LEARN VIM

(The Smart Way)

Learning Vim and Vimscript isn't
hard. This is the guide that

you're looking for.

BY IGOR IRIANTO

Learn Vim
The Smart Way

Igor Irianto
This book is for sale at http://leanpub.com/learnvim

This version was published on 2021-02-18

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2021 Igor Irianto

http://leanpub.com/learnvim
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Igor Irianto by spreading the word about this book on Twitter!
The suggested hashtag for this book is #learnvim.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#learnvim

http://twitter.com
https://twitter.com/search?q=%23learnvim
https://twitter.com/search?q=%23learnvim

Contents

New To Vim? Read This First 1
Why This Guide Was Written 1
How To Transition To Vim From Using A Different Text Editor 1
How To Read This Guide 2
More Help 3
Syntax e 3
VIMIC 3
Future, Errors, Questions 4
[Want More Vim Tricks 4
Thank Yous 4

Cho1. Starting Vim 5
Installing 5
The Vim Command 5
Exiting VImo 5
Saving A File 6
Help . . . o 6
OpeningaFile. 7
ATguments 7
Opening Multiple Windows 8
Suspending 8
Starting Vim The Smart Way 9

Cho2. Buffers, Windows, and Tabs e 10
Buffers 10
Exiting VIim o 13
WIndows 13
Tabs 19
Moving In 3D 21
Using Buffers, Windows, and Tabs The Smart Way 24

Cho3. Searching Files 26
Opening And Editing Files 26

Searching Files With Find 27

CONTENTS

Find And Path 27
Searching In Files With Grep 28
Browsing Files With Netrw 29
Bzt 30
Setup 31
FzfSyntax 31
Finding Files 32
FindingInFiles 32
Other Searches 33
Replacing Grep With Rg 34
Search And Replace In Multiple Files 34
Learn Search The Smart Way 35
ChOo4. VIm Grammarttt 36
How To Learn A Language i 36
Grammar Rule 36
Nouns (MoOtions) e 37
Verbs (Operators) v v vt 37
Verb And Noun 37
More Nouns (Text Objects)o 38
Composability And Grammar 40
Learn Vim Grammar The Smart Way 41
Cho5. MovingIn A File 43
Character Navigation e 43
Relative Numbering 43
Count Your Move e 44
Word Navigation 44
Current Line Navigation 45
Sentence And Paragraph Navigation 46
Match Navigation 47
Line Number Navigation 48
Window Navigation 48
Scrolling 48
Search Navigation 49
Jump .o 50
Learn Navigation The Smart Way 51
Cho6. Insert Mode 53
Ways To Go ToInsert Mode 53
Different Ways To Exit Insert Mode 53
Repeating Insert Mode 54
Deleting Chunks InInsert Mode 54

Insert From Register 54

CONTENTS

Scrolling 55
Autocompletion 55
Executing A Normal Mode Command 56
Learn Insert Mode The Smart Way 56
Cho7. The Dot Command 57
USage . . . o o 57
What Is A Change?. 57
Multi-line Repeat 58
Including A MotionIn A Change 59
Learn The Dot Command The Smart Way 60
Cho8. Registers 61
The Ten Register Typeso e 61
Register Operators e 61
Calling Registers From Insert Mode 62
The Unnamed Register 62
The Numbered Registers 62
The Small Delete Register. 64
The Named Register 64
The Read-Only Registers 65
The Alternate File Register 65
The Expression Register e 65
The Selection Registers e 66
The Black Hole Register 67
The Last Search Pattern Register 67
Viewing The Registers 67
Executing A Register. 67
Clearing A Register 67
Putting The Content Of A Register 68
Learning Registers The Smart Way 68
Ch09. MacCros. o 69
Basic Macros e 69
Safety Guard 70
Command Line Macro 70
Executing A Macro Across Multiple Files 71
Recursive Macro 71
Appending A MacCroo 72
Amending A Macro 73
Macro Redundancy 74
Series Vs Parallel Macro 74

Learn Macros The Smart Way 75

CONTENTS

Ch10.Undo 76
Undo, Redo, And UNDO e 76
Breaking The Blocks e 77
UndoTree 78
Persistent Undo 79
Time Travel 80
Learn Undo The Smart Way 81

Chil. Visual Mode 82
The Three Types Of Visual Modes 82
Visual Mode Navigation. 83
Visual Mode Grammar 84
Visual Mode And Command-line Commands 85
Adding Text On Multiple Lines 86
Incrementing Numbers 87
Selecting The Last Visual Mode Area 88
Entering Visual Mode From Insert Mode 88
Select Mode 89
Learn Visual Mode The Smart Way 89

Chi12. Search And Substitute 90
Smart Case Sensitivity 90
First And Last CharacterInALine 91
Repeating Search L 91
Searching For Alternative Words 91
Setting The Start And End Of AMatch 92
Searching Character Ranges 93
Searching For Repeating Characters 93
Predefined Character Ranges 94
Search Example: Capturing A Text Between A Pair Of Similar Characters 94
Search Example: Capturing A Phone Number 95
Basic Substitution 95
Repeating The Last Substitution 96
Substitution Range 96
Pattern Matching 97
Substitution Flags. 99
Changing The Delimiter 100
Special Replace 101
Alternative Patterns 102
Substituting The Start And The End Of APattern 103
Greedy And Non-Greedy 103
Substituting Across Multiple Files 105

Substituting Across Multiple Files With Macros 106

CONTENTS

Learning Search And Substitution The Smart Way 107
Chi13. The Global Command 108
Global Command Overview 108
Inverse Match e 109
Pattern 109
Passing ARange e 110
Normal Command 111
Executing AMacro. e 111
Recursive Global Command 112
Changing The Delimiter e 113
The Default Command 113
Reversing The Entire Buffer 114
Aggregating AIITODOs 114
Black Hole Delete. 116
Reduce Multiple Empty Lines To One Empty Line 116
Advanced Sort 118
Learn The Global Command The Smart Way 120
Chi4. External Commands L 121
The Bang Command 121
Reading The STDOUT Of A Command Into Vim 121
Writing The Buffer Content Into An External Command. 122
Executing An External Command. L o L. 123
Filtering Texts o ot 123
Normal Mode Command 125
Learn External Commands The Smart Way 126
Chi15. Command-line Mode 127
Entering And Exiting The Command-lineMode 127
Repeating The Previous Command 127
Command-line Mode Shortcuts 127
Register And Autocomplete 128
History Window And Command-line Window 128
More Command-line Commands 129
Learn Command-line Mode The Smart Way 129
Ch16. Tags 130
Tag OVEIVIEW o 130
Tag Generator 131
Tags ANatomy 132
The Tag File o 133
Generating Tags For A Large Project 134

Tags Navigation. 134

CONTENTS

Tag Priority 135
Selective Tag JUMPS o o o oo 136
Autocompletion With Tags 137
Tag Stack 137
Automatic Tag Generation 138
Generate ATagOn Save 138
Using Plugins 139
Ctags And Git Hooks 139
Learn Tags The Smart Way 139
Ch17.Fold e 140
Manual Fold 140
Different Fold Methods 141
Indent Fold 141
Marker Fold 143
Syntax Fold 144
Expression Fold 145
Diff Fold 146
Persisting Fold 147
Learn Fold The Smart Way 148
Chi18. Git e 149
Diffingo 149
Vim As A Merge Tool 151
GitInside Vim. 155
Plugins 156
Vim-fugitive 156
GitStatus. e 156
GitBlame 157
Gdiffsplit o 158
Gwrite And Gread 159
Gelog . . o o 159
More Vim-Fugitive 160
Learn Vim And Git The Smart Way 161
Ch19. Compile 162
Compile From the Command Line 162
The Make Command 162
Compiling With Make 163
Different Make Program 164
Auto-compile On Save 164
Switching Compiler 165
Creating A Custom Compiler 165

Async Compiler. 167

CONTENTS

Plugin: Vim-dispatch. 167
Learn Compile The Smart Way 168
Ch20. Views, Sessions, And Viminfo 169
VW . e 169
Sessions. 172
Viminfo. 176
Using Views, Sessions, And Viminfo The Smart Way 178
Ch21.Vimre 179
How Vim Finds Vimrc o 179
What To Put In My Vimre? 180
Basic Vimrc Content L 180
Organizing VIMIC 185
Running Vim With Or Without Vimrc And Plugins 188
Configure Vimrc The Smart Way 188
Ch22. Vim Packages 189
Pack Directory 189
Two Types Of Loading 189
Organizing packages 191
Adding Packages The Smart Way 191
Ch23. VimRuntime 193
Runtime Path 193
Plugin Scripts 193
Filetype Detection 193
File Type Plugin. 196
Indent Files 197
Colors . . o o 197
Syntax Highlighting 197
Documentation 198
Lazy Loading Scripts 198
After Scripts 199
SVIMRUNTIME 199
Runtimepath Option 200
Learn Runtime The Smart Way 200
Ch24. Vimscript Basic Data Types 201
Data Types 201
Following Along WithExMode 201
Number. 202
Float 204

CONTENTS

Last . 209
Dictionary e 213
Special Primitives. 217
Learn Data Types The Smart Way 218
Ch25. Vimscript Conditionals And Loops 219
Relational Operators 219
I e 222
Ternary Expression 223
L 223
And ..o 224
For . . e 225
While e 226
Error Handling 226
Learn conditionals the smart way 230
Ch26. Vimscript Variables And Scopes 231
Mutable And Immutable Variables 231
Variable Sources 232
Variable Scopes 233
Using Vim Variable Scopes The Smart Way 237
Ch27. Vimscript Functions L 238
Function Syntax Rules 238
Listing Available Functions 239
Removing A Function 239
Function Return Value 239
Formal Arguments 240
Function Local Variable 240
Calling AFunction 241
Default Argument 242
Variable Arguments 242
Range 245
Dictionary 246
Funcref 247
Lambda 247
Method Chaining e 248
Closure 249

Learn Vimscript Functions The Smart Way 250

New To Vim? Read This First

Why This Guide Was Written

There are many places to learn Vim: the vimtutor is a great place to start and the :help manual has
all the references you will ever need.

However, the average user needs something more than vimtutor and less than the :help manual.
This guide attempts to bridge that gap by highlighting only the key features to learn the most useful
parts of Vim in the least time possible.

Chances are you won’t need all 100% of Vim features. You probably only need to know about 20%
of them to become a powerful Vimmer. This guide will show you which Vim features you will find
most useful.

This is an opinionated guide. It covers techniques that I often use when using Vim. The chapters are
sequenced based on what I think would make the most logical sense for a beginner to learn Vim.

This guide is examples-heavy. When learning a new skill, examples are indispensable, having
numerous examples will solidify these concepts more effectively.

Some of you may wonder why do you need to learn Vimscript? In my first year of using Vim, I was
content with just knowing how to use Vim. Time passed and I started needing Vimscript more and
more to write custom commands for my specific editing needs. As you are mastering Vim, you will
sooner or later need to learn Vimscript. So why not sooner? Vimscript is a small language. You can
learn its basics in just four chapters of this guide.

You can go far using Vim without knowing any Vimscript, but knowing it will help you excel even
farther.

This guide is written for both beginner and advanced Vimmers. It starts out with broad and simple
concepts and ends with specific and advanced concepts. If you’re an advanced user already, I would
encourage you to read this guide from start to finish anyway, because you will learn something new!

How To Transition To Vim From Using A Different Text
Editor

Learning Vim is a satisfying experience, albeit hard. There are two main approaches to learn Vim:

1. Cold turkey
2. Gradual

New To Vim? Read This First 2

Going cold turkey means to stop using whatever editor / IDE you were using and to use Vim
exclusively starting now. The downside of this method is you will have a serious productivity loss
during the first week or two. If you’re a full-time programmer, this method may not be feasible.
That’s why for most people, I believe the best way to transition to Vim is to use it gradually.

To gradually use Vim, during the first two weeks, spend an hour a day using Vim as your editor while
the rest of the time you can use other editors. Many modern editors come with Vim plugins. When I
first started, I used VSCode’s popular Vim plugin for an hour per day. I gradually increased the time
with the Vim plugin until I finally used it all day. Keep in mind that these plugins can only emulate
a fraction of Vim features. To experience the full power of Vim like Vimscript, Command-line (Ex)
Commands, and external commands integration, you will need to use Vim itself.

There were two pivotal moments that made me start to use Vim 100%: when I grasped that Vim has
a grammar-like structure (see chapter 4) and the fzf.vim" plugin (see chapter 3).

The first, when I realized Vim’s grammar-like structure, was the defining moment that I finally
understood what these Vim users were talking about. I didn’t need to learn hundreds of unique
commands. I only had to learn a small handful of commands and I could chain in a very intuitive
way to do many things.

The second, the ability to quickly run a fuzzy file-search was the IDE feature that I used most. When
I learned how to do that in Vim, I gained a major speed boost and never looked back ever since.

Everyone programs differently. Upon introspection, you will find that there are one or two features
from your favorite editor / IDE that you use all the time. Maybe it was fuzzy-search, jump-to-
definition, or quick compilation. Whatever they may be, identify them quickly and learn how to
implement those in Vim (chances are Vim can probably do them too). Your editing speed will receive
a huge boost.

Once you can edit at 50% of the original speed, it’s time to go full-time Vim.

How To Read This Guide

This is a practical guide. To become good in Vim you need to develop your muscle memory, not
head knowledge.

You don’t learn how to ride a bike by reading a guide about how to ride a bike. You need to actually
ride a bike.

You need to type along every commands referred in this guide. Not only that, but you need to
repeat them several times and try different combinations. Look up what other features the command
you just learned has. The :help command and search engines are your best friends. Your goal is
not to know everything about a command, but to be able to execute that command naturally and
instinctively.

'https://github.com/junegunn/fzf.vim

https://github.com/junegunn/fzf.vim
https://github.com/junegunn/fzf.vim

New To Vim? Read This First 3

As much as I try to fashion this guide to be linear, some concepts in this guide have to be presented
out-of-order. For example in chapter 1, I mention the substitute command (:s), even though it won’t
be covered until chapter 12. To remedy this, whenever a new concept that has not been covered yet
is mentioned early, I will provide a quick how-to guide without a detailed explanation. So please
bear with me :).

More Help

Here’s one extra tip to use the help manual: suppose you want to learn more about what Ctr1-P does
in insert mode. If you merely search for :h CTRL-P, you will be directed to normal mode’s Ctr1-p.
This is not the Ctr1-pP help that you’re looking for. In this case, search instead for :h i_CTRL-P. The
appended i_ represents the insert mode. Pay attention to which mode it belongs to.

Syntax

Most of the command or code-related phrases are in code-case (1ike this).
Strings are surrounded by a pair of double-quotes (“like this”).

Vim commands can be abbreviated. For example, : join can be abbreviated as : j. Throughout the
guide, I will be mixing the shorthand and the longhand descriptions. For commands that are not
frequently used in this guide, I will use the longhand version. For commands that are frequently
used, [will use the shorthand version. I apologize for the inconsistencies. In general, whenever you
spot a new command, always check it on :help to see its abbreviations.

Vimrc

At various points in the guide, I will refer to vimrc options. If you’re new to Vim, a vimrc is like a

config file.

Vimrc won’t be covered until chapter 21. For the sake of clarity, I will show briefly here how to set
it up.

Suppose you need to set the number options (set number). If you don’t have a vimrc already, create
one. It is usually placed at the root directory named .vimrc. Depending on your OS, the location
may differ. In macOS, I have it on ~/.vimrc. To see where you should put yours, check out :h vimrec.

Inside it, add set number. Save it (:w), then source it (:source %). You should now see line numbers
displayed on the left side.

Alternatively, if you don’t want to a make permanent setting change, you can always run the set
command inline, by running :set number. The downside of this approach is that this setting is
temporary. When you close Vim, the option disappears.

New To Vim? Read This First 4

Since we are learning about Vim and not Vi, a setting that you must have is the nocompatible option.
Add set nocompatible in your vimrc. Many Vim-specific features are disabled when it is running
on compatible option.

In general, whenever a passage mentions a vimrc option, just add that option into vimrc, save it, and
source it.

Future, Errors, Questions

Expect more updates in the future. If you find any errors or have any questions, please feel free to
reach out.

I also have planned a few more upcoming chapters, so stay tuned!

| Want More Vim Tricks

To learn more about Vim, please follow @learnvim?.

Thank Yous

This guide wouldn’t be possible without Bram Moleenar for creating Vim, my wife who had been
very patient and supportive throughout the journey, all the contributors® of the learn-vim project,
the Vim community, and many, many others that weren’t mentioned.

Thank you. You all help make text editing fun :)

*https://twitter.com/learnvim
*https://github.com/iggredible/Learn-Vim/graphs/contributors

https://twitter.com/learnvim
https://github.com/iggredible/Learn-Vim/graphs/contributors
https://twitter.com/learnvim
https://github.com/iggredible/Learn-Vim/graphs/contributors

Cho01. Starting Vim

In this chapter, you will learn different ways to start Vim from the terminal. I was using Vim 8.2
when writing this guide. If you use Neovim or an older version of Vim, you should be mostly fine,
but be aware that some commands might not be available.

Installing

[won’t go through the detailed instruction how to install Vim in a specific machine. The good news
is, most Unix-based computers should come with Vim installed. If not, most distros should have
some instructions to install Vim.

For download informations, check out Vim’s official download website or Vim’s official github
repository:

« Vim website*
« Vim github’

The Vim Command

Now that you have Vim installed, run this from the terminal:

You should see an intro screen. This is the where you will be working on your file. Unlike most text
editors and IDEs, Vim is a modal editor. If you want to type “hello”, you need to switch to insert
mode with i. Press ihello<Esc> to insert the text “hello”.

Exiting Vim

There are several ways to exit Vim. The most common one is to type:

*https://www.vim.org/download.php
*https://github.com/vim/vim

https://www.vim.org/download.php
https://github.com/vim/vim
https://www.vim.org/download.php
https://github.com/vim/vim

Cho1. Starting Vim 6
;quit

You can type :q for short. That command is a command-line mode command (another one of Vim
modes). If you type : in normal mode, the cursor will move to the bottom of the screen where you
can type some commands. You will learn about the command-line mode later in chapter 15. If you
are in insert mode, typing : will literally produce the character “:” on the screen. In this case, you
need to switch back to normal mode. Type <Esc> to switch to normal mode. By the way, you can

also return to normal mode from command-line mode by pressing <Esc>. You will notice that you
can “escape” out of several Vim modes back to normal mode by pressing <Esc>.

Saving A File

To save your changes, type:
‘write

You can also type :w for short. If this is a new file, you need to give it a name before you can save it.
Let’s name it file.txt. Run:

:w file.txt

To save and quit, you can combine the :w and :q commands:
Twqg

To quit without saving any changes, add ! after : g to force quit:
:q!

There are other ways to exit Vim, but these are the ones you will use daily.

Help

Throughout this guide, I will refer you to various Vim help pages. You can go to the help page by
typing :help {some-command} (:h for short). You can pass to the :h command a topic or a command
name as an argument. For example, to learn about different ways to quit Vim, type:

:h write-quit
How did I know to search for “write-quit™? I actually didn’t. I just typed :h, then “quit”, then <Tab>.

Vim displayed relevant keywords to choose from. If you ever need to look up something (“I wish
Vim can do this..”), just type :h and try some keywords, then <Tab>.

Cho1. Starting Vim 7
Opening a File

To open a file (hellol.txt) on Vim from the terminal, run:

vim hellol.txt

You can also open multiple files at once:

vim hellol.txt hello2.txt hello3.txt

Vim openshellol.txt,hello2.txt, and hello3.txt in separate buffers. You will learn about buffers
in the next chapter.

Arguments

You can pass the vim terminal command with different flags and options.

To check the current Vim version, run:
vim --version

This tells you the current Vim version and all available features marked with either + or - Some of
these features in this guide require certain features to be available. For example, you will explore
Vim’s command-line history in a later chapter with the :history command. Your Vim needs to have
+cmdline_history feature for the command to work. There is a good chance that the Vim you just
installed have all the necessary features, especially if it is from a popular download source.

Many things you do from the terminal can also be done from inside Vim. To see the version from
inside Vim, you can run this:

:version

If you want to open the file hello.txt and immediately execute a command, you can pass to the
vim command the +{cmd} option.

In Vim, you can substitute texts with the :s command (short for : substitute). If you want to open
hello.txt and substitute all “pancake” with “bagel”, run:

vim +%s/pancake/bagel/g hello.txt

The command can be stacked:

Cho1. Starting Vim 8
vim +%s/pancake/bagel/g +%s/bagel/egg/g +%s/egg/donut/g hello.txt

Vim will replace all instances of “pancake” with “bagel”, then replace “bagel” with “egg”, then replace
“egg” with “donut” (you willl learn substitution in a later chapter).

You can also pass the ¢ flag followed by the command instead of the + syntax:

vim -c %s/pancake/bagel/g hello.txt
vim -c %s/pancake/bagel/g -c %s/bagel/egg/g -c %s/egg/donut/g hello.txt

Opening Multiple Windows

You can launch Vim on split horizontal and vertical windows with o and 0, respectively.

To open Vim with two horizontal windows, run:
vim -02

To open Vim with 5 horizontal windows, run:
vim -05

To open Vim with 5 horizontal windows and fill up the first two with hello1.txt and hello2.txt,
run:

vim -05 hellol.txt hello2.txt
To open Vim with two vertical windows, 5 vertical windows, and 5 vertical windows with 2 files:
vim -0

vim -05
vim -05 hellol.txt hello2.txt

Suspending

If you need to suspend Vim while in the middle of editing, you can press Ctrl-z. You can also run
either the :stop or :suspend command. To return to the suspended Vim, run fg from the terminal.

