xX+y=Xd+Yd=X+Y)d
and,
x—y=Xd—Yd=(X-Y)d

which means that addition and subtraction of fixed-point numbers naturally results
in a properly scaled answer. If the magnitude of X + Y or X — Y is too large to fit in
m bits then the resulting number will overflow or underflow the representation and
a loss of precision, possibly significant, will occur.

For multiplication we have,

xy = (Xd)(Yd) = XYd*

where the answer is now scaled by d? instead of d. To get back to the same scaling
we divide by d to get a final answer, XYd, which is what we expect for multiplication
of two Om.n numbers returning a Qm.n result.

There are several things to keep in mind with multiplication of fixed-point
numbers. First, multiplication may lead to an intermediate result that requires double
the precision to hold since it is scaled by d? instead of d. Second, a loss of fractional

6.2 Arithmetic with Fixed-Point Numbers 189

precision may well happen when we divide by d to get the final answer. This loss
will be in the lowest bits of the fractional part. Once the division has been made the
resulting value can be put back into a single precision integer. This means keeping
the lowest b bits of the double precision 2b-bit integer. Note that the division is
simply a shift to the right by n bits for a Om.n number. Finally, if the integer part of
the multiplication has overflowed meaning the result has an integer value that cannot
fit in m bits, there will be a catastrophic loss of precision in the answer. Therefore,
it is important to check for this overflow when working with the double precision
version.

There is one other detail we did not mention yet. This is the issue of what happens
when we divide the double precision product by the denominator. Recall that this
division is really a shift to the right a specified number of bits. If we do this shift
without concern for any rounding issues we will introduce bias in our results. To
avoid this, we take the extra step of adding a value that is equal to 2"~! which
is the highest bit position that will be discarded by the right shift of » bits. This is
tantamount to adding 0.5 to a floating point value before applying the floor operation
so that the resulting integer is the integer the number is closest to instead of the
closest integer less than the number. This will increase the precision of our answers
in the long run and cause errors to average out over a series of calculations without
constantly losing precision by applying a floor operation. For multiplication this
extra addition is done before the rescaling by 27" so that we use the bits that will be
discarded.

The algorithm for multiplication of two Om.n fixed-point numbers, x and y, is,

1. Cast x to x’ which is a sign-extended 2b-bit integer. Cast y to y/, also a sign-
extended 2b-bit integer.

2. ¢ = ¥ x y'. This is the result scaled by (27)(2") = 2?" and stored in a 2b-bit
integer, 7.

3. ¢ = ¢ +2""!, This is the rounding to avoid truncation bias. We will divide by 2"
so we add 2"~! which is the largest bit value we are about to discard.

4. ¢ = ¢ x 27", This is the result scaled by 2”. Note that this is a right shift by n
bits.

5. Cast 7 to t by keeping the lowest m + n + 1 bits. This is the product in Qm.n
format. If any bits of 7 above bits m + n + 1 are set overflow has happened and
our result, ¢, will be incorrect.

Lastly, let’s look at fixed-point division. We want to divide two Qm.n numbers,
x by y, and return a quotient that is also a QOm.n number. This means we want an
integer that represents X/Y scaled by 2". This is what we get if we implement the
following algorithm,

1. Cast x to X’ = x x 2" where x’ is a 2b-bit integer. This means that x" is x scaled
by 22", hence using a 2b-bit integer to store the result.

2. Correct for truncation bias by adding y/2 to x/, ¥’ = x’ + y/2. Note that y/2 is
also a 2b-bit integer. This addition is adding YXTZH = Y x 2! to the value x’

which is scaled by 22". We will see below why this is helpful.

190 6 Fixed-Point Numbers

3. Calculate a quotient, ¢ = x'/y where y has been properly sign-extended to
2b-bits. Because of the initial scaling of x this quotient is already properly scaled
so we keep the lowest b bits to return the Qm.n answer.

Let’s look more closely at this algorithm. In the end, we want a number that is
(X/Y)x2" which is the scaled Qm.n representation of the quotient of x/y = X/Y. By
scaling x in step 1 we have ' = xx2" = X x 2", The bias correction in step 2 seems
particularly mysterious but we see that we are adding y/2 = (Y x2")/2 = Y x 2",
This means that the division in step 3 is,

X x2¥ 4y x2n!
Y x2n

X[y = = (X/Y) ><2"+%
which is exactly the quotient we want, properly scaled to Qm.n plus the bias
correction of 1/2.

Now that we know how to do basic arithmetic with fixed-point numbers, let’s
implement these operations for our library. We will implement two versions of
addition, subtraction, and multiplication, one that checks for overflow and one that
does not. First we present versions that do not check for overflow conditions as they
are the simplest,

1| fix t Q add(fix t x, fix t y) { return x+y; }
2/ fix t Q sub(fix t x, fix t y) { return x-y; }

3

4/ fix t Q mul(fix t x, fix t y) {

5 fixx t ans = (fixx t)x * (fixx t)y;
6

7 ans += 1l<<(N-1);

8 return (fix t) (ans >> N);

9!}

Addition and subtraction are as simple as can be if we do not check for overflow.
Adding (subtracting) two two’s-complement integers is mathematically identical
to adding two “floating-point” values stored in two’s-complement format which is
what a fixed-point number actually is. There is an implied radix point between bits
n and n — 1, counting bits from zero, but the process of addition (subtraction) of the
fractional part is the same as for the integer part so we simply add or subtract the
two values and will arrive at the proper answer.

Multiplication is much the same but if we think about the school method of
multiplication we see that we will end with, since both numbers are in Qm.n format,
a number that is scaled by 2n bits. Similarly, it may also need 2m bits for the integer
part. So, we cannot use a single precision integer of 32-bits to hold the result, we
must use a double precision integer with 64-bits. This is the £ixx_t data type. In
line 5 we cast our inputs to 64-bits then multiply them. In line 8 we shift down N
bits to get the answer to fit into a 32-bit integer. We’ll skip line 7 for the moment.

6.2 Arithmetic with Fixed-Point Numbers 191

integer bits fractional bits
A A
(\ 7 \
Q3.4
X Q3.4
-—_)
integer Y4 lower order
overflow bits Q3- fractional bits

Fig. 6.2 Multiplication of two fixed-point numbers. In this case two 8-bit fixed-point Q3.4
numbers are multiplied. The radix point is shown to separate the fractional bits from the integer
bits (including the sign). The product requires 16-bits of which the middle eight are the desired
answer as indicated. Fractional bits below this range are of lower order (smaller) and are discarded
when the product is shifted down n = 4 bits. If any bits above the indicated range are set, and not
the extended sign of the answer, then overflow has happened

Pictorially, the multiplication looks like Fig.6.2 where we see the result of
multiplying two 8-bit 03.4 values using a 16-bit intermediate. The effect is the
same when two 32-bit values are multiplied using a 64-bit intermediate. This figure
shows clearly why the product must be shifted to the right to remove the extraneous
lower-order bits. In the general case this shift is by N bits as in line 8 above. Finally,
line 9 casts back to a 32-bit integer type, losing any overflow in the integer part of
the fixed-point product, and returns.

We skipped line 7 above. This is the correction to remove truncation bias that was
mentioned in Step 2 of the multiplication algorithm. We add a value which is equal
to the highest bit position we will be discarding. This is much the same as adding
0.5 to a decimal number before keeping only the integer part so that the integer will
round to the nearest value, not just the lowest value,

2068.34 —|2068.34 + 0.5] = |2068.85] = 2068
2068.64 —|2068.65 + 0.5] = [2069.15] = 2069
which is what we would expect from a round-to-the-nearest-integer operation.

What if we do check for overflow? Starting with addition and subtraction we
have,

192 6 Fixed-Point Numbers

1 fix t Q add over(fix t x, fix t y) {

2 uint32_t ux = x;

3 uint32 t uy = y;

4 uint32 t s = ux + uy;

5

6 if ((ux & MASK_SIGN) == (uy & MASK_SIGN)) ({
7 if ((s & MASK SIGN) != (ux & MASK SIGN)) ({
8 printf ("Q add over: overflow!\n");
9 return O;

10 }

11 }

12 return x+y;

13|}

14

15/ fix_ t Q sub over(fix t x, fix t y) {

16 uint32 t ux = x;

17 uint32 t uy = y;

18 uint32 t s = ux - uy;

19

20 if ((ux & MASK SIGN) != (uy & MASK SIGN)) {
21 if ((s & MASK SIGN) != (ux & MASK SIGN)) {
22 printf ("Q sub over: overflow!\n");
23 return O;

24 }

25 }

26 return x-y;

27 }

28

where in each case we return the same value as above, see lines 12 and 26, but
before that we use unsigned 32-bit integers to examine the sign of the result. We
use unsigned integers because overflow is undefined in the C standard for signed
integers. This tip we borrow from the libfixmath project.

For addition we know overflow happened if the signs of the arguments are the
same but the sign of the answer is not the same as the arguments. In line 6 we mask
the unsigned representation, same bit pattern as the signed representation, keeping
only the highest bit. This is the sign bit for the signed interpretation of the number. If
these are the same for both arguments, we then check whether the sign of the result
differs from the sign of the first argument (line 7). If they do, we know overflow
happened and we report it in line 8 and return zero in line 9. Naturally, a complete
implementation would set an error indicator and that would be used to know that the
return value is not valid.

The situation is similar for subtraction except instead of checking for the same
sign in the arguments line 20 checks to see if the signs are different. If so, we check
to see if the sign of the answer is the same as the sign of the first argument. If not,
we know overflow has happened and we report it in lines 22 and 23. Otherwise, we
return the difference in line 26 knowing that the two’s-complement representation
will handle the signs properly.

6.2 Arithmetic with Fixed-Point Numbers 193

Multiplication with overflow detection is,

1| fix t Q mul over(fix t x, fix t y) {

2 fixx t xx,yy,tt;

3 uint32_t ux = x;

4 uint32 t uy = y;

5

6 xx = (fixx t)x;

7 yy = (fixx t)y;

8 tt = XX * yy;

9 tt += 1l<<(N-1);

10 tt >>= N;

11

12 if ((ux & MASK SIGN) == (uy & MASK SIGN)) ({
13 if (((fix t)tt & MASK SIGN) != (ux & MASK SIGN)) (
14 printf ("Q mul over: overflow!\n");
15 return 0;

16 }

17 }

18 return (fix t)tt;

19| }

where we multiply as before but check our result starting at line 12. If the signs of
the arguments are the same (line 12) but the signs of the result and first argument
are different (line 13) we know overflow has happened and we report it in lines 14
and 15. If not, we return the product in line 18.

Lastly, we present division,

1 fix t Q div(fix t x, fix t y) {
2 fixx t xx,yy;

3

4 xx = (fixx t)x << N;

5 xx += (fixx t)y / 2;

6 return xx / (fixx t)y;

70}

which implements the algorithm for division outlined above. We cast the dividend
to a 64-bit integer and then scale it up by N bits in line 4. This sets xx to x x 2" using
64-bits to hold the result. Line 5 is the truncation bias correction term which adds
a 64-bit version of y divided by 2. The actual division is performed in line 6 which
as we saw above returns an already properly scaled quotient. Since the return type
for the function is fix t the result of the division in line 6 is cast to the proper
32-bit size.

Before we finish this section let’s take a quick look at the effect the truncation bias
correction term has on repeated multiplication. To do this we will look at powers of
p = m—3using 02.29 which is capable of representing this value accurately to nine
decimal places. First, we calculate (7 — 3)!, then we calculate p'° with truncation
bias correction and without to show the effect of a series of ten multiplications in
a row,

194 6 Fixed-Point Numbers

(r —3)'° = 0.00000000323897 floating-point value
(7w — 3)'% = 0.00000000372529 Q2.29, truncation bias correction
(7w —3)1° = 0.00000000186265 02.29, no bias correction

Notice how the truncation bias correction term keeps the final value reasonably
close to the actual value while without it the error accumulates and a serious loss
of precision occurs. Clearly, truncation bias correction is an essential component of
fixed-point arithmetic.

6.3 Trigonometric and Other Functions

Now that we have implemented basic arithmetic operations in fixed-point, what
about trigonometric and other functions like log and exp? To implement these
functions we have several options. We can use a look-up table, which is very fast,
but potentially either not accurate enough because there are not enough entries
in the table, or it uses too much memory because the table is big enough to be
accurate. We can approximate the value by using a polynomial. Lastly, we can
approximate the value by summing a Taylor series expansion. Let’s look at each
of these options for the sine function. We can calculate the cosine from the sine and
once we have both sine and cosine we can calculate the tangent. We will ignore
the inverse trigonometric functions. After this, we will show implementations for
square root, logarithm and exponential functions.

Trigonometric Functions For our fixed-point library we will implement the three
basic trigonometric functions: sine, cosine, and tangent. All of these will be based
on the sine which we will implement in three different ways so that we can compare
the performance and accuracy of each method. The cosine is, of course, easy to
derive from the sine since,

cos(f) = sin(% —0)

and, by definition,

sin 6

tan6 =
cos 0

meaning we get everything once we have the sine implemented. We will implement
the sine using a table, a Taylor series expansion, and a polynomial fit. First the table,

6.3 Trigonometric and Other Functions 195

1 fix t Q sin table(fix t x) ({
2 int32_t sign;

3 fix t angle;

4

5 if (x < 0) x += PId;

6 sin val_ sign(&x, &sign);
7

8 angle = Q mul (x,r2d);

9 angle += 1 << (N-1);

10 return signssin_ tbl[angle >> NJ];
11/}

which uses the globally defined sin_tbl array defined above with ¢ init. This
function also uses a helper function, sin val sign, which we describe below. This
function will be used by our other sine implementations, too. It takes an angle,
in radians, and updates it to be in the range [0, /2] along with a sign. This is
equivalent to paying attention to which quadrant the angle puts us in and then using
the appropriate angle and sign for that quadrant to give us the right sine value. Recall
that 0 init initializes sin tbl with the sine for each degree from [0, 90]. This
means that we only need consider input angles in that range.

For 9 sin table we first see if the argument is negative. If so, we add 27 to
make it positive. So, the input to the function must be in the range [—27, 27]. This is
line 5. Note that we use normal addition thereby making an implicit assumption that
we will not overflow (nor to we check for it). In line 6 we call sin val sign to
adjust our input angle to be in the range [0, /2] and set sign accordingly. In line
8 we convert our adjusted input angle, assumed to be in radians, to degrees. This is
because we built the table by degrees and want to index it by degree. Line 9 adds
0.5 to the angle, this is the bias correction, as we are interested in mapping angle
to the nearest degree so we can use the look-up table. In line 10 we truncate angle,
dropping the fractional part by shifting it down N bits. This means that angle »
N is an integer in the range [0, 90] degrees. With this integer we index our sine table
and, after multiplying by sign, return the final answer. This function is fast but has
the overhead of building the table in the first place for each call to 9 init and the
memory used by the table. Additionally, while most accurate for inputs which have
no fractional component, it is not as accurate as it could be for arbitrary inputs. The
exercises will challenge the reader to increase the accuracy by linear interpolation.

Let’s look at sin val sign which we used above and will use again,

196 6 Fixed-Point Numbers

1 void sin val sign(int32 t xangle, int32 t xsign) {
2

3 if ((«angle >=0) && (xangle <= £90)) {

4 // quadrant I

5 *sign = 1;

6 } else {

7 if ((+angle > £90) && (xangle <= £180)) {
8 // quadrant II

9 *sign = 1;

10 xrangle = f£180-+angle;

11 } else {

12 if ((«angle > £180) && (xangle <= £270)) {
13 // quadrant III

14 xsign = -1;

15 +*angle = xangle-£f180;

16 } else {

17 // quadrant IV

18 *sign = -1;

19 xrangle = f360-xangle;

20 }

21 }

22 }

23/}

This function accepts as input via pointers the current angle and a sign value which
it will set. By comparing with the constants £90, £180, £270, and £360, each
of which is set in Q_init, the function determines which quadrant angle falls in.
It then sets sign appropriately for that quadrant and updates the value of angle
so that the sine of the new angle, times sign, will be the proper sine for the original
angle. This means we only ever work with angles in the range [0, 7z/2].

We get 0 cos_tableand Q tan table for free via Q sin table,

1/fix t Q cos_table(fix t x) ({

2 return Q sin table(Q sub(PIh,x));

3/}

4

5 fix t Q tan table(fix t x) ({

6 return Q div(Q sin table(x), Q cos_table(x));
7/}

where we have made use of the trigonometric identities given above. Note the use
of the constant pTh for /2 which is set in Q_init for the given Qm.n fixed-point
representation.

Now we consider implementing sine using a Taylor series expansion. Please see
any calculus book for a description of a Taylor series. Here we simply use the well-
known series expansion for sin x,

6.3 Trigonometric and Other Functions 197

¥® o XX

SIszx_§+§_ﬁ+§+"'

after mapping the input angle to [0, /2] as before. This leads to,

1 fix t Q sin taylor(fix t x) ({

2 fix t x3,x5,x7,x9;

3 fix t ans;

4 int32 t sign;

5

6 if (x < 0) x += PId;

7 sin val sign(&x, &sign);

8

9 x3 = Q mul(Q mul(x,x),x);

10 x5 = Q mul (Q mul (x3,x),x);

11 x7 = Q mul (Q mul (x5,x),x);

12 x9 = Q mul(Q mul (x7,x),x);

13

14 ans = Xx;

15 if (x3 != 0) ans -= Q mul(stl,x3);
16 if (x5 != 0) ans += Q mul(st2,x5);
17 if (x7 != 0) ans += Q mul(st3,x7);
18 if (x9 != 0) ans += Q mul(st4,x9);
19

20 return signsans;

21}

where lines 6 and 7 check for a negative input, adding 2 if it is, and we map the
argument to [0, /2] while setting sign. Lines 9 through 12 calculate powers of
the input, x. We are implementing the series directly to make it as easy as possible
to see the translation from the equation to the code so we calculate all the powers we
need in advance. A little algebraic manipulation will show that we only really need
x and x? plus some well-placed parentheses. See the exercises for another challenge
to the reader. Line 14 sets ans to the first term in the series. Lines 15 through 18
add subsequent terms if the power of x for that term is not zero. This may happen
if x < 1 and we do not have enough precision in the n fractional bits of the Qm.n
number to represent the power. The magic constants st1, st2, st3, and st4 are
the reciprocals of the factorials in the series representation. These are calculated
in advance for the given Q representation when Q init is called. Finally, line 20
multiplies by the sign and returns the final estimate for sin x. As before, we get cos x
and tan x for free,

198 6 Fixed-Point Numbers

fix t Q cos taylor(fix t x) {
return Q_sin_taylor(Q sub(PIh,x));

}

fix t Q tan taylor(fix t x) {
return Q div(Q sin taylor(x), Q cos_taylor(x));

}

where the form of the functions matches the table versions above but is based on
Q_sin_taylor instead.

Our final sinx implementation comes from a set of points calculated from a
floating-point version of sine that is then curve fit to a 5-th degree polynomial.
We calculated sinx for 100 equally spaced points from [0, /2] using the C library
version of sin. We then fit a 5-th degree polynomial to these points to find the
coefficients po, p1, p2, P3, P4, and ps which minimize the squared difference between
sinx and f(x) where,

F(x) = po + p1x + pax® 4 p3x® + pax* + psx®

for each of the 100 data points x;, i = 0, 1,...,99. This is standard least-squares

curve fitting. We used the Python numpy package [3] to calculate the coefficients
(see polyfit). These coefficients are mapped to the current Q notation in 0_init and
set to the variables p0, p1, p2, p3, p4, and p5, respectively. With these parameters
we are able to approximate the sine in the range [0, 7 /2] with,

1|fix t Q sin poly(fix t x) {

2 fix t x2,x3,x4,x5;

3 fix t ans;

4 int32 t sign;

5

6 if (x < 0) x += PId;

7 sin val sign(&x, &sign);

8

9 x2 = Q mul (x,x);

10 x3 = Q mul (x2,x);

11 x4 = Q mul (x3,x);

12 x5 = Q mul (x4,x);

13

14 ans = p0 + Q mul(pl,x) + Q mul(p2,x2) + Q mul(p3,x3) +
15 Q mul (p4,x4) + Q mul(p5,x5);
16 return signsans;

17}

where as before, lines 6 and 7 adjust for negative arguments and map x to [0, /2]
while setting sign. Lines 9 through 12 calculate the powers of x for the 5-th degree
polynomial. Lines 14 and 15 directly implement the polynomial using © mul to
multiply with a proper intermediate number of bits and ordinary addition thereby

6.3 Trigonometric and Other Functions 199

ignoring any potential overflow. Lastly, line 16 multiplies by sign and returns the
answer. As before, we can write cos x and tan x using the polynomial sine,

fix t Q cos_poly(fix t x) {
return Q sin poly(Q sub(PIh,x));

}

1
2
3
4
5 fix t Q tan poly(fix t x) {

6 return Q div(Q sin poly(x), Q cos poly(x));
7

}

Comparison of Trigonometric Functions All three sets of trigonometric func-
tions implemented above have a version of sine at their heart. Therefore, we can
compare them by looking at the accuracy of the sine functions. If we generate the
sine, using the table, series expansion, or polynomial fit, for 100 randomly selected
angles in [0,27) we can compare the resulting values to the actual floating-point
sine. Any deviation can be used to assess the quality of the sine approximation.

We generate the table with code like this,

Q init (7);
srand (time (NULL)) ;

1
2
3
4 for(i=0; 1<100; i++) {

5 f = 2%3.14159265% ((double) rand () /RAND MAX) ;

6 a = Q to fixed(f);

7 printf ("%0.8f %0.8f %0.8f %0.8f %0.8f\n", £, sin(f),
8 Q to_double(Q sin table(a)),

8 Q to_double(Q sin taylor(a)),

9 Q to_double(Q sin poly(a)));

10}

where we include the stdlib.h C library and use srand to seed the random
number generator which we call in line 5 to set £ to a random value in the range
[0,27). We note that it is well known that rand is a very poor pseudo-random
number generator and that we have a very (very) small chance of selecting 2 as
rand returns a number from [0, RAND_MAX] and we are dividing by RAND MAX.
However, for our purposes we accept the inefficiency and take the risk. The reader
is encouraged, however, to develop an understanding of pseudo-random number
generation, which is fascinating, by referring to one of the many good texts on the
subject. For example, see Gentle’s Random Number Generation and Monte Carlo
Methods [4].

Now that we have our randomly selected sine values we can calculate the delta
between the floating-point value and the three approximations for each angle and
then report the absolute maximum deviation (|A|), the mean (x), and the standard
deviation (o) of the deltas. These will give us a feel for how the functions perform
over the their full range. The results of this analysis for Q7.24 numbers are in
Table 6.1.

200 6 Fixed-Point Numbers

Table 6.1 Comparison of the difference between the floating-
point sine and each of the fixed-point sine functions using sum-
mary statistics for 100 randomly selected angles over the entire
range [0, 27)

Function |A| X o

Q sin table [84x107% |—6.5x107° |3.8x 1073
Q0 sin taylor [82x 1073 | —78x107°% |82x 1073
Q sin poly 77%x107% | —=1.1x1077 |3.9%x107°

We see that while all three approximations are adequate with relatively small
errors, on average, it is clear that 0 _sin table is the least accurate, as expected
because it forces the argument to the nearest degree, and that Q sin poly is to
be preferred over 0 _sin taylor in terms of accuracy. If we count the number of
multiplications we see that 9 _sin poly is also more efficient than Q sin taylor
with nine multiplications to as many as twelve.

Square Root and Transcendental Functions In addition to basic trigonometric
functions we want to add square root, natural logarithm and exponential functions
to our library. Let’s look at how we can implement these functions starting first with
square root.

Perhaps the fastest way to implement a fixed-point square root function is to
use Newton’s method. This is an iterative method to find the roots of a function
by solving f(x) = 0. The method selects an initial guess for the root, xy, and then
iterates,

fx)

Xit1l = Xi — m
until convergence where f’(x) is the first derivative of f(x). In this case, we want
f(x) = x> —n = 0 which will find the value of x which when squared equals a
specific number n. This means that x will be equal to the square root of n which is
exactly what we want. If we work through the steps we have,

f@) = —n
flx) = 2x
Ny = i J(xi)
l l J'(xi)
_ ¥ —n
=T 2x,~
ST

1

1 n
= E(xi =+)71)

6.3 Trigonometric and Other Functions 201

which implies that we need only an initial guess followed by some number of
iterations of the final equation above to generate a good approximation to the square
root of n. It is known that this method converges quickly so we only need a handful
of iterations.

Translating this into code gives,

1 fix t Q sgrt(fix t n) {

2 fix t a;

3 int32_t k;

4

5 if (n <= 0) return - (1<<N);

6 if (n == (1<<N)) return (1<<N);
7

8 a=mn > 1;

9

10 for(k=0; k < 10; k++)

11 a = Q mul(l << (N-1),Q add(Q div(n,a),a));
12

13 return a;

14|}

where we first check for negative arguments and return —1 if we have one in line 5.
Recall that our fixed-point numbers are binary fractions scaled by N bits so shifting
1 up N bits gives us a value equal to one in our current Q notation. Line 6 is a quick
check to see if our argument is one. If so we immediately return the square root (1).
Line 8 is our initial guess which we store in a. We are looking for a square root so
our initial guess is /2 which is exactly what we get by shifting the argument one bit
position to the right. The loop in lines 10 and 11 performs the actual iteration. We fix
the number of iterations at ten though a more sophisticated approach would perhaps
be sensitive to the number of bits in the fractional part of our numbers and adjust the
iteration limit accordingly. Line 11 is a direct translation of our final equation above
using our previously defined arithmetic functions. Note that for simplicity we are
not checking for any overflow conditions. Also note the use of 1 << (N — 1) which
is exactly 0.5 for N bits in the fractional part. Finally, line 13 returns a which is the
approximate square root of n.

Repeating a random analysis similar to the one performed above for the sine
functions we can compare Q_sqrt to the floating-point sqrt function for 100
randomly selected values from [1, 1000) using Q10.21 format numbers. If we do
this we get the following results,

|A| X o
3.6 x1077 —1.3x 1077 1.4 x 1077

which indicates that this approach gives quite accurate answers in general.

We consider the exponential function, e*, next as we will need this function in
order to efficiently implement the natural logarithm. The Taylor series expansion of
e is particularly well suited to implementation on a computer. The series itself is,

202 6 Fixed-Point Numbers

e =1 +_x_+_fi +_fi +_§i + = - Ei
21 31 4l i!
i=0

Looking at the series shows that if the current term in the series is #; then the
next term in the series is t;+; = ti(’—l?) which means that we need not calculate the
factorials completely but will get them by multiplying the current term by 7 and
adding it to a running total. If we accumulate terms until we get a term that is below
a given threshold, say too small to add anything meaningful to the total given the
number of bits used for the fractional part of the fixed-point number, we have a
particularly nice implementation. Writing this in C using EXP_ TOLERANCE to be
the cut-off value for our terms, 0.000001 or the like, and adding a maximum number

of iterations (EXP_ITER MAX = 50) gives the following,

1 fix t Q exp(fix t x) {

2 int32 t i;

3 fix t e, ¢, t, tol;

4

5 tol = Q to fixed(EXP TOLERANCE) ;
6 i = 0;

7

8 c =1 << N;

9 e =1 << N;

10 t = x;

11

12 do {

13 e = Q add(e,t);

14 c = Q add(c, 1<<N);

15 t = Q mul(t, Q div(x,c));

16 1++;

17 } while ((abs(t) > tol) && (i < EXP_ITER MAX));
18

19 return e;

20}

where line 5 sets the tolerance and line 6 initializes the iteration counter. Line 8 sets
c to one. This is the term counter and is set to one because the first term in the series
(1) is used to initialize the accumulator, e in line 9. The current term is then the
second term in the series, which is x = x! /1!, and we initialize t with it. The loop
in lines 12 through 17 adds new terms to the accumulator (line 13) while bumping
the term counter (line 14). Line 15 calculates the next term in the series from the
previous term and sets t accordingly. Line 16 increments the iteration counter while
line 17 checks to see if we can exit the loop by either calculating a term below the
tolerance or by reaching the limit on iterations. At this point e contains the sum of
the series, which is ¢*, and it is returned in line 19.

Repeating the random value test for 100 random arguments in the range [—4, 4)
for 010.21 format numbers gives,

6.3 Trigonometric and Other Functions 203

|A] X o
20x107°-92x10774.5%x 107

showing that 9_exp does give good results.

With ¢* implemented we can now add our final library function, the natural log
(log x) which is implemented using Newton’s method just as square root was. In this
case, our function is f(x) = ¢* — ¢ = 0 which is zero when x is the log of ¢. The
first derivative of this function is f(x) = ¢* which means our iteration function is,

Jo) ev—c
TG T e

Xir] = X; =x;—1+ce™

where we again set our initial guess to xo = ¢/2. Translating to C code gives,

1/fix t Q log(fix t x) {

2 fix t a;

3 int32_t k;

4

5 if (x <= 0) return - (1<<N);
6 if (x == (1<<N)) return O0;
7

8 a =x > 1;

9

10 for(k=0; k < 7; k++) {

11 a = Q add(a, Q mul(x,Q exp(-a)));
12 a = Q sub(a,1l<<N);

13 }

14

15 return a;

16}

where a sanity check is made in line 5 to disallow negative arguments (return —1)
and a quick check for a known value (log1 = 0) is in line 6. Line 8 sets a to our
initial guess of ¢/2. Lines 10 through 13 are the iteration loop. This is why we
needed to implement ¢* before we could implement the logarithm. Line 11 calls
Q_exp as part of the update to a. Line 12 subtracts one from the sum in line 11. The
number of iterations is hard-coded to seven which gives good results. Again, a more
sophisticated approach would be aware of the number of bits in the fractional part
of our fixed-point numbers and set the loop limit accordingly. Line 15 returns a as
our approximation of the natural log.

A final repeat of the random value test with 100 random arguments from [0.5, 10)
gives,

|A| X o
13107 4.0x1077 4.4%x 107

again showing good agreement with the floating-point C library function.
At this point our C library of fixed-point functions is complete.

204 6 Fixed-Point Numbers
6.4 An Emerging Use Case

In this section we detail an emerging, and important, use case for fixed-point
numbers: machine learning. As of this writing, Fall 2016, there is currently a
revolution underway in terms of machine learning. Machine learning is a branch
of artificial intelligence that uses statistically-learned models to enable machines to
make predictions mimicking many feats that were previously restricted to humans.
For example, object detection in images, speech recognition, automatic language
translation, medical record interpretation, advanced game playing, etc. are all areas
where machine learning has demonstrated its usefulness. Personal assistants for our
smartphones, like Siri, Google Now and Cortana, are prime examples of machine
learning in action.

At its core, the machine learning revolution is powered by advanced neural
networks. It is beyond the scope of this book to describe all that this entails but
we will illustrate the relevant points so that the link between neural networks and
fixed-point numbers is clear.

What is a Neural Network? For our purposes a neural network can be thought
of as a feed-forward, directed, acyclic graph. On one end are a set of inputs, the
“feature vector”, which represents the thing we want to make a prediction on and at
the other end is one or more outputs which are the predictions. A classic example is
a network that accepts an image of a hand-written digit and outputs which digit the
image represents, 0...9.

A neural network itself consists of layers, two of which are mentioned above. The
power of the network comes from the addition of one or more hidden layers between
the input and output. Each layer accepts input from the layer below and passes its
output to the layer above. For each layer there are a set of nodes (“neurons”) which
accept multiple inputs, sum them after multiplying each input by a weight value, and
applying a nonlinear function to this total in order to output a value for the node (the
activation). The final layer output, often characterized as a probability, is typically
used, for classification, to select the largest output value as the output for the given
input. For the digit image example, the output is a set of ten numbers, one for each
possible digit, and the input is assigned the label of the largest of these outputs.

A traditional neural network is illustrated in Fig. 6.3. The networks in current
use are significantly more complex and for many tasks include convolutional,
pooling and other layers. We will ignore the various architectures since in the
end what we are concerned with here are the weights and biases assigned to the
connections between the layers and nodes, regardless of the way those connections
are architected.

Neural networks are usually trained using labeled training data. These are sets
of input feature vectors and the known label that goes with them. This training
process modifies the weights and biases (the connections between nodes) to so that
the model represented by the network maximizes the likelihood of the training data
given the network model. How this is done, while crucially important practically,
is of no interest to us here. We will assume that we have a neural network that has

6.4 An Emerging Use Case 205

f \ Hidden
A

Vo e
_

Input) Output
N o v o

/\ weights
\

nodes

Fig. 6.3 A traditional neural network. Input values (left) are passed to each node of the hidden
layer (middle) and the output of the hidden layer is passed to the output (right). Each connection
between layers has an associated weight value (not shown) which is multiplied by the input value.
Additionally, each node has an associated bias value which is added to the sum of the weights and
inputs (also not shown) before passing the total through the activation function for the node. When
put together, application of a traditional neural network boils down to the multiplication of input
vectors by a weight matrix, the addition of a bias vector, and passing each element of the resulting
vector through the nonlinear function to become the input of the layer above

been trained successfully. What we are concerned with are the weights and biases
that go with the final set of connections between the layers of the network. These
are the magic values that turn the generic network into one that is capable of making
meaningful predictions.

Using Fixed-Point Numbers in Neural Networks Let’s consider a simple neural
network example which illustrates using fixed-point numbers and their effect on
the predictions made by a trained network. All of the files and data referred to in
this section are available on the website associated with this book or by contacting
the author at numbersandcomputersegmail.com. The network we will train and
then evaluate using fixed-point numbers is a simple one. It accepts as input a small
40x40 pixel image of one of two types of keys imaged end on using a laser. Full
resolution examples for the two classes are shown in Fig. 6.4. For training we make
the images grayscale, threshold them to fill in some of the variation in intensity,
reduce them to 40x40 pixels from 400x400, and finally scale them [0, 1] by dividing
the pixel intensities by 255. We then treat the 40x40 images as 1600 element vectors
(= 40 x40). So, in the end, we are training the network with feature vectors of 1600
elements each with a label of O or 1. The output of the network can be considered
to be the probability of membership in class 1. If the output is > 0.5 we assign the
image to class 1, otherwise we assign it to class 0.

The network we will train is a traditional neural network with a single hidden
layer of 500 nodes. We will use a rectified linear activation function. This function
is currently very popular and is trivial to implement: if the input to the function is

206 6 Fixed-Point Numbers

Fig. 6.4 Examples of the two key types in the keys data set. The images are end-on views of the
keys created by combining multiple laser scans. The images used for training are 40x40 pixel
grayscale versions of these images. Class 0 is on the left, class 1 is on the right

positive, return it, otherwise return zero. We train the network using the Scikit Learn
library, specifically the MLPClassifier class,

1 import numpy as np

2 [from sklearn.neural network import MLPClassifier

3 |import cPickle

4

5 trn = np.load("train.npy")

6 |trnl= np.load("train labels.npy")

7

8 'mlp = MLPClassifier (hidden layer sizes=(500,), max_ iter=400,
9 alpha=1le-4, algorithm='sgd’, verbose=10, tol=le-4,
10 random_state=1, activation='relu’)

11

12/mlp.fit(trn, trnl)
13|/cPickle.dump (mlp, open("classifier.pkl","w"))

15 mlp.coefs_ [0] .tofile(open("weightO.raw", "w"))
16 mlp.coefs [1].tofile(open("weightl.raw", "w"))
17 mlp.intercepts_ [0] .tofile(open("bias0.raw","w"))
18 mlp.intercepts [1].tofile(open("biasl.raw","w"))

where lines 5 and 6 load the previously calculated training data (line 5) and
associated labels (line 6). Line 8 defines the neural network and training parameters.
The important part here is that there is one hidden layer of 500 nodes and that the
rectified linear activation function is used. Actual training is done with the single
call in line 12. Line 13 stores the object representing the neural network for possible
future use. Lines 15 through 18 store the weights and biases for the input to hidden

6.4 An Emerging Use Case 207

layer and the hidden layer to output. These are the numbers that tailor the network
to the task of separating the two key type images. We will use these files below
in a C program to apply the network to held-out test images. Note that in this
case the trained classifier achieves 100% accuracy on the test data when using
the full double precision floating-point weights and biases. We will examine how
switching to fixed-point calculations with varying fractional precision affect these
results. Achieving 100% accuracy on held-out test data is not typical in real-world
machine learning problems but is a reflection of the simplicity of the task we are
asking the network to learn in this case.

In order to use the trained network with our C library for fixed-point arithmetic
we need a function capable of applying an input feature vector in order to generate
an output. For the true double precision weights and biases we can use the following,

double weight0[1600] [500];
double weightl[500];
double bias0[500];

double biasl;

double test[263] [1600];
int labels[263];

w J o0 Ul bW N

double ApplyClassifier (double xvec) {

9 double d, z[500];

10 int i,3;

11

12 for(i=0; i < 500; i++) {

13 d = 0.0;

14 for(§=0; j < 1600; j++) {
15 d += vec[jlxweighto[j] [i];
16 }

17 d += bias0[i];

18 z[i] = (d < 0) ?2 0.0 : d;
19 }

20

21 d = 0.0;

22 for(i=0; 1 < 500; i++)

23 d += z[i]*weightl[i];

24 d += biasl;

25

26 return 1.0 / (1.0 + exp(-4d));
27/}

where lines 1 through 6 define arrays and variables holding the weights, biases,
labels and training data. For example, since there are 1600 inputs (the 40x40 image)
and 500 hidden nodes the first weight matrix (weighto, line 1) is 1600x500 so that
there is a weight for each input to each hidden layer node. Similarly, as there are
500 hidden layer nodes there are also 500 bias values, one for each node (biaso,
line 3). To go from the hidden layer to the single output value we only need 500

208 6 Fixed-Point Numbers

weights, one for each hidden node (weight1, line 2). Finally, as we have a single
output value we need only a single bias value in bias1.

