% <packh

MASTERING

Efficient and effortless editing with
Vim and Vimscript

RUSLAN OSIPOV

Reviewed by Bram Moolenaar and Christfian Brabandt //

Mastering Vim

Efficient and effortless editing with Vim and Vimscript

Ruslan Osipov

<packt

Mastering Vim

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Associate Group Product Manager: Kunal Sawant
Publishing Product Manager: Samriddhi Murarka
Senior Content Development Editor: Rosal Colaco
Book Project Manager: Deeksha Thakkar

Technical Editor: Jubit Pincy

Copy Editor: Safis Editing

Indexer: Tejal Soni

Production Designer: Gokul Raj S.T

DevRel Marketing Coordinator: Shrinidhi Manoharan

Business Development Executive: Debadrita Chatterjee

First published: November 2018
Second edition: July 2024

Production reference:1190724

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK

ISBN 978-1-83508-187-7

www . packtpub.com

http://www.packtpub.com

Dedicated to my mother, my grandmother, and my wife, the three most important women in my life.

- Ruslan Osipov

Contributors

About the author

Ruslan Osipov is a software engineering manager at Google, and the author of the bestselling “Mastering
Vim” (first edition, 2018). Passionate about developer productivity and workflow optimization, he
continues to refine his Vim expertise and share his knowledge with the community in this expanded
second edition.

Id like to say thank you to Samriddhi, Deeksha, Rosal, and everyone else from Packt who worked on
this book. A huge thank you to Bram for reviewing the first edition of this book (and may he rest in
peace), and Christian. A word goes out to the Vim Japan conference organizers— Tatsuhiro Ujihisa
(Uji), Taro Muraoka (KaoriYa), Thinca, Aomoriringo, Mopp, Yasuhiro Matsumoto (Mattn), t9md,
and Guyon (and anyone else I missed). Thank you for your hospitality!

Special thank you goes to Masafumi Okura, who diligently identified a number of inaccuracies in the
book when translating it to Japanese.

About the reviewers

Bram Moolenaar (first edition, 2018) was the creator and maintainer of Vim. With the help of
volunteers, he worked on it for 32 years. Bram passed away in 2023.

After studying electronics and inventing parts of digital copying machines, Bram decided that creating
open source software was more useful and fun, so he worked on that exclusively for several years.
He last found himself employed at Google, one of the few companies that fully embrace open source
software. In between, he did voluntary work on a project in Uganda and is still helping poor children
there through the I Care Children Foundation (ICCF).

“I would like to thank all the Vim developers for helping me make Vim into what it is today. Without
them, only a fraction of the features would have been implemented and the quality would not have
been nearly as high. I would also like to thank all the plugin writers for building on top of Vim and
making complex features available to users (so that I don’t have to!). And finally, I would like to thank
Ruslan for writing a book that not only aids users with Vim’s built-in features, but also with getting to
know and use plugins”

Bram Moolenaar, 2018

Christian Brabandt (second edition, 2024), has been working in the IT industry for almost 25 years,
mostly as a consultant in various roles, and enjoys working with people and helping them implement
a complex technology stack. He is currently employed with Ataccama as Senior Platform Consultant
where he often has to work with Vim in various incarnations and on different platforms.

He has been involved within the Vim community in various roles ever since graduating from
university and slowly taking a bigger role in Vim development. Since 2023 he has been one of the
main maintainers of the Vim project and helped lead the project after the passing of Bram Moolenaar,
the long-standing Vim maintainer.

Id like to thank my family and friends for helping me through some personal dark times, allowing
me to take away their precious time, spending it on Vim development, and investing it into the Vim
community. Thank you all for your support and for allowing me to be who I am!

Id also like to thank everybody in the Vim community for spreading the word and contributing to Vim
in different ways and keeping the project healthy!

Table of Contents

Preface Xi
1
Getting Started 1
Technical requirements Configuring Vim with your .vimrc 24
A brief history lesson 2 Common operations
Let’s start a conversation (or, how to exit Vim) 26
(about modal interfaces) 4 Opening files 26
Installation 5 Changing text 27
Setting up on Linux and Unix-like systems 5 Saving and closing files 2
Setting up on macOS 8 Moving around - talk to your editor 31
ze“ing up on Z‘:nd"wés 11" Making simple edits in insert mode 35
Vztl‘tilfr;fz(ignllgpa(l)lr(li trofl:eZhooting the installation ;EI; Persistent undo and repeat 38
Read the Vim manual using :help 39
Vanilla Vim versus gVim 23 qumm ary 43
2
Advanced Editing and Navigation 45
Technical requirements 45 Folds 61
Installing plugins 46 Navigating file trees 64
Organizing the workspace 47 Netrw 64
Buffers 48 :e with wildmenu enabled 66
Plugin spotlight - unimpaired 50 Plugin spotlight - NERDTree 67
Windows 51 Plugin spotlight - Vinegar 70
Tabs 59 Plugin spotlight - CtrlP 71

viii

Table of Contents

Navigating text 73 Copying and pasting with registers 85
Jumping into insert mode 76 Where do the registers come in? 86
Searching with / and ? 77 Copying from outside of Vim 88
iz .)
Utilizing text objects 8 Summary 89
Plugin spotlight - EasyMotion 83
Follow the Leader Plugin Management 91
Technical requirements 91 Visual and select modes 104
Managing plugins 92 Replace and virtual replace modes 105
. Terminal mode 107
vim-plug 92 i
Alternatives to vim-plug 95 Operator-pending mode (bonus) 108
Profiling slow plugins 98 Remapping commands 108
Deeper dive into modes 101 Mode —aware remapping 110
Normal mode 102 The leader key 111
Command-line and ex modes 102 Configuring plugins 112
Insert mode 103 Summary 115
Understanding Structured Text 117
Technical requirements 117 Exuberant Ctags 124
Code autocomplete 117 Automatically updating the tags 127
Built-in autocomplete 118 Visualizing the undo tree 128
YouCompleteMe 119 Summary 132
Navigating the code base with tags 123
Build, Test, and Execute 133
Technical requirements 133 Integrating Git with Vim (vim-fugitive) 142
Working with version control 134 Resolving conflicts with vimdiff 145
A quick-and-dirty version control and Git Comparing two files 145
introduction 134 yimdiff and Git 149

Table of Contents

tmux, screen, and Quickfix list 164
Vim terminal mode 154 Location list 166
tmux 154 Building code 167
Screen 161 Testing code 168
Terminal mode 161 Syntax checking code with linters 169
Building and testing 164 Summary 172
Refactoring Code with Regex and Macros 173
Technical requirements 173 Recording and playing macros 186
Search or replace with Editing macros 195
regular expressions 173 Recursive macros 196
Search and replace 174 Running macros across multiple files 199
Operations across files using arglist 179 Using plugins to do the job 199
R basi 180
cgex basies) Summary 199
More about magic 183
Applying the knowledge in practice 184
Making Vim Your Own 201
Technical requirements 201 Healthy Vim customization habits 211
Playing with the Vim UI 202 Optimizing your workflow 211
Color schemes 202 Keeping .vimrc organized 212
The status line 205 Summary 215
gVim-specific configuration 208
Keeping track of configuration files 209
Transcending the Mundane with Vimscript 217
Technical requirements 217 Major changes in Vimscript 9 220
Why Vimscript? 217 Learning the syntax 220
How to execute Vimscript 218 Setting variables 220
Surfacing output 222

Table of Contents

Conditional statements 224 A word about style guides 244
Lists 225 Let’s build a plugin 245
Dictionaries 228 Plugin layout 245
Loops 229 The basics 246
Functions 232 Housekeeping 252
Classes (Vim9script) 234 Improving our plugin 255
Lambda expressions 236 Distributing the plugin 260
Map and filter 237 Where to take the plugin from here 261
Interacting with Vim 239
File-related commands 240 Further reading 261
Prompts 241 Summary 262
Using :help 244
9
Where to Go from Here 263
Seven habits of effective text editing 263 Recommended reading and
Modal interfaces everywhere 264 communities 273
A Vim-like web browsing experience 264 Mailinglists 273
Vim everywhere else 267 IRC 273
Other communities 274
Neovim 268 Learning resources 274
Why make another Vim? 269
Installing and configuring Neovim 270 A word about Uganda 274
Checking health 271 Summary 275
Sane defaults 272
Index 277

Preface

Mastering Vim will introduce you to the wonderful world of Vim through examples of working with
Python code and tools in a project-based fashion. This book will prompt you to make Vim your
primary IDE since you will learn to use it for any programming language.

Who this book is for

Mastering Vim is written for beginner, intermediate, and expert developers. The book will teach you
to effectively embed Vim in your daily workflow. No prior experience with Python or Vim is required.

What this book covers

Chapter 1, Getting Started, introduces the reader to basic concepts and the world of Vim.

Chapter 2, Advanced Editing and Navigation, covers movement and more complex editing operations
and introduces many plugins.

Chapter 3, Follow the Leader — Plugin Management, talks about modes, mappings, and managing
your plugins.

Chapter 4, Understanding the Text, helps you interact with, and navigate, code bases in a semantically
meaningful way.

Chapter 5, Build, Test, and Execute, explores options for running code in, or alongside, your editor.
Chapter 6, Refactoring Code with Regex and Macros, takes a deeper look at refactoring operations.
Chapter 7, Making Vim Your Own, discusses options available for further customizing your Vim experience.

Chapter 8, Transcending the Mundane with Vimscript, dives into the powerful scripting language
Vim provides.

Chapter 9, Where to Go from Here, provides some farewell food for thought, talks about Vim’s younger

sibling, and points at a few places on the internet you might be interested in.

Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/
Mastering-Vim-Second-Edition. In case there’s an update to the code, it will be updated on
the existing GitHub repository.

https://github.com/PacktPublishing/Mastering-Vim-Second-Edition
https://github.com/PacktPublishing/Mastering-Vim-Second-Edition

Xii

Preface

We also have other code bundles from our rich catalog of books and videos available at https: //
github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Functions
in Vimscript 9 are defined using the de f keyword?”

Keypresses are indicated as follows: jk. This means keypress j, followed by keypress k. More complex
keypress chords are written out explicitly (e.g. Ctrl + j, k).

A block of code is set as follows:

" Manage plugins with vim-plug.
call plug#begin()
call plug#end()

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

" Manage plugins with vim-plug.
call plug#begin ()

Plug 'scrooloose/nerdtree’

Plug 'tpope/vim-vinegar'

Plug 'ctrlpvim/ctrlp.vim'

Plug 'mileszs/ack.vim'

Plug 'easymotion/vim-easymotion'

call plug#end ()

Any command-line input is written as follows:

$ cd ~/.vim

$ git init

Bold: Indicates a new term, an important word, or words that you see on screen. For example, words
in menus or dialog boxes appear in the text like this. Here is an example: “Select System info from
the Administration panel”

Warning

Warnings or important notes appear like this.

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Tip
Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercaree
packtpub. com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub . com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors . packtpub. com.

Share Your Thoughts

Once you've read Mastering Vim, wed love to hear your thoughts! Please click here to go straight to
the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

xiii

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1-835-08187-8
https://packt.link/r/1-835-08187-8

Xiv

Preface

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don't stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

Of7 wad 0

il

https://packt.link/free-ebook/978-1-83508-187-7

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83508-187-7

1
Getting Started

Welcome to Mastering Vim, a book that will teach you how to get good with Vim, its plugins, and
its ideological successors!

This chapter will establish a foundation for working with Vim. Every tool is built with a particular
usage philosophy in mind, and Vim is no exception. Vim introduces a different way of working with
text compared to what most people are used to these days. This chapter focuses on highlighting
these differences and establishing a set of healthy editing habits. It will let you approach Vim with a
Vim-friendly frame of mind and will ensure you're using the right tools for the job. To make examples
concrete, we will be using Vim to create a small Python application throughout this chapter.

The following topics will be covered in this chapter:

The difference between major Vim versions

Modal versus modeless interfaces, and why is Vim different from other editors
Installing and updating Vim

The gVim - the graphical user interface for Vim

Configuring Vim for working with Python and editing your configuration
Common file operations - opening, modifying, saving, and closing files

Moving around - navigating with arrow keys and cursor movement keys, by words, paragraphs,
and so on

Making simple edits to files and combining editing commands with movement commands
Persistent undo history

Navigating the built-in Vim manual

Getting Started

Technical requirements

Throughout this chapter, we will be writing a basic Python application. You don’t have to download
any code to follow along with this chapter as we'll be creating files from scratch. However, if you ever
get lost and need more guidance, you can view the resulting code on GitHub:

https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/
tree/main/Chapter0l

We will be using Vim to primarily write Python code throughout this book, and it is assumed that
the reader is somewhat familiar with the language. Examples assume you're using Python 3 syntax.

Working with Python 2 code

If you must live in the past, you can convert Python 3 examples to Python 2 code by changing
the print () command syntax. Change all of print ('Woof ! ') toprint 'Woof!' to
make the code run in Python 2.

We will also be creating and modifying Vim configurations, which are stored in a . vimrc file. The
resulting . vimrc file is available from the previously mentioned GitHub link.

A brief history lesson

Let’s go back to the beginning of time: the middle of the twentieth century. Before personal computers
and terminals, there were teleprinters. A teleprinter is a mechanical typewriter that can send and receive
messages over a telecommunications channel. Here’s a photo of the Teletype ASR-33 (1963) teleprinter
- a fancy typewriter that was used as an interface and an input device for a computing machine:

Figure 1.1 - Teletype Corporation ASR-33 teleprinter (image by Arnold Reinhold, Wikipedia (CC BY-SA 3.0))

https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter01
https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter01

A brief history lesson

The only way to engage with the text through teleprinters was line by line, so line editors such as
ed (developed by Ken Thompson) or its successor - Bill Joy’s ex — were used. Line editors were, just
like Vim is today, modal editors (more about that in a bit) but, due to aforementioned input/output
limitations, were limited to working on one line at a time. Yes, really.

As technology progressed, teleprinters were replaced by terminals with screens, which enabled much
more robust text editing. Vim’s direct predecessor, vi, started its life all the way back in 1976. Unlike
its predecessors, vi (developed by Bill Joy, the author of ex) included many quality-of-life features and
even allowed you to edit multiple lines of text at once — what a luxury!

Did you know?

On many modern systems, the vi command is a symlink to a feature-limited version of vim
referred to as vim- t iny (rather than the original vi implementation)!

Vi inspired many clones, including STEVIE (ST Editor for VI Enthusiasts): and STEVIE source
code is what was eventually used as a basis for Vim. The first version of Vim was released in 1991 by
Bram Moolenaar. Now, you're all caught up!

While it’s not very likely that you'll stumble upon a device with Vim that hasn’t been updated since
the late 1990s, it helps to get a basic idea of what changed between different Vim versions.

Here, you can see the (oversimplified) highlights of each major version of Vim up until the moment
of writing the second edition of this book. Vim has been in some form of continuous development
since 1991!

Major version | Years Highlights

1.0 1991 Bram Moolenaar releases Vi Imitation for the Amiga computer.

2.0 1993 Vi Improved is released under its modern name!

3.0 1994 Multiple windows.

4.0 1996 Graphical interface support.

50-5.8 1998 - 2001 | Syntax highlighting, scripting, and select mode are added.

6.0-6.4 2001 - 2005 | Plugin support and folding support are added.

70-74 2006 — 2013 Notable e featl?res include spe}l checking, code completion,
tabs, branching history, and persistent undo.

9.0 2022 Introduction of the new scripting language (Vim9script).

Just like with vi, there are many Vim clones, and some are quite successful. This book covers one of
the more successful alternative implementations of Vim in Chapter 9.

4

Getting Started

Ask for :help

If you're interested in a more detailed breakdown of the differences between the versions, you
can open : help (you'll learn how to use that by the end of the chapter) and look for “Versions”.
Try :help version9 to see what’s new in Vim 9!

Let’s start a conversation (about modal interfaces)

If you've ever edited text before, you are most likely to be familiar with modeless interfaces. It’s the
default option chosen by modern mainstream text editors, and that’s how many of us learned to work
with text. If youre old enough to remember a time before smartphones, many landlines and early
mobile phones were also modeless.

The term modeless refers to the fact that each interface element has only one function. Each button
press results in a letter showing up on screen, or some other action being performed. Each key (or a
combination of keys) always does the same thing: the application always operates in a single mode.

However, this is not the only way.

Welcome to the modal interface, where each trigger performs a different action based on context. The
most common example of a modal interface that we encounter today is a smartphone. Each time we
work in different applications or open different menus, a tap on the screen performs a different function.

— MODAL

MODELESS —

Figure 1.2 — A smartphone uses a modal interface, while the traditional phone is (mostly) modeless

It’s similar when it comes to text editors. Vim is a modal editor, meaning that a single button press
might result in different actions, depending on context. Are you in insert mode (a mode for entering
text)? Then, hitting o would put the letter o on the screen. However, as soon as you switch to a different
mode, the letter o will change its function to add a new line below the cursor.

Working with Vim is like having a conversation with your editor. You tell Vim to delete the next three
words by pressing d3w (delete 3 words), and you ask Vim to change the text inside quotes by pressing
ci” (change inside “ [quotes]).

Installation

You may hear very frequently that Vim is faster than other editors, but it’s not necessarily the point of
Vim. Vim lets you stay in the flow when working with text. You don't have to break the pace to reach
for your mouse, you don’t have to hit a single key exactly 17 times to get to a particular spot on the
page. You don’t have to drag your mouse millimeter by millimeter to ensure you capture the right set
of words to copy and paste.

When working with a modeless editor, workflow is filled with interruptions. Working with modal
editors has a certain sense of flow to it: you ask the editor to perform actions in a consistent language.
With Vim, editing becomes a much more deliberate exercise.

Installation

Vim is available on every platform, and comes installed on Linux and macOS (however, you may want
to upgrade Vim to a more recent version). You have different options for setting up Vim depending
on your operating system and preference, and here’s a handy crude drawing showing some of the
more common options:

Windows Mac 05 ChromeO08 — [inur

SN/

Glim Cygun Homebrew Maclim

Vim
Figure 1.3 — Options for installing Vim across different OSs

Find your system in the following sections, and skim through the instructions to set it up.

(7
Why so many screenshots?

You'll see that I've included a large number of details and screenshots in the following installation
instructions. While Vim is easily available on most platforms, getting the latest version of Vim
installed is not as straightforward as one would expect. If you realize that youre using the
wrong version of Vim - you can always go back to the instructions in this chapter for help.

Setting up on Linux and Unix-like systems

Linux machines come with Vim installed, which is great news! However, it might be rather out of
date, and a new version of Vim often includes new functionality and optimization changes (you can
read more about changes between versions in the A brief history lesson section of this chapter). Pull

6 Getting Started

up your Command Prompt and run the following code to build an up-to-date Vim from the latest
patch (at the time of cloning the source repository):

cd vim/src

make

v »r W n n

sudo make install

git clone https://github.com/vim/vim.git

./configure --prefix=/usr/local --with-features=huge

Keep on reading to learn more about Compilation options in the next section.

g
Missing dependencies

missing dependencies:

-

If you're running into issues as you're installing Vim, you might be missing some dependencies.
If you're using a Debian-based distribution, the following command should add common

$ sudo apt-get install make build-essential \

libncurses5-dev libncursesw5-dev --fix-missing

J

This will make sure that you’re on the latest major and minor patches of Vim. If you don’t care about
being on the cutting edge, you can also update Vim using a package manager of your choice. Different
Linux distributions use different package managers; the following list includes some common ones:

Distribution/System

Command to install the latest version of Vim

Debian-based (Debian, Ubuntu, Mint)

$ sudo apt-get update

$ sudo apt-get install vim-gtk

CentOS (and Fedora prior to Fedora 22)

$ sudo yum check-update

$ sudo yum install vim-enhanced

$ sudo dnf check-update

Fedora 22+
$ sudo dnf install vim-enhanced
$ sudo pacman -Syu
Arch
$ sudo pacman -S gvim
$ sudo pkg update
FreeBSD

$ sudo pkg install vim

Installation

Pay attention to names

You can see in the preceding table that Vim uses different package names for different repositories.
Packages such as vim-gtk on Debian-based distributions or vim-enhanced on CentOS
come with more features enabled (such as GUI support for instance).

Do keep in mind that package manager repositories tend to lag behind from anywhere between a
few months to a few years.

Thats it; you're now ready to dive into the world of Vim! You can start the editor by typing the
following command:

$ vim

vimversus vi

Vi is Vim’s predecessor (Vim stands for Vi Improved) and is available to be invoked via the vi
command. On some distributions, the vi command links to a feature-stripped version of Vim
(aka vim-tiny), while on some it’s merely a symlink to a feature-complete Vim.

Compilation options

Compiling from source is often the best way to receive the latest available version of Vim. If you're not
afraid to get your hands dirty, you might want to know about common compilation options.

This section will cover various options for the configure command. To compile Vim, you’ll have to
run the following commands, with <optionss> replaced with the desired compilation options:

$ git clone https://github.com/vim/vim.git
$ cd vim/src

$./configure <options>

$ make

$ sudo make install

You can control installation location with --prefix:

o --prefix=/usr/local asareasonable default for a system-wide installation

o --prefix=SHOME/.local will make the newly installed Vim only available to your user

Feature sets allow you to enable different sets of features to be available in Vim, with options being
tiny, small, normal, big, and huge. The most interesting options include the following:

o --with-features=huge includes all possible features, including experimental ones

o --with-features=normal includes a reasonable feature set, which is mostly covered
in this book

Getting Started

o --with-features=tiny only offers bare-bones essentials, without syntax highlighting
or plugin support

Language support is controlled via the - -enable-<language>interp option. Note that this
refers to the ability of Vim’s internals to interact with the selected programming language (e.g., in
plugins or your own scripts), and not your ability to edit said files. Some options include the following:

e --enable-luainterp=yes enables Lua support
o« --enable-perlinterp=yes enables Perl support
o --enable-python3interp=yes enables Python 3 support

o --enable-rubyinterp=yes enables Ruby support

Finally, to integrate the clipboard with the X11 Window System (that is, your system-wide clipboard
on Linux), you might want to compile Vim with the - -with-x option. Note that you might need
the X development library (e.g., you can use sudo apt install libxll-dev libxtst-
dev if you're using the apt package manager).

Setting up on macOS

macOS comes prepackaged with Vim, but the version can be outdated. There are a few ways to install
a fresh version of Vim, and this book will cover two. First, you can install Vim using Homebrew, a
package manager for macOS. You'll have to install Homebrew first, though. Second, you can download
a .dmg image of MacVim. This experience would be more familiar because Mac users are used to
the visual interface.

Since this book covers interactions with the command line, I recommend taking the Homebrew route.
However, youre welcome to go forward with installing the image if interacting with the command
line does not interest you.

Using Homebrew

Homebrew is a third-party package manager for macOS, which makes it easy to install and keep packages
up to date. Instructions on how to install Homebrew are available on https://brew. sh, and, as
of the moment of writing this book, consist of a single line executed in the following command line:

$ /bin/bash -c "$(curl -£fsSL https://raw.githubusercontent.com/
Homebrew/install/HEAD/install.sh)"

Once you run that prompt, hit Enter to continue (as many times as you need to).

https://brew.sh

Installation

If you don’t have Xcode

If you don’t have Xcode installed (which is often a prerequisite for any kind of development-
related activity on Mac), you'll get an Xcode installation popup. We won't be using Xcode
directly, and you can install it with default settings.

This should take a while to run, but you’ll have Homebrew installed by the end: a fantastic tool you
can use to install a lot more than Vim! You’ll see the Installation successful! message in bold font
once the installation is complete.

Let’s install a new version of Vim now using the following command:
$ brew install vim
Homebrew will install all the necessary dependencies too, so you won't have to worry about a thing.

If you already have Homebrew installed, and you have installed Vim in the past, the preceding command
will produce an error. You may want to make sure you have the latest version of Vim, though, so, run
the following command:

$ brew upgrade vim
You should now be ready to enjoy Vim; let’s try opening it with the following command:
$ vim

Welcome to Vim:

Terminal

VIM - Vi IMproved

version 9.8.1658
by Bram Moolenaar et al.
vim is open source and freely distributable

Help poor children in Ugandal!
type :help iccf<Enter> for information

type :q<Enter> to exit
type :help<Enter> or <F1l> for on-line help
type :help version9<Enter> for version info

et eriyrrrerreritaerrll

0,8-1 All

Figure 1.4 - Vim on macOS (installed via Homebrew)

10 Getting Started

Let’s move on to the next section about downloading a . dmg image.
Downloading a .dmg image

Navigate to https://github.com/macvim-dev/macvim/releases/latest and
download MacVim. dmg.

Open MacVim.dmg, and then drag the Vim icon into the Applications directory, as can be
seen in the following screenshot:

[X N MacVim

\

MacVim

———
'l\
P——

MacVim Applications

Figure 1.5 - The MacVim installation screen - drag and drop MacVim into the Applications folder

Depending on the security settings of your Mac, you might be greeted by an error when navigating to the
Applications folder and trying to open the MacVimapp, as demonstrated in the following screenshot:

“MacVim"” can’t be opened because it is

g ‘3 from an unidentified developer.
! Your security preferences allow installation of only
apps from the App Store and identified developers.

Chrome downloaded this file today at 1:50 PM from
github.com.

? oK

Figure 1.6 — The default “unidentified developer” prompt

https://github.com/macvim-dev/macvim/releases/latest

Installation

Open your Applications folder, find MacVim, right-click the icon, and select Open. The following

prompt will pop up:

“MacVim” is from an unidentified developer.
Are you sure you want to open it?

Opening “"MacVim” will always allow it to run on

this Mac.

Chrome downloaded this file today at 1:50 PM from

github.com.

S Cancel

Figure 1.7 - The “unidentified developer” prompt, which you can get by right-clicking and selecting Open

Now, hit Open, and MacVim can be opened as usual from now on. Give it a shot:

()
[

type

type
type
type
type

7222222 222222222222!2'm

[No Name] - VIM

VIM - Vi IMproved

version 9.0.1677
by Bram Moolenaar et al.

Vim is open source and freely distributable

Help poor children in Uganda!

thelp iccf<Enter>

:q<Enter>

:help<Enter> or <F1>
:help version9<Enter>
:help macvim<Enter>

for information

to exit

for on-line help
for version info
for MacVim help

0,0-1 All

Figure 1.8 — MacVim on macOS

Setting up on Windows

Windows provides two primary routes for using Vim: setting up Cygwin and providing a more Unix-
like command-line experience, or installing gVim - a graphical version of Vim (which supports
working with cmd . exe on Windows). I recommend installing both and picking your favorite: gVim
feels slightly more at home on Windows (and it is easier to install), while Cygwin might feel more at
home if you're used to the Unix shell.

11

12

Getting Started

Unix-like experience with Cygwin

Cygwin is a Unix-like environment and a command-line interface for Windows. It aims to bring a

powerful Unix shell and supporting tools to a Windows machine.

Ve

-

Windows Subsystem for Linux (WSL)

WHSL is a feature in Windows 10+ that allows you to run a Linux environment directly in
Windows. While I personally haven’t had experience with WSL, it’s widely praised as a fast,
user-friendly, and reliable way to access the Linux command line and tools on Windows. It
could be a better alternative to Cygwin as it continues to be developed. You can read more
about WSL at https://learn.microsoft.com/windows/wsl.

Installing Cygwin

To begin the installation process, navigate to https://cygwin.com/install.html and
download either setup-x86_64 . exe or setup-x86 . exe, depending on the version of Windows

you're using (64-bit or 32-bit respectively).

How many bits are in your system?

If youre not sure whether your system is 32-bit or 64-bit, you can open Control Panel | System
and Security | System, and look at System type. For example, my Windows machine shows

System type: 64-bit Operating System, x64-based processor.

Open the executable file, and you will be greeted by the following Cygwin installation window:

E Cygwin Setup

— O

Cygwin Net Release Setup Program

Thiz setup program is used for the initial installation of the
Cygwin environment as well as all subsequent updates. The
pages that follow will guide you through the installation.

Please note that we only install a base set of packages by
default. Cygwin provides a large number of packages
spanning a wide variety of purposes.

‘You can always run this program at any time in the future to
add, remove, or upgrade packages as necessary.

Setup version 2.926 (64 bit)
Copyright 2000-2023
https://cygwin.com

Contribute to translations of this program.

< Back Next >

Cancel

b

Figure 1.9 - The Cygwin Setup screen on Windows

https://learn.microsoft.com/windows/wsl
https://cygwin.com/install.html

Installation

Hit Next > a few times, proceeding with the default settings:

« Download source: Install from Internet

o Root directory: C: \cygwiné4 (or a recommended default)

o Install for: all users

o Local package directory: C: \Downloads (or a recommended default)
o Internet connection: Use System Proxy Settings

o Download site: http://cygwin.mirror.constant . com (or any available option)

After this, you will be greeted with the Select Packages screen. Here, we want to select the vim, gvim,
and vim-doc packages. The easiest way to do this is to type vim in a search box, expand the All
|Editors category, and click on the arrow-looking icons next to the desired packages, as demonstrated
in the following screenshot:

E cygwin Setup - Select Packages - O *
Select Packages
Select packages to install. =
View |Category ~| Search Clear |(®) Best O &Smne [Test
Package Current New Sc? Categories ‘ &
Debug (1) Default -
& Editors (7) Default -
fzf-vim Skip hd D Edtors, Unmaintained
gvim 8243722 | [] Editor
vim 8243722 | [] Editor
vim-clang format Skip hd I:I Editors, Unmaintained
vim-cmake Skip hd I:I Editors
vim-comman Skip hd D Editors
vimdoc ______| | M L Edios | ¢
£ >
Hide obsolete packages
< Back Next > Cancel

Figure 1.10 — Cygwin package selection screen - note that gvim, vim, and
vim-doc are marked to be installed, as seen in the New column

The preceding screenshot shows version 8.2.4372-2. This is the latest version available at the moment
of writing this chapter, July 2023. At this time, the latest version of Vim is 9.0, which introduces
Vim9script (you can learn more about version differences in the A brief history lesson section).

13

14

Getting Started

e D
Use Cygwin to compile Vim

If you'd like to have the latest version of Vim, I recommend using Cygwin to compile Vim
from its official Git repository. After installing Cygwin, you should visit the Setting up on Linux
section we covered earlier in this chapter for the instructions. If youd like to do that, you’ll
want to install git and make utilities in Cygwin.

You might need additional utilities

You may want to install curl from under the Net category, and git from under the Devel
category, as we'll be using both in Chapter 3. It might also be helpful to install dos2unix from
under the Utils category, which is a utility used for converting Windows-style line endings to
Linux-style line endings (something you might run into once in a while).

L J

Hit Next > two more times to proceed, which will begin the installation. The installation will take
some time, and now would be a great moment to prematurely congratulate yourself with some coftee!

You might get a few post-install script errors, which you can safely dismiss (unless you see any errors
related to Vim - then, Google is your friend: search for an error text and try to find a solution).

Hit Next > a few more times, proceeding with the defaults:

o Create icon on Desktop

o Addicon to Start Menu

Congratulations - you now have Cygwin installed with Vim!

Installing Cygwin packages

If you ever need to install additional packages in Cygwin, just rerun the installer while selecting
the packages you want.

Using Cygwin

Open Cygwin - the program will be called Cygwin64 Terminal or Cygwin Terminal, depending on
the version of your system, as can be seen in the following screenshot:

Terminal

Figure 1.11 - The Cygwin64 Terminal application icon

Installation
Open it! You will see the following prompt, which will be familiar to Linux users:
E - - O X
rusTan@RUSLAN-DESKTOP ~
5 |

Figure 1.12 — The Cygwin command prompt for the user called ruslan and the RUSLAN-DESKTOP machine

Cygwin supports all of the Unix-style commands we will be using in this book. This book will also
say whether any commands need to be changed to work with Cygwin.

Type vimand hit Enter to start Vim, as demonstrated in the following screenshot:

E- - m| X
| -
e VIM - Vi IMproved
~ version 8.2.4372
~ by Bram Moolenaar et al.
~ Modified by <cygwin@cygwin. com=
[~ Vim is open source and freely distributable
~ Sponsor Vim development!
[~ type :help sponsor<Enter= for information
[~ type :q<Enter> to exit
e type :help<Enter> or <Fl» for on-line help
~ type :help version8<Enter: for wersion info
0,0-1 All w

Figure 1.13 —Vim is installed through Cygwin (note Modified by <cygwin@cygwin.com>)

Cygwin is a way to get a Linux-like shell experience on Windows, meaning you’ll have to follow
Linux-specific instructions throughout this book if you decide to use Cygwin.

You'll also want to be careful with Windows-style line endings versus Linux-style line endings, as
Windows and Linux treat line endings differently. If you run into an odd issue with Vim complaining
about "M characters it is unable to recognize, run the dos2unix utility on the offending file to
resolve the issue.

15

16

Getting Started

Visual Vim with gVim

You can read more about the graphical version of Vim in the Vanilla Vim versus gVim section later
in this chapter.

As it always is with Windows, the process is slightly more visual. Navigate to github.com/vim/
vim-win32-installer in your browser and download an executable installer. At the moment
of writing this chapter, July 2023, the latest available version of Gvim is 9.0.

You can use winget instead

Alternatively, if youre familiar with the winget tool, you can run winget install -e
--id vim.vim (substitute with vim.vim.nightly if youd like to live on the bleeding edge).

Open the executable and follow the prompts on the screen, as demonstrated by the following screenshot:

i Vi 9.0 Setup — X

Welcome to Vim 9.0 Setup

Setup will quide you through the installation of Vim 9.0,

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Mext to continue.

'?3@ ;x0”

Figure 1.14 — gVim 9.0 setup welcome screen

Let’s go ahead and hit Next, then I Agree until we arrive at the Installation Options screen. We're
happy with most of the default options gVim has to offer, except that you might want to enable Create
.bat files for command line use. This option will make the vim command work in the Windows
Command Prompt. Some examples in this book rely on having a Command Prompt, so, enabling
this option would help you follow along.

http://github.com/vim/vim-win32-installer
http://github.com/vim/vim-win32-installer

Installation
Here’s a screenshot of the Installation Options screen with the proper boxes checked off:
& Vim 9.0 Setup - X
The Choose Components
aditor Choose which features of Vim 9.0 you want to install,
Chedk the components you want to install and unchedk the components you don't want to
install. Click Mext to continue,
Select the type of install: Custom =
Or, select the npﬁqnal Uninstall Existing Version(s) A
;f_f:;ﬁﬁnents L= 5 Vim GUI and runtime files
' [¢] Vim consale program
| Create .bat files
[+] Create icons for Vim
&[] Add Vim Context Menu y
N PR = R T ol
Description
Space required: 46.5 MB Create .bat files for Vim variants in the Windows
directory for command line use,

Figure 1.15 — gVim installation screen — note that Create .bat files is selected

Hit Next >. You'll want to continue with the following settings:

o Select the type of install: Typical (after Create .bat files for command line use is enabled,

the type of install value changes to Custom automatically)

o Do not remap keys for Windows behavior

o Right button has a popup menu, left button starts visual mode

¢ Destination Folder: C: \Program Files

Once youre done, hit Install and then Close. Say No to the request to see the README file (or say

Yes - I'm a book, not a cop).

(x86) \Vim (or a recommended default)

17

18 Getting Started

You will now have a few icons pop up on your desktop, the most interesting one being gVim 9.0 as
shown in the following screenshot:

T

gVim 9.0

Figure 1.16 — The gVim 9.0 application icon

Start it, and you're ready to proceed! Happy Vimming!

Setting up on ChromeOS

ChromeOS has become increasingly popular - especially in the education sector and in a fraction
of corporate settings. Chrome devices are cheap, user friendly, and can run on a potato with a couple
of wires sticking out of it. I have been using a Chromebook as a daily driver for work for a couple of
years now — and, thankfully, you don’t have to abandon having Vim if ChromeOS is a platform of
choice for you.

To run Vim on your ChromeOS device, you need to be able to install a Linux environment alongside
it. It’s not a complicated procedure, doesn't require dual booting, and provides seamless integration
between ChromeOS and a Linux environment.

Linux support in ChromeOS

Some legacy ChromeOS devices don't support running a Linux environment, and you can check
whether your device supports Linux by opening the Settings app and searching for Linux. If
this yields no results, you won't be able to use Vim on your ChromeOS device.

First, set up Linux to run on ChromeOS by opening the Settings app, and navigating through the
Advanced | Developers | Linux development environment | Turn on options:

Linux development environment

Turn on
Run Linux tools, editors, and IDEs on your Chromebook. Learn more

Figure 1.17 — A prompt to turn on a Linux development environment on a Chromebook

Installation

You'll be greeted by a prompt to set up a Linux development environment. Hit Next to continue. The
default settings are sufficient, as demonstrated in the following screenshot:

n

Set up Linux development environment

Change how Linux apps will work.

Disk size
This can be modified later in Settings

@® Recommended (10.0 GB)

O Custom

Figure 1.18 - The setup screen for a Linux development environment
- it’s fine to go with the recommended settings

Hit Install, and the whole setup should be over in under a couple of minutes.

The newly installed Debian Linux environment is accessible through the Terminal app. The default
environment name is penguin, so you just need to select that:

Linux

@ penguin

Figure 1.19 - Linux environment titled penguin installed on a ChromeOS

19

20 Getting Started

You'll see a (hopefully familiar) Linux command-line prompt:

> Terminal X + — O X
~$ cowsay Vim rocks

< Vim rocks >

\OA_A
A (o0)\
(N JAVAY

[]----w |

Figure 1.20 - Linux terminal within ChromeOS (a silly cowsay command
can be installed by running $ sudo apt install cowsay)

Vim comes preinstalled on a vast majority of Linux machines, and this one is not an exception: you
should already have access to Vim.

Compile Vim for the latest version
If youd like to have the latest version of Vim, I recommend compiling Vim from its official Git
repository (it’s easy). Visit the Setting up on Linux section earlier in this chapter for instructions
on installing the latest Vim version.

Now, you can launch Vim by invoking it from the terminal:
$ vim
This is the output as shown here:

Terminal X + - O X

IM - Vi IMproved
version 9.08.1677
by Bram Moolenaar et al.

Vim is open source and freely distributable

Sponsor Vim development!

type :help sponsor for information
type :q to exit
type :help or for on-line help
type :help version9 for version info
0,0-1 All

Figure 1.21 - Vim welcome screen, as seen in the ChromeOS terminal

Installation

.

~
Access ChromeOS files through Linux

Due to integration between ChromeOS and Linux, you can access your Linux home directory
(accessible via the cd ~ command from the Terminal window) via the ChromeOS Files app:

® Recent

~] Myfiles
& Downloads
» O Linuxfiles

B+ Play files

» & Google Drive

O Trash

Figure 1.22 - You can access Linux files through the ChromeQS Files app

In addition, you can share individual ChromeOS files with Linux by right-clicking on the
file and selecting Share with Linux. This makes the files accessible in Linux via the /mnt /
chromeos directory.

Verifying and troubleshooting the installation

Regardless of the platform you use to install Vim, it's good to make sure that, with Vim, all the right
features are enabled. On a command line, run the following command:

$ vim --version

21

22 Getting Started

You will see the following output, with a set of features having a + and a - in front of them:

~% vim --version

VIM - Vi IMproved 9.0 (2022 Jun 28, compiled Sep ©1 2822 21:18:19)
Included patches: 1-354

Compiled by Arch Linux

Huge wversion without GUI. Features included (+) or not (-):

+acl +file_in_path +mouse_urxvt -tag_any_white
+arabic +find_1in_path +mouse_xterm +tcl/dyn
+autocmd +float +multi_byte +termguicolors
+autochdir +folding +multi_lang +terminal
-autoservername -footer -mzscheme +terminfo
-balloon_eval +fork() +netbeans_intg +termresponse
+balloon_eval_term +gettext +numG4 +textobjects
-browse -hangul_input +packages +textprop
++builtin_terms +iconv +path_extra +timers
+byte_offset +insert_expand +perl/dyn +title
+channel +ipve +persistent_undo -toolbar
+cindent +job +popupwin +user_commands
-clientserver +jumplist +postscript +vartabs
-clipboard +keymap +printer +vertsplit
+cmdline_compl +lambda +profile +vim9script
+cmdline_hist +langmap +python +viminfo
+cmdline_info +libcall -python3 +virtualedit

Figure 1.23 — Output of the vim --version command

In the preceding screenshot, you can see that my Vim was actually compiled with Python 2 support
(+python) instead of Python 3 support (-python3). To correct the issue, I'd have to either recompile
Vim with +python3 enabled (for which I'd have to install required dependencies) or find a package
that distributes a compiled version of Vim with +python3 enabled.

(A
Vim integrations
Note that +python3 and similar options refer to Python 3 integration of Vim. You can still
edit any file you want (including Python 3), but it does mean your Vim instance, plugins, and
scripts won't be able to run Python 3.

Ask for :help

For a list of all features Vim can have enabled, see :help feature-list.

. J

For instance, if we wanted to recompile Vim with Python 3 support on Linux, we would do the following:

$ git clone https://github.com/vim/vim.git

wr

cd vim/src

$./configure --prefix=/usr/local \
--with-features=huge \
--enable-python3interp

$ make

$ sudo make install

Vanilla Vim versus gVim

Specitying feature sets

We're passing the - -with-features=huge flag in order to compile Vim with most features
enabled. However, - -with-features=huge does not install language bindings, so we
need to explicitly enable Python 3.

In general, if your Vim is not behaving like other Vim installations (including the behavior described
in this book), you might be missing a feature.

Depending on your system and the features you require, the process might be slightly or vastly different.
A quick web search along the lines of Installing Vim <versions> with +<featurex>
on <operating systems should help.

Now that youre through the installation instructions, let’s look a little closer at what we've installed.

Vanilla Vim versus gVim

Using the instructions given before, you've installed two flavors of Vim: command-line Vim, and
gVim. This is how gVim looks in Windows:

[No Name] - GVIM - O X
File Edit Tools Syntax Buffers Window Help
AaERE @ 8| BRRR(ISSAITERS(? A

UIM - Vi IHproved

version 9.8
by Bram Hoolenaar et al.
Uim is open source and freely distributable

Become a registered VUim user?
type :help register<{Enter> for information

type :q<Enter> to exit
type :help<Enter> or <F1> for on-line help
type :help version9<Enter> for version info

Figure 1.24 — gVim interface in Windows

The gVim hooks up a graphical user interface (GUI) to Vim, has better mouse support, and adds
more context menus. It also supports a wider range of colors than many terminal emulators and
provides some quality-of-life features youd expect from a modern GUI.

23

24

Getting Started

You can launch gVim by running the gvVim 9.0 executable on Windows, or on Linux and macOS
by invoking the following command:

$ gvim

Windows users might favor gVim.

This book focuses on increasing the effectiveness of one’s text editing skills, so we will shy away from
navigating multiple menus in gVim, as these are rather intuitive, and take the user out of the flow.

Hence, we will focus on a non-graphical version of Vim, but everything that’s applicable to Vim also
applies to gVim. The two share configurations, and you can swap between the two as you go. Overall,
gVim is slightly more newbie friendly, but it doesn’t matter which one you choose to use for the
purpose of this book.

Try both!

Configuring Vim with your .vimrc

Vim reads configuration from a . vimrec file. Vim works out of the box, but there are certain options
that make working with code a lot easier.

Spot hidden files

In Unix-like systems, files that start with a period (.) are hidden. To see them, run 1s -ain
a Command line.

In Linux and macOS, . vimrc is located in your user directory (the full path would be /
home/<username>/.vimrc). You can also find your user directory by opening a Command
Prompt and running the following command:

$ echo $HOME

Older versions of Windows Explorer did not allow periods in file names, so the file is named _vimrc.
It’s usually located in C: \Users\<username>_vimrc, but you can also locate it by opening
the Windows Command Prompt and running the following command:

$ echo %USERPROFILE%

Locating . vimrc

If you run into problems, open Vim and type in : echo $MYVIMRC followed by Enter. It
should display where Vim is reading . vimrc from.

Configuring Vim with your .vimrc

Find the proper location for your OS, and place the prepared configuration file there. You can download
the . vimrc file used for this chapter from GitHub athttps: //github.com/PacktPublishing/
Mastering-Vim-Second-Edition/tree/main/Chapter01l. The following code shows
the contents of a . vimrc file used in this chapter:

syntax on " Enable syntax highlighting.

filetype plugin indent on " Enable file type based options.

set

set
set
set
set

set

nocompatible " Don't run in backwards compatible mode.

autoindent " Respect indentation when starting new line.
expandtab " Expand tabs to spaces. Essential in Python.
tabstop=4 " Number of spaces tab is counted for.
shiftwidth=4 " Number of spaces to use for autoindent.

backspace=2 " Fix backspace behavior on most terminals.

colorscheme murphy " Change a colorscheme.

-

You’ll eventually want to change these

For extra credit, you may want to limit some options to Python only - especially if you're
(hopefully) planning to use Vim as your primary editor for multiple file types. I reccommend
you prefix certain options with autocmd filetype python, which will only apply
options to Python files:

autocmd filetype python set expandtab

autocmd filetype python set tabstop=4

autocmd filetype python set shiftwidth=4

J

Lines starting with a double quote (") are comments and are ignored by Vim. These settings bring in
some sensible defaults, such as syntax highlighting and consistent indentation. They also fix one of
the common sticking points in a bare-bones Vim installation - inconsistent backspace key behavior
across different environments.

-

Trying out the configuration options

When working with Vim configuration, you can try things out before adding them to your

.vimrc file. To do that, type : followed by a command, for example, : set autoindent
(press Enter to execute). If you ever want to know the value of a setting, add ? at the end of the
command: for example, : set tabstop? will tell you the current tabstop value.

25

https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter01
https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter01

26

Getting Started

I've also changed colorscheme to make screenshots look better in print, but you don’t have to
(unless you're writing a book about Vim - then you probably should).

s ~
The world is full of colors

Vim 9 comes prepackaged with many color themes, and the list grows with every release. You
can try out a color theme by typing : colorscheme <names> and hitting Enter, and you
can cycle through the available color scheme names by typing : colorscheme followed by a
space and by hitting Tab multiple times. You can read more about configuring Vim and color
schemes (including using color schemes you find online) in Chapter 7.

L J

You've configured Vim, and now it’s time to learn how to actually use it!

Common operations (or, how to exit Vim)

We will now focus on interacting with Vim without the use of a mouse or navigational menus. Here’s
a meme I found some years back:

| Am Devloper L 4
€ @ amaevioper

I've been using Vim for about 2 years now, mostly because |
can't figure out how to exit it.

4:26 PM - Feb 17, 2014

() 8,689 () 14.3K people are talking about this i}

Figure 1.25 — An accurate portrayal of a typical Vim user (source: https://
twitter.com/iamdevloper/status/435555976687923200)

Programming is a focus-intensive task on its own. Hunting through context menus is nobody’s idea of
a good time, and keeping our hands on the home row of your keyboard helps trim constant switching
between a keyboard and a mouse.

In this section, we’ll learn how to open (and, more importantly, close) Vim, save files, and make
basic edits.
Opening files

First, start your favorite Command Prompt (Terminal in Linux and macOS, Cygwin in Windows).
We'll be working on a very basic Python application. For simplicity’s sake, let’s make a simple square
root calculator. Run the following command:

$ vim spam.py

Common operations (or, how to exit Vim)

GUI for the win!

If you're using gVim, you can open a file by going into a File menu and choosing Open.
Sometimes, a graphical interface is exactly what you need!

This opens a file named spam. py. If the file existed, youd see its contents here, but since it doesn’t,
were greeted by an empty screen, as shown in the following example:

"spam.py"” [New File]
Figure 1.26 — Opening a new file in Vim as indicated by the [New File] text

You can tell that the file doesn't exist by the [New File] text next to a file name at the bottom of
the screen. Woohoo! You've just opened your first file with Vim!
If you already have Vim open, you can load a file by typing the following, and hitting Enter:

:e spam.py

You have just executed your first Vim command! Pressing the colon character (:) enters a command-
line mode, which lets you enter a line of text that Vim will interpret as a command. Commands are
terminated by hitting the Enter key, which allows you to perform various complex operations, as well
as accessing your systems Command line. The : e command stands for edit.

Vim help often refers to the Enter key as a <CR>, which stands for carriage return.

Changing text

By default, you're in Vim’s normal mode, meaning that every key press corresponds to a particular
command. Hit i on your keyboard to enter an insert mode. This will display -- INSERT -- in a status

27

28 Getting Started

line (at the bottom), and, if you're using gVim, it will change the cursor from a block to a vertical line,
as can be seen in the following example:

-- INSERT -- 8,1 All

Figure 1.27 - Vim in insert mode, as indicated by -- INSERT -- in the bottom-left corner

The insert mode behaves just like any other modeless editor. Normally, we wouldn’t spend a lot of
time in insert mode except for adding new text.

Modes, modes, modes

You've already encountered three of Vim’s modes: command-line mode, normal mode, and
insert mode. This book will cover more modes - see Chapter 3 for details and explanation.

