

Mastering phpMyAdmin 3.4 for
Effective MySQL Management

A complete guide to getting started with
phpMyAdmin 3.4 and mastering its features

Marc Delisle

 BIRMINGHAM - MUMBAI

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Mastering phpMyAdmin 3.4 for Effective MySQL
Management

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2012

Production Reference: 1310112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-778-2

www.packtpub.com

Cover Image by Michal Čihař (michal@cihar.com)

Credits

Author
Marc Delisle

Reviewers
Madhura Jayaratne

Rouslan Placella

Lead Technical Editors
Kartikey Pandey

Meeta Rajani

Technical Editor
Kedar Bhat

Project Coordinator
Jovita Pinto

Proofreader
Mario Cecere

Indexer
Tejal Daruwale

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Marc Delisle was awarded "MySQL Community Member of the year 2009"
because of his involvement with phpMyAdmin. He started to contribute to the
project in December 1998, when he made the multi-language version. He is involved
with phpMyAdmin as a developer, translator, and project administrator and enjoys
meeting phpMyAdmin users in person.

Marc is a system administrator at Cegep de Sherbrooke, Québec, Canada. He lives in
Sherbrooke with his wife and they enjoy spending time with their four children.

In addition to the "Mastering phpMyAdmin" successive editions, Marc has
written "Creating your MySQL Database: Practical Design Tips and Techniques" and
"phpMyAdmin Starter", also with Packt Publishing.

I am truly grateful to the Packt team whose sound comments were
greatly appreciated during the production. My thanks also go to the
reviewers of all editions; their sharp eyes helped in making this book
clearer and more complete.

Finally, I wish to thank all contributors to phpMyAdmin's source
code, translations, and documentation; their dedication to this
project continues to push me forward.

About the Reviewers

Madhura Jayaratne is a Computer Science and Engineering graduate of
University of Moratuwa. Currently he works as a software engineer and is located in
Colombo, Sri Lanka.

He is a member of phpMyAdmin team and has contributed with GIS support for the
software, which will be a part of its future releases. He continues to contribute by
coding and translating the software.

Rouslan Placella, based in Cork, Ireland, is currently completing an Honors
degree in Software Development at the Cork Institute of Technology. Born in Saint
Petersbourg in 1985, his enthusiasm for programming and electronics was nurtured
from a very early age. He is passionate about high performance and secure software
and has been contributing to open source software with phpMyAdmin and Geeklog.
During the summer of 2011 he took part in the Google Summer of Code program,
where he developed an improved interface for MySQL routines, triggers, and events
for phpMyAdmin. He currently also teaches Math and programming to second and
third-level students.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

This book is dedicated to Carole, André, Corinne, Annie, and Guillaume,
with all my love.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Table of Contents
Preface	 1
Chapter 1: Getting Started with phpMyAdmin	 7

PHP and MySQL: The leading open source duo	 7
What is phpMyAdmin?	 8

Project documentation	 9
Installing phpMyAdmin	 9

Required information	 9
System requirements	 10
Downloading the files	 10
Installing on different platforms	 11

Installing on a remote server using a Windows client	 11
Installing on a local Linux server	 11
Installing on a local Windows server (Apache, IIS)	 12

Configuring phpMyAdmin	 12
The config.inc.php file	 12

Avoiding false error messages about permissions on config.inc.php	 13
Configuration principles	 13
Web-based setup script	 15
Manually creating config.inc.php	 20
Tips for editing config.inc.php on a Windows client	 20
Description of some configuration parameters	 20

PmaAbsoluteUri	 21
Server-specific sections	 21

Installing phpMyAdmin configuration storage	 24
Goal of the configuration storage	 24
Location of the configuration storage	 24
Performing the installation	 25

Installing for a single user	 25
Installing for multiple users	 27

Table of Contents

[ii]

Upgrading phpMyAdmin	 28
Summary	 29

Chapter 2: Configuring Authentication and Security	 31
Logging in to MySQL through phpMyAdmin	 31

Logging in to an account without a password	 32
Authenticating a single user with config	 32

Testing the MySQL connection	 33
Authenticating multiple users	 33

Authenticating with HTTP	 33
Authenticating with cookie values	 34
Authenticating with signon mode	 36

Configuring for multiple server support	 38
Defining servers in the configuration file	 38
Authenticating through an arbitrary server	 39

Logging out	 40
Securing phpMyAdmin	 40

Protecting phpMyAdmin at directory level	 40
Displaying error messages	 41
Protecting with IP-based access control	 41

Defining rules	 42
Order of interpretation for rules	 42
Blocking root access	 43

Protecting in-transit data	 43
Summary	 44

Chapter 3: Over Viewing the Interface	 45
Over viewing panels and windows	 45

Login panels	 45
Navigation and main panels	 46

Home page	 46
Views	 46

Query window	 46
Starting page	 47

Customizing general settings	 47
Configuring window title	 47
Natural sort order for database and table names	 48
Creating site-specific header and footer	 48
Themes	 49

Configuring themes	 49
Selecting themes	 50

Selecting a language	 50
Slider	 51
Restricting the list of databases	 51

Table of Contents

[iii]

Deactivating Ajax	 52
Character sets and collations	 52

Effective character sets and collations	 53
Navigation panel	 54

Configuring the logo	 54
Database and table list	 55

Light mode	 55
Full mode	 57
Table abridged statistics	 58
Table quick-access icon	 58
Nested display of tables within a database	 58
Counting the number of tables	 59

Choosing from the server list	 59
Handling many databases or tables	 60

Limits on the interface	 60
Improving fetch speed	 61

Main panel	 61
Home page	 62
Database view	 63
Table view	 64
Server view	 65
Icons for home page and menu tabs	 65
Opening a new phpMyAdmin window	 66

User preferences	 66
Accessing user preferences	 67
Possible locations for saving preferences	 67

Saving in phpMyAdmin configuration storage	 68
Saving in a file	 68
Saving in the browser's local storage	 68

Changing settings	 69
Disallowing specific preferences	 69
Showing developer settings	 70

Query window	 70
Summary	 72

Chapter 4: Creating and Browsing Tables	 73
Creating a database	 73

No privileges	 74
First database creation is authorized	 74

Creating our first table	 76
Choosing the columns	 76
Creating a table	 76
Choosing keys	 79

Table of Contents

[iv]

Inserting data manually	 80
Data entry panel tuning for CHAR and VARCHAR	 82

Browse mode	 83
SQL query links	 83
Navigation bar	 84
Query results operations	 86

Displaying data as a chart	 86
Sorting results	 87

Headwords	 89
Color-marking rows or columns	 89
Limiting the length of each column	 90

Display options	 90
Browsing distinct values	 91

Profiling queries	 92
Creating an additional table	 92
Summary	 94

Chapter 5: Changing Data and Structure	 95
Changing data	 95

Entering edit mode	 95
Moving to next field with the tab key	 97
Moving with arrows	 97
Handling NULL values	 97
Applying a function to a value	 98
Duplicating rows of data	 100

Multi-row editing	 101
Editing the next row	 102
Inline row editing	 102
Deleting data	 103

Deleting a single row	 103
Deleting multiple rows	 104
Deleting all of the rows in a table	 104
Deleting all rows in multiple tables	 105

Deleting tables	 105
Deleting databases	 106

Changing table structure	 107
Adding a column	 107

Vertical mode	 108
Editing column attribute	 108
TEXT column type	 109
BLOB (Binary Large Object) column type	 110

Uploading binary content	 111
ENUM and SET column types	 113

Table of Contents

[v]

DATE, DATETIME, and TIMESTAMP column types	 115
Calendar pop up	 116
TIMESTAMP option	 116

Bit column type	 117
Managing indexes	 118

Single-column indexes	 118
Multi-column indexes and index editing	 120
FULLTEXT indexes	 120
Optimizing indexes with EXPLAIN	 121
Detecting index problems	 122

Summary	 123
Chapter 6: Exporting Structure and Data (Backup)	 125

Dumps, backups, and exports	 125
Scope of the export	 126

Exporting a database	 126
The Table(s) sub-panel	 128
The Output sub-panel	 128

File name template	 128
Choosing a character set	 129
Kanji support	 129
Compression	 129

Export formats	 130
SQL	 130
CSV	 135
CSV for Microsoft Excel	 136
PDF	 137
Microsoft Word 2000	 137
LaTeX	 138
XML	 139
Open document spreadsheet	 140
Open document text	 140
YAML	 141
CodeGen	 141
Texy! text	 141
PHP array	 142
MediaWiki table	 142
JSON	 142

Exporting a table	 143
Split-file exports	 143

Exporting selectively	 143
Exporting partial query results	 144
Exporting and checkboxes	 144

Exporting multiple databases	 145
Saving the export file on the server	 146

User-specific save directories	 147

Table of Contents

[vi]

Memory limits	 148
Summary	 148

Chapter 7: Importing Structure and Data	 149
Limits for the transfer	 150

Time limits	 150
Other limits	 151
Handling big export files	 151
Uploading into a temporary directory	 152

Importing SQL files	 152
Importing CSV files	 154

Differences between SQL and CSV formats	 154
Exporting a test file	 154

CSV	 154
CSV using LOAD DATA	 156

Requirements	 156
Using the LOAD DATA interface	 157

Importing other formats	 158
Open Document Spreadsheet	 158
XML	 159

Reading files from a web server upload directory	 160
Displaying an upload progress bar	 161

Configuring APC	 161
Summary	 162

Chapter 8: Searching Data	 163
Single-table searches	 163

Entering the search page	 163
Searching criteria by column—query by example	 164

Searching for empty / non-empty values	 165
Producing reports with Print view	 166
Searching with wildcard characters	 166
Case sensitivity and search	 168
Combining criteria	 168
Search options	 168

Selecting the columns to be displayed	 168
Ordering the results	 169
Applying a WHERE clause	 169
Avoiding repeated results	 170

Performing a complete database search	 171
Restricting search to a column	 172

Stopping an errant query	 173
Summary	 173

Table of Contents

[vii]

Chapter 9: Performing Table and Database Operations	 175
Maintaining a table	 176
Changing table attributes	 177

Table storage engine	 177
Table comments	 177
Table order	 178
Table collation	 179
Table options	 180

Emptying or deleting a table	 180
Renaming, moving, and copying tables	 181

Appending data to a table	 182
Performing other table operations	 182
Multi-table operations	 182

Repairing an "in use" table	 183
Database operations	 183

Renaming a database	 184
Copying a database	 184

Summary	 184
Chapter 10: Benefiting from the Relational System	 185

Relational MySQL	 185
InnoDB and PBXT	 186

Defining relations with the relation view	 186
Defining internal relations	 187

Defining the relation	 188
Defining the display column	 188

Foreign key relations	 189
Foreign keys without phpMyAdmin configuration storage	 192

Defining relations with the Designer	 192
Over viewing the interface	 193
Defining relations	 195

Defining foreign key relations	 196
Defining the display column	 197
Exporting for PDF schema	 197

Benefiting from the defined relations	 197
Foreign key information	 197
The drop-down list of foreign keys	 199
The browseable foreign-table window	 200
Referential integrity checks	 200
Automatic updates of metadata	 201

Table of Contents

[viii]

Column commenting	 201
Automatically migrating column comments	 202

Summary	 203
Chapter 11: Entering SQL Statements	 205

The SQL query box	 205
The Database view	 206
The Table view	 207

The Columns selector	 208
Clicking into the query box	 208

The Query window	 209
Query window options	 210
Session-based SQL history	 210
Database-based SQL history (permanent)	 210
Editing queries	 211

Multi-statement queries	 212
Pretty printing (syntax highlighting)	 213
The SQL Validator	 213

System requirements	 214
Making the Validator available	 214
Validator results	 215

Standard-conforming queries	 215
Non standard-conforming queries	 216

Summary	 216
Chapter 12: Generating Multi-table Queries	 217

Choosing tables	 218
Exploring column criteria	 219

Column selector: Single column or all columns	 219
Sorting columns	 220
Showing a column	 220
Updating the query	 220
Adding conditions to the criteria box	 221

Adjusting the number of criteria rows	 223
Adjusting the number of criteria columns	 224

Generating automatic joins (internal relations)	 224
Executing the query	 225
The visual builder	 226
Summary	 228

Chapter 13: Synchronizing Data and Supporting Replication	 229
Synchronizing data and structure	 229

Goals of synchronization	 230
Moving between the development and production servers	 230

Table of Contents

[ix]

Collaboration between database designers	 230
Preparing for replication	 230

Over viewing the synchronization process	 231
Preparing for the synchronization exercise	 231
Choosing source and target servers and databases	 232
Analyzing comparison results	 234
Performing a complete synchronization	 236
Performing a selective synchronization	 236

Supporting MySQL replication	 237
The Replication menu	 238
Configuring replication	 238

Master server configuration	 239
Slave server configuration	 242

Setting up a test environment	 243
Controlling a slave server	 244
Obtaining replication information	 245

Gathering replication status	 245
Replicated databases	 245
Replicated tables	 246

Summary	 247
Chapter 14: Using Query Bookmarks	 249

Comparing bookmark and query history features	 250
Creating bookmarks	 250

Creating a bookmark after a successful query	 250
Storing a bookmark before sending a query	 252
Making bookmarks public	 253
The default initial query for a table	 254
Multi-query bookmarks	 255

Recalling bookmarks from the bookmarks list	 256
Executing bookmarks	 256
Manipulating bookmarks	 257

Passing a parameter to a bookmark	 257
Creating a parameterized bookmark	 257
Passing the parameter value	 258

Summary	 259
Chapter 15: Documenting the System	 261

Producing structure reports	 261
Creating a printable report	 261
The database print view	 262

The selective database print view	 262
The table print view	 263
Preparing a complete report with the data dictionary	 264

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Table of Contents

[x]

Generating relational schemas	 264
Adding a third table to our model	 265

Producing schema pages	 266
Page planning	 266
Creating a new page	 266
Editing a page	 267
Exporting a page for display	 269
Changing the font in PDF schema	 271

Laying out a schema with the Designer feature	 272
Summary	 273

Chapter 16: Transforming Data using MIME	 275
Browsing data without transformations	 275

Switching display options	 276
Enabling transformations	 276

Configuring settings for MIME columns	 277
Selecting the MIME type	 278
Browser transformations	 278
Assigning values to transformation options	 279

Requirements for image generation	 279
Configuring GD2 library availability verification	 280
Asserting support of JPEG and PNG libraries	 280
Evaluating the impact of memory limits	 281

Examples of transformations	 281
Clickable thumbnail (JPEG or PNG)	 281
Adding links to an image	 282
Date formatting	 283
Links from text	 283

text/plain: link	 284
text/plain: imagelink	 284

Preserving the original formatting	 286
Displaying parts of a text	 286
Displaying a download link	 286
Hexadecimal representation	 287
SQL pretty printing	 288
IP address	 288
Transforming data via external applications	 288

External application example: In-cell sort	 289
Summary	 290

Chapter 17: Supporting Features Added in MySQL 5	 291
Supporting views	 291

Creating a view from results	 292
Main panel and views	 294
Controlling row counting for improved performance	 295

Table of Contents

[xi]

Supporting routines—stored procedures and functions	 295
Creating a stored procedure	 296

Changing the delimiter	 296
Entering the procedure	 297

Testing the procedure	 297
Manipulating procedures and functions	 298
Manually creating a function	 299
Testing the function	 300
Exporting stored procedures and functions	 300

Executing code with triggers	 301
Manually creating a trigger	 302
Testing the trigger	 303

Using information_schema	 303
Partitioning	 304

Creating a table with partitions	 304
Maintaining partitions	 305
Exporting a partition definition	 305

Exploring the event scheduler	 306
Activating the scheduler	 306
Granting EVENT permission	 306
Creating an event	 306
Manipulating events	 307
Exporting	 307

Summary	 307
Chapter 18: Tracking Changes	 309

Understanding the goals of the tracking system	 309
Tracking in other software applications	 309
Tracking in phpMyAdmin	 310

Prerequisites	 310
Configuring a basic tracking mechanism	 311

Principles	 311
Versioning	 311
Taking a snapshot of the current structure	 312
Understanding archiving issues	 312

Initiating tracking for one table	 313
Choosing the statements to be tracked	 315

Testing the tracking mechanism	 315
Tracking report	 316

Determining tracking status	 317
Deactivating and activating tracking	 320

Table of Contents

[xii]

Structure snapshot	 320
Exporting a version	 321
Creating a new version	 322

Quickly accessing tracking information	 323
Deleting tracking information	 323
Summary	 324

Chapter 19: Administrating the MySQL Server	 325
Managing users and their privileges	 325

The user overview	 326
Exporting privileges	 327
Privileges reload	 328

Adding a user	 328
Entering the username	 329
Assigning a host value	 329
Setting passwords	 330
Understanding rights for database creation	 330
Assigning global privileges	 330
Limiting the resources used	 331

Editing a user profile	 331
Editing global privileges	 331
Assigning database-specific privileges	 332
Changing the password	 334
Changing login information or copying a user	 334

Removing a user	 336
Database information	 336

Enabling statistics	 337
Sorting the statistics	 337
Checking the database privileges	 338
Dropping selected databases	 338

Server information	 339
Verifying server status	 339
Server variables	 341
Server processes	 341
Storage engines	 342
Available character sets and collations	 343
Examining binary logs	 343

Summary	 344
Appendix: Troubleshooting and Support	 345

Troubleshooting	 345
System requirements	 345
Verifying the base configuration	 346
Solving common errors	 346

Table of Contents

[xiii]

Seeking support	 346
FAQs	 347
Help forums	 347

Creating a SourceForge account	 347
Choosing the thread title	 347
Reading the answers	 347

Using the support tracker	 348
Using the bug tracker	 348

Environment description	 348
Bug description	 348

Contributing to the project	 349
The code base	 349
Translation updates	 349
Patches	 349

Index	 351

Preface
phpMyAdmin is an open source web interface that handles the administration
of MySQL. It can perform various tasks such as creating, modifying, or deleting
databases, tables, columns, or rows. It can also execute SQL statements or manage
users and their permissions. When it comes to exploiting phpMyAdmin to its
full potential, even experienced developers and system administrators search for
tutorials to accomplish their tasks.

Mastering phpMyAdmin 3.4 for Effective MySQL Management is an easy-to-read,
step-by-step practical guide that walks you through every facet of this legendary
tool—phpMyAdmin—and takes you a step ahead in taking full advantage of its
potential. This book is filled with illustrative examples that will help you understand
every phpMyAdmin feature in detail.

This book jump starts with installing and configuring phpMyAdmin, and then
looks into phpMyAdmin's features. This is followed by configuring authentication
in phpMyAdmin and setting parameters that influence the interface as a whole,
including the new user preferences feature. You will first create two basic tables and
then edit, delete data, tables, and databases. As backups are crucial to a project, you
will create up-to-date backups and then look into importing the data that you have
exported. You will also explore the various search mechanisms and query across
multiple tables.

Now you will learn some advanced features such as defining inter-table relations,
both with relation view and the Designer panel. Some queries are out of the scope of
the interface; you will enter SQL command to accomplish these tasks.

You will also learn about synchronizing databases on different servers and managing
MySQL replication to improve performance and data security. You will also store
queries as bookmarks for their quick retrieval. Towards the end of the book you will
learn to document your database, track changes made to the database, and manage
user accounts using phpMyAdmin server management features.

Preface

[2]

This book is an upgrade from the previous version that covered phpMyAdmin
version 3.3. Version 3.4.x introduced features such as a user preferences module,
relation schema export to multiple formats, an ENUM/SET column editor, a
simplified interface for export and import, AJAX interface on some pages, charts
generation, and a visual query builder.

What this book covers
Chapter 1, Getting Started with phpMyAdmin, gives us the reasons why we should
use phpMyAdmin as a means of managing MySQL databases. It then covers
the downloading and installation procedures for phpMyAdmin. Installing the
phpMyAdmin configuration storage is covered as well.

Chapter 2, Configuring Authentication and Security, provides an overview of various
authentication types used in phpMyAdmin. It then covers the security issues related
to phpMyAdmin.

Chapter 3, Over Viewing the Interface, gives us an overview of the phpMyAdmin
interface. It includes the login panel, the navigation and main panels with the Light
and the Full mode, and the Query window. The new user preferences module is
examined in this chapter.

Chapter 4, Creating and Browsing Tables, is all about database creation. It teaches us
how to create a table, how to insert data manually, and how to sort the data. It also
covers how to produce charts from data.

Chapter 5, Changing Data and Structure, covers the aspects of data editing in
phpMyAdmin. It teaches us handling NULL values, multi-row editing, and
data deletion. Finally it explores the subject of changing the structure of tables,
with focus on editing column attributes (including the new ENUM/SET editor)
and index management.

Chapter 6, Exporting Structure and Data (Backup), deals with backups and exports.
It lists various ways to trigger an export, available export formats, the options
associated with export formats, and the various places where the export files
may be sent.

Chapter 7, Importing Structure and Data, tells us how to bring back exported data
created for backup and transfer purposes. It covers the various options available in
phpMyAdmin to import data, and different mechanisms involved in importing SQL
files, CSV files, and other formats. Finally, it covers the limitations that may be faced
while importing files, and the ways to overcome them.

Preface

[3]

Chapter 8, Searching Data, presents the mechanisms that are useful for searching data
effectively, per table or inside an entire database.

Chapter 9, Performing Table and Database Operations, covers ways to perform some
operations that influence and can be applied on entire tables or databases as a whole.
Finally, it deals with table maintenance operations for table repair and optimization.

Chapter 10, Benefiting from the Relational System, is where we start covering advanced
features of phpMyAdmin. The chapter explains how to define inter-table relations
and how these relations can help us while browsing tables, entering data, or
searching for it.

Chapter 11, Entering SQL Statements, helps us enter our own SQL commands. The
chapter also covers the Query window—the window used to edit an SQL query.
Finally, it also helps us to obtain the history of typed commands.

Chapter 12, Generating Multi-table Queries, covers the multi-table query generator,
which allows us to produces these queries without actually typing them. The visual
query builder is covered as well.

Chapter 13, Synchronizing Data and Supporting Replication, teaches us how to
synchronize databases on the same server or from one server to another. It then
covers how to manage MySQL replication.

Chapter 14, Using Query Bookmarks, covers one of the features of the phpMyAdmin
configuration storage. It shows how to record bookmarks and how to manipulate
them. Finally, it covers passing parameters to bookmarks.

Chapter 15, Documenting the System, gives an overview of how to produce
documentation which explains the structure of the databases, using the tools offered
by phpMyAdmin.

Chapter 16, Transforming Data Using MIME, explains how to apply transformations to
the data in order to customize its format at view time.

Chapter 17, Supporting Features Added in MySQL 5, covers phpMyAdmin's support
for the MySQL features that are new in MySQL 5.0 and 5.1, such as views, stored
procedures, and triggers.

Chapter 18, Tracking Changes, teaches us how to record structure and data changes
done from the phpMyAdmin interface.

Preface

[4]

Chapter 19, Administrating the MySQL Server, is about the administration of a MySQL
server, focusing on user accounts and privileges. The chapter discusses how a system
administrator can use phpMyAdmin's server management features for day-to-day
user account maintenance, server verification, and server protection.

Appendix, Troubleshooting and Support, explains how to troubleshoot phpMyAdmin
by performing simple verifications. It also explains how to interact with the
development team for support, bug reports, and contributions.

What you need for this book
You need to have access to a server or workstation that has the following installed:

•	 A web server with PHP 5.2 or later
•	 MySQL 5.0 or later

Who this book is for
If you are a developer, system administrator, or web designer who wants to manage
MySQL databases and tables efficiently, then this book is for you. This book assumes
that you are already well-acquainted with MySQL basics. This book is a must
read for every serious phpMyAdmin user who would like to use this outstanding
application to its full power.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "If this information is not available, a good
alternate choice is localhost."

A block of code is set as follows:

$i++;
$cfg['Servers'][$i]['host'] = '';
$cfg['Servers'][$i]['port'] = '';
$cfg['Servers'][$i]['socket'] = '';

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

UPDATE `marc_book`.`book` SET `some_bits` = b '101'
WHERE `book`.`isbn` = '1-234567-89-0' LIMIT 1;

Any command-line input or output is written as follows:

tar -xzvf phpMyAdmin-3.4.5-all-languages.tar.gz

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "There are
various files available in the Download section."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Getting Started with
phpMyAdmin

I wish you a warm welcome to this book! The goal of this first chapter is to:

•	 Know the position of this software product in the web spectrum
•	 Be aware of all its features
•	 Become proficient at installing and configuring it

PHP and MySQL: The leading open
source duo
When we look at the web applications platforms currently offered by host providers,
we will see that the most prevalent is the PHP/MySQL combination.

Well supported by their respective home sites—http://www.php.net and
http://www.mysql.com—this duo has enabled developers to build a lot of
ready-made open source web applications, and most importantly, enabled in-house
developers to quickly put in place solid web solutions.

MySQL, which is mostly compliant with the SQL:2003 standard, is a database system
well known for its speed, robustness, and a small connection overhead. This is
important in a web context where pages must be served as quickly as possible.

Getting Started with phpMyAdmin

[8]

PHP, usually installed as a module inside the web server, is a popular scripting
language in which applications are written to communicate with MySQL (or
other database systems) on the back end and browsers on the front end. Ironically,
the acronym's significance has evolved along with the web evolution, from
Personal Home Page to Professional Home Page to its current recursive
definition—PHP: Hypertext Preprocessor. A blog posting about the successive
name changes is available at http://blog.roshambo.org/how-the-php-acronym-
was-reborn. PHP is available on millions of web domains and powers famous sites
such as Facebook, Yahoo!, YouTube, and Wikipedia.

What is phpMyAdmin?
phpMyAdmin (official home page at http://www.phpmyadmin.net) is a web
application written in PHP; it contains (like most web applications) XHTML, CSS,
and JavaScript client code. This application provides a complete web interface for
administering MySQL databases, and is widely recognized as the leading application
in this field.

Being open source since its birth, it has enjoyed support from numerous developers
and translators worldwide (being translated into 65 languages at the time of writing
this book). The project is currently hosted at SourceForge.net and developed using
their facilities by the phpMyAdmin team.

Host providers everywhere are showing their trust in phpMyAdmin by installing
it on their servers. The popular cPanel (a website control application) contains
phpMyAdmin. In addition, we can install our own copy of phpMyAdmin on our
web server as long as our provider's server satisfies with the minimum requirements
(refer to the System requirements section later in this chapter).

The goal of phpMyAdmin is to offer a complete web-based management of
MySQL servers and data, and to keep up with MySQL and web standards evolution.
While the product is always evolving, it supports all standard operations along
with extra features.

The development team constantly fine-tunes the product based on the reported bugs
and requested features, releasing new versions regularly.

phpMyAdmin offers features that cover basic MySQL database and table operations.
It also has an internal system that maintains metadata to support advanced features.
Finally, system administrators can manage users and privileges from phpMyAdmin.
It is important to note that phpMyAdmin's choice of available operations depends on
the rights the user has on a specific MySQL server.

Chapter 1

[9]

Project documentation
Further information about phpMyAdmin is available on the home site's
documentation page, located at http://www.phpmyadmin.net/home_page/docs.
php. Moreover, the development team, helped by the community, maintains a wiki
at http://wiki.phpmyadmin.net.

Installing phpMyAdmin
It's time to install the product and to configure it minimally for first-time use.

Our reason for installing phpMyAdmin could be one of the following:

•	 Our host provider did not install a central copy
•	 Our provider installed it but the version installed is not current
•	 We are working directly on our enterprise's web server

Note that we can dispense with the phpMyAdmin installation step, if we choose
instead to install one of the AMP products that usually include phpMyAdmin as part
of their offering. Further details are available at http://en.wikipedia.org/wiki/
List_of_AMP_packages.

Required information
Some host providers offer an integrated web panel where we can manage accounts,
including MySQL accounts, and also a file manager that can be used to upload
web content. Depending on this, the mechanism we use to transfer phpMyAdmin
source files to our web space may vary. We will need some of the following specific
information before starting the installation:

•	 The web server's name or address. Here, we will assume it to be
www.mydomain.com.

•	 Our web server's account information (username, password). This
information will be used either for FTP or SFTP transfer, SSH login, or web
control panel login.

•	 The MySQL server's name or IP address. If this information is not available,
a good alternate choice is localhost, which means that the MySQL server
is located on the same machine as the web server. We will assume this to be
localhost.

•	 Our MySQL server's account information (username, password).

http://www.phpmyadmin.net/home_page/docs.php

Getting Started with phpMyAdmin

[10]

System requirements
The up-to-date requirements for a specific phpMyAdmin version are always stated
in the accompanying Documentation.html. For phpMyAdmin 3.4, the minimum
PHP version required is PHP 5.2 with session support, the Standard PHP Library
(SPL) and JSON support. Moreover, the web server must have access to a MySQL
server (version 5.0 or later)—either locally or on a remote machine. It is strongly
recommended that the PHP mcrypt extension be present for improved performance
in cookie-authentication mode (more on this in Chapter 2). In fact, on a 64-bit server,
this extension is required.

On the browser side, cookie support must be activated, irrespective of any
authentication mode we use.

Downloading the files
There are various files available in the Download section of http://www.phpmyadmin.
net. There might be more than one version offered here and it is always a good idea to
download the latest stable version. We only need to download one file, which works
regardless of the platform (browser, web server, MySQL, or PHP version). For version
3.4, there are two groups of files—english and all-languages. If we need only the
English interface, we can download a file whose name contains english, for example,
phpMyAdmin-3.4.5-english.zip. On the other hand, if we have the need for at least
one other language, choosing all-languages would be appropriate.

If we are using a server supporting only PHP 4—for which the PHP team has
discontinued support since 31st December, 2007—the latest stable version of
phpMyAdmin is not a good choice for download. We can use version 2.11.x, which
is the latest branch that supports PHP 4, although the phpMyAdmin team has
discontinued supporting this version too.

The files offered have various extensions: .zip, .tar.bz2, .tar.gz, .tar.xz, and
.7z. Download a file having an extension for which you have the corresponding
extractor. In the Windows world, .zip is the most universal file format, although it
is bigger than .gz or .bz2 (common in the Linux/Unix world). The .7z extension
denotes a 7-Zip file, which is a format that achieves a higher compression ratio than
the other formats offered; an extractor is available at http://www.7-zip.org. In the
following examples, we will assume that the chosen file was phpMyAdmin-3.4.5-all-
languages.zip.

After clicking on the appropriate file, the nearest mirror site is chosen by
SourceForge.net. The file will start to download, and we can save it on our computer.

Chapter 1

[11]

Installing on different platforms
The next step depends on the platform you are using. The following sections detail
the procedures for some common platforms. You may proceed directly to the
relevant section.

Installing on a remote server using a Windows
client
Using the Windows Explorer, we double-click on the phpMyAdmin-3.4.5-all-
languages.zip file we just downloaded on the Windows client. A file extractor
should start, showing us all the scripts and directories inside the main phpMyAdmin-
3.4.5-all-languages directory.

Use whichever mechanism your file extractor offers to save all the files, including
sub-directories, to some location on your workstation. Here, we have chosen C:\.
Therefore, a C:\phpMyAdmin-3.4.5-all-languages directory has been created by
the extractor.

Now, it's time to transfer the entire directory structure C:\phpMyAdmin-3.4.5-all-
languages to the web server in our web space. We use our favorite SFTP or FTP
software or the web control panel for the transfer.

The exact directory under which we transfer phpMyAdmin may vary. It could be
our public_html directory or another directory where we usually transfer web
documents to. For further instructions about the exact directory to be used or the best
way to transfer the directory structure, we can consult our host provider's help desk.

After the transfer is complete, these files can be removed from our Windows machine
as they are no longer needed.

Installing on a local Linux server
Let us say we chose phpMyAdmin-3.4.5-all-languages.tar.gz and downloaded
it directly to some directory on the Linux server. We move it to our web server's
document root directory (for example, /var/www/html) or to one of its sub-
directories (for example, /var/www/html/utilities). We then extract it with the
following shell command or by using any graphical file extractor that our window
manager offers:

tar -xzvf phpMyAdmin-3.4.5-all-languages.tar.gz

We must ensure that the permissions and ownership of the directory and files
are appropriate for our web server. The web server user or group must be able to
read them.

Getting Started with phpMyAdmin

[12]

Installing on a local Windows server (Apache, IIS)
The procedure here is similar to that described in the Installation on a remote server
using a Windows client section, except that the target directory will be under our
DocumentRoot (for Apache) or our wwwroot (for IIS). Of course, we do not need to
transfer anything after modifications are made to config.inc.php (described in the
next section), as the directory is already on the web space.

Apache is usually run as a service. Hence, we have to ensure that the user under
which the service is running has normal read privileges to access our newly created
directory. The same principle applies to IIS, which uses the IUSR_machinename user.
This user must have read access to the directory. You can adjust permissions in the
Security/permissions tab of the directory's properties.

Configuring phpMyAdmin
Here, we learn how to prepare and use the configuration file containing the parameters
to connect to MySQL, and which can be customized as per our requirements.

Before configuring, we can rename the directory phpMyAdmin-3.4.5-all-
languages to something like phpMyAdmin or something easier to remember. This
way, we and our users can visit an easily remembered URL to start phpMyAdmin.
On most servers, the directory part of URLs is case-sensitive so we should
communicate the exact URL to our users. We can also use a symbolic link if our
server supports this feature.

In the following examples, we will assume that the directory has been renamed
to phpMyAdmin.

The config.inc.php file
This file contains valid PHP code, defining the majority of the parameters (expressed
by PHP variables) that we can change to tune phpMyAdmin to our own needs. There
are also normal PHP comments in it, and we can comment our changes.

Be careful not to add any blank line at the beginning or end of
the file; this would hamper the execution of phpMyAdmin.

Note that phpMyAdmin looks for this file in the first level directory—the same one
where index.php is located.

Chapter 1

[13]

A config.sample.inc.php file is included, which can be copied and renamed to
config.inc.php to act as a starting point. However, it is recommended that you use
the web-based setup script (explained in this chapter) instead, for a more comfortable
configuration interface.

There is another file—layout.inc.php—containing some configuration information.
As phpMyAdmin offers theme management, this file contains the theme-
specific colors and settings. There is one layout.inc.php per theme, located in
themes/<themename>, for example, themes/pmahomme. We will cover modifying
some of those parameters in Chapter 4.

Avoiding false error messages about permissions
on config.inc.php
In its normal behavior, phpMyAdmin verifies that the permissions on this file do
not allow everyone to modify it. This means that the file should not be writable by
the world. Also, it displays a warning if the permissions are not correct. However,
in some situations (for example a NTFS file system mounted on a non-Windows
server), the permission detection fails. In these cases, you should set the following
configuration parameter to false:

$cfg['CheckConfigurationPermissions'] = false;

The following sections explain various methods to add or change a parameter in
config.inc.php.

Configuration principles
phpMyAdmin maintains no user accounts of its own; rather, it uses MySQL's
privilege system.

It might now be the time to browse http://dev.mysql.com/doc/
refman/5.1/en/privilege-system.html, to learn the basics
about MySQL's privilege system.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Getting Started with phpMyAdmin

[14]

With the lack of a configuration file, phpMyAdmin displays the cookie-based login
panel by default (more details on this in Chapter 2, which explains that with the
default configuration, it's not possible to log in with an empty password):

We can verify this fact by opening our browser and visiting http://www.mydomain.
com/phpMyAdmin, and substituting the proper values for the domain part and the
directory part.

If we are able to log in, it means that there is a MySQL server running on the same
host as the web server (localhost), and we have just made a connection to it.
However, not having created a configuration file means that we would not be able
to manage other hosts through our installation of phpMyAdmin. Moreover, many
advanced phpMyAdmin features (for example, query bookmarks, full-relational
support, column transformation, and so on) would not be activated.

The cookie-based authentication method uses Blowfish encryption
for storing credentials in browser cookies. When no configuration file
exists, a Blowfish secret key is generated and stored in session data,
which can open the door to security issues. This is why the following
warning message is displayed:
The configuration file now needs a secret passphrase (blowfish_secret)

Chapter 1

[15]

At this point, we have the following choices:

•	 Use phpMyAdmin without a configuration file
•	 Use the web-based setup script to generate a config.inc.php file
•	 Create a config.inc.php file manually

These two latter options are presented in the following sections. We should note
that, even if we use the web-based setup script, we should familiarize ourselves with
the config.inc.php file format as the setup script does not cover all the possible
configuration options.

Web-based setup script
The web-based setup mechanism is strongly recommended in order to avoid syntax
errors that could result from the manual creation of the configuration file. Also,
as this file must respect PHP's syntax, it's common for new users to experience
problems in this phase of the installation.

A warning is in order here: The current version has only a
limited number of translation languages for the setup interface.

To access the setup script, we must visit http://www.mydomain.com/phpMyAdmin/
setup. On the initial execution, the following screenshot appears:

Getting Started with phpMyAdmin

[16]

In most cases, the icons beside each parameter point to the respective phpMyAdmin
official wiki and to the documentation, providing you with more information about
this parameter and its possible values.

If Show hidden messages appears and we click on this link, messages that might
have been shown earlier are revealed.

There are three warnings here. As taking care of the first message will require more
manipulations, we will handle it in a moment. The second warning encourages you
to use the ForceSSL option, which would automatically switch to HTTPS when
using phpMyAdmin (not related to the setup phase).

Let us cover the third message—Insecure connection. This message appears if we
are accessing the web server over HTTP—an insecure protocol. As we are possibly
going to input confidential information, such as the user name and password in the
setup phase, it's recommended that you communicate over HTTPS at least for this
phase. HTTPS uses SSL (Secure Socket Layer) to encrypt the communication and
make eavesdropping on the line impossible. If our web server supports HTTPS, we
can simply follow the proposed link. It will restart the setup process, this time over
HTTPS.

The first warning tells us that phpMyAdmin did not find a writable directory with
the name config. This is normal as it was not present in the downloaded kit. Also, as
the directory is not yet there, we observe that the Save, Load, and Delete buttons in
the interface are grey. In this config directory, we can:

•	 Save the working version of the configuration file during the setup process
•	 Load a previously prepared config.inc.php file

It's not absolutely necessary that we create this configuration directory, as we can
download the config.inc.php file produced by the setup procedure to our client
machine. We can then upload it to phpMyAdmin in the first-level directory through
the same mechanism (say, FTP) that we used to upload phpMyAdmin. For this
exercise, we will create this directory.

The principle here is that the web server must be able to write to this directory.
There is more than one way to achieve this. Here is one that would work on a Linux
server—adding read, write, and execute permissions for everyone on this directory.

cd phpMyAdmin

mkdir config

chmod 777 config

Chapter 1

[17]

Having done that, we refresh the page in our browser and get a screen resembling
the following screenshot:

In the configuration dialog, a drop-down menu permits the user to choose the proper
end-of-line format. We should pick up the format that corresponds to the platform
(UNIX / Linux or Windows) on which we will open config.inc.php file with a text
editor later.

A single copy of phpMyAdmin can be used to manage many MySQL servers but for
now we will define parameters describing our first MySQL server. We click on New
server, and the server configuration panel is shown.

A complete explanation of these parameters can be found in the following sections
of this chapter. For now, we notice that the setup process has detected that PHP
supports the mysqli extension. Therefore, this is the one that is chosen by default. This
extension is the programming library used by PHP to communicate with MySQL.

We assume that our MySQL server is located on localhost. Hence, we keep this
value and all the proposed values intact, except for the following:

•	 Basic settings | Verbose name of this server—we enter my server
•	 Authentication | User for config auth—we remove root and leave it empty,

as the default authentication type is cookie, which ignores a username
entered here

Getting Started with phpMyAdmin

[18]

You can see that any parameter changed from its default value appears in a different
color. Moreover, a small arrow becomes available, the purpose of which is to restore
a field to its default value. Hence, you can feel free to experiment with changing
parameters, knowing that you can easily revert to the proposed value. At this point,
the Basic settings panel should resemble the following screenshot:

We then click Save and are brought back to the Overview panel. This save operation
did not yet save anything to disk; changes were saved in memory. We are warned
that a Blowfish secret key was generated. However, we don't have to remember it, as
it's not keyed in during login process but is used internally. For the curious, you can
switch to the Features panel and click on the Security tab to see which secret key was
generated. Let us get back to the Overview panel. Now, our setup process knows
about one MySQL server, and there are links that enable us to Edit or Delete these
server settings as shown in the following screenshot:

Chapter 1

[19]

We can have a look at the generated configuration lines by using the Display button;
then we can analyze these parameters using the explanations given in the Description
of some configuration parameters section later in this chapter.

At this point, this configuration is still just in memory, so we need to save it. This is
done through the Save button on the Overview panel. It saves config.inc.php in
the special config directory that we created previously. This is a directory strictly
used for configuration purposes. If, for any reason, it was not possible to create this
config directory, you just have to download the file by clicking on the Download
button and upload it to the web server directory where phpMyAdmin is installed.

The last step is to copy config.inc.php from the config directory to the top-
level directory—the one that contains index.php. By copying this file, it becomes
owned by the user instead of the web server, ensuring that further modifications are
possible. This copy can be done through FTP or through commands such as:

cd config

cp config.inc.php ..

As a security measure and until the configuration steps are not completed, it's
recommended that you change the permission on the config directory, for example
with the following command:

chmod ugo-rwx config

This is to block any unauthorized reading and writing in this directory.

Other configuration parameters can be set with these web-based setup pages. To do
so, we would have to:

1.	 Enable read and write access to the config directory.
2.	 Copy the config.inc.php there.
3.	 Ensure that read and write access are provided to this file for the web server.
4.	 Start the web-based setup tool.

After the configuration steps are done, it's recommended to completely remove
the config directory, as this directory is only used by the web-based setup script.
phpMyAdmin displays the following warning on the home page (refer to Chapter 3)
if it detects that this directory still exists:

Directory config, which is used by the setup script, still exists in your
phpMyAdmin directory. You should remove it once phpMyAdmin has been
configured.

Getting Started with phpMyAdmin

[20]

You are invited to peruse the remaining menus to get a sense of the available
configuration possibilities, either now or later when we cover a related subject.

In order to keep this book's text lighter, we will only refer to the parameters' textual
values in the following chapters.

Manually creating config.inc.php
We can create this text file from scratch using our favorite text editor, or by using
config.sample.inc.php as a starting point. The exact procedure depends upon
which client operating system we are using. We can refer to the next section for
further information.

The default values for all possible configuration parameters that can be located
inside config.inc.php are defined in libraries/config.default.php. We can
take a look at this file to see the syntax used as well as further comments about
configuration. See the important note about this file in the Upgrading phpMyAdmin
section of this chapter.

Tips for editing config.inc.php on a Windows
client
This file contains special characters (Unix-style end of lines). Hence, we must open it
with a text editor that understands this format. If we use the wrong text editor, this
file will be displayed with very long lines. The best choice is a standard PHP editor
such as NetBeans or Zend Studio for Eclipse. Another choice would be WordPad,
Metapad, or UltraEdit.

Every time the config.inc.php file is modified, it will have to be transferred again
to our web space. This transfer is done through an FTP or an SFTP client. You have
the option to use a standalone FTP/SFTP client such as FileZilla, or save directly
through FTP/SFTP if your PHP editor supports this feature.

Description of some configuration parameters
In this chapter and the next one, we will concentrate on the parameters that deal with
connection and authentication. Other parameters will be discussed in the chapters
where the corresponding features are explained.

Chapter 1

[21]

PmaAbsoluteUri
The first parameter we will look at is $cfg['PmaAbsoluteUri'] = '';

Sometimes, phpMyAdmin needs to send an HTTP Location header and must
know the absolute URI of its installation point. Using an absolute URI in this case is
required by RFC 2616, section 14.30.

In most cases, we can leave this one empty as phpMyAdmin tries to auto-detect the
correct value. If we browse a table later, then edit a row, and click on Save, we will
receive an error message from our browser saying, for example, This document does
not exist. This means that the absolute URI that phpMyAdmin built in order to reach
the intended page was wrong, indicating that we must manually put the correct
value in this parameter.

For example, we would change it to:

$cfg['PmaAbsoluteUri'] = 'http://www.mydomain.com/phpMyAdmin/';

Server-specific sections
The next section of the file contains server-specific configurations, each starting with
the following code snippet:

$i++;
$cfg['Servers'][$i]['host'] = '';

If we examine only the normal server parameters (other parameters are covered
in the Installing phpMyAdmin configuration storage section of this chapter), we see a
section that resembles the following code block for each server:

$i++;
$cfg['Servers'][$i]['host'] = '';
$cfg['Servers'][$i]['port'] = '';
$cfg['Servers'][$i]['socket'] = '';
$cfg['Servers'][$i]['connect_type'] = 'tcp';
$cfg['Servers'][$i]['extension'] = 'mysqli';
$cfg['Servers'][$i]['compress'] = FALSE;
$cfg['Servers'][$i]['controluser'] = '';
$cfg['Servers'][$i]['controlpass'] = '';
$cfg['Servers'][$i]['auth_type'] = 'cookie';
$cfg['Servers'][$i]['user'] = '';
$cfg['Servers'][$i]['password'] = '';
$cfg['Servers'][$i]['only_db'] = '';
$cfg['Servers'][$i]['hide_db'] = '';
$cfg['Servers'][$i]['verbose'] = '';

Getting Started with phpMyAdmin

[22]

In this section, we have to enter in $cfg['Servers'][$i]['host'], the hostname or
IP address of the MySQL server, for example, mysql.mydomain.com or localhost.
If this server is running on a non-standard port or socket, we fill in the correct values
in $cfg['Servers'][$i]['port'] or $cfg['Servers'][$i]['socket']. See the
connect_type, sockets, and port section for more details about sockets.

The displayed server name inside phpMyAdmin's interface will be the one
entered in 'host' unless we enter a non-blank value in the following parameter,
for example:

$cfg['Servers'][$i]['verbose'] = 'Test server';

This feature can thus be used to display a different server hostname as seen by the
users on the login panel and on the main page, although the real server name can be
seen as part of the user definition (for example, root@localhost) on the main page.

extension
The traditional-mechanism PHP uses to communicate with a MySQL server, as
available in PHP before version 5, is the mysql extension. This extension is still
available in PHP 5. However, a new extension called mysqli has been developed and
should be preferred for PHP 5, due to its improved performance and its support of
the full functionality of MySQL family 4.1.x. This extension is designed to work with
MySQL version 4.1.3 and higher. As phpMyAdmin supports both extensions, we can
choose either one for a particular server. We indicate the extension we want to use in
$cfg['Servers'][$i]['extension']. The default value used is mysqli.

connect_type, socket, and port
Both the mysql and mysqli extensions automatically use a socket to connect to
MySQL if the server is on localhost. Consider the following configuration:

$cfg['Servers'][$i]['host'] = 'localhost';
$cfg['Servers'][$i]['port'] = '';
$cfg['Servers'][$i]['socket'] = '';
$cfg['Servers'][$i]['connect_type'] = 'tcp';
$cfg['Servers'][$i]['extension'] = 'mysql';

The default value for connect_type is tcp. However, the extension will use a socket
because it concludes that this is more efficient as the host is localhost. So in this
case, we can use tcp or socket as the connect_type. To force a real TCP connection,
we can specify 127.0.0.1 instead of localhost in the host parameter. Because the
socket parameter is empty, the extension will try the default socket. If this default
socket, as defined in php.ini, does not correspond to the real socket assigned to the
MySQL server, we have to put the socket name (for example, /tmp/mysql.sock) in
$cfg['Servers'][$i]['socket'].

Chapter 1

[23]

If the hostname is not localhost, a TCP connection will occur; in this case, on the
special port 3307. However, leaving the port value empty would use the default
3306 port:

$cfg['Servers'][$i]['host'] = 'mysql.mydomain.com';
$cfg['Servers'][$i]['port'] = '3307';
$cfg['Servers'][$i]['socket'] = '';
$cfg['Servers'][$i]['connect_type'] = 'tcp';
$cfg['Servers'][$i]['extension'] = 'mysql';

compress
The protocol used to communicate between PHP and MySQL allows a compressed
mode. Using this mode provides better efficiency. To take advantage of this mode,
simply specify:

$cfg['Servers'][$i]['compress'] = TRUE;

PersistentConnections
Another important parameter (which is not server-specific but applies to all server
definitions) is $cfg['PersistentConnections']. For every server we connect to
using the mysql extension, this parameter, when set to TRUE, instructs PHP to keep
the connection to the MySQL server open. This speeds up the interaction between
PHP and MySQL. However, it is set to FALSE by default in config.inc.php as
persistent connections are often a cause of resource depletion on servers (you would
find MySQL refusing new connections). For this reason, the option is not even
available for the mysqli extension. Hence, setting it to TRUE here would have no
effect if you are connecting with this extension.

controluser
Defining the control user has the following two purposes:

•	 On a MySQL server running with --skip-show-database, the control user
permits the use of multi-user authentication even though servers running
with this option are not commonly seen. This aspect is described in Chapter 2.

•	 On all versions of MySQL server, this user is necessary to be able to use
the advanced features of phpMyAdmin.

Getting Started with phpMyAdmin

[24]

For authentication purposes, controluser is a special user (the usual name we
choose for it is pma) who has the rights to read some fields in the special mysql
database (which contains all the user definitions). phpMyAdmin sends queries
with this special controluser only for the specific needs of authentication, and
not for normal operation. The commands to create the control user are available in
phpMyAdmin's Documentation.html and may vary from one version to the other.
This documentation contains the most current commands.

When our controluser is created in the MySQL server, we fill in the parameters as
in the following example, replacing xxx with a suitably complex password:

$cfg['Servers'][$i]['controluser'] = 'pma';
$cfg['Servers'][$i]['controlpass'] = 'xxx';

Standard password guidelines apply here. Please refer to http://en.wikipedia.
org/wiki/Password_strength for suggestions.

Installing phpMyAdmin configuration
storage
In addition to basic MySQL databases maintenance, phpMyAdmin offers advanced
features that we will discover in the following chapters. These features require the
installation of the phpMyAdmin configuration storage.