Lines 5 and 6 hold the test data. These are images that were not used during
training so that we can test the network to see how well it is performing. We
have 263 test images so that means we have 263 feature vectors (line 5) and 263
corresponding labels (line 6). We will apply each of these 263 feature vectors to the
network below.

Lines 8 through 26 apply a new feature vector (vec) to the network and return
a prediction. This network uses a sigmoid, 1/(1 4+ e™), to convert the final output
value in d to a probability estimate of belonging to class 1 (line 26). The sigmoid is
restricted to the range [0, 1] which explains the “probability” interpretation.

The function ApplyClassifier first applies the input vector to the hidden layer
nodes (lines 12 through 19) and then applies those outputs (z) to the output (lines
21 through 24). Line 12 loops over each of the 500 hidden nodes multiplying each
of the 1600 input feature vector values by the corresponding weight (line 15) and
stores the running total in d. Line 17 adds in the bias value for that hidden node.
Line 18 applies the rectified linear activation function setting the output in z to zero
or d depending on the sign of d.

At this point z, a 500 element array, contains the 500 activations of the hidden
layer. To calculate the output value these need to be multiplied by each of the 500
weights of the second weight vector (line 23) with the final single bias value added
in line 24 so that d now contains a single value representing the sum of the hidden
layer outputs. Line 26 applies the sigmoid to return the prediction itself.

The output of ApplyClassifier can be compared against a threshold, typically
0.5, and if equal to or greater we can assign the input image to class 1. If we
call applyClassifier for each of the 263 test images we will have a record of
predictions against images with known labels. Once we have these we can calculate
standard metrics typically used by the machine learning community to interpret the
performance of a classifier. In this case, we will calculate the accuracy and the area
under the receiver operating characteristics (ROC) curve. The accuracy is a natural
measure and in this case helpful because the test data set is balanced (each class
shows up equally often, statistically) and because we will be comparing the same
network architecture repeatedly. The higher the accuracy the better because it means
that the classifier correctly assigned class labels to the test data. We report accuracy
as a fraction [0, 1].

The area under the ROC curve is a more meaningful measure which is appro-
priate when comparing different classifiers. Entire books have been written about
what it really is and how to best calculate and interpret it. For our purposes we can
consider the area under the ROC curve, denoted AUC, as a measure between 0.5
and 1.0. A perfect classifier will have an AUC of 1.0 while a classifier that simply
guesses the class label will have an AUC of 0.5. So, like accuracy, higher AUC is
better.

The code that loads the stored weights, biases, labels and test feature vectors is
straightforward, a series of calls to fopen, fread, and fclose that we need not

6.4 An Emerging Use Case 209

waste space listing here. The code to apply the network to each test image and to
generate a prediction is also straightforward,

1 for(i=0; i < 263; i++) {

2 pred = ApplyClassifier(&test[i] [0]);
3 printf ("%$d %0.8f %0.8f \n", labels[i], 1.0-pred, pred);
4}

where the output prediction [0, 1] is in pred for test image number i. Line 3 is a
bit unusual. It outputs the known class label in 1abels and then the probability of
class 0 followed by the probability of class 1. Since this is a binary classifier and we
are predicting likelihood of class 1 membership the likelihood of class 0 is simply
1-pred. This output format allows us to use existing tools to simply calculate the
accuracy and AUC for the test data. The tools are included in the archive for this
section but are too extensive to list here in the text.

The above is a lengthy description of how to apply the trained network to the test
data. As already mentioned, when using the double precision floating-point weights
and biases the test set is perfectly classified meaning the accuracy is 1.0 as is the
AUC.

In order to use our fixed-point library with different precisions we need to replace
ApplyClassifier with a version that uses only the library. A slavish translation to
fixed-point arithmetic gives,

1 |double ApplyClassifierFixed(double xvec) {

2 fix t 4, z[500];

3 int 1i,3;

4

5 for(i=0; i < 500; i++) {

6 d = 0;

7 for(j=0; j < 1600; j++)

8 d = Q add(d, Q mul(Q to fixed(vecl[jl),
9 Q to_ fixed(weight0[j] [i])));
10 }

11 d = Q add(d, Q to fixed(bias0[i]));

12 z[1i] = (d < 0) ? 0.0 : d;

13 }

14

15 d = 0;

16 for(i=0; i < 500; i++)

17 d = Q add(d, Q mul(z[i], Q to fixed(weightl[i])));
18 d = Q add(d, Q to fixed(biasl));

19

20 return Q to double(Q div(Q to fixed(1.0),

21 Q add(Q to fixed(1.0),

22 Q exp(Q mul(Q to fixed(-1.0),d)))));

23}

210 6 Fixed-Point Numbers

where we have replaced every calculation with a call to our fixed-point library.
For clarity we convert constants each time through to preserve the symmetry with
ApplyClassifier above. The calculations are the same.

We can now explore the effect of varying precisions by setting the
fixed-point precision using O init to set the integer portion and then call
ApplyClassifierFixed for each test feature vector. For each precision we can
calculate the accuracy and AUC as well as the average deviation of the output
predictions from the gold standard values found using double precision weights and
biases. If we do this we get,

N | Accuracy |AUC | |A]|

21 | 1.0000 1.0000 | 0.0001

11 | 1.0000 1.0000 |0.0124

10 | 1.0000 1.0000 |0.0252
9 | 1.0000 1.0000 | 0.0438
8 | 1.0000 1.0000 | 0.0956
7 109316 0.9635 |0.2728
6 | 0.8707 0.9416 | 0.3774
4 10.5361 0.5863 | 0.5858

where N is the number of bits in the fractional part of the fixed-point representation,
accuracy and AUC as above and |A| is the average absolute difference between the
gold standard predictions and the fixed-point predictions.

How should we interpret these results? The gold standard uses double precision
floating-point numbers with 53 binary bits of precision in the significand. The table
shows that with only 21 bits of precision in the fractional part we have virtually
identical output to the double precision values. This illustrates a general effect seen
with many neural networks: that they are largely insensitive to the precision used
for the weights and biases. Indeed, most software packages for neural networks use
32-bit floating point numbers to save memory and disk space. However, we also
see above that we still make accurate predictions even when, for this test set, we
use as few as 8 bits of precision in the fractional part. It is only when we get below
eight bits that the output starts to degrade as illustrated by accuracies and AUCs of
less than 1.0. Indeed, with only 4 fractional bits our classifier degrades to the point
where it is in effect only guessing the class label.

If we look at the |A| column we get an idea of why the predictions are so robust.
Even with 8 bits of precision we are averaging less than 0.1 deviation from the
output of the full precision network. Neural network predictions are typically very
one-sided meaning that outputs cluster around zero or one with few hovering around
0.5. If the average deviation by dropping to 8 bits of fractional precision is < 0.1 it
is unlikely that this will force significant misclassifications.

However, dropping to 7 bits of precision causes the deviation to jump to nearly
0.3 which can, in some cases, cause a change in the predicted class. We see this with
a drop in accuracy to 93%. The case for 6 bits is even worse with a drop in accuracy

6.5 When to Use Fixed-Point Numbers 211

to 87% because of the larger average deviation of about 0.4. The 4 bit case is simply
too little precision and as expected the classifier is basically guessing due to the 0.6
deviation from the gold standard.

This experiment illustrates that extreme precision is not necessary to implement
accurate and effective neural networks. The effect is seen in more advanced network
architectures as well, such as convolutional neural networks, which are the standard
for object detection in images. For example, see [7]. This effect has encouraged
research into specialized hardware implementing fixed-point arithmetic for low
power applications [8].

6.5 When to Use Fixed-Point Numbers

Perhaps the most obvious time to use fixed-point numbers is when working on
a system that does not have floating-point capability in hardware. This includes
many small systems, like microcontrollers and digital signal processors (DSP), but
also includes older computers that lack floating-point hardware. Using fixed-point
numbers on these systems makes sense and is much faster than using software to
emulate floating-point hardware. For example, older Macintosh computers based
on the Motorola 68,000 and later processors often used software to emulate
floating-point hardware. Called SANE (Standard Apple Numerics Environment),
it implemented IEEE 754 floating point arithmetic in software for early Macintosh
computers that lacked the floating-point hardware found in the Motorola 68,040
or did not use the 68,881 floating-point coprocessor. The SANE library provided
maximum numeric compatibility ensuring that floating-point operations on one
computer matched those of another that used hardware instead of software for the
calculations. However, the simplicity of fixed-point arithmetic would have greatly
improved performance on these early systems.

In 1993, Id Software released DOOM [5], one of the earliest first-person shooter
(FPS) video games. FPS games give the user the illusion of being in a three-
dimensional environment and as such require a lot of geometric graphics processing
at high speed to enable realistic (limited for DOOM, granted) rendering of the
environment. However, in 1993 only Intel 80,486DX microprocessors had built-
in hardware floating point abilities. As processor speeds were very low compared
to current standards, only tens of megahertz, it was crucial that calculations be
as fast as possible while still using only software. Id’s solution was to use fixed-
point arithmetic for all graphics calculations. Specifically, they used 015.16 format
numbers which fit in a 32-bit signed integer.

Another reason to consider fixed-point math is power consumption. The floating-
point unit on processors uses more power than the integer unit hence fixed-point
arithmetic will use less power than the same calculations performed with hardware
floating-point. This is particularly important in mobile applications.

Lastly, many popular audio and video codecs are designed to be implemented
using fixed-point arithmetic so that simple devices that lack floating-point hardware

212 6 Fixed-Point Numbers

can be used. For example, the open source Shine project [6] is a fast fixed-point
MP3 encoder which can be used on simple computers.

6.6 Chapter Summary

In this chapter we introduced Q notation to specify fixed-point numbers. These
numbers interpret an integer as a floating point number with a fixed number of
fractional bits. We learned how to convert floating-point numbers to fixed-point
and back. We also implemented arithmetic operations in C for fixed-point numbers
using signed 32-bit integers. Additionally, we implemented trigonometric functions
in three different ways and compared them for accuracy. To round out the library
we then added square root, natural logarithm, and exponential functions. Lastly, we
talked about when to use fixed-point numbers and gave some examples of places
where fixed-point numbers have been used including an important emerging use
case involving machine learning.

Exercises

6.1 The function Q_sin_table rounds its argument to the nearest degree and then
returns the sine stored in the precomputed table for that degree. This can be made
more accurate by linearly interpolating between the degrees that bound the input
angle. For example, if the input value, as a fixed-point number in some Qm.n
representation, is equivalent to 45.4° then 9 sin table will round down to 45°
and return 0.70710678 as the sine. The actual sine of 45.4° is 0.71202605 so the
returned value underestimates the true value.

In linear interpolation the values that bound the input, in this case 45° < 45.4° <
46°, are used to determine the line between the values, y = mx + b, with m =
(yz —y1)/(X2 —xl) and b = y1 — mxy where X1 = 45, Xy = 46, y1 = sin(xl) and
vy, = sin(x,). Then, sin(45.4) is equal to m(45.4) + b.

In this case, then, the improved answer is sin(45.4) = m(45.4)+b = 0.71199999
with m = 0.01223302 and b = 0.15662088 for a difference on the order of 2.6 x
10~ when compared to the true result. This is better than the difference of 4.9x 1073

by simply rounding to the nearest degree. Add linear interpolationto 0 sin table.
skek

6.2 Add a function, 9 ipow, to the library that takes two arguments. The first is
a fixed-point number, x, and the second is an integer, n, which may be negative.
The return value of the function is x". *

6.3 Add a function, Q_pow, to the library that takes two arguments. The first is a
fixed-point number, x, and the second is also a fixed-point number, y. The return
value of the function is . (Hint: x¥ = ¢¥10g(®) *

References 213

6.4 Add a function, 0 asin, to the library that takes a sine value, positive and
negative, and returns the angle for that sign, in radians. Use a Taylor series
expansion,

o N 1\ [N 1\ (3 (¥ N 1\ (3)\ (5 [¥ N
sin_ x=x = -J{=)[= (=)=)= el
2 3 2)\4 5 2)\4)\6 7
where you may need terms to x° or higher. (Hint: the coefficient of term #;; | can be
created from #;.) **

6.5 Create a Python class, Fixed, that duplicates the arithmetic functionality of the
C fixed-point library. Be sure to overload the operators for 4, —, /, * so that the
fixed-point class can be used in expressions. **

6.6 The function 0_sin_taylor uses terms out to x° and calculates them explicitly
for input x. Show via algebraic manipulation that the same truncated series sum can
be found using only x and x’. Then, update Q_sin_taylor to use this form. Note
that you will need to introduce new constants in place of the values used for st1
through st4. Update 9 _init as well to set these new values. **

References

1. TMS320C64x DSP Library Programmer’s Reference Literature Number: SPRU565B, Texas
Instruments, October 2003.

. https://code.google.com/p/libfixmath/.

. http://www.numpy.org/.

. Gentle, J. E. Random number generation and Monte Carlo methods. Springer, 2003.

. Doom. Id Software. 1993. Video game.

. https://github.com/savonet/shine.

. Courbariaux, Matthieu, Jean-Pierre David, and Yoshua Bengio. “Training deep neural networks
with low precision multiplications.” arXiv preprint arXiv:1412.7024 (2014).

8. Gupta, Suyog, et al. “Deep learning with limited numerical precision.” CoRR, abs/1502.02551

392 (2015).

~N N BN

https://code.google.com/p/libfixmath/
http://www.numpy.org/
https://github.com/savonet/shine

Chapter 7
Decimal Floating Point

Abstract Decimal floating-point is an emerging standard which uses base 10
instead of base 2 to represent floating-point numbers. In this chapter we will
take a look at how decimal floating-point numbers are stored using the IEEE
754-2008 standard as our reference. We will then look at a C language software
implementation of decimal floating-point which conforms to the IEEE standard and
give some examples of its use. We follow this with a look at the Python decimal
library. We end with some thoughts on decimal floating-point and its use.

7.1 What is Decimal Floating-Point?

Modern computers make extensive use of floating-point arithmetic. Virtually all
of this is accomplished with binary floating-point numbers. Binary floating-point
numbers use base 2 and generally represent their numbers as a significand (man-
tissa), also binary, multiplied by 2 raised to some exponent. The standard for this
type of floating-point number is given in the IEEE 754-2008 document [1] which
has been universally adopted and includes hardware implementations for maximum
performance. However, it is known that there are often accuracy issues with binary
floating-point because of rounding errors or lack of precision when converting
decimal numbers to binary. For example, decimal 0.1 is an infinitely repeating
binary fraction which therefore must be truncated when stored in a finite number
of bits.

Decimal floating-point (DFP) was introduced to address these issues. In DFP,
the base is 10, not 2, so that decimal numbers may be represented exactly (to
within the number of digits in the significand). The IEEE standard that defines
binary floating-point also defines decimal floating-point formats and operations.
This is the standard we will refer to in this chapter. Even though there is limited
hardware support for DFP, notably from IBM, we will focus exclusively on software
implementations here.

A binary floating-point number is represented as,

+dy.didrd; .. .dpfl x2¢ 0<d; <2

© Springer International Publishing AG 2017 215
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-50508-4_7

216 7 Decimal Floating Point

where dy.didads . . . d,— is the p digit significand (or mantissa), 2 is the base and e
is the integer exponent. Similarly, a decimal floating-point number is represented as,

+dy.didrds .. -dp—l x 10°, 0 < d; <10

where the digits of the significand are decimal digits. This implies, as we will be
storing our DFP numbers on a computer, that there is some sort of encoding for the
significand so the digits 0...9 can be stored efficiently. This is not necessary in a
binary floating-point number. For a description of the difference between a floating-
point number, regardless of base, and a real number see the introduction to Chap. 3.

7.2 The IEEE 754-2008 Decimal Floating-Point Format

In this section we introduce decimal floating-point using the IEEE 754 format. We
will describe the way in which DFP numbers are stored, using the fixed decimal32,
decimal64 and decimall28 storage formats, and cover special values such as zero,
infinity, and Not-a-Number (NaN). These values have direct analogues in binary
floating-point.

Storage Formats The IEEE 754 standard specifies DFP numbers as a sign,
coefficient and exponent so that the actual number is,

n = (—=1)"8" x coefficient x 10%P°"e"

with the sign a single bit, 0 if positive and 1 for negative, and the exponent in
excess binary notation. Excess notation means that the actual exponent is found by
subtracting the bias from the stored value. There are two equivalent storage formats
for the coefficient field, one as a binary integer and the other as a packed decimal
format. In this chapter we will be working with a software library which uses the
packed decimal format so that is the format we will concentrate on. The few existing
hardware implementations of DFP use the packed format most often as well.

While the actual DFP value is specified by the sign, coefficient and exponent the
actual way in which DFP numbers are stored in memory is fairly complicated. The
decimal64 format is made up of four different fields,

S CF BXCF CCF

1 5 8 50

where S is the sign (1 bit), CF is the combination field (5 bits), BXCF is the biased
exponent continuation field (8 bits), and CCF is the coefficient continuation field

7.2 The IEEE 754-2008 Decimal Floating-Point Format 217

(50 bits). For a decimal32 number the BXCF is 6 bits and the CCF is 20 bits. For
decimall28 these fields are 12 bits and 110 bits respectively.

Let’s start by decoding an example of a decimal64 number, in this case 0.1. While
0.1 is infinitely repeating when expressed in binary in decimal it is simply a single
digit. If we encode 0.1 as a DFP number it will use eight bytes of memory (64 bits).
We can then dump each of these bytes as a sequence of hexadecimal numbers,

0.1 - 22 34 00 00 00 00 00 01

from which we see that the fields are, in binary,

S =0

CF = 01000

BXCF = 10001101

CCF = 0000000000 0000000000 0000000000 0000000000 0000000001

where we have written the CCF as five groups of ten binary digits. We’ll see why
momentarily. For now, let’s consider the other fields. The sign is straightforward
enough. It is zero so the number is positive since (—1)° = 1. The CF field requires
some explanation. It is a five bit field which encodes the two leftmost binary digits
of the bias exponent along with the leftmost digit of the coefficient. There are ten
possible coefficient digits and three different values of the leftmost two bits of the
exponent for a total of 30 possible five bit combinations. As 2° = 32 this means that
30 of the possible bit patterns encode the values we want and we still have two left
over for other uses as we will see below. Table 7.1 shows all the bit patterns for the
CF field and how to interpret them to get the exponent and coefficient digit values.

Table 7.1 Decoding the CF Digit | 00 01 10

field 0 00000 | 01000 | 10000
1 00001 | 01001 | 10001
2 00010 | 01010 | 10010
3 00011 | 01011 | 10011
4 00100 | 01100 | 10100
5 00101 | 01101 | 10101
6 00110 | 01110 | 10110
7 00111 |01111 | 10111
8 11000 | 11010 | 11100
9 11001 | 11011 | 11101

Locate the CF bit pattern to read
off the leftmost two bits of the
biased exponent (column) and the
leftmost digit of the coefficient
(row). After [2]

218 7 Decimal Floating Point

For our example we have 01000 which corresponds to exponent bits 01 and a
leftmost coefficient digit of 0.

The remainder of the ten bit exponent is in the BXCF field. Combining this with
the decoded CF value gives 0110001101, = 18D;¢ = 397 for the biased exponent.
The bias value for decimal64 is 398 so the unbiased exponent is 397 — 398 = —1.
The bias value for decimal32 is 101 while the bias for decimall28 is 6176. The
minimum and maximum exponents for each of the three encodings is therefore,

Minimum | Maximum
decimal32 —101 90
decimal64 —398 398
decimall28 | —6176 6111

The last part we need to decode is the coefficient field itself. We already know
the leftmost digit of the coefficient field from the CF field. It is zero. The remainder
of the coefficient is encoded in the CCF field. This field encodes the decimal digits
of the coefficient in a packed format called densely packed decimal or DPD. This
format uses ten bits to encode three decimal digits. This is more efficient than
classical binary-coded decimal which would require 12 bits to encode three decimal
digits See Chap. 2 for an explanation of binary-coded decimal.

The DPD encoding takes ten bits labeled pgr stu v wxy and maps them to three
decimal digits represented in binary as abcd efgh ijkm where each letter is a binary
digit (I is skipped to avoid confusion with 1). This group of ten bits is called declet
and can be decoded by mapping through Table 7.2.

For our example we have five declets which corresponds to 15 decimal digits,
three digits per declet, plus one additional leading (leftmost) digit of zero. This
means that a decimal64 number has 16 digits of precision. For decimal32 the
precision is 7 digits while for decimall28 it is 34 digits. Four of the five declets
in our example are all zeros mapping to three zero digits. The rightmost declet is
0000000001 which means that in Table 7.2 v is zero corresponding to the first row
of the table. Therefore, the three decimal digits of this last declet are,

Opgr Ostu Owxy
0000 0000 0001

Table 7.2 Unpacking a

vXWst abced | efgh | ijkm
declet (pgr stu v wxy) by

translating it into three groups 0--- |Opgr |Ostu | Owxy
of binary digits representing 100-- |Opqr |Ostu | 100y
three decimal digits (abcd 101-- |Opgr | 100u | Osty

efgh ijkm) 110-- | 100r |Ostu |Opqy

11100 | 100r | Opqu | 100y
11110 |Opqr | 100u | 100y
11111 | 100r |100u | 100y

After [2]

7.2 The IEEE 754-2008 Decimal Floating-Point Format 219

corresponding to 001 in decimal. So, finally, we have decoded the entire DPF
number: sign, coefficient, and exponent. The final value is, as we expect,

n = (—1)° x 0000000000000001 x 107! =1 x 107! = 0.1

It should be noted that, unlike IEEE binary floating-point, DFP does not have
a single exponent for each number. This means that there are possibly multiple
representations of the same number since 1 x 107! = 10 x 1072, etc. The standard
defines a preferred exponent, based on the arguments to an operation, in order to
produce consistent output. The set of representations mapping to the same number
are called its cohort.

Packing numbers into a DPD declet is straightforward. For the example above
we produced three BCD digits (four bits each, the value in binary is the value of the
digit) and called the bits of each abcd, efgh, and ijkm. Using these labels for the bits
we can take any set of three BCD digits and encode them into a DPD declet using
Table 7.3. Recall that the ten bits of the declet are labeled pgr stu v wxy which can
be read from the table by finding the row matching the aei bit values from the input
BCD numbers. We will not work an example here but save using Table 7.3 for the
exercises.

Special Values Just as IEEE 754 defines special values for binary floating-point,
so it does for decimal floating-point. These are zero, which may be signed or
unsigned but interpreted as zero regardless, infinities, and Not-a-Number (NaN).
Let’s consider each of these.

For decimal64 the eight bytes representing +0 are 22 38 00 00 00 00 00 00.
Parsing this gives S of 0, CF of 01000, and BXCF of 10001110. As before, the CF
implies that the first two bits of the exponent field are 01 while the first digit of the
coefficient field is zero. Glancing at the remaining digits of the bytes representing
zero makes it clear that the entire coefficient field is zero. What about the exponent?

Table 7.3 Packing three

aei | pqr |stu |v |wxy
BCD numbers (abcd efgh :
ijkm) into a declet (pgr stu v 000 |bed [fgh [0 | jkm
WXy) 001 |bed |fgh |1 |00m
010 |bed |jkh |1 |0lm
011 |bed [10h |1 |11m
100 |jkd |fgh |1 |10m
101 |fgd [Olh |1 |1lm
110 |jkd |[00h |1 |11m
111 (00d [11h |1 |11m

Locate the row by matching the
first bit of each BCD number
to the value under the aei col-
umn, then, the bits of the declet
are read from the remaining
columns of that row. After [2]

220 7 Decimal Floating Point

Combining the 01 from the CF field with the bits of the BXCF field gives,
e = 0110001110, = 18E6 = 398

which unbiased is e = 398 — 398 = 0. So, zero is represented in DFP as (—1)° x
0 x 10° which is as we would expect. What happens if we consider —0? The only
value that changes is the sign giving (—1)! x 0 x 10°, which is still zero.

If a number is too large, positive or negative, to be represented, a special value of
infinity is used. To signal infinity the CF field is set to one of the two 5-bit values
that are not used to encode the exponent. In this case, the CF field will be 11110.
The sign bit determines whether the value is 400 or —oo. Other bits are ignored.
So, if we try to represent 1 x 10! with a decimal64 number, which is too large
since the largest allowed exponent value is 369, we instead get infinity,

78 00 00 00 00 00 00 00
with,

S =o
CF = 11110

and BXCF and CCF all zero. Negative infinity is the same with § set to 1.

The IEEE 754 standard for binary floating-point defines Not-a-Number values
to represent attempts to encode values that are not legitimate numbers. NaNs are
also defined for decimal floating-point by the special CF field value of 11111. For
example, attempting to calculate the logarithm of a negative number will result in
a NaN. In addition to the bits of the CF field, the leftmost bit of the BXCF field is
used to determine whether or not the NaN is signaling (bit set to 1) or quiet (bit set
to 0). A signaling NaN will throw a floating-point exception while a quiet NaN will
not.

When a NaN is generated the IEEE 754 standard allows implementations to
use the CCF field to encode information about the source of the NaN. This is
called its payload. Furthermore, the standard also ensures that subsequent operations
involving a NaN will propagate the payload to the result of the operation. It appears,
in practice, that this ability is seldom used. Instead, the appearance of the NaN is
taken to mean there is an error in the expression or code without using the payload
to provide any additional information. See Chap. 3 for an example using the payload
for a binary floating-point number.

Rounding Modes The IEEE standard defines multiple rounding modes. The
standard assumes that operations are performed with “infinite” precision and are
then fit into the storage format at hand. This will require rounding of results so that
the proper number of output digits can be set. Typically, users seldom modify these
modes but there are times when it is beneficial to do so (interval arithmetic is one
such instance). There are five rounding modes that can apply to decimal floating-
point numbers. These are,

7.2 The IEEE 754-2008 Decimal Floating-Point Format 221

Name Description

roundTowardsPositive Round the result towards 4-o0.

roundTiesToAway Round the result to the closest repre-
sentable value. Round ties to the larger in
magnitude.

roundTiesToEven Round the result to the closest repre-
sentable value. Round ties towards the even
value.

roundTowardsZero Round the result towards zero.

roundTowardsNegative | Round the result towards —oo.

with the default action to roundTiesToEven.

Storage Order For the examples in this section we have implicitly assumed that
the bytes of the DFP number are stored in memory with the most significant byte
first. This is called big-endian format and matches the way the bits are labeled in the
diagrams of the standard. Naturally, the concept of big-endianness is more general
than just this one instance. The library we will be using later in the chapter uses
little-endian format. The difference is simply reversing the order of the bytes in
memory. For convenience, our examples will continue to use big-endian format.

An Example Before we move on and start using the open source decimal floating-
point library let’s use what we’ve covered in this section to write a simple routine to
parse a DFP number, stored as eight bytes, and output the value as an ASCII string.
We will assume the storage order to be big-endian.

The main function, dfp_parse () is listed in Fig.7.1. It accepts a big-endian
decimal64 number as an array of bytes and fills in a given string with the output
value. The string array is assumed to be large enough.

In line 4 the sign of the output string is set. If the number is not negative the sign
will be overwritten. Lines 5 through 7 extract the sign bit, CF field and BXCF field.
The BXCF field is made up of the last two bits of the first byte and all of the second.
At this point we can do two quick checks to see if the number is infinity or a NaN.
If so, copy the proper string to the output and return (lines 9 and 10). Line 12 calls
a helper function, dfp parse exp (), to extract the exponent and first output digit
from the combined CF and BXCF fields. This function is,

222

hb»bhmwwwwwmwmmmmmmmmmmmr\)»—lH»—lH»—lH»—lH»—l»—\@m\]mwwaH
B> W NDE O WO -Jo U WNE O WOW-JoU B WNhE OWOoWwJoUu b wbh P o

7 Decimal Floating Point

void dfp parse(unsigned char b, unsigned char =*s) {

int sign, cf, bxcf, d0,dl,d2, dec, exponent, i=0;

s[0] = "-";

sign = (b[0] & 0x80) != 0;

cf = (b[0] >> 2) & Ox1f;

bxcf = ((b[0] & 0x3) << 6) + (b[1] >> 2);

if (cf==0xle) { strcpy(&s([sign],"inf"); return; }
if (cf==0x1f) { strcpy(s,"NaN"); return; }

exponent = dfp parse exp(cf, bxcf, &d0);
i += sign;

s[i++] = d0 + 70';

dec = ((b[1] & 0x3) << 8) + b[2];

dfp parse declet (dec, &d0, &dl, &d2);
s[i++] = d0 + 70';

s[i++] =dl1 + ’'0’;

s[i++] = d2 + '07;

dec = (b[3] << 2) + ((b[4] >> 6) & 0x3);
dfp parse declet (dec, &d0, &dl, &d2);

s[i++] = d0 + ’0’";

s[i++] =d1 + '0’;

s[i++] =d2 + '0’";

dec = ((b[4] & 0x3f) << 4) + ((b[5] & O0xf0) >> 4);
dfp parse declet(dec, &d0, &dl, &d2);

s[i++] = d0 + ’0’;

s[i++] =dl + '0";

s[i++] = d2 + '0’;

dec = ((b[5] & Oxf) << 6) + ((b[6] & Oxfc) >> 2);
dfp parse declet(dec, &d0, &dl, &d2);

s[i++] = d0 + ’0’";

s[i++] =dl + ’0’;

s[i++] = d2 + '0’";

dec = ((b[6] & 0x3) << 8) + b[7];

dfp parse declet (dec, &d0, &dl, &d2);

s[i++] = d0 + 0’

s[i++] =dl + ’'0’";

s[i++] = d2 + '0’;

s[i++] = 'E’;

sprintf (&s[i], "%d", exponent);

Fig. 7.1 A function to parse a decimal64 number

7.2 The IEEE 754-2008 Decimal Floating-Point Format 223

1 |int dfp parse exp(int cf, int bxcf, int xd) {
2 static int digits[] = {0,1,2,3,4,5,6,7,
3 0,1,2,3,4,5,6,7,
4 0,1,2,3,4,5,6,7,
5 8,9,8,9,8,9};

6 static int bits[] = {0,0,0,0,0,0,0,0,
7 1,1,1,1,1,1,1,1,
8 2,2,2,2,2,2,2,2,
9 0,0,1,1,2,2};

10

11 *d = digits([cf];

12 return ((bits[cf] << 8) + bxcf) - 398;
13}

which is an encoding of Table 7.1 so that the 5-bit CF value can be used to look
up the proper digit and bits. The bits are combined with the BXCF to produce the
biased exponent which is then reduced by subtracting the bias term (line 12), which
is returned.

Once we have the exponent and first significand digit we can put it in the output
(line 14) after setting up our index (line 13) which will cause the initial minus sign to
be overwritten if the number is positive. Lines 16 through 40 appear daunting at first
but they are really five repetitions of the same pattern. First we extract the 10 bits of
adeclet (lines 16, 21, 26, 31, and 36). Next, we recover the three decimal digits from
this declet by calling the helper function dfp_parse declet (). We then place the
digits in the output string. The lines defining the declet are somewhat cryptic. They
are pulling the 10 bits of the declet from the bytes of the input DFP number using
standard bit manipulation to piece the declet together. A helpful exercise would be to
write out all the bits for one of the hexadecimal examples above, say the one for 0.1,
and then mark off the five declets. This will make clear the origin of the particular
incantations used in this function. The helper function itself is an implementation of
Table 7.2 and is given in Fig. 7.2 with dfp_parse_bits() defined as,

l/int dfp_parse bits(int a, int b, int ¢, int d) {
2 return 8xa + 4xb + 2xc + d;
3/}

The helper function assigns the bits from the input declet (lines 4 through 8)
and then compares them to the values from the table in lines 10 through 44. When
there is a match, the three decimal numbers are extracted by setting the proper bits
according to Table 7.2.

After line 40 in Fig.7.1 all that remains is to copy the exponent to the output
string which is done in lines 42 and 43.

This example is only the simplest of ways to convert the DFP number to a
decimal string. The output is given without any attempt to remove leading zeros of
the significand or to scale the number to a more standard range. For example,

224 7 Decimal Floating Point

1 |void dfp parse declet (int dec, int xd0, int *dl, int =d2) {
2 int p,q,r,s,t,u,v,w,x,y;

3

4 y = (dec & 0x1) !'= 0; x = (dec & 0x2) != 0;

5 w = (dec & 0x4) !'= 0; v = (dec & 0x8) != 0;

o u = (dec & 0x10) != 0; t = (dec & 0x20) !'= 0;
7 s = (dec & 0x40) != 0; r = (dec & 0x80) !'= 0;
8 g = (dec & 0x100) !'= 0; p = (dec & 0x200) !'= 0;
9

10 if (v==0) {

11 *d0 = dfp parse bits(0,p,q,r);

12 *dl = dfp parse bits(0,s,t,u);

13 *d2 = dfp parse bits(0,w,x,y);

14 }

15 if ((v==1) && (x==0) && (w==0)) {

16 *d0 = dfp parse bits(0,p,q,r);

17 *dl = dfp parse bits(0,s,t,u);

18 *d2 = dfp parse bits(1,0,0,y);

19 }

20 if ((v==1) && (x==0) && (w==1)) {

21 xd0 = dfp parse bits(0,p,q,r);

22 xdl = dfp parse bits(1,0,0,u);

23 xd2 = dfp parse bits(0,s,t,y);

24 }

25 if ((v==1) && (x==1) && (w==0)) {

26 *d0 = dfp parse bits(1,0,0,r);

27 *dl = dfp parse bits(0,s,t,u);

28 *d2 = dfp parse bits(0,p,q,y)’

29 }

30 if ((v==1) && (x==1) && (w==1) && (s==0) && (t==0)) {
31 *d0 = dfp parse bits(1,0,0,r);

32 xdl = dfp parse bits(0,p,q,u);

33 *d2 = dfp parse bits(1,0,0,y);

34 }

35 if ((v==1) && (x==1) && (w==1) && (s==1) && (t==0)) {
36 xd0 = dfp parse bits(0,p,q,r);

37 xdl = dfp parse bits(1,0,0,u);

38 *d2 = dfp parse bits(1,0,0,y);

39 }

40 if ((v==1) && (x==1) && (w==1) && (s==1) && (t==1)) {
41 *d0 = dfp parse bits(1,0,0,r);

42 *dl = dfp parse bits(1,0,0,u);

43 *d2 = dfp parse bits(1,0,0,y);

44 }

45

46 return;

47|}

Fig. 7.2 A function to parse a DPD declet into three BCD digits

7.3 Decimal Floating-Point in Software 225

if the function dfp parse() is given 22 18 00 00 19 43 65 65 as input
(in hexadecimal) it produces

0000000314159265E-8

as output. Clearly, a more complete implementation would change this to something
closer to the more familiar 3.14159265 format. We leave implementing a function
for decimal32 DFP numbers to the exercises.

7.3 Decimal Floating-Point in Software

In this section we look at DFP implementations in C and Python along with some
examples of their use. DFP operations are complex enough that beyond the example
above to parse a DFP number it does not make sense to attempt an implementation
of our own in this case.

DFP in C DFP implementations in hardware are not yet common. However, IBM
has released, as open source, a DFP library which is compatible with the IEEE 754
standard. It is this library that we will be using in this section. The decNumber
library is available here,

http://speleotrove.com/decimal/decnumber.html

along with some documentation on its use. We are using version 3.68 but later
versions should operate in much the same way. Download the library and expand it.
There is no Makefile or installation, the library is simply a set of source code files
in C along with documentation and a few examples. The IEEE compliant portion
is implemented in the decimal32.c, decimalé4.c and decimali28.c files. We
will focus on the decimal64 implementation. Explore the other options the library
provides as we will only scratch the surface here.

The library uses little-endian storage order. A useful example is examples.c
which we can trivially modify to output in big-endian order. In a text editor, open
examples5.c and change line 30 from,

sprintf (&hexes[ix3], "%02x ", a.bytes[i]);
to,
sprintf (&hexes[i%3], "%02x ", a.bytes[7-1]);

so that bytes are output with the highest order byte first. With this change the
program will output hex digits as we have been using them above. Compile the
program with,

gcc exampleS5.c -o example5 decimalé4.c decNumber.c decContext.c

http://speleotrove.com/decimal/decnumber.html

226 7 Decimal Floating Point

then test the program with,
./example5 0.1
which should produce,
0.1 => 22 34 00 00 00 00 00 01 => 0.1

matching the hexadecimal numbers we decoded in the previous section. This
confirms that the decNumber library is working properly.

The full decNumber library is far more complete than what we will need here. We
will work with IEEE 754 compliant functions as defined in the decbouble. c file.
These functions ensure that we get results matching IEEE 754 decimal floating-
point hardware. In order to compare results and performance between DFP and
binary floating-point we will again make use of the logistic map which we first saw
in Chap. 4. To review, this map iterates values between [0, 1] and can be used to
demonstrate the bifurcation route to chaotic dynamic behavior, among other things.
For the present, it is sufficient to know that this map has the form,

Xi+1 = rx,-(l —xi)

for some initial xy, which we set to 0.25 and a fixed r of 3.8 which is in the chaotic
region.

First we will implement this map in C using variables of type double. We will
then implement the map using the decNumber library and compare outputs and
execution time. This will also illustrate how to use the library functions to set up a
context, initialize variables, and perform arithmetic.

Figure 7.3 shows the plain C version. This version will initialize x and then output
the first eight iterates. It then runs for 10 million more iterates and outputs the final
eight. Note that we have broken the calculation into individual operations (lines
9-11) so that the DFP implementation matches in terms of the order in which the
expressions are evaluated.

Figure 7.4 shows the decNumber library version. This requires some explanation.
Before the main program we define a helper function, pp (), which will print
a double64 number by first converting it to a string. The function uses the
decDoubleToString () library function. The constant DECDOUBLE String is
large enough to hold the biggest string that might be produced. The argument is
a pointer to a decDouble. This is the base type for a decimal64 number. The type
is a structure which does not use any heap memory which means that it can be
created, used, and ignored like a normal C variable.