Let’s create our Python application by typing in the following code. We'll be navigating this little
snippet throughout this chapter:

import random
INGREDIENTS = [0 0 . ' .]

def prepare_menu_item(ingredient, with_spam=True):
if with_spam:
return + ingredient
return ingredient

def main():
print()
print(\)
menu = []
for ingredient in INGREDIENTS:
has_spam = random.choice([True, False])
menu. append{prepare_menu_item(ingredient, with_spam=has_spam))
print(\ . .join(menu))

if __name__ ==
main()
-- INSERT --

Figure 1.28 — A simple Python 3 program referencing Monty Python’s “Spam” sketch

Common operations (or, how to exit Vim) 29

To get back to normal mode in Vim, hit Esc on your keyboard. You'll see that -- INSERT -- has
disappeared from the status line. Now, Vim is ready to take commands from you again!

This code isn’t very good

The preceding code does not display Python best practices and is provided to illustrate some
of Vim’s capabilities.

Saving and closing files

Let’s save our file! Execute the following command:

H

Don’t forget to execute the command!
Don't forget to hit Enter at the end of a command to execute it.

: w stands for write.

Naming files

The write command can also be followed by a filename, making it possible to write to a different
file, other than the one thatis open (:w spam_2.py). To change the currently open file to a
new one when saving, use the : saveas command: : saveas spam_2.py.

Let’s exit Vim and check whether the file was indeed created. : g stands for quit. You can also combine
write and quit commands to write and exit by executing : wg.

:q

If you made changes to a file and want to exit Vim without saving the changes, you’ll have to use : q'!
to force Vim to quit. The exclamation mark at the end of the command forces its execution.

Shortening commands

Many commands in Vim have shorter and longer versions. For instance, : e, :w, and : g are
short versions of : edit, :write, and :quit. In the Vim manual, the optional part of the
command is often annotated in square brackets ([]); for example, :w[rite] or :e [dit].

Now that we’re back in our system’s command line, let’s check the contents of a current directory, as
seen in the following code:

$ 1ls
$ python3 spam.py

30

Getting Started

The following screenshot shows what the two preceding commands should output:

~/Mastering-Vim-Second-Edition/Chapter@l$ 1s -a

README.md spam.py .vimrc
~/Mastering-Vim-Second-Edition/Chapter®l$ python3 spam.py
Scene: A cafe. A man and his wife enter.
Man: Well, what've you got?
Waitress: Well, there's spam egg, sausage, bacon, ham, crumpets, spam spam
~/Mastering-Vim-Second-Edition/Chapter@1$

Figure 1.29 — Output of the Is -a and python3 spam.py commands

Command spotlight

In Unix, 1s lists the contents of a current directory (the -a flag shows hidden files). python3
spam. py executes the script using a Python 3 interpreter.

A word about swap files

By default, Vim keeps track of the changes you make to files in swap files. The swap files are created
as you edit the files, and are used to recover the contents of your files in case either Vim, your SSH
session, or your machine crashes. If you don’t exit Vim cleanly, or try to edit the same file multiple
times at the same time, you’ll be greeted by the following screen:

Found a swap file by the name ".spam.py.swp"
owned by: ruslanc dated: Thu Jul 27 17:12:33 2023
file name: ~ruslanc/Mastering-Vim-Second-Edition/Chapter®l/spam.py
modified: YES
user name: ruslano host name: penguin
process ID: 1719 (STILL RUNMNING)
While opening file "spam.py"
dated: Thu Jul 27 17:02:10 2023

(1) Another program may be editing the same file. If this is the case,
be careful not to end up with two different instances of the same
file when making changes. Quit, or continue with caution.

(2) An edit session for this file crashed.

If this is the case, use ":recover” or "wim -I spam.py"”

to recover the changes (see ":help recovery").

If you did this already, delete the swap file ".spam.py.swp"
to avoid this message.

Swap file ".spam.py.swp" already exists!
[0lpen Read-Only, (E)dit anyway, (R)ecover, (Q)uit, (A)bort:

Figure 1.30 — A swap file error when attempting to open a file

Moving around - talk to your editor

You can either hit r to recover the swap file contents or d to delete the swap file and dismiss the
changes. If you decide to recover the swap file, you can prevent the same message from showing up
the next time you open the file in Vim by reopening a file, running : e, and pressing d to delete the
swap file (although Vim won't let you delete the swap file if the file in question is currently open in
another Vim instance).

By default, Vim creates files such as <filename>.swp and . <filename>. swp in the same
directory as the original file. If you don’t like your file system being littered with swap files, you can
change this behavior by telling Vim to place all the swap files in a single directory. To do so, add the
following to your . vimrc:

set directory=$HOME/.vim/swap//

Note that double directory delimiter at the end; this setting won’t work correctly without it!

For Windows users

If youre on Windows, you should use set directory=%USERDATA%\.vim\swap//
(note the direction of the last two slashes).

You can also choose to disable the swap files completely by adding set noswapfile to your .vimrc.

“But,” I hear you say, “I spend most of my time navigating code (or text) rather than writing it top to
bottom!” Never fret, as this is what sets Vim apart from conventional editors. The next section will
teach you to navigate around what you just wrote.

Moving around - talk to your editor

Vim allows you to navigate content a lot more efficiently than most conventional editors. Let’s start
with the basics.

You can move your cursor around, character by character, by using arrow keys or the 4, j, k, and |
keys. This is the least efficient and the most precise way to move:

Key Alternative key Action
h Left arrow Move cursor left
j Down arrow Move cursor down
k Up arrow Move cursor up
1 Right arrow Move cursor right

31

32 Getting Started

The following diagram is a visual representation that might be a little easier on the eyes:

Sy

Figure 1.31 - Visual representation of the h, j, k, and | directional keys

Vi (Vim’s predecessor) was created on an old ADM-3A terminal, which didn’t have arrow keys. The
h, j, k, and [keys were used as arrows.

Figure 1.32 - The ADM-3A terminal (image by Chris Jacobs, Wikipedia (CC BY-SA 3.0))

Moving around - talk to your editor

Try it! There’s a lot of value to getting used to the A, j, k, and [keys for movement; for example, your
hands stay on the home row of your keyboard. This way you don’t have to move your hands and it
helps you stay in the flow. Furthermore, many applications treat A, j, k, and [as arrow keys — youd be
surprised how many tools respond to these.

Now, you might be inclined to hit directional keys multiple times to get to a desired position, but there’s
a better way! You can prefix every command with a number, which would repeat the command that
number of times. For example, hitting 5 + j will move the cursor five lines down, while hitting I + 4
+ I will move the cursor 14 characters to the right. This works with most commands you encounter
in this book.

Calculating the exact number of characters you would like to move is pretty hard (and nobody wants
to do it), so there’s a way to move by words. Use w to move to the beginning of the next word, and
use e to get to the end of the closest word. To move backward to the beginning of the word, hit b.

You can also capitalize these letters to treat everything but a white space as a word! This allows you
to differentiate between the kind of things youd like to traverse.

Vim has two kinds of word objects: referred to as lowercase “word” and uppercase “WORD”. In
the Vim world, word is a sequence of letters, digits, and underscores. WORD is a sequence of any
non-blank characters separated by white space (it’s technically more complicated than that; see : help
iskeyword if youre curious).

Let’s take the following line of code from our example:

prepare_menu_item(ingredient, with_spam=has_spam)

Note

Notice the cursor position - it’s hovering over the first character of ingredient.

Hitting w will move the cursor to the next comma while hitting W will take you to the beginning of
with spam. Capitalized W, E, and B will treat any characters bundled together and separated by a
space as their own words. This can be seen in the following table:

Key Action

w Move forward by word

e Move forward until the end of the word

w Move forward by WORD

E Move forward until the end of the WORD

b Move backward to the beginning of the word

B Move backward to the beginning of the WORD

33

34 Getting Started

The following screenshot shows more examples of how each command behaves:

Key | Initial cursor position Resulting cursor position
w prepare_menu_item(ingredient, with_spam=has_spam)| prepare_menu_item(ingredient, with_spam=has_spam)
e prepare_menu_item(ingredient, with_spam=has_spam)| prepare_menu_item(ingredient, with_spam=has_spam)

prepare_menu_item(ingredient, with_spam=has_spam)| prepare_menu_item(ingredient, with_spam=has_spam)

prepare_menu_item(ingredient, with_spam=has_spam)| prepare_menu_item(ingredient, with_spam=has_spam)

prepare_menu_item(ingredient, with_spam=has_spam)| prepare_menu_item(ingredient, with_spam=has_spam)

bdhjg@‘

prepare_menu_item(ingredient, with_spam=has_spam)| prepare_menu_item(ingredient, with_spam=has_spam)

Combine the movements shown with the directional movements you learned earlier to move in
fewer keystrokes!

It’s also really useful to move in paragraphs. Everything separated by at least two new lines is considered
a paragraph, which also means each code block is a paragraph, as can be seen in the following example:

INGREDIENTS = [. . i 7 ‘]

def prepare_menu_item(ingredient, with_spam=True}:
if with_spam:
return + ingredient
return ingredient

def main():
print()
print()
menu = []
for ingredient in INGREDIENTS:
has_spam = random.choice([True, False])
menu . append (
prepare_menu_item(ingredient, with_spam=has_spam)
)

print(, .join(menu))
Figure 1.33 —You can see three paragraphs here
The INGREDIENTS constant, and the prepare menu_itemand main functions are three

separate paragraphs. Use a closing curly brace, }, to move forward, and an opening curly brace, {, to
move backward, as detailed in the following table:

Command Action

{ Move back by one paragraph

} Move forward by one paragraph

Making simple edits in insert mode

Don’t forget to combine these two with numbers if you need to move by more than one paragraph.

back

paragmph
k

~ WD\"d

1
J|

1 paragraph

end
(of word)

T Lol

Figure 1.34 — A visual representation of basic movement keys in Vim

There are more ways to move around, but these are the most important basics. We'll be covering more
complex ways to navigate in Chapter 2.

Making simple edits in insert mode

When working with Vim, you usually want to spend as little time as possible in the insert mode
(unless you're writing and not editing). Since most text operations involve editing, we’ll focus on that.

You've already learned to enter the insert mode by pressing i. There are more ways to get to the insert
mode. Often, you will want to change some piece of text for another one, and there’s a command just
for that - ¢. The change command allows you to remove a portion of text and immediately enter an
insert mode. Change is a compound command, meaning that it needs to be followed by a command
that tells Vim what needs to be changed. You can combine it with any of the movement commands
you've learned before. Here are some examples:

Command | Before After

Cw prepare_menu_item(ingredient, with_spam=has_spam) (ingredient, with_spam=has_spam)

c3e prepare_menu_item({ingredient, with_spam=has_spam) . with_spam=has_spam)

Cb prepare_menu_item(ingredient, with_spam=has_spam) |prepare_menu_item(ent, with_spam=has_spam)
c4l prepare_menu_item(ingredient, with_spam=has_spam) | @are_menu_item(ingredient, with_spam=has_spam)
cW prepare_menu_item(ingredient, with_spam=has_spam) | with_spam=has_spam)

35

Getting Started

I ~
words versus WORDS

Remember, non-alphanumeric characters (including punctuation) are treated as words. For
example, prepare menu_item(ingredient, has_ spam) will be considered six
words (but only one WORD): prepare _menu_item, (, ingredient, , (comma),
has spam,and).

Exception

As an odd exception, cw behaves like ce. This is a leftover from Vi, Vim’s predecessor.
L J

As you learn more complex movement commands, you can combine these with a change for quick
and seamless editing. We'll also be covering a few plugins that will supercharge a change command
to allow for even more powerful editing, such as changing text within braces or replacing the type of
quotes on the go.

Just like a sentence

All of these examples follow the <command> <number> <movement or a text
object > structure. You can put a number before or after <command.

For example, say you wish to change the following line:
prepare menu item(ingredient, with spam=has spam)

Say you want to change the ingredient to 'egg"':
prepare menu item('egg', with spam=has spam)

To accomplish that, you can execute the following set of commands:

Contents of the line Action

prepare_menu_item(ingredient, with_spam=has_spam) | Start with a cursor at the beginning of the line

prepare_menu_item(ingredient, with_spam=has_spam) | Hit 2w to move the cursor three words forward
to the beginning of ingredient

prepare_menu_item(, with_spam=has_spam) Press cw to delete the ingredient word
and enter the insert mode

prepare_menu_item(, with_spam=has_spam) Type 'egg'

prepare_menu_item(, with_spam=has_spam) Hit the Esc key to return to NORMAL mode

Making simple edits in insert mode

Sometimes, we just want to cut things, without putting anything instead, and d does just that. It stands

for delete. It behaves similarly to c, except that the behavior of w and e is more standard, as can be
seen in the following example:

Command | Before After

dw prepare_menu_item(ingredient, with_spam=has_spam) |prepare_menu_item(, with_spam=has_spam)
d3e prepare_menu_item(ingredient, with_spam=has_spam) | . with_spam=has_spam)

db prepare_menu_item(ingredient, with_spam=has_spam) | prepare_menu_item(ent, with_spam=has_spam)
dsl prepare_menu_item(ingredient, with_spam=has_spam) | prepare_menu_item(ingredient, spam=has_spam)
dw prepare_menu_item(ingredient, with_spam=has_spam) | prepare_menu_item(ingredient,

There are also two more nifty shortcuts that allow you to change or delete a whole line:

Command | What it does

cc Clears the whole line and enters insert mode. Preserves current indentation level,
which is useful when coding.

dd Deletes an entire line.

For example, look at the following piece:

def main(}):
print()
print()
menu = []
for ingredient in INGREDIENTS:
has_spam = random.choice([True, False])
menu . append (prepare_menu_item(ingredient, with_spam=has_spam))
print(, .join(menu))

Figure 1.35 — A piece of code we wrote (or copied) earlier.

By hitting dd you will completely remove a line, as demonstrated in the following example:
def main():
print()
print()
menu = []
for ingredient in INGREDIENTS:
has_spam = random.choice([True, False])
print(, .join(menu))

Figure 1.36 — dd removes a line and places the cursor on the next line

37

38

Getting Started

Hitting cc will clear the line and enter insert mode with the proper indent, as shown in the
following example:
def main():

print()

print()

menu = []

for ingredient in INGREDIENTS:

has_spam = random.choice([True, False])

print (, .join(menu))

Figure 1.37 — cc clears the ling, and puts you into insert mode at the beginning of the line.

Visual mode

If you run into difficulties picking the right movement commands, you can also use the visual
mode to select the text you want to modify. Hit v to enter the visual mode and use the usual
movement commands to adjust the selection. Run the desired command (such as ¢ to change
or d to delete) once you're satisfied with the selection.

Persistent undo and repeat

Like any editor, Vim keeps track of every operation. Press u to undo a last operation, and Ctrl + r to
redo it.

Undo tree

To learn more about Vim’s undo tree (Vim’s undo history is not linear) and how to navigate
it, see Chapter 4.

Vim also allows you to persist undo history between sessions, which is great if you want to undo (or
remember) something you've done a few days ago!

You can enable persistent undo by adding the following line to your . vimrc:

set undofile

However, this will litter your system with an undo file for each file you’re editing. You can consolidate
the undo files in a single directory, as seen in the following example:

" Set up persistent undo across all files.
set undofile
let my undo dir = expand('S$SHOME/.vim/undodir')

Read the Vim manual using :help

if lisdirectory(my undo dir))
call mkdir (my undo_dir, "p")

endif

set undodir=my undo dir

For Windows users

If you're using Windows, replace the directories with SUSERPROFILE\vimfiles\undodir
(and you’ll be making changes to _vimrc instead of . vimrc).

Now, you’ll be able to undo and redo your changes across sessions.

Read the Vim manual using :help

The best learning tool Vim can offer is certainly a : help command, as can be seen in the
following screenshot:

help. txt For Vim version 9.@. Last change: 2022 Dec @3
VIM - main help file

Move around: Use the cursor keys, or "h" to go left, h 1
"j" to go down, "k" to go up, "1" to go right. j
Close this window: Use ":g<Enter>".
Get out of Vim: Use ":ga!<Enter>" (careful, all changes are lost!).

Jump to a subject: Position the cursor on a tag (e.g. |bars|) and hit CTRL-].
With the mouse: ":set mouse=a" to enable the mouse (in xterm or GUI).
Double-click the left mouse button on a tag, e.g. |bars|.
Jump back: Type CTRL-O. Repeat to go further back.

Get specific help: It is possible to go directly to whatever you want help
on, by giving an argument to the |:help| command.
Prepend something to specify the context: *help-context*

WHAT PREPEND EXAMPLE
Normal mode command thelp x
help.txt [Help] [RO]

[No Name]
"help.txt" [readonly] 253 lines, 9491 bytes

Figure 1.38 — The :help page - if you've read it, you probably wouldn't have needed to read this book

It’s an enormous collection of resources and tutorials that comes installed with Vim. Scroll through
using the Page Up and Page Down keys (bonus point for using Ctrl + b and Ctrl + finstead), there is
a lot of useful information there.

39

40

Getting Started

:help help-summary

Consider reading through the help-summary page at some point in your Vim journey. It’s
short, and arms you with many tools needed to navigate Vim help effectively. I incorporated
some tips from help-summary in this section, but there are more!

Whenever you are stuck or want to learn more about a particular command, try searching it using
:help (you can shorten it to :h). Let’s try searching for the normal mode cc command we've learned:

:h cc

Here’s the output of this code:

tcci
"x]cc Delete [count] lines [into register x] and start
g
insert |linewise|. If 'autoindent' is on, preserve
the indent of the first line.
*ck
["x]C Delete from the cursor position to the end of the

line and [count]-1 more lines [into register x], and
start insert. Synonym for c$ (not [linewise]|).
ksk
["x]s Delete [count] characters [into register x] and start

insert (s stands for Substitute). Synonym for "cl"
(not |linewise]).

G

["x]S Delete [count] lines [into register x] and start
insert. Synonym for "cc" |linewise|.

{Visual}["x]Jc or *y_c* *y_s*
change.txt [Help] [RO]

[No Name]

"change.txt" [readonly] 1979 lines, 8@48@ bytes

Figure 1.39 - A :help page for a cc command

Help tells us the way the command works, as well as how different options and settings affect the
command (for instance, the autoindent setting preserves the indentation).

Searching for options

In Vim help, options are always denoted with single quotation marks. For example, if you wanted
to look for the autoindent option (remember set autoindent inyour .vimrc?),
you'll execute :help 'autoindent'.

Read the Vim manual using :help

:help is a command that navigates a set of help files. As you look through the help files, you'll notice
that certain words are highlighted in color. These are tags, and can be searched for using the :help
command. Unfortunately, not every tag name is intuitive. For instance, if we wanted to learn how to
search for a string in Vim, we could try using the following:

:h search

However, it looks like this command takes us to the entry on expression evaluation, which is not
exactly what we were looking for, as demonstrated by the following screenshot:

search()
search({pattern} [, {flags} [, {stopline} [, {timeout} [, {skip}]111)
Search for regexp pattern {pattern}. The search starts at the
cursor position (you can use |cursor()| to set it).

When a match has been found its line number is returned.
If there is no match a @ is returned and the cursor doesn't
move. No error message is given.

{flags} is a String, which can contain these character flags:
'b' search Backward instead of forward

'c accept a match at the Cursor position

‘e! move to the End of the match

do Not move the cursor

return number of matching sub-Pattern (see below)

Set the ' mark at the previous location of the cursor
Wrap around the end of the file

don't Wrap around the end of the file

z start searching at the cursor column instead of zero
If neither 'w' or '"W' is given, the "wrapscan' option applies.

builtin. txt [Help] [RO]

[No Name]
"builtin.txt" [readonly] 10978 lines, 422443 bytes

Bt
g

e
n
p
s
w
W

ot

Figure 1.40 — A help page for a search() expression

To find the right entry, type :h search (don't hit Enter yet) followed by Ctrl + d. This will give you a
list of help tags containing the search substring. One of the options shown is search-commands,
which is what wed be looking for. Complete your command in the following way to get to the entry
we were looking for:

:h search-commands

41

42 Getting Started

The following display shows the right help entry for search:

1. Search commands *search-commands*®
*!Jk
/{pattern}[/]<CR> Search forward for the [count]'th occurrence of

{pattern} |exclusive|.

/{pattern}/{offset}<CR> Search forward for the [count]'th occurrence of
{pattern} and go |{offset}| lines up or down.

|linewise| .
f<(R>

/<CR> Search forward for the [count]'th occurrence of the
latest used pattern |last-pattern| with latest used
| {offset}|

/1 {offset}<CR> Search forward for the [count]'th occurrence of the

latest used pattern |last-pattern| with new
|{offset}|. If {offset} is empty no offset is used.

*7k

pattern.txt [Help] [RO]
[No Name]

"pattern.txt" [readonly] 1503 lines, 63523 bytes

Figure 1.41 - A :help page for search commands

(N
Navigating search files
A discerning reader might notice certain keywords adorned with various characters ([, {, |,
etc.) or highlighted (depending on your color scheme) in help pages. When your cursor is over
a keyword in a help file, you can press Ctrl + | to jump to the definition of the keyword, and
Ctrl + o to jump back. Give it a shot!

. J

(N
Search
Speaking of search functionality, you can search inside help pages (or any file open in Vim)
using /search term to search forward from the cursor or ?search term to search
backward. See Chapter 2 to learn more about how to perform search operations.

. J

Finally, Vim comes with a handy vimtutor utility, which you can invoke on the command line.
This book covers most things that vimtutor teaches, but it doesn’t mean you should sleep on it -

vimtutor includes many exercises that can build Vim commands into your muscle memory.

Don't forget to use Vim’s help system any time you have questions or want to better understand the

way Vim behaves.

Summary

Summary

The original Vi was developed to work through remote terminals when bandwidth and speed were
limited. These limitations guided Vi toward establishing an efficient and deliberate editing process,
which is whats at the core of Vim—Vi Improved today.

Throughout this chapter, you've picked up a few (hopefully) interesting tidbits about the history of
Vim and the difference between its major versions.

You've learned how to install and update Vim and its graphical counterpart — gVim - on every major
platform (in more ways than you will ever need).

You've learned to configure your Vim through tinkering with . vimrc, which is something you will
often go back to as you customize the editor for your own needs.

You've picked up the basics of working with files, moving around Vim, and making changes. Vim’s
concept of text objects (letters, words, paragraphs) and composite commands (such as d2w - delete
2 words) empower precise text operations.

If there’s one thing you could take away from this chapter, it would be : help. Vim’s internal help
system is incredibly detailed, and it can answer most, if not all, questions you might have, as long as
you know what you’re looking for.

In the next chapter, we'll be looking into getting more out of Vim. You'll learn how to navigate files
and get better at editing text.

43

2
Advanced Editing
and Navigation

Throughout this chapter, you will get a lot more comfortable using Vim in your day-to-day tasks. You
will be working with a Python code base, which should provide you with a set of real-life scenarios
for working with code. If you have a project of your own handy, you can choose to try out the lessons
taught in this chapter using your own project files; however, you might find that not every scenario
applies to your code base.

The following topics will be covered in this chapter:

o A quick-and-dirty way of installing Vim plugins (with a better way to install and manage plugins
following in Chapter 3, Follow the Leader — Plugin Management).

o Keeping your workspace organized when working with multiple or long files using buffers,
windows, tabs, and folds

o Navigating complex file trees without leaving Vim with Netrw, NERDTree, Vinegar, or CtrlP

o Advanced navigation throughout a file, and covering more types of text objects: using grep
and ack to look for things across files, and EasyMotion, a lightning-fast movement plugin

« Copying and pasting with the power of registers

Technical requirements

This chapter will cover working with a Python code base. You can get the code we'll be editing in this
chapter from GitHub at https://github.com/PacktPublishing/Mastering-Vim-
Second-Edition/tree/main/Chapter02.

https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter02

46

Advanced Editing and Navigation

Installing plugins

This chapter will start by introducing Vim plugins. Plugin management is a rather broad subject (and
it’s covered in Chapter 3, Follow the Leader - Plugin Management, as well), but we're starting out with
just a few plugins, so we won't have to worry ourselves with that topic yet.

First, let’s go through the one-time setup:
1. You'll need to create a directory to store plugins. Execute the following on the command line:

$ mkdir -p ~/.vim/pack/plugins/start

For Windows users

If youre using GVim under Windows, you’ll have to create the vimfiles directory under
your user folder (usually C: \Users\<usernames), and then create pack\plugins\
start folders inside of it.

2. You'll want to tell Vim to load documentation for each plugin, as it doesn’t do so automatically.
For that, add the following line to your ~/ . vimrc file:

silent! helptags ALL " Load help files for all plugins.
Now, every time you want to add a plugin, you’ll have to do the following.

3. Find your plugin on GitHub. For example, let’s install ht tps: //github. com/tpope/
vim-unimpaired, a plugin that adds a set of handy mappings (well get to using it later in
this chapter). If you have Git installed, find the Git repository URL (in this case, its https: //
github.com/tpope/vim-unimpaired) and run the following:

$ git clone https://github.com/tpope/vim-unimpaired \
~/.vim/pack/plugins/start/vim-unimpaired

If you don’t have Git installed

If you don’t have Git installed, or if you're installing a plugin for GVim under Windows, navigate
to the plugin’s GitHub page, and find the Clone or download button. Download the ZIP
archive and unpack it into . vim/pack/plugins/start/vim-unimpaired in Linux
orvimfiles/pack/plugins/start/vim-unimpaired in Windows.

4. Restart Vim and the plugin should be available to use.

How do I know if the plugin works?

You can usually check if the plugin is ready to use by invoking one of its mappings or other side effects
(which you can look up, say, on GitHub). For instance, vim-unimpaired introduces Jf mapping to move
to the next file in the current directory. You can press] followed by fand see if something happens.

https://github.com/tpope/vim-unimpaired
https://github.com/tpope/vim-unimpaired
https://github.com/tpope/vim-unimpaired
https://github.com/tpope/vim-unimpaired

Organizing the workspace

But before you get to use the plugin we just installed (and to understand why it’s useful), let’s talk
about how your workspace is organized in Vim.

Organizing the workspace

So far, we've only worked with a single file in Vim. When working with code, you usually have to work
with multiple files at once, switching back and forth, making edits across multiple files, and looking
up certain bits somewhere else. Luckily, Vim provides an extensive way to deal with many files:

Buffers are the way Vim internally represents files; they allow you to switch between multiple
files quickly

Windows organize the workspace by displaying multiple files next to each other
Tabs are a collection of windows

Folds allow you to hide and expand certain portions of files, making large files easier to navigate

Here’s a screenshot illustrating the preceding points:

from kitchen import ingredienmt

class Egg({ingredient.Ingredient):

kitchen/egy.py

k/egg.py k/bacon.py
class Ingredient{object):

def __init_ (self, name):
self.name = name

def __init_ (self):
self.name = 'eqgg

def prepare(self, with_spam=True):
if with_spam:
return 'spam ' + self.name
return self.name

kitchen/ingredient. py

import random

INGREDIENTS = [egg.Ega(), bacon.Bacon(), sausage.Sausage()]

prepare_ingredient{ingredient):
2 lipes: has_spam = random.choice([True, False])

Figure 2.1 — Buffers, windows, tabs, and folds conveniently illustrated in one place.

47

48

Advanced Editing and Navigation

Let’s understand the content in the screenshot:

o Multiple files (labeled kit chen/egg.py, kitchen/ingredient .py, and welcome.
py) are open as windows

o The bar at the top (listing 3 k/egg.py and k/bacon. py) indicates the tabs
« Lines starting with +- - indicate folds, hiding away portions of a file

o Every open file is loaded into a buffer, you’ll learn about those in a moment

This section will go over windows, tabs, and folds in detail, and you’ll be able to comfortably work
with as many files as you need.

Buffers

Buffers are internal representations of files. Every file you open will have a corresponding buffer.
Let’s open a file from the command line: vim welcome. py. Now, let’s see a list of existing buffers:

:1ls

Command synonyms

Many commands have synonyms, and : 1s is not an exception: :buffersand : files will
accomplish the same thing. Pick one that’s the easiest for you to remember!

Here’s what the output of : 1s looks like (see the bottom three lines):

has_spam = random.choice([True, False])
ingredient.prepare(has_spam)

def main(}:

print{'Scene: A cafe. A man and his wife enter. '}

print{'Man: Well, whath've you got?')

menu = []

for ingredient in INGREDIENTS:

menu . append { prepare_ingredient(ingredient))
1s
1% "welcome.py" line 12

Press ENTER or type command to continue

Figure 2.2 - You can see the output of the : 1 s command at the bottom of the screen.

The status bar shows some information about the buffers we have open (we only have one right now):

o 1 is the buffer number, and it’ll stay constant throughout the Vim session

o % indicates that the buffer is in the current window (see the Windows section)

Organizing the workspace

o a signals that the buffer is active: it’s loaded and is visible
e "welcome.py" is the filename
o line 12 isthe current cursor position

Let’s open another file:

:e kitchen/bacon.py

You can see that the file we initially opened is nowhere to be seen and has been replaced with the
current file. However, welcome . py is still stored in one of the buffers. List all of the buffers again:

:1s
You can see both filenames listed:
class Bacon{ingredient.Ingredient):

def _ init_ (self):
self.name = "bacon

s
1# "welcome.py" line 12
2 %¥a "kitchen/bacon.py" line 1

Press ENTER or type command to continue

Figure 2.3 - Output of the : 1s command, listing “welcome.py” and “kitchen/bacon.py” buffers.

How do we get to the file, then?

Vim refers to buffers by a number and a name, and both are unique within a single session (until you
exit Vim). To switch to a different buffer, use the : b command, followed by the number of the buffer:

:tb 1
You can shorten the previous by omitting the space between :b and the buffer number: :b1.

Voila, you're taken back to the original file! Since buffers are also identified by a filename, you can switch
between them using partial filenames. The following will open the buffer containing kitchen/bacon.py:

:b bacon

However, if you have more than one match, you’ll get an error. Try looking for a buffer with a filename
containing py:

:b py

49

50

Advanced Editing and Navigation

As you can see in the following screenshot, the status line displays an error:

E93: More than one match for p

Figure 2.4 - You get an error when more than one buffers return a partial match!
That’s when you can use tab completion to cycle through the available options. Type in :b py (without
hitting Enter) and press the Tab key to cycle through the available results.

You can also cycle through buffers using :bn (:bnext for next buffer) and :bp (:bprevious
for previous buffer).

Once youre done with the buffer, you can delete it, hence removing it from the list of open buffers
without quitting Vim:

:bd

If you modified the contents of the buffer, this will return an error if the current buffer is not saved.
Hence, you'll get a chance to save the file without accidentally deleting the buffer.

Plugin spotlight - unimpaired

Tim Pope’s vim-unimpaired is a plugin that adds a number of handy mappings for existing Vim
commands (and a few new ones). I use it daily, as I find mappings more intuitive— /b (alias for :bn)
and [b (alias for : bp) cycle through open buffers, |f and [f cycle through files in a directory, and so
on. It’s available from GitHub at https://github.com/tpope/vim-unimpaired.

s N
Installation instructions

If you haven't installed any plugins yet, see Installing plugins at the beginning of the chapter for
one-time setup instructions. After that’s been done at least once, run the following (if you're
using Windows, you'll need to change the directory to ~\pack\plugins\start)and
restart Vim:

$ git clone https://github.com/tpope/vim-unimpaired \

~/.vim/pack/plugins/start/vim-unimpaired

https://github.com/tpope/vim-unimpaired

Organizing the workspace

Here are some of the mappings vim-unimpaired provides:
o Jband [b cycle through buffers

o Jfand [fcycle through files in the same directory as the current buffer

o Jland [l cycle through the location list (see the Location list section in Chapter 5, Build, Test,
and Execute)

o Jqand [q cycle through the quickfix list (see the Quickfix list section in Chapter 5, Build, Test,
and Execute)

o Jtand [t cycle through tags (see the Meet Exuberant Ctags section in Chapter 4, Understanding
the Text)

The plugin also allows you to toggle certain options with just a few key presses, such as yos to toggle
spell checking or yoc to toggle the cursor line highlighting. It’s cool.

See :help unimpaired for a full list of mappings and features that vim-unimpaired provides.

Windows

Vim loads buffers into windows. You can have multiple windows open on the screen at the same time,
allowing for split-screen functionality.

Creating, deleting, and navigating windows

Let’s give working with windows a shot. Open welcome . py (either from a command line by running
$ vim welcome.py or from Vim with :e welcome.py).

Open one of our files in a split window:

:split kitchen/bacon.py

Type less!

You can shorten this command to : sp.

51

52

Advanced Editing and Navigation

You can see that kitchen/bacon. py was opened above the current file and that your cursor was
placed there:

from kitchen import ingredient

class Bacon(ingredient.Ingredient):

def __init_ (self):
self.name = "bacor

kitchen/bacon. py

#1/fusT/bin/python

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon(}, sausage.Sausage()]

def prepare_ingredient{ingredient):
has_spam = random.choice([Trus, False])
ingredient.prepare(has_spam)

welcome. py
"kitchen/bacon.py"” 7L, 1228

Figure 2.5 - A : split command usually opens a new window above the current one.

You can split the window vertically as well by running the following code:

:veplit kitchen/egg.py

Organizing the workspace

As you can see, this creates another window in a vertical split (your cursor is now moved to the
new window):

from kitchen import ingredient from kitchen import ingredient
class Egg{ingredient.Ingredient): class Bacon{ingredient.Ingredient):
def __init_ (self): def __init_ (self):
self.mame = "eqc self_name = "bacol

kitchen/egy.py kitchen/bacon. py
#1/usr/bin/python

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon{), sausage.Sausage()]

def prepare_ingredient(ingredient):
has_spam = random.choice([True, False])
ingredient. prepare(has_spam)

weloome. oy
"kitchen/egg.py" 7L, 118B

Figure 2.6 - A : vsplit command opens a new window to the left of the current one.

Shortening commands

: vs is a shorter version of the : veplit command.

You can combine the : split and : vsplit commands indefinitely to create as many windows as
you need.

All of the commands you've learned so far will function as usual within this window, including
changing buffers. To move between the windows, use Ctrl + w, followed by a directional key: 4, j, k,
or . Arrow keys work as well.

53

54

Advanced Editing and Navigation

IS N
Faster window movement

If you use windows a lot (the feature, not the operating system), you might benefit from binding
Ctrl + h to go to the split to the left, Ctrl + j to go to the split at the bottom, and so on. Add the
following to your . vimrc file:

" Fast split navigation with <Ctrl> + hjkl.
noremap <c-h> <c-ws<c-h>
noremap <C-j> <C-w><C-J>
noremap <c-k> <c-w><c-k>
noremap <c-1> <c-w><c-1>

Do note that some of those keys have default functionality which those mappings will override.
For instance, Ctrl + [redraws the screen (which can be helpful if your Vim instance starts
acting up - but you can manually call : redraw instead). In some terminal emulators, Ctrl

+ h is mapped to a backspace key, and Ctrl + j is mapped to the Enter key, which can cause
unexpected behaviors.

L J

Give it a shot: Ctrl + w followed by j will move you to the window below, and Ctrl + w, k will move
the cursor back up.

You can close the split window in one of the following ways:

o Ctrl + w, followed by g will close the current window

o :g will close the window and unload the buffer; however, this will close Vim if you only have
one window open

o :bd will delete the current buffer and close the current window

o Ctrl + w, followed by o (or the : only or : on command) will close all windows except for
the current one

Quitting with many windows open

When you have multiple windows open, you can quit them all and exit Vim by executing : ga.
This can be combined with the : w command to save every open file and quit: : wga.

Organizing the workspace

If you want to close a buffer without closing the window it’s in, you can add the following command
to your . vimrc file:

command! Bd :bp | bd # " Close buffer without closing window.
You’'ll be able to use : Bd to close the buffer while keeping a split window open.
Moving windows

Windows can also be moved, swapped, and resized. Since there’s no drag-and-drop functionality in
Vim, there are some commands you will have to remember.

(R

Ilied

If your terminal emulator supports it (and most modern ones do) or you're using gVim, you can
enable mouse control in Vim with : set mouse=a, which will allow resizing windows with
a mouse. It takes me out of the editing flow, so I don’t like having the mouse control enabled.

Remember to ask for help!

You don’t have to remember all of these commands, as long as you know what window operations
are supported. :help window-movingand :help window-resize will take you to
the corresponding entries in the Vim manual when you inevitably forget the shortcuts.

L J

As with the rest of the window commands, these are prefixed by Ctrl + w.

Ctrl + w followed, by an uppercase movement key (H, J, K, or L) will move the current window to
the corresponding position:

o Ctrl + w, H moves the current window to the leftmost part of the screen
o Ctrl + w,] moves the current window to the bottom of the screen
o Ctrl + w, K moves the current window to the top of the screen

o Ctrl + w, L moves the current window to the rightmost part of the screen

55

56 Advanced Editing and Navigation

For example, let’s start with the following window layout (which was achieved by opening welcome.
py and running : sp kitchen/bacon.py, followed by : vs kitchen/egg.py):

kitchen ingredient

class Egg(ingredient. Ingredient):

def _ init_ (self):
self.name =

kitchen ingredient

class Bacon(ingredient.Ingredient):

def __init_ (self):
self.name =

kitchen/bacon.py

#1 /usr/bin/python

kitchen bacon, egg, sausage
Tandom

INGREDIENTS = [egg.Egg(), bacon.Bacon(),

def prepare_ingred

ient(ingredient):

has_spam = random.choice([TTue, Fals

ingredient.prepare(has_spam)
welcome . py
"kitchen/egg.py" 7L, 118B

sausage. 5ausage()]

el)

Figure 2.7 - Fileswelcome . py, kitchen/egg.py, kitchen/bacon. py open in split windows.

Note the cursor position (in kitchen/egg. py). Here’s what happens when we try to move the
window containing the kitchen/egg. py buffer in each direction:

o Ctrl + w, H migrates kitchen/egg. py all the way to the left:

kitchen ingredient

class Ego(ingredient.Ingredient):

def _ dinit (self):
self.name =

kitchen ingredient

class Bacon(ingredient. Ingredient):

def _ dinit (self):
self.name =

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(), bacon.Bacon()
, sausage.Sausage()]

def prepare_ir dient(ingredient):

"kitchen/egg.py" 7L, 118B

welcome. py

Figure 2.8 - Ctrl + w, H migrates kit chen/egg. py all the way to the left.

Organizing the workspace

Ctrl + w, J moves kitchen/egg. py to the bottom of the screen, turning a vertical split into
a horizontal split:

kitchen ingredient
class (ingredient.Ingredient):
def (self):

self.name =

kitchen/bacon.py
#1/usx/bin/python

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
welcome. py
kitchen ingredient

class [ingredient.Ingredient):

def (self):
self.name =

kitchen/egg.py

"kitchen/egg.py" 7L, 118B

Figure 2.9 - Ctrl + w, J moves kitchen/egg. py to the bottom of
the screen, turning a vertical split into a horizontal split.

Ctrl + w, K moves kitchen/egg. py to the top of the screen:

kitchen ingredient

class (ingredient.Ingredient):

def (self):
self.name =

kitchen/egg.py

kitchen ingredient

class (ingredient.Ingredient):

def (self):
self.name =

kitchen/bacon.py
#! /usr/bin/python

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

welcome. py
"kitchen/egg.py" 7L, 118B

Figure 2.10 - Ctrl + w, K moves kit chen/egg . py to the top of the screen.

57

58 Advanced Editing and Navigation

o Ctrl+w, L moves kitchen/egg.py to the right of the screen:

kitchen ingredient kitchen ingredient

class Bacon(ingredient.Ingredient): class Egg(ingredient.Ingredient):

def __dinit_ (self):
self.name =

def __init_ (self):
self . name =

kitchen/bacon.py
#1 fusz/bin/python

kitchen bacon, egg, sausagd
random

INGREDIENTS = [egg.Egg(), bacon.Bacon()
, Sausage.Sausage()]

def prepare_ingredient(ingredient):

welcome. py kitchen/egg.py

"kitchen/egg.py" 7L, 1188

Figure 2.11 - Ctrl + w, L moves kit chen/egg . py to the right of the screen.

You can change the contents of each window by simply navigating to it and selecting the desired buffer
using the :b command. There are, however, options for swapping window contents:

o Ctrl + w, r moves every window within the row or the column (whichever is available—rows
are given preference over columns) to the right or downward. Ctrl + w, R performs the same
operation in reverse.

o Ctrl + w, x exchanges the contents of a window with the next one (or a previous one if it’s
considered a last window).

Window numbering

Internally, Vim refers to windows by number unique within the current tab, and by a unique ID
that functions across tabs. Some window management commands take the window number or
an ID as an argument, but this book will not be covering these. You can read :help winid
for more information.

Organizing the workspace

Resizing windows

Default 50/50 window proportions might not be exactly what you’re looking for, and there are some
options for changing sizes.

Ctrl + w followed by = will equalize the height and width of all open windows. This is really useful
when you just resized the Vim window and the height of your windows got all messed up.

The : resize command increases or decreases the height of a current window, while : vertical
resize will adjust the width of the window. You can use these as follows:

o :resize +Nwillincrease the height of a current window by N rows
o :resize -Nwill decrease the height of a current window by N rows
o :vertical resize +N willincrease the width of a current window by N columns

o :vertical resize -N will decrease the width of a current window by N columns

Shortening commands

:resizeand :vertical resize canbe shortened to :resand :vert res. There
are also keyboard shortcuts for changing the height and width by one: Ctrl + w, - and Ctrl + w,
+ adjust the height, while Ctrl + w, > and Ctrl + w, < adjust the width.

Command modifiers

:vertical or :vert isa command modifier that can be applied to many other commands:
for instance, the : vert split command will produce the same result as : vsplit.

- J

Both commands can also be used to set the height and the width to a specific number of rows or columns:

o :resize Nwill set the height of the window to N

e :vertical resize N will setthe width of the window to N

Tabs

In many modern editors, tabs are used to represent different files. While you can certainly do this in
Vim, you might want to consider their original purpose.

Vim uses tabs to switch between collections of windows, allowing you to effectively have multiple
workspaces. Tabs are often used to work on a slightly different problem or set of files within the same
Vim session. Personally, I don’t get a lot of use out of tab pages, but if you find yourself often switching
context within the project or between projects, then tabs might be exactly what you're looking for.

59

60 Advanced Editing and Navigation

Figure 2.12 — Tabs contain collections of windows (the concept is often reversed in modern editors).

You can open a new tab with an empty buffer as follows:

:tabnew

Tip
You can open an existing file in a new tab by running : tabnew <filenames or :tabedit
<filenames.

As you can see, tabs are displayed on the top of the screen. The tab labeled 3 welcome.pyisa
tab with three open windows and an active buffer, welcome . py. The [No Name] tab is the one we
just opened:

3 welcone.py No Name] | ¢

tabnew

Figure 2.13 - : tabnew command open a new tab.

Organizing the workspace

You can load a file in it in the usual way: :e <filenames. You can also switch to a desired buffer
using the :b command.

To navigate between tabs, you can use the following:

o gtor :tabnext to move to the next tab

o gTor :tabprevious to move to the previous tab

The tabs can be closed using : tabclose or by closing all of the windows it contains (for example,
with : g if it’s the only window).

:tabmove N lets you place the tab after the Nth tab (or as a first tab if N is 0).

Folds

One of the most powerful tools Vim provides for navigating large files is folds. Folds allow you to hide
portions of the file, either based on some predefined rules or manual fold markers.

This is how welcome . py looks with some sections folded:

II fusz/bin/python

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

def prepare ingredient(ingredient):
2 lines: has_spam = random.choice([True, False])

if _mame__ == '__main_ ':

main()

"welcome.py" 22L, 554B

Figure 2.14 - prepare ingredient and main method code is folded.

Method content is hidden, allowing you to view the code from a bird’s-eye view.

61

62

Advanced Editing and Navigation

Folding Python code

Since we're working with Python code throughout this book, let’s play with some folds in our code.
First, you'll need to change a setting called foldmethod to indent in your . vimrc file. Lets
only do this for Python file by prefixing the set command with autocmd filetype python:

autocmd filetype python set foldmethod=indent

Reload!

Don't forget to reload your ~/ . vimrc file by either restarting Vim or executing : source
SMYVIMRC.

This will tell Vim to fold based on indentation (there are multiple ways to work with folds; see the
following section, Types of folds, for more information).

Open welcome . py and you will see portions of our file folded away:

II Jusz/bin/python

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [eqg.Egg(), bacon.Bacon{), sausage.Sausage()]

def prepare_ingredient(ingredient}:
2 lines: has_spam = random.choice([True, False])

"welcome.py" 22L, 554B

Figure 2.15 - With foldmethod=1indent, Python method code is folded.

Organizing the workspace

Navigate your cursor to one of the folded lines. Hitting zo will open the current fold:
#1/usT/bin/python

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
def prepare_ingredient(ingredient):

has_spam = random.choice([True, False])
ingredient . prepare(has_spam)

def main():

"welcome.py” 22L, 554B

Figure 2.16 — zo opens the fold under cursor and zc closes it.

Whenever your cursor is over a potential fold (an indented chunk of code in this example), zc will
close the fold.

Visualizing folds

To visualize where folds are, you can use : set foldcolumn=N, where N is 0..12. This will
dedicate the first N columns to the left of the screen to indicate folds with the - (beginning of
an open fold), | (contents of an open fold), and + (closed fold) symbols.

You can also use za to toggle folds (open closed folds and close open folds).

You can open and close all folds in the file at the same time using zR and zM, respectively.

s 2
Tip
Setting an automatic foldmethod setting (such as indent) will display all files as folded
by default. It's a matter of preference, and you may prefer to have the folds open when opening
anew file. Adding autocmd BufRead * normal zRtoyour .vimrc file will keep
the folds open as you open new files. This command tells Vim to execute zR (open all folds)
when reading a buffer.

Alternatively, you can set foldlevelstart=5 (or higher) in your . vimrc to have folds
up to a fifth level open by default.

63

64

Advanced Editing and Navigation

Types of folds

Vim is somewhat intelligent when it comes to folding code, and supports multiple ways to fold code.
The folding method is guarded by the foldmethod option in your . vimrec file. Supported fold
methods are as follows:

« manual allows you to manually define folds. This becomes unrealistic when working with
any substantial body of text.

o 1indent supports indentation-based folding, which is perfect for languages and code bases
where indentation matters (regardless of the language you're working with, a standardized code
base is likely to have some consistent indentation, making indent a quick and easy way to
fold away bits you don’t care for).

« expr allows using Vim scripting language to define folds. This is an extremely powerful tool
if you have complex custom rules youd like to use for defining folds.

o marker uses special markup in the text, such as { { { and } } }. This is useful for managing long
. vimrec files but has little use outside of the Vim world since it requires modifying file content.

« syntax provides syntax-aware folds. However, not every language is supported out of the
box (Python isn't).

o diff isautomatically used when Vim operates in a diff mode, displaying the difference between
two files (see Vimdiff in Chapter 5, Build, Test, and Execute).

Options in . vimrc

Reminder: you can set an option in your . vimrc file by adding the following line: autocmd
filetype <filetype> set foldmethod=<methods.

Now that you have an idea of how to organize the files in front of you, let’s look at how to navigate
complex file trees.

Navigating file trees

Since software projects contain a lot of files and directories, finding a way to traverse and display
these using Vim comes in handy. This section will cover five different ways that you can navigate your
files: using the built-in Netrw file manager or using the : e command with the wildmenu option
enabled, as well as using the NERDTree, Vinegar, and CtrlP plugins. All of these provide different
ways to interact with files and can be mixed and matched.

Netrw

Netrw is a built-in file manager in Vim (if we want to get technical, it’s a plugin that ships with Vim).
It allows you to browse directories and functions, similar to any other file manager you’ve worked
with in your favorite OS.

Navigating file trees

Use : Ex (the full command is : Explore) to open the file navigation window:

" Netrw Directory Listing (netrw w173)

" /home/ruslano/Mastering-Vim-Second-Edition/Chapter®2
Sorted by name
Sort sequence: [%/]1%,\<coreME(h.Wdv+\)A=\> V. h$ v cs \Lopp$, V=S R VL os
Quick Help: <Fl>:help -:go up dir D:delete R:rename s:sort-by x:special

§./

!

vims
kitchen/
.vimrc
README _md
welcome. py

Figure 2.17 — Netrw file manager window, with a handy help screen above the directory tree.

Netrw is native to Vim

Netrw is fully integrated with Vim, so executing an edit command on a directory (for example,
:e . to open a current directory) actually opens Netrw. This also makes it so that you have
one less command to remember.

Here, you can see all of the files within our workspace. Netrw already provides a quick help section
in a status bar, but here are the main controls you’ll need to know:

o Enter opens files and directories
o - goes up a directory
o D deletes a file or directory

o Rrenames a file or directory
A Netrw window can be opened in split windows or new tabs as well:

o :Vex opens Netrw in a vertical split
o :Sex, despite what the name might imply, opens Netrw in a horizontal split

o :Lex opens Netrw in a leftmost full-height vertical split

65

66

Advanced Editing and Navigation

Netrw is a powerful tool, which supports remote editing as well; for instance, to get a directory listing
over SFTP, you can run the following:

:Ex sftp://<domain>/<directory>/

You can substitute : Ex with : e for the same results. You can edit individual files as well. Here’s how
to open a file over SCP:

:e scp://<domain>/<directory>/<file>

:e with wildmenu enabled

Another way to explore file trees is to use the set wildmenu option in your . vimrc file. This
option sets an autocomplete menu to operate in enhanced mode, showing possible autocomplete
options above the status line. With wildmenu enabled, type in : e (followed by a space) and hit Tab.
This will bring up a list of files in the current directory, and you can use the Tab key to iterate through
these and Shift + Tab to move backward (the left and right arrow keys perform the same function):

e
README . md it welcome . py

READHE.ndicchen/ SRR

re welcome. py

Figure 2.18 - With the set wildmenu option, you can cycle through commands by pressing Tab.
Pressing Enter will open the selected file or directory. The down arrow allows you to drill down into
directory under cursor, and the up arrow takes you back up a level.