Cho1. Starting Vim 9

Starting Vim The Smart Way

You can pass the vim command with different options and flags, just like any terminal commands.
One of the options is the command-line command (+{cmd} or ¢ cmd). As you learn more commands
throughout this guide, see if you can apply it on start. Also being a terminal command, you can
combine vim with many other terminal commands. For example, you can redirect the output of the
1s command to be edited in Vim with 1s -1 | vim -.

To learn more about Vim terminal command, check outman vim. To learn more about the Vim editor,
continue reading this guide along with the :help command.

Ch02. Buffers, Windows, and Tabs

If you have used a modern text editor, you are probably familiar with windows and tabs. Vim uses
three display abstractions instead of two: buffers, windows, and tabs. In this chapter, I will explain
what buffers, windows, and tabs are and how they work in Vim.

Before you start, make sure you have the set hidden option in vimrc. Without it, whenever you
switch buffers and your current buffer is not saved, Vim will prompt you to save the file (you don’t
want that if you want to move quickly). [haven’t cover vimrc yet. If you don’t have a vimre, create
one. It is usually placed at the root directory and named .vimrc. I have mine on ~/.vimrc. To see
where you should create your vimre, check out :h vimrc. Inside it, add:

set hidden

Save it, then source it (run :source % from inside the vimrc).

Buffers

What is a buffer?

A buffer is an in-memory space where you can write and edit some text. When you open a file in
Vim, the data is bound to a buffer. When you open 3 files in Vim, you have 3 buffers.

Have two empty files, filel. js and file2. j (if possible, create them with Vim) available. Run this
in the terminal:

vim filel.js

Cho2. Buffers, Windows, and Tabs 11

. @ tmux attach -t studies 381

unix | utf-8 | javascript [FA00%

"vim filel.js" 13:32 18-Jul-20

[studies] i....- 2:learn-vim: buffers, windows, tabs*

one buffer displayed with highlight

What you are seeing is file1. js buffer. Whenever you open a new file, Vim creates a new buffer.

Exit Vim. This time, open two new files:

vim filel.js file2.js

Cho2. Buffers, Windows, and Tabs 12

@ tmux attach -t studies 31

222 2 22 222 2222222222222

NORMAL HARISRSH unix | utf-8 | javascript [200%
"filel.js" [New]

[studies] 1:vim- 2:learn-vim: buffers, windows, tabs* "vim filel.js" 13:24 18-Jul-20

one buffer displayed.png

Vim displays file1. js buffer, but it actually creates two buffers: file1. js buffer and file2. js
buffer. Run :buffers to see all the buffers (alternatively, you can use : 1s or : files t0o).

Layiieg filel. s

:buffers

1 %a "filel. js" line 1
2 "file2.js" line ©

buffers command showing 2 buffers

There are several ways you can traverse buffers:

« :bnext to go to the next buffer (:bprevious to go to the previous buffer).

« :buffer + filename. Vim can autocomplete filename with <Tab>.

« :buffer + n, where n is the buffer number. For example, typing :buffer 2 will take you to
buffer #2.

« Jump to the older position in jump list with Ctr1-0 and to the newer position with Ctr1-I.
These are not buffer specific methods, but they can be used to jump between different buffers.
[will talk more about jumps in Chapter 5.

Cho2. Buffers, Windows, and Tabs 13
+ Go to the previously edited buffer with Ctr1-*.

Once Vim creates a buffer, it will remain in your buffers list. To remove it, you can type :bdelete.
It accepts either a buffer number (:bdelete 3 to delete buffer #3) or a filename (:bdelete then use
<Tab> to autocomplete).

The hardest thing for me when learning about buffer was visualizing how buffers worked. Imagine
a deck of playing cards. If I have 2 buffers, I have a stack of 2 cards. The card on top is the card I
see. If I see filel. js buffer displayed then the file1. js card is on the top of the deck. I can’t see
the other card, file2. js. If [switch buffers to file2. js, that file2. js card is now on the top of the
deck and filel. js card is at the bottom.

If you haven’t used Vim before, this is a new concept. Take your time to understand it.
Exiting Vim

By the way, if you have multiple buffers opened, you can close all of them with quit-all:
:qall

If you want to close without saving your changes, just add ! at the end:

‘qall!

To save and quit all, run:

:wqgall

Windows

A window is a viewport on a buffer. You can have multiple windows. Most text editors have the
ability to display multiple windows. Below you see a VSCode with 3 windows:

Cho2. Buffers, Windows, and Tabs

filel.js — Demo
Js file2.js Js fileljs

s file2.js s fileljs

Js file3.js

Js file3.js

®O0AO0 # LveShare --NORMAL-- Ln1,Col1 Spaces:4 UTF-8 LF JavaScript & [

VSCode showing 3 windows

Let’s open filel. js from the terminal again:

vim filel.js

Cho2. Buffers, Windows, and Tabs 15

. @ tmux attach -t studies 31

222 2 22 222 2222222222222

NORMAL HARISRSH unix | utf-8 | javascript [200%
"filel.js" [New]
[studies] 1:vim- 2:learn-vim: buffers, windows, tabs*

"vim filel.js" 13:24 18-Jul-20

one buffer displayed.png

Earlier I said that you're looking at file1. js buffer. While that was correct, it was incomplete. You
are looking at file1. js buffer displayed through a window. A window is what you are seeing a

buffer through.
Don’t quit Vim yet. Run:

:split file2.js

Cho2. Buffers, Windows, and Tabs

~
~

NORMAL BRSPS

2 2.2 2 222222 22

"file2.js" OL, OB

[studies] 1:vim- 2:learn-vim: buffers, windows, tabs*

tmux attach -t studies

unix | utf-8 | javascript

31

"vim filel.js" 13:48 18-Jul-20

100%

split window horizontally

16

Now you are looking at two buffers through two windows. The top window displays file2. js
buffer. The bottom window displays file1. js buffer.

If you want to navigate between windows, use these shortcuts:

Ctrl-W H Moves the
Ctrl-w J Moves the
Ctrl-w K Moves the
Ctrl-w L Moves the

Now run:

:vsplit file3.js

cursor
cursor
cursor

cursor

to
to
to
to

the
the
the
the

left window
window below
window upper

right window

Cho2. Buffers, Windows, and Tabs 17

@ tmux attach -t studies 81

LT FLTESN SN unix | utf-8 | javascript [100%

"file3.js" OL, OB

[studies] 1:vim- 2:learn-vim: buffers, windows, tabs* "vim filel.js" 13:50 18-Jul-20|

split window vertically and horizontally

You are now seeing three windows displaying three buffers. The top left window displays file3. js

buffer, the top right window displays file2. js buffer, and the bottom window displays filel. js
buffer.

You can have multiple windows displaying the same buffer. While you’re on the top left window,
type:

:buffer file2.js

Cho2. Buffers, Windows, and Tabs 18

tmux attach -t studies 381

2 2222 2222 22
02 2 2 2 2 222 2 22

iieg s unix | utf- avascript % 1
LT file2.j ix | f-8 | j ipt | 100 0

2 2.2 2 222222 22

"file2.js" --No lines in buffer--
[studies] 1:vim- 2:learn-vim: buffers, windows, tabs*

“vim filel.js" 13:53 18-Jul-20

split window vertically and horizontally with two file2.js

Now both top left and top right windows are displaying file2. js buffer. If you start typing on the
top left, you can see that the content on both top left and top right window are being updated in
real-time.

To close the current window, you can run Ctrl-W C or type :quit. When you close a window, the
buffer will still be there (run :buffers to confirm this).

Here are some useful normal-mode window commands:

Ctrl-w Vv Opens a new vertical split
Ctrl-w S Opens a new horizontal split
Ctrl-w C Closes a window

Ctrl-w O Makes the current window the only one on screen and closes other windows

And here is a list of useful window command-line commands:

:vsplit filename Split window vertically
:split filename Split window horizontally
:new filename Create new window

Take your time to understand them. For more, check out :h window.

Cho2. Buffers, Windows, and Tabs 19

Tabs

A tab is a collection of windows. Think of it like a layout for windows. In most modern text editors
(and modern internet browsers), a tab means an open file / page and when you close it, that file /
page goes away. In Vim, a tab does not represent an open file. When you close a tab in Vim, you are
not closing a file. You are only closing the layout. The data for those files are stored in-memory in
buffers. The buffers are still there.

Let’s see Vim tabs in action. Open file1. js:
vim filel.js

To open file2. js in a new tab:

:tabnew file2. js

® O
B 2 file2.js

screen displays tab 2

You can also let Vim autocomplete the file you want to open in a new tab by pressing <Tab> (no pun
intended).

Below is a list of useful tab navigations:

:tabnew file.txt Open file.txt in a new tab

:tabclose Close the current tab
:tabnext Go to next tab
:tabprevious Go to previous tab
:tablast Go to last tab
:tabfirst Go to first tab

You can also run gt to go to next tab page (you can go to previous tab with gT). You can pass count
as argument to gt, where count is tab number. To go to the third tab, do 3gt.

Cho2. Buffers, Windows, and Tabs 20

One advantage of having multiple tabs is you can have different window arrangements in different
tabs. Maybe you want your first tab to have 3 vertical windows and second tab to have a mixed
horizontal and vertical windows layout. Tab is the perfect tool for the job!

. @ tmux attach -t studies X 31
1 filel.js 2 file2 s

<ix | utf-8 | javascript [100%
"file2.js" OL, OB
[studies] 1:vim- 2:learn-vim: buffers, windows, tabsx*

"vim filel.js" 14:55 19-Jul-20

first tab with multiple windows

Cho2. Buffers, Windows, and Tabs 21

. o tmux attach -t studies 81
1 filel.js 2 file2.js

[file2:js unix | utf-8 | javascript [100% v

[studies] 1:zsh- 2:learn-vim: buffers, windows, tabs* "vim filel.js" 14:56 19-Jul-20|

second tab with multiple windows

To start Vim with multiple tabs, you can do this from the terminal:
vim -p filel.js file2.js file3.js
Moving In 3D

Moving between windows is like traveling two-dimensionally along X-Y axis in a Cartesian
coordinate. You can move to the top, right, bottom, and left window with Ctr1-w H/J/K/L.

Cho2. Buffers, Windows, and Tabs 22

Y window1 window2

>
<

file2.js | filed.js l A

¥ ¥

file1.js

window3

cartesian movement in x and y axis

Moving between buffers is like traveling across the Z axis in a Cartesian coordinate. Imagine your
buffer files lining up across the Z axis. You can traverse the Z axis one buffer at a time with :bnext
and :bprevious. You can jump to any coordinate in Z axis with :buffer filename/buffernumber.

Cho2. Buffers, Windows, and Tabs 23

file3.js_
file2.js
file1.js

LY

cartesian movement in z axis

You can move in three-dimensional space by combining window and buffer movements. You can
move to the top, right, bottom, or left window (X-Y navigations) with window navigations. Since

each window contains buffers, you can move forward and backward (Z navigations) with buffer
movements.

Cho2. Buffers, Windows, and Tabs 24

filed.|s

Yy file1.js

file2.js

| ‘- window1 <

* filel.js {,,

window2

e

cartesian movement in x, y, and z axis

Using Buffers, Windows, and Tabs The Smart Way

You have learned what buffers, windows, and tabs are and how they work in Vim. Now that you
understand them better, you can use them in your own workflow.

Everyone has a different workflow, here is mine for example:

« First I use buffers to store all the required files for the current task. Vim can handle many
open buffers before it starts slowing down. Plus having many buffers opened won’t crowd my
screen. I am only seeing one buffer (assuming I have only one window) at any time, allowing
me to focus on one screen. When I need to go somewhere, I can quickly fly to any open buffer
anytime.

« I use multiple windows to view multiple buffers at once, usually when diffing files, reading
docs, or following a code flow. I try to keep the number of windows opened to no more than

Cho2. Buffers, Windows, and Tabs 25

three because my screen will get crowded (I use a small laptop). When I am done, I close any
extra windows. Fewer windows means less distractions.

« Instead of tabs, use tmux® windows. I usually use multiple tmux windows at once. For example,
one tmux window for client-side codes and another for backend codes.

My workflow may look different than yours based on your editing style and that’s fine. Experiment
around to discover your own flow suited for your coding style.

“https://github.com/tmux/tmux/wiki

https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki

ChO03. Searching Files

The goal of this chapter is to introduce you to how to search quickly in Vim. Being able to search
quickly is a great way to jump-start your Vim productivity. When I figured out how to search files
quickly, I made the switch to use Vim full-time.

This chapter is divided into two parts: how to search without plugins and how to search with fzf.vim’
plugin. Let’s get started!

Opening And Editing Files
To open a file in Vim, you can use :edit.

;edit file.txt

If file.txt exists, it opens the file.txt buffer. If file.txt doesn’t exist, it creates a new buffer for
file.txt.

Autocomplete with <Tab> works with :edit. For example, if your file is inside a Rails® app controller
users controller directory . /app/controllers/users_controllers.rb, you can use <Tab> to expand
the terms quickly:

;edit a<Tab>c<Tab>u<Tab>

:edit accepts wildcards arguments. * matches any file in the current directory. If you are only
looking for files with .yml extension in the current directory:

redit *.yml<Tab>

Vim will give you a list of all .ym1 files in the current directory to choose from.

You can use ** to search recursively. If you want to look for all *.md files in your project, but you
are not sure in which directories, you can do this:

redit **/* md<Tab>

:edit can be used to run netrw, Vim’s built-in file explorer. To do that, give :edit a directory
argument instead of file:

"https://github.com/junegunn/fzf.vim
*https://rubyonrails.org/

https://github.com/junegunn/fzf.vim
https://rubyonrails.org/
https://github.com/junegunn/fzf.vim
https://rubyonrails.org/

Cho3. Searching Files 27

redit .
;edit test/unit/

Searching Files With Find

You can find files with : find. For example:

:find package. json
:find app/controllers/users_controller.rb

Autocomplete also works with : find:

:find p<Tab> " to find package. json
:find a<Tab>c<Tab>u<Tab> " to find app/controllers/users_controller.rb

You may notice that : find looks like :edit. What’s the difference?

Find And Path

The difference is that : find finds file in path, :edit doesn’t. Let’s learn a little bit about this path.
Once you learn how to modify your paths, : find can become a powerful searching tool. To check
what your paths are, do:

:set path?
By default, yours probably look like this:
path=., /usr/include, ,

« . means to search relative to the directory of the current file.
« , means to search in the current directory.
« /usr/include is the directory for C compilers header files.

The first two are important and the third one can be ignored for now. The take-home here is that
you can modify your own paths. Let’s assume this is your project structure:

Cho3. Searching Files 28

app/
assets/
controllers/
application_controller.rb
comments_controller.rb
users_controller.rb

If you want to go to users_controller.rb from the root directory, you have to go through several
directories (and pressing a considerable amount of tabs). Often when working with a framework,
you spend 90% of your time in a particular directory. In this situation, you only care about going
to the controllers/ directory with the least amount of keypress. The path setting can shorten that
journey.

You need to add the app/controllers/ to the current path. Here is how you can do it:
:set path+=app/controllers/

Now that your path is updated, when you type :find u<Tab>, Vim will now search inside

«_

app/controllers/ directory for files starting with “u”.

If you have a nested controllers/ directory, like app/controllers/account/users_controller.rb,
Vim won’t find users_controllers. You need to instead add :set path+=app/controllers/** so
autocomplete will find users_controller.rb. This is great! Now you can find the users controller
with 1 press of tab instead of 3.

You might be thinking to add the entire project directories so when you press tab, Vim will search
everywhere for that file, like this:

:set path+=$PWD/**

$PWD is the current working directory. If you try to add your entire project to path hoping to make
all files to be reachable upon a tab press, although this may work for a small project, doing this will
slow down your search significantly if you have a large number of files in your project. I recommend
adding only the path of your most visited files / directories.

You can add the set path+={your-path-here} in your vimrc. Updating path takes only a few seconds
and doing this will save you a lot of time.

Searching In Files With Grep

If you need to find in files (find phrases in files), you can use grep. Vim has two ways of doing that:

« Internal grep (:vim. Yes, it is spelled :vim. It is short for : vimgrep).
« External grep (:grep).

Let’s go through internal grep first. : vim has the following syntax:

Cho3. Searching Files 29

:vim /pattern/ file

« /pattern/ is a regex pattern of your search term.
« file is the file arguments. You can pass multiple arguments. Vim will search for the pattern
inside the file arguments. Similar to : find, you can pass it * and ** wildcards.

For example, to look for all occurrences of “breakfast” string inside all ruby files (.rb) inside
app/controllers/ directory:

:vim /breakfast/ app/controllers/**/*.rb
After running that, you will be redirected to the first result. Vim’s vim search command uses quick fix

operation. To see all search results, run : copen. This opens a quickfix window. Here are some useful
quickfix commands to get you productive immediately:

:copen Open the quickfix window
:cclose Close the quickfix window
:chext Go to the next error
:cprevious Go to the previous error
:colder Go to the older error list
:chewer Go to the newer error list

To learn more about quickfix, check out :h quickfix.

You may notice that running internal grep (: vim) can get slow if you have a large number of matches.
This is because Vim reads the searches into memory. Vim loads each matching files as if they are
being edited. If Vim checks a large number of files, it will consume a large amount of memory.

Let’s talk about external grep. By default, it uses grep terminal command. To search for “lunch”
inside a ruby file inside app/controllers/ directory, you can do this:

:grep -R "lunch" app/controllers/

Note that instead of using /pattern/, it follows the terminal grep syntax "pattern". It also displays
all matches using quickfix.

Vim uses grepprg variable to determine which external program to run when running : grep so you
don’t have to always use the terminal grep command. Later I will show you how to change default
the grep external program.

Browsing Files With Netrw

netrw is Vim’s built-in file explorer. It is useful to see a project’s structural hierarchy. To run netrw,
you need these two settings in your .vimrec:

Cho3. Searching Files 30

set nocp
filetype plugin on

Since netrw is a vast topic, I will only cover the basic usage, but it should be enough to get you
started. You can start netrw when you launch Vim and passing it a directory instead of a file. For
example:

vim .
vim src/client/
vim app/controllers/

To launch netrw from inside Vim, you can use the :edit command and pass it a directory instead
of a filename:

cedit .
redit src/client/
;edit app/controllers/

There are other ways to launch netrw window without passing a directory:

:Explore Starts netrw on current file
:Sexplore No kidding. Starts netrw on split top half of the screen
:Vexplore Starts netrw on split left half of the screen

You can navigate netrw with Vim motions (motions will be covered in depth in a later chapter). If
you need to create, delete, and rename a directory, here is a list of useful netrw commands:

d Create a new directory
R Rename a file or directory
D Delete a file or directory

:h netrw is very comprehensive. Check it out if you have time.

If you find netrw too bland and need more flavor, vim-vinegar’ is a good plugin to improve netrw.
If you’re looking for a different file explorer, NERDTree' is a good alternative. Check them out!

Fzf

Now that you’ve learned how to search files in Vim with built-in tools, let’s learn how to do it with
plugins.

One thing that modern text editors get right that Vim didn’t is how easy it is to find files and to find
in files using fuzzy search. In this second half of the chapter, I will show you how to use fzf.vim"*
to make searching in Vim easy and powerful.

*https://github.com/tpope/vim-vinegar
*%https://github.com/preservim/nerdtree
https://github.com/junegunn/fzf.vim

https://github.com/tpope/vim-vinegar
https://github.com/preservim/nerdtree
https://github.com/junegunn/fzf.vim
https://github.com/tpope/vim-vinegar
https://github.com/preservim/nerdtree
https://github.com/junegunn/fzf.vim

Cho3. Searching Files 31

Setup

First, make sure you have fzf'* and ripgrep*® downloaded. Follow the instruction on their github
repo. The commands fzf and rg should now be available after successful installs.

Ripgrep is a search tool much like grep (hence the name). It is generally faster than grep and has
many useful features. Fzf is a general-purpose command-line fuzzy finder. You can use it with any
commands, including ripgrep. Together, they make a powerful search tool combination.

Fzf does not use ripgrep by default, so we need to tell fzf to use ripgrep with FZF_DEFAULT_COMMAND
variable. In my .zshrc (.bashrc if you use bash), I have these:

if type rg &> /dev/null; then
export FZF_DEFAULT_COMMAND='rg --files'
export FZF_DEFAULT_OPTS='-m'

fi

Pay attention to -m in FZF_DEFAULT_OPTS. This option allows us to make multiple selections with
<Tab> or <Shift-Tab>. You don’t have to have this line to make fzf to work with Vim, but I think it
is a useful option to have. It will come in handy when you want to perform search and replace in
multiple files which I'll cover in just a little bit. The fzf command accepts many more flags, but I
won’t cover them here. To learn more, check out {zf’s repo'* or man fzf. At minimum you should
have export FZF_DEFAULT_COMMAND='rg"'.

After installing fzf and ripgrep, let’s set up the fzf plugin. I am using vim-plug® plugin manager in
this example, but you can use any plugin managers.

Add these inside your .vimrc plugins. You need to use fzf.vim'® plugin (created by the same fzf
author).

Plug 'junegunn/fzf.vim'
Plug 'junegunn/fzf', { 'do': { -> fzf¥install() } }

For more info about this plugin, you can check out fzf.vim repo*’.