The program starts in line 12 by defining the temporary variables we will use to
store the logistic map calculation. Line 13 declares a context. This will be initialized
to properly handle a decimal64 number in line 17. This context must be passed to
many of the library functions to get the expected behavior. The context includes the
rounding mode. Here we leave it as the default. We will describe how to work with
rounding modes below. Line 14 defines our variable, x, as well as r and a constant
one. Initial values are set from strings in lines 19 through 21. Since this is base ten,

7.3 Decimal Floating-Point in Software 227

Fig. 7.3 A program to iterate 1 |#include <stdio.h>
the logistic map, 2
Xi+1 = rxi(1 — x;), using 3 |int main(int argc , char xargvl[]) {
IEEE 754 binary 4 double a,b;
floating-point 5 double x=0.25, r=3.8;
6 int i;
7
8 for(1i=0; 1 < 8; i++) {
9 a=1.0 - x;
10 b =x % a;
11 X =1 * b;
12 printf ("$0.16f\n", x);
13 }
14
15 for(i=0; i < 10000000; i++) {
16 a=1.0 - x;
17 b =x % a;
18 X =1r x b;
19 }
20
21 printf ("\n");
22
23 for (i=0; i < 8; i++) {
24 a=1.0 - x;
25 b =x * a;
26 X =1r x b;
27 printf ("$0.16f\n", x);
28 }
29
30 return 0;
311}

the value set is exact. Lines 23 through 28 iterate the equation eight times printing
the value of x after each iteration. These will be compared to the initial values
generated by the binary floating-point version. The equation itself is implemented in
a way that mirrors the binary implementation but using the decDoubleSubtract ()
and decDoubleMultiply () library functions. There are similarly named functions
for addition and division plus many other operations. The final eight iterates are
printed with lines 38 through 43. Compile the programs with,

gce logistic.c -o logistic

gcc logistic64.c -o logistic64 decContext.c decDouble.c decQuad.c

where logisticé4.c needs both decDouble.c and decQuad.c so that computa-
tions can be performed with 128-bits and then rounded to 64-bits.

Let’s compare the output of the two programs, Figs. 7.3 and 7.4. The first eight
iterates for logistic and logisticé64 are,

228

O O J o Ui wN

7 Decimal Floating Point

#include "decDouble.h"
#include <stdio.h>

void pp (decDouble *x) {

int

char s[DECDOUBLE String];

decDoubleToString (x, s);
printf ("%s", s);

main (int argc , char xargv[]) {
decDouble a,b;

decContext set;

decDouble x,r,one;

int 1i;

decContextDefault (&set, DEC INIT DECDOUBLE) ;

decDoubleFromString (&x, "0.25", &set);
decDoubleFromString (&r, "3.8", &set);
decDoubleFromString (&one, "1", &set);

for(i=0; i < 8; i++) {
decDoubleSubtract (&a, &one, &x, &set);
decDoubleMultiply (&b, &x, &a, &set);
decDoubleMultiply (&x, &r, &b, &set);
pp (&x); printf ("\n");

for(i=0; 1 < 10000000; i++) {
decDoubleSubtract (&a, &one, &x, &set);
decDoubleMultiply (&b, &x, &a, &set);
decDoubleMultiply (&x, &r, &b, &set);

}

printf ("\n");

for(i=0; i < 8; i++) {
decDoubleSubtract (&a, &one, &x, &set);
decDoubleMultiply (&b, &x, &a, &set);
decDoubleMultiply (&x, &r, &b, &set);
pp (&x); printf ("\n");

return 0;

Fig. 7.4 A program to iterate the logistic map, x;+; = rx;(1 — x;), using IEEE 754 decimal

floating-point

7.3 Decimal Floating-Point in Software

logistic

O O O O O O o

0

.7124999999999999
.7784062500000002
.6554618478515620
.8581601326777955
.4625410135688510
.9446679324750937
.1986276333476368
.6048638471497435

logistice4

O O O O O o o

.71250
.77840625000
.6554618478515625
.8581601326777949
.4625410135688527
.9446679324750942
.1986276333476352
0.

6048638471497399

where we already see that after a few iterations the two sequences begin to diverge.
Note that the decimal result is exact at least for the first two iterations while the
binary result is already showing rounding error. The final eight iterations are,

logistic logistice4

0.6245962562304587 0.9494112872063385
0.8910079371467448 0.1825120807398593
0.3690286137353397 0.5669654002706923
0.8848166847236699 0.9329594136330268
0.3872812528014777 0.2376753553568733
0.9017190393139833 0.6885059670888577
0.3367628911200712 0.8149689014131991
0.8487438558811845 0.5730194463417375

where there is no longer any relationship between the two sequences. This is after
10, 000, 000 iterations. In this case, the departure is not fatal due to the shadowing
theorem which states that for any chaotic trajectory the numerically computed
trajectory using that initial condition (here 0.25) ultimately follows another chaotic
trajectory with a slightly different initial condition. This theorem means that chaotic
trajectories generated by computers are real.

If we use the Python rational arithmetic class developed in Chap.5 we see that
the first few iterates of the logistic map are exactly,

57/80 = 0.7125000000000000
24909/32000 = 0.7784062500000000
3355964661/5120000000 = 0.6554618478515625
112480764910343946501/ = 0.8581601326777950
131072000000000000000

which matches the decimal floating-point output more closely than the binary.

Naturally, there is a large difference in performance between logistic and
logisticé4 since the former is using hardware (on systems using Intel instruc-
tions). Logistice4 is approximately 45 times slower than logistic so DFP’s
precision must be balanced by the runtime hit. For some applications it may not
be feasible to use DFP.

230 7 Decimal Floating Point

1 [int main(int argc , char xargv[]) {

2 decDouble a;

3 decContext set;

4

5 decContextDefault (&set, DEC_INIT DECDOUBLE) ;

6

7 decContextSetRounding (&set, DEC_ROUND HALF EVEN) ;

8 decDoubleFromString(&a, "0.12345678901234565", &set);
9 pp(&a); printf ("\n");

10 decContextSetRounding (&set, DEC_ROUND_CEILING) ;

11 decDoubleFromString(&a, "0.12345678901234565", &set);
12 pp(&a); printf("\n");

13 decContextSetRounding (&set, DEC _ROUND UP);

14 decDoubleFromString(&a, "0.12345678901234565", &set);
15 pp(&a); printf ("\n");

16 decContextSetRounding (&set, DEC_ROUND_DOWN) ;

17 decDoubleFromString(&a, "0.12345678901234565", &set);
18 pp(&a); printf ("\n");

19 decContextSetRounding (&set, DEC_ROUND FLOOR) ;

20 decDoubleFromString(&a, "0.12345678901234565", &set);
21 pp(&a); printf ("\n\n");

22 decContextSetRounding (&set, DEC_ROUND HALF EVEN) ;

23 decbhDoubleFromString(&a, "-0.12345678901234565", &set);
24 pp(&a); printf ("\n");

25 decContextSetRounding (&set, DEC_ROUND CEILING) ;

26 decDoubleFromString(&a, "-0.12345678901234565", &set);
27 pp(&a); printf("\n");

28 decContextSetRounding (&set, DEC_ROUND UP);

29 decDoubleFromString(&a, "-0.12345678901234565", &set);
30 pp(&a); printf ("\n");

31 decContextSetRounding (&set, DEC ROUND DOWN) ;

32 decDoubleFromString(&a, "-0.12345678901234565", &set);
33 pp(&a); printf ("\n");

34 decContextSetRounding (&set, DEC_ROUND_FLOOR) ;

35 decDoubleFromString(&a, "-0.12345678901234565", &set);
36 pp(&a); printf ("\n");

37|}

Fig. 7.5 A program to illustrate the effect of IEEE 754 decimal rounding modes

We conclude this introduction to the decNumber library by looking at
rounding modes and their effect on calculations. Rounding modes are set using
decContextSetRounding (). A simple example will show the effect. Figure 7.5
illustrates all the IEEE rounding modes using the decNumber library. The value is
chosen so that the first digit beyond the limit of a decimal64 number is 5 to enable
a tie between representable numbers. The output of Fig. 7.5 is,

7.3 Decimal Floating-Point in Software 231

Mode Value

roundTiesToEven 0.1234567890123456
roundTowardsPositive 0.1234567890123457
roundTiesToAway 0.1234567890123457
roundTowardsZero 0.1234567890123456
roundTowardsNegative 0.1234567890123456
roundTiesToEven -0.1234567890123456
roundTowardsPositive -0.1234567890123456
roundTiesToAway -0.1234567890123457
roundTowardsZero -0.1234567890123456
roundTowardsNegative -0.1234567890123457

where the last digit of the converted number shows the choice made according to
the IEEE rounding rules.

DFP in Python Python supports decimal floating-point through its decimal
module. This module is really a wrapper on the decNumber library but is easier
to use because of operator overloading. A quick example shows it in action,

>>> from decimal import =*

>>> "%0.16f" % 0.1
*0.1000000000000000"

>>> "%$0.16f" % (1.95-1.85)
0.0999999999999999"

>>> setcontext (Context (prec=16))

>>> print Decimal("0.1")
0.1

>>> print Decimal("1.95") - Decimal("1.85")
0.10

W O 3 0 Ul b W N

[y
o

After importing the DFP library the first two examples (lines 2 and 4) show why
decimal floating-point might be desirable. The output should be the same, 0.1, but
it is not because of rounding and the fact that 0.1 is a repeating value in binary.

Line 6 sets the context of the decimal module to use 16 digits. This matches
the decDouble library used above and corresponds to an IEEE decimal64 number.
Note that both libraries support arbitrary precision but we restrict ourselves to IEEE
sized numbers here.

The Decimal class defines a DFP number, typically by using a string as we did
above. Lines 7 and 9 repeat lines 2 and 4 but show that there is no rounding error but
only an exact result. Additionally, line 9 returns “0.10” instead of “0.1” to indicate
that the result is accurate to two digits.

Figure 7.6 shows a Python implementation of the logistic example given above.
The output is identical to that of logsticée4 as expected since the underlying library
is the same and we have initialized the context to 16 digits of precision. However, the

232 7 Decimal Floating Point

Fig. 7.6 A Python version of 1 |[from decimal import =*
the logistic map using the 2
decimal module 3 |def main() :
4 setcontext (Context (prec=16))
5
6 x = Decimal ("0.25")
7 r = Decimal ("3.8")
8 one = Decimal ("1")
9
10 for i in xrange(8):
11 a = one - x
12 b=xx*a
13 X =1r %« Db
14 print x
15
16 for i in xrange (10000000) :
17 a = one - x
18 b=x*a
19 X =1 * Db
20
21 print
22
23 for i in xrange(8):
24 a = one - X
25 b=xx*a
26 X =1 x b
27 print x
28
29|main ()

run time is significantly worse, taking 82x longer than the C decNumber version.
This is due to the Python interpreter itself and the overhead of object creation and
not the performance of the C library itself.

7.4 Thoughts on Decimal Floating-Point

Decimal floating-point has not increased in use as might have been expected.
Humans work in base ten almost universally so making calculations in base
ten seems quite reasonable. One reason for the slow adoption of DFP is the
fact that hardware floating-point in binary is so much faster. The few hardware
implementations of DFP are slower than their binary cousins but not terribly
so. Still, even a 10% reduction in performance may not be acceptable in some
circumstances.

The exactness of the results of DFP calculations makes this a perfect number
format for commercial or financial work. Many, if not most, databases are using
decimal storage for monetary values, often as character strings in base ten, so that

7.5 Chapter Summary 233

the possible application of DFP to these databases is obvious. It would probably also
result in smaller storage requirements and would certainly result in more accuracy
or fewer checks for edge cases that cannot be allowed in financial calculations.

Is DFP useful for scientific programming? I would think so, if it were fast enough.
The logistic example above clearly shows that DFP results are sometimes “truer”
than binary floating-point. The preservation of knowledge that there are meaningful
trailing zeros in a value is also potentially of significance. The Python example
returning “0.10” as the answer instead of “0.1” is helpful as it tells users that the
digit in the hundredths place is truly zero and not simply unknown. A scientific
result might require a great deal of effort to know that that digit is exactly zero so it
would be good if the computer representation preserved it.

While writing this chapter two potentially highly useful exercises came to mind.
As far as I know as of this writing neither has been done but I present them as a
challenge to motivated individuals,

— Python is widely used in scientific programming because of its well-supported
array-processing libraries, particularly NumPy and libraries built on top of it (like
SciPy). These array-processing libraries are highly optimized and performant. It
would be perhaps quite useful to implement a version of NumPy using decimal
floating-point in such a way that if compiled on a system with actual DFP
hardware it could take advantage of it automatically.

— Interval arithmetic adds bounds to numbers by specifying a range in which the
actual number exists rather than simply a single value. This requires proper
control of rounding modes (see Chap. 8). A decimal floating-point based interval
arithmetic package would perhaps be useful and could be combined with a DFP
based NumPy for Python.

Hopefully this chapter has illustrated that decimal floating-point is of value and
should be of primary concern to developers working with financial data. The thought
perhaps should not be “should I use decimal floating-point?” but rather, “Is there any
valid reason why I should not use decimal floating-point?”

7.5 Chapter Summary

In this chapter we reviewed the IEEE standard for storing decimal floating-point
numbers using the format that seems to be in widest use. We learned how to decode
such numbers and produce the corresponding decimal value as a string. We then
examined an IEEE compliant C library for decimal floating-point and learned the
basics of how to use it. We used the logistic map from chaos theory as an example
of how decimal floating-point can be more accurate than binary floating-point for
iterated calculations. We then examined a Python core module that uses the C library
to implement a decimal floating-point class and showed that it produces the same

234 7 Decimal Floating Point

results as before for the logistic map. We concluded by presenting, as food for future
thought, two possible ways in which decimal floating-point might grow in its use
which in turn would hopefully lead to more accessible hardware implementations.

Exercises

29 ff 98 42 d2 e9 64 45
7.1 Parse the following decimal64 numbers: 25 ff 18 0c ce ef 26 1f
25 fe 14 44 ee 27 cc 5b

7.2 The function dfp parse() in Fig.7.1 works with decimal64 numbers only.
Create a version that works with decimal32 numbers. Test it with the following
inputs,

A2 10 C6 15 — -3.1415
F8 00 00 00 — -inf
22 40 00 01 — 0.1

7.3 Encode the number 123.456 as a decimal64 number. First decide on the
significand and exponent to use, then encode the exponent and first digit of the
significand to create the CF and BXCF fields. Last, use Table 7.3 to encode the
significand mapping the remaining 15 decimal digits to five declets.

References

1. IEEE Standards Association. Standard for Floating-Point Arithmetic. IEEE 754-2008 (2008).
2. Duale, A, et al. Decimal floating-point in z9: An implementation and testing perspective. IBM
Journal of Research and Development 51.1.2 (2007): 217-227.

Chapter 8
Interval Arithmetic

Abstract Floating-point numbers do not map exactly to the real numbers. Also,
sometimes there are uncertainties in our knowledge of the true value for a quantity.
Both of these situations can be addressed by using interval arithmetic which keeps
bounds on the possible value of a number while a calculation is in progress. In this
chapter we will describe interval arithmetic, implement basic operations for interval
arithmetic in C, discuss functions as they pertain to intervals, examine interval
implementation for C and Python, and finally offer some advice on when to use
interval arithmetic.

8.1 Defining Intervals

A number like 77 is exact in the sense that there is no uncertainty as to its numeric
value even though in this case it is impossible to write it. However, in the real
world, there is almost never complete certainty as to the value of a quantity
since most are measurements made by some finite device which has limitations.
A scale may only be accurate to the ounce or gram. A ruler may only be accurate to
a millimeter. Scientists associate uncertainties with measured quantities as a way to
mathematically account for the inexactness of our dealings with reality. Similarly,
since computers use a finite number of bits to store floating-point numbers, we know
that it is impossible to store just any real number in a computer, we can only store
the floating-point number we deem to be “nearest to” the actual real number.

Mathematics has ways to deal with uncertainty, be it through probability and
statistics or through error analysis and propagation. The latter are mathematical
concepts which involve a function, f, of input variables, say, x and y, and how to
determine the uncertainty in f(x, y), denoted as oy, given x, y and their uncertainties,
oy and o,. It is the propagation of errors that decides how to calculate oy. This is
an essential technique for science as a whole and the reader is directed to the very
useful presentation in Bevington and Robinson [1] for examples and advice on how
to calculate the uncertainty of expressions involving variables with uncertainties.
For our purposes we need only consider what o, means for a particular x and how to
represent that meaning in a computer using floating-point numbers. We will always
assume that any floating-point numbers we use are IEEE 754 compliant.

© Springer International Publishing AG 2017 235
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-50508-4_8

236 8 Interval Arithmetic

Scientific literature is full of measured quantities which are often given along
with some uncertainty as to their actual value. This uncertainty may be estimated,
the standard deviation of a set of measurements of a quantity, the mean of a set
of measurements of a quantity along with the standard error of the mean, etc. For
example, it might be reported that the temperature of a reaction was 74.0 £ 1.3
C where the 1.3 portion is the uncertainty. This means that, with some level of
confidence, usually 95%, we know that the temperature of the experiment was in
the interval [72.7,75.3] C because this is 1.3 C less and more than the first value
reported. Instead of tracking mean values and uncertainties we could just track
the interval itself and work with it. This is the essence of interval arithmetic and we
will write intervals in the form ¢ = [72.7, 75.3] where the first number is the lower
bound on the interval and the second is the upper bound (the bounds are included in
the interval). Symbolically we will write ¢ = [z, 7] where £ is the lower bound and 7
is the upper.

We should slow down a bit here. The previous paragraphs mentioned the
concept of “propagation of errors” without describing it and without discussing
why one might choose interval arithmetic over propagating uncertainty. Without
deriving it, we give the general formula for determining the uncertainty of the
value of a function (oy) from the uncertainties of the arguments to that function.
We assume f(x, y) with argument uncertainties of o, and o, but the formula holds
for any number of arguments, just use a similar term for each additional variable.

The formula is,
ar\> ar\?
2_ 2 2
7= (&) I (a—y)

under the assumption that x and y are independent (i.e., not correlated with each
other so that the covariance terms disappear) and that x and y represent random
variables from Gaussian distributions.

Do not be concerned if the last sentence is not clear. The point to remember is that
the formula used for propagation of errors is based on assumptions about the way in
which the values behave, or, rather, the environment in which they were produced.
And, as is always the case, an assumption may be incorrect. With intervals there is
no assumption beyond the statement that the true value lies within the interval.

We will see below how to calculate intervals but let’s quickly look at an example
comparing intervals to propagation of errors. In this example we simply want to
calculate f(x,y) = x + y and find the uncertainty or interval containing f(x, y). We
use a C program which uses interval arithmetic to add x and y and to calculate oy
from the formula above. When we do this we get the following answers,

8.2 Basic Operations 237

propagation of errors = [23.344,23.564]
interval arithmetic = [23.337,23.571]

forx = [12.12,12.34] and y = [11.217, 11.231]. Notice that while not exact the two
methods produce comparable answers so we know at least that interval arithmetic
might be a useful way to account for uncertainty.

In some sense the origin of interval arithmetic stretches back into antiquity.
Archimedes, in his On the measurement of the circle estimated the value of &
by using a two-sided bound which is in effect an interval since he showed that
x < < X for the bounds [x, x] which he placed on the value of 7.

In modern times intervals were discussed by Young [2] and extended by
Dwyer [3]. Sunaga again extended the algebra of intervals [4]. Dwyer discussed
computing with approximate numbers but it was Moore who first wrote about
implementing interval arithmetic on digital computers [5]. Moore refers to Dwyer
and then extends intervals to floating-point numbers representable on the computer.
Indeed, [5] is more than simply interval arithmetic and is an interesting historical
work which discusses how to represent floating-point numbers on digital computers.
Note that Moore calls interval arithmetic “range arithmetic” after Dwyer and then
extends this to “digital range arithmetic” by which is meant the interval arithmetic
that is the subject of this chapter.

The remainder of this chapter discusses interval arithmetic over basic operations
(4,—,%,/, comparison) with examples in C and Python. Next comes a discussion
of functions and intervals. This includes elementary functions like sine, cosine,
and exponential along with general functions made up of expressions involving
variables which are themselves intervals. We will see that general functions lead
to some undesirable consequences and discuss the “dependency effect” which is
the biggest drawback of interval arithmetic. After this we look at intervals in
programming, examining some implementations. We conclude the chapter with
thoughts on intervals and their use.

8.2 Basic Operations

Basic arithmetic operations are well-suited to working with intervals but before
we start our library of functions we need to consider carefully how we will go
about defining intervals using floating-point numbers. Mathematically, the bounds
of an interval are real numbers and as such are exact. Unfortunately, computers
do not operate on real numbers but instead use floating-point numbers which are
by necessity a finite set. So, when an operation produces a result, and this is true
even when the operands are already floating-point numbers, the result is seldom

238 8 Interval Arithmetic

a floating-point number but must be rounded in some way to be expressed as a
floating-point number. How should the result be rounded? IEEE 754 floating-point,
which is the standard, has multiple rounding modes. By default, IEEE 754 states that
results should be rounded to the nearest floating-point value. This is a completely
reasonable thing to do but completely wrong when it comes to interval arithmetic.

If we write our interval arithmetic functions so that they round results to the
nearest floating-point number we will quickly see that this introduces a bias that
will make the intervals change so that we can no longer be certain that the actual
number lies in the specified interval. We can fix this issue, however, by making use
of the non-default rounding modes supported by IEEE 754. One of these modes is to
always round down towards —oo. Another is to round up towards +o00. These two
modes are what we need. When computing the lower bound of an interval we will
always round towards —oo while for an upper bound we will round towards oo
(see [6]). This will ensure that our interval does not shrink during a calculation.

We begin our library by including required C libraries and by defining the data
structure we will use to represent an interval,

1 |#include <fenv.h>
2 #include <stdio.h>
3 |#include <math.h>

4

5 typedef struct {

6 double a;

7 double b;

8 |} interval_t;

9

10/char xpp(interval t x) {

11 static char s[100];

12 sprintf (s, "[%0.1l6g, %0.16g9]", x.a, x.b);
13 return s;

14|}

15

16/interval t interval (double a, double b) {
17 interval t ans;

18 ans.a = a;

19 ans.b = b;

20 return ans;

21}

where we will use the function pp() to display an interval which is of type
interval t. To maximize precision we use C doubles with a the lower bound
and b the upper. The function interval () builds an interval from two floating-
point numbers representing the bounds.

8.2 Basic Operations 239

Note the inclusion of not only stdio.h and math.h but also fenv.h. This latter
include is the floating-point library and it defines constants and functions related
to floating-point including those necessary to change the rounding mode. Including
fenv.h is not enough on its own, however. We must also compile our programs
with the -frounding-math compiler switch (for gcc) otherwise the function calls
for changing the rounding mode will be ignored.

Addition and Subtraction Now, let’s take a look at how to add two intervals x =
[x,X] and y = [y,]. In this case, the answer is not too surprising,

xty =i+ 3] = [y T+]

where we must remember in our implementation to use rounding towards —oo for
the lower bound and rounding towards 4oo for the upper. Intuitively it makes sense
that the lower bound would simply be the sum of the two lower bounds and likewise
for the upper bounds. So far, so good. Here’s the C code,

interval t int_add(interval t x, interval t y) {
interval t sum;

1

2

3

4 fesetround (FE_DOWNWARD) ;
5 sum.a = X.a + y.a;

6 fesetround (FE_UPWARD) ;

7 sum.b = x.b + y.b;

8 fesetround (FE_TONEAREST) ;
9 return sum;

10}

where lines 5 and 7 add the lower and upper bounds. Line 4 sets the floating-point
rounding mode towards —oo just before adding the lower bounds. Line 6 then sets
the rounding mode towards +oco before adding the upper bounds in line 7. Lastly,
line 8 returns to rounding towards the nearest floating-point number just before
returning the new sum in line 9.

Subtraction is, as might be expected, similar in form to addition but with a twist.
Interval subtraction is defined to be,

X—=y= [Xv)_c]_b)_’)_}] = [)_C_)_)’)_C_X]

which at first glance might seem a bit odd. One way to see why subtraction is defined
like this is to consider what negation of an interval might mean. To negate a value is
to change its sign, x — —x. For an interval the operation is the same but not only are
the signs of the bounds changed but also their order. If the order were not changed
the lower bound would suddenly be larger than the upper bound. So, negation is,

240 8 Interval Arithmetic

—[K,J_C] = [_Xv _)ﬂ

where we have swapped the order of the bounds. How does this help in understand-
ing subtraction? By remembering that subtraction is simply addition of a negative
value. So,

. x] = .y =[x+ [y, 2y =[x —y,x—)l
which is exactly the definition of interval subtraction. In code this looks like,

interval t int sub(interval t x, interval t y) {
interval t diff;

1

2

3

4 fesetround (FE_DOWNWARD) ;
5 diff.a = x.a - y.b;

6 fesetround (FE_UPWARD) ;

7 diff.b = x.b - y.a;

8 fesetround (FE_TONEAREST) ;
9 return diff;

10/}

where we set the proper rounding mode as in addition and lines 5 and 7 set the lower
and upper bounds using the definition of interval subtraction.

Multiplication The goal of interval arithmetic is to ensure that the interval
represents the entire range in which the actual value may be found. This means
that the lower bound must be the smallest such value and the upper bound must
be the largest. For the addition of two intervals it is clear that the lower bound
must be simply the sum of the lower bounds of the operands and similarly for the
upper bound. With subtraction the same holds after we see that it is addition of the
negation of the second operand. For multiplication the situation is more general,
however, because the interval may include bounds of opposite signs. Therefore, we
define multiplication of two intervals as,

[x, X] x [y, y] = [min{xy, xy, Xy, Xy}, max{xy, xy, Xy, Xy}]
which reduces to,
[x, x] X [y,] = [xy, X

if the lower bounds of x and y are greater than zero. This definition covers all cases
in order to find the smallest and largest product of the components of x and y.

8.2 Basic Operations 241

With multiplication defined we can now implement it in our library,

1 |interval t int mul (interval t x, interval t y) {
2 interval_t prod;

3 double t;

4

5 fesetround (FE_DOWNWARD) ;

6 prod.a = x.a * y.a;

7 t = x.a *x y.b;

8 if (t < prod.a) prod.a = t;
9 t = x.b x y.a;

10 if (t < prod.a) prod.a = t;
11 t = x.b x y.b;

12 if (t < prod.a) prod.a = t;
13

14 fesetround (FE_UPWARD) ;

15 prod.b = x.a * y.a;

16 t = x.a *x y.b;

17 if (t > prod.b) prod.b = t;
18 t = x.b x y.a;

19 if (t > prod.b) prod.b = t;
20 t = x.b x y.b;

21 if (t > prod.b) prod.b = t;
22

23 fesetround (FE_TONEAREST) ;
24 return prod;

25}

where we accept two input intervals in x and y and return prod as their product.
Lines 5 through 12 set the lower bound so we first set the IEEE rounding mode
to —oo (line 5). Line 6 sets the lower bound of prod to xy. This will be our lower
bound for the product unless one of the other component products is smaller. We set
the auxiliary variable t to the next candidate (line 7) and in line 8 check to see if this
is smaller than our current lower bound. If so, we update the lower bound. Lines 9
through 12 continue this process for the remaining component products so that after
line 12 we know prod. a is set to the smallest value. Line 14 sets the rounding mode
to 400 and repeats this process for the upper bound keeping the largest component
product in prod.b. Line 23 then restores the default IEEE rounding mode and the
final product interval is returned in line 24.

Reciprocal and Division Just as subtraction is really the addition of a negative
value so it is that division is really multiplication by the reciprocal. Therefore, in
order to discuss division, we need to take a look at reciprocal in interval arithmetic.
Our first thought would be to simply take the reciprocal, x — 1/x, of each
component. However, just as negation of an interval required swapping the bounds
so will the reciprocal because 1/x < 1/x, like so,

1/[x.x] = [1/%,1/4]

where we have swapped the bounds as needed. However, there is an important caveat
that we must keep in mind. Division by zero is mathematically undefined so we must

242 8 Interval Arithmetic

be careful of the case when the interval we are taking the reciprocal of contains
zero. If the interval does not contain zero, which means that x > 0 or x < 0, we
can proceed normally because the reciprocal is defined over the entire interval. This
means we must add a qualifier to our original definition,

1/[x.x] = [1/%.1/x].x > 0or <0

which makes it explicit that we are not allowed to consider intervals which contain
zero.

For scalars, we simply say that division by zero is undefined and leave it at that.
Can we say something more in the case of intervals? One approach is to split the
interval into two parts at zero,

1/[x, 0] = [=00,1/4]
1/[0,x] — [1/%, o0]

following the definition above and writing +o0 for 1/0. If we do this we get two
overlapping intervals representing the reciprocal of our original interval, x, which
contained zero. Because of this we are really saying that there is no information in
writing the reciprocal of an interval containing zero, but we could continue to work
through an expression involving such an interval if we use both the intervals above.
This is one reason why interval arithmetic is not more widely used, though it isn’t
the main one (we will see that below). For our convenience, and because we are
trying to be pedagogical and not obfuscate things, we will declare reciprocals of
intervals which contain zero to be illegal and ignore them.

Armed with a definition of the reciprocal of an interval we are now ready to
calculate x/y. We do this by first calculating the reciprocal, y’ = 1/y, and then find
x X y'. The C code we need is,

1 |interval t int recip(interval t x) {
2 interval t inv;

3

4 if ((x.a < 0.0) && (x.b > 0.0)) {
5 inv.a = -exp(1000.0) ;

6 inv.b = exp(1000.0);

7 } else {

8 fesetround (FE_DOWNWARD) ;

9 inv.a = 1.0 / x.b;

10 fesetround (FE_UPWARD) ;

11 inv.b = 1.0 / x.a;

12 fesetround (FE_TONEAREST) ;

13 }

14

15 return inv;

16|}

17

18 interval t int_div(interval t x, interval t y) ({
19 return int mul (x,int_recip(y));

20}

8.2 Basic Operations 243

where we call the int_mul () function defined above to do the actual multiplication
with proper rounding modes.

The function int_div () is straightforward, simply multiply the first argument
by the reciprocal of the second as in line 19 above. All the action is in int_recip ()
which first checks to see if zero is in the interval (line 4). If zero is in the interval we
call the reciprocal undefined and return [—oco, +00] by attempting to calculate the
exponential of a large number (lines 5 and 6). Line 8 sets rounding towards —oo and
then calculates the lower bound in line 9. This is repeated by lines 10 and 11 with
rounding set towards 4-00. Line 12 resets the rounding mode and line 15 returns the
new interval.

Powers What it means to raise a number to a positive integer power is clear, simply
multiply the number by itself that many times so that x* = x x x x x x x. For
intervals we must be more careful. The result of raising an interval to an integer
power depends both upon the even or oddness of the exponent and the signs of the
components of the interval.

Let’s present the formulas and then look at why they work. For an odd exponent,
n=2k+1, k=0,1,...,things work as expected,

i = %), n=2k+1, k=0,1,...

It is only when the exponent is even that things become interesting. In this case we
have,

3" =¥, x>0, n=2k k=12,...
=[x, x<0

= [0, max{x",X"}], otherwise

For an odd exponent it is straightforward to see why the formula takes that form.
If the interval has bounds that are negative then an odd power of those bounds will
still be negative and the order of the original will not change. This means that for an
odd exponent x" < X" so the answer is simple, no special cases. When the exponent
is even, however, we have to pay attention to the signs of the bounds of x. In the first
case, if x > 0 we know that both bounds are positive and that x < x. Therefore, the
order of the bounds need not change since x” < X" as well. The second case tells
us that both bounds are negative. Since a" = |a|" if n is even and a < 0 it follows
that x" > X" when x, x < 0 so we must swap the order of the bounds. The last case
covers situation when the interval includes zero. As x" is always positive when 7 is
even (and a positive integer) we know that the lower bound of the result must be
zero. The upper bound is set to the larger of the two original bounds after raising
them to the nth power.

What if n is a negative integer? In that case we use the rule that x™" = 1/x".
To do this, first calculate y = x" = [x, X]" and then calculate the result as [x,x] ™" =
[1/y, 1/y] with suitable warnings about y containing zero.

244 8 Interval Arithmetic

Adding int_pow () to our library is straightforward, if a little tedious in checking
all the special cases. The C code is,

1 |interval t int pow(interval t x, int n) {

2 interval t ans;

3

4 if ((n%2) == 1) {

5 fesetround (FE_DOWNWARD) ;

6 ans.a = pow(x.a,n);

7 fesetround (FE_UPWARD) ;

8 ans.b = pow(x.b,n);

9 } else {

10 if (x.a >= 0) {

11 fesetround (FE_DOWNWARD) ;

12 ans.a = pow(x.a,n);

13 fesetround (FE_UPWARD) ;

14 ans.b = pow(x.b,n);

15 } else {

16 if (x.b < 0) {

17 fesetround (FE_DOWNWARD) ;

18 ans.a = pow(x.b,n);

19 fesetround (FE_UPWARD) ;

20 ans.b = pow(x.a,n);

21 } else {

22 ans.a = 0.0;

23 fesetround (FE_UPWARD) ;

24 ans.b = pow(x.a,n);

25 if (pow(x.b,n) > ans.b) ans.b = pow
(x.b,n) ;

26 }

27 }

28 }

29

30 fesetround (FE_TONEAREST) ;

31 return ans;

32}

where line 4 checks to see if the exponent n is even or odd. If the remainder after
dividing by 2 is 1, then n is odd and we calculate the lower bound in line 6 and the
upper in line 8 after setting the floating-point rounding mode appropriately. If n is
even we move to line 10 and check the three cases given above. If the lower bound
is greater than or equal to zero (line 10) we calculate the new bounds in lines 12
and 14. If the upper bound is less than zero (line 16) we swap the results (lines 18
and 20). Finally, if the interval includes zero we set the lower bound to zero (line
22) and set the upper bound to the larger of the two exponentiated initial bounds
(lines 24 and 25). Line 30 restores the default rounding mode and line 31 returns
our answer.

8.2 Basic Operations 245

When using intervals it is important to remember that, unlike real numbers,
exponentiation is not simply repeated multiplication. Let’s look at some examples
using our library routines above. We will give an example of an even and odd power
of intervals that are positive, negative, and include zero. We will use int_pow () for
the powers and int_mul () for the multiplications.

First, an all negative interval,

X = [-2.7182818284590451, -2.6182818284590454]
X3 = [-20.0855369231876679, -17.9493685483622478]
XX XXX = [-20.0855369231876679, -17.9493685483622443]
x4 = [46.9965055024911891, 54.5981500331442291]

XXXXXXXx= [46.9965055024911749, 54.5981500331442433]

Second, an all positive interval,

X = [2.7182818284590451, 2.8182818284590452]
X3 = [20.0855369231876644, 22.3848022077206359]
XX XXX = [20.0855369231876608, 22.3848022077206359]
x* = [54.5981500331442220, 63.0866812956689813]
XXXXXxXXx = [54.5981500331442149, 63.0866812956689884]

Lastly, an interval including zero,

[-2.7182818284590451, 2.8182818284590452]
[-20.0855369231876679, 22.3848022077206359]
XXXXX = [-21.5905309612583913, 22.3848022077206359]
[0.0000000000000000, 63.0866812956689813]
[

XXXXXXXx = [-60.8482010748969273, 63.0866812956689884]

The examples above are displayed using a format specifier of $0.16f which
always displays 16 digits after the decimal point. Note that the repeated multipli-
cations lead to result intervals that are a little too large compared to the powers.

Especially note that the even power of the interval including zero is completely
wrong in the sense that it is far too large by including a negative lower bound.

Other Operations There are many other operations we could add to our library.
Here we add only a few of these. The new operations are negation, absolute
value, comparison for equality, comparison for less than or equal, and a concept
of “distance” between two intervals. We will describe the C code first and then give
some examples. The code for negation is,

246 8 Interval Arithmetic

1 interval t int neg(interval t x)
interval t ans;

fesetround (FE_DOWNWARD) ;

ans.a = -X.b;

fesetround (FE_UPWARD) ;

ans.b = -x.a;

fesetround (FE_TONEAREST) ;
return ans;

W o J o0 U WN

}

which implements —[x, X] = [—X, —x]. This is always true because the lower bound
of an interval is, by definition, less than (or equal) to the upper bound. Therefore,
changing the sign of these values means that their order must be reversed to keep
the lower bound less than the upper.

The absolute value of an interval depends on the signs of the bounds. Formally,
the absolute value is defined to be,

x| = [min{]x], [x|}, max{|x], |x[3]. if xx > 0
= [0, max{[x], [x[}]. if xx <0
where we maximize the interval if the signs of the bounds are the same (xx > 0) or

we set zero to be the lower bound if the interval includes zero (xx < 0).
The C code for this operation is,

1 |interval t int_abs(interval t x) {
2 interval_t ans;
3 if (x.b * x.a >= 0) {
4 fesetround(FE_DOWNWARD);
5 ans.a = (fabs(x.b) < fabs(x.a)) ? fabs(x.b)
fabs(x.a) ;
fesetround (FE_UPWARD) ;
7 ans.b = (fabs(x.b) < fabs(x.a)) ? fabs(x.a)
fabs (x.Db) ;
8 } else {
9 ans.a = 0.0;
10 fesetround (FE_UPWARD) ;
11 ans.b = (fabs(x.b) < fabs(x.a)) ? fabs(x.a)
fabs (x.b) ;
12 }
13 fesetround (FE_TONEAREST) ;
14 return ans;
15}

where line 3 looks to see if the signs of the bounds are the same. If so, the minimum
is used for the lower bound (line 5) and the maximum is used for the upper bound
(line 7) with proper rounding modes set. If the interval includes zero we move to

8.2 Basic Operations 247

line 9 and set the output lower bound to zero and the upper bound to the maximum
(line 11). We reset to the default rounding mode and return the answer in line 14.