This also works with partial paths, and entering : e <beginning of filename> followed by
the Tab key invokes wildmenu as well.

Navigating file trees

My .vimrc file has the following in it:

set wildmenu " Enable enhanced tab autocomplete.
set wildmode=list:longest,full " Complete till longest string,
" then open the wildmenu.

New in Vim 9

In Vim 9, you can also use set wildoptions=pum to display the wildmenu as a vertical
popup window - that’s pretty cool!

This allows you to autocomplete the path to the longest match possible (and display a list of possible
completion options) on the first Tab press, and traverse through files with wildmenu on the second
Tab press.

Plugin spotlight - NERDTree

NERDTree is a handy plugin that emulates modern IDE behavior by displaying a file tree in a split buffer
to the side of the screen. NERDTree is available from https://github.com/scrooloose/
nerdtree.

(R
Installation instructions

If you haven't installed any plugins yet, see Installing plugins at the beginning of the chapter for
one-time setup instructions. After that's been done at least once, run the following (if you're
using Windows, you’ll need to change the directory to ~\pack\plugins\start) and
restart Vim:

$ git clone https://github.com/scrooloose/nerdtree \
~/ .vim/pack/plugins/start/nerdtree

. J

Once installed, you can invoke NERDTree by typing the following:

:NERDTree

67

https://github.com/scrooloose/nerdtree
https://github.com/scrooloose/nerdtree

68 Advanced Editing and Navigation

A list of files in a directory will show up:

Press 7 for help #1/usT/bin/python
(up a dir) from kitchen import bacon, egg, sausage
</Chapter®2/ import random
kitchen/
bacon.py INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage
eqgqg. py .Sausage()]
ingredient.py
sausage.py def prepare_ingredient{ingredient):
README . md 2 lines: has_spam = random.choice([TTue,

welcome. py

<g-Vim-Second-Edition/Chapter®2 welcome.py

Figure 2.19 - NERDTree file manager window, an alternative to using native Netrw.

Use h, j, k, and [or the arrow keys to navigate the file structure, and Enter or o to open the file. There
are multiple useful shortcuts, and Shift + ? brings up a handy cheat sheet.

A notable feature is bookmark support, which allows you to bookmark a directory (when placing
the cursor over it in NERDTree) by executing : Bookmark. Press B when in a NERDTree window
to display bookmarks at the top of the window.

Navigating file trees

In the following screenshot, you can see the bookmarks I have for code that supports chapters of this
book (the Chapter01/ and Chapter02/ directories):

Press 7 for help

#1 /usT/bin/python

Trom kitchen import bacon, egg, sausage
Lhapter®l <Edition/Chapter®l/ flimport random

Chapter®? <kdition/Chapter@2/

INGREDIENTS = [e2gg.Egg(), bacon.Bacon(), sausage
(up a dir) .Sausage()]
<fMastering-Vim-Second-Edition/
* Chapter@l/ {Chapter@l}
README .md
spam.py
* Chapter@2/ {Chapter@2}
kitchen/
bacon.py
€gg.py
ingredient.py
sausage.py
README .md
welcome. py
LICENSE
README . md

def prepare_ingredient(ingredient):
2 lipes: has_spam = random.choice([True,

<o/Mastering-Vim-Second-Edition welcome.py

Figure 2.20 - You can see NERDTree bookmarks to Chapter01/
and Chapter02/ in the top-left corner of the screen.

You can choose to always display bookmarks in a NERDTree window by setting the
NERDTreeShowBookmarks option in your . vimrc file:

let NERDTreeShowBookmarks=1 " Display bookmarks on startup.

You can bring NERDTree up or hide it by executing : NERDTreeToggle. If you're interested in having
NERDTree up every time you're editing, you might want to add the following to your . vimrc file:

autocmd VimEnter * NERDTree " Enable NERDTree on Vim startup.

Something I personally found really useful is to close the NERDTree window automatically when it’s
the last open window. I have the following in my . vimrc file:

" Autoclose NERDTree if it's the only open window left.
autocmd bufenter * if (winnr("$") == 1 && exists("b:NERDTree") &&
\ b:NERDTree.isTabTree()) | g | endif

69

70

Advanced Editing and Navigation

These days, I rarely find myself using NERDTree. Before switching to Vim, I often relied on having a
project outline in the view when I worked. In my early days of learning Vim, NERDTree was a lifesaver.
Vim changed the way I work and having a file outline always on became distracting, so eventually I
moved back to using Netrw.

Plugin spotlight - Vinegar

Tim Pope’s vinegar . vimis a simple plugin that addresses the difficulty of using project drawers
with Vim split window functionality. Plugins such as NERDTree become rather disorienting to work
with when you have more than one window open in a split.

In the following example, three windows are open (and a fourth NERDTree window on the left):

from kitchen import ingredie

from kitchen import ingredien

up 2 dir)
</Chapterd2/
* kitchen/
bacon. py
209 .-py
Ingredient.gy
sausage.py
README .md
welcome. py

class Egg(ingredient.Ingrediefjclass Bacon(ingredient.Ingred
def __init_ (self):

self.name =

def __dinit_ (self):
self.name =

kitchen/egg.py kitchen/bacon.py

from kitchen import bacon, egg, sausage
rt random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

def prepare_ingredient(ingredient}):

has_spam = random.choice([True, False])
return ingredient.prepare(has_spam)
<d-Edition/Chapter®2 welcome.py

Figure 2.21 - NERDTree and split windows are sometimes hard to
manage. Where do you think the next file will open?

When pressing Enter with the cursor in the NERDTree window, which window will the new file be
opened in?

Hint: it’s the bottom-left one—but you don’t have a way of knowing that. NERDTree opens files in
the last created window.

Tim Pope solves this problem with a small plugin called Vinegar, which makes using Netrw a more
seamless experience. It’s available over at ht tps: //github.com/tpope/vim-vinegar.

https://github.com/tpope/vim-vinegar

Navigating file trees

(7
Installation instructions
If you haven't installed any plugins yet, see Installing plugins at the beginning of the chapter for
one-time setup instructions. After that's been done at least once, run the following (if you're
using Windows, you’ll need to change the directory to ~\pack\plugins\start) and
restart Vim:

$ git clone https://github.com/tpope/vim-vinegar \

~/.vim/pack/pluginsg/start/vim-vinegar

NERDTree and Netrw integration

If you have NERDTree installed when using Vinegar, you'll get a NERDTree window instead
of Netrw. To avoid NERDTree replacing Netrw (and to make commands like - work), set 1let
NERDTreeHijackNetrw=0 in your . vimrc file above the packloadall command.

. J

Vinegar adds a handy new mapping: - (dash) to open Netrw in a current directory. Try it out:

e
kitchen/
vimrc
REACME . md
welcome. py

is a directory
Figure 2.22 - The Netrw file manager accessed through vinegar.vim.

The plugin hides Netrw’s help bar, which might be confusing at first. Hit I (uppercase i) to bring it
back. Another shortcut, the ~ key, takes you to your home directory, which is often where you’ll
store your projects.

Plugin spotlight — CtrIP

CtrlP is a fuzzy completion plugin that helps you open the files you need quickly, given that you
somewhat know what you’re looking for. CtrlP is available from https://github.com/
ctrlpvim/ctrlp.vim.

71

https://github.com/ctrlpvim/ctrlp.vim
https://github.com/ctrlpvim/ctrlp.vim

72

Advanced Editing and Navigation

(N
Installation instructions

If you haven't installed any plugins yet, see Installing plugins at the beginning of the chapter for
one-time setup instructions. After that's been done at least once, run the following (if you're
using Windows, you’ll need to change the directory to ~\pack\plugins\start) and
restart Vim:

$ git clone https://github.com/ctrlpvim/ctrlp.vim \

~/.vim/pack/plugins/start/ctrlp.vim
N\ J

Install it and hit Ctrl + p:

README . md
Chapter®1/README .md
Chapter®2/kitchen/bacon.py
LICENSE

Chapter®1/spam.py
Chapter®2/kitchen/egg.py
Chapter®2/welcome. py
Chapter®2/README .md

VOOWOW W W W VW

Pk Tl < ome / TUs 1ano/Mastering-Vim- Second-Edition

Figure 2.23 - Fuzzy filename completion provided by CtrIP.

This shows the list of files in the project directory. Type in a partial filename or a path, and the list of
files will narrow down to string matches. You can use Ctrl + j and Ctrl + k to navigate up and down
the list and Enter to open the file. Esc closes the CtrlP window.

CtrlP also allows you to navigate through buffers and the most recently used files. With the CtrIP
window open, you can use Ctrl + fand Ctrl + b to cycle through the available options.

You can invoke these directly by executing : Ct r1PBuf fer for buffers and : Ct r1PMRU for the
most recently used ones. You can also use : Ctr1PMixed to search through files, buffers, and the
most recently used files at the same time.

You can also add custom mappings for these to your . vimrc file. For example, to map Ctrl + b to
:CtrlPBuffer, you could do the following:

nnoremap <C-b> :CtrlPBuffer<cr> " Map CtrlP buffer mode to Ctrl + b.

CtrlP excels at moving between files, but when it comes to navigating the text within a file, Vim has
some powerful built-in tools.

Navigating text

Navigating text

We've covered some basic movements (by characters, words, and paragraphs), but Vim supports a
lot more options for navigation.

Check the following if you want some movement within the current line:

As you already know, h and I move the cursor left and right, respectively

t (until) followed by a character allows you to search the line for that character and place the
cursor before the character, while T allows you to search backward

f (find) followed by a character allows you to search the current line for that character and
move the cursor to the character, while F allows you to search backward

_ takes you to the first non-blank character of the line, A takes you the beginning of the line,
and § takes you to the end of the line

.

Text objects

A word consists of numbers, letters, and underscores. A WORD consists of any characters
except for whitespace (like spaces, tabs, or newlines). This distinction helps with more precise
navigation. For instance, ingredient .prepare (with spam=True) isa single WORD,
while ingredient, prepare, and with spam=True are individual words.

For free-form movement, you're already familiar with these bits:

o jand [move the cursor down and up, respectively

« wmoves you to the beginning of the next word (W for WORD)

o b moves you to the beginning of the previous word (B for WORD)

o e moves you to the end of the next word (E for WORD)

o gemoves you to the end of the previous word (gE for WORD)

o Shift + { and Shift + } takes you to the beginning and the end of a paragraph

Here are some new free-form movement options:

o Shift + (and Shift +) takes you to the beginning and the end of a sentence

o Htakes you to the top of the current window, L takes you to the bottom of the current window,

and M takes you to the middle of the current window

o Ctrl + f (or the Page Down key) scrolls the buffer one page down, and Ctrl + b (or the Page Up

key) scrolls one page up

« /followed by a string searches the document for a string and Shift + ? to search backward

73

74 Advanced Editing and Navigation

o ggtakes you to the top of the file

o G takes you to the bottom of the file

This handy visualization is based on the Vim movement cheat sheet Ted Naleid published on his blog
sometime in 2010 (I haven’t been able to find the original source):

lgg top 0f document

search backwards

2
[M
Cirt b | page up
‘ H -l:cp of window

Q‘Paraﬂrqph
1)+ ke 4+ -Pi“d
i}:g c.lfllfllc%er !:{?ll;\\s(" « “(= word snbence chasacier
A HEHT H (Hb HaeHb CHy HelFD HEHSHS
] 1o o — end of ‘Eill end
KEN 1 P)

J
1| paragraph
L

bot+om of window

{Crl F{pege down
gearch

G’ end of Ao cument

Figure 2.24 - Vim movement cheatsheet, original representation credited to Ted Naleid.

Navigating text

You can also move by line numbers. To enable line number display, run : set nu, followed by Enter
(or add set number to your .vimrc file). Vim will dedicate a few columns on the left of the
screen to display line numbers:

1 I! fusr/bin/python

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon{), sausage.Sausage()]

def prepare_ingredient({ingredient}:
2 lines: has_spam = random.cholce([True, False])--------------------—-

Ul 0O =] O LA s Ld R

12 def main()}:

1set nu
Figure 2.25 - : set number turns on line number display, which helps with navigation.
You can jump to a specific line by typing : N followed by Enter, where N is the absolute line number.
For instance, to jump to line 20, you’ll run : 20 followed by Enter.

You can also tell Vim to open a file and immediately place a cursor at a particular line. For that, add +N
after the filename when invoking Vim, where N is the line number. For example, to open welcome.
py online 14, youdrun $ vim welcome.py +14.

75

76

Advanced Editing and Navigation

Vim also supports relative line movement. To move down N lines you'll run : +N and to move down
youll run : -N. You can also ask Vim to display line numbers relative to the current cursor position
with : set relativenumber. In the following screenshot, our cursor is on line 6, and Vim displays
the relative distance to other lines:

#1/usz/bin/python

from kitchen import bacon, egg, sausage
import random

5
4
3
2
1
& INGREDIENTS = [egg.Egq(), bacon.Bacon{), sausage.Sausage()]

1
2
3
4
5

def prepare_ingredient{ingredient):
2 lines: has_spam = random.choice([True, False])

rset relativenumber

Figure 2.26 - : set relativenumber changes line numbers to be relative
to the cursor position. To be honest, | always find that a bit disorienting.

For example, you could tell Vim to move to the line containing def main () : by typing : +5,
followed by Enter.

Jumping into insert mode

You've already learned to enter insert mode using i, which puts you in insert mode at the position
of the cursor.

Navigating text

There are a few more convenient shortcuts for entering insert mode:

o aplaces you in insert mode after the cursor
o A places you in insert mode at the end of the line (equivalent of $a)

o I (capital i) places you in insert mode at the beginning of the line, but after indentation
(equivalent of _i)

o 0 adds a new line below the cursor before entering insert mode
o O adds a new line above the cursor before entering insert mode

o giplaces you in insert mode where you last exited it

Figure 2.27 - Insert mode cheat sheet.

You've also learned how to enter insert mode after deleting some code with the change command (c).
Here are more ways to chain change commands:

o Cdeletes text to the right of the cursor (until the end of the line) before entering insert mode
o ccor S deletes the contents of the line before entering insert mode, while preserving indentation

o sdeletes a single character (prefix by a number to delete multiple) before placing you in insert mode

Searching with /and ?

Most times, one of the fastest ways to navigate somewhere is to search for a particular string. Vim
allows you to search for a match by typing in / (which puts you in command-line mode) followed by
a search string. Once you hit Enter, your cursor will move to the first match.

Cycling through the matches in the same buffer can be done by pressing 7 to go to the next match
and N to the previous match.

77

78

Advanced Editing and Navigation

A useful option for searching is set hlsearch (consider setting it in your . vimrc file), since it
highlights every match on the screen. For example, this is how looking for /print in welcome.
py looks with hlsearch enabled:

#1/usz/bin/python

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

def prepare_ingredient(ingredient):
has_spam = random.choice([True, False])
ingredient.prepare(has_spam)

def main():
Irint{ Scene: A caf
pEint('Man: Well, wha
menu = []
for ingredient in INGREDIENTS:
menu. append(prepare_ingredient(ingredient))
print(Waitress: Well, there\'s", °, '.join(menu)}

s wife enter.'}

if __name__ == mailr

main()
fprimt

Figure 2.28 - : set hlsearch highlights all the visible search results.

You can clear the highlights by executing : noh.

Tip
Another nifty trick is using set incsearch. This will make Vim dynamically move you to
the first match as soon as you type.

In case you want to search backward, replace / with ?. This will also affect the way n and N will behave,
showing a next backward match, and a previous backward match respectively.

Searching across files
Vim has two commands to help you search across files, : grep and : vimgrep:

e :grep uses system grep and is a great tool if you're already familiar with how grep works

o :vimgrep isa part of Vim and might be easier to use if you are not already familiar with grep

We'll focus on : vimgrep, since the grep tool is outside the scope of this book.

Navigating text

The syntax is as follows: : vimgrep <pattern> <paths.pattern could either be a string or a
Vim-flavored regular expression. path will often be a wildcard; use ** as a path to search recursively

(or ** /* _py to restrict by file type).

Let’s try searching for an ingredient substring in our code base:
:vimgrep ingredient **/* . py
This will take us to the first match, displaying the number of matches at the bottom of the screen:

from kitchen import ingredient

class Bacon(ingredient.Ingredient):

+-- 2 lines: def __init_ (self):

(1 of 1@): from kitchen import ingredient
Figure 2.29 - : vimgrep allows you to search through files.

To navigate through the matches, use : cn or : cp. However, you might want to open a visual quickfix

window by using : copen, as follows:

from kitchen import ingredient

class Bacon({ingredient.Ingredient):

+-- 2 lines: def _ init (self):

=n/bacon.py]1 col 21-31] from kitchen import ingredient
f y|4 col 13-23| class Bacon{ingredient.Ingredient):
V|1 col 21-31| from kitchen import ingredient
y|4 col 11-21| class Egg(ingredient.Ingredient):
v|1 col 21-31| from kitchen import ingredient
oy |4 col 15-25| class Sausage(ingredient.Ingredient):
|& col 13-23| def prepare_ingredient(ingredient):
|18 col 5-15| ingredient.prepare(has_spam)
|16 col 9-19| for ingredient in INGREDIENTS:

:copen

Figure 2.30 - : copen allows you to navigate through the visual quickfix list.

79

80

Advanced Editing and Navigation

You can navigate the quickfix list with the j and k keys and jump to a match by pressing Enter. The
quickfix window can be closed like any other window by typing : g or running Ctrl + w, g. You can
read more about it in the Quickfix list section in Chapter 5, Build, Test, and Execute.

ack

On Linux, you can use Vim in conjunction with ack to search through code bases. ack is the spiritual
successor of grep and is focused on working with code. Install it using your favorite package manager;
here’s an example of using apt:

$ sudo apt install ack-grep

Official site

Visit https://beyondgrep.com/install to learn more about ack and for
installation instructions.

For example, you can now use ack from the command line to search for all Python files recursively
(starting in the current directory) containing the word ingredient:

$ ack --python ingredient

The preceding code will produce output similar to grep:

~fMastering-Vim-5econd-Edition/Chapter®2$ ack --python ingredient
kitchen/egg.py

1:from kitchen import

4:class Eggl .Ingredient):

kitchen/bacon.py
1:from kitchen import
4:class Bacon(.Ingredient):

kitchen/sausage.py
1:from kitchen import

4:class Sausage(.Ingredient):

welcome . py

8:def prepare_ { 1:

18: return .prepare(has_spam)

16: for in INGREDIENTS:

17: menu . append (prepare_ { 1)

~/Mastering-Vim-Second-Edition/Chapter®2$

Figure 2.31 - ack is just like grep, but made for working with
programming languages. | find the syntax easier to remember.

https://beyondgrep.com/install

Navigating text

Vim has a plugin that integrates the result of ack in Vim’s quickfix window (see the Quickfix list
section in Chapter 5, Build, Test, and Execute, to learn more about quickfix). The plugin is available
from https://github.com/mileszs/ack.vim.

(7
Installation instructions

If you haven't installed any plugins yet, see Installing plugins at the beginning of the chapter for
one-time setup instructions. After that's been done at least once, run the following (if you're
using Windows, you’ll need to change the directory to ~\pack\plugins\start) and
restart Vim:

$ git clone https://github.com/mileszs/ack.vim \

~/.vim/pack/plugins/start/ack.vim
N\ J

After installation, you will be able to execute : Ack from Vim:

:Ack --python ingredient

This will run ack and populate the quickfix window (see the preceding section, as well as Quickfix list
in Chapter 5, Build, Test, and Execute, for more information about a quickfix window) with the output:

from kitchen import ingredient

class Ego(ingredient.Ingredient):

+-- 2 lines: def __dinit_ (self):

=00.py|4 col 11| class Egg(ingredient.Ingredient):
py|1l col 21| from kitchen import ingredient
py|4 col 13| class Bacon{ingredient.Ingredient):
--.;.-_ |-"|1 col 21| from kitchen import ingredient

/s oe.py|4 col 15| class Sausage(ingredient.Ingredient):
ome.py |8 col 13| def prepare_ingredient(ingredient):
0|18 col 5| ingredient.prepare(has_spam)
|16 col 9] for ingrediemt in INGREDIENTS:
ome . py |17 col 29| menu.append(prepare_ingredient(ingredient))
nopager --nocolor --nogroup --column --python ingredient 1,1

Figure 2.32 — : Ack searches through files and automatically opens the quickfix list.

81

https://github.com/mileszs/ack.vim

82

Advanced Editing and Navigation

Utilizing text objects

Text objects are an additional type of object in Vim. Text objects allow you to manipulate text within
parentheses or quotes, which becomes really useful when working with code. Text objects are only
available when combined with other operators like change or delete or a visual mode (see Visual and
select modes in Chapter 3, Follow the Leader — Plugin Management).

Let’s give it a shot. Navigate your cursor to the text between parentheses:

def prepare_ingredient({ingredient):
has_spam = random.cholce([lrue, Fzlse])
ingredient.prepare(has_spam)
Now, type in di) (delete inside parentheses). This will delete the text inside parentheses:

def prepare_ingredient{ingredient):
has_spam = random.choice(]
ingredient.prepare(has_spam)

This works similarly with a change command. Undo the previous change (1) and start in a different spot:

def main(}:
print(’'Scene: A cafe. A man and fiis wife enter.')
print{'Man: Well, what\'ve you got?'}

Execute c2aw (change the outside of two words) to delete two words (with the surrounding spaces)
and enter insert mode:

def main{}:
print(’'Scene: A cafe. A man and @nter. ')
print{'Man: Well, what\'ve you got?'}

Text objects come in two flavors—inner objects (prefixed by i) and outer objects (prefixed by a).
Inner objects do not include white space (or other surrounding characters), while outer objects do.

A full list of text objects can be looked up through :help text-objects, but some interesting
ones are as follows:

o wand W for words and WORDs
s for sentences

« p for paragraphs

o t for HTML/XML tags

Navigating text

Pairs of characters that are most often used in programming are all supported as text objects: ~, ', ",
), 1, >, and } select the text enclosed by the characters.

One way to think about working with text objects is that it’s like constructing sentences. Here are the
two examples that we used previously broken down:

Verb (Number) | Adjective | Noun
d delete iinside) parentheses
cchange |2 aoutside | w word

Plugin spotlight - EasyMotion

EasyMotion has been an essential part of my kit since I came across it. It simplifies navigation by
allowing you to jump to the desired position with speed and precision. It’s available from ht tps://
github.com/easymotion/vim-easymotion.

(7
Installation instructions

If you haven’t installed any plugins yet, see Installing plugins at the beginning of the chapter for
one-time setup instructions. After that’s been done at least once, run the following (if you're
using Windows, you’ll need to change the directory to ~\pack\plugins\start) and
restart Vim:

$ git clone https://github.com/easymotion/vim-easymotion \

~/.vim/pack/ plugins/start/vim-easymotion

- J

After installing it, you can invoke the plugin by hitting the leader key (\) twice, followed by the desired
movement key.

Follow the leader!

The leader key is often used by plugins to provide additional key mappings. By default, Vim’s
leader key is \. We'll go into more detail about the leader key in Chapter 3, Follow the Leader
- Plugin Management.

83

https://github.com/easymotion/vim-easymotion
https://github.com/easymotion/vim-easymotion

84 Advanced Editing and Navigation

Try using it with a word-wise motion by invoking \\w (backslash, followed by a backslash, followed
by w):

#!/asr/sin/dython

g9

hrom kitchen lmport gacon, wgg, eausage
rmport tandom

y
uNGREDIENTS = [igg.ogg(), pacon.zacon(), xausage.causage()]
v
bef nrepare_ingredient(mngredient):
fas_spam = andom. j=oice([due, 1se])
gredient. jkepare(jls_spam)
f jedn():
int(' tene: fe. n jpd jzs jxfe jcter.')
int("ibn: 11, aty’ u cht?h)
nu = []
T ;ogredient GREDIENTS:
nu. ; cpend(: vepare_ingredient(ugredient))
int(' citress: 11, ereN' Jx, ', '.ocdn(vnu))
name__ == ":main__":
in()
Target key:

Figure 2.33 - EasyMotion plugin allows you to instantly move to any text object on the screen.

You can see that the beginning of every word on the screen has been replaced with a letter (or two
letters, once EasyMotion runs out of letters from the English alphabet). Pressing the letter (or two in
order) will instantly transport your cursor to that spot on the screen.

In the example above, pressing j followed by [will take your cursor to the has_spam word within
the prepare ingredient method:

#1/usT/bin/python

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
def prepare_ingredient(ingredient):
has_spam = random.choice([True, False])
ingredient.prepare(has_spam)

EasyMotion: Jumping to [18, 24]

Figure 2.34 - Tada! Jumping to the exact position with EasyMotion is instant!

Copying and pasting with registers 85

EasyMotion supports the following movement commands by default (all prefixed by double-tapping
the leader key):

o f,tolook for a character to the right and F to look for the character on the left
« t,to move until the character on the right and T until the character on the left
o w, to move by word (and W by WORD)

o b, to move backward by word (and B by WORD)

o ¢, to move forward to the end of the word (and E for the WORD)

o ge, to move backward to the end of the word (and gE for the WORD)

o kandjto go to the beginning of the line up or down

o nand N for jumping through search results on the page (based on the last / or ? search)

EasyMotion leaves many keys unassigned, leaving it up to the user to build their own set of mappings.
You should check :help easymotion to see everything EasyMotion can do.

Copying and pasting with registers

You can copy text by using the y (yank) command, followed by a movement or a text object. You can
also hit y from a visual mode when you have selected some text.

Tip

In addition to all of the standard movement, you can use yy to yank the contents of the current line.

Let’s yank the following piece of code by typing ye (yank until the end of the word):

#! fusr/bin/python

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
def prepare_ingredient(ingredient}):
has_spam = random.choice([True, False])

ingredient.prepare()

Figure 2.35 — ye will yank (copy) has_spam into the default register.

86

Advanced Editing and Navigation

This will copy has_spam into our default register. Now, place the cursor where you want the text to
appear (the text is inserted after the cursor):

#!/usr/bin/python

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

def prepare_ingredient{ingredient):
has_spam = random.choice([True, False])
ingredient. preparel}

Figure 2.36 - Place cursor before the position where you want to insert the text.

To paste the code, hit p:

#1 fusz/bin/python

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

def prepare_ingredient{ingredient):
has_spam = random.choice([True, False])
ingredient . prepare(has_spam)

Figure 2.37 - p will insert the default register contents after the cursor.

The delete and change operators also yank content so that you can paste it later. Oh, and you can prefix
the paste command with a number, in case you ever want to duplicate something multiple times.

Where do the registers come in?

Whenever you copy and paste text, it’s saved in a register. Vim allows you to operate with many
registers, which are identified by letters, numbers, and special symbols.

Registers can be accessed by hitting “ followed by the register identifier, followed by the operation
on said register.

Registers a-z are used for holding manually assigned data. For example, to yank a word into the a
register, you can run ‘ayw and paste it using ‘ap.

Copying and pasting with registers

Macros

Registers are also used to record macros, which you will learn about in Chapter 6, Refactoring
Code with Regular Expressions and Macros.

All of the operations you've performed so far have used the unnamed register. If you ever need to
access the unnamed register explicitly, it is identified by a double quote character, ". For example, you

«»

can use “’p to paste from the unnamed register (which is the same as just invoking p).

Numbered registers allow you to access the contents of your yank and delete operations. 0 is the last
yanked text, while registers 1-9 access the last deleted text. For example, if you have a stellar memory,
you can paste some text you deleted seven operations ago by hitting “7p.

Read-only registers

There are some read-only registers you might find handy: % holds the name of the current
file, # holds the name of the previously opened file, . is the last inserted text, and : is the last
executed command.

You can also interact with registers from outside of a normal mode. Ctrl + r is a convenient shortcut,
which allows you to paste a register’s contents when you're in insert or command-line modes. For
example, while you're in insert mode, Ctrl + r, “ will paste the contents of the unnamed buffer at the
position of the cursor.

You can access the content of a register at any time by running : reg <register namess. For
instance, if you wanted to check what’s inside the a and b registers, youd run : reg a b. Heres
the output:

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

def prepare_ingredient{ingredient):
has_spam = random.choice([Trus, False])
ingredient . prepare(has_spam)

:reg ab
Type Name Content

€ "a has_spam

€ "b prepare_ingredient(ingredient):
Press ENTER or type command to continue

Figure 2.38 - : reg a Db lists contents of registers a and b. This is very handy when
you're copying and pasting multiple things and want to keep your head straight.

In the preceding example, the a register contains has spam, and the b register contains prepare
ingredient (ingredient).

87

88

Advanced Editing and Navigation

In addition, you can list the contents of every register by running : reg without any parameters.

Named registers (a-z) can be appended to as well. To append to a register instead of overwriting it,
capitalize the register name. For example, to append a word to the register a, run "aye with a cursor
at the beginning of the word.

Copying from outside of Vim
There are two built-in registers that interact with the outside world:

o 'The * register is the primary system clipboard (the default clipboard in Mac and Windows,
and mouse selection inside a Terminal in Linux)

o The + register (only in Linux) is used for Windows-style Ctrl + c and Ctrl + v operations
(referred to as Clipboard selection)

This doesn’t always work

For the clipboard to interact with the outside world, Vim must be compiled with the +c1lipboard
option (and on Unix with +xterm clipboard support as well). You can check if Vim is
compiled with the +c1lipboard option by running vim --version | grep clipboard
in the command line. See the Compilation options section in Chapter 1, Getting Started, to learn
more about compiling Vim with different options.

It also often doesn’t work when SSHing, requiring terminal emulator-specific configuration
to function.
. J

You can interact with these registers as you would with any other. For instance, you can use “*p to
paste from the primary clipboard or use “+yy to yank a line into Linux’s Clipboard selection.

If you want Vim to work with these registers by default, you can set the clipboard variable in your
.vimrc file. Set it to unnamed to copy and paste from the * register:

set clipboard=unnamed " Copy into system (*) register.

Set it to unnamedplus for yank and paste commands to work with the + register by default:

set clipboard=unnamedplus " Copy into system (+) register.

You can also tell Vim to use both at once:

set clipboard=unnamed,unnamedplus " Copy into system (*, +) register.

Now, y and p will yank and paste from the specified register by default.

Summary

s N
Pasting in insert mode
You can also sometimes choose to paste text from the system clipboard while in the insert mode.
In older Vim versions or in certain Terminal emulators, this will yield some issues, since Vim
will try to automatically indent code or extend commented-out sections. To avoid this, run
:set paste before pasting code to disable auto indent and auto comment insertion. Run
:set nopaste to turn it back on once youre done.

Most of these issues are resolved in bracketed paste mode, which is enabled by default, starting
with version 8.0. See :help xterm-bracketed-paste for more details.
L J

Summary

You now know how to navigate core concepts Vim operates by using buffers to represent files, utilizing
split windows, and using tabs to organize multiple windows. You've also learned how to use folds to
make navigating large files more manageable.

You now should be more confident getting through a large code base by navigating files with plugins
such as Netrw, NERDTree, Vinegar, and CtrlP. Oh, and this chapter taught you a quick (even though
it’s a slightly manual) way to install said plugins.

This chapter covered new movement operations, text objects, ways to quickly dart into insert mode,
and how to make even fancier jumps throughout the file using the EasyMotion plugin. We've also
dipped into search functionality, searching both within a single file and across the whole code base.
You get a bonus point for trying out the ack plugin.

Finally, this chapter covered the concept of registers, and how you can use them to supercharge
copying and pasting text.

In the next chapter, we'll take a deeper look at plugin management, and we'll go into detail about
modes in Vim, as well as creating custom mappings and commands.

89

3

Follow the Leader
Plugin Management

Vim plugins are easy to make, and the number of available plugins keeps growing every year. Some
cater to a very narrow audience and improve on a very particular workflow, while others aim to make

Vim more effective to use for the public. This chapter will take a deep dive into installing plugins and
customizing your workflow through remapping keys. This chapter will cover the following topics:

Ways to manage multiple plugins with vim-plug, Vundle, Pathogen, or Vim's native package feature
A way to profile slow plugins

An in-depth explanation of primary modes in Vim

Intricacies of remapping commands

The leader key and how it’s useful for all kinds of custom shortcuts

Configuring and customizing plugins

Technical requirements

In this chapter, you will be working on your . vimrc file. If you get lost through this chapter, you can
get the resulting file from GitHub: https://github.com/PacktPublishing/Mastering-
Vim-Second-Edition/tree/main/Chapter03.

https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter03

92

Follow the Leader Plugin Management

Managing plugins

You have already installed quite a few plugins so far, and the number will only keep going up, especially
as you try to solve problems that are specific to whatever it is youre working on. Manually keeping
plugins up to date requires quite a bit of work, but luckily there are plugin management solutions
out there!

Plugin management becomes even more important if you often change or switch machines and have
the need to keep multiple plugins updated.

Cross-platform environments

For more tips on keeping Vim synced between multiple machines, see Chapter 7, Making Vim
Your Own.

The plugin management landscape is ever changing, and there’s no substitute for good old research
when choosing a plugin manager. This chapter covers a few plugin managers that I've used throughout
the years, which will hopefully be enough for you to base your own research on. Let’s dig in.

vim-plug

The newest and the brightest in plugin management is vim-plug, a lightweight plugin that makes it
easy to deal with a multitude of plugins. The plugin is available on GitHub at ht tps://github.
com/junegunn/vim-plug (it has a rather friendly README file, but I've captured the gist of it
in this section if you're feeling lazy).

There are some neat things about this plugin:

« It’s lightweight and fits in a single file, allowing for some straightforward installation options

o It supports parallel plugin load (if Vim is compiled with Python or Ruby enabled, which is true
for all modern Vim setups)

o It supports the lazy loading of most plugins, only invoking plugins for a particular command
or a file type

You’ll want to start fresh!

In the previous chapter, you manually installed the plugins. This section provides a much better
plugin experience, and you'll want to delete the plugins you downloaded manually. In order
to do that, remove the manually added plugin directory (rm -rf SHOME/.vim/packin
Linux and rmdir /s %USERPROFILE%\vimfiles\pack in Windows).

https://github.com/junegunn/vim-plug
https://github.com/junegunn/vim-plug

Managing plugins 93

Installing vim-plug is straightforward:

1. Fetch the plugin file from https://raw.github.com/junegunn/vim-plug/
master/plug.vim.

2. Save the file as SHOME/ .vim/autoload/plug.vim.

Fetching a file from GitHub

To fetch a single file from GitHub, you can use curl or wget on Linux or macOS, or just
open the link in the browser, right-click, and choose Save as.... For instance, you could run
the following command to fetch the file in Unix:

$ curl -flLo ~/.vim/autoload/plug.vim --create-dirs \

https://raw. github.com/junegunn/vim-plug/master/plug.vim

3. Update your . vimrc file to include vim-plug initializers:

" Manage plugins with vim-plug.
call plug#begin()
call plug#end()

4. Add some plugins between these two lines, using the last parts of the URL in GitHub (in
<username>/<repositorys format, for example, scrooloose/nerdtree instead of
https://github.com/scrooloose/nerdtree) to identify the plugins:

" Manage plugins with vim-plug.
call plug#begin()

Plug 'scrooloose/nerdtree'

Plug 'tpope/vim-vinegar'

Plug 'ctrlpvim/ctrlp.vim'

Plug 'mileszs/ack.vim'

Plug 'easymotion/vim-easymotion'

call plug#end ()

5. Saveyour .vimrc fileand reload it (:w | source $MYVIMRC) or restart Vim to apply
the changes. Execute : PlugInstall to install the plugins.

https://raw.github.com/junegunn/vim-plug/master/plug.vim
https://raw.github.com/junegunn/vim-plug/master/plug.vim
https://github.com/scrooloose/nerdtree

94

Follow the Leader Plugin Management

This will download the aforementioned plugins from GitHub:

Ppdated. Elapsed time: 1.274776 sec.

- Finishing ... Done!
- nerdtree: Resolving deltas: 10@% (470

- ctrlp.vim: Resolving deltas: 100% (2ef]"

- ack.vim: Resolving deltas: 100% (59/

- vim-easymotion: Resolving deltas: 10ef]"

- vim-unimpaired: Resolving deltas: 108
- vim-vinegar: Resolving deltas: 10@% (

' => Chapter 3: Follow the Leader: Plu
gin Management ------------------ { ({{

" Install vim-plug if it's not already
installed (Unix-only).

if empty(glob('~/.vim/autoload/plug.
vim'))
silent !lcurl -flo
plug.vim --create-dirs
' \ https://raw.github.com/junegun

-/ .vim/autoload/

n/vim-plug/master/plug.vim
autocmd VimEnter * PlugInstall --s
ync source 3MYVIMRC
' endif
call plug#begin() " Manage plugins wi

th vim-plug.

Plug 'ctrlpvim/ctrlp.vim'
Plug 'easymotion/vim-easymotion'
Plug 'mileszs/ack.vim'

-/ .vimrc

Figure 3.1 - Installing plugins with vim-plug

There are two main commands you will use with vim-plug:
* :PlugUpdate will update all of the plugins you have installed.

* :PlugClean will delete the plugins you removed from your . vimrc file. If you don't
run : PlugClean, the plugins you deactivated (by either commenting out or removing
the relevant P1lug . .. line in your . vimrc file) will stay on your system.

On updating vim-plug itself

Running : PlugUpdate updates every plugin except for vim-plug itself. If you want to update
vim-plug, you need to run : PlugUpgrade and reload your . vimrc file by either running
:source $MYVIMRC or restarting Vim.

Lazy plugin loading is a useful tool to prevent plugins from slowing down Vim. The P1ug directive supports
optional parameters. For instance, if you wanted to load NERDTree when the : NERDTreeToggle
command is called, you could use the on parameter:

Plug 'scrooloose/nerdtree', { 'on': 'NERDTreeToggle' }

Managing plugins 95

Lazy loading might not always work

Depending on the plugin, lazy loading may or may not work well. If you’re running into an
issue with a plugin, consider first disabling lazy loading.

If you wanted to only load a plugin for a particular file type, you could use the for parameter:

Plug 'junegunn/goyo.vim', { 'for': 'markdown' }

Getting vim-plug :help to work

Due to the way vim-plug is installed, its help pages are not available by default. If youd like
to be able to call :help vim-plug,add Plug 'junegunn/vim-plug' to a list of
installed plugins and run : PlugInstall.

You can find the list of supported parameters in vim-plug’s README file on GitHub at https://
github.com/junegunn/vim-plug.

You can add the following piece to your . vimrc file to install vim-plug whenever you transport your
.vimrc file to a new machine:

" Download and install vim-plug (Linux, Mac, and Windows) .
if empty (glob(

\ 'SHOME/' . (has('win32') ? ‘'vimfiles' : '.wvim')
\ '/autoload/plug.vim'))
execute '!curl -fLo '
\ (has('win32') ? '\%USERPROFILE\%/vimfiles' : 'SHOME/.vim')

\ '/autoload/plug.vim --create-dirs '

\ 'https://raw.githubusercontent.com/junegunn/vim-plug/master/
plug.vim'

autocmd VimEnter * PlugInstall --sync | source $MYVIMRC
endif

This will install vim-plug (and all the plugins you have listed) the next time you open Vim.

Alternatives to vim-plug

There are many more plugin management alternatives to vim-plug. The following list is not in any
way comprehensive, but it highlights different styles of plugin management. Pick the one that’s more
suited to your taste, or maybe search the web for alternatives.

Do it yourself - Vim packages

You could always decide to take the do-it-yourself route and implement your own solution for storing
plugins. That’s what we effectively did in the previous chapter, albeit with fewer bells and whistles.

https://github.com/junegunn/vim-plug
https://github.com/junegunn/vim-plug

96

Follow the Leader Plugin Management

Since most plugins are available on GitHub, a popular way of making sure that the plugins are up to
date is installing them as Git submodules. If you're familiar with Git, you can initialize a repository
in your . vim folder and install plugins as submodules.

Vim 8 introduced a native way to load plugins, by expecting the files to be in a directory tree under
.vim/pack. Vim 8 expects the following structure of the files:

o .vim/pack/<any-directory-name>/opt/ is used for plugins you want to manually load

o .vim/pack/<any-directory-name>/start/ is used for plugins you always load

The nitty gritty details

If you're the curious type, you could learn more about how each individual plugin folder is
structured in Chapter 8, Transcending the Mundane with VimScript.

You may want to use some explicit name for a directory under . vim/pack/. For instance, plugins
might be a good choice.

You can use the start/ directory for plugins that you always want to load.

On the other hand, opt / only loads plugins when you execute : packadd <plugin-directory-
name >. This lets you add packadd commands to your . vimrc file. Using the opt / and packadd
commands lets you achieve plugin lazy-loading (just like vim-plug):

" Load and run ack.vim plugin on :Ack command.
command! -nargs=* Ack :packadd ack.vim | Ack <f-args>
" Load an run Goyo plugin when opening Markdown files.
autocmd! filetype markdown packadd goyo.vim | Goyo

On version control

If you decide to choose this route, do visit Chapter 7, Making Vim Your Own, which will cover
some best practices when it comes to version controlling your Vim configuration.

In addition, you’ll want to add the following two lines to your . vimrc file to load the documentation
for all the plugins:

packloadall " Load all plugins.
silent! helptags ALL " Load help for all plugins.

packloadall tells Vim to load every plugin in the start/ directory (Vim automatically performs
this step after . vimrc is loaded, but we want to call it earlier). helptags ALL loads all available
help entries for our plugins, and the silent ! prefix hides any output and errors you might receive
when loading the help entries.

Managing plugins

You can manage your plugins yourself (with some overhead) by using Git submodules to download
the plugins and keep them up to date.

Initialize a Git repository in the . vim directory (a one-time step) with the following command:

$ cd ~/.vim

$ git init
Add a plugin as a submodule:

$ git submodule add \
https://github.com/scrooloose/nerdtree.git \
pack/plugins/start/nerdtree

$ git commit -am "Add NERDTree plugin"

Now, every time you want to update your plugins, you can run the following:

$ git submodule update --recursive
$ git commit -am "Update plugins"

To delete a plugin, remove the submodule with the following steps:

$ git submodule deinit -f -- pack/plugins/start/nerdtree
$ rm -rf .git/modules/pack/plugins/start/nerdtree
$ git rm -f pack/plugins/start/nerdtree

Do it yourself is a great route to take if you're a tinkerer, a minimalist, or otherwise enjoy making
your life harder than it needs to be.

Vundle

Vundle is vim-plug’s predecessor (and possibly an inspiration), which works along similar lines. Plugin
installation is synchronous, and the plugin packs slightly more weight than vim-plug. Vundle and its installation
instructions are available from GitHub at: https://github.com/VundleVim/Vundle.vim.

Vundle works similar to vim-plug, with the : PluginInstall, : PluginUpdate, and
:PluginClean commands performing the same functions.

Vundle’s differentiating feature used to be the : PluginSearch command, which enabled you
to search and try out plugins from within Vim, but that feature stopped working back in 2019 and
hasn’t been fixed.

Pathogen

By definition, Pathogen is a runt imepath manager and not a plugin manager. However, in practice,
runt imepath manipulation translates into plugin management really well. After Vim 8.0, there’s no
need to manipulate runt imepath to install plugins. However, if you have to use Vim prior to 8.0 (and
you don’t want to use full-blown package managers), Pathogen might make your life noticeably easier.

97

https://github.com/VundleVim/Vundle.vim

98

Follow the Leader Plugin Management

Pathogen was one of the earlier takes on plugin management and has heavily influenced the landscape
of its successors. Many Vim users still use it today, but the influx of new adopters has stopped.

Pathogen is available from GitHub at https://github.com/tpope/vim-pathogen.

Profiling slow plugins

As you use Vim a lot, you might end up with numerous plugins installed. Sometimes, these plugins
can cause Vim to become slow. Often, the culprit is a single unoptimized plugin, either due to the
author’s oversight or the unique way the plugin interacts with your system. Vim comes with built-in
profiling support, which we’ll now learn to use.

Profiling startup

You can start Vim with a - -startuptime <filenames flag, which will log every action Vim takes
during startup into a file. For instance, here’s how you write the startup log into startuptime.log:

$ vim --startuptime startuptime.log

For gvim users

You can launch gvim in a similar manner with gvim --startuptime startuptime.
log. The commands are the same in the Linux command line and in Windows cmd . exe.

Quit Vim and open startuptime.log. You'll be greeted with something like this (I replaced
sections of the file with <. . . > to make it easier to read):

times in msec
clock self+sourced self: sourced script

clock elapsed: other lines
000.021 000.021: --- VIM STARTING ---
000.244 00@.223: Allocated generic buffers
<. ..

008.902 003.923 ©003.923: sourcing /usr/local/share/vim/vim9@/colors/lists/de
009.526 ©05.150 001.227: sourcing /usr/local/share/vim/vim9@/syntax/syncolor
<, ..>

040.614 ©36.899 0@3.242: sourcing $HOME/.vimrc

040.617 000.528: sourcing vimrc file(s)

941.195 00@.196 000.196: sourcing /home/ruslano/.vim/plugged/ctrlp.vim/autol
041.413 00@.621 ©000.425: sourcing /home/ruslano/.vim/plugged/ctrlp.vim/plugi
047.011 ©@05.512 ©@85.512: sourcing /home/ruslano/.vim/plugged/vim-easymotion/
047.299 000.207 000.207: sourcing /home/ruslano/.vim/plugged/ack.vim/plugin/
©856.223 Q@8.857 ©@@8.857: sourcing /home/ruslano/.vim/plugged/vim-unimpaired/
0856.613 00@.315 @80.315: sourcing /home/ruslano/.vim/plugged/vim-vinegar/plu
0856.975 000.073 000.073: sourcing /usr/local/share/vim/vim9@/plugin/getscrip
057.194 000.200 000.200: sourcing /usr/local/share/vim/vim9@/plugin/gzip.vim
057.441 00@.228 080.228: sourcing fusr/local/share/vim/vim9@/plugin/logiPat.
057.499 000.038 000.038: sourcing /usr/local/share/vim/vim9@/plugin/manpager
057.716 ©00@.199 ©000.199: sourcing /usr/local/share/vim/vim9@/plugin/matchpar

Figure 3.2 - Output of running vim with a - -startuptime flag

https://github.com/tpope/vim-pathogen

Managing plugins

In the preceding screenshot, you can see a set of timestamps (most in three columns), followed by
an action measured by the timestamp. The timestamps are in milliseconds: 1/1000 of a second. The
first column indicates the number of milliseconds from starting Vim, while the last column indicates
how long each action took.

It’s the last column that is of interest to us. You'll be looking for any abnormalities in the file.

In our case, we don’t have any particularly slow plugins, but for the sake of science, the slowest plugin
we have installed is vim-unimpaired (at 8 milliseconds—008.857). You’ll have to get closer to 500
milliseconds (or half a second) for the plugin to have a noticeable effect on Vim startup times.

Profiling specific actions

If performing a particular action in Vim is slow, you can profile just a particular set of actions.

In this example, I created an obvious performance culprit. I downloaded the Python repository from
GitHub (by running git clone https://github.com/python/cpython.git), and
tried running the : Ctr1P command thats provided by a CtrlP plugin from within the cpython/
directory (which we explored in Chapter 2, Advanced Editing and Navigation). : Ctr1P will try to
index all the files recursively starting at the current directory, which should be slow for such a large
number of files.

Start Vim as usual, and execute the following set of commands:

:profile start profile.log
:profile func *
:profile file *

From now on, Vim will profile every action you perform. Run the slow command. In our case, let’s
run : Ctr1P by pressing Ctrl + p. After the offending action has been performed, quit Vim (:).