Fzf Syntax

To use fzf efficiently, you should learn some basic fzf syntax. Fortunately, the list is short:

*https://github.com/junegunn/fzf
Phttps://github.com/BurntSushi/ripgrep
"*https://github.com/junegunn/fzf#usage
Phttps://github.com/junegunn/vim-plug
“https://github.com/junegunn/fzf.vim
https://github.com/junegunn/fzf/blob/master/README-VIM.md

https://github.com/junegunn/fzf
https://github.com/BurntSushi/ripgrep
https://github.com/junegunn/fzf#usage
https://github.com/junegunn/vim-plug
https://github.com/junegunn/fzf.vim
https://github.com/junegunn/fzf/blob/master/README-VIM.md
https://github.com/junegunn/fzf
https://github.com/BurntSushi/ripgrep
https://github.com/junegunn/fzf#usage
https://github.com/junegunn/vim-plug
https://github.com/junegunn/fzf.vim
https://github.com/junegunn/fzf/blob/master/README-VIM.md

Cho3. Searching Files 32

« " is a prefix exact match. To search for a phrase starting with “welcome”: *welcome.

« $ is a suffix exact match. To search for a phrase ending with “my friends”: friends$.

« ' is an exact match. To search for the phrase “welcome my friends”: 'welcome my friends.

« | is an “or” match. To search for either “friends” or “foes™ friends | foes.

« ! is an inverse match. To search for phrase containing “welcome” and not “friends”: welcome
Ifriends

You can mix and match these options. For example, *hello | *welcome friends$ will search for
the phrase starting with either “welcome” or “hello” and ending with “friends”.

Finding Files

To search for files inside Vim using fzf.vim plugin, you can use the :Files method. Run :Files from
Vim and you will be prompted with fzf search prompt.

t term (ne:

ate combiner null-value term

2rm a accumulat mbiner null-value term

accumulate.scm . unix | utf-8 | scheme 1%

wlate.sem” 65 lines --1%-

Finding files in fzf

Since you will be using this command frequently, it is good to have this mapped. I map mine to
Ctrl-f.In my vimre, [have this:

nnoremap <silent> <C-f> :Files<CR>

Finding In Files

To search inside files, you can use the :Rg command.

Cho3. Searching Files 33

ackermann.scm
an 15 lines

Finding in files in fzf

Again, since you will probably use this frequently, let’s map it. I map mine to <Leader>f.

nnoremap <silent> <Leader>f :Rg<CR>

Other Searches

Fzf.vim provides many other search commands. I won’t go through each one of them here, but you
can check them out here.

Here’s what my fzf maps look like:

nnoremap <silent> <Leader>b :Buffers<CR>
nnoremap <silent> <C-f> :Files<CR>
nnoremap <silent> <Leader>f :Rg<CR>
nnoremap <silent> <Leader>/ :BLines<CR>
nnoremap <silent> <Leader>' :Marks<CR>
nnoremap <silent> <Leader>g :Commits<CR>
nnoremap <silent> <Leader>H :Helptags<CR>
nnoremap <silent> <Leader>hh :History<CR>
nnoremap <silent> <Leader>h: :History:<CR>
nnoremap <silent> <Leader>h/ :History/<CR>

®https://github.com/junegunn/fzf.vim#commands

https://github.com/junegunn/fzf.vim#commands
https://github.com/junegunn/fzf.vim#commands

Cho3. Searching Files 34

Replacing Grep With Rg

As mentioned earlier, Vim has two ways to search in files: : vim and : grep. : grep uses external search
tool that you can reassign using the grepprg keyword. I will show you how to configure Vim to use
ripgrep instead of terminal grep when running the : grep command.

Now let’s setup grepprg so :grep uses ripgrep. Add this in your vimre:
set grepprg=rg\ --vimgrep\ --smart-case\ --follow

Feel free to modify some of the options above! For more information what the options above mean,
check out man rg.

After you updated grepprg, now when you run :grep, it runsrg --vimgrep --smart-case --follow
instead of grep. If you want to search for “donut” using ripgrep, you can now run a more succinct
command :grep "donut" instead of :grep "donut" . -R

Just like the old : grep, this new :grep also uses quickfix to display results.

You might wonder, “Well, this is nice but I never used :grep in Vim, plus can’t I just use :Rg to find
phrases in files? When will I ever need to use :grep?

That is a very good question. You may need to use : grep in Vim to do search and replace in multiple
files, which I will cover next.

Search And Replace In Multiple Files

Modern text editors like VSCode makes it very easy to search and replace a string across multiple
files. In this section, I will show you two different methods to easily do that in Vim.

The first method is to replace all matching phrases in your project. You will need to use :grep. If
you want to replace all instances of “pizza” with “donut”, here’s what you do:

:grep "pizza"
:cfdo %s/pizza/donut/g | update

Let’s break down the commands:

1. :grep pizza uses ripgrep to search for all instances of “pizza” (by the way, this would still

work even if you didn’t reassign grepprg to use ripgrep. You would have to do :grep "pizza"
-R instead of :grep "pizza").

2. :cfdo executes any command you pass to all files in your quickfix list. In this case, your
command is the substitution command %s/pizza/donut/g. The pipe (I) is a chain operator.
The updat command saves each file after substitution. I will cover substitute command in more
depth in a later chapter.

Cho3. Searching Files 35

The second method is to search and replace in select files. With this method, you can manually
choose which files you want to perform select and replace on. Here is what you do:

1. Clear your buffers first. It is imperative that your buffer list contains only the files you need.
You can either restart Vim or run :%bd | e* command (%bd deletes all the buffers and e# opens
the file you were just on).

2. Run :Files.

3. Select all files you want to perform search-and-replace on. To select multiple files, use <Tab> /
<Shift-Tab>. This is only possible if you have the multiple flag (-m) in FZF_DEFAULT_OPTS.

4. Run :bufdo %s/pizza/donut/g | update. The command :bufdo %s/pizza/donut/g | update

looks similar to the earlier :cfdo %s/pizza/donut/g | update command. The difference
is instead of substituting all quickfix entries (:cfdo), you are substituting all buffer entries
(:bufdo).

Learn Search The Smart Way

Searching is the bread-and-butter of text editing. Learning how to search well in Vim will improve
your text editing workflow significantly.

Fzf.vim is a game-changer. I can’t imagine using Vim without it. I think it is very important to have
a good search tool when starting Vim. I've seen people struggling to transition to Vim because it is
missing critical features modern text editors have, like an easy and powerful search feature. I hope
this chapter will help you to make the transition to Vim easier.

You also just saw Vim’s extensibility in action - the ability to extend search functionality with a
plugin and an external program. In the future, keep in mind of what other features you wish to
extend in Vim. Chances are, someone has created a plugin or there is a program for it already. Next,
you’ll learn about a very important topic in Vim: Vim grammar.

Ch04. Vim Grammar

It is easy to get intimidated by the complexity of Vim commands. If you see a Vim user doing gufV or
16dG, you may not immediately know what these commands do. In this chapter, I will break down
the general structure of Vim commands into a simple grammar rule.

This is the most important chapter in the entire guide. Once you understand the underlying
grammatical structure, you will be able to “speak” to Vim. By the way, when I say Vim language in
this chapter, I am not talking about Vimscript language (Vim’s built-in programming language, you
will learn that in later chapters).

How To Learn A Language

I am not a native English speaker. I learned English when I was 13 when I moved to the US. There
are three things you need to do to learn to speak a new language:

1. Learn grammar rules.
2. Increase vocabulary.

3. Practice, practice, practice.

Likewise, to speak Vim language, you need to learn the grammar rules, increase vocabulary, and
practice until you can run the commands without thinking.

Grammar Rule

There is only one grammar rule in Vim language:

verb + noun

That’s it!

This is like saying these English phrases:
« “Eat (verb) a donut (noun)”
« “Kick (verb) a ball (noun)”

« “Learn (verb) the Vim editor (noun)”

Now you need to build up your vocabulary with basic Vim verbs and nouns.

Cho4. Vim Grammar 37

Nouns (Motions)

Nouns are Vim motions. Motions are used to move around in Vim. Below is a list of some of Vim
motions:

Left

Down

Up

Right

Move forward to the beginning of the next word
Jump to the next paragraph

Go to the end of the line

©$H - = = X T

You will learn more about motions in the next chapter, so don’t worry too much if you don’t
understand some of them.

Verbs (Operators)

According to :h operator, Vim has 16 operators. However, in my experience, learning these 3
operators is enough for 80% of my editing needs:

y Yank text (copy)
d Delete text and save to register
c Delete text, save to register, and start insert mode

Btw, after you yank a text, you can paste it with p (after the cursor) or P (before the cursor).

Verb And Noun

Now that you know basic nouns and verbs, let’s apply the grammar rule, verb + noun! Suppose you
have this expression:

wy, s an

const learn = "vim";

« To yank everything from your current location to the end of the line: y$.
« To delete from your current location to the beginning of the next word: dw.
« To change from your current location to the end of the current paragraph, say c}.

Motions also accept count number as arguments (I will discourse this in the next chapter). If you
need to go up 3 lines, instead of pressing k 3 times, you can do 3k. Count works with Vim grammar.

Cho04. Vim Grammar 38

« To yank two characters to the left: y2h.
+ To delete the next two words: d2w.
+ To change the next two lines: c¢2j.

Right now, you may have to think long and hard to do even a simple command. You’re not alone.
When I first started, I had similar struggles but I got faster in time. So will you. Repetition, repetition,
repetition.

As a side note, linewise operations (operations affecting the entire line) are common operations in
text editing. In general, by typing an operator command twice, Vim performs a linewise operation
for that action. For example, dd, yy, and cc perform deletion, yank, and change on the entire line.
Try this with other operators!

This is really cool. I am seeing a pattern here. But I am not quite done yet. Vim has one more type
of noun: text objects.

More Nouns (Text Objects)

Imagine you are somewhere inside a pair of parentheses like (hello Vim) and you need to delete
the entire phrase inside the parentheses. How can you quickly do it? Is there a way to delete the
“group” you are inside of?

The answer is yes. Texts often come structured. They often contain parentheses, quotes, brackets,
braces, and more. Vim has a way to capture this structure with text objects.

Text objects are used with operators. There are two types of text objects: inner and outer text objects.

i + object Inner text object
a + object Outer text object

Inner text object selects the object inside without the white space or the surrounding objects. Outer
text object selects the object inside including the white space or the surrounding objects. Generally,
an outer text object always selects more text than an inner text object. If your cursor is somewhere
inside the parentheses in the expression (hello vim):

« To delete the text inside the parentheses without deleting the parentheses: di (.
« To delete the parentheses and the text inside: da(.

Let’s look at a different example. Suppose you have this Javascript function and your cursor is on
the “H” in “Hello™:

Cho04. Vim Grammar 39

const hello = function() {
console.log("Hello Vim");

return true;

}

« To delete the entire “Hello Vim”: di (.
« To delete the content of function (surrounded by {}): di{.
« To delete the “Hello” string: diw.

Text objects are powerful because you can target different objects from one location. You can delete
the objects inside the parentheses, the function block, or the current word. Mnemonically, when
you see di(, di{, and diw, you get a pretty good idea which text objects they represent: a pair of
parentheses, a pair of braces, and a word.

Let’s look at one last example. Suppose you have these HTML tags:

<div>
<h1>Header1</hi>
<p>Paragraphi</p>
<p>Paragraph2</p>
</div>

If your cursor is on “Header1” text:

« To delete “Header1™: dit.
« To delete <h1>Header1</h1>: dat.

If your cursor is on “div”:

« To delete h1 and both p lines: dit.
« To delete everything: dat.
o To delete “div”: di<.

Below is a list of common text objects:

Cho04. Vim Grammar 40

word
paragraph
sentence
pair of
pair of

o
=

pair of

> > > > > > >

o

=1
Vo
A MmN
A e g

pair of
XML tags
A pair of
A Pair of ' '

A pair of °

t A — ~ ~ " T =
o
i

To learn more, check out :h text-objects.

Composability And Grammar

Vim grammar is subset of Vim’s composability feature. Let’s discuss composability in Vim and why
this is a great feature to have in a text editor.

Composability means having a set of general commands that can be combined (composed) to
perform more complex commands. Just like in programming where you can create more complex
abstractions from simpler abstractions, in Vim you can execute complex commands from simpler
commands. Vim grammar is the manifestation of Vim’s composable nature.

The true power of Vim’s composability shines when it integrates with external programs. Vim has a
filter operator (!) to use external programs as filters for our texts. Suppose you have this messy text
below and you want to tabularize it:

Id|Name|Cuteness
01|Puppy |Very

02 |Kitten|Ok

03| Bunny | Ok

This cannot be easily done with Vim commands, but you can get it done quickly with column terminal
command (assuming your terminal has column command). With your cursor on “Id”, run ! }column
-t -s "|". Voila! Now you have this pretty tabular data with just one quick command.

Id Name Cuteness
01 Puppy Very

02 Kitten Ok

©3 Bunny Ok

Cho04. Vim Grammar 41

Let’s break down the command. The verb was ! (filter operator) and the noun was } (go to next
paragraph). The filter operator ! accepted another argument, a terminal command, so I gave itcolumn
-t -s "|".Iwon’t go through how column worked, but in effect, it tabularized the text.

Suppose you want to not only tabularize your text, but to display only the rows with “Ok”. You know
that awk can do the job easily. You can do this instead:

'}Jcolumn -t -s "[|" | awk 'NR > 1 && /Ok/ {print $0}'
Result:

02 Kitten Ok
@3 Bunny Ok

Great! The external command operator can also use pipe (|).

This is the power of Vim’s composability. The more you know your operators, motions, and terminal
commands, your ability to compose complex actions is multiplied.

Suppose you only know four motions,w, $, }, G and only one operator, d. You can do 8 actions:
move 4 different ways (w, $, }, G) and delete 4 different targets (dw, d$, d}, dG). Then one
day you learn about the uppercase (gu) operator. You have added not just one new ability to your
Vim tool belt, but four: guw, gU$, gU}, guG. This makes at 12 tools in your Vim tool belt. Each
new knowledge is a multiplier to your current abilities. If you know 10 motions and 5 operators,
you have 60 moves (50 operations + 10 motions) in your arsenal. Vim has a line-number motion
(nG) that gives you n motions, where n is how many lines you have in your file (to go to line 5, run
5G). The search motion (/) practically gives you near unlimited number motions because you can
search for anything. External command operator (!) gives you as many filtering tools as the number
of terminal commands you know. Using a composable tool like Vim, everything you know can be
linked together to do operations with increasing complexity. The more you know, the more powerful
you become.

This composable behavior echoes Unix philosophy: do one thing well. An operator has one job: do
Y. A motion has one job: go to X. By combining an operator with a motion, you predictably get YX:
do Y on X.

Motions and operators are extendable. You can create custom motions and operators to add to your
Vim toolbelt. The vim-textobj-user'” plugin allows you to create your own text objects. It also
contains a list*® of user-made custom text objects.

Learn Vim Grammar The Smart Way

You just learned about Vim grammar’s rule: verb + noun. One of my biggest Vim “AHA!” moments
was when I had just learned about the uppercase (gu) operator and wanted to uppercase the current

https://github.com/kana/vim-textobj-user
*https://github.com/kana/vim- textobj-user/wiki

https://github.com/kana/vim-textobj-user
https://github.com/kana/vim-textobj-user/wiki
https://github.com/kana/vim-textobj-user
https://github.com/kana/vim-textobj-user/wiki

Cho04. Vim Grammar 42

word, I instinctively ran gUiw and it worked! The word was uppercased. At that moment, I finally
began to understand Vim. My hope is that you will have your own “AHA!” moment soon, if not
already.

The goal is this chapter is to show you the verb + noun pattern in Vim so you will approach learning
Vim like learning a new language instead of memorizing every command combinations.

Learn the pattern and understand the implications. That’s the smart way to learn.

Ch05. Moving In A File

In the beginning, moving with a keyboard feels slow and awkward but don’t give up! Once you get
used to it, you can go anywhere in a file faster than using a mouse.

In this chapter, you will learn the essential motions and how to use them efficiently. Keep in mind
that this is not the entire motion that Vim has. The goal here is to introduce useful motions to
become productive quickly. If you need to learn more, check out :h motion.txt.

Character Navigation

The most basic motion unit is moving one character left, down, up, and right.

h Left
j Down
k Up

1 Right

You can also move with directional arrows. If you are just starting, feel free to use any method you’re
most comfortable with.

[prefer hjk1 because my right hand can stay in the home row. Doing this gives me shorter reach to
surrounding keys. To get used to hjk1, I actually disabled the arrow buttons when starting out by
addhngthesein»w/.vimrc:

noremap <Up> <NOP>

noremap <Down> <NOP>
noremap <Left> <NOP>
noremap <Right> <NOP>

There are also plugins to help break this bad habit. One of them is vim-hardtime?!. To my surprise,
it took me less than a week to get used to hjk1.

If you wonder why Vim uses hjk1l to move, this is because Lear-Siegler ADM-3A terminal where
Bill Joy wrote Vi, didn’t have arrow keys and used hjk1 as left/down/up/right”*

Relative Numbering

I think it is helpful to have number and relativenumber set. You can do it by having this on .vimrc:

*'https://github.com/takac/vim-hardtime

https://github.com/takac/vim-hardtime
https://github.com/takac/vim-hardtime

Cho5. Moving In A File 44

set relativenumber number

This displays my current line number and relative line numbers.

It is easy why having a number on the left column is useful, but some of you may ask how having
relative numbers on the left column may be useful. Having a relative number allows me to quickly
see how many lines apart my cursor is from the target text. With this, I can easily spot that my target
text is 12 lines below me so I can do d12j to delete them. Otherwise, if I'm on line 69 and my target
is on line 81, I have to do mental calculation (81 - 69 = 12). Doing math while editing takes too much
mental resources. The less I have to think about where I need to go, the better.

This is 100% personal preference. Experiment with relativenumber / norelativenumber, number /
nonumber and use whatever you find most useful!

Count Your Move

Let’s talk about the “count” argument. Vim motions accept a preceding numerical argument. I
mentioned above that you can go down 12 lines with 12j. The 12 in 12j is the count number.

The syntax to use count with your motion is:
[count] + motion

You can apply this to all motions. If you want to move 9 characters to the right, instead of pressing
1 9 times, you can do 91.

Word Navigation

Let’s move to a larger motion unit: word. You can move to the beginning of the next word (w), to the
end of the next word (e), to the beginning of the previous word (b), and to the end of the previous
word (ge).

In addition, there is WORD, distinct from word. You can move to the beginning of the next WORD
(W), to the end of the next WORD (E), to the beginning of the previous WORD (B), and to the end of
the previous WORD (gE). To make it easy to remember, WORD uses the same letters as word, only
uppercased.

Cho5. Moving In A File 45

Move forward to the beginning of the next word
Move forward to the beginning of the next WORD
Move forward one word to the end of the next word
Move forward one word to the end of the next WORD
Move backward to beginning of the previous word

W o m o = =

Move backward to beginning of the previous WORD
ge Move backward to end of the previous word
gk Move backward to end of the previous WORD

So what are the similarities and differences between a word and a WORD? Both word and WORD are
separated by non-blank characters. A word is a sequence of characters containing only a-zA-70-9_.
A WORD is a sequence of all characters except white space (a white space means either space, tab,
and EOL). To learn more, check out :h word and :h WORD.

For example, suppose you have:
const hello = "world";

With your cursor at the start of the line, to go to the end of the line with 1, it will take you 21 key
presses. Using w, it will take 6. Using W, it will only take 4. Both word and WORD are good options
to travel short distance.

€ 9

However, you can get from “c” to “;” in one keystroke with current line navigation.

Current Line Navigation

When editing, you often need to navigate horizontally in a line. To jump to the first character in
current line, use @. To go to the last character in the current line, use $. Additionally, you can use *
to go to the first non-blank character in the current line and g_ to go to the last non-blank character
in the current line. If you want to go to the column n in the current line, you can use n|.

0 Go to the first character in the current line

A Go to the first nonblank char in the current line
g_ Go to the last non-blank char in the current line
$ Go to the last char in the current line

n| Go the column n in the current line

You can do current line search with f and t. The difference between f and t is that f takes you to
the first letter of the match and t takes you till (right before) the first letter of the match. So if you
want to search for and land on “h”, use fh. If you want to search for first “h” and land right before
the match, use th. If you want to go to the next occurrence of the last current line search, use ;. To
go to the previous occurrence of the last current line match, use , .

F and T are the backward counterparts of f and t. To search backwards for “h”, run Fh. To keep
searching for “h” in the same direction, use ;. Note that ; after a Fh searches backward and , after
fh searches forward.

Cho5. Moving In A File 46

Search forward for a match in the same line
Search backward for a match in the same line
Search forward for a match in the same line, stopping before match

= I B

Search backward for a match in the same line, stopping before match
; Repeat the last search in the same line using the same direction
, Repeat the last search in the same line using the opposite direction

Back at the previous example:
const hello = "world";

With your cursor at the start of the line, you can go to the last character in current line (%;”) with
one keypress: $. If you want to go to “w” in “world”, you can use fw. A good tip to go anywhere in

a9 6 9 & _»

a line is to look for least-common-letters like “j7, “x”, “z” near your target.

Sentence And Paragraph Navigation

Next two navigation units are sentence and paragraph.

Let’s talk about what a sentence is first. A sentence ends with either . ! ? followed by an EOL, a
space, or a tab. You can jump to the next sentence with) and the previous sentence with (.

(Jump to the previous sentence
) Jump to the next sentence

Let’s look at some examples. Which phrases do you think are sentences and which aren’t? Try
navigating with (and) in Vim!

I am a sentence. I am another sentence because I end with a period. I am still a sen\
tence when ending with an exclamation point! What about question mark? I am not quit\
e a sentence because of the hyphen - and neither semicolon ; nor colon

There is an empty line above me.