To this point the interval library consists entirely of operations. Here we
define the concepts of equality and less than or equal for intervals. Equality is
straightforward: two intervals are equal if their bounds are equal. Symbolically this
is represented as,

[x.x] = y]iff @=y) A(x=3)

where A is conjunction or “logical and”.
For less than or equal we compare both the bounds for less than or equal like so,

k3 < D liff <) AG <)

Why equal and less than or equal? These relations are enough to define the others as
needed and are called out explicitly in [7] which works towards defining a standard
for interval arithmetic.

The last operation we are including in our interval library is the concept of the
distance between two intervals. This is a scalar measuring the difference between
the bounds of two intervals returning the largest difference. Symbolically this is,

dist(x, y) = max{|x — y[, [x — y[}
which measures the degree to which two intervals “overlap”. The larger this value,

the more dissimilar the intervals are.
In C code these operations are defined to be,

1 unsigned char int eqg(interval t x, interval t y) {
2 return (x.a==y.a) && (x.b==y.Db);

30}

4

5 lunsigned char int_le(interval t x, interval t y) {
6 return (x.a <= y.a) && (x.b <= y.b);

71}

8

9 |double int dist(interval t x, interval t y) ({

10 double a,b;

11 a = fabs(x.a - y.a);

12 b = fabs(x.b - y.b);

13 return (a>b) ? a : b;

14|}

where line 2 simply compares the bounds for equality and line 6 compares them for
less than or equal. For int_dist () we first compute [x — y| (line 11) and |x — |
(line 12) and then return the larger of the two in line 13.

248

8 Interval Arithmetic

As a quick example of these functions consider two intervals,

X

[-2.7182818284590451, 2.8182818284590452]

y= [2.5182818284590449, 2.9182818284590453]

which overlap. With these, then, the function calls to our new operations return,

int neg(x,y) = [-2.8182818284590452, 2.7182818284590451]
int_abs (x) = [0.0000000000000000, 2.8182818284590452]
int_eq(x,y) = o(false)
int le(x,y) = 1(true)

int dist(x,y) = 5.2365636569180900

The Python Version Before we move on with our investigation of interval
arithmetic let’s quickly implement an interval class in Python. For this class we
will only implement the basic arithmetic operations and leave extending the class
to the exercises. The key to interval arithmetic is the ability to control the floating-
point rounding mode. This is easily accomplished in C by including the fenv.h
header file and compiling with the - frounding-math option. However, the Python
interpreter is already compiled and does not offer direct access to the constants and
functions defined in fenv . h. Fortunately, all is not lost, we are still able to access the
underlying C library that contains these functions and use them to set the rounding
mode as necessary. For this trick we thank Rafael Barreto for his blog post [8] which
describes how to do this to set the rounding mode.
Jumping in, then, we start with,

1 [from math import exp
2 |[from ctypes import cdll
3 [from ctypes.util import find library

4

5 |class Interval:

0 J O

9
10
11
12
13
14
15
16
17
18

libc = cdll.LoadLibrary (find library ("m"

FE_TOWARDZERO = 0xc00
FE_DOWNWARD = 0x400
FE_UPWARD = 0x800
FE_TONEAREST = 0

def init (self, a,b=None):
if (b == None) :
self.a = a
self.b = a
else:
self.a = a
self.b = b

))

where lines 2 and 3 import standard Python libraries which will give us access to
the C library so we can call the rounding functions. Line 1 imports the exponential

8.2 Basic Operations 249

function which we will use to generate infinity. The class starts on line 5. Line
6 sets a class-level variable, 1ibc, to the C library which on Linux systems can
be found by searching for “m” (hence -1m when compiling). We also define the
rounding modes as class-level variables. The specific values were determined by a
short C program which displayed them after including fenv.h. The constructor for
the class starts on line 12 and takes up to two arguments. If only one is given the
argument is assumed to be a real number and an interval is created from this number.
Doing this simplifies the class by removing the need to consider mixed interval and
float operations. If both arguments are given they are assumed to be the lower (a)
and upper (b) bounds of the interval being defined. These are stored in self.a and
self.b, respectively.

In order to round properly we need methods which set the rounding mode. These
are defined next,

1 def _ RoundDown (self) :
2 self.libc.fesetround (self.FE DOWNWARD)
3
4 def _ RoundUp (self) :
5 self.libc.fesetround (self.FE_UPWARD)
6
7 def _ RoundNearest (self) :
8 self.libc.fesetround(self.FE_TONEAREST)
where RoundDown (), RoundUp(), and _ RoundNearest () are wrappers on

calls to the C fesetround () function. Note the use of the double underscore prefix
as Python notation for “private”. We will call these methods whenever we need to
change the rounding mode.

Next comes addition and subtraction. Instead of methods with those names we
use the flexibility built into Python to define methods that work directly with the
+ and — operators. This means we can define expressions with intervals as if they
were any other number or variable. The code is,

1 def add_(self, y):

2 self. RoundDown ()

3 a = self.a + y.a

4 self. RoundUp ()

5 b = self.b + yv.b

6 self. RoundNearest ()
7 return Interval (a,b)
8

9 def sub_ (self, y):

10 self._ RoundDown ()

11 a = self.a - y.b

12 self. RoundUp ()

13 b = self.b - y.a

14 self. RoundNearest ()

=
(&)

return Interval (a,b)

250 8 Interval Arithmetic

where these methods, add () and sub (), will be called when objects of
this class are encountered in arithmetic expressions involving + and —. Since we
are not implementing mixed operations both operands of the + or — must be of this
class. Just as we did for the C library we set the rounding modes to down (lower
bound) or up (upper bound) before calculating the new value. We return the new
value as a new Interval object.

Multiplication is next (__mul). This is directly analogous to the C version
where we consider each case for the new lower and upper limit with proper
rounding. The result is returned as a new interval object,

def — mul (self, y):
self._RoundDown ()
a = min([self.axry.a,self.axy.b,self.bxy.a,self.bxy.bl)
self. RoundUp ()
b = max([self.axy.a,self.axy.b,self.bxy.a,self.bxy.bl)

self. RoundNearest ()

N oUW N

return Interval (a,b)

with line 2 setting rounding towards —oo before calculating all the products between
the two intervals. It then selects the smallest of these and sets the lower bound to
it. Line 4 changes to rounding towards 400 and repeats the calculation this time
selecting the maximum value. We must do the multiplications twice because we
changed the rounding mode. Line 6 returns to default rounding and the new object
is returned in line 7.

Division, with reciprocal, and powers are all that remain to be implemented.
Division is multiplication of the reciprocal, as before,

def recip(self):
if (self.a < 0.0) and (self.b > 0.0):
return Interval (-exp(1000.0), exp(1000.0))
self. RoundDown ()
a=1.0 / self.b
self. RoundUp ()
b =1.0/ self.a
self. RoundNearest ()
return Interval (a,b)

=
R R B G I N

def div__ (self, y):
return self. mul (y.recip())

=
N

where division is called in line 12. The reciprocal method, not associated with an
operator but not private, is used to return the reciprocal of the interval. If the interval
contains zero (line 2) we return [—o0, +00] (line 3). Otherwise, we round down and
calculate the lower bound, round up, calculate the upper bound, and finally return
the new reciprocal object.

8.2 Basic Operations 251

The last method we will implement is raising an interval to a positive integer
power. This will mimic the C code as,

1 def _ pow_ (self, n):

2 if (n%2) == 1:

3 self. RoundDown ()
4 a = self.ax*n

5 self. RoundUp ()

6 b = self.bx*n

7 elif (self.a >= 0):

8 self. RoundDown ()
9 a = self.ax*n

10 self. RoundUp ()
11 b = self.bx*n

12 elif (self.b < 0):

13 self. RoundDown ()
14 a = self.bx*n

15 self. RoundUp ()
16 b = self.ax*n

17 else:

18 a=20.0

19 self. RoundUp ()
20 b = self.a*xn

21 t = self.bx*n

22 if (¢t > b):

23 b=t

24 self. RoundNearest ()
25 return Interval (a,b)

with each condition checked as before. Note that « is exponentiation in Python.

Let’s look at some examples using the class. We give a running interactive Python
session with »> the Python prompt followed by user input. Python output does not
have the prompt and has been slightly intended for clarity,

>>> from Interval import =
>>> from math import sqgrt
>>> x = Interval(-sgrt(2), sqgrt(2)+0.1)
>>> X; X*X; X*x2
[-1.4142135623730951, 1.5142135623730952]
[-2.1414213562373101, 2.2928427124746200]
[0.0000000000000000, 2.2928427124746200]
>>> X*X*X; X**3
[-3.2425692603699230, 3.4718535316173851]
[-2.8284271247461903, 3.4718535316173846]
>>> x = Interval (sqrt(2), sqrt(2)+0.01)
>>> Y = X**x2
>>> x/y
[0.6972118559681739, 0.7121067811865476]
>>> y/x
[1.4042837765619229, 1.4342842730512142]

252 8 Interval Arithmetic

We first import the library and the square root function. We then define an interval, x,
and show it along with x x x and x?. Notice that the former gives too large an interval
in this case because the interval contains zero. The more correct interval is the one
returned by x?. The same comparison is made between multiplying x by itself three
times and calling the exponential. The multiplication leads to too large an interval.
Re-defining x to be positive lets us demonstrate division thereby illustrating all the
basic operations of the class.

In this section we explored and implemented basic interval arithmetic in C and
Python. Next we consider functions of intervals. This is where we will run into the
biggest reason, apart from performance issues due to repeated calculations, why
interval arithmetic is not more widely used.

Properties of Intervals We summarize this section by discussing some of the
mathematical properties of intervals. The first few are familiar and mimic those of
normal arithmetic. Things become more interesting when we get to the distributive
property.

For any three intervals, x = [x,X], y = [y,)], and z = [z, 7], the following is,

x+y)+z=x+ (+2) (associative)
x=y)—z=x—-(—2)

x+y=y+x (commutative)
XXy=yXxx
x+1[0,0] =x (additive identity)
xx[1,1]=x (multiplicative identity)

which comes as no surprise. However, the distributive property causes problems. In
general, for intervals,

XX (y+2) #xy+az

For example if x = [1,2],y = [1,2], and z = [-2, —1],

xx (y+2z) Xy + xz
[1,2] x ([1,2] + [-2,—1])|[1,2] x [1,2] + [1,2] x [-2,—1]
[1,2] x [-1,1] [1,4] + [-4,—1]

which is at first glance unexpected. This property is called subdistributivity and
implies that for intervals we have,

XX(Y+2) Sxxy+xxz
which is seen clearly in the example above because [-2,2] € [-3,3] as it is a

tighter bound. This means that in practice one needs to be careful with the form of
an expression.

8.3 Functions and Intervals 253
8.3 Functions and Intervals

Now that we know how to implement intervals we are ready to use them and be
sure of accurate and tight bounds on our calculations. Or not. We must take a look
at general functions of intervals and when we do we will see that a large elephant is
indeed in the living room.

If a function of one variable is monotonic over a range this means that the
function, f(x), is either increasing or decreasing over the range. If this is the case,
then interval arithmetic will work as expected because for the range of the interval
the function will maintain (or reverse) the ordering of the bounds. For example,
consider the square root function for positive intervals. Since the square root is
monotonically increasing over any positive interval the output of /x for an interval
x will also be increasing as shown in Fig. 8.1.

Because of this consistent increase the tightest output interval will be simply
V%, Vx]. If the function is monotonically decreasing over the interval the result
will be similar but with the bounds flipped to maintain a proper ordering. So, in
general, for monotonically increasing functions of one variable (f(x)) we have,

J) =f(x3]) = F@).f&)]

y = sqrt(x)

y = [1.8708, 2.1213]

x = [3.5, 4.5]

X

Fig. 8.1 An example of a monotonic function. Since the function y = ,/x is always increasing for
a positive input the bounds on any output interval are simply the function values at the lower and
upper bounds of the input interval as shown for the interval x = [3.5, 4.5]. This leads to the proper
output interval of approximately [1.8708, 2.1213]. If the function were monotonically decreasing
over this interval the output would be the same but with the upper and lower bounds swapped so
that the interval has the right ordering

254 8 Interval Arithmetic

while for monotonically decreasing functions (g(x)) we have,

g(x) = g([x,x]) = [g(x), g(x)]

where it should be noted that many elementary functions are of this form. This
includes the exponential function, roots (e.g. cube root), and logarithms. For
exponentials and logarithms we can define the output explicitly,

at = [a*, a}], a>1
log,[x, x] = [log,x. log,x]

What about functions that are not monotonically increasing or decreasing? In this
case things become a bit more difficult. For example, what about the sine function?
We assume the reader is familiar with the shape of the sine function. Clearly, it
is sometimes increasing and sometimes decreasing. How to work with this and by
extension the cosine?

One possibility is to use a Taylor series expansion. This is the solution presented
in Daumas et al. [9] in terms of bounded functions using a parameter » to control
the bounds where in the limit n — oo the bounds tighten to the actual value of the
function. Specifically, for the sine function [9] defines the output interval to be,

fsin(o)], = [sin(x. n). sin(E). x < [5-. 7]

for a specified value of n. We’ll see shortly what a good value of n might be. The
functions sin(x, n) and sin(x, n) are themselves defined in terms of Taylor series
parametrized by n and operating on scalar values (the bounds of x). The series
expansions are,

‘ m L, a2
sin(x, n) = ;(—1) &
m+1 y2i=1
e _ il
sin(x, n) = Z(1) 2=

i=1

where m = 2n + 1,x > 0, otherwise, m = 2n. In [9] the value of 7 itself is defined
as an interval but for our purposes we will treat it as an exact quantity and note that
the argument to our interval sine be restricted to the range given above.

Looking at the series expansions and the dependency upon the summation limit
as a function of n we see where the cleverness lies in the definition. The bounds
of the sine come from the number of terms used in the summation with the lower
bound set by m(n) and the upper set by m(n) + 1. Also, as n — oo it is clear that
the series will converge more and more to the sine of x.

8.3 Functions and Intervals 255

Let’s add this function to our interval library. The implementation is straightfor-
ward requiring a main function,

interval t int_sin(interval t x) {
int n=8;
interval t ans;

ans.a = int_sin lo(x.a, n);
fesetround (FE_UPWARD) ;
ans.b = int_sin hi(x.b, n);
fesetround (FE_TONEAREST) ;
10 return ans;
11/}

1
2
3
4
5 fesetround (FE_DOWNWARD) ;
6
7
8
9

which follows our standard format of setting the rounding mode, first towards —oco
for the lower bound and then towards + oo for the upper bound. Lines 6 and 8 set the
output value by calling helper functions to compute the series value for the lower
and upper bound. Note that line 2 sets n to eight. This value can be adjusted but
eight gives good results. The helper functions are,

double fact (int n)
return (n==1) ? 1.0 : nxfact(n-1);

}

int i, m = (x < 0) ? 2%n : 2%n+1;

1
2
3
4
5 double int sin lo(double x, int n) {
6
7 double ans=0.0;

8

9

for(i=1; i <= m; i++)
(-

10 ans += pow(-1,i-1) % pow(x,2xi-1) / fact(2«i-1);
11 }

12 return ans;

13/}

14

15/double int_sin_hi (double x, int n) {

16 int i, m = (x < 0) ? 2%n : 2xn+1;

17 double ans=0.0;

18

19 for(i=1; i <= m+l; i++) {

20 ans += pow(-1,1i-1) * pow(x,2%i-1) / fact(2%i-1);
21 }

22 return ans;

23}

where int_sin lo() and int_sin hi () call fact () to compute the factorial. We
use the recursive algorithm for simplicity noting that we will only need less than a
dozen terms in the series. The functions themselves are a literal translation of the

256 8 Interval Arithmetic

formulas with m set appropriately when declared (lines 6 and 16). Note also that
for int_sin_hi() we add one to m in the loop limit. Why do we not combine
these two functions? If int_sin_ hi () needs to calculate only one more term in the
series expansion than int_sin lo() why calculate everything twice? The answer
lies in the guarantee implicit in intervals implemented in floating-point, namely,
that the bounds on the interval will be certain to include the correct answer. When
int_sin_lo() is called from int_sin() the floating-point rounding mode has
been set towards —oo. Therefore, all the calculations of the series terms will round
in that direction thereby assuring us that rounding error will not shrink the interval
we expect. Likewise, when int_sin_hi () is called the rounding mode it towards
+-o00 for the same reason. This is why the calculation must be done twice.

Let’s look at the output of our sine function and compare it to the “gold standard”
present in the C math library. For,

x = [0.7852981625,0.7854981625]
where the difference between the bounds is underlined, we get,
sin(x) = [0.7070360663383567,0.7071774876944870] (interval sine)
while the sin () function from math.h produces the interval,
sin(x) = [0.7070360663383576,0.7071774876944862] (math.h sine)

Looking at the underlined digits of each interval we see that our sine function does
indeed produce an interval which will be sure to encompass the “true” value.
The formulas for the interval version of cosine are,

[cos(x)], = [cos(x,n),cos(x,)], x < [0, 7]

and,
m+1 2
cos(x,n) =1+ Z(1)’(21)'
cos(x,n) =1+ Z(1)’(2)'

again where m = 2n + 1,x > 0, otherwise, m = 2n. We leave the implementation,
in C and Python, to the exercises.

So far in this section we have examined interval versions of elementary functions.
What about general functions of x? Let’s take a look and we will soon see that this
is the elephant mentioned above. Applying interval arithmetic to general functions
leads to the dependency problem (or dependency effect) which is the bane of
intervals.

This problem shows itself when applying intervals to general functions where
the interval variable appears more than once in the expression. The most commonly
cited example of this is the evaluation of the expression x—x? for x = [0, 1]. Another
way to write this expression is x(1 — x). Let’s look at how these two compare when
we evaluate them,

8.3 Functions and Intervals 257

x(1—x) x—x?
[071] X (] _[O’I]) [0’1]_[031]2
[0,1]x[0,1] | [0,1] —[0,1]
[0,1] [—1,1]

where we clearly have differing answers. We also have that the interval for x(1—x) C
x—x? which is exactly what we would expect due to the subdistributivity of intervals.
However, while neither answer is technically incorrect, since the proper answer lies
inside of each interval, neither answer is satisfactory because of the dependency
problem.

The expression we are evaluating is a downward facing parabola with a maxi-
mum value of 0.25 at x = % and minimum values of zero at x = 0 and x = 1.
Therefore, over the given range, x = [0, 1], we would expect the output interval to
be [0, %]. While this interval is within the range of both of the intervals above we do
not find the narrow interval unless we remove the dependency problem by rewriting
the expression so that x appears only once. If we complete the square of x — x> we
can rewrite the original expression as i - (% — x)? in which x appears only once. If
we evaluate this expression over x = [0, 1] we get,

Lo
0.25 — (0.5 — [0, 1])>

0.25 — [0,0.25]
[0,0.25]

which is the narrowest interval in this case.

The dependency problem is likely the primary reason interval arithmetic is not
more widely used. It is often impossible to rewrite an expression so that the variable
appears only once. When this is the case it is possible to introduce auxiliary intervals
whose union results in the original interval and then apply the expression to each of
these intervals. This interval splitting will result in less of a dependency problem.
Let’s look at an example of this from [9] where the expression under consideration
is 2x — x with x = [0, 1]. If we simply evaluate the expression we get [—1, 2] as
the answer when the narrowest interval is naturally [0, 1]. The observation key to
interval splitting is that while x = [0, 1] does not lead to the narrowest interval we
can split the interval into two parts, x; = [0, 0.5] and x, = [0.5, 1], and evaluate each
of these in turn. In that case we get [—0.5, 1] for x; and [0, 1.5] for x,. The union
of these two intervals is [—0.5, 1.5] which is closer to the expected answer of [0, 1].
If the intervals are divided further and further the resulting answer will approach
[0, 1] which we can see if we evaluate x; = [0, 0.05] to xp9 = [0.95, 1] which gives
[—0.05,0.1] up to [0.9, 1.05] the union of which is [—0.05, 1.05]. While interval
splitting can help deal with the dependency problem it introduces a significant
amount of overhead to the calculations. This is why our simple interval C library
and Python class do not implement interval splitting even though more complete
libraries do.

258 8 Interval Arithmetic
8.4 Implementations

In this section we look at two implementations of interval arithmetic, one for C and
the other for Python. For C perhaps the most widely used library is the Multiple
Precision Floating-point Interval library or MPFI for short [10]. This library is
built on top of the widely used GNU GMP and MPFR libraries for multiple
precision floating-point numbers. This means that in addition to interval arithmetic
the MPFI library supports more than the standard IEEE 754 32-bit and 64-bit
floating-point. For our purposes we will ignore this important and useful feature
and instead focus on the interval support MPFI provides. Using MPFI requires us
to install GMP (http://gmplib.org/) and MPFR (http://www.mpfr.org/). Once these
are installed with the typical “configure; make; make install” sequence of
Unix instructions we can download MPFI (http://perso.ens-lyon.fr/nathalie.revol/
software.html). Building MPFI follows the same sequence of steps as GMP and
MPFR.

Let’s start with a simple example that defines two intervals and then prints them
on standard out. This will teach us how to define and initialize intervals and how to
print them. Please note that there is an extensive API for this library and that we are
only using a small part of it. Our initial program, then, is,

1 #include <stdio.h>

2 |#include <mpfr.hs>

3 |#include <mpfi.hs>

4 |#include <mpfi io.h>

5

6 int main() {

7 mpfi t x, y;

8

9 mpfr set default prec(64);

10

11 mpfi init (x);

12 mpfi set str(x, "[-1.0, 1.0I", 10);
13

14 mpfi init set str(y, "[0,2]", 10);
15

16 printf("x = ");

17 mpfi out str(stdout, 10, 0, x);
18 printf ("\n") ;

19

20 printf("y = ");

21 mpfi out_str(stdout, 10, 0, y);
22 printf ("\n") ;

23

24 mpfi clear(x);

25 mpfi clear(y);

26/}

http://gmplib.org/
http://www.mpfr.org/
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://perso.ens-lyon.fr/nathalie.revol/software.html

8.4 Implementations 259

where lines 1 through 4 include necessary header files. Note that the documentation
for MPFI recommends including stdio.h before the remaining header files. Line
7 declares two interval variables, x and y. This declares the variables but does not
initialize them. They must be initialized before they are used. Line 9 sets the default
precision to 64 bits to mimic a double. Note that this is a call to the MPFR library.
Lines 11 and 12 show one way to initialize an interval variable and set its value from
a string. We will use strings to set values though there are many options in the API.
Formpfi_set_str () the first argument is the variable, the second is a string which
defines the interval in the way we have been displaying them throughout this chapter,
and the last argument is the base in which the interval is defined (2 through 36). Line
14 combines lines 11 and 12 into a single initialize and set function. The arguments
are the same as line 12. We then display the intervals using mpfi out_str () inlines
17 and 21. The first argument is the output file stream, the second is the base, the
third is the number of digits (0 says use the precision of the variable) and the fourth
argument is the interval variable itself. Lastly, lines 24 and 25 clear the memory
used by x and y. While not necessary in this case because the program is about to
exit it is necessary before re-assigning these variables.
This program should be compiled with,

gcc mpfi _ex.c -o mpfi ex -lmpfi -lmpfr

assuming mpfi ex.c to be the file name. Note that MPFI installs itself in
/usr/local/lib which might require adding that path to the LD LIBRARY PATH
environment variable.

Now that we know how to initialize, set, and display intervals in MPFI let’s look
at basic arithmetic functions. These are,

int mpfi_add(mpfi_ t ROP, mpfi_t OP1l, mpfi t OP2)
int mpfi_sub (mpfi_t ROP, mpfi_t OP1l, mpfi_ t OP2)
int mpfi_mul (mpfi_t ROP, mpfi_t OP1, mpfi_t OP2)
int mpfi div(mpfi_ t ROP, mpfi_t OP1l, mpfi t OP2)

where ROP is the variable to receive the result and or1 and op2 are the operands.
Note that division using an interval containing zero will result in [—oc0, +00]. The
return value indicates whether or not endpoints of the interval are exact.

MPFTI is powerful but a bit cumbersome to use because of its C language heritage.
There is a C++ version as well which we are not exploring here. Let’s look at our
dependency problem example again and implement it using MPFI. This example
computes x(1 — x) and x — x> for x = [0, 1]. The C code is,

260 8 Interval Arithmetic

1 int main() {

2 mpfi t x, one, t, y;

3

4 mpfr set default prec(64);

5 mpfi init set str(x, "[0, 1]", 10);
6 mpfi init set str(one, "[1,1]", 10);
7

8 mpfi init (t);

9 mpfi sub(t, one, x);

10 mpfi init(y);

11 mpfi mul(y, t, x);

12

13 printf("y = ");

14 mpfi out str(stdout, 10, 0, y);
15 printf ("\n") ;

16

17 mpfi clear(y);

18 mpfi clear(t);

19 mpfi clear (one) ;

20

21 mpfi_init(t);

22 mpfi mul (t, x, x);

23 mpfi init (y);

24 mpfi sub(y, x, t);

25

26 printf("y = ");

27 mpfi out str(stdout, 10, 0, y);
28 printf ("\n") ;

29/}

where we see that it is necessary to preserve the intermediate temporary variables
so that they can be released properly without leaking memory. Specifically, line 5
initializes x while line 6 initializes the constant interval, one. The expression x(1—x)
is calculated in lines 8 through 11. First, t = 1 —x is calculated in line 9 and then the
final answer is found as y = 7 x x in line 11. This is the first y output (line 14). Lines
17 through 19 release memory so that we can reuse y and to calculate x — x>. This
expression is calculated in lines 21 through 24 and output in line 27. The output,

[0,1.00000000000000000000]
[-1.00000000000000000000,1.00000000000000000000]

Y
Y

is precisely what we would expect it to be for x(1 — x) and x — x°.

Interval arithmetic is available in Python via the mpmath [11] library. This library
is implemented in pure Python and is quite powerful. As with MPFI, we will only

8.4 Implementations 261

look at the simplest of uses with intervals. To install mpmath on Ubuntu use the
command,

sudo apt-get -y install python-mpmath

with suitable repository access for other Linux distributions or build it from the
website.

Once the library is installed we can access it easily from the Python command
prompt. The following console session shows some of mpmath’s basic interval
abilities,

>>> from mpmath import mpi
>>> X = mpi('0’,'1")
>>> print x
[0.0, 1.0]
>>> print x* (1-x)
[0.0, 1.0]
>>> print X-xXx*x2
[-1.0, 1.0]
>>> y = mpi(’-1’,"1")

0 J o0 Ul b W N

[y
o ©

>>> print y**2
[0.0, 1.0]
>>> print yxy
[-1.0, 1.0]
14/>>> print 1/y
15 [-inf, +inf]
16|/>>> print 1/x
17 [1.0, +inf]

[
w N R

where the Python prompt is >>> and Python output is indented for clarity.

In line 1 we import the interval module (mpi) from the larger mpmath library.
Line 2 defines a new interval and stores it in x. Note that the bounds are given as two
separate arguments and may be given as strings or as numbers. If given as numbers
they are interpreted as Python £1oats (64-bits) while strings are interpreted as exact
decimals. Line 5 prints x(1 — x) with the expected output while line 7 prints x — x2,
again with the expected output. Line 9 defines y to be an interval containing zero.
Lines 10 through 15 display the results of several simple calculations on y. Note that
y? (line 10) returns an interval different than y x y (line 12) but positive, as in our
C library above. Note that line 14 returns [—o0, +00] as the reciprocal of y since
it contains zero while line 16 prints the reciprocal of x which has zero as a lower
bound. In this case the resulting interval is [0, +o0].

The bounds of an interval are acquired by the a and b properties on the object.
Additionally, there are also mid and delta properties for the midpoint of an interval
and for the difference between the endpoints,

262 8 Interval Arithmetic

1 >>> from mpmath import mpi

2/>>> x = mpi(’0.41465’, '0.5")

2/>>> x.a

2 mpi(’0.41464999999999996’, '0.41464999999999996")
2/>>> x.b

2 mpi(’0.5", "0.5")

2|/>>> x.mid

2 mpi(’0.45732499999999998’, 0.45732499999999998")
2|>>> x.delta

2 mpi(’0.085350000000000037’, ’0.085350000000000037")

with x.a returning the lower bound, x.b returning the upper, x.mid returning the
middle position between the lower and upper bounds, and x.delta to calculating
the range of the interval. Note, the return values are themselves intervals even if the
lower and upper bounds are the same.

This section took a quick look at two common interval libraries to extend C
and Python. Intervals have been added to many other languages and sometimes the
compiler used will support intervals. For example, Fortran has had interval packages
for some time. More recent languages like R and MATLAB® also support intervals.

8.5 Thoughts on Interval Arithmetic

Interval arithmetic is most useful when uncertainty is part of the data. With intervals,
and proper rounding, we have assurances that the correct answer lies within a
particular range. For basic operations intervals work well even if they may involve
significantly more low-level calculations than floating-point numbers on their own.
For that reason, unless truly necessary, intervals are generally not recommended in
situations where high-performance is required.

Floating-point arithmetic is standardized via the IEEE 754 standard. IEEE 754
defines the number of bits for each precision, including single (32-bit) and double
(64-bit), as well as rounding modes, comparisons, etc. The IEEE organization, as of
this writing (Fall 2016) is developing IEEE P1788 (Standard for Interval Arithmetic)
as a project [12]. This standard will address the fact that currently intervals are
implemented in many different ways and without a consistent set of algorithms.
While not yet complete and adopted, the standard is worth remembering as it may
go a long way towards increasing the use of interval arithmetic. A good summary of
interval arithmetic, along with a discussion of its uses in scientific and mathematical
research, can be found in [13].

Because of the difficulty involved in properly applying interval arithmetic to
general functions and expressions one must be careful and thoughtful when using
intervals to avoid falling into a situation where the uncertainty grows too large.
Recall that unlike standard floating-point computation, the interval [—oo, +00] is
a valid return value for an interval expression, albeit, not a particularly useful one.
However, if uncertainty and bounds on it are crucial to the task at hand, then interval
arithmetic may be the ideal choice.

References 263
8.6 Chapter Summary

In this chapter we took a practical look at interval arithmetic. We defined what
we mean by intervals and interval arithmetic, summarized the history of intervals,
and explained basic operations on intervals. We implemented an interval library
in C and Python which included some elementary functions. We then discussed
the dependency problem, with examples, and mentioned interval splitting as a
technique for minimizing the dependency problem. Lastly, we looked at some
implementations of interval arithmetic and offered some thoughts on interval
arithmetic and its utility.

Exercises

8.1 Add int 1t (), int gt (), int_ge (), and int_ne () functions to test for <,
>, >, and # using int_eq() and int_le (). **

8.2 Add exponential (¢"), square root (/x) and logarithm functions (any base) to
the C interval library. **

8.3 The Python interval class only contains basic operations. Complete the class by
adding the missing operations found in the C library. **

8.4 Extend the Python interval library to support mixed scalar and interval arith-

metic for +, —, X, and /. (Hint: look at how methods like _radd__ () might be
used.) **

8.5 Extend the Python _ pow () method to proper handle negative integer
exponents.

8.6 Extend the C library by adding cosine using the formulas in Sect. 8.3. *

8.7 Extend the Python class by adding sine and cosine using the formulas in
Sect. 8.3. *

8.8 Add interval splitting to the Python interval class in order to minimize the
dependency problem. Automatically split intervals into n parts and evaluate a
function on each of those parts reporting the union of them when complete. **%*

References

1. Bevington, PR., Robinson, DK. Data reduction and error analysis for the physical sciences.
Vol. 336. McGraw-Hill (1969).

2. Young, RC., The algebra of multi-valued quantities, Mathematische Annalen, 1931, Vol. 104,
pp- 260-290.

3. Dwyer, PS., Linear Computations, J. Wiley, N.Y., 1951.

264 8 Interval Arithmetic

4. Sunaga, T., Theory of interval algebra and its application to numerical analysis, In: Research
Association of Applied Geometry (RAAG) Memoirs, Ggujutsu Bunken Fukuy-kai. Tokyo,
Japan, 1958, Vol. 2, pp. 2946 (547-564); reprinted in Japan Journal on Industrial and Applied
Mathematics, 2009, Vol. 26, No. 2-3, pp. 126—143.

5. Moore, RE. Automatic error analysis in digital computation. Technical Report Space Div.
Report LMSD84821, Lockheed Missiles and Space Co., 1959.

6. Hickey, T., Ju, Q. and van Emden, MH., Interval Arithmetic: From principles to implementa-
tion. Journal of the ACM (JACM) 48.5 (2001): 1038-1068.

7. Bohlender, G., Kulisch, U., Definition of the Arithmetic Operations and Comparison Relations
for an Interval Arithmetic Standard. Reliable Computing 15 (2011): 37.

8. Barreto, R., Controlling FPU rounding modes with Python, http://rafaclbarreto.wordpress.com/
2009/03/30/controlling-fpu-rounding-modes-with-python/ (accessed 07-Nov-2014).

9. Daumas, M., Lester, D., Muoz, C. Verified real number calculations: A library for interval
arithmetic. Computers, IEEE Transactions on 58.2 (2009): 226-237.

10. Revol, N., Rouillier, F., Multiple Precision Floating-point Interval Library. http://perso.ens-
lyon.fr/nathalie.revol/software.html (retrieved 15-Nov-2014) (2002).

11. Johansson, F. et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic
(version 0.14), February 2010. http://code.google.com/p/mpmath (accessed 16-Nov-2014).

12. Kearfott, R. An overview of the upcoming IEEE P-1788 working group document: Standard
for interval arithmetic. IFSA/NAFIPS. 2013.

13. Kearfott, R. Interval computations: Introduction, uses, and resources. Euromath Bulletin 2.1
(1996): 95-112.

http://rafaelbarreto.wordpress.com/2009/03/30/controlling-fpu-rounding-modes-with-python/
http://rafaelbarreto.wordpress.com/2009/03/30/controlling-fpu-rounding-modes-with-python/
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://code.google.com/p/mpmath

Chapter 9
Arbitrary Precision Floating-Point

Abstract Floating-Point numbers using the IEEE standard have a fixed number of
bits associated with them. This limits the precision with which they can represent
actual real numbers. In this chapter we examine arbitrary precision, also called
multiple precision, floating-point numbers. We look at how they are represented in
memory and how basic arithmetic works. We end with an examination of arbitrary
precision floating-point libraries that are currently available and offer some thoughts
on when to consider arbitrary precision floating-point.

9.1 What is Arbitrary Precision Floating-Point?

By “arbitrary precision floating-point” we mean a floating-point representation that
is able to vary the level of precision to suit any calculation. Unlike arbitrary sized
integers, which can grow without bound (as long as there is memory), arbitrary
precision floating-point generally fixes the precision before calculations begin.
The “arbitrary” label is appropriate, however, because we can set the precision as
necessary to maintain any level of accuracy (again, assuming memory allows). This
is what we mean by the phrase “arbitrary precision floating-point”.

9.2 Representing Arbitrary Precision Floating-Point
Numbers

There are two main approaches to representing arbitrary precision floating-point
numbers: extend the sign-significand-exponent approach to a large number of digits
in the significand or use a fixed-point representation with a large number of digits
in the fractional part. In both cases the precision can be set by the user, either
the number of digits in the significand or in the fractional part. The base can be
binary (most efficient) or decimal (better accuracy, slower). The libraries that we
will examine below use the exponent approach and represent numbers as,

s X bn_lbn_g e bo x 2°¢

© Springer International Publishing AG 2017 265
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-50508-4_9

266 9 Arbitrary Precision Floating-Point

where s is the sign, e is an integer exponent, potentially large, and b is the binary
significand of a preset precision (n bits) with an implied leading “1” digit. In this
case, arithmetic proceeds as in IEEE 754 floating-point but in software so that the
significand can be arbitrarily large.

Our small implementation of arbitrary precision floating-point, in Python, will
use a fixed-point representation and make copious use of the fact that Python
natively supports infinite precision integers. We will also freely abuse the term
“floating-point” and use it in an expanded sense that includes fixed-point repre-
sentations as a form of floating-point.

As we saw in Chap. 6, fixed-point representations make particularly good use of
integer arithmetic. Specifically, we will represent floating-point numbers in base 10
with a given number of digits in the decimal part. The integer part can be arbitrarily
large and will be handled automatically by Python. We will set the number of
decimal digits in the fractional part before beginning calculations, to simplify the
code, and then proceed using that precision. So, if we set the precision to eight
digits we will represent numbers as,

10.93210032 — 10 93210032
—10.9320122356 — —10 93201224
0.003423 — 342300

where we actually store the sign separately from the magnitude and we have added
a space on the right to differentiate between the integer portion and the scaled
fractional part. Note also that since the precision is eight digits after the decimal
that the second example, which has ten digits after the decimal, is rounded when
stored. To return to the actual floating-point number we need to divide the stored
value by 10¢ where d is the precision of the fractional part. For the example above,
d = 8. In practice, we will convert to a float by using the string representation of
the integer value, with sign, and insert the decimal point in the proper place (d digits
from the end of the string representation).

Let’s start our Python class implementing arbitrary precision fixed-point numbers
(APFP.pY),

1 [from types import =x

2

3 |class APFP:

4 dprec = 23

5

6 def toFP(self, arg):
7 sign = 1

8 arg = arg.strip/()

9 if (arg[0] == "."):
10 arg = "0" + arg
11 if (arg[0] == "-"):
12 sign = -1

13 arg = argl[l:]

9.2 Representing Arbitrary Precision Floating-Point Numbers 267

14 if (arg[0] == "+"):

15 arg = argl[l:]

16 idx = arg.find(".")