99

100 Follow the Leader Plugin Management

Open profile.log, and you'll be greeted with something like this (you may want to have folds
enabled with : set foldmethod=indent, as the file is large and hard to navigate otherwise):

SCRIPT /home/ruslanoc/.vim/plugged/ctrlp.vim/autoload/ctrlp.vim
Sourced 1 time
Total time: . 002072681

Self time: ©.002048528

count total (s) self (s)

+--2000 lines: " ===

SCRIPT /home/ruslanc/.vim/plugged/ctrlp.vim/autoload/ctrlp/utils.vim
Sourced 1 time
Total time: B. 000162402

Self time: ©.000089125

count total (s) self (s)

FUNCTION <SNR=3_SynSet()
Defined: /usr/local/share/vim/vim9@/syntax/synload.vim:33
Called 1 time
Total time: ©.000152604
Self time: ©.000152604

count total (s) self (s)

+-- 28 lines: " clear syntax for :set syntax=0FF and any syntax name that doesl

Figure 3.3 -profile. log contains a very detailed execution log
Scroll to the bottom of the file (by pressing G), and you'll see a list of functions sorted by how long
they took to execute:

FUNCTIONS SORTED ON SELF TIME
count total (s) self (s) function

50468 0.247723278 ctrlp#complen()
5327 @.20339106@ <SNR>32_usrign()
8 1.584669354 ©.191512642 <SNR>32_GlobPath()
8 0.372570320 ©.169122409 ctrlp#dirnfile()
2 ©.127770403 ©.127694947 ctrip#utils#writecache()
1 ©.918644511 ©.1@3977994 ctrip#files()
1 ©.885569569 ©.805561682 ctrlp#rmbasedir()
345 0.903468485 ctrip#utils#fnesc()
344 ©.005172569 ©.801711454 <SNR=32_fnesc()
17 ©.904104682 ©.001254823 <SNR>32_mixedsort()
1 ©.001084234 <5NR>32_MapNorms()
1 0.201260093 0.000905871 <5NR>32_Open()
1 ©.000716985 <SNR>32_MapSpecs()
7 0.000683036 ©.000639418 ctrlp#progress()
34 @.000538268 <SNR>32_getparent()
1 ©0.200734820 ©.000519823 <5NR>32_opts()
1 0.0004808215 <SNR>32_sublist()
17 ©.001195986 ©@.000470162 <5NR>32_comparent()
35 @.908421236 <SNR>32_CurTypeName()
@.

5 0.000410148 P0P367721 <SNR>24_Highlight Matching_Pair()

Figure 3.4 - The bottom of the profile. 1og contains functions sorted by execution length

Deeper dive into modes

Many of the slowest functions are prefixed with ctr1p#, so it’s becoming clear that CtrlP is likely to
be the culprit of the slowness (and as we know—it is). If it is not explicitly obvious where the functions
come from, we can search the file for the function name. For instance, <SNR>32_ GlobPath ()
is responsible for nearly ~1.58 seconds of slowdown (hover over the function name and press * to
search for the word under the cursor):

FUNCTION <SNR=82_GlobPath()
Defined: ~/.vim/plugged/ctrlp.vim/autoload/ctrlp.vim:453
Called 8 times
Total time: 1.584669354
Self time: @.191512642

count total (s) self (s)

8 @.859575180 let entries = split(globpath(a:dirs, s:g
lob), "\n")

8 ©.372688941 ©.000118621 let [dnf, depth] = [ctrlp#dirnfile(entri
es), a:depth + 1]

8 ?.200418963 let g:ctrlp_allfiles += dnf[1]

8 0.000112344 ©.000091020 if lempty(dnf[@]) && !s:maxf(len(g:ctrlp
_allfiles)) && depth <= s:maxdepth

7 0.008741084 ©.00DB58048 s5ill cal ctrlp#progress(len(g:ctrlp_
allfiles), 1)

7 0.0@6641475 ©.801531737 cal s:GlobPath(join(map(dnf[@], "s:f
nesc(v:val, "g", ",")'}, ',"), depth)

8 0.000B84235 en

FUNCTION <SNR>32_stop_timer_if exists()
Defined: ~/.vim/plugged/ctrlp.vim/autoload/ctrlp.vim:5@6
Called 1 time

Figure 3.5 - Function <SNR>32 GlobPath () is called by the CtrlP
plugin, as evident from the CtrlP references throughout

As you can see by the number of CtrlP references, this function is likely related to the offending plugin.

If you were to try to profile real issues with Vim, the contents of profile.log could tell you which
plugins are a likely cause of the slowdowns you are experiencing.

Whether you use vim-plug, Vundle, Pathogen, or even native plugin management out of the box, Vim
plugins expand and tailor Vim functionality to you. Now, you know how to profile Vim if (when) all
these plugins start slowing down Vim!

Deeper dive into modes

You've already encountered a few different modes Vim operates in, and this section will cover these
and the remaining modes in depth. As you have already learned, Vim uses modes to know how to
respond to inputs: a key press in normal mode will produce different results from a key press in insert
or command-line mode.

101

102 Follow the Leader Plugin Management

VISKAL
REPLACE
INSERT \Esc y s

m e

NORMAL

. Cirlvw, o
Esc -"'CTM e)!l‘)'

CONMMAND TESMINAL

Figure 3.6 — Relationships between insert, visual, replace, command, and terminal modes

Vim has seven primary modes (you won't use them all), and it’s important to understand what each
mode does in order to comfortably navigate Vim.

Normal mode

This is where you will (and already did) spend most of your time with Vim. You enter normal mode
by default when opening Vim, and you can go back to normal mode from other modes by pressing
the Esc key (sometimes twice).

Command-line and ex modes

Command-line mode is entered by typing a colon (:) or when searching for text with / or ?, and it
allows you to input a command until you hit Enter. Command-line mode provides some useful shortcuts:

o The up and down arrows (or Ctrl + p and Ctrl + n) let you traverse command history one by one
o Ctrl+ b and Ctrl + e let you go to the beginning and the end of the line respectively

o 'The Shift or Ctrl keys combined with left or right arrows allow you to move by words

Deeper dive into modes

A highly useful shortcut is Ctrl + f, which opens an editable command-line window with a history
of the commands you ran:

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
def prepare ingredient{ingredient):

has_spam = random.choice([True, False])
ingredient.prepare(has_spam)

def main():
print(]
primt({ :]
menu = []

q
vsp kitchen/bacon.py

sp kitchen/egg.py
tabnew

bd

only

[Command Line]

Figure 3.7 - Command-line mode history opened by hitting Ctrl + f

For editing purposes, it’s a regular buffer, so you can find a command you’ve executed before, edit it
(the way youd edit any text in Vim), and execute it again. You can press Enter to execute the line your
cursor is on or Ctrl + ¢ to close the buffer.

You can learn more about working with command-line mode by looking up :help cmdline-
editing.

Vim has a variation of the command-line mode called ex mode, which is entered by pressing Q. Ex
mode is a compatibility mode with Vim’s precursor—ex. It allows you to execute multiple commands
without exiting the mode after each command, but it has very limited uses today.

Insert mode

Insert mode is used to type in text, and that’s about it. Hitting Esc takes you back to normal mode,
which is where you should be performing most of your work. When in insert mode, you can also use
Ctrl + o to execute a single normal mode command and end up back in insert mode.

Insert mode is indicated by -- INSERT -- displayed in a status line.

103

104

Follow the Leader Plugin Management

Visual and select modes

Vim’s visual mode allows for an arbitrary continuous selection of text (usually to perform some sort of
operations on). It's useful when you want to work with a section of a file that does not map to existing
text objects (word, sentence, paragraph, and so on). There are three ways to enter visual mode:

o venters a character-wise visual mode (status line text: -- VISUAL --)
o Venters a line-wise visual mode (status line text: -- VISUAL LINE --)

o Ctrl + v enters a block-wise visual mode (status line text: -- VISUAL BLOCK --)

Once you enter visual mode, you are able to move your cursor using the usual movement commands,
which would expand the selection. In the following example, we've entered a character-wise visual
mode and moved the cursor by three words and one character to the right (by executing 3e and then
I). You can see prepare ingredient (ingredient) being selected in visual mode:

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

sSYllorepare_ingredient(ingredient B
has_spam = random.choice([Trus, False])
ingredient. prepare(has_spam)

def main():

print('Scene: A cafe. A man and his wife enter.")
-- VISUAL --

Figure 3.8 - An example of selection in a visual mode

You can control the selection by doing the following:

o Pressing o to go to the other end of the highlighted text (hence allowing the selection to expand
from the other side)

o Pressing O when in block-wise visual mode to the other end of the current line

Deeper dive into modes

After you're satisfied with the selection, you can run a command youd like to execute on a selection.
For example, hit d to delete the selected text:

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg-Egg(), bacon.Bacon(), sausage.Sausage()]

def
has_spam = random.choice([True, False])
ingredient . prepare(has_spam)

def main():

print{'Scene: A cafe. A man and his wife enter.')
Figure 3.9 - Deleting text selected in visual mode places you back in normal mode
In the preceding screenshot, Vim is back to normal mode (-- VISUAL -- is not in a status line anymore),

and the selection has been deleted. You can always hit Esc to come back to normal mode without
making a change.

Text objects

Text objects become a powerful tool when used in visual mode. See Utilizing Text Objects in
Chapter 2, Advanced Editing and Navigation, for more information.

Vim also has a select mode, which emulates the selection mode in other editors: pressing any printable
character immediately erases the selected text and enters the insert mode (so the usual movement
commands don’t work here). Just like the ex mode, the select mode has a very specific and limited set
of uses. In fact, I have never used it myself, except for when doing research for this book.

You can enter select mode by pressing gh from normal mode or Ctrl + g from visual mode and exit
it by pressing (you guessed it) Esc.

Replace and virtual replace modes

Replace mode behaves similarly to those times when you accidentally press the Insert key on your
keyboard and wonder why typing erases text. When working with replace mode, the text you type is
placed over existing text (as opposed to moving the existing text in insert mode). This is great when
you don’t want to change the character count in the original line, for example.

105

106

Follow the Leader Plugin Management

Enter replace mode by hitting R:

ingredient. prepare(has_spam)

def main(}:
prinmt({'Scene: A cafe. A man and his wife enter.')
primt{'Man: Well, what\'ve you got?')
menu = []

for ingredienmt in INGREDIENTS:
menu. append (prepare_ingredient{ingredient))
print{ 'Waitress: Well, there:'s’, °, '.join{menu))

-- REPLACE --

Figure 3.10 — Replace mode, as indicated by -- REPLACE -- in the status line

You'll see -- REPLACE -- in the status line. Now, you’ll be replacing text as you type:

ingredient . prepare(has_spam)

def main():
print{'This is a spam skit byfild his wife enter.')
print('Man: Well, what\'ve you got?')
menu = []

for ingredient in INGREDIENTS:
menu. append(prepare_ingredient (ingredient))
print{ 'Waitress: Well, there\'s’, °, '.join{menu))

-- REPLACE --

Figure 3.11 - Typing in replace mode replaces existing text (who would’ve thought?!)

Erasing in replace mode by hitting Backspace brings back the original text. Hit Esc to exit replace
mode and go back to normal mode.

You can press r to enter replace mode for a single character press before being switched back to
normal mode.

Vim also provides virtual replace mode, which behaves similarly to replace mode but operates in terms
of screen real estate as opposed to characters in a file. The main noticeable differences include Tab
replacing multiple characters (as opposed to a single character in replace mode) or Enter not creating
an addition line, but moving on to the next line. You can enter virtual replace mode using gR, and
you can learn more about it by reading :help vreplace-mode.

Deeper dive into modes

Terminal mode

Terminal mode came to Vim in version 8.1, and it allows you to run a terminal in a split window. You
can enter terminal mode by typing the following:

:terminal

Tip

You can shorten the command to : term.

This will open your system’s shell (your default shell in Linux or cmd . exe in Windows) in a
horizontal split:

~/Mastering-Vim-Second-Edition/Chapter®2$ python3 welcome.py
Scene: A cafe. A man and his wife enter.

Man: Well, what've you got?

Waitress: Well, there's egg, bacon, sausage
~/Mastering-V¥im-Second-Edition/Chapter@2$

!/bin/bash [running]

#1 /usr/bin/pythor

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

def prepare_ingredient{ingrediemt}):
has_spam = random.choice([True, False])
return ingredient.prepare(has_spam)

Figure3.12 - : terminal enables you to work with a command-line terminal
without exiting Vim (which we know to be notoriously difficult)

This is a wrapper around your system’s terminal, which lets you work with your shell as you normally
would. This window is treated similarly to any other window (you can navigate between split using
Ctrl + w commands), but the window is effectively locked into insert mode. You may also want to
consider using tmux or a screen under Linux or macOS to work with a Terminal alongside Vim.

You can also use : term to execute a single command and place its output in a buffer. For example,
we can run welcome . py as follows:

:term python3 welcome.py

107

108 Follow the Leader Plugin Management

The output is immediately available to us in a horizontal split:

Scene: A cafe. A man and his wife enter.
Man: Well, what've you got?
Waitress: Well, there's spam egg, bacon, sausage

!python3 welcome.py [finished]

#1 fust/bin/python

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
def prepare_ingredient(ingredient}):

has_spam = random.choice([True, False])
return ingredient.prepare(has_spam)

rterm pythans welcome. py

Figure 3.13 - Running : term with arguments executes a single command and captures output in a buffer

Operator-pending mode (bonus)

Finally, there’s the operator pending mode. Every time you enter a command that expects a follow-up
(e.g., when a command is followed by a motion, such as after hitting y when executing yw to yank a
word), Vim enters an operator-pending mode.

You won't be deliberately using the operator-pending mode, but some commands only work in this
mode, and it’s helpful to be aware of the mode’s existence.

Now, you're familiar with every major mode: normal mode, command-line and ex modes, insert mode,
visual and select modes, terminal mode, and even operator pending mode. Thinking of which mode
is needed to perform an editing task will be instrumental to your mastery of Vim!

Remapping commands

Now that you are comfortable working with plugins, you may want to consider customizing your
Vim further by remapping commands to suit your preferences. Plugins are written by many kinds
of different people, and everyone’s workflow is different. Vim is infinitely extensible, allowing you to
remap nearly every action, change certain default behaviors, and really make Vim your own. Let’s
talk about remapping commands.

Remapping commands

Vim allows you to remap certain keys to be used in place of other keys. :map and : noremap provide
just that:

o :map is used for recursive mapping in normal, visual/select, and operator-pending modes

o :noremap is used for non-recursive mapping

This means that commands remapped with : map are aware of other custom mappings, while
:noremap works with system defaults.

(7
Avoiding mapping collisions
Before you decide to create a new mapping, you may want to see whether the key or sequence
youre mapping to is already used somewhere. You can scan through :help index for alist
of built-in key bindings. The : map command lets you view plugin and user-defined mappings.
For instance, :map g will display every mapping starting with the g key.

- J

Let’s add a custom mapping to our . vimrc file:

noremap ; : " Use ; in addition to : to type commands.

In the preceding example, we're remapping ; to function the same way : does. Now, we don’t have
to press down Shift to enter command-line mode. On the downside, we now don’t have a command
that repeats the last t, £, T, or F (find character and find till character) movement.

We're using noremap because we still want to enter command-line mode, even if : gets remapped
to do something else.

Cleaning the house

If you ever want to explicitly remove a mapping you or a plugin defined, youd be looking for
:unmap. There’s also a nuclear option of :mapclear, which drops both user-defined and
default mappings.

You can use special characters and commands in mappings as well, for example:

noremap <c-u> :w<cr> " Save using <Ctrl-u> (u stands for update) .

<c-u> in the preceding example represents Ctrl + u. The Ctrl prefix in Vim is denoted by <c-_ >,
where _is some character. Other modifier keys are represented similarly:

e <a-_>or<m-_>represents Alt pressed with some key, for example, <m-b> would correspond
to Alt+b

o <s-_>represents a Shift press, for example, <s-f> would correspond to Shift + f

109

110

Follow the Leader Plugin Management

Please note that a command is terminated by <cr >, which stands for a carriage return (the Enter key).
Otherwise, the command will be entered but not executed, and you will be left hanging in command-
line mode (unless that’s exactly what you want).

By the way, here are all of the special characters you can use:

o <spaces: Spacebar

o <esc>:Esc

e <cCr>,<enters: Enter

o <tabs>:Tab

o <bs>: Backspace

e <up>, <downs, <lefts, <rights>: Arrow keys

« <pageup>, <pagedowns: Page Up and Page Down
o <fl>to<£f12>: Function keys

o <homes>, <inserts, <dels, <ends>: Home, Insert, Delete, and End

:help!
See :h key-notation for the full list!

You can also map a key to <nop> (short for no operation) if you want the key to not do anything.
This, for instance, could be useful if you're trying to get used to hjkl-style movement versus arrow
keys. Disabling your arrow keys in . vimrc would look like this:

" Map arrow keys nothing so I can get used to hjkl-style movement.
map <up> <nop>

map <downs> <nop>

map <left> <nop>

map <rights> <nop>

Mode - aware remapping

The :map and : noremap commands work for normal, visual, select, and operator-pending modes.
Vim supports a more fine-grained control over which modes the mappings work in:

e :nmap and :nnoremap: Normal mode
e :vmap and :vnoremap: Visual and select modes
e :xmap and :xnoremap: Visual mode

e :smap and : snoremap: Select mode

The leader key

o :omap and : onoremap: Operator-pending mode
e :map! and :noremap!: Insert and command-line modes
e :imapand :inoremap: Insert mode

e :cmap and : cnoremap: Command-line mode

:help!
Vim often uses an exclamation mark ! to force command execution or to add additional
functionality to a command. Try :help! for yourself!

For example, if you wanted to add some mappings to alter some insert mode behavior, you could do this:

" Immediately add a closing quotes or braces in insert mode.

inoremap ' ''<esc>i
inoremap " ""<esc>i
inoremap (()<esc>i

inoremap { {}<esc>i
inoremap [[]l<esc>i

In the preceding example, we changed the default behavior of a key press in insert mode (for example,
the opening square bracket [) to insert two characters instead of one ([]), leave insert mode, and
immediately reenter it (to be placed between both braces since insert mode is entered before the cursor).

The leader key

You've probably already encountered a key referred to as the leader key. The leader key is essentially
a namespace for user- or plugin-defined shortcuts. Within a second of pressing the leader key, any
key that’s pressed will be in from that namespace.

The default leader key is a backslash, \, but it’s not the most comfortable binding. There are a few
alternative keys that are popular in the community, with the comma (,) being the most popular. To
rebind the leader key, set the following in your . vimrc file:

" Map the leader key to a comma.
let mapleader = ',

You’'ll want to define your leader key closer to the top of . vimrc as the newly defined leader key will
only apply to mappings defined after its definition.

Important note

When you rebind a key, its default functionality is overwritten. For example, comma (,) is used
to replay the last ¢, f, T, or F movement commands, in the opposite direction.

111

112

Follow the Leader Plugin Management

My personal favorite is to use the spacebar as a leader key. It’s a big key, which doesn’t have any real
use in normal mode (it mimics right arrow key functionality):

" Map the leader key to a spacebar.
let mapleader = "\<space>"

Important note

The escape character \ is needed before space since mapleader doesn't expect special
characters (such as space). Double quotes () are also necessary for the escape to work since
single quotes (°) only allow literal strings.

You can use leader in your . vimrc mappings in the following manner:

" Save a file with leader-w.
noremap <leader>w :w<cr>

More often than not, you will use a leader key to map plugin functionality in a way that’s easy for you
to memorize, as in the following example:

noremap <leader>n :NERDTreeToggle<cr>

Configuring plugins

Plugins often expose commands for you to map to and variables to change plugin behavior. It's a good
idea to review the available options and commands for the plugins you use. Sane plugin defaults make
a huge difference in experience. Creating shortcuts that are easy for you to remember will help you
remember how to use the plugin you forgot about in a few months.

Vim allows for the creation of global variables, which are primarily used to configure plugins.
Global variables are usually prefixed by g:. You can find a list of configuration options in the plugin
documentation by running :help <plugin-name> and looking for options.

Configuring plugins 113

For example, opening a help file for the CtrlP plugin (by running : help ctrlp) and searching for
options (/options) yields the following:

CtrlP ControlP fctrlp’ 'ctrl-p
#
HHHHHH HHHHHHHHH
+ + + B8 B B8 B8 AL
+: 4+ + 4 + 4 +:4+ 404 + 4 +: 4+
+HE+ HH+ HEERRHED HE HEE
Hf+ Hi+ H+ HEE R -
H#HHE #HE #HHE #HHE FHE #HHE
R HHE HHE st HHE
#
CONTENTS ctrlp-contents

B 1 e+ ctrlp-intro

2. 0ptions. ... e e ctrlp-options

3. Commands. ctrlp-commands

A MAapPINgS. ... ctrlp-mappings

5. Input FOImats.covcinrinraiinncnnnennnnns ctrlp-input-formats

6. EXtensions. ueiin e innn it ctrlp-extensions
#1/usz/bin/pythor

welcome. py
"ctrlp.txt" [readonly] 1687L, 64284B

Figure 3.14 - The CtrlP help page

Refresher on CtrlP
You can read more about the CtrlP plugin under Chapter 2, Advanced Editing and Navigation.

114 Follow the Leader Plugin Management

If we follow the ctrlp-options link (by pressing Ctrl +), we will be taken to a list of available
options for configuring CtrlP:

OPTIONS Etrlp-options
Overview
loaded ctrlp.....cvvvnuvnnnn Disable the plugin.
ctrlp map.....coviiiinninnnn Default mapping.
ctrlp emd......cooviiiinnnn Default command used for the default mapping.
ctrlp by filename........... Default to filename mode or not.
ctrlp TegeXp...oviuiien s Default to regexp mode or not.
ctrlp match_window.......... Order, height and position of the match window.
ctrlp switch buffer......... Jump to an open buffer if already opened.
ctrlp_reuse_window.......... Reuse special windows (help, quickfix, etc).
ctrlp_tabpage_position...... Where to put the new tab page.
ctrlp_working_path_mode..... How to set CtrlP's local working directory.
ctrlp_root_markers.......... Additional, high priority root markers.
ctrlp use _caching........... Use per-session caching or not.
ctrlp_clear_cache_on_exit...Keep cache after exiting vim or not.
ctrlp cache_dir............. Location of the cache directory.
ctrlp_show_hidden........... Ignore dotfiles and dotdirs or not.
ctrlp_custom_ignore......... Hide stuff when using globpath().

ctrlp.txt [Help] [RO]

sT/b

"ctIlp.txf" [readonly] 1687L, 64284B
Figure 3.15 - Help page on the list of options available for configuring the CtrIP plugin

Let’s pick an interesting option to explore, say ctrlp working path mode. Move your cursor
over to the link and press Ctrl +] to follow it further:

g:ctrlp_working_path_mode
When starting up, CtrlP sets its local working directory according to this
variable:

let g:ctrlp_

c - the directory of the current file.
a - the directory of the current file, unless it is a subdirectory of the cwd
r - the nearest ancestor of the current file that conmtains one of these
directories or files:
.git .hg .svn .bzr _darcs
w - modifier to "r": start search from the cwd instead of the current file's
directory
@ or <empty> - disable this feature.
Note #1: if "a" or "c" is included with "r", use the behavior of "a" or "c" (as
a fallback) when a Toot can't be found.

Note #2: you can use a b:var to set this option on a per buffer basis.

g:ctrlp

ctrlp.txt [Help] [RO]

Figure 3.16 — A detailed help page onthe g: ctrlp working path mode option

Summary

It looks like this option guards how CtrlP sets a local working directory. If we wanted to change it to
look for a root folder of our Git project (with a fallback to the current working directory), we would
change our . vimrc file accordingly:

" Set CtrlP working directory to a repository root (with a
" fallback to current directory) .
let g:ctrlp working path mode = 'ra'

Digging through the available options for plugins takes time; however, it might make you much more
productive or even completely change the way you use the plugins.

Remember the leader key? It comes in very handy with plugins as it provides a full namespace for
plugins to use. Some plugins already use the leader key for their default key bindings, others not so
much. You can always make your own easy-to-remember mappings!

For example, all three Ctr]P modes can be easily accessed with two key presses:

" Remap CtrlP actions to be prefixed by a leader key.
noremap <leader>p :CtrlP<cr>

noremap <leader>b :CtrlPBuffer<crs>

noremap <leader>m :CtrlPMRU<cr>

I find it extremely useful to take some time to optimize my key mappings or customize plugin options.
A small investment and some mindfulness go a long way in getting the most out of your setup.

Summary

In this chapter, we've talked about the different ways of managing plugins. The new shiny thing is
vim-plug, a lightweight plugin manager that can asynchronously install and update your plugins.
Vundle, its predecessor, also allows you to search for and temporarily install new plugins. We've also
learned how to manually work with plugins: Vim 8.0 introduced a way to load plugins without the
need to manually alter runt imepath for each plugin. If you still use Vim below version 8, then
Pathogen provides a way to automate some of the runt imepath manipulations.

We've looked at profiling Vim with a - -startuptime flag and the :profile command.

We've revisited modes, covering every major mode: normal mode, command-line and ex modes,
insert mode, visual and select modes, and terminal mode.

We've talked about remapping commands to make Vim truly yours. Different key combinations
are more convenient and easier to remember for different people. Vim allows you to remap keys
based on the mode you’re in, meaning you can alter the behavior of every key press. We've covered
the leader key, which allows you to access a whole new namespace that’s reserved for plugins and
user-defined commands.

115

116

Follow the Leader Plugin Management

We've also looked into the ways we can squeeze the most out of our plugins by customizing their
configuration options and adding key bindings that make more sense in our own unique workflow.

In the next chapter, we'll cover autocomplete, navigating large code bases with tags, and traversing
Vim’s undo tree.

4
Understanding Structured Text

At some point, text files grow large enough to be able to navigate through them top to down. Luckily,
structured text such as code or Markdown files don’t need to be read linearly. Vim has a few aces up
its sleeve when it comes to navigating complex files. To assist with understanding your way around
large bodies of text, this chapter will cover the following topics:

o Autocompleting code using Vim’s built-in autocomplete functionality and plugins such as
YouCompleteMe to enhance writing efficiency and accuracy

o Navigating large code bases using Exuberant Ctags, enabling instant movement between
definitions and references

« Navigating Vim’s complex undo tree with plugins such as Undotree, making it easier to navigate
and recover changes

Technical requirements

We will continue navigating our sample project, and you will continue working on your . vimrc
file. All of the material is available from GitHub at the following link: https://github.com/
PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter04.

Code autocomplete

One of the most appealing features that modern IDEs have is code autocomplete. IDEs allow you to
eliminate typos, look up hard-to-remember variable names, and save time by removing the need to
type long variable names over and over again.

Vim has some built-in autocomplete functionality, and there are plugins that expand upon this.

https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter04

118

Understanding Structured Text

Built-in autocomplete

Vim supports native autocomplete based on words available in open buffers. It’s available out of
the box starting with Vim 7.0. Start by typing the beginning of a function name and hit Ctrl + n to
bring up the autocomplete list. You can navigate the list using Ctrl + n and Ctrl + p. For example,
open welcome . py, enter insert mode, and start typing the first two letters of a function name: pr
(prepare ingredient). Press Ctrl + n. This will bring up a list of available options:

#1 fusT/bin/pythor

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
def prepare_ingredient{ingredient):

has_spam = random.choice([True, False])
return ingredient.prepare(has_spam)

def main():
print('Scene: A cafe. A man and his wife enter.’)
print{'Man: Well, what\'ve you got?')
menu = []

for ingredient in INGREDIENTS:
menu. append {prepare_ingredient

print{ 'Waitress primt , ' .join{menu))
prepare_ingredient
prepare
if _name == ' main_ ':
main()

-- Keyword completion (ANAP) match 2 of 3

Figure 4.1 - Vim'’s native autocomplete

Continue typing to dismiss the list.

In fact, Vim has an insert-completion mode, which supports multiple completion types. While in
insert mode, press Ctrl + x followed by one of the following keys:

o Ctrl + [to complete the whole line
o Ctrl +] to complete tags
o Ctrl + fto complete filenames

s (with optional Ctrl this time around) to complete spelling suggestions (if : set spell
is enabled)

Code autocomplete

(R
There’s more!

These are the commands I found useful in the past, but there are more! Read :help ins-
completion for a full list of supported commands—everyone’s workflow is unique, and you
never know which commands you’ll find yourself utilizing a lot. You should also check :help
'complete', which is an option that controls where Vim looks for completion (by default,
Vim looks in buffers, tag files, and headers).

YouCompleteMe

YouCompleteMe takes a built-in autocomplete engine and pumps steroids into it. YouCompleteMe
has a few distinctive features that elevate it beyond built-in autocomplete:

o Semantic (language-aware) autocomplete; YouCompleteMe understands your code a lot better
than built-in autocomplete

o Intelligent suggestion ranking and filtering

o An ability to display documentation, rename variables, autoformat code, and fix certain
types of errors (language dependent, see https://github.com/ycm-core/
YouCompleteMe#quick-feature-summary)

Installation
First, make sure that you have cmake and 11vminstalled, since YouCompleteMe needs to be compiled:
$ sudo apt install cmake llvm

For Windows, you can get cmake from https://cmake.org/download and 11vm
from https://releases.llvm.org/download.html.

YouCompleteMe relies on Python

YouCompleteMe requires Vim to be compiled with +python3. You can check whether your
Vim was compiled with Python support by running vim --version | grep python3.
If you see -python3, you’ll have to recompile your Vim with Python support.

If you're using vim-plug, add the following to . vimrc between the call plug#begin () and
call plug#end () lines:

let g:plug timeout = 300 " Increase vim-plug timeout for
" YouCompleteMe.
Plug 'ycm-core/YouCompleteMe', { 'do': './install.py' }

119

https://github.com/ycm-core/YouCompleteMe#quick-feature-summary
https://github.com/ycm-core/YouCompleteMe#quick-feature-summary
https://cmake.org/download
https://releases.llvm.org/download.html

120 Understanding Structured Text

Save the file and execute it:

:source $MYVIMRC | PlugInstall

Depending on how fast your machine is, this might take a while. You will be greeted by a successful
installation screen:

- Finishing ... Done!

- Post-update hook for YouCompleteMe ...
- nerdtree: Already installed

- ctrlp.vim: Already installed

- ack.vim: Already installed

- YouCompleteMe: Resolving deltas: 1@@%
- vim-easymotion: Already installed

- vim-unimpaired: Already installed

- vim-vinegar: Already installed

[Plugins] [MNo Name]

Figure 4.2 — Successfully installed YouCompleteMe

If you’re running out of memory...

If you're running into an error such as c++: internal compiler error: Killed (program cclplus),
then your machine likely doesn’t have enough memory to complete the operation. On Linux,
you can increase available swap space:

$ sudo dd if=/dev/zero of=/var/swap.img bs=1024k count=1000
$ sudo mkswap /var/swap.img

$ sudo swapon /var/swap.img

A swap file is a space on a hard drive that can be used to substitute the physical memory. Here,
we create an empty 1 Gb swap file with the dd command, make the system recognize it as a
swap file with mkswap, and activate the swap file with the swapon command.

Code autocomplete 121

Using YouCompleteMe

YouCompleteMe doesn’t introduce a lot of new key bindings, which makes integrating it into your
workflow easier. Enter insert mode and start typing away:

#1 /usr/bin/python

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
def prepare_ingredient(ingredient):

has_spam = random.choice([True, False])
return ingredient.prepare(has_spam)

def main():
print{'Scene: A cafe. A man and his wife enter.')
print('Man: Well, what\'ve you got?')
menu = []

for ingredient in INGREDIENTS:
menu. append(pr

print(‘Waitress print [ID] odinm{menu)})
prepare [1ID]
prepare_ingredient [ID]
if __mame__ == ' m import [ID]
main()
== INSERT --

Figure 4.3 - YouCompleteMe shows autocomplete suggestions as you type

122

Understanding Structured Text

As you do, autocomplete suggestions will pop up. The Tab key will cycle through suggestions.
Furthermore, if YouCompleteMe is able to look up function definition, together with a supporting
docstring, it will show up in a preview window at the top of the screen:

prepare(with_spam=True)

import random
INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

def prepare_ingredient{ingredient}:
has_spam = random.choice([True, False])
return ingredient.prepare
prepare T def prepare(with_spam=True)

def main(): _repr._ T def __repr_ ()
print()]
primt(L] 1
menu = []

for ingredient in INGREDIENTS:
menu. append (prepare_ingredient(ingredient))
print(\ s .join{menu})

velcome.py [+]
-=- INSERT --

Figure 4.4 - You can see the method signature and documentation for
the Ingredient.prepare method at the top of the screen

If you don’t see the preview

The preview window only shows up when YouCompleteMe uses the semantic autocomplete
engine. The semantic engine is automatically invoked when typing in insert mode (e.g., after
a . period) or manually by pressing Ctrl + spacebar.

For Python, YouCompleteMe also allows you to jump to the function definition. Add the following
mapping to your . vimrec file:

noremap <leader>] :YcmCompleter GoTo<cr>

Navigating the code base with tags

Now, with the cursor over a function call, press your leader key (backslash, \, by default), followed by
]. You will be taken to the function definition:

class Ingredient{object}:

def init_ (self, name):
self.name = name

def prepare(self, with_spam=True):
"Might or might not add spam to the ingredient."™
if with_spam:
return ‘spam ' + self.name
return self.name

"~/Mastering-Vim-Second-Edition/Chapter®4/kitchen/ingredient.py" 18L, 269B

Figure 4.5 - Pressing <leader> followed by] when hovering over a
method description takes you to the method definition

Alternative completion plugins

YouCompleteMe is not the only available autocomplete tool, but merely the author’s favorite
(and the most popular option at the time of writing this book). There are many alternatives. A
quick search along the lines of Vim autocomplete will yield plenty of results if you're interested
in an alternative.

Navigating the code base with tags

Autocomplete is helpful when writing anew, but you often have to read what somebody else wrote. A
common task when navigating code bases is trying to figure out where certain methods are defined,
and looking for occurrences of a certain method.

123

124

Understanding Structured Text

Vim has a built-in feature that allows you to navigate to the definition of a variable in the same file.
With the cursor over a word, press gd to go to the declaration of the variable. For instance, open
welcome . py and position your cursor at the beginning of prepare ingredient on line 17.
Press gd, and your cursor will jump to line 8, where the function is defined:

1 #1/usr/bin/pytho

2

3 from kitchen import bacon, egg, sausage

4 import random

5

& INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
7

8 def Irepare_ingredient(ingIEdient):

9 has_spam = random.choice([True, False])

10 return ingredient.prepare(has_spam)

11

12 def main()}:

13 print{ Scene: A cafe. A ma)
14 print{'Man: Well, what\'v

15 menu = []

16 for ingredient in INGREDIENTS:

17 menu . append (prepare_ingredient (ingredient))
18 print{ 'Waitress: Well, there\'s’', ', '.join{menu}}
19

28

21 if _mame__ == ' main_ ':

22 main()

Figure 4.6 — Pressing gd takes you to the symbol definition

gd will look for a local variable declaration first. There’s also gD, which will look for a global declaration
(starting at the beginning of the file instead of the beginning of the current scope).

This feature is not syntax-aware, as out-of-the-box Vim does not know how your code is structured
semantically. However, Vim supports tags—a file of semantically meaningful words and constructs
across your files. For example, in Python, likely candidates for tags are classes, functions, and methods.

Exuberant Ctags

Exuberant Ctags is an external utility that generates tag files. Ctags is available at the following
link: http://ctags.sourceforge.net.

Tip
If you're on a Debian-flavored distribution, you can install Exuberant Ctags by running sudo
apt install universal-ctags.

http://ctags.sourceforge.net

Navigating the code base with tags

Ctags introduces a ctags binary, which allows you to generate a tags file for your code base. Let’s
navigate to our project and try it out:

$ ctags -R .

This creates a tags file in the directory you're in.

s 2
Tip
You may want to set the following option in your . vimrc file:
set tags=tags; " Look for a tags file recursively in

" parent directories.

This will make sure that Vim looks for the tags file recursively in parent directories to allow
you to use a single tags file for the whole project. The semicolon (;) is what tells Vim to keep
looking in parent directories until a tags file is found.

L J

Now, open welcome . py in Vim. Place your cursor over a semantically meaningful keyword, for
example, the prepare method on line 10:

1 #!/usr/bin/pythor

2

3 from kitchen import bacon, egg, sausage
4 import random

5
6 INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
T
8 def prepare_ingredient(ingredient}:
9 has_spam = random.choice([True, False])
10 return ingredient.prepare(has_spam)
11
12 def main()}:
13 print('Scene: A cafe. A man and his wife enter.")
14 print('Man: Well, whath've you got?")
15 menu = []
16 for ingredient in INGREDIENTS:
17 menu . append (prepare_ingredient(ingredient))
18 print{ 'Waitress: Well, therev's’, ', ".join{menu})
19
20
21 if _ name_ == ' main

22 main()

Figure 4.7 — Place a cursor over a method - you'll be able to move to its definition with Ctrl +]

125

126 Understanding Structured Text

Hit Ctrl +] to follow the tag to the definition (which is in a different file—kitchen/egg.py):

from kitchen import ingredient

class Egg(ingredient.Ingredient):

def _init (self):
self.name = 'eoqo

def prepare(self, with_spam=True):

Becomes an omelet as you add spam!™

return “spam omelet’ if with_spam else self.name

"kitchen/egg.py" 11L, 264B

Figure 4.8 — Ctrl +] takes you to the method definition

Use Ctrl + t to go back in the tag stack (this will place your cursor back to where it was in the previous file).

Tip
Jump list navigation with Ctrl + 0 and Ctrl + i also works; however, the two are using different lists.

If you have multiple tags with the same name, you can cycle through the available options by using
the : tn (next tag) and : tp (previous tag) commands.

Navigating the code base with tags

You can also bring up a list of tags by using the : t s (tag select) menu. For example, if you jump to the
definition of prepare (using Ctrl + | from ingredient .prepare (has_spam) in welcome.
py, for instance) and execute : ts, you'll see the following menu:

from kitchen import ingrediemt

class Egg{ingredient.Ingredient):

def __init_ (self):
self.name = "eqo

def prepare(self, with_spam=True):

cecomas anm on el as you aad spam

pam omelet’ if with_spam else self.name

Teturn

2F m prepare kitchen/ing ent.py
class: Ingredient
def prepare(self, with_spam=True):
Type number and <Enter> (q or empty cancels):

Figure 4.9 - :ts opens a list of tags, allowing you to select the definition to jump to

You can see what file, class, and method the tag refers to, and you can jump to the desired tag by
entering a number.

You can also open a tag and select the menu instead of jumping to the tag under the cursor using g/.
You can jump to a tag location immediately as you open Vim. From your prompt, execute the following:

$ vim -t prepare

This will take you directly to the prepare symbol.

Automatically updating the tags

You probably don’t want to have to manually run the ctags -R . command every time you make
changes to the code. The simplest way to address this is to add the following to your . vimrc file:

" Regenerate tags when saving Python files.
autocmd BufWritePost *.py silent! !ctags -R &

The preceding snippet runs ctags -R every time you save a Python file.

127

128

Understanding Structured Text

You can replace the preceding * . py extension with different file extensions depending on the language
youd like to work with. For example, the following will generate a tags file for C++ files:

autocmd BufWritePost *.cpp,*.h silent! !ctags -R &

Having explored the array of code completion options and mastered the art of navigating complex
code bases, we will now venture into the intriguing realm of Vim’s undo tree, a game-changing feature
that propels your editing capabilities to new heights.

Visualizing the undo tree

Most modern editors support an undo stack, with undoing and replaying operations. Vim takes
that one step further by introducing an undo tree. If you make a change, X, undo it, and then make
a change, Y—Vim still saves the change X. Vim supports manually browsing undo tree leaves, but
there’s a better way to do this.

Undotree is a plugin that visualizes the undo tree and is available from GitHub at https://github.
com/mbbill/undotree.

(7
Alternatives to Undotree

Many plugins visualize Vim’s undo tree, and Undotree is only one of them. Gundo (https://
github.com/sjl/gundo.vim.git) and its more recent fork, Mundo (https://
github.com/simnalamburt/vim-mundo), are other popular choices.

Quickly installing plugins

If youre using vim-plug to manage your plugins, add the following to your . vimrc file:
Plug 'mbbill/undotree'.Execute :w | so $MYVIMRC | PlugInstall and
you'll have Mundo installed and ready to go.

https://github.com/mbbill/undotree
https://github.com/mbbill/undotree
https://github.com/sjl/gundo.vim.git
https://github.com/sjl/gundo.vim.git
https://github.com/simnalamburt/vim-mundo
https://github.com/simnalamburt/vim-mundo

Visualizing the undo tree 129

Let’s say youre working on welcome . py, with your cursor on line 15:

1 #!/usr/bin/python

2

3 from kitchen import bacon, egg, sausage

4 import random

5

& INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
7

8 def prepare_ingredient{ingredient):

9 has_spam = random.choice([True, False])

18 return ingredient.prepare(has_spam)

11

12 def main(}:

13 print{'Scene: A cafe. A man and his wife enter.')
14 print{'Man: Well, what\'ve you got?')

15 menu = I]

16 for ingredient in INGREDIENTS:

17 menu. append (prepare_ingredient (ingredient))
18 print('Waitress: Well, there\'s', ', '.join{menu})
19

20

21 if _nmame__ == '_ main__ ':

22 main()

Figure 4.10 — Place your cursor on line 15, make changes, undo them, and make a different set of changes

You're editing the highlighted line: menu = []. You perform the following operations:

1. Change thelinetomenu = [egg.Egg()].
2. Undo the edit using the undo command (u).
3. Change thelinetomenu = [bacon.Bacon()].

Normally, youd expect the edit where you introduced egg . Egg () to be lost, but since Vim has an
undo tree, the change is preserved!

130

Understanding Structured Text

Executing : UndotreeToggle will open two new windows in a split: the visual representation
of the tree (top left) and the difference between that version and a previous snapshot (bottom left).
Here’s how it looks:

Press 7 for help 1 #!/usr/bin/pythor

2

B >2< (8 seconds ago) 3 from kitchen import bacon, egg, sausage

* (11 seconds ago) 4 import random

5

* @ (Original) & INGREDIENTS = [egg.Egg(), bacon.Bacon(), sa
7
8 def prepare_ingredient{ingredient):
9 has_spam = random.choice([True, False]
18 return ingredient.prepare(has_spam)
11

: 2 redo: None 12 def main(}:

- seq: 2 - 13 print({ 'Scene: A cafe. A man and his wif

15c15 14 print{ 'Man: Well, what\'ve you got?")

< menu = [15 menu = [bacon.Bacon()]

--- 16 for ingredient in INGREDIENTS:

> menu = [bacon.Bacon()] 17 menu . append (prepare_ingredient(ingT
18 print('Waitress: Well, there\'s’,
19
20
21 if _mame__ == ' main__
22

welcome.py [+]

Figure 4.11 — Undotree in all its glory - the visualized tree is in the top-right window,
the diff is in the bottom-left window, and the file snapshot is on the right

With your cursor over the Undotree window, you can navigate up and down the tree with j and k
and select a revision with Enter. Go to the last change at the top of the tree if you're not already on it
(you can use gg to quickly make your way to the top of the buffer). You can see how we changed the
linemenu = [] tomenu = [bacon.Bacon()] in our last change.

Note

The undo tree functionality exists in Vim out of the box. Plugins such as Undotree, Gundo,
and Mundo merely provide a handy visualization!

Visualizing the undo tree

Now, hit j to go down the tree to a different (now unused) branch (hit Enter to select):

Press 7 for help 1 #!/usr/bin/pythor
2
* 2 (8 seconds ago) 3 from kitchen import bacon, egg, sausage
M * =1« (11 seconds ago) 4 import random
/ 5
* @ (Original) & INGREDIENTS = [egg.Egg(), bacon.Bacon(), sa
7
8 def prepare_ingredient{ingredient}):
9 has_spam = random.choice([True, False]

1@ return ingredient.prepare(has_spam)
11
redo: None 12 def main():
- seq: 1 - 13 print('Scene: A cafe. A man and his wif
15c15 14 print{'Man: Well, what\'ve you got?')
< menu = [15 menu = [egg.Egg()]
--- 16 for ingredient in INGREDIENTS:
> menu = [egg.Egg()] 17 menu . append (prepare_ingredient(ingr
18 print{ 'Waitress: Well, there\'s’,
19
28
21 if _mame__ == ' main__
22 main()
welcome.py [+]

Figure 4.12 - Selecting a version from another branch in the undo tree
allows you to retrieve changes that would otherwise be lost

This is the edit we thought we had lost! You can see how we replaced menu = [] with menu
[egg.Egg ()].Run :UndotreeToggle again to hide the undo tree.

r

Tip
If you're anything like me, you’ll use the Undotree a lot. I have it mapped to the F5 key, to
make it easier to invoke:

noremap <f5> :UndotreeToggle<cr> " Map Undotree to <F5>.

Ask for :help

If you want to learn more about the undo tree, see :help undo-tree. We've also covered
some undo tree functionality (including persisting the undo tree between sessions) in Chapter 1,
Persistent Undo and Repeat.

131

132

Understanding Structured Text

Summary

This chapter covered some of the advanced workflows in Vim. We looked at code autocomplete using
Vim’s built-in autocomplete functionality. We also looked at YouCompleteMe, a plugin that makes
autocomplete syntactically aware. We also looked at Exuberant Ctags as a way to navigate more
complex code bases. Lastly, we looked at Vim’s undo tree (the concept) and Undotree (a plugin that
makes navigating the undo tree more intuitive).

In the following chapter, we'll dive into combining Vim and version control and dealing with merge
conflicts. We'll also dive into ways to build, test, and execute code in a Vim-friendly manner.

5

Build, Test, and Execute

This chapter will focus on working with version control, a fundamental component of modern development
workflows, as well as building and testing code. Version control streamlines collaboration, tracks
changes, and provides a reliable history of your project’s evolution. You will learn to do the following:

Working with version control (and Git in particular) if you haven't already

Learning to productively use Git and Vim together

Comparing and merging files with vimdiff

Resolving Git conflicts using vimdiff

Using tmux, screen, or Vim terminal mode to multitask and execute shell commands
Using quickfix and location lists to capture warnings and errors

Building and testing code using the built-in : make command and plugins

Running syntax checkers manually and by using plugins

Technical requirements

Among other things, this chapter will cover working with version control. Git is the version control
system of choice for this chapter; however, the lessons learned are applicable across different systems.
A section is dedicated to a quick-and-dirty introduction, but if you want to get the most out of version
control systems, you may want to read up on the version control system of your choice.

Throughout this chapter, we'll be making changes to our . vimrec file. You can make these changes
as you go, or download them from GitHub at https://github.com/PacktPublishing/
Mastering-Vim-Second-Edition/tree/main/Chapter05. Git installation and
configuration instructions are also included in the repository.

https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter05

134

Build, Test, and Execute

Working with version control

This section will illustrate working with version control systems (often abbreviated to VCS) by using
Git as an example.

VCS landscape may change

Git seems to be the most popular version control system at the time of writing this book.
Suggestions in this section can be applied to whichever version control system you choose to
work with (or, more likely, whichever VCS you’re locked into).

Modern development is nearly impossible without version control, and if you're working with code,
it’s more than likely you’ll have to deal with it. This section gives you a refresher on how to use one
of the most popular version control systems today—Git. We then cover how to work with Git from
within Vim to make Git commands more robust and interactive.

A quick-and-dirty version control and Git introduction

You can safely skip this section if you're comfortable with Git.

Git lets you track a history of changes to files and helps ease the pain of multiple people working on
the same set of files. Git is a distributed version control system, meaning every developer owns a
mirrored copy of the code base on their system.

If you're on a Debian-flavored Linux distribution, you can install Git by running the following:

$ sudo apt install git

If you're on a different system, you can download the binaries or find more instructions from git-scm.
com/download. You'll want to configure your username and your email address:

$ git config --global user.name 'Your Name'
$ git config --global user.email 'your@email'

You're now ready to use Git! If you find yourself stuck, Git has an extensive help system (in addition
to a set of tutorials on git-scm. com):

$ git help

Concepts

Git represents a history of changes to files using commits—atomic sets of changes to files. In addition
to a diff of changes, each commit has a (hopefully) descriptive message attached to it (by the author
of the commit), allowing you to determine what changes were made at any given point in time.

http://git-scm.com/download
http://git-scm.com/download
http://git-scm.com

Working with version control

Commit history is not just linear and can branch, allowing Git users to work on multiple features
without stepping on each other’s toes. For example, in the following example (read from bottom to
top), Lobster Thermidor was built in a master (main) branch, while Tomato was developed in
parallel in its own branch, called feature-tomato:

* Merged feature-tomato into the master branch

I\

* | Improved Lobster Thermidor recipe

| * Included tomato in the menu

| * Added tomato class (feature-tomato branch)

|/
* Added Lobster Thermidor to the menu
* Initial commit (master branch)

Git is a distributed version control system, meaning that there is no central place to talk to: every
developer owns a full copy of the repository.
Setting up a new project

In this example, we'll be working with Chapter05/spam/ from https://github.com/
PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter05/
spam. You can also follow along with any project youd like. Follow these steps if you're setting up a
new Git repository:

1. Initialize the Git repository in the project’s root directory:
$ cd Chapter05/spam
$ git init
2. Stage all files in a directory to be added to the initial commit:

$ git add

3. Create an initial commit:

$ git commit -m "Initial commit"

135

https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter05/spam
https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter05/spam
https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter05/spam

136

Build, Test, and Execute

Here’s a sample output from the previous commands:

~/Mastering-Vim-Second-Edition/Chapter®5/spam$ git init

Initialized empty Git repository in /home/ruslano/Mastering-vim-Second-Edition/C
hapter®5/spam/ .git/

~/Mastering-Vim-Second-Edition/Chapter@5/spam$ git add .
~/Mastering-vim-Second-Edition/Chapter®5/spam$ git commit -m "Initial commit”
[master (root-commit) e2c63ef] Initial commit

5 files changed, 57 insertions(+)

create mode 108644 kitchen/bacon.py

create mode 100644 kitchen/egg.py

create mode 100644 kitchen/ingredient.py

create mode 100644 kitchen/sausage.py

create mode 100644 welcome.py
~/Mastering-vim-Second-Edition/Chapter®5/spam$

Figure 5.1 - Initializing the Git repository within the Chapter05/Spam directory.