By the way, if you're having a problem with Vim not counting a sentence for phrases separated by
. followed by a single line, you might be in 'compatible' mode. Add set nocompatible into vimrec.
In Vi, a sentence is a . followed by two spaces. You should have nocompatible set at all times.

Let’s talk what a paragraph is. A paragraph begins after each empty line and also at each set of a
paragraph macro specified by the pairs of characters in paragraphs option.

Cho5. Moving In A File 47

{ Jump to the previous paragraph
} Jump to the next paragraph

If you’re not sure what a paragraph macro is, do not worry. The important thing is that a paragraph
begins and ends after an empty line. This should be true most of the time.

Let’s look at this example. Try navigating around with } and { (also, play around with sentence
navigations () to move around too!)

Hello. How are you? I am great, thanks!
Vim is awesome.
It may not easy to learn it at first...- but we are in this together. Good luck!

Hello again.

Try to move around with), (, }, and {. Feel how they work.
You got this.

Check out :h sentence and :h paragraph to learn more.

Match Navigation

Programmers write and edit codes. Codes typically use parentheses, braces, and brackets. You can
easily get lost in them. If you’re inside one, you can jump to the other pair (if it exists) with %. You
can also use this to find out whether you have matching parentheses, braces, and brackets.

% Navigate to another match, usually works for (), [], {}

Let’s look at a Scheme code example because it uses parentheses extensively. Move around with %
inside different parentheses.

(define (fib n)
(cond ((= n Q) 9)

((=n1)1)
(else

(+ (fib (- n 1)) (fib (- n 2)))
)))

I personally like to complement % with visual indicators plugins like vim-rainbow?*. For more, check
out :h %.

*https://github.com/frazrepo/vim-rainbow

https://github.com/frazrepo/vim-rainbow
https://github.com/frazrepo/vim-rainbow

Cho5. Moving In A File 48

Line Number Navigation

You can jump to line number n with nG. For example, if you want to jump to line 7, use 76. To jump
to the first line, use either 1G or gg. To jump to the last line, use G.

Often you don’t know exactly what line number your target is, but you know it’s approximately at
70% of the whole file. In this case, you can do 70%. To jump halfway through the file, you can do 50%.

gg Go to the first line

G Go to the last line
nG Go to line n
n% Go to n% in file

By the way, if you want to see total lines in a file, you can use Ctr1-g.

Window Navigation

To quickly go to the top, middle, or bottom of your window, you can use H, M, and L.

You can also pass a count to H and L. If you use 10H, you will go to 10 lines below the top of window.
If you use 3L, you will go to 3 lines above the last line of window.

Go to top of screen
Go to medium screen

L Go to bottom of screen
nH Go n line from top

nL Go n line from bottom
Scrolling

To scroll, you have 3 speed increments: full-screen (Ctrl-F/Ctrl-B), half-screen (Ctrl-D/Ctrl-U),
and line (Ctr1-E/Ctrl-Y).

Ctrl-E Scroll down a line
Ctrl-D Scroll down half screen
Ctrl-F Scroll down whole screen

Ctrl-Y Scroll up a line
Ctrl-U Scroll up half screen
Ctrl-B Scroll up whole screen

You can also scroll relatively to the current line (zoom screen sight):

Cho5. Moving In A File 49

zt Bring the current line near the top of your screen
ZZ Bring the current line to the middle of your screen
zb Bring the current line near the bottom of your screen

Search Navigation

Often you know that a phrase exists inside a file. You can use search navigation to very quickly
reach your target. To search for a phrase, you can use / to search forward and ? to search backward.
To repeat the last search you can use n. To repeat the last search going opposite direction, you can
use N.

Search forward for a match

? Search backward for a match
Repeat last search (same direction of previous search)
Repeat last search (opposite direction of previous search)

Suppose you have this text:

let one = 1;

7

let two = 2;
one = "01";
one = "one";

let onetwo = 12;

If you are searching for “let”, run /1et. To quickly search for “let” again, you can just do n. To search
for “let” again in opposite direction, run N. If you run ?1et, it will search for “let” backwards. If you
use n, it will now search for “let” backwards (N will search for “let” forwards now).

You can enable search highlight with set hlsearch. Now when you search for /1et, it will highlight
all matching phrases in the file. In addition, you can set incremental search withset incsearch. This
will highlight the pattern while typing. By default, your matching phrases will remain highlighted
until you search for another phrase. This can quickly turn into an annoyance. To disable highlight,
you can run :nohlsearch. Because I use this no-highlight feature frequently, I created a map in
vimre:

nnoremap <esc><esc> :noh<return><esc>

You can quickly search for the text under the cursor with * to search forward and # to search
backward. If your cursor is on the string “one”, pressing * will be the same as if you had done
/\<one\>.

Both \< and \> in /\<one\> mean whole word search. It does not match “one” if it is a part of a
bigger word. It will match for the word “one” but not “onetwo”. If your cursor is over “one” and you
want to search forward to match whole or partial words like “one” and “onetwo”, you need to use
g* instead of *.

Cho5. Moving In A File 50

Search for whole word under cursor forward

Search for whole word under cursor backward
g* Search for word under cursor forward
g¥# Search for word under cursor backward

Marking Position

You can use marks to save your current position and return to this position later. It’s like a bookmark
for text editing. You can set a mark with mx, where x can be any alphabetical letter a-zA-z. There
are two ways to return to mark: exact (line and column) with “x and linewise (' x).

ma Mark position with mark "a

~ nan

Jump to line and column "a

Jump to line "a

There is a difference between marking with lowercase letters (a-z) and uppercase letters (A-Z).
Lowercase alphabets are local marks and uppercase alphabets are global marks (sometimes known
as file marks).

Let’s talk about local marks. Each buffer can have its own set of local marks. If I have two files
opened, I can set a mark “a” (ma) in the first file and another mark “a” (ma) in the second file.

Unlike local marks where you can have a set of marks in each buffer, you only get one set of global
marks. If you set mA inside myFile.txt, the next time you run mA in a different file, it will overwrite
the first “A” mark. One advantage of global marks is you can jump to any global mark even if you
are inside a completely different project. Global marks can travel across files.

To view all marks, use :marks. You may notice from the marks list there are more marks other than
a-zA-Z. Some of them are:

Jump back to the last line in current buffer before jump
Jump back to the last position in current buffer before jump
| Jump to beginning of previously changed / yanked text

] Jump to the ending of previously changed / yanked text

< Jump to the beginning of last visual selection

T Jump to the ending of last visual selection

Y| Jump back to the last edited file when exiting vim

There are more marks than the ones listed above. I won’t cover them here because I think they are
rarely used, but if you’re curious, check out :h marks.

Jump

In Vim, you can “jump” to a different file or different part of a file with some motions. Not all
motions count as a jump, though. Going down with j does not count as a jump. Going to line 10
with 10G counts as a jump.

Cho5. Moving In A File 51

Here are the commands Vim consider as “jump” commands:

Go to the marked line

Go to the marked position
Go to the line

Search forward

NN @

Search backward
Repeat the last search, same direction

=Z 5

Repeat the last search, opposite direction
Find match

Go to the last sentence

5

Go to the next sentence

Go to the last paragraph

Go to the next paragraph

Go to the the last line of displayed window
Go to the middle line of displayed window
Go to the top line of displayed window

Go to the previous section

e /T =2 S e

[
] Go to the next section
s Substitute

:tag Jump to tag definition

I don’t recommend memorizing this list. A good rule of thumb is, any motion that moves farther
than a word and current line navigation is probably a jump. Vim keeps track of where you’ve been
when you move around and you can see this list inside : jumps.

For more, check out :h jump-motions.

Why are jumps useful? Because you can navigate the jump list with Ctr1-0 to move up the jump
list and Ctr1-1 to move down the jump list. You can jump across different files, which I will discuss
more in the next part.

Learn Navigation The Smart Way

If you are new to Vim, this is a lot to learn. I do not expect anyone to remember everything
immediately. It takes time before you can execute them without thinking.

I think the best way to get started is to memorize a few essential motions. I recommend starting out
with these 10 motions:h, j, k, 1, w, b, G, /, ?, n.Repeat them sufficiantly until you can use
them without thinking.

To improve your navigation skill, here are my suggestions:

Cho5. Moving In A File 52

1. Watch for repeated actions. If you find yourself doing 1 repeatedly, look for a motion that will
take you forward faster. You will find that you can use w. If you catch yourself repeatedly doing
w, look if there is a motion that will take you across the current line quickly. You will find that
you can use the f. If you can describe your need succintly, there is a good chance Vim has a
way to do it.

2. Whenever you learn a new move, spend some time until you can do it without thinking.

Finally, realize that you do not need to know every single Vim command to be productive. Most Vim
users don’t. I don’t. Learn the commands that will help you accomplish your task at that moment.

Take your time. Navigation skill is a very important skill in Vim. Learn one small thing every day
and learn it well.

ChO06. Insert Mode

Insert mode is the default mode of many text editors. In this mode, what you type is what you get.

However, that does not mean there isn’t much to learn. Vim’s insert mode contains many useful
features. In this chapter, you will learn how to use these insert mode features in Vim to improve
your typing efficiency.

Ways To Go To Insert Mode

There are many ways to get into insert mode from the normal mode. Here are some of them:

Insert text before the cursor

Insert text before the first non-blank character of the line
Append text after the cursor

Append text at the end of line

Starts a new line below the cursor and insert text

Starts a new line above the cursor and insert text

Delete the character under the cursor and insert text

Delete the current line and insert text

Insert text in same position where the last insert mode was stopped

Q@ Q@ n u© O 0 > W H -

—

Insert text at the start of line (column 1)

Notice the lowercase / uppercase pattern. For each lowercase command, there is an uppercase
counterpart. If you are new, don’t worry if you don’t remember the whole list above. Start with
i and o. They should be enough to get you started. Gradually learn more over time.

Different Ways To Exit Insert Mode

There are a few different ways to return to the normal mode while in the insert mode:

<Esc> Exits insert mode and go to normal mode
Ctrl-| Exits insert mode and go to normal mode
Ctrl-C Like Ctrl-[and <Esc>, but does not check for abbreviation

I find <Esc> key too far to reach, so I map my computer <Caps-Lock> to behave like <Esc>. If you
search for Bill Joy’s ADM-3A keyboard (Vi creator), you will see that the <Esc> key is not located

Cho6. Insert Mode 54

on far top left like modern keyboards, but to the left of q key. This is why I think it makes sense to
map <Caps lock> to <Esc>.

Another common convention I have seen Vim users do is mapping <Esc> to jj or jk in insert mode.
If you prefer this option add this one of those lines (or both) in your vimrec file.

inoremap jj <Esc>

inoremap jk <Esc>
Repeating Insert Mode

You can pass a count parameter before entering insert mode. For example:
101

If you type “hello world!” and exit insert mode, Vim will repeat the text 10 times. This will work
with any insert mode method (ex: 101, 11a, 120).

Deleting Chunks In Insert Mode

When you make a typing mistake, it can be cumbersome to type <Backspace> repeatedly. It may make
more sense to go to normal mode and delete your mistake. You can also delete several characters at
a time while in insert mode.

Ctrl-H Delete one character
Ctrl-w Delete one word
Ctrl-U Delete the entire line

Insert From Register

Vim registers can store texts for future use. To insert a text from any named register while in insert
mode, type Ctrl-R plus the register symbol. There are many symbols you can use, but for this section,
let’s cover only the named registers (a-z).

To see it in action, first you need to yank a word to register a. Move your cursor on any word. Then
type:

"ayiw

« "a tells Vim that the target of your next action will go to register a.
« yiw yanks inner word. Review the chapter on Vim grammar for a refresher.

Register a now contains the word you just yanked. While in insert mode, to paste the text stored in
register a:

Cho6. Insert Mode 55

Ctrl-R a

There are multiple types of registers in Vim. I will cover them in greater detail in a later chapter.

Scrolling

Did you know that you can scroll while inside insert mode? While in insert mode, if you go toCtr1-X
sub-mode, you can do additional operations. Scrolling is one of them.

Ctrl-X Ctrl-Y Scroll up
Ctrl-X Ctrl-E Scroll down

Autocompletion

As mentioned above, if you press Ctr1-X from insert mode, Vim will enter a sub-mode. You can do
text autocompletion while in this insert mode sub-mode. Although it is not as good as intellisense*’
or any other Language Server Protocol (LSP), but for something that is available right out of the box,
it is a very capable feature.

Here are some useful autocomplete commands to get started:

Ctrl-X Ctrl-L Insert a whole line

Ctrl-X Ctrl-N Insert a text from current file
Ctrl-X Ctrl-I Insert a text from included files
Ctrl-X Ctrl-F Insert a file name

When you trigger autocompletion, Vim will display a pop-up window. To navigate up and down the
pop-up window, use Ctr1-N and Ctrl-P.

Vim also has two autocompletion shortcuts that don’t involve the Ctr1-X sub-mode:

Ctrl-N Find the next word match
Ctrl-P Find the previous word match

In general, Vim looks at the text in all available buffers for autocompletion source. If you have an
open buffer with a line that says “Chocolate donuts are the best”:

« When you type “Choco” and do Ctr1-X Ctrl-L, it will match and print the entire line.
« When you type “Choco” and do Ctr1-P, it will match and print the word “Chocolate”.

Autocomplete is a vast topic in Vim. This is just the tip of the iceberg. To learn more, check out :h
ins-completion.

*https://code.visualstudio.com/docs/editor/intellisense

https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense

Cho6. Insert Mode 56

Executing A Normal Mode Command

Did you know Vim can execute a normal mode command while in insert mode?

While in insert mode, if you press Ctr1-0, you’ll be in insert-normal sub-mode. If you look at the
mode indicator on bottom left, normally you will see -- INSERT --, but pressing Ctr1-0 changes it
to -- (insert) --.In this mode, you can do one normal mode command. Some things you can do:

Centering and jumping

Ctrl-0 zz Center window

Ctrl-0 H/M/L Jump to top/middle/bottom window
Ctrl-0 'a Jump to mark a

Repeating text

Ctrl-0 1@@ihello Insert "hello" 100 times
Executing terminal commands

Ctr1-0 !! curl https://google.com Run curl
Ctrl-0 !! pwd Run pwd

Deleting faster

Ctrl1-0 dtz Delete from current location till the letter "z"
Ctrl-0 D Delete from current location to the end of the line

Learn Insert Mode The Smart Way

If you are like me and you come from another text editor, it can be tempting to stay in insert mode.
However, staying in insert mode when you’re not entering a text is an anti-pattern. Develop a habit
to go to normal mode when your fingers aren’t typing new texts.

When you need to insert a text, first ask yourself if that text already exists. If it does, try to yank or
move that text instead of typing it. If you have to use insert mode, see if you can autocomplete that
text whenever possible. Avoid typing the same word more than once if you can.

Ch07. The Dot Command

In general, you should try to avoid redoing what you just did whenever possible. In this chapter, you
will learn how to use the dot command to easily redo the previous change. It is a versatile command
for reducing simple repetitions.

Usage

Just like its name, you can use the dot command by pressing the dot key (.).

For example, if you want to replace all “let” with “const” in the following expressions:

let one = "1";
let two = "2";
let three = "3";

« Search with /let to go to the match.

« Change with cwconst <Esc> to replace “let” with “const”.

« Navigate with n to find the next match using the previous search.
« Repeat what you just did with the dot command (.).

+ Continue pressingn . n . until you replace every word.

Here the dot command repeated the cwconst<Esc> sequence. It saved you from typing eight
keystrokes in exchange for just one.

What Is A Change?

If you look at the definition of the dot command (:h .), it says that the dot command repeats the
last change. What is a change?

Any time you update (add, modify, or delete) the content of the current buffer, you are making a
change. The exceptions are updates done by command-line commands (the commands starting with
:) do not count as a change.

In the first example, cwconst <Esc> was the change. Now suppose you have this text:

Cho7. The Dot Command 58

pancake, potatoes, fruit-juice,

To delete the text from the start of the line to the next occurrence of a comma, first delete to the
comma, then repeat twice it with df, . ..

Let’s try another example:
pancake, potatoes, fruit-juice,

This time, your task is to delete the comma, not the breakfast items. Go to the first comma using,
delete it, then repeat two more times with f,x. . Easy, right? Wait a minute, it didn’t work! Why?
A change excludes motions because it does not update buffer content. The command £, x consisted
of two actions: the command £, to move the cursor to “,” and x to delete a character. Only the latter,
x, caused a change. Contrast that with df, from the earlier example. In it, £, is a directive to the
delete operator d, not a motion to move the cursor. The f, in df, and f,x have two very different
roles.

Let’s finish the last task. After you run f, then x, go to the next comma with ; to repeat the latest
f. Finally, use . to delete the character under the cursor. Repeat ; . ; . until everything is deleted.
The full command is f,x; . ; ..

Let’s try another one:

pancake
potatoes

fruit-juice

Lets add a comma at the end of each line. Starting at the first line, do A, <Esc> j. By now, you realize
that j does not cause a change. The change here is only A,. You can move and repeat the change
with j . j .. The full commandisA,<Esc>j.j..

Every action from the moment you press the insert command operator (A) until you exit the insert
command (<Esc>) is considered as a change.

Multi-line Repeat

Suppose you have this text:

Cho7. The Dot Command 59

let one = "1";

let two = "2";

let three = "3";
const foo = "bar';

let four = "4";
let five = "5";

let six = "6";

let seven = "T7";
let eight = "8";
let nine = "9";

Your goal is to delete all lines except the “foo” line. First, delete the first three lines with d2j, then
to the line below the “foo” line. On the next line, use the dot command twice. The full command is
d2jj. ..

Here the change was d2j. In this context, 2j was not a motion, but a part of the delete operator.

Let’s look at another example:

zlet zzone = "1";
zlet zztwo = "2";
zlet zzthree = "3";

let four = "4";

Let’s remove all the z’s. Starting from the first character on the first line, visually select the only the
first z from the first three lines with blockwise visual mode (Ctr1-Vjj). If you’re not familiar with
blockwise visual mode, I will cover them in a later chapter. Once you have the three z’s visually
selected, delete them with the delete operator (d). Then move to the next word (w) to the next z.
Repeat the change two more times (. .). The full command is Ctrl-vjjdw. ..

When you deleted a column of three z’s (Ctrl-vjjd), it was counted as a change. Visual mode
operation can be used to target multiple lines as part of a change.

Including A Motion In A Change

Let’s revisit the first example in this chapter. Recall that the command /letcwconst<Esc> followed
byn . n . replaced all “let” with “const” in the following expressions:

let one = "1";
let two = "2";
let three = "3";

Cho7. The Dot Command 60

There is a faster way to accomplish this. After you searched /let, run cgnconst<Esc> then .

gn is a motion that searches forward for the last search pattern (in this case, /1et) and automatically
does a visual highlight. To replace the next occurrence, you no longer have to move and repeat the
change (n . n .), but only repeat (. .). You do not have to use search motions anymore because
searching the next match is now part of the change!

When you are editing, always be on the lookout for motions that can do several things at once like
gn whenever possible.

Learn The Dot Command The Smart Way

The dot command’s power comes from exchanging several keystrokes for one. It is probably not
a profitable exchange to use the dot command for single key operations like x. If your last change
requires a complex operation like cgnconst<Esc>, the dot command reduces nine keypresses into
one, a very profitable trade-off.

When editing, think about repeatability. For example, if I need to remove the next three words, is it
more economical to use d3w or to do dw then . two times? Will you be deleting a word again? If so,
then it makes sense to use dw and repeat it several times instead of d3w because dw is more reusable
than d3w.

The dot command is the simpversatile command for automating single changes. In a later chapter,
you will learn how to automate more complex actions with Vim macros. But first, let’s learn about
registers to store and retrieve text.

ChO08. Registers

Learning Vim registers is like learning algebra for the first time. You didn’t think you need it until
you needed it.

You’ve probably used Vim registers when you yanked or deleted a text then pasted it with p or P.
However, did you know that Vim has 10 different types of registers? Used correctly, Vim registers
can save you from repetitive typing.

In this chapter, I will go over all Vim register types and how to use them efficiently.

The Ten Register Types

Here are the 10 Vim register types:

The unnamed register ("").

The numbered registers ("@-9).

The small delete register ("-).

The named registers ("a-z).

The read-only registers (":, ".,and "%).
The alternate buffer register ("#).

The expression register ("=).

The selection registers ("* and "+).
The black hole register ("_).

The last search pattern register ("/).

A S I T o

—_
e

Register Operators

To use registers, you need to first store them with operators. Here are some operators that store
values to registers:

y Yank (copy)
c Delete text and start insert mode
d Delete text

There are more operators (like s or x), but the above are the useful ones. The rule of thumb is, if an
operator can remove a text, it probably stores the text to registers.

To paste a text from registers, you can use:

Cho8. Registers 62

p Paste the text after the cursor
P Paste the text before the cursor

Both p and P accept a count and a register symbol as arguments. For example, to paste ten times,
do 10p. To paste the text from register a, do "ap. To paste the text from register a ten times, do
10"ap. By the way, the p actually technically stands for “put”, not “paste”, but I figure paste is a more
conventional word.

The general syntax to get the content from a specific register is "a, where a is the register symbol.

Calling Registers From Insert Mode

Everything you learn in this chapter can also be executed in insert mode. To get the text from register
a, normally you do "ap. But if you are in insert mode, run Ctr1-R a. The syntax to call registers
from insert mode is:

Ctrl-R a

Where a is the register symbol. Now that you know how to store and retrieve registers, let’s dive in!