Goal of the configuration storage
The configuration storage consists of a set of tables that are used behind the scene by
phpMyAdmin. They hold metadata which contains information to support special
features such as query bookmarks and data transformation. Moreover, for tables
using a storage engine that does not support foreign keys, relations between tables
are kept in this configuration storage. The metadata is generated and maintained by
phpMyAdmin on the basis of our actions from the interface.

Location of the configuration storage
There are two possible places to store these tables:

•	 A user's database—to facilitate every web developer owning a database to
benefit from these features.

•	 A dedicated database called pmadb (phpMyAdmin database). In a
multi-user installation, this database may be accessible to a number of
users while keeping the metadata private.

http://en.wikipedia.org/wiki/Password_strength

Chapter 1

[25]

As this storage does not exist by default and because the phpMyAdmin team wants
to promote it, the interface displays the following notice message on the home page:

This message can be disabled with the following parameter (which, by default, is set
to FALSE):

$cfg['PmaNoRelation_DisableWarning'] = TRUE;

Performing the installation
The previous error message is displayed even if only a part of the configuration
storage is lacking. Of course, on a fresh installation, all parts are lacking—our
database has not yet heard of phpMyAdmin and needs to be outfitted with this
configuration storage. Following the here link in the previous screenshot brings up
a panel explaining that the pmadb, and the tables that are supposed to be a part of it,
are either missing or undefined.

It's important to realize that the configuration storage will be functional only if the
following two conditions are met:

•	 Proper definitions are present in config.inc.php
•	 The corresponding tables (and maybe the database) are created

To create the necessary structure that matches our current version of phpMyAdmin,
a command file called create_tables.sql is available in the scripts sub-directory
of the phpMyAdmin installation directory. However, we should not blindly
execute it before understanding the possible choices—single-user installation or
multi-user installation.

In subsequent chapters, we will assume that the multi-user
installation has been chosen.

Installing for a single user
Even if we are entitled to only one database by the system administrator, we can still
use all the advanced features of phpMyAdmin. In this setup, we will use our existing
database to store the metadata tables.

Getting Started with phpMyAdmin

[26]

We need to modify a local copy of the scripts/create_tables.sql file to populate
our database with all the needed tables. They will have the prefix pma_ to make them
easily recognizable. We need to remove the following lines:

CREATE DATABASE IF NOT EXISTS `phpmyadmin`
 DEFAULT CHARACTER SET utf8 COLLATE utf8_bin;
USE phpmyadmin;

This is done because we won't be using a phpmyadmin database but our own. Next,
we should open our own database in phpMyAdmin. We are now ready to execute
the script. There are two ways of doing this:

•	 As we already have the script in our editor, we can just copy the lines
and paste them in the query box of the SQL page. More details on this in
Chapter 11.

•	 Another way is to use the import technique shown in Chapter 7. We select the
create_tables.sql script that we just modified.

After the creation, the navigation panel shows us the special pma_ tables along with
our normal tables.

It is now time to adjust all the configuration storage related parameters in config.
inc.php. This can be done easily with the setup script as seen in this chapter, or by
pasting the appropriate lines from the config.sample.inc.php file. The database is
our own and the table names are the ones that have just been created:

$cfg['Servers'][$i]['pmadb'] = 'mydatabase';
$cfg['Servers'][$i]['bookmarktable'] = 'pma_bookmark';
$cfg['Servers'][$i]['relation'] = 'pma_relation';
$cfg['Servers'][$i]['table_info'] = 'pma_table_info';
$cfg['Servers'][$i]['table_coords'] = 'pma_table_coords';
$cfg['Servers'][$i]['pdf_pages'] = 'pma_pdf_pages';
$cfg['Servers'][$i]['column_info'] = 'pma_column_info';
$cfg['Servers'][$i]['history'] = 'pma_history';
$cfg['Servers'][$i]['tracking'] = 'pma_tracking';
$cfg['Servers'][$i]['designer_coords'] = 'pma_designer_coords';
$cfg['Servers'][$i]['userconfig'] = 'pma_userconfig';

As table names are case sensitive, we must use the same names as
the tables created by the installation script. We are free to change the
table names (see the right-hand part of the configuration directives
listed) provided we change them accordingly in the database.

Chapter 1

[27]

The pmadb and each table have a specific function as listed next:

Function Description Explained in
pmadb Defines the database where all tables are

located
This chapter

bookmarktable Contains the query bookmarks Chapter 14
relation Defines inter-table relations, as used in many

of the phpMyAdmin's features
Chapter 10

table_info Contains the display field Chapter 10
table_coords and
pdf_pages

Contains the metadata necessary for drawing
a schema of the relations in a PDF format

Chapter 15

column_info Used for column-commenting and MIME-
based transformations

Chapter 16

history Contains SQL query history information Chapter 11
tracking Contains the metadata and the actual SQL

statements related to the tracked tables
Chapter 18

designer_coords Holds the coordinates used by the Designer
feature

Chapter 10

userconfig Holds the user's preferences Chapter 3

Between each phpMyAdmin version, the infrastructure may be enhanced—the
changes are explained in Documentation.html. This is why phpMyAdmin has
various checks to ascertain the structure of the tables. If we know we are using the
latest structure, $cfg['Servers'][$i]['verbose_check'] can be set to FALSE to
avoid checks, thereby slightly increasing phpMyAdmin's speed.

Installing for multiple users
In this setup, we will have a distinct database—pmadb—to store the metadata tables.
Our control user will have specific rights to this database. Each user will work with
his/her login name and password which will be used to access his/her databases.
However, whenever phpMyAdmin itself accesses pmadb to obtain some metadata, it
will use the control user's privileges.

Setting a multi-user installation is possible only for a MySQL
system administrator who has the privileges of assigning rights
to another user (here, the pma user).

Getting Started with phpMyAdmin

[28]

We first ensure that the control user pma has been created and that its definition in
config.inc.php is appropriate. We then copy scripts/create_tables.sql to our
local workstation and edit it. We replace the following lines:

-- GRANT SELECT, INSERT, DELETE, UPDATE ON `phpmyadmin`.* TO
-- 'pma'@localhost;

with these, removing the comment characters (double-dash):

GRANT SELECT, INSERT, DELETE, UPDATE ON `phpmyadmin`.* TO
 'pma'@localhost;

We then execute this script by importing it (refer to Chapter 7). The net effect is to
create the phpmyadmin database, assign proper rights to user pma, and populate the
database with all the necessary tables.

The last step is to adjust all the parameters in config.inc.php that relate to
relational features. Please refer to the Installing for a single user section, except for
the database name in the pmadb parameter, which will be as shown in the following
code snippet:

$cfg['Servers'][$i]['pmadb'] = 'phpmyadmin';

The installation is now complete. We will test the features in the coming sections and
chapters. We can do a quick check by logging out of phpMyAdmin, then logging in
and displaying the home page; the warning message should be gone.

Upgrading phpMyAdmin
Normally, upgrading is just a matter of installing the newer version into a separate
directory and copying the previous version's config.inc.php to the new directory.

An upgrade path or the first-installation path, which should not be taken,
is to copy libraries/config.default.php to config.inc.php.
This is because the default configuration file is version-specific, and is not
guaranteed to work for the future versions.

New parameters appear from version to version. They are documented in
Documentation.html and defined in libraries/config.default.php. If
a configuration parameter is not present in config.inc.php, its value from
libraries/config.default.php will be used. Therefore, we do not have to
include it in config.inc.php if the default value suits us.

Chapter 1

[29]

Special care must be taken to propagate the changes we might have made to the
layout.inc.php files depending on the themes used. We will have to copy our
custom themes sub-directories if we added our own themes to the structure.

Summary
This chapter covered the popularity of PHP/MySQL for web applications. The
chapter also gave an overview of why phpMyAdmin is recognized as a leading
application to interface MySQL from the web. It then discussed common reasons
for installing phpMyAdmin, steps for downloading it from the main site, basic
configuration, uploading phpMyAdmin to our web server, and upgrading.

Now that the basic installation has been done, the next chapter will deal with the
configuration subject in depth, by exploring the authentication and security aspects.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Configuring Authentication
and Security

There are many ways of configuring authentication in phpMyAdmin—depending on
our goals, the presence of other applications, and the level of security we need. This
chapter explores the available possibilities.

Logging in to MySQL through
phpMyAdmin
When we type in a username and password, although it seems that we are
logging in to phpMyAdmin, we are not! We are merely using phpMyAdmin
(which is running on the web server) as an interface that sends our username and
password information to the MySQL server. Strictly speaking, we do not log in to
phpMyAdmin, but through phpMyAdmin.

This is why in user-support forums about phpMyAdmin, people
asking for help about authentication are often referred back to
their MySQL server's administrator, because a lost MySQL user or
password is not a phpMyAdmin problem.

This section explains the various authentication modes offered by phpMyAdmin.

Configuring Authentication and Security

[32]

Logging in to an account without a password
MySQL's default installation leaves a server open to intrusion because it creates a
MySQL account named root without a password—unless a password has been
set by the MySQL distributor. The recommended remedy for this weakness in
security is to set a password for the root account. In the eventuality that we cannot
set one or do not want to set one, we will have to make a configuration change to
phpMyAdmin. Indeed, a server-specific configuration parameter, $cfg['Servers']
[$i]['AllowNoPassword'] exists. Its default value is false, which means that no
account is permitted to log in without a password. Generally, this directive should
remain false to avoid this kind of access through phpMyAdmin, as hackers are
actively probing the web for insecure MySQL servers. Go through the Securing
phpMyAdmin section for other ideas about protecting your server.

If the AllowNoPassword parameter is left to false and a login
attempt is made without a password, an Access denied message
is displayed.

Authenticating a single user with config
We might have the need to automatically connect to a MySQL server via
phpMyAdmin, using a fixed username and password, without even having been
asked for it. This is the precise goal of the config authentication type.

For our first example, we will use this config authentication. However, in the
Authenticating multiple users section, we will see more powerful and versatile
ways of authenticating.

Using the config authentication type leaves our phpMyAdmin
open to intrusion, unless we protect it as explained in the Securing
phpMyAdmin section of this chapter.

Here, we ask for config authentication, and enter our username and password for
this MySQL server:

$cfg['Servers'][$i]['auth_type'] = 'config';
$cfg['Servers'][$i]['user'] = 'marc';
$cfg['Servers'][$i]['password'] = 'xxx';

We can then save the changes we made in config.inc.php.

Chapter 2

[33]

Testing the MySQL connection
Now it's time to start phpMyAdmin and try connecting to it with the values we
configured. This will test the following:

•	 The values we entered in the config file or on the web-based setup
•	 The setup of the PHP component inside the web server, if we did a

manual configuration
•	 Communication between web and MySQL servers

We start our browser and point it to the directory where we installed phpMyAdmin,
as in http://www.mydomain.com/phpMyAdmin/. If this does not work, we try
http://www.mydomain.com/phpMyAdmin/index.php. (This would mean that our
web server is not configured to interpret index.php as the default starting document.)

If you still get an error, refer to the Appendix for troubleshooting and support. We
should now see phpMyAdmin's home page. Chapter 3 gives an overview of the
panels seen now.

Authenticating multiple users
We might want to allow a single copy of phpMyAdmin to be used by a group of
persons, each having their own MySQL username and password, and seeing only the
databases they have rights to. Or we might prefer to avoid having our username and
password in clear text in config.inc.php.

Instead of relying on a username and password stored in config.inc.php,
phpMyAdmin will communicate with the browser and get authentication data from
it. This enables true login for all users defined in a specific MySQL server, without
having to define them in the configuration file. There are three modes offered that
allow a controlled login to MySQL via phpMyAdmin—http, cookie, and signon.
We will have to choose the one that suits our specific situation and environment
(more on this in a moment). The http and cookie modes may require that we first
define a control user, as covered in Chapter 1.

Authenticating with HTTP
This mode—http—is the traditional mode offered in HTTP, in which the browser
asks for the username and password, sends them to phpMyAdmin, and keeps
sending them until all the browser windows are closed.

To enable this mode, we simply use the following line:

$cfg['Servers'][$i]['auth_type'] = 'http';

Configuring Authentication and Security

[34]

We can also define the HTTP basic auth realm (http://en.wikipedia.org/wiki/
Basic_access_authentication), which is a message to be displayed to the user at
login time, via $cfg['Servers'][$i]['auth_http_realm']. This can help indicate
the purpose of this server.

This mode has the following limitations:

•	 PHP, depending on the version, might not support HTTP authentication for
all kinds of web servers.

•	 If we want to protect phpMyAdmin's directory with a .htaccess file (refer
to the Securing phpMyAdmin section in this chapter), this will interfere with
HTTP authentication type; we cannot use both.

•	 Browsers usually store the authentication information to save retyping
credentials but bear in mind that these credentials are saved in an
unencrypted format.

•	 There is no support for proper logout in the HTTP protocol; hence we have to
close all browser windows to be able to log in again with the same username.

Authenticating with cookie values
The cookie authentication mode is superior to http in terms of the functionalities
it offers. This mode permits true login and logout, and can be used with PHP
running on any kind of web server. It presents a login panel (as shown in the
following screenshot) from within phpMyAdmin. This can be customized as we
have the application source code. However, as you may have guessed, for cookie
authentication, the browser must accept cookies coming from the web server—but
this is the case for all authentication modes anyway.

This mode stores the username typed in the login screen into a permanent cookie in
our browser while the password is stored as a temporary cookie. In a multi-server
configuration, the username and password corresponding to each server are stored
separately. To protect the username and password secrecy against attack methods
that target cookie content, they are encrypted using the Blowfish cipher. So, to
use this mode, we have to define (once) in config.inc.php, a secret string that
will be used to securely encrypt all passwords stored as cookies from this
phpMyAdmin installation.

This string is set via the blowfish_secret directive:

$cfg['blowfish_secret'] = 'jgjgRUD875G%/*';

http://en.wikipedia.org/wiki/Basic_access_authentication
http://en.wikipedia.org/wiki/Basic_access_authentication

Chapter 2

[35]

In the previous example, an arbitrary string of characters was used; this string can
be very complex as nobody will ever need to type it on a login panel. If we fail to
configure this directive, a random secret string is generated by phpMyAdmin but
it will last only for the current working session. Therefore, some features such as
recalling the previous username on the login panel won't be available.

Then, for each server-specific section, use the following:

$cfg['Servers'][$i]['auth_type'] = 'cookie';

The next time we start phpMyAdmin, we will see the login panel as shown in the
following screenshot:

By default, phpMyAdmin displays (in the login panel) the last username for which
a successful login was achieved for this particular server, as retrieved from the
permanent cookie. If this behavior is not acceptable (someone else who logs in
from the same workstation should not see the previous username), we can set the
following parameter to FALSE:

$cfg['LoginCookieRecall'] = FALSE;

Configuring Authentication and Security

[36]

There is a security feature to add a specific time limit for the validity of a
password. This feature helps to protect the working session. After a successful
login, our password is stored (encrypted) in a cookie, along with a timer. Every
action in phpMyAdmin resets the timer. If we stay inactive for a certain number of
seconds, as defined in $cfg['LoginCookieValidity'], we are disconnected and
have to log in again. Increasing this parameter does not work in all cases, because
PHP's own session.gc_maxlifetime directive can get in the way. Please refer to
http://php.net/manual/en/session.configuration.php for an explanation
of this directive. Therefore, if phpMyAdmin detects that the value of session.gc_
maxlifetime is less than the configured $cfg['LoginCookieValidity'], a warning
is displayed on the main page. The default is 1440 seconds; this matches the
php.ini's default value of the session.gc_maxlifetime parameter.

The Blowfish algorithm used to protect the username and password
requires many computations. To achieve the best possible speed, the
PHP's mcrypt extension and its accompanying library must be installed
on our web server.
To help users realize that this extension is really important, a message is
displayed on the main page when phpMyAdmin detects its absence. The
$cfg['McryptDisableWarning'] directive controls this message. By
default, a value of false implies that the message is shown.

Authenticating with signon mode
During the course of a working session, a user may encounter several requests to
authenticate, from different web applications. The reason is these applications don't
talk to each other and this situation inconveniences most users.

The signon mode enables us to use the credentials from another application to
skip the authentication phase of phpMyAdmin. In order for this to work, this other
application has to store the proper credentials into PHP's session data to be retrieved
later by phpMyAdmin.

Storing credentials in PHP's session is not guaranteed to be safe,
according to the PHP manual: http://php.net/manual/en/
session.security.php.

To enable this mode, we start with the following directive:

$cfg['Servers'][$i]['auth_type'] = 'signon';

http://php.net/manual/en/session.configuration.php
http://php.net/manual/en/session.configuration.php

Chapter 2

[37]

Let us suppose that the authenticating application has used a session named
FirstApp to store the credentials. We tell this to phpMyAdmin by adding the
following line of code:

$cfg['Servers'][$i]['SignonSession'] = 'FirstApp';

We must take care of users that would try to access phpMyAdmin before the other
application; in this case, phpMyAdmin will redirect users to the authenticating
application. This is done with:

$cfg['Servers'][$i]['SignonURL'] = 'http://www.mydomain.com/FirstApp';

How does the authenticating application store credentials in a format that
phpMyAdmin can understand? An example is included as scripts/signon.php.
In this script, there is a simple HTML form to input the credentials and logic that
initializes the session—we would use FirstApp as a session name, and create the
user, password, host, and port information into this session, shown as follows:

$_SESSION['PMA_single_signon_user'] = $_POST['user'];
$_SESSION['PMA_single_signon_password'] = $_POST['password'];
$_SESSION['PMA_single_signon_host'] = $_POST['host'];
$_SESSION['PMA_single_signon_port'] = $_POST['port'];

Note that the authenticating first application does not need to ask the
MySQL's credentials to the user. These could be hard coded inside
the application, as they are secret or there is a known correspondence
between the credentials of this application and that of MySQL's.

To pass additional configuration parameters to the signon module,
$_SESSION['PMA_single_signon_cfgupdate'] can receive an array containing
any additional server parameters that are permitted in $cfg['Servers'][$i].

The authenticating application then uses a way of its choosing—a link or a button—
to let its users start phpMyAdmin. If an error happens during the login (for example,
a denied access), the signon module saves into $_SESSION['PMA_single_signon_
error_message'] the appropriate error message.

In another example, scripts/openid.php shows how to log in using the popular
OpenID mechanism.

Configuring Authentication and Security

[38]

Configuring for multiple server support
The config.inc.php file contains at least one server-specific section; however, we
can add more, enabling a single copy of phpMyAdmin to manage many MySQL
servers. Let us see how to configure more servers.

Defining servers in the configuration file
In the server-specific sections of the config.inc.php file, we see lines referring to
$cfg['Servers'][$i] for each server. Here, the variable $i is used so that one can
easily cut and paste whole sections of the configuration file to configure more servers.
While copying such sections, we should take care that the $i++; instruction, which
precedes each section and is crucial to delimit the server sections, is also copied.

Then, at the end of the sections, the following line controls the startup:

$cfg['ServerDefault'] = 1;

The default value, 1, means that phpMyAdmin will use by default the first server
defined. We can specify any number, for the corresponding server-specific section.
We can also enter the value 0, signifying no default server; in this case a list of
available servers will be presented at login time.

This configuration can also be done via web-based setup. Given here is an example
of a multi-server definition, with the default server being set to let the user choose:

Chapter 2

[39]

With no default server defined, phpMyAdmin will present a server choice:

Authenticating through an arbitrary server
Another mechanism can be used if we want to be able to connect to an undefined
MySQL server. First, we have to set the following parameter:

$cfg['AllowArbitraryServer'] = TRUE;

We also have to put back the default value of 1 into $cfg['ServerDefault']. Then,
we need to use the cookie authentication type. We will be able to choose the server
and enter a username and a password.

Allowing an arbitrary server implies that any MySQL server accessible
from our web server could be connected to via phpMyAdmin.
Therefore, this feature should be used in conjunction with a reinforced
security mechanism (refer to the Securing phpMyAdmin section).

As seen here, we still can choose one of the defined servers in Server Choice. In
addition, we can also enter an arbitrary server name, a username, and a password:

Configuring Authentication and Security

[40]

Logging out
A mechanism is available to tell phpMyAdmin which URL it should reach after a
user has logged out. This feature eases integration with other applications and works
for all authentication types that permit to log out. Here is an example:

$cfg['Servers'][$i]['LogoutURL'] = 'http://www.mydomain.com';

This directive must contain an absolute URL, including the protocol.

Securing phpMyAdmin
Security can be examined at the following various levels:

•	 How we can protect the phpMyAdmin installation directory
•	 Which workstations can access phpMyAdmin
•	 The databases that a legitimate user can see

Protecting phpMyAdmin at directory level
Suppose an unauthorized person is trying to use our copy of phpMyAdmin. If
we use the simple config authentication type, anyone knowing the URL of our
phpMyAdmin will have the same effective rights to our data as we do. In this case,
we should use the directory protection mechanism offered by our web server (for
example, .htaccess, a file name with a leading dot) to add a level of protection.
More details are available at http://en.wikipedia.org/wiki/Basic_access_
authentication.

If we decide on using http or cookie authentication types, our data would be safe
enough. However, we should take normal precautions with our password (including
its periodic change).

The directory where phpMyAdmin is installed contains sensitive data. Not only the
configuration file but also all scripts stored there must be protected from alteration.
We should ensure that apart from us, only the web server effective user has read
access to the files contained in this directory, and that only we can write to them.

Chapter 2

[41]

phpMyAdmin's scripts never have to modify anything inside
this directory, except when we use the Save export file to server
feature (explained in Chapter 6).

Another recommendation is to rename the default phpMyAdmin directory to
something less obvious; this discourages probing of our server. This is called security
by obscurity and can be very effective—but avoid choosing other obvious names
such as admin.

Another possible attack is from other developers having an account on the same
web server as we do. In this kind of attack, someone can try to open our config.
inc.php file. As this file is readable by the web server, someone could try to include
our file from their PHP scripts. This is why it is recommended to use PHP's open_
basedir feature, possibly applying it to all directories from which such attacks could
originate. More details can be found at http://php.net/manual/en/ini.core.
php#ini.open-basedir.

Displaying error messages
phpMyAdmin uses the PHP's custom error-handler mechanism. One of the benefits
of this error handler is to avoid path disclosure, which is considered a security
weakness. The default settings related to this are:

$cfg['Error_Handler'] = array();
$cfg['Error_Handler']['display'] = false;

You should let the default value for display be false, unless you are developing a
new phpMyAdmin feature and want to see all PHP errors and warnings.

Protecting with IP-based access control
An additional level of protection can be implemented, this time verifying the
Internet Protocol (IP) address of the machine from which the request is received. To
achieve this level of protection, we construct rules allowing or denying access, and
specify the order in which these rules will be applied.

Configuring Authentication and Security

[42]

Defining rules
The format of a rule is:

<'allow' | 'deny'> <username> [from] <source>

The from keyword being optional; here are some examples:

Rule Description
allow Bob from 1.2.3/24 User Bob is allowed from any address matching the

network 1.2.3 (this is CIDR IP matching, more details at
http://en.wikipedia.org/wiki/CIDR_notation).

deny Alice from 4.5/16 User Alice cannot access when located on network 4.5.
allow Melanie from all User Melanie can log in from anywhere.
deny % from all all can be used as an equivalent to 0.0.0.0/0, meaning

any host. Here, the % sign means any user.

Usually we will have several rules. Let us say we wish to have the following
two rules:

allow Marc from 45.34.23.12
allow Melanie from all

We have to put them in config.inc.php (in the related server-specific section)
as follows:

$cfg['Servers'][$i]['AllowDeny']['rules'] =
 array('allow Marc from 45.34.23.12', 'allow Melanie from all');

When defining a single rule or multiple rules, a PHP array is used. We must follow
its syntax, enclosing each complete rule within single quotes and separating each
rule from the next with a comma. Thus, if we have only one rule, we must still
use an array to specify it. The next parameter explains the order in which rules
are interpreted.

Order of interpretation for rules
By default, this parameter is empty:

$cfg['Servers'][$i]['AllowDeny']['order'] = '';

This means that no IP-based verification is made.

Chapter 2

[43]

Suppose we want to allow access by default, denying access only to some username/
IP pairs, we should use:

$cfg['Servers'][$i]['AllowDeny']['order'] = 'deny,allow';

In this case, all deny rules will be applied first, followed by allow rules. If a case is
not mentioned in the rules, access is granted. Being more restrictive, we would want
to deny by default. We can use:

$cfg['Servers'][$i]['AllowDeny']['order'] = 'allow,deny';

This time, all allow rules are applied first, followed by deny rules. If a case is not
mentioned in the rules, access is denied. The third (and most restrictive) way of
specifying rules order is:

$cfg['Servers'][$i]['AllowDeny']['order'] = 'explicit';

Now, deny rules are applied before allow rules. A username/IP address pair must
be listed in the allow rules and must not be listed in the deny rules, for access to
be granted.

Blocking root access
As the root user is present in almost all MySQL installations, it's often the target
of attacks. A parameter permits us to easily block all phpMyAdmin logins of the
MySQL's root account, using the following:

$cfg['Servers'][$i]['AllowRoot'] = FALSE;

Some system administrators prefer to disable the root account at the MySQL server
level, creating another less obvious account possessing the same privileges. This has
the advantage of blocking root access from all sources, not just from phpMyAdmin.

Protecting in-transit data
HTTP is not inherently immune to network sniffing (grabbing sensitive data off the
wire). So, if we want to protect not only our username and password but all the data
that travels between our web server and browser, then we have to use HTTPS.

To do so, assuming that our web server supports HTTPS, we just have to start
phpMyAdmin by putting https instead of http in the URL as follows:

https://www.mydomain.com/phpMyAdmin/

Configuring Authentication and Security

[44]

If we are using PmaAbsoluteUri auto-detection, shown as follows:

$cfg['PmaAbsoluteUri'] = '';

phpMyAdmin will see that we are using HTTPS in the URL and react accordingly.

If not, we must put the https part in this parameter as follows:

$cfg['PmaAbsoluteUri'] = 'https://www.mydomain.com/phpMyAdmin';

We can automatically switch users to an HTTPS connection with the following setting:

$cfg['ForceSSL'] = TRUE;

Summary
This chapter gave us an overview of how to use a single copy of phpMyAdmin to
manage multiple servers, and also of using authentication types to fulfill the needs of
a users' group while protecting authentication credentials. The chapter also covered
the ways of securing our phpMyAdmin installation.

In the next chapter, we will have a look at all the panels and windows that comprise
the user interface of phpMyAdmin.

Over Viewing the Interface
Before delving into task-oriented chapters, such as searching and the like, it's
appropriate to have a look at the general organization of phpMyAdmin's interface.
We will also see configuration parameters and settings that influence the interface as
a whole.

Over viewing panels and windows
The phpMyAdmin interface is composed of various panels and windows, each one
having a specific function. We will first provide a quick overview of each panel, and
then take a detailed look later in this chapter.

Login panels
The login panel that appears depends on the authentication type chosen. For the
http type, it will take the form of our browser's HTTP authentication pop-up
screen. For the cookie type, the phpMyAdmin-specific login panel will be displayed
(covered in Chapter 2). For the external authentication (signon), the login panel is
handled by the external application itself. By default, a Server choice dialog and a
Language selector are present on this panel.

However, if we are using the config authentication type, no login panel is displayed,
and the first displayed interface contains the navigation and the main panels.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Over Viewing the Interface

[46]

Navigation and main panels
These panels go together and are displayed during most of our working session with
phpMyAdmin. The navigation panel is our guide through the databases and tables.
The main panel is the working area where the data is managed and results appear. Its
exact layout depends on the choices made from the navigation panel and the sequence
of operations performed. For the majority of languages (which are written from left to
right) the navigation panel is located on the left side and the main panel is on the right,
but for right-to-left languages such as Hebrew, these panels are reversed.

Home page
The main panel can take the form of the home page. The home page will then
contain various links related to MySQL operations or phpMyAdmin information, a
Language selector, and possibly the Theme / Style selector.

Views
In the main panel, we can see the Database view—where we can take various
actions about a specific database, or the Table view—where we can access many
functions to manage a table. There is also a Server view, useful for both system
administrator and non-administrator users. All these views have a top menu, which
takes the form of tabs that lead to different pages used to present information
regrouped by common functions (table structure, privileges, and so on).

Query window
This is a distinct window that is usually opened from the navigation panel—and
sometimes from the main panel when editing an SQL query. Its main purpose is to
facilitate work on queries and display the results on the main panel.

Chapter 3

[47]

Starting page
When we start phpMyAdmin, we will see one of the following panels (depending
on the authentication type specified in config.inc.php, and on whether it has more
than one server defined in it):

•	 One of the login panels
•	 The navigation and main panels with the home page displayed in the

main panel

Customizing general settings
This section describes settings that have an impact on many panels. These settings
modify the appearance of titles in windows, of information icons, and how the list of
tables is sorted. The whole visual style of all pages is controlled by the theme system,
which is covered in this section as well. This section also deals with how to restrict
the list of databases seen by users.

Configuring window title
When the navigation and main panels are displayed, the window's title changes to
reflect which MySQL server, database, and table are active. These directives control
the following amount of information to be displayed: $cfg['TitleDefault'],
$cfg['TitleServer'], $cfg['TitleDatabase'], and $cfg['TitleTable'].

If no server is selected, $cfg['TitleDefault'] controls the title. When a server is
selected (but no database), $cfg['TitleServer'] controls what is displayed in the
title bar. Then if a database is selected, $cfg['TitleDatabase'] enters into play.
Finally, $cfg['TitleTable'] is effective if a table is selected.

These directives contain format strings that control which piece of information is
shown. For example, here is the default value of one of these directives:

$cfg['TitleTable'] = '@HTTP_HOST@ / @VSERVER@ / @DATABASE@ / @TABLE@ |
 @PHPMYADMIN@';

The possible format strings and their meaning are described in Documentation.
html, FAQ 6.27.

Over Viewing the Interface

[48]

Natural sort order for database and table
names
Usually, computers sort items in lexical order, which gives the following results for a
list of tables:

table1
table10
table2
table3

phpMyAdmin implements natural sort order by default, as specified by
$cfg['NaturalOrder'] being TRUE. Thus the database and table lists in navigation
and main panels are sorted as:

table1
table2
table3
table10

Creating site-specific header and footer
Some users may want to display a company logo, a link to their company's helpdesk,
or other information on the phpMyAdmin interface. In the main phpMyAdmin
directory, for this purpose, we can create two scripts—config.header.inc.php and
config.footer.inc.php. We can put our own PHP or XHTML code in these scripts,
and it will appear either at the beginning (for header) or at the end (for footer) of the
cookie login and the main panel pages.

For example, creating a config.footer.inc.php containing these lines:

<hr />
All the information on this page is confidential.

Chapter 3

[49]

Using such a sentence in the footer would produce the intended message on all
pages as shown in the following screenshot:

Themes
A theme system is available in phpMyAdmin. The color parameters and the various
icons are located in a directory structure under the themes sub-directory. For each
available theme, there is a sub-directory named after the theme. It contains:

•	 layout.inc.php for the theme parameters
•	 css directory with the various CSS scripts
•	 img directory containing any icons or other imagery (for example, logos)
•	 screen.png, a screenshot of this theme

The downloaded kit contains two themes but there are more available at
http://phpmyadmin.net/home_page/themes.php. Installing a new theme is
just a matter of downloading the corresponding .zip file and extracting it into the
themes sub-directory.

In case someone would like to build a custom theme that contains
JavaScript code, please note that all phpMyAdmin 3.4 pages
include the jQuery library.

Configuring themes
In config.inc.php, the $cfg['ThemePath'] parameter contains './themes' by
default, indicating which sub-directory the required structure is located in. This
could be changed to point to another directory where your company's specific
phpMyAdmin themes are located.

The default chosen theme is specified in $cfg['ThemeDefault'], and is set to
'pmahomme'. If no theme selection is available for users, this theme will be used.

http://phpmyadmin.net/home_page/themes.php
http://phpmyadmin.net/home_page/themes.php

Over Viewing the Interface

[50]

Selecting themes
On the home page, we can offer a theme selector to users. Setting
$cfg['ThemeManager'] to TRUE (the default) shows the selector as shown
in the following screenshot:

To help choose a suitable theme, the Theme / Style link displays a panel containing
screenshots of the available themes and a Get more themes link. We can then click
on take it under the theme we want. A reference to the chosen theme is stored in a
cookie and, by default, is applied to all servers we connect to.

To make phpMyAdmin remember one theme per MySQL server, we set
$cfg['ThemePerServer'] to TRUE.

Selecting a language
A Language selector appears on the login panel (if any) and on the home page. The
default behavior of phpMyAdmin is to use the language defined in our browser's
preferences, if there is a corresponding language file for this version.

The default language used, in case the program cannot detect one, is defined in
config.inc.php in the $cfg['DefaultLang'] parameter with 'en' (English). This
value can be changed. The possible values for language names are defined in the
libraries/select_lang.lib.php script in the PMA_langDetails() function.

Even if the default language is defined, each user (especially on a multi-user
installation) can choose his/her preferred language from the selector. The user's
choice will be remembered in a cookie whenever possible.

Chapter 3

[51]

We can also force a single language by setting the $cfg['Lang'] parameter with
a value, such as 'fr' (French). Another parameter, $cfg['FilterLanguages'],
is available. Suppose we want to shorten the list of available languages to English
and Français—French, as those are the ones used exclusively by the users of this
phpMyAdmin's instance. This is accomplished by building a regular expression
indicating which languages we want to display based on the ISO 639 codes of these
languages. To continue with our example, we would use:

$cfg['FilterLanguages'] = '^(fr|en)';

In this expression, the caret (^) means "starting with" and the (|) means "or". The
expression indicates that we are restricting the list to languages whose corresponding
ISO codes start with fr or en.

By default, this parameter is empty, meaning that no filter is applied to the list of
available languages.

Slider
On some pages, you will see a small plus sign followed by a controlling label—either
Options or Details. A click on the label opens a slider to reveal a section of the
interface, which is believed to be less often used in day-to-day work. As few people
prefer to immediately see the whole interface at the expense of screen space, there is
a configuration parameter that controls how the sliders are initially set:

$cfg['InitialSlidersState'] = 'closed';

The default value of closed means that sliders must be opened by a click on
the label; you might have guessed that the reverse value is open. A third value,
disabled, can be used by slider-allergic users.

Restricting the list of databases
Sometimes it is useful to avoid showing in the navigation panel, all the databases
a user has access to. phpMyAdmin offers two ways of restriction—only_db
and hide_db.

To specify the list of what can be seen, the only_db parameter is used. It may contain
a database name or a list of database names. Only these databases will be seen in the
navigation panel:

$cfg['Servers'][$i]['only_db'] = 'payroll';
$cfg['Servers'][$i]['only_db'] = array('payroll', 'hr);

Over Viewing the Interface

[52]

The database names can contain MySQL wildcard characters such as _ and %. These
wildcard characters are described at http://dev.mysql.com/doc/refman/5.1/
en/account-names.html. If an array is used to specify many databases, they will be
displayed on the interface in the same order they are listed in the array.

Another feature of only_db is that you can use it not to restrict the list, but instead
to put emphasis on certain names that will be displayed on top of the list. Here, the
myspecial database name will appear first, followed by all other names:

$cfg['Servers'][$i]['only_db'] = array('myspecial', '*');

We can also indicate which database names must be hidden with the hide_db
parameter. It contains a regular expression (http://en.wikipedia.org/wiki/
Regular_expression) representing what to exclude. If we do not want users to see
any database whose name begins with 'secret', we would use:

$cfg['Servers'][$i]['hide_db'] = '^secret';

These parameters apply to all users for this server-specific configuration.

These mechanisms do not replace the MySQL privilege system. Users'
rights on other databases still apply, but they cannot use phpMyAdmin's
navigation panel to reach their other databases or tables.

Deactivating Ajax
Certain pages are using Asynchronous JavaScript to improve user experience. We can
deactivate this behavior by setting $cfg['AjaxEnable'] to false; in this case, the
pages for which a non-Ajax behavior has been programmed, will cease using Ajax,
performing a full refresh instead. This may be perceived by the user as less fluid.

Character sets and collations
A character set describes how symbols for a specific language or dialect are encoded.
A collation contains rules to compare and sort the characters of a character set. The
character set used to store our data may be different from the one used to display it,
leading to data discrepancies. Thus, a need to transform the data arises.

Since MySQL 4.1.x, the MySQL server does the character recoding work for us.
Also, MySQL enables us to indicate the character set and collation for each database,
each table, and even each field. A default character set for a database applies to each
of its tables, unless it is overridden at the table level. The same principle applies to
every column.

http://dev.mysql.com/doc/refman/5.1/en/account-names.html
http://dev.mysql.com/doc/refman/5.1/en/account-names.html

Chapter 3

[53]

Effective character sets and collations
On the home page, we can see the MySQL charset information and a MySQL
connection collation selector. Here is the MySQL charset information:

The character set information (as seen here after MySQL charset) is used to generate
HTML information, which tells the browser what is the page's character set.

We can also choose which character set and collation will be used for our connection
to the MySQL server using the MySQL connection collation dialog. This is passed
to the MySQL server. MySQL then transforms the characters that will be sent to
our browser into this character set. MySQL also interprets what it receives from the
browser according to the character set information. Remember that all tables and
columns have a character set information describing how their data is encoded.

Normally, the default value should work. However, if we are entering some
characters using a different character set, we can choose the proper character set in
this dialog.

The following parameter defines both the default connection collation and
character set:

$cfg['DefaultConnectionCollation'] = 'utf8_unicode_ci';

Over Viewing the Interface

[54]

Navigation panel
The navigation panel contains the following elements:

•	 The logo
•	 The server list (if $cfg['LeftDisplayServers'] is set to TRUE)
•	 The Home link or icon (takes you back to the phpMyAdmin home page)
•	 A Log out link or icon (if logging out is possible)
•	 A link or icon leading to the Query window
•	 Icons to display phpMyAdmin and MySQL documentation
•	 A Reload link or icon (to refresh just this panel)
•	 A table name filter (under certain conditions, see later in the Table name

filter section)
•	 The names of databases and tables

If $cfg['MainPageIconic'] is set to TRUE (the default), we see the icons. However,
if it is set to FALSE, we see the links.

The navigation panel can be resized by clicking and moving the vertical separation
line in the preferred direction to reveal more data, in case the database or table
names are too long for the default navigation panel size.

We can customize the appearance of this panel. Many appearance-related
parameters are located in themes/<themename>/layout.inc.php. The
$cfg['NaviWidth'] parameter contains the default width of the navigation
panel in pixels. The background color is defined in $cfg['NaviBackground'].
The $cfg['NaviPointerColor'] parameter defines the pointer color. To
activate the navigation pointer for any theme being used, a master setting,
$cfg['LeftPointerEnable'], exists in config.inc.php. Its default value is TRUE.

Configuring the logo
The logo display behavior is controlled by a number of parameters. First,
$cfg['LeftDisplayLogo'] has to be set to TRUE, to enable any displaying of the
logo. It is true by default. A click on this logo brings the interface to the page listed
in the $cfg['LeftLogoLink'] parameter, which is usually the main phpMyAdmin
page (default value main.php), but can be changed to any URL. Finally, the
$cfg['LeftLogoLinkWindow'] parameter indicates in which window the new
page appears after a click on the logo. By default, it's on the main page (value main).
However, it could be on a brand new window by using the value new.

The logo image itself comes from the logo_left.png file, which is located in each
specific theme directory structure.

Chapter 3

[55]

Database and table list
The following example shows that no database has been chosen yet:

It is also possible to see a No databases message instead of the list of databases. This
means that our current MySQL rights do not allow us to see any existing databases.

A MySQL server always has at least one database (named mysql), but
it may be the case that we do not have the rights to see it. Moreover,
as MySQL 5.0.2, a special database called information_schema
appears at all times in the database list—unless it is hidden via the
$cfg['Servers'][$i]['only_db'] or the $cfg['Servers']
[$i]['hide_db'] mechanisms. It contains a set of views describing
the metadata visible for the logged-in users.

We may have the right to create one, as explained in Chapter 4.

Light mode
The navigation panel can be shown in two ways—the Light mode and the
Full mode. The Light mode is used by default, defined by a TRUE value in
$cfg['LeftFrameLight']. This mode shows a drop-down list of the available
databases, and only tables of the currently chosen database are displayed. It is more
efficient than Full Mode; the reason is explained in the Full Mode section appearing
later in the chapter. In the following screenshot, we have chosen the mysql database:

Over Viewing the Interface

[56]

Clicking on a database name or selecting it opens the main panel in the Database
view, and clicking on a table name opens the main panel in the Table view to
browse this table. (Refer to the Main panel section for details.)

Tree display of database names
A user might be allowed to work on a single database, for example marc. Some
system administrators offer a more flexible scheme by allowing user marc to create
many databases, provided all have their names starting with marc, such as marc_
airline and marc_car. In this situation, the navigation panel can be set to display a
tree of these database names, as shown in the following screenshot:

This feature is controlled by the following parameters:

$cfg['LeftFrameDBTree'] = TRUE;
$cfg['LeftFrameDBSeparator'] = '_';

The default value of TRUE in $cfg['LeftFrameDBTree'] ensures that this feature is
activated. A popular value for the separator is '_'. Should we need more than one
set of characters to act as a separator, we just have to use an array:

$cfg['LeftFrameDBSeparator'] = array('_', '+');

Table name filter
If a database has too many tables, we might want to display just a subset of these,
based on a filter text string. In Light mode only, if a database is currently selected, a
table name filter is displayed just under the current database name, provided that the
number of tables exceeds the value of $cfg['LeftDisplayTableFilterMinimum'],
which is set to 30 by default. As we input a subset of the table names in this filter, the
list of tables is reduced to match this subset. To try this feature, we set the directive's
value to 15 and we input time in the filter field:

Chapter 3

[57]

Full mode
The previous examples were shown in Light mode, but setting the
$cfg['LeftFrameLight'] parameter to FALSE produces a complete layout of our
databases and tables using collapsible menus (if supported by the browser) as shown
in the following screenshot:

The Full mode is not selected by default; it can increase network traffic and server
load if our current rights give us access to a large number of databases and tables.
Links must be generated in the navigation panel to enable table access and quick
access to every table.

Over Viewing the Interface

[58]

Table abridged statistics
Moving the cursor over a table name displays comments about the table (if any), and
the number of rows currently within it as shown in the following screenshot:

Table quick-access icon
It was established that the most common action on a table must be to browse it.
Therefore, a click on the table name itself opens it in browse mode. The icon beside
each table name is a quick way to do another action on each table, and by default, it
brings us to Structure view.

The $cfg['LeftDefaultTabTable'] parameter controls this action. It has a default
value of 'tbl_structure.php', which is the script that shows the table's structure.
Other possible values for this parameter are listed in Documentation.html. If we
prefer a setting in which a click on the table name opens it in the Structure page
and a click on the quick-access icon leads to the Browse page, we have to set
these directives:

$cfg['LeftDefaultTabTable'] = 'sql.php';
$cfg['DefaultTabTable'] = 'tbl_structure.php';

Nested display of tables within a database
MySQL's data structure is based on two levels—databases and tables. This does
not allow subdivisions of tables per project. To work by project, users must rely on
having multiple databases, but this is not always allowed by their provider. To help
them with this regard, phpMyAdmin supports a nested-levels feature based on the
naming of the table.

Chapter 3

[59]

Let us say we have access to the db1 database, and we want to represent two
projects, marketing and payroll. Using a special separator (by default a double
underscore) between the project name and the table name, we create the marketing,
payroll__employees and payroll__jobs tables, achieving a visually interesting effect
as shown in the following screenshot:

This feature is parameterized with $cfg['LeftFrameTableSeparator'] (set
here to '__') to choose the characters that will mark each level change, and
$cfg['LeftFrameTableLevel'] (set here to '1') for the number of sub-levels.

The nested-level feature is intended only for improving the navigation
panel's look. The proper way to reference the tables in MySQL
statements stays the same, for example, db1.payroll__jobs.

A click on the navigation panel on the project name (here payroll) opens this project
in the main panel, showing only those tables associated with that project.

Counting the number of tables
By default, $cfg['Servers'][$i]['CountTables'] is set to false, to speed up the
display by not counting the number of tables per database. If set to true, this count
is displayed in the navigation panel, next to each database name.

Choosing from the server list
If we have to manage multiple servers from the same phpMyAdmin window and
often need to switch between servers, it is useful to always have the list of servers in
the navigation panel.

Over Viewing the Interface

[60]

For this, the $cfg['LeftDisplayServers'] parameter must be set to TRUE. The
list of servers can have two forms—a drop-down list or links. Which form appears
depends on $cfg['DisplayServersList']. By default, this parameter is set to
FALSE, so we see a drop-down list of servers. Setting $cfg['DisplayServersList']
to TRUE produces a list of links to all defined servers.

Handling many databases or tables
This section describes some techniques to cope with a server holding a huge number
of databases and tables.

Limits on the interface
It would be difficult to work with the interface if we had access to hundreds or even
thousands of databases, or hundreds of tables in the same database. Two parameters,
shown here with their default values, establish a limit on the number of databases
and tables displayed, by adding a page selector and navigation links:

$cfg['MaxDbList'] = 100;
$cfg['MaxTableList'] = 250;

The effect of setting $cfg['MaxTableList'] to a value of 5 can be seen on the
navigation panel, shown here for a database having more than five tables:

The page selector and navigation links also appear in the main panel.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[61]

Improving fetch speed
Three configuration parameters have an effect on the speed of database name
retrieval and table counting. The first one is:

$cfg['Servers'][$i]['ShowDatabasesCommand'] = 'SHOW DATABASES';

Every time phpMyAdmin needs to obtain the list of databases from the server, it uses
the command listed in this parameter. The default command SHOW DATABASES is fine in
ordinary situations. However, on servers with many databases, speed improvements
can be observed by trying other commands such as one of the following:

SHOW DATABASES LIKE '#user#_%'
SELECT DISTINCT TABLE_SCHEMA FROM information_schema.SCHEMA_
PRIVILEGES'
SELECT SCHEMA_NAME FROM information_schema.SCHEMATA

In the first example, #user# is replaced by the current username.

In extreme situations (thousands of databases), a user who installs his own copy of
phpMyAdmin should put false in this parameter. This would block any database
names' fetching, and would require to populate the $cfg['Servers'][$i]['only_
db'] parameter with this user's database list.

Finally, some users experience speed issues (at least under MySQL 5.1) with
information retrieval from INFORMATION_SCHEMA. Therefore, the $cfg['Servers']
[$i]['DisableIS'] directive, with its default value of TRUE, disables the usage of
INFORMATION_SCHEMA from a major portion of the phpMyAdmin code. For your
server, it may be worth setting this to FALSE to see if response time improves.

Main panel
The main panel is the principal working area, and all the possible views for it
are explained in the following sections. Its appearance can be customized. The
background color is defined in $cfg['MainBackground'].

Over Viewing the Interface

[62]

Home page
The home page may contain a varying number of links depending on the login mode
and the user's rights. The Home link from the navigation panel is used to display
this page. It shows the phpMyAdmin and MySQL versions, the MySQL server name,
and the logged-in user. In order to reveal less information about our web server
and MySQL server, we could set $cfg['ShowServerInfo'] to FALSE. Another
setting, $cfg['ShowPhpInfo'], can be set to TRUE if we want to see the Show PHP
Information link on the home page—by default its value is FALSE. In some cases,
a No privileges message may appear here; the reason for this and how to fix this
condition is covered in Chapter 4.

In this example, a normal user is allowed to change his/her password from the
interface by using the Change password link which brings the following dialog:

Chapter 3

[63]

We can either choose our new password by typing it twice, or use the Generate
button (only available in JavaScript-enabled browsers); in this case, the new
password is shown in a clear field for us to take good note of it, and is automatically
filled into the dialog for changing the password. It is highly recommended to
generate passwords in this way, as they are most likely more secure than a human-
chosen password. To disallow the Change password link from the home page, we
set $cfg['ShowChgPassword'] to FALSE. Privileged users have more options on the
home page. They have more links to manage the server as a whole, for example, the
Privileges link (more on this in Chapter 19).

Database view
phpMyAdmin goes into Database view (shown in the following screenshot) every
time we click on a database name from the navigation panel.

This is where we can see an overview of the database—the existing tables, a dialog
to create a table, the tabs to the Database view pages, and some special operations
we might do on this database to generate documentation and statistics. There is
a checkbox beside each table to make global operations on that table (covered in
Chapter 9). The table is chosen by using the checkbox or by clicking anywhere on the
row's background. We can also see each table's size, provided $cfg['ShowStats'] is
set to TRUE. This parameter also controls the display of table-specific statistics in the
Table view.

The initial screen that appears here is the database Structure page. We note here that
almost every column header—such as Table, Records, and Size—is a link which can
be used to sort the corresponding column (Chapter 4 covers sorting). While sorting
by descending table name might not be that useful, sorting by descending size is
definitely something we should do from time to time.

We might want a different initial page to appear while entering the Database
view. This is controlled by the $cfg['DefaultTabDatabase'] parameter, and the
available choices are given in the configuration file as comments.

Over Viewing the Interface

[64]

The number of rows is obtained using a quick method, the SHOW TABLE STATUS
statement, and not by using a SELECT COUNT(*) FROM TABLENAME. This quick
method is usually accurate, except for InnoDB tables, which returns an approximate
number of records. To help get the correct number of records, even for InnoDB, the
$cfg['MaxExactCount'] parameter is available. If the approximate number of
records is lower than this parameter's value—by default, 20000—the slower SELECT
COUNT(*) method will be used.

Do not put a value too high for the MaxExactCount parameter. You would get correct
results but only after waiting for a few minutes, if there are many thousands of rows
in your InnoDB table. To examine the number of rows as displayed for InnoDB, please
refer to Chapter 10, where we actually have an InnoDB table to play with.

A user might be surprised when seeing the term KiB in the Size and Overhead
columns. phpMyAdmin has adopted the International Electrotechnical
Commission (IEC) binary prefixes (see http://en.wikipedia.org/wiki/Binary_
prefix). The displayed values are defined in each language file.