You should now be ready to work with your newly created repository.

If you want to have your repository backed up somewhere outside of your machine, you may want
to use a service such as GitHub. See github.com/new to create a new repository, and add the
repository URL to your project (where <url> needs to be replaced with the repository URL—
something like https://github.com/<your-username>/spam.git):

$ git remote add origin <url>
Now, you just need to push the changes from your local repository:
$ git push -u origin master

To keep the repositories in sync, you'll have to push every time you add a new commit; see the Working
with Git section for details.

Cloning an existing repository

If you already have code in a remote repository (for example, on GitHub), all you need to do is “clone”
it—make a local copy. Find the repository URL, either over HTTPS (for example, https://github.
com/vim/vim.git) or SSH (for example, git@github.com:vim/vim.git). Execute the
following command (replacing <url> with the repository URL):

$ git clone <url>

http://github.com/new
https://github.com/vim/vim.git
https://github.com/vim/vim.git
mailto:git@github.com:vim/vim.git

Working with version control 137

This should download the repository to a directory with the project name on your machine.

Your local and remote repositories will now operate independently. If you want to update your local
repository with changes from the remote repository (the one you cloned), you'll have to run git
pull --rebase.

Working with Git

Git is rather extensive, but here are some basic commands to get you started. Let’s work in our newly
created repository, spam/.

Adding files, committing, and pushing
Let’s add a file to our repository, kitchen/lobster thermidor.py:

""1Lobster Thermidor."""

from kitchen import ingredient

class LobsterThermidor (ingredient.Ingredient) :

def init (self):
self.name = 'Lobster Thermidor'

Next, let’s add a bit to welcome . py that invokes the file (the changes are highlighted in bold):

from kitchen import bacon, egg, lobster thermidor, sausage

INGREDIENTS = [
egg.Egg (),
bacon.Bacon (),
lobster thermidor.LobsterThermidor(),
sausage.Sausage ()]

You can check the status of your files (to see which changes are going to make it into a commit) by
running the following command:

$ git status

138 Build, Test, and Execute

The output of the command will show you that you modified welcome . py and added kitchen/
lobster thermidor.py:

~f{Mastering-vim-Second-Edition/Chapter®s/spam$ git status
On branch master

Changes not staged for commit:
{use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

I001T1ea welcome. py

Untracked files:
(use "git add <file=..." to include in what will be committed)

kitchen/lobster_thermidor.py
no changes added to commit (use "git add" and/or "git commit -a")
~{Mastering-vim-5Second-Edition/Chapter@s/spam$

Figure 5.2 - Output of git status showsthat welcome . py was modified,
andkitchen/lobster thermidor.py wasadded.

Whenever you want to save your files in history, you can stage the files. You can do so individually

by executing the following:

$ git add <filename>

Alternatively, you can stage all of the files at once by running the following:

$ git add .

Ifyourungit status, you'll see that the files are now staged to be committed:

~fMastering-Vim-Second-Edition/Chapter@s/spam$ git add .
~fMastering-Vim-Second-Edition/Chapter@s/spam$ git status
On branch master
Changes to be committed:
{use "git restore --staged <file>..." to unstage)
new file: kitchen/lobster thermidor.py
modified: welcome.py

~fMastering-Vim-Second-Edition/Chapter®s/spam$

Figure 53 -Thegit status outputshowsthatkitchen/lobster
thermidor.pyand welcome . py are staged to be committed.

To commit a file or a set of files to history, execute the following:

$ git commit -m "<informative message describing the changes>"

Working with version control 139

For instance, here’s how we would commit our changes to kitchen/lobster thermidor.
py and welcome. py:

~/Mastering-Vim-Second-Edition/Chapter®5/spam$ git commit -m "Added Lobster Therm
idor to the menu”

[master 287aclb] Added Lobster Thermidor to the menu

2 files changed, 15 insertions(+), 2 deletions(-)

create mode 100644 kitchen/lobster thermidor.py
~/Mastering-vim-Second-Edition/Chapter®5/spam$

Figure 5.4 - The output of thegit commit command.

To push your changes to a remote repository (if you created one earlier), run the following:
$ git push

To synchronize your changes with the changes other people made, run the following (in fact, its
usually wise to pull before pushing if you work with multiple people):

$ git pull --rebase
Now, if you want to view the commit history, run the following:
$ git log

Here’s how the git log output looks for our project so far:

commit 287aclb@lc363dcc97esdl0668T4a09c4d1117ced |)
Author: Ruslan Osipov <ruslan@rosipov.com>
Date: Sun Jan 7 15:26:53 2024 -08200

Added Lobster Thermidor to the menu
commit e2c63ef73f1c83de8dester2bdfoen4@31fe6672
Author: Ruslan Osipov <ruslan@rosipov.coms

Date: Fri Dec 29 11:17:15 2023 -D8@0

Initial commit

Figure 5.5 - The output of thegit 1logcommand shows two commits we made earlier.

Note

You might have spotted that the commits span a winter holiday break. Take good care of yourself,
and make time for yourself and your family!

140 Build, Test, and Execute

At the top, we can see a commit we just created. Right below is the initial commit.

If youd like to pull a particular commit into your working copy (for example, to see how things
were at the initial commit), run the following (where <shal > is the alphanumeric commit ID, for
example, e2c63ef73£1c83d88d05£672bdf6e94031£f66672 for Initial commit in
the previous screenshot):

$ git checkout <shal>

Creating and merging branches

Separate branches are often used to create separate chunks of work. Once the feature is ready, the
branches are merged back into the master (primary) branch. To create a new branch, run the following:

$ git checkout -b <branch-name>

For instance, we could create a branch in which we add a new animal type:

$ git checkout -b feature-tomato
It will appear as the following:

. .Chapter®5/spam$ git checkout -b feature-tomato
Switched to a new branch 'feature-tomato®
. .Chapter@5/spam$ I

Figure 56 -git checkout -D createsanew branch and makes the newly created branch active.

Now, you can perform work on this branch as usual. For instance, we could add a new kitchen/
tomato.py and modify welcome . py just like we did in the previous section:

. .Chapter®5/spam$ vim kitchen/tomato.py
. .Chapter®5/spam$ git add kitchen/tomato.py
..Chapter®5/spam$ git commit -m "Add a Tomato class”
[master ada936e] Add a Tomato class

1 file changed, 7 insertions(+)

create mode 108644 kitchen/tomato.py
. .Chapter®5/spam$ vim welcome.py
. .Chapter@5/spam$ git add welcome.py
. .Chapter@5/spam$ git commit -m "Added tomato to the spam sketch”
[master 9ad9656] Added tomato to the spam sketch

1 file changed, 3 insertions(+), 2 deletions(-)
. .Chapter@5/spam$

Figure 5.7 — | captured adding the Tomato class and including

itinwelcome.py in two separate commits.

Working with version control 141

Now that our feature is ready (we've added the leopard), we're ready to merge the feature-tomato
branch back into the master (primary) branch. To see a list of all branches, run the following:

$ git branch -a

The branch you are currently on is marked with an asterisk (*):

. .Chapter®s/spam$ git branch -a
* feature-tomato

master
. .Chapter@s/spam$ I

Figure5.8-git branch -a displaystwo branches: feature-tomatoand
master.The currently active branched is marked with an asterisk (*).

To move to another branch, run the following:

$ git checkout <branch-name>

In our case, let’s move to the master branch:

$ git checkout master

Now, we just need to merge our feature branch into the branch we’re currently on:

$ git merge feature-tomato

A helpful message will display the result of the merge:

. .Chapter®5/spam$ git checkout master
Switched to branch 'master’

. .Chapter®5/spam$ git merge feature-tomato
Updating 287aclb..8b3818b

Fast-forward
kitchen/tomato.py | 7 +++++84
welcome . py | 5 +++--

2 files changed, 1@ insertions(+), 2 deletions(-)
create mode 100644 kitchen/tomato.py
. .Chapter@5/spam$ I
Figure 5.9 -git merge command merges specified branch (Eeature-
tomato) into the branch you are currently on (master).

Tip
If your repository is in GitHub, don’t forget to run git push after you're done to propagate
your changes to the remote repository.

Now that you're armed with surface-level familiarity with git (or your memory has been refreshed),
let’s talk about how Vim and Git can play together nicely.

142

Build, Test, and Execute

Integrating Git with Vim (vim-fugitive)

This section assumes that you understand the basics of working with Git. If you dont (or it’s been a
while), see the previous Quick and dirty version control and Git introduction section.

Tim Pope’s vim-fugitive is a plugin that makes sure you don’t need to leave Vim to interact with Git.
Since you're editing the files in Vim, you might as well take care of dealing with version control of said
edits in the editor. The plugin is available from https://github.com/tpope/vim-fugitive.

Installing vim-fugitive
If you're using vim-plug, you can install vim-fugitive by adding P1ug 'tpope/vim-
fugitive' toyour .vimrc fileand running :w | source $MYVIMRC | PlugInstall.

A lot of the commands that vim-fugitive provides are a mirror of external Git commands. However, the
output is often a lot more interactive. The main vim-fugitive command is : Git - you can follow it with a
command you already know, or run without arguments to get an interactive status output. Give it a shot:

:Git
You'll see the familiar git status output in a split window (you may want to make some changes
to the source files without committing them to have some git status output to work with):

Iead: master
Help: g?

Untracked (1)
7 tags

Unstaged (1)
M welcome. py

<ugitive:///home/ruslano/Mastering-Vim-Second-Edition/Chapter®5/spam/.git// [RO]
bacon.Bacon(},
lobster_thermidor.LobsterThermidor(),
sausage.Sausage(),
tomato . Tomato()]

def prepare_ingredient(ingredient):
return ingredient.prepare(has_spam=True)

def main(}:

Figure 5.10 -The : Git command (or simply : G) opens an interactive status buffer.

https://github.com/tpope/vim-fugitive

Working with version control 143

Unlike the git status output, this window is interactive. Move your cursor over one of the files
(parentheses, (and), allow you to cycle through files as well). Try some of the supported commands:

o - will stage or unstage the file
o ccor :Git commit will commit the staged files
e ddor :Git diff will open a diff

o g?displays help with more commands
:Git log opens a history of commits related to the currently open file:

Iommit 8b3810b2f278c686cd4fbh18586bbB63fd321e53
Author: Ruslan Osipov <ruslan@rosipov.com=
Date: Sat Jan 13 11:35:85 2024 -0820

Added tomato to the spam sketch
commit ec36d642a67b4df@9358=dddd217bel53406a269

Author: Ruslan Osipov <ruslan@rosipowv.coms
Date: Sat Jan 13 11:34:4@ 2024 -@300

Added Tomato class

from kitchen import bacon, egg, lobster_thermidor, sausage, tomato
import random

INGREDIENTS = [

2 lines: has_spam = random.choice([True, False])

<:///home/Tuslano/Mastering-Vim-Second-Edition/Chapter® m/.git/ /e welcome. py
"/tmp/vHBOto5/40" 231, 644B

Figure5.11- :Git logopensgit log outputin a split window (how shocking!).

144

Build, Test, and Execute

git blame is a command that lets you quickly figure out who changed every line of the file and
when. This way, you can blame other developers (or, most often, yourself in the past) for bugs in your
code! :Git blame displays interactive git blame output in a vertical split window:

M

8b3818b2
A

A

287ac1b@
287ac1bd
287aclbd
287ac1b@
8b3818b2
8b3818b2

- - - - T T - - - - - - |

(Ruslan
[Ruslan
(Ruslan
(Ruslan
[Ruslan
(Ruslan
(Ruslan
(Ruslan
(Ruslan
[Ruslan
(Ruslan
(Ruslan
[Ruslan
(Ruslan
(Ruslan
[Ruslan
(Ruslan
(Ruslan
[Ruslan
(Ruslan
(Ruslan
(Ruslan
(Ruslan

Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov
Osipov

2023@:#1 fusT/bin/pytho

2023

20248 from kitchen import bacon, egg, lobster_thermidor, s
2023 import random

2023

20Z4AWTNGREDIENTS = [

2024 egg.Egal(),

2024 bacon.Bacon(},

2024 lobster themmidor.LobsterThermidoz(),

2024 sausage.S5ausage(),

2024 tomato.Tomato()]

2823

20238def prepare_ingredient(ingredient):

2023 has_spam = random.choice([True, False])

2823 return ingredient.prepare(has_spam)

2023

20238def main():

2023 prinmt{'Scene: A cafe. A man and s wife enter
2023 print{'Man: Well, what\'ve you got?")

2023 menu = []

2823 for ingredient in INGREDIENTS:

2023 menu. append(prepare_ingredient{ingredient))
2023 2SS 11 lerel ' s

print{ Waitr Well, t =", ", .join(menu

Figure5.12- :Git blame opensinteractivegit blame outputin a split window.

:Git blame displays the relevant commit ID, name of the commit author, and commit date and
time (hidden in the screenshot) next to each line in the file.

Some useful shortcuts for : Git blame are as follows:

o G, A, and D resize the blame window up until the commit, author, and date, respectively

o Enter opens a diff of the chosen commit

o o opens a diff of the chosen commit in a split window

o g?displays help with more commands

:Git blame is an extremely useful tool for figuring out when things went wrong.

Resolving conflicts with vimdiff

There are even more really handy wrappers provided in this tool, such as the following:

o :Gread checks out the file straight into a buffer for a preview

o :Ggrep wraps around git grep (Git provides a powerful grep command that lets you
search through tracked files at any moment in time—see https: //git-scm. com/docs/
git-grep for details)

o :GMove moves the files (while renaming the buffers)

o :GDeletewrapsgit remove commands

Don't forget to use Vim help (for example, :help fugitive) to learn more about the plugins!

(7

No really, get some :help

You're reading a book, which has the unfortunate property of being stuck in time. Plugin
authors, including Tim Pope, author of vim-fugitive, update and improve their plugins often.
Commands might change (in fact, vim-fugitive changed significantly between different editions
of this book), and more powerful commands can be added. Read :help, and check README .
md in a plugin’s repository — you never know what you might find.

- J

Since you're now familiar with Git and its integration with Vim, let’s dive into an area where Vim truly
shines: resolving merge conflicts.

Resolving conflicts with vimdiff

Often, during development, you’ll find yourself needing to compare some files—be it comparing
different output or versions of a file, or dealing with merge conflicts as multiple developers collaborate
on a single file. Vim provides vimdif £, a standalone binary that excels at file comparison operations.

Comparing two files

Using vimdi£ff to compare two files is fairly simple. Let’s look at two files in spam/kitchen/:
kitchen/bacon.pyand kitchen/egg.py. Wed like to know what’s different between the two.

Code location

The files from this example are available from https://github.com/PacktPublishing/
Mastering-Vim-Second-Edition/tree/main/Chapter05/spam.

Open the files with vimdif£:

$ vimdiff kitchen/bacon.py kitchen/egg.py

145

https://git-scm.com/docs/git-grep
https://git-scm.com/docs/git-grep
https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter05/spam
https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter05/spam

146 Build, Test, and Execute

You will be greeted by the following screen (how colorful the screen is will depend on your colorscheme):

from kitchen import ingredient

Iiom kitchen import ingredient

Bam (ingredient.Ingredient]):

def _init (self):
self.name = ‘[iflas)

—————————————————————————————————————— prepare(self, with_spam=True):
"""Becomes an omelet as you ad

return 'spam omelet’ if with_s

kitchen/egq. py

kitchen/bacon.py
"kitchen/egg.py” 11L, 264B

Figure 5.13 -The vimdi f £ window shows the differences between
kitchen/bacon.pyandkitchen/egg.py.

You can see kitchen/bacon.py open in a split on the left and kitchen/egg.py in a split
on the right. Different lines are highlighted in one color, and different characters are highlighted in
another color.

You can navigate from one change to another by using] ¢ to move forward and [c to move backward.
You can pull and push changes from one file to another:

o door :diffget (do stands for diff obtain) will move the change to the active window

o dpor :diffput (dp stands for diff put) will push the change from the active window

Tip
If you want to copy the content of a whole file from one file into another, you can use the
:$diffget or : $diffput commands.

Resolving conflicts with vimdiff 147

For example, if you want to pull the class Bacon line from kitchen/bacon.py into kitchen/
egg . py, you would navigate to the desired change using] ¢ and press do to obtain it. The highlighting
will disappear and the kitchen/egg. py buffer will now contain the desired change:

from kitchen import ingredient from kitchen import ingredient

class Bacon(ingredient.Ingredient): Ilas.a Bacon(ingredient. Ingredient):

def __init_ (self):
self.name = "[if:{xs)

def __init_ (self):
self.name = '[=h)s

prepare(self, with_spam=True):

"""Becomes an omelet as you ad
return "spam omelet’ if with_s

kitchen/bacon.py

kitchen/egg.py [+]

Figure 5.14 - do obtains diff for the given chunk into the selected buffer.

Tip

vimdiff automatically updates the highlighting if you're using : diffget and : diffput to
move changes between files. If you edit the files manually, you’ll have to update the highlighting
by running : diffupdate, or : diffu for short.

You can diff as many files as youd like at the same time; however, you won’t be able to use the do and
dp shortcuts. Let’s open three files with vimdiff:

$ vimdiff kitchen/bacon.py kitchen/egg.py kitchen/sausage.py

148 Build, Test, and Execute

You can see all three side by side:

Irom kitchen import ing from kitchen import ing

from kitchen import ingr

a0 (ingredient. Ing

def _dnit_ (self):
self.name = '}
------------------------- def prepare(self, wi
------------------------- """Becomes an om
------------------------- return 'spam ome

kitchen/bacon.py kitchen/egg.py kitchen/sausage.py
"kitchen/sausage.py" 7L, 126B

Figure 5.15 — vimdiff can diff multiple files at once. Here, you can see diffs between
kitchen/bacon.py, kitchen/egg.py,andkitchen/sausage.py.

Since there are multiple buffers now, you’ll have to specify which buffer you would like to get the
changes to or from. Both :diffget and :diffput (which can be shortened to : diffg and
:diffp) take the buffer specification argument, which can either be a buffer number (look it up
from :1s!) or a partial buffer name.

For example, while in the kitchen/bacon.py window, you can push the change under the cursor
into kitchen/egg. py by running the following:

:diffput egg

Resolving conflicts with vimdiff

The desired line will be pushed into the kitchen/egg. py buffer:

from kitchen import ing from kitchen import ingr

Bam (ingredient.In

s SRS (ingredient

def __dinit_ (self):
self.name

def __dinit_ (self): def __dnit_ (self):
self.name = "[E]«s self.name = "hs

————————————————————————— def prepare(self, wi
————————————————————————— """Becomes an om
————————————————————————— return 'spam ome

kitchen/bacon. py
:diffput egg

kitchen/egg.py [+]

kitchen/sausage. py

Figure5.16- :diffput <partial buffer names> will putthe change
under the cursor from the selected buffer into the target buffer.

Tip
If you work with vimdif £ alot, don’t forget to take the time to make useful aliases and key
bindings, as demonstrated in Chapter 3, Follow the Leader! The default ones are rather long.

vimdiff and Git

Using vimdiff as a Git merge tool can be pretty confusing—Vim bombards you with four windows,
a number of keywords, and not a lot of explanation.

149

150

Build, Test, and Execute

git config
First and foremost, configure Git to use vimdi£ff as a merge tool:

$ git config --global merge.tool vimdiff
$ git config --global merge.conflictstyle diff3
$ git config --global mergetool.prompt false

This will set Git as the default merge tool, will display a common ancestor while merging, and will
disable the prompt asking you to open vimdif£.

Creating merge conflict

Let’s use the spam/ repository we initialized earlier in this chapter as an example (or you can follow
along with your own example if you have a merge conflict you're trying to resolve):

$ cd spam/

WEe'll create an additional branch that will conflict with the master branch. In the feature-no-
spam branch, we'll change the prepare ingredient method to not include spam in any dishes.
In the meantime, we'll update the master branch to always include spam in every dish.

The order of operations is important in creating the conflict, so you may want to follow closely.
We can start by creating a branch and editing welcome . py:

$ git checkout -b feature-no-spam
$ vim welcome.py

Let’s update the prepare ingredient method to exclude spam from every dish. We'll do that

by hardcoding with spam=False:

def prepare ingredient (ingredient) :
return ingredient.prepare (with spam=False)

Now, commit the change:

$ git add welcome.py
$ git commit -m "Exclude spam from every dish"

Resolving conflicts with vimdiff

We can now switch back to the master branch to make our next set of changes:

$ git checkout master
$ vim welcome.py

This time, we'll update the prepare ingredient method to include spam in every dish instead:

def prepare ingredient (ingredient) :
return ingredient.prepare(with spam=True)

Commit the file:

$ git add welcome.py
$ git commit -m "Include spam in every dish"

It’s time to merge the feature-no-spam branch with master:
$ git merge feature-no-spam

Uh-oh! A merge conflict:

~fMastering-Vim-Second-Edition/Chapter®5/spam$ git merge feature-no-spam
Auto-merging welcome. py

CONFLICT (content): Merge conflict in welcome.py

Automatic merge failed; fix conflicts and then commit the result.
~fMastering-Vim-Second-Edition/Chapter®5/spam$ I

Figure5.17 -git merge failed due to merge conflicts.

Resolving a merge conflict
Start the Git merge tool (which is vimdif £, since we configured it earlier):

$ git mergetool

151

152 Build, Test, and Execute

You will be treated to quite a light show, with four windows and a lot of colors thrown at you:

bacon.Bacon(),

lobster_thermido
sausage.Sausage(
tomato. Tomato()]

bacon.Bacon(),
lobster_thermido
sausage.Sausage()
tomato. Tomato()]

bacon.Bacon(),
lobster_thermido
sausage. Sausage(
tomato. Tomato()]

def prepare_ingredient(i}lj def prepare_ingredient(i def prepare_ingredient(i
return ingredient.pr has_spam = random.cho return ingredient.pr
———————————————————————— return ingredient.pre l--------------------——--

bacon.Bacon(),
lobster_thermidor.LobsterThermidox (),
sausage.Sausage(),

tomato. Tomato()]

def prepare_ingredient(ingredient):

[11111] gb3818b
has_spam = random.choice([True, False])
welcome . py
"welcome.py" 33L, 836B

Figure 5.18 - vimdiffas git mergetool looks terrifying, but give it a moment and it'll make sense.

It’s okay to be scared, but it’s not as terrifying as it looks.

Local changes (the master branch in this case) are in the upper-left window, followed by the closest
common ancestor and the feature-no-spam branch in the upper-right corner. The result of the
merge is in the bottom window.

Let’s get into more detail, from left to right, top to bottom:

o LOCAL: This is a file from the current branch (or whatever you're merging into)
o BASE: The common ancestor—how the file looked before both changes took place
o REMOTE: The file you are merging from another branch (feature-no-spamin this case)

o MERGED: The merge result—this is what gets saved as output

Resolving conflicts with vimdiff 153

In the MERGED window, you'll see conflict markers. You don’t need to interact with them directly,
but it’s good to have a vague idea of what they mean. Conflict markers are identified by <<<<<<<

and >>>>>>>!

<<<<<<< [LOCAL commit/branch]
[LOCAL changel]

[|I|]]]| merged common ancestors
[BASE - closest common ancestor]

[REMOTE change]
>>>>>>> [REMOTE commit/branch]

Since we have multiple files, simply running do (: diffget) or dp (: diffput) without arguments
would not be enough.

Assuming you want to keep the REMOTE change (from the feature-no-spam branch), move
your cursor to the window with the MERGED file (the one at the bottom). Now, move the cursor to
the next change (in addition to regular movement keys, you can use] ¢ and [c to move by changes).
Now, execute the following:

:diffget REMOTE

This will get the change from the REMOTE file and place it into the MERGED file. You can shorten
these commands:

o GetaREMOTE change using :diffg R
o GetaBASE change using :diffg B
o GetaLOCAL change using :diffg L
Repeat for every conflict. Once you're done addressing the conflicts, save the MERGED file and exit

vimdiff (running : wga would be the fastest way) to complete the merge (or move on to the next
file if you have more conflicts).

Tip
Merge conflicts tend to leave . orig files in your working directory (for example, welcome.
py . orig); feel free to discard those once youre done merging.

Don’t forget to commit the merge results (git commit -m "Fixed a pesky merge
conflict") once youre done.

154

Build, Test, and Execute

Configuring diff behavior

Just like the rest of Vim, vimdiff is highly customizable. Read up on :help 'diffopt'
to learn how you can change diftf behavior (e.g., to make diff case insensitive or ignore
whitespace changes).

tmux, screen, and Vim terminal mode

Software development often involves more than just writing code: executing your binaries, running
tests, and using command-line tools to accomplish certain tasks. That’s where session and window
managers come in.

Modern desktop environments allow you to have multiple windows, but we’ll focus on how you can
manage the tasks you need to accomplish in a single Terminal session.

tmux

tmux is a Terminal multiplexer: it allows you to manage multiple Terminal windows on a single screen.

Tip
If you're on a Debian-based distribution, you can install tmux using sudo apt install

tmux. You can also build tmux from source, which is available from GitHub: https://
github.com/tmux/tmux.

You can start it by invoking tmux in the Terminal:

~/Mastering-Vim-Second-Edition/Chapter@s/spam$ I

Figure 5.19 — A tmux window.

Panes are just like splits

tmux allows you to have multiple panes (the equivalent of windows in Vim) and windows (the equivalent
of tabs). To access tmux functionality, you first need to hit a prefix key, followed by a command. The
default prefix key is Ctrl + b.

https://github.com/tmux/tmux
https://github.com/tmux/tmux

tmux, screen, and Vim terminal mode

(7
Customize tmux to your liking

You can rebind the default prefix key to something else by creating or editing your ~/ . tmux .
conf file. For example, if you wanted to use Ctrl + \ as a prefix instead of Ctrl + b, you would
add the following:

Use Ctrl-\ as a prefix.
unbind-key C-b

set -g prefix 'C-\"
bind-key 'C-\' send-prefix

Restart tmux (or execute Ctrl + b followed by : source-file ~/.tmux.conf) to apply
the configuration.
. J

To split the screen horizontally, use Ctrl + b followed by “

(7
Intuitive key bindings
For some reason, I could never get used to the default bindings. I remember the pipe character,
|, being a lot easier for creating vertical splits. My ~/ . tmux . conf file contains the following:

Use | to create vertical splits.
bind | split-window -h

unbind '™’

Figure 5.20 — A tmux window with a vertical split (the default key binding: Ctrl + b, %).

155

156 Build, Test, and Execute

To create a vertical split, hit Ctrl + b, followed by %:

(i
Intuitive key bindings
The same as with horizontal splits, I find a hyphen, -, to be a lot easier to remember for creating
horizontal split windows. My ~/ . tmux . conf file contains the following:

Use - to create horizontal splits.
bind - split-window -h

unbind '%'

.
Y | $

Figure 5.21 — A tmux window with a vertical and a subsequent horizontal
split (the default key binding for a horizontal split: Ctr/ + b,).

You can navigate the panes by using Ctrl + b, followed by an arrow key. Every pane operates independently,
and you can change directories, execute commands, and (most importantly) use Vim in each one of
the panes.

(1
Use hjkl to move around!

If you're already used to hjk1, arrow key navigation might feel unwieldy. Add the following
to your ~/ . tmux . conf file to add hjk1l movement support:

bind h select-pane -L
bind j select-pane -D
bind k select-pane -U
bind 1 select-pane -R

tmux, screen, and Vim terminal mode

In the following example, I have a file with some code loaded into the left-hand pane; I'm editing
.vimrc in the upper-right pane and listing files with 1s in the lower-right pane:

#1/usz/bin/python
from kitchen import bacon, egg, lobster
thermidor, sausage, tomato

import random

INGREDIENTS = [

def prepare_ingredient(ingredient):

def main():
if _name__ == ' main__":
main()

"welcome.py"” 26L, BG9E written

" == Chapter 1: Getting Started

syntax on " Enable syn
filetype plugin indent on " Enzble fil
set autoindent " Respect in
set expandtab " Expand tab
set tabstop=4 " Mumber of
set shiftwidth=4 " Number of

% python3 welcome. py
Scene: A cafe. A man and his wife enter

Man: Well, what've you got?
Waitress: Well, there's egg, spam bacon
, Lobster Thermidor, spam sausage, toma

to
|

Figure 5.22 — tmux with welcome . py open in Vim in the left pane, . vimrc in the top-right

pane, and a command line executing python3 welcome in the bottom-right pane.

Exit the session by executing exit or hitting Ctrl + d to close the pane.

157

158

Build, Test, and Execute

Windows are just like tabs

You can create a new window by keying in Ctrl + b, followed by c. You can now see that we have two
panes at the bottom of the screen:

$ python3 welcome.py

Scene: A cafe. A man and his wife enter.

Man: Well, what'wve you got?

waitress: Well, there's egg, spam bacon, Lobster Thermidor, sausage, tomato
$

Figure 5.23 — tmux windows operate just like tabs in Vim.
Windows are automatically named based on what process is running in an active window within a
pane. You can rename the current window by running Ctrl + b, followed by ,:

% python3 welcome.py

Scene: A cafe. A man and his wife enter.

Man: Well, what've you got?

Waitress: Well, there's egg, spam bacon, Lobster Thermidor, sausage, tomato
$

Figure 5.24 — You can rename a tmux window by running Ctrl + b, followed by a comma (,).

You can navigate the windows by pressing Ctrl + b, followed by #, to go forward and Ctrl + b, followed
by p, to go backward.

Sessions are invaluable

If you SSH into a machine to work, tmux is an essential tool you can use. tmux allows you to create
long-lasting sessions that outlive a single SSH connection.

If you're in a tmux session, you can detach from it by pressing Ctrl + b, followed by d. You will be sent
back into your shell with the following message:

[detached (from session 0)]

tmux, screen, and Vim terminal mode

The session will be alive until your machine is powered off. To list tmux sessions, execute the following:

$ tmux list-sessions
0: 2 windows (created Sat Jan 13 14:09:53 2024)

As you can see, we currently have one session available. Let’s open the session, or—in tmux terms—
attach to it:

$ tmux attach -t 0

Running tmux without any arguments always creates a new session.

You can have as many sessions as you want, if you prefer to separate work on different projects using
different sessions! It’s often helpful to divide projects or different tasks into sessions. You can navigate
sessions from within tmux using Ctrl + b, followed by (‘or).

You can also name your sessions, either when invoking tmux (tmux new -s name) or from
within tmux (Ctrl + b and).

tmux and Vim splits

Developers often use tmux panes and Vim windows to complement each other. You can have Vim
open in different tmux panes as a way to isolate Vim instances from each other (and therefore group
buffers). Normally, I have a few tmux panes open, with Vim in one of them (with its own splits as
needed) and shell running in the rest. Everyone treats their panes and windows differently, and you
may want to experiment.

tmux and Vim use different key bindings to navigate through windows (or, in tmux terminology,
panes). This is rather confusing, and there are solutions in place to fix it! The easiest is to use the
vim-tmux-navigator plugin, which is available from https://github.com/christoomey/
vim-tmux-navigator. vim-tmux-navigator adds support for consistent navigation between Vim
windows and tmux panes using the Ctrl + h, Ctrl + j, Ctrl + k, and Ctrl + | keys.

(1
Tip
In order to use vim-tmux-navigator, your tmux needs to be version 1.8 or higher. You can
check your tmux version by running the following:

S tmux -V

See the previous tmux section for tips on how to install a newer version of tmux.

159

https://github.com/christoomey/vim-tmux-navigator
https://github.com/christoomey/vim-tmux-navigator

160

Build, Test, and Execute

Ve

.

Installation instructions

If youre using vim-plug, you can install vim-tmux-navigator by adding the following line to
your .vimrc file:

Plug 'christoomey/vim-tmux-navigator'

Don't forgettorun :w | source $SMYVIMRC | PlugInstall to install the plugin.

J

Once you have the plugin installed, you'll have to add the following bindings to your ~/ . tmux.
conf file (this snippet is available from https: //github.com/christoomey/vim-tmux-
navigator):

Smart pane switching with awareness of Vim splits.

See: https://github.com/christoomey/vim-tmux-navigator

is vim="ps -o state= -o comm= -t '#{pane tty}' \

| grep -igE '“[*TXZ 1+ +(\\S+\\/)?g? (view|n?vim?x?) (diff)?$""
bind-key -n C-h if-shell "$is vim" "send-keys C-h" "select-pane -L"
bind-key -n C-j if-shell "$is vim" "send-keys C-j" "select-pane -D"
bind-key -n C-k if-shell "$is vim" "send-keys C-k" "select-pane -U"
bind-key -n C-1 if-shell "$is vim" "send-keys C-1" "select-pane -R"
bind-key -T copy-mode-vi C-h select-pane -L

bind-key -T copy-mode-vi C-3j select-pane -D

bind-key -T copy-mode-vi C-k select-pane -U

bind-key -T copy-mode-vi C-1 select-pane -R

tmux has a plugin manager too!

If you're an advanced tmux user (I'm not), or don’t mind digging around (I do), you may want
to use TPM (Tmux Plugin Manager) instead of pasting the snippet into your . tmux.conf
file. Add the following lines to . tmux . conf for TPM to configure the plugin for you:

set -g @plugin 'christoomey/vim-tmux-navigator'

run '~/.tmux/plugins/tpm/tpm’

You can learn more about TPM (and how to install it) from https://github.com/
tmux-plugins/tpm

https://github.com/christoomey/vim-tmux-navigator
https://github.com/christoomey/vim-tmux-navigator
https://github.com/tmux-plugins/tpm
https://github.com/tmux-plugins/tpm

tmux, screen, and Vim terminal mode

Screen

Screen is tmux’s spiritual predecessor, but it’s still used by many today. Screen is not as extensible as
tmux, and in fact, Vim doesn’t play that nicely with Screen out of the box. However, if you're used to
Screen and don’t want to change your existing workflow, there are a few tweaks you can make to your
setup to make the two get along a little nicer.

The Esc key doesn’t register correctly in Vim when running through Screen. You might want to add
the following to your ~/ . screenrc file to fix the Esc key behavior:

Wait no more than 5 milliseconds when detecting an input
sequence, fixes Esc behavior in Vim.
maptimeout 5

Screen also sets the STERM variable to screen, which Vim does not recognize. Update . screenrc
to include the following:

Set STERM to a value Vim recognizes.
term screen-256color

There are more minor inconveniences when using Vim and Screen together, such as the Home and End
keys not registering, for example. Vim Wikia has a great in-depth entry on getting Vim and Screen to
play along nicely athttp://vim.wikia.com/wiki/GNU_Screen integration.

Terminal mode

Historically, you could run shell commands from Vim by using : !, followed by a shell command.
For example, we could execute our Python program as follows:

: !python3 welcome.py

Vim will pause, and you'll see the output in the Terminal:

~/Mastering-Vim-Second-Edition/Chapter®s/spam$ vim welcome. py
Scene: A cafe. A man and his wife enter.
Man: Well, what'wve you got?

Waitress: Well, there's egg, spam bacon, Lobster Thermidor, sausage, tomato

Fress ENTER or type command to cuntinuel

Figure 5.25 - You can run shell commands directly from Vim with : ! <command>

Things have got better since then.

161

http://vim.wikia.com/wiki/GNU_Screen_integration

162

Build, Test, and Execute

Starting in version 8.1, Vim introduced terminal mode. Terminal mode is effectively a Terminal
emulator running within your Vim session. Unlike with tmux, terminal mode plays with Vim out of
the box. It’s great for running long-running commands while you continue to work in Vim.

Terminal mode can be invoked by executing the following:

tterm

This opens a horizontal split with your default shell running:

$ python3 welcome.py

Scene: A cafe. A man and his wife enter.

Man: Well, what've you got?

Waitress: Well, there's egg, spam bacon, Lobster Thermidor, sausage, tomato
$

1 /bin/bash [running]
#1/usT/bin/python

from kitchen import bacon, egg, lobster_thermidor, sausage, tomato
import random

INGREDIENTS = [

def prepare_ingredient(ingredient):
return ingredient.prepare(with_spam=random.choice([True, False])})

Figure 5.26 - : term opens a terminal split within Vim. It's convenient.

The Terminal window is treated like any other window and can be resized and moved as usual (see
the Windows section in Chapter 10, Neovim). The window runs in a terminal-job mode, something
akin to an insert mode. But there are a few specific key bindings:

o Ctrl + w, followed by N, enters a terminal-normal mode, which behaves just like a normal
mode. Operations that take you back to insert mode (such as i or a) will take you back to a
terminal-job mode.

o Ctrl + w, % followed by a register, will paste the contents of a register into a terminal. For
example, to paste something you yanked with yw, you can execute Ctrl + w, “to paste from
the default register.

o Ctrl+ c sends Ctrl + ¢ to the running command in a Terminal.

tmux, screen, and Vim terminal mode

The best feature of terminal mode is that you can invoke it with a specific command, and get full
access to the output. Try running the following from within Vim:

:term python3 welcome.py

This will execute a command and, once it is done running, open a buffer with the resultant output:

Scene: A cafe. A man and his wife enter.

Man: Well, what've you got?

Waitress: Well, there's spam omelet, bacon, Lobster Thermidor, spam sausage, spa
' tomato

Ipython3 welcome.py [finished]
#! fusT/bin/python

from kitchen import bacon, egg, lobster_ thermidor, sausage, tomato
import random

INGREDIENTS = [

def prepare ingredient(ingredient):
return ingredient.prepare(with_spam=random.choice([True, False]))

welcome. py
rterm python3 welcome.py

Figure 5.27 - Running : term <command> will execute the
command and paste the results into a Vim buffer.

If you so desire, you can open a Terminal in a vertical split by running : vert term.

r

Making navigation easier

If you use the Ctrl + hjkl shortcuts from Chapter 2, Advanced Editing and Navigation, to navigate
your Vim windows, you may want to add a set of bindings to your . vimrc file to work with
terminal mode:

tnoremap <c-j> <c-w><c-j>
tnoremap <c-k> <c-w><c-k>
tnoremap <c-1> <c-w><c-1>

tnoremap <c-h> <c-w><c-h>

163

164

Build, Test, and Execute

For best results, you can combine Vim terminal mode with tmux: tmux can manage your sessions for
you (for when you need to switch focus between tasks), while terminal mode can manage windows. For
instance, you could use Vim terminal windows to organize work on your project and tmux windows
(or tabs in Vim terminology) to switch focus and work on different tasks.

Building and testing

As you work on your code, you will have to compile (in compiled languages, which does not apply to
Python) it and run accompanying tests.

Vim supports populating build and test failures through quickfix and location lists, which we will
cover in this section.

Quickfix list

You've already had a brush with a quickfix window in Chapter 2, Advanced Editing and Navigation,
but let’s dig a bit deeper into it.

Vim has an additional mode that makes jumping to certain parts of files easier. Some Vim commands
use it to navigate between positions in files, such as jumping to compile errors for : make or search
terms for :grep or : vimgrep. Plugins such as linters (syntax checking) or test runners use the
quickfix list as well.

Let’s try using a quickfix list by running a : grep command to search for the ingredient keyword
recursively (- r) in every Python file (- -include="+*.py"), starting in the current directory (.):

:grep -r --include="*.py" ingredient

This will open the first match in a current window. To open a quickfix window and see all of the
matches, execute the following:

:copen

Building and testing

You can see the results in a horizontal split now:

from kitchen import ingredient

class Bacon{ingredient.Ingredient):

. py
.py|1| from kitchen import ingredient

.fkitchen/bacon.py|4| class Bacon(ingredient.Ingredient):

.fkitchen/sausage.py|1l| from kitchen import ingredient

./kitchen/sausage.py|4| class Sausage(ingredient.Ingredient):

./kitchen/ingredient.py|7| """Might or might not add spam to the ingredient."""

./kitchen/egg.py|1l| from kitchen import ingredient

./kitchenfegg.py|4| class Egg{ingredient.Ingredient):

. fkitchen/lobster_thermidor.py|3| from kitchen import ingredient

. fkitchen/lobster_thermidor.py|&| class LobsterThermidor(ingredient.Ingredient):

<x List] :grep -n -1 --include="*.py" ingredient . /dev/null 1,1
1copen

Figure 5.28 — Some Vim commands and plugins make use of a quickfix
window, which can be opened with : copen.

You can navigate the quickfix window as usual with the k and j keys to move up and down, Ctrl + f
and Ctrl + b to scroll by pages, and / and ? to search forward and backward. Enter will open a file with
a match in the buffer you were searching from. It will also place your cursor in the desired position.

165

166

Build, Test, and Execute

For example, if you wanted to open a match in a file, kitchen/egg. py, you can navigate to the
desired line by running /egg, followed by n (next) until the cursor is at the right line, and pressing
Enter. The file will open in the original window with the cursor located where the match is:

Irom kitchen import ingredient

class Eggl(ingredient.Ingredient):

/kitchen/egg.py

. /kitchen/bacon.py|1| from kitchen import ingredient

. fkitchens/bacon.py|4| class Bacon(ingredient.Ingredient):
./kitchen/sausage.py|1l| from kitchen import ingredient

./kitchen/sausage.py|4| class Sausage(ingredient.Ingredient):

. fkitchen/ingredient.py|7| """Might or might not add spam to the ingredient."""

./kitchen/egg.py|1| from kitchen import ingredient

fkitchen/i .py|4| class Egg(ingredient.Ingredient):

. fkitchen/lobster_thermidor.py|3| from kitchen import ingredient

. /kitchen/lobster_thermidor.py|&| class LobsterThermidor(ingredient.Ingredient):

<x List]

3 tgrep -n -r --include="*.py" ingredient . /dev/rull 6,1
"./kitchen/egg.py" 11L, 2564B

Figure 5.29 — The quickfix window allows you to navigate through the results of the : grep command.
You can close the quickfix list with : cclose (or :bd to delete the quickfix buffer if it’s in an
active window).

You can also navigate the quickfix list without opening the quickfix window:

o :cnext (or :cn) navigates to the next entry in the quickfix list

o :cprevious (or :cp, or:cN) navigates to the previous entry in the list

Lastly, you can choose to only open the quickfix window if errors (such as compile errors) are found:
:cwindow (or : cw) will toggle the quickfix window only if errors are present.

Location list

In addition to a quickfix list, Vim also has a location list. It behaves just like a quickfix list, except that
it stays local to the current window. While you can have only one quickfix list in a single Vim session,
you can have as many location lists as you want.

To populate a location list, you can prefix most quickfix-operating commands with the letter 1 (such
as : 1lgrep or : lmake).

Building and testing

Shortcuts also replace the : ¢ prefix with the : 1 prefix:

o :lopen opens the location window

o :lclose closes the window

o :1lnext navigates to the next item in a location list

o :lprevious navigates to the previous item in a location list

o :lwindow toggles the quickfix window only if the errors were present

In general, you will use a quickfix list when the results need to be accessed in multiple windows, while
a location list is great for capturing output relevant to a single window.

Building code

Building doesn’t necessarily apply to Python (since there isn’t much compiling going on), but it’s
definitely worth going over to understand how Vim deals with executing code.

Vim provides a : make command, which wraps around the Unix make utility. In case you're not
familiar, Make is a build management solution as old as time (and if it ain’t broke...) that allows you
to recompile parts of a bigger program (or all of it) as needed.

Some relevant options youd want to be aware of are as follows:

o :compiler lets you specify a different compiler plugin, which also modifies the expected
format output for the compiler

o Inparticular, : set errorformat defines a set of recognized error formats

o :set makeprg sets what program to execute when running : make

Don’t forget about :help

Want to learn more about one of these options? Don’t forget that you can run :help
<anythings> to look up an entry in the Vim manual.

The two can be used in conjunction to work with any compiler. For example, if you wanted to compile a C
file you’re working on, you could invoke gcc (the standard-issue C compiler) by running the following:

:compiler gcc
:make

What makes : make important is that it allows Vim users to implement syntax checkers, test runners,
or just about anything else that spits out references to lines as a compiler plugin, giving us access to
quickfix or location windows!

167

168

Build, Test, and Execute

Terminal mode, introduced in Vim 8.1, is also a solid candidate for long-running builds, as : term
make will call make asynchronously while you continue working on your code. See the Terminal
mode section for more about terminal mode.

Testing code

Test output happens to be a lot less uniform than compile errors, so your best bet here is using test-
runner-specific plugins you can find online. There are as many plugins as there are test runners, if
not more.

In addition, terminal mode, added in Vim 8.1, provides a good way to run tests while continuing to
work on your code.

Plugin spotlight - vim-test

This is the most popular test runner, as it provides a set of compilers (as well as handy mappings)
for plugging into a lot of test runners. For Python, vim-test supports djangotest, django-nose, nose,
nose2, pytest, and PyUnit. It’s available from https://github.com/janko-m/vim-test.
You'll have to make sure you have the desired test runner already installed before using vim-test.

Installing plugins

If you're using vim-plug, you can install vim-test by adding P1ug 'janko-m/vim-test'
toyour .vimrc file and running :w | source $MYVIMRC | PlugInstall.

vim-test supports the following commands:

o :TestNearest runs the test nearest to the cursor
e :TestFile runs the tests in the current file
e :TestSuite runs the entire test suite

e :TestLast runs the last test

vim-test also allows you to specify test strategy, as in what method to use for running tests. Strategies
such as make, neomake, MakeGreen, and dispatch (or dispatch background) populate a quickfix
window, which is exactly what youd be looking for in a plugin like this.

For example, if you wanted to run your tests through vim-dispatch (to run a test in a different Terminal
window, for instance), you would add the following to your . vimrc file:

let test#fstrategy = "dispatch"

You can visit ht tps: //github. com/janko-m/vim-test for more information about vim-test.

https://github.com/janko-m/vim-test
https://github.com/janko-m/vim-test

Building and testing

Syntax checking code with linters

Syntax checking (also known as linting) has essentially become a staple in any multi-person software
project. There are many linter programs available online, which support different languages and styles.

Python code has it easier than many languages out there, as it tends to adhere to a single standard—
PEP8 (https://www.python.org/dev/peps/pep-0008). The most common linters that
make sure the code adheres to PEPS8 are Pylint, Flake8, and autopep8.

Before proceeding, make sure one of these (the following examples work with Pylint) is installed on
your machine, as Vim merely calls external linters.

Installing pylint

If you're on a Debian-flavored distribution, you can run sudo apt install pylint3
to install Pylint for Python3.

Using linters with Vim

A lot of common linters have associated plugins, which you can use to avoid dealing with the intricacies
of each linter. However, if you have to support a custom linter, Vim lets you populate a quickfix list
however you want.

You can leverage Vim’s : make command, which populates a quickfix list. By default, it runs the Unix
make command (no surprise there), but you can override that by setting the makeprg variable.

Quickfix expects : make output to be in a particular format, and you can try to get a linter to output
in a desired format. This is error-prone and has possible compatibility issues (if the underlying
linter changes).

Add the following to your . vimrc file to override the : make behavior when only working on
Python files:

autocmd filetype python setlocal makeprg=python3\ -m\ pylint\
--reports=n\ --msg-template=\"{path}:{line}:\ {msg id}\ {symbol},k\
{obJ}\ {msg}\"\ %:p

autocmd filetype python setlocal errorformat=%f:%1:\ %m

169

https://www.python.org/dev/peps/pep-0008

170 Build, Test, and Execute

Now, if you run :make | copen while in a Python file, you'll see a populated quickfix list:

from kitchen import bacon, egg, lobster_thermidor, sausage, tomato
import random

INGREDIENTS = [
egg.-Egg(),
bacon.Bacon(),
lobster_thermidor.LobstexThermidor(),
sausage.Sausage(),
tomato. Tomato()]

.J ******** Hodule welcme
l'-3“ e py|1] C@114 missing-module-docstring, Missing module docstring

v|13] C@116 missing-function-docstring, prepare_ingredient Missing func
tion or method docstring

y|16] C@116 missing-function-docstring, main Missing function or method
docstring
ielcome.py|4] C@411 wrong-import-order, standard import "import random" should
be placed before "from kitchen import bacon, egg, lobster thermidor, sausage, to
mato”

<ano/Mastering-Vim-5econd-Edition/Chapter®5/spam/welcome.py 2,1

Figure 5.30 - The output of :make | copen:a quickfix list of Python lint errors.

-

Disabling linter warnings

If you’re not accustomed to using linters, you might be wondering how to silence warnings
you don’t care for. For Pylint, it's done by adding a statement such as disable-invalid-
name, missing-docstringto ~/.pylintrc, or by commenting # pylint:
disable=invalid-name on the offending line. Each linter has its own syntax for
silencing warnings.

Plugin spotlight - ALE

Asynchronous Lint Engine (ALE) is a plugin that provides linting. Its primary selling point is that
ALE displays lint errors as you type, and it runs the linters asynchronously. ALE is available from

GitHub at https://github.com/dense-analysis/ale.