The Unnamed Register

To get the text from the unnamed register, do ""p. It stores the last text you yanked, changed, or
deleted. If you do another yank, change, or delete, Vim will automatically replace the old text. The
unnamed register is like a computer’s standard copy / paste operation.

By default, p (or P) is connected to the unnamed register (from now on I will refer to the unnamed
register with p instead of ""p).

The Numbered Registers

Numbered registers automatically fill themselves up in ascending order. There are 2 different
numbered registers: the yanked register (9) and the numbered registers (1 -9). Let’s discuss the yanked
register first.

The Yanked Register
If you yank an entire line of text (yy), Vim actually saves that text in two registers:

1. The unnamed register (p).

Cho8. Registers 63
2. The yanked register ("op).

When you yank a different text, Vim will update both the yanked register and the unnamed register.
Any other operations (like delete) will not be stored in register 0. This can be used to your advantage,
because unless you do another yank, the yanked text will always be there, no matter how many
changes and deletions you do.

For example, if you:

1. Yank a line (yy)
2. Delete a line (dd)
3. Delete another line (dd)

The yanked register will have the text from step one.

If you:

1. Yank a line (yy)
2. Delete a line (dd)
3. Yank another line (yy)

The yanked register will have the text from step three.

One last tip, while in insert mode, you can quickly paste the text you just yanked using Ctr1-R @.

The Non-zero Numbered Registers

When you change or delete a text that is at least one line long, that text will be stored in the numbered
registers 1-9 sorted by the most recent.

For example, if you have these lines:

line three
line two

line one

With your cursor on “line three”, delete them one by one with dd. Once all lines are deleted, register
1 should contain “line one” (most recent), register two “line two” (second most recent), and register
three “line three” (oldest. To get the content from register one, do "1p.

As a side note, these numbered registers are automatically incremented when using the dot
command. If your numbered register one ("1) contains “line one”, register two ("2) “line two”, and
register three ("3) “line three”, you can paste them sequentially with this trick:

Cho8. Registers 64

« Do "1P to paste the content from the numbered register one (“1).
« Do . to paste the content from the numbered register two (“2).
« Do . to paste the content from the numbered register three (“3).

This trick works with any numbered register. If you started with "5p, . would do "6P, . again would
do "7P, and so on.

Small deletions like a word deletion (dw) or word change (cw) do not get stored in the numbered
registers. They are stored in the small delete register ("-), which I will discuss next.

The Small Delete Register

Changes or deletions less than one line are not stored in the numbered registers 0-9, but in the small
delete register ("-).

For example:

1. Delete a word (diw)
2. Delete a line (dd)
3. Delete a line (dd)

"-p gives you the deleted word from step one.

Another example:

1. I delete a word (diw)
2. I delete a line (dd)
3. I delete a word (diw)

"-p gives you the deleted word from step three. "1p gives you the deleted line from step two.
Unfortunately, there is no way to retrieve the deleted word from step one because the small delete
register only stores one item. However, if you want to preserve the text from step one, you can do
it with the named registers.

The Named Register

The named registers are Vim’s most versatile register. It can store yanked, changed, and deleted texts
into registers a-z. Unlike the previous 3 register types you’ve seen which automatically stores texts
into registers, you have to explicitly tell Vim to use the named register, giving you full control.

To yank a word into register a, you can do it with "ayiw.

Cho8. Registers 65

« "a tells Vim that the next action (delete / change / yank) will be stored in register a.
« yiw yanks the word.

To get the text from register a, run "ap. You can use all twenty-six alphabetical characters to store
twenty-six different texts with named registers.

Sometimes you may want to add to your existing named register. In this case, you can append your
text instead of starting all over. To do that, you can use the uppercase version of that register. For
example, suppose you have the word “Hello “ already stored in register a. If you want to add “world”
into register a, you can find the text “world” and yank it using A register ("Ayiw).

The Read-Only Registers

Vim has three read-only registers: ., :, and %. They are pretty simple to use:

Stores the last inserted text
Stores the last executed command-line
% Stores the name of current file

If the last text you wrote was “Hello Vim”, running ".p will print out the text “Hello Vim”. If you
want to get the name of current file, run "%p. If you run :s/foo/bar/g command, running ":p will
print out the literal text “s/foo/bar/g”.

The Alternate File Register

In Vim, # usually represents the alternate file. An alternative file is the last file you opened. To insert
the name of the alternate file, you can use "#p.

The Expression Register

Vim has an expression register, "=, to evaluate expressions.

To evaluate mathematical expressions1 + 1, run:
"=1+1<Enter>p

Here, you are telling Vim that you are using the expression register with "=. Your expression is (1 +
1). You need to type p to get the result. As mentioned earlier, you can also access the register from
insert mode. To evaluate mathematical expression from insert mode, you can do:

Cho8. Registers 66
Ctrl-R =1+1

You can also get the values from any register via the expression register when appended with e@. If
you wish to get the text from register a:

"=@a
Then press <Enter>, then p. Similarly, to get values from register a while in insert mode:
Ctrl-r =@a

Expression is a vast topic in Vim, so I will only cover the basics here. I will address expressions in
more details in later Vimscript chapters.

The Selection Registers

Don’t you sometimes wish that you can copy a text from external programs and paste it locally
in Vim, and vice versa? With Vim’s selection registers, you can. Vim has two selection registers:
quotestar ("*) and quoteplus ("+). You can use them to access copied text from external programs.

If you are on an external program (like Chrome browser) and you copy a block of text with Ctr1-cC
(or cmd-C, depending on your OS), normally you wouldn’t be able to use p to paste the text in Vim.
However, both Vim’s "+ and "* are connected to your clipboard, so you can actually paste the text
with "+p or "*p. Conversely, if you yank a word from Vim with "+yiw or "*yiw, you can paste that
text in the external program with Ctr1-Vv (or Cmd-V). Note that this only works if your Vim program
comes with the +clipboard option (to check it, run :version).

You may wonder if "* and "+ do the same thing, why does Vim have two different registers? Some
machines use X11 window system. This system has 3 types of selections: primary, secondary, and
clipboard. If your machine uses X11, Vim uses X11’s primary selection with the quotestar ("*)
register and X11’s clipboard selection with the quoteplus ("+) register. This is only applicable if
you have +xterm_clipboard option available in your Vim build. If your Vim doesn’t have xterm_-
clipboard, it’s not a big deal. It just means that both quotestar and quoteplus are interchangeable
(mine doesn’t either).

I find doing =*p or =+p to be cumbersome. To make Vim to paste copied text from the external
program with just p, you can add this in your vimrc:

set clipboard=unnamed

Now when I copy a text from an external program, I can paste it with the unnamed register, p. I can
also copy a text from Vim and paste it to an external program. If you have +xterm_clipboard on,
you may want to use both unnamed and unnamedplus clipboard options.

Chos. Registers 67

The Black Hole Register

Each time you delete or change a text, that text is stored in Vim register automatically. There will
be times when you don’t want to save anything into the register. How can you do that?

You can use the black hole register ("_). To delete a line and not have Vim store the deleted line into
any register, use "_dd.

The black hole register is like the /dev/null of registers.
The Last Search Pattern Register

To paste your last search (/ or ?), you can use the last search pattern register ("/). To paste the last
search term, use " /p.

Viewing The Registers

To view all your registers, use the :register command. To view only registers “a, “1, and “-, use
:register a 1 -.

There is a plugin called vim-peekaboo? that lets you to peek into the contents of the registers when
you hit " or @ in normal mode and Ctr1-R in insert mode. I find this plugin very useful because most
times, I can’t remember the content in my registers. Give it a try!

Executing A Register

The named registers are not just for storing texts. They can also execute macros with @. I will go
over macros in the next chapter.

Keep in mind since macros are stored inside Vim registers, you can accidentally overwrite the stored
text with macros. If you store the text “Hello Vim” in register a and you later record a macro in the
same register (ga{macro-sequence}q), that macro will overwrite your “Hello Vim” text stored earlier.

Clearing A Register

Technically, there is no need to clear any register because the next register you store under the same
name will overwrite it. However, you can quickly clear any named register by recording an empty
macro. For example, if you run gag, Vim will record an empty macro in the register a.

Another alternative is to run the command :call setreg('a', '') where “a is the register a.

One more way to clear register is to set the content of “a register to an empty string with the
expression :let @ = ''.

**https://github.com/junegunn/vim-peekaboo

https://github.com/junegunn/vim-peekaboo
https://github.com/junegunn/vim-peekaboo

Cho8. Registers 68

Putting The Content Of A Register

You can use the : put command to paste the content of any one register. For example, if you run :put
a, Vim will print the content of register a below the current line. This behaves much like "ap, with
the difference that the normal mode command p prints the register content after the cursor and the
command :put prints the register content at newline.

Since :put is a command-line command, you can pass it an address. :10put a will paste text from
register a to below line 10.

One cool trick to pass :put with the black hole register ("_). Since the black hole register does not
store any text, :put _ will insert a blank line instead. You can combine this with the global command
to insert multiple blank lines. For example, to insert blank lines below all lines that contain the text
“end”, run :g/end/put _. You will learn about the global command later.

Learning Registers The Smart Way

You made it to the end. Congratulations! If you are feeling overwhelmed by the sheer information,
you are not alone. When I first started learning about Vim registers, there were way too much
information to take at once.

I don’t think you should memorize all the registers immediately. To become productive, you can
start by using only these 3 registers:

1. The unnamed register ("").
2. The named registers ("a-z).
3. The numbered registers ("0-9).

Since the unnamed register defaults to p and P, you only have to learn two registers: the named
registers and the numbered registers. Gradually learn more registers when you need them. Take
your time.

The average human has a limited short-term memory capacity, about 5 - 7 items at once. That is
why in my everyday editing, I only use about 5 - 7 named registers. There is no way I can remember
all twenty-six in my head. I normally start with register a, then b, ascending the alphabetical order.
Try it and experiment around to see what technique works best for you.

Vim registers are powerful. Used strategically, it can save you from typing countless repeating texts.
Next, let’s learn about macros.

Ch09. Macros

When editing files, you may find yourself repeating the same actions. Wouldn’t it be nice if you can
do those actions once and replay them whenever you need it? With Vim macros, you can record
actions and store them inside Vim registers to be executed whenever you need it.

In this chapter, you will learn how to use macros to automate mundane tasks (plus it looks cool to
watch your file edit itself).

Basic Macros

Here is the basic syntax of a Vim macro:

ga Start recording a macro in register a
g (while recording) Stop recording macro

You can choose any lowercase letters (a-z) to store macros. Here is how you can execute a macro:

@a Execute macro from register a
@@ Execute the last executed macros

Suppose you have this text and you want to uppercase everything on each line:

hello
vim
macros
are

awesome

With your cursor at the start of the line “hello”, run:
qadgu$jq

The breakdown:

« ga starts recording a macro in the “a register.

« 0 goes to beginning of the line.

« gU$ uppercases the text from your current location to the end of the line.
« j goes down one line.

« q stops recording.

To replay it, run @a. Just like many other Vim commands, you can pass a count argument to macros.
For example, running 3@a executes the macro three times.

Ch09. Macros 70

Safety Guard

Macro execution automatically ends when it encounters an error. Suppose you have this text:

a. chocolate donut

b. mochi donut

c. powdered sugar donut
d. plain donut

If you want to uppercase the first word on each line, this macro should work:
galw~jq
Here’s the breakdown of the command above:

« ga starts recording a macro in the “a register.

« @ goes to the beginning of the line.

W goes to the next WORD.

~ toggles the case of the character under the cursor.
+ j goes down one line.

« q stops recording.

I prefer to overcount my macro execution than undercount it, so I usually call it ninety-nine times
(99@a). With this command, Vim does not actually run this macro ninety-nine times. When Vim
reaches the last line and runs j motion, it finds no more line to go down to, throws an error, and
stops the macro execution.

The fact that macro execution stops upon the first error encounter is a good feature, otherwise Vim
will continue to execute this macro ninety-nine times even though it already reaches the end of the
line.

Command Line Macro

Running @a in normal mode is not the only way you can execute macros in Vim. You can also run
:normal @a command line. :normal allows the user to execute any normal mode command passed
as argument. In the case above, it is the same as running @a from normal mode.

The :normal command accepts range as arguments. You can use this to run macro in select ranges.
If you want to execute your macro between lines 2 and 3, you can run :2,3 normal @a.

Ch09. Macros 71

Executing A Macro Across Multiple Files

Suppose you have multiple .txt files, each contains some texts. Your task is to uppercase the first
word only on lines containing the word “donut”. Assume you have ew~j in register a (the same
macro as before). How can you quickly accomplish this?

First file:

savory.txt

a. cheddar jalapeno donut
b. mac n cheese donut

c. fried dumpling

Second file:

sweet.txt
a. chocolate donut
b. chocolate pancake

c. powdered sugar donut

Third file:

plain.txt
a. wheat bread
b. plain donut

Here is how you can do it:

« :args *.txt to find all . txt files in your current directory.

« :argdo g/donut/normal @a executes the global command g/donut/normal @a on each file
inside :args.

« :argdo update executes update command to save each file inside :args when the buffer has
been modified.

If you are not familiar with the global command : g/donut/normal @a, it executes the command you

give (normal @a) on lines that match the pattern (/donut/). I will go over the global command in a
later chapter.

Recursive Macro

You can recursively execute a macro by calling the same macro register while recording that macro.
Suppose you have this list again and you need to toggle the case of the first word:

Ch09. Macros 72

chocolate donut
mochi donut
powdered sugar donut

0 Q T o

plain donut

This time, let’s do it recursively. Run:
gaqgalW~ j@aq

Here is the breakdown of the steps:

« gaq records an empty macro “a. It is necessary to start with an empty register because when
you recursively call the macro, it will run whatever is in that register.

« ga starts recording on register a.

0 goes to the first character in the current line.

« W goes to the next WORD.

« ~ toggles the case of the character under the cursor.

« j goes down one line.

« @a executes macro “a.

« q stops recording.

Now you can just run @a and watch Vim execute the macro recursively.

How did the macro know when to stop? When the macro was on the last line, it triedto run j, since
there was no more line to go to, it stopped the macro execution.

Appending A Macro

If you need to add actions to an existing macro, instead of recreating the macro from scratch, you
can append actions to an existing one. In the register chapter, you learned that you can append a
named register by using its uppercased symbol. The same rule applies. To append actions to register
a macro, use register “A.

Record a macro in register a: qa@W~q (this sequence toggles the case of the next WORD in a line). If
you want to append a new sequence to also add a dot at the end of the line, run:
gAA.<Esc>q

The breakdown:

« gA starts recording the macro in register “A.

« A.<Esc> inserts at the end of the line (here A is the insert mode command, not to be confused
with the macro “A) a dot, then exits insert mode.

« q stops recording macro.

Now when you execute @a, it not only toggles the case of the next WORD, it also adds a dot at the
end of the line.

Ch09. Macros 73

Amending A Macro

What if you need to add new actions in the middle of a macro?

Assume that you have a macro that toggles the first actual word and adding a period at the end of
the line, @W~A. <Esc> in register a. Suppose that between uppercasing the first word and adding a
period at the end of the line, you need to add the word “deep fried” right before the word “donut”
(because the only thing better than regular donuts are deep fried donuts).

I will reuse the text from earlier section:

chocolate donut
mochi donut
powdered sugar donut

0 Q T o

plain donut

First, let’s call the existing macro (assume you have kept the macro from the previous section in
register a) with :put a:

OW~A . A |

What is this [? Didn’t you do @w~A.<Esc>? Where is the <Esc>? *[is Vim’s internal code
representation of <Esc>. With certain special keys, Vim prints the representation of those keys in
the form of internal codes. Some common keys that have internal code representations are <Esc>,
<Backspace>, and <Enter>. There are more special keys, but they are not within the scope of this
chapter.

Back to the macro, right after the toggle case operator (~), let’s add the instructions to go to the end
of the line ($), go back one word (b), go to the insert mode (i), type “deep fried “ (don’t forget the
space after “fried “), and exit insert mode (<Esc>).

Here is what you will end up with:
OW~$bideep fried <Esc>A.7[

There is a small problem. Vim does not understand <Esc>. You can'’t literally type <Esc>. You will
have to write the internal code representation for the <Esc> key. While in insert mode, you press
Ctrl-V followed by <Esc>. Vim will print A[. Ctrl-V is an insert mode operator to insert the next
non-digit character literally. Your macro code should look like this now:

OW~$bideep fried *[A. 7]

Ch09. Macros 74

To add the amended instruction into register a, you can do it the same way as adding a new entry
into a named register. At the start of the line, run "ay$ to store the yanked text in register a.

Now when you execute @a, your macro will toggle the case of the first word, add “deep fried “ before
“donut”, and add a “” at the end of the line. Yum!

An alternative way to amend a macro is to use a command line expression. Do :let @a=", then do
Ctrl-R Ctrl-R a, this will literally paste the content of register a. Finally, don’t forget to close the
double quotes ("). You might have something like : let @a="@wW~$bideep fried M[A.A[".

Macro Redundancy

You can easily duplicate macros from one register to another. For example, to duplicate a macro in
register a to register z, you can do : let @z = @a. @a represents the content of register a. Now if you
run @z, it does the exact same actions as @a.

I find creating a redundancy useful on my most frequently used macros. In my workflow, I usually
record macros in the first seven alphabetical letters (a-g) and I often replace them without much
thought. If I move the useful macros towards the end of the alphabets, I can preserve them without
worrying that I might accidentally replace them.

Series Vs Parallel Macro

Vim can execute macros in series and parallel. Suppose you have this text:

import { FUNC1
import { FUNC2
import { FUNC3
import { FUNC4
import { FUNC5

from "library1";
from "library2";
from "library3";

from "library4";

—— e N o

from "library5";
If you want to record a macro to lowercase all the uppercased “FUNC”, this macro should work:

ga@f{gui{jq
The breakdown:

« ga starts recording in register a.

« @ goes to first line.

« £{ finds the first instance of “{".

« gui{ lowercases (gu) the text inside the bracket text-object (i{).
« j goes down one line.

« q stops macro recording.

Now you can run 99@a to execute it on the remaining lines. However, what if you have this import
expression inside your file?

Ch09. Macros 75

import { FUNC1 } from "libraryl";
import { FUNC2 } from "library2";
import { FUNC3 } from "library3";
import foo from "bar";

import { FUNC4 } from "library4";
import { FUNC5 } from "library5";

Running 99@a, only executes the macro three times. It does not execute the macro on last two lines
because the execution fails to run £{ on the “foo” line. This is expected when running the macro in
series. You can always go to the next line where “FUNC4” is and replay that macro again. But what
if you want to get everything done in one go?

Run the macro in parallel.

Recall from earlier section that macros can be executed using the command line command : normal
(ex: :3,5 normal @a executes macro “a on lines 3-5). If you run :1,$ normal @a, you will see that
the macro is being executed on all lines except the “foo” line. It works!

Although internally Vim does not actually run the macros in parallel, outwardly, it behaves like it.
Vim executes @a independently on each line from the first to the last line (1, $). Since Vim executes
these macros independently, each line does not know that one of the macro executions had failed
on the “foo” line.

Learn Macros The Smart Way

Many things you do in editing are repetitive. To get better at editing, get into the habit of detecting
repetitive actions. Use macros (or dot command) so you don’t have to perform the same action twice.
Almost everything that you can do in Vim can be replicated with macros.

In the beginning, I find it very awkward to write macros, but don’t give up. With enough practice,
you will get into the habit of automating everything.

You might find it helpful to use mnemonics to help remember your macros. If you have a macro
that creates a function, use the “f register (qf). If you have a macro for numerical operations, the “n
register should work (gn). Name it with the first named register that comes to your mind when you
think of that operation. I also find that the “q register makes a good default macro register because qq
requires less brain power to come up with. Lastly, I also like to increment my macros in alphabetical
orders, like qa, then gb, then qc, and so on.

Find a method that works best for you.

Ch10. Undo

We all make all sorts of typing mistakes. That’s why undo is an essential feature in any modern
software. Vim’s undo system is not only capable of undoing and redoing simple mistakes, but also
accessing different text states, giving you control to all the texts you have ever typed. In this chapter,
you will learn how to undo, redo, navigate an undo branch, persist undo, and travel across time.

Undo, Redo, And UNDO

To perform a basic undo, you can use u or run :undo.

If you have this text (note the empty line below “one”):
one
Then you add another text:

one

two

If you press u, Vim undoes the text “two”.

How does Vim know how much to undo? Vim undoes a single “change” at a time, similar to a dot
command’s change (unlike the dot command, command-line command also count as a change).

To redo the last change, press Ctr1-R or run :redo. After you undo the text above to remove “two”,
running Ctr1-R will get the removed text back.

Vim also has UNDO that you can run with U. It undoes all latest changes.

How is U different from u? First, U removes all the changes on the latest changed line, while u only
removes one change at a time. Second, while doing u does not count as a change, doing U counts as
a change.

Back to this example:

one

two

Change the second line to “three”:

Ch10. Undo 77

one
three

Change the second line again and replace it with “four”:

one

four

If you press u, you will see “three”. If you press u again, you’ll see “two”. If instead of pressing u
when you still had the text “four”, you had pressed U, you will see:

one

U bypasses all the intermediary changes and goes to the original state when you started (an empty
line). In addition, since UNDO actually creates a new change in Vim, you can UNDO your UNDO.
U followed by U will undo itself. You can press U, then U, then U, etc. You will see the same two text
states toggling back and forth.

I personally do not use U because it is hard to remember the original state (I seldom ever need it).

Vim sets a maximum number of how many times you can undo in undolevels option variable. You
can check it with :echo &undolevels. I have mine set to be 1000. To change yours to 1000, run :set
undolevels=1000. Feel free to set it to any number you like.