Table view
This is a commonly used view, giving access to all table-specific pages. By default,
the initial screen is the table's Browse screen, which shows the first page of this
table's data. Note that the header for this screen always shows the current database
and table names. We also see the comments set for the table, next to the table name:

Chapter 3

[65]

The $cfg['DefaultTabTable'] parameter defines the initial page on the Table view.
Some users prefer to avoid seeing the first page's data because in production they
routinely run saved queries or enter the Search page (explained in Chapter 8).

Server view
This view is entered each time we go back to the home page. A privileged user will,
of course, see more choices in the Server view. The Server view panel was created
to group together related server management pages, and enable easy navigation
between them.

The default Server page is controlled by the $cfg['DefaultTabServer'] parameter.
This parameter defines the initial starting page as well. For multi-user installations, it
is recommended to keep the default value (main.php), which displays the traditional
home page. We could choose to display server statistics instead by changing this
parameter to server_status.php, or to see the user's list with server_privileges.
php. Other possible choices are explained in the configuration file, and the server
administration pages are covered in Chapter 19.

Icons for home page and menu tabs
A configuration parameter, $cfg['MainPageIconic'], controls the appearance of
icons at various places of the main panel:

•	 On the home page
•	 At top of page when listing the Server, Database, and Table information
•	 On the menu tabs in Database, Table, and Server views

Over Viewing the Interface

[66]

When the parameter is set to TRUE, which is by default, you will see the
following screenshot:

Opening a new phpMyAdmin window
Sometimes we want to compare data from two tables at once or have other needs for
more than one phpMyAdmin window. At the bottom of almost every page, a small
icon is available to open another window in phpMyAdmin with the current panel's
content. Moreover, this icon can be used to create a browser bookmark that points to
the current phpMyAdmin page (but we should log in to access the data).

User preferences
One instance of phpMyAdmin can be installed to serve multiple users; however,
before version 3.4.0, these users had to be content with the parameter values as
chosen by the person in charge for this instance.

It's true that some pages on the interface has allowed tweaking specific parameters
and that some of these were remembered in cookies, for example, the chosen
language; but this version is the first to offer a global mechanism for adjusting and
remembering preferences per user.

Even in the case where the instance has only one user, it's more convenient to
be able to fine-tune preferences from the interface rather than manipulating the
configuration file.

Chapter 3

[67]

Accessing user preferences
From the home page, we click on More settings. From any page in Server view, we
click on the Settings menu tab. Upon entering the Settings panel, we see the Manage
your settings sub-page:

This sub-page is where we act globally on our preferences. Other sub-pages such
as Features and Main frame are used to change specific preferences—refer to the
Changing settings section.

The Import and Export dialogs will be covered in the Possible locations for saving
preferences section. The More settings dialog reminds us that config.inc.php is the
place to configure all possibilities, for example, specifying servers and authentication
modes is out of scope for user preferences.

The Reset dialog enables us to go back to default values for all user preferences in
one easy click.

Possible locations for saving preferences
There are three possible places where user preferences can be saved. Each one has
pros and cons; this section covers these modes.

Over Viewing the Interface

[68]

Saving in phpMyAdmin configuration storage
To enable this mode, $cfg['Servers'][$i]['userconfig'] must be configured
with the name of the table which holds these preferences, and the table must exist.
This saving location is most useful because settings are immediately applied to the
running instance upon login; moreover, it follows the user on whichever browser he
happens to use.

If this storage is not configured, the settings page greets us with the following message:

Your preferences will be saved for current session only. Storing them permanently
requires phpMyAdmin configuration storage.

Saving in a file
We always have the possibility of exporting our settings to a file and importing them
back. The file follows the JSON format (see http://json.org). This method can be
handy in the following situations:

•	 We plan to use these settings on another phpMyAdmin instance
•	 We want to keep a history of our settings; therefore, saving them from time

to time in several files

Saving in the browser's local storage
Recent browsers, for example Firefox 6 and Internet Explorer 9, offer a local storage
mechanism which is persistent between sessions. The first time we enter the Manage
your settings sub-page, we see the You have no saved settings! message inside
the Import from browser's storage dialog. However, after exporting settings to
browser's local storage, the Import section tells us the date and time when settings
were last saved using this mechanism.

In addition, when phpMyAdmin settings are found in the browser's storage and the
phpMyAdmin configuration storage is not available, each phpMyAdmin page has
the following message at the top:

Your browser has phpMyAdmin configuration for this domain. Would you like to
import it for current session? Yes / No

Chapter 3

[69]

A drawback of using this method is that our settings are only available when we are
using this browser; moreover, if our browser's settings do not follow us when we
change workstations, the settings are tied to this specific workstation (and apply to
any other user running phpMyAdmin on it).

Changing settings
Upon entering a sub-page for specific preferences—in this case, the Main frame sub-
page, we see a third level of menus related to this subject:

If a preference has been changed from its default value, the checkbox or data field
has a different background color and a recycle icon is shown next to it, to quickly
reset this preference to its default value. Quick explanations are given for each
directive and links point to the documentation and the official wiki. As a general
advice, we need to save any change we make on a page before changing to a
different sub-page; however, in this example, we can switch from Startup to other
third-level menus such as Browse mode and back without losing our changes.

Disallowing specific preferences
The person in charge of config.inc.php has the last word about which settings
are changeable in the user preferences. To disallow some settings, we use the
$cfg['UserprefsDisallow'] directive. We place into it an array containing the
keys in $cfg that represent the directives to disallow. As an example, we set this
directive to:

$cfg['UserprefsDisallow'] = array('AjaxEnable', 'MaxDbList');

Over Viewing the Interface

[70]

This produces a warning as shown in the following screenshot:

Showing developer settings
Some settings are sensitive and are intended only for the persons developing
phpMyAdmin. For example, the possibility of displaying all errors, including
PHP notices, can lead to disclose the full path of the phpMyAdmin instance.
Therefore, in the Features sub-tab, the Developer menu is shown only if
$cfg['UserprefsDeveloperTab'] is set to true.

Query window
It is often convenient to have a distinct window in which we can type and refine
queries, and which is synchronized with the main panel. This window is called
the Query window. We can open this window by using the small SQL icon, or the
Query window link from the navigation panel's icons or links zone. This feature only
works for a JavaScript-enabled browser.

The Query window itself has sub-pages, and it appears here over the main panel, as
shown in the following screenshot:

Chapter 3

[71]

We can choose the dimensions (in pixels) of this window with
$cfg['QueryWindowWidth'] and $cfg['QueryWindowHeight']. Chapter 11
explains the Query window in more detail, including the available SQL query
history features.

Over Viewing the Interface

[72]

Summary
This chapter covered:

•	 The language-selection system
•	 The purpose of the navigation and main panels
•	 The contents of the navigation panel, including Light mode and Full mode
•	 The contents of the main panel, with its various views depending on

the context
•	 The user preferences feature
•	 The Query window

The next chapter will guide you with simple steps to accomplish with a
freshly-installed phpMyAdmin—initial table creation, data insertion, and retrieval.

Creating and Browsing
Tables

Having seen the overall layout of phpMyAdmin, we are ready to create a database,
create our first table, insert some data into it, and browse it. These first steps are
intentionally simple, but they will give you the foundation on which more complex
operations will be achieved later. At the end of the chapter, we will have at our
disposal the two basic tables on which the remaining exercises are based.

Creating a database
Before creating a table, we must ensure that we have a database for which the
MySQL server's administrator has given us the CREATE privilege. The following
possibilities exist:

•	 The administrator has already created a database for us, and we see its
name in the navigation panel; we don't have the right to create an additional
database.

•	 We have the right to create databases from phpMyAdmin.
•	 We are on a shared host, and the host provider has installed a general web

interface (for example, cPanel) to create MySQL databases and accounts; in
this case, we should visit this web interface now and ensure we have created
at least one database and one MySQL account.

The Databases panel in Server view is the place to go to find the database creation
dialog. Note that a configuration parameter, $cfg['ShowCreateDb'], controls the
display of the Create new database dialog. By default, it is set to true, which shows
the dialog.

Creating and Browsing Tables

[74]

No privileges
If you do not have the privilege to create a database, the panel displays a No
privileges message under the Create new database label. This means that you
must work with the databases already created for you, or ask the MySQL server's
administrator to give you the necessary CREATE privilege.

If you are the MySQL server's administrator,
refer to Chapter 19.

First database creation is authorized
If phpMyAdmin detects that we have the right to create a database, the dialog
appears as shown in the following screenshot:

In the input field, a suggested database name appears if the $cfg['SuggestDBName']
parameter is set to TRUE, which is the default setting. The suggested database name is
built according to the privileges we possess.

If we are restricted to the use of a prefix, the prefix might be suggested in the input
field. (A popular choice for this prefix is the username, which might or might not be
followed by an underscore character.) Note that, in this case, the prefix is followed by
an ellipsis mark, added by phpMyAdmin. We should remove this ellipsis mark and
complete the input field with an appropriate name.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 4

[75]

The Collation choice can be left unchanged for now. With this dialog, we could pick
a default character set and collation for this database. This setting can be changed
later (refer to Chapter 9 for more information on this).

We will assume here that we have the right to create a database named marc_book.
We enter marc_book in the input field and click on Create. Once the database has
been created, we will see the following screen:

Notice the following:

•	 The title of the main panel has changed to reflect the fact that we are now
located in this database

•	 A confirmation message regarding the creation is displayed
•	 The navigation panel has been updated; we see marc_book
•	 By default, the SQL query sent to the server by phpMyAdmin to create the

database is displayed in color

phpMyAdmin displays the query it generated, because
$cfg['ShowSQL'] is set to TRUE. Looking at the generated
queries can be a good way of learning SQL.

Creating and Browsing Tables

[76]

As the generated queries could be large and take much of the on-screen room, the
$cfg['MaxCharactersInDisplayedSQL'] acts as a limit. Its default value of 1000
should be a good balance between seeing too few and seeing too many of the queries,
especially when doing large imports.

It is important to examine the phpMyAdmin feedback to ascertain the validity of the
operations we make through the interface. This way, we can detect errors like typos
in the names, or creation of a table in the wrong database. phpMyAdmin retrieves
error messages from the MySQL server and displays them on the interface.

Creating our first table
Now that we have a new database, it's time to create a table in it. The example table
we will create is named book.

Choosing the columns
Before creating a table, we should plan the information we want to store. This is
usually done during database design. In our case, a simple analysis leads us to the
following book-related data we want to keep:

•	 International Standard Book Number (ISBN)
•	 Title
•	 Number of pages
•	 Author identification

For now, it is not important to have the complete list of columns for our book table.
We will modify it by prototyping the structure now and refining it later. At the end
of the chapter, we will add a second table, author, containing information about
each author.

Creating a table
We have chosen our table name and we know the number of columns. We enter this
information in the Create table dialog and click on Go to start creating the table.
At this point, it does not matter if the number of columns is exactly known, as a
subsequent panel will permit us to add columns while creating the table.

Chapter 4

[77]

We then see a panel specifying column information. As we asked for four columns,
we get four input rows. Each row refers to information specific to one column. The
following screenshot represents the left side of this panel:

Creating and Browsing Tables

[78]

And the next one represents the right side:

The MySQL documentation explains valid characters for the table and column names
(if we search for "Legal names"). This may vary depending on the MySQL version.
Usually, any character that is allowed in a file name (except the dot and the slash) is
acceptable in a table name, and the length of the name must not exceed 64 characters.
The 64-character limit exists for column names as well, but we can use any character.

We enter our column names under the Column column. Each column has a type, and
the most commonly used types are located at the beginning of the drop-down list.

The VARCHAR (variable character) type is widely used when the column content
is alphanumeric, because the contents will occupy only the space needed for it.
This type requires a maximum length, which we specify. If we forget to do so, a
small pop-up message reminds us later when we save. For the page count and
the author identification, we have chosen INT type (integer), as depicted in the
following screenshot:

Chapter 4

[79]

There are other attributes for columns, but we will leave them empty in this example.
You might notice the Add 1 column(s) dialog at the bottom of the screen. We can
use it to add some columns to this table-creation panel by entering the appropriate
value and hitting Go. The number of input rows would change according to the new
number of columns, leaving intact the information already entered about the first
four columns. Before saving the page, let us define some keys.

Choosing keys
A table should normally have a primary key (a column with unique content that
represents each row). Having a primary key is recommended for row identification,
better performance, and possible cross-table relations. A good value here is the ISBN;
so, in the Index dialog we select PRIMARY for the isbn column. Other possibilities
for index type include INDEX, UNIQUE, and FULLTEXT (more on this in Chapter 5).

Index management (also referred to as Key management) can
be done at initial table creation, or later in the Structure page of
Table view.

To improve the speed of the queries that we will make by author_id, we should add
an index on this column. The right part of our screen now looks as shown in the
following screenshot:

At this point, we could pick a different Storage Engine from the corresponding
drop-down menu. However, for the time being, we will just accept the default
storage engine.

Creating and Browsing Tables

[80]

Now we are ready to create the table by clicking on Save. If all goes well, the next
screen confirms that the table has been created; we are now in the Structure page of
the current database.

Of the various links shown for the book table, some are not active, because it would
not make sense to browse or search a table if there are no rows in it.

Inserting data manually
Now that we have a table, let us put some data in it manually. Before we do that,
here are some useful references on data manipulation within this book:

•	 Chapter 5 explains how to change data and structure, including how to use
the Function selector

•	 Chapter 7 explains how to import data from existing files
•	 Chapter 9 explains how to copy data from other tables
•	 Chapter 10 explains the relational system (in our case, we will want to link to

the author table)

For now, click on the Insert link, which will lead us to the data-entry (or edit) panel.
This screen has room to enter information for two rows, that is, two books in our
example. This is because the default value of $cfg['InsertRows'] is 2. In the lower
part of the screen, the dialog Continue insertion with 2 rows can be used if the
default number of rows does not suit our needs. By default, the Ignore checkbox is
ticked, which means that the second group of input fields will be ignored. As soon
as we enter some information in one field of this group and exit the field, the Ignore
box is automatically unchecked if JavaScript is enabled in the browser.

We can enter the following sample information for two books:

•	 ISBN: 1-234567-89-0, title: A hundred years of cinema (volume 1), 600 pages,
author ID: 1

•	 ISBN: 1-234567-22-0, title: Future souvenirs, 200 pages, author ID: 2

Chapter 4

[81]

The Value column width obeys the maximum length for the character columns. For
this example, we keep the lower drop-down selector to its default value of Insert as
new row. We then click on Go to insert the data. There is a Go button after each set
of columns that represent a row, and another one on the lower part of the screen. All
these have the same effect of saving the entered data but are provided for convenience.

If our intention had been to enter data for more books after these two, we would
have selected Insert another new row from the second drop-down before clicking
on Go. This would then insert the data we have provided and reload the screen to
insert more.

Creating and Browsing Tables

[82]

Data entry panel tuning for CHAR and
VARCHAR
By default, phpMyAdmin displays an input field on a single line for the column
types CHAR and VARCHAR. This is controlled by setting $cfg['CharEditing'] to
'input'. Sometimes, we may want to insert line breaks (new lines) within the field.
This can be done by setting $cfg['CharEditing'] to 'textarea'. This is a global
setting, and will apply to all the columns of all the tables, for all users of this copy
of phpMyAdmin. In this mode, insertion of line breaks may be done manually with
the Enter key, or by copying and pasting lines of text from another on-screen source.
Applying this setting would generate a different Insert screen, shown as follows:

With this entry mode, the maximum length of each column no longer applies
visually. It would be enforced by MySQL at insert time.

Chapter 4

[83]

Browse mode
There are many ways to enter this mode. In fact, it is used each time the query results
are displayed. We can enter this mode by clicking on the table name on the navigation
panel, or by clicking Browse when we are in Table view for a specific table.

SQL query links
In the Browse results, the first part displayed is the query itself, along with a
few links. The displayed links may vary depending on our actions and some
configuration parameters.

Creating and Browsing Tables

[84]

The following points describe the function of each link:

•	 The Profiling checkbox is covered in the Profiling queries section of
this chapter.

•	 The Inline link permits to put the query inside a text area without reloading
the page; then the query may be edited and the new query may be executed.

•	 The Edit link appears if $cfg['SQLQuery']['Edit'] is set to TRUE. Its
purpose is to open the Query window so that you can edit this query (refer
to Chapter 11 for more details).

•	 Explain SQL is displayed if $cfg['SQLQuery']['Explain'] is set to TRUE.
We will see in Chapter 5 what this link can be used for.

•	 The Create PHP Code link can be clicked to reformat the query to the syntax
expected in a PHP script. It can then be copied and pasted directly at the
place where we need the query in the PHP script we are working on. Note
that after a click, this link changes to Without PHP Code (as shown in the
following screenshot), which would bring back the normal query display.
This link is available if $cfg['SQLQuery']['ShowAsPHP'] is set to TRUE.

•	 Refresh is used to execute the same query again. The results might change,
as a MySQL server is a multi-user server, and other users or processes might
be modifying the same tables. This link is shown if $cfg['SQLQuery']
['Refresh'] is set to TRUE.

Navigation bar
The Navigation bar is displayed at the top of results and also at the bottom. Column
headers can be repeated at certain intervals among results depending on the value
entered in repeat headers after field.

Chapter 4

[85]

The bar enables us to navigate from page to page, displaying an arbitrary number of
rows, starting at some point in the results. As we entered browse mode by clicking
Browse, the underlying query that generated the results includes the whole table.
However, this is not always the case.

We are currently using a table containing a small number of rows. With larger tables,
we could see a more complete set of navigation buttons. To simulate this, let us
use the Show dialog to change the default number of rows from 30 to 1; we then
click on Show. We can see that the navigation bar adapts itself as shown in the
following screenshot:

This time, there are buttons labeled <<, <, >, and >> for easy access to the first page,
previous page, next page, and the last page of the results respectively. The buttons
appear only when necessary; for example, the first page button is not displayed if
we already are on the first page. These symbols are displayed in this manner as the
default setting of $cfg['NavigationBarIconic'] is TRUE. A FALSE here would
produce buttons such as Next and End, whereas a value of 'both' would display
> Next and >> End.

Note that the $cfg['NavigationBarIconic'] directive controls
only the behavior of these navigation buttons; other buttons and links
such as Edit are controlled by other configuration directives.

There is also a Page number drop-down menu, to go directly to one of the pages
located near the current page. As there can be hundreds or thousands of pages, this
menu is kept small and contains the commonly requested pages: a few page numbers
before and after the current page, a few pages at the beginning and at the end plus a
sample of page numbers based on a computed interval.

By design, phpMyAdmin always tries to give quick results, and one way to achieve
this result is to add a LIMIT clause in SELECT. If a LIMIT clause is already there in
the original query, phpMyAdmin will respect it. The default limit is 30 rows, set in
$cfg['MaxRows']. If there are many users on the server, limiting the number of
rows returned helps keeping the server load to a minimum.

Creating and Browsing Tables

[86]

Another button is available on the navigation bar, but must be activated by setting
$cfg['ShowAll'] to TRUE. It would be very tempting for users to use this button
often. Hence, on a multi-user installation of phpMyAdmin, it is recommended
that the button be left to its default value of disabled (FALSE). When enabled,
the navigation bar is augmented with a Show all button. Clicking on this button
retrieves all the rows of the current results set, which might hit the execution time
limit in PHP or a memory limit in the server; most browsers would also crash when
asked to display thousands of rows. The exact number of rows that can be safely
displayed cannot be predicted as it depends on the actual data present in columns
and on the browser's capabilities.

If we enter a big number in the Show __ rows dialog, the same
results will be achieved (and we may face the same problems).

Query results operations
A section labeled Query results operations is located under the results. It contains
links to print the results (with or without the FULL TEXT columns), to export these
results (refer to Exporting partial query results section in Chapter 6), or to create a view
from this query (more on this in Chapter 17).

Displaying data as a chart
Another operation available is Display chart. To practice this, we will use a different
query that selects only two columns. For this we can use the Inline link shown next
to the query and change the query to:

SELECT page_count, author_id from book

Clicking on Go produces a result set with only those two columns; next we click on
Display chart, which generates the following panel:

Chapter 4

[87]

More details are available at http://wiki.phpmyadmin.net/pma/Charts.

Sorting results
In SQL, we can never be sure of the order in which the data is retrieved, unless we
explicitly sort the data. Some implementations of the retrieving engine may show
results in the same order as the one in which data was entered, or according to a
primary key. However, a sure way to get results in the order we want is by sorting
them explicitly.

Creating and Browsing Tables

[88]

When browsing results are displayed, any column header can be clicked to sort
on this column, even if it is not part of an index. Let us click on the author_id
column header.

We can confirm that the sorting has occurred, by watching the SQL query at the top
of screen; it contains an ORDER BY clause.

We now see a small triangle pointing upwards beside the author_id header. This
means that the current sort order is 'ascending'. Hovering the mouse over the
author_id header makes the triangle change direction, to indicate what will happen
if we click on the header again—a sort by descending author_id values.

Another way to sort is by key. The Sort dialog shows all the keys already defined.
Here we see a key named PRIMARY—the name given to our primary key on the
isbn column when we checked Primary for this column at creation time:

Chapter 4

[89]

This might be the only way to sort on multiple columns at once
(for multi-columns indexes).

The initial sort order is defined in $cfg['Order'] with ASC for ascending, DESC for
descending, or SMART; the latter is the default sort order, which means that columns
of type DATE, TIME, DATETIME, and TIMESTAMP would be sorted in descending order,
whereas other column types will be sorted in ascending order.

Headwords
Because we can change the number of rows displayed on a page, it is quite possible
that we do not see the whole data. In this case, it would help to see headwords—
indications about the first and last row of displayed data. This way, you can click on
Next or Previous without scrolling to the bottom of the window.

However, which column should phpMyAdmin base his headwords generation on?
A simple assumption has been made: if you click on a column's header to indicate
your intention of sorting on this column, phpMyAdmin uses this column's data as a
headword. For our current book table, we do not have enough data to clearly notice
the benefits of this technique. However, we can nonetheless see that after a sort, the
top part of the screen now contains this message:

Showing rows 0 - 1 (2 total, Query took 0.0006 sec) [author_id: 1 - 2]

Here, the message between square brackets means that author_id number 1 is on the
first displayed row and number 2 is on the last one.

Color-marking rows or columns
When moving the mouse between rows (or between column headers),
the row (or column) background color may change to the color defined
in $cfg['BrowsePointerColor']. This parameter can be found in
themes/<themename>/layout.inc.php. To enable this, browse pointer for all
themes—$cfg['BrowsePointerEnable']—must be set to TRUE (the default) in
config.inc.php.

Creating and Browsing Tables

[90]

It may be interesting to visually mark some rows when we have many columns
in the table and must constantly scroll left and right to read data. Another usage
is to highlight the importance of some rows for personal comparison of data,
or when showing data to people. Highlighting is done by clicking on the row.
Clicking again removes the mark on the row. The chosen color is defined by
$cfg['BrowseMarkerColor'] (see themes/<themename>/layout.inc.php). This
feature must be enabled by setting $cfg['BrowseMarkerEnable'] to TRUE, this time
in config.inc.php. This sets the feature for all the themes. We can mark more than
one row. Marking the row also activates the checkbox for this row.

Marking a column is done by clicking on the column header, but not on the column
name itself.

Limiting the length of each column
In the previous examples, we always saw the full contents of each column,
as each column had the number of characters within the limit defined by
$cfg['LimitChars']. This is a limit enforced on all non-numeric columns. If this
limit was low (say 10), the display would be as follows:

This would help us see more columns at the same time (at the expense of seeing less
of each column).

Display options
In order to see the full texts, we will now make use of the Options slider, which
reveals some display options. All these options will be explained in the chapters that
cover the corresponding notions. The option that concerns us at the moment is the
Partial Texts/Full Texts pair; we can choose Full Texts to see all of the text that was
truncated. Even if we elect not to change the $cfg['LimitChars'] parameter, there
will be a time when asking for full texts will be useful (when we work with TEXT
column type—more on this in Chapter 5).

Chapter 4

[91]

A quicker way of seeing the full texts is to click on the big T which is located just on
top of the Edit and Delete icons. Another click on this T toggles the display from full
to partial.

Browsing distinct values
There is a quick way to display all distinct values and the number of occurrences for
each value of a column. This feature is available on the Structure page of a table. For
example, we want to know how many different authors we have in our book table
and how many books each one wrote. On the line describing the column we want to
browse (here author_id), we open the More menu and click on the Browse distinct
values link.

We have a limited test set, but can nonetheless see the results.D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating and Browsing Tables

[92]

Profiling queries
Profiling support has been added in the MySQL versions 5.0.37 and 5.1.28. We have
previously seen the Profiling checkbox appear in query results.

When this box is checked, phpMyAdmin will analyze every query (including
the current one), and a report about the execution time of each MySQL internal
operation is displayed as shown in the following screenshot:

Although the profiling system can report additional information about operations
(such as the CPU time, and even the internal server's function names), phpMyAdmin
currently displays only the name of the operation and its duration.

Creating an additional table
In our (simple) design, we know that we need another table—the author table. The
author table will contain:

•	 Author identification
•	 Full name
•	 Phone number

Chapter 4

[93]

To create this table, we go back to the Database view for marc_book and request the
creation of another table with three columns as indicated in the following screenshot:

Using the same techniques used when creating the first table, we type this in:

Creating and Browsing Tables

[94]

As we have three columns or less, the display is now in vertical mode (refer to the
Vertical mode section in Chapter 5 for more details).

The column name id, which is our primary key in this new table, relates to the
author_id column from the book table. After saving the table structure, we enter
some data for authors 1 and 2. Use your imagination for this!

Summary
This chapter explained how to create a database and tables, and how to enter data
manually in the tables. It also covered how to confirm the presence of data by using
the browse mode, which includes the SQL query links, navigation bar, sorting
options, and row marking.

The next chapter explains how to edit data rows and covers the various aspects of
deletion of rows, tables, and databases.

Changing Data and Structure
Data is not static, it changes often. This chapter focuses on editing and deleting data
and its supporting structures—tables and databases.

The chapter is divided into two main parts. The first part covers all aspects of
changing data. First we examine how to edit data, that is, how to enter the edit mode,
how to edit more than one row at once, and how to benefit from inline editing. Next
we see how to delete rows of data and how to delete tables and databases.

The second part explains how to modify the structure of tables. We examine how to
add a column to a table; we then explore various column types such as TEXT, BLOB,
ENUM, DATE, and BIT column types. Finally, we examine the management of indexes.

Changing data
In this section, we cover the various ways of editing and deleting data.

Entering edit mode
When we browse a table or view results from a search on any single-table
query, small icons and links appear on the left or right of each table row as shown in
the following screenshot:

Changing Data and Structure

[96]

The row can be edited with one of the pencil-shaped icons (Edit) and deleted with
the red icon (Delete). The exact form and location of these controls are governed by:

$cfg['PropertiesIconic'] = 'both';
$cfg['ModifyDeleteAtLeft'] = true;
$cfg['ModifyDeleteAtRight'] = false;

We can decide whether to display them on the left side, the right side, or on both
sides. The $cfg['PropertiesIconic'] parameter can have the values TRUE, FALSE,
or both. TRUE displays icons only, FALSE displays Edit, Inline Edit, Copy, and
Delete (or their translated equivalent) as links, and both displays the icon and the
text, as seen in the preceding screenshot.

The small checkbox beside each row is explained in the Multi-row editing and the
Deleting multiple rows sections later in this chapter.

Clicking on the Edit icon or link brings the following panel, which is similar to the
data entry panel (except for the lower part):

In this panel, we can change data by typing directly (or by cutting and pasting
via the normal operating system mechanisms). We can also revert to the original
contents using the Reset button.

Chapter 5

[97]

By default, the lower drop-down menus are set to Save (so that we make changes
to this row) and Go back to previous page (so that we can continue editing another
row on the previous results page). We might want to stay on the current page after
clicking on Go—in order to save and then continue editing—we can choose Go back
to this page. If we want to insert yet another new row after saving the current row,
we just have to choose Insert another new row before saving. The Insert as new row
choice (below the Save choice) is explained in the Duplicating rows of data section later
in this chapter.

Moving to next field with the tab key
People who prefer to use the keyboard can use the Tab key to go to the next field.
Normally, the cursor goes from left to right and from top to bottom, so it would
travel into the fields in the Function column (more on this in a moment). However,
to ease data navigation in phpMyAdmin, the normal order of navigation has been
altered. The Tab key first goes through each field in the Value column, and then
through each one in the Function column.

Moving with arrows
Another way of moving between fields is with the Ctrl + arrow keys. This method
might be easier than using the Tab key when many fields are on screen. For this to
work, the $cfg['CtrlArrowsMoving'] parameter must be set to true, which is the
default value.

In some situations, this technique cannot be used for moving between
fields. For example, the Google Chrome browser does not support
Ctrl + arrow. Also, on Mac OS X 10.5 with Spaces enabled, Ctrl + arrow
is the default shortcut to switch between virtual desktops.

Handling NULL values
If the table's structure permits a NULL value inside a column, a small checkbox
appears in the column's Null column. Selecting this puts a NULL value in the column.
Whenever data is typed into this column's Value, the Null checkbox is cleared
automatically. (This is possible in JavaScript-enabled browsers.)

Changing Data and Structure

[98]

In the following screenshot, we have modified the structure of the phone column in
the author table, to permit a NULL value (refer to the Editing column attribute section
in this chapter). The Null checkbox is not selected here:

The corresponding data is erased after selecting the Null box.

Applying a function to a value
MySQL language offers some functions that we may apply to data before saving.
Some of these functions appear in a drop-down menu beside each column, if
$cfg['ShowFunctionFields'] is set to TRUE.

The function list is defined in the $cfg['Functions'] array. As usual, the default
values for these arrays are located in libraries/config.default.php. We may
change them by copying the needed section into config.inc.php. If we do so, as
these values can change from version to version, we should take care of merging our
changes with the values of the new version. The most commonly used functions for
a certain data type are displayed first in the list. Some restrictions are defined in the
$cfg['RestrictColumnTypes'] and $cfg['RestrictFunctions'] arrays.

Chapter 5

[99]

As depicted in the following screenshot, we could apply the UPPER function
to the title column when saving this row, which would convert the title to
uppercase characters:

To gain some screen space, this feature may be disabled by setting
$cfg['ShowFunctionFields'] to FALSE. Moreover, the Function column header is
clickable, so we can disable this feature on the fly.

When the feature is disabled—either by clicking or via the configuration
parameter—a Show : Function link appears in order to display this Function column
with a single click as shown in the following screenshot:

A similar feature is available for the Type column header, either by clicking on it or
by configuring $cfg['ShowFieldTypesInDataEditView'].

Changing Data and Structure

[100]

Duplicating rows of data
During the course of data maintenance (for permanent duplication or for test
purposes), we often have to generate a copy of a row. If this is done in the same
table, we must respect the rules of key uniqueness.

Here is an example of row duplication. Our author has written volume 2 of his book
about cinema. Hence, the columns that need a slight change are the ISBN, title, and
page count. We bring the existing row on screen, change these three columns, and
choose Insert as new row, as shown in the following screenshot:

Chapter 5

[101]

When we click on Go, another row is created with the modified information, leaving
the original row unchanged, shown as follows:

A shortcut link exists to achieve the same operation. When browsing the table,
clicking on Copy for a specific row brings the edit panel for this row and selects
Insert as new row instead of Save.

Multi-row editing
The multi-row edit feature enables us to use checkboxes on the rows we want to edit,
and use the Change link (or the pencil-shaped icon) in the With selected menu. The
Check All / Uncheck All links can also be used to quickly check or uncheck all the
boxes. We can also click anywhere on the row's data to activate the corresponding
checkbox. To select a range of checkboxes, we can click the first checkbox of the
range, and then Shift + Click on the last checkbox of the range.

Upon clicking on Change, an edit panel containing all the chosen rows appears. The
editing process may continue while the data from these rows is seen, compared,
and changed. When we mark some rows with the checkboxes, we can also perform
two other actions on them—Delete (refer to the Deleting multiple rows section in this
chapter) and Export (refer to Chapter 6).

Changing Data and Structure

[102]

Editing the next row
Sequential editing is possible on tables that have a primary key on an integer
column. Our author table meets the criteria. Let us see what happens when we start
editing the row having the id value 1:

The editing panel appears, and we can edit author number 1. However, in the drop-
down menu, the Edit next row choice is available. If chosen, the next author—the
first one whose primary key value is greater than the current primary key value—
will be available for edit.

Inline row editing
Version 3.4 introduces inline row editing, that is, keeping in view the other rows of
the results set while editing. This feature is available if $cfg['AjaxEnable'] is set to
true, via either config.inc.php or the user preferences. Clicking on Inline Edit for
a row shows the following dialog:

Chapter 5

[103]

After editing the columns that need changes, we click on Save. Aborting the changes
is also possible by using the Hide link.

Deleting data
phpMyAdmin's interface enables us to delete the following data:

•	 Single rows of data
•	 Multiple rows of a table
•	 All the rows in a table
•	 All the rows in multiple tables

Deleting a single row
We can use the red Delete icon beside each row to delete the row. If the value
of $cfg['Confirm'] is set to TRUE, every MySQL DELETE statement has to be
confirmed before execution. This is the default, as it might not be prudent to allow a
row to be deleted with just one click!

The form of the confirmation varies depending on the browser's ability to
execute JavaScript. A JavaScript-based confirmation pop up would resemble the
following screenshot:

If JavaScript has been disabled in our browser, a distinct panel appears.

Changing Data and Structure

[104]

The actual DELETE statement will use whatever information is needed to ensure the
deletion of only the intended row. In our case, a primary key had been defined and
was used in the WHERE clause. In the absence of a primary key, a longer WHERE clause
will be generated based on the value of each column. The generated WHERE clause
might even prevent the correct execution of the DELETE operation, especially if there
are TEXT or BLOB column types. This is because the HTTP transaction, used to send
the query to the web server, may be limited in length by the browser or the server.
This is another reason why defining a primary key is strongly recommended.

Deleting multiple rows
Let us say we examine a page of rows and decide that some rows have to be destroyed.
Instead of deleting them one-by-one with the Delete link or icon and as sometimes
the decision to delete must be made while examining a group of rows, there are
checkboxes beside rows in Table view mode as shown in the following screenshot:

These are used with the Delete icon in the With selected menu. A confirmation
screen appears listing all the rows that are about to be deleted.

Deleting all of the rows in a table
To completely erase all the rows in a table (leaving its structure intact), we first
display the database Structure page by selecting the related database from the
navigation panel. We then use the Empty icon or link located on the same line as the
table we want to empty, shown as follows:

Chapter 5

[105]

We get a message confirming the TRUNCATE statement (the MySQL statement used to
quickly empty a table). For our exercise, we won't delete this precious data!

Deleting data, either row-by-row or by emptying a table, is
a permanent action. No recovery is then possible except by
restoring a backup.

Deleting all rows in multiple tables
A checkbox is present on the left of each table name. We can choose some tables.
Then, in the With selected menu, choose the Empty operation as shown in the
following screenshot:

Of course, this decision must not be taken lightly!

Deleting tables
Deleting a table erases the data and the table's structure. In the Database view,
we can delete a specific table by using the red Drop icon for that table. The same
mechanism also exists for deleting more than one table (with the drop-down menu
and the Drop action).

Changing Data and Structure

[106]

Deleting databases
We can delete an entire database (including all its tables) by going to the Databases
page in Server view, selecting the checkbox beside the unwanted database and
clicking on the Drop link:

By default, $cfg['AllowUserDropDatabase'] is set to FALSE. So, this panel does not
permit unprivileged users to drop a database until this setting is manually changed
to TRUE.

To help us think twice, a special message—You are about to DESTROY a complete
database!—appears before a database is deleted.

The database mysql, containing all user and privilege
definitions, is highly important. Therefore, the checkbox is
deactivated for this database, even for administrators.

Chapter 5

[107]

Changing table structure
When developing an application, requirements about data structure often change
because of new or modified needs. Developers must accommodate these changes
through judicious table structure editing. This section explores the subject of
changing the structure of tables. Specifically, it shows how to add a column to an
existing table and edit the attributes of a column. We then build on these notions
to introduce more specialized column types, and to explain their handling through
phpMyAdmin. Finally, we will cover the topic of index management.

Adding a column
Suppose that we need a new column to store a book's language and, by default, the
books on which we keep data are written in English. We call the column language,
which will contain code composed of two characters (en by default).

In the Structure page of the Table view for the book table, we can find the Add
column dialog. Here, we specify how many new columns we want, and where they
will go.

The positions of the new columns in the table matter only from a developer's point of
view. We usually group the columns logically, so that we can find them more easily
in the list of columns. The exact position of the columns will not play a role in the
intended results (output from the queries), as these results can be adjusted regardless
of the table structure. Usually, the most important columns (including the keys) are
located at the beginning of the table. However, it is a matter of personal preference.

We want to put the new column At End of Table. So, we check the corresponding
radio button and click on Go.

Other possible choices would be At Beginning of Table and After (where we
would have to choose from the drop-down menu, the column after which the new
one must go).

We see the familiar panel for entering column's attributes. We fill it in. However, as
we want to enter a default value this time, we do the following two actions:

•	 Change the Default drop-down menu from None to As defined:
•	 Enter the default value: en

Changing Data and Structure

[108]

We then click on Save.

Vertical mode
The previous panel appeared in vertical mode because the default for
$cfg['DefaultPropDisplay'] is 3. This means that for three columns or less,
the vertical mode is used, and for more than three, horizontal mode would be
automatically selected. Here, we can use a number of our choosing.

If we set $cfg['DefaultPropDisplay'] to 'vertical', the panel to add new
columns (along with the panel to edit a column's structure) will be always presented
in vertical order. This parameter can also take a value of 'horizontal' to force a
horizontal mode.

Editing column attribute
On the Structure page, we can make further changes to our table:

This panel does not allow every possible change to columns. It specifically allows:

•	 Changing one column structure, using the Change link on a specific column
•	 Removing a column, using Drop operation
•	 Adding a column to an existing Primary key

Chapter 5

[109]

•	 Setting a non-unique Index or a Unique index on a column
•	 Setting a FULLTEXT index (offered only if the column type allows it)

These are quick links that may be useful in some situations, but they do not replace
the full index management panel. Both of these are explained in this chapter.

We can use the checkboxes to choose columns. Then, with the appropriate With
selected icons, we can edit the columns with Change or do a multiple column
deletion with Drop. The Check All / Uncheck All option permits us to easily check
or uncheck all boxes.

TEXT column type
We will now explore how to use the TEXT column type and the relevant
configuration values to adjust for the best possible phpMyAdmin behavior. First, we
add to the book table a TEXT column called description.

There are three configuration directives that control the layout of the text area that
will be displayed in Insert or Edit mode for the TEXT column type. The number of
display columns and rows for each column is defined by:

$cfg['TextareaCols'] = 40;
$cfg['TextareaRows'] = 15;

This gives (by default) space to work on a TEXT column type as shown in the
following screenshot:

The settings impose only a visual limit on the text area, and a vertical scroll bar is
created by the browser if necessary.

Changing Data and Structure

[110]

Although MEDIUMTEXT, TEXT, and LONGTEXT column types can
accommodate more than 32 KiB of data, some browsers cannot always
edit them with the text area—the mechanism offered by HTML. In
fact, experimentation has convinced the phpMyAdmin development
team to have the product display a warning message if the contents
are larger than 32 KiB. The message warns users that the contents may
not be editable.

The last configuration directive, $cfg['LongtextDoubleTextarea'], has an impact
for LONGTEXT column types only. The default value of TRUE doubles the available
editing space.

BLOB (Binary Large Object) column type
BLOB column types are generally used to hold binary data (such as images and
sounds), even though the MySQL documentation implies that TEXT column
types could be used for this purpose. The MySQL 5.1 manual says: "In some cases,
it may be desirable to store binary data such as media files in BLOB or TEXT
columns". However, another phrase: "BLOB columns are treated as binary strings
(byte strings)", seems to indicate that binary data should really be stored in BLOB
columns. Thus, phpMyAdmin's intention is to work with the BLOB column type to
hold all binary data.

We will see in Chapter 16 that there are special mechanisms available to go further
with BLOB column type, including being able to view some images directly from
within phpMyAdmin.

First, we add a BLOB column type named cover_photo to our book table. If we now
browse the table, we can see the length information, [BLOB - 0B], for each BLOB
column type.

This is because the Show BLOB display option (do you remember the Options
slider?) has no check mark by default. So, it blocks the display of BLOB contents in
Browse mode. This behavior is intentional. Usually, we cannot do anything with
binary data represented in plain text.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 5

[111]

Uploading binary content
If we edit one row, we see the Binary – do not edit warning and a Browse… button.
The exact caption on this button depends on the browser. Even though editing is not
allowed, we can easily upload a text or binary file's contents into this blob column.

Let us choose an image file using the Browse button—for example, the logo_left.
png file in a test copy of the phpMyAdmin/themes/pmahomme/img directory located
on our client workstation. We now click on Go.

We need to keep in mind some limits for the upload size. Firstly, the blob column
size is limited to 64 KiB, but in Chapter 16 we will change the type of this column to
accommodate bigger images. Hence, phpMyAdmin reminds us of this limit with
the Max: 64KiB warning. Also, there could be limits inherent to PHP itself (refer to
Chapter 7 for more details). We have now uploaded an image inside this column for a
specific row.

We notice that BLOB – 4.9KiB is a link; it permits to download any binary data to
our workstation should the need arise.

If we put a check mark for the Show BLOB Contents display option, we now see the
following in the BLOB column type:

To really see the image from within phpMyAdmin,
refer to Chapter 16.

Changing Data and Structure

[112]

The $cfg['ProtectBinary'] parameter controls what can be done while editing
binary columns (BLOBs and any other column with the binary attribute). The
default value blob blocks the BLOB columns from being edited but allows us to edit
other columns marked binary by MySQL. A value of all would block even binary
columns from being edited. A value of FALSE would protect nothing, thus allowing
us to edit all the columns. If we try the last choice, we see the following in the Edit
panel for this row:

The content of this BLOB column type has been converted in hexadecimal and the
UNHEX function is selected by default. We probably don't want to edit this image
data in hexadecimal but this is the best way of safely representing binary data on
screen. The reason for this hexadecimal representation is that the Show binary
contents as HEX display option (in Browse mode) is currently marked. But we did
not mark this option; it was checked because the $cfg['DisplayBinaryAsHex']
directive is TRUE by default.

Should we decide instead to not mark this option, we would see the following pure
binary data for this image:

Chapter 5

[113]

There are chances that this is not our favorite image editor! In fact, data may be
corrupted even if we save this row without touching the BLOB column type. But the
possibility of setting $cfg['ProtectBinary'] to FALSE exists, as some users put
text in their BLOB columns, and they need to be able to modify this text. This is why
phpMyAdmin can be configured to allow editing of BLOB columns.

MySQL BLOB data types are actually similar to their corresponding TEXT data
types. However, we should keep in mind that a BLOB has no character set, whereas
a TEXT column type has a character set that impacts sorting and comparison.

ENUM and SET column types
Both ENUM and SET column types are intended to represent a list of possible values.
The difference is that the user can choose only one value from a defined list of values
with ENUM, and more than one value with SET. With SET, all the multiple values
go into one cell; but multiple values do not imply the creation of more than one row
of data.

We add a column named genre to the book table and define it as an ENUM. For
now, we choose to put short codes in the value list and make one of them, F, into the
default value as shown in the following screenshot:

Changing Data and Structure

[114]

In the value list, we have to enclose each value within single quotes, unlike in the
default value field. Starting with version 3.4.0, an editor targeted for ENUM/SET
columns is available. With this editor, we don't need to bother enclosing values within
single quotes. Clicking on Get more editing space brings this editor into action:

In our design, these values stand for Fantasy, Child, and Novel. However, for now,
we want to see the interface's behavior with short code. In the Insert panel, we now
see a radio box interface as shown in the following screenshot:

If we decide to have more self-describing values, we can go back to Structure mode
and change the values definition for the genre column. We also have to change the
default value to one of the possible values, to avoid getting an error message while
trying to save this column structure's modification.

Chapter 5

[115]

With the modified value list, the Insert panel now looks as follows:

Observe that the radio buttons have been replaced by a drop-down list because the
possible values are larger in length.

If we want more than one possible value selected, we have to change the column type
to SET. The same value list may be used. However, using our browser's multiple value
selector (control-click on a Windows or Linux desktop, command-click on a Mac), we
can select more than one value as shown in the screenshot:

In a normalized data structure, we would store only the genre code in
the book table and would rely on another table to store the description
for each code. We would not be using SET or ENUM in this case.

DATE, DATETIME, and TIMESTAMP column
types
We could use a normal character column to store date or time information. But
DATE, DATETIME, and TIMESTAMP are more efficient for this purpose. MySQL
checks the contents to ensure valid date and time information, and offers special
functions to work on these columns.

Changing Data and Structure

[116]

Calendar pop up
As an added benefit, phpMyAdmin offers a calendar pop up for easy data entry.

We will start by adding a DATE column type—date_published—to our book table.
If we go into Insert mode, we should now see the new column where we could
type a date. A Calendar icon is also available. This icon brings a pop-up window,
synchronized to this DATE column type. If there is already a value in the column,
the pop up is displayed accordingly. In our case, there is no value in the column, so
the calendar shows the current date as shown in the following screenshot:

Small arrows permit easy scrolling through months and years. A simple click on
the date we want transports it to our date_published column. For a DATETIME or
TIMESTAMP column type, the pop up offers the ability to edit the time part.

If we type a date or time value, a validation is done if our browser
is JavaScript-enabled; incorrect values are highlighted in red.

TIMESTAMP option
Starting with MySQL 4.1.2, there are more options that can affect a TIMESTAMP
column type. Let us add to our book table, a column named stamp of type
TIMESTAMP. In the Default drop-down, we could choose CURRENT_
TIMESTAMP; but we won't for this exercise. However, in the Attributes column,
we choose on update CURRENT_TIMESTAMP. More details are available at
http://dev.mysql.com/doc/refman/5.5/en/timestamp.html.

Chapter 5

[117]

Bit column type
MySQL 5.0.3 introduced true bit columns. These take the same amount of space
in the database as the number of bits in their definition. Let us say we have the
following three pieces of information about each book, and each piece can only be
true (1) or false (0):

•	 Book is hard cover
•	 Book contains a CD-ROM
•	 Book is available only in electronic format

We will use a single BIT column to store these three pieces of information. Therefore,
we add a column having a length of 3 (which means 3 bits) to the book table:

To construct and subsequently interpret the values we store in this column, we have
to think in binary, respecting the position of each bit within the column. To indicate
that a book is hard cover, does not contain a CD-ROM, and is available only in
electronic format, we would use a value of 101.

Changing Data and Structure

[118]

phpMyAdmin handles BIT columns in a binary way. For example, if we edit one
row and set a value of 101 to the some_bits column, the following query is sent at
save time:

UPDATE `marc_book`.`book` SET `some_bits` = b '101'
WHERE `book`.`isbn` = '1-234567-89-0' LIMIT 1;

The highlighted part of this query shows that the column really receives a binary
value. At browse time, the exact value (which in decimal is 5—a meaningless value
for our purpose) is redisplayed in its binary form 101, which helps to interpret each
discrete bit value. More details about the notation for bit values are available at
http://dev.mysql.com/doc/refman/5.5/en/bit-type.html.

Managing indexes
Properly maintained indexes are crucial for data retrieval speed. phpMyAdmin has a
number of index management options, which will be covered in this section.

Single-column indexes
We have already seen how the Structure panel offers a quick way to create an index
on a single column, thanks to some links such as Add primary key, Add index,
and Add unique index. Under the columns list, there is a section of the interface
available to manage indexes:

This section has links to edit or delete every index. Here, the Column part lists only
one column per index, and we can see that the whole column participates in the
index. This is because there is no size information after each column name, contrary
to what will be seen in our next example.

Chapter 5

[119]

We will now add an index on the title. However, we want to restrict the length of
this index to reduce the space used by the on-disk index structure. The Create an
index on 1 columns option is appropriate. So, we click on Go. In the next screen, we
specify the index details as shown here:

We fill in the following information in the options of this panel:

•	 Index name: A name we invent, that describes the purpose of this index
•	 Index type: We can choose INDEX
•	 Column: We select the column that is used as the index, which is title
•	 Size: We enter 30 instead of 100 (the complete length of the column) to save

space in the table's physical portion that holds index data

After saving this panel, we can confirm from the following screenshot that the index
is created and does not cover the entire length of the title column:

Changing Data and Structure

[120]

Multi-column indexes and index editing
In the next example, we assume that in a future application we will need to find the
books written by a specific author in a specific language. It makes sense to expand
our author_id index, adding the language column to it.

We click on the Edit link (small-pencil icon) on the line containing the author_id
index; this shows the current state of this index. The interface has room to add
another column to this index. We could use the Add to index 1 column(s) feature
should we need to add more than one column. In the selector, we pick language.
This time we do not have to enter a size, as the whole column will be used in the
index. For better documentation, we change the Index name (author_language is
appropriate) as shown in the following screenshot:

We save this index modification. In the list of indexes, we can confirm our
index modification.

FULLTEXT indexes
This special type of index allows for full text searches. It is supported only on
MyISAM tables for the VARCHAR and TEXT column types, but MySQL 5.6 should
be offering this feature for InnoDB too. We can use the Add FULLTEXT index link in
the columns list or go to the index management panel and choose FULLTEXT in the
drop-down menu.

Chapter 5

[121]

Optimizing indexes with EXPLAIN
In this section, we want to get some information about the index that MySQL uses
for a specific query, and the performance impact of not having defined an index.

Let us assume we want to use the following query:

SELECT *
FROM `book`
WHERE author_id = 2 AND language = 'es'

We want to know, which books written by the author whose id is 2, are in the es
language—our code for Spanish.