17 ipart = arg[0:1idx]

18 fpart = arg[(idx+1) :]

19 flen = len(fpart)

20 rounding = 0

21

22 if (flen <= APFP.dprec):

23 fpart += "0"x (APFP.dprec-flen)

24 else:

25 if (int (fpart [APFP.dprec]) >= 5):

26 rounding = 1

27 fpart = fpart[0:APFP.dprec]

28

29 self.n = sign* (int (ipart) * 10**APFP.dprec +
int (fpart) + rounding)

30

31 def init (self, x="0"):

32 if (type(x) == StringType) or (type(x) ==
UnicodeType) :

33 if (x.find(".") != -1):

34 self. toFP(str(x))

35 else:

36 self. toFP(str(x)+".0")

37 elif (type(x) == FloatType) :

38 self. toFP("%0.18f" % x)

39 elif (type(x) == IntType) or (type(x) ==
LongType) :

40 self. toFP("%d.0" % x)

41 else:

42 raise ValueError ("unsupported value")

where we store the decimal precision in the class variable dprec (line 4). Set this
once to the desired precision and then use the class. A more sophisticated library
would track the precision per value and scale accordingly. Here the default precision
is randomly set to 23 decimal digits. We start with two methods, init and
___toFP, the constructor which accepts a value to store in x, and a private method to
process that value. The _init method (line 31) uses the type of the argument
to make a string representation and passes that to _ toFP (line 6). The code in
__init__ has the task of creating a string of the argument with a decimal point in
the proper place. Note that the conversion on line 38 uses 18 digits for the decimal
so that a Python float (internally a C double) is represented with complete precision.

The toFP method performs string checks and processing (lines 8 through 15)
and sets the sign (sign) accordingly where 1 is used for a positive number and
-1 is used for a negative number. Finally, lines 17 and 18 extract the integer and
fractional parts of the input string (i.e., left of the decimal point and right of the
decimal point). Note that these are kept as strings for now. The variable rounding

268 9 Arbitrary Precision Floating-Point

(line 20) is set to zero. It will be set to one if it is necessary to truncate the fractional
part of the input and the d 4 1th digit is > 5. Adding one to the scaled input is
equivalent to adding 10™¢, the smallest value that can be represented.

Lines 22 through 27 manipulate the fractional part to handle the case when the
fractional part is less than d digits in which case trailing zeros are added (line 23) to
make it exactly d digits long. If the fractional part is longer than d digits we check if
the first digit to be dropped is > 5 and if it is, increment rounding (line 26). We
then extract the first d digits of the fractional part.

Lastly, we can set the scaled integer value that represents the input (line 29).
We scale the integer part, as an integer, by 10? and add in the integer value of the
fractional part. We also add in rounding to handle the rounding case of line 25
and multiply all by sign. We now have the scaled value in self .n.

To display an arbitrary precision number we will overload the Python methods
for generating a string version of an object. This will let us get the value with
the print statement as well as with the str and repr functions. We will also
overload the methods corresponding to the f1oat and int functions so that they
will work as expected. This is done with,

1|def str_(self):

2 if (self.n == 0):

3 return "0.0"

4

5 s = str(self.n)

6 if (len(s) <= APFP.dprec):

7 s = "0"x (APFP.dprec-len(s)) + s
8 ans = "0." + s

9 else:

10 ip = len(s) - APFP.dprec
11 ans = s[0:ip] + "." + s[ip:]
12

13 k = len(ans) -1

14 while (ans[k] == "O"):

15 k -=1

16 ans = ans[0: (k+1)]

17 if (ans[-1] == "."):

18 ans += "0"

19 if (self.n < 0):

20 ans = "-" + ans

21

22 return ans

23

24/def repr (self):

25 return self. str ()

26

27/def _ float_ (self):

N
©

return float(self. str ())

N
\e]

9.2 Representing Arbitrary Precision Floating-Point Numbers 269

30/def _ int (self):

31 ans = self. str ()
32 idx = ans.find(".")
33 return int (ans[0:1dx])

where the main methodis __str__ which returns a string representing the number.
If zero, return zero (line 3). Otherwise, convert the scaled integer to a string (line 5).
If this string is less than the precision the integer part is zero so return a value starting
with zero after prepending the fractional part with enough leading zeros to match the
precision (lines 7 and 8). Otherwise, insert the decimal point before the fractional
part (line 11). When line 13 is reached ans contains a string representation of
the number but it also has all the trailing zeros necessary to reach the fractional
precision. To make the return value look nicer lines 13 through 15 locate the first
nonzero digit scanning right to left. Line 16 then truncates the answer to drop the
trailing zeros. Lines 17 and 18 add a final zero after the decimal point if the number
has no fractional part. Lines 19 and 20 prepend the sign if the number is negative.
Finally, the exact representation is returned (line 22).

The repr method, called by the repr function, simply returns the string
representation (line 25). Similarly, to convert to a Python float the float
method simply attempts to interpret the string representation as a floating-point
number. If it is too large in magnitude, it will return positive or negative infinity.
Lastly, int finds the integer portion of the string representation and returns
it as an integer. This integer, because of Python’s big integer support, will be exact
(without the fractional part, which is dropped, not rounded).

Here is an example session with the class as it stands now,

>>> from APFP import =
>>> APFP.dprec = 6
>>> X = APFP("3.14159265")
>>> X
3.141593
>>> print x
3.141593
>>> str(x)
73.141593"
>>> repr (x)
73.141593"
>>> float (x)
3.141593
>>> int (x)
3

where we set the decimal precision to six. In this case, m is truncated with
rounding to use exactly six digits, 3.141593. The overloaded str method then
ultimately handles all the calls that follow. Note, the f£1oat call returns the exact
representation in this case because six digits fits easily in a C double. Naturally,
the integer part is simply three.

270 9 Arbitrary Precision Floating-Point

9.3 Basic Arithmetic with Arbitrary Precision Floating-Point
Numbers

Let’s add basic arithmetic to our library. We follow the methods used in Chap. 6 for
addition, subtraction, multiplication and division of fixed-point numbers. Addition
and subtract are particularly simple. Since each number is stored internally as a a
signed integer that is properly scaled by 10¢ where d is the decimal precision we
simply need to add or subtract as normal,

def _ add_ (self, b):
z = APFP()
z.n = self.n + b.n

return z

def sub_ (self, b):

z = APFP()

1
2
3
4
5
6
7
8 z.n = self.n - b.n
9

return z

where we create a new object (lines 2 and 7) and then set it to the sum or difference
of the current number and the given number (lines 3 and 8). We return the new object
and are done. Why does this work? A simple example will illustrate,

123) 123 0000000
+ 34|+ 340000000
157, 157 0000000

for d = 7 and added space after the integer part on the right side. Similarly, for
subtraction we have,

123.549) 123 5490000
— 34.067 — 340670000
89.482 89 4820000

where it is plain that the scaled versions of the numbers lead to exact results since
there is no shifting of the implied decimal point. Overflow and underflow are not an
issue in this case because we are using infinite precision integers.

What about multiplication and division? They are almost as simple but we do
need to be aware of what is happening in order to rescale the results properly. For
multiplication we have,

XY = (x x 109) x (y x 10%) = (xy) x 10%

9.3 Basic Arithmetic with Arbitrary Precision Floating-Point Numbers 271

where X and Y are the scaled versions of x and y. This means that if we simply
multiply the scaled integers we will end up with the product we want (xy) but instead
of being scaled by 10¢ it will be scaled by 10>?. We can fix this by dividing (integer
division) by 10¢ but if we simply do that we will introduce a bias by truncating digits
that do not fit without properly rounding. We can fix this by adding 5 to the highest
digit that will be truncated and then dividing. The smallest value we can represent,
when the entire number is scaled by 10%?, is 10¢ so if we add 5 x 10%~! we will be
adding five to the first truncated digit which will round the next digit, the smallest
digit we are keeping, to the proper value. For example, what we will do is equivalent
to rounding 77> = 9.8696043785340225 to nine decimal places (d = 9) and getting
9.869604379 instead of 9.869604378 because we added 5 to the digit after the final
8 to round up (the next digit is 5).
So, after all the words above, the implementation is straightforward,

1/def mul (self, b):

2 z = APFP()

3 z.n = (self.n b.n + 5%x10x% (APFP.dprec-1)) /
10*+xAPFP.dprec

4 return z

where z holds the answer and we set it in line 3 by first multiplying the two numbers
(self.n x b.n), adding our bias correction (5%10x* (APFP.dprec-1)),
and then dividing by 10¢ (10 +«APFP.dprec) to rescale. The signs of the two
numbers are handled automatically by the multiplication.

Division is similarly straightforward once we pay attention to what is actually
happening and account for rounding. Following the derivation of Chap.6 we see
that division of decimal fixed-point numbers is best represented with,

102 + 5 1041 5
X X + x;x =)—Cx10d+—
y x 10 y 10

where % = % is added to round properly and avoid bias due to truncation
effects, just as was done for multiplication. For example, if d = 8 and the bias
correction is present 1/1120 = 0.00089286 because the actual result is closer to
0.00089285714 . .. where the next digit, the 7, requires rounding to 6. Without the
bias correction the d = 8 answer would end in a 5, not a 6.

With this in mind, division is easily implemented,

lldef div__ (self, b):

2 z = APFP()
3 z.n = (self.n % 10+xAPFP.dprec + (5%b.n) / 10) / b.n
4 return z

where the result (line 2) is set with the expression that is a properly scaled and bias
corrected quotient (line 3). This line is a direct translation of the left-hand side of
the equation above defining division. As with multiplication, the signs are properly

272 9 Arbitrary Precision Floating-Point

handled by the expression as well. Note that (5xb.n) /10 is equivalent to 5 X y x
1047! since b . n is already scaled by 10¢ so 104/10 = 10471,

Let’s look at a sample session using our arbitrary precision floating-point class
as it currently is,

>>> from APFP import =
>>> x = APFP(11.09); y = APFP(1120.7768)
>>> X+y
1131.866800000000093718
>>> x = APFP("11.09"); y = APFP("1120.7768")
>>> X+y
1131.8668
>>> X-Y
-1109.6868
>>> X*y
12429.414712
>>> x/y
0.00989492287848927636618
>>> APFP.dprec
23
16 >>> APFP.dprec = 64
17/>>> x = APFP("11.09"); y = APFP("1120.7768")
18/>>> x/y
19 0.0098949228784892763661774583485311259119567785485
92369149682613

w J o0 Ul bW N

e e R
A WN RO

where we added line numbers for reference. The module is imported in line 1. Line 2
defines two variables and line 3 adds them producing line 4. This seems mysterious
at first, why the extra bit at the end? It has to do with the way the variables were
defined in line 2. The values given to the constructor were Python floats, C doubles,
and as such were subject to the imprecision IEEE 754 numbers have. In line 5 we
redefine x and y using exact strings as arguments. In this case the sum shown in
line 7 is exact, as expected. The same is true for subtraction (line 9), multiplication
(line 11), and division (line 13) which uses all the available decimal digits for the
default precision of 23 digits (shown in line 15). Line 16 changes the precision to 64
digits, line 17 redefines x and y in this new precision, and line 19 shows the division
accurate to 64 digits.

So far, so good. The library works and is already useful but we can improve it.
We are missing comparison operators and a few other “nice to have” functions to
say nothing of trigonometric and other transcendental functions.

9.4 Comparison and Other Methods 273
9.4 Comparison and Other Methods

Python kindly offers us many methods that we can overload to work with existing
operators. This includes all the expected comparison operators: >, <, >, <, ==,
and ! = which become one-liners,

1|def 1t (self, b):

2 return self.n < b.n
3

4 |[def gt (self, Db):

return self.n > b.n

5

6

7 |def _ le (self, b):

8 return self.n <= b.n

9

10/def _ ge (self, b):

11 return self.n >= b.n
12

13/def _ eqg (self, b):

14 return self.n == b.n
15

l16/def @ ne (self, b):

17 return self.n != b.n

courtesy of the magic of fixed-point arithmetic. Since each number is (assumed!)
to be scaled by the same value direct comparison of the integer representation
is equivalent to a floating-point comparison. So, we simply compare the integer
representations directly and return the result.

Absolute value and unary negation are also easily implemented,

def _ abs_ (self):
z = APFP()
z.n = abs(self.n)

return z

1
2
3
4
5
6/def _ neg (self):
7 z = APFP ()

8 z.n = -self.n

9

return z

where in each case we return a new instance and apply the operation to the integer
representation directly.

The operation of these new methods is self-explanatory so we will dispense with
the examples and move directly to the more interesting issue of trigonometric and
transcendental functions. We’ll throw square root in there as well, just for fun.

274 9 Arbitrary Precision Floating-Point
9.5 Trigonometric and Transcendental Functions

A complete arbitrary precision library will include the basic trigonometric functions,
sin, cos, and tan, as well as transcendental functions line log (natural log), exp
(e%), and a fast square root. We will add these functions here by either adapting
the cookbook examples given in the Python decimal module documentation [1]
which are already designed for arbitrary precision or by using Newton’s method
to iteratively determine the proper value. We use the Python cookbook examples for
the trigonometric functions and exp which add terms to a series representation until
the value is no longer changing. We use Newton’s method for square root and log
as we did in Chap. 6 for fixed-point arithmetic.

Sine and cosine are as follows, with tangent defined as tan 6 = sin

cos 6’

1 |def sin(self):

2 i, lasts, fact, sign = [APFP(j) for j in [1,0,1,1]]

3 s = self

4 num = self

5

6 while (s != lasts):

7 lasts = s

8 i += APFP("2")

9 fact »= 1 %= (i - APFP("1"))

10 num x*= self » self

11 sign x= APFP("-1")

12 s += num / fact * sign

13 return s

14

15 def cos(self):

16 i, lasts, s, fact, num, sign = [APFP(]j) for j in
[0,0,1,1,1,1]]

17

18 while (s != lasts):

19 lasts = s

20 i += APFP("2")

21 fact *= 1 % (i - APFP("1"))

22 num x= self % gelf

23 sign x= APFP("-1")

24 s += num / fact * sign

25 return s

26

27|def tan(self):
28 return self.sin() / self.cos()

9.5 Trigonometric and Transcendental Functions 275

where sin and cos are implementations of the Taylor series expansions for sin and
cos,

. x3+x5 x7+xg
sinx=x——+—-——-+ ——
3t 579
P A S
cosx=1——+———+ ——-..

21 41 6! 8!

which add terms to the result until it no longer changes (s == lasts). This
approach adapts the methods to any precision at the expense of potentially requiring
hundreds of terms. The tangent is simply defined in line 28.

Adding ¢* is similarly accomplished by a Taylor’s series expansion which sums
terms until they no longer affect the result,

1 def exp(self):

2 i, lasts, s, fact, num = [APFP(j) for j in [0,0,1,1,1]]
3

4 while s != lasts:

5 lasts = s

6 i += APFP("1")

7 fact »= i

8 num *= self

9 s += num / fact

10 return s

where the series is,

2 x3 X4 xS

et =1 +—x-+-53-+ ST-+ ZT'+'§?'+"'

To implement square root and natural logarithm we switch from summing a series
to iterating via Newton’s method. As shown in Chap. 6, iterating,

1 n
Xip1 = (6 + =)
2 Xi

will result in x — +/n. In code this becomes,

1/def sqgrt(self):

2 if (self < APFP(0)):
return APFP(-1)
if (self == APFP (1)) :
)

(
return APFP (1

o Ul o W

276 9 Arbitrary Precision Floating-Point

7 s = self / APFP(2)

8 lasts = APFP(0)

9

10 while (s != lasts):

11 lasts = s

12 s = APFP("0.5") % (s + self / s)
13 return s

where we check for negative and zero arguments (lines 2 through 5) and then iterate
an initial guess, xo = n/2, in line 7 until it no longer changes (s == lasts). It
is known that this method for approximating the square root converges very rapidly
which we can see if we plot the number of iterations required as a function of the
precision,

18

sqrt |

=
o

-
'S

=
N

=
o

©

Number of Iterations

0 5000 10000 15000 20000 25000 30000
Decimal Precision

where the number of iteration necessary for convergence levels off quickly.
Our last transcendental function is log which, again following the derivation in
Chap. 6, is found by iterating,

X; e —c _
Xipl =X f(x) =xi— =xi—1+ce™™

) e

with xop = ¢/2 and x — log(c). Unlike square root, this function might, for certain
precisions, result in a set repeating values so that simply checking for equality with
the last estimate is not sufficient. So, we add a maximum iteration term to ensure
that the function will end and return eventually. In code this becomes,

9.5 Trigonometric and Transcendental Functions

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

def log(self, imax=20):

if (self <= APFP(0)):
return APFP(-1)

if (self == APFP(1)):
return APFP(0)

s = self / APFP(10)
lasts = APFP(0)

i=0

while (s != lasts) and
lasts = s
s += self * (-s).exp()
s -= APFP(1)
i +=1

return s

(1 < imax) :

2717

where unlike the other methods we allow a keyword to set the maximum number of
iterations before returning (imax). Lines 2 through 5 check for bad values or simple
values. The loop (line 11) runs until we do get convergence or max out the number
of iterations.

Before we move on to the next section, let’s take a look at the performance of
sin, cos, and exp by number of terms required as a function of precision. Plotting
these gives,

Number of Terms

400

w

o

o
T

N
o
o

500 T

100

exp

0 . .
0 200 400

600

Decimal Precision

800

1000

where we see that sin and cos are virtually indistinguishable but that exp requires

approximately twice as many terms for any given precision.

278 9 Arbitrary Precision Floating-Point

We have not attempted to optimize this simple library but it is instructive to take
a look at performance in terms of time. The arithmetic operations (4, —, X, +)
will be quite performant relative to the trigonometric and transcendental functions
because they are using the optimized, C-based, routines of the Python interpreter.
Python makes use of Karatsuba multiplication for large integers, which is a good
choice offering O(n'°%23) performance, better than the grade school method which
is O(n?). See Chap. 5, Sect. 5.4 for a description of the Karatsuba algorithm.

If we plot the evaluation time of sin, cos, and exp as a function of precision
we get,

3.5

3.0

20

Time (s)

1.0}

0.5

0 500 1000 1500 2000 2500

0.0

Decimal Precision

where we see that our implementations are far from stellar and that they give the
appearance of a run time like O(n?).

We have created a simple but effective implementation of arbitrary precision
floating-point numbers in Python, via fixed-point numbers, and have added more
than just basic arithmetic. We definitely want to remember that the library is meant
for illustration purposes only and understand, especially when we consider high
precision performance, that we want to look to more advanced implementations for
serious work. In the next section we take a look at some powerful arbitrary precision
floating-point libraries.

9.6 Arbitrary Precision Floating-Point Libraries

Most major programming languages support arbitrary precision floating-point
extensions via libraries. Since we are focusing here on Python and C we will
look at two such libraries, one for Python (mpmath) and one for C (GNU MPFR).

9.6 Arbitrary Precision Floating-Point Libraries 279

The former is implemented in pure Python, like the APFP class we defined above,
while the latter is pure C and has been wrapped many times to make it available to
different programming languages.

We will discuss how to install the libraries and summarize and demonstrate
the main functionality of each including the way in which the libraries store and
manipulate arbitrary precision numbers.

mpmath Our first library is mpmath [2] which describes itself as “a free (BSD
licensed) Python library for real and complex floating-point arithmetic with arbi-
trary precision. It has been developed by Fredrik Johansson since 2007, with help
from many contributors.” We can install mpmath easily (assuming a 32-bit Linux-
based system which is the standard assumption for this book) using pip,

sudo pip install mpmath

and we can check that it installed inside of Python with,

>>> import mpmath
>>> mpmath. version
'0.19'

where your version should be at least 0.19 and will probably be higher.

The mpmath library provides, in pure Python without requiring external
libraries, all the basic functionality of our APFP class along with much more.
We can test that mpmath installed correctly and get an idea of the plethora of
functionality it provides by running its internal tests,

>>> import mpmath
>>> mpmath.runtests ()

where the test results should all be ' ok’ across all the tested areas. We will do a
great disservice to this elegant library by only considering here the functionality that
matches our APFP class.

Let’s look at how mpmath sets the precision for calculations. These examples
illustrate how to do it,

1 |>>> from mpmath import mp

2 |>>> mp.mpf(’1’) / mp.mpf('1120")
3 mpf (10.00089285714285714283")
4 |[>>> mp.pretty = True

5|>>> mp.mpf(’1’) / mp.mpf(’1120')
6 0.000892857142857143

7 |>>> mp.dps = 20

8 >>> mp.mpf(’1’) / mp.mpf(’1120")
9 0.00089285714285714285714

10 >>> mp.dps = 50

11/>>> mp.mpf(’1’) / mp.mpf(’1120")

12 0.0008928571428571428571428571428571428571428
5714285714

280 9 Arbitrary Precision Floating-Point

where we have added line numbers to aid our description of what is going on.
Line 1 imports mpmath. In particular, it imports the mp context. Several different
kinds of contexts are supported, we will only use the mp context. Notice that this
line is different than the typical NumPy import line of import numpy as np
but the effect is similar, we prefix mpmath calls with mp. Line 2 evaluates the
expression 1/1120 by defining two mpmath numbers using mp.mpf () which
creates a mpmath floating-point scalar. Line 3 shows the response. Since we are
using the Python command line we will get the output of repxr (). Line 4 sets
an internal flag so that repeating the calculation (line 5) gives us a prettier output
(line 6).

The default decimal precision for mpmath is 15 digits which is what we get in
line 6. Ignore the leading zeros—we’ll see why when we talk about how mpmath
stores numbers internally below. Line 7 ups the decimal precision to 20 digits which
we see in line 9. Lines 10 and 12 do the same for 50 decimal digits. One other thing
to notice in the example above is that the mpf constructor accepts strings, integers
and floats, just like the APFP class. Similarly, use strings to most accurately specify
numbers.

Naturally, if division works as in line 2, the other basic arithmetic operations
will also work in a similar fashion. Lastly, mpmath supports free mixing of its own
numbers with native Python integers and floats. This is something we didn’t add to
the APFP class in order to keep the implementation simple.

If we want to compare mpmath with APFP, we should be aware of the difference
in meaning between the precision each library uses. For example,

>>> mp.dps = 15

>>> APFP.dprec = 15

>>> mp.mpf ("1") / mp.mpf ("1120")
0.000892857142857143

>>> APFP("1") / APFP("1120")
0.000892857142857

where we set both mpmath and APFP to use a precision of 15 digits. We then
calculate the same quantity and see that the output is different. This is because when
mpmath uses 15 digits it means 15 significant digits. When APFP uses 15 digits it
means, literally, that there are 15 digits after the decimal point, including leading
zeros. With this in mind, a few examples of arithmetic will show that mpmath and
APFP are giving identical results but with some interesting differences,

>>> mp.dps = 23

>>> APFP.dprec = 23

>>> mp.mpf ("12.9432") % mp.mpf ("-0.043225")
-0.55946982

>>> APFP("12.9432") % APFP("-0.043225")
-0.55946982

>>> mp.mpf ("12.9432") / mp.mpf ("-0.043225")
-299.43782533256217466744

0 o0 Ul bW N

9.6 Arbitrary Precision Floating-Point Libraries 281

9 |>>> APFP("12.9432") / APFP("-0.043225")

10 -299.43782533256217466743783

11/>>> mp.mpf ("12.9432") * mp.mpf ("43225094543.33")

12 559471043693.228856

13|/>>> APFP("12.9432") % APFP("43225094543.33")

14 559471043693.228856

15/>>> mp.mpf ("129435433.2095345332") % mp.mpf
("43225094543.33")

16 5594858837739005819.5525
17|>>> APFP("129435433.2095345332") % APFP("43225094543.33")
18 5594858837739005819.552518723556

Lines 1 and 2 set our precision to 23 decimals. So, lines 3 and 5 show that each
library gives the same result for an operation that fits well within the allowed
precision. Lines 9 and 11 show the difference between the libraries that we noticed
above, namely, that mpmath is using 23 decimal digits for the entire number while
APFP uses 23 digits in the fractional part so that where mpmath ends with 744
APFP ends with 743783 where the bold digits are used to get to 23 decimal digits
in the fractional part and are also correctly rounded in the mpmath answer.

Lines 11 and 13 show that, again, when everything fits nicely in the specified
number of digits both libraries give identical results. However, lines 15 and 17 show
something new. Namely, since mpmath uses a fixed number of digits for the entire
number, the large product returns only four digits after the decimal point. However,
APFP uses a fixed number of digits after the decimal point but an arbitrary number
of digits in the integer part of the number so that it gives the same integer part
but still has 23 digits available for the fractional part which is more than is needed
to exactly express the full result of the multiplication. This difference between the
two libraries is important to remember and could be seen as an advantage to the
fixed-point representation that is missing in the floating-point representation (more
below). For example, perhaps the smallest values used in science are the Planck units
of which the Planck time is on the order of 10~**s. So, naively, one might imagine
setting APFP . dprec to 50, or better still 100 (to maintain full fractional precision
during multiplication) to cover the smallest of fractions of a value and, with an
“infinite” sized integer part, be able to represent any physically meaningful quantity
with all the precision necessary to accurately carry out virtually any calculation.

The number of trigonometric and transcendental functions supported by mpmath
exceeds several dozen. Here we will do quick comparisons between APFP and
mpmath for sin and exp to see how an optimized implementation can improve over
a naive implementation. If we measure the computation time for sin(1) and ¢ for
each library we get numbers like these,

282 9 Arbitrary Precision Floating-Point

sin(1) e
Precision | APFP mpmath |APFP mpmath
100 0.004277 0.000201 | 0.003466 0.000073
1000 0.301725 0.002486 | 0.245470 0.001851
2000 1.758381 0.008085| 1.4425450.006231
3000 5.005423 | 0.016561 | 4.142346|0.013261

4000 10.866939 | 0.028612 | 9.002207 | 0.023152
5000 20.1188820.044388 | 16.673306 0.036576

which shows that our naive APFP implementation, while accurate, could be greatly
improved.

How does mpmath get such good performance? An examination of the code
shows that it is finely tuned and employs a lot of tricks including caching,
symmetries, and preset precision thresholds where different approaches are used.
If the precision is high enough the Taylor series expansion is used but it is also
finely tuned and far more sophisticated than the simple approaches used by APFP.
Interestingly, one of the optimizations used by mpmath is to switch internally to a
fixed-point representation in some cases. To explore these optimizations, see the file
libelefun.py in the mpmath/1ibmp directory of the mpmath distribution.

As alluded to above, mpmath uses a different storage format than APFP.
Where APFP uses a scaled arbitrary precision integer, a standard Python data type,
mpmath uses a true floating-point format stored internally as a tuple. Specifically,
mpmath stores a number as a 4-tuple: (sign, significand, exponent, bit count). The
sign is zero (positive) or one (negative). The significand is a Python integer, as in
APFP, but in this case it represents the significand. The exponent is also a Python
integer. The bit count is the size of the significand in bits. So, the number expressed
by a 4-tuple is,

x = (=1)"8" x significand x 24P

where mpmath ensures that the significand is always odd.

As we saw with the examples above, mpmath is a solid, well-optimized library,
all the more impressive because it is pure Python. It is well recommended as mature,
highly portable, software.

GNU MPFR We discussed the mpmath library in some detail because it was
directly comparable to our own Python APFP class. Here we will take a quick look
at the popular MPFR library [3] which forms the basis of many other libraries and
tools.

The GNU MPFR arbitrary precision floating-point library is part of a loose suite
of tools that implement arbitrary precision integers (GMP) and intervals (MPFI).
MPFR is written in C but with easy access from C++. The library also usable from
MATLAB®, Python (via the bigfloat module), and other languages. Here we
will show simple examples in C.

9.6 Arbitrary Precision Floating-Point Libraries 283

First, install MPFR from http://www.mpfr.org/ by following the directions on
that site. We will be using version 3.1.4. Then, to test the installation, let’s run the
sample program from the website,

1 #include <stdio.h>
2 |#include <gmp.h>

3 |#include <mpfr.hs>
4

5 int main (void)

6 {

7 unsigned int i;
8 mpfr t s, t, u;
9

10 mpfr init2 (t, 200);
11 mpfr set d (t, 1.0, MPFR_RNDD);
12 mpfr init2 (s, 200);

13 mpfr set d (s, 1.0, MPFR_RNDD);
14 mpfr init2 (u, 200);

15 for (i = 1; i <= 100; 1i++)

16 {

17 mpfr mul ui (t, t, i, MPFR RNDU) ;
18 mpfr set_d (u, 1.0, MPFR_RNDD) ;
19 mpfr div (u, u, t, MPFR_RNDD) ;

20 mpfr add (s, s, u, MPFR_RNDD) ;

21 }

22 printf ("Sum is ");

23 mpfr out str (stdout, 10, 0, s, MPFR_RNDD) ;
24| putchar ('\n’);
25 mpfr clear (s);
26| mpfr_clear (t);
27 mpfr clear (u);

28| mpfr free cache ();
29 return O;

30}

which can be compiled with,
$ gcc mpfr exl.c -o mpfr exl -lmpfr -lgmp

assuming the code is stored in mpfr exl.c. Note the inclusion of the MPFR
library via - lmpfr. We also include the GMP library via - 1gmp. When executed
the program produces,

Sum is 2.718281828459045235360287471352662497757247093699
9595749669131

which is a reasonably accurate value for e since the program implements,

o0
€=ZE

k=0 "

http://www.mpfr.org/

284 9 Arbitrary Precision Floating-Point

We say “reasonably” because the last three digits (131) are not correct, they should
be, according to APFP, 676. This is exactly what we see if we change the program
to increase the precision by replacing “200” in lines 10, 12, and 14 with “400”.

A lot is happening in the sample program. Let’s go over it carefully as this will
introduce fundamental concepts associated with the MPFR library. First, notice that
lines 2 and 3 import both gmp . h and mpfr.h. Line 8§ creates several variables of
mpfr t type. These store MPFR numbers. Lines 10 through 14 are,

10 mpfr init2 (t, 200);
11 mpfr set d (t, 1.0, MPFR_RNDD);
12 mpfr init2 (s, 200);
13 mpfr set_d (s, 1.0, MPFR_RNDD) ;
14 mpfr init2 (u, 200);

which initialize and set MPFR variables. The variable t is initialized (line 10)
by calling mpfr init2. This function initializes the given variable setting its
precision to the given number of bits (not decimal digits like APFP or mpmath).
The number itself is set to NaN indicating that MPFR supports the expected floating-
point concepts of NaN and Foo. Line 11 sets t to 1.0 via mpfr_ set d which
assigns an IEEE double precision value to an MPFR variable. The third argument of
this call, MPFR_RNDD, rounds the value towards —oo. So, MPFR supports rounding
modes as well, just like IEEE 754. Lines 12 and 13 do the same for s. What if
we want to assign a variable to a high precision constant? We can simply call
mpfr set str instead which takes a string argument representing the value.
Line 14 initializes u but does not assign it a value yet.

Since MPFR uses bits for precision, how do we know the number of decimal
digits? The relationship is digits ~ bits/3.32 so 200 bits implies about 60 decimal
digits.

The main loop implements the series summation with,

15 for (i = 1; 1 <= 100; i++)

16 {

17 mpfr mul ui (t, t, i, MPFR RNDU) ;
18 mpfr set d (u, 1.0, MPFR_RNDD) ;
19 mpfr div (u, u, t, MPFR_RNDD) ;
20 mpfr add (s, s, u, MPFR_RNDD) ;
21 }

where different MPFR functions are called to perform basic arithmetic. Each
function follows this form,

mpfr add(c, a, b, rnd)

which implements ¢ < a + b with rounding mode rnd. So, line 17 multiplies
t by i rounding towards positive infinity. In this case mpfr mul ui is called
to multiply an MPFR number by an unsigned integer. Likewise, lines 19 and 20

9.6 Arbitrary Precision Floating-Point Libraries 285

implement u < u/t and s < s + u respectively with rounding towards negative
infinity. The loop runs for a set 100 iterations which is sufficient to converge when
200 bits of precision are used.

When complete, the result is displayed by calling mpfr out str (line 23) to
write a decimal representation of s to stdout. The third argument (0) selects the
number of digits to output based on the precision of s. Note here that a specific
rounding mode is given, in this case towards negative infinity.

When we are through with an MPFR variable we need to clear it and release the
memory. This is done above in lines 25 through 27 by calling mpfr clear. Line
28 callsmpfr free cache to explicitly free memory associated with predefined
constants.

Let’s look at a second example using MPFR. In Chap. 4 we present an exercise
where we iterate the logistic equation written in different algebraically-equivalent
forms to show that round-off error quickly dominates and causes calculations that
should produce identical results to diverge. We will repeat that exercise here using
MPFR now that we have arbitrary precision at our disposal.

The logistic equation is often used to illustrate the onset of chaotic behavior. It is
an iterated one-dimensional map,

Xipr = (1 —x;) = rx — rxixi = xi(r — rx;)

where x = [0, 1] and r < 4. If r is above a certain value the behavior of the logistic
equation is chaotic. We will select r = 3.8 which is in the chaotic region and iterate
each of the three forms above. In an ideal world the values will track identically but
because of round-off error in floating-point, even with arbitrary precision, the values
will eventually diverge after a sufficient number of iterations.

1 |void pp(mpfr_t x0, mpfr t x1, mpfr_t x2)

2 printf (" x0: "); mpfr out_ str(stdout, 10,
0,x0,MPFR_RNDN) ; printf ("\n");

3 printf (" x1l: "); mpfr out str(stdout, 10,
0,x1,MPFR_RNDN) ; printf ("\n") ;

4 printf (" x2: "); mpfr out str(stdout, 10,
0,x2,MPFR_RNDN) ; printf ("\n\n");

5}

6

7 int main (int argc, char xargv([]) {

8 unsigned int i, p, n;

9 mpfr t x0,x1,x2,u,v, ¥, one;

10

11 p = (unsigned int)atoi(argv([1l]);

12 n = (unsigned int)atoi(argv[2]) ;

13 mpfr init2(x0, p); mpfr init2(xl, p);

14 mpfr init2(x2, p); mpfr_init2(r, p);

15 mpfr init2(one,p); mpfr init2(u, p);

mpfr init2(v, p);
16 mpfr set_d(one,1, MPFR_RNDN) ;
mpfr_set_d(r, 3.8, MPFR_RNDN) ;

286

17

18
19
20
21
22

23
24
25

26
27
28
29

30
31
32
33
34
35

36
37
38

39
40
41
42

43
44
45
46
47
48

49
50
51

mpfr set_d(xO0,

mpfr set d(x1,

mpfr set d(x2,

9 Arbitrary Precision Floating-Point

0.25, MPFR_RNDN) ;
0.25, MPFR_RNDN) ;
0.25, MPFR_RNDN) ;

printf ("Initial values:\n");

for(i=0; i < 8; i++) {
mpfr sub(u, one, x0, MPFR_RNDN); //
r*x0x (1.0 - x0)
mpfr mul (x0, x0, u, MPFR_RNDN) ;
mpfr mul (x0, r, x0, MPFR_RNDN) ;
mpfr mul (u, r, x1, MPFR_RNDN) ; //
x1l = r*x1l - r*x1lsxl
mpfr mul (v, r, x1, MPFR_RNDN) ;
mpfr mul (v, v, x1, MPFR_RNDN) ;
mpfr sub(xl, u, v, MPFR_RNDN) ;
mpfr mul (u, r, x2, MPFR_RNDN) ; //
X2 = X2% (r - r*xx2)
mpfr sub(v, r, u, MPFR_RNDN) ;
mpfr mul (x2, x2, v, MPFR_RNDN) ;
}
pp (x0,x1,x2) ;
for(i=0; i < n-16; i++) {
mpfr_ sub(u, one, x0, MPFR RNDN); //
x0 = r*x0x (1.0 - x0)
mpfr mul (x0, x0, u, MPFR_RNDN) ;
mpfr mul (x0, r, x0, MPFR_RNDN) ;
mpfr mul (u, r, x1, MPFR_RNDN) ; //
x1 = r*xl - r*xlxxl
mpfr mul (v, r, x1, MPFR_RNDN) ;
mpfr mul (v, v, x1, MPFR_RNDN) ;
mpfr sub(xl, u, v, MPFR_RNDN) ;
mpfr mul (u, r, x2, MPFR_RNDN) ; //
X2 = X2*(r - r*x2)
mpfr sub(v, r, u, MPFR_RNDN) ;
mpfr mul (x2, x2, v, MPFR_RNDN) ;
}
printf ("\n\nFinal values:\n");
for(i=0; 1 < 8; i++) {
mpfr sub(u, one, x0, MPFR _RNDN); //
x0 = r*x0x (1.0 - x0)
mpfr mul (x0, x0, u, MPFR_RNDN) ;
mpfr mul (x0, r, x0, MPFR_RNDN) ;
mpfr mul (u, r, x1, MPFR_RNDN) ; //

x1l =

r*xl -

r*xl*xx1l

x0

9.6 Arbitrary Precision Floating-Point Libraries 287

52 mpfr mul (v, r, x1, MPFR_RNDN) ;

53 mpfr mul (v, v, x1, MPFR_RNDN) ;

54 mpfr sub(xl, u, v, MPFR_RNDN) ;
)

55 mpfr mul (u, r, x2, MPFR RNDN) ; //

(u
X2 = X2% (r - r*x2)

56 mpfr sub(v, r, u, MPFR_RNDN) ;
57 mpfr mul (x2, x2, v, MPFR_RNDN) ;
58 }

59 pp (x0,x1,x2) ;

60 return 0;

61}

where we are not listing the #include statements to save space. While the listing
seems long, it is really three repetitions of a simple block to implement the three
different forms of the logistic equation,

1 for(i=0; i < n-16; i++)

2 mpfr sub(u, one, x0, MPFR RNDN); //
x0 = r*x0x (1.0 - x0)
3 mpfr mul (x0, x0, u, MPFR_RNDN) ;
mpfr mul (x0, r, x0, MPFR_RNDN) ;
mpfr mul (u, r, x1, MPFR_RNDN) ; //
X1l = r*x1l - r*xlxxl
6 mpfr mul (v, r, x1, MPFR_RNDN) ;
7 mpfr mul (v, v, x1, MPFR_RNDN) ;
8 mpfr sub(xl, u, v, MPFR_RNDN) ;
9 mpfr mul (u, r, x2, MPFR RNDN) ; //
x2 = X2% (r - r*x2)
10 mpfr sub(v, r, u, MPFR_RNDN) ;
11 mpfr mul (x2, x2, v, MPFR_RNDN) ;
12/}

where lines 2 through 4 iterate x0, lines 5 through 8 iterate x1, and lines 9 through
11 iterate x2. The first eight iteration values are displayed along with the final eight.
We compile the program and call it with two command line arguments: precision
and number of total iterations. As we saw in Chap. 3, even after eight iterations
with standard floating-point the values are already diverging significantly. Here we
do not see this deviation but do with the final eight as we will see below. Let’s fix
the number of total iterations at 10,000. If we do this with 113 bits of precision
(equivalent to an IEEE 754 quadruple precision float) we get the following output
for the final iteration,

xo: 0.949404460849763073594113685574416764
x1: 0.457638502447496138812013997759474251
x2: 0.798660115295355269211918348596331193

where the values are clearly no longer in sync with each other. This begs the
question, for a fixed iteration limit of 10,000, what precision do we need to get

288 9 Arbitrary Precision Floating-Point

final values are equal to some level of precision? Some experimentation using a
manual binary search shows that when we set the precision to 6250 bits we get the
following,

xo: 0.6794658940724743462
x1: 0.6726466428639511824
xy: 0.6738777979703301964

where the first two decimals are now equal and we are showing the precision
we’d expect from an IEEE 754 double (53 bits). This implies that we need nearly
118 times the precision of a C double in order to even approach uniformity when
calculating 10,000 iterations of the logistic map! What precision will let us calculate
10,000 iterates and maintain the 53 bit precision of a C double? Some more
searching reveals that 6315 bits of precision is the value we seek. At that precision
the final values are xo = x; = x, = 0.7061911661282795065. We begin to see how
it is possible that mathematical research could require very high precision in order
to be convinced results are legitimate. Fortunately for us, the real world seldom
affords or requires such high precision but it is a bit disconcerting that the bulk of
floating-point calculations performed by computers use so few bits.