Breaking The Blocks

I mentioned earlier that u undoes a single “change” similar to the dot command’s change: the texts
inserted from when you enter the insert mode until you exit it count as a change.

If you do ione two three<Esc> then press u, Vim removes the entire “one two three” text because
the whole thing counts as a change. This is not a big deal if you have written short texts, but what
if you have written several paragraphs within one insert mode session without exiting and later
you realized you made a mistake? If you press u, everything you had written would be removed.
Wouldn'’t it be useful if you can press u to remove only a section of your text?

Luckily, you can break the undo blocks. When you are typing in insert mode, pressing Ctrl-G u
creates an undo breakpoint. For example, if you do ione <Ctrl-G u>two <Ctrl-G u>three<Esc>,
then press u, you will only lose the text “three” (press u one more time to remove “two”). When you
write a long text, use Ctrl-G u strategically. The end of each sentence, between two paragraphs, or
after each line of code are prime locations to add undo breakpoints to make it easier to undo your
mistakes if you ever make one.

It is also useful to create an undo breakpoint when deleting chunks in insert mode with Ctrl-w
(delete the word before the cursor) and Ctr1-U (delete all text before the cursor). A friend suggested
to use the following maps:

Ch10. Undo 78

inoremap <c-u> <c-g>u<c-u>

inoremap <c-w> <c-g>u<c-w>

With these, you can easily recover the deleted texts.

Undo Tree

Vim stores every change ever written in an undo tree. Start a new empty file. Then add a new text:
one
Add a new text:

one

two
Undo once:
one

Add a different text:

one

three

Undo again:

one

And add another different text:

one
four

Now if you undo, you will lose the text “four” you just added:
one

If you undo one more time:

Ch10. Undo 79

You will lose the text “one”. In most text editor, getting the texts “two” and “three” back would have
been impossible, but not with Vim! Press g+ and you’ll get your text “one” back:

one
Type g+ again and you will see an old friend:

one
two

Let’s keep going. Press g+ again:

one

three
Press g+ one more time:

one

four

In Vim, every time you press u and then make a different change, Vim stores the previous state’s
text by creating an “undo branch”. In this example, after you typed “two”, then pressed u, then typed
“three”, you created an leaf branch that stores the state containing the text “two”. At that moment,
the undo tree contained at least two leaf nodes: the main node containing the text “three” (most
recent) and the undo branch node containing the text “two”. If you had done another undo and
typed the text “four”, you would have at three nodes: a main node containing the text “four” and
two nodes containing the texts “three” and “two”.

To traverse each undo tree nodes, you can use g+ to go to a newer state and g- to go to an older state.
The difference between u, Ctr1-R, g+, and g- is that both u and Ctr1-R traverse only the main nodes
in undo tree while g+ and g- traverse all nodes in the undo tree.

Undo tree is not easy to visualize. I find vim-mundo® plugin to be very useful to help visualize Vim’s
undo tree. Give it some time to play around with it.

Persistent Undo

If you start Vim, open a file, and immediately press u, Vim will probably display “Already at oldest
change” warning. There is nothing to undo because you haven’t made any changes.

To rollover the undo history from the last editing session, Vim can preserve your undo history with
an undo file with :wundo.

Create a file mynumbers. txt. Type:

*https://github.com/simnalamburt/vim-mundo

https://github.com/simnalamburt/vim-mundo
https://github.com/simnalamburt/vim-mundo

Ch10. Undo 80

one
Then type another line (make sure each line counts as a change):

one

two
Type another line:

one
two
three

Now create your undo file with :wundo {my-undo-file}.If you need to overwrite an existing undo
tile, you can add ! after wundo.

:wundo! mynumbers.undo

Then exit Vim.

By now you should have mynumbers.txt and mynumbers.undo files in your directory. Open up
mynumbers . txt again and try pressing u. You can’t. You haven’t made any changes since you opened
the file. Now load your undo history by reading the undo file with : rundo:

:rundo mynumbers.undo

Now if you press u, Vim removes “three”. Press u again to remove “two”. It is like you never even
closed Vim!

If you want to have an automatic undo persistence, one way to do it is by adding these in vimre:

set undodir=~/.vim/undo_dir
set undofile

The setting above will put all the undofile in one centralized directory, the ~/.vim directory. The
name undo_dir is arbitrary. set undofile tells Vim to turn on undofile feature because it is off by
default. Now whenever you save, Vim automatically creates and updates the relevant file inside the
undo_dir directory (make sure that you create the actual undo_dir directory inside ~/.vim directory
before running this).

Time Travel

Who says that time travel doesn’t exist? Vim can travel to a text state in the past with :earlier
command-line command.

If you have this text:

Ch10. Undo 81

one
Then later you add:

one

two

If you had typed “two” less than ten seconds ago, you can go back to the state where “two” didn’t
exist ten seconds ago with:

;earlier 10s

You can use :undolist to see when the last change was made. :earlier also accepts different
arguments:

;earlier 10s Go to the state 10 seconds before
;earlier 10m Go to the state 10 minutes before
;earlier 10h Go to the state 10 hours before

rearlier 10@d Go to the state 10 days before

In addition, it also accepts a regular count as argument to tell Vim to go to the older state count
times. For example, if you do :earlier 2, Vim will go back to an older text state two changes ago.
It is the same as doing g- twice. You can also tell it to go to the older text state 10 saves ago with
rearlier 10f.

The same set of arguments work with :earlier counterpart: : later.

:later 10s go to the state 10 seconds later
:later 10m go to the state 10 minutes later
:later 10h go to the state 10 hours later
:later 10d go to the state 10 days later
:later 10 go to the newer state 10 times

:later 10f go to the state 10 saves later
Learn Undo The Smart Way

u and Ctrl-R are two indispensable Vim commands for correcting mistakes. Learn them first. Next,
learn how to use :earlier and :later using the time arguments first. After that, take your time
to understand the undo tree. The vim-mundo®® plugin helped me a lot. Type along the texts in this
chapter and check the undo tree as you make each change. Once you grasp it, you will never see
undo system the same way again.

Prior to this chapter, you learned how to find any text in a project space, with undo, you can now
find any text in a time dimension. You are now able to search for any text by its location and time
written. You have achieved Vim-omnipresence.

*https://github.com/simnalamburt/vim-mundo

https://github.com/simnalamburt/vim-mundo
https://github.com/simnalamburt/vim-mundo

Ch11. Visual Mode

Highlighting and applying changes to a body of text is a common feature in many text editors and
word processors. Vim can do this using visual mode. In this chapter, you will learn how to use the
visual mode to manipulate texts efficiently.

The Three Types Of Visual Modes

Vim has three different visual modes. They are:

\% Character-wise visual mode
Vv Line-wise visual mode
Ctrl-v Block-wise visual mode

If you have the text:

one

two

three

Character-wise visual mode works with individual characters. Press v on the first character. Then
go down to the next line with j. It highlights all texts from “one” up to your cursor location. If you
press gU, Vim uppercases the highlighted characters.

Line-wise visual mode works with lines. Press vV and watch Vim selects the entire line your cursor is
on. Just like character-wise visual mode, if you run gu, Vim uppercases the highlighted characters.

Block-wise visual mode works with rows and columns. It gives you more freedom of movement than
the other two modes. If you press Ctrl-v, Vim highlights the character under the cursor just like
character-wise visual mode, except instead of highlighting each character until the end of the line
before going down to the next line, it goes to the next line with minimal highlighting. Try moving
around with h/j/k/1 and watch the cursor moves.

On the bottom left of your Vim window, you will see either -- VISUAL --, -- VISUAL LINE --,or
-- VISUAL BLOCK -- displayed to indicate which visual mode you are in.

While you are inside a visual mode, you can switch to another visual mode by pressing either v, v,
or Ctrl-v. For example, if you are in line-wise visual mode and you want to switch to block-wise
visual mode, run Ctr1-v. Try it!

Ch11. Visual Mode 83

There are three ways to exit the visual mode: <Esc>, Ctr1-C, and the same key as your current visual
mode. What the latter means is if you are currently in the line-wise visual mode (v), you can exit it
by pressing V again. If you are in the character-wise visual mode, you can exit it by pressing v.

There is actually one more way to enter the visual mode:
gv Go to the previous visual mode

It will start the same visual mode on the same highlighted text block as you did last time.

Visual Mode Navigation

While in a visual mode, you can expand the highlighted text block with Vim motions.

Let’s use the same text you used earlier:

one
two

three

This time let’s start from the line “two”. Press v to go to the character-wise visual mode (here the
square brackets [] represents the character highlights):

one
[t]wo
three

Press j and Vim will highlight all the text from the line “two” down to the first character of the line
“three”.

onhe
[two
t]hree

Assume from this position, you want to add the line “one” too. If you press k, to your dismay, the
highlight moves away from the line “three”.

one
[t]wo
three

Is there a way to freely expand visual selection to go to any direction you want? Definitely. Let’s
back up a little bit to where you have the line “two” and “three” highlighted.

Ch11. Visual Mode 84

one
[two
t]hree <{-- cursor

Visual highlight follows the cursor movement. If you want to expand it upward to line “one”, you
need to move the cursor up to the line “two”. Right now the cursor is on the line “three”. You can
toggle the cursor location with either o or 0.

one
[two <-- cursor
t]hree

Now when you press k, it no longer reduces the selection, but expands it upward.

[one
two
t]hree

With o or 0 in visual mode, the cursor jumps from the beginning to the end of the highlighted block,
allowing you to expand the highlight area.

Visual Mode Grammar

The visual mode shares many operations with normal mode.

For example, if you have the following text and you want to delete the first two lines from visual
mode:

one
two

three
Highlight the lines “one” and “two” with the line-wise visual mode (v):

[one
two]
three

Pressing d will delete the selection, similar to normal mode. Notice the grammar rule from normal
mode, verb + noun, does not apply. The same verb is still there (d), but there is no noun in visual
mode. The grammar rule in visual mode is noun + verb, where noun is the highlighted text. Select
the text block first, then the command follows.

Ch11. Visual Mode 85

In normal mode, there are some commands that do not require a motion, like x to delete a single
character under the cursor and r to replace the character under the cursor (rx replaces the character
under the cursor with “x”). In visual mode, these commands are now being applied to the entire
highlighted text instead of a single character. Back at the highlighted text:

[one
two]
three

Running x deletes all highlighted texts.

You can use this behavior to quickly create a header in markdown text. Suppose you need to quickly
turn the following text into a first-level markdown header (“==="):

Chapter One
First, copy the text with yy, then paste it with p:

Chapter One
Chapter One

Now go to the second line, select it with line-wise visual mode:

Chapter One
[Chapter One]

”»

A first-level header is a series of “=” below a text. Run r=, voila! This saves you from typing “=
manually.

Chapter One

To learn more about operators in visual mode, check out :h visual-operators.

Visual Mode And Command-line Commands

You can selectively apply command-line commands on a highlighted text block. If you have these
statements and you want to substitute “const” with “let” only on the first two lines:

Ch11. Visual Mode 86

const one = "one";
const two = "two";
const three = "three";

Highlight the first two lines with any visual mode and run the substitute command :s/const/let/g:

let one = "one";
let two = "two";
const three = "three";

Notice I said you can do this with any visual mode. You do not have to highlight the entire line to
run the command on that line. As long as you select at least a character on each line, the command
is applied.

Adding Text On Multiple Lines

You can add text on multiple lines in Vim using the block-wise visual mode. If you need to add a
semicolon at the end of each line:

const one = "one
const two = "two"
const three = "three"

With your cursor on the first line:

« Run block-wise visual mode and go down two lines (Ctrl-v jj).
« Highlight to the end of the line ($).

« Append (A) then type ;.
« Exit visual mode (<Esc>).

You should see the appended “;” on each line now. Pretty cool! There are two ways to enter the insert
mode from block-wise visual mode: A to enter the text after the cursor or I to enter the text before
the cursor. Do not confuse them with A (append text at the end of the line) and I (insert text before
the first non-blank line) from normal mode.

Alternatively, you can also use the :normal command to add text on multiple lines:

« Highlight all 3 lines (vjj).
» Type :normal! A;.

Remember, :normal command executes normal mode commands. You can instruct it to run A; to
append text “;” at the end of the line.

Ch11. Visual Mode 87

Incrementing Numbers

Vim hasCtr1-X and Ctrl-A commands to decrement and increment numbers. When used with visual
mode, you can increment numbers across multiple lines.

If you have these HTML elements:

<div id="app-1"></div>
<div id="app-1"></div>
<div id="app-1"></div>
<div id="app-1"></div>
<div id="app-1"></div>

It is a bad practice to have several ids having the same name, so let’s increment them to make them
unique:

« Move your cursor to the “1” on the second line.
« Start block-wise visual mode and go down 3 lines (Ctr1-v 3j). This highlights the remaining
“1”s. Now all “1” should be highlighted.

« Rung Ctrl-a.
You should see this result:

<div id="app-1"></div>
<div id="app-2"></div>
<div id="app-3"></div>
<div id="app-4"></div>
<div id="app-5"></div>

g Ctrl-a increments numbers on multiple lines. Ctr1-X/Ctrl-A can increment letters too, with the
number formats option:

set nrformats+=alpha

The nr formats option instructs Vim which bases are considered as “numbers” for Ctr1-A and Ctr1-X
to increment and decrement. By adding alpha, an alphabetical character is now considered as a
number. If you have the following HTML elements:

Ch11. Visual Mode 88

<div id="app-a"></div>
<div id="app-a"></div>
<div id="app-a"></div>
<div id="app-a"></div>
<div id="app-a"></div>

Put your cursor on the second “app-a”. Use the same technique as above (Ctr1-v 3j theng Ctrl-a)
to increment the ids.

<div id="app-a"></div>
<div id="app-b"></div>
<div id="app-c"></div>
<div id="app-d"></div>
<div id="app-e"></div>

Selecting The Last Visual Mode Area

Earlier in this chapter I mentioned that gv can quickly highlight the last visual mode highlight. You
can also go to the location of the start and the end of the last visual mode with these two special
marks:

"< Go to the last place of the previous visual mode highlight
T Go to the first place of the previous visual mode highlight

Earlier, I also mentioned that you can selectively execute command-line commands on a highlighted
text, like :s/const/let/g. When you did that, you’d see this below:

:7<,>s/const/let/g

You were actually executing a ranged s/const/let/g command (with the two marks as the
addresses). Interesting!

You can always edit these marks anytime you wish. If instead you needed to substitute from the
start of the highlighted text to the end of the file, you just change the command to:

:°<,$s/const/let/g

Entering Visual Mode From Insert Mode

You can also enter visual mode from the insert mode. To go to character-wise visual mode while
you are in insert mode:

Ch11. Visual Mode 89
Ctrl-0 v

Recall that running Ctr1-0 while in the insert mode lets you to execute a normal mode command.
While in this normal-mode-command-pending mode, run v to enter character-wise visual mode.
Notice that on the bottom left of the screen, it says --(insert) VISUAL--. This trick works with any
visual mode operator: v, v, and Ctrl-v.

Select Mode

Vim has a mode similar to visual mode called the select mode. Like the visual mode, it also has three
different modes:

gh Character-wise select mode
gH Line-wise select mode
gCtrl-h Block-wise select mode

Select mode emulates a regular editor’s text highlighting behavior closer than Vim’s visual mode
does.

In a regular editor, after you highlight a text block and type a letter, say the letter “y”, it will delete
the highlighted text and insert the letter “y”. If you highlight a line with line-wise select mode (gH)

«_»

and type “y”, it will delete the highlighted text and insert the letter “y”.

Contrast this select mode with visual mode: if you highlight a line of text with line-wise visual mode
(V) and type “y”, the highlighted text will not be deleted and replaced by the literal letter “y”, it will
be yanked. You can’t execute normal mode commands on highlighted text in select mode.

I personally never used select mode, but it’s good to know that it exists.

Learn Visual Mode The Smart Way

The visual mode is Vim’s representation of the text highlighting procedure.

If you find yourself using visual mode operation far more often than normal mode operations,
be careful. This is an anti-pattern. It takes more keystrokes to run a visual mode operation than
its normal mode counterpart. For example, if you need to delete an inner word, why use four
keystrokes, viwd (visually highlight an inner word then delete), if you can accomplish it with just
three keystrokes (diw)? The latter is more direct and concise. Of course, there will be times when
visual modes are appropriate, but in general, favor a more direct approach.

Ch12. Search And Substitute

This chapter covers two separate but related concepts: search and substitute. Often when editing,
you need to search multiple texts based on their least common denominator patterns. By learning
how to use regular expressions in search and substitute instead of literal strings, you will be able to
target any text quickly.

As a side note, in this chapter, [will use / when talking about search. Everything you can do with /
can also be done with 2.

Smart Case Sensitivity

It can be tricky trying to match the case of the search term. If you are searching for the text “Learn
Vim”, you can easily mistype the case of one letter and get a false search result. Wouldn’t it be
easier and safer if you can match any case? This is where the option ignorecase shines. Just add set
ignorecase in your vimrc and all your search terms become case insensitive. Now you don’t have
to do /Learn Vim anymore, /learn vim will work.

However, there are times when you need to search for a case specific phrase. One way to do that is
to turn off ignorecase option by running set noignorecase, but that is a lot of work to turn on and
off each time you need to search for a case sensitive phrase.

To avoid toggling ignorecase, Vim has a smartcase option to search for case insensitive string if
the search pattern contains at least one uppercase character. You can combine both ignorecase and
smartcase to perform a case insensitive search when you enter all lowercase characters and a case
sensitive search when you enter one or more uppercase characters.

Inside your vimre, add:

set ignorecase smartcase
If you have these texts:
hello

HELLO
Hello

« /hello matches “hello”, “HELLO”, and “Hello”.
« /HELLO matches only “HELLO”.
« /Hello matches only “Hello”.

Ch12. Search And Substitute 91

There is one downside. What if you need to search for only a lowercase string? When you do /hello,
Vim now does case insensitive search. You can use \C pattern anywhere in your search term to tell
Vim that the subsequent search term will be case sensitive. If you do /\Chello, it will strictly match
“hello”, not “HELLO” or “Hello”.

First And Last Character In A Line

You can use * to match the first character in a line and $ to match the last character in a line.

If you have this text:
hello hello

You can target the first “hello” with /rhello. The character that follows * must be the first character
in a line. To target the last “hello”, run /hello$. The character before $ must be the last character in
a line.

If you have this text:
hello hello friend

Running /hello$ will not match anything because “friend” is the last term in that line, not “hello”.
Repeating Search

You can repeat the previous search with //. If you have just searched for /hello, running // is
equivalent to running /hello. This shortcut can save you some keystrokes especially if you just
searched for a long string. Also recall that you can use n and N to repeat the last search with the
same direction and opposite direction, respectively.

What if you want to quickly recall n last search term? You can quickly traverse the search history
by first pressing /, then press up/down arrow keys (or Ctr1-N/Ctrl-P) until you find the search term
you need. To see all your search history, you can run :history /.

When you reach the end of a file while searching, Vim throws an error: "Search hit the BOTTOM
without match for: {your-search}".Sometimes this can be a good safeguard from oversearching,
but other times you want to cycle the search back to the top again. You can use the set wrapscan
option to make Vim to search back at the top of the file when you reach the end of the file. To turn
this feature off, do set nowrapscan.

Searching For Alternative Words

It is common to search for multiple words at once. If you need to search for either “hello vim” or
“hola vim”, but not “salve vim” or “bonjour vim”, you can use the | pattern.

Given this text:

Ch12. Search And Substitute 92

hello vim
hola vim
salve vim

bonjour vim

To match both “hello” and “hola”, you can do /hello\|hola. You have to escape (\) the or (|) operator,
otherwise Vim will literally search for the string “|”.

If you don’t want to type \| every time, you can use the magic syntax (\v) at the start of the search:
/\vhello|hola. I will not cover magic in this guide, but with \v, you don’t have to escape special
characters anymore. To learn more about \v, feel free to check out :h \v.

Setting The Start And End Of A Match

Maybe you need to search for a text that is a part of a compound word. If you have these texts:

11vim22
vim22
11vim

vim

If you need to select “vim” but only when it starts with “11” and ends with “22”, you can use \zs
(starting match) and \ze (ending match) operators. Run:

/11\zsvim\ze22

Vim still has to match the entire pattern “11vim22”, but only highlights the pattern sandwiched
between \zs and \ze. Another example:

foobar
foobaz

If you need to match the “foo” in “foobaz” but not in “foobar”, run:

/ foo\zebaz

Ch12. Search And Substitute 93

Searching Character Ranges

All your search terms up to this point have been a literal word search. In real life, you may have to
use a general pattern to find your text. The most basic pattern is the character range, [].

If you need to search for any digit, you probably don’t want to type /@\[1\12\[3\[4\|5\|6\|7\18\|9\|@
every single time. Instead, use /[0-9] to match for a single digit. The 0-9 expression represents a
range of numbers 0-9 that Vim will try to match, so if you are looking for digits between 1 to 5
instead, use /[1-5].

Digits are not the only data types Vim can look up. You can also do /[a-z] to search for lowercase
alphas and /[A-Z] to search for uppercase alphas.

You can combine these ranges together. If you need to search for digits 0-9 and both lowercase and

€

uppercase alphas from “a” to “f” (like a hex), you can do /[@-9a-fA-F].