Installing plugins
If you're using vim-plug, you can install ALE by adding P1ug 'dense-analysis/ale'
to your .vimrc file and running :w | source $MYVIMRC | PlugInstall.ALE
requires Vim 8+ or Neovim for asynchronous calls to work.

https://github.com/dense-analysis/ale

Building and testing

It’s ready to be used out of the box. Here’s a screenshot of a file with ALE enabled (I've opened the
location window using : lopen):

W I!Iusribim’python # W: Missing module docstring

from kitchen import bacon, egg, lobster_ thermidor, sausage, tomato
W import random # W: standard import "import random" should be placed before "f.

INGREDIENTS = [
egg.Egg(),
bacon.Bacon(),
lobster_thermidor.LobsterThermidor(),
sausage.Sausage(),
tomato. Tomato()]
elcome. py
elcome.py|1l col 1 warning| missing-module-docstring: Missing module docstring
welcome.py|4 col 1 warning| wrong-import-order: standard import "import random”
should be placed before "from kitchen import bacon, egg, lobster_thermidor, saus
age, tomato”
welcome.py|13 col 1 warning| missing-function-docstring: Missing function or met
hod docstring
welcome.py|16 col 1 warning| missing-function-docstring: Missing function or met
hod docstring

nd-Edition/Chapter !
missing-module-docstring: Missing medule docstring

Figure 5.31 — The ALE plugin surfacing linter warnings. | should certainly be ashamed of my code.

You can see the line with an error highlighted with >>, and the status line displays the relevant lint
message at the bottom.

You can toggle ALE on and off by running : ALEToggle if you don't like to be nagged by it.

ALE is a lot more than just a linter though, and is a full-blown language server protocol client: it
supports autocompletion, traveling to definitions, and so on. It’s not as established and popular as,
say, YouCompleteMe (see the Autocomplete section in Chapter 4, Understanding the Text)—but it has
a loyal fan base and has been growing rapidly.

For reference, you can jump to definitions by running : ALEGoToDefinition and looking for
references using : ALEFindReferences. In order to enable autocomplete, you’ll need the following
line in your . vimrc file:

let g:ale completion enabled = 1

You can learn more about ALE and decide whether it’s a tool worth investing your time in at https: //
github.com/dense-analysis/ale.

171

https://github.com/dense-analysis/ale
https://github.com/dense-analysis/ale

172

Build, Test, and Execute

Summary

In this chapter, you learned (or got a refresher on) how to use Git, including a quick brush-up on its
core concepts, setting up and cloning existing projects, and a rundown of the most frequent commands.
You learned about vim-fugitive, a Vim plugin that makes Git a lot more interactive from inside Vim.

We covered vimdiff, a separate tool packaged with Vim, made for comparing files and moving changes
between files. We learned how to compare and move changes between multiple files. Furthermore, we got
some practice at resolving nasty Git merge conflicts, which will hopefully make them less intimidating.

This chapter covered multiple ways of running shell commands when working with Vim, be it through
tmux, screen, or Vim terminal mode.

We also learned about (global) quickfix and (local) location lists, which can be used to store pointers
to certain lines in files. We combined those with the output of the : grep and : make commands to
get some easy-to-navigate results! We learned how : make works to call an external compiler, and
we covered the vim-dispatch plugin to expand the : make functionality and the vim-test plugin to
make running tests smoother.

Lastly, we covered a set of solutions for running syntax checkers in Vim, including building our own
solution for Pylint. We also looked at ALE, an asynchronous linter.

In the next chapter, we will cover refactoring operations using Vim regular expressions and macros.

6
Refactoring Code with Regex

and Macros

Vim’s power extends beyond its extensive editing functionality. Macros allow you to record a series
of keystrokes and replay them later, automating repetitive tasks. This chapter delves into the world
of Vim macros and their application in refactoring code. In this chapter we’ll explore how to create
macros to streamline common refactoring operations, saving you time and effort while ensuring
consistency in your codebase.

We will cover the following topics:

o Using search or replace functionality with : substitute

o Using regular expressions to make searches and substitutions smarter

o Using arglist to perform operations on multiple files

« Examples of refactoring operations, such as renaming methods and reordering arguments

o Macros, which let you record and replay keystrokes

Technical requirements

This chapter works with multiple code samples, which can be found on GitHub athttps://github.
com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter06.

You can work with that repository or, if you're feeling more comfortable, use your own project
throughout this chapter.

Search or replace with regular expressions

Regular expressions (or regexes) are wonderful, and you should know how to use them. Vim, as is
custom among regex implementations, has its own flavor of regex. However, once you learn one, you'll
be comfortable with all of them.

https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter06

174

Refactoring Code with Regex and Macros

First, let’s talk about the regular (that is, the normal) search and replace command.

Search and replace

Vim supports search and replace through the : substitute command, most often abbreviated to
: 8. By default, : s will replace one substring with another in a current line. It has the following format:

:s8/<find-this>/<replace-with-this>/<flags>

The flags are optional, and you shouldn’t worry about them for now. To try it, open welcome. py,
navigate to the line containing egg (for example, with /egg), and execute the following:

Reminder

/ followed by a substring allows you to search for a substring and will move the cursor to the
line of the first match.

:s/egg/omelette

As you can see in the following screenshot, this replaces the first occurrence of egg in the current
line (line 3) with omelette:

#1/usz/bin/python

Il.:" kitchen import bacon, omelette, sausage
import random

INGREDIENTS = [-.Egg{], bacon.Bacon(), sausage.Sausage()]
def prepare_ingredient(ingredient):
has_spam = random.choice([True, False])

return ingredient.prepare(has_spam)

:s/egg/omelette

Figure 6.1 - egg was replaced with omelette in the selected line.

Now, let’s look at the flags you can pass to the substitute command:

o g—global replace: replace every occurrence of the pattern in the line, not just the first one
o ¢ —confirm each substitution: prompt the user before replacing the text

« e —do not show errors if no matches are found

o 1 —ignore case: make the search case-insensitive

o I —make the search case-sensitive

Search or replace with regular expressions

You can mix and match these (except for i and I) as you see fit. For example, running : s/egg/
omelette/gi will turn the string egg.Egg () into omelette.omelette ().

(7
Preserving case in substitutions
Interested in how one would preserve case and replace egg.Egg () with omelette.
Omelette () ?It’s non-trivial to do with native Vim regex, but I recommend looking up the
plugin called abolish.vim (from https://github.com/tpope/vim-abolish.git),

which does just that!
N\ J

:substitute can be prefixed by a range, which tells it what to operate on. The most common range
used with : substitute is %, which makes : s operate on the current file.

For instance, if we wanted to replace each instance of ingredient in a file with £ood, we would
run the following:

:%s/ingredient/food/g

If you try it on welcome . py, you'll see, as in the screenshot, that every instance of ingredient
was replaced with food:

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

def prepare_food(food):
has_spam = random.choice([True, False])
return food.prepare(has_spam)

def main({):
pramt(ene \ cafe v man and his wife enter.')
print(M ell, what'’'ve you got?’)}
menu = []
for food in INGREDIENTS:
Ienu .append (prepare_food(food))
print(Waitre ell, ther . .join(menu))

if __name__ ==

main()_

6 substitutions on 4 lines

Figure 6.2 — Adding % before the : s command applies substitutions to the whole file.

175

https://github.com/tpope/vim-abolish.git

176

Refactoring Code with Regex and Macros

The : substitute command conveniently tells us how many matches were replaced in the status
line at the bottom of the screen.

It seems as if we just completed a very simple case of refactoring!

:substitute supports more ranges. Here are some common ones:

o numbers—a line number

o S—the lastline in the file

e %—awhole file (this is one of the most used ones)

o /search-pattern/—lets you find a line to operate on

o ?backwards-search-pattern?—does the same thing as the previous flag, but
searches backward

Tip
Prefixing ranges like this works with other commands in Vim! See :help cmdline-ranges
for more info.

Furthermore, you can combine the ranges with a , operator. For example, 20, $ will let you search
from line 20 until the end of the file.

To demonstrate on a somewhat derived example, the following command will search for and replace
every instance of ingredient with food from line 8, up to and including the line where it
encounters main:

:8,/main/s/ingredient/food/g

For a discerning reader

You may have noticed competing British and American English spellings of the word "omelette/
omelet". If you're reading this comment, I've successfully convinced the editor that this is an
Easter egg and is most certainly not my inability to spell.

Search or replace with regular expressions 177

As you can see in the following screenshot, three instances of ingredient were replaced on lines 8
and 10, but not on lines 16 or 17 (I've enabled line number display by running : set nu):

1 #!/usz/bin/pythor

2

3 kitchen bacon, egg, sausage

4 Tandom

5

6 INGREDIENTS = [egg.Egg()}, bacon.Bacon(), sausage.Sausage()]
7

8 def prepare_food(food):

] has_spam = random.choice([True, False])
1@ leturn food. prepare(has_spam)

11

12 def main(}:

13 print(’Scene: A cafe. A man anc s wife enter.")
14 print(Mar lell, whath'w 7))
15 menu = []

16 for INGEEHUENE in INGREDIENTS:

17 menu. append (pIepaIe_{_))

18 print(Waitress: Well, there . .join({menu))
19

20

21 if __name__ ==

22 main()

3 substitutions on 2 lines

Figure 6.3 - Command-line ranges allow you to control where to apply the substitutions.

You can also select a range in a visual mode, and run : s without any explicit ranges to operate on a
selected text. See :help cmdline-ranges for more information on ranges.

()
Tip
If you find yourself working with Linux file paths (or anything with / in them), you can escape
them by prefixing with a backslash (\) or changing the separator. For example, : s+path/
to/dir+path/to/other/dir+gc is (with a separator changed to +) equivalent to : s/
path\/to\/dir/path\/to\/other\/dir/gc.

- J

Most often, you will find yourself replacing all occurrences in the whole file by running the following:
:%s/find-this/replace-with-this/g

When replacing text, you may want to only search for the whole word. You can use \ < and \ >
for this purpose. For example, given the following file, we can search for /ingredient (:set

178 Refactoring Code with Regex and Macros

hlsearch is enabled to highlight all results), but we also get results we're not exactly interested in,
such as prepare ingredient:

1 #!/usr/bin/pythor

2

3 kitchen bacon, egg, sausage

4 random

5

& INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
7

& def prepare NN (ERGESGISHE)

9 has_spam = random.choice([True, False])

10 return _.pIepaIe{has_spml)

11

12 def main():

13 print(’Scene wife enter.’)
14 print{ Mar)

15 menu = []
16 for INGEEONERT in TNGREDIENTS:

17 menu. append pIepaIe_{_)]

18 print(Wai s t ', ', '.join{menu))
19

20

21 if _ pame_ == '_ main__

22 main()

/ingredient

Figure 6.4 — By default, search and substitutions will return partial matches like
prepare_ ingredient when searching for ingredient.

However, if we search for /\<ingredient\ >, we'll be able to match whole words only, without
falsely detecting instances of prepare ingredient, as follows:

1 #! /usr/bin/pythor

2

3 kitchen bacon, egg, sausage

4 random

5

& INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
7

g def prepare_ingredient{_):

'] has_spam = random.choice([Trus, False])
1@ return _.prepare{has_spenl)

11

12 def main():

13 print({’ Scene)
14 print(Mz

15 menu =

16 for [NGEEONEHE in TNGREDTENTS:

17 menu. append (prepare_ingredient{_))]
18 print(Waitress: Well, there\'s", °, '.join{menu))
19

20

21 if _pame_ == '__main_ ":

22 main()

/v<ingredienth>

Figure 6.5 — Surrounding the search term with \ < and \ > will return complete matches only.

Search or replace with regular expressions

Operations across files using arglist

If you give more than one file name when starting Vim, this list is remembered as an argument list.
Arglist allows you to perform the same operation on multiple files, without having to have them
preloaded in buffers first.

Arglist provides a few commands, as follows:
o :arg defines the arglist.

o :argdo allows you to execute a command on all the files in the arglist.

o :args displays the list of files in the arglist.

For example, if we wanted to replace all instances of ingredient in every Python file (recursively),
we would do the following:

rarg **/* py
:argdo %s/\<ingredient\>/food/ge | update

Extra credit

Since arglist is populated when you open Vim, you could also open the files in the command line
(vim **/* _py), and then run argdo. For extra credit, this can be done as a single command
from the command line: vim **/* .py -c ":argdo :%s/<ingredient>/food/
ge |update". Here, the - ¢ option allows you to execute a command after opening Vim.

. J

This command works as follows:

o :arg <patterns adds a set of files matching a pattern to the arglist (each argument in
arglist also has a corresponding buffer).

o ** /% pyisawildcard for every . py file, recursively starting with the current directory.
o :argdo executes a command on every item in the argument list.

o %s/\<ingredient\>/food/ge replaces every occurrence of ingredient with food,
in every file, without raising errors if the matches are not found.

Tip
As mentioned above, \ < and \ > around ingredient tell Vim to only replace a whole word,
so we won't be replacing occurrences like prepare ingredient.

:update is equivalent to : write, but it only saves the file if the buffer has been modified.

179

180

Refactoring Code with Regex and Macros

You need to use : update in arglist commands, because Vim doesn’t like it when you switch buffers
without saving their contents. An alternative would be to use : set hidden to silence these warnings
and save all files at the end by running : wa.

Give it a shot, and you’ll see that every occurrence of a word has been replaced (you can check by
runninggit statusorgit diff if you have a repository checked into Git). You can also view
the contents of the arglist by running the following without any arguments:

rargs

Technically, you can also use : bufdo to perform an operation on every open buffer (since arglist
entries are reflected in the buffer list). However, I would advise against it, since there is a risk of
running a command on buffers you unintentionally had open before populating the argument list.

Regex basics

Regular expressions work in substitution commands, as well as in search. Regex introduces special
patterns that can be used to match a set of characters; for example, see the following:

o \(c\|p\)arrot matches both carrot and parrot—the \ (c\ |p\) denotes either c or p.

o \warrot\? matches carrot, parrot, and even farro—the \w signifies any word
character, and the t \ ? means that the t is optional.

e pa.\+ot matches parrot, patriot, or even pal23ot—the .\ + denotes one or more
of any character.

Note

Learning regular expressions takes some time and effort, and I only touch on a couple of Vim-
specific examples in this chapter. But that’s the benefit of being an author of this book: Vim or
not—I think regex is useful, important, and will be taught to you. Enjoy!

Tip

If you're familiar with other variations of regex, then you’ll notice that unlike in many other
regex flavors, most special characters need to be escaped with \ to work (the default mode
for most characters is non-regex, with a few exceptions such as . or *). This behavior can be
reversed by using magic mode, as we will cover below.

Search or replace with regular expressions

Special regex characters

Let’s dig deeper into regex:

Symbol Meaning
. Any character, except for end of the line
- The beginning of the line
$ The end of the line
_. Any character, including end of the line
\< The beginning of a word
\> The end of a word
()

Tip
You can see the full list of these using :help ordinary-atom.

= J

There are also what Vim calls character classes:

Symbol Meaning

\s Whitespace (Tab and Space)

\d A digit

\w A word character (digits, numbers, or underscores)
\1 A lowercase character

\u An uppercase character

\a An alphabetic character

These classes have the opposite effect when capitalized; for example, \D matches all non-digit characters,
whereas \ L matches everything but lowercase letters (note that this is different from just matching
uppercase letters).

Tip

You can see the full list by checking out :help character-classes.

You can also specify a set of characters explicitly, using square brackets ([]). For instance, [A-Z0-
9] will match all uppercase characters and all digits, while [, 4abc] will only match commas, the
number 4, and letters a, b, and c.

For sequences (such as numbers or letters of the alphabet), you can use a hyphen (-) to represent a
range. For instance, [0-7] will include numbers from 0 to 7, and [a-z] will include all lowercase
letters from a to z.

181

182

Refactoring Code with Regex and Macros

Here’s one more example, including letters, numbers, and underscores: [0-9A-Za-z_].

Finally, you can negate an entire range by prefixing it with a caret (). For instance, if you wanted to
match all non-alphanumeric characters, you would put [*0-9A-Za-z].

Alternation and grouping

Vim has a few more special operators:

Symbol Meaning
N alternation
\(\) grouping

The alternation operator is used to signify or. For example, carrot\ | parrot matches both
carrot and parrot.

Grouping is used to put multiple characters in a group, which can serve two purposes. Firstly, you
can combine operators with each other. For example, \ (c\ | p\) arrot is a nicer way to match
both carrot and parrot.

Grouping can also be used to later refer to each section in parentheses. For example, if you wanted
to turn the string cat hunting miceintomice hunting cat, you could use the following
:substitute command:

:s/\ (cat\) hunting \ (mice\)/\2 hunting \1

Here, \ 1, \ 2, and so on refer to capture groups - the content within parentheses. \ 1 contains cat
and \ 2 contains mice.

Grouping becomes relevant during refactoring, for example, when reordering arguments—but more
on that later.

Quantifiers or multis

Each character (be it a literal or a special character) or a range of characters is followed by a quantifier,
or a multi in Vim terms.

For example, \w\ + will match one or more word characters, and a\ {2, 4 } will match two to four
a characters in succession (such as aaa, for example).

Here is a list of the most common quantifiers:

Symbol Meaning

*

0 or more, greedy

\+ 1 or more, greedy

\{-} 0 or more, non-greedy

Search or replace with regular expressions

Symbol Meaning
\? or \= 0 or 1, greedy
\{n,m} n to m, greedy
\{-n,m} n to m, non-greedy
s 2
Tip
The full list of quantifiers is available through :help multi.

. J

You may have encountered two new terms in the table given: greedy and non-greedy. Greedy search
refers to trying to match as many characters as possible, while non-greedy search tries to match as
few characters as possible.

For example, given a string foo2bar2, greedy regex \w\ +2 will match foo2bar2 (as many

characters as it can until encountering a final 2), while non-greedy \w\ { -1, } 2 will only match foo2.

More about magic

Escaping special characters with backslashes \ is no trouble if you're only occasionally spicing up your
searches and substitutions with regular expressions. If you want to write longer expressions without
having to escape every special character, you could switch to the magic mode for that expression.

Magic mode determines how Vim parses regex-enabled strings (like those in search or
substitute commands).

Vim has three magic modes: magic, no magic, and very magic.
Magic

This is the default mode. Most special characters need to be escaped, but some (such as . or *) don’t
have to be.

You can prefix your regex strings with \m (for example, /\mfoo or : s/\mfoo/bar) to explicitly
set magic.

No magic
This mode is similar to magic mode, but every special character needs to be escaped with a backslash, \.

For example, in default magic mode, youd search for a line containing any text with /* . *$ (here,
* is for the beginning of a line, . * searches for every character repeatedly, and $ is for the end of a
line). In no-magic mode, this pattern would translate to /\M™*\ . \ *$.

183

184

Refactoring Code with Regex and Macros

You can explicitly set no-magic mode by prefixing your regex strings with \M (for example, /\Mfoo
or : s/\Mfoo/bar). No magic can also be set in your . vimrc by adding set nomagic, butit’s
highly discouraged; by changing the way Vim treats regular expressions, youre more than likely to
break several plugins you're using (as their creators will not have built them to work in no magic mode).

Very magic
Very magic mode treats every character apart from letters, numbers, and underscores as a special character.

You can set the very magic mode for a command by prefixing your regex strings with \ v (for example,
/\vfooor :s/\vEoo/bar).

Very magic mode is often used when many special characters are to be used. For instance, we used
the following example to replace cat hunting mice withmice hunting cat:

:8/\ (cat\) hunting \ (mice\)/\2 hunting \1
In very magic mode, this can be rewritten as follows:

:s/\v(cat) hunting (mice)/\2 hunting \1

Applying the knowledge in practice

Many tasks when refactoring code involve renaming or reordering things, and regular expressions
are perfect tools for this.

Renaming a variable, a method, or a class

Oftentimes, we rename things when refactoring, and these changes need to be reflected throughout
the codebase. However, simple search and replace often won't cut it, since you'll risk accidentally
renaming unrelated things.

For example, let’s try renaming our Egg class as Omelette. Since we need to carry this out in multiple
files, we'll use arglist to load all the Python files into Vim buffers:

rarg **/*.py

Now, move your cursor over the class name youd like to rename (Egg), and enter the following (here,
\<[Ctrl + r, Ctrl + w]\s> signifies pressing Ctrl + r followed by Ctrl + w and not typing
in the square brackets):

rargdo %s/\<[Ctrl + r, Ctrl + w]l\>/Omelette/gec | update

Search or replace with regular expressions

Once you run it, you’ll be prompted for every match:

from kitchen import ingredient

class {ingredient .Ingredient):

def __init_ (self):
self.name = "egg’

def prepare(self, with_spam=True):
"""Becomes an omelet as you add spam!"""
return 'spam omelet’ if with_spam else self.name
replace with Omelette [}rmfa.-fq.fl.mEPWj?l

Figure 6.6 — You will be prompted for every match because you're using the c regexp flag.

Press y to approve each change, or n to reject it.

Here’s what's going on here:

o :argdo runs the operation on every arglist entry (which we loaded with :arg)

e %s/.../.../gec substitutes every occurrence (g) throughout the whole file (%), without
raising errors if no entries were found (e), and asking the user before making changes (c)

o \<...\> ensures were looking for a whole word, and not just partial matches (otherwise
we'll also rename another class like Eggnog, which we don’t want to do)

o Ctrl + r, Ctrl + w is a shortcut to insert the word under the cursor in the current command
(which would insert Egg)

This approach has the disadvantage of locking you into dialog windows, without you being able to
look around the file first. If youd like more control, another alternative would be to use : vimgrep
to find the matches first:

:vimgrep /\<Egg\>/ **/*.py

185

186 Refactoring Code with Regex and Macros

You’ll be able to look at matches and step through them with : cn or : ¢p (or open the quickfix
window with : copen and navigate from there):

kitchen ingredient

class Igg{ ingredient.Ingredient):

def _dnit (self):
self.name =

def prepare(self, with_spam=True):
BeCome E i et QU adc I
return em omelet’ if with_spam else self.name
{1 of 2): class Egg(ingredient.Ingredient):

Figure 6.7 - : vimgrep outputs its content into a quickfix window.

More commands

You can also use the : cdo or : cfdo command to iterate over all lines in the quickfix list.

In this particular example, you could replace the word using the usual change word command (cw
followed by Omelette followed by Esc), and then replay the changes by pressing dot (.), or run a
non-global : substitute command (:s/\<Egg\>/Omelette).

Regex can be a very powerful tool in your arsenal when combined with other Vim features. For
example, you could delete all HTML tags in the document by running : $s/< [*>] *>//g, or remove
single-line comments (starting with #) by running : $s#// . * $##. Your imagination is the limit!

Recording and playing macros

Macros are an extremely powerful tool that allows you to record and replay a set of actions. They’re
especially helpful for a certain type of manual task: something too laborious to perform by hand, but
not complex enough to warrant a script or a program. There’s a Goldilocks zone for when macros are
the most useful, and you’ll get a good feel for when that is.

Recording and playing macros 187

Here’s a typical example of when a macro would be helpful. An intern tried to author a program that

>« 2}

pays homage to Monty Python’s “spam” sketch: almost every meal in the cafe is made with spam! But
the intern (of course this wasn’t you!) wrote some no-good code. Just look at the blatant violation of
the do-not-repeat-yourself principle:

UsT/D1n/python

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(). bacon.Bacon(), sausage.Sausage()]

def

def

prepare_ingredient (ingredient}):

has_spam = random.choice([True, False])

if isinstance(ingredient, egg.Egg) and has_spam:
return 'spammy eggs'

if isinstance(ingredient, bacon.Bacon) and has_spam:
return 'bacon and spam’

if isinstance(ingredient, sausage.Sausage) and has_spam:
return 'spam sausage'’

return ingredient.name

main():

print{'Scene: A cafe. A man and his wife entex.')
print('Man: Well, what\'ve you got?')

menu = []

for ingredient in INGREDIENTS:
menu . append (prepare_ingredient (ingredient))
print('Waitress: Well, there\'s', ', '.join{menu))

Figure 6.8 — Some not-so-elegant code demonstrating a repetitive pattern.

The intern’s confusion is understandable: there’s no consistent naming scheme across dishes! We have
spammy eggs, bacon and spam, and spam sausage! But we can help them write better code.

There are many ways to clean up the code, one of which is to move the custom spam-flavored ingredient
names into each corresponding ingredient class. That'll make prepare ingredient cleaner!

188 Refactoring Code with Regex and Macros

To do this, we'll probably want to expand Ingredient from kitchen/ingredient . py with
a generic prepare method:

Plass Ingredient(object):

def __init__ (self, name):
self.name = name
self.custom_spam_name = MNone

def prepare(self, with_spam=True):
"""Might or might not add spam to the ingredient."""
if with_spam:
return self.custom_spam_name or 'spam ' + self.name
return self.name

"kitchen/ingredient.py" 11L, 331B written

Figure 6.9 - Ingredient . prepare uses a custom spam dish name
if it exists, or defaults to a simple name like “spam egqg”.

Back in welcome. py, this will leave prepare ingredient looking cleaner:
! 7usz/bin/python

from kitchen import bacon, egg, sausage
import random

INGREDIENTS = [egg.Egg(). bacon.Bacon(), sausage.Sausage())

def prepare_ingredient(ingredient):
has_spam = random.choice([True, False])
return ingredient.prepare(with_spam=has_spam)

def main{):
print('Scene: A cafe. A man and his wife enter.')
print({'Man: Well, what\'ve you got?')
menu = []
for ingredient in INGREDIENTS:
menu. append(prepare_ingredient(ingredient))

print{ 'Waitress: Well, there\'s', ', '.join{menu))
if _name__ == '__main__':
main()

"welcome.py" 22L, 571B written

Figure 6.10 - prepare ingredient looking much cleaner by delegating
responsibility to the ingredient . Ingredient class.

Recording and playing macros

All that’s left is to move existing names into custom_spam_name of each corresponding class (egg .
Egg, bacon.Bacon, and sausage . Sausage). And that’s where macros come in!

Let’s go back to welcome . py written by our intern and place our cursor on the beginning of line 10.

Usx/oin/python

kitchen bacon, egg, sausage
random

IMGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

00~ LB WM

def prepare_ingredient(ingredient):

9 has_spam = random.choice([True, False])
10 lf isinstance(ingredient, egg.Egg) and has_spam:
11 return 'spam eggs'
12 if isinstance(ingredient, bacon.Bacon) and has_spam:
13 return 'bacon and spam’
14 if isinstance(ingredient, sausage.Sausage) and has_spam:
15 return 'spam sausage'’
16 return ingredient.name
17
18 def main():
19 print('Scene: A cafe. A man and his wife enter.')
20 print('Man: Well, what\'ve you got?')
21 menu = []
22 for ingredient in INGREDIENTS:
23 menu. append (prepare_ingredient (ingredient))
24 print('Waitress: Well, there\'s', ', '.join(menu))

Figure 6.11 - welcome. py, note the cursor position on line 10.

Here’s what we'll want to do:

1. Copy the contents of the return statement (' spam eggs')
2. Navigate into the related class (egg . Egg)
3. Setthe class property: self.custom spam name = 'spam eggs'

Macros will allow you to record and later replay every command you input (including movement),
and because of that, we'll need to be precise and deliberate with our movements.

The following instructions do take up a couple of pages of the book, but it can be chalked up to
overexplaining and screenshots. Once you get the gist, macros are quite simple to use.

189

190 Refactoring Code with Regex and Macros

Let’s break down each step:

1.

2.

Copy the contents of the return statement (' spam eggs')

A. ga - Begin recording a macro into register a

If isinstance(ingredient, egg.Egg) and has_spam:

return 'spam eggs'
if isinstance(ingredient, bacon.Bacon) and has_spam:
recording @a

Note recording @a in the status line, which signifies that you're recording a macro into
the register a.

B. j-Move down to the line containing return ' spam eggs'

if ilsinstance(ingredient, egg.Egg) and has_spam:
J retum
if dsinstance(ingredient, bacon.Bacon) and has_spam:

C. _ - Move the cursor to the first character of the line

if isinstance(ingredient, egg.Egg) and has_spam:
Ieturn
if isinstance(ingredient, bacon.Bacon) and has_spam:

D. w - Move the cursor by one word

if isinstance(ingredient, egg.Egg) and has_spam:
return ||
if isinstance(ingredient, bacon.Bacon) and has_spam:

E. “by$ - Yank the text until the end of the line (y$) into the register b (“b), as the register a
is in use for the macro. Now register b will contain ' spam eggs'.

if isinstance(ingredient, egg.Egg) and has_spam:
return
if isinstance(ingredient, bacon.Bacon) and has_spam:

E You could technically yank into a default register, but it’s easy to override the default register
when editing — which is why I prefer to copy into a dedicated register.

Navigate into the related class (egg . Egg)

A. k- Move one line up

if isinstanfle(ingredient, egg.Egg) and has_spam:
return
if ilsinstance(ingredient, bacon.Bacon) and has_spam:

Recording and playing macros 191

B. f) - Move to the closing parenthesis

if isinstanceffingredient, egg.Eqggl] and has_spam:
return
if isinstance(ingredient, bacon.Bacon) and has_spam:

C. b - Move one word backward

if isinstance(ingredient, egg.Bgg) and has_spam:
return
if isinstance{ingredient, bacon.Bacon) and has_spam:

D. Ctrl +] - Jump to the class definition, which should take us to another file.

kitchen ingredient

Ila ss Egg(ingredient.Ingredient):
def _ init (self):
self.name = 'cog’
"kitchen/egg.py" 7L, 118B

3. Set the class property: self.custom spam name = 'spam eggs'

A. /self .name - Place the cursor on the line where sel f . name is defined
kitchen ingredient
class Egg(ingredient.Ingredient):
def _ init_ (self):

= 'egg’

/self.name

B. o0 - Enter insert mode on the next line.

class Egg(ingredient.Ingredient):

def __init_ (self):

-- INSERT --

192 Refactoring Code with Regex and Macros

C. Type self.custom spam name = ,followed by the Escape key.

class Egg(ingredient.Ingredient):

def _init_ (self):

self.custom_spam_name =fj

D. “bp - Paste contents of the register b.

class Egg(ingredient.Ingredient):

def _init_ (self):

self.custom_spam_name = 'spam cgosf

E. :w - Save the file.

class Egg(ingredient.Ingredient):

def _init_ (self):
self.custm_spéﬁ_nane = 'spam eggs|]
"kitchen/egg.py" 8L, 162B written

4. Return to welcome . py and remove the offending lines.

A. Ctrl + N - Open the previous file.

def prepare_ingredient(ingredient):
has_spam = random.choice([True, False])
If isinstance(ingredient, egg.Egg) and has_spam:
return 'spam eggs'
if isinstance(ingredient, bacon.Bacon) and has_spam:
return 'bacon and spam’
"welcome.py" 28L, 8@8B

Personally, I can never remember the Ctrl + A shortcut, but I do remember how to navigate
Vim’s navigation stack with Ctrl + o and Ctrl + i. So I just hit Ctrl + o until I'm placed in the
previous file.

Recording and playing macros

B. 2dd - Delete two lines.

def prepare_ingredient({ingredient):

has_spam = random.choice([True, False])
If isinstance(ingredient, bacon.Bacon) and has_spam:
return 'bacon and spam’

if isinstance(ingredient, sausage.Sausage) and has_spam:
return 'spam sausage’
"welcome.py" 28L, 8@8B

C. g - Stop recording the macro.

That’s it. You now have this macro recorded in register a!

Let’s try replaying the macro by hitting @, followed by a: @a. Behold your actions quickly being
replayed in front of you.

s B
Registers

We talk more about registers in the Copying and pasting with registers section of Chapter 2,
Advanced Editing and Navigation.

Tip
A handy shortcut is @@. @@ replays the last macro you ran.
L J

Repeating macros

Say you have a simple macro that prefixes spam to each dish name in a list:

Bish_names = [
L)

Figure 6.12 — A list of dish names, to be prefixed by the everpresent“spam”.

193

194 Refactoring Code with Regex and Macros

You'll record something like this:

o ga - Begin recording macro into the register a.

o / ‘- Find the next single quote (‘) prefixed by four spaces.
o _ - Go to the beginning of the line (where text is present).
« a - Enter insert mode after the cursor.

o spam - Type spam followed by a space.

o Esc - Exit to normal mode.

o g - Finish recording the macro.

You can repeat the macro multiple times by prefixing it with a number: 2@a. However, if, for instance,
you are searching as part of your macro (try rerunning the macro once more with @a), the search may
wrap back to the beginning of the file and replay a macro on a portion of the file you've already modified:

dish names = [

de”IbJﬁ“ L”ClCL.,

Figure 6.13 — Unexpected spam in our spam omelet!

That’s where working with macros can get messy. All macros do is record your actions and replay
them back.

So, how can we make this macro not do this?

A macro stops executing if it encounters an error. If there are no patterns we’re searching for below
the cursor, Vim just looks for one above the cursor—without producing an error. So we just need to
manually produce an error, to make sure the macro doesn’t continue running when it doesn't have to.

:set nowrapscan

Recording and playing macros

If you replay the macro, you'll now get an error:

dish_names = [
'spam omelet’,
'spam sausage’,
spam bacon'

E385: Search hit BOTTOM without match for:

Figure 6.14 — Sometimes it’s useful to deliberately trigger an error.

Now you can safely execute this macro any number of times.

Due to errors like these, or if youre not confident about the matches, sometimes it’s useful to carry

out a separate search. It might make sense to search for an occurrence outside the macro, and then
play the macro if you decide that the change is warranted. Then, you can run n to search for the next
search occurrence, decide whether youd like to make changes, and run the macro again with @a or @@.

Editing macros

Macros are stored in registers (the same ones used by yank and paste operations). You can view the

contents of all your registers by executing : reg:

AAAA N HHHHH

C

Press ENTER or type command to continuel]

"g
II‘6
II‘7
"8
-rg
"ay
lrb
"oy
"
"y

self.custom_spam_name
self. custom_spam_name
self.custom_spam_name
self.custom_spam_name
self.custom_spam_name

‘bacon
‘bacon
‘bacon
‘bacon
'bacon

and
and
and
and
and

spam'"J
spam’)
spam'"J
spam’"J
spam'"J

j_w"by$kf)<80><fd>ab"] fself.name Moself.custom_name <80>kb<80>kb<80>k

'spam sausage’

q

welcome. py
kitchen/bacon. py

nq

Figure 6.15 — Output of :reg command, listing the content of all registers.

195

196

Refactoring Code with Regex and Macros

It’s a bit messy, but close to the middle of the list you can see "a, the register containing our macro.
You can also view the contents of, say, register a by executing : echo @aor :reg a.

In the preceding screenshot, many special characters are represented differently. For instance, * [
signifies the Esc key, and “M is an Enter key.

In fact, macros are nothing but registers: the g command lets you add keystrokes to the register, while
@ lets you replay the keystrokes from that register.

Since the macro is effectively a register, you can paste it using p. Open a new buffer with : new, and
paste the contents of the register using "ap:

j_w"by$kf) ab" | /self.name Moself.custom_name kb kb kb kb
kbsanm kb kb kbpam_name = " ["b"["bp:w 2df

Figure 6.16 — Content of the macros a that we recorded earlier.

Now you can edit your macro without having to retype the whole thing.

When you're finished editing, copy it back into the register: _’ay$. _ will place you to the beginning
of the line, “a will tell yank to use register a, and y$ will copy the text until the end of the line.

That’s it. Paste the register with “ap, and place it back when you've finished editing using _’ay$. Post
this sentence online out of context to scare people from ever buying this book.

Tip
As with many Vim commands, you shouldn’t try to remember the exact letters but focus on

what the command does. The _"ay$ command, for instance, goes to the beginning of the line
and yanks the rest of the line into register a. That’s much easier to remember than _’ays$.

Recursive macros

Earlier we ran macros multiple times by prefixing @ with a number. That’s not very computer science-
like, and we can do better.

Recording and playing macros

Vim supports recursive macros, but there are a few quirks to be aware of.

First, you'll need to make sure the register you will be recording to is empty. You can do this by entering
macro recording mode, and immediately exiting it. For instance, if you wanted to empty register b,
youd run gbq to clear it.

Then, record your macro as usual, and insert that same register into itself (for example, by using @b).

Let’s say we wanted to swap keys with values in a Python dictionary. We could record a macro as
follows, starting with the cursor at the beginning of the line 'egg': 'spam omelet':

dish names = [

Figure 6.17 — A dictionary where we'd want to swap keys and values.
Let’s record a macro into the register b. First, we'll need to flush it and enter macro recording mode:
qbqqb (gbq empties register b, and gb enters macro recording mode).

Now, as we want to swap egg and spam omelet, we could yank one of these words into some
temporary register (say c), and then move egg over using the default register.

Let’s go ahead: “cdi’ (delete inside single quotes into register c):

dish_names = [

recording @b

Move one WORD over (W) and run di’ to yank spam omelet into the default register:

dish_names = [

recording @b

197

198 Refactoring Code with Regex and Macros

Move one character to the left (either with /i or b) and insert egg from register ¢ (‘cp):

dish_names = [

sausage': 'spam sausage’,

pacon DaCon and Sspadamr

]
recording @b

Now, move back to the beginning of the line (_) and paste spam omelet from the default register (p):

dish_names = [
' spanm LJ_I > 'egq’,

'sausage’': 'spam sausage',
'bacon’: 'bacon and spam’
recording @b

Almost there! Go down one line (j), and move your cursor to the beginning of the line (_):

dish_names = [

'spam omelet': 'egg’',
Ibtn_.btlr_:-'_' 'y 'spam sausage’',
'bacon': 'bacon and spam’

]
recording @b

Now, replay macro b: @b. Nothing will happen, since register b is still empty. Finish recording the
macro (q).

Now replay the macro using @b once, and it will iterate through every line in your file:

dish_names = [

'y sl at ' v meey !

5pd omelet': eqgqg

Spam sausage : 5dusage
Dacon and spam’ : DaCon

That’s it! You can make any macro recursive by appending it to the register. To append to a register,
you use the uppercase version of the register identifier. For example, if you wanted to make a macro
in a register b recursive, youd run gB@bq to append @b to the end of the macro.

Using plugins to do the job 199

Running macros across multiple files

If you wanted to replay a macro across multiple files, you could use (you guessed it) arglist. Arglist
allows you to execute normal mode commands with the : normal command. For instance, you could
run a macro from register a, as follows:

rarg **/* .py
:argdo execute ":normal @a" | update

Here, :normal @a will execute macro a in normal mode, and update will save the buffer contents.
You’'ll probably want to use arglist with recursive macros.

Using plugins to do the job

“Wait,” you exclaim. “There were plugins to do this all along?” Indeed, there are plugins that support
refactoring operations—be it modifying parameters, renaming, or method extraction.

However, when working with existing refactoring solutions, I always find they do almost, but not
quite, what I need. That’s why I continue to write fancy substitute commands for refactoring. I find
the cost of incorporating a refactoring plugin into my workflow, only to switch to : substitute
commands for some of my refactoring needs, to be too high.

At the time of writing this book, there’s no go-to refactoring plugin. Some are language-specific, and
some focus on only certain aspects of refactoring. For instance, plugins like YouCompleteMe provide
semantically aware renaming commands (such as : YecmComplete RefactorRename).

Your best bet is to figure out for yourself which operations you want to perform and try out a few
plugins based on that. A web search along the lines of “Vim refactoring plugins” should
do the trick.

Summary

In this chapter, we covered the : substitute command and macros—two powerful tools we can
use for refactoring.

We covered the : substitute command and its flags. We looked into arglist, which is a way to
execute a command across multiple files.

The : substitute command also supports regular expressions, which make your life a lot easier
by allowing you to go beyond literal matches. We covered the basics of regular expressions and Vim
magic modes (which are ways of interpreting special characters when parsing regex-enabled strings).

Finally, we looked at macros: a feature that lets you record and later replay a set of keystrokes. Macros
can be edited the same way that registers can, and can also be made recursive to play as many times
as needed.

In the next chapter, we'll cover customizing Vim for a personalized editing experience.

7
Making Vim Your Own

This chapter will cover Vim customization, and how to make Vim work for you. Everyone’s needs are
different, and this chapter tries to help you develop your own style.

This chapter will cover the following topics:
o Color schemes and making your Vim look pretty
o Enhancing the status line with additional information
o GUI configuration specific to gVim
o Healthy habits when customizing your workflow

o Methodologies for organizing your . vimrc

Technical requirements

In this chapter, we will be covering ways to keep your . vimrc file organized. There’s no supporting
code - you're welcome to bring along your . vimrc file and try out the techniques suggested in
this chapter.

In addition, we'll be installing some packages with pip, so you may want to make sure you have pip
installed. You can install pip by running:

$ python3 -m ensurepip --upgrade
Or alternatively, if the above doesn’t work for some reason:

$ curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
python3 get-pip.py

202

Making Vim Your Own

Playing with the Vim Ul

Vim has an extensible UI, and it doesn’t always have to look like it’s stuck in the 90s. You can change
its themes, tweak the way certain Ul elements are displayed, and enhance the information displayed
in a status line. If you're a gVim user, there are even more customization options available to you!

Color schemes

Vim has a plethora of beautiful color schemes available, both packaged with Vim and made by
community members.

You can change the color scheme by changing the colorscheme setting in your . vimrc, as follows:

:colorscheme elflord

To get a list of currently installed color schemes, execute : colorscheme followed by Ctrl + d. This
will list every installed color scheme:

set background=1ight
colorscheme PaperColor

" Set terminal window title and set it back on exit.
set title
let Gtitleold = getcwd()

" Shorten press ENTER to continue messages.
set shortmess=atl

" Show last command.

set showemd

:colorscheme

PaperColor desert morning shine torte
blue elflord murphy slate zellner
darkblue evening pablo solarized

default industry peachpuff spacegray

delek koehler ron tomorrow-night

:colorscheme I

Figure 7.1 - Output of :colorscheme followed by Ctr/ + d. Current color scheme is PaperColor.

Playing with the Vim Ul

In the preceding example, I'm using : colorscheme PaperColor fromhttps://github.
com/NLKNguyen/papercolor-theme.

You can further customize the color scheme by setting the background option to either light or
dark (the option must precede the colorscheme call).

For example, this is how the same color scheme as in the preceding screenshot (PaperColor) looks
with set background=dark:

=dark
me PaperColor

:colorscheme

PaperColor 3 morning shine torte
murphy slate zellner
pablo solarized

peachpuff spacegray
ron tomorrow-night

Figure 7.2 — PaperColor color scheme with : set background=dark option.

Browsing the color schemes

There are many color schemes available online, since tastes differ so significantly. There’s no single
indisputably authoritative resource for color schemes. Your best bet is to look around and try to find
what catches your eye.

If you manage to get your hands on lots of color schemes while you're trying to find the one you like,
you can use a helpful plugin called ScrollColors. Now, ScrollColors addsa : SCROLL
command that lets you interactively cycle through your color schemes.

203

https://github.com/NLKNguyen/papercolor-theme
https://github.com/NLKNguyen/papercolor-theme

204

Making Vim Your Own

Install ScrollColors with vim-plug

If you're using vim-plug, you can install ScrollColors by adding Plug 'vim-
scripts/ScrollColors!' toyour .vimrc and running :w | source $MYVIMRC
| PlugInstall.

There’s also a collection of color schemes available at https://github.com/flazz/
vim-colorschemes, with what looks like a few hundred of the most popular color schemes. I
found all of my personal favorites in that list, so it might be a good resource for someone who's trying
to decide on a few favorite color schemes.

This plugin and ScrollColors can be used together to browse through a gallery of the most
popular color schemes.

Install vim-colorschemes with vim-plug

vim-colorschemes can be installed with vim-plug by adding P1ug 'flazz/
vim-colorschemes' toyour .vimrc and running :w | source $MYVIMRC |
PlugInstall.

Common issues

Sometimes you’ll find that the color schemes you’re trying out don't look as nice or don’t display as
many colors as you see in screenshots online.

This is most likely because your Terminal emulator mistakenly tells Vim it only supports 8 colors, and
not the 256 available in modern Terminal emulators. For that, you’ll have to properly set the STERM
environment variable.

This is most common when using tmux and GNU Screen, as they might wrongly report the number
of colors available.

Even more colors!

If you find 256 colors to not be enough, certain Terminals support 24-bit colors, often referred
to as “truecolor”” If your Terminal supports 24-bit truecolor (a quick web search would help),
add set termguicolors toyour ~/.vimrc.

To view the current content of the $TERM environment variable, run the following in your shell:

$ echo $TERM

https://github.com/flazz/vim-colorschemes
https://github.com/flazz/vim-colorschemes

Playing with the Vim Ul 205

If you're using tmux, add the following to your . tmux . cont:
set -g default-terminal "xterm-256color"

If you're a GNU Screen user, add the following to your . screenrc:
term "xterm-256color"

If the preceding didn’t apply to you, add the following to your .bashrc:

TERM=xterm-256color

However, overriding $STERM in your .bashrc is rarely a good idea, and you may want to do some
deeper research into what sets your STERM environment variable to the wrong format.

The status line

The status line is that lovely bar at the bottom of the screen that is used to display information. You
can make it even more useful with some minor configuration tweaks:

" Always display a status line (it gets hidden sometimes otherwise) .
set laststatus=2

" Show last command in the status line.
set showcmd

If you want to go even further, there are plugins to enhance your status line. Powerline is an everything-
in-one powerhouse, while Airline is its lighter alternative.

Powerline

Powerline provides an enhanced status line for Vim, as well as providing other functions, such as
extending your shell prompt or tmux status line. It is available (along with detailed installation
instructions) from https://github.com/powerline/powerline. When enabled in Vim,
it looks something like this:

zoo/animals.py A

Figure 7.3 — The Powerline status bar.

As you can see, it displays a plethora of information, including current mode, Git branch, filename, status
of a current file, file type, encoding, and how far along you are in a current file. It’s fully customizable,
and lets you display as much or as little information as you want.

https://github.com/powerline/powerline

206

Making Vim Your Own

It’s a bit of trouble to install, since it’s not just a Vim plugin. First, you'll need to install the powerline-
status package through pip:

$ python3 -m pip install powerline-status

If you don’t have pip installed, see the technical requirements at the beginning of this chapter for
setup instructions.

Note

To use Powerline, you need a Vim build that includes a python3 interpreter. That is not always
the case and may require you to install (or even self-compile) a different Vim flavor. Check the
output of : version for +python3.

You'll also need to make sure $SHOME/ . local/bin (the default scripts location for pip) is on your
path by adding the following to your .bashrc:

PATH=SHOME/ .local/bin:$PATH

Finally, set laststatus to 2 (to make sure the status line is always displayed), and load Powerline
inyour .vimrc:

" Always display status line (or what's the purpose of having
powerline?)

set laststatus=2

" Load powerline.

python3 from powerline.vim import setup as powerline setup
python3 powerline setup ()

python3 del powerline setup

Playing with the Vim Ul 207

Now, reload your Vim configuration (:w | source $MYVIMRC), and you'll see the fancy new
status line at the bottom of your screen, displaying current mode (NORMAL), open file (~/ . vimrc),

file format (unix), encoding (ut £ - 8), file type (vim), how far down your screen is scrolled (2%),
and selected line range (1:1):

i Enable syntax highlighting.
syntax on

" Language dependent indentation.
filetype plugin indent on

" Reasonable indentation defaults.

colorscheme.
heme murphy

if it's not alre installed.
im/autoload/pluc))
rl -flo ~/.vim/autolo
w.github.com/junequnr m-plug/master/p
autocmd VimEnter * Pluglnstall --sync | source §N

Figure 7.4 — The Powerline plugin.
Airline
Airline is a great alternative if you don’t want anything extra, and don’t like the idea of a Python

daemon continuously running in the background. It provides an informative, nice-looking prompt,
as in the following screenshot:

208 Making Vim Your Own

Er'pur t util

class Animal:

__init Lf, kind, name):
]

Lf.name = name

def introduce(se
print('This is", self.name, "and it a', self.kind)

def ac , target):
print(self.name, verb, 'at', target)

class Dog(Animal):

Lf, 'dog', name)

Figure 7.5 — The Airline plugin.

Airline is available from https://github.com/vim-airline/vim-airline, and has no
additional dependencies.

Install vim-airline with vim-plug
You can install Airline with vim-plug by adding P1lug 'vim-airline/vim-airline'
toyour .vimrc and running :w | source SMYVIMRC | PlugInstall.

gVim-specific configuration
gVim is a standalone application, and lets you configure more than out-of-the-box Vim does. In fact,

gVim supports having its own configuration file (in addition to . vimrc): .gvimre.

The primary option for managing how the GUI looks is guioptions. This configuration string takes
a set of letters, which enable options. Some relevant settings might include the following:

o aand P—automatically yank the visual selection into the system clipboard (for * and + registers
respectively, see Registers in Chapter 2, Advanced Editing and Navigation)

o c—use console dialogs instead of popups

o e—display tabs using GUI components

https://github.com/vim-airline/vim-airline

Keeping track of configuration files

o m—display a menu bar
o T—include a toolbar

o 1,1, and b—make right, left, and bottom scrollbars always visible

Your favorite font

gVim also lets you set your preferred font by setting the guifont option. Read up on it by
running :help 'guifont'.