Let’s take a second look at the rounding modes supported by MPFR. These
mirror the four rounding modes supported by IEEE 754 along with a mode not
supported by IEEE,

Mode Description

MPFR_RNDU | Round the result up towards +oo0.

MPFR_RNDD | Round the result down towards —oc.

MPFR_RNDZ | Round the result up or down towards zero.

MPFR_RNDN | Round the result to the nearest representable number. Ties to even.
MPFR_RNDA | Round away from zero, up or down. Not in IEEE 754.

Note that in IEEE round to nearest is the assumed default while MPFR requires
the rounding mode be explicitly given. In general, round to nearest (MPFR_RNDN) is
usually sufficient.

How does MPFR store numbers internally? If we look at mpfr.h we see that
mpfr tisan instance of a specific structure,

1 typedef struct {

2 mpfr prec_ t mpfr prec;
3] mpfr sign t _mpfr sign;
4| mpfr exp t _mpfr_exp;
5/ mp_limb t * mpfr d;

6/} _mpfr struct;

where it is evident that MPFR is using a format similar to mpmath with separate
sign, exponent and collection of “digits” (_mpfr d). The mpfr .h header explic-
itly states how to generate the represented number,

9.6 Arbitrary Precision Floating-Point Libraries 289

di—1 | di do
x=sx(?+?+---+ﬁ)x2€
where s is the sign (£1), k = [p/g], B = 28, p is x’s precision in bits, e is the
exponent, and g is a constant used by the underlying GMP library. On our test system
g = 32 bits. Just as IEEE 754 requires that the highest order bit of the significand be
one, MPFR requires that the highest order data value of the significand be > B/2.

How does MPFR stack up against mpmath? This is a somewhat unfair question
as mpmath is pure Python and MPFR is written in C, but it is illustrative to do
a quick comparison in order to understand when it might be acceptable to use
mpmath for a calculation or when one might want to go through the extra work
of using MPFR. To this end, we measured the runtime for 1000 calculations of
sin(1) for both libraries as a function of the binary precision where the timing only
measured the actual calculations and no other overhead. For mpmath, recall, we
can set the binary precision with,

>>> from mpmath import mp
>>> mp.prec = 200

to set the binary precision to 200 bits. If we do the comparison and plot the results
we get,

40
30 -
mpmath

a

o 20
£
'_

10 4

MPFR
0 .
0 5000 10000 15000

Precision (bits)

clearly showing that for precisions much above 1000 bits (about 300 decimal digits)
we will want to use MPFR for serious calculations. Actually, this shows just how
well optimized mpmath is in that it can effectively compete with a purely compiled
library at precisions below 1000 bits. Clearly, a single comparison is not a fair
evaluation but it does provide a ballpark estimate of relative performance.

290 9 Arbitrary Precision Floating-Point

This concludes our investigation into arbitrary precision floating-point libraries.
There are others, to be sure, but mpmath and MPFR provide an adequate overview.

9.7 Thoughts on Arbitrary Precision Floating-Point

What to think of arbitrary precision floating-point? Clearly, if working simply, say
as a sort of “desk calculator”, almost any library, including the APFP library we
developed in this chapter, will work nicely. However, if we are developing software
that relies on many calculations we will want more optimized libraries. If working
in a language like Python, and the precision need not be super high, something like
mpmath will do the trick. For maximum performance, where speed is critical, or
precision needs to be very high, we will want something like MPFR.

But, is arbitrary precision ever really needed? The cheeky answer is “it depends”.
High precision is helpful for some scientific calculations to avoid round-off effects
or because the values really are known with more than the precision expressed by
an IEEE 754 float. A glance at the list of software using MPFR reveals places where
arbitrary precision is desirable. For example, paraphrasing select packages from the
“Software Using MPFR” section of the main MPFR website gives the following list
(as of July 2016),

ALGLIB.NET Implements multiple-precision linear algebra using

MPFR

BNCPack The numerical analysis library which can be compiled
with MPFR

CGAL Computational Geometry Algorithms Library

DateTime-Astro Functions for astronomical calendars

FLINT Fast Library for Number Theory

FractalNow A fractal generator

GCC In GFortran, then in the middle-end phase as of GCC 4.3,
to resolve math functions with constant arguments

libieeep1788 C++ implementation of the preliminary IEEE P1788
standard for interval arithmetic

Macaulay 2 A software system devoted to supporting research in
algebraic geometry and commutative algebra

Magma A computational algebra system

MATLAB® Multiprecision Computing Toolbox for MATLAB®

Protea Software devoted to protein-coding sequences identifica-
tion

TIDES To integrate numerically ordinary differential equations
in arbitrary precision

TRIP A general computer algebra system dedicated to celestial
mechanics

ZKCM A C++ library for multi-precision complex-number

matrix calculations

9.8 Chapter Summary 291

indicating that many math packages and computer algebra systems are interested
in high precision calculations along with certain scientific applications where large
numbers are likely required.

9.8 Chapter Summary

In this chapter we developed a Python class which implements arbitrary precision
floating-point calculations using fixed-point arithmetic. We demonstrated how to use
the class and explored its limitations. We then introduced a sophisticated Python
library for arbitrary precision floating-point and compared it to our own class
revealing strengths and weaknesses of both. We then introduced a high-performance
C library for arbitrary precision floating-point and explored the level of precision
necessary to maintain complete precision for calculations that, naively, should be
equivalent. We ended with some thoughts about arbitrary precision floating-point
and when it might be useful.

Exercises

9.1 Add a frac method to the APFP class which returns the fractional part of a
number.

9.2 Add ceil and floor methods to the APFP class which return [x] and |x|
respectively. Then add round which returns the closest integer to x.

9.3 Add modulo to the APFP class by overloading the modulo operator (%) using
the mod method.

9.4 Add x’ to the APFP class. Overload the —pow _ method so x**y works
properly. Distinguish between two cases: ¥’ where both x and y are arbitrary
precision numbers and x” where 7 is an ordinary Python integer, positive or negative.
(Hint: recall that for real numbers, ¥’ = ”102%))

9.5 Make a plot of the number of iterations for the following series approximations
of e as a function of the precision. Which series converges in the fewest number
of terms? Test precisions from 8 to 4500. Look at the implementation of the APFP
exp method for hints on implementing the series. The series are,

1 o0

k+1

24 &l

k=0
i k+1
< (2k+ 1)!

ey =

292 9 Arbitrary Precision Floating-Point

Bk +1
Z (3k)|

i .
£ 877(kl)

References

1. https://docs.python.org/2/library/decimal.html. (retrieved 10 Jul 2016).
2. http://mpmath.org/. (retrieved 14 Jul 2016).
3. http://www.mpfr.org/. (retrieved 15 Oct 2014).

https://docs.python.org/2/library/decimal.html
http://mpmath.org/
http://www.mpfr.org/

Chapter 10
Other Number Systems

Abstract In this chapter we take a look at a number of other somewhat unusual
number systems. Most of these find use in hardware and are not encountered,
typically, in software. Nonetheless, we will look at these number systems from
a software perspective with the intention of understanding how they operate in
order to see why and when they might be advantageous. Specifically, this chapter
covers the logarithmic number system, double-base number system, residue number
system, and redundant signed-digit number system.

10.1 Introduction

The other chapters in this book examined many of the key number systems used by
computers. However, this list has not been exhaustive. Indeed, in this chapter we
will briefly consider four other number systems which are intellectually interesting
in their own right, each with strengths and weaknesses. These number systems are
typically implemented in hardware but we will explore software implementations
here.

First we will consider the logarithmic number system (LNS) which stores
numbers in log form. We follow with the double-base number system (DBNS)
which, as the name implies, uses more than one base to store numbers. These
numbers are representable as a two-dimensional array or image. Lastly, we consider
the residue (RNS) and redundant signed-digit (RSD) number systems which seek to
improve arithmetic by sacrificing specificity.

10.2 Logarithmic Number System

The IEEE 754 floating-point storage format, discussed in detail in Chap. 3, stores
real numbers in memory as an approximation using a base-2 floating-point signifi-
cand times 2 where i is an integer exponent. This directly preserves the magnitude
of the number. While a completely natural and reasonable thing to do when faced
with the question of “How do I store an arbitrary real number in a finite computer
memory?” as Chap.3 shows, manipulating these numbers requires considerable
effort for certain operations, namely multiplication and division. So, the question

© Springer International Publishing AG 2017 293
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-50508-4_10

294 10 Other Number Systems

could be asked, “Is there a better way to store numbers so that multiplication and
division become simpler?”. The answer is “yes” and logarithmic numbers are the
solution. The logarithmic number system (LNS) stores numbers as 2° where x is
now a floating-point exponent. The significand is always an implied one.

To see why storing numbers this way helps with multiplication and division we
need only remember high school algebra. For two numbers, X and Y,

A =log,(X)
B = log,(Y)
Xy =24 x 28
— 2A+B
X/Y =24/28
_ 9A-B

where we see that if the numbers are stored in log form (A and B) multiplication
and division are simply addition and subtraction. Of course, while very convenient,
there is a price to pay. What about addition and subtraction of numbers stored in log
form? This is where the difficulty lies and is why the logarithmic number system
isn’t widely used though it has been suggested that the advantage of casting multi-
plication and division as addition and subtraction outweighs the difficulty inherent
in addition and subtraction of numbers stored in log form. Indeed, hardware projects
have been undertaken to do just that. A good example is the European Logarithmic
Microprocessor [1] which implemented logarithmic numbers in hardware. We will
examine addition and subtraction of logarithmic numbers below but first let’s look
at how we will store the numbers in memory.

Representing and Storing LNS Numbers A 32-bit IEEE 754 number is stored in
memory as,

31 2322 0 Dbit#
1 8 23
S E M

with a sign bit (S), 8 bits for the exponent (E), and 23 bits for the significand (M).
The exponent is stored in excess-127 format with the special values of 0 and FF g
reserved. The implied base is 2 and the significand has an implied leading 1 bit for
a normalized number. This results in a number stored as,

+1.b2b21by ... by X 2E—127

10.2 Logarithmic Number System 295

where b, is the value of that bit of the significand. Note that this format scales the
floating-point significand by 2 to an integer exponent (2, i € Z).

By way of contrast, a number stored in LNS format uses an implied integer
significand of 1 and a floating-point exponent on the base of 2. This exponent, then,
is the log base-2 of the actual number and it is the exponent that is stored, along
with the sign. There is currently no standard defining how LNS numbers are stored
in memory. We will adopt the format used in [2] for a 32-bit representation of an
LNS number with the modification that the two bits reserved for flags corresponding
to the IEEE 754 values of zero, +inf, —inf, and NaN will be replaced with a single
bit flag to indicate zero. So, our numbers will be stored as,

31 30 29 2221 0 Dbit#
11 8 22
ZS K L

with one bit to indicate zero (Z), a sign bit (S), and floating-point exponent (E)
stored in fixed-point format using eight bits for the integer part (K) and 22 bits for
the fractional part (L), i.e., as a Q7.22 number. See Chap. 6 for a review of fixed-
point numbers. We adopt this approach so that our LNS numbers can be represented
as uint32 numbers in C at the expense of some precision. This results in a number
stored as,

+1x2F

where the significand is always an implied “1” and E is a fixed-point number stored
in two’s-complement format so that numbers < 1.0 have a negative exponent.

What is the range of numbers we can represent with our logarithmic format? The
answer depends on the range of the exponent. A Q7.22 number covers the range
[-27,27 —2722] = [—128, 127.9999998] which means that the smallest number, in
magnitude, that can be represented is 27!2% & 2.9387359 x 1073? while the largest
is 227277 ~ 3.4028231 x 103 which compares favorably with the range of an
IEEE 32-bit floating-point number: 1.17549 x 10738 to 3.40282 x 10°%.

As with IEEE 754 floating-point numbers, the spacing between numbers in the
LNS format is not constant. The minimum interval by which the exponent will
change is A = 2722 ~ 2.3841858 x 10~7 a 0.00000024. Therefore, the difference
between any number 2N and the next largest number, 2N+4 §g

2N+A _ ZN — 2A2N _2N — (2A _ 1)(2N)

so that between the smallest representable number and the next smallest we have a
difference of 2427128 a~ 4.9 x 107 and between the largest representable number
~ 5.6 x 103

and the next largest we have 2 227"

296 10 Other Number Systems

For IEEE 754 floating-point the smallest change to the significand, for a 32-bit
number, is 2723 ~ 1.19 x 10 regardless of the exponent. Therefore, between any
number and the next closest number the difference is 27232f where B is the exponent
of the number (ignoring steps between exponents for now). Therefore, between the
smallest number and the next smallest the difference is 272327126 ~ 1.4 x 107%
and between the largest and next largest we have 27232127 & 2.0 x 103!, This result
indicates that LN'S numbers are placed on the real number line in a manner similar
to IEEE 754 floating-point. However, unlike IEEE 754, which has a fixed spacing
between numbers until the exponent changes which then doubles the spacing, the
spacing between LNS numbers is a smooth function which changes continuously.

We are now ready to start building C functions to handle input, output and storage
of LNS numbers. Storage of LNS numbers is straightforward in that we arranged
things so that a single LN'S number uses the same number of bits as a 32-bit unsigned
integer. Therefore, we define some preliminaries as,

#include <stdio.h>
#include <math.h>
#include <inttypes.h>

#define K 8
#define L 22
#define LNS_ZERO 0x80000000
#define LNS_SIGN 0x40000000
#define LNS_MASK Ox3FFFFFFF

W J o0 Ul bW N

[
b o \©

typedef uint32 t 1lns t;

[y
[\S)

13|double 1g2(double x) {
14 return log(x) / log(2.0);
15/}

where we include necessary C libraries, define a local version of log base-2 (in
case not in math.h) and declare our LNS number type to be an unsigned 32-
bit int. We also define K and L which are the integer and fractional parts of our
fixed-point exponent. Last, we define three constants, LNS ZERO, LNS_SIGN, and
LNS_MASK which are used to check and set the zero and sign bits and to mask the
bits for the exponent.

Conversion to and from LNS numbers will cheat and use existing C functionality.
The process of doing the conversion in hardware, like in an FPGA, is more involved.
Similarly, we will cheat when going from LNS to floating-point. Specifically,

10.2 Logarithmic Number System 297

1 |lns_t to_lns(double x)

2 double e = 1lg2(fabs(x));

3 uint8 t s = (x >= 0.0) ? 0 : 1;

4 Ins_t ans;

5

6 if (x == 0.0) return LNS_ZERO;

7 ans = (lns_t) (LNS_MASK & (uint32_t)floor(pow(2.0,L)*e + 0.5));
8 if (s) { ans |= LNS_SIGN; }

9 return ans;

10/}

11

12/ double to double(lns t x)

13 uint32 t z = (uint32_t) (LNS_ZERO & X);
14 uint32 t s = (uint32 t) (LNS_SIGN & x);
15 int32 t p = (uint32 t) (LNS_MASK & X);
16 double m;

17

18 p = (0x20000000 & p) ? 0xC0O000000+p : p;
19 if (z != 0) { return 0.0; }

20 m = pow(2.0, (double)p * pow(2.0,-L));
21 return (double) (s == 0) ? m : -m;

22}

Conversion to LNS (to_1ns) first calculates the log base-2 of the input and stores
itin e (line 2). It then captures the overall sign of the number in s (line 3). A quick
special case check for zero is done in line 6. If so, return the constant for zero which
is the highest bit set. The other bits need not be zero but it is simple enough to set
them that way, so return 0x80000000. Line 7 scales the log of the input by the
number of bits in the fractional part of the exponent (L = 22) with an added 0.5
to round to the nearest integer value. Casting to uint32 t makes an integer of
the scaled float. Line 7 also AND’s the output with Ox3FFFFFFF which sets the
highest two bits to zero. Recall that the highest bit (bit 31) is our zero flag and the
next highest (bit 30) is our sign. If the magnitude of the input is less than 1.0 the log
is negative and the scaled integer output from the pow function will also be negative
for all 32 bits. So, we need to mask the top two bits to make sure they are not set
improperly. Line 8 OR’s the sign bit, one if negative, to set the overall sign of the
number. The LNS version is then returned in line 9.

Conversion from LNS (to_double) strips off the zero flag (z) and sign (s)
in lines 13 and 14. Line 15 is where the fixed-point exponent is extracted. Note
carefully that the extracted bits are stored in a signed integer, p. We need this
integer to be signed so that the conversion back to double will properly account
for the sign. Remember, p represents the exponent so it is negative only when the
magnitude of the number is less than one. Line 18 adjusts p for the case when it is
less than one. If bit 29 of p is set the exponent is negative. This is because bits 0
through 29 are reserved for the exponent using our LNS number definition. If it is
set, we sign-extend by adding 0xC0000000 which sets all the high bits to make p
a negative number. Line 19 checks for the zero flag and returns zero if set. Line 20
first “unscales” p by raising it to the negative L power and then uses that unscaled

298 10 Other Number Systems

floating point value, which is the actual exponent of the LNS number, to calculate
the final value by raising 2 to that power. Line 21 returns the number with the sign
set based on the value in s.

Multiplication and Division Now that we have a way to represent LNS numbers
we can implement basic operations with them. For the other number systems in this
book we started with addition and subtraction and then developed multiplication
and division. Here we switch the order and start with multiplication and division
which are now easy because of the way we have chosen to represent LNs numbers
in memory.

Since we know that 2*2” = 2**¥ we can multiply LNS numbers by simply adding
the exponents. We intentionally chose to store the exponents in two’s-complement
fixed-point format. Because of this, we can use normal integer addition to add the
exponents which in turn multiplies the numbers. For example, 123.45 x 10.0 =
1234.5 can be calculated by simply adding the LNS representation of the numbers,

123.45 — 1BCAS87A
10.00 — 0D49A78

29142F2 — 1234.50

which works in this case because the numbers are positive and we need not consider

the sign bit (bit 30) nor did we check for zero (bit 31). The exponent is stored

in fixed-point format which has an implied radix point between bit 21 and bit 22

(L = 22). Addition of two numbers stored in this way works regardless of where

the radix point is located so we need do nothing special beyond bit for bit addition.
Before defining multiplication we will introduce some helper functions,

1 |unsigned char lns isneg(lns_t x) {

2 return (LNS_SIGN & x) != 0;
3}

4

5 lunsigned char lns iszero(lns t x) {
6 return (LNS_ZERO & x) != 0;
71}

8

9 |lns_t 1lns_abs(lns_t x)

10 if (Ins_iszero(x))

11 return Xx;

12 return LNS MASK & X;

13/}

14

15/1ns_t lns negate(lns t x) ({

16 if (Ins_iszero(x))

17 return LNS_ ZERO;

18 if (lns_isneg(x))

19 return LNS MASK & X;

20 return LNS_SIGN | x;

21}

10.2 Logarithmic Number System 299

where line 1 defines 1ns isneg which returns whether or not its argument is
negative. It does this by seeing if the sign bit is set or not. Line 5 performs a similar
check to see if the number is zero. If it is, the zero bit is set which is checked in line
6. Line 9 defines 1ns_abs which returns a positive version of the input argument.
It checks to see if the argument is zero in which case it returns zero. Line 12 makes
the argument positive by masking off the zero and sign bits. Finally, line 15 defines
1ns negate which returns its argument with the sign bit toggled. If zero (line 16)
return zero. If the argument is negative return the absolute value (line 19), otherwise,
set the sign bit to make the argument negative (line 20).

With these helper functions it becomes quite simple to implement multiplication
of two LNS numbers,

1/lns_t lns multiply(lns t a, lns t b) {

return lns_negate (LNS_MASK & (lns_abs(a) + 1lns_abs(b)));

2 if (lns_iszero(a)) return LNS_ZERO;

3 if (lns_iszero(b)) return LNS_ZERO;

4

5 if (Ins_isneg(a) == lns_isneg(b))

6 return LNS MASK & (lns_abs(a) + lns_abs (b)) ;
7 else

8

9

}

where the arguments are checked for zero in lines 2 and 3. If either is zero, return
zero as the product. Line 5 checks if the signs of the arguments are the same. If so,
the product is positive and line 6 adds the positive versions of the inputs. The AND
with LNS MASK keeps the highest two bits clear which is correct for a nonzero
positive LNS number. If the signs differ the product is negative and line 8 negates
the positive product to produce a negative result.

Division of LNS number, by analogy to multiplication, involves the subtraction
of two exponents since 2*/2¥ = 27, Again, the fixed-point exponent representa-
tion saves us trouble and as in multiplication simple subtraction with checks for the
signs of the arguments will give us the proper results. Therefore, division of two
LNS numbers is simply multiplication replacing addition with subtraction,

1/lns_t lns divide(lns t a, lns t b) {

2 if (lns_iszero(a)) return LNS_ZERO;

3 if (Ins_iszero(b)) return LNS_ZERO;

4

5 if (Ins_isneg(a) == lns_isneg(b))

6 return LNS MASK & (lns_abs(a) - lns_abs(b));

7 else

8 return lns_negate (LNS_MASK & (lns_abs(a) - 1lns_abs(b)));
9

}

where lines 6 and 8 now subtract the arguments instead of adding them. However,
line 3 shows a weakness of our chosen LNS representation in that instead of simply
returning zero when the second argument is zero we should signal a division by zero
error. To maximize precision we did not reserve any bits for infinity or NaN as we
would in a more rigorous library.

300

Comparison Operators Before we define addition and subtraction for LNS
numbers we will add basic logical comparison operators to our library. These are
straightforward in this case because if x > y then 2* > 27 so to decide on equality,
greater than or less than we only need compare the exponents and signs. Also,
since we are using a two’s-complement fixed-point representation for the exponents
we can compare magnitudes by using standard C comparison operators for signed
integers. All the same, the implementation is a bit tedious because there are multiple

10

cases to consider. Therefore, without further ado,

1 int32 t lns exponent (lns t x)
int32 t e = LNS MASK & x;
return (0x20000000 & e) ? 0xCO000000+e

2

W J o0 U W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

—

int8 t lns compare(lns t a, lns t b) {

int32 t ea = lns_exponent (a) ;
int32 t eb = lns_exponent (b) ;

if (lns_iszero(a) && 1lns_iszero(b))
return 0;

if (Ins_iszero(a))
return (lns isneg(b)) ? 1 : -1;

if (lns_iszero(b))
return (lns_isneg(a)) ? -1 : 1;

if ((lns_isneg(a)==1) && (lns_isneg(b)
return -1;

if ((lns_isneg(a)==0) && (lns_isneg(b)
return 1;

if (lns_isneg(a) && lns_isneg(b))
return (ea == eb) ? 0

(eb < ea) ? -1
else

return (ea == eb) ? 0

unsigned char lns_equal(lns_t a, lns_t b)
return (lns_compare (a,b) == 0);

}

unsigned char lns less(lns t a, lns t b) {

}

return (lns_compare(a,b) == -1);

{

Other Number Systems

10.2 Logarithmic Number System 301

40 unsigned char lns greater(lns t a, lns t b) {
41 return (lns_compare(a,b) == 1);
42}

where we implement simple wrapper functions for 1lns equal (line 32),
Ins_less (line 36), and 1ns_greater (line 40) which call 1ns_compare
(line 6). This function does all the work and returns —1 if a < b, 0 if a = b, and
+1if a > b. Specifically, Ins_equal returns 1 if a = b because 1ns_compare
returns O if its arguments are equal and 1ns_equal checks if the return value is
0 returning 1 if it is. Both 1ns_less and 1ns_greater work the same way
checking for —1 and +1 respectively.

The 1ns_compare function uses several existing LNS library functions defined
above, namely, 1ns_isneg which returns 1 if its argument is negative, O other-
wise, and 1ns_iszero which acts identically if its argument is zero. Additionally,
we define a new helper function, 1ns_exponent, which returns the exponent of
the LNS number as a signed integer. This is defined in line 1. In line 2 the fixed-
point exponent is returned by masking the zero and sign bits. Line 3 then returns this
exponent after setting the two highest bits if the exponent is negative (0x20000000
& e is nonzero). The comparison asks if the highest bit of the exponent is set or
not. If it is, the exponent is negative, since it is a two’s-complement number, and
we set the top two bits by AND-ing with 0xC0000000 to extend the sign before
returning. With the exponent properly sign extended and stored in a signed integer
we can perform normal integer comparisons to check the magnitude of the LNS
numbers.

The 1ns_compare function extracts the exponents (lines 7, 8) and then begins
a series of checks to cover the possible conditions that might be encountered. Lines
10 through 15 deal with numbers that are zero. If both are zero (line 10) return O to
indicate that the numbers are equal. In line 12 we know that the second argument
cannot be zero so we check to see if the first argument is zero. If it is, we return
the proper value depending upon the sign of the second argument b (line 13). If b
is negative we know to return 1 because a is zero and 0 > b when b is negative.
If this isn’t the case, return —1 to indicate that 0 < b when b is positive. Lines 14
and 15 make the same check for the case when the second argument is zero. These
explicit checks against zero are necessary because we use a single bit to indicate
that a number is zero.

Lines 17 through 20 handle the cases where the signs of the numbers are
different. If they are different we already know the proper values to return regardless
of the values of their exponents. If a is negative and b is positive (line 17) then we
know a < b and return —1. In line 19 we do the opposite check and if true return 1
because we know a > b since a is positive and b is negative.

It is only when the signs are the same that we need look at the magnitude of
the numbers. Line 27 handles the case where both arguments are positive. Here we
simply compare the exponents in ea and eb and if equal return O. If they are not
equal we look at the outcome of ea < eb. If this is the case, a < b so return —1
(line 28). Otherwise we know a > b and return 1 in line 29. If both arguments are

302 10 Other Number Systems

negative (line 22) similar comparisons are made but in this case we check eb < ea.
If so, we know that the exponent of argument a is less negative than the exponent of
b which means that a < b since both a and b are negative and —2/¢! > —2l¢¢l for ¢,
and e, the exponents of arguments a and b, respectively. We return —1 in this case
(line 24). Otherwise, the remaining case, a > b, is true and we return 1 (line 25).

Addition and Subtraction To this point we’ve seen some very simple implemen-
tations of operations that are typical difficult to implement (here multiplication and
division). So, if LNS numbers are so simply implemented why are they not in wider
use? The answer is that while multiplication and division are simple, addition and
subtraction are now difficult. We can see that they will be troublesome because while
simple formulas exist for multiplication and division of two numbers expressed as
logs there are no simple formulas for addition and subtraction, 2* 4 2* and 2% — 2”
do not have simple solutions. However, all is not lost.

Following the notation in [2] we can represent an LNS number mathematically
as A = —15 . 284 where Sy is the sign bit and Ej is the floating-point exponent.
Similarly, we can write B = —155 . 2E8 and so forth. Therefore, to calculate C =
A + B where we assume |A| > |B|, we can write,

Ec =log, |A + B|

B
=log, |A(1 £ —
oz, [A(1 £ 7))

B
= log, |A| + log, |1 & Z'
= Es + f(Ep — Ep)

with,
B Ep—FEy
f(EB—EA)=10g2|1:I:Z|=10g2|1:|:2 |

where we have reduced the problem of addition and subtraction to function
approximation since once we know the value of f(Eg — E4) we know the answer
to our problem. Indeed, for actual hardware implementations of LNS numbers, the
majority of the effort is placed in how one should deal with the function f. If we
look at f graphically we get Fig. 10.1 where we have limited the domain to [—10, 0].
Our LNS implementation uses a 07.22 fixed-point number to represent exponents
in the range [—128,127.9999998] so that the difference, Eg — Ex, Ep < Ejy, is
closer to [—128, 0] but as can be seen, for differences below about —10, the value
of f, for addition or subtraction, is virtually zero. Some hardware implementations
approximate f mathematically while others build large look-up tables. All use some
form of interpolation to arrive at as accurate a value for f as possible which in turn
makes A & B as accurate as possible. We will take advantage of the closed functional

10.2 Logarithmic Number System 303

1t addition

subtraction

EB‘ 7EA

Fig. 10.1 The function f which must be approximated to implement LNS addition and subtraction.
The argument to f is the difference between the two exponents where we require |A| > |B| which
implies that the exponent for B, Eg, is less than the exponent for A, E,4. Figure is a recreation of
Fig. 1in [2]

form for f and in our simple library use the C standard library functions to directly
calculate the value. Yes, it is a cheat. One aspect of Fig. 10.1 is worth pointing out.
If the two numbers being operated on, especially for subtraction, are close in value
the difference between their exponents is small meaning the argument to f is close
to zero. This is precisely the region where the function is changing most rapidly
implying that interpolation in this region is crucial for accuracy to be maintained.
With the above in mind, then, we can implement addition and subtraction in
stages. The first stage implements the function f for addition and subtraction of the
magnitudes of two LNS numbers, A and B, where we already know that |A| > |B] as,

1|/double fminus (double ea, double eb) {

2 return pow(2.0, ea + 1g2(1.0 - pow(2.0, eb-ea)));
3}

4

5/double fplus(double ea, double eb) {

6 return pow (2.0, ea + 1g2(1.0 + pow(2.0, eb-ea)));
7|}

8

304 10 Other Number Systems

9 |lns t lns add mag(lns t a, lns t b) {

10 double ea = (double) (LNS _MASK & a) x pow(2.0,-L);
11 double eb = (double) (LNS MASK & b) x pow(2.0,-L);
12 return to_lns (fplus(ea,eb));

13}

14

15/1ns_t lns sub mag(lns t a, lns t b) {

16 double ea = (double) (LNS _MASK & a) x pow(2.0,-L);
17 double eb = (double) (LNS_MASK & b) * pow(2.0,-L);
18 return to_ lns (fminus(ea,eb));

19}

with the functions 1ns_add _mag and 1ns_sub_mag above called appropriately
by 1ns_add and 1ns_sub (defined below) to handle all possible sign combina-
tions of the arguments a and b.

The function f is implemented in fminus (line 1) and £plus (line 5) along
with the rest of the calculation to return the sum or difference except for the sign.
Specifically, these functions calculate,

Ec = Ej + logy(1.0 £ 2E57Ex) - ¢ = pFc

with E4 and Ep the exponents of the inputs A and B. Note that these functions accept
and return standard C double precision floats, not fixed-point floats. These helper
functions are called by 1ns add mag (line 9) and 1ns_sub _mag (line 15).
These functions perform the addition or subtraction ignoring the overall sign of the
inputs and under the assumption that |A| > |B| which was previously stated. These
functions both extract the fixed-point exponents by AND’ing with LNS_MASK and
then scale by 27 to create standard floating-point representations in ea and eb.
They then call the proper helper function to calculate the sum or difference and
return it as an LNS number.

Along with considering the signs of the arguments we must also consider
the relative magnitudes of the arguments so that we call 1ns add mag and
1ns_sub_ mag appropriately. For both addition and subtraction we have then a
total of eight cases to consider: four for the possible signs of the arguments and for
each of these two cases for the relative magnitudes. Therefore, we can define our
top-level addition function as,

lns t 1ns add(lns t a, lns t b) {
Ins t A = 1lns_abs(a);
Ins t B = 1lns_abs (b);

if (Ins_iszero(b)) return a;
if (lns_equal(a,b))

1

2

3

4

5 if (Ins_iszero(a)) return b;

6

7

8 return lns multiply(a, to_1ns(2.0));
9

10.2 Logarithmic Number System

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34}

if ((lns_isneg(a)==0) && (lns_isneg(b)==0))

if (lns_greater(A,B))
return lns_add mag(A,B) ;

else
return lns_add mag(B,A) ;
}
if ((lns_isneg(a)==1) && (lns_isneg(b)==1))
if (lns_greater(A,B))
return lns_negate (lns_add mag(A,B));
else
return lns_negate (lns_add mag(B,A)) ;
}
if ((lns_isneg(a)==0) && (lns_isneg(b)==1))
if (lns_greater(A,B))
return lns_sub _mag(A,B) ;
else
return lns_negate(lns_sub mag(B,A)) ;
}
if ((lns_isneg(a)==1) && (lns_isneg(b)==0))
if (lns_greater(A,B))
return lns_negate (lns_sub mag(A,B));
else
return lns_sub _mag(B,A3) ;
}

which for subtraction becomes,

1|lns t 1lns sub(lns t a, lns t b) ({

2 Ins t A = 1lns_abs(a);

3 Ins t B = 1lns_abs (b);

4

5 if (lns_iszero(a)) return lns_negate (b);

6 if (lns_iszero(b)) return a;

7 if (Ins_equal(a,b)) return LNS ZERO;

8

9 if ((lns_isneg(a)==0) && (lns_isneg(b)=

10 if (lns_greater(A,B))

11 return lns_sub mag(A,B) ;

12 else

13 return lns_negate (lns_sub_mag(B,A)) ;
14 }

15 if ((lns_isneg(a)==1) && (lns_isneg(b)=

16 if (lns_greater(A,B))

17 return lns_negate(lns_sub_mag(A,B)) ;
18 else

19 return lns_sub _mag(B,A3) ;

20 }

{

{

{

{

{

{

305

306 10 Other Number Systems

21 if ((lns_isneg(a)==0) && (lns_isneg(b)==1)) {
22 if (lns_greater(A,B))

23 return lns_add mag(A,B) ;

24 else

25 return lns_add mag(B,A) ;

26 }

27 if ((lns_isneg(a)==1) && (lns_isneg(b)==0)) {
28 if (lns_greater(A,B))

29 return lns_negate (lns_add mag(A,B));
30 else

31 return lns_negate(lns_add mag(B,A)) ;
32 }

33}

where each possible case is handled so that the proper final sign will be used and
the relative magnitudes are respected. In particular, both functions store positive
versions of their arguments in A and B (lines 2, 3) and then check if any of their
arguments are zero. For addition, if either argument is zero, return the other one
(lines 5, 6). For subtraction if the first argument is zero, negate the second one
and return it (line 5) otherwise return the first (line 6). If the arguments are equal,
using the comparison functions defined above, return zero for subtraction (line 7)
or multiply the argument by two if adding (line 8). Each function then checks the
signs of the inputs to find which of the four possible cases match. For each of
these cases the magnitudes of the arguments are checked so that 1ns_add mag
or Ins sub mag can be called appropriately and with the larger magnitude
argument first so that the functions return meaningful values. In some cases this
requires negating the return value to get the proper sign.

Discussion In this section we implemented a basic library of arithmetic and
comparison routines for LNS numbers. We saw how easy it is to implement
multiplication and division, operations that are difficult to implement in other
representations. We also saw that comparison operations were simple as well
because of the two’s-complement fixed-point representation we chose for the
exponents of our LNS numbers. Of course, little in life is free, and we saw
that the power of LNS numbers comes with a definite cost when it comes to
addition and subtraction. Still, since LNS numbers are typically implemented in
hardware, especially in FPGAs, there are times when the speed of multiplication and
division outweigh the pain of addition and subtraction. This is to say nothing of the
improved energy efficiency of LNS versus IEEE floating-point when implemented
in hardware. Indeed, a reasonable argument could be made that LNS numbers, if
efficiently implemented in hardware, are actually a viable alternative to the IEEE
754 standard. Certainly, it is an entertaining intellectual exercise to consider how to
work with numbers expressed as their exponents.

10.3 Double-Base Number System 307
10.3 Double-Base Number System

The Double-Base Number System (DBNS) was developed by Dimitrov and Jullien
[3] and offers a particularly compact way to represent large unsigned integers. As
the name suggests, instead of the single base used by every number system we
have examined in this book, be it binary, decimal, octal, or hexadecimal, the DBNS
uses two bases, in this case 2 and 3. Specifically, for a given base, B, and digits,
d €{0,1,...,B— 1}, we can represent a number, x, as,

X = ZdiBi

In DBNS we replace the single base B with two bases, 2 and 3. We also limit the
choice of digits to d € {0, 1} so that we represent x as a sum of products of powers
of 2 and 3, e.g., 2'3/,

X = Z2i3’
ij

where i, j are exponents > 0. Terms of the form 23/ are called 2-integers. Note that
we need not explicitly represent the zero digits as is done in standard place notation
meaning that DBNS is not a positional number system. An example will clarify. The
number 127 can be represented in DBNS as,

127 = 2°3% 4 2'3% 4 293°
= 2%3% 42430 4 203!
= 2531 49033 4 2230
which can be written as a set of tuples,

127 = {(2,3).(1,2), (0,0)}
=1{(2,3).(4,0), (0, 1)}
={(5.1),(0.3),(2,0)}

listing only the powers of the terms 2/3/. We will use this representation in our
implementation below.