To enter this query, we use the SQL tab from the database or the table menu, or the
SQL Query window (refer to Chapter 11). We enter this query in the query box and
click Go. Whether the query finds any results, is not important right now.

You could obtain the same query by following explanations from Chapter 8
to produce a search for author_id 2 and language es.

We will now use the [Explain SQL] link to get information about which index
(if any) has been used for this query:

Changing Data and Structure

[122]

We can see that the EXPLAIN command has been passed to MySQL, telling us
that the key used is author_language. Thus, we know that this index will be used
for this type of query. If this index had not existed, the result would have been
quite different.

Here, key (NULL) and the type (ALL) mean that no index would be used, and
all rows would need to be examined to find the desired data. Depending on the
total number of rows, this could have a serious impact on the performance. We
can ascertain the exact impact by examining the query timing that phpMyAdmin
displays on each result page (Query took x sec), and comparing it with or without
the index. However, the difference in time can be minimal if we only have limited
test data, compared to a real table in production. For more details about the EXPLAIN
output format, please refer to http://dev.mysql.com/doc/refman/5.5/en/
explain-output.html.

Detecting index problems
To help users maintain an optimal index strategy, phpMyAdmin tries to detect some
common index problems. For example, let us access the book table and add an index
on the isbn column. When we display this table's structure, we get a warning as
shown in the following screenshot:

The intention here is to warn us about an inefficient index structure when
considering the whole table. We don't need to have two indexes on the same column.

Chapter 5

[123]

Summary
This chapter examined data-changing concepts, such as:

•	 Editing data
•	 Including the NULL column and using the Tab key
•	 Applying a function to a value
•	 Duplicating rows of data
•	 Deleting data, tables, and databases

We also got an overview of structure-changing techniques such as:

•	 How to add columns, including special column types such as TEXT, BLOB,
ENUM, and SET

•	 How to use a calendar pop up for DATE, DATETIME, and TIMESTAMP
column types

•	 How to upload binary data into a BLOB column
•	 How to manage indexes (multi-column and full-text), and get feedback from

MySQL about which indexes are used in a specific query

In the next chapter, we will learn how to export a table's structure and data for
backup purposes, or to use as a gateway to another application.

Exporting Structure and
Data (Backup)

Keeping good backups is crucial to a project. Backups consist of up-to-date backups
and intermediary snapshots taken during development and production phases. The
export feature of phpMyAdmin can generate backups, and can also be used to send
data to other applications.

Please note that phpMyAdmin's export feature produces backups
on demand and it is highly recommended to implement an
automatic and scripted backup solution which takes backups on
a regular schedule. The precise way to implement such a solution
depends on the server's OS.

Dumps, backups, and exports
Let us first clarify some vocabulary. In MySQL documentation, you will encounter
the term dump, and in other applications, backup or export. All these terms have the
same meaning in the phpMyAdmin context.

MySQL includes mysqldump—a command-line utility that can be used to generate
export files. But the shell access needed for command-line utilities is not offered by
every host provider. Also, access to the export feature from within the web interface
is more convenient. This is why phpMyAdmin offers the export feature with more
export formats than mysqldump. This chapter will focus on phpMyAdmin's
export features.

Exporting Structure and Data (Backup)

[126]

Before starting an export, we must have a clear picture of the intended goal of the
export. The following questions may be of help:

•	 Do we need the complete database or just some tables?
•	 Do we need just the structure, just the data, or both?
•	 Which utility will be used to import back the data?
•	 Do we want only a subset of the data?
•	 What is the size of the intended export, and what is the link speed between

us and the server?

Scope of the export
When we click an Export link from phpMyAdmin, we can be in one of these views or
contexts—Database view, Table view, or Server view (more on this later in Chapter
19). According to the current context, the resulting export's scope will be a complete
database, a single table, or even a multi-database as in the case of Server view. We
will first explain database exports and all the relevant export types. Then we will go
on with table and multi-database exports, underlining the difference for these modes
of exporting.

Exporting a database
In the Database view, click on the Export link. Since version 3.4.0, the default export
panel appears as shown in the following screenshot:

Chapter 6

[127]

By default, $cfg['Export']['method'] is set to 'quick' and $cfg['Export']
['format'] is set to 'sql'. Usability tests show that the most common goal
of exporting is to produce a complete backup in SQL format and save it on our
workstation; this is accomplished by just clicking on Go.

Other values for $cfg['Export']['method'] are 'custom', which would show the
detailed export options, and 'custom-no-form' which would also show the detailed
options but without the possibility of selecting a quick export—this being the
behavior of versions prior to 3.4.0.

In custom mode, sub-panels are shown. The Table(s), Output, and Format sub-
panels occupy the top part of the page. The Format-specific options sub-panel varies
in order to show the options for the export format chosen. Following screenshot
shows the SQL format panel:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Exporting Structure and Data (Backup)

[128]

The Table(s) sub-panel
This sub-panel contains a table selector, from which we choose the tables that we
want. By default, all tables are selected and we can use the Select All / Unselect All
links to change our choice.

The Output sub-panel
The default behavior is to transmit the export file via HTTP (the Save output to
a file radio button being selected). This triggers a Save dialog into the browser,
which ultimately saves the file on our local machine. An alternative option would
have been to select View output as text, which can be done as a testing procedure,
provided that the exported data is of a reasonable size.

File name template
The name of the proposed file will obey the File name template field. In this template,
we can use the special @SERVER@, @DATABASE@, and @TABLE@ placeholders.
These placeholders will be replaced by the current server, database, or table name
(for a single-table export). Note that there is one "at sign" character before and after
the words. We can also use any special character from the PHP strftime function;
this is useful for generating an export file based on the current date or hour. Finally,
we can put any other string of characters (not part of the strftime special characters),
which will be used literally. The file extension is generated according to the type of
export. In this case, it will be .sql. Following are some examples for the template:

•	 @DATABASE@ would generate marc_book.sql
•	 @DATABASE@-%Y%m%d would give marc_book-20110920.sql

The use this for future exports option, when activated, stores the entered template
settings into cookies (for database, table, or server exports) and brings them back the
next time we use the same kind of export.

The default templates are configurable, via the following parameters:

$cfg['Export']['file_template_table'] = '@TABLE@';
$cfg['Export']['file_template_database'] = '@DATABASE@';
$cfg['Export']['file_template_server'] = '@SERVER@';

The possible placeholders such as @DATABASE@ are the same as those that can be used
for the window title and are described in Documentation.html, FAQ 6.27.

Chapter 6

[129]

Choosing a character set
It is possible to choose the exact character set for our exported file. phpMyAdmin
verifies that the conditions for recoding are met. For the actual recoding of data, the
PHP component of the web server must support the iconv or the recode module.
The $cfg['RecodingEngine'] parameter specifies the actual recoding engine—the
choices being none, auto, iconv, and recode. If it is set to auto, phpMyAdmin will
first try the iconv module and then the recode module. If set to none, the character
set dialog is not shown.

Kanji support
If phpMyAdmin detects the use of the Japanese language, it checks whether
PHP supports the mb_convert_encoding() multibyte string function. If it does,
additional radio buttons are displayed on the export and import pages and on the
query box, so that we can choose between the EUC-JP and SJIS Japanese encodings.

Here is an example taken from the Export page:

Compression
To save transmission time and get a smaller export file, phpMyAdmin can compress
to ZIP, GZIP, or BZIP2 formats. These formats are offered only if the PHP server
has been compiled with the –-with-zlib (for ZIP and GZIP) or –-with-bz2 (for
BZ2) configuration option respectively. The following parameters control which
compression choices are presented in the panel:

$cfg['ZipDump'] = TRUE;
$cfg['GZipDump'] = TRUE;
$cfg['BZipDump'] = TRUE;

Exporting Structure and Data (Backup)

[130]

A system administrator installing phpMyAdmin for a number of users could choose
to set all these parameters to FALSE, so as to avoid the potential overhead incurred
by a lot of users compressing their exports at the same time. This situation usually
causes more overhead than if all the users were transmitting their uncompressed
files at the same time.

In older phpMyAdmin versions, the compression file was built in the web server
memory. Some problems caused by this were:

•	 File generation depended on the memory limits assigned to running
PHP scripts.

•	 During the time the file was generated and compressed, no transmission
occurred. Hence, users were inclined to think that the operation was not
working and that something had crashed.

•	 Compression of large databases was impossible to achieve.

The $cfg['CompressOnFly'] parameter (set to TRUE by default) was added to
generate (for GZIP AND BZIP2 formats) a compressed file containing more headers.
Now, the transmission starts almost immediately. The file is sent in smaller chunks
so that the whole process consumes much less memory. The downside of this is a
slightly larger resulting file.

Export formats
We shall now discuss the formats (and the options available once they have been
chosen) that can be selected with the Format sub-panel.

Even if we can export into many formats, only some of these
formats can be imported back using phpMyAdmin.

SQL
The SQL format is useful, as it creates standard SQL commands that would work on
any SQL server.

If the Display comments checkbox is selected, comments are included in the export
file. The first part of the export comprises comments (starting with the -- characters)
that detail the utility (and version) that created the file, the date, and other
environment information. We then see the CREATE and INSERT queries for each table.

phpMyAdmin generates ANSI-compatible comments in the export file. These
comments start with --. They help with importing the file back on other ANSI SQL-
compatible systems.

Chapter 6

[131]

SQL options are used to define exactly what information the export will contain. The
following screenshot depicts the general SQL options:

The general SQL options are:

•	 Additional custom header comment: We can add our own comments for
this export (for example, Monthly backup), which will show in the export
headers (after the PHP version number). If the comment has more than one
line, we must use the special character \n to separate each line.

•	 Display foreign key relationships: In Chapter 10, we will see that it's possible
to define relations even for tables under the MyISAM storage engine; this
option would export these relationship's definition as comments. These
cannot be directly imported, but nonetheless are valuable as human-readable
table information.

•	 Display MIME types: This adds information (in the form of SQL comments),
to describe which MIME type has been associated to columns. Chapter 16
explains this further.

•	 Enclose export in a transaction: Starting with MySQL 4.0.11, we can use
the START TRANSACTION statement. This command, combined with SET
AUTOCOMMIT=0 at the beginning and COMMIT at the end, asks MySQL to
execute the import (when we will re-import this file) in one transaction,
ensuring that all the changes are done as a whole.

Exporting Structure and Data (Backup)

[132]

•	 Disable foreign key checks: In the export file, we can add DROP TABLE
statements. However, normally a table cannot be dropped if it is referenced
in a foreign key constraint. This option overrides the verification by adding
SET FOREIGN_KEY_CHECKS=0 to the export file. This override only lasts for the
duration of the import.

•	 Database system or older MySQL server to maximize output compatibility
with: This lets us choose the flavor of SQL that we export. We must know
about the system onto which we intend to import this file. Among the choices
are MySQL 3.23, MySQL 4.0, ORACLE, and ANSI.

We may want to export the structure, the data, or both; this is performed with the
Dump table option. Selecting Structure generates the section with CREATE queries,
and selecting Data produces INSERT queries.

If we select Structure, the Object creation options sub-panel appears, as depicted in
the following screenshot:

The structure options are:

•	 Add DROP TABLE / VIEW / PROCEDURE / FUNCTION / EVENT: Adds
a DROP ... IF EXISTS statement before each CREATE statement, for example,
DROP TABLE IF EXISTS `author`;. This way, we can ensure that the export
file is executed on a database in which the same element already exists,
updating its structure but destroying the previous element's contents.

•	 Add CREATE PROCEDURE / FUNCTION / EVENT: This includes all
procedures, functions, and event definitions found in this database, in
the export.

Chapter 6

[133]

•	 CREATE TABLE OPTIONS / IF NOT EXISTS: Adds the IF NOT EXISTS
modifier to CREATE TABLE statements, avoiding an error during import if the
table already exists.

•	 CREATE TABLE OPTIONS / AUTO_INCREMENT: Puts auto-increment
information from the tables into the export, ensuring that the inserted rows
in the tables will receive the next exact auto-increment ID value.

•	 Enclose table and field names with backquotes: In the MySQL world,
backquotes are the normal way of protecting table and column names that may
contain special characters. In most cases, it is useful to have them. However,
backquotes are not recommended if the target server (where the export file will
be imported) is running a SQL engine that does not support backquotes.

The following screenshot displays options relevant to a Data export:

Exporting Structure and Data (Backup)

[134]

The options available in the Data section are:

•	 INSERT DELAYED statements: Adds the DELAYED modifier to INSERT
statements. This accelerates the INSERT operation as it is queued to
the server, which will execute it when the table is not in use. This is a
MySQL non-standard extension, available only for MyISAM, MEMORY, and
ARCHIVE tables.

•	 INSERT IGNORE statements: Normally, at import time, we cannot insert
duplicate values for unique keys, as this would abort the insert operation.
This option adds the IGNORE modifier to INSERT and UPDATE statements, thus
skipping the rows that generate duplicate key errors.

•	 Function to use when dumping data: The choices are INSERT, UPDATE,
and REPLACE. The most well-known of these types is the default INSERT—
using INSERT statements to import back our data. At import time, however,
we could be in a situation where a table already exists and contains valuable
data, and we just want to update the columns that are in the current table we
are exporting. UPDATE generates statements, such as the following line of
code, updating a row when the same primary or unique key is found:
UPDATE `author` SET `id` = 1, `name` = 'John Smith', `phone` =
'111-1111' WHERE `id` = '1';

The third possibility, REPLACE, produces statements such as REPLACE INTO
`author` VALUES (1, 'John Smith', '111-1111'); These act similar to an
INSERT statement for new rows and update existing rows, based on primary
or unique keys.

•	 Syntax to use when inserting data: There are several choices here. By
including column names in every statement, the resulting file is bigger, but
will prove more portable on various SQL systems with the added benefit of
being better documented. Inserting multiple rows with a statement is faster
than using multiple INSERT statements, but is less convenient as it makes
reading the resultant file harder. It also produces a smaller file, but each line
of this file is not executable in itself as each line does not have an INSERT
statement. If you cannot import the complete file in one operation, you
cannot split the file with a text editor and import it chunk by chunk.

•	 Maximal length of created query: The single INSERT statement generated for
Extended inserts might become too big and could cause problems. Hence,
we set a limit to the number of characters for the length of this statement.

Chapter 6

[135]

•	 Dump binary columns in hexadecimal notation: This option makes
phpMyAdmin encode the contents of BLOB columns in 0x format. Such
a format is useful as, depending on the software that will be used to
manipulate the export file (for example a text editor or mail program),
handling a file containing 8-bit data can be problematic. However, using this
option will produce an export of BLOB column type that is twice the size.

•	 Dump TIMESTAMP columns in UTC: This is useful if the export file is to be
imported back on a server located in a different time zone.

CSV
This format is understood by a lot of programs, and you may find it useful for
exchanging data. Note that it is a data-only format—no SQL structure here.

The available options are:

•	 Columns separated with: We put a comma here, which means that a
comma will be placed after each column. The default value comes from
$cfg['Export']['csv_separator'].

•	 Columns enclosed with: We place an enclosing character here (double
quotes) to ensure that a column containing the terminating character
(comma) is not taken for two columns. The default value comes from
$cfg['Export']['csv_enclosed'].

•	 Columns escaped with: If the export generator finds the Columns enclosed
with character inside a column, this character will be placed before it in order
to protect it. For example, "John \"The Great\"Smith". The default value
comes from $cfg['Export']['csv_escaped'].

Exporting Structure and Data (Backup)

[136]

•	 Lines terminated with: This decides the character that ends each line.
We should use a proper line delimiter here depending on the operating
system on which we will manipulate the resulting export file. The default
value of this option comes from the $cfg['Export']['csv_terminated']
parameter, which contains 'AUTO' by default. The 'AUTO' value produces a
value of \r\n if the browser's OS is Windows, and \n otherwise. However,
this might not be the best choice if the export file is intended for a machine
with a different OS.

•	 Replace NULL with: This determines which string occupies the place in the
export file of any NULL value found in a column.

•	 Remove carriage return/line feed characters within columns: As a column
can contain carriage return or line feed characters, this determines if such
characters should be removed from the exported data.

•	 Put column names in the first row: This gets some information about the
meaning of each column. Some programs will use this information to name
the column. For the exercise, we select this option.

Finally, we select the author table.

Clicking on Go produces a file containing the following lines:

"id","name","phone"
"1","John Smith","+01 445 789-1234"
"2","Maria Sunshine","+01 455 444-5683"

CSV for Microsoft Excel
This export mode produces a CSV file specially formatted for Microsoft Excel (using
semicolons instead of commas). We can select the exact Microsoft Excel edition as
shown in the following screenshot:

Chapter 6

[137]

PDF
It's possible to create a PDF report of a table by exporting in PDF. This feature always
produces a file. Since phpMyAdmin 3.4.7, we can also export a complete database
or multiple tables in one sweep. We can add a title for this report, and it also gets
automatically paginated. Non-textual (BLOB) data as in the book table is discarded
from this export format.

Here, we test it on the author table, asking to use "The authors" as a title. PDF is
interesting because of its inherent vectorial nature—the results can be zoomed. Let us
have a look at the generated report, as seen from the Adobe Reader:

Microsoft Word 2000
This export format directly produces a .doc file suitable for all software that
understands the Word 2000 format. We find options similar to those in the
Microsoft Excel export, and a few more. We can independently export the table's
Structure and Data.

Exporting Structure and Data (Backup)

[138]

Note that, for this format and the Excel format, we can choose many tables for one
export. However, unpleasant results happen if one of these tables has non-textual
data. Here are the results for the author table:

LaTeX
LaTeX is a typesetting language. phpMyAdmin can generate a .tex file that
represents the table's structure and/or data in a sideways tabular format.

Note that this file is not directly viewable, and must be processed
further or converted for the intended final media.

The available options are:

Option Description
Include table caption Displays captions in the tabular output
Structure and Data The familiar choice to request structure, data, or

both
Table caption The caption to go on the first page
Table caption (continued) The caption to go on, page after page
Display foreign key relationships,
comments, MIME types

Other structure information we want as output.
These choices are available if the phpMyAdmin
configuration storage is in place

Chapter 6

[139]

XML
This format is very popular these days for data exchange. We can choose which data
definition elements (such as functions, procedures, tables, triggers, or views) we
want exported. What follows is the output for the author table.

<?xml version="1.0" encoding="utf-8"?>
<!--
- phpMyAdmin XML Dump
- version 3.4.5
- http://www.phpmyadmin.net
-
- Host: localhost
- Generation Time: Sep 16, 2011 at 03:18 PM
- Server version: 5.5.13
- PHP Version: 5.3.8
-->

<pma_xml_export version="1.0" xmlns:pma="http://www.phpmyadmin.net/
some_doc_url/">
 <!--
 - Structure schemas
 -->
 <pma:structure_schemas>
 <pma:database name="marc_book" collation="latin1_swedish_ci"
 charset="latin1">
 <pma:table name="author">
 CREATE TABLE `author` (
 `id` int(11) NOT NULL,
 `name` varchar(30) NOT NULL,
 `phone` varchar(30) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
 </pma:table>
 </pma:database>
 </pma:structure_schemas>

 <!--
 - Database: 'marc_book'
 -->
 <database name="marc_book">
 <!-- Table author -->
 <table name="author">
 <column name="id">1</column>
 <column name="name">John Smith</column>

Exporting Structure and Data (Backup)

[140]

 <column name="phone">+01 445 789-1234</column>
 </table>
 <table name="author">
 <column name="id">2</column>
 <column name="name">Maria Sunshine</column>
 <column name="phone">333-3333</column>
 </table>
 </database>
</pma_xml_export>

Open document spreadsheet
This spreadsheet format is a subset of the open document (http://en.wikipedia.
org/wiki/OpenDocument), which was made popular with the OpenOffice.org
office suite. We need to choose only one table to be exported in order to have a
coherent spreadsheet. The following screenshot shows our author table, exported
into a file named author.ods, and subsequently looked at from OpenOffice:

Open document text
This is another subset of the open document standard, this time oriented towards
text processing. Our author table is now exported and viewed from OpenOffice.

Chapter 6

[141]

YAML
YAML stands for YAML Ain't Markup Language. YAML is a human-readable data
serialization format; its official site is http://www.yaml.org. This format has no
option that we can choose from within phpMyAdmin. Here is the YAML export for
the author table:

1:
 id: 1
 name: John Smith
 phone: +01 445-789-1234
2:
 id: 2
 name: Maria Sunshine
 phone: 333-3333

CodeGen
This choice might some day support many formats related to code development.
Currently, it can export in NHibernate Object-relation mapping (ORM) format. For
more details, please refer to http://en.wikipedia.org/wiki/Nhibernate.

Texy! text
Texy! is a formatting tool (http://texy.info/en/) with its own simplified syntax.
The following block of code is an example of export in this format:

===Database marc_book

== Table structure for table author
|------
|Field|Type|Null|Default
|------
|//**id**//|int(11)|Yes|NULL
|name|varchar(30)|Yes|NULL
|phone|varchar(30)|Yes|NULL

== Dumping data for table author
|1|John Smith|+01 445 789-1234
|2|Maria Sunshine|333-3333

Exporting Structure and Data (Backup)

[142]

PHP array
In PHP, associative arrays can hold text data; therefore, a PHP-array export format is
available. The following is a PHP array export of the author table:

<?php
// marc_book.author
$author = array(
 array('id'=>1,'name'=>'John Smith','phone'=>'+1 445 789-1234'),
 array('id'=>2,'name'=>'Maria Sunshine','phone'=>'333-3333')
);

MediaWiki table
MediaWiki (http://www.mediawiki.org/wiki/MediaWiki) is a popular wiki
package, which supports the ubiquitous Wikipedia. This wiki software implements
a formatting language in which it's possible to describe data in tabular format.
Choosing this export format in phpMyAdmin produces a file which can be pasted on
a wiki page we are editing.

JSON
The JavaScript Object Notation (http://json.org) is a data-interchange format
popular in the web world. Exporting the author table in this format is shown in the
following block of code:

/**
 Export to JSON plugin for PHPMyAdmin
 @version 0.1
 */

/* Database 'marc_book' */
/* marc_book.author */

[{"id": 1,"name": "John Smith","phone": "+01 445 789-1234"}, {"id":
2,"name": "Maria Sunshine","phone": "333-3333"}]

http://www.mediawiki.org/wiki/MediaWiki
http://www.mediawiki.org/wiki/MediaWiki
http://json.org/

Chapter 6

[143]

Exporting a table
The Export link in the Table view brings up the export sub-panel for a specific table.
It is similar to the database export panel, but there is no table selector. However,
there is an additional section for split exports (Rows) before the Output sub-panel, as
depicted here:

Split-file exports
The part of the dialog containing Number of rows and Row to begin at enables us
to split the table into chunks. Depending on the exact row size, we can experiment
with various values for the number of rows to find and how many rows can be
put in a single export file before the memory or execution time limits are hit in the
web server. We could then use names such as book00.sql and book01.sql for our
export files. Should we decide to export all rows, we just select the Dump all rows
radio button.

Exporting selectively
At various places in phpMyAdmin's interface, we can export the results that we
see, or select the rows that we want to export. We will examine the various ways of
exporting a selected portion of a table.

Exporting Structure and Data (Backup)

[144]

Exporting partial query results
When results are displayed from phpMyAdmin (here, the results of a query asking
for the books from author_id 2), an Export link appears at the bottom of the page.

Clicking on this link brings up a special export panel containing the query on the top,
along with the other table export options. An export produced via this panel would
contain only the data from this result set.

The results of single-table queries can be exported in all the
available formats, while the results of multi-table queries can be
exported in all the formats except SQL.

Exporting and checkboxes
Anytime we see the results (when browsing or searching, for example), we can check
the boxes beside the rows that we want, and use the With selected: Export icon or
link to generate a partial export file with just those rows.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 6

[145]

Exporting multiple databases
Any user can export the databases to which he/she has access, in one operation.

On the home page, the Export link brings us to the screen shown in the following
screenshot. This has the same structure as the other export pages, except for the
databases list.

Exporting Structure and Data (Backup)

[146]

Exporting large databases may or may not work. It depends
on their size, the options chosen, and the web server's PHP
component settings (especially memory size and maximum
execution time).

Saving the export file on the server
Instead of transmitting the export file over the network with HTTP, it is possible to
save it directly on the file system of the web server. This could be quicker and less
sensitive to execution time limits as the entire transfer from the server to the client
browser is bypassed. Eventually, a file transfer protocol such as FTP or SFTP can be
used to retrieve the file, as leaving it on the same machine would not provide good
backup protection.

A special directory has to be created on the web server before saving an export file
on it. Usually, this is a sub-directory of the main phpMyAdmin directory. We will use
save_dir as an example. This directory must have the correct permissions. First, the
web server must have write permissions for this directory. Also, if the web server's
PHP component is running on safe mode, the owner of the phpMyAdmin scripts
must be the same as that of save_dir.

On a Linux system, assuming that the web server is running as group apache, the
following commands would do the trick:

mkdir save_dir

chgrp apache save_dir

chmod g=rwx save_dir

The proper ownership and permissions depends highly on the chosen
web server and the SAPI (Server Application Programming
Interface) (refer to http://en.wikipedia.org/wiki/Server_
Application_Programming_Interface) used, which influences how
directories and files are created and accessed. PHP could be using the
scripts' owner as the accessing user, or the web server's user/group itself.

We also have to define the './save_dir' directory name in $cfg['SaveDir'].
We are using a path relative to the phpMyAdmin directory here, but an absolute path
would work just as well.

Chapter 6

[147]

The Output section will appear with a new Save on server... section:

After clicking on Go, we will get a confirmation message or an error message (if the
web server does not have the required permissions to save the file).

For saving a file again using the same file name, check
the Overwrite existing file(s) box.

User-specific save directories
We can use the special string, %u, in the $cfg['SaveDir'] parameter. This string
will be replaced by the logged-in username. For example, as shown in the following
line of code:

$cfg['SaveDir'] = './save_dir/%u';

This would give us an on-screen choice, Save on server in the directory ./save_dir/
marc/. These directories (one per potential user) must exist and must bear the proper
permissions, as already seen in the previous section.

Exporting Structure and Data (Backup)

[148]

Memory limits
Generating an export file uses a certain amount of memory, depending on the size
of the tables and on the chosen options. The $cfg['MemoryLimit'] parameter
can contain a limit (in bytes) for the amount of memory used by PHP scripts in
phpMyAdmin—the exporting/importing scripts and other scripts. By default, the
parameter is set to 0, meaning that there is no limit. We could set here a limit of 20
MiB by using a value of 20M (the M suffix here is very important, to avoid setting a
limit of 20 bytes!).

Note that, if PHP has its safe mode activated, changing
$cfg['MemoryLimit'] has no effect. Instead, the enforced
limit comes from the memory_limit directive in php.ini.

In addition to memory limits, the execution time limit has an effect on exporting and
can be controlled via the $cfg['ExecTimeLimit'] parameter.

Summary
In this chapter, we examined the various ways to trigger an export—from the
Database view, the Table view, or a results page. We also listed the various
available export formats, their options, the possibility of compressing the export file,
and the various places where it might be sent.

In the next chapter, we will have the opportunity of importing back our structure
and data, provided the chosen format is supported by phpMyAdmin.

Importing Structure and Data
In this chapter, we will learn how to import data that we may have exported for
backup or transfer purposes. Exported data may also come from authors of other
applications, and could contain the whole foundation structure of these applications,
along with some sample data.

The current phpMyAdmin version (3.4) can import the following:

•	 Files containing MySQL statements (usually having a .sql suffix, but not
necessarily so)

•	 CSV files (comma-separated values, although the separator is not necessarily
a comma); these files can be imported by phpMyAdmin itself or via the
MySQL LOAD DATA INFILE statement which enables the MySQL server to
handle the data directly rather than having phpMyAdmin parse it first

•	 Open Document Spreadsheet files
•	 XML files (generated by phpMyAdmin)

The binary column upload covered in Chapter 5 can be said to belong to the
import family.

Importing and uploading are synonyms in
this context.

In general, an exported file can be imported to the same database it came from or
to any other database; the XML format is an exception to this and a workaround is
given in the XML section later in the chapter. Also, a file generated from an older
phpMyAdmin version should have no problem being imported by the current
version, but the difference between the MySQL version at time of export and the
one at time of import might play a bigger role regarding compatibility. It's difficult
to evaluate how future MySQL releases will change the language's syntax, bringing
import challenges.

Importing Structure and Data

[150]

The import feature can be accessed from several panels:

•	 The Import menu available from the home page, the Database view, or the
Table view

•	 The Import files menu offered inside the Query window (as explained
in Chapter 11)

The default values for the Import interface are defined in $cfg['Import'].

Before examining the actual import dialog, let us discuss some limits issues.

Limits for the transfer
When we import, the source file is usually on our client machine and, therefore, must
travel to the server via HTTP. This transfer takes time and uses resources that may be
limited in the web server's PHP configuration.

Instead of using HTTP, we can upload our file to the server using a protocol such as
FTP, as described in the Reading files from a web server upload directory section. This
method circumvents the web server's PHP upload limits.

Time limits
First, let us consider the time limit. In config.inc.php, the $cfg['ExecTimeLimit']
configuration directive assigns, by default, a maximum execution time of 300 seconds
(five minutes) for any phpMyAdmin script, including the scripts that process data
after the file has been uploaded. A value of 0 removes the limit, and in theory, gives
us infinite time to complete the import operation. If the PHP server is running in
safe mode, modifying $cfg['ExecTimeLimit'] will have no effect. This is because
the limits set in php.ini or in user-related web server configuration files (such as
.htaccess or virtual host configuration files), take precedence over this parameter.

Of course, the time it effectively takes depends on two key factors:

•	 Web server load
•	 MySQL server load

Chapter 7

[151]

The time taken by the file, as it travels between the client and
the server, does not count as execution time as the PHP script
only starts to execute after the file has been received on the
server. Therefore, the $cfg['ExecTimeLimit'] parameter
has an impact only on the time used to process data (such as
decompression or sending it to the MySQL server).

Other limits
The system administrator can use the php.ini file or the web server's virtual host
configuration file to control uploads on the server.

The upload_max_filesize parameter specifies the upper limit or maximum file
size that can be uploaded via HTTP. This one is obvious, but another less obvious
parameter is post_max_size. As HTTP uploading is done via the POST method, this
parameter may limit our transfers. For more details about the POST method, please
refer to http://en.wikipedia.org/wiki/Http#Request_methods.

The memory_limit parameter is provided to prevent web server child processes
from grabbing too much of the server's memory—phpMyAdmin runs inside a child
process. Thus, the handling of normal file uploads, especially compressed dumps,
can be compromised by giving this parameter a small value. Here, no preferred
value can be recommended; the value depends on the size of uploaded data we
want to handle and on the size of the physical memory. The memory limit can also
be tuned via the $cfg['MemoryLimit'] parameter in config.inc.php, as seen
in Chapter 6.

Finally, file uploads must be allowed by setting file_uploads to On; otherwise,
phpMyAdmin won't even show a dialog to choose a file. It would be useless to
display this dialog as the connection would be refused later by the PHP component
of the web server.

Handling big export files
If the file is too big, there are ways in which we can resolve the situation. If the
original data is still accessible via phpMyAdmin, we could use phpMyAdmin to
generate smaller export files, choosing the Dump some row(s) dialog. If this were
not possible, we could use a spreadsheet program or a text editor to split the file
into smaller sections. Another possibility is to use the upload directory mechanism,
which accesses the directory defined in $cfg['UploadDir']. This feature is
explained later in this chapter.

Importing Structure and Data

[152]

In recent phpMyAdmin versions, the Partial import feature can also solve this
file size problem. By selecting the Allow the interruption… checkbox, the import
process will interrupt itself if it detects that it is close to the time limit. We can also
specify a number of queries to skip from the start, in case we successfully import a
number of rows and wish to continue from that point.

Uploading into a temporary directory
On a server, a PHP security feature called open_basedir (which limits the files
that can be opened by PHP to the specified directory tree) can impede the upload
mechanism. In this case, or for any other reason, when uploads are problematic, the
$cfg['TempDir'] parameter can be set with the value of a temporary directory. This
is probably a sub-directory of phpMyAdmin's main directory, into which the web
server is allowed to put the uploaded file.

Importing SQL files
Any file containing MySQL statements can be imported via this mechanism. This
format is the more commonly used for backup/restore purposes. The dialog is
available in the Server view, Database view, or the Table view, via the Import
page, or in the Query window.

Chapter 7

[153]

There is no relation between the currently selected table (here author)
and the actual contents of the SQL file that will be imported. All the
contents of the SQL file will be imported, and it is those contents that
determine which tables or databases are affected. However, if the
imported file does not contain any SQL statements to select a database,
all statements in the imported file will be executed on the currently
selected database.

Let us try an import exercise. First, we make sure that we have a current SQL export
file of the book table (as explained in Chapter 6). This export file must contain the
structure and the data. Then we drop the book table—yes, really! We could also
simply rename it. (Refer to Chapter 9 for the procedure.)

Now it is time to import the file back to the current database (the file could be
imported for testing in a different database or even on another MySQL server). We
should be on the Import page, where we can see the File to import dialog. We just
have to hit the Browse button and choose our file.

phpMyAdmin is able to detect which compression method (if any) has been applied
to the file. Depending on the phpMyAdmin version, and the extensions that are
available in the PHP component of the web server, there is variation in the formats
that the program can decompress.

However, to import successfully, phpMyAdmin must be informed of the character
set of the file to be imported. The default value is utf-8. However, if we know that
the import file was created with another character set, we should specify it here.

A SQL compatibility mode selector is available at import time. This mode should be
adjusted to match the actual data that we are about to import, according to the type
of server where the data was previously exported.

Another option, Do not use AUTO_INCREMENT for zero values, is marked by
default. If we have a value of zero in a primary key and we want it to stay zero
instead of being auto-incremented, we should use this option.

To start the import, we click on Go. The import procedure continues and we receive
a message: Import has been successfully finished, 2 queries executed. We can
browse our newly-created tables to confirm the success of the import operation.

An import file may contain the DELIMITER keyword. This enables phpMyAdmin
to mimic the mysql command-line interpreter. The DELIMITER separator is used to
delineate the part of the file containing a stored procedure, as these procedures can
themselves contain semicolons.

Importing Structure and Data

[154]

Importing CSV files
In this section, we will examine how to import CSV files. There are two possible
methods—CSV and CSV using LOAD DATA. The first method is implemented
internally by phpMyAdmin and is the recommended one for its simplicity. With
the second method, phpMyAdmin receives the file to be loaded, and passes it to
MySQL. In theory, this method should be faster. However, it has more requirements
due to MySQL itself (refer to the Requirements sub-section of the CSV using LOAD
DATA section).

Differences between SQL and CSV formats
Usually, the SQL format contains both structure and data. The CSV file format
contains data only, so if we import in Table view, we must already have an existing
table in place. This table does not need to have the same structure as the original
table (from which the data comes); the Column names dialog enables us to choose
which columns are affected in the target table.

Since version 3.4, we can also import a CSV file in Database view. In this case,
phpMyAdmin examines the CSV data and generates a table structure to hold this
data (with generic column names such as COL 1, COL 2 and a table name such as
TABLE 24).

Exporting a test file
Before trying an import, let us generate an author.csv export file from the author
table. We use the default values in the CSV export options. We can then use the
Empty option to empty the author table—we should avoid dropping this table as we
still need the table structure. The procedure to empty a table is covered in Chapter 5,
in the Deleting all of the rows in a table section.

CSV
From the author table menu, we select Import and then CSV.

Chapter 7

[155]

We can influence the behavior of the import in a number of ways. By default,
importing does not modify existing data (based on primary or unique keys).
However, the Replace table data with file option instructs phpMyAdmin to use
REPLACE statements instead of INSERT statements, so that existing rows are replaced
with the imported data.

Using Do not abort on INSERT error, INSERT IGNORE statements are generated.
These cause MySQL to ignore any duplicate key problems during insertion. A
duplicate key from the import file does not replace existing data, and the procedure
continues for the next line of CSV data.

We can then specify the character that terminates each column, the character that
encloses data, and the character that escapes the enclosing character. Usually this is \.

For Lines terminated with option, the auto choice should be tried first as it detects
the end-of-line character automatically. We can also specify manually which
characters terminate the lines. The usual choice is \n for UNIX-based systems, \r\n
for DOS or Windows systems, and \r for Mac-based systems (up to Mac OS 9). If
in doubt, we can use a hexadecimal file editor on our client computer (not part of
phpMyAdmin) to examine the exact codes.

Importing Structure and Data

[156]

By default, phpMyAdmin expects a CSV file with the same number of columns and
the same column order as the target table. This can be changed by entering a comma-
separated list of column names in Column names, respecting the source file format.
For example, let us say our source file contains only the author ID and the author
name information:

"1","John Smith"
"2","Maria Sunshine"

We would have to put id, name in Column names to match the source file.

When we click on Go, the import is executed and we get a confirmation. We might
also see the actual INSERT queries generated if the total size of the file is not too big.

Import has been successfully finished, 2 queries executed.
INSERT INTO `author` VALUES ('1', 'John Smith', '+01 445 789-1234'
)# 1 row(s) affected.

INSERT INTO `author` VALUES ('2', 'Maria Sunshine', '333-3333'
)# 1 row(s) affected.

CSV using LOAD DATA
With this method (only available in the Table view), phpMyAdmin relies on the
server's LOAD DATA INFILE or LOAD DATA LOCAL INFILE mechanisms to do the actual
import, instead of processing the data internally. These statements are the fastest
way for importing text in MySQL. They cause MySQL to start a read operation either
from a file located on the MySQL server (LOAD DATA INFILE) or from another place
(LOAD DATA LOCAL INFILE), which in this context, is always the web server's file
system. If the MySQL server is located on a computer other than the web server, we
won't be able to use the LOAD DATA INFILE mechanism.

Requirements
Relying on the MySQL server has some consequences. Using LOAD DATA INFILE
requires that the logged-in user possess a global FILE privilege. Also, the file itself
must be readable by the MySQL server's process.

Chapter 19 explains phpMyAdmin's interface,
which can be used by system administrators to
manage privileges.

Chapter 7

[157]

Usage of the LOCAL modifier in LOAD DATA LOCAL INFILE must be allowed by the
MySQL server and MySQL's client library used by PHP.

Both the LOAD methods are available from the phpMyAdmin LOAD interface, which
tries to choose the best possible default option.

Using the LOAD DATA interface
We select Import from the author table menu. Choosing CSV using LOAD DATA
option brings up the following dialog:

The available options have already been covered
in the CSV section.

In the File to import section, we choose our author.csv file.

Finally, we can choose the LOAD method, as discussed earlier, by selecting the Use
LOCAL keyword option. We then click on Go.

Importing Structure and Data

[158]

If all goes well, we can see the confirmation screen as shown in the following screenshot:

This screen shows the exact LOAD DATA LOCAL INFILE statement used. Here is
what has happened:

1.	 We chose author.csv.
2.	 The contents of this file were transferred over HTTP and received by the

web server.
3.	 The PHP component inside the web server saved this file in a work directory

(here /opt/php-upload-tmp/) and gave it a temporary name.
4.	 phpMyAdmin, informed of the location of this working file, built a LOAD

DATA LOCAL INFILE command, and sent it to MySQL. Note that just one
query was executed, which loaded many rows.

5.	 The MySQL server read and loaded the contents of the file into our target
table. It then returned the number of affected rows (2), which phpMyAdmin
displayed on the results page.

Importing other formats
In addition to SQL and CSV formats, phpMyAdmin can import Open Document
Spreadsheet and XML files. However, these files need to have been exported by
phpMyAdmin itself, or closely follow what phpMyAdmin does when exporting.

Open Document Spreadsheet
By default, when we export via phpMyAdmin in this format, the Put column names
in the first row option is not marked. This means that the exported file contains only
data. At import time, a corresponding option The first line of the file contains the
table column names is offered and should not be marked if the file does not contain
the column names in its first line.

Chapter 7

[159]

However, if the exported file does contain the column names, we can check this
option. Therefore, when importing from the Database view, phpMyAdmin will do
the following:

1.	 Create a table, using the file name (author.ods) as the table name (author).
2.	 Use the first line's column names as column names for this table.
3.	 Determine each column's type and appropriate size, based on the data itself.
4.	 Insert data into the table.

If we are in the Table view, only the data will be imported.

Other import options exist to indicate what should be done with empty rows and
with data containing percentages or currency values.

XML
The amount of structural information that can be created by importing an XML
file depends on the options that were chosen at export time. Indeed, if the Tables
option of the Object creation options dialog was selected, then the exact CREATE
TABLE statement is placed in the exported file. Therefore, the same table structure is
available in the restored table.

Likewise, if the Export contents option was marked, the whole data is there in the
XML file ready to be imported back. There are no options available at import time
as XML is a self-describing format; therefore, phpMyAdmin can correctly interpret
what is in the file and react appropriately.

As the original database name is part of the XML export, the current phpMyAdmin
version only supports importing an XML file into the database from which the
export originated. To import to a different database, we need to first use a text editor
and change the database name inside the following line:

<pma:database name="marc_book" collation="latin1_swedish_ci"
charset="latin1">

Importing Structure and Data

[160]

Reading files from a web server upload
directory
To get around cases where uploads are completely disabled by a web server's PHP
configuration, or where upload limits are too small, phpMyAdmin can read upload
files from a special directory located on the web server's file system.

We first specify the directory name of our choice in the $cfg['UploadDir']
parameter, for example, './upload'. We can also use the %u string, as described in
Chapter 6, to represent the user's name.

Now, let us go back to the Import page. We get an error message:

The directory you set for upload work cannot be reached.

This error message is expected, as the directory does not exist. It is supposed to
have been created inside the current phpMyAdmin installation directory. The message
might also indicate that the directory exists, but can't be read by the web server.

In PHP safe mode, the owner of the directory and the owner
of the phpMyAdmin-installed scripts must be the same.

Using an SFTP or FTP client, we create the necessary directory, and can now
upload a file there (for example book.sql) bypassing any PHP timeouts or upload
maximum limits.

Note that the file itself must have permissions that allow
the web server to read it.

In most cases, the easiest way is to allow everyone to read the file.

Refreshing the Import page brings up the following screenshot:

Chapter 7

[161]

Clicking on Go should execute the statements located in the file.

Automatic decompression is also available for the files located in the upload
directory. The file names should have extensions such as .bz2, .gz, .sql.bz2, or
.sql.gz.

Using the double extensions (.sql.bz2) is a better way to indicate
that a .sql file was produced and then compressed, as we see all the
steps used to generate this file.

Displaying an upload progress bar
Especially when importing a large file, it's interesting to have a visual feedback
on the progression of upload. Please note that the progress bar we are discussing
here informs us only about the uploading part, which is a subset of the whole
import operation.

Having a JavaScript-enabled browser is a requirement for this feature. Moreover,
the web server's PHP component must have the JSON extension and at least one of
these extensions:

•	 The well-know APC extension (http://pecl.php.net/package/APC),
which is highly recommended anyway for its opcode caching benefits

•	 The uploadprogress extension (http://pecl.php.net/package/
uploadprogress)

phpMyAdmin uses AJAX techniques to fetch progress information, then displays it
as part of the File to import dialog. The number of bytes uploaded, total number of
bytes, and percentage uploaded are displayed under the bar.

Configuring APC
A few php.ini directives play an important role for upload progress. First, the
apc.rfc1867 directive must be set to On or true, otherwise this extension won't
be reporting upload progress to the calling script. When set to On, this extension
updates an APC user cache entry with the upload status information.

Also, the frequency of the updates can be set via the apc.rfc1867_freq directive,
which can take the form of a percentage of the total file size (for example, apc.
rfc1867_freq = "10%"), or a size in bytes (suffixes k for kilobytes, m for megabytes,
and g for gigabytes are accepted). A value of 0 here indicates us to update as often as
possible, which looks interesting but in reality may slow down the upload.

http://pecl.php.net/package/uploadprogress
http://pecl.php.net/package/uploadprogress

Importing Structure and Data

[162]

This very notion of update frequency explains why the bar progresses in chunks
rather than continuously when using this mechanism.

Summary
This chapter covered:

•	 Various options in phpMyAdmin that allow us to import data
•	 The different mechanisms involved in importing files
•	 The limits that we might hit when trying a transfer, and ways to bypass

these limits

The next chapter will explain how to do single-table searches (covering search
criteria specification) and how to search in the whole database.

Searching Data
In this chapter, we present mechanisms that can be used to find the data we are
looking for, instead of just browsing tables page-by-page and sorting them. In Search
mode, application developers can look for data in ways not expected by the interface
they are building—adjusting and sometimes repairing data. This chapter covers
single-table searches and entire database searches. Chapter 12 is a complement to this
chapter and presents examples of searches involving multiple tables at once.

Single-table searches
This section describes the Search page where a single-table search is available.
Searching in just one table is effective only in the situation where a single table
regroups all the data on which we want to search. If the data is scattered in many
tables, a database search should be launched instead, and this is covered later in
the chapter.

Entering the search page
The Search page can be accessed by clicking on the Search link in the Table view.
This has been done here for the book table:

Searching Data

[164]

The most commonly used section of the Search interface (query by example) is the
one immediately displayed, whereas other dialogs are hidden in a slider that can be
activated by the Options link (more on these dialogs later in this chapter).

Searching criteria by column—query by
example
The main use of the Search panel is to enter criteria for some columns so as to
retrieve only the data we are interested in. This is called query by example because
we give an example of what we are looking for. Our first retrieval will concern
finding the book with ISBN 1-234567-89-0. We simply enter this value in the isbn box
and set the Operator field to =.

Chapter 8

[165]

Clicking on Go gives these results (shown partially in the following screenshot):

This is a standard results page. If the results ran in pages, we could navigate
through them, and edit and delete data for the subset we have chosen during the
process. Another feature of phpMyAdmin is that the columns used as the criteria
are highlighted by changing the border color of the columns to better reflect their
importance on the results page.

It isn't necessary to specify that the isbn column be displayed even though this is
the column in which we search. We could have selected only the title column for
display (refer to the Selecting the columns to be displayed section) and chosen the isbn
column as a criterion.

Searching for empty / non-empty values
Two handy operators are present in the operator's list when the column has a
character type such as CHAR, VARCHAR, or TEXT:

•	 = ''
•	 != ''

Those are the ones to use when you want to search for an empty (= '') or not empty
(!= '') value in some column. Normally, typing nothing in a column's Value field
means that this column does not participate in the search process. However, with
one of these operators, this column is included in the generated search query.

Please do not confuse this method with searching for a NULL
value, which is quite different. Indeed, a NULL value (refer to
http://en.wikipedia.org/wiki/Null_(SQL) for a more
complete explanation) is a special value that conveys that some
information is missing in this column.

Searching Data

[166]

Producing reports with Print view
We see the Print view and Print view (with full texts) links on the results page.
These links produce a more formal report of the results (without the navigation
interface) directly to the printer. In our case, using Print view would produce
the following:

This report contains information about the server, database, time of generation,
version of phpMyAdmin, version of MySQL, and generated SQL query. The other
link, Print view (with full texts), would print the contents of the TEXT columns in
their entirety.

Searching with wildcard characters
Let us assume we are looking for something less precise—all books with "cinema"
in their title. First, we go back to the search page. For this type of search, we will use
SQL's LIKE operator. This operator accepts wildcard characters—the % character
(which matches any number of characters) and the underscore (_) character (which
matches a single character). Thus we can use %cinema% to let phpMyAdmin
find any substring that matches the word "cinema". If we left out both wildcard
characters, we would get exact matches with only that single word.

This substring matching is easier to access, being part of the Operator drop-down
list. We only have to enter the word cinema and use the operator LIKE %...% to
perform that match. We should avoid using this form of the LIKE operator on big
tables (comprising of thousands of rows), as MySQL does not use an index for data
retrieval in this case, leading to wait times that depend on the server hardware and
its current load. This is why this operator is not the default one in the drop-down list,
even though this method of search is commonly used on smaller tables.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 8

[167]

The following screenshot shows how we ask for a search on cinema with the LIKE
%...% operator:

The LIKE operator can be used for other types of wildcard searches, for
example History%, which would search for this word at the beginning of
a title. As the expression does not start with a wildcard character, MySQL
will try to use an index if it finds one that speeds up data retrieval. For
more details about MySQL's use of indexes, please refer to http://dev.
mysql.com/doc/refman/5.1/en/mysql-indexes.html.

Using either of these methods of performing the query produces the following results:

The % and _ wildcard characters may be repeated in a search expression; for example,
histo__ (two underscores) would match history whereas histo% would match
history and historian. The MySQL manual gives more examples at http://dev.
mysql.com/doc/refman/5.1/en/string-comparison-functions.html.

Searching Data

[168]

Case sensitivity and search
In the previous example, we could have replaced "cinema" with "CINEMA"
and achieved similar results. The reason is that the collation of the title column
is latin1_swedish_ci. This collation comes from the collation set, by default, at
database creation unless the server's default collation has been changed (refer to
http://dev.mysql.com/doc/refman/5.1/en/charset-mysql.html). Here,
ci means that comparisons are done in a case-insensitive way. Please refer to
http://dev.mysql.com/doc/refman/5.1/en/case-sensitivity.html for
more details.

Combining criteria
We can use multiple criteria for the same query (for example, to find all the English
books of more than 300 pages). There are more comparative choices in Operator
because the page_count column is numeric, as shown in the following screenshot:

Search options
The Options slider reveals additional panels to further refine the search process.

Selecting the columns to be displayed
In the Options slider, a Select columns panel facilitates selection of the columns
to be displayed in the results. All columns are selected by default, but we can Ctrl
+ Click on other columns to make the necessary selections. Mac users would use
Command + Click to select/unselect the columns.

Chapter 8

[169]

Following are the columns of interest in this example:

We can also specify the number of rows per page in the textbox next to the column
selection. The Add search conditions box will be explained in the Applying a WHERE
clause section, which will follow shortly.

Ordering the results
The Display order dialog permits the specification of an initial sorting order for the
results to come. In this dialog, a drop-down menu contains all the table's columns;
it's up to us to select the one on which we want to sort. By default, the sorting will be
in Ascending order, but a choice of Descending order is also available.