To do a negative search, you can add * inside the character range brackets. To search for a non-digit,
run /[*@-9]. Vim will match any character as long as it is not a digit. Beware that the caret (*) inside
the range brackets is different from the beginning-of-a-line caret (ex: /*hello). If a caret is outside
of a pair of brackets and is the first character in the search term, it means “the first character in a
line”. If a caret is inside a pair of brackets and it is the first character inside the brackets, it means a
negative search operator. /*abc matches the first “abc” in a line and /[*abc] matches any character
except for an “a”, “b”, or “c”.

Searching For Repeating Characters

If you need to search for double digits in this text:

1aa
11a
111

You can use /[0-9] [@-9] to match a two-digit character, but this method is unscalable. What if you
need to match twenty digits? Typing [0-9] twenty times is not a fun experience. That’s why you
need a count argument.

You can pass count to your search. It has the following syntax:
{n,m}

By the way, these count braces need to be escaped when you use them in Vim. The count operator
is placed after a single character you want to increment.

Here are the four different variations of the count syntax:

Ch12. Search And Substitute 94

« {n} is an exact match. /[@-9]\{2\} matches the two digit numbers: “11” and the “11” in “111”.
« {n,m} is a range match. /[0-9]\{2,3\} matches between 2 and 3 digit numbers: “11” and “111”.
« {,m} is an up-to match. /[0-9]\{,3\} matches up to 3 digit numbers: “1”, “11”, and “111”.

« {n,} is an at-least match. /[0-9]\{2, \} matches at least a 2 or more digit numbers: “11” and

“111”.,

The count arguments \{0, \} (zero or more) and \{1,\} (one or more) are common search patterns
and Vim has special operators for them: * and + (+ needs to be escaped while * works fine without the
escape). If you do /[0-9]*, it is the same as /[0-9]\{0, \}. It searches for zero or more digits. It will
match 7, “17, “123”. By the way, it will also match non-digits like “a”, because there is technically
zero digit in the letter “a”. Think carefully before using *. If you do /[0-9]\+, it is the same as
/[0-91\{1,\}. It searches for one or more digits. It will match “1” and “12”.

Predefined Character Ranges

Vim has predefined ranges for common characters like digits and alphas. I will not go through every
single one here, but you can find the full list inside :h /character-classes. Here are the useful
ones:

\d Digit [0-9]
\D Non-digit ["@-9]

\s Whitespace character (space and tab)

\S Non-whitespace character (everything except space and tab)
\w Word character [0-9A-Za-z_]

\1 Lowercase alphas [a-z]

\u Uppercase character [A-Z]

You can use them like you would use character ranges. To search for any single digit, instead of
using /[0-9], you can use /\d for a more concise syntax.

Search Example: Capturing A Text Between A Pair Of
Similar Characters

If you want to search for a phrase surrounded by a pair of double quotes:

"Vim is awesome!"

Run this:

Ch12. Search And Substitute 95

LRSS
Let’s break it down:

« " is a literal double quote. It matches the first double quote.

 [*"] means any character except for a double quote. It matches any alphanumeric and
whitespace character as long as it is not a double quote.

« \+ means one or more. Since it is preceded by [*"], Vim looks for one or more character that
is not a double quote.

« " is a literal double quote. It matches the closing double quote.

When Vim sees the first ", it begins the pattern capture. The moment it sees the second double quote
in a line, it matches the second " pattern and stops the pattern capture. Meanwhile, all non-double-
quote characters inbetween are captured by the [*"]\+ pattern, in this case, the phrase vim is
awesome!. This is a common pattern to capture a phrase surrounded by a pair of similar delimiters.

« To capture a phrase surrounded by single quotes, you can use /' [*']\+".
« To capture a phrase surrounded by zeroes, you can use /@[] \+0.

Search Example: Capturing A Phone Number

If you want to match a US phone number separated by a hyphen (-), like 123-456-7890, you can
use:

/NGN{B\}-\A\{3\}-\d\{4\}

US Phone number consists of a set of three digit number, followed by another three digits, and finally
by four digits. Let’s break it down:

« \d\{3\} matches a digit repeated exactly three times
+ - is a literal hyphen

You can avoid typing escapes with \v:
/\Vv\d{3}-\d{3}-\d{4}

This pattern is also useful to capture any repeating digits, such as IP addresses and zip codes.

That covers the search part of this chapter. Now let’s move to substitution.
Basic Substitution

Vim’s substitute command is a useful command to quickly find and replace any pattern. The
substitution syntax is:

Ch12. Search And Substitute 96
:s/{old-pattern}/{new-pattern}/

Let’s start with a basic usage. If you have this text:

vim is good

Let’s substitute “good” with “awesome” because Vim is awesome. Run :s/good/awesome/. You
should see:

vim is awesome

Repeating The Last Substitution

You can repeat the last substitute command with either the normal command & or by running :s. If
you have just run :s/good/awesome/, running either & or :s will repeat it.

Also, earlier in this chapter I mentioned that you can use // to repeat the previous search pattern.
This trick works with the substitution command. If /good was done recently and you leave
the first substitute pattern argument blank, like in :s//awesome/, it works the same as running
:s/good/awesome/.

Substitution Range

Just like many Ex commands, you can pass a range argument into the substitute command. The
syntax is:

: [range]s/old/new/

If you have these expressions:

let one 1;
let two = 2;
let three = 3;
let four =

4;
let five = 5;

To substitute the “let” into “const” on lines three to five, you can do:

Ch12. Search And Substitute 97
:3,5s/let/const/
Here are some range variations you can pass:

« :,3/let/const/ - if nothing is given before the comma, it represents the current line. Substitute
from current line to line 3.

« :1,s/let/const/ - if nothing is given after the comma, it also represents the current line.
Substitute from line 1 to current line.

+ :3s/let/const/ - if only one value is given as range (no comma), it does substitution on that
line only.

In Vim, % usually means the entire file. If you run :%s/let/const/, it will do substitution on all
lines. Keep in mind of this range syntax. Many command-line commands that you will learn in the
upcoming chapters will follow this form.

Pattern Matching

The next few sections will cover basic regular expressions. A strong pattern knowledge is essential
to master the substitute command.

If you have the following expressions:

let one = 1;
let two = 2;
let three = 3;
let four = 4;
let five = 5;

To add a pair of double quotes around the digits:

1%s/\d/"\@"/

The result:
let one = "1";
let two = "2";

let three = "3";
let four = "4";
let five = "5";

Let’s break down the command:

Ch12. Search And Substitute 98

« :%s targets the entire file to perform substitution.

« \d is Vim’s predefined range for digits (similar to using [0-9]).

« "\@" here the double quotes are literal double quotes. \@ is a special character representing “the
whole matched pattern”. The matched pattern here is a single digit number, \d.

Alternatively, & also represents the whole matched pattern like \@. :s/\d/"&"/ would have also
worked.

Let’s consider another example. Given these expressions and you need to swap all the “let” with the
variable names.

one let = "1";
two let = "2";
three let = "3";
four let = "4";
five let = "5";

To do that, run:
(s /NOWATN) NO\WA\H\)/\2 \1/

The command above contains too many backslashes and is hard to read. In this case it is more
convenient to use the \v operator:

:%s/\v(\w+) (\w+)/\2 \1/

The result:
let one = "1";
let two = "2";

let three = "3";
let four = "4";
let five = "5";

Great! Let’s break down that command:

« :%s targets all the lines in the file to perform substitution.
« (\w+) (\w+) is a group match. \w is one of Vim’s predefined ranges for a word character
([0-9A-Za-z_]). The () surrounding it captures a word character match in a group. Notice the

space between the two groupings. (\w+) (\w+) captures two groups. The first group captures
“one” and the second group captures “two”.

Ch12. Search And Substitute 99

« \2 \1 returns the captured group in a reversed order. \2 contains the captured string “let” and
\1 the string “one”. Having \2 \1 returns the string “let one”.

Recall that \o represents the entire matched pattern. You can break the matched string into smaller
groups with (). Each group is represented by \1, \2, \3, etc.

Let’s do one more example to solidify this group match concept. If you have these numbers:

123
456
789

To reverse the order, run:
:%s/\v(\d)(\d)(\d)/\3\2\1/
The result is:

321
654
987

Each (\d) matches each digit and creates a group. On the first line, the first (\d) has a value of 1,
the second (\d) has a value of 2, and the third (\d) has a value of 3. They are stored in the variables
\1, \2, and \3. In the second half of your substitution, the new pattern \3\2\1 results in the “321”
value on line one.

If you had run this instead:

:%s/\v(\d\d)(\d)/\2\1/

You would have gotten a different result:

312

645

978

This is because you now only have two groups. The first group, captured by (\d\d), is stored within

\1 and has the value of 12. The second group, captured by (\d), is stored inside \2 and has the value
of 3. \2\1 then, returns 312.

Substitution Flags

If you have the sentence:

Ch12. Search And Substitute 100

chocolate pancake, strawberry pancake, blueberry pancake

To substitute all the pancakes into donuts, you cannot just run:
:s/pancake/donut

The command above will only substitute the first match, giving you:
chocolate donut, strawberry pancake, blueberry pancake

There are two ways to solve this. You can either run the substitute command twice more or you can
pass it a global (g) flag to substitute all of the matches in a line.

Let’s talk about the global flag. Run:
:s/pancake/donut/g

Vim substitutes all pancakes with donuts in one swift command. The global command is one of the
several flags the substitute command accepts. You pass flags at the end of the substitute command.
Here is a list of useful flags:

Reuse the flags from the previous substitute command.
Replace all matches in the line.

Ask for substitution confirmation.

® QO Q

Prevent error message from displaying when substitution fails.

Per form case insensitive substitution.

—

Per form case sensitive substitution.

There are more flags that I do not list above. To read about all the flags, check out :h s_flags.

By the way, the repeat-substitution commands (& and :s) do not retain the flags. Running & will
only repeat :s/pancake/donut/ without g. To quickly repeat the last substitute command with all
the flags, run :&&.

Changing The Delimiter
If you need to replace a URL with a long path:
https://mysite.com/a/b/c/d/e

To substitute it with the word “hello”, run:

Ch12. Search And Substitute 101

:s/https:\/\/mysite.com\/a\/b\/c\/d\/e/hello/

However, it is hard to tell which forward slashes (/) are part of the substitution pattern and which
ones are the delimiters. You can change the delimiter with any single-byte characters (except for
alphabets, numbers, or ", |, and \). Let’s replace them with +. The substitution command above then
can be rewritten as:

:sthttps:\/\/mysite.com\/a\/b\/c\/d\/et+thello+

It is now easier to see where the delimiters are.
Special Replace

You can also modify the case of the text you are substituting. Given the following expressions and

» &«

your task is to uppercase the variables “one”, “two”, “three”, etc.

let one = "1";
let two = "2";
let three = "3";
let four = "4";
let five = "5";

Run:
%s/\v(\w+) (\w+)/\1 \U\2/

You will get:

let ONE = "1";
let TWO = "2";
let THREE = "3";

7

let FOUR = "4";
let FIVE = "B";
The breakdown:

« (\w+) (\w+) captures the first two matched groups, such as “let” and “one”.
« \1 returns the value of the first group, “let”.
« \U\2 uppercases (\U) the second group (\2).

The trick of this command is the expression \U\2. \U instructs the following character to be
uppercased.

Let’s do one more example. Suppose you are writing a Vim guide and you need to capitalize the first
letter of each word in a line.

Ch12. Search And Substitute 102

vim is the greatest text editor in the whole galaxy
You can run:

:s/\<./\U&/g

The result:

Vim Is The Greatest Text Editor In The Whole Galaxy
Here is the breakdowns:

« :s substitutes the current line.

« \<. is comprised of two parts: \< to match the start of a word and . to match any character. \<
operator makes the following character to be the first character of a word. Since . is the next
character, it will match the first character of any word.

« \U& uppercases the subsequent symbol, &. Recall that & (or \@) represents the whole match. It
matches the first character of any word.

« g the global flag. Without it, this command only substitutes the first match. You need to
substitute every match on this line.

To learn more of substitution’s special replace symbols like \U, check out :h sub-replace-special.

Alternative Patterns

Sometimes you need to match multiple patterns simultaneously. If you have the following greetings:

hello vim
hola vim
salve vim

bonjour vim

You need to substitute the word “vim” with “friend” but only on the lines containing the word “hello”
or “hola”. Recall from earlier this chapter, you can use | for multiple alternative patterns.

:%s/\v(hellolhola) vim/\1 friend/g

The result:

Ch12. Search And Substitute 103

hello friend
hola friend
salve vim

bonjour vim

Here is the breakdown:

« %s runs the substitute command on each line in a file.

« (hellolhola) matches either “hello” or “hola” and consider it as a group.
« vim is the literal word “vim”.

« \1 is the first group, which is either the text “hello” or “hola”.

« friend is the literal word “friend”.

Substituting The Start And The End Of A Pattern

Recall that you can use \zs and \ze to define the start and the end of a match. This technique works
in substitution too. If you have:

chocolate pancake

strawberry sweetcake

blueberry hotcake

To substitute the “cake” in “hotcake” with “dog” to get a “hotdog:
:%s/hot\zscake/dog/g

Result:

chocolate pancake

strawberry sweetcake
blueberry hotdog

Greedy And Non-Greedy

You can substitute the nth match in a line with this trick:

One Mississippi, two Mississippi, three Mississippi, four Mississippi, five Mississi\

ppi.

To substitute the third “Mississippi” with “Arkansas”, run:

Ch12. Search And Substitute 104

:s/\v(.{-}\zsMississippi){3}/Arkansas/g
The breakdown:

« :s/ the substitute command.

« \v is the magic keyword so you don’t have to escape special keywords.
« . matches any single character.

« {-} performs non-greedy match of 0 or more of the preceding atom.

« \zsMississippi makes “Mississippi” the start of the match.

(...){3} looks for the third match.

You have seen the {3} syntax earlier in this chapter. In this case, {3} will match exactly the third
match. The new trick here is {-}. It is a non-greedy match. It finds the shortest match of the given
pattern. In this case, (. {-}Mississippi) matches the least amount of “Mississippi” preceded by any
character. Contrast this with (.*Mississippi) where it finds the longest match of the given pattern.

If you use (.{-}Mississippi), you get five matches: “One Mississippi”, “Two Mississippi”, etc. If
you use (.*Mississippi), you get one match: the last “Mississippi”. * is a greedy matcher and {-}
is a non-greedy matcher. To learn more check out :h /\{- and :h non-greedy.

Let’s do a simpler example. If you have the string:

abcidel

You can match “abcldel” (greedy) with:

/a.*1

You can match “abc1” (non-greedy) with:

/a\{-}1

So if you need to uppercase the longest match (greedy), run:
's/a.*1/\U&/g

To get:

ABC1DEFG1

If you need to uppercase the shortest match (non-greedy), run:

Ch12. Search And Substitute 105

:s/a. \{-}1/\U&/g
To get:
ABC1defg1l

If you're new to greedy vs non-greedy concept, it can get hard to wrap your head around it.
Experiment around with different combinations until you understand it.

Substituting Across Multiple Files

Finally, let’s learn how to substitute phrases across multiple files. For this section, assume that you
have two files: food.txt and animal . txt.

Inside food.txt:

corndog
hotdog
chilidog

Inside animal . txt:

large dog
medium dog
small dog

Assume your directory structure looks like this:

- food.txt

- animal.txt

First, capture both food.txt and animal.txt inside :args. Recall from earlier chapters that :args
can be used to create a list of file names. There are several ways to do this from inside Vim, one of
them is by running this from inside Vim:

rargs k.txt captures all txt files in current location

To test it, when you run :args, you should see:

Ch12. Search And Substitute 106

[food.txt] animal.txt

Now that all the relevant files are stored inside the argument list, you can perform a multi-file
substitution with the :argdo command. Run:

:argdo %s/dog/chicken/

This performs substitution against the all files inside the :args list. Finally, save the changed files
with:

:argdo update

:args and :argdo are useful tools to apply command line commands across multiple files. Try it
with other commands!

Substituting Across Multiple Files With Macros

Alternatively, you can also run the substitute command across multiple files with macros. Run:

;args *.txt

qq
:%s/dog/chicken/g
:wnext

q
99@q

The breakdown:

« :args *.txt adds all text files into the :args list.

« qq starts the macro in the “q” register.

« :%s/dog/chicken/g substitutes “dog” with “chicken” on all lines in the current file.

« :wnext saves the file then go to the next file on the args list.

« q stops the macro recording.

« 99@q executes the macro ninety-nine times. Vim will stop the macro execution after it
encounters the first error, so Vim won’t actually execute the macro ninety-nine times.

Ch12. Search And Substitute 107

Learning Search And Substitution The Smart Way

The ability to do search well is a necessary skill in editing. Mastering the search lets you to utilize
the flexibility of regular expressions to search for any pattern in a file. Take your time to learn these.
To get better with regular expression you need to be actively using regular expressions. I once read
a book about regular expression without actually doing it and I forgot almost everything I read
afterwards. Active coding is the best way to master any skill.

A good way to improve your pattern matching skill is whenever you need to search for a pattern
(like “hello 123”), instead of querying for the literal search term (/hello 123), try to come up with a
pattern for it (something like /\v(\1+) (\d+)). Many of these regular expression concepts are also
applicable in general programming, not only when using Vim.

Now that you learned about advanced search and substitution in Vim, let’s learn one of the most
versatile commands, the global command.

Ch13. The Global Command

So far you have learned how to repeat the last change with the dot command (.), to replay actions
with macros (q), and to store texts in the registers (").

In this chapter, you will learn how to repeat a command-line command with the global command.

Global Command Overview

Vim’s global command is used to run a command-line command on multiple lines simultaneously.

By the way, you may have heard of the term “Ex Commands” before. In this guide, I refer them as
command-line commands. Both Ex commands and command-line commands are the same. They
are the commands that start with a colon (:). The substitute command in the last chapter was an
example of an Ex command. They are called Ex because they originally came from the Ex text
editor. I will continue to refer to them as command-line commands in this guide. For a full list of Ex
commands, check out :h ex-cmd-index.

The global command has the following syntax:
:g/pattern/command

The pattern matches all lines containing that pattern, similar to the pattern in the substitute
command. The command can be any command-line command. The global command works by
executing command against each line that matches the pattern.

If you have the following expressions:

const one = 1;

console.log("one: ", one);

const two = 2;
console.log("two: ", two);

const three = 3;

console.log("three: ", three);

. . . « »
To remove all lines containing “console”, you can run:

Ch13. The Global Command

:g/console/d
Result:

const one = 1;

const two

I}
N

const three = 3;

109

The global command executes the delete command (d) on all lines that match the “console” pattern.

When running the g command, Vim makes two scans across the file. On the first run, it scans each
line and marks the line that matches the /console/ pattern. Once all the matching lines are marked,

it goes for the second time and executes the d command on the marked lines.

If you want to delete all lines containing “const” instead, run:

:g/const/d
Result:

console.log("one:

n

console.log("two:

console.log("three:

Inverse Match

To run the global command on non-matching lines, you can run:

:g!/{pattern}/{command}

or

:v/{pattern}/{command}

If you run :v/console/d, it will delete all lines not containing “console”.

Pattern

, one);

, two);

", three);

The global command uses the same pattern system as the substitute command, so this section will

serve as a refresher. Feel free to skip to the next section or read along!

If you have these expressions:

Ch13. The Global Command 110

const one = 1;

console.log("one: ", one);
const two = 2;
console.log("two: ", two);
const three = 3;
console.log("three: ", three);

To delete the lines containing either “one” or “two”, run:
:g/one\|two/d

To delete the lines containing any single digits, run either:
:g/[0-9]/d

or

:g/\d/d

If you have the expression:

const oneMillion = 1000000 ;
const oneThousand = 1000;
const one = 1;

To match the lines containing between three to six zeroes, run:

:g/0\{3,6\}/d

Passing A Range

You can pass a range before the g command. Here are some ways you can do it:

« :1,5g/console/d matches the string “console” between lines 1 and 5 and deletes them.

e+ :,5g/console/d if there is no address before the comma, then it starts from the current line. It
looks for the string “console” between the current line and line 5 and deletes them.

« :3,g/console/d if there is no address after the comma, then it ends at the current line. It looks
for the string “console” between line 3 and the current line and deletes them.

Ch13. The Global Command 111

« :3g/console/d if you only pass one address without a comma, it executes the command only
on line 3. It looks on line 3 and deletes it if has the string “console”.

In addition to numbers, you can also use these symbols as range:

« . means the current line. A range of . ,3 means between the current line and line 3.

« $ means the last line in the file. 3, $ range means between line 3 and the last line.

« +n means n lines after the current line. You can use it with . or without. 3,+1 or 3, .+1 means
between line 3 and the line after the current line.

If you don’t give it any range, by default it affects the entire file. This is actually not the norm. Most
of Vim’s command-line commands run on only the current line if you don’t pass it any range. The
two notable exceptions are the global (: g) and the save (:w) commands.

Normal Command

You can run a normal command with the global command with :normal command-line command.

If you have this text:

const one = 1

console.log("one: ", one)
const two = 2
console.log("two: ", two)
const three = 3
console.log("three: ", three)

To add a “;” to the end of each line, run:
:g/./normal A;
Let’s break it down:

« :g is the global command.

« /./ is a pattern for “non-empty lines”. It matches the lines with at least one character, so it
matches the lines with “const” and “console” and it does not match empty lines.

e normal A; runs the :normal command-line command. A; is the normal mode command to
insert a “;” at the end of the line.