The example with 127 above reveals an important aspect of the DBNS: repre-
sentations are not unique. A number may be represented in many different ways.
However, there are “smallest” representations in which the set of tuples is as small
as possible. These are called canonical representations. The three given above for
127 can be shown by exhaustive search to be the three canonical representations of
127 in DBNS.

308 10 Other Number Systems

How does one find the canonical representation of a number? Locating the
canonical representation requires an exhaustive search implying that it is NP-
complete. However, not all is lost. In [4] a simple greedy algorithm is given which
locates a “near” canonical DBNS representation for any unsigned integer. The
algorithm is easily implemented in Python,

1‘while (x > 0):

2‘ w,1,j = Largest2Integer (x)
3 print (i,7)
4 X -= w

where Largest2Integer () returns the largest 2-integer < to x along with the
exponents, i.e., it returns w = 2/3/ < x. Print or otherwise store the tuple (i, j) and
subtract w from x. Repeat as long as x is greater than zero. This simple algorithm
will not always produce the canonical representation of x but it will produce a very
good one.

Graphical Representation of DBNS Numbers We saw above that a DBNS
number can be represented by the set of exponents of the 2-integers that make up
the number. It is also possible and quite informative to represent DBNS numbers as
a 2-D grid making DBNS the only 2-D number system we will look at in this book.

A natural way to think of a DBNS number is as a matrix with the rows the powers
of 2 and the columns the powers of 3. It is then a simple leap to visualize the matrix
as an image. For example, a canonical representation of 127 is {(1, 2), (0, 0), (2, 3)}
which can be put into matrix form as,

1000
0010
0001

where a 1 indicates that the corresponding 2-integer is present and a O indicates that
the corresponding 2-integer is not present. In the matrix above the element at row 3,
column 4 is present meaning that 2233 = 108 is present in the DBNS representation
of 127. Likewise, there are elements present at row 1, column 1 and row 2, column 3
for terms 2°3° = 1 and 2'3% = 18. The sum of the three terms is 108+ 18+1 = 127
as expected. This matrix representation is useful for understanding the sparsity of a
DBNS representation but it is still more impressive when cast as an image. If we do
this, 127 can be visualized as,

10.3 Double-Base Number System 309

where light squares indicate the terms that are present in the DBNS rep-
resentation. Not too impressive, to be sure, but consider a number like
785745187346896756987891,

which has only a tiny handful of nonzero entries. We will see below that this 2-D
representation is useful for illustrating operations on DBNS numbers.

A Python Class for DBNS Numbers We will develop a small Python class which
implements the DBNS. We are using Python in this case for two reasons. First, the
sparsity of DBNS numbers makes them an excellent choice for representing very
large integers. Python supports big integers, see Chap. 5, so it makes sense to use it
here. Second, it is natural to represent a DBNS number as a set of tuples, (i,), and
Python supports both sets and tuples as native data types.

The first thing our library needs to do is to accept an input number, x, and convert
it to a set of DBNS tuples using the greedy algorithm. The code for this part is,

310 10 Other Number Systems

1 [from math import log, ceil
2
3 |class DBNS:

4 def Largest2Integer(self, x):

5 m = [1,0,0]

6

7 a = int(ceil(log(x)/log(2))) + 1
8 b = int(ceil(log(x)/log(3))) + 1
9

10 for i in range(a) :

11 for j in range(b) :

12 n = [(2x*1)*(3x*3),1,7]
13 if (n[0] > m[0]) and (n[0] <= Xx):
14 m=n

15 return m

16

17 def Greedy(self, x):

18 while (x > 0):

19 w,1,j = self.Largest2Integer (x)
20 self.n.add((i,3j))

21 X -= W

22

23 def Limits(self):

24 self.a = 0

25 self.b = 0

26

27 for i,j in self.n:

28 if (i > self.a):

29 self.a = 1

30 if (j > self.b):

31 self.b = j

32

33 def init (self, x=0):

34 self.n = set()

35

36 if (x > 0):

37 self.Greedy (x)

38 self .Ready ()

39 self.Limits ()

where we will for the time being ignore the Ready () method of line 38. The
__init method for this class starts on line 33 and accepts an input number,
x, which is the number we want to represent in the DBNS. We will store our
representation as a set of tuples, (i, j), so define an empty set (line 34). The observant
reader will have already realized that zero is not directly representable as the sum
of 23/ terms. So, we represent zero with an empty set. If x is not zero we apply the
greedy algorithm (line 37) and then call Limits () (line 39).

10.3 Double-Base Number System 311

The greedy algorithm is the simple while loop starting on line 18. As long as
x 1is still greater than zero, subtract from it the largest possible 2-integer that is less
than or equal to x and keep the exponents as a tuple in our DBNS representation.
Specifically, line 19 calls Largest2Integer () passing the current value of x.
This method returns the largest term, w = 273/, which is the next tuple in the DBNS
representation. The tuple is added to the set in line 20 and the value is subtracted
from x in line 21. The Largest2Integer method starts on line 4. The goal is
to locate the largest value and associated exponents that are less than or equal to
the input, x. We store this set in m starting with 1 = 2°3% or [1,0, 0] (line 5).
We locate the 2-integer by an exhaustive search of possible exponents. We define
the limits of the search in lines 7 and 8, one each for powers of 2 and powers of 3.
The limit is the corresponding logarithm of x plus one, a = [log,(x)] + 1, b =
[log;(x)] + 1. We then search using the double loop of lines 10 and 11 testing to see
if we’ve found a new maximum set of exponents (lines 13, 14). When done, return
our maximum (line 15). A double loop is generally frowned upon but in this case
the limits are small so the performance hit is minimal. There are alternative methods
to find the largest 2-integer, see [5].

The last step in our conversion to DBNS format is to keep track of the largest
powers of the bases. These values are used when generating the 2-D representations
of the number which we will introduce below. The Limits method does this (line
23) using a simple loop over the tuples in the set (line 27) tracking the largest power
of 2 (lines 28, 29) and 3 (lines 30, 31).

Let’s add a simple method to calculate the decimal value of a DBNS number by
summing the value of each tuple in the set,

1/def Value (self) :

2 m =0

3 for i,j in self.n:

4 m += (2x*1)* (3%%73)
5 return m

We now have the ability to turn a decimal integer into a DBNS number and back
again.

If we want to see the DBNS representation of a number we can, ignoring best
practices for object-oriented programming, simply look at the set by printing the
value of the member variable, n. For example,

>>> from DBNS import =*
>>> X = DBNS(127)
>>> print x.n
set ([(1, 2), (0, 0), (2, 3)])

which tells us that the greedy algorithm worked since, 127 = 2'3% 4 203% 4 2233,
Note that there is no implied ordering in a set which is just fine in this case since we
are summing terms.

312 10 Other Number Systems

The 2-D matrix representation is straightforward to add. We take advantage of
Python’s rich set of overloadable operators to let us see the 2-D representation by
simply printing the object. Specifically,

1|def str_ (self):

2 m = nn

3 for i in range(self.a+1l):

4 n=n~" | "

5 for j in range(self.b+1):
6 if ((i,j) in self.n):
7 n += lll n

8 else:

9 n += IIO n

10 m += n[0:-1]1 + "[\n"

11 return m[0:-1]

12

13/def _ repr (self):

14 return self. str ()

where str () returns a string that is the matrix representation of the number
(lines 1-11). We overload the _repr () method for completeness and simply
call str () (line 14). Since we know the largest exponent used by any power
of 2 (self.a)and 3 (self.b) we know the size of the output matrix, self.a
rows by self .b columns. The loops at lines 3 and 5 cover all combinations. If
the element, i.e., that power of 2 and 3, is present in the set of tuples (line 6),
output a “1”, otherwise, output “0” to indicate that element is not in the set. When
done, return the string (line 11) dropping the final newline character. Testing at the
command line gives,

>>> from DBNS import =*
>>> x = DBNS(127)
>>> print x

|1 00 0]

[0 010

[0 0 0 1]

which matches the matrix and image representations of 127 above.

We are now ready to implement operations on DBNS numbers. We will imple-
ment two, addition and multiplication, and leave some others as straightforward
exercises. Note that unsigned DBNS numbers represented in this way do not support
subtraction or division. This, naturally, limits their use.

Addition of DBNS Numbers Addition of two DBNS numbers represented as sets
of tuples is straightforward, simply take the union of the two sets accounting for any
collisions, i.e., the same term, 2'3/, in both representations. For example, consider
23 + 11 = 34. Using the matrix representation we have,

10.3 Double-Base Number System 313

23 + 11 = 34
100 101
001 +((1)8(1))= 101
100 100

where we simply overlay the two representations to generate a new representation.
In this case there are no collisions between 23 and 11 so we have a final answer, 34,
but, as we will see below, we will not keep the final answer in this form. Using the
set of tuples notation we have,

23 + 11 = 34
{(0,0).(2,0), (1,2)} U {(1,0),(0,2)} = {(0,0). (1,0).(2,0).(0,2), (1.2)}

where we clearly see that addition is simply set union. So far, so good, but what if the
two DBNS numbers share one or more terms? For example, consider 10 + 11 = 21
which is, using matrix form and adding element by element,

10 + 11 = 21
001 102
(101)+'(100)"(100)
where we now have a problem, the bold 2, which is not allowed in the DBNS format.

This is a collision and we need to deal with it as a “carry” of sorts. The solution is
to realize that a carry is,

2(2'3) = 271y

so we can replace the bold term in the answer with zero and increment (i + 1,)
instead. If necessary, this process can be repeated if incrementing (i + 1,j) results
in a new carry. Then, we can rewrite the answer as,

102 _ 100 — 1
100 101
which is a valid form for a DBNS number. If we use set notation we have,

10 + 11 = 21
{(0,0).(0.2)} U {(1,0).(0,.2)} — {(0.0). (1.0).(0.2)}

which is a problem because there are really two (0,2) elements, one from each
number. Conveniently, since we are using Python sets to implement DBNS numbers,
to see if there are collisions when adding we simply look for a non-empty
intersection between the numbers. If there are elements in the intersection, as is the
case here, the element is a collision and we apply the carry reduction. If applying

314 10 Other Number Systems

the carry reduction leads to a new carry we put that carry in the set of elements in
the intersection and repeatedly pull elements until the intersection set is empty. For
example, since {(0, 0), (0,2)} N {(1,0), (0,2)} = {(0,2)} we know we have at least
one carry to deal with. The carry reduction replaces (0, 2) in the answer with (1, 2).
As this does not result in a new carry, the term (1, 2) is not in the union, we are done
and the final output set is {(0, 0), (1, 0), (1, 2)} which does indeed equal 21.

In Python this process can be added to our DBNS class by overloading the “+”
operator,

1|def add_ (self, y):

2 z = DBNS()

3

4 z.n = self.n.union(y.n)
5 b = self.n.intersection(y.n)
6

7 while (b != set()):

8 i,j = b.pop()

9 z.n.remove ((1,73))

10 if ((i+1,3) in z.n):
11 b.add ((i+1,3))
12 else:

13 z.n.add ((i+1,3))
14

15 z.Ready ()

16 z.Limits ()

17

18 return z

In line 2 we create a new output DBNS number. This will hold our answer.
Nominally, the answer is the union of the two numbers, the object instance and
the given object instance which is in y. This is line 4. This union is the set used by
the answer, hence assigning to z . n. Yes, again we abuse object-oriented principles
in the name of pedagogy. We check for collisions via the intersection which we
assign to b (line 5). Then, lines 7 through 13 are a loop over the elements of the
intersection, if any, in which we perform the carry reduction, possibly repeatedly.
While there are still elements in the intersection (line 7) pull an element out of the
set (line 8) and remove it from the answer (line 9). We know it is in z because it
would be in the union between the two numbers. Line 10 asks whether the carry
reduction element (i, j) — (i + 1,) is already in the answer. If so, we don’t need to
add it to the answer but we do need to add it to the intersection as a new element in
need of the carry reduction (line 11). If the element is not already in the answer, add
it (line 13). Continue this process until the intersection set is empty. Line 15 calls
the mysterious Ready () method we saw above. Let’s continue to ignore it for the
moment. Line 16 sets the limits on the exponents of the answer so we can display it
properly. Finally, line 18 returns the answer which is the sum of the number and the
given number, y.

10.3 Double-Base Number System 315

A Problem with Addition and Its Solution Our first addition example, 23+ 11 =
34, produced solution of the form,

101
101
100

which has quite a few nonzero elements. This means that the representation is no
longer particularly sparse. We can improve this and change the representation back
into a near canonical, sparse representation by repeatedly applying two reduction
rules based on observations of sums of adjacent terms. Namely, we note that,

21’3}' 4 2i+l3j — 2i3j+1
21’3}' 4 2i3]'+l — 2i+23j

which we can visualize as,

3] 3j+l

2i

2i+1

and,

3j 3j+l

-

2i+2

We also need to be aware that the reduction rules may result in new carries that also
have to be dealt with. It is the job of the Ready () method in our Python class to
apply these reduction rules and any needed carry reductions until the number is in
this sparse, near canonical format. The Ready () method itself is straightforward,

316 10 Other Number Systems

1 def Ready(self) :

2 rows = cols = True

3

4 while (rows or cols):

5 cols = self.AdjacentColumn ()
6 rows = self.AdjacentRow ()

where it repeatedly calls AdjacentColumn () and AdjacentRow () until both
of these return False indicating that all instances of adjacent elements have been
processed.

The method AdjacentColumn () appears to be a bit complicated but as we
will see it isn’t really so bad. The code is,

1 |def AdjacentColumn (self) :

2 modified = True

3 ever = False

4

5 while (modified) :

6 modified = False

7 b = self.n.copy()

8 while (b != set()):

9 i,j = b.pop()

10 if ((i+1,3j) in self.n):

11 modified = True

12 ever = True

13 self.n.remove((i,j))

14 self.n.remove ((i+1,7))

15 elem = (i,3j+1)

16 if (elem not in self.n):

17 self.n.add(elem)

18 b = self.n.copy()

19 else:

20 done = False

21 while (not done):

22 self.n.remove (elem)
23 elem = (elem[0]+1,elem[1])
24 if (elem not in self.n):
25 self.n.add(elem)
26 b = self.n.copy()
27 done = True

28 return ever

where the main loop (line 5) runs as long as we are making changes to the
representation. Each iteration of the loop starts by assuming no changes will be
made (line 6) and making a duplicate of the current representation (line 7). We make
a duplicate so we can look at each element (term, 2/3/) in the loop starting on line
8. Since we are looking for cases where for the current element at (i, j) the adjacent

10.3 Double-Base Number System 317

element in the same column, (i + 1,j), is also present we ask if that element is in
the representation (line 10). If it isn’t we move to the next element. If it is, we know
that we are going to make a change so we indicate that (line 11) and also indicate
that we changed at least one element (line 12).

The reduction rule is 23/ + 2713/ — 213/*1 5o if both (i,) and (i + 1,) are
in the representation we remove them (lines 13 and 14) and try to add (i,j + 1)
(line 15). There are two possibilities at this point. If (i, j 4+ 1) is not already in the
representation we simply add it (line 17), make a new copy of the representation
(line 18) and continue looking at elements until b is empty (line 8). However, if
(i,j + 1) is already in the representation we have a new carry and pass to the code
starting on line 20. This code loops through the representation removing the element
that caused the carry and replacing it with a new element: (i,j) — (i 4+ 1,j). The
loop covers the case in which a chain of carries might happen.

Fortunately, the AdjacentRow() method is structurally identical to
AdjacentColumn (), only the elements modified change. In particular, we can
create a copy of AdjacentColumn (), change the name to AdjacentRow ()
and modify a few lines (in bold) to get,

1 |def AdjacentRow(self):

2 modified = True

3 ever = False

4

5 while (modified):

6 modified = False

7 b = self.n.copy()

8 while (b != set()):

9 i,j = b.pop()

10 if ((i,j+1) in self.n):

11 modified = True

12 ever = True

13 self.n.remove((i,J))

14 self.n.remove ((i,j+1))

15 elem = (i+2,7)

16 if (elem not in self.n):

17 self.n.add(elem)

18 b = self.n.copy()

19 else:

20 done = False

21 while (not done):

22 self.n.remove (elem)
23 elem = (elem[0]+1,elem[1])
24 if (elem not in self.n):
25 self.n.add(elem)
26 b = self.n.copy()
27 done = True

28 return ever

318 10 Other Number Systems

which acts exactly like AdjacentColumn () but implements the reduction
213/ 4 2/3/+1 5 2123/ Calling these methods repeatedly until neither changes
the representation means that we will be in a suitable form to minimize carries on
future operations.

Multiplication of DBNS Numbers The only other operation supported by DBNS
numbers, at least in the form that we’ve been using them so far, is multiplication.
It is particularly straightforward. To calculate x x y we multiply every term in y
by every term in x. This is an O(n?) operation, true, but the very sparse nature of
DBNS numbers means that in the end it is not all that bad. Multiplying two terms is
particularly simple as well,

2i3j X 2a3h — 2i203j3h — 2i+a3j+h
implying that the answer needs to contain the element (i + a,j + b). If that element

already exists we have a carry and do our usual transformation, (i + a,j + b) —
(i+ a+ 1,j+ b). In code, overloading the multiplication operator, we get,

1|def mul_(self, y):

2 z = DBNS ()

3

4 for i,j in self.n:

5 for a,b in y.n:

6 elem = (i+a,j+b)

7 if (elem not in z.n):

8 z.n.add(elem)

9 else:

10 done = False

11 while (not done):

12 z.n.remove (elem)

13 elem = (elem[0]+1,elem[1])
14 if (elem not in z.n):
15 z.n.add (elem)

16 done = True

17

18 z.Ready ()

19 z.Limits ()

20 return z

where our answer will be in z. We loop over every element of the first number
(line 4) and for that element loop over every element of the second number (line 5).
The product of these two elements (line 6) is looked for in the answer (line 7). If not
present, it is added and the loops continue (line 8). Otherwise, we have a carry so
we remove the element in the answer (line 12) and add the next element ((i + 1,))
until carries are done (line 13). To finish the answer we make sure it is in proper
form by calling Ready () (line 18) and set the limits on the exponents (line 19)
before returning the new DBNS number as the answer (line 20).

10.3 Double-Base Number System 319

How well does this algorithm perform? To multiply 1234567890 x 9876543210
we need to loop over the representations of each of these numbers. The representa-
tions are,

1234567890 {(8,14), (14,1),(9,9), (2,5), (1, 1)}
9876543210 = {(0,0),(7,0),(5.5). (17, 1), (11, 14), (12,9), (0,2)}

so that multiplication requires 5 x 7 = 35 pairs of additions plus any occasional
carry operations.

Representing Real Numbers Up to this point we have represented DBNS numbers
as unsigned integers made by summing sets of terms of the form 23/, i,j € Z. We
can represent signed floating-point numbers in a manner similar to the logarithmic
number system described above if we allow the exponents in our 2/3/ terms to take
on positive and negative values. Specifically, we can approximate any number x by
finding exponents b and ¢, which satisfy,

Ix— 5203 <€, bteZ

where € is a given tolerance and s, is the sign of x. In practice, the exponents are
represented to a specified precision (number of bits) which limits the set of possible
values that can be represented well. Like the LNS system, this system, which we will
call the double-base logarithmic number system (DBLNS), also called “2DLNS”
in [6], easily supports multiplication and division but requires interpolation of a
function for addition and subtraction. We will implement only multiplication and
division here and leave addition and subtraction as projects for the reader.

We will fix the size of our exponents, at least for converting floating-point
numbers to DBLNS, so that we can represent the input using a Python float data
type. This is usually the same as a double-precision IEEE floating-point number. To
quickly convert x to DBLNS, which means finding good integer values for b and
t so that |x — 5,2°3'| is as small as possible for the allowed range of exponents,
we will create a sorted list of all representable values when b € [—600, 1023] and
t € [—600, 646]. We only need generate this list once so we do it outside of the
DBLNS class when the module is imported,

1 [from bisect import bisect left

2

3lp = 1]

4 |[for i in range(-600,1023+1) :

5 for j in range(-600,646+1) :

6 p-append (((2.0%x1) % (3.0x%3),1,3))
7 |p.sort ()

8

9 \gvalues = []
10 gBexp = []
11|gTexp = []
12

320 10 Other Number Systems

13 /for 1 in p:

14 v,b,t = 1

15 gValues.append (v)

16 gBexp .append (b)

17 gTexp.append (t)

18/del p,v,b,t,1

19

20/class DBLNS:

21 def init (self, x):

22 idx = self.Closest (abs(x))
23 self.b = gBexp[idx]

24 self.t = gTexp[idx]

25 self.s = 0 if (x >= 0.0) else 1

Line 1 imports from the standard Python bisect module. This module allows for
rapid searching of sorted lists which will let us quickly locate the best approximation
to any input to the class. We will describe the Closest () method (line 22)
below. For now, understand that it returns the index into the list of representable
values, stored in the global gvalues, of the closest value to x. The corresponding
exponents are in gBexp and gTexp respectively so we store those (lines 23 and
24). Lastly, we set the sign (line 25). We now have a DBLNS representation for x.

The table is generated on import (lines 3 through 7) which computes all possible
values, keeping the associated exponents, in line 6. This list is sorted (line 7, Python
sorts on the first value of the tuple, which is what we want here). We then split the
list into the global values gvValues, gBexp, and gTexp and keep only these (lines
9 through 18).

We can now add the Closest () method and include a method to get the
floating-point value and print it on the command line,

1 def Closest(self, x):

2 pos = bisect left (gValues, x)

3

4 if (pos == 0) or (pos == len(gValues)) :

5 return pos

6

7 if (gValues([pos]-x) < (x-gValues|[pos-1]):

8 return pos

9 else:

10 return pos-1

11

12 def Value (self) :

13 try:

14 v = ((-1.0)**xself.gs)*(2.0xxself.b)*(3.0xxself.t)
15 except:

13 v = float('inf’) if (self.s==0) else float(’-inf’)
17 return v

18

10.3 Double-Base Number System 321

19/def str (self):

20 return "%0.6f" % self.Value()
21

22|/def repr (self):

23 return self. str ()

Recall that gValues contains a sorted list of all possible floating-point values that
we can represent for the range of exponents we are using. So, bisect left
returns the position in that list where x would fit (line 2). If we are outside the
range, just return whatever pos is (line 5). Lines 7 through 10 decide if x is closer
to the returned position or the one before it and returns the proper position. We
use the returned position as an index into the b and ¢ exponent lists (gBexp and
gTexp) in order to define the DBLNS representation. Line 12 defines a simple
function to return the floating-point value of the number. The try is necessary
to capture the case when the exponents are beyond what can be represented as a
Python float. In that case we simply return positive or negative infinity. Lastly, we
overload the standard Python methods to allow us to print the floating-point value
at the command line (lines 19 and 22).

With these preliminaries in place we can complete our DBLNS class by adding
multiplication and division. These operations are particularly simple in this case, as
they are in the LNS case, since,

xy = 5,2°3% x 5,237 = ((s, + s5,) mod 2)2¢F<30%4

x/y = 523" /5,2°3 = ((s, + s5,) mod 2)2° 7374

which translates to,

1|def mul_(self, y):

2 z = DBLNS (0)

3 z.s = (self.s + y.s) % 2
4 z.b = self.b + y.b

5 z.t = self.t + y.t

6 return z

7

8 |[def div__ (self, y):

9 z = DBLNS (0)

10 z.s = (self.s + y.s) % 2
11 z.b = self.b - y.b

12 z.t = self.t - y.t

13 return z

where for both multiplication and division we create an output object (lines 2 and 9)
and update its sign and exponents appropriately with the proper sum or difference.
Lastly, we return the new DBLNS number (lines 6 and 13).

322 10 Other Number Systems

A few example illustrate how to use the DBLNS class. Note that there will be
a second or two pause when importing the class as the lookup table is initially
generated. A hardware implementation would have this table in permanent memory.
For example,

>>> from DBLNS import =
>>> x = DBLNS(3.141592)
>>> X
3.140757
>>> x.b
260
>>> X.t
-163
>>> y = DBLNS(13)
>>> y
13.002569
>>> P = X*xY
>>> g = X/y
>>> D
40.837911
>>> g
0.241549

where we ask for x = 3.141592 and get 3.140757, the closest value calculated from
the exponents x.b and x.t, 3.140757 = 220037163 Similarly, y = 13 becomes
y = 13.002569. The product (p) and quotient (g) are calculated giving 40.837911
(should be 40.840696) and 0.24159 (should be 0.24166). We will come back to
these results in the Discussion below.

One thing left to point out about DBLNS numbers is that if the range of the
exponents is fixed, as it would be in a true hardware implementation, we might
quickly generate exponents that cannot be represented. One solution to this problem
is to make use of approximations to unity. For example, all the following are within
£0.005 of 1,

Value b t

0.9958324437176391 168 | —106
0.9968509430967009 653 | —412
0.9968944606878651 | —401 253
0.9979140462573112 84 | =53
0.9989346746199259 569 | —359
0.998978283176522 | —485 306
1.0 0 0
1.0010227617964118 485 | =306
1.001066461508586 | —569 359
1.0020903140410862 | —84 53
1.0031152137308417 401 | —253
1.004141161648845 886 | —559
1.0041849974949628 | —168 106

10.3 Double-Base Number System 323

which means that we could pre-multiply a value by one of these approximations to
reduce the exponents to a range which fits the number of bits used to represent them.
For example, consider this set of expressions,

>>> from DBLNS import =*
>>> x = DBLNS(3.141592)
>>> X
3.140757
>>> A = X*X*X*X
>>> A.b
1040
>>> A.t
-652
>>> A

-
[a}
Fh

DBLNS (0)
= -401
= 253

>>>

>>>

o

>>>
>>>
.996894
>>> = X*xUu

>>> = Z*xZ*xZ*%2Z

WwNogc e e ¢

>>>
96.102380
>>> B.b
-564
>>> B.t
360

where we calculate x*, first by simply multiplying x (2) and by scaling x by an
approximation to unity (z=x+u) before multiplying (B). The final exponents for A
are beyond the representable range so that we get infinity as the result. But, if we
scale by a suitably chosen approximation to unity (u) we get a result of 96.102380
(actual is 97.305506). So, what just happened? We had x = 22037163 and we
replaced it with z = xu = 2260+H(=40)3=163+253 — 7=1413% which reduced the size
of the exponents by nearly a factor of two. Because of this, z* resulted in exponents
that were still within the allowed range. A full implementation of DBLNS would
use this transformation to keep the exponents in range.

Discussion In this section we investigated two different ways to represent numbers
using a double-base system. The first represented unsigned integers as a set of
tuples, exponents of 2i3/, which sum to the number. We saw that an efficient
mechanism exists for generating this representation. We also saw how to easily
implement addition and multiplication of numbers in this format along with tricks
for keeping the representation sparse. As interesting as double-base numbers are,
the lack of subtraction and division operations for the unsigned form greatly limits
its use. As with all the number systems in this chapter, DBNS numbers are intended
for implementation in hardware for very specific calculations that require high
speed. For example, Dimitrov and Jullien [6] gives an algorithm for computing
y = AF (modp) using unsigned DBNS numbers. This is a frequently used

324 10 Other Number Systems

operation for cryptographic systems and so when the numbers involved are very
large unsigned DBNS can be seen as an advantage. The second way we investigated
involves double-base logarithmic numbers (DBLNS). These are numbers of the
form x = 5,2°3' where b and ¢ are signed integer exponents and s, is the sign of
x. For a fixed range of exponents we saw how to implement basic multiplication
and division operations and how to take advantage of unity approximations to keep
the exponents in a set range. Multiplication and division of DBLNS numbers is a
very fast operation. However, it is not hard to see that unless the range of integer
exponents is large there are significant losses in precision when converting floating-
point values to DBLNS. These errors are then further compounded when operations
are performed on the numbers and when unity approximations are used. This limits
the utility of DBLNS numbers. Again, Dimitrov and Jullien [6] offers examples
of using DBLNS numbers for filter calculations It also offers block diagrams for
DBLNS hardware implementations. The first section of this chapter examined
logarithmic numbers (LNS) which is similar to the DBLNS but uses a floating-point
exponent, represented in fixed-point format, to represent numbers as a power of a
single base (2). In that section we saw that efficient multiplication and division of
LNS numbers as well as addition and subtraction with look-up table interpolation
of a 1-D function. Similar addition and subtraction operations for DBLNS numbers
requires interpolating a 2-D function. On the whole, the advantages of LNS, which
is a viable alternative to IEEE floating-point, seem to outweigh those of DBLNS.

10.4 Residue Number System

The residue number system (RNS) was described by Garner [7]. It is particularly
useful for rapid multiplication and addition and, unlike the double-base number
system above, also supports subtraction. However, division is difficult, as are
other operations like magnitude comparison. Conversions to/from standard number
formats are also less than straightforward. Our implementation will focus on
representation, conversion, and the operations of unsigned addition, multiplication,
and subtraction. Like the other number systems in this chapter, the advantages of
RNS are best seen in hardware. Keeping space considerations in mind, we will not
consider signed RNS numbers but will challenge the reader to do so in the exercises.

Representing Numbers in RNS The word “residue” in “residue number system”
refers to the fact that numbers are represented as collections of remainders for a
chosen set of bases. The remainder is found by the modulo operation which in C
is the % operator so that 5 % 3 = 2 since the remainder of 5 divided by 3 is 2.
Python uses the same operator as C.

In order for the representations to be unique the selected bases must be relatively
prime, i.e., have no factors in common. Prime numbers naturally satisfy this
requirement so we will use prime bases for our RNS implementation. How many
bases and their values is up to the implementation. In Garner’s original paper the

10.4 Residue Number System 325

bases for the examples are 2, 3, 5, and 7. The number of possible remainders for a
number divided by 2 is, of course, two: 0 or 1. Similarly, for 3 it is three: 0, 1, 2. The
pattern is clear, if the base is n then there are n possible remainders, 0, 1,...,n— 1.
So, if we select 2, 3, 5 and 7 as bases we can uniquely represent 2 x 3 x5 x7 = 210
possible numbers. So far so good but we haven’t yet given concrete examples. Let’s
do so now with Garner’s set of bases. In order to represent a number we use the
remainders for the number divided by each of the bases like so,

2. 3 5 17
0O 00 0 0
1 11 11
2 10 222
3 1 0 3 3
4 101 4 4
5 1 2 0 5
6 |0/ 0 16
7 11720
8 10 2 3 1
9 110 4|2
10,0 1 0 3

where 3 becomes 1 0 33 because 3 $ 2 = 1,3 $ 3 = 0,3 % 5 = 3,and
3% 7 = 3.

The largest number we can represent with the bases above is 209 which becomes
1 2 4 6. What happens if we try to represent a larger number? Following the
conversion rule we see that 210 becomes 0 0 0 0 and 211 is 1 1 1 1 which is the
same as zero and one, respectively. So, after 209 the pattern of residues repeats
which we would expect because 210 is the product of the bases and therefore is
evenly divided by all of them.

Conversion to RNS Let’s start our RNS implementation by deciding on the set of
bases and how we are going to store them in a 32-bit unsigned C integer. If we use
four bases we can allocate 8 bits to each residue. To maximize the range we should
use bases that are close to 28 — 1 = 255 so that we make maximum use of the bits
available. A table of prime numbers reveals that the four largest primes less than
255 are: 233, 239, 241, and 251. Therefore, we will use these primes as the bases
and allot 8 bits of the 32-bit unsigned integer to each of them. What sort of range
will this give us compared to a standard 32-bit unsigned integer? Comparing gives,

232 -1 = 4,294,967,295
233 x239x 241 x251 -1 = 3,368,562,317

meaning we will retain 78.4% of the range of a standard 32-bit unsigned integer.
In order to store the residues we need to divide the 32 bits into four blocks of 8
bits. It will be handy to define bit masks and shift values so that we can quickly set

326

10 Other Number Systems

and retrieve the value for any base. Once we have these we can define the conversion
to RNS by using standard C operators. Putting it all together gives is the beginning
of our RNS library,

w J o0 Ul bW N

LA)(:Jww[\JN[\)[\JN[\)[\JN[\)l\JI—'l—‘l—‘l—'l—‘l—‘l—'l—‘l—‘l—'m
W N EFE O LW WwJO0 Ul d WNEF O WOOBNO U & WNRPL o

34
35
36

#include <stdint.h>

typedef uint32 t rns_t;

#define
#define
#define
#define

#define
#define
#define
#tdefine

#define
#tdefine
#define
#define

void pp(rns_t n)

BO
B1
B2
B3

MO
M1
M2
M3

SO
S1
S2
S3

233
239
241
251

OXFF

OxXFFO0O

0XFFO0000

0XFF000000

0
8
16
24

{

uintlé_t nO,nl,n2,n3;
>> S0;
>> S1;
>> S2;
>> S3;

no
nl
n2
n3

}

(n & MO)
(n & M1
= (n & M2
= (n & M3
printf ("$02x %$02x %02x %$02x",

)
)
)

rns_t to_rns(uint32_t n) {

rns
ans
ans
ans
ans

o o0 |l

o° oP°

return ans;

}

0;

<<

<<

<<

<<

SO0;
S1;
S2;
S3;

n0,nl,n2,n3);

where we include stdint . h to have access to the uint32 t data type (line 1).
We define our RNS data type in line 3. Lines 5 through 8 define the prime numbers
we are using for the bases. Lines 10 through 13 define bit masks on the 32-bit integer
that, along with the shift values defined in lines 15 through 18, will let us select the
value for any base. We store the bases so that the bits assigned to BO cover bits 0
through 7, B1 cover bits 8 through 15, B2 cover bits 16 through 23 and B3 bits 24
through 31.

10.4 Residue Number System 327

Lines 20 through 27 define a helper “pretty print” function to display the residues.
It also serves as an example of how to extract the residues using the idiom of
(n & M1) >> S1 which selects the desired bits using the mask and then shifts
down so that the bits are in the lowest position.

Lastly, lines 30 through 36 define our first library function, to_rns, which
finds the residue for each base (n % BO) and shifts it into the proper place in the
RNS representation ((n % B0) << SO0). The bits are then logically OR’ed to set
them without modifying other bits. The result is the RNS representation of the input
number.

Let’s use these functions to examine the conversion of 1234567890 to RNS. We
call to_rns(1234567890) to get the RNS representation and then call pp to
print the residues. Doing so gives us,

1234567890 = 94,6, 0616, 5216, 2bjs

= 148, 6, 82, 43
which is what we want to see since,
1234567890 % 233 = 148
1234567890 % 239 = 6
1234567890 % 241 = 82
1234567890 % 251 = 43

Now that we can represent RNS numbers, let’s implement addition and multiplica-
tion.

Unsigned Addition and Multiplication The entire point behind considering the
residue number system is that addition and multiplication are fast, highly parallel,
operations. This especially true when RNS is implemented in hardware. It will not
be true in terms of the number of operations performed by our RNS library but the
library will illustrate the process.

Addition is performed base by base and there is no carrying of values between the
bases. For each base we add the corresponding residues, modulo the base, and that
is all. It is the lack of a carry that makes RNS potentially useful. It is not difficult to
imagine a hardware implementation that performs this for each base simultaneously.
Let’s consider an example using the bases 2, 3, 5, and 7,

104 0 2 4 6

+ 95 + 1 2 0 4
1 4 4 10

199 1 1 4 3

where the line with bold entries shows the result of simply adding each residue. The
bold 4 and 10 exceed the base, 3 and 7, respectively, and so must be adjusted. While
the modulo operation implies division it is simpler in this case because all that is
needed is to subtract the base if the residue sum exceeds it. This produces the last

328 10 Other Number Systems

line where it is claimed that 1 1 4 3 is an RNS representation of 199, which it is
since: 199%2 =1, 199%3 = 1, 199%5 = 4, and 199%7 = 3.

To add addition to our RNS library we will first define two helper functions,
rns_set and rns_get, which set or get the value of a particular residue for a
given RNS number. These are easily implemented,

1 |void rns_set(rns_t snum, uintlé_t val, uint8_t base) {
2 switch (base) {
3 case 0: *xnum
4 case 1: xnum
5
6
7
8

(uint32_t)val << S0; break;
(uint32_t)val << S1; break;
()
()

case 2: xnum

uint32_ t)val << S2; break;
case 3: xnum uint32 t)val << S3; break;

|

|

|

|
default: break;

}
9}
10
11|/uintl6_t rns get(rns_t num, uint8 t base) {
12 uintlé_t ans = 0;
13 switch (base) {
14 case 0: ans = (uintlé_t) ((num & MO) >> S0); break;
15 case 1l: ans = (uintlé_t) ((num & M1) >> S1); break;
16 case 2: ans = (uintlé_t) ((num & M2) >> S2); break;
17 case 3: ans = (uintlé_t) ((num & M3) >> S3); break;
18 default: break;
19 }
20 return ans;
21}

where to set a residue of an RNS number we supply the number, the residue value,
and which base it belongs in (line 1). The rest of the function determines which base
and shifts the residue value up accordingly before OR’ing it into the RNS number
(e.g. line 3). To get a residue we supply the RNS number and which base (line 11)
and, after masking the number appropriately, shift the residue down and return it
(e.g. line 14).

With the helper functions above addition becomes particularly terse,

lirns t rns _add(rns t x, rns_t y)

2 rns_t ans = 0;

3 rns_set (&ans, (rns_get(x,0)+rns_get(y,0)) % B0, 0);
4 rns_set (&ans, (rns_get(x,1)+rns get(y,1)) % Bl, 1);
5 rns_set (&ans, (rns_get(x,2)+rns get(y,2)) % B2, 2);
6 rns_set (&ans, (rns_get(x,3)+rns_get(y,3)) % B3, 3);
7 return ans;

8|}

where we set each residue to the sum of the corresponding residues of each input
modulo the base. For example, line 3 sets the residue for base 0. Once all residues
are set the new RNS number, with the proper sum value, is returned (line 7).