It should be noted that on the results page, we can change the sort order using the
techniques explained in Chapter 4.

Applying a WHERE clause
Sometimes, we may want to enter a search condition that is not offered in the
Function list of the query by example section. The list cannot contain every possible
variation in the language. Let us say we want to find all the English or French books
using the IN clause. To do this, we can use the Add search conditions section.

Searching Data

[170]

The complete search expression is generated by combining the search
conditions and other criteria (entered in the query by example lines)
with a logical AND operator.

We could have a more complex list of search conditions that would be entered in the
same textbox, possibly with brackets and operators such as AND or OR.

A Documentation link points to the MySQL manual where we can see a huge choice
of available functions. (Each function is applicable to a specific column type.)

Avoiding repeated results
The normal behavior of the SELECT statement is to fetch all entries corresponding
to the criteria, even if some entries are repeated. Sometimes, we may want to avoid
getting the same results more than once. For example, if we want to know in which
cities we have clients, displaying each city name once would be enough. Here, we
want to know in which languages our books are written. In the Select columns
dialog, we choose just the language column, and we check DISTINCT, as shown in
the following screenshot:

Clicking on Go produces a results page where we see en just once; without the
DISTINCT option, the row containing en would have appeared three times.

If we select more than one column (for example author_id and language) and mark
the DISTINCT option, we will now see two lines in the results as there are two books
in English (but from different authors). Results are still not repeated.

Chapter 8

[171]

Performing a complete database search
In the previous examples, searching was limited to one table. This assumes
knowledge of the exact table (and columns) where the necessary information might
be stored.

When the data is hidden somewhere in the database, or when the same data can be
presented in various columns (for example, a title column or a description column),
it is easier to use the database search method.

We enter the Search page in the Database view for the marc_book database:

In the Word(s) or value(s) section, we enter what we want to find. The % wildcard
character can prove useful here—but remember the performance advice about
wildcard characters given earlier in this chapter. We enter souvenirs.

In the Find section, we specify how to treat the values entered. We might need to
find at least one of the words entered, all words (in no particular order), or the exact
phrase (words in the same order, somewhere in a column). Another choice is to use
as regular expression, which is a more complex way of doing pattern matching.
More details are available at http://dev.mysql.com/doc/refman/5.1/en/regexp.
html and http://www.regular-expressions.info/. We will keep the default
value—at least one of the words.

We can choose the tables to restrict the search or select all the tables. As we only have
two (small) tables, we select both.

http://dev.mysql.com/doc/refman/5.1/en/regexp.html

Searching Data

[172]

As the search will be done on each row of every table selected,
we might hit some time limits if the number of rows or tables
is too big. Thus, this feature can be deactivated by setting
$cfg['UseDbSearch'] to FALSE. (It is set to TRUE by default).

Clicking on Go finds the following result for us:

This is an overview of the number of matches and the relevant tables. We might get
some matches in the tables in which we may not be interested. However, for the
matches that look promising, we can click on browse to browse the results page, or
we can choose delete to delete the unwanted rows. The show search criteria link
would bring back our criteria panel.

Restricting search to a column
Sometimes, a particular column name is part of one (or many) tables, and we want to
search only inside this column. For example, suppose that we are looking for "marc";
but this name could be also part of a book's title. So, we want to restrict the search
to only the "name" column in all the chosen tables. This can be achieved by entering
"name" in the inside column choice.

Chapter 8

[173]

Stopping an errant query
Suppose we launch a complex search and notice that the browser is waiting for the
results. This might happen with a database search but also with a single-table search.
We can instruct the browser to stop but this will only tell the web server to cease
handling our request. However, at this point the MySQL server process is busy,
possibly doing a complex join or a full table scan. Here is a method to stop this
errant query:

1.	 We open a different browser (for example, the errant query was launched via
Firefox and we open Internet Explorer).

2.	 We log in via phpMyAdmin to MySQL with the same account.
3.	 On the home page, we click on Processes.
4.	 At this point, we should see a process identified by Query under the

Command column and containing the errant query (other than SHOW
PROCESSLIST which is not the one to kill).

5.	 We click on Kill for this process.
6.	 To verify, we can immediately click again on Processes and the chosen

process should now be identified as Killed instead of Query.

Summary
In this chapter, we took an overview of single table searches with "query by example"
criteria and additional criteria specification—selecting displayed values and ordering
results. We also looked at wildcard searches and full database search.

The next chapter will explain how to perform the operations on tables, for example,
changing a table's attributes, such as its storage engine. The subjects of repairing and
optimizing tables are covered in this chapter as well.

Performing Table and
Database Operations

In the previous chapters, we dealt mostly with table columns. In this chapter, we
will learn how to perform some operations that influence tables or databases as a
whole. We will cover table attributes and how to modify them, and will also discuss
multi-table operations.

Various links that enable table operations have been put together on the Operations
page of the Table view. Here is an overview of this page:

Performing Table and Database Operations

[176]

Maintaining a table
During its lifetime, a table repeatedly gets modified and is, therefore, continually
growing and shrinking. Outages may occur on the server, leaving some tables in a
damaged state.

Using the Operations page, we can perform various operations, which are listed
next. However, not every operation is available for every storage engine.

•	 Check table: Scans all rows to verify that deleted links are correct. A
checksum is also calculated to verify the integrity of the keys. If everything
is all right, we will obtain a message stating OK or Table is already up to
date; if any other message shows up, it's time to repair this table (refer to the
Repair table bullet point).

•	 Analyze table: Analyzes and stores the key distribution; this will be used
on subsequent JOIN operations to determine the order in which the tables
should be joined. This operation should be periodically done (in case data
has changed in the table) to improve JOIN efficiency.

•	 Repair table: Repairs any corrupted data for tables in the MyISAM and
ARCHIVE engines. Note that a table might be so corrupted that we cannot
even go into Table view for it! In such a case, refer to the Multi-table
operations section for the procedure to repair it.

•	 Defragment table: Random insertions or deletions in an InnoDB table
fragment its index. The table should be periodically defragmented for faster
data retrieval. This operation causes MySQL to rebuild the table and only
applies to InnoDB.

•	 Optimize table: This is useful when the table contains overheads. After
massive deletions of rows or length changes for VARCHAR columns, lost
bytes remain in the table. phpMyAdmin warns us in various places (for
example, in the Structure view) if it feels the table should be optimized.
This operation reclaims the unused space in the table. In the case of MySQL
5.x, the relevant tables that can be optimized use the MyISAM, InnoDB, and
ARCHIVE engines.

•	 Flush table: This must be done when there have been many connection
errors and the MySQL server blocks further connections. Flushing will clear
some internal caches and allow normal operations to resume.

The operations are based on the available underlying MySQL
queries—phpMyAdmin only calls those queries. More details are
available at http://dev.mysql.com/doc/refman/5.5/en/
table-maintenance-sql.html.

Chapter 9

[177]

Changing table attributes
Table attributes are the various properties of a table. This section discusses the
settings for some of them.

Table storage engine
The first attribute we can change is called Storage Engine.

This controls the whole behavior of the table—its location (on disk or in memory),
the index structure, and whether it supports transactions and foreign keys. The drop-
down list varies depending on the storage engines supported by our MySQL server.

Changing a table's storage engine may be a long operation if
the number of rows is large.

Table comments
Table comments option allows us to enter comments for the table.

Performing Table and Database Operations

[178]

These comments will be shown at appropriate places, for example, in the
navigation panel, next to the table name in the Table view, and in the export file.
The following screenshot shows what the navigation panel looks like when the
$cfg['ShowTooltip'] parameter is set to its default value of TRUE:

The default value (FALSE) of $cfg['ShowTooltipAliasDB'] and
$cfg['ShowTooltipAliasTB'] produces the behavior we saw earlier—the true
database and table names are displayed in the navigation panel and in the Database
view for the Structure page. Comments appear as a tooltip (when the cursor is
hovered over a database or table name). If one of these parameters is set to TRUE,
the behavior is reversed—showing the comment by default and the true name as a
tooltip. This is convenient when the real table names are not meaningful.

There is another possibility for $cfg['ShowTooltipAliasTB']—the 'nested'
value. Here is what happens if we use this feature:

•	 The true table name is displayed in the navigation panel
•	 The table comment (for example, project__) is interpreted as the project

name and is displayed as it is (refer to the Nested display of tables within a
database section in Chapter 3)

Table order
When we browse a table, or execute a statement such as SELECT * from book without
specifying a sort order, MySQL uses the order in which the rows are physically stored.
This table order can be changed with the Alter table order by dialog. We can choose
any column and the table will be reordered once on this column. We choose author_id
in the example, and after we click on Go, the table gets sorted on this column.

Reordering is convenient if we know that we will be retrieving rows in this order
most of the time. Moreover, if we use an ORDER BY clause later on, and the table is
already physically sorted on this column, we might get better performance.

Chapter 9

[179]

This default ordering will last as long as there are no changes in the table
(no insertions, deletions, or updates). This is why phpMyAdmin shows the
(singly) warning.

After the sort has been done on author_id, books for author 1 will be displayed
first, followed by the books for author 2, and so on (we are talking about a default
browsing of the table without explicit sorting). We can also specify the sort order as
Ascending or Descending.

If we insert another row, describing a new book from author 1, and then click on
Browse, the book will not be displayed along with the other books for this author
because the sort was done before the insertion.

Table collation
Character-based columns have a collation attribute that describes which character set
is used to interpret the contents, and rules for sorting. The name column currently
has a latin1_swedish_ci collation, as can be seen via the Structure page. On the
Operations page, if we change the collation for table author from latin1_swedish_ci
to, say, utf8_general_ci, this generates the following statement:

ALTER TABLE `author` DEFAULT CHARACTER SET utf8 COLLATE
utf8_general_ci

Therefore, we only changed the default collation for future columns that will be
added to this table; no collation was changed for existing columns.

Performing Table and Database Operations

[180]

Table options
Other attributes that influence the table's behavior may be specified using the Table
options dialog:

The options are:

•	 PACK_KEYS: Setting this attribute results in a smaller index. This can be read
faster but takes more time to update. Available for the MyISAM storage engine.

•	 CHECKSUM: This makes MySQL compute a checksum for each row. This
results in slower updates, but finding of corrupted tables becomes easier.
Available for MyISAM only.

•	 DELAY_KEY_WRITE: This instructs MySQL not to write the index updates
immediately, but to queue them for writing later. This improves performance
but there is a negative trade-off—the index might need to be rebuilt in case
of a server failure (refer to http://dev.mysql.com/doc/refman/5.1/en/
miscellaneous-optimization-tips.html). Available for MyISAM only.

•	 TRANSACTIONAL, PAGE_CHECKSUM: Applies to the Aria storage engine,
previously known as Maria. The TRANSACTIONAL option marks this table
as being transactional; however, the exact meaning of this option varies as
future versions of this storage engine will gain more transactional features.
PAGE_CHECKSUM computes a checksum on all index pages. Currently
documented at http://kb.askmonty.org/en/aria-storage-engine.

•	 ROW_FORMAT: To the storage engines that support this feature (MyISAM,
InnoDB, PBXT, and Aria), a choice of row format is presented. The default
value being the current state of this table's row format.

•	 AUTO_INCREMENT: This changes the auto-increment value. It is shown
only if the table's primary key has the auto-increment attribute.

Emptying or deleting a table
Emptying a table (erasing its data) and deleting a table (erasing its data and the
table's structure) can be done with the Empty the table (TRUNCATE) and Delete
the table (DROP) links located in the Delete data or table section.

http://dev.mysql.com/doc/refman/5.1/en/miscellaneous-optimization-tips.html
http://dev.mysql.com/doc/refman/5.1/en/miscellaneous-optimization-tips.html

Chapter 9

[181]

Renaming, moving, and copying tables
The Rename operation is the easiest to understand—the table simply changes its
name and stays in the same database.

The Move operation (shown in the following screenshot) manipulates a table in two
ways—changes its name and also the database in which it is stored.

Moving a table is not directly supported by MySQL. So, phpMyAdmin has to create
the table in the target database, copy the data, and then finally drop the source table.
This could take a long time depending on the table's size.

The Copy operation leaves the original table intact and copies its structure or data
(or both) to another table, possibly in another database. Here, the book-copy table
will be an exact copy of the book source table. After the copy, we remain in the Table
view for the book table, unless we selected Switch to copied table option, in which
case we are moved to the Table view of the newly created table.

Performing Table and Database Operations

[182]

The Structure only copy is done to create a test table with the same structure but
without the data.

Appending data to a table
The Copy dialog may also be used to append (add) data from one table to another.
Both tables must have the same structure. This operation is achieved by entering the
table to which we want to copy the data and choosing Data only.

For example, book data is coming from various sources (various publishers) in the
form of one table per publisher and we want to aggregate all the data to one place.
For MyISAM, a similar result can be obtained by using the Merge storage engine
(which is a collection of identical MyISAM tables). However, if the table is InnoDB, we
need to rely on phpMyAdmin's Copy feature.

Performing other table operations
On the table Operations interface, other dialogs may appear. The referential integrity
verification dialog will be covered in Chapter 10. Partition maintenance will be
examined in Chapter 17.

Multi-table operations
In the Database view, there is a checkbox next to each table name and a drop-down
menu under the table list. This enables us to quickly choose some tables and perform
an operation on all those tables at once. Here, we select the book-copy and the book
tables, and choose the Check table operation for the selected tables as shown in the
following screenshot:D

ow
n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 9

[183]

We could also quickly select or deselect all the checkboxes with Check All / Uncheck
All option.

Repairing an "in use" table
The multi-table mode is the only method (unless we know the exact SQL query to
type) for repairing a corrupted table. Such tables may be shown with the in use flag
in the database list. Users seeking help in the support forums for phpMyAdmin often
receive this tip from experienced phpMyAdmin users.

Database operations
The Operations tab in the Database view gives access to a panel that enables
us to perform operations on a database taken as a whole as shown in the
following screenshot:

Performing Table and Database Operations

[184]

Renaming a database
A Rename database to dialog is available. Although this operation is not directly
supported by MySQL, phpMyAdmin does it indirectly by creating a new database,
renaming each table (thus sending it to the new database), and dropping the
original database.

Copying a database
It is also possible to do a complete copy of a database, even if MySQL itself does not
support this operation natively. The options are similar to those already explained
for the table copy.

Summary
This chapter covered the operations we can perform on entire tables or databases.
It also looked at table maintenance operations for table repair and optimization,
changing various table attributes, table movements (including renaming and moving
to another database), and multi-table operations.

In the next chapter, we will begin to examine advanced features that rely on the
phpMyAdmin configuration storage, such as the relational system.

Benefiting from the
Relational System

The relational system allows users to work more closely with phpMyAdmin,
as we will see in the following chapters. This chapter explains how to define
inter-table relations.

Relational MySQL
When application developers use PHP and MySQL to build web interfaces or other
data manipulation applications, they usually establish relations between tables using
the underlying SQL queries. Examples of this would be queries to "get an invoice
and all its items" and "get all books by an author".

In the earlier versions of phpMyAdmin, the relational data structure (how tables
relate to each other) was not stored within MySQL. Tables were programmatically
joined by the applications to generate meaningful results.

This was considered a shortcoming of MySQL by phpMyAdmin developers and
users. Therefore, the team started to build an infrastructure to support relations for
MyISAM tables, which is now called the phpMyAdmin configuration storage. The
infrastructure evolved to support a growing array of special features such as query
bookmarks and MIME-based transformations.

Now-a-days, relations between tables are normally defined natively with the
FOREIGN KEY feature of the InnoDB and PBXT storage engines. phpMyAdmin
supports both this type of relations and those defined for MyISAM.

Benefiting from the Relational System

[186]

InnoDB and PBXT
InnoDB (http://www.innodb.com) is a MySQL storage engine developed by
Innobase Oy, a subsidiary of Oracle. Prior to MySQL 5.5, this storage engine may
not be available as it must be activated by a system administrator; however, it's the
default storage engine in version 5.5.

The PrimeBase XT storage engine or PBXT (http://www.primebase.org) is
developed by PrimeBase Technologies. The minimum MySQL required version is
5.1, as this version supports the pluggable storage engine API that is used by PBXT
and other third parties to offer alternative storage engines. This transactional storage
engine is newer than InnoDB. It is usually installed after downloading it from their
website and then going through a compilation step. For some operating systems,
a precompiled binary is available—please visit the aforementioned website for
download and installation instructions.

When considering the relational aspect, here are the benefits of using the InnoDB or
PBXT storage engine for a table:

They support referential integrity based on foreign keys, which are the keys in a foreign
(or reference) table. By contrast, using only phpMyAdmin's internal relations (discussed
later) brings no automatic referential integrity verification.

The exported structure for InnoDB and PBXT tables contains the defined relations.
Therefore, they are easily imported back for better cross-server interoperability.

The foreign key feature of these storage engines can effectively replace the part of
phpMyAdmin's configuration storage that deals with relations. We will see how
phpMyAdmin interfaces with the InnoDB and PBXT foreign key system.

The other parts of phpMyAdmin's configuration storage (for
example, bookmarks) have no equivalent in InnoDB, PBXT, or
MySQL. Hence, they are still required to access the complete
phpMyAdmin feature set. However, in MySQL 5.x, views are
supported, and have similarities with phpMyAdmin's bookmarks.

Defining relations with the relation view
After the installation of the phpMyAdmin configuration storage, there are more
options available in the Database view and the Table view. We will now examine
the Relation view link in the Structure page of the Table view.

Chapter 10

[187]

This view is used to:

•	 Define the relations of the current table with the other tables
•	 Choose the display column

Our goal here is to create a relation between the book table (which contains the author
ID) and the author table (which describes each author by an ID). We start on the
Table view for the book table, go to Structure, and click on the Relation view link.

Defining internal relations
If the book table is in MyISAM format, we see the following screen (otherwise, the display
would be different, as explained in the Defining foreign key relations section later):

Benefiting from the Relational System

[188]

This screen allows us to create Internal relation (stored in the pma_relation table)
as MySQL itself does not have any relational notion for MyISAM tables. The empty
drop-down list next to each column indicates that there are no relations (links) to any
foreign table.

Defining the relation
We can relate each column of the book table to a column in another table (or in the
same table because self-referencing relations are sometimes necessary). The interface
finds both the unique and the non-unique keys in all the tables of the same database,
and presents the keys in drop-down lists. (Creating internal relations to other
databases from the interface is not currently supported.) The appropriate choice for the
author_id column is to select the corresponding id column from the author table.

We then click on Save, and the definition is saved in phpMyAdmin's configuration
storage. To remove the relation, we would just come back to the screen, select the
empty choice, and click on Save.

Defining the display column
The primary key of our author table is the id, which is a unique number that we
made up for key purposes. The author's name is the natural way to refer to an
author. It would be interesting to see the author's name when browsing the book
table. This is the purpose of the display column. We should normally define a
display column for each table that participates in a relation as a foreign table.

We will see how this information is displayed in the Benefiting from the defined
relations section. We now go to the Relation view for the author table (which is the
foreign table in this case) and specify the display column. We choose name as the
display column and click on Save, as shown in the following screenshot:

Chapter 10

[189]

phpMyAdmin offers to define only one display column for a
table, and this column is used in all the relations where this table
is used as a foreign table.

The definition of this relation is now done. Although we did not relate any of the
columns in the author table to another table, it can be done. For example, we could
have a country code in this table and could create a relation to the country code of a
country table.

For now, we will see what happens if our tables are under the control of the InnoDB
or PBXT storage engine.

Foreign key relations
The InnoDB and PBXT storage engines offer us a native foreign key system.

At your choice, the exercises in this section can be
accomplished with either InnoDB or PBXT storage engines.
InnoDB has been chosen in the text.

For this exercise, our book and author tables must be under the InnoDB storage
engine. We can do this from the Operations page in the Table view.

Benefiting from the Relational System

[190]

Another step is necessary in order to see the consequences of a missing index
during the exercise. We go back to the Structure for the book table and remove the
combined index we created on author_id and language columns.

The foreign key system in InnoDB maintains integrity between the related tables.
Hence, we cannot add a non-existent author ID to the book table. In addition, actions
are programmable when DELETE or UPDATE operations are performed on the master
table (in our case, book).

Opening the book table on its Structure page and entering the Relation view, now
displays a different page:

This page provides us the following information:

•	 There is an internal relation defined for author_id to the author table.
•	 No InnoDB relations are defined yet.
•	 We will be able to remove the internal relation, when the same relation has

been defined in InnoDB. Indeed, hovering over the question mark next to
Internal relations displays the following message: An internal relation is
not necessary when a corresponding FOREIGN KEY relation exists. So, it
will be better to remove it.

Chapter 10

[191]

In the possible choices for the related key, we see the keys defined in all the InnoDB
tables of the same database. (Creating a cross-database relation is currently not
supported in phpMyAdmin.) The keys defined in the current table are also shown,
as self-referring relations are possible. Let us remove the internal relation for the
author_id column and click on Save. Our goal is to add an InnoDB-type relation for
the author_id column, but it's not possible as the No index defined! message appears
on this line. This is because foreign key definitions in InnoDB or PBXT can be done
only if both the columns have indexes.

Other conditions regarding constraints are explained in the
MySQL manual. Please refer to http://dev.mysql.com/doc/
refman/5.1/en/innodb-foreign-key-constraints.html.

Thus, we come back to the Structure page for the book table and add an ordinary
(non-unique) index to the author_id column producing the following screen:

In the Relation view, we can try again to add the relation we wanted; it works
this time!

Benefiting from the Relational System

[192]

We can also set some actions with the ON DELETE and ON UPDATE options. For
example, ON DELETE CASCADE would make MySQL automatically delete all the
rows in the related (foreign) table when the corresponding row is deleted from the
parent table. This would be useful, for example, when the parent table is invoices,
and the foreign table is invoice‑items. These options are supported natively by
MySQL, so deleting outside of phpMyAdmin would cause the delete cascade.

If we have not done so already, we should define the display
column for the author table, as explained in the Defining the
display column section.

Foreign keys without phpMyAdmin configuration
storage
We see the Relation view link on the Structure page of an InnoDB or PBXT table,
even when the configuration storage is not installed. This would bring us to a screen
where we could define the foreign keys, in this case for the book table.

Note that, if we choose this, the display column for the linked table (in this case
author) cannot be defined, as it belongs to phpMyAdmin's configuration storage.
Thus, we would lose the benefit of seeing the associated description of the foreign key.

Defining relations with the Designer
The Ajax-based Designer offers a visually-driven way of managing relations (both
internal and foreign key-based), and defining the display column for each table. It
can also act as:

•	 A menu to access the structure of existing tables and to access the table
creation page

•	 A PDF schema manager, if we want a PDF schema encompassing all
our tables

On the Designer workspace, we can work on the relations for all tables on the same
panel. On the other hand, the Relation view shows the relations for only a single
table at a time.

We access this feature from the Database view by clicking on the Designer
menu tab.

Chapter 10

[193]

If this menu tab does not appear, it's because we are yet
to install the phpMyAdmin configuration storage as
described in Chapter 1.

Over viewing the interface
The Designer page contains the main workspace where the tables can be seen. This
workspace will dynamically grow and shrink, depending on the position of our
tables. The following screenshot demonstrates the Designer interface containing our
three tables and the relations between them:

A top menu contains icons whose description is revealed by hovering the mouse over
them. The following table gives a summary of the goals for the top menu's icons:

Icon Description
Show/Hide left menu To display or hide the left hand menu.

Save position Saves the current state of the workspace.

Create table Quits the Designer and enters a dialog to create a
table; we should take care of saving the position of
tables before clicking on this.

Create relation Puts the Designer in a relation-creating mode.

Choose column to display Specifies which column represents a table.

Reload Refreshes the table's information in case their structure
has changed outside of the Designer.

Benefiting from the Relational System

[194]

Icon Description
Help Displays an explanation about selecting the relations.

Angular links/Direct links Specifies the shape of relation links.

Snap to grid Influences the behavior of table movements, relative to
an imaginary grid.

Small/Big All Hides or displays the list of columns for every table.

Toggle small/big Reverses the display mode of columns for every table,
as this mode can be chosen for each table with its
corner icon V or >.

Import/Export Displays a dialog to import from an existing PDF
schema definition or to export to it.

Move Menu The top menu can move to right and back again.

A side menu appears when clicking on the Show/Hide left menu icon. Its purpose is
to present the complete list of tables, so that you can decide which table appears on
the workspace, and to enable access to the Structure page of a specific table. In this
example, we choose to remove the book-copy table from the workspace as shown in
the following screenshot:

If we want to remove it permanently, we click on the Save position top icon. This
icon also saves the current position of our tables on the workspace.

Tables can be moved on the workspace by dragging their title bars, and the list of
columns for a table can be made visible/invisible with the help of upper-left icon of
each table. In this list of columns, small icons show us the data type (numeric, text,
and date), and also tell us whether this column is a primary key.

Chapter 10

[195]

Defining relations
As we have already defined a relation with the Relation view, we will first see how
to remove it. The Designer does not permit a change in a relation. However, the
Designer allows the relation to be removed and defined.

The question mark icon displays a panel that explains where to click, in order to
select a relation for subsequent deletion.

Let us click on the relation line to select it. We get a confirmation panel on which we
click on Delete.

Benefiting from the Relational System

[196]

We can then proceed to recreate it. To do this, we start by clicking on the Create
relation icon:

The cursor then takes the form of a short message saying Select referenced key. In
our case, the referenced key is the id column of the author table; so we bring the
cursor on this column and click on it. A validation is done, ensuring that we chose a
primary or unique key.

Next, having changed the cursor to Select foreign key, we bring it to the author_id
column of the book table and click on it again. This confirms the creation of the
relation. Currently, the interface does not permit the creation of compound keys
(having more than one column).

Defining foreign key relations
The procedure to delete or define a relation between InnoDB or PBXT tables is the
same as that for internal relations. The only exception is that at the time of creation,
a different confirmation panel appears enabling us to specify the on delete and on
update actions.

Chapter 10

[197]

Defining the display column
On the workspace, the name column in author table has a special background color.
This indicates that this column serves as the display column. We can simply click
on the Choose column to display icon, and drag the short message Choose column
to display onto another column—for example, the phone column. This changes the
display column to this column. If we were to drag the message to an existing display
column, we would have removed the definition of this column as the display column
for the table.

Exporting for PDF schema
In Chapter 15, we will see how to produce a PDF schema for a subset of our
database. We can import the coordinates of tables from such a schema into the
Designer's workspace, and conversely export them to the PDF schema. The Import/
export coordinates icon is available for that purpose.

Benefiting from the defined relations
In this section, we will look at the benefits of the defined relations that we can
currently test. Other benefits will be described in Chapter 12 and Chapter 15.
Additional benefits of the phpMyAdmin configuration storage will appear in
Chapter 14, Chapter 16, and Chapter 18.

These benefits are available for both internal and foreign key relations.

Foreign key information
Let us browse the book table. We see that the values of the related key (author_id)
are now links. Moving the cursor over any author_id value reveals the author's name
(as defined by the display column of the author table).

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Benefiting from the Relational System

[198]

Clicking on the author_id brings us to the relevant table—author—for this
specific author:

Instead of viewing the keys, we might prefer to see the display column for all
the rows. Going back to the book table, we can select the Relational display
column display option and click on Go. This produces a screen similar to the
following screenshot:

We now switch back to viewing the keys by selecting Relational key and clicking
on Go.

Chapter 10

[199]

The drop-down list of foreign keys
Displaying the book table, in Insert mode (or in Edit mode), there is now a
drop-down list of the possible keys for each column that has a defined relation.
The list contains the keys and the description (display column) in both orders—key
to the display column as well as display column to the key. This enables us to use the
keyboard and type the first letter of either the key or the display column.

Only the key (in this case 1) will be stored in the book
table. The display column is shown only to assist us.

By default, this drop-down list will appear if there are a maximum of 100 rows in the
foreign table. This is controlled by the following parameter:

$cfg['ForeignKeyMaxLimit'] = 100;

For foreign tables bigger than that, a distinct window appears—the foreign-table
window (refer to the next section) that can be browsed.

We might prefer to see information differently in the drop-down list. Here, John
Smith is the content and 1 is the ID. The default display is controlled by the
following line of code:

$cfg['ForeignKeyDropdownOrder'] = array('content-id', 'id-content');

We can use one or both of the strings—content-id and id-content—in the defining
array and in the order we prefer. Thus, defining $cfg['ForeignKeyDropdownOrder']
to array('id-content') would produce a list with only those choices:

1 – John Smith
2 – Maria Sunshine
3 – André Smith

Benefiting from the Relational System

[200]

The browseable foreign-table window
Our current author table has very few entries. Thus, to illustrate this mechanism, we
will set the $cfg['ForeignKeyMaxLimit'] to an artificially low number, 1. Now in
the Insert mode for the book table, we see a small table-shaped icon and a Browse
foreign values link for author_id column. This icon opens another window, which
will present the values of the author table and a Search input field. On the left, the
values are sorted by key value (here, the id column), and on the right, they are sorted
by description.

Choosing one of the values (by clicking either a key value or a description) closes this
window and brings the value back to the author_id column.

Referential integrity checks
We discussed the Operations page and its Table maintenance section in Chapter 9.
For this exercise, we suppose that both the book and author tables are not under
the control of the InnoDB or PBXT storage engine. If we have defined an internal
relation for the author table, a new choice appears for the book table—Check
referential integrity.

Chapter 10

[201]

A link (author_id -> author.id) appears for each defined relation, and clicking on it
starts verification. For each row, the presence of the corresponding key in the foreign
table is verified and errors, if any, are reported. If the resulting page reports zero
rows, it is good news!

This operation exists because for tables under the storage engines that do not support
foreign key natively, neither MySQL nor phpMyAdmin enforces referential integrity.
It is perfectly possible, for example, to insert data in the book table with invalid
values for author_id column.

Automatic updates of metadata
phpMyAdmin keeps the metadata for internal relations synchronized with every
change that is made to the tables via phpMyAdmin. For example, renaming a
column that is part of a relation would make phpMyAdmin rename this column in
the metadata for the relation. This guarantees that an internal relation continues to
function, even after a column's name is changed. The same thing happens when a
column or table is dropped.

Metadata should be maintained manually in case a change
in the structure is done from outside phpMyAdmin.

Column commenting
Prior to MySQL 4.1, the MySQL structure itself did not support the addition of
comments to a column. Nevertheless, thanks to phpMyAdmin's metadata, we could
comment on columns. However, since MySQL 4.1, native column commenting has
been supported. The good news is that for any MySQL version, column commenting
in phpMyAdmin is always accessed via the Structure page by editing the structure
of each column. In the following example, we need to comment on three columns
of the book table. Hence, we choose them and click on the pencil icon near the With
selected choice.

Benefiting from the Relational System

[202]

To obtain the next panel, as seen here, we are working in vertical mode. This
mode was covered in Chapter 5. We enter the comments as shown in the following
screenshot, and then click on Save:

These comments appear at various places, for example, in the export file (refer to
Chapter 6), on the PDF relational schema (refer to Chapter 15), and in browse mode, as
shown in the following screenshot:

If we do not want the comments to appear in browse mode, we can set
$cfg['ShowBrowseComments'] to FALSE. (It is TRUE by default.)

Column comments also appear as a tool tip in the Structure page, and column
names are underlined with dashes. To deactivate this behavior, we can set
$cfg['ShowPropertyComments'] to FALSE. (This one is also TRUE by default.)

Automatically migrating column comments
Whenever phpMyAdmin detects that column comments have been stored in its
metadata, it automatically migrates these column comments to the native MySQL
column comments.

Chapter 10

[203]

Summary
This chapter covered how to define relations between both InnoDB and non-InnoDB
tables. It also examined the modified behavior of phpMyAdmin (when relations
are present) and foreign keys. Finally, it covered the Designer feature, column
commenting, and how to obtain information from the table.

The next chapter will cover the means of entering SQL commands, which are useful
when the phpMyAdmin's interface is not sufficient to accomplish what we need.

Entering SQL Statements
This chapter explains how we can enter our own SQL statements (queries) into
phpMyAdmin, and how we can keep a history of those queries. Traditionally, one
would interact with a MySQL server via the "mysql" command-line client by entering
SQL statements and watching the server's response. Official MySQL training still
involves directly typing statements to such a client.

The SQL query box
phpMyAdmin allows us to accomplish many database operations via its graphical
interface. However, there will be times when we have to rely on SQL query input to
achieve operations that are not directly supported by the interface. Following are two
examples of such queries:

SELECT department, AVG(salary) FROM employees GROUP BY department
HAVING years_experience > 10;

SELECT FROM_DAYS(TO_DAYS(CURDATE()) +30);

To enter such queries, the SQL query box is available from a number of places within
phpMyAdmin.

Entering SQL Statements

[206]

The Database view
We encounter our first SQL query box when going to the SQL menu available in the
Database view.

This box is simple—we type in some valid (hopefully) MySQL statement and click
on Go. Under the query text area, there are bookmark-related choices (explained
later in Chapter 14). Usually, we don't have to change the standard SQL delimiter,
which is a semicolon. However, there is a Delimiter dialog in case we need it (refer
to Chapter 17).

For a default query to appear in this box, we can set it with the
$cfg['DefaultQueryDatabase'] configuration directive, which is empty by default.
We could put a query such as SHOW TABLES FROM @DATABASE@ in this directive. The @
DATABASE@ placeholder in this query would be replaced by the current database name,
resulting in SHOW TABLES FROM `marc_book` in the query box.

Chapter 11

[207]

The Table view
A slightly different box is available in the Table view of the book table from the
SQL menu.

The box already has a default query as seen in the previous screenshot. This
default query is generated from the $cfg['DefaultQueryTable'] configuration
directive, which contains SELECT * FROM @TABLE@ WHERE 1. Here, the @TABLE@
is replaced by the current table name. Another placeholder available in
$cfg['DefaultQueryTable'] is @FIELDS@. This placeholder would be replaced by
the complete column's list of this table, thus producing the following query:

SELECT `isbn`, `title`, `page_count`, `author_id`, `language`,
`description`, `cover_photo`, `genre`, `date_published`, `stamp`,
`some_bits` FROM `book` WHERE 1.

WHERE 1 is a condition that is always true. Therefore, the query can be executed as
it is. We can replace 1 with the condition we want, or we can type a completely
different query.

Entering SQL Statements

[208]

Because this SQL box appears in the Table view, the table name is known; therefore,
phpMyAdmin shows buttons below the query box, which permit to quickly create
common SQL queries which contain this table name. Most of the queries generated
by these buttons contain the full column list.

The Columns selector
The Columns selector is a way to speed up query generation. By choosing a column
and clicking on the arrows <<, this column name is copied at the current cursor
position in the query box. Here, we select the author_id column, remove the digit 1,
and click on <<. Then we add the condition = 2 as shown in the following screenshot:

The Show this query here again option (checked by default) ensures that the query
stays in the box after its execution if we are still on the same page. This can be seen
more easily for a query like an UPDATE or DELETE, which affects a table, but does not
produce a separate results page.

Clicking into the query box
We might want to change the behavior of a click inside the query box with the
$cfg['TextareaAutoSelect'] configuration directive. Its default value is FALSE,
which means that no automatic selection of the contents is done upon a click. Should
you change this directive to TRUE, the first click inside this box will select all its
contents. (This is a way to quickly copy the contents elsewhere or delete them from
the box.) The next click would put the cursor at the click position.

Chapter 11

[209]

The Query window
In Chapter 3, we discussed the purpose of this window, and the procedure for changing
some parameters (such as dimensions). This window can easily be opened from the
navigation panel using the SQL icon or the Query window link, as shown in the
following screenshot, and is very convenient for entering a query and testing it:

The following screenshot shows the Query window that appears over the main panel:

Entering SQL Statements

[210]

The window seen in the screenshot contains the same Columns selector and <<
button as that used in a Table view context. This distinct Query window is a feature
supported only on JavaScript-enabled browsers.

Query window options
The SQL tab is the default active tab in this window. This comes from the
configuration directive $cfg['QueryWindowDefTab'], which contains sql by default.

If we want another tab to be the default active tab, we can replace sql with files or
history. Another value, full, shows the contents of all the three tabs at once.

In the Query window, we see a checkbox for the Do not overwrite this query from
outside the window choice. Normally, this checkbox is selected. If we deselect it,
the changes we make while generating queries are reflected in the Query window.
This is called synchronization. For example, choosing a different database or table
from the navigation or main panel would update the Query window accordingly.
However, if we start to type a query directly in this window, the checkbox will get
checked in order to protect its contents and remove synchronization. This way, the
query composed here will be locked and protected.

Session-based SQL history
This feature collects all the successful SQL queries we execute as PHP session data,
and modifies the Query window to make them available. This default type of history
is temporary, as $cfg['QueryHistoryDB'] is set to FALSE by default.

Database-based SQL history (permanent)
As we installed the phpMyAdmin configuration storage (refer to Chapter 1), a more
powerful history mechanism is available. We should now enable this mechanism by
setting $cfg['QueryHistoryDB'] to TRUE.

After we try some queries from one of the query boxes, a history is built, visible only
from the Query window as shown in the following screenshot:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 11

[211]

We see (in the reverse order) the last successful queries and the database on which
they were made. Queries typed only from the query box are kept in this history,
along with queries generated by phpMyAdmin (such as those generated by clicking
on Browse).

They are clickable for immediate execution, and the Change icon is available to insert
a recorded query into the query box for editing.

The number of queries that will be kept is controlled by $cfg['QueryHistoryMax'],
which is set to 25 by default. This limit is not kept for performance reasons, but as
a practical limit in order to achieve a visually unencumbered view. Extra queries
are eliminated at login time in a process traditionally called garbage collection. The
queries are stored in the table configured in $cfg['Servers'][$i]['history'].

Editing queries
On the results page of a successful query, a header containing the executed query
appears as shown in the following screenshot:

Entering SQL Statements

[212]

Clicking on Edit opens the Query window's SQL tab, with this query ready to be
modified. This happens because of the following default setting for this parameter:

$cfg['EditInWindow'] = TRUE;

When it is set to FALSE, a click on Edit will not open the Query window; instead, the
query will appear inside the query box of the SQL page.

Clicking on Inline replaces the displayed query by a text area where it's possible to
edit and submit this query, without leaving the current results page.

Multi-statement queries
In PHP and MySQL programming, we can send only one query at a time using the
mysql_query() function call. phpMyAdmin allows us to send many queries in one
transmission, using a semicolon as a separator. Suppose we type the following query
in the query box:

INSERT INTO author VALUES (100,'Paul Smith','111-2222');
INSERT INTO author VALUES (101,'Melanie Smith','222-3333');
UPDATE author SET phone='444-5555' WHERE name LIKE '%Smith%';

We will receive the following results screen:

We see the number of affected rows through comments because
$cfg['VerboseMultiSubmit'] is set to TRUE.

Chapter 11

[213]

Let us send the same list of queries again and watch the results:

It is normal to receive a Duplicate entry error message that says the value
100 exists already. We are seeing the results of the first INSERT statement;
but what happens to the next one? Execution stops at the first error because
$cfg['IgnoreMultiSubmitErrors'] is set to FALSE telling phpMyAdmin not to
ignore errors in multiple statements. If it is set to TRUE, the program successively
tries all the statements, and we see two Duplicate entry errors.

This feature would not work as expected, if we tried more than one SELECT
statement. We would see the results of only the last SELECT statement.

Pretty printing (syntax highlighting)
By default, phpMyAdmin parses and highlights the various elements of any MySQL
statement it processes. This is controlled by $cfg['SQP']['fmtType'], which is set
to 'html' by default. This mode uses a specific color for each different element (a
reserved word, a variable, a comment, and so on) as described in the $cfg['SQP']
['fmtColor'] array located in the theme-specific layout.inc.php file.

Setting fmtType to 'text' would remove all color formatting, inserting line breaks
at logical points inside a MySQL statement. Finally, setting fmtType to 'none'
removes every kind of formatting, leaving our syntax intact.

The SQL Validator
Each time phpMyAdmin transmits a query, the MySQL server interprets it and
provides feedback. The syntax of the query must follow MySQL rules, which are not
the same as the SQL Standard. However, conforming to SQL Standard ensures that
our queries are usable on other SQL implementations.

Entering SQL Statements

[214]

A free external service, the Mimer SQL Validator, is available to us, thanks to Mimer
Information Technology AB. It validates our query according to the Core SQL-99 rules
and generates a report. The Validator is available directly from phpMyAdmin, and its
home page is located at http://developer.mimer.com/validator/index.htm.

For statistical purposes, this service anonymously stores on its server,
the queries it receives. When storing the queries, it replaces database,
table, and column names with generic names. Strings and numbers
that are part of the query are replaced with generic values so as to
protect the original information.

System requirements
This Validator is available as a SOAP service. Our PHP server must have XML,
PCRE, and SOAP support. SOAP support is offered by either a PHP extension or by
a PEAR module. If we choose the PEAR way, the following command (executed on
the server by the system administrator) installs the modules we need:

pear install Net_Socket Net_URL HTTP_Request Mail_Mime Net_DIME SOAP

If we have problems with this command due to some of the modules being in a
beta state, we can execute the following command, which installs SOAP and other
dependent modules:

pear -d preferred_state=beta install -a SOAP

Making the Validator available
Some parameters must be configured in config.inc.php. Setting
$cfg['SQLQuery']['Validate'] to TRUE enables the Validate SQL link.

We should also enable the Validator itself (as other validators might be available
on future phpMyAdmin versions). This is done by setting $cfg['SQLValidator']
['use'] to TRUE.

The Validator is accessed with an anonymous Validator account by default, as
configured using the following commands:

$cfg['SQLValidator']['username'] = '';
$cfg['SQLValidator']['password'] = '';

Instead, if Mimer Information Technology has provided us with an account, we can
use that account information here.

Chapter 11

[215]

Validator results
There are two kinds of reports returned by the Validator—one if the query conforms
to the standard, and the other if it does not conform.

Standard-conforming queries
We will try a simple query: SELECT COUNT(*) FROM book. As usual, we enter this
query in the query box and send it. On the results page, we now see an additional
link—Validate SQL as shown in the following screenshot:

Clicking on Validate SQL produces a report as shown in the following screenshot:

We have the option of clicking on Skip Validate SQL to see our original query.

Entering SQL Statements

[216]

Non standard-conforming queries
Let us try another query, which works correctly in MySQL: SELECT * FROM book
WHERE language = 'en'. Sending it to the Validator produces a report as shown in
the following screenshot:

Each time the Validator finds a problem, it adds a message such as {error: 1} at the
point of the error and adds a footnote in the report. In this query, the language
column name is non-standard. Hence, the Validator tells us that it was expecting
an identifier at this point. Another non-standard error is reported about the use of a
LIMIT clause, which was added to the query by phpMyAdmin.

Another case is that of the backquote. If we just click on Browse for the book table,
phpMyAdmin generates SELECT * FROM `book`, enclosing the table name with
backquote. This is MySQL's way of protecting identifiers, which might contain
special characters, such as spaces, international characters, or reserved words.
However, sending this query to the Validator shows us that the backquotes do not
conform to standard SQL. We may even get two errors, one for each backquote.

Summary
This chapter helped us understand the purpose of query boxes and showed us
where to find them. It also gave us an overview of how to use the column selector,
the Query window options, how to get a history of the typed commands, multi-
statement queries, and finally, how to use the SQL Validator.

The next chapter will show how to produce multi-table queries without typing
much, thanks to phpMyAdmin's query generator.

Generating Multi-table
Queries

The Search pages in the Database or Table view are intended for single-table
lookups. This chapter covers the multi-table Query by example (QBE) feature
available in the Database view.

Many phpMyAdmin users work in the Table view, table by table, and thus tend
to overlook the multi-table query generator, which is a wonderful feature for fine-
tuning queries. The query generator is useful not only in multi-table situations but
also in single-table situations. It enables us to specify multiple criteria for a column, a
feature that the Search page in the Table view does not possess.

The examples in this chapter assume that a multi-user installation
of the phpMyAdmin configuration storage has been made (refer to
Chapter 1), and that the book-copy table created during an exercise
of Chapter 9 is still there in the marc_book database.

To open the page for this feature, we go to the Database view for a specific
database (the query generator supports working on only one database at a time)
and click on Query.

The following screenshot shows the initial QBE page. It contains the
following elements:

•	 A visual builder link (covered at the end of this chapter)
•	 Criteria columns
•	 An interface to add criteria rows
•	 An interface to add criteria columns
•	 A table selector

Generating Multi-table Queries

[218]

•	 The query area
•	 Buttons to update or to execute the query

Choosing tables
The initial selection includes all tables. Consequently, the Column selector contains
a great number of columns. For our example, we will work only with the author and
the book tables. Hence, we select only these from the Use Tables selector.

Chapter 12

[219]

We then click on the Update Query button. This refreshes the screen and reduces
the number of columns available in the Column selector. We can always change the
selected tables later, using our browser's mechanism for multiple choices in drop-
down menus (usually control click).

Exploring column criteria
Three criteria columns are provided by default. This section discusses the options we
have for editing their criteria. These include options for selecting columns, sorting
individual columns, entering conditions for individual columns, and so on.

Column selector: Single column or all
columns
The Column selector contains all the individual columns for the selected tables, plus
a special choice ending with an asterisk (*) for each table, which means that all the
columns are selected.

Generating Multi-table Queries

[220]

To display all the columns in the author table, we would choose `author`.* and
check the Show checkbox, without entering anything in the Sort and the Criteria
boxes. In our case, we select `author`.`name`, as we want to enter some criteria for
the author's name.

Sorting columns
For each selected individual column, we can specify a sort (in Ascending or
Descending order), or let this line remain intact (no sorting, which is the default
behavior). If we choose more than one sorted column, the sorting will be carried out
from left to right.

When we ask for a column to be sorted, we normally check the
Show checkbox. But this is not necessary, as we might want to do
just the sorting operation without displaying this column.

Showing a column
We check the Show checkbox so that we can see the column in the results.
Sometimes, we may just want to apply a criterion on a column, and not include it
in the resulting page. Here, we add the phone column, ask for it to be sorted, and
choose to show both the name and the phone number. We also ask for a sort on the
name in the ascending order. The sort will be done first by name, and then by the
phone number if the names are identical. This is because the name is in a column
criterion to the left of the phone column, and thus has a higher priority.

Updating the query
At any point, we can click on the Update Query button to see the progress of our
generated query. We have to click it at least once before executing the query. For
now, let us click it and see the query generated in the query area. In the following
examples, we will click on the Update Query button after each modification.

Chapter 12

[221]

We have selected two tables, but have not yet chosen any column from the book
table. Hence, this table is not mentioned in the generated query.

Adding conditions to the criteria box
In the Criteria box, we can enter a condition (respecting the SQL WHERE clause's
syntax) for each of the corresponding columns. By default, we have two criteria
rows. To find all the authors with Smith in their names, we use a LIKE criterion
(LIKE '%SMITH%') and click on Update Query.

Generating Multi-table Queries

[222]

We have another line available to enter an additional criterion. Let us say we want to
find the author Maria Sunshine as well. This time, we use an = condition. The two
condition rows will be joined by the Or operator, selected by default from the left
side of the interface.

To better demonstrate that the Or operator links both the criteria rows, let us
now add a condition, LIKE '%8%', on the phone number as shown in the
following screenshot:

Chapter 12

[223]

By examining the positioning of the AND and OR operators, we can see that the first
row of the conditions is linked by the AND (because AND is chosen under the name
column) operator, and the second row of conditions is linked to the rest by the OR
operator. The condition that we have just added (LIKE '%8%') is not meant to find
anyone, because we changed the phone number of all the authors with the name
"Smith" to "444-5555" (in Chapter 11).

If we want another criterion on the same column, we just add a criteria row.

Adjusting the number of criteria rows
The number of criteria rows can be changed in two ways. First, we can select the Ins
checkbox under Criteria to add one criteria row (after clicking on Update Query). As
this checkbox can add only one criteria row at a time, we will uncheck it and use the
Add/Delete criteria rows dialog instead. In this dialog, we choose to add two rows.

Another click on the Update Query button produces the following screen:

Now, you can see that there are two additional criteria rows (which are empty at
the moment). We can also remove criteria rows. This can be done by ticking the Del
checkbox beside the row(s) we want to remove. Let us remove the two rows we have
just added, as we don't need them now. The Update Query button refreshes the page
with the specified adjustment.

Generating Multi-table Queries

[224]

Adjusting the number of criteria columns
Using a similar mechanism, we can add or delete columns by checking the Ins or Del
checkboxes under each column in the Modify dialog, or the Add/Delete columns
dialog. We already had one unused column (not shown on the previous images).
Here, we have added one column using the Ins checkbox located under the unused
column (this time, we will need it):

Generating automatic joins (internal
relations)
phpMyAdmin can generate the joins between the tables in the query it builds,
provided internal relations have been defined. Let us now populate our two unused
columns with the title and the genre columns from our book table, and see what
happens when we update the query.

Chapter 12

[225]

There are now two additional criteria columns that relate to the `book`.`title` and
the `book`.`genre` columns respectively. phpMyAdmin used its knowledge of the
relations defined between the tables to generate a LEFT JOIN clause (highlighted
in the preceding screenshot) on the author_id key column. A shortcoming of the
current version is that only the internal relations, and not the InnoDB relations,
are examined.

There may be more than two tables involved in a join.

Executing the query
Clicking on the Submit Query button sends the query for execution. In the following
screenshot, you can see the complete generated query in the upper part, and the
resulting data row in the lower part:

There is no easy way (except by using the browser's Back button) to come back to the
query generation page once we have submitted the query. Chapter 14 discusses how
to save the generated query for later execution.

Generating Multi-table Queries

[226]

The visual builder
Starting with version 3.4, another method for query building is offered. It leverages
the Designer interface that might be more familiar to users, by combining query
generation to it. We can open this interface by clicking on the Switch to visual
builder link, which produces an initial screen, shown in the following screenshot:

We should now open the list of columns for all tables by clicking on the Small/Big
All icon.