For example, if you wanted to display a menu bar and a toolbar and always display a bottom scroll
bar, you could do so by adding the following to your . vimrc:

" GUI: Enable menu bar, toolbar, always display bottom scrollbar.
set guioptions=mTb

The changes will look like this (this screenshot depicts gVim in Windows):

{8 [No Name] - GVIM - O ¥
File Edit Tools Syntax Buffers Window Vimwiki Help

QIPE | e sEaa bR s3AlTaAQl? R

[Ho Hame] 8,81 nl

Figure 7.6 — GVim with m (menu bar), T (toolbar), and b (bottom scrollbar) options.

You can learn more about gVim-specific options by reading : help gui.

Keeping track of configuration files

Chances are, you won’t spend the next ten years using the same computer. It’s also possible you
have multiple machines you work across—so you should probably find a way to synchronize your
configuration files across multiple environments.

As usual, there’s no single right way to do this, but a common practice is to store files in a Git repository
(often called dot £iles, since configuration files in Linux tend to start with a dot), and pointing
symbolic links (symlinks) from the files in the home directory to the files in the dot £i1es directory.

209

210

Making Vim Your Own

All you’ll have to do is commit, push, and pull the configuration with Git on each machine to stay
up to date.

Symlinks

If you're not familiar with symlinks, they’re essentially a pointer to a file. You can create a
symlink using the 1n command in your Terminal, e.g: 1n -s <original file> <link
to files.

The easiest way would probably be to create a repository using a service such as GitHub, and utilize
it to synchronize your configuration. Just don’t store any sensitive information like passwords in
version control!

Most frequently, the process of changing my configuration files is as follows (I store mine in SHOME/ .
dotfiles on Linux and Mac, and $USERPROFILE%\ dotfiles on Windows):

$ cd ~/.dotfiles

$ git pull --rebase

Make the desired changes, like editing .vimrc
$ git commit -am "Updated something important"
$ git push

Git!
The .dotfiles should be a Git repository; see Quick and dirty in Chapter 5, Build, Test, and
Execute to learn how to create one and if youd like a refresher on Git.

For example, you might have a repository in ~/dot files, which contains . vimrc and .gvimrc
files, as well as a . vim directory. You could create links manually (1In -s ~/dotfiles/.vimrc
.vimre), or by writing a small Python script like this:

import os

dotfiles dir = os.path.join(os.environ['HOME'], 'dotfiles')
for filename in os.listdir(dotfiles dir):
os.symlink (
os.path.join(dotfiles dir, filename),
os.path.join(os.environ['HOME'], filename))

You can get infinitely creative with solutions to this problem. Here are just a few examples of where
you can take this:

o Make the preceding Python script work cross-platform (for instance, the . vim directory
becomes vimfiles in Windows)

Healthy Vim customization habits

o Periodically synchronize the Git repository using a cron job

o Use some form of file sync instead of Git (trading informative commit messages for near-instant
updates across machines)

Healthy Vim customization habits

As you continue to work with Vim, you will find yourself making a lot of configuration changes. It’s
important to take time to go back, reflect, and make sure your . vimrc doesn’t become a pile of
unneeded aliases, functions, and plugins.

Once in a while, take the time to go back into your . vimrc and clean up unnecessary functions and
plugins, or remove key bindings you don’t use anymore. If you don’t know what something does, you're
probably better off removing it, since you won't get much use out of configurations you don’t understand.

It’s also helpful to take some time to read about the options you have set and plugins you have installed

with the built-in : help command—you never know what useful feature you’ll discover!

Optimizing your workflow

Everyone’s workflow is unique, and no two people use Vim the same way. It’s useful to find ways to
complement your style by enhancing and optimizing the way you do things in Vim.

Do you find yourself using a particular command a lot? Create a custom key binding!

For example, I use the CtrlP plugin quite a lot (both for navigating the file tree and the buffer list),
and I have the following custom mappings:

nnoremap <leader>p :CtrlP <cr>
nnoremap <leader>t :CtrlPTag <cr>

I also often find myself running the : Ack command (provided by the ack-vim plugin) on a word
under cursor, so I have the following in my . vimrc:

nnoremap <leader>a :Ack! <c-r><c-w><Ccr>
<c-r> followed by <c-w> inserts the word under cursor into the command line.
Can we use : grep for a similar purpose? Not a problem:

nnoremap <leader>g :grep <C-r><C-w> */**<cr>

Accidentally find yourself hitting ; instead of : to enter command-line mode? (I do all the time!)
Remap it:

nnoremap ;
vnoremap ;

211

212

Making Vim Your Own

Whenever you catch yourself doing something a lot, take a moment to add a relevant key binding to
make your life easier.

Keeping .vimrc organized

If you use and customize Vim a lot, your . vimrc file will tend to grow rather quickly, and it’s important
to make it easy to navigate. If you ever take a break from working with your . vimrc and come back
later, you'll thank yourself.

Comments are crucial for making sure you remember what's going on. If you take just one thing from
this chapter, make sure it is comments. Just like when working with code, comments save you from
wasting time trying to understand what’s going on.

I try to make a point of documenting every configuration bit with a corresponding comment:

" Show last command in the status line.
set showcmd

" Highlight cursor line.
set cursorline

" Ruler (line, column and % at the right bottom) .
set ruler

" Display line numbers if terminal is wide enough.
if &co > 80
set number

endif

" Soft word wrap.
set linebreak

" Prettier display of long lines of text.
set display+=lastline

" Always show statusline.
set laststatus=2

:help with options
You can always view a help page for any option through :help '<options>',e.g., :help
'laststatus’'.

Healthy Vim customization habits 213

Some people might prefer to place the comments on the same line as the configuration bits:
set showecmd " Show last command in the status line.
set cursorline " Highlight cursor line.
set ruler " Ruler (line, column and % at the right bottom) .
if &co > 80 " Display line numbers if terminal is wide enough.
set number
endif
set linebreak " Soft word wrap.
set display+=lastline " Prettier display of long lines of text.

set laststatus=2 " Always show statusline.

For plugins in particular, I find it extremely useful to add a quick comment explaining what each one
of them does. This makes it easy to revise the list of plugins once I don’t need certain ones anymore:

Plug 'EinfachToll/DidYouMean' " filename suggestions

Plug 'easymotion/vim-easymotion' " better move commands
Plug 'NLKNguyen/papercolor-theme' " colorscheme

Plug 'ajhl7/Spacegray.vim' " colorscheme

Plug 'altercation/vim-colors-solarized' " colorscheme
Plug 'christoomey/vim-tmux-navigator' " better tmux integration
Plug 'ervandew/supertab' " more powerful Tab

Plug 'junegunn/goyo.vim' " distraction-free writing

Plug 'ctrlpvim/ctrlp.vim' " Ctrl+p to fuzzy search

Plug 'mileszs/ack.vim' " ack integration

Plug 'scrooloose/nerdtree' " prettier netrw output

Plug 'squarefrog/tomorrow-night.vim' " colorscheme

Plug 'tomtom/tcomment vim' " commenting helpers

Plug 'tpope/vim-abolish' " change case on the fly

Plug 'tpope/vim-repeat' " repeat everything

Plug 'tpope/vim-surround' " superchange surround commands
Plug 'tpope/vim-unimpaired' " pairs of helpful shortcuts
Plug 'tpope/vim-vinegar' " - to open netrw

Plug 'vim-scripts/Gundo' " visualize the undo tree

Plug 'vim-scripts/vimwiki' " personal wiki

214

Making Vim Your Own

There are many ways to make configuration easier to navigate. My organizational method of choice
is marker folds. I break down my configuration into categories, such as looks, editing, or movement
and search. Then I use manual fold markers ({ { { 1) to indicate folds.

I also tend to add some ASCII art in the form of arrows => and lines - - - to make each section look
more like a header:

7 =» HAlEilAg ce---cccscscscscssococosocoosossoossssoeoosoossoos {{{z
syntax on

7 = LEGIKE —coocsco oo e s s e e e e E S e C oo o E oo oEDe oD {{{z

set background=1light
colorscheme PaperColor

This way, if I want an overview of my . vimrc file, I can close all folds using zM, and I'll get a helpful view:

F URL: https://github.con/ruslanosipov/dotfiles
" Author: Ruslan Osipov
" Description! Personal .vimrc file

A1l the plugins are managed via vim-plug, run :PlugInstall to install all
the plugins from Github, :Pluglpdate to update. Leader key is the spacebar.

"
"

What function keys do (also see: Custom commands, Leader shortcuts):
F5: toggle Gundo window.

“.vimre" 233L, 6275C [w]

Figure 7.7 — My personal . vimrc file using manual folds.

Summary

s 2
Other ways to organize your configuration

How you organize your configuration is completely subjective. For example, you could group
similar customizations into their own files and source them individually: mappings.vim
for mappings, functions.vim for custom functions, plugins.vim for all the plugin
settings, etc.

Summary

In this chapter, we've covered ways to enhance Vim’s user interface and personalize Vim.

We've looked at color schemes, ways to configure them, finding them, and browsing them. We've also
looked at ways to enhance Vims status line with the heavyweight Powerline or lightweight Airline plugin.

We've looked at GUI configuration specific to gVim, and how to customize the way gVim looks.

Finally, as you use Vim more, you’ll develop your own style and personal workflow. This workflow
is best enhanced by bindings and shortcuts. As your . vimrc grows, there are several ways to get it
organized, well documented, and easy to navigate.

In the next chapter, we'll learn about Vimscript, an extensive scripting language that comes packaged
with Vim.

215

8

Transcending the Mundane
with Vimscript

This chapter will cover Vimscript in all its glory. We will go into quite a bit of detail, but since we
only have so many pages, the coverage will be somewhat spotty. Hopefully, this chapter will get you
interested in Vimscript enough to start your own research, and maybe you can use it as a reference as
you build your early plugins and scripts. In this chapter, we will look at the following:

o The basic syntax, from declaring variables to using lambda expressions
o Style guides, and how to keep sane when developing in Vimscript

o A sample plugin from start to finish—from the first line to publishing it online

Technical requirements

This chapter walks you through learning Vimscript by using numerous examples. All the examples
are available on GitHub: https://github.com/PacktPublishing/Mastering-Vim-
Second-Edition/tree/main/Chapter08. You can create the scripts on your own as we're
working through this chapter, or download the files from the repository to play around with.

Why Vimscript?

You've already encountered Vimscript when you worked on your . vimrc file. What you may not
have known is that Vimscript is actually a Turing-complete scripting language—there’s no limit to
what you can do. So far, you've used it to set variables and perform a few comparison operations, but
it can do so much more!

You will learn how Vimscript not only helps you understand Vim configuration better but also lets
you solve text editing problems you encounter by writing functions and plugins.

It’s pretty awesome.

https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/Mastering-Vim-Second-Edition/tree/main/Chapter08

218

Transcending the Mundane with Vimscript

How to execute Vimscript

Vimscript is made up of commands you run in command-line mode and really is just a sequence of
Vim commands in a file. You can always execute Vimscript by running each command in command
mode (the one you prefix with :), or by executing the file with commands using a : source command.
Historically, Vim scripts have a . vim extension.

As you're following along with this section, you may want to create * . vim files to experiment in. You
can execute the files by running this:

:source <filename>
A much shorter version of that is this:
:s0 %
Here, : so is a short version of : source, and % refers to the currently open file.

For example, I just created a variables.vim file to play around with Vim’s variables. I could

[)

execute its contents with : so %:
let g:ingredient =

echo
echo
echo g:ingredient
echo

tutorial/@1_variables.vim

Scene: A cafe. A man and his wife enter.
Man: Well, what've you got?

egg

- said the waitress

Press ENTER or type command to conLinueI

Figure 8.1 - Output of the :50 % command

How to execute Vimscript

Alternatively, I could run each command in command mode. For example, if I wanted to print the
contents of a variable, g: ingredient, I would run the following:

:echo g:ingredient

I will do just that, as in, print egg into our status line:

Ic_=L g:1lngredlient =

tutorial/@1_variables.vim
egg

Figure 8.2 - Output of : echo g:ingredient

Normally, I run longer scripts with : so %, and perform debugging operations through command-
line mode (:).

Additionally, if you're entering commands in command-line mode, you’ll stay in command-line mode
if you enter a function or a flow control operator (such as 1 £, while, or for):

tutorial/@1_variables.vim
:if has('win32')

echo 'this is windows'

else

echo 'this is probably linux'
this is probably linux

endiff]

1,1 Al

Figure 8.3 - Flow control operators in command-line mode

In this example, I did not have to type : on every line. Additionally, each line gets executed as you hit

Enter (as you can see by this is probably linux being printed on the screen).

Tip

You can also use the | (pipe) separator to make the statement in-line: if has (' win32') |echo
'this is windows' | else | echo 'this is probably linux' | endif.

219

220

Transcending the Mundane with Vimscript

Major changes in Vimscript 9

Vim 9 introduced Vimscript 9 (or Vim9script), which significantly improves performance and gives
users access to programming constructs available in common programming languages. Vimscript 9
is best treated as an addition to Vimscript, to be used alongside prior versions of Vimscript.

Outside of improved performance, differences come down to syntax — for example, signifying
comments with # instead of ", declaring variables with var, explicit boolean support, required use
of whitespace for readability, and so on. I'll call out the differences between Vim9script and previous
versions of Vimscript throughout this chapter.

Vimscript 9 use is opt-in and can be invoked by starting your script with vim9script, defining
functions through the def keyword (rather than function), or prefixing a command with vim9cmd.

I recommend using Vimscript 9 if you intend to get more serious about writing custom plugins or
start fiddling with performance-sensitive functions. You could even convert your . vimrc file to
Vim9script, but youd lose backward compatibility (which might or might not be a deal-breaker for
you, depending on how you use Vim).

Throughout this chapter, I will default to legacy Vimscript and will call out differences in Vim9script.

Learning the syntax

Let’s take a lightning-fast deep dive into Vimscript’s syntax.

(N
Prior knowledge required!

This section assumes youre comfortable with at least one programming language, conditional
statements, and loops in particular. If that’s not the case, you will most certainly be better oft
finding a more extensive tutorial. Vimscript deserves its own book, and Steve Losh wrote just
that: Learn Vimscript the Hard Way is easily the best Vimscript tutorial available (and it’s free
on the web!).

Setting variables

You've already discovered some basics of Vimscript syntax. To set internal Vim options, you use the
set keyword:

set background=dark

Reminder

Don't forget, you can run : source $% to execute the current file.

Learning the syntax

To define a variable, you can use let (for variables):

let dish = 'spam omelet'

To assign a value to a non-internal variable, you’ll again use the 1et keyword:

let dish = 'bacon and spam!'

Assigning variable values in Vim9script

In Vim9script, you use var, const, and £inal to declare a variable. Omit 1et when changing
variable value (e.g., dish = 'bacon and spam').

Legacy Vimscript doesn't have explicit booleans, so 1 is treated as true and 0 as false:

let has spam = 1

Vim9script supports explicit booleans

Vim9script supports explicit t rue and false values, allowing you to use a construct such
asvar has_ spam = true.

Since we're assigning variables, let’s talk about scopes. Vim handles variable and function scopes with
prefixes, like so:

let g:dish = 'spam omelet'
let w:has spam = 1

Each letter has a unique meaning, in particular the following:

o g: global scope (default if scope is not specified, unless in a function)

o v: global defined by Vim

°
-]

: local scope (default within a function if scope is not specified)
o b: current buffer

e w: current window

e t:current tab

o s:localtoa :source'd Vim script

°
Q

: function argument

In this example, g : dish is a global variable. By default, in legacy Vimscript, the variables are in
global scope. It could also be written as let dish = 'spam omelet'),andw:has spamis
a window scope variable.

221

222

Transcending the Mundane with Vimscript

Scopes in Vim9script

In Vim9script, the default variable scope is the current script (s :), which certainly makes more
sense. Vim9script also omits the a : declaration from function arguments, instead making
arguments part of the local (1 :) scope.

As you might remember, you can also set registers with 1et. For example, if you wanted to set register
ato hold spam spam spam, you could do this:

let @a = 'spam spam spam'

You can also access Vim options (the ones you can change with set) by prefixing the variable with
&, as in this example:

let &ignorecase = 0

You can use the usual mathematical operations on integers (+, -, *, and /). String concatenation is
performed using the . operator:

const g:statement = 'Well, we''ve got ' . g:dish

String concatenation in Vim9script

In Vim9script, concatenation is instead performed with the . . operator: for example, const
g:statement = 'Well, we''ve got ' .. g:dish.

If you want to use a single quote within a single-quoted string, you can do so by typing it twice (' ').

Oh, and like in many languages, single quotes identify literal strings, while double quotes identify
non-literal strings. This becomes slightly confusing because comments also start with a double quote.
Due to this behavior, certain commands in Vimscript can’t be followed by a comment.

Speaking of comments in Vim9script

In Vim9script, comments are signified with #, just like in Python.

Surfacing output
You can print the content of a variable (or the results of any operation) into a status line using echo:

echo dish

One thing about echo, though, is that the output does not get logged anywhere and there’s no way to
view the message once it’s dismissed.

Learning the syntax

For that, there’s : echomsg (or : echom for short):

echom 'Well, we''ve got ' . dish
echom 'here is another message'

To see the log of messages from the current session, execute the following command:
:messages
Now, you can see every message we printed:
echo dish
echom . dish

ecnom

02_output.vim

"@2_output.vim" 9L, 107B

Well, we've got egg omelet

here is an another message

Press ENTER or type command to conLinueI

Figure 8.4 — Outputting messages with :messages

In fact, many operations log messages via echom. For instance, a file write using : w does so:

echom . dish
echom

02_output.vim

"@2_output.vim" 9L, 1878
Well, we've got egg omelet
here is an another message
"02_output.vim" 9L, 1@07B [w]

Press ENTER or type command to conLinueI

Figure 8.5 — Writes also show up in :messages

Messages can be a powerful tool for debugging and trying to figure out what went wrong with your
script. Learn more about messages via :help message-history.

223

224 Transcending the Mundane with Vimscript

Conditional statements

Conditional statements are performed using if statements:

if ingredient == 'egg'
echo 'spam omelet'
elseif ingredient == 'lobster'
echo 'spam lobster thermidor'
else
echo dish . ' and spam'
endif

The if statement is also available inline by using ? and : operators:
echo 'spam ' . (ingredient == 'egg' ? 'omelet' : dish)

Vim supports all the logical operators you're used to from other languages:

e &&-and
« |l-or
¢ ! -not

For example, you can do this:

if ! (is_egg || is_lobster)
echo ingredient . ' and spam'
endif

In the previous example, you'll get to echo ingredient . ' and spam' onlyif ingredient
isn't an egg or a lobster.

This can also be written with the && operator:

if !is egg && !is lobster
echo ingredient . ' and spam'
endif

Since text editing implies operating on strings, Vim has additional text-specific comparison operators:
o == compares two strings; case sensitivity depends on the user’s settings (see later)
o ==7 explicitly case-insensitive comparison

« ==# explicitly case-sensitive comparison

Learning the syntax 225

o =~ checks a match against an expression on the right (=~? or =~# to make those explicitly
case-insensitive or sensitive)

o I~ checks that a string does not match an expression on the right (! ~? or ! ~# to make those
explicitly case-insensitive or sensitive)

The default behavior of ==, as well as =~ and ! ~ (case-sensitive or case-insensitive) depends on the
ignorecase setting. In fact, that is the reason (and, therefore, recommended) to always be explicit
and use the =~? or =~# comparison operators to be independent of the users’ setting.

Here are some examples:

'egg' ==? 'EGG' " true
'egg' ==# 'EGG' " false
set ignorecase | 'egg' == 'EGG' " true
'egg' =~ 'e.\+' " true
'egg' =~# 'E.\+' " false
'egg' !~ '.gg' " false
'egg' !~? 'E.\+' " false
Lists

Vim also supports more complex data structures, such as lists and dictionaries. Here’s an example of a list:
let ingredients = ['egg', 'bacon',6 'sausage'l]
Operations to modify lists are similar to the ones in Python. Let’s take a look at some common operations.

You can get elements by index using the [n] syntax. Here are some examples:

let egg = ingredients[0] " get first element
let bacon = ingredients[1] " get second element
let sausage = ingredients[-1] " get last element

Slices work in a similar way to Python, as in this example:

let slice = ingredients[1:]

The value of slice would be ['bacon, 'sausage']. The main difference from Python is that
the end of the range is inclusive:

let slice = ingredients[0:1]

The value of slice wouldbe ['egg', 'bacon'].

226

Transcending the Mundane with Vimscript

To append to the list, use add:

call add(ingredients, 'lobster')

Function calls in Vimscript versus Vim9script

In legacy Vimscript, we explicitly call functions with call unless they’re part of an expression.
In Vim9script, the call keyword is omitted.

This will turn our list into ['egg', 'bacon', 'sausage', 'lobster'].Whileitsan
in-place operation, it also returns the modified list, so you can assign to it as well:

let ingredients = add(ingredients, 'lobster')

You can also prepend to the list using insert:

call insert (ingredients, 'tomato')

This will modify the list tobe ['tomato', 'egg', 'bacon', 'sausage', 'lobster'].

Lists in Vimscript are zero-based and you can also provide an optional index argument. For instance,
if you wanted to insert 'ham' at index 2 (where 'bacon' currently is) in the previous list, you
would do the following:

call insert (ingredients, 'ham',6 2)
The list will become ['tomato', 'egg', 'ham', 'bacon', 'sausage', 'lobster'].

There are a few ways to remove the elements. For example, you can use unlet to remove an element
atindex 2 ("ham'):

unlet ingredients[2]
The list will be back to ['tomato', 'egg', 'bacon',6 'sausage',6 'lobster'l].
You can also use remove:
call remove (ingredients, -1)
This will leave us with ['tomato', 'egg',6 'bacon', 'sausage'l.
Additionally, remove also returns the item itself:

let tomato = remove (ingredients, 0)

You can also use ranges with both unlet and remove. Here’s an example of deleting everything up
to and including the second element:

unlet ingredients[:1]

Learning the syntax

If you were to do this with remove, youd have to specify boundaries explicitly:

call remove (ingredients, 0, 1)

You can concatenate the lists using + or extend. Here is an example, given the mammals and
birds lists:

let fresh = ['egg',K 'lobster']
let preserved = ['bacon',6 'sausage']

We could create a new list:

let ingredients = fresh + preserved

Here, ingredients will contain ['egg', 'lobster', 'bacon', 'sausage'].We
could also extend the existing list:

call extend(fresh, preserved)

This will extend fresh to contain ['egg', 'lobster', 'bacon', 'sausage'l.

You can sort the list in place using sort. If we were to use sort on a previous example, we would
write the following:

call sort (ingredients)

The result would be ['bacon', 'egg', 'lobster', 'sausage'l] (sorted alphabetically).

You can get an index of an element using index. For instance, if you wanted to get an index of
lobster from the previous list, you would run this:

let i = index(ingredients, 'lobster')
In this case, 1 would be equal to 2.
You can check whether a list is empty using (aptly named) empty:

if empty (ingredients)
echo 'There are no ingredients!'
endif

The length of a list is retrieved using len:
echo 'There are ' . len(ingredients) . ' ingredients.'

Finally, Vim lets you count the number of elements in a list:

echo 'There are ' . count (ingredients, 'egg') . ' eggs.'

227

228

Transcending the Mundane with Vimscript

:help
You can get a full list of operations by checking out the help page: :help list.

Dictionaries

Dictionaries are also supported in Vim:

let menu =
\ 'egg': 'spam omelet',
\ 'bacon': 'bacon and spam',
\ 'sausage': 'spam with sausage'
\)

As you may have noticed, you need to explicitly outline the line breaks with a backslash, \, if youre
defining a dictionary on multiple lines.

Newlines in Vim9script
Unlike in legacy Vimscript, in Vim9script, line continuation does not always require a backslash.

Dictionary modification operations are similar to the ones familiar to you from Python. Elements
can be accessed in two ways:

let egg dish = menul'egg'] " get an element

let egg dish = menu.egg " another way to access an element
Accessing an element via . only works if the key contains numbers, letters, and underscores.
You can set or override a dictionary entry as follows:

let menu['lobster'] = 'lobster thermidor'
Entries are removed using unlet or remove:

unlet menu['lobster']
let lobster = remove (menu, 'lobster')

Dictionaries can be merged using extend (in place):

call extend(menu, {'lobster': 'lobster thermidor'})

Learning the syntax

This will make menu look as follows:

{

\ 'egg': 'spam omelet',

\ 'bacon': 'bacon and spam',

\ 'sausage': 'spam with sausage',
\ 'lobster': 'lobster thermidor'
\)

In case the second argument to extend contains duplicate keys, the original entries will be overwritten.
This is configurable using the optional third parameter of extend.

Similarly to lists, you can measure dictionary length and check whether the dictionaries are empty:

if !empty (menu)
echo 'There are ' . len(menu) . ' dishes in the menu.'
endif

Lastly, you can check whether a key is present in a dictionary using has key:

if has_key(menu, 'egg')
echo 'An egg dish is called ' . menul'egg']
endif

You can get a full list of operations by checking out the help page: :help dict.

Loops

You can loop through lists and dictionaries using the for keyword. For example, do this to go
through a list:

for ingredient in ['egg', 'bacon',6 'sausage'l]
echo ingredient
endfor

And here’s you iterating through a dictionary from a previous section:

for ingredient in keys (menu)
echo 'A dish with ' . ingredient . ' is called ' . menul[ingredient]
endfor

You can also access both the key and the value of the dictionary simultaneously using items:

for [ingredient, dish] in items (menu)
echo 'A dish with ' . ingredient . ' is called ' . dish
endfor

229

230 Transcending the Mundane with Vimscript

You can control the iteration flow with cont inue and break. Here’s an example of using break:

let ingredients = ['egg', 'bacon',6 'sausage'l
for ingredient in ingredients
if ingredient == 'bacon'
echo 'Found bacon! Breaking!'
break
endif
echo 'Looking at an ingredient ' . ingredient . ', no bacon yet.'
endfor

The output from this would be the following:
let ingredients = [

for ingredient in ingredients
if i gredie 1t ==
echo
break
endif
echo . lngredient
endfor
©86_loops.vim 21,1
Looking at an ingredient egg, no bacon yet.
Found bacon! Breaking!

Press ENTER or type command to continuel

Bot

Figure 8.6 — How to use the break keyword in Vimscript for loops

And this is how you would use cont inue:

let ingredients = ['egg', 'bacon',6 'sausage'l
for ingredient in ingredients
if ingredient == 'egg'
echo 'Ignoring the egg...'
continue
endif
echo 'Looking at an ingredient ' . ingredient

endfor

Learning the syntax

The output from this would be the following:

let ingredients = [. . 1
for ingredient in ingredients
if ingredient ==
echo
continue
endif
echo . ingredient
endfor
86_loops.vim 31,1 Bo
Ignoring the egg...
Looking at an ingredient bacon
Looking at an ingredient sausage
Press ENTER or type command to conLinueI
Figure 8.7 - How to use the continue keyword in Vimscript for loops
while loops are also supported:
let ingredients = ['egg', 'bacon',6 'sausage'l
while !empty (ingredients)
echo remove (ingredients, 0)
endwhile
This will print the following:
let ingredients = [, , 1
while !empty(ingredients
echo remove(lngredients, @)
endwhile
B6_loops.vim 37,1 Bo
egg
bacon
sausage

Press ENTER or type command to cunLinuel
Figure 8.8 - Example of a while loop

You can use break and cont inue the same way with while loops:

let ingredients = ['egg',6 'bacon', 'sausage']
while len(ingredients) > 0

let ingredient = remove (ingredients, 0)

231

232

Transcending the Mundane with Vimscript

if ingredient == 'bacon'
echo 'Found the bacon, breaking!'
break
endif
echo 'Looking at an ingredient ' . ingredient
endwhile

This will output the following:

let ingredients = [, ,]

while len(ingredients) =
let ingredient = remove(ingredients,

j_r ingredle 1T ==

echo
break
endif
echo . 1lngredient
endwhile
B86_loops.vim 48,2 Bot
Looking at an ingredient egg
Found the bacon, breaking!
Press ENTER or type command to continuel

Figure 8.9 — Usage of a break keyword within a while loop

Functions
Just like most other programming languages, Vim supports functions:

function Preparelngredient (ingredient)
echo a:ingredient . ' and spam'
endfunction

Note that in legacy Vimscript, function arguments are part of the special a : scope.

Function names

In Vim, user-defined function names must start with a capital letter (unless they’re within a
script scope or behind a namespace). You’ll get an error if you try to define a function starting
with a lowercase letter.

You can try calling the function and you’ll get the following output:

:call PreparelIngredient ('sausage')

Learning the syntax

lun:Licn PrepareIngredient ingredient
echo a:ingredient .
endfunction

@87_functions.vim 1,1 Al
sausage and spam

Figure 8.10 — Output of :call Preparelngredient(‘'sausage’)

You can see that function arguments are accessed via the a : scope.

(7

Functions in Vimscript 9

In Vim9script, functions are declared with the de £ keyword, and arguments are available in a
local scope (1 :) instead of an argument scope (a :). Further, Vimscript 9 requires you to specify
the argument type, such as PrepareIngredient (ingredient: string).Ifafunction
returns a value, you must specify a return type as well: PrepareIngredient (ingredient:
string) : string.

Finally, you don't need to explicitly use the call keyword to call a function in Vimscript 9.

Functions, of course, can return values:

function PreparelIngredient?2 (ingredient)
return a:ingredient . ' and spam'

endfunction

Now, echo the return value of the function so we can see it in the following screenshot:

:echo PrepareIngredient2 ('sausage')

IL'LLLC' Preparelngredient2 ingredient
return a:ingredient . ' and spam’
endfunction

tutorial/@7_functions.vim 1,1 Al

sausage and Spam

Figure 8.11 — Output of :echo Preparelngredient(‘sausage’)

- J

233

234 Transcending the Mundane with Vimscript

Classes (Vim9script)

Legacy Vimscript classes work through odd syntax and generous application of duct tape - a limitation
addressed by Vim9script. If you're interested in using classes, I recommend using Vim9script syntax,
either by starting your script with vim9script or prefixing a command with vim9cmd.

If you need to use legacy Vimscript, I've included a legacy Vimscript section. It’s clunkier but offers
backward compatibility.

Under construction

Classes are a new feature in Vim9script, and the behaviors might change. See :help vim9class
for information relevant to your Vim version.

Classes in Vim9script function just like classes do in other common languages. Youd define a class
as follows:

class Dish
this.ingredient: string
this.dish name: string

def PrepareIngredient (has_spam: bool)
this.dish name = has spam ? this.ingredient
\ ' and spam' : this.ingredient
enddef
endclass

You can create an object from the class using the new () method:

var bacon = Dish.new('bacon')
bacon.PrepareIngredient (true)
echo bacon.dish name

Learning the syntax

You can see that the dish name for the bacon object was changed to bacon and spam:

Jimdscript

class Dish
this.ingredient: string
this.dish_name: string

def Preparelngredient has_spam: bool

this.dish_name = has_spam ? this.ingredient .. : this.ingredient
enddef
endclass
var bacon = Dish.new
bacon.Preparelngredient true
echo bacon.dis 1_nName
@88_classes.vim 1,1 Al
bacon and spam

Figure 8.12 — Classes in Vim9script

Classes in legacy Vimscript

While legacy Vimscript doesn’t explicitly contain classes, dictionaries support having methods on
them, supporting the object-oriented programming paradigm. It’s clunky, but here’s how youd do it:

function PreparelIngredient (has spam) dict

let self.dish name = a:has spam == 1 ? self.ingredient . ' and spam'
\ : self.ingredient
endfunction

let dish = {
'ingredient': 'sausage',
'dish name': '',

'Preparelngredient': function ('PreparelIngredient')

}

— = =

We define the function before defining a dictionary, and the dict keyword allows us to access dictionary
attributes via self (just like in Python). Defining a dict effectively functions as class initialization.

Let’s run it:

call dish.Preparelngredient (1)
echo dish.dish name

235

236 Transcending the Mundane with Vimscript

You can see the dish name for the dish object is now set to sausage and spam:

Iur'|-:Lic-r'| Preparelngredient has_spam) dict
let self.dish_name = a:has_spam == 1 ? self.ingredient
self.ingredient
endfunction
let dish =
function

call dish.PrepareIngredient

echo dish.dis I_Ndame

../tutorial /@8 classes.vim 1,1 Al
sausage and spam

Figure 8.13 — Hacking together classes in legacy Vimscript

Understandably, these aren't fully-fledged classes, but they can be a useful tool as youre working with
legacy Vimscript.
Lambda expressions

Lambdas are anonymous functions that can be really useful when working with somewhat

straightforward logic.

Here’s how we would define PrepareIngredient from the previous example using lambda expressions:

let Preparelngredient = {ingredient -> ingredient . ' and spam'}

Syntax difference in Vim9script

In Vimscript 9, lambda expressions use a different syntax: var lambda = (arg): type
=> expression, trading - > for =>, removing curly braces, and introducing parentheses

around the argument.

Let’s test it:

:echo PreparelIngredient ('sausage')

Learning the syntax 237

You can see the output in the following screenshot:

IQL Preparelngredient = i;Q_CUlC'L > 1ngredlent
:echo PrepareIngredient()
89_lambda.vim 1,1 Al

sausage and spam

Figure 8.14 — Lambda expressions in Vimscript

Lambdas provide short and sweet syntax for writing compact functions.

Map and filter

Vimscript supports map and £11ter—higher-order functions (functions that operate on functions).
Both functions take either a list or a dictionary as a first argument and a function as a second.

Say we want to remove every meal from a list that doesn’t have spam in it. HasSpam will return 1
(true) if the dish contains spam, and 0 (false) otherwise, and we’ll use the £ilter function to apply
HasSpam to every element of the dishes list:

let dishes = ['spam omelet', 'sausage',K 'bacon and spam']

function HasSpam (dish)
if stridx(a:dish, 'spam') > -1
return 1
endif
return 0
endfunction

call filter(dishes, 'HasSpam(v:val)')
echo dishes

What’s stridx?

stridx is effectively a “contains” function. It returns an index of a substring within a string,
and returns -1 if the substring is not found within a string. See :help stridx.

238

Transcending the Mundane with Vimscript

Here’s the output, as expected:

ICL dishes = [, ,]

function HasSpam dish
if stridx(a:dish, >
return
endif
return
endfunction

call filter(dishes,

echo dishes

186_map_and_filter.vim 1,1 AL
['spam omelet', 'bacon and spam’]

Figure 8.15 — A filter function in Vimscript

If youre coming from other programming languages, this syntax probably feels somewhat awkward.
The second argument to the filter function is a string, which gets evaluated for every key-value pair
of the dictionary.

Somewhat confusingly, when operating on lists, v : key refers to an item index, and v : val refers
to the item value. When operating on dictionaries, more expectedly, v: val will get expanded to the
dictionary value (while v : key could be used to access the key).

The map function behaves in a similar manner. It lets you modify each list item or dictionary value.
For example, let’s add spam to each list item missing spam.

In this exercise, we'll reuse the HasSpam function from the earlier example. Lambdas come in
especially useful with filter and map functions:

let dishes = ['spam omelet', 'sausage',6 'bacon']

function HasSpam (dish)
if stridx(a:dish, 'spam') > -1
return 1
endif
return 0
endfunction

call map(dishes, 'HasSpam(v:val) ? v:val : v:val . '' and spam ''')

Learning the syntax

Verify that the results are as expected:

echo dishes
let dishes = [, ,]

function HasSpam(dish
if stridx(a:dish, >
return
endif
return
endfunction

call mapidishes,
cho dishes

10_map_and_filter.vim
['spam omelet', ‘'sausage and spam ', ‘'bacon and spam ']

Figure 8.16 — Example of a map function in legacy Vimscript

Interacting with Vim

The execute command lets you parse and execute a string as a Vim command. For example, the
two following statements will produce equivalent results:

echo dish . ' probably got spam in it'
execute 'echo dish ''probably got spam in it'''

Note
Quotes around are needed as otherwise this command would : echo the contents of each
variable. If those variables are not defined, an error occurs.

You can use normal to execute keys just like the user would in normal mode. For instance, if you
wanted to search for a word, egg, and delete it, you could do this:

normal /egg<cr>dw

Note

<cr> here needs to be typed with Ctrl + v, followed by the Enter key. However, execute
"normal /egg<cr>dw" would use the literal string <cr> to represent the Enter key press.
Just a quirk to be aware of.

239

240

Transcending the Mundane with Vimscript

Running normal like this will respect the user’s mappings, so if you want to ignore custom mappings,
you could use normal!:

normal! /egg<cr>dw

As a general recommendation, one should always use :normal! (with bang attribute) to be
independent of what a user may have mapped the key to.

Another command can suppress output from other commands (such as execute): silent. Neither
of these will produce any output:

silent echo dish . ' probably got spam in it'

silent execute 'echo dish ''probably got spam in it'''

Furthermore, silent can suppress the output from external commands and ignore prompts:

silent !echo 'this is running in a shell’

You can also check whether the Vim you're running in has a particular feature enabled:

if has('python3')
echom 'Your Vim was compiled with Python 3 support!'
endif

You can view the full list of features via :help feature-1ist, but something worth noting is
OS indicators: win32/winé4, macunix/osxdarwin (macOS), or unix. These are extremely
helpful if you're planning to build a cross-platform script.

File-related commands

Since Vim is a text editor, much of what you do operates on files. Vim provides a number of
file-related functions.

You can manipulate file path information using expand:

echom 'Current file extension is ' . expand('%:e')

When passed a filename (through %, #, or shortcuts such as <cfile>), expand lets you parse the
path using these modifiers:

o :pexpand to full path

« :hhead (last path component removed)
o :t tail (last path component only)

e :1 root (one extension removed)

o :e extension only

Learning the syntax

See :help expand () for more information about these.
You can check that the file exists (aka can be read) by using filereadable:

if filereadable (expand('$"'))
echom 'Current file (' . expand('%:t') . ') is readable!'

endif

When executed from 12_file.vim, the output would be as follows:

if filereadable(expand
echom . expand
endif
12_file vim 6 . 9-1 B66%

Current file (12_file.vim) is readable!

Figure 8.17 — Checking whether the current file is readable in Vimscript

Similarly, you can check you have write permissions to the file using filewritable.

You can perform the rest of the file operations using the execute command. For example, youd
write the following to open the welcome . py file:

execute 'edit welcome.py'

Prompts

There are two primary ways to prompt the user for input. You can either use confirm to display a
multiple-choice dialog (such as yes/no/cancel), or input to process a more complex input.

The confirm function prompts the user with a dialog and multiple answers a user can select from.
Let’s try a simple example:

let answer = confirm('Add spam to a dish?', "&yes\n&no")
echo answer

If you execute the script, you'll get the following prompt:
let answer = confirm .

echo answer

13_prompts.vim 1,9-1 Al
150 %

Add spam to a dish?

lyles, (n)o: |]

Figure 8.18 — Using Vimscript to show a prompt

241

242

Transcending the Mundane with Vimscript

Hitting y or n will select an option. Let’s hit y:

let answer = confirm .

echo answer

13_prompts.vim
150 %
Add spam to a dish?

1
Press ENTER or type command to {ominuel

Figure 8.19 — Selecting the first option returns 1

The result of this is 1. Now, what if we replay it and choose no?

let answer = confixm .

echo answer

13_prompts.vim
150 %
Add spam to a dish?

2
Press ENTER or type command to centinuel

Figure 8.20 - Selecting the second option returns 2

We get 2. As you can see, conf irm returns an integer with the number of the selected choice.

Oh, and if youre running from a GUI, you’ll get a dialog window pop up:

| g,% promptvim (~) - GVIM — O
File Edit Tools Syntax Buffers Window Help
a @& e @ Bh he & 54T A

1let answer = confirm{'Add spam to a dish?', "&yes\n&no'")
eche ansuer

Vim 9.1

% Add spam to a dish?
il

‘ yes no

[source %

Figure 8.21 — A visual prompt in GVim

Learning the syntax

Now, let’s get back to our original example:

let answer = confirm('Add spam to a dish?', "&yes\n&no")
echo answer

Here, you can see that conf irm takes two arguments: a prompt to be displayed and a newline-
separated (\n) list of options to select from. In the previous example, an option string is non-literal,
since we want the newlines to be processed.

A set of ampersand (&) symbols is used to denote the letters representing each option (in the previous
example, y and n become the available options). Here’s another example:

let answer = confirm/(
\ 'Add spam to a dish?', "absolutely &yes\nhell &no")

This would display the following prompt:
1(_:L dNswWerl = CO 'lJ__"
13_prompts.vim 5,8-1 Bo
'so %
Add spam to a dish?
absolutely [yles, hell (n)o: |]

Figure 8.22 — You can specify which letter represents each option

Note that y and n are still the letters a user can press to reply to the prompt.

Lastly, input lets you work with free-form text input. Its use is fairly straightforward:

let ingredient = input ('Please input an ingredient: ')
echo "\n"

echo 'We now serve ' . ingredient . ' and spam!'

Note

echo "\n" prints a newline, as otherwise your input and the next line will not be separated
by a newline.

And this is how the prompt looks when executed:

let ingredient = input

echo

echo . ingredient .

13 prompts.vim 16,1 Bo

Please input an ingredient:

Figure 8.23 — A freeform text prompt

243

244

Transcending the Mundane with Vimscript

And this is what it looks like after we enter our string:

let ingredient = input

echo

echo . ingredient .

13_prompts.vim 16,1 Bot

Please input an ingredient: egg
We now serve egg and spam!
Press ENTER or type command to cominuel

Figure 8.24 — A freeform text prompt output

However, a word of warning. If you're using input from inside a mapping, you must prefix it with
inputsave () and follow it with inputrestore (). Otherwise, the rest of the characters in a mapping
will be consumed into input. In fact, you should always use inputsave () and inputrestore ()
in case your function is ever used in a mapping. Here’s an example of how to use them:

function InputIngredient ()
call inputsave ()
let ingredient = input ('Please input an ingredient: ')
call inputrestore ()
return ingredient

endfunction

nnoremap <leader>a = :let ingredient = InputIngredient ()<cr>:echo
ingredient<cr>
Using :help

Most of the information about Vimscript is in Vim’s eval . txt, which you can access by searching
:help eval. Information about Vim9script is available in vim9 . txt and vim9sclass. txt.
Give it a read if you're ever feeling stuck or would like to learn more.

A word about style guides

Consistent style is important. One of the more prominent style guides for Vim is the one published
by Google: https://google.github.io/styleguide/vimscriptguide.xml. It
highlights some common development practices and outlines common pitfalls.

Here are some excerpts from the Google Vimscript style guide:
o Use two spaces for indents

o Do not use tabs

o Use spaces around operators

https://google.github.io/styleguide/vimscriptguide.xml

Let’s build a plugin

Restrict lines to 80 columns wide
Indent continued lines by four spaces
Useplugin-names-like-this
Use FunctionNamesLikeThis

Use CommandNamesLikeThis

Use augroup names_like this
Use variable names like this
Always prefix variables with their scope

When in doubt, apply Python style guide rules

Give the Google Vimscript style guide a read; it’s rather useful even if you never plan on doing more
than customizing your . vimrec file. It'll help with self-consistency.

Let’s build a plugin

Let’s try building a simple plugin; this way, we can learn by example.

A common task you have to perform when working with code is commenting out chunks of code.
Let’s build a plugin that does just that. Let’s (uninspiringly) name our plugin vim-commenter.

Plugin layout

Since the Vim 8 release, there’s thankfully only one way of structuring your plugins (which is also
compatible with major plugin managers, such as vim-plug, Vundle, or Pathogen). The plugins are
expected to have the following directory structure:

autoload/ lets you lazy load bits of your plugin (more on that later)
colors/ color schemes

compiler/ (language-specific) compiler-related functionality

doc/ documentation

ftdetect/ (file type-specific) file type detection settings
ftplugin/ (file type-specific) file type-related plugin code
indent/ (file type-specific) indentation-related settings

plugin/ the core functionality of your plugin

syntax/ (language-specific) defines language syntax group

245

246

Transcending the Mundane with Vimscript

As we develop our plugin, let’s use Vim 8’s new plugin functionality and place our plugin directory
into .vim/pack/plugins/start. Since we decided to name our plugin commenter, we'll plop
itinto .vim/pack/plugins/start/vim-commenter.

Remember, the plugins/ directory can have any name. See Chapter 3, Follow the Leader - Plugin
Management for more information. The start/ directory means that the plugin will be loaded on
Vim startup.

Let’s create a directory for it now:

$ mkdir -p ~/.vim/pack/plugins/start/vim-commenter

The basics

Let’s start simple: let’s get our plugin to add a key binding that comments out the current line by
prefixing it with a Python-style comment (#).

Letsstartin ~/ .vim/pack/plugins/start/vim-commenter/plugin/commenter.vim:

" Comment out the current line in Python.
function! commenter#Comment ()

let 1l:1ine = getline('."')

call setline('.', '# ' . l:line)
endfunction

nnoremap gc :call commenter#Comment ()<crs>

In the previous example, we've created a function that inserts # in front of the current line (.) and
maps it to gc. As you might remember, g, while having some mappings assigned to it (see :help
g), is effectively a free namespace for the user to fill, and ¢ stands for “comment”

Save the file and load it (either using : source or by restarting Vim). Let’s open a Python file and
navigate to some line wed like to comment:

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
def prepare_ingredient(ingredient):

Bas_spam = random.choice([True, False])

return ingredient.prepare(has_spam)
def main():

print({)

Figure 8.25 — An unsuspecting Python file

Let’s build a plugin

Now, try running gc:

kitchen bacon, egg, sausage
random

INGREDIENTS = [egq.Egg(), bacon.Bacon(), sausage.Sausage()]
def prepare_ingredient(ingredient):
return ingredient.prepare(has_spam)

def main{):
print()
:call commentexr#Comment ()

Figure 8.26 — Success-ish: a line has been commented out

Success! Well, kind of. First, the comment begins at the beginning of the line and not at the current
indentation level, as the user might want. Also, the cursor hasn’t moved from the current position,
which might be a little annoying for the user. Let’s fix these two issues.

You can get the indentation level of the line (in spaces) using the indent function:

let s:comment_string = '# '

" Comment out the current line in Python.
function! Comment ()

let 1:i = indent('.') " Number of spaces.

let 1l:1ine = getline('."'")

let l:cur _row = getcurpos() [1]

let l:cur col = getcurpos() [2]

call setline('.', 1l:line[:1:1i - 1] . s:comment_string

\ 1l:1line[1l:41:])

call cursor(l:cur row, l:cur col + len(s:comment string))

endfunction

nnoremap gc :call Comment ()<cr>

247

248 Transcending the Mundane with Vimscript

Let’s go back to our file:

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
def prepare_ingredient{ingredient):
has_spam = Iandom,choice([T;uc, False])

return ingredient.prepare(has_spam)

def main{):
print()

Figure 8.27 — An unsuspecting Python file

Now, run gc to comment out an indented line:

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
def prepare_ingredient(ingredient):
return ingredient.prepare(has_spam)

def main():
print()
:call Comment()

Figure 8.28 — Success: a line properly commented out!

Wonderful! But now, we’ll probably need a way to uncomment the line as well! Let’s change our
function to ToggleComment ():

let s:comment_string = '# '

" Comment out the current line in Python.
function! ToggleComment ()
let 1:i = indent('.') " Number of spaces.
let l:1ine = getline('.")
let l:cur_row = getcurpos () [1]
let l:cur col = getcurpos() [2]
if 1:1inefl:1:1:1i + len(s:comment string) - 1] == s:comment string
call setline('.', l:1line[:1:1i - 1]

Let’s build a plugin

\ 1:1ine[l:1i + len(s:comment string):])

let l:cur offset = -len(s:comment_string)
else
call setline('.', l:line[:1:1 - 1] . s:comment string
\ 1:1line[1l:1i:])
let l:cur offset = len(s:comment string)
endif

call cursor(l:cur row, l:cur col + l:cur offset)
endfunction

nnoremap gc :call ToggleComment ()<cr>

Let’s give it a shot! Reload the script, and go back to our file:

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]
def prepare_ingredient (ingredient):
has_spam = [fandom. choice([True, False])

return ingredient.prepare(has_spam)

def main():
print()

Figure 8.29 — An unsuspecting Python file

Hit gc to comment the line:

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(). bacon.Bacon(), sausage.Sausage()]
def prepare ingredient(ingredient):

return ingredient.prepare(has_spam)
def main():

print()
:call ToggleComment()

Figure 8.30 — A line successfully commented out

249

250 Transcending the Mundane with Vimscript

And hit gc again to uncomment it:

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

def prepare_ingredient(ingredient):
has_spam = raldom,choice([Trl_m. False])
return ingredient.prepare(has_spam)

def main():

print()
:call ToggleComment ()

Figure 8.31 — A line successfully uncommented

Let’s make sure we cover corner cases! Let’s try to comment out the line without indentation. Move
your cursor to an unindented line:

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

def Ireparc_ingrcr.lien t(ingredient):
has_spam = random.choice([True, False])
return ingredient.prepare(has_spam)

def main():
print()

Figure 8.32 - Place your cursor on an unindented line

Hit gc to run our function:

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Eqg(), bacon.Bacon(), sausage.Sausage()]
def prelare_ingredienL(ingredient):

has_spam = random.choice([True, False])

return ingredient.prepare(has_spam)
def main():

print()
:call ToggleComment()

Figure 8.33 — Our plugin doesn’t seem to work on unindented lines!