10.4 Residue Number System 329

Multiplication of two RNS numbers is identical to addition in that it can be done
in parallel and involves no carries. Instead of adding each residue, we multiply them
instead (modulo the base). For example, consider,

14 0 2 4 0

X 13 x 1 1 3 6
0 2 12 0

182 0 2 2 0

where the product of each residue is given followed by the residue product modulo
the base. Note, the bold 12 implies that unlike addition, simple subtraction of the
base value to find the residue is not sufficient for multiplication. The final answer
is claimed to be 0 2 2 0 which is correct because 182%2 = 0, 182%3 = 2,
182%5 = 2, and 182%7 = 0. The implementation of multiplication, then, is a
trivial modification of our addition routine,

lirns t rns mul (rns_t x, rns_t y)

return ans;

2 rns_t ans = 0;

3 rns_set (&ans, (rns_get(x,0)xrns get(y,0)) % BO, 0);
4 rns_set (&ans, (rns_get(x,1)*rns get(y,1)) % Bl, 1);
5 rns_set (&ans, (rns_get(x,2)xrns _get(y,2)) % B2, 2);
6 rns_set (&ans, (rns_get(x,3)xrns get(y,3)) % B3, 3);
7

8

}

where the only difference is to replace “+” with “*” for each residue.

Unsigned Subtraction If we recall that subtraction is defined by addition of
the additive inverse we can see how to implement unsigned subtraction in RNS.
The residues are all modulo the base which means that each residue is really a
mathematical group and by definition every element of a group has an inverse so
that the group operation performed on element @ and its inverse, a~', will result in
the identity element. The identity element is zero, so, for any of the residues, the
inverse to a value, a, is what needs to be added to a to get to 0. This value is always
the base minus a. So, if our bases are 2, 3, 5 and 7 and we have a set of residues,
1204 (95), we calculate the inversetobe 1 1 53 because 1204+1153 =0000.
Therefore, subtraction becomes addition of the inverse. For example, if we want to
subtract 95 (1 2 0 4) from 134 (0 2 4 1) we should get 134 — 95 =390r1 04 4
because,

0241—-1204 = 0241+1153
= 1394
= 1044

which is indeed 39, as expected.
The above means that we can add subtraction, A — B assuming A > B, to our
library by modifying addition to calculate the inverse of B first,

330 10 Other Number Systems

1 rns_t rns_inverse(rns t y) ({

2 rns_t ans = 0;

3 rns_set (&ans, BO - rns get(y,0), 0);

4 rns_set (&ans, Bl - rns _get(y,1), 1);

5 rns_set (&ans, B2 - rns _get(y,2), 2);

6 rns_set (&ans, B3 - rns _get(y,3), 3);

7 return ans;

8 '}

9

10|rns_t rns sub(rns t x, rns t y)

11 rns_t ans = 0, iy = rns_inverse(y);

12 rns_set (&ans, (rns_get(x,0)+rns_get(iy,0)) % BO, 0);
13 rns_set (&ans, (rns_get(x,1)+rns _get(iy,1)) % Bl, 1);
14 rns_set (&ans, (rns_get (x,2)+rns_get(iy,2)) % B2, 2);
15 rns_set (&ans, (rns_get (x,3)+rns_get(iy,3)) % B3, 3);
16 return ans;

17/}

where rns_sub is virtually identical to rns_add with the addition of first
calculating the additive inverse of y (line 11). The inverse itself is calculated in
rns_inverse (line 1) where each residue, r, of the argument is replaced with
B — r, B the base of the residue.

Conversion from RNS Conversion to RNS is straightforward as shown above.
Conversion from RNS back to a natural number is less obvious. We need to find
values that map to special RNS representations. Once we have these values we can
simply multiply the residues by them, sum the results, and get our answer (modulo
the product of the bases). The special RNS representations are the ones where only
one base has a value, of one, and all the others are zero. For example, our library has
four bases so we need to find four numbers that in RNS are represented as 1 0 0 0,
0100,0010,and 000 1. Why? Because, if we know the number thatis 1 0 0 0,
call it by, then an RNS number that has a residue of 3 for the first base will contribute
3by to the value of the number. Repeating for all the bases and summing, modulo
the product of the bases, will give us our desired value.

An example is in order. Switching back to the simpler bases used above (2, 3,
5, and 7), we are looking for numbers that have RNS representations of 1 0 0 0,
0100,0010,and 00 O 1. This is really saying that we are looking for an integer,
Ay, which satisfies Ag%2 = 1, Ag%3 = 0, A¢%5 = 0 and Ay%7 = 0. This is just an
application of the Chinese Remainder Theorem first presented by Sun Tzu centuries
ago. There are different ways to locate the solution but since this is a book about
computers, and computers are fast, we can simply use brute force searching. If we
do this for the simple bases the computer responds immediately with 105, 70, 126,
and 120. Therefore, we know that,

10.4 Residue Number System

105

70
126
120

T

331

1000
0100
0010
0001

which means that if we have 182 — 02 2 0 we can recover the original number as,

[105(0) + 70(2) + 126(2)

In order to add such a conversion to our

+ 120(0)]%210 = 182

library we need to find the four integers

that map to the special RNS representations for the bases 233, 239, 241, and 251.
Again, we use brute force searching, with time to get a cup of coffee, and learn that

the special values are,

3021585941
1099363434
1663315003

952860257

which we can encapsulate in the library as,

#define A0 3021585941u
#define Al 1099363434u
#define A2 1663315003u
#define A3 952860257u

uint32 t to int(rns_t n) {
uint64 t ans;
ans = (uinté64_t

(uint64_t

(

(

W O J 0 U WN K

=
o

uinté64 t
uinté4_t
(uint32_t) (ans %

S
NP

return
13/}

1000
0100
0010
0001

Yyl

AOxrns_get (n,0) +
Alxrns_get(n,1) +
A2+rns_get(n,2) +
A3xrns_get(n,3);

(rns_maxint () +1)) ;

where we multiply each special value by the residue for that base (e.g. line 8) and
track the sum (ans) in a 64-bit integer to avoid overflow. The final return value
is this sum modulo the maximum number of values in the RNS representation
(line 12). The case in line 12 back to a 32-bit integer will not lose precision because
of the modulo by a number that we know fits in a 32-bit value.

Discussion In this section we examined the essence of RNS, how to do basic arith-
metic (ignoring difficult division), and how to convert numbers to and from RNS.
In terms of practicality, at least for integer operations, RNS is a plausible option,
especially for hardware cases which require low power and high performance.

332 10 Other Number Systems

Division remains more difficult. In [7] Garner speculates that division could be
implemented as a trial multiplication and subtraction process, similar to doing long
division by hand. Implementing such an algorithm in hardware might be difficult
and worse yet, slow enough to undo the performance gains for addition, subtraction
and multiplication.

Hopefully our brief introduction to the residue number system was enough to
whet your appetite. RNS is still an active research area because of the promise of
fast, carry-free, parallel operations. For example, consider [8, 9] and [10]. To dive
deep into RNS, try [11].

10.5 Redundant Signed-Digit Number System

The final number system for this chapter is the redundant signed-digit number
system (RSD). Like the residue and double-base number systems above, the
redundant system allows a number to be represented in multiple ways in order to
perform certain operations very quickly and efficiently. And, like the other number
systems, this flexibility comes with a price when attempting to implement other
operations.

The phrase “redundant signed-digit number system” refers to a positional number
system where the digits are allowed to take on more values than are necessary.
For example, a standard positional number, x, using radix (base) r requires digits
0,1,...,r — 1 and represents the number as a string of digits, d,d,—1d,— . .. dy,
with the value,

n—1
X = E dir’
i=0

The RSD system loosens the digit requirement and allows digits to take on values
from —ca,...,—1,0,1,...,8 where o and B are < r. If @ = f the system is
symmetric. If « = B = r — 1 the system is symmetric and maximally redundant.
We will consider only symmetric, maximally redundant systems here. With these
constraints, then, a radix-10 RSD number system has digits which range from
-9, -8, ..., 8,9 and therefore allows specific numbers to be represented in multiple
ways depending upon the number of digits used. For example, this table shows select
values, 0, ..., 99, as they could be represented with two or three digits,

10.5 Redundant Signed-Digit Number System 333

0 = 00, 0 = 000
1 01, 19 1 001, 019, 199
2 02, 18 2 002, 018, 198
3 03, 17 3 003, 017, 197
4 = 04, 16 4 004, 016, 196
17 = 17, 23 17 = 017, 023, 197, 183
18 = 18, 22 18 = 018, 022, 198, 182
19 = 19, 21 19 = 019, 021, 199, 181
20 = 20, 20 = 020, 180,
85 = 85, 95 8 = 085 095, 125 115
86 = 86, 94 86 = 086, 0%, 126, 114
87 = 87, 93 87 = 087, 093, 127, 113
88 = 88, 92 | 88 = 088, 092, 128, 112
89 = 89, 91 | 8 = 089, 091, 129, 111
90 = 90, 90 = 090, 110,
99 = 99, 99 = 099, 119, 101
where we use 9 = —9. As the number of digits in the representation increases the

number of possible representations also increases. Note that the range of an n-digit
RSD number is twice that of an n-digit number for any radix (if symmetric). So,
while a three digit decimal number can represent values from [0, 999] a symmetric
radix-10 RSD system can represent values from [—999, 999].

Redundant Binary Representation (RBR) Even though RSD supports any radix
the majority of the research and practical implementations of redundant signed-
digit arithmetic have focused on radix-2 or binary. This is the “redundant binary
representation” (RBR) and we will create a small library of RBR routines.
Following the definition above for the digits of a redundant representation the
RBR digits are drawn from the set {—1, 0, 1}. Further, a practical implementation of
RBR will encode the digits using two bits per digit according to this mapping,

Value | r | s
-1 0 0
0 01
0 10

+1 11

where r and s are the two bits stored for each digit value. For example, the RBR
number 01101110, would be stored as,

01101110, = 01 110001 11 11 00 01,

where it is immediately evident that RBR uses twice as much memory per value
than standard binary representation. Conversion from RBR to the numerical value

334 10 Other Number Systems

is straightforward using the table above. If there are n RBR digits, then memory is
accessed in pairs of bits and converted according to,

n—1 n—1
x=Y d2 = (n+s— 12"
k=0 k=0

where dj is the RBR digit, {—1,0, 1}, and r; and s; are the actual bits stored in
memory using the table above. Let’s verify that this indeed true,

01101110, = 0x 27 +1x 2 —1x 22 +0x2* +1x 22 +1x22 —1x2' +0x2°
=20_2% 423422 2!
=64—-32+8+4-2
=42

and,

01110001 11110001,
=O+1-1D2"+0+1-1D2°4+0+0-1)2°+ 0+ 1—1)2*
+(A+1-D2+0+1-D22+0+0—-12"+O0+1-1)2°
=20-2° 42742 2!
=64—-32+8+4-2
=42
Conversion to RBR from standard binary is equally straightforward, simply take
the binary value and encode it. There is no need to search for any representation (as
was done for DBNS above). Therefore, we start our simple library with conversion

routines to map an signed 32-bit integer to an encoded RBR integer stored in an
unsigned 64-bit integer,

1 [#include <stdint.h>
2 |typedef uinté64 t rbr t;

3

4 rbr t to rbr(int32 t n)
5 rbr_ t ans = 0;

6 uint8_t i, s=0;

7

8 if (n < 0) {

9 s = 1;

10 n = abs(n);

11 }
12

10.5 Redundant Signed-Digit Number System 335

13 for(i=0; i < 32; i++) {
14 ans 4= ((n & 1) ? 3 : 1) * (111lu << (2%1));
15 n >>= 1;

16 }

17 return (s) ? ~ans : ans;
18/}

19

20

21/int8_t rbr digit (uints_t b) {
22 switch (b) ({

23 case 0: return -1;

24 case 1l: return O;

25 case 2: return O0;

26 case 3: return 1;

27 }

28}

29

30/int32 t to_int(rbr t n)

31 int64 t ans = 0;

32 uint8 t i;

33

34 for(i=0; i < 32; i++) {
35 ans += rbr digit(n & 3) % (1 << i);
36 n >>= 2;

37 }

38 return (int32 t)ans;

39}

where we use stdint . h (line 1) to access the uint32_t data type (and similar).
Line 2 defines the RBR type as an unsigned 64-bit integer. Conversion from binary
to RBR starts in line 4. We track the sign of the argument, keeping a flag if it is
negative and work with the absolute value (lines 8—11). We then loop over every bit
of the argument (line 13) and encode that bit as 11, if it is set and 01, if it is not
set (line 14) where n & 1 returns the value of the lowest order bit of the argument.
Once we have the encoded value we need to move it to the proper place in the 64-bit
output and add it in. The phrase * (111lu << (2=*1)) shifts the encoded value
to the proper place in the output, ans, where it is added to the existing output bits.
Recall that each encoded bit takes two output bits hence shifting by 2+ 1i. Line 15
shifts the argument down one bit so that the next highest bit is in the lowest position.
The loop then continues until all the bits of the argument have been encoded and
stored. Line 17 returns the encoded RBR representation where if the argument is
negative we flip all the bits. Why? Because, if we look at our encoding table we will
see that flipping the bits of the pairs will change 01, <> 10, and 00, <> 11, which
maps zero to zero and negative one to positive one and vice versa. This is equivalent
to making the number negative because every positive power added (every 1 bit in
the argument) is now added with a negative one.

336 10 Other Number Systems

The conversion from RBR to a standard binary integer starts at line 30. While
the result will fit in a signed 32-bit integer, we use a signed 64-bit integer as an
accumulator. Again, we loop over all 32 bits that will be in the output (line 34)
and look at the encoded bits as pairs. The phrase n & 3 extracts the two lowest
bits, which is an encoded digit, and passes them to the rbr digit helper function
which implements our conversion table to return the proper bit value, {—1,0, 1}.
Once we know the digit value for the current bit we multiply it by 1 << i to
determine the numerical value we should add to the result. Line 30 shifts down by
two bits to get to the next encoded digit. Line 32 returns the final answer cast to a
32-bit signed integer.

Let’s look at the RBR encoding/decoding process,

123 — 5555555555557FDF 6
—123 - AAAAAAAAAAAAS020¢

where the right value is the RBR encoded version of 123 or —123. The number 123
fits in eight bits which becomes 16 bits in the encoded version. All other encoded
bits will be zero. We encode zero as 01, or 10, so each pair of zero digits becomes
either 0101, = 516 or 1010, = A6, hence all the leading 5’s and A’s in the encoded
versions. Let’s look more closely at 7FDF 6, which by pairs is,

011111111101 11 11gggr = 01111011, = 123

and for —123, 8020,¢, which by pairs is,

10 00 00 00 00 10 00 00gpgr = 01111011, = —123

showing that the RBR representation does indeed map back to 123 or —123 as we
would expect.

RBR Addition and Subtraction Now that we can convert to and from RBR we
can implement addition and subtraction. In hardware the addition process is highly
parallelizable but, of course, here we will use standard C code. The key to addition
in RBR, which is slightly different than RSD addition in bases greater than 2, is
a translation table which converts the sum of two bits in {—1,0, 1} to a partial
sum and transfer bit which is added to the partial sum of the next highest bit. So,
instead of bit by bit addition with carry we generate the partial sum and transfer bits
simultaneously, for each digit in the operands, and then shift the transfer bits and
add. The selection of the partial sum and transfer bit values ensures that the sum
will never require a carry. Let’s look at an example which should clarify things.

Let’s add x = 123 and y = 35 to see if we get 158. The RBR representations
for 123 and 35 are, respectively, 01111011gzz and 00100011zpr. We will add
these values by using a look up table which converts the bits of x and y to a new
representation, the partial sum and the transfer bits. The table is,

10.5 Redundant Signed-Digit Number System 337

X; Vi — |t 8
-1 -1 —1 0
—1 0 —1 1
0 |-1 0 -1
-1 1 0 0
1 | -1 0 0
0 0 0 0
0 1 0 1
1 0 I -1
1 1 1 0

where the i-th bit of x and y are used to look up the i-th bit of s and ¢. Once we have
s and ¢ we need to shift 7 up one bit and then add to get the final result,

+

+

0 1 1 1 1 0 1 1 <« «x
0 0 1 0 0 0 1 1 <« y
0 1 0 1 1 0 0 0 <« s
o 1 1 1 1 0 1 1 <t (shifted left)
0 1 0 1 o0 1 1 1 0 — 158

Subtraction is implemented by adding the inverse, x —y — x + y, which is
the same as adding the negation of y. As we saw above for our conversion routines,
flipping the bits of an RBR number changes the sign, so subtraction is simply adding
the flipped bits of y.

Let’s add addition and subtraction to our set of RBR routines,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

int8 t rbr enc(int8 t s)

}

switch (s) {
case -1: return O;
case 0: return 1;
case 1: return 3;

int8 t rbr add partial(rbr t s, rbr t t) {

}

int8 t z = rbr digit(s & 3) + rbr digit(t & 3);
return rbr_enc(z);

int8 t rbr add st(rbr t x, rbr t y, int8 t s, int8 t xt)

int8 t dx = rbr digit(x & 3);
int8 t dy = rbr digit(y & 3)
if ((dx == -1) && (dy == -1)
if ((dx == -1) && (dy == 0)

I
[y
—

{ =
{*t= -1; *s

338 10 Other Number Systems

19 if ((dx == 0) && (dy == -1)) { *t = 0; *s = -1; }
20 if ((dx == -1) && (dy == 1)) { xt = 0; s = 0; }
21 if ((dx == 1) && (dy == -1)) { xt = 0; s = 0; }
22 if ((dx == 0) && (dy == 0)) { *t = 0; s = 0; }
23 if ((dx == 0) && (dy == 1)) { xt = 0; s = 1; }
24 if ((dx == 1) && (dy == 0)) { *xt = 1; %s = -1; }
25 if ((dx == 1) && (dy == 1)) { *t = 1; «s = 0; }
26}

27

28 rbr t rbr add(rbr t x, rbr t y)

29 rbr_t ans=0, s=0, t=0;

30 int8_t ds,dt;

31 uint8 t ij;

32

33 for(i=0; i < 32; i++) {

34 rbr add st(x, y, &ds, &dt);

35 S +=ds x (11llu << (i%2));

36 t += dt * (11lu << (ix2));

37 X >>= 2;

38 y >>= 2;

39 }

40 t <<= 2;

41

42 for(i=0; i < 32; i++) {

43 ans += rbr add partial(s,t) * (11lu << (2%1i));
44 S >>= 2;

45 t >>= 2;

46 }

47 return ans;

48}

49

50|rbr_t rbr sub(rbr t x, rbr t y) ({

51 return rbr_add(x, ~y);

52/}

where the code looks a little daunting at first but it isn’t so bad. Let’s start with
subtraction (line 50). As stated above, subtraction is adding the inverse of the second
argument so we simply return the sum of x and —y where — means logical NOT.
Addition itself starts on line 28. We process each bit of the operands (x and y) in
the loop at line 33. We take the current lowest order two bits of each (an encoded
RBR digit) and use them to decide what values we will put in the corresponding
bit positions of s and 7. We use the scaling trick described above for our conversion
routines to put encoded bit pairs in the proper place (lines 35 and 36). The call
to rbr add_ st accomplishes this by converting the lowest digit of x and y to
their actual digit values (lines 15 and 16) and then searches the lookup table, here
implemented with a set of if statements (lines 17 through 25). These statements
will set s and ¢ properly. With the current lowest order digit processed x and y are
shifted to the next digit (lines 37 and 38). When all digits have been processed line

10.6 Chapter Summary 339

40 shifts the transfer digits () up one position before adding them. The addition
happens in the loop of lines 42 through 46. The design of the lookup table ensures
that these additions will never produce a carry. At this point, ans contains our final
sum (line 47).

The RBR representation seems cumbersome when implemented in code. In
practice, hardware implementations, particularly on FPGAs, are parallelized which
means that addition is a very rapid operation, even with the transfer digits.

Discussion The RSD system (including RBR) is, as all the systems of this chapter
are, a special-purpose system which can be used in custom hardware situations for
specific algorithms where the advantage of rapid arithmetic is useful. Intellectually,
it is entertaining to consider a system like RSD and to see how it operates. RBR
remains an area of active research. For some recent examples, consider [12—14]
and [15].

10.6 Chapter Summary

In this chapter we reviewed four special purpose number systems: logarithmic
numbers, double-base numbers, residue numbers, and redundant numbers. Each of
these representations offers advantages in certain situations, most often realized best
in hardware, but all, except logarithmic numbers, would be unlikely alternatives to
standard representations. Logarithmic numbers offer a viable alternative to IEEE
754 in terms of working with floating-point numbers. Multiplication and division
are extremely rapid in that case and while addition and subtraction are less precise,
requiring function interpolation, modern hardware can store detailed information
on the function to be interpolated so that even addition and subtraction can be rapid
at the expense of some memory use. This makes LNS an attractive alternative for
floating-point operations [16].

Double-base numbers are interesting, not least for their ability to be represented
in two dimensions. Addition is very rapid and multiplication is as well, but
subtraction and division are likely not possible in the unsigned form. The double-
base logarithmic form has the same sort of possible advantages as LNS but use of
integer exponents causes a serious lack of precision.

Residue numbers are attractive for their rapid implementation of addition,
subtraction, and multiplication. The set of routines developed in this chapter was
restricted to unsigned integers for space considerations but there is no reason
signed numbers cannot also be represented as residues. Fixed-point floating-point
operations are also possible. Again, special-purpose hardware can take advantage
of the representation for specific algorithms.

Lastly, we considered redundant signed-digit numbers, specifically radix-2
redundant binary numbers. We saw how this system allows for rapid, parallel,
implementation of addition and subtraction. The RSD representation is curious in
that since each digit is signed there is no need for an overall sign for the number. This

340 10 Other Number Systems

also makes comparison between numbers more difficult. The constant-time addition
speed of RBR, in hardware, offers a distinct advantage in performance compared to
two’s complement addition, especially for larger bit widths (> 32), since the time
for two’s complement addition increases as the log of the bit width [17].

Exercises

10.1 Add a new function, 1ns_1g2 (x), which computes log,(x), to the LNS
number library of Sect. 10.2.

10.2 Add a new function, 1ns_pow (x,n), which computes x", n € Z, to the
LNS number library of Sect. 10.2.

10.3 Add a new function, 1ns_sqgrt (x), which computes /%, to the LNS
number library of Sect. 10.2.

10.4 Add a new method to the Python DBNS class which computes x* where x and
y are both DBNS instances.

10.5 Add a new method to the Python DBNS class which computes x!, the factorial
of x.

10.6 Addition and subtraction of DBLNS numbers involves interpolation of a 2-
D function in a manner similar to the 1-D interpolation of the logarithmic number
system. Specifically, addition (subtraction) is 2937 4 2¢3¢ = 293b(] £ 2¢793d=b)
where the trick is to quickly interpolate 1 £ 27939~ in a reasonable way. For this
exercise skip interpolation and implement the function exactly using Python.

10.7 Add a new function to the RNS library, rns_pow, that takes an RNS number
and an unsigned integer (uint16_t) as input and returns the RNS number raised
to that power.

10.8 Add a new function to the RNS library, rns fact, that takes an RNS
number, x, and returns x!, the factorial of x.

10.9 Our library for RNS numbers focused on unsigned numbers only. Signed
numbers can be represented in RNS in a couple of ways. One way is to split the
range of the residues in two and use two’s complement representation for negative
residues. Another is to store the sign separately and use the to int function to
convert the arguments to integers, compare the magnitudes, and perform the proper
operation, addition or subtraction, to get the proper magnitude result. The sign then
can be set based on this knowledge. (Hint: Where should the sign bit be stored? One

option: change from using uint32 ttouinté64 t and use one of the high bits.)
sksksk

References 341

10.10 Add multiplication to the RBR library. A naive approach to x x y would add x
to itself y times or add y to itself x times. Looping over the smaller of x and y would
help, a little. Implement this (far) less than ideal approach.

10.11 Now add proper multiplication to the RBR library. Just as multiplication of
two integers in binary is accomplished by adding shifted versions of multiplicand
depending upon the value of the bits of the multiplier, RBR multiplication works
the same way with the added condition that a bit value might be negative in which
case the negation of the multiplicand is added. See Sect. 2.3.5 for an explanation of
binary multiplication. Implement the corresponding RBR version. **

References

—

. Coleman, J. Nicholas, et al. “The European logarithmic microprocessor.” Computers, IEEE

Transactions on 57.4 (2008): 532-546.

2. Haselman, Michael, et al. “A comparison of floating point and logarithmic number systems for
FPGAs.” Field-Programmable Custom Computing Machines, 2005. FCCM 2005. 13th Annual
IEEE Symposium on. IEEE, 2005.

3. Dimitrov, Vassil S., Graham A. Jullien, and William C. Miller. “Theory and applications of the
double-base number system.” Computers, IEEE Transactions on 48.10 (1999): 1098-1106.

4. Dimitrov, Vassil S., Graham A. Jullien, and William C. Miller. “An algorithm for modular
exponentiation.” Information Processing Letters 66.3 (1998): 155-159.

5. Berthe, Valerie, and Laurent Imbert. “On converting numbers to the double-base number
system.” Optical Science and Technology, the SPIE 49th Annual Meeting. International Society
for Optics and Photonics, 2004.

6. Dimitrov, Vassil S., and Graham A. Jullien. “Loading the bases: A new number representation
with applications.” IEEE Circuits and Systems Magazine 3.2 (2003): 6-23.

7. Garner, Harvey L. “The residue number system.” IRE Transactions on Electronic Computers 2
(1959): 140-147.

8. Molahosseini, Amir Sabbagh, Saeid Sorouri, and Azadeh Alsadat Emrani Zarandi. “Research
challenges in next-generation residue number system architectures.” Computer Science and
Education (ICCSE), 2012 7th International Conference on. IEEE, 2012.

9. Chen, Jienan, and Jianhao Hu. “Energy-efficient digital signal processing via voltage-
overscaling-based residue number system.” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 21.7 (2013): 1322-1332.

10. Zalekian, Azin, Mohammad Esmaeildoust, and Amer Kaabi. “Efficient Implementation of
NTRU Cryptography using Residue Number System.” International Journal of Computer
Applications 124.7 (2015).

11. Mohan, PV Ananda. Residue number systems: algorithms and architectures. Vol. 677. Springer
Science and Business Media, 2012.

12. Ganesh, K. V,, et al. “Constructing a low power multiplier using Modified Booth Encoding
Algorithm in redundant binary number system.” International Journal of Engineering Research
and Applications Vol 2 (2012): 2734-2740.

13. Shukla, Vandana, et al. “A novel approach to design a redundant binary signed digit adder cell
using reversible logic gates.” 2015 IEEE UP Section Conference on Electrical Computer and
Electronics (UPCON). IEEE, 2015.

14. El-Slehdar, A. A., A. H. Fouad, and A. G. Radwan. “Memristor based N-bits redundant binary

adder.” Microelectronics Journal 46.3 (2015): 207-213.

342 10 Other Number Systems

15. Cui, Xiaoping, et al. “A Modified Partial Product Generator for Redundant Binary Multipliers.”
IEEE Transactions on Computers 65.4 (2016): 1165-1171.

16. Coleman, J. N., and R. Che Ismail. “LNS with Co-Transformation Competes with Floating-
Point.” IEEE Transactions on Computers 65.1 (2016): 136-146.

17. Pai, Yu-Ting, and Yu-Kumg Chen. “The Fastest Carry Lookahead Adder.” DELTA. 2004.

Index

A

AND, 25

Arbitrary precision floating-point
Arithmetic, 270
Comparing, 273
Definition, 265
Representing, 265
Software libraries, 278
Trigonometric and transcendental

functions, 274
Ariane 5 rocket explosion, 118

B
Big integers, 139
Addition and subtraction, 146
Comba multiplication, 159
Comparing, 144
Divide-and-conquer, 165
Division, 155
in Python, 170
Input and output, 142
Karatsuba multiplication, 160
Knuth division, 164
Libraries, 167
Representation, 140
Schonhage and Strassen multiplication, 161
School method multiplication, 152
Bits, 19
Clearing, 32
Masking, 30
Rotations, 35
Setting, 31
Shifting, 33
Testing, 31
Toggling, 32

© Springer International Publishing AG 2017

Boole, George, 25
Boolean algebra, 25
Bytes, 20

C

Checksum, 29

Compare instructions, 37

Converting numbers
Binary to binary-coded decimal, 70
Binary to decimal, 13
Binary-coded decimal to binary, 72
Decimal to binary, 11
Fixed-point to floating-point, 187
Floating-point to fixed-point, 187
Hexadecimal and binary, 10
Octal and binary, 11
Others to decimal, 14

Cryptography, 177

D
Decimal floating-point, 215
Biased exponent continuation field, 216
Combination field, 216
Continuation field, 216
Declet, 218
Densely packed decimal (DPD), 218
in software (C), 225
in software (Python), 231
Infinity, 220
Not-a-number (NaN), 220
Rounding modes, 220
Storage formats, 216
Storage order, 221
Diffie-Hellman key exchange, 178

R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-50508-4

343

344

Digital comparator, 37
Distribution of floating-point numbers, 82
Double-base number system
Addition, 312
Definition, 307
Discussion, 323
Graphical representation, 308
Improving addition, 314
Multiplication, 318
Python implementation, 309
Real number multiplication and division,
321
Real number unity approximations, 322
Representing integers, 308
Representing real numbers, 319

E
Encryption, 28
Endianness
Big-endian, 23
Little-endian, 23
Experiments
Comparison of fixed-point trigonometric
functions, 199
Decimal floating-point logistic map, 226

Decimal floating-point to ASCII string, 221

Floating-point uncertainty in comparing
numbers, 125

Floating-point uncertainty in repeated
subtractions, 122

Floating-point uncertainty in summing an

array of numbers, 123

Floating-point uncertainty in the Logistic
Map, 119

Ilustrating uncertainty in floating-point
calculations, 119

Using rational numbers, 176

F

Fixed-point numbers
Addition, 188
Cosine (polynomial), 199
Cosine (table), 196
Cosine (Taylor series), 197
Division, 193
DOOM (case study), 211
Exponential (Taylor series), 201
Machine learning, 204
Multiplication, 189

Natural logarithm (Newton’s method), 203

Neural networks, 204
Q notation, 183

Index

Sine (polynomial), 198

Sine (table), 194

Sine (Taylor series), 196

Square root (Newton’s method), 200

Subtraction, 188

Trigonometric functions, 194

‘When to use, 211

Floating-point

Addition/subtraction algorithm, 103

Avoiding the pitfalls, 130

Binary coded decimal floating-point, 110

Comparison, 100

Floating-point number, 81

IEEE 754 rounding modes (binary), 97

IEEE addition and subtraction, 102

IEEE exceptions, 105

IEEE floating-point in hardware, 108

IEEE infinity (binary), 91

IEEE multiplication, 103

IEEE NaN (binary), 92

Mantissa, 82

Multiplication algorithm, 105

Pitfalls, 117

Real number, 81

Rules of thumb for floating-point numbers,
130

Significand, 82

Subnormal numbers, 95

Trapping exceptions, 106

Using a tool to improve floating-point
calculations, 131

H
Herbie, 131

I

IBM S/360 floating-point, 85

IEEE 754 number formats, 89

IEEE 754-2008, 81

Integers
Binary addition, 41
Binary subtraction, 43
Binary-code decimal subtraction, 69
Binary-coded decimal, 67
Binary-coded decimal addition, 69
Densely Packed Decimal, 73
One’s complement numbers, 55
Power of two test, 46
Sign extension, 63
Sign-magnitude numbers, 54
Signed addition, 58
Signed comparison, 56

Index

Signed division, 64
Signed multiplication, 60
Signed subtraction, 58
Two’s complement numbers, 55
Unsigned, 21
Unsigned addition, 42
Unsigned division, 49
Unsigned multiplication, 47
Unsigned square root, 52
Unsigned subtraction, 44
Zoned Decimal, 74

Interval arithmetic, 236
Absolute value, 246
Addition and subtraction, 239
Comparisons, 247
Dependency problem, 256
in Python, 248
Monotonic functions, 253
MPFI library, 258
Multiplication, 240
Negation, 245
Powers, 243
Properties of intervals, 252
Reciprocal and division, 241
Sine and cosine, 254

L

Least-squares curve fitting, 198

Logarithmic number system, 293
Addition and subtraction, 302
Comparing numbers, 299
Discussion, 306
Multiplication and division, 298
Representation, 294

Logical operators, 25

M

Memory
Addresses, 22
Bit order, 23
Byte order, 23

N

Nibbles, 19

NOT, 26

Numbers
Babylonian numbers, 5
Binary numbers, 8
Decimal numbers, 8

Egyptian numbers, 3
Hexadecimal numbers, 9
Mayan numbers, 7

Octal numbers, 9
Roman numerals, 3

OR, 26

P

Parity, 29

Patriot missile failure, 118
Place notation, 5
Propagation of errors, 236

R

Radix point, 5
Rational arithmetic, 171

Addition, 174
Division, 175
GCD, 172

in Python, 171
Multiplication, 175
Subtraction, 174

345

Receiver operating characteristics curve, 208
Redundant signed-digit number system, 332

Addition and subtraction, 336
Discussion, 339
Redundant binary representation, 333

Residue number system, 324

Addition and multiplication, 327
Conversion from RNS, 330
Conversion to RNS, 325
Discussion, 331

Representing, 324

Subtraction, 329

RSA encryption, 179

S

Schleswig-Holstein parliament election, 119
Scikit Learn library, 206
Shannon, Claude, 19
Swift, Jonathan, 24

T

Torres y Quevedo, Leonardo, 84
Truth table, 25

346 Index

\% X
Vancouver stock exchange, 119 XOR, 26
w Z

Words, 20 Zuse, Konrad, 85

	Preface to the Second Edition
	Preface
	Who Should Read This Book
	How to Use This Book
	Acknowledgments

	Contents
	Part I Standard Representations
	1 Number Systems
	1.1 Representing Numbers
	1.2 The Big Three (and One Old Guy)
	1.3 Converting Between Number Bases
	1.4 Chapter Summary
	Exercises
	References

	2 Integers
	2.1 Bits, Nibbles, Bytes, and Words
	2.2 Unsigned Integers
	2.2.1 Representation
	2.2.2 Storage in Memory: Endianness

	2.3 Operations on Unsigned Integers
	2.3.1 Bitwise Logical Operations
	2.3.2 Testing, Setting, Clearing, and Toggling Bits
	2.3.3 Shifts and Rotates
	2.3.4 Comparisons
	2.3.5 Arithmetic
	2.3.6 Square Roots

	2.4 What About Negative Integers?
	2.4.1 Sign-Magnitude
	2.4.2 One's Complement
	2.4.3 Two's Complement

	2.5 Operations on Signed Integers
	2.5.1 Comparison
	2.5.2 Arithmetic

	2.6 Binary-Coded Decimal
	2.6.1 Introduction
	2.6.2 Arithmetic with BCD
	2.6.3 Conversion Routines
	2.6.4 Other BCD Encodings

	2.7 Chapter Summary
	Exercises
	References

	3 Floating Point
	3.1 Floating-Point Numbers
	3.2 An Exceedingly Brief History of Floating-Point Numbers
	3.3 Comparing Floating-Point Representations
	3.4 IEEE 754 Floating-Point Representations
	3.5 Rounding Floating-Point Numbers (IEEE 754)
	3.6 Comparing Floating-Point Numbers (IEEE 754)
	3.7 Basic Arithmetic (IEEE 754)
	3.8 Handling Exceptions (IEEE 754)
	3.9 Floating-Point Hardware (IEEE 754)
	3.10 Binary Coded Decimal Floating-Point Numbers
	3.11 Chapter Summary
	Exercises
	References

	4 Pitfalls of Floating-Point Numbers (and How to Avoid Them)
	4.1 What Pitfalls?
	4.2 Some Experiments
	4.3 Avoiding the Pitfalls
	4.4 Chapter Summary
	Exercises
	References

	Part II Other Representations
	5 Big Integers and Rational Arithmetic
	5.1 What is a Big Integer?
	5.2 Representing Big Integers
	5.3 Arithmetic with Big Integers
	5.4 Alternative Multiplication and Division Routines
	5.5 Implementations
	5.6 Rational Arithmetic with Big Integers
	5.7 When to Use Big Integers and Rational Arithmetic
	5.8 Chapter Summary
	Exercises
	References

	6 Fixed-Point Numbers
	6.1 Representation (Q Notation)
	6.2 Arithmetic with Fixed-Point Numbers
	6.3 Trigonometric and Other Functions
	6.4 An Emerging Use Case
	6.5 When to Use Fixed-Point Numbers
	6.6 Chapter Summary
	Exercises
	References

	7 Decimal Floating Point
	7.1 What is Decimal Floating-Point?
	7.2 The IEEE 754-2008 Decimal Floating-Point Format
	7.3 Decimal Floating-Point in Software
	7.4 Thoughts on Decimal Floating-Point
	7.5 Chapter Summary
	Exercises
	References

	8 Interval Arithmetic
	8.1 Defining Intervals
	8.2 Basic Operations
	8.3 Functions and Intervals
	8.4 Implementations
	8.5 Thoughts on Interval Arithmetic
	8.6 Chapter Summary
	Exercises
	References

	9 Arbitrary Precision Floating-Point
	9.1 What is Arbitrary Precision Floating-Point?
	9.2 Representing Arbitrary Precision Floating-Point Numbers
	9.3 Basic Arithmetic with Arbitrary Precision Floating-Point Numbers
	9.4 Comparison and Other Methods
	9.5 Trigonometric and Transcendental Functions
	9.6 Arbitrary Precision Floating-Point Libraries
	9.7 Thoughts on Arbitrary Precision Floating-Point
	9.8 Chapter Summary
	Exercises
	References

	10 Other Number Systems
	10.1 Introduction
	10.2 Logarithmic Number System
	10.3 Double-Base Number System
	10.4 Residue Number System
	10.5 Redundant Signed-Digit Number System
	10.6 Chapter Summary
	Exercises
	References

	Index