Each column has a left-side checkbox and a right-side options icon. The checkbox
is used to indicate which column we want to be part of the results; while the option
icon permits to open a panel where we will specify the criterion we want to apply to
this column. For example, should we want to select books of more than 200 pages,
we would click on the options icon next to page_count column and fill the criterion
dialog, as depicted in the following screenshot:

Chapter 12

[227]

Clicking on OK saves this query option; it's now available under the Active options
dialog at the right-side, should we need to review the option or remove it.

To build the query, we use the Build Query icon, producing a screen shown in the
following screenshot:

At this point, we either refine the query with additional options or click on Submit
Query to obtain the results.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Generating Multi-table Queries

[228]

Summary
This chapter covered various aspects including opening the query generator,
choosing tables, entering column criteria, sorting and showing columns, and altering
the number of criteria rows or columns. We also learnt how to use the AND and
OR operators to define relations between the rows and columns, and how to use
automatic joins between tables. The Designer-integrated visual query builder was
covered as well.

The next chapter will show you how to synchronize data between servers and how
to manage replication.

Synchronizing Data and
Supporting Replication

In this chapter, we will cover two features that were released in phpMyAdmin 3.3.0.
The first feature is the ability to synchronize databases, and was asked for by
developers who work on more than one server. The second feature permits
the management of MySQL replication, which is used in environments where
performance and data security are important. These features are somewhat related
because we usually need to synchronize the database to a slave server when setting it
up in a replication process.

Synchronizing data and structure
In earlier phpMyAdmin versions, it was possible to achieve some synchronization
of the structure and data between two databases on the same server or on different
servers, but this required manual operations. It was (and still is) possible to export
structure and/or data from one database and import in another one. We can even
visually compare the structure of two tables and adjust them according to our needs.
However, comparing the two databases to ascertain what needs to be imported had
to be done with the developer's own eyeballs. Moreover, differences in structure
between the databases were not taken into account, possibly resulting in errors when
a column was missing in the target table.

The synchronize feature of phpMyAdmin permits much flexibility, by taking care
of the initial comparison process and, of course, by performing the synchronization
itself. We will first discuss the reasons for synchronizing, and then examine and
experiment with all the steps involved.

Synchronizing Data and Supporting Replication

[230]

Goals of synchronization
Although the reasons for wanting to synchronize two databases may be many, we
can group them into the following categories.

Moving between the development and production
servers
A sound database development strategy includes performing development and testing
on a server that is distinct from the production one. If having a separate development
server is not an option, having at least a distinct development database is encouraged.
Over time, differences in structure between test and production environments build
up, and this is normal. For example, a column may be added in the test version, or
character column may be enlarged. The synchronize feature permits us to first see the
differences and then apply them to production if they make sense.

Moving data sometimes needs to be done the other way around, for example, to
populate a test database with real production data in order to measure performance.

Collaboration between database designers
Due to the easy manner in which a MySQL test server can be put in place, the
situation might arise where each member of a development team has his own
server (or his own copy of the database) in which he develops some aspect of a
project. When the time comes to reconcile everyone's changes for the same table, the
synchronize feature is invaluable.

Preparing for replication
MySQL supports asynchronous replication between a master server and one or many
slave servers. This data replication is termed "asynchronous" because the connection
between master and slaves does not need to be permanent. However, to put a
replication process in action (and assuming that the master already contains some
data), one needs to copy all the data over to the slaves. A suggestion to accomplish
this copy is given in the MySQL manual that can found at http://dev.mysql.com/
doc/refman/5.1/en/replication-howto.html, and is mentioned as follows:

"If you already have data on your master and you want to use it to synchronize
your slave, you will need to create a data snapshot. You can create a snapshot using
mysqldump (...)"

Chapter 13

[231]

However, this requires using a command-line tool that is not always possible
depending on the hosting options. Besides, some parts of the database may
already exist on the slave; therefore, the synchronize feature comes in handy
because it's integrated into phpMyAdmin, and also because it takes care of the
comparison phase.

Over viewing the synchronization process
The important principle is that synchronization is done from a source database to a
target database. During this operation, the source database remains unchanged. It's
up to us to correctly identify which database is the source and which one is the target
(and will be possibly modified).

The whole process is subdivided into steps which can be stopped at any stage:

•	 Server and database choice
•	 Comparison
•	 Full or selective synchronization

We could elect to stop the process for one of the following reasons:

•	 We don't have the necessary credentials to connect to one of the servers
•	 We see discrepancies between two databases and are not ready to

synchronize because further research needs to be done
•	 We notice after the comparison phase that the target database is adequately

synchronized

Before performing synchronization, we will put the necessary elements in place.

Preparing for the synchronization exercise
As we will play with only the author and book tables, this exercise will assume that
there are no other tables in the marc_book database. We start by copying the marc_
book database to marc_book_dev (refer to Chapter 9 for the exact method for doing
this).Then we open the marc_book_dev database and perform the following actions:

•	 Delete the book table
•	 Delete one row of the author table
•	 Change the type of the name column from VARCHAR(30) to VARCHAR(29)
•	 Delete the phone column from the author table

Chapter 5 covers how to perform the previous actions.

Synchronizing Data and Supporting Replication

[232]

Choosing source and target servers and
databases
The initial Synchronize page is displayed via the Synchronize menu tab in Server
view. Please note that this is the only place where this menu is available.

The first panel permits us to connect to servers (if needed) and to pick the correct
database. If the $cfg['AllowArbitraryServer'] parameter is set to its default
value of false, the following panel appears:

This means that we can only use the servers already defined in config.inc.php.
If arbitrary servers are allowed, we see a different panel, shown in the following
screenshot:

Chapter 13

[233]

For both the source and target databases, we can select the server location. By
default, the selector is placed on Enter manually and we can enter its hostname,
port, socket name, username, password, and database name. In most cases, the port
should be left to the default 3306 and the socket name should be left empty. Notice
that we are currently connected to a MySQL server (via the normal login panel) and
this panel could permit us to connect to two more servers.

Another choice for server location is Current connection. This refers to the server
on which we are connected for normal phpMyAdmin operations; its name is
displayed at the top of the main panel. Should we choose this, a JavaScript-enabled
browser hides all choices except for the database name (connection credentials are
unnecessary in this situation) and a selector becomes available, showing all of the
databases to which we have access.

Synchronizing Data and Supporting Replication

[234]

It's perfectly possible to pick the same server on both the source and target sides;
however, we would at least choose a source database different to the target one in
this case. Another common case is to pick the current server and some database as
the source, and a remote server with the same database as the target, assuming that
the remote server is the production one and that both servers hold a database with
the same name.

For this exercise, let us pick Current connection for both source and target servers;
we can then choose marc_book as the source database and marc_book_dev as the
target one, as shown in the following screenshot:

After clicking on Go, phpMyAdmin attempts to connect to the servers if needed. At
this point, a connection error message may be displayed. However, the connection
should hopefully succeed and the program will start comparing both databases and
then show us the results.

Analyzing comparison results
The comparison results panel contains three sections. The first section displays
the structure and data differences, and contains icons that will be used to initiate a
selective synchronization:

Chapter 13

[235]

As depicted in the upper part, the red S icon triggers structure synchronization,
whereas the green D icon is for data synchronization. Then, for each table, we get a
rundown of the differences. The central Difference column would be empty in the
case of identical structure and data for the corresponding table. Here we see a red S
and a green D for both tables, but the reason is not the same for each table.

The middle part shows the actions that are scheduled as part of the synchronization
process (there are currently none, as can be seen in the following screenshot):

The lower part contains a checkbox (Would you like to delete all the previous
rows from target tables?) and two action buttons. We will see their purpose in the
following sections:

Please note that the book table has a plus sign (+) next to it on the Source side, to
show that this table is in the source database but not in the target database. We even
see a not present comment for this table on the Target side. If a table was in the
target database but not in the source one, it would be marked with a minus sign (-)
on the Target side.

At this point, we can decide that we are satisfied with the comparison and don't
want to proceed further; in this case, we would just have to continue in
phpMyAdmin by picking a database and resuming our work. We also have
the opportunity of synchronizing the databases in one sweep (complete
synchronization) or to make changes in a more granular way (selective
synchronization). Let us examine both methods.

Synchronizing Data and Supporting Replication

[236]

Performing a complete synchronization
If we don't want to ask ourselves too many questions and just need a complete
synchronization, we click on Synchronize Databases. Note that in this case, we don't
have to use any red S or green D icons.

If one of the target tables contains some rows that are not present
in the corresponding source table, these will remain in the target
tables, unless we tick the Would you like to delete... checkbox. This
is a safety net to avoid unintended loss of data. However, we should
select this option if we want an exact synchronization.

After clicking, we obtain the following message: Target database has been
synchronized with source database. In the lower part of the screen, we see the
queries that had to be executed in order to achieve this operation. We also get a
visual confirmation that the databases are now synchronized:

Performing a selective synchronization
If we prefer to be more cautious and receive a preliminary feedback on the actions
that are about to be done, we can synchronize selected tables. This section assumes
that the databases are in the same state as at the end of the Preparing for the
synchronization exercise section, covered previously in this chapter.

If we click on the red S icon on the line describing the author table, this S icon turns
to grey and the middle part of the screen is updated with the actions to be done, as
shown in the following screenshot:

No real action on the data has been done yet! We still can change our mind by
clicking on the same icon which would turn back to red, removing the proposed
changes as depicted in the middle part of the screen.

Chapter 13

[237]

Now we click on the green D icon and see another line of proposed changes show
up, as shown in the following screenshot:

A row in the author table needs to be inserted because there is one less author in the
target database. Altogether four rows need to be updated, because we removed the
phone column in the same table.

We can now click on Apply Selected Changes button. The Would you like to
delete... checkbox does not apply to this operation.

We now see that the upper part of the screen proposes fewer changes to make:

We can go on by selecting structure or data changes and then applying them in the
order we deem appropriate.

This concludes the section describing the synchronization feature. We continue with
coverage of replication support.

Supporting MySQL replication
In the Preparing for replication section, we saw an overview of MySQL replication. In
this section, we cover the following topics:

•	 How we can use phpMyAdmin to configure replication
•	 How to prepare a test environment containing one master server and two

slave servers
•	 How to send commands to control the servers
•	 How to obtain information on replication for servers, databases, and tables

Synchronizing Data and Supporting Replication

[238]

phpMyAdmin's interface offers a Replication page; however, other pages contain
either information about replication or links to control replication actions. We will
point to each appropriate location when covering the related subject.

How to use this section depends on how many servers we have at our disposal.
If we have at least two servers and want to configure them via phpMyAdmin in
a master/slave relationship, we can follow the Configuring replication section. If
instead we only have one server to play with, then we should take advice from the
Setting up a test environment section to install many instances of the MySQL server on
the same machine.

The Replication menu
In Server view, the Replication menu is only shown to privileged users, such as
the MySQL root user. When a server is already configured as a master server or a
slave server (or both), the Replication page is used to display status information and
provide links that send commands.

Configuring replication
For this exercise, we assume that the server does not currently occupy the role of
master or slave server. phpMyAdmin cannot directly configure all aspects of MySQL
replication. The reason is that, contrary to manipulating database structure and
data by sending queries to the MySQL server, replication configuration consists (in
part) of command lines stored in a MySQL configuration file, often named my.cnf.
phpMyAdmin, being a web application, does not have access to this file. This is how
the MySQL server's developers intended the configuration to be—at a configuration
file level.

The best that phpMyAdmin can do in this situation is to guide us by generating (on
screen) the proper command lines in reaction to our preferences, then it's up to us
to copy these lines where they need to go and to restart the server(s). phpMyAdmin
cannot even read the current replication configuration lines; it can only deduce
server status via some SHOW commands.

Chapter 13

[239]

Let us enter the Replication menu and see what happens:

Master server configuration
Now we choose to configure the server as a master by clicking on the appropriate
configure link. The panel that appears gives us a thorough advice:

Synchronizing Data and Supporting Replication

[240]

The first paragraph confirms that this server is not configured as a master in a
replication process. We want to achieve this configuration, but first we need to think
about the kind of replication we want. Should all databases be replicated, except for
some of them? Or do we want the opposite? A convenient drop-down list offers us
these choices:

•	 Replicate all databases; Ignore:
•	 Ignore all databases; Replicate:

The first choice (which is the default) implies that, in general, all databases are
replicated; we don't even have to enumerate them in the configuration file. In this
case, the databases selector is used to specify which database we want to exclude
from the replication process. Let us pick up the mysql database and see what
happens in our JavaScript-enabled browser:

We notice that a line appeared, stating binlog_ignore_db=mysql. This is a MySQL
server instruction (not a SQL statement) that tells the server to ignore sending
transactions about this database to the binary log. Let us examine the meaning of
the other lines. The server-id is a unique ID generated by phpMyAdmin; each
server that participates in replication must have a unique server ID. Therefore, we
either track the server IDs by hand, ensuring their uniqueness, or we simply use the
number randomly generated by phpMyAdmin. We also see the log-bin and log-
error instructions; in fact, binary logging is mandatory in order for any replication
to occur.

Chapter 13

[241]

We could add other database names to the list by using Ctrl + Click or Command +
Click, depending on our workstation's OS. However, all that phpMyAdmin does
is to generate correct lines; to make them operational, we still need to follow the
given advice and paste these lines at the end of the [mysqld] section of our MySQL
configuration file. We should then restart the MySQL server process—the way to do
this depends on our environment.

After our server has been restarted, we go back to the Replication menu; at this
point, we see a different panel regarding the master:

We can use the Show master status link to get some information about the master,
including the current binary log name and position, and information on which
databases to replicate or to ignore, as specified previously.

The Show connected slaves link would report nothing currently, as no slave is yet
connected to this master.

Now would be the time to use the Add slave replication user link, because this
master needs to have a separate account dedicated to replication. The slaves will use
this account created on the master to connect to it. Clicking on this link displays the
following panel, in which a user account, replic, is being created with a password of
our choosing:

Synchronizing Data and Supporting Replication

[242]

After clicking on Go, phpMyAdmin takes care of creating this user with the correct
permissions set.

Slave server configuration
Now, on the machine that will act as a slave server in the replication process,
we start phpMyAdmin. In the Replication menu, we click on configure in the
following dialog:

The slave server configuration panel appears, as shown in the following screenshot:

As with the master configuration, we get a suggestion about having a unique server
ID in the configuration file for the slave, and we should follow this advice.

In this panel, we enter the username and password of the dedicated replication
account we created on the master. We also have to indicate the hostname and port
number corresponding to the master server. After filling this panel and clicking on
Go, phpMyAdmin sends the appropriate CHANGE MASTER command to the slave,
which puts this server in slave mode.

Chapter 13

[243]

Setting up a test environment
The replication process occurs between at least two instances of the MySQL server.
In production, this normally implies a minimum of two physical servers to procure
these benefits:

•	 Better performance
•	 Increased redundancy

However, due to MySQL's configurable port number (the default being 3306),
data directory, and socket, it's possible to have more than one MySQL instance
on the same server. This setup can be configured manually, or via an installation
system such as the MySQL Sandbox. This is an open source project located at
http://mysqlsandbox.net. With this tool, we can set up one or many MySQL
servers very quickly. By using the powerful make_replication_sandbox Linux
shell command, we can install an environment that consists of one master server and
two slave servers. Each server can be started or stopped individually.

The following exercises assume that the MySQL Sandbox has been installed on
your server and that phpMyAdmin's config.inc.php contains a reference to these
Sandbox servers, as shown in the following code block (please adjust the socket
names to your own environment):

$i++;
$cfg['Servers'][$i]['auth_type'] = 'cookie';
$cfg['Servers'][$i]['host'] = 'localhost';
$cfg['Servers'][$i]['socket'] = '/tmp/mysql_sandbox25562.sock';
$cfg['Servers'][$i]['verbose'] = 'master';

$i++;
$cfg['Servers'][$i]['auth_type'] = 'cookie';
$cfg['Servers'][$i]['host'] = 'localhost';
$cfg['Servers'][$i]['socket'] = '/tmp/mysql_sandbox25563.sock';
$cfg['Servers'][$i]['verbose'] = 'slave1';

$i++;
$cfg['Servers'][$i]['auth_type'] = 'cookie';
$cfg['Servers'][$i]['host'] = 'localhost';
$cfg['Servers'][$i]['socket'] = '/tmp/mysql_sandbox25564.sock';
$cfg['Servers'][$i]['verbose'] = 'slave2';

Here, we use the $cfg['Servers'][$i]['verbose'] directive to give a unique
name to each instance, as the real server name is localhost for all of these instances.
Each Sandbox server initially contains two databases: mysql and test.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Synchronizing Data and Supporting Replication

[244]

Controlling a slave server
Here we will assume that the Sandbox testing environment has been set. However,
the explanations are useful for all situations in which we have a slave server. After
connecting to a slave and once again opening the Replication menu, we see:

The following options are available:

•	 The See slave status table link permits us to receive information about all the
system variables related to replication for this slave server.

•	 The Control slave: link reveals more options; some of them can toggle
between the stop and start condition:

°° The Full stop option is used to stop both the IO thread (the part of
the MySQL server responsible for receiving updates from the master
and writing them to the slave's relay log) and the SQL thread (which
reads the updates from the relay log and executes them)

°° The Reset slave option stops the slave, sends a RESET SLAVE
command that causes it to forget its replication position in the
master's binary log, and then restarts the slave

°° The SQL Thread Stop only option and IO Thread Stop only option
are used to stop just the respective thread

•	 The Error management: link permits to tell the slave server to skip some of
the events (updates) sent from the master. For more details, please refer to
http://dev.mysql.com/doc/refman/5.1/en/set-global-sql-slave-
skip-counter.html.

•	 The Change or reconfigure master server link could be used to specify that
this slave server should now receive updates from a different master.

http://dev.mysql.com/doc/refman/5.1/en/set-global-sql-slave-skip-counter.html
http://dev.mysql.com/doc/refman/5.1/en/set-global-sql-slave-skip-counter.html

Chapter 13

[245]

Obtaining replication information
Apart from the Replication menu, other screens in phpMyAdmin inform us about
replication-related items. These screens are not found with the other replication
dialogs; rather they are scattered on various pages, where they display replication
information in the context of the respective pages.

Gathering replication status
By entering the Status panel in Server view, we first get a brief message, for example:

"This MySQL server works as master in replication process. For further information
about replication status on the server, please visit the replication section."

There are a few Replication links on this page that show us the status variables
of either the master or slave servers, and some links to get information about how
many slave hosts are connected and the status of replication in general.

Replicated databases
On the master server, having a look at the Databases menu in Server view shows
us that some databases can potentially be replicated, with a green checkmark in the
Master replication column:

Synchronizing Data and Supporting Replication

[246]

This is because this server is configured with a binary log and these databases are not
excluded from replication.

As we have the following line of code in the [mysqld] section within the master's
configuration file, we can exclude from the binary log all transactions that affect the
mysql database:

binlog_ignore_db=mysql

Therefore, the output of the Databases page shows a red icon next to the
mysql database.

If this is a slave server, a Server replication column is shown.

Note that a slave server can itself have a binary log; therefore,
in this case, both Master replication and Slave replication
columns are shown. This means that this slave could in turn be
a master server for another slave server.

Replicated tables
Let us suppose that on the master server, we create a table named employee in the
test database. At this point, replication does its magic and we can have a look at the
test database on a slave server:

Here, the Replication column is shown as a reminder. We should not modify this
table on the slave server directly, because its existence is for replication purpose only.
If we decide to alter it directly, our changes will be done only in this table, introducing
inconsistencies between the master and this slave, which is not a good idea.

Chapter 13

[247]

Summary
In this chapter, we learnt how to synchronize both the structure and data from one
database to another, on the same server or on different servers. We covered the goals
of synchronization and how to perform a complete or selective synchronization.
We then examined how to use phpMyAdmin to guide us into replication setup,
including a master and a slave server; how to prepare a test environment using the
MySQL Sandbox, and how to control the slave servers.

The next chapter will show you how to keep permanent bookmarks of your queries.

Using Query Bookmarks
This chapter covers query bookmarks—one of the features of the phpMyAdmin
configuration storage. Being able to label queries, and recall them by label, can be a
real time saver. Bookmarks are queries that have the following properties:

•	 Stored permanently
•	 Viewable
•	 Erasable
•	 Related to one database
•	 Recorded only as a consequence of a user's action
•	 Labeled
•	 Private by default (only available to the user creating them)

but possibly public

A bookmark can also have a variable part, as explained in the Passing a parameter to a
bookmark section later in this chapter.

There is no bookmark page for managing bookmarks. Instead, the various actions for
bookmarks are available on specific pages, such as results pages or query box pages.

Using Query Bookmarks

[250]

Comparing bookmark and query history
features
In Chapter 11, we learned about the SQL history feature, which automatically stores
queries (temporarily or permanently). There are similarities between queries stored
in the history and bookmarks. After all both features are intended to store queries
for later execution. However, there are important differences regarding the way the
queries are stored and the action that triggers the recording of a query.

Storing of queries in the history is automatic; whereas a query is saved as a
bookmark via an explicit request from the user. Also, there is a configurable limit
(refer to Chapter 11) on the number of queries stored in the permanent history;
however, the number of bookmarks is not limited. Finally, the history feature
presents the queries in the reverse order of the time they were sent. However,
bookmarks are shown by label (not showing the query text directly).

To summarize, the automatic query history is useful when we neither plan to recall
a query, nor wish to remember which queries we typed. This contrasts with the
bookmark facility where we intentionally ask the system to remember a query, and
even give it a name (label). Therefore, we can do more with bookmarks than with the
query history, but both features have their own importance.

Creating bookmarks
There are two instances when it is possible to create a bookmark—after a query is
executed (in which case we don't need to plan ahead for its creation), and before
sending the query to the MySQL server for execution. Both of these options are
explored in the following sections.

Creating a bookmark after a successful query
Initial bookmark creation is made possible by the Bookmark this SQL query button.
This button appears only after executing a query that generates a result (when at
least one row is found); so this method for creating bookmarks only stores SELECT
statements. For example, a complex query produced by the multi-table query
generator (as seen in Chapter 12) could be stored as a bookmark in this way, provided
that it finds some results.

Chapter 14

[251]

Let us see an example. In the Search page for the book table, we select the
columns that we want in the results, and enter the search values as shown in
the following screenshot:

Using Query Bookmarks

[252]

After clicking on Go, we see that the results page shows a bookmark dialog.
We enter only a label, books for author 1, for this bookmark, and then click on
Bookmark this SQL query to save this query as a bookmark. Bookmarks are saved
in the table defined by $cfg['Servers'][$i]['bookmarktable'].

This bookmark dialog can be seen on any page that contains results. As a test, we
could just click on Browse for a table to get results, and then store this query as a
bookmark. However, it does not make much sense to store (in a bookmark) a query
that can easily be made with one click.

Storing a bookmark before sending a query
We have seen that it's easy to create a bookmark after the execution of a SELECT
statement that generates results. Sometimes, we may want to store a bookmark even
if a query does not find any results. This may be the case if the data to which the
query refers is not yet present, or if the query is a statement other than SELECT. To
achieve this, we have the Bookmark this SQL query dialog available in the SQL tab
of the Database view, Table view, and the Query window.

We now go to the SQL page of the book table, enter a query to retrieve French books,
and directly put the books in French bookmark label in the Bookmark this SQL
query dialog. If this bookmark label has been used previously, a new bookmark with
the same name will be created, unless we check the Replace existing bookmark of
same name checkbox. Bookmarks carry an internal identifying number, as well as a
label chosen by the user.

Chapter 14

[253]

On clicking on Go, the query is executed and stored as a bookmark. It does not
matter if the query does not find anything. This is how we can generate bookmarks
for non-SELECT queries such as UPDATE, DELETE, CREATE TABLE, and so on.

This technique can also be used for a SELECT statement that
either returns results or does not return results.

Making bookmarks public
All bookmarks we create are private by default. When a bookmark is created, the
username, which we are logged in as, is stored with the bookmark. Let us suppose
that we check the Let every user access this bookmark checkbox as shown in the
following screenshot:

This would have the following effect:

•	 All users having access to the same database (the current one) will have
access to the bookmark.

•	 A user's ability to see meaningful results from the bookmark depends on the
privileges they have on the tables referenced in the bookmark.

Using Query Bookmarks

[254]

•	 Any user will be able to delete the bookmark.
•	 Users will be permitted to change the bookmark's query, by storing this

bookmark before sending a query and using the Replace existing bookmark
of same name option.

Public bookmarks are shown with a (shared) suffix when recalled.

The default initial query for a table
In the previous examples, we chose bookmark labels according to our preferences.
However, by convention, if a private bookmark has the same name as a table, it will
be executed when Browse is clicked for this table. Thus, instead of seeing the normal
Browse results of this table, we will see the bookmark's results.

Suppose that we are interested in viewing (by default, in the Browse mode) all books
with a page count lower than 300. We first generate the appropriate query, which can
be done easily from the Search page, and then we use book as a bookmark label on
the results page.

Chapter 14

[255]

Following this action, every time the user, who created this bookmark, browses the
book table, he sees the following screenshot:

Multi-query bookmarks
A single bookmark can also store more than one query (separated by a semicolon).
This is mostly useful for non-SELECT queries. As an example, let us assume that we
need to clean data about authors by removing an invalid area code from the phone
numbers on a regular basis. This operation would always be followed by a display of
the author table.

To accomplish this goal, we store a bookmark (before sending it for execution) that
contains these queries:

update author set phone = replace(phone,'(123)', '(456)');
select * from author;

In the bookmark, we could put many data modification statements such as INSERT,
UPDATE, or DELETE, followed optionally by one SELECT statement. Stacking a lot of
SELECT statements would not yield the intended result because we would only see
the data fetched by the last SELECT statement.

Using Query Bookmarks

[256]

Recalling bookmarks from the
bookmarks list
Any created bookmarks can be found on the following pages:

•	 The Table view: SQL page of any table from marc_book
•	 The Query window: The SQL-History tab
•	 The Database view: SQL page of the marc_book database

Three choices are available when recalling a bookmark—Submit, View only, and
Delete. (Submit being the default).

Executing bookmarks
Choosing a bookmark and hitting Go executes the stored query and displays its
results. The page resulting from a bookmark execution does not have another dialog
to create a bookmark, as this would be superfluous.

The results we get are not necessarily the same as when we
created the bookmark. They reflect the current contents of the
database. Only the query is stored as a bookmark.

Chapter 14

[257]

Manipulating bookmarks
Sometimes, we may just want to ascertain the contents of a bookmark. This is
done by choosing a bookmark and selecting View only. The query is then displayed
and we have the opportunity of reworking its contents. By doing so, we would be
editing a copy of the original bookmarked query. To keep this new, edited query,
we can save it as a bookmark. Again, this will create another bookmark even if we
choose the same bookmark label, unless we explicitly ask for the original bookmark
to be replaced.

A bookmark can be erased with the Delete option. There is no confirmation dialog to
confirm the deletion of the bookmark. We should now proceed with the deletion of
our book bookmark.

Passing a parameter to a bookmark
If we look again at the first bookmark we created (finding all books for author 1), we
realize that although it's useful, it's limited to finding just one author—always the
same one.

Special query syntax enables the passing of parameters to bookmarks. This syntax
uses the fact that SQL comments enclosed within /* and */ are ignored by MySQL.
If the /*[VARIABLE]*/ construct exists somewhere in the query, it will be expanded
at execution time with the value provided when recalling the bookmark.

Creating a parameterized bookmark
Let us say we want to find all the books for a given author when we don't know the
author's id. We first enter the following query:

SELECT author.name, author.id, book.title
FROM book, author
WHERE book.author_id = author.id
/* AND author.name LIKE '%[VARIABLE]%' */

Using Query Bookmarks

[258]

The part between the comment characters (/* */) will be expanded later, and the
tags will be removed. We label this query as a bookmark named find author by
name (before executing it) and then click on Go. The first execution of the query just
stores the bookmark while retrieving all books by all the authors, as this time we
haven't passed a parameter to the query.

In this example, we have two conditions in the WHERE clause, of which one contains
the special syntax. If our only criterion in the WHERE clause needs a parameter, we can
use a syntax such as /* WHERE author_id = [VARIABLE] */.

Passing the parameter value
To test the bookmark, we recall it as usual and enter a value in the Variable dialog.

When we click on Go, we see the expanded query, and the author Smith's books.

Chapter 14

[259]

Summary
In this chapter, we saw an overview of how to record bookmarks (after or before
sending a query), how to manipulate them, and how some bookmarks can be made
public. The chapter also introduced us to the default initial query for Browse mode.
It also covered passing parameters to bookmarks.

The next chapter will explain how to produce documentation that explains the
structure of your databases via the tools offered by phpMyAdmin.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Documenting the System
Producing and maintaining good documentation about data structure is crucial for a
project's success, especially when it's a team project. Indeed, being able to show the
current data dictionary and proposed column changes to the other team members
provides a valuable means of communication. Moreover, a graphical display of
the inter-table relations quickly demonstrates the inner workings of the database.
Fortunately, phpMyAdmin has documentation features that take care of these things.

Producing structure reports
From the Structure page of either the Database or the Table view, the Print view
link is available for producing reports about our database's structure. Moreover,
a Data Dictionary link in Database view produces a different report. These are
detailed in the following sections.

Creating a printable report
When phpMyAdmin generates results, there is always a Print view link that can be
used to generate a printable report of the data. The Print view feature can also be
used to produce basic structure documentation. This is done in two steps. The first
click on Print view displays a report on the screen, with a Print button at the end of
the page. This Print button later generates a report formatted for the printer.

Documenting the System

[262]

The database print view
Clicking on Print view on the Structure page for a database generates a list of tables.
This list contains the number of rows, storage engine, size, comments, and the
creation date for each table, as shown in the following screenshot:

The selective database print view
Sometimes, we prefer to get a report for a subset of the tables. This can be done from
the Structure page for a database by selecting the tables we want, and then choosing
Print view from the drop-down menu as shown in the following screenshot:

Chapter 15

[263]

The table print view
There is also a Print view link on the Structure page for each table. Clicking on this
link produces information about columns and indexes for the table, as shown in the
following example:

Documenting the System

[264]

Preparing a complete report with the data
dictionary
A more complete report about the tables and columns in a database is available from
the Structure page of the Database view. We just have to click on Data dictionary link
to get this report, which is partially shown in the following screenshot:

The MIME column is empty until we add MIME-related information to some
columns (as explained in Chapter 16).

Generating relational schemas
In Chapter 10, we defined relations between the book and author tables. These
relations were used for various foreign key functions (for example, getting a list of
possible values in Insert mode). We will now examine a feature that enables us to
generate a custom-made relational schema for our tables in the popular PDF format
and other formats as well. This feature requires that the phpMyAdmin configuration
storage be properly installed and configured.

Chapter 15

[265]

Adding a third table to our model
To get a more complete schema, we will now add another table, country, to our
database. The following block of code displays the contents of its export file:

CREATE TABLE IF NOT EXISTS `country` (
 `code` char(2) NOT NULL,
 `description` varchar(50) NOT NULL,
 PRIMARY KEY (`code`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

INSERT INTO `country` (`code`, `description`) VALUES
('ca', 'Canada'),
('uk', 'United Kingdom');

We will now link this table to the author table. First, in the Relation view for the
country table, we specify the column that we want to display, and then click on Save.

We then add a country_code column (same type and size as that of the code column
in the country table) to the author table, and in the Relation view, we link it to the
newly-created country table.

We must remember to click on Save for the relation
to be recorded.

Documenting the System

[266]

For this example, it's not necessary to enter any country data for an author, as we are
interested only in the relational schema.

Producing schema pages
Each relational schema is called a page. We can create or edit a page by clicking on
Edit or export relational schema in the Operations page of the Database view.

Page planning
A relational schema cannot span multiple databases. But even working with just
one database, the number of tables might be large. Representing the various table
relations in a clear way could be a challenge. This is why we may use many pages,
each showing some tables and their relations.

We must also take into account the dimensions of the final output. Printing on
letter-size paper gives us less space to show all of our tables and still have a
legible schema.

Creating a new page
As there are no existing pages, we need to create one. As our most important table is
book, we will also name this page book.

We will choose which tables we wish to see in the relational schema. We could
choose each table individually. However, for a good start, checking the appropriate
Automatic layout checkbox is recommended. Doing this puts all the related
tables from our database onto the list of tables to be included in the schema. It
then generates appropriate coordinates so that the tables will appear in a spiral
layout, starting from the center of the schema. These coordinates are expressed in
millimeters, with (0, 0) being located at the upper-left corner. We then click on Go:

Chapter 15

[267]

Editing a page
We now get a page with three different sections. The first one is the page menu,
where we choose the page on which we want to work (from the drop-down menu).
We can also delete the chosen page. We could also eventually create a second
schema (page).

Documenting the System

[268]

The next section is the table placement portion. We can now see the benefit of the
Automatic layout feature—we already have our three tables selected, with the X and
Y coordinate columns filled in. We can add a table (on the last line), delete a table
(using the checkbox), and change the coordinates (which represent the position of
the upper-left corner of each table on the schema):

To help set exact coordinates, a visual editor is available for JavaScript-enabled
browsers. The editor appears when the Toggle scratchboard button is clicked once.
It will disappear when this button is clicked again. We can drag and drop tables
on the scratchboard, and the coordinates will change accordingly. The appearance
of the tables on the scratchboard provides a rough guide to the final PDF output.
Some people prefer to see only the table names (without every column name) on the
scratchboard. This can be done by deselecting the Column names checkbox and then
clicking on Save. The following image shows an example of this scratchboard:

Chapter 15

[269]

When we are satisfied with the layout, we must
click on Save.

Exporting a page for display
The last section of the screen is the report generation dialog. Now that we have
created a page, the Display relational schema shows a dialog as seen in the
following screenshot:

The available options are:

Option Description
Select Export Relational
Type

Permits to choose the file format to export to (PDF, SVG,
DIA, Visio, or EPS).

Show grid The schema will have a grid layer with the coordinates
displayed. Useful when designing and testing the schema.

Show color The links, table names, and special columns (primary keys
and display columns) will be in color.

Show dimension of tables The visual dimension of each table in the table title (for
example, 32x30) will be displayed. This is useful when
designing and testing the schema.

Display all tables with the
same width

All tables will be displayed using the same width. (Normally,
the width adjusts itself according to the length of the table
and column names.)

Documenting the System

[270]

Option Description
Data Dictionary The data dictionary, which was covered earlier in this

chapter, will be included at the beginning of the report.
Only show keys Does not show the columns on which there are no indexes

defined.
Orientation Here, we choose the printed orientation of the report
Paper size Changing this option will influence the schema and the

scratchboard dimensions.

In config.inc.php, the following parameters define the available paper sizes and
the default choice:

$cfg['PDFPageSizes'] = array('A3', 'A4', 'A5', 'letter', 'legal');
$cfg['PDFDefaultPageSize'] = 'A4';

The following screenshot shows the last page of the generated report (the schema
page) in PDF format. The first four pages contain the data dictionary along with an
additional feature.

Arrows point in the direction of the corresponding foreign table. If Show color
checkbox has been ticked, the primary keys are shown in red and the display
columns in blue, as shown in the following screenshot:

Chapter 15

[271]

The following screenshot provides another example generated from the same book
table's PDF page definition. This time the grid is shown, but not the colors:

Changing the font in PDF schema
All the text we see in the PDF schema is drawn using a specific font. phpMyAdmin
uses the DejaVuSans font (http://dejavu.sourceforge.net), which covers a wide
range of characters.

For actual PDF generation, phpMyAdmin relies on the tcpdf library
(http://tcpdf.sourceforge.net). This library has two ways of using fonts—
embedded and not embedded. Embedding fonts will produce a bigger PDF file
because the whole font is included in the PDF file. This is the default option chosen
by phpMyAdmin because the library does not depend on the presence of a specific
TrueType font in the client operating system.

The fonts are located in libraries/tcpdf/fonts under the main
phpMyAdmin directory.

Documenting the System

[272]

To use a different font file, we must first add it to the library (tools are present in the
original tcpdf kit and a tutorial is available on the http://www.fpdf.org website)
and then modify phpMyAdmin's libraries/schema/ Pdf_Relation_Schema.
class.php source code.

Laying out a schema with the Designer
feature
The Designer feature (available in the Database view) offers a more refined way
of moving the tables on screen, as the column links follow the table movements.
Therefore, an interface exists between the tables' coordinates, as saved by the
Designer, and the coordinates for the schema. Let us enter the Designer and click on
the small PDF logo.

This brings us to a panel where we can choose the (existing) schema name and
the action we want to perform—in our case, to export the Designer coordinates to
the schema definition. We could also use the New page name dialog, entering a
page name, and then clicking on Go to create an empty page. From here, we can
subsequently export the coordinates saved from the Designer workspace:

There is a difference in the span of tables managed by the Designer
and by the Edit or export relational schema feature. The Designer
manipulates, by default, every table of a database, whereas the Edit or
export relational schema panel offers us a choice of tables, enabling us
to represent a subset of the relations if there are many tables.

Chapter 15

[273]

Summary
This chapter covered the documentation features offered by phpMyAdmin—the print
view for a database or a table and the data dictionary for a complete column list. The
chapter also covered relational schemas. In particular, it focused on how to create,
modify, and export a schema page, and how to use the visual editor (scratchboard).

The next chapter will explain how to apply transformations to data, in order to
customize the data format at view time.

Transforming Data
using MIME

In this chapter, we will cover a powerful phpMyAdmin feature—its ability to
transform a column's contents during a table browse, based on specific rules called
transformations. Normally, browsing a table shows only the original data that
resides in it. However, MIME-based transformations permit the alteration of the
display format.

Note that this kind of transformation does not have the same effect as a permanent
data change, such as one made via the UPDATE statement. The transformed data is not
written back to the MySQL server; it is just sent to the browser for display purposes.

Browsing data without transformations
Normally, the exact contents of each row are displayed, except that:

•	 The TEXT and CHARACTER columns might be truncated, according to
$cfg['LimitChars'], and depending on whether we have chosen to see
Full Texts or not

•	 BLOB and geometry-related columns might be replaced by a message such
as [BLOB - 1.5 KB]

Transforming Data using MIME

[276]

We will use the term cell to indicate a specific column of a specific row. The cell
containing the cover photograph for the "Future souvenirs" book (a BLOB column) is
currently displayed as cryptic data such as ‰PNG\r\n\Z\n\0\0\0\rIHDR\0 or as
a message stating the BLOB column's size. It would be interesting to see a thumbnail
(shown in the following screenshot) of the picture directly in phpMyAdmin
and possibly the full-size picture itself. This will be made possible with proper
transformation.

Switching display options
In Browse mode, the Options link reveals a slider that contains, among other
choices, a Hide Browser transformation checkbox. We can use it whenever we want
to switch between viewing the real data of a cell and its transformed version.

Enabling transformations
We define transformation as a mechanism by which all the cells related to a column
are transformed at browse time, using the metadata defined for this column. Only
the cells visible on the current results page are transformed.

The use of this feature is controlled by the $cfg['BrowseMIME'] directive in
config.inc.php. The default value of this directive is TRUE, meaning that
transformations are enabled. However, the phpMyAdmin configuration storage
must be in place (refer to Chapter 1) as the metadata necessary for the transformation
is not available in the official MySQL table structure. It's an addition made especially
for phpMyAdmin.

Chapter 16

[277]

The transformation logic itself is coded in PHP scripts, stored in
libraries/transformations, and is called using a plugin
architecture. In the documentation section on phpMyAdmin's
home site (currently at http://www.phpmyadmin.net/
home_page/docs.php), there is a link pointing to additional
information for developers who would like to learn the internal
structure of the plugins in order to code their own transformation.

Configuring settings for MIME columns
If we go to the Table view of the Structure page for the book table and click on
the Change link for the cover_photo column, we see three additional attributes
(provided the transformations feature is enabled):

•	 MIME type
•	 Browser transformation
•	 Transformation options

This is shown in the following screenshot:

Transforming Data using MIME

[278]

For a specific column, it's possible to indicate only one type of transformation.
Here, the column is a BLOB. Hence, it can hold any kind of data. In order for
phpMyAdmin to interpret and act correctly on the data, the transformation system
must be informed of the data format and the intended results. Accordingly, we have
to ensure that we upload data that always follows the same file format.

We will first learn the purpose of these attributes and then try some possibilities in
the Examples of transformation section, later in this chapter.

Selecting the MIME type
The MIME specification (http://en.wikipedia.org/wiki/MIME) has been
chosen as a metadata attribute to categorize the kind of data that a column holds.
Multipurpose Internet Mail Extensions (MIME), originally designed to extend mail,
are now used to describe content types for other protocols as well. In the context of
phpMyAdmin, the current possible values are:

•	 image/jpeg
•	 image/png
•	 text/plain
•	 application/octetstream

The text/plain type can be chosen for a column containing any kind of text (for
example, XHTML or XML text). In the Examples of transformations section, you will
see which MIME type you are required to choose to achieve a specific effect.

Browser transformations
This is where we set the exact transformation to be done. More than one
transformation may be supported per MIME type. For example, for the image/
jpeg MIME type, we have two transformations available: image/jpeg: inline for a
clickable thumbnail of the image, and image/jpeg: link to display just a link.

Chapter 16

[279]

The following screenshot shows the list of the available transformations:

A more complete transformation explanation and a list of the possible options are
available on clicking the question mark icon next to Transformation options, and
then clicking on the transformation descriptions link that appears.

Assigning values to transformation options
In the Examples of transformations section, we will see that some transformations
accept options. For example, we can indicate the width and height in pixels for a
transformation that generates an image. A comma is used to separate the values in
the options list, and some options may need to be enclosed within quotes.

Some options have a default value, and we must be careful to respect the
documented order for options. For example, if there are two options, and we
only want to specify a value for the second option, we can use empty quotes as a
placeholder for the first option, to let the system use its default value.

Requirements for image generation
Normal thumbnail generation requires that some components exist on the web
server, and that a parameter in config.inc.php be correctly configured.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Transforming Data using MIME

[280]

Configuring GD2 library availability verification
phpMyAdmin uses some internal functions to create the thumbnails. These functions
need the GD2 library to be present on our PHP server.

phpMyAdmin can detect the presence of the correct GD2 library, but this detection
takes some time. It also takes place not once per session, but almost every time an
action is taken in phpMyAdmin.

Setting the $cfg['GD2Available'] parameter in config.inc.php to its
default value 'auto' indicates that the detection of the library's presence and version
is needed.

If we know that the GD2 library is available, setting $cfg['GD2Available']
to yes will make execution quicker. If the GD2 library is not available, you are
recommended to set this parameter to no.

To find out which GD2 library we have on the server, we can go to phpMyAdmin's
home page and click on Show PHP information. If this link is not present, we need
to set the $cfg['ShowPhpInfo'] parameter to true. We then look for a section titled
gd and verify which version is identified. In the following screenshot, all is fine as we
can see that the GD version is 2.X with JPEG and PNG support:

Asserting support of JPEG and PNG libraries
The PHP component in our web server needs to have support for the JPEG and PNG
images if we want to generate thumbnails for these types of images. For more details,
please refer to http://php.net/manual/en/ref.image.php.

Chapter 16

[281]

Evaluating the impact of memory limits
On some servers, the default value in php.ini for memory_limit is 8M, meaning
8 MiB. This is too low for correct image manipulation, because the GD functions
used to produce the final images need working memory. For example, in one test, a
value of 11M in memory_limit was needed to generate the thumbnail from a 300 KiB
JPEG image. Also, if multiple rows are viewed at once, more working memory will
be needed.

Examples of transformations
We will now discuss a few transformation examples. Typical option values are shown,
and it's recommended to tweak them until we have achieved the desired results.
Depending on the phpMyAdmin version, more transformations may be available.

Clickable thumbnail (JPEG or PNG)
We will start by changing our cover_photo column type from BLOB to LONGBLOB
to ensure that we can upload photographs bigger than 65 KiB in size. We then enter
the attributes shown in the following screenshot:

Transforming Data using MIME

[282]

Here, the options are presented in the form of width and height. If we omit the
options, the default values are 100 and 100. The thumbnail generation code preserves
the original aspect ratio of the image. Therefore, the values entered are the maximum
width and height of the generated image. We then upload a .jpeg file in a cell (using
instructions from Chapter 5). As a result, we get the following screen in Browse mode
for this table:

This thumbnail can be clicked to reveal a full-size photograph.

The thumbnail is not stored anywhere, but generated each time we go
into Browse mode for this set of rows. On a double Xeon 3.2 GHz server,
we commonly experience a generation rate of six JPEG images per second.
No caching of these thumbnails is offered by phpMyAdmin.

For a.png file, we have to use image/png in the MIME type dialog, and image/png:
inline in the Browse transformation dialog.

Adding links to an image
To provide a link without the thumbnail, we use the image/jpeg: link
transformation. There are no transformation options. This link can be used to
view the photograph (by left-clicking on the link) and then possibly download it
(by right-clicking on the photograph itself).

Chapter 16

[283]

Date formatting
We have a column named date_published in our book table; let us change its
type to DATETIME. Then, we set its MIME type to text/plain and the browser
transformation to text/plain: dateformat. The next step is to edit the row for the
"Future souvenirs" book, and enter 2003-01-01 14:56:00 in the date_published
column. When we browse the table, we now see that the column has been formatted.
Hovering the mouse over it reveals the unformatted original contents, as shown in
the following screenshot:

This transformation accepts two options. The first is the number of hours (zero by
default) that will be added to the original value. Adding number of hours can be
useful if we store all time values based on Coordinated Universal Time (UTC), but
want to display them for a specific zone (for example, UTC+5). The second option
is the time format we want to use, specified using any PHP strftime parameters
(more details at http://php.net/strftime). So, if we put '0','Year: %Y' in the
Transformation options, we will get the following output:

Links from text
Suppose that we have put a complete URL—http://domain.com/abc.pdf—in the
description column in our book table. The text of the link will be displayed while
browsing the table, but we would not be able to click it. We will now see the use of
the text/plain MIME type in such a situation.

Transforming Data using MIME

[284]

text/plain: link
If we use a text/plain MIME type and a text/plain: link browser transformation
in the scenario just mentioned, we will still see the text for the link, and it will
be clickable.

If all the documents that we want to point to are located at a common URL prefix, we
can put this prefix (for example, http://domain.com/) in the first transformation
option, within the enclosing quotes. Then, we would only need to put the last part of
the URL (abc.pdf) in each cell.

A second transformation option is available for setting a title. This would be
displayed in the Browse mode instead of the URL contents, but a click would
nonetheless bring us to the intended URL.

If we use only the second transformation option, we have to use quotes as the value
of the first option. It could be done as '','this is the title'.

text/plain: imagelink
text/plain: imagelink transformation is similar to the previous one, except that in
the cell, we place a URL that points to an image. This image will be fetched and
displayed in the cell along with the link text. The image could be anywhere on the
web, including our local server.

Here, we have the following three options available:

•	 The common URL prefix (such as the one for text/plain: link)
•	 The width of the image in pixels (default: 100)
•	 The height (default: 50)

For our test URL, you should enter the following options:

'','100','123'

Chapter 16

[285]

If the text for the link is too long, the transformation does not occur. By default, the
Partial texts display option is selected.

In this case, we can switch to Full texts to reveal the complete link. We can then see
the complete image.

Other transformations, such as image/jpeg: inline and image/png: inline,
specify the exact MIME type of the image. In these cases, phpMyAdmin uses GD2
library functions for the thumbnail generation. However, the link contained in a
text/plain: imagelink transformation may refer to any browser-supported image
type. Therefore, phpMyAdmin just displays a resized image with an HTML img
tag, and width and height attributes set according to the size options defined in
the transformation. To see the original image, we can click on either the link or
the thumbnail.

Transforming Data using MIME

[286]

Preserving the original formatting
Normally, when displaying text, phpMyAdmin escapes special characters. For
example, if we entered This book is good in the description column for one
book, we would normally see This book is good when browsing the table.
However, if we used the transformation text/plain: formatted for this column, we
would get the following output while browsing:

In this example, the results are correct. However, other HTML tags entered in the
column could produce surprising results (including invalid HTML pages). For
example, as phpMyAdmin presents results using HTML tables, a non-escaped
</table> tag in the column would ruin the output.

Displaying parts of a text
The text/plain: substr transformation is available for displaying only a portion
of the text. The following are the options:

•	 Where to start in the text (default: 0)
•	 How many characters (default: all of the remaining text)
•	 What to display as a suffix to show that truncation has occurred; the default

is to display ellipses (...)

Remember that $cfg['LimitChars'] is doing a character truncation for every non-
numeric column. Hence, text/plain: substr is a mechanism for fine-tuning this
column by column.

Displaying a download link
Let us say we want to store a small audio comment about each book inside MySQL.
We add a new column to the book table, with the name audio_contents, and type
MEDIUMBLOB. We set its MIME type to application/octetstream and choose the
application/octetstream: download transformation. In the Transformation options,
we insert 'comment.wav'.

This MIME type and extension will inform our browser about the incoming data,
and the browser should open the appropriate player. To insert a comment, we first
record it in a .wav format, and then upload the contents of the file into the audio_
contents column for one of the books. When browsing our table, we can see a link
comment.wav for our audio comment:

Chapter 16

[287]

Hexadecimal representation
Characters are stored in MySQL (and in computers in general) as numeric data, and
converted into something meaningful for the screen or printer. Users sometimes cut
and paste data from another application to phpMyAdmin, leading to unexpected
results if the characters are not directly supported by MySQL. A case that was
reported in phpMyAdmin's help forum involved special quotation marks entered
in a Microsoft Word document and pasted to phpMyAdmin. It helps to be able to
see the exact hexadecimal codes, and this can be done by using the application/
octetstream: hex transformation.

In the following example, this transformation will be applied to the title column of
our book table. When browsing the row containing the Future souvenirs title, we can
see the following screen:

As we know which character set this column is encoded with, we can
compare its contents with a chart describing each character. For instance,
http://en.wikipedia.org/wiki/Latin1 describes the Latin1 character set.