Let’s build a plugin

Oh no! Looks like our script is not working well when there’s no indentation. Let’s fix it:

let s:comment_string = '# '

" Comment out the current line in Python.
function! ToggleComment ()

let 1:i = indent('.') " Number of spaces.

let 1l:1ine = getline('."'")

let l:cur row = getcurpos() [1]

let l:cur col = getcurpos() [2]

let l:prefix = 1:1 > 0 ? l:line[:1:1 - 1] : '' " Handle 0 indent

if 1:1inefl:i:1:i + len(s:comment string) - 1] == s:comment string
call setline('.', l:prefix . l:line[l:i + len(s:comment string):])
let l:cur offset = -len(s:comment_string)

else
call setline('.', l:prefix . s:comment string . l:line[l:i:])
let l:cur offset = len(s:comment string)

endif

call cursor(l:cur row, l:cur col + l:cur offset)
endfunction

nnoremap gc :call ToggleComment ()<cr>

Let’s save, reload, and run the script using gc:

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.5ausage()]

has_spam = random.choice([True, False])
return ingredient.prepare(has_spam)

def main():

print()
:call ToggleComment()

Figure 8.34 - Commenting out an unindented line

251

252

Transcending the Mundane with Vimscript

And run gc again to test uncommenting:

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

def p;lpf_l; e_ingredient(ingredient):
has_spam = random.choice([True, False])
return ingredient.prepare(has_spam)

def main{):
print()
:call ToggleComment()

Figure 8.35 — Uncommenting an unindented line

Wonderful! The very basic version of our plugin is complete!

Housekeeping

So far, we've had our plugin all within one file. Let’s see how we can break it down into multiple files to
keep our newly created project organized! Look at the list in the Plugin layout section of this chapter.

First, you can see that the ftplugin/ directory contains file type-specific plugin configuration.
Right now, most of our plugin is actually pretty independent from working with Python, except for
the s: comment string variable. Let’s moveitoutto <. ..>/vim-commenter/ftplugin/
python.vim:

" String representing inline Python comments.
let g:commenterf#comment_str = '# '

We've changed the scope from s : to g: (since the variable is now used in different scripts) and added
the commenter# namespace to avoid namespace collision.

The name should also be updated in <. . . >/vim-commenter/plugin/commenter.vim.
Now might be a good time to test those substitution commands you learned earlier in this book:

:%s/\<s:comment string\>/g:commenterf#comment str/g

Another directory of interest is autoload/. Currently, whenever Vim starts, it will parse and load
g:commenter#ToggleComment. That’s not very fast. Instead, we can choose to move the function

Let’s build a plugin

to the autoload/ directory. The name of the file needs to correspond to its namespace; in this case,
its commenter. Let’s create <. . . >/vim-commenter/autoload/commenter.vim:

" Comment out the current line in Python.

function! g:commenter#ToggleComment ()
let 1:i = indent('.') " Number of spaces.
let
let
let
let
if 1:1inefl:i:1:i + len(g:commenterf#comment str) - 1] ==

:line = getline('."')
:cur_row = getcurpos () [1]
:cur col = getcurpos () [2]

HoE e

:prefix = 1:i > 0 ? 1:1line[:1:1 - 1] : '' " Handle 0 indent

\ g:commenter#comment str
call setline('.', l:prefix
\ l:line[l:1 + len(g:commenter#comment str):])
let l:cur offset = -len(g:commenterf#comment str)
else
call setline('.', l:prefix . g:commenter#comment str
\ 1l:1line[1:i:i])
let l:cur_ offset = len(g:commenter#comment_str)
endif
call cursor(l:cur row, l:cur col + l:cur offset)
endfunction

At this point, the only thing leftin <. . . >/vim-commenter/plugin/commenter.vimis
the mapping:
nnoremap gc :call g:commenter#ToggleComment ()<cr>

Here’s how our plugin will get loaded when a user is working with Vim:

o User opens Vim, and <. . . >/vim-commenter/plugin/commenter.vimisloaded.
Our gc mapping is now registered.

o User opens a Python file,and <. . . >/vim-commenter/ftplugin/python.vimis
loaded. g: commenter#comment str is initialized.

o User runs gc, which loads and executes g : commenter#ToggleComment within<. . .>/
vim-commenter/autoload/commenter.vim.

One directory we haven't given much love to yet is doc/. Vim is known for having extensive
documentation, and we have a reccommendation to uphold this. Letsadd <. . . >/vim-commenter/
doc/commenter. txt:

commenter.txt Our first commenting plugin.

commenter

253

254

Transcending the Mundane with Vimscript

BT ¢ o S | commenter-intro|
20 USAGE . ¢ ettt e e e | commenter-usage |

1. Intro *commenter-intro*

Have you ever wanted to comment out a line with only three presses of
a button? Now you can! The new and wonderful vim-commenter lets you

comment out a single line in Python quickly!

2. Usage *commenter-usage*

This wonderful plugin supports the following key bindings:
gc: toggle comment on a current line

That's it for now. Thanks for reading!

vim:tw=78:ts=2:sts=2:sw=2:ft=help:norl:

Vim help has its own format, but here are some highlights:

o *help-tag* is used to denote a help tag. Whenever you run :help help-tag, Vim takes

you to a file containing *help-tag*, and places the cursor right at the tag.

o Text...|help-tag]| is used for navigation within a help file. It lets the reader jump to

the desired tags from this section.

o All the === lines are just for pretty looks. They don't actually mean anything.

o Alinesuchasvim:tw=78:ts=2:sts=2:sw=2:ft=help:norl: lets you tell Vim how

to display a file when editing it (all of these are options you can set using the set keyword).
This becomes really useful for files without clearly identifiable file types (such as . txt files).

You can learn more about Vim’s help format by reading :help help-writing. The easiest thing,
though, is to find some popular plugins and copy what they do.

Let’s build a plugin

Now, you'll be able to visit the entries you added to the help file:

:help commenter-intro

In case of trouble

If the help page doesn’t show up, try getting Vim to manually index it by running :helptags
~/ .vim/pack/plugins/start/vim-commenter/doc.

Here’s a screenshot of Vim help taking you to the requested section:
1. Intro]
Have you ever wanted to comment out a line with only three presses of a
button? Now you can! The new and wonderful vim-commenter lets you comment out
a single line in Python quickly!
2. Usage
This wonderful plugin supports the following key bindings:
gc: toggle comment on a current line

That's it for now. Thanks for reading!

vim:tw=78:ts=2:sts=2:sw=2:ft=help:noxrl:

commenter.txt [Help] [RO]

[No Name]
"commenter.txt" [readonly] 25L, 981B

Figure 8.36 — The :help commenter-intro output

Improving our plugin

There are many paths we can take our plugin along, but let’s focus on two main issues we have right now:

o Our plugin fails with spectacular errors when we try to execute it in any other language

o The plugin does not provide a way to operate on multiple lines at once

255

256

Transcending the Mundane with Vimscript

Let’s start with the first problem: making the plugin work across different languages. Right now, if
you try to execute the plugin in, for example, a . vim file, you'll get the following volley of errors:

Exrror detected while processing function commenter#ToggleComment :

E121: Undefined variable: g:commenter#comment_str
E116: Invalid arguments for function len(g:commenter#comment_str) - 1] ==# g:co

21: Undefined variable: 1:is insert
Invalid arguments for function g:commenter#InsertOrRemoveComment
28:

1: Undefined variable: 1:cur offset
Invalid arguments for function cursor
Press ENTER or type command to continuel

Figure 8.37 — An error when trying to run our plugin on a non-Python file

That’s because we define g: commenter#comment strin<...>/vim-commenter/
ftplugin/python.vim, and the variable is only defined when we’re working with a Python file.

Vim syntax files define what the comments look like for each language, but they’re not very consistent,
and the logic to parse those and all the corner cases is outside of the scope of this book.

However, we can at least get rid of the nasty error, and make our own!

The canonical way of checking whether a variable exists is with exists. Let’s add a new function to
<...>/vim-commenter/autoload/commenter.vim, which would throw a custom error
ifg: commenter#comment str is not set:

" Returns 1 if g:commenter#comment_str exists.
function! g:commenter#HasCommentStr ()
if exists('g:commenterf#fcomment str')
return 1
endif
echom "vim-commenter doesn't work for filetype " . &ft . " yet"
return 0
endfunction

" Comment out the current line in Python.
function! g:commenter#ToggleComment ()
if !g:commenter#HasCommentStr ()

Let’s build a plugin

return
endif
let 1:i = indent('.') " Number of spaces.
let 1l:1ine = getline('."'")
let l:cur _row = getcurpos() [1]
let l:cur col = getcurpos() [2]
let l:prefix = 1:1i > 0 ? 1l:line[:1:1 - 1] : '' " Handle 0 indent
if 1:1inefl:i:1:i + len(g:commenterfcomment str) - 1] ==#

\ g:commenter#comment str
call setline('.', l:prefix
\ 1:1ine[l:1i + len(g:commenter#comment str):])

let l:cur offset = -len(g:commenterf#comment str)
else
call setline('.', l:prefix . g:commenter#comment str
\ l:1line[l:i:])
let l:cur offset = len(g:commenter#comment str)
endif

call cursor(l:cur row, l:cur col + l:cur offset)
endfunction

Now, we get a message when we try to comment out a line in a non-Python file:

vim-commenter doesn't work for filetype vim yet
Figure 8.38 — A proper error message when running our plugin on a non-Python file

A much better user experience if you ask me.

And now, let’s add a way for our plugin to be invoked on multiple lines. The easiest thing to do would
be to allow the user to prefix our gc command with a number, and we'll do just that.

Vim lets you access a number that prefixes a mapping by using v : count. Even better, there’s
v : countl, which defaults to 1 if no count was given (this way, we can reuse more of our code).

Let’s update our mappingin <. . . >/vim-commenter/plugin/commenter.vim:

nnoremap gc :<c-u>call g:commenter#ToggleComment (v:countl)<cr>

<c-u> is required to be used with v: count and v: count1. You can check :help v:count
or :help v:countl for an explanation.

257

258 Transcending the Mundane with Vimscript

In fact, we can also add a visual mode mapping to support visual selection:

vnoremap gc :<cu>call g:commenter#ToggleComment (
\ line("'s>") - line("'<") + 1)<cr>

Clever way to count lines

line ("'>") getsthe line number of the end of the selection, while 1ine (" '<") gets the
line number of the beginning of the selection. Subtract the beginning line number from the
end, add one, and we have ourselves a line count!

Now, lets update <. . . >/vim-commenter/autoload/commenter . vim with a few new methods:

" Returns 1 if g:commenter#comment str exists.
function! g:commenter#HasCommentStr ()
if exists('g:commenter#comment str')
return 1
endif
echom "vim-commenter doesn't work for filetype " . &ft . " yet™"
return 0
endfunction

" Detect smallest indentation for a range of lines.
function! g:commenter#DetectMinIndent (start, end)
let l:min indent = -1
let 1:i = a:start
while 1:i <= a:end

if l:min indent == -1 || indent(l:i) < l:min_indent
let l:min indent = indent(1l:i)
endif
let 1:1i += 1
endwhile

return l:min indent
endfunction

function! g:commenter#InsertOrRemoveComment (lnum, line, indent, is
insert)

" Handle 0 indent cases.
let l:prefix = a:indent > 0 ? a:line[:a:indent - 1] : "'
if a:is_insert
call setline(a:1lnum, l:prefix . g:commenter#comment_ str
\ a:linela:indent:])
else
call setline(

Let’s build a plugin 259

\ a:lnum, l:prefix
\ a:line[a:indent + len(g:commenter#comment str) :]
endif
endfunction

" Comment out the current line in Python.
function! g:commenter#ToggleComment (count)
if !g:commenter#HasCommentStr ()
return
endif
let l:start = line('."')
let l:end = l:start + a:count - 1

if l:end > line('$') " Stop at the end of file.
let 1l:end = line('S$S"'")
endif

let l:indent = g:commenter#DetectMinIndent (l:start, l:end)

let 1l:1ines = l:start == l:end ?
\ [getline(l:start)] : getline(l:start, l:end)
let l:cur row = getcurpos() [1]
let l:cur_col = getcurpos() [2]
let 1l:1num = l:start
if 1:1ines[0] [1:indent:1:indent +
\ len(g:commenter#comment str) - 1] ==#

\ g:commenter#comment str
let 1l:is_insert = 0

let l:cur offset = -len(g:commenterfcomment str)
else

let 1l:is insert =1

let l:cur offset = len(g:commenter#comment str)
endif

for 1l:1ine in 1l:lines
call g:commenter#InsertOrRemoveComment (
\ l:1num, l:line, l:indent, l:is_insert)
let 1l:1num += 1
endfor
call cursor(l:cur row, l:cur col + l:cur offset)
endfunction

This script is now much bigger, but it’s not as scary as it looks! Here, we've added two new functions:

o g:commenter#DetectMinIndent finds the smallest indent within a given range. This
way, we make sure to indent the outermost section of the code

e g:commenter#InsertOrRemoveComment either inserts or removes a comment within
a given line and at a given indentation level

260

Transcending the Mundane with Vimscript

Let’s test-run our plugin. Let’s, say, run it with 11gc:

kitchen bacon, egg, sausage
random

INGREDIENTS = [egg.Egg(), bacon.Bacon(), sausage.Sausage()]

if _ name ==
main()

:call g:commenter#ToggleComment (v:countl)

Figure 8.39 — Multiline commenting in all its glory

Ta-da! Now, our little plugin can comment out multiple lines! Give it a go with a few more tries to
make sure we covered corner cases such as commenting in the visual mode, going past the end of the
file, commenting and uncommenting a single line, and so on.

Distributing the plugin
Effectively, were all set up to distribute the plugin. Just a few things left.

Update the documentation, and add a README . md file to let people know what your plugin does (this
can be copied from the intro of your plugin). You'll also want to add a LICENSE file, indicating the
license under which you're distributing the plugin. You can distribute the plugin under the same license
as Vim (:help license), or choose your own (GitHub has a helpful link for this purpose: https://
choosealicense.org).

https://choosealicense.org
https://choosealicense.org

Further reading

Now, you’'ll just have to turn SHOME/ . vim/pack/plugins/vim-commenter into a Git
repository, and upload it somewhere.

At the time of writing this book, GitHub is the go-to bastion of freedom for storing code (however,
as SourceForge proved around 2015, times change).

Let’s give it a shot:
$ cd $HOME/.vim/pack/plugins/start/vim-commenter
$ git init
$ git add .
$ git commit -m "First version of the plugin is ready!"
$ git remote add origin <repository URL>
$ git push origin master

Done! You're now ready to distribute the plugin, and plugin managers such as vim-plug can now
pick up your plugin!

Where to take the plugin from here

There’s a lot more room for improvement, but we’ll take a break here. Youre welcome to continue
working on this plugin on your own—you can add visual selection support, make it work with
additional languages, or do whatever it is you would like with it.

Further reading

Vimscript is a long and complex topic, and this chapter only brushes it. If you want to learn more,
there are a few options.

You can read :help eval, which contains most of the information about Vimscript, as well as
:help vim9, :help usr 51.txt,and :help usr 52.txt (which cover writing plugins)
to learn more about Vim9script.

You can also choose to follow a tutorial online or pick up a book. A lot of people recommend Learn Vimscript
the Hard Way by Steve Losh. It’s available online at http://learnvimscriptthehardway.
stevelosh.com/ (you can buy a paper copy from the website as well).

261

http://learnvimscriptthehardway.stevelosh.com
http://learnvimscriptthehardway.stevelosh.com

262

Transcending the Mundane with Vimscript

Summary

That was quite a bit of work! Let’s do a quick recap!

We've learned that Vimscript lets you take Vim anywhere you want, limiting your productivity
only by your imagination. We've covered setting and manipulating variables, working with lists and
dictionaries, surfacing output, and control flows using i f, for, and while statements. We've also
covered functions, lambda expressions, the Vimscript equivalent of classes, as well as some more
functional approaches using map and filter functions. We've also looked at Vim-specific commands
and functions.

We've also built our first plugin, vim-commenter. The plugin lets you comment and uncomment
lines in a Python file at the press of a button (well, two). We've learned how to structure our plugins,
and how to use Vimscript to accomplish our goals. We've even brushed on distributing the plugin!

Lastly, we covered a few possible directions you can take for learning Vimscript, including digging
into :help eval or picking a book up off the (possibly virtual) shelf.

In the next chapter, we'll take a look at Neovim, a developer effort that tries to build and improve
upon Vim.

9

Where to Go from Here

Welcome to the last chapter of mastering Vim. You have now begun your journey into the wonderful
world of Vim.

This book concludes with a few final thoughts:

o Healthy text editing habits, pulled from Bram Moolenaar’s presentation
o Taking modal interfaces outside of Vim and into other IDEs, web browsers, and everywhere else

o Some of the Vim communities and recommended reading

Seven habits of effective text editing

This section is a condensed version of Bram Moolenaar’s article from 2000 and a subsequent presentation
from 2007. It’s good; give it a read on Bram’s website: https: //moolenaar.net/habits.
html. In case you decide to skip reading the whole thing, there follows a very high-level summary.

Since developers spend so much time reading and editing code, Bram highlights an important cycle
when it comes to improving your text-editing experience:

1. Detect inefficiency.
2. Find a quicker way.
3. Make it a habit.

Those three steps are augmented with numerous examples. Here’s one of the examples for each:

1. Detect inefficiency: Moving around takes a lot of time.

2. Find a quicker way: Often, youre looking for something that’s already there. You can search
for a piece of text to move faster. Or you can take a step or two further:

Use * to search for a word under the cursor
Use :set incsearch to search as you type

* Use :set hlsearch to highlight every instance of a search pattern on the screen

https://moolenaar.net/habits.html
https://moolenaar.net/habits.html

264

Where to Go from Here

3. Make it a habit: Use what you've learned! Set incsearch and hlsearchin your .vimrc
file. Use * every time you catch yourself using the / command to search for a pattern near
your cursor.

Modal interfaces everywhere

You've read through this book, and now, hopefully, you think that modal interfaces are pretty great.
How can you get more of that?

Many applications support some sort of modal interactions with them, particularly Vi-friendly ones.

Many mature text editors and IDEs provide Vi-like key bindings for moving around and manipulating
text. Here are a few of them (with the corresponding URLs):
o Evilisa Vilayer for Emacs: https://github.com/emacs-evil/evil

o IdeaVim is a Vim emulator for IDEA-based IDEs (Intelli] IDEA, PyCharm, CLion, PhpStorm,
WebStorm, RubyMine, AppCode, DataGrip, GoLand, Cursive, and Android Studio): https://
github.com/JetBrains/ideavim

o Eclim lets you access Eclipse features from Vim: http://eclim.org

o Vrapper adds Vi-like key bindings to Eclipse: http: //vrapper.sourceforge.net/home

There are many others, so if other editors accomplish your tasks better than Vim (because you might
be locked into a particular IDE) but you enjoy using Vim key bindings, then this might be an approach
for you.

A Vim-like web browsing experience

The modern developer workflow is very web-heavy, and I have my browser open most of the time
when I'm working on code. Sometimes, I feel like switching my focus from keyboard-driven workflow
in Vim to mouse-driven web browsing, which detracts from my sense of flow. To avoid that, I use
add-ons that enable Vi-like key bindings in the browser.

It’s hard to predict the future landscape when it comes to web browsers, but this section is based on
the most popular browsers as of now.

Vimium and Vimium-FF

Vimium is a Chrome extension that enhances web browsing by allowing you to use Vim-friendly key
bindings to navigate pages. It has also been ported to Firefox under the name Vimium-FF.

Vimium is available from the Chrome Web Store or at https://vimium.github.io. Vimium-FF
is available from https://addons .mozilla.org/en-US/firefox/addon/vimium- f££f.

https://github.com/emacs-evil/evil
https://github.com/JetBrains/ideavim
https://github.com/JetBrains/ideavim
http://eclim.org
http://vrapper.sourceforge.net/home
https://vimium.github.io
https://addons.mozilla.org/en-US/firefox/addon/vimium-ff

Modal interfaces everywhere 265

For instance, if you hit f, Vimium will highlight every link on a page with a letter or a combination of
letters (similar to the way EasyMot ion works in Vim). This is shown in the following screenshot:

(LY
Ruslan Osipov Blog About Archive rch N

BS SUN 23 SEP 2018, 7:02 AM | (BDJIMENTS

Cross-platform vim-plug
setup

I've recently switch to (BB)-plug, a lightweight Vim plugin manager.

It comes with a little .vimrc snippet which downloads the plugin, but it only works for Unix. | use

Vim across, all three platforms regularly, so | updated the [m]

Figure 9.1 — Vimium navigation in Chrome

Pressing the right combination of letters will open a link or place your cursor in a textbox. Vimium
supports visual selection to copy text without using a mouse: hitting v once enters a caret mode (where
you can move the cursor around the page), and hitting v again enters a visual selection mode. Most
movement keys familiar to you from Vim work in these modes, as shown in the following screenshot:

B8 SUN 23 SEP 2018, 7:02 AM | COMMENTS

Cross-platform vim-plug
setup

I've recently switch to vim-plug, a lightweight Vim plugin manager.

It comes with a little T TR e Lo R R sl lve s, but it only works for Unix. | use

Vim across all three platforms regularly, so | updated the snippet:

Download and install vim-plug {cross platform).

Figure 9.2 - Visual mode selection in Vimium

Once you select the text in a visual mode, press y to copy (yank) it.

266 Where to Go from Here

Vimium also provides an omnibar for switching between tabs (T), opening URLs/history entries
(0/0), and bookmarks (b/B), as shown in the following screenshot:

‘: rosipov.com/blog| |

history
www.rosipov.com/blog/archive

history
www.rosipov.com/blog/categornies/vim

history Cross-platform vim-plug setup - Ruslan Osipov
www.rosipov.com/blog/cross-platform-vim-plug-setup

history Cross-platform vim-plug setup - Ruslan Osipov
www.rosipov.com/blog/cross-platform-vim-plug-setupf#comment-4118723049

history Use vimdiff as git mergetool - Ruslan Osipov
www rosipov.com/blog/use-vimdiff-as-git-mergetool

history Him and Her: What's Inside the Bag? - Ruslan Osipov
www.rosipov.com/blog/him-and-her-whats-inside-the-bag

Figure 9.3 — Vimium'’s omnibar

Finally, help is available at the press of a button. Press ? to open a help page and learn more about
Vimium features, as shown in the following screenshot:

3

Vimium Help Options Wiki X
Navigating the page Using the vomnibar

G Scroll down (o] Open URL, bookmark or history entry

(. scroll up (2] Open URL, bookmark or history entry

in a new tab
[b] Open a bookmark
Open a bookmark in a new tab
Search through your open tabs

Scroll fo the top of the page
(] scroll to the bottom of the page
(4] scroll a half page down
[u] scroll a half page up

(1] scroll left Using find

Scroll right Enter find mode

Reload the page [n] Cycle forward to the next find match

Copy the current URL to the [4) cycle backward to the previous find
clipboard match

Figure 9.4 - Vimium help page, invoked by pressing ?

Alternatives

Vimium and Vimium-FF are possibly the most popular extensions as of the moment of writing (based
on the number of users on the Chrome Web Store and on the Firefox Add-Ons website). There are
many more available, and most mature browsers have Vi-like plugins. Here are a few more examples:

« Google Chrome also has extensions, including cVim or Vrome, that perform a similar function
to Vimium, each providing slightly different functionality. Extensions such as wasavi focus on
using Vim emulators to edit text areas.

Modal interfaces everywhere

o Safari supports Vimari, a port of Vimium.
o Mozilla Firefox has more add-ons similar to Vimium-FF: Vim Vixen and Tridactyl to name a few.

o Opera supports the installation of Chrome extensions.

Vim everywhere else

There are solutions for editing text in Vim in every text field on your system! In particular, there is
vim-anywhere on Linux and macOS, and Text Editor Anywhere on Windows.

vim-anywhere for Linux and macOS

vim-anywhere lets you invoke gVim to edit any text on your Linux or macOS machine. vim-anywhere
is available from https://github.com/cknadler/vim-anywhere. Once installed, place
your cursor in a text field, and press Ctrl + Cmd + v on macOS or Ctrl + Alt + v on Linux. Depending on
your platform, vim-anywhere will open either MacVim or gVim, as shown in the following screenshot:

® O ® doc-181007142636 + (/private/tmp/vim-anywhere) - VIM

Run git commit and you are!
Hi everyone, hope you enjoyed the |

2 Posted by Ruslan Osipov & Fri 148~

i

« Git pretty log output

<vate/tmp/vim-anywhere/doc-181007142636 [+] 1,35 All
Comments™— s -

23 Comments Ruslan Osipov . Ruslan Osipov ~
© Recommend 18 Sort by Best -
- - : : :
b Join the discussion...

e
] Post as Ruslan Osipov

Figure 9.5 — vim-anywhere running on macOS

Save the buffer, exit MacVim or gVim, and vim-anywhere will insert the buffer contents into the
original text field.

267

https://github.com/cknadler/vim-anywhere

268 Where to Go from Here

Text Editor Anywhere for Windows

Text Editor Anywhere allows you to select any text, open it in an editor of your choice, and insert
the modified text back once youre done editing. Text Editor Anywhere is available for download
from https://www.portablefreeware.com/index.php?id=2188.

I use Text Editor Anywhere whenever I work with Windows, having it configured to open gVim on
a selected text when Alt + a is pressed.

The following screenshot shows what it looks like:

{a TextEditorAnywhere_.\Local\Temp) - GVIM1 - [m] x
Run git commit and you are all set! File Edit Tools Syntax Buffers Window Vimwiki Help

EEEEIEEERE TR R Y

Hi everyone, hope you enjoyed the A

1 Jun 2013, 2:18 AM

A Posted by Ruslan Osipo

:

« Git pretty log output

TextEditorAnywhere_13_26 36.txt 1,1 AlM

Comments

23 Comments Ruslan Osipov . Ruslan Osipov ~

0 Recommend 15 m Sort by Best ~
«t Hi everyone, hope you enjoyed the

3y

= Post as Ruslan Osipov

Figure 9.6 — Text Editor Anywhere running on Windows

When I'm done writing, I save the buffer and quit gVim. Text Editor Anywhere populates the text
area with the saved buffer contents.

Neovim

Neovim aims to make Vim easier to maintain for its core developers, as well as make plugin development
and various integrations easier. We'll look at the following:

« Why does Neovim matter?

« How to install and configure Neovim

https://www.portablefreeware.com/index.php?id=2188

Neovim

o Synchronizing Vim and Neovim configuration
o Neovim-specific plugins

I'm not sure if this chapter will make you more productive, but I think Neovim is great for the Vim
community and introduces some interesting ideas. Enjoy!

Why make another Vim?

Neovim is a fork of Vim that branched out into its own thing in 2014. Neovim aims to address a few
core issues about Vim:

o Working with a 30-year-old code base while maintaining backward compatibility is hard.

o It’s difficult to write certain kinds of plugins, asynchronous operations being a huge culprit
(asynchronous support has been added to Vim in version 8.0, sometime after Neovim was forked).

o In fact, writing plugins is difficult overall and requires the developer to be comfortable
with Vimscript.

o Vim is difficult to use on modern systems without tinkering with . vimrc.
Neovim aims to solve these problems with the following methods:

o Large-scale refactoring of the Vim code base, including choosing a single style guide, increasing
test coverage

« Removing support for legacy systems
« Shipping Neovim with modern defaults
o Providing a rich API for plugins and external programs to talk to, including Python and Lua

plugin support

Vim is installed on many machines, which makes backward compatibility and rare corner cases
important. By branching out, Neovim is able to move faster, experiment, make mistakes, and make
Vim even better than it currently is.

Neovim matters because it makes it easier to add new features as time goes on and develop plugins.
Hopefully, it'll attract more developers and bring more perspectives and fresh ideas to the table as
time goes on.

269

270

Where to Go from Here

Installing and configuring Neovim

-
Important note

Neovim and its installation instructions are available from GitHub at https://github.
com/neovim/neovim. You can either download the binary or install it through one of the
package managers. The installation instructions are rather detailed and may change rather
quickly, so you should give them a read at https://github.com/neovim/neovim/
wiki/Installing-Neovim.

If you are working on a Debian-based Linux distribution, you can install Neovim by running
$ sudo apt install neovimand $ python3 -m pip install neovimto
add Python3 to support neovim.

-

Once you install Neovim, it’s available through the nvim command:

$ nvim

You're greeted by a screen similar to a vanilla Vim intro screen:

NVIM v@.7.2

Nvim is open source and freely distributable

type
type
type
type

type

https://neovim.io/#chat

:help nvim<Enter> if you are new!
:checkhealth<Enter> to optimize Nvim
:g<Enter= to exit
:help<Enter> for help

Become a registered Vim user!

:help register<tnter> for information]]

Figure 9.7 — Neovim intro screen

All of the commands familiar to you from Vim will work, and Neovim uses the same configuration

format as Vim. However, your . vimrc file is not picked up automatically.

Neovim adheres to the XDG base directory specification, which suggests placing all of your configuration
files into the ~/ . config directory. Neovim configuration is stored inside the ~/ . config/

nvim directory:

e ~/.vimrc becomes ~/.config/nvim/init.vim

e ~/.vim/ becomes ~/.config/nvim/

https://github.com/neovim/neovim
https://github.com/neovim/neovim
https://github.com/neovim/neovim/wiki/Installing-Neovim.
https://github.com/neovim/neovim/wiki/Installing-Neovim.

Neovim

Most likely, you'll want to symlink your Neovim configuration to your Vim configuration:

$ mkdir -p $HOME/.config
$ 1n -s $HOME/.vim $HOME/.config/nvim
$ ln -s $HOME/.vimrc $HOME/.config/nvim/init.vim

All done! Neovim will now read your . vimrc file!

Under Windows, Neovim configuration is likely located in C: \Users\$USERNAME% \AppData\
Local\nvim.

You can configure Windows symlinks as follows:
$ mklink /D %USERPROFILE%\AppData\Local\nvim %USERPROFILE%\vimfiles

$ mklink %USERPROFILE%\AppData\Local\nvim\init.vim %USERPROFILE%_
vimrc

Checking health
The intro screen suggests you run : checkhealth; let’s give it a shot:

:checkhealth

You will be greeted by a screen that may look something like this:

[ENEIEN (scratcn)

nvim: health#n

im#check

Configuration

- OK: no issues found

#it DarFmy
¥ FeIToImance

- OK: Build type: Release

Remote Plugins

- OK: Up to date

terminal
- INFO: key_backspace (kbs) terminfo entry: key_backspace=\177
- INFO: key_dc (kdchl) terminfo entry: key_dc=\E[3~

health#

/ider: /ider#check

Clipboard (optional)
- OK: Clipboard tool found: xclip

[Scratch] 1,8-1 To|

Figure 9.8 — Neovim :checkhealth output

271

272

Where to Go from Here

Neovim health checks will outline everything wrong with your Neovim setup and suggest ways to fix
those issues. You should go through the list and fix the errors relevant to you.

Sane defaults

Neovim comes with a number of different defaults than Vim. The defaults are meant to be more
applicable to working with a text editor in the modern world. Compared to using Vim with an empty
.vimre, some of the more noticeable defaults include enabled syntax highlighting, sensible indentation
settings, wildmenu, highlighted search results, and search-as-you-type.

You can check :help nvim-defaults from within Neovim to learn more about the defaults.

If you wanted to synchronize your settings between Vim and Neovim, you could add the following to
your ~/ .vimrc (which is hopefully symlinked to ~/ . config/nvim/init.vim):

if 'has('nvim')

set nocompatible " not compatible with Vi

filetype plugin indent on " mandatory for modern plugins
syntax on " enable syntax highlighting

set autoindent " copy indent from the previous line

set autoread " reload from disk

set backspace=indent,eol,start " modern backspace behavior
set belloff=all " disable the bell

set cscopeverbose " verbose cscope output

set complete-=i " don't scan current on included

" files for completion

set display=lastline,msgsep " display more message text
set encoding=utf-8 " set default encoding

set fillchars=vert:|,fold: " separator characters

set formatoptions=tcqgj " more intuitive autoformatting
set fsync " call fsync() for robust file saving

set history=10000 " longest possible command history

set hlsearch " highlight search results

set incsearch " move cursor as you type when searching
set langnoremap " helps avoid mappings breaking

set laststatus=2 " always display a status line

set listchars=tab:>\ ,trail:-,nbsp:+ " chars for :list
set nrformats=bin,hex " <c-a> and <c-x> support

set ruler " display current line # in a corner

set sessionoptions-=options " do not carry options across sessions
set shortmess=F " less verbose file info

set showcmd " show last command in the status line

set sidescroll=1 " smoother sideways scrolling

set smarttab " tab setting aware <Tab> key

Recommended reading and communities

set tabpagemax=50 " maximum number of tabs open by -p flag
set tags=./tags;,tags " filenames to look for the tag command
set ttimeoutlen=50 " ms to wait for next key in a sequence
set ttyfast " indicates that our connection is fast
set viminfo+=! " save global variables across sessions
set wildmenu " enhanced command line completion

endif

I've left some short comments, attempting to briefly describe each one of these settings, and you can
learn more about them by checking the corresponding : help entry.

Recommended reading and communities

This book doesn’t aim to be a complete source of information about Vim, so there’s a lot more to learn
and explore. Depending on your preferred learning style, you might want to comb through the Vim
manual by running :help usr_ toc.txt (which can be read from beginning to the end), head
to the community chat groups or mailing lists, or dive deeper into educational materials.

This section covers some possible routes you can take.

Mailing lists

Vim has a few primary mailing lists that you can browse or subscribe to. Details for each mailing list
are listed athttps://www.vim.org/maillist .php, but here are a few primary ones:

e vim-announce@vim.org is an official announcement channel; the archive is available
athttps://groups.google.com/forum/#!forum/vim announce.

o vime@vim.org is the primary user support mailing list; the archive is available at ht tps: //
groups.google.com/forum/#! forum/vim use.

o vim-deve@vim.org is the mailing list used by Vim developers; the archive is available
athttps://groups.google.com/forum/#! forum/vim dev.

IRC

In case you're not familiar, IRC stands for Internet Relay Chat, which is a protocol for exchanging
messages. IRC is mainly used for group discussions.

Many Vim core developers and users frequent the Vim IRC channel. The Vim channel is a great place
to ask questions and get a general feeling for the Vim community.

You can log in through Freenode’s Web client at ht tps: //webchat . freenode . net or through
an IRC client of your choice. Personally, I prefer using the irssi command-line client, but it takes quite
a lot of tinkering to get the settings just right.

273

https://www.vim.org/maillist.php
mailto:vim-announce@vim.org
https://groups.google.com/forum/#!forum/vim_announce
mailto:vim@vim.org
https://groups.google.com/forum/#!forum/vim_use
https://groups.google.com/forum/#!forum/vim_use
mailto:vim-dev@vim.org
https://groups.google.com/forum/#!forum/vim_dev
https://webchat.freenode.net

274

Where to Go from Here

Other communities
There are a lot more active communities on the web. Here are a couple of highlights:

o An active Reddit community can be found at https://reddit.com/r/vim

o A Vim Q&A site is available at https: //vi.stackexchange.com/

Learning resources

Everyone learns differently, and it’s hard to recommend a resource that will work for everyone. Here
are a few resources I found helpful:

« Vim Tips Wiki is a huge repository of bite-sized Vim tips: https://vim.wikia.com
o Vim screencasts: http://vimcasts.org

o Learn Vimscript the Hard Way is a fantastic in-depth Vimscript tutorial: http: //
learnvimscriptthehardway.stevelosh.com

o Sitessuchashttps://vim-adventures.com/and https://www.vimgolf.com/
are another fun way to continue your Vim learning journey

Bram Moolenaar, the original creator of Vim, had a personal website with a few Vim-related notes:
https://moolenaar.net. Bram was actively involved in a non-profit making organization
helping kids in Uganda, and you can head over to his home page to learn more about it. Unfortunately,
Bram passed away in 2023.

Finally, I sometimes post Vim-related snippets on my blog at https://www.rosipov.com. It’s
usually filled with unrelated articles, but you can filter to only display Vim-related posts: https://
www.rosipov.com/blog/categories/vim.

A word about Uganda

Vim is free software, but its creator and many core contributors encourage users to donate to the
International Child Care Fund (ICCF) Holland. This charity supports disadvantaged children
in Uganda. To learn more about ICCF and Vim’s connection to this cause, run :help Uganda
within Vim.

https://reddit.com/r/vim
https://vi.stackexchange.com/
https://vim.wikia.com
http://vimcasts.org
http://learnvimscriptthehardway.stevelosh.com
http://learnvimscriptthehardway.stevelosh.com
https://vim-adventures.com/
https://www.vimgolf.com/
https://moolenaar.net
https://www.rosipov.com
https://www.rosipov.com/blog/categories/vim
https://www.rosipov.com/blog/categories/vim

Summary

Summary

In the final chapter of this book, we've looked at Seven habits of effective text editing — Bram Moolenaar’s
article, which primes you to detect inefficiencies in your workflow, correct them, and turn them into
a habit.

We've exposed some ways in which you can continue using Vi-like editing experience in other
IDEs and text editors, web browsers (through the likes of Vimium), and everywhere else (through
vim-anywhere or Text Editor Anywhere).

We've covered some of the ways to get in touch with other Vim users and developers: through mailing
lists, IRC channels, Reddit, and other mediums. We've also touched on some learning resources,
including Vim Tips Wiki and Learn Vimscript the Hard Way.

Happy Vimming!

275

A

abolish.vim

reference link 175
ack 80, 81

reference link 80
Airline 207

reference link 208
alternation operator 182
arglist 179

working 179
Asynchronous Lint Engine (ALE) 170, 171

reference link 170

buffers 48-50
built-in autocomplete 118
built-in registers

+ register 88

* register 88

C

classes 234, 235
in legacy Vimscript 235, 236
renaming 184-186

Index

cmake
URL 119
code
building 167
testing 168
code autocomplete 117
code base
navigating, with tags 123, 124
color schemes 202, 203
browsing 203, 204
issues 204, 205
reference link 204
command-line mode 102
commit history 135
communities, Vim
references 274
conditional statements 224, 225
configuration files
tracking 209-211
Ctags 124-127
URL 124
CtrlP 71, 72,211
reference link 71
Cygwin 12
installing 12-14
URL 12
using 14, 15

278

Index

D

dictionaries 228, 229
.dmg image
downloading 10, 11

EasyMotion 83-85
reference link 83
Eclim
reference link 264
ed 3
Evil
reference link 264
:e with wildmenu enabled 66, 67
ex 3
execute command 239
ex mode 103

F

file-related commands 240, 241
files
closing 29
opening 26, 27
saving 29
file trees 64
filter 237,238
folds 61
methods 64
Freenode’s Web client
URL 273
functions 232,233

G

Git 134
branches, creating 140
branches, merging 141
concepts 134
existing repository, cloning 136
files, adding 137
files, committing 137, 138
files, pushing 139
integrating, with Vim 142-144
project, setting up 135
working with 137
git blame 143
git config 150
GitHub
URL 136
GNU Screen 204, 205
graphical user interface (GUI) 23
greedy search 183
grouping 182
Gundo
URL 128
gVim 11, 208, 267, 268
for visual Vim 16, 17
specific configuration 208
versus Vanilla Vim 23

H

healthy Vim customization habits 211
.vimre file, keeping organized 212-214

workflow, optimizing 211, 212
:help 4

using 244

Vim manual, reading 39-42
Homebrew 8

URL 8

using 9

Index

IdeaVim
reference link 264
insert mode 76, 77, 103
shortcuts 77
simple edits 35-37
International Child Care Fund (ICCF) 274
Internet Relay Chat (IRC) 273

L

lambdas 236, 237
lazy plugin loading 94
leader key 111, 112
learning resources, Vim
references 274
linters
using, with Vim 169
lists 225-227
llvm
URL 119
Lobster Thermidor 135
location list 166
loops 229-232

M

macros 186-189
editing 195, 196
playing 193
recording 190-192
recursive macros 196-198
repeating 193-195
running, across multiple files 199
MacVim 267
magic mode 183

mailing lists, Vim
references 273

map 237,238

method
renaming 184-186

modal interfaces 4, 264

modeless 4, 5

modes 101
command-line mode 102
ex mode 103
insert mode 103
normal mode 102
operator pending mode 108
replace mode 105, 106
select mode 105
terminal mode 107
virtual replace mode 106
visual mode 104

multis 182

Mundo
URL 128

N

Neovim 268, 269
configuring 270, 271
health, checking 271, 272
installing 270
references, for installation instructions 270
sane defaults 272, 273

NERDTree 67-70
reference link 67

Netrw 64, 65

no-magic mode 183, 184

non-greedy search 183

normal mode 102

279

280

Index

o)

operator pending mode 108

P

papercolor-theme
reference link 203
Pathogen 97
reference link 98
PEPS8
reference link 169
persistent undo 38
plugins
basics 246-252
configuring 112-115
distributing 260
housekeeping 252-254
improving 255-259
installing 46
layout 245
managing 92
Powerline 205-207
reference link 205
prompts 241-244
Python code
folding 62, 63

Q

quantifiers 182
quickfix list 164-166

R

recursive macros 196-198
registers 86, 87

regular expressions 173
basics 180
special characters 181, 182
remapping commands 108-110
modes 110, 111
replace command 174
replace mode 105, 106

S

screen 107,161
search command 174
searching
across files 78-80
with ¢ 78
with / 77,78
select mode 105
seven habits of effective text editing
reference link 263
slow plugins, profiling 98
specific actions 99-101
startup 98, 99
status line 205
Airline 207, 208
Powerline 205-207
STEVIE 3
stridx 237
style guides 244
:substitute command 174-177
swap files 30, 31, 120
syntax checking 169

T

tabs 59-61
tags
code base, navigating 123, 124
updating, automatically 127, 128
teleprinter 2,3

Index

Teletype ASR-33 (1963) teleprinter 2,3
terminal mode 107, 161-164, 168
text
modifying 27-29
navigating 73-76
text-editing experience
improving 263, 264
Text Editor Anywhere 267, 268
reference link 268
text objects
utilizing 82
tmux 107, 154, 204, 205
panes 154-157
reference link 154
sessions 158
Vim splits 159, 160
windows 157
Tomato 135
Tridactyl 267

U

Uganda 274
undo tree

visualizing 128-131
Undotree 128

URL 128

Vv

Vanilla Vim
versus gVim 23
variables
renaming 184-186
setting 220-222
version control systems (VCS) 134
very magic mode 184

vi command 3
Vi Imitation 3
Vi Improved 3,7
Vim 3,4
compilation options 7, 8
configuring, with .vimrc 24-26
content navigation 31-35
installation options 5
installation, troubleshooting 23
installation, verifying 21, 22
interacting with 239, 240
setting up, on ChromeOS 18-20
setting up, on Linux and
Unix-like systems 5-7
setting up, on macOS 8
setting up, on Windows 11
versions 3
Vim 9 4
Vim9script 13, 220
vim-anywhere 267
reference link 267
Vimari 267
vimdiff 145, 150
as Git merge tool 149
files, comparing 145-148
merge conflict, creating 150, 151
merge conflict, resolving 151-153
vim-fugitive 142
reference link 142
Vimium 264-266
URL 264
Vimium-FF 264, 266, 267
URL 264
Vim manual
reading, with :help command 39-42
Vim packages 95-97
vim-plug 92,170
alternatives 95

281

282

Index

commands 94
features 92
installing 93
reference link 92
Vimscript 217
classes 234, 235

conditional statements 224, 225

dictionaries 228, 229
executing 218, 219
filter 237,238
functions 232, 233
lambdas 236, 237
lists 225-227
loops 229-232
map 237, 238
output, surfacing 222,223
variables, setting 220-222
Vimscript 9 220
vim-test 168
reference link 168
vim-tmux-navigator 159
vimtutor utility 42
Vim UI 202
vim-unimpaired 50, 99
mappings 51
reference link 50
Vim Vixen 267

Vinegar 70

reference link 70
virtual replace mode 106
visual mode 104
Vrapper

reference link 264
Vundle 97

reference link 97

W

wasavi 266
windows 51
moving 55-58
resizing 59
working with 51-55
Windows Subsystem for Linux (WSL) 12
reference link 12
workspace
organizing 47, 48

Y

YouCompleteMe 119, 199
installing 119, 120
reference link 119
using 121, 122

<packt

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?

o Spend less time learning and more time coding with practical eBooks and Videos from over
4,000 industry professionals

o Improve your learning with Skill Plans built especially for you

o Geta free eBook or video every month

o Fully searchable for easy access to vital information

o Copy and paste, print, and bookmark content
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub . com and as a print book customer, you

are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www . packtpub . com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

284

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors .packtpub.comand
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you've finished Mastering Vim, wed love to hear your thoughts! If you purchased the book from
Amazon, please click here to go straight to the Amazon review page for this book and share your
feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-835-08187-8

285

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don't stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

Ofe7 w10

i

https://packt.link/free-ebook/978-1-83508-187-7

2. Submit your proof of purchase

3. That's it! We'll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83508-187-7

	Cover
	Title page
	Copyright and credits
	Dedication
	Contributors

	Table of Contents

	Preface
	Chapter 1: Getting Started
	Technical requirements
	A brief history lesson
	Let’s start a conversation (about modal interfaces)
	Installation
	Setting up on Linux and Unix-like systems
	Setting up on macOS
	Setting up on Windows
	Setting up on ChromeOS
	Verifying and troubleshooting the installation

	Vanilla Vim versus gVim
	Configuring Vim with your .vimrc
	Common operations (or, how to exit Vim)
	Opening files
	Changing text
	Saving and closing files

	Moving around – talk to your editor
	Making simple edits in insert mode
	Persistent undo and repeat
	Read the Vim manual using :help
	Summary

	Chapter 2: Advanced Editing
 and Navigation
	Technical requirements
	Installing plugins
	Organizing the workspace
	Buffers
	Plugin spotlight – unimpaired
	Windows
	Tabs
	Folds

	Navigating file trees
	Netrw
	:e with wildmenu enabled
	Plugin spotlight – NERDTree
	Plugin spotlight – Vinegar
	Plugin spotlight – CtrlP

	Navigating text
	Jumping into insert mode
	Searching with / and ?
	Utilizing text objects
	Plugin spotlight – EasyMotion

	Copying and pasting with registers
	Where do the registers come in?
	Copying from outside of Vim

	Summary

	Chapter 3: Follow the Leader
 Plugin Management
	Technical requirements
	Managing plugins
	vim-plug
	Alternatives to vim-plug
	Profiling slow plugins

	 Deeper dive into modes
	Normal mode
	Command-line and ex modes
	Insert mode
	Visual and select modes
	Replace and virtual replace modes
	Terminal mode
	Operator-pending mode (bonus)

	Remapping commands
	Mode – aware remapping

	The leader key
	Configuring plugins
	Summary

	Chapter 4: Understanding Structured Text
	Technical requirements
	Code autocomplete
	Built-in autocomplete
	YouCompleteMe

	Navigating the code base with tags
	Exuberant Ctags
	Automatically updating the tags

	Visualizing the undo tree
	Summary

	Chapter 5: Build, Test, and Execute
	Technical requirements
	Working with version control
	A quick-and-dirty version control and Git introduction
	Integrating Git with Vim (vim-fugitive)

	Resolving conflicts with vimdiff
	Comparing two files
	vimdiff and Git

	tmux, screen, and Vim terminal mode
	tmux
	Screen
	Terminal mode

	Building and testing
	Quickfix list
	Location list
	Building code
	Testing code
	Syntax checking code with linters

	Summary

	Chapter 6: Refactoring Code with Regex and Macros
	Technical requirements
	Search or replace with regular expressions
	Search and replace
	Operations across files using arglist
	Regex basics
	More about magic
	Applying the knowledge in practice

	Recording and playing macros
	Editing macros
	Recursive macros
	Running macros across multiple files

	Using plugins to do the job
	Summary

	Chapter 7: Making Vim Your Own
	Technical requirements
	Playing with the Vim UI
	Color schemes
	The status line
	gVim-specific configuration

	Keeping track of configuration files
	Healthy Vim customization habits
	Optimizing your workflow
	Keeping .vimrc organized

	Summary

	Chapter 8: Transcending the Mundane with Vimscript
	Technical requirements
	Why Vimscript?
	How to execute Vimscript
	Major changes in Vimscript 9
	Learning the syntax
	Setting variables
	Surfacing output
	Conditional statements
	Lists
	Dictionaries
	Loops
	Functions
	Classes (Vim9script)
	Lambda expressions
	Map and filter
	Interacting with Vim
	File-related commands
	Prompts
	Using :help

	A word about style guides
	Let’s build a plugin
	Plugin layout
	The basics
	Housekeeping
	Improving our plugin
	Distributing the plugin
	Where to take the plugin from here

	Further reading
	Summary

	Chapter 9: Where to Go from Here
	Seven habits of effective text editing
	Modal interfaces everywhere
	A Vim-like web browsing experience
	Vim everywhere else

	Neovim
	Why make another Vim?
	Installing and configuring Neovim
	Checking health
	Sane defaults

	Recommended reading and communities
	Mailing lists
	IRC
	Other communities
	Learning resources

	A word about Uganda
	Summary

	Index