Transforming Data using MIME

[288]

SQL pretty printing
The term pretty printing (http://en.wikipedia.org/wiki/Pretty_printing)
refers to a way of "beautifying" source code (in our case, SQL statements). In
the phpMyAdmin configuration storage, the pma_bookmark.query and pma_
history.sqlquery columns contain SQL statements. With the text/plain: sql
transformation defined for these columns, these SQL statements will be displayed in
color with syntax highlighting when the table is browsed.

IP address
An IP (v4) address can be encoded into a long integer (for example, via the PHP
iptolong() function), and stored into a MySQL UNSIGNED INT column. To convert
it back to the familiar dotted string (for example, 127.0.0.1), you can use the text/
plain: longToIpv4 transformation.

Transforming data via external applications
The transformations that have been described previously are implemented directly
from within phpMyAdmin. However, some transformations are better executed via
existing external applications.

The text/plain: external transformation enables us to send a cell's data to
another application that will be started on the web server, capture this application's
output, and display this output in the cell's position.

This feature is supported only on a Linux or UNIX server (under
Microsoft Windows, output and error redirection cannot be easily
captured by the PHP process). Furthermore, PHP should not be
running in safe mode. Hence, the feature may not be available on
hosted servers.

For security reasons, the exact path and name of the application cannot be set from
within phpMyAdmin as a transformation option. The application names are set
directly inside one of the phpMyAdmin scripts.

First, in the phpMyAdmin installation directory, we edit the text_plain__
external.inc.php file in libraries/transformations/, and find the
following section:

$allowed_programs = array();
//$allowed_programs[0] = '/usr/local/bin/tidy';
//$allowed_programs[1] = '/usr/local/bin/validate';

Chapter 16

[289]

No external application is configured by default, and we have to explicitly add
our own.

The names of the transformation scripts are constructed using the
following format—the MIME type, a double underscore, and then
a part indicating which transformation should take place.

Every program that is allowed, along with its complete path, must be described here
with an index number starting from 0. Then we save the modifications to this script
and put it back on the server if needed. The remaining setup is completed from the
panel where we choose the options for the other browser transformations.

Of course, we will now choose text/plain: external in the transformations menu.

As the first option, we place the application number (for example, 0 would be for the
tidy application). The second option holds the parameters we need to pass to this
application. If we want phpMyAdmin to apply the htmlspecialchars() function
to the results, we put 1 as the third parameter—this is the default. We could put a 0
there to avoid protecting the output with htmlspecialchars().

If we want to avoid reformatting the cell's lines, we put 1 as the fourth parameter.
This will use the NOWRAP modifier, and is done by default.

External application example: In-cell sort
This example shows how to sort the text contents of a single cell. We start by
modifying the text_plain__external.inc.php script, as mentioned in the
previous section, to add the sort program:

$allowed_programs[0] = '/bin/sort';

Note that our new program bears the index number 0.

We then add a TEXT column whose name is keywords to our book table. Finally, we
fill in the MIME-related information, entering '0','-r' as the transformation options, as
shown in the following screenshot:

Transforming Data using MIME

[290]

The '0' here refers to the index number for sort, and the '-r' is a parameter for sort,
which makes the program sort in the reverse order.

Next, we edit the row for the book "A hundred years of cinema (volume 1)", entering
some keywords in no particular order (as seen in the following screenshot) and
hitting Go in order to save the changes:

To test the effects of the external program, we browse our table and see the sorted
in-cell keywords:

Notice that the keywords are displayed in reverse sorted order.

Summary
In this chapter, we learnt how to improve the browsing experience by transforming
data using various methods. In particular, we saw how to display an overview
of thumbnail and full-size images from .jpeg and .png BLOB columns, how to
generate links, format dates, display only parts of texts, and how to execute external
programs to reformat cell contents.

The next chapter will cover phpMyAdmin's support for the MySQL features that are
new in versions 5.0 and 5.1.

Supporting Features Added
in MySQL 5

MySQL 5.0 introduced a number of new features that calmed down a number of
developers and industry observers who were claiming that MySQL was inferior to
competitors' products. Views, stored procedures, triggers, a standard information_
schema, and (more recently) a profiling mechanism are now present in the MySQL
spectrum. These features are covered in this chapter.

Among the new features of MySQL 5.1, the ones that relate to a web interface (for
example, partitioning and events) are supported in phpMyAdmin and are covered in
this chapter as well.

Supporting views
MySQL 5.0 introduced support for named and updatable views (more details are
available at http://dev.mysql.com/doc/refman/5.5/en/views.html). A view is a
derived table (consider it a virtual table) whose definition is stored in the database. A
SELECT statement done on one or more tables (or even on views), can be stored as a
view and can also be queried.

Views can be used to:

•	 Limit the visibility of columns (for example, do not show salary information)
•	 Limit the visibility of rows (for example, do not show data for specific

world regions)
•	 Hide a changed table structure (so that legacy applications can continue

to work)

Supporting Features Added in MySQL 5

[292]

Instead of defining cumbersome column-specific privileges on many tables, it's easier
to prepare a view containing a limited set of columns from these tables. We can then
grant permissions on the view as a whole.

To activate support for views on a server after an upgrade from a pre-5.0 version,
the administrator has to execute the mysql_upgrade program, as described in the
MySQL manual (http://dev.mysql.com/doc/refman/5.0/en/upgrading-from-
previous-series.html).

Each user must have the appropriate SHOW_VIEW or CREATE_VIEW
privilege to be able to see or manipulate views. These privileges
exist at the global (server), database, and table levels.

Creating a view implies that the user has privileges on the tables involved, or at least
a privilege such as SELECT or UPDATE on all the columns mentioned in the view.

Creating a view from results
We can take advantage of phpMyAdmin's Search (at the table level) or Query (at the
database level) features to build a rather complex query, execute it, and then easily
create a view from the results. We will see how this is done.

We mentioned that a view can be used to limit the visibility of columns (and, in
fact, of tables). Let us say that the number of pages in a book is highly classified
information. We open the book table, click on Search, and choose a subset of the
columns that does not include the page_count column (we might have to open the
Options slider).

Chapter 17

[293]

Clicking on Go produces a results page, where we see a CREATE VIEW link in the
Query results operations section. We use this link to access the view creation panel,
which already has the underlying query in the AS box. We need to choose a name for
this view (here, we use book_public_info), and we can optionally set different column
names for it (here, we use number, title), as shown in the following screenshot:

The other options can influence the view's behavior, and have been explained in
the MySQL manual (http://dev.mysql.com/doc/refman/5.5/en/create-view.
html). The LOCAL CHECK OPTION clause influences the behavior of the updateable
views (this is explained in the MySQL manual at the page cited previously).

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://dev.mysql.com/doc/refman/5.5/en/create-view.html

Supporting Features Added in MySQL 5

[294]

Clicking on Go generates the view we asked for. At this point, the view has been
created. If we refresh our browser's page and then access the marc_book database,
we will see the following screenshot:

In the main panel, we see the information on the newly-created view. The number of
rows for the view currently indicates ~0 (more on this in the Controlling row counting
for improved performance section, later in this chapter), and View is indicated in the
Type column. There is no collation or size associated with a view.

Main panel and views
As a view has similarities with a table, its name is available along with the names of
the ordinary tables. On clicking the view name, a panel similar to the one seen for
tables is displayed, but with fewer menu tabs than seen in a normal table. Indeed,
some operations do not make sense on a view, for example, Import. This is because
a view does not actually contain data. However, other actions, such as Browse, are
perfectly acceptable.

Let us browse the view shown in the following screenshot:

Chapter 17

[295]

We notice that, in the generated SQL query, we do not see our original CREATE
VIEW statement. The reason is that we are selecting from the view using a SELECT
statement, hiding the fact that we are pulling data from a view. However, exporting
the view's structure would show how MySQL internally stored our view:

CREATE ALGORITHM=UNDEFINED DEFINER=`root`@`%` SQL SECURITY DEFINER
 VIEW `book_public_info` AS
select `book`.`isbn` AS `number`,`book`.`title` AS `title` from
 `book`;

The main panel's menu may look similar to that of a table. However, when
necessary, phpMyAdmin generates the appropriate syntax for handling views.

To perform actions on existing views, a user needs to have the
appropriate privilege at the view level, but not necessarily any
privilege on the tables involved in this view. This is how we can
achieve column and table hiding.

Controlling row counting for improved
performance
phpMyAdmin has a configuration parameter, $cfg['MaxExactCountViews'], that
controls the row-counting phase of phpMyAdmin. Sometimes, a view comprises
many huge tables, and browsing it would make a large number of virtual rows
appear. Therefore, the default value of 0 for this parameter ensures that no row
counting happens for views. In this case, we will see rather strange results when
browsing a view: Showing rows 0 - -1 (0 total, Query took 0.0006 sec). This is more
acceptable than slowing down a server.

Nonetheless, if we prefer to see a more exact row count for views, we can put a larger
value in this parameter, which acts as an upper limit for the row counting phase.

Supporting routines—stored procedures
and functions
It took a while before phpMyAdmin started to include support for stored procedures
and functions. The reason is that these are blocks of code (like a sub-program) that
are kept as a part of the database. phpMyAdmin, being a web interface, is more
oriented towards operations that are performed quickly using a mouse.

Supporting Features Added in MySQL 5

[296]

Nonetheless, phpMyAdmin has a few features that permit a developer to create such
routines, save them, recall them to make some modifications, and delete them.

Procedures are accessed by a CALL statement to which we can pass parameters (more
details at http://dev.mysql.com/doc/refman/5.5/en/call.html). On the other
hand, functions are accessed from SQL statements (for example, SELECT), and are
similar to other MySQL internal functions, thus returning a value.

The CREATE ROUTINE and ALTER ROUTINE privileges are needed to be able to create,
see, and delete a stored procedure or function. The EXECUTE privilege is needed
to run the routine, although the privilege is normally granted automatically to the
routine's creator.

Creating a stored procedure
We will create a procedure to change the page count for a specific book, by adding a
specific number of pages. The book's ISBN and the number of pages to be added will
be the input parameters to this procedure. We are using the SQL query box (refer to
Chapter 11) to enter this procedure.

Changing the delimiter
The standard SQL delimiter is the semicolon, and this character will be used
inside our procedure to delimit SQL statements. However, the CREATE PROCEDURE
statement is by itself a SQL statement; hence, we must come up with a way to
indicate to the MySQL parser where this statement ends. The query box has a
Delimiter input box, which contains a semicolon by default. Therefore, we change it
to another string, which, by convention, is a double slash "//".

Chapter 17

[297]

Entering the procedure
We then enter the procedure's code in the main query box:

CREATE PROCEDURE `add_page`(IN param_isbn VARCHAR(25),
 IN param_pages INT, OUT param_message VARCHAR(100))
BEGIN
 IF param_pages > 100 THEN
 SET param_message = 'the number of pages is too big';
 ELSE
 UPDATE book SET page_count = page_count + param_pages WHERE
 isbn=param_isbn;
 SET param_message = 'success';
 END IF;
END
//

On clicking Go, we get a success message if the syntax is correct. If it is not, well it's
time to revise our typing abilities or debug our syntax. Unfortunately, MySQL does
not come with a procedure debugger.

Testing the procedure
Again, in the query box, we test our procedure by entering the following statements.
Here, we are using a SQL variable, @message, which will receive the contents of the
OUT parameter param_message:

call add_page('1-234567-22-0', 4, @message);
SELECT @message;

If all went well, we should see that the @message variable contains success.

We can then verify whether the page count for this book has increased. We also need
to test the problematic case:

call add_page('1-234567-22-0', 101, @message);
SELECT @message;

This procedure is now available for calling (for example) from your PHP scripts
using the mysqli extension, which is the one recommended to access all the
functionalities provided by MySQL 4.1 and above.

Supporting Features Added in MySQL 5

[298]

Manipulating procedures and functions
A procedure is stored inside a database, and is not tied to a specific table. Therefore,
the interface for manipulating procedures and functions can be found at the database
level, on the Structure page under the Routines slider, which appears if at least one
routine is already defined.

The first icon brings this procedure's text into a query box for editing. The second
icon would be used to delete this procedure. When editing the procedure, we notice
that the text has been somewhat modified.

DROP PROCEDURE `add_page`//
CREATE DEFINER=`marc`@`%` PROCEDURE `add_page`(IN param_isbn
VARCHAR(25), IN param_pages INT, OUT param_message VARCHAR(100))
BEGIN
 IF param_pages > 100 THEN
 SET param_message = 'the number of pages is too big';
 ELSE
 UPDATE book SET page_count = page_count + param_pages WHERE
 isbn=param_isbn;
 SET param_message = 'success';
 END IF;
END

First, a DROP PROCEDURE statement appears. This is normal because MySQL does not
offer a statement that would permit changing the body of a procedure. Therefore, we
have to delete a procedure every time we want to change it. It's true that the ALTER
PROCEDURE statement exists, but it can only change the procedure's characteristics,
for example, by adding a comment. Then, a DEFINER clause is shown. It was
generated at creation time, and indicates who created this procedure.

At this point, we make any changes we need to the code, and click on Go to save
this procedure.

Chapter 17

[299]

It might be tempting to open the book table on its Structure page
and look for a list of procedures that manipulate this table, such as
our add_page() procedure. However, all procedures are stored at
the database level, and there is no direct link between the code itself
(UPDATE book) and the place where the procedure is stored.

Manually creating a function
Functions are similar to stored procedures. However, a function may return just one
value, whereas a stored procedure can have more than one OUT parameter. On the
other hand, using a stored function from within a SELECT statement may seem more
natural as it avoids the need for an intermediate SQL variable to hold the value of an
OUT parameter.

What is the goal of functions? As an example, a function can be used to calculate
the total cost of an order, including tax and shipping. Putting this logic inside the
database instead of at the application level helps to document the application-
database interface. It also avoids duplicating business logic in every application that
needs to deal with this logic.

We should not confuse MySQL 5.0 functions with UDF (User-Defined Functions),
which existed prior to MySQL 5.0. A UDF consists of code written in C or C++,
compiled into a shared object, and referenced with a CREATE FUNCTION statement
and the SONAME keyword.

phpMyAdmin's treatment of functions is, in many ways, similar to what we have
covered in procedures:

•	 A query box in which to enter a function
•	 The use of a delimiter
•	 A mechanism to manipulate a function that is already defined

Let us define a function that retrieves the country name, based on its code. I prefer to
use a param_ prefix to clearly identify the parameters inside the function's definition
and a var_ prefix for local variables. We will use our trusty SQL query box to enter
the function's code, again indicating to this box to use // as the delimiter.

CREATE FUNCTION get_country_name(param_country_code CHAR(2))
 RETURNS VARCHAR(50)
 READS SQL DATA
BEGIN
 DECLARE var_country_name VARCHAR(50) DEFAULT 'not found';
 SELECT description

Supporting Features Added in MySQL 5

[300]

 FROM country
 WHERE code = param_country_code
 INTO var_country_name;
 RETURN var_country_name;
END
//

We should note that our newly-created function can be seen on the database's
Structure page, along with its friend, the add_page procedure:

Testing the function
To test the function we just created, enter the following query in a query box (refer to
Chapter 11):

SELECT CONCAT('ca->', get_country_name('ca'), ', zz->',

get_country_name('zz')) as test;

This will produce the following result:

ca->Canada, zz->not found

Exporting stored procedures and functions
When exporting a database, procedures and functions appear in an SQL export.
This is because the Add CREATE PROCEDURE / FUNCTION / EVENT checkbox
is selected by default in the Object creation options dialog of the Export page (it
can be seen in the Custom export mode). Here is the part of the export file related to
procedures and functions:

DELIMITER $$
--
-- Procedures
--
CREATE DEFINER=`marc`@`%` PROCEDURE `add_page`(IN param_isbn

Chapter 17

[301]

 VARCHAR(25), IN param_pages INT, OUT param_message VARCHAR(100))
BEGIN
 IF param_pages > 100 THEN
 SET param_message = 'the number of pages is too big';
 ELSE
 UPDATE book SET page_count = page_count + param_pages WHERE
 isbn=param_isbn;
 SET param_message = 'success';
 END IF;
END$$

--
-- Functions
--
CREATE DEFINER=`marc`@`%` FUNCTION `get_country_name`
(param_country_code CHAR(2)) RETURNS varchar(50) CHARSET latin1
 READS SQL DATA
BEGIN
 DECLARE var_country_name VARCHAR(50) DEFAULT 'not found';
 SELECT description into var_country_name FROM country WHERE
 code = param_country_code;
 RETURN var_country_name;
END$$

DELIMITER ;

Executing code with triggers
Triggers are code that we associate with a table to be executed when certain actions
occur, for example, after a new INSERT statement in the book table. The action does
not need to happen within phpMyAdmin.

Contrary to routines that are related to an entire database and are visible on the
database's Structure page, triggers for each table are accessed from this specific
table's Structure page.

Prior to MySQL 5.1.6, we needed the SUPER privilege to create and
delete triggers. In version 5.1.6, a TRIGGER table-level privilege was
added to the privilege system. Hence, a user no longer needs the
powerful SUPER privilege for these tasks.

In order to perform the following exercise, we will need a new INT column—total_
page_count—in our author table.

Supporting Features Added in MySQL 5

[302]

The idea here is that every time a book is created, its page count will be added to
the total page count of the books from this author. Some people may advocate that
it would be better not to keep a separate column for the total here, and instead
compute the total every time we need it. In fact, a design decision must be made
when dealing with this situation in the real world. Do we need to retrieve the total
page count very quickly, for example, for web purposes? what is the response time
to compute this value from a production table with thousands of rows? Anyway,
since I need it as an example, the design decision is easy to make here.

Let us not forget that following its addition to the table's structure, the total_page_
count column should initially be seeded with the correct total. (However, this is not
the purpose of our trigger.)

Manually creating a trigger
The current phpMyAdmin version does not have an interface for trigger creation.
Therefore, we enter the trigger definition in a query box taking special care to enter
// in the delimiter box:

CREATE TRIGGER after_book_insert AFTER INSERT ON book
FOR EACH ROW
BEGIN
 UPDATE author
 SET total_page_count = total_page_count + NEW.page_count
 WHERE id = NEW.author_id;
END
//

Later, the Structure page for our book table reveals a new Triggers section that
can be used the same way as routines, to edit or delete a trigger, as shown in the
following screenshot:

Chapter 17

[303]

Testing the trigger
Contrary to testing stored procedures or functions, there is neither a CALL sequence
nor a function inside a SELECT statement to execute the trigger. Any time the defined
operation (a book INSERT) happens, the code will execute (in our case, after the
insertion). Therefore, we simply have to insert a new book to see that the author.
total_page_count column is updated.

Of course, a completely automatic management of this column would involve
creating AFTER UPDATE and AFTER DELETE triggers on the book table.

Using information_schema
In the SQL:2003 Standard, access to the data dictionary (or database metadata) is
provided by a structure called information_schema. As this is part of the Standard,
and already exists in other database systems, the decision to implement this feature
into MySQL was a very good one.

MySQL has added some information that is not part of the standard,
for example, INFORMATION_SCHEMA.COLUMNS.COLUMN_TYPE. Be
aware of the fact that if you use this information in a software project,
it might not be portable to other SQL implementations.

A phpMyAdmin user sees the information_schema as a normal database
containing views. These views describe many aspects of the structure of the
databases hosted on this server. The following screenshot shows a subset of what can
be seen (and in fact, the only possible operation on this database is SELECT):

Supporting Features Added in MySQL 5

[304]

Internally, phpMyAdmin can call the information_schema, instead of the
corresponding SHOW statements to retrieve metadata. This behavior is controlled
by the $cfg['Servers'][$i]['DisableIS'] directive. Some SELECT operations
involving a WHERE clause on information_schema are really slow (many minutes of
wait time) when the server hosts hundreds of databases or tables, and this is yet to
be fixed by the MySQL team; this is why this directive is set to true by default, thus
avoiding the use of information_schema.

The $cfg['Servers'][$i]['hide_db'] parameter can be used to hide this
"database" to users who might be confused by the sudden appearance of a database
that they know nothing about. It will probably depend on their level of expertise in
MySQL. On a multi-user installation of phpMyAdmin, we cannot please everyone
about this parameter's value.

Partitioning
User-defined partitioning (refer to http://dev.mysql.com/doc/refman/5.1/en/
partitioning.html) is offered in MySQL 5.1. It allows us to "distribute portions of
individual tables across a file system according to rules which you can set largely
as needed". Using this feature in phpMyAdmin requires knowledge of its syntax as
there are many partition types. Also, for each partition type, the number of partitions
and the values associated with each partition are too random to be easily represented
on a web interface.

Creating a table with partitions
Let us try it by creating a table named test with one column id. On the table
creation panel, if connected to a MySQL 5.1 server, phpMyAdmin shows a
PARTITION definition dialog, as shown in the following screenshot:

Chapter 17

[305]

Here, we enter a PARTITION BY RANGE clause, which will create partitions on the
id column:

PARTITION BY RANGE (id) (
 PARTITION p0 VALUES LESS THAN (1000),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN (30000)
);

Maintaining partitions
For a table on which a partition has been defined, the Operations page displays a
Partition maintenance dialog where we can:

•	 Choose a partition and then request an action, such as Rebuild
•	 Remove the partitioning

Exporting a partition definition
Finally, exporting this test table in SQL mode produces statements with embedded
comments that a MySQL 5.1 server would recognize and interpret in order to
recreate the same partitions:

CREATE TABLE `test` (
 `id` int(11) NOT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (id)
(PARTITION p0 VALUES LESS THAN (1000) ENGINE = MyISAM,
 PARTITION p1 VALUES LESS THAN (2000) ENGINE = MyISAM,
 PARTITION p2 VALUES LESS THAN (3000) ENGINE = MyISAM) */;

Supporting Features Added in MySQL 5

[306]

Exploring the event scheduler
The Event Scheduler (http://dev.mysql.com/doc/refman/5.1/en/events.
html), another new feature of MySQL 5.1, permits the creation of tasks that will run
automatically according to a schedule. The schedule is quite flexible and permits, for
example, a statement to be run every ten seconds, starting from midnight of May 18,
2011. These can be one-time events or recurring ones.

Activating the scheduler
We should first verify whether the scheduler is active on our server. If not, we need
to activate it. Otherwise, nothing will happen! We will start by entering the following
statement in the query box:

SHOW VARIABLES LIKE 'event%';

Next, we look in the results for a variable named event_scheduler. If this variable
is set to OFF, we need to ask the system administrator (or someone with the SUPER
privilege) to execute the following statement:

SET GLOBAL event_scheduler = ON;

Granting EVENT permission
Every user who wants to create or drop an event needs the EVENT privilege, either
globally or on the database on which he or she plans to add the event. Please refer to
Chapter 19 for details about granting such privileges.

Creating an event
The current phpMyAdmin version does not have an interface on which we could
choose the various parts of the CREATE EVENT statement. Therefore, the only method
left is to use the SQL query box to enter the statement and to understand its syntax!
Here, we will use a totally fictitious example:

CREATE EVENT add_page_count
 ON SCHEDULE
 EVERY 1 MINUTE
 DO
 UPDATE author set total_page_count = total_page_count + 1
 WHERE id = 1;

You can now get some amusement by browsing the author table once in a while,
and see the counter incrementing for author 1.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 17

[307]

Manipulating events
Events are related to a single database, which is why you see an Events slider on the
Structure page for the marc_book database. Activating it reveals the following panel:

Indeed, this is a recurring event. We can use the first icon to edit the event (which
will have the effect of deleting and recreating the event), and the second icon to
remove it.

Exporting
It's possible to generate event-related statements at the end of an SQL database
export file by selecting the Add CREATE PROCEDURE / FUNCTION / EVENT
option. Please remember that some events may have an expiration time. Hence, they
may have vanished between the time you create them and the time you attempt to
export them, unless the ON COMPLETION PRESERVE clause was used when creating
the event.

Summary
MySQL 5.0's new features helped the product to comply with standards. Even
though phpMyAdmin has limited support for these features (especially lacking a
syntax-oriented editor), it has a basic set of features to work with views, routines,
triggers, and information_schema. phpMyAdmin also supports MySQL 5.1
partitions and events.

The next chapter covers the use of the tracking feature that permits the recording of
changes made to a MySQL database via phpMyAdmin.

Tracking Changes
This chapter will examine how we can use the change-tracking mechanism, in order
to record structure and data changes done from the phpMyAdmin interface and to
obtain reports about such changes.

Understanding the goals of the tracking
system
Each software application has its own idea of what changes are important to track for
its users. This section describes tracking systems that exist in other applications, and
compares them to the one offered by phpMyAdmin.

Tracking in other software applications
Having access to historic data that displays all of the changes made to an information
system is a feature that is taken for granted in many software products. The "undo"
feature of any serious word-processing software is an example of being able to go
back in time, albeit one step at the time. A more complex example would be the
history feature of MediaWiki (the core software of Wikipedia). It enables us to go
back to any state of a given page, to see the changes between any two versions, and
even to mark any older version as the current one. Tracking information includes the
author (or IP address), the date and time of change, and a comment.

In MySQL itself, the logging system (binlog) records all changes made to the
database; however, in this case, the goal is two-fold:

•	 To allow master-slave synchronization
•	 To enable restoration via the mysqlbinlog command-line utility

Tracking Changes

[310]

Tracking in phpMyAdmin
phpMyAdmin's tracking system allows the user to specify which table is going to be
tracked, so it can be called an opt-in system. By default, no table is tracked unless
a developer elects to do so; and when a developer activates tracking for a table,
changes start to be recorded even if performed by someone else. Only the changes
done via phpMyAdmin are recorded.

Furthermore, for a given table, we can indicate which statements we are interested
in tracking. The list of statements is divided into two groups: data definition and
data manipulation.

Suppose that a team is working on a project that involves making changes to the
structure of tables. With tracking activated and assuming that each developer logs
in to MySQL with his or her own account, we now have access to historic data,
including information about which developer dropped some critical column! Of
course, this tracking is not tamper-proof; after all, it's stored in a MySQL table so the
security of this tracking information depends on who has access to the tracking table.

Prerequisites
The phpMyAdmin configuration storage holds all metadata for the tracking
mechanism. If we have implemented this storage a while ago (for a previous
phpMyAdmin version, such as 3.1 or older), we can use scripts/create_tables.
sql from the current phpMyAdmin version to upgrade the configuration storage
with the missing tables (in our case, the pma_tracking table). The reason for this
is that the script creates this table in a prudent way by using the CREATE TABLE IF
NOT EXISTS `pma_tracking` statement, thus ensuring that it won't be created if the
table is already present.

In phpMyAdmin 3.3.3, the type of the data_sql column in
pma_tracking was changed from TEXT to LONGTEXT in the
create_tables.sql script. Therefore, it's important to make
this change manually in our own pma_tracking table, if we ran
this script prior to version 3.3.3.

Chapter 18

[311]

Configuring a basic tracking mechanism
In config.inc.php, for a specific MySQL server's configuration, the
$cfg['Servers'][$i]['tracking'] should contain the name of the tracking table;
the suggested name is pma_tracking to match the default value inside scripts/
create_tables.sql.

If this directive is left blank, no tracking is possible on this
server (we won't see any Tracking menu).

By default, tracking must be activated per table. If we prefer that the tracking
mechanism be switched on automatically for all future tables and views, the
$cfg['Servers'][$i]['tracking_version_auto_create'] can be set to TRUE.
Please note that this is only for future tables and views—we still need to activate
tracking for existing tables.

The advantage of using automatic creation is that we don't have to think about it;
tracking is done from the birth of a table. An inconvenient side effect of this is that
we don't have the possibility of choosing which statements will be tracked; these will
be taken from the default list (refer to the Choosing the statements to be tracked section
later in this chapter).

Other configuration directives will be discussed in the section that relates to them.

Principles
This section defines important principles on which the tracking mechanism is based:
versioning, snapshot, and the archiving issues of tracking information.

Versioning
Using version numbers is something we are familiar with; for example, this book
describes phpMyAdmin version 3.4.x. However, at this point we must understand
exactly why we use version numbers.

A good reference on software versioning is located in Wikipedia at
http://en.wikipedia.org/wiki/Software_versioning. This article mentions
that version names can be used, but version numbers are more common. More
importantly, it states that version numbers "correspond to new developments in
the software".

http://en.wikipedia.org/wiki/Software_versioning
http://en.wikipedia.org/wiki/Software_versioning

Tracking Changes

[312]

If we apply this principle to database development, the decision that a table is ripe
for a new version should be made by the development team when a significant
change is about to occur on this table. How significant the change has to be in order
to trigger a new version is a matter of interpretation within the team. At least one of
these decisions is easy to make: version 1 always represents the moment where we
first switch on the tracking for a particular table.

In the situation where data manipulation statements are tracked, we should note also
that the change can be relative to data itself, not necessarily to the structure.

phpMyAdmin's tracking system uses only positive integers as version
numbers; it's not possible to use a decimal point as in "1.1".

Taking a snapshot of the current structure
Every time we create a new version, the tracking system takes a snapshot of the
current structure and indexes of the table, and creates a new entry in the tracking
system. In this entry are stored the database name, table name, version number, date
of creation, and the complete structure information.

This tracking snapshot does not contain a table's data! Therefore,
the tracking system does not replace a backup system.

During the lifespan of this table after the snapshot has been taken, all tracked
statements are stored alongside this snapshot. Therefore, a table tracking version
consists of the snapshot in addition to all of the changes made after this snapshot
was taken, until a new version is started.

Understanding archiving issues
When a table is dropped, its tracking information survives, unless we decide
to suppress it. The impact of this will be discussed later in the Deleting tracking
information section.

Chapter 18

[313]

Initiating tracking for one table
In this section, we will use the Tracking menu in Table view to start collecting the
changes that occur for the author table. So we open the author table and then click
on Tracking, which produces the following screen:

This panel tells us that we are about to create version 1 of the table; this is what
we expected. We are offered a choice of data definition and data manipulation
statements; for now we will leave all of them marked, and will click on Create
version button. The next section explains how we can specify which statements are
to appear in the panel shown above.

Tracking Changes

[314]

After version 1 is created, the following confirmation panel is shown:

We notice that two distinct actions took place:

•	 The creation of version 1 itself
•	 The activation of tracking for this table

Chapter 18

[315]

Indeed, one or many versions of a table may exist, each one containing a snapshot
from some point in time and the changes since this snapshot; but this is independent
of the fact that tracking is active for a table and changes are being recorded.

In this panel, we see sub-panels that will be covered in the Choosing the statements to
be tracked and Deactivating and activating tracking sections.

Choosing the statements to be tracked
$cfg['Servers'][$i]['tracking_default_statements'] contains a string that
consists of comma-separated statements. These are the ones that are offered in the
panel where we can choose which statements we want to track. The default list
of statements is defined as follows; please note the presence of dot characters that
permit the concatenation of strings in PHP:

$cfg['Servers'][$i]['tracking_default_statements'] =
 'CREATE TABLE,ALTER TABLE,DROP TABLE,RENAME TABLE,' .
 'CREATE INDEX,DROP INDEX,' .
 'INSERT,UPDATE,DELETE,TRUNCATE,REPLACE,' .
 'CREATE VIEW,ALTER VIEW,DROP VIEW,' .
 'CREATE DATABASE,ALTER DATABASE,DROP DATABASE';

Testing the tracking mechanism
We are now ready to verify that this tracking system really works! As the system is
supposed to track ALTER TABLE statement, we will make a slight structure change
and see what happens. We go to the Structure panel for table author, select the
name column, and increase its size from 30 to 40 characters (refer to Chapter 5 for the
detailed steps).

We get a message, as shown in the following screenshot:

Tracking Changes

[316]

We will perform another action, this time related to data itself—changing the phone
number of author John Smith to 111-2222.

To ensure that these actions were recorded by the tracking system, let us compile
a report.

Tracking report
Going back to the Tracking panel (still in Table view for author) we click
on Tracking report for version 1, which produces a report as shown in the
following screenshot:

In fact, the report is prefixed to the main tracking information; we could click on
Close and be back to where we were previously.

Chapter 18

[317]

We can see that under the Tracking report header, a list of the statements that are
tracked is shown. Then we have a selector to determine if we want to see on the
report the statements corresponding to:

•	 Structure and data
•	 Structure only
•	 Data only

We can also specify the range of dates and times for which we want to produce the
report. It's also possible to indicate which users we want to report on (an asterisk
represents all users).

The main part of the report consists of the statements themselves; here we see four
statements. The first statement is a DROP TABLE statement, which would be useful
to create this table anew should we need to export this version and import it back.
The second statement (CREATE TABLE) contains the snapshot that was taken when
version 1 was initiated. Then we see the ALTER TABLE and UPDATE statements that
correspond to the actions we performed as a test.

How to export a structure will be covered in the Exporting a version section later in
this chapter.

Determining tracking status
Let us cover all of the places in the interface where we can ascertain the tracking
activity for a table. First, in Table view, we can see a message positioned under
the menu tabs, stating that tracking is activated for this table, as shown in the
following screenshot:

Tracking Changes

[318]

In the Tracking panel itself, a Status column tells us that tracking is either active
or not active for the latest version. In fact, when we create another version for the
table, we will see that only the current version can have an active tracking status, as
previous versions now only contain historical data.

In Database view, each table that is tracked by the system (with an active or
not active status) is shown with the icon of an eye either in color or grayed out,
depending upon its status. In the following example, the eye is in color:

This eye icon is clickable and brings us to the Tracking panel for this specific table.

Chapter 18

[319]

Finally, in Database view, the Tracking menu provides us with an overview of all
the tables. First the tracked tables are presented, then the untracked ones. For either
category, we have links to see more information or to start tracking:

For the tracked tables, the following table gives a breakdown of the information
presented, along with the available links:

Title or link Description
Database In which database the table is located
Table Which table is tracked
Last version The latest tracked version; it's interesting to see how

many versions exist for this table
Created When was this version created
Updated When was the last tracked statement stored for this

table
Status Active or not active
Action The Drop link can be used to remove all tracking (refer

to the Deleting tracking information section later in this
chapter)

Show | Versions Enters Table view for this table, and displays the
tracking versions

Show | Tracking report Enters Table view for this table, and displays the
tracking report

Show | Structure snapshot Enters Table view for this table, and displays the
structure snapshot (refer to the Structure snapshot
section later in this chapter)

Tracking Changes

[320]

For the untracked tables, a Track table link allows us to enter Table view for this
table, directly in the Tracking panel, hence creating version 1 in order to start the
tracking mechanism.

Deactivating and activating tracking
From the Tracking page of a specific table, the Deactivate now button (which
acts as a toggle, and changes to Activate now) is the one to use if we wish to
stop (temporarily or permanently) further storing of the tracked statements. Past
statements that were stored remain untouched in the tracking data related to the
current version.

Structure snapshot
In the Tracking panel of Table view, the Structure snapshot link displays the past
state of the table at the time this version was created. The panel shows both the
stored SQL code and a visual representation in the familiar phpMyAdmin Structure
panel format.

Chapter 18

[321]

Exporting a version
As the complete SQL code at the time of creation for a specific version has been
stored along with all of the tracked statements that occurred since that moment, we
might want to reuse them in their executable form. At the bottom of the Tracking
report panel, an Export as dialog is available, offering three variants for exporting. If
we choose SQL dump (file download) menu option, then all of the statements stored
for this version are transferred in a file that we can save to our workstation. For the
author table, this would produce a file containing the following lines:

Tracking report for table `author`
2011-10-14 14:24:12

DROP TABLE IF EXISTS `author`;

CREATE TABLE `author` (
 `id` int(11) NOT NULL,
 `name` varchar(30) NOT NULL,
 `phone` varchar(30) CHARACTER SET latin1 DEFAULT NULL,
 `country_code` char(2) NOT NULL,
 `total_page_count` int(11) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
ALTER TABLE `author` CHANGE `name` `name` VARCHAR(40) CHARACTER SET
utf8 COLLATE utf8_general_ci NOT NULL;
UPDATE `author` SET `phone` = '111-2222' WHERE `author`.`id` = 1;

If, instead, we pick the SQL dump choice, the statements appear on screen in a text
area; from this point we could cut and paste the SQL code or click on Go to run it.
As a measure of precaution, extra statements are generated on top of the code; these
handle the creation of another database in which the table would be created. Of
course the user must have the rights to create this database.

Finally, the SQL execution choice permits to directly execute the stored statements
in the current database. However, a warning message is issued as these statements
might reflect an older state of the table; we might not want to revert to this old state.
Also, the first statement is, by default, a DROP TABLE, which may or may not succeed
depending on whether some foreign key constraint blocks the deletion of the table.

Tracking Changes

[322]

Creating a new version
As previously discussed, we can decide to mark a new milestone for a certain table;
in other words, we can start a new version. We will now create a new version as
an exercise.

In the Tracking panel for the author table, we see the dialog for creating version 2
(as the highest one is currently version 1):

We notice that each version can track its own set of statements; versions are
independent from each other in this matter. Here, we have decided that version 2
will track only data-definition statements. We now see something interesting relative
to the status of these versions, as shown in the following screenshot:

Indeed, version 1 was automatically marked as not active; it went into some kind of
historical status. We can also have a look at version 2's snapshot, which reflects that
the name column is a VARCHAR(40).

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 18

[323]

Quickly accessing tracking information
When we are in the Tracking panel for one table, a shortcut dialog allows us to go
directly to the Tracking panel of any other tracked table.

To explore this feature, let us now create version 1 of the book table. After this is
done, we examine the drop-down list next to Show versions button, as shown in the
following screenshot:

This list is similar to what we would see in the Tracking panel for database marc_
book when looking at the Tracked tables portion, but without the need to go back to
this panel.

Deleting tracking information
A feature of the tracking system that might not be evident is that tracking
information for all versions of a table, and thus for its whole lifespan, is still
kept when the corresponding table is dropped. The reason is to keep the history
information intact should we happen to create a table with the same name later on.

Let us do a copy of the author table (refer to Chapter 9 if needed), and name it
author_copy. We then activate tracking on this new table. The last operation is to
drop this author_copy table. Even if we no longer see it in the normal list of tables,
it's different in the Tracking panel for database marc_book.

Tracking Changes

[324]

At this point we can go back in time, sort of, and see the tracking report and snapshot
for the versions of this deleted table. If we really want to remove all evidence of the
table ever having existed, then we can use the Drop link to destroy the tracking data
also (after clicking on OK in the subsequent confirmation panel).

Summary
In this chapter, we saw an overview of the benefits given by the statements'
tracking feature, and then we covered all of the panels involved in the creation and
maintenance of versions for tables.

The next chapter covers administration of a MySQL server, focusing on the
management of user accounts and privileges.

Administrating the
MySQL Server

This chapter discusses how a system administrator can use the phpMyAdmin server-
management features for day-to-day user account maintenance, server verification,
and server protection. The subject of how non-administrators can obtain server
information from phpMyAdmin is also covered.

Server administration is mostly done via the Server view, which is accessed via the
menu tabs available on phpMyAdmin's home page.

Managing users and their privileges
The Privileges page (visible only if we are logged in as a privileged user) contains
dialogs to manage MySQL user accounts. It also contains dialogs to manage privileges
on global, database, and table levels. This page is hierarchical. When editing a user's
privileges, we can see the global privileges as well as the database-specific privileges.
Then, when viewing database-specific privileges for a user, we can view and edit this
user's privileges for any table within this database.

Administrating the MySQL Server

[326]

The user overview
The first page displayed when we enter the Privileges page is called User overview.
This shows all user accounts and a summary of their global privileges, as shown in
the following screenshot:

From this page, we can:

•	 Edit a user's privileges, via the Edit Privileges link for this user
•	 Export a user's privileges definition, via the Export link for this user
•	 Use the checkboxes to remove users, via the Remove selected users dialog
•	 Access the page where the Add a new User dialog is available

Chapter 19

[327]

The displayed users' list has columns with the following characteristics:

Column Characteristic
User The user account we are defining.
Host The machine name or IP address, from which this user account

will be connecting to the MySQL server. A % value here
indicates all hosts.

Password Contains Yes if a password is defined and No if it isn't. The
password itself cannot be seen from phpMyAdmin's interface or
by directly looking at the mysql.user table, as it is encrypted
with a one-way hashing algorithm.

Global privileges A list of the user's global privileges.
Grant Contains Yes if the user can grant his/her privileges to others.
Action Contains a link to edit this user's privileges or export them.

Exporting privileges
This feature can be useful when we need to create a user with the same password
and privileges on another MySQL server. Clicking on Export for user marc produces
the following panel:

Administrating the MySQL Server

[328]

Then it's only a matter of selecting these GRANT statements and pasting them in
the SQL box of another phpMyAdmin window, where we have logged in on another
MySQL server.

Privileges reload
At the bottom of User overview page, this message is displayed:

Note: phpMyAdmin gets the users' privileges directly from MySQL's
privilege tables. The content of these tables may differ from the
privileges the server uses, if they have been changed manually. In
this case, you should reload the privileges before you continue.

Here, the text reload the privileges is clickable. The effective privileges (the ones
against which the server bases its access decisions) are the privileges that are
located in the server's memory. Privilege modifications that are made from the
User overview page are made both in memory and on disk in the mysql database.
Modifications made directly to the mysql database do not have immediate effect. The
reload the privileges operation reads the privileges from the database and makes
them effective in memory.

Adding a user
The Add a new User link opens a dialog for user account creation. First, we see the
panel where we will describe the account itself, as shown in the following screenshot:

Chapter 19

[329]

The second part of the Add a new User dialog is where we will specify the user's
global privileges, which apply to the server as a whole (see the Assigning global
privileges section of this chapter), as shown in the following screenshot:

Entering the username
The User name menu offers two choices. We can choose Use text field: and enter a
username in the box, or we can choose Any user to create an anonymous user (the
blank user). More details about the anonymous user are available at http://dev.
mysql.com/doc/refman/5.5/en/connection-access.html. Let us choose Use text
field: and enter bill.

Assigning a host value
By default, this menu is set to Any host, with % as the host value. The Local choice
means localhost. The Use host table choice (which creates a blank value in the
host field) means to look in the mysql.host table for database-specific privileges.
Choosing Use text field: allows us to enter the exact host value we want. Let us
choose Local.

http://dev.mysql.com/doc/refman/5.5/en/connection-access.html
http://dev.mysql.com/doc/refman/5.5/en/connection-access.html

Administrating the MySQL Server

[330]

Setting passwords
Even though it's possible to create a user without a password (by selecting the No
password option), it's best to have a password. We have to enter it twice (as we
cannot see what is entered) to confirm the intended password. A secure password
should have more than eight characters, and should contain a mixture of uppercase
and lowercase characters, digits, and special characters. Therefore, it's recommended
to have phpMyAdmin generate a password—this is possible in JavaScript-enabled
browsers. In the Generate password dialog, clicking on Generate button enters
a random password (in clear text) on the screen and fills the Password and Re-
type input fields with the generated password. At this point, we should note the
password so that we can pass it on to the user.

Understanding rights for database creation
A frequent convention is to assign a user the rights to a database having the same
name as this user. To accomplish this, the Database for user section offers the Create
database with same name and grant all privileges radio button. Selecting this
checkbox automates the process by creating both the database (if it does not already
exist) and assigning the corresponding rights. Please note that, with this method,
each user would be limited to one database (user bill, database bill).

Another possibility is to allow users to create databases that have the same prefix as
their usernames. Therefore, the other choice Grant all privileges on wildcard name
(username_%) performs this function by assigning a wildcard privilege. With this
in place, user bill could create the databases bill_test, bill_2, bill_payroll,
and so on; phpMyAdmin does not pre-create the databases in this case.

Assigning global privileges
Global privileges determine the user's access to all databases. Hence, these are
sometimes known as superuser privileges. A normal user should not have any
of these privileges unless there is a good reason for this. Moreover, should a user
account that has global privileges become compromised, the damage could be
far greater.

If we are really creating a superuser, we will select every global privilege that
he or she needs. These privileges are further divided into Data, Structure, and
Administration groups.

In our example, bill will not have any global privileges.

Chapter 19

[331]

Limiting the resources used
We can limit the resources used by this user on this server (for example, the
maximum queries per hour). Zero means no limit. We will not impose any
resources limits on bill.

The following screenshot shows the status of the screen just before hitting Create
user to create this user's definition (with the remaining fields being set to default):

Editing a user profile
The page used to edit a user's profile appears whenever we click on Edit Privileges
for a user in the User overview page. Let us try it for our newly created user bill.
There are four sections on this page, each with its own Go button. Hence, each
section is operated independently and has a distinct purpose.

Editing global privileges
The section for editing the user's privileges has the same look as the Add a new User
dialog, and is used to view and to change global privileges.

Administrating the MySQL Server

[332]

Assigning database-specific privileges
In this section, we define the databases to which our user has access, and his or her
exact privileges on these databases.

As shown in the previous screenshot, we see None because we haven't defined any
privileges yet. There are two ways of defining database privileges. First, we can
choose one of the existing databases from the drop-down menu as shown in the
following screenshot:

This assigns privileges only for the chosen database. Secondly, we can also
choose Use text field: and enter a database name. We could enter a non-existent
database name, so that the user can create it later (provided we give him/her the
CREATE privilege in the next panel). We can also use special characters, such as the
underscore and the percent sign, for wildcards.

For example, entering bill here would enable him to create a bill database, and
entering bill% would enable him to create a database with any name that starts with
bill. For our example, we will enter bill and click on Go.

The next screen is used to set bill's privileges on the bill database, and create table-
specific privileges.

Chapter 19

[333]

To learn more about the meaning of a specific privilege, we can hover the mouse
over a privilege name (which is always in English), and an explanation about this
privilege appears in the current language. We give SELECT, INSERT, UPDATE,
DELETE, CREATE, ALTER, INDEX, and DROP privileges to bill on this database.
We then click on Go.

After the privileges have been assigned, the interface stays at the same place, so that
we can refine these privileges further. We cannot assign table-specific privileges for
the moment, as the database does not yet exist.

To go back to the general privileges page of bill, click on the 'bill'@'localhost' title.

Administrating the MySQL Server

[334]

This brings us back to the following, familiar page except for a change in one section:

We see the existing privileges (we could click on Edit Privileges link to edit or on
Revoke link to revoke them) on the bill database for user bill, and we can add
privileges for bill on another database. We can also see that bill has no table-specific
privilege on the bill database.

Changing the password
The Change password dialog is part of the Edit user page, and we can use it either
to change bill's password or to remove it. Removing the password will enable
bill to log in without a password. The dialog offers a choice of password hashing
options, and it's recommended to keep the default of MySQL 4.1+ hashing. For more
details about hashing, please visit http://dev.mysql.com/doc/refman/5.1/en/
password-hashing.html.

Changing login information or copying a user
This dialog can be used to change the user's login information, or to copy his or her
login information to a new user. For example, suppose that Bill calls and tells us
that he prefers the login name billy instead of bill. We just have to add a y to the
username, and then select delete the old one from the user tables radio button, as
shown in the following screenshot:

Chapter 19

[335]

After clicking on Go, bill no longer exists in the mysql database. Also, all of his
privileges, including the privileges on the bill database, will have been transferred to
the new user—billy. However, the user definition of bill will still exist in memory,
and hence it's still effective. If we had chosen the delete the old one from the user
tables and reload the privileges afterwards option instead, the user definition of bill
would immediately have ceased to be valid.

Alternatively, we could have created another user based on bill, by making use
of the keep the old one choice. We can transfer the password to the new user by
choosing Do not change the password option, or change it by entering a new
password twice. The revoke all active privileges… option immediately terminates
the effective current privileges for this user, even if he or she is currently logged in.

Administrating the MySQL Server

[336]

Removing a user
Removing a user is done from the User overview section of the Privileges page. We
select the user to be removed. Then (in Remove selected users) we can select the
Drop the databases that have the same names as the users option to remove any
databases that are named after the users we are deleting. A click on Go effectively
removes the selected users.

Database information
The Databases page is intended to create new databases, and quickly get privileges
information for each database. Optionally, it can also be used to obtain global statistics
on these databases without having to click on each database in the navigation panel.
When we enter the Databases page, we see the list of existing databases:

Chapter 19

[337]

We also see an Enable Statistics link. By default, statistics are not enabled because
computing the size of data and indexes for all the tables in all the databases may
consume valuable MySQL server resources.

Enabling statistics
If we click on the Enable Statistics link, a modified page appears. For each database,
we get the default collation for tables in this database, along with the number of
tables in the database and the total number of rows for all tables. Next, information
about the space used by the data portion of the tables is given, followed by the space
taken by all indexes, and total space for all tables. Next, the space that could be
reclaimed by optimizing some tables in this database is presented under Overhead
column header. Finally, we can see replication information, followed by Check
Privileges links:

Sorting the statistics
By default, the statistics list is sorted by database name in ascending order. If we
need to find the database with the most tables or the database that takes the most
space, a simple click on the Tables or Total column header sorts the list accordingly.
A second click reverses the sort order.

Administrating the MySQL Server

[338]

Checking the database privileges
Clicking on the Check Privileges icon or link displays all of the privileges on a
specific database. A user's global privilege might be shown here, as it gives him
or her access to this database as well. We can also see the privileges specific to this
database. An Edit Privileges link takes us to another page, which is used to edit the
user's privileges.

We notice that this panel also contains the Add a new User link. Clicking on this
link is a convenient way of creating a user that has privileges to the database we are
currently examining. Indeed, after entering the user-creation panel from this link,
a fourth choice in the database creation or privileges granting dialog is shown and
selected by default, as shown in the following screenshot:

Dropping selected databases
To drop one or more databases, we go to Server view and click on the Databases
menu tab; put check marks next to the names of the databases to be dropped; and
then click on the Drop link next to With selected. We then get a confirmation screen.
Two of the databases (mysql and the virtual information_schema) cannot be
selected; the first one to avoid making a big mistake and deleting all of our accounts,
and the second one cannot be selected as this is not a real database.

This is an operation that should not be taken lightly, and it
might be prudent to first export the whole database as a backup.

Chapter 19

[339]

Server information
Both administrators and ordinary users can benefit from monitoring the server and
obtaining information about its general configuration and behavior. The Status,
Variables, and Processes menu tabs can be used to get information about the
MySQL server, or to act upon specific processes.

Verifying server status
The server status statistics reflect the MySQL server's total activity, including (but
not limited to) the activity generated by queries sent from phpMyAdmin.

Clicking on the Status menu tab produces runtime information about the server.
The page has several sections. First, we get information about the elapsed running
time and the startup time. Then we get the total and average values, for traffic and
connections (where the ø indicates average), as shown in the following screenshot:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Administrating the MySQL Server

[340]

Next, the statistics about the queries are displayed (shown in part in the screenshot).
The average number of queries per hour, minute, and second give a good indication
of the server load.

The query statistics are followed by statistics about each MySQL statement
executed, including:

•	 The absolute number of times each statement has been executed
•	 The hourly average of execution
•	 The percentage of execution for this statement compared to all statements

The presentation order is by descending percentage of utilization; in the following
screenshot, we see that the set option statement is the one which is most received by
this server with 37.40%:

Chapter 19

[341]

After Query statistics, a Show query chart link, when clicked, produces a
chart displaying the popular query types on this server, as shown in the
following screenshot:

Depending on the MySQL version, many other sections containing server
information are also displayed.

Server variables
The Variables page displays various settings for the MySQL server, which can be
defined in, say, the my.cnf MySQL configuration file. These values can't be changed
from within phpMyAdmin.

Server processes
The Processes page is available to both superusers and normal users. A normal user
would see only the processes belonging to him or her, whereas a superuser sees all of
the processes.

Administrating the MySQL Server

[342]

This page lists all active processes on the server. There is a Kill link that allows us to
terminate a specific process, as shown in the following screenshot:

This example has only two running processes, including the one created by the
SHOW PROCESSLIST command itself. This process is not killable because it's no
longer running when we get to see the page. On a busy server, we would see more
processes running.

Storage engines
Information about the various storage engines is available in a two-level format. First,
the Engines tab displays an overview of the possible engines for the current MySQL
version. The names of the engines that are enabled on this server are clickable.

Secondly, a click on one engine name brings up a detailed panel about its settings.
Hovering the mouse over the numbers in superscript reveals even more information
about a particular setting.

Chapter 19

[343]

Available character sets and collations
The Charsets menu tab on the home page opens the Server view for the Charsets
page, which lists the character sets and collations supported by the MySQL server.
The default collation for each character set is shown with a different background color
(using the row-marking color defined in $cfg['BrowseMarkerColor']).

Examining binary logs
If MySQL's binary logging is active on our server, the menu in the Server view
changes so that a Binary log tab appears. This tab gives access to an interface,
through the SHOW BINLOG EVENTS command. This command produces the list of
SQL statements that have updated data on our servers. This list could be huge, and
currently phpMyAdmin does not limit its display with a pagination technique.
Hence, we could hit the browser's memory limit, which depends on the particular
browser we are using.

In the following screenshot, we choose the binary log that we want to examine
(unless the server has only one binary log), and the statements are then displayed:

Administrating the MySQL Server

[344]

Summary
This chapter covered various features available to system administrators, such as
user-account management, privileges management, database privileges checks, and
server status verification. Appropriate knowledge of the MySQL privileges system is
crucial in order to maintain a MySQL server adequately, and this chapter proposes
exercises centered on the notion of a user and his or her privileges.

Appendix, Troubleshooting and Support, is next, describing where to obtain support
in order to make phpMyAdmin run efficiently.

Troubleshooting and Support
This Appendix proposes guidelines for solving some common problems, and provides
hints on how to avoid them. It also explains how to interact with the development
team for support, bug reports, and contributions.

Troubleshooting
Over the years, the development team has received numerous requests for support,
and many of them could have been avoided with a few simple verifications.

System requirements
A section at the beginning of the Documentation.html file (which is included
with phpMyAdmin's software), discusses system requirements for the particular
phpMyAdmin version we are using. It's crucial that these requirements be met, and
that the environment be properly configured so that problems are avoided.

Some problems, looking like phpMyAdmin bugs, are in fact caused by the server
environment. Sometimes, the web server is not configured to interpret .php files
correctly, or the PHP component inside the web server does not run with the mysql
or mysqli extensions. MySQL accounts may be badly configured. This can happen
on home servers as well as on hosted servers.

When we suspect that something is wrong, we can try a simple PHP script, test.
php, which contains the following code block, to check if the PHP component
answers correctly:

<?php
echo 'hello';
?>

Troubleshooting and Support

[346]

We should see the hello message. If this works, we can try another script:

<?php
phpinfo();
?>

This script displays information about the PHP component, including the available
extensions. We should at least see a section about MySQL (proving that the mysql
extension is available), which gives information about the MySQL Client API version.

We can also try other PHP scripts that make a connection to MySQL, to see if the
problem is more general than just phpMyAdmin not working. As a general rule, we
should be running the latest stable versions of every component.

Verifying the base configuration
We should always double check the way in which we performed the installation,
including correct permissions and ownerships. Typos may occur when modifying
config.inc.php.

Solving common errors
To help solve a problem, we should first pinpoint the origin of the error message.
The following are the various components that can generate an error message:

•	 MySQL server: These messages are relayed by phpMyAdmin, which displays
MySQL said followed by the message

•	 PHP component of the web server: For example, Parser error
•	 Web server: The error can be seen from the browser, or in the web server's

log files
•	 Web browser: For example, JavaScript errors

Seeking support
The starting point for support is the phpMyAdmin official site, http://phpmyadmin.
net, which has sections on documentation and support. There you will find links to the
discussion forums and to various trackers, such as:

•	 Bug tracker
•	 Feature requests tracker
•	 Translations tracker

Appendix

[347]

•	 Patches tracker
•	 Support tracker

FAQs
The Documentation.html file, which is part of the product, contains a lengthy FAQ
section with numbered questions and answers. It is recommended to peruse this
FAQ section as the first source for help.

Help forums
The development team recommends that you use the product's forums to search for
the problem encountered, and then start a new forum discussion before opening a
bug report.

Creating a SourceForge account
Creating a (free) SourceForge user account and using it for posting on forums is
highly recommended. This enables better tracking of questions and answers.

Choosing the thread title
It is important to choose the summary title carefully when you start a new forum
thread. Titles like "Help me!", "Help a newbie!", "Problem", or "phpMyAdmin error!"
are difficult to deal with, as the answers are threaded to these titles and further
reference becomes problematic. Better titles that have been used in the help forum
include:

•	 "Import with UploadDir"
•	 "User can't but root can login"
•	 "How big can I expect a table to get"
•	 "Continuous login prompts"
•	 "Cannot add foreign key"

Reading the answers
As people will read and, almost always answer, your question, giving feedback in
the forum about the answers can really help the person who answered, and also help
others who have the same problem.

Troubleshooting and Support

[348]

Using the support tracker
The support tracker is another place to ask for support. Also, if we have submitted
a bug report, which is in fact a support request, the report will be moved to the
support tracker. If you have a SourceForge user account with e-mail forwarding
configured in your profile, you will be notified of this tracker change.

Using the bug tracker
In this tracker, we see bugs that have not yet been fixed, along with the bugs that
have been fixed for the next version. Bugs fixed for the next version keep a status of
"open" to avoid getting duplicate bug reports, but their priority level is lowered.

Environment description
As developers will try to reproduce the problem mentioned, it helps to describe your
environment. This description can be short, but should contain the following items:

•	 phpMyAdmin version (the team, however, expects that it's the current
stable version)

•	 Web server name and version
•	 PHP version
•	 MySQL version
•	 Browser name and version

Usually, it isn't necessary to specify the operating system on which the server or the
client is running, unless we notice that the bug pertains to only one OS. For example,
FAQ 5.1 describes a problem where the user could not create a table having more
than fourteen fields. This happens only under Windows 98.

Bug description
We should give a precise description of what happens (including any error
message, the expected results, and the effective results we get). Reports are easily
managed if they describe only one problem per bug report (unless the problems
are clearly linked).

Sometimes, it might help to attach a short export file to the bug report to help
developers reproduce the problem. Screenshots are welcome.

Appendix

[349]

Contributing to the project
Since phpMyAdmin's inception in 1998, hundreds of people have contributed
translations, code for new features, suggestions, and bug fixes.

The code base
The development team maintains an evolving code base from which they
periodically issue releases. On http://phpmyadmin.net, the Improve page explains
how anyone can contribute, and gives pointers about the project's git source code
repository. A contribution (translation update, patch, new feature, and so on) will
be considered with a higher priority if it refers to the latest code base, and not to an
outdated phpMyAdmin version. Another useful page of instructions for using Git,
which is used for storing the code base, is located at http://wiki.phpmyadmin.
net/pma/Git.

Translation updates
Taking a look at the project's current list of 65 languages, you will notice that they
are not equally well maintained. Since the project's move to a gettext-based
localization system, everyone is encouraged to contribute to translations. The
project is using a translation server equipped with the Pootle software, located at
https://l10n.cihar.com/projects/phpmyadmin. It's also possible to use this
server to translate phpMyAdmin's Documentation.html.

Patches
The development team can manage patches more easily if they are submitted in the
form of a git format-patch against the current code base, with an explanation of
the solved problem or the new feature achieved. Major contributors are officially
credited in Documentation.html.

http://phpmyadmin.net/
https://l10n.cihar.com/projects/phpmyadmin
https://l10n.cihar.com/projects/phpmyadmin

Index
Symbols
.htaccess file 34
.sql suffix 149

A
account

logging in, without password 32
additional table

creating 92-94
Add slave replication user link 241
Ajax

deactivating 52
AJAX techniques 161
AllowNoPassword parameter 32
allow rules 43
ALTER PROCEDURE statement 298
ALTER ROUTINE privilege 296
Alter table order by dialog 178
Analyze table operation 176
Angular links/Direct links icon 194
Apache 12
APC

configuring 161
arbitrary server

authenticatingwith 39
archiving issues 312
AUTO_INCREMENT option 180
automatic joins 224

B
backquotes 133
backups 125
big export files

handling 151

binary content
uploading, in BLOB columns 111, 112

Binary Large Object columns. See BLOB
columns

binary logs
examining 343

bit column 117
BLOB columns

about 110
binary content, uploading 111, 112

Blowfish algorithm 14, 36
blowfish_secret directive 34
bookmarks

about 249
comparing, with SQL history feature 250
creating 250
creating, after successful query 250, 252
default initial query, for table 254, 255
executing 256
manipulating 257
multi-query bookmarks 255
parameterized bookmark, creating 257
parameter, passing to 257
parameter value, passing 258
properties 249
public, making 253, 254
recalling, from bookmarks list 256
storing, before sending query 252, 253

bookmarks list
bookmarks, recalling from 256

bookmarktable function 27
Bookmark this SQL query button 250
browse able foreign-table window 200
Browse mode

about 83
color-marking columns 89, 90

[352]

color-marking rows 89, 90
distinct values, browsing 91
navigation bar 84, 85
query result operations 86
results, sorting 87-89
SQL query links 83, 84

browser's local storage
phpMyAdmin configuration storage,

storing in 68
browser transformations, MIME type 278,

279
bug description 348
bug tracker

about 348
environment description 348

C
calendar pop up 116
cell 276
Change or reconfigure master server link

244
Change password dialog 334
CHAR

data entry panel tuning 82
character-based columns 179
character set

about 52, 53
selecting, for export file 129

chart
data, displaying as 86

CHECKSUM option 180
Check table operation 176
Choose column to display icon 193
clickable thumbnail (JPEG or PNG) 281, 282
code

executing, with triggers 301, 302
code base 349
CodeGen 141
collation 52, 53
color-marking columns 89, 90
color-marking rows 89, 90
column

adding, to table 107
column attribute, table

editing 108, 109
column-commenting 201, 202

column comments
migrating, automatically 202

column criteria
about 219
exploring 219

column_info function 27
column length

limiting 90
columns

displaying 220
length, limiting 90
selecting, from table 76
sorting 220

Column selector
about 218-220
multiple columns 219, 220
single-column 219, 220

Columns selector 208
comparison results panel 234
complete synchronization

about 235
performing 236

compression 129, 130
conditions

adding, to criteria box 221-223
config

user, authenticating with 32
config.inc.php file

about 12, 13, 38, 270
creating, manually 20
editing, on Windows client 20
false error messages, avoiding on 13

config.sample.inc.php file 13
configuration file

server, defining 38
configuration parameters, phpMyAdmin

about 20
PmaAbsoluteUri 21
server-specific sections 21, 22

configuration principles, phpMyAdmin
13-15

configuring
phpMyAdmin 12

Control slave link 244
control user

need for 23, 24
cookie authentication mode 34-36

[353]

cookie based authentication method 14
cookie values

authenticating with 34-36
Coordinated Universal Time (UTC) 283
Copy operation 181
Core SQL-99 rules 214
cPanel 8, 73
Create PHP Code link 84
CREATE privilege 73
Create relation icon 193
CREATE ROUTINE privilege 296
Create table icon 193
CREATE_VIEW privilege 292
criteria box

conditions, adding to 221-223
criteria columns

managing 224
criteria rows

managing 223
CSS 8
CSV

about 135, 136
options 135, 136

CSV files
about 149
importing 154-156
importing, LOAD DATA used 156

CSV format
versus SQL format 154

CSV, for Microsoft Excel 136
CSV using LOAD DATA option 157

D
data

appending, to table 182
browsing, without transformations 275
changing 95
databases, deleting 106
deleting 103
displaying, as chart 86
edit mode, entering 95-97
inline row editing 102, 103
inserting, manually 80, 81
multiple rows, deleting 104
multiple table rows, deleting 105
multi-row editing 101

next row, editing 102
searching 163
single row, deleting 103, 104
synchronizing 229
table rows, deleting 104
tables, deleting 105
transforming, via external applications 288,

289
database

about 55
copying 184
creating 73
creation, authorizing 74-76
deleting 106
dropping 338
exporting 126, 127
No privileges message 74
renaming 184

database based SQL history feature 210, 211
database information

about 336, 337
database privileges, verifying 338
selected databases, dropping 338
statistics, enabling 337
statistics, sorting 337

database list
restricting 51, 52

database names
tree display 56

database operations
about 183
database, copying 184
database, renaming 184

database print view 262
database privileges

verifying 338
database search

performing 171, 172
restricting, to column 172

Databases panel 73
database-specific privileges

editing, for users 332-334
Database view 46, 63, 64, 126, 206, 217, 261
data deletion

multiple rows, deleting 104
multiple table rows, deleting 105
single row, deleting 103, 104

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[354]

table rows, deleting 104
data dictionary

report, preparing with 264
Data Dictionary link 261, 270
data entry panel tuning

for CHAR 82
for VARCHAR 82

data, searching
database search 171
errant query, stopping 173
single-table searches 163

Data section
options 134

DATE column type 115
date formatting transformations 283
DATETIME column type 115
defined relations

benefiting from 197
browse able foreign-table window 200
drop-down list, of foreign keys 199
foreign key information 197, 198
referential integrity checks 200, 201

DEFINER clause 298
Defragment table operation 176
DELAY_KEY_WRITE option 180
delimiter

modifying 296
Delimiter dialog 206
DELIMITER keyword 153
deny rules 43
Designer

relations, defining with 192-196
designer_coords function 27
Designer feature

schema, laying out with 272
directory level

phpMyAdmin, protecting at 40
Display all tables with the same width

option 269
display column

defining 188, 189, 197
display options

switching 276
distinct values

browsing 91
documentation 261
Documentation.html file 345, 347

download link
displaying 286

drop-down list, of foreign keys 199
DROP PROCEDURE statement 298
dump 125
Duplicate entry error 213

E
Edit link 84
edit mode, data

about 95
entering 96, 97
function, applying to value 98, 99
moving with arrows 97
next field, moving to with tab key 97
NULL values, handling 97, 98
rows, duplicating 100, 101

Edit or export relational schema feature 272
Enable Statistics link 337
ENUM column type 113-115
errant query

stopping 173
Error management link 244
error messages

displaying 41
EVENT permission

granting 306
events

creating 306
exporting 307
manipulating 307

Event Scheduler
about 306
activating 306
EVENT permission, granting 306

EXPLAIN command
used, for optimizing indexes 121, 122

export 125
Export contents option 159
exported file 149
export feature

scope 126
export file

character set, selecting 129
memory limits 148
saving, on server 146, 147

[355]

export formats, phpMyAdmin
about 130
CodeGen 141
CSV 135, 136
CSV, for Microsoft Excel 136
JSON 142
LaTeX 138
MediaWiki table 142
Microsoft Word 2000 137, 138
Open document spreadsheet 140
Open document text 140
PDF 137
PHP array 142
SQL 130-132
Texy! 141
XML 139
YAML 141

external application example
in cell sort 289, 290

external applications
data, transforming via 288, 289

F
Facebook 8
false error messages

avoiding, on config.inc.php file 13
File name template field 128
files

phpMyAdmin configuration storage,
storing in 68

reading, from web server upload directory
160, 161

uploading, into temporary directory 152
FileZilla 20
Flush table operation 176
font

modifying, in PDF schema 271, 272
foreign key information 197, 198
foreign key relations

about 189-192
defining 196

foreign keys
drop-down list 199
without phpMyAdmin configuration

storage 192
from keyword 42

FTP 9, 150
Full mode 55, 57
Full stop option 244
FULLTEXT indexes 120
functions

creating, manually 299, 300
exporting 300
goals 299
manipulating 298
testing 300

Function selector 80

G
garbage collection 211
GD2 library availability verification

configuring 280
git format-patch 349
global privileges

about 330
editing, for users 331

H
headwords 89
Hebrew 46
help forums

about 347
feedback, reading 347
SourceForge account, creating 347
thread title, selecting 347

Help icon 194
hexadecimal representation transformations

287
Hide Browser transformation checkbox 276
hide_db parameter 52
history function 27
home page 46, 62, 63
host value

assigning 329
HTTP

about 16
authenticating with 33, 34

http authentication mode
about 33
limitations 34

HTTP basic auth realm 34
HTTPS 16

[356]

I
image

links, adding to 282
Import/Export icon 194
import feature

about 149, 150
other limits 151
time limits 150, 151
transfer limits 150

Import files menu 150
Import menu 150
in-cell sort 289, 290
index editing 120
indexes

FULLTEXT indexes 120
index editing 120
index problems, detecting 122
managing 118
multi-column indexes 120
optimizing, EXPLAIN used 121, 122
single-column indexes 118, 119

index management 79
index problem

detecting 122
information_schema

using 303, 304
initial QBE page 217
Inline link 84
inline row editing 102
InnoDB

about 186
URL 186

Insecure connection message 16
INSERT DELAYED statements 134
INSERT IGNORE statements 134
INSERT statement 213
installing

phpMyAdmin 9
internal relations

defining 187, 188
display column, defining 188, 189
relation, defining 188

International Electrotechnical Commission
(IEC) 64

Internet Protocol (IP) 41

in-transit data
protecting 43

INT type 78
in use table

repairing 183
IO Thread Stop only option 244
IP address 288
IP-based access control

phpMyAdmin, protecting with 41

J
JavaScript client code 8
JavaScript Object Notation. See JSON
JPEG libraries

support, asserting 280
JSON 10, 142

K
Kanji support 129
key management. See index management
keys

selecting, for tables 79, 80

L
Language selector 50, 51
LaTeX

about 138
options 138

Light mode
about 55
table name filter 56
tree display, of database names 56

LIKE criterion 221
LIMIT clause 85
links

adding, to image 282
LOAD DATA INFILE statement 149, 156
LOAD DATA interface

using 157, 158
LOAD DATA LOCAL INFILE statement

156
LOCAL CHECK OPTION clause 293
local Linux server

phpMyAdmin, installing on 11

[357]

local Windows server (Apache, IIS)
phpMyAdmin, installing on 12

login information
modifying 334, 335

login panel 45
logo

configuring 54
LONGTEXT column type 110

M
main panel

about 46, 61, 294, 295
and views 294, 295
Database view 46, 63, 64
home page 46, 62, 63
icons, for home page 65
icons, for menu tabs 65
phpMyAdmin window, opening 66
Server view 46, 65
Table view 46, 64
views 46

master server configuration, MySQL
replication 239-242

MaxExactCount parameter 64
MediaWiki

about 142
URL 142

MEDIUMTEXT column type 110
memory impact limits

evaluating 281
memory_limit parameter 151
metadata

updating, automatically 201
Metapad 20
Microsoft Word 2000 format 137, 138
MIME columns

settings, configuring for 277
Mimer SQL Validator 214
MIME type

browser transformations 278, 279
selecting 278

model
table, adding 265

Move Menu icon 194
Move operation 181
multi-column indexes 120

multiple databases
exporting 145, 146

multiple databases, handling
about 60
fetch speed, improving 61
limits, on interface 60

multiple server support
configuring for 38

multiple users
authenticating 33

Multipurpose Internet Mail Extensions. See
MIME type

multi-query bookmarks 255
multi-row editing, data 101
multi-statement queries 212, 213
multi-table operations

about 182, 183
in use table, repairing 183

MySQL
about 7
collations 53
effective character sets 53
logging in, through phpMyAdmin 31
logging in, to account without password 32
logging out 40
URL, for home site 7

MySQL 5.0 291
MySQL 5.1 291
MySQL connection

testing 33
MySQL connection collation dialog 53
mysqldump command 125
mysql extension 345
mysqli extension 345
MySQL replication

about 229
configuring 238
master server configuration 239-242
Replication menu 238
slave server configuration 242
supporting 237
test environment, setting up 243

mysql_upgrade program 292

N
natural sort order 48

[358]

Navigation bar 84, 85
navigation panel

about 46
database 55
elements 54
Full mode 57
Light mode, using 55
logo, configuring 54
server list, selecting from 59
table list 55

nested-levels feature 58
NetBeans 20
non-standard-conforming queries, SQL

Validator 216
No privileges message 74

O
only_db parameter 51, 52
Only show keys option 270
open_basedir feature 152
Open Document Spreadsheet

importing 158, 159
Open document spreadsheet format 140
Open document text format 140
Operations page 176
Optimize table operation 176
opt-in system 310
Options slider 90
ORDER BY clause 88
Orientation option 270
original formatting

preserving 286
OR operator 223
Output sub-panel

about 128
character set, selecting 129
compression 129, 130
File name template 128
Kanji support 129

P
PACK_KEYS option 180
page

about 266
creating 266
editing 267, 268

exporting, for displaying relational schema
269-271

PAGE_CHECKSUM option 180
page planning 266
Paper size option 270
parameter

passing, to bookmark 257
parameterized bookmark

creating 257
parameter value

passing, to bookmark 258
Partial import feature 152
partial query results

exporting 144
partition definition

exporting 305
partitioning 304
Partition maintenance dialog 305
partitions

maintaining 305
table, creating with 304

passwords
setting 330

patches 349
PBXT

about 186
URL 186

PDF format 137
pdf_pages function 27
PDF schema

exporting for 197
font, modifying 271, 272

PEAR module 214
PersistentConnections parameter 23
Personal Home Page 8
PHP 185

about 8
URL, for home site 7

PHP 4, 10
PHP array 142
PHP mcrypt extension 10
phpMyAdmin

about 8, 31, 185
authentication modes 31
bug tracker 348
code base 349
configuration parameters 20

[359]

configuration principles 13-15
configuration storage, installing 24
configuring 12
contribution, to project 349
CSV files, importing 154-156
documentation features 261
error messages, displaying 41
export feature 125
export formats 130
FAQs 347
files, downloading 10
goals 8
help forums 347
import feature 149, 150
installing 9
in-transit data, protecting 43
IP-based access control, protecting with 41
multiple users, authenticating 33
MySQL, logging in 31
Open Document Spreadsheet, importing

158, 159
order of interpretation, for rules 42
patches 349
protecting, at directory level 40
root access, blocking 43
rules, defining 42
securing 40
single user, authenticating with config 32
SQL files, importing 152, 153
support, seeking 346
support tracker 348
theme system 49
tracking system 310
translation updates 349
troubleshooting 345
upgrading 28
URL, for documentation 9
URL, for official home page 8
XML files, importing 159

phpMyAdmin 3.3.0
replication feature 229
synchronization feature 229

phpMyAdmin configuration storage
goal 24
installation, performing 25
installing 24
installing, for multiple users 27

installing, for single user 25, 27
location 24, 25
saving 68
saving, in browser's local storage 68
saving, in file 68

phpMyAdmin, configuring
about 12
config.inc.php, creating manually 20
config.inc.php, editing on Windows client

20
config.inc.php file 12, 13
principles 13-15
web-based setup mechanism 15-20

phpMyAdmin database. See pmadb
phpMyAdmin, installing

about 9
files, downloading 10
local Windows server (Apache, IIS) 12
on different platforms 11
on local Linux server 11
on remote server, Windows client used 11
required information 9
system requisites 10

phpMyAdmin interface
about 45
Ajax, deactivating 52
database list, restricting 51, 52
general settings, customizing 47
language, selecting 50, 51
locations, for storing preferences 67
login panel 45
main panel 46, 61
natural sort order, for database 48
natural sort order, for table names 48
navigation panel 46, 54
Query window 46, 70, 71
site-specific footer, creating 48
site-specific header, creating 48
Slider 51
starting page 47
themes, configuring 49
themes, selecting 50
user preferences 66
user preferences, accessing 67
window title, configuring 47

phpMyAdmin window
opening 66

[360]

PHP/MySQL combination 7
PmaAbsoluteUri parameter 21
pmadb 24
pmadb function 27
PMA_langDetails() function 50
PNG libraries

support, asserting 280
Pretty printing 213, 288
PrimeBase XT. See PBXT
printable report

creating 261
Print button 261
Print view link 261
privileges

exporting 327
managing, for users 325
reloading 328

Privileges page 325
procedures

about 296
entering 297
manipulating 298
testing 297

Professional Home Page 8
Profiling checkbox 84
profiling queries 92
public bookmarks 253, 254

Q
queries

editing 211, 212
executing 225
profiling 92
updating 220, 221

Query by example (QBE) feature 217
query generator 217
Query results operations section

about 86
data, displaying as chart 86

Query window
about 46, 70, 71, 209
appearance 209
database based SQL history feature 210,

211
options 210
queries, editing 211, 212

session based SQL history feature 210
Query window options 210

R
referential integrity checks 200, 201
relational MySQL 185
relational schemas

displaying 269-271
generating 264

relational system 185
relation function 27
relations

defining 188, 195, 196
defining, with Designer 192-196
defining, with relation view 186, 187

relations, defining with Designer
about 192-196
display column, defining 197
foreign key relations, defining 196
interface, over viewing 193, 194

relation view
relations, defining with 186, 187

Reload icon 193
remote server

phpMyAdmin, installing on 11
Rename operation 181
Repair table operation 176
replicated databases 245, 246
replicated tables 246
replication

configuring 238
information, obtaining 245
preparing for 230, 231
status, gathering 245

replication information
obtaining 245

Replication menu 238
replication status

gathering 245
report

preparing, with data dictionary 264
Reset slave option 244
results

sorting 87-89
RFC 2616 21
rights, for database creation 330

[361]

routines
supporting 295

ROW_FORMAT option 180

S
SAPI 146
Save position icon 193
schema

laying out, with Designer feature 272
schema pages

producing 266
search options, single-table searches

about 168
columns, selecting for display 168
repeated results, avoiding 170
results, ordering 169
WHERE clause, applying 169

Search pages 217
See slave status table link 244
Select Export Relational Type option 269
selective database print view 262
selective synchronization

about 235
performing 236, 237

SELECT statement 291
server

defining, in configuration file 38
export file, saving on 146, 147

server administration 325
Server Application Programming Interface.

See SAPI
server information

about 339
binary logs, examining 343
character sets 343
collations 343
server processes 341, 342
server status, verifying 339-341
server variables 341
storage engines 342

server list
selecting, from navigation panel 59

server processes 341, 342
server-specific sections parameters

about 21, 22
compress 23

connect_type 22, 23
controluser 23, 24
extension 22
PersistentConnections 23
port 22, 23
socket 22, 23

server status
verifying 339-341

server variables 341
Server view 46, 65, 126, 238
session based SQL history feature 210
SET column type 113-115
settings

configuring, for MIME columns 277
SFTP transfer 9
Show all button 86
Show color checkbox 270
Show color option 269
Show connected slaves link 241
SHOW DATABASES command 61
Show dimension of tables option 269
Show grid option 269
Show/Hide left menu icon 193
SHOW PROCESSLIST command 342
Show this query here again option 208
SHOW_VIEW privilege 292
signon mode

about 36
authenticating with 36, 37

single-column indexes 118, 119
single-table searches

about 163
case sensitivity 168
columns, selecting for display 168
criteria, combining 168
criteria, searching by column 164, 165
empty / non-empty values, searching 165
query by example 164
reports, producing with Print view 166
results, ordering 169
search options 168
search page, entering 163, 164
wildcard characters, searching with 166,

167
site-specific footer

creating 48

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[362]

site-specific header
creating 48

slave server configuration, MySQL
replication 242

controlling 244
Slider 51
Small/Big All icon 194
snapshot

taking, of current structure 312
Snap to grid icon 194
software versioning

URL 311
SourceForge account

creating 347
SourceForge.net 8
specific preferences

disallowing 69
split-file exports 143
SQL compatibility mode selector 153
SQL files

importing 152, 153
SQL format

about 130-132
versus CSV format 154

SQL history feature
about 250
comparing, with bookmarks 250

SQL options 131, 132
SQL pretty printing 288
SQL query box

about 205
clicking into 208
Database view 206
Table view 207

SQL query links 83, 84
SQL Thread Stop only option 244
SQL Validator

about 213
availability, making 214
non-standard-conforming queries 216
results 215
standard-conforming queries 215
system requisites 214

SSH login 9
SSL (Secure Socket Layer) 16
standard-conforming queries, SQL

Validator 215

Standard PHP Library (SPL) 10
statements

selecting, for tracking 315
Storage Engine option 177
storage engines 342
stored procedure

creating 296
delimiter, modifying 296
entering 297
exporting 300

structure
synchronizing 229

Structure only copy 182
structure options 132, 133
structure reports

producing 261
Structure snapshot link 320
Submit Query button 225
SUPER privilege 301
superuser privileges 330
support

asserting, of JPEG and PNG libraries 280
support tracker

about 348
using 348

synchronization
about 210, 229
goals 230

synchronization exercise
preparing for 231

synchronization, goals
about 230
collaboration, between database designers

230
moving, between development and

production servers 230
preparing, for replication 230, 231

synchronization process
comparison results, analyzing 234, 235
comparison results panel 234, 235
complete synchronization, performing 236
databases, selecting 232-234
overview 231
selective synchronization, performing 236,

237
source server, selecting 232-234
target server, selecting 232-234

[363]

synchronize feature 229
syntax-highlighting. See Pretty printing

T
table

adding, to model 265
attributes, modifying 177
columns, selecting 76
copying 181
counting 59
creating 76-78
creating, with partitions 304
data, appending to 182
deleting 105, 180
emptying 180
exporting 143
exporting, selectively 143
keys, selecting for 79, 80
maintaining 176
moving 181
nested display, within database 58, 59
options 180
partial query results, exporting 144
renaming 181
selecting 218, 219
split-file exports 143
tracking, initiating for 313-315

table abridged statistics 58
table attributes

about 177
modifying 177
Table collation 179
Table comments 177, 178
Table order 178, 179
Table storage engine 177

Table collation option 179
table columns 175
Table comments option 177, 178
table_coords function 27
table_info function 27
table list 55
table name filter 56
table, operations

Analyze table 176
Check table 176
Defragment table 176

Flush table 176
Optimize table 176
Repair table 176

table, options
about 180
AUTO_INCREMENT 180
CHECKSUM 180
DELAY_KEY_WRITE 180
PACK_KEYS 180
PAGE_CHECKSUM 180
ROW_FORMAT 180
TRANSACTIONAL 180

Table order option 178, 179
table print view 263
table quick-access icon 58
Table(s) sub-panel 128
table structure

bit column 117, 118
BLOB columns 110
calendar pop up 116
changing 107
column, adding 107
column, adding in vertical mode 108
column attribute, editing 108, 109
DATE column type 115
DATETIME column type 115
ENUM column type 113-115
indexes, managing 118
SET column type 113-115
TEXT column type 109
TIMESTAMP column type 115

Table view 107
about 46, 64, 126, 175, 207, 217, 261
Columns selector 208

tcpdf library
URL 271

temporary directory
file, uploading into 152

test file
exporting 154

TEXT column type 109
text parts

displaying 286
text/plain: imagelink information 284, 285
text/plain: link transformation 284
Texy! 141

[364]

themes
configuring 49
selecting 50

themes subdirectory 49
theme system 49
time limits, import feature 150, 151
TIMESTAMP column type 115, 116
Toggle small/big icon 194
tracking

activating 320
deactivating 320
initiating, for one table 313-315
in other software applications 309
in phpMyAdmin 310
statements, selecting for 315

tracking function 27
tracking information

accessing, quickly 323
deleting 323, 324

tracking, in phpMyAdmin
prerequisites 310, 311

tracking mechanism
configuring 311
principles 311
testing 315, 316

tracking mechanism, principles
about 311
archiving issues 312
snapshot, taking of current structure 312
versioning 311, 312

Tracking report 316, 317
tracking status

determining 317-320
tracking system

goals 309
TRANSACTIONAL option 180
transfer limits, import feature 150
transformation options

values, assigning to 279
transformations

about 275
enabling 276
examples 281

transformations, enabling
about 276
requisites, for generating images 279, 281

settings, configuring for MIME columns
277

transformations, examples
about 281
clickable thumbnail (JPEG or PNG) 281,

282
date formatting 283
download link, displaying 286
hexadecimal representation 287
IP address 288
links, adding to image 282
links, from text 283
original formatting, preserving 286
SQL pretty printing 288
text parts, displaying 286
text/plain: imagelink 284, 285
text/plain: link 284

translation updates 349
triggers

about 301
code, executing with 301, 302
creating, maually 302
testing 303

troubleshooting
about 345
base configuration, verifying 346
common errors, solving 346
system requisites 345, 346

U
UltraEdit 20
Update Query button 220
upload directory mechanism 151
upload_max_filesize parameter 151
upload progress bar

displaying 161
uploadprogress extension 161
userconfig function 27
User-Defined Functions (UDF) 299
username

adding 329
user overview page 326
user preferences

about 66
accessing 67

[365]

developer settings, displaying 70
settings, modifying 69

user profile
database-specific privileges, assigning 332-

334
editing 331
global privileges, editing 331
login information, modifying 334, 335
password, modifying 334
user, copying 334, 335

users
adding 328
authenticating, with config 32
copying 334, 335
managing 325
overview 326
removing 336

users, adding
global privileges, assigning 330
host value, assigning 329
passwords, setting 330
resource use, limiting 331
rights, understanding for database creation

330
username, entering 329

user-specific save directories 147
Use Tables selector 218

V
Validate SQL link 214
values

assigning, to transformation options 279
VARCHAR type

about 78
data entry panel tuning 82

version
creating 322
exporting 321

versioning 311, 312
vertical mode

column, adding 108

views
about 291
creating, from results 292-294
row counting, controlling for improved

performance 295
supporting 291, 292
uses 291

visual builder 226, 227

W
web-based setup mechanism 15-20
web control panel login 9
web server upload directory

files, reading from 160, 161
WHERE clause 221
Wikipedia 8
Windows client

phpMyAdmin, installing on remote server
11

tips, for editing config.inc.php file 20
window title

configuring 47
WordPad 20

X
XHTML 8
XML files

about 149
importing 159

XML format 139

Y
Yahoo! 8
YAML 141
YouTube 8

Z
Zend Studio 20

Thank you for buying
Mastering phpMyAdmin 3.4 for Effective MySQL Management

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PHP and MongoDB Web
Development Beginner’s Guide
ISBN: 978-1-84951-362-3 Paperback: 292 pages

Combine the power of PHP and MongoDB to build
dynamic web 2.0 applications

1.	 Learn to build PHP-powered dynamic web
applications using MongoDB as the data
backend

2.	 Handle user sessions, store real-time site
analytics, build location-aware web apps, and
much more, all using MongoDB and PHP

3.	 Full of step-by-step instructions and practical
examples, along with challenges to test and
improve your knowledge

PHP Ajax Cookbook
ISBN: 978-1-84951-308-1 Paperback: 340 pages

Over 60 simple but incredibly effective recipes to
Ajaxify PHP websites

1.	 Learn how to develop and deploy iPhone web
and native apps

2.	 Optimize the performance of Ajax applications

3.	 Build dynamic websites with faster response
from the server using the asynchronous call
feature of PHP Ajax

4.	 Using Ajax allows quick and efficient access of
data from the server, thus precluding a total
web page refresh

Please check www.PacktPub.com for information on our titles

CakePHP 1.3 Application
Development Cookbook
ISBN: 978-1-84951-192-6 Paperback: 360 pages

Over 60 great recipes for developing, maintaining,
and deploying web applications

1.	 Create elegant and scalable web applications
using CakePHP

2.	 Leverage your find operations with virtual
fields, ad-hoc queries, and custom find types

3.	 Add full internationalization support to your
application, including translation of database
records

4.	 Part of Packt's Cookbook series: Each recipe is a
carefully organized sequence of instructions to
complete the task as efficiently as possible

phpList 2 E-mail Campaign
Manager
ISBN: 978-1-84951-104-9 Paperback: 236 pages

Get to grips with the phpList e-mail announcement
delivery system!

1.	 Harness the power and flexibility of open
source software using phpList for e-mail
management mastery

2.	 Use analytics to identify top-performing links
and most engaged subscribers, and target
campaigns based on flexible criteria

3.	 Automate routine list management housework,
freeing you to produce quality content

Please check www.PacktPub.com for information on our titles

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Getting Started with phpMyAdmin
	PHP and MySQL: The leading open source duo
	What is phpMyAdmin?
	Project documentation

	Installing phpMyAdmin
	Required information
	System requirements
	Downloading the files
	Installing on different platforms
	Installing on a remote server using a Windows client
	Installing on a local Linux server
	Installing on a local Windows server (Apache, IIS)

	Configuring phpMyAdmin
	The config.inc.php file
	Avoiding false error messages about permissions on config.inc.php

	Configuration principles
	Web-based setup script
	Manually creating config.inc.php
	Tips for editing config.inc.php on a Windows client
	Description of some configuration parameters
	PmaAbsoluteUri
	Server-specific sections

	Installing phpMyAdmin configuration storage
	Goal of the configuration storage
	Location of the configuration storage
	Performing the installation
	Installing for a single user
	Installing for multiple users

	Upgrading phpMyAdmin
	Summary

	Chapter 2:
Configuring Authentication and Security
	Logging in to MySQL through phpMyAdmin
	Logging in to an account without a password
	Authenticating a single user with config
	Testing the MySQL connection

	Authenticating multiple users
	Authenticating with HTTP
	Authenticating with cookie values
	Authenticating with signon mode

	Configuring for multiple server support
	Defining servers in the configuration file
	Authenticating through an arbitrary server

	Logging out

	Securing phpMyAdmin
	Protecting phpMyAdmin at directory level
	Displaying error messages
	Protecting with IP-based access control
	Defining rules
	Order of interpretation for rules
	Blocking root access

	Protecting in-transit data

	Summary

	Chapter 3:
Over Viewing the Interface
	Over viewing panels and windows
	Login panels
	Navigation and main panels
	Home page
	Views

	Query window
	Starting page

	Customizing general settings
	Configuring window title
	Natural sort order for database and table names
	Creating site-specific header and footer
	Themes
	Configuring themes
	Selecting themes

	Selecting a language
	Slider
	Restricting the list of databases
	Deactivating Ajax

	Character sets and collations
	Effective character sets and collations

	Navigation panel
	Configuring the logo
	Database and table list
	Light mode
	Full mode
	Table abridged statistics
	Table quick-access icon
	Nested display of tables within a database
	Counting the number of tables

	Choosing from the server list
	Handling many databases or tables
	Limits on the interface
	Improving fetch speed

	Main panel
	Home page
	Database view
	Table view
	Server view
	Icons for home page and menu tabs
	Opening a new phpMyAdmin window

	User preferences
	Accessing user preferences
	Possible locations for saving preferences
	Saving in phpMyAdmin configuration storage
	Saving in a file
	Saving in the browser's local storage

	Changing settings
	Disallowing specific preferences
	Showing developer settings

	Query window
	Summary

	Chapter 4:
Creating and Browsing Tables
	Creating a database
	No privileges?
	First database creation is authorized

	Creating our first table
	Choosing the columns
	Creating a table
	Choosing keys

	Inserting data manually
	Data entry panel tuning for CHAR and VARCHAR

	Browse mode
	SQL query links
	Navigation bar
	Query results operations
	Displaying data as a chart

	Sorting results
	Headwords

	Color-marking rows or columns
	Limiting the length of each column
	Display options

	Browsing distinct values

	Profiling queries
	Creating an additional table
	Summary

	Chapter 5:
Changing Data and Structure
	Changing data
	Entering edit mode
	Moving to next field with the tab key
	Moving with arrows
	Handling NULL values
	Applying a function to a value
	Duplicating rows of data

	Multi-row editing
	Editing the next row
	Inline row editing
	Deleting data
	Deleting a single row
	Deleting multiple rows
	Deleting all of the rows in a table
	Deleting all rows in multiple tables

	Deleting tables
	Deleting databases

	Changing table structure
	Adding a column
	Vertical mode

	Editing column attribute
	TEXT column type
	BLOB (Binary Large Object) column types
	Uploading binary content

	ENUM and SET column types
	DATE, DATETIME, and TIMESTAMP column type
	Calendar pop up
	TIMESTAMP option

	Bit column type
	Managing indexes
	Single-column indexes
	Multi-column indexes and index editing
	FULLTEXT Indexes
	Optimizing indexes with EXPLAIN
	Detecting index problems

	Summary

	Chapter 6:
Exporting Structure and
Data (Backup)
	Dumps, backups, and exports
	Scope of the export

	Exporting a database
	The Table(s) sub-panel
	The Output sub-panel
	File name template
	Choosing a character set
	Kanji support
	Compression

	Export formats
	SQL
	CSV
	CSV for Microsoft Excel
	PDF
	Microsoft Word 2000
	LaTeX
	XML
	Open document spreadsheet
	Open document text
	YAML
	CodeGen
	Texy! text
	PHP array
	MediaWiki table
	JSON

	Exporting a table
	Split-file exports

	Exporting selectively
	Exporting partial query results
	Exporting and checkboxes

	Exporting multiple databases
	Saving the export file on the server
	User-specific save directories

	Memory limits
	Summary

	Chapter 7:
Importing Structure and Data
	Limits for the transfer
	Time limits
	Other limits
	Handling big export files
	Uploading into a temporary directory

	Importing SQL files
	Importing CSV files
	Differences between SQL and CSV formats
	Exporting a test file
	CSV

	CSV using LOAD DATA
	Requirements
	Using the LOAD DATA interface

	Importing other formats
	Open Document Spreadsheet
	XML

	Reading files from a web server upload directory
	Displaying an upload progress bar
	Configuring APC

	Summary

	Chapter 8:
Searching Data
	Single-table searches
	Entering the search sub-page
	Searching criteria by column—query by example
	Searching for empty / non-empty values

	Producing reports with Print view
	Searching with wildcard characters
	Case sensitivity and search
	Combining criteria
	Search options
	Selecting the columns to be displayed
	Ordering the results
	Applying a WHERE clause
	Avoiding repeated results

	Performing a complete database search
	Restricting search to a column

	Stopping an errant query
	Summary

	Chapter 9:
Performing Table and Database Operations
	Maintaining a table
	Changing table attributes
	Table storage engine
	Table comments
	Table order
	Table collation
	Table options

	Emptying or deleting a table
	Renaming, moving, and copying tables
	Appending data to a table

	Performing other table operations
	Multi-table operations
	Repairing an "in use" table

	Database operations
	Renaming a database
	Copying a database

	Summary

	Chapter 10:
from the
Relational System
	Relational MySQL
	InnoDB and PBXT

	Defining relations with the relation view
	Defining internal relations
	Defining the relation
	Defining the display column

	Foreign key relations
	Foreign keys without phpMyAdmin configuration storage

	Defining relations with the Designer
	Over viewing the interface
	Defining relations
	Defining foreign key relations

	Defining the display column
	Exporting for PDF schema

	Benefiting from the defined relations
	Foreign key information
	The drop-down list of foreign keys
	The browseable foreign-table window
	Referential integrity checks
	Automatic updates of metadata

	Column-commenting
	Automatically migrating column comments

	Summary

	Chapter 11:
Entering SQL Statements
	The SQL query box
	The Database view
	The Table view
	The Columns selector
	Clicking into the query box

	The Query window
	Query window options
	Session-based SQL history
	Database-based SQL history (permanent)
	Editing queries

	Multi-statement queries
	Pretty printing (syntax highlighting)
	The SQL Validator
	System requirements
	Making the Validator available
	Validator results
	Standard-conforming queries
	Non standard-conforming queries

	Summary

	Chapter 12:
Generating Multi-table Queries
	Choosing tables
	Exploring column criteria
	Column selector: Single column or all columns
	Sorting columns
	Showing a column
	Updating the query
	Adding conditions to the criteria box
	Adjusting the number of criteria rows
	Adjusting the number of criteria columns

	Generating automatic joins (internal relations)
	Executing the query
	The visual builder
	Summary

	Chapter 13:
Synchronizing Data and Supporting Replication
	Synchronizing data and structure
	Goals of synchronization
	Moving between the development and production servers
	Collaboration between database designers
	Preparing for replication

	Over viewing the synchronization process
	Preparing for the synchronization exercise
	Choosing source and target servers and databases
	Analyzing comparison results
	Performing a complete synchronization
	Performing a selective synchronization

	Supporting MySQL replication
	The Replication menu
	Configuring replication
	Master server configuration
	Slave server configuration

	Setting up a test environment
	Controlling a slave server
	Obtaining replication information
	Gathering replication status
	Replicated databases
	Replicated tables

	Summary

	Chapter 14:
Using Query Bookmarks
	Comparing bookmark and query history features
	Creating bookmarks
	Creating a bookmark after a successful query
	Storing a bookmark before sending a query
	Making bookmarks public
	The default initial query for a table
	Multi-query bookmarks

	Recalling bookmarks from the bookmarks list
	Executing bookmarks
	Manipulating bookmarks

	Passing a parameter to a bookmark
	Creating a parameterized bookmark
	Passing the parameter value

	Summary

	Chapter 15:
Documenting the System
	Producing structure reports
	Creating a printable report
	The database print view
	The selective database print view

	The table print view
	Preparing a complete report with the data dictionary

	Generating relational schemas
	Adding a third table to our model
	Producing schema pages
	Page planning
	Creating a new page
	Editing a page
	Exporting a page for display
	Changing the font in PDF schema

	Laying out a schema with the Designer feature

	Summary

	Chapter 16:
Transforming Data
using MIME
	Browsing data without transformations
	Switching display options

	Enabling transformations
	Configuring settings for MIME columns
	Selecting the MIME type
	Browser transformations
	Assigning values to transformation options

	Requirements for image generation
	Configuring GD2 library availability verification
	Asserting support of JPEG and PNG libraries
	Evaluating the impact of memory limits

	Examples of transformations
	Clickable thumbnail (JPEG or PNG)
	Adding links to an image
	Date formatting
	Links from text
	text/plain: link
	text/plain: imagelink

	Preserving the original formatting
	Displaying parts of a text
	Displaying a download link
	Hexadecimal representation
	SQL pretty printing
	IP address
	Transforming data via external applications
	External application example: In-cell sort

	Summary

	Chapter 17:
Supporting Features Added in MySQL 5
	Supporting views
	Creating a view from results
	Main panel and views
	Controlling row counting for improved performance

	Supporting routines—stored procedures and functions
	Creating a stored procedure
	Changing the delimiter
	Entering the procedure

	Testing the procedure
	Manipulating procedures and functions
	Manually creating a function
	Testing the function
	Exporting stored procedures and functions

	Executing code with triggers
	Manually creating a trigger
	Testing the trigger

	Using information_schema
	Partitioning
	Creating a table with partitions
	Maintaining partitions
	Exporting a partition definition

	Exploring the event scheduler
	Activating the scheduler
	Granting EVENT permission
	Creating an event
	Manipulating events
	Exporting

	Summary

	Chapter 18:
Tracking Changes
	Understanding the goals of the tracking system
	Tracking in other software applications
	Tracking in phpMyAdmin

	Prerequisites
	Configuring a basic tracking mechanism

	Principles
	Versioning
	Taking a snapshot of the current structure
	Understanding archiving issues

	Initiating tracking for one table
	Choosing the statements to be tracked

	Testing the tracking mechanism
	Tracking report

	Determining tracking status
	Deactivating and activating tracking

	Structure snapshot
	Exporting a version
	Creating a new version
	Quickly accessing tracking information

	Deleting tracking information
	Summary

	Chapter 19:
Administrating the
MySQL Server
	Managing users and their privileges
	The user overview
	Exporting privileges
	Privileges reload

	Adding a user
	Entering the username
	Assigning a host value
	Setting passwords
	Understanding rights for database creation
	Assigning global privileges
	Limiting the resources used

	Editing a user profile
	Editing global privileges
	Assigning database-specific privileges
	Changing the password
	Changing login information or copying a user

	Removing a user

	Database information
	Enabling statistics
	Sorting the statistics
	Checking the database privileges
	Dropping selected databases

	Server information
	Verifying server status
	Server variables
	Server processes
	Storage engines
	Available character sets and collations
	Examining binary logs

	Summary

	Appendix:
Troubleshooting and Support
	Troubleshooting
	System requirements
	Verifying the base configuration
	Solving common errors

	Seeking support
	FAQs
	Help forums
	Creating a SourceForge account
	Choosing the thread title
	Reading the answers

	Using the support tracker
	Using the bug tracker
	Environment description
	Bug description

	Contributing to the project
	The code base
	Translation updates
	Patches

	Index