Executing A Macro

You can also execute a macro with the global command. A macro can be executed with the normal
command. If you have the expressions:

Ch13. The Global Command 112

const one = 1

console.log("one: ", one);
const two = 2
console.log("two: ", two);
const three = 3
console.log("three: ", three);

Notice that the lines with “const” do not have semi-colons. Let’s create a macro to add a comma to
the end of those lines in the register a:

qaolA; <Esc>q

If you need a refresher, check out the chapter on macro. Now run:
:g/const/normal @a

Now all lines with “const” will have a “;” at the end.

const one = 1;

’

console.log("one: ", one);
const two = 2;
console.log("two: ", two);
const three = 3;
console.log("three: ", three);

If you followed this step-by-step, you will have two semi-colons on the first line. To avoid that, run
the global command on line two onward, :2,$g/const/normal @a.

Recursive Global Command

The global command itself is a type of a command-line command, so you can technically run the
global command inside a global command.

Given the following expressions, if you want to delete the second console. log statement:

Ch13. The Global Command 113

const one = 1;

console.log("one: ", one);

const two = 2;
console.log("two: ", two);

const three = 3;

console.log("three: ", three);
If you run:
:g/console/g/two/d

First, g will look for the lines containing the pattern “console” and will find 3 matches. Then the
second g will look for the line containing the pattern “two” from those three matches. Finally, it will
delete that match.

You can also combine g with v to find positive and negative patterns. For example:
:g/console/v/two/d

Instead of looking for the line containing the pattern “two”, it will look for the lines not containing
the pattern “two”.

Changing The Delimiter

You can change the global command’s delimiter like the substitute command. The rules are the same:
you can use any single byte character except for alphabets, numbers, ", |, and \.

To delete the lines containing “console”:
:g@console@d

If you are using the substitute command with the global command, you can have two different
delimiters:

g@one@s+const+let+g

Here the global command will look for all lines containing “one”. The substitute command will
substitute, from those matches, the string “const” with “let”.

The Default Command

What happens if you don’t specify any command-line command in the global command?

The global command will use the print (:p) command to print the current line’s text. If you run:

Ch13. The Global Command 114

:g/console

It will print at the bottom of the screen all the lines containing “console”.

By the way, here is one interesting fact. Because the default command used by the global command
is p, this makes the g syntax to be:

:g/re/p

« g = the global command
« re = the regex pattern
« p = the print command

It spells “grep”, the same grep from the command line. This is not a coincidence. The g/re/p
command originally came from the Ed Editor, one of the original line text editors. The grep
command got its name from Ed.

Your computer probably still has the Ed editor. Run ed from the terminal (hint: to quit, type q).

Reversing The Entire Buffer
To reverse the entire file, run:
:g/N/m 0@

* is a pattern for the beginning of a line. Use * to match all lines, including empty lines.

If you need to reverse only a few lines, pass it a range. To reverse the lines between line five to line
ten, run:

:5,10g/"/m @

To learn more about the move command, check out :h :move.

Aggregating All TODOs

When coding, sometimes I would write TODOs in the file I'm editing:

Ch13. The Global Command 115

const one = 1;
"

console.log("one: ", one);
// TODO: feed the puppy

const two = 2;
// TODO: feed the puppy automatically

console.log("two: ", two);
const three = 3;
console.log("three: ", three);

// TODO: create a startup selling an automatic puppy feeder

It can be hard to keep track of all the created TODOs. Vim has a : t (copy) method to copy all matches
to an address. To learn more about the copy method, check out :h :copy.

To copy all TODOs to the end of the file for easier introspection, run:
:g/TODO/t $
Result:

const one = 1;

console.log("one: ", one);
// TODO: feed the puppy

const two = 2;
// TODO: feed the puppy automatically

console.log("two: ", two);
const three = 3;
console.log("three: ", three);

// TODO: create a startup selling an automatic puppy feeder

// TODO: feed the puppy
// TODO: feed the puppy automatically
// TODO: create a startup selling an automatic puppy feeder

Now I can review all the TODOs I created, find a time to do them or delegate them to someone else,
and continue to work on my next task.

If instead of copying them you want to move all the TODOs to the end, use the move command, :m:

Ch13. The Global Command 116

:g/TODO/m $
Result:

const one = 1;

console.log("one: ", one);

const two = 2;

console.log("two: ", two);

const three = 3;
console.log("three: ", three);

// TODO: feed the puppy

// TODO: feed the puppy automatically
// TODO: create a startup selling an automatic puppy feeder

Black Hole Delete

Recall from the register chapter that deleted texts are stored inside the numbered registers (granted
they are sufficiently large). Whenever you run :g/console/d, Vim stores the deleted lines in the
numbered registers. If you delete many lines, you can quickly fill up all the numbered registers. To
avoid this, you can always use the black hole register ("_) to not store your deleted lines into the
registers. Run:

:g/console/d _
By passing _ after d, Vim won’t use up your scratch registers.

Reduce Multiple Empty Lines To One Empty Line

If you have a text with multiple empty lines:

Ch13. The Global Command 117

const one = 1;

console.log("one: ", one);
const two = 2;
console.log("two: ", two);
const three = 3;
console.log("three: ", three);

You can quickly reduce the empty lines into one empty line with:
:g/"$/,/./-1]
Result:

const one = 1;

console.log("one: ", one);
const two = 2;
console.log("two: ", two);
const three = 3;
console.log("three: ", three);

Normally the global command accepts the following form: : g/pattern/command. However, you can
also run the global command with the following form: : g/pattern1/, /pattern2/command. With this,
Vim will apply the command within pattern1 and pattern2.

With that in mind, let’s break down the command :g/*$/,/./-1j according to
:g/patternt/, /pattern2/command:

« /patterni/ is /*$/. It represents an empty line (a line with zero character).
« /pattern2/ is /./ with -1 line modifier. /./ represents a non-empty line (a line with at least
one character). The -1 means the line above that.
« command is j, the join command (: j). In this context, this global command joins all the given
lines.
By the way, if you want to reduce multiple empty lines to no lines, run this instead:

1g/h8/,/. /]

A simpler alternative:

Ch13. The Global Command

:g/"8$/-]

Your text is now reduced to:

const one = 1;

console.log("one: ", one);
const two = 2;
console.log("two: ", two);
const three = 3;
console.log("three: ", three);

Advanced Sort

Vim has a :sort command to sort the lines within a range. For example:

Q © O T Q

118

You can sort them by running :sort. If you give it a range, it will sort only the lines within that

range. For example, :3,5sort only sorts lines three and five.

If you have the following expressions:

const arrayB = |

1 7

9,
"he
"pr
e
ngn

e

7

c,

a !

const arrayA = |
e
"o
g

Ch13. The Global Command 119

lldll,

If you need to sort the elements inside the arrays, but not the arrays themselves, you can run this:

:g/\[/+1,/\]/-1sort
Result:

const arrayB = |
llall ,
llbll ,

C

const arrayA = |

a
”b",

:g/[/+1,/]/-1sort

This is great! But the command looks complicated. Let’s break it down. This command also follows
the form :g/patternt/, /pattern2/command.

:g/\[/ is the global command pattern.

« /\[/+1 is the first pattern. It matches a literal left square bracket “[”. The +1 refers to the line
below it.

« /\]/-1 is the second pattern. It matches a literal right square bracket “]”. The -1 refers to the
line above it.

« /\[/+1,/\]/-1 then refers to any lines between “[” and “]”.

« sort is a command-line command to sort.

Ch13. The Global Command 120

Learn The Global Command The Smart Way

The global command executes the command-line command against all matching lines. With it, you
only need to run a command once and Vim will do the rest for you. To become proficient at the global
command, two things are required: a good vocabulary of command-line commands and a knowledge
of regular expressions. As you spend more time using Vim, you will naturally learn more command-
line commands. A regular expression knowledge will require a more active approach. But once you
become comfortable with regular expressions, you will be ahead of many.

Some of the examples here are complicated. Do not be intimidated. Really take your time to
understand them. Learn to read the patterns. Do not give up.

Whenever you need to run multiple commands, pause and see if you can use the g command. Identify
the best command for the job and write a pattern to target as many things at once.

Now that you know how powerful the global command is, let’s learn how to use the external
commands to increase your tool arsenals.

Ch14. External Commands

Inside the Unix system, you will find many small, hyper-specialized commands that does one thing
(and does it well). You can chain these commands to work together to solve a complex problem.
Wouldn'’t it be great if you can use these commands from inside Vim?

Definitely. In this chapter, you will learn how extend Vim to work seamlessly with external
commands.

The Bang Command

Vim has a bang (!) command that can do three things:

1. Read the STDOUT of an external command into the current buffer.
2. Write the content of your buffer as the STDIN to an external command.
3. Execute an external command from inside Vim.

Let’s go through each of them.

Reading The STDOUT Of A Command Into Vim

The syntax to read the STDOUT of an external command into the current buffer is:
:r ! {cmd}

:r is Vim’s read command. If you use it without !, you can use it to get the content of a file. If you
have a file file1.txt in the current directory and you run:

:r filel.txt

Vim will put the content of file1.txt into the current buffer.

If you run the : r command followed by a ! and an external command, the output of that commmand
will be inserted into the current buffer. To get the result of the 1s command, run:

Ch14. External Commands 122
r !ls
It returns something like:

filel.txt
file2.txt
file3.txt

You can read the data from the curl command:

:r lcurl -s 'https://jsonplaceholder.typicode.com/todos/1"
The r command also accepts an address:

:10r !cat filel.txt

Now the STDOUT from running cat file1.txt will be inserted after line 10.

Writing The Buffer Content Into An External Command

The command :w, in addition to saving a file, can be used to pass the text in the current buffer as
the STDIN for an external command. The syntax is:

:w !{cmd}
If you have these expressions:

console.log("Hello Vim");
console.log("Vim is awesome");

Make sure you have node?” installed in your machine, then run:
:w !node

Vim will use node to execute the JavaScript expressions to print “Hello Vim” and “Vim is awesome”.

When using the :w command, Vim uses all texts in the current buffer, similar to the global command
(most command-line commands, if you don’t pass it a range, only executes the command against
the current line). If you pass :w a specific address:

*"https://nodejs.org/en/

https://nodejs.org/en/
https://nodejs.org/en/

Ch14. External Commands 123
;2w !'node

Vim only uses the text from the second line into the node interpreter.

There is a subtle but significant difference between :w !node and :w! node. With :w !node, you
are “writing” the text in the current buffer into the external command node. With :w! node, you are
force-saving a file and naming the file “node”.

Executing An External Command

You can execute an external command from inside Vim with the bang command. The syntax is:
:lemd

To see the content of the current directory in the long format, run:

:1ls -1s

To kill a process that is running on PID 3456, you can run:

:1kill -9 3456

You can run any external command without leaving Vim so you can stay focused on your task.

Filtering Texts

If you give ! a range, it can be used to filter texts. Suppose you have the following texts:

hello vim
hello vim

Let’s uppercase the current line using the tr (translate) command. Run:
s ltr '[:lower:]' '[:upper:]’

The result:

Ch14. External Commands 124

HELLO VIM
hello vim

The breakdown:

« .1 executes the filter command on the current line.
o Itr '[:lower:]" '[:upper:]"' callsthe tr command to replace all lowercase characters with
uppercase ones.

It is imperative to pass a range to run the external command as a filter. If you try running the
command above without the . (:!tr '[:lower:]' '[:upper:]"), you will see an error.

Let’s assume that you need to remove the second column on both lines with the awk command:
%lawk "{print $1}"
The result:

hello
hello

The breakdown:

« :%! executes the filter command on all lines (%).
« awk "{print $1}" prints only the first column of the match.

You can chain multiple commands with the chain operator () just like in the terminal. Let’s say you
have a file with these delicious breakfast items:

name price

chocolate pancake 10
buttermilk pancake 9
blueberry pancake 12

If you need to sort them based on the price and display only the menu with an even spacing, you
can run:

:%lawk 'NR > 1' | sort -nk 3 | column -t

The result:

Ch14. External Commands 125

buttermilk pancake 9
chocolate pancake 10
blueberry pancake 12

The breakdown:

« %! applies the filter to all lines (%).

« awk 'NR > 1' displays the texts only from row number two onwards.

« | chains the next command.

« sort -nk 3 sorts numerically (n) using the values from column 3 (k 3).
« column -t organizes the text with even spacing.

Normal Mode Command

Vim has a filter operator (!) in the normal mode. If you have the following greetings:

hello vim
hola vim
bonjour vim

salve vim

To uppercase the current line and the line below, you can run:
ljtr '[a-z]' '[A-Z]"

The breakdown:

« !j runs the normal command filter operator (!) targetting the current line and the line below
it. Recall that because it is a normal mode operator, the grammar rule verb + noun applies. !
is the verb and j is the noun.

« tr '[a-z]' '[A-Z]' replaces the lowercase letters with the uppercase letters.

The filter normal command only works on motions / text objects that are at least one line or longer.
If you had tried running !iwtr '[a-z]' '[A-Z]' (execute tr on inner word), you will find that it
applies the tr command on the entire line, not the word your cursor is on.

Ch14. External Commands 126

Learn External Commands The Smart Way

Vim is not an IDE. It is a lightweight modal editor that is highly extensible by design. Because of
this extensibility, you have an easy access to any external command in your system. Armed with
these external commands, Vim is one step closer from becoming an IDE. Someone said that the Unix
system is the first IDE ever.

The bang command is as useful as how many external commands you know. Don’t worry if your
external command knowledge is limited. I still have a lot to learn too. Take this as a motivation for
continuous learning. Whenever you need to modify a text, look if there is an external command that
can solve your problem. Don’t worry about mastering everything, just learn the ones you need to
complete the current task.

Ch15. Command-line Mode

In the last three chapters, you learned how to use the search commands (/, ?), substitute command
(:s), global command (:g), and external command (!). These are examples of command-line mode
commands.

In this chapter, you will learn various tips and tricks for the command-line mode.

Entering And Exiting The Command-line Mode

The command-line mode is a mode in itself, just like normal mode, insert mode, and visual mode.
When you are in this mode, the cursor goes to the bottom of the screen where you can type in
different commands.

There are 4 different commands you can use to enter the command-line mode:

« Search patterns (/, ?)
« Command-line commands (:)
« External commands (!)

You can enter the command-line mode from the normal mode or the visual mode.
To leave the command-line mode, you can use <Esc>, Ctrl-c, or Ctrl-[.

Other literatures might refer the “Command-line command” as “Ex command” and the “External
command” as “filter command” or “bang operator”.

Repeating The Previous Command

You can repeat the previous command-line command or external command witha:.

If you just ran :s/foo/bar/g, running @: repeats that substitution. If you just ran :.!tr '[a-z]"
'[A-Z] ', running @: repeats the last external command translation filter.

Command-line Mode Shortcuts

While in the command-line mode, you can move to the left or to the right, one character at a time,
with the Left or Right arrow.

Ch15. Command-line Mode 128

If you need to move word-wise, use Shift-Left or Shift-Right (in some OS, you might have to use
Ctrl instead of Shift).

To go to the start of the line, use Ctr1-b. To go to the end of the line, use Ctrl-e.

Similar to the insert mode, inside the command-line mode, you have three ways to delete characters:

Ctrl-H Delete one character
Ctrl-w Delete one word
Ctrl-U Delete the entire line

Finally, if you want to edit the command like you would a normal textfile use Ctr1-f.

This also allows you to search through the previous commands, edit them and rerun them by pressing
<Enter> in “command-line editing normal mode”.

Register And Autocomplete

While in the command-line mode, you can insert texts from Vim register with Ctr1-R the same way
as the insert mode. If you have the string “foo” saved in the register a, you can insert it by running
Ctrl-R a. Everything that you can get from the register in the insert mode, you can do the same
from the command-line mode.

In addition, you can also get the word under the cursor with Ctr1-R Ctrl-w (Ctrl-R Ctrl-A for the
WORD under cursor). To get the line under the cursor, use Ctr1-R Ctrl-L. To get the filename under
the cursor, use Ctr1-R Ctrl-F.

You can also autocomplete existing commands. To autocomplete the echo command, while in the
command-line mode, type “ec”, then press <Tab>. You should see on the bottom left Vim commands
starting with “ec” (example: echo echoerr echohl echomsg econ). To go to the next option, press
either <Tab> or Ctr1-N. To go the previous option, press either <Shift-Tab> or Ctrl-P.

Some command-line commands accept file names as arguments. One example is edit. You can
autocomplete here too. After typing the command, :e (don’t forget the space), press <Tab>. Vim
will list all the relevant file names that you can choose from so you don’t have to type it from scratch.

History Window And Command-line Window

You can view the histoy of command-line commands and search terms (this requires the +cmdline_-
hist feature).

To open the command-line history, run :his :. You should see something like the following:

Ch15. Command-line Mode 129

omd History
2 e filel.txt
3 g/foo/d

4 s/foo/bar/g

Vim lists the history of all the : commands you run. By default, Vim stores the last 50 commands.
To change the amount of the entries that Vim remembers to 100, you run set history=100.

A more useful use of the command-line history is through the command-line window,g: . This will
open a searchable, editable history window. Suppose you have these expressions in the history when
you press q::

51 s/verylongsubstitutionpattern/pancake/g
52 his :
53 wq

If your current task is to do s/verylongsubstitutionpattern/donut/g, instead of typing the
command from scratch, why don’t you reuse s/verylongsubstitutionpattern/pancake/g? After
all, the only thing that’s different is the word substitute, “donut” vs “pancake”. Everything else is
the same.

After you ran q:, find that s/verylongsubstitutionpattern/pancake/g in the history (you can use
the Vim navigation in this environment) and edit it directly! Change “pancake” to “donut” inside the
history window, then press <Enter>. Boom! Vim executess/verylongsubstitutionpattern/donut/g
for you. Super convenient!

Similarly, to view the search history, run :his / or :his ?. To open the search history window
where you can search and edit past history, run q/ or q?.

To quit this window, press Ctr1-C,Ctrl-W C, or type :quit.
More Command-line Commands

Vim has hundreds of built-in commands. To see all the commands Vim have, check out :h
ex-cmd-index Or :h :index.

Learn Command-line Mode The Smart Way

Compared to the other three modes, the command-line mode is like the Swiss Army knife of text
editing. You can edit text, modify files, and execute commands, just to name a few. This chapter is a
collection of odds and ends of the command-line mode. It also brings Vim modes into closure. Now
that you know how to use the normal, insert, visual, and command-line mode you can edit text with
Vim faster than ever.

It’s time to move away from Vim modes and learn how to do an even faster navigation with Vim
tags.

Ch16. Tags

One useful feature in text editing is being able to go to any definition quickly. In this chapter, you
will learn how to use Vim tags to do that.

Tag Overview

Suppose someone handed you a new codebase:

one = One.new
one.donut

One? donut? Well, these might have been obvious to the developers writing the code way back then,
but now those developers are no longer here and it is up to you to understand these obscure codes.
One way to help understand this is to follow the source code where One and donut are defined.

You can search for them with either fzf or grep (or vimgrep), but in this case, tags are faster.

Think of tags like an address book:

Name Address
Iggy1l 1234 Cool St, 11111
Iggy2 9876 Awesome Ave, 2222

Instead of having a name-address pair, tags store definitions paired with addresses.

Let’s assume that you have these two Ruby files inside the same directory:

one.rb
class One
def initialize
puts "Initialized"

end
def donut
puts "Bar"
end
end

and

Chi6. Tags 131

two.rb

require './one'

one = One.new

one.donut

To jump to a definition, you can use Ctrl-] in the normal mode. Inside two.rb, go to the line where
one.donut is and move the cursor over donut. Press Ctrl-].

Whoops, Vim could not find the tag file. You need to generate the tag file first.

Tag Generator

Modern Vim does not come with tag generator, so you will have to download an external tag
generator. There are several options to choose:

« ctags = C only. Available almost everywhere.

« exuberant ctags = One of the most popular ones. Has many language support.
« universal ctags = Similar to exuberant ctags, but newer.

« etags = For Emacs. Hmm...

» JTags = Java

« ptags.py = Python

« ptags = Perl

» gnatxref = Ada

If you look at Vim tutorials online, many will recommend exuberant ctags®. It supports 41
programming languages®. I used it and it worked great. However, because it has not been maintained
since 2009, Universal ctags would be a better choice. It works similar to exuberant ctags and is
currently being maintained.

[won’t go into details on how to install the universal ctags. Check out the universal ctags® repository
for more instructions.

Assuming you have the universal ctags installed, let’s generate a basic tag file. Run:
ctags -R .

The R option tells ctags to run a recursive scan from your current location (.). You should see a tags
file in your current directory. Inside you will see something like this:

*http://ctags.sourceforge.net/
**http://ctags.sourceforge.net/languages.html
*°https://github.com/universal-ctags/ctags

http://ctags.sourceforge.net/
http://ctags.sourceforge.net/languages.html
http://ctags.sourceforge.net/languages.html
https://github.com/universal-ctags/ctags
http://ctags.sourceforge.net/
http://ctags.sourceforge.net/languages.html
https://github.com/universal-ctags/ctags

Chi6. Tags 132

I _TAG_FILE_FORMAT 2 /extended format; --format=1 will not append ;" to lines/
| _TAG_FILE_SORTED 1 /@=unsorted, 1=sorted, 2=foldcase/

| _TAG_OUTPUT_FILESEP slash /slash or backslash/

! _TAG_OUTPUT_MODE u-ctags /u-ctags or e-ctags/

| _TAG_PATTERN_LENGTH_LIMIT 96 /@ for no limit/

I _TAG_PROGRAM_AUTHOR Universal Ctags Team //

! _TAG_PROGRAM_NAME Universal Ctags /Derived from Exuberant Ctags/
I _TAG_PROGRAM_URL <https://ctags.io/> /official site/

! _TAG_PROGRAM_VERSION 0.0.0 /b43eb39/

One one.rb /Mclass One$/;" c

donut one.rb /N def donut$/;" f class:One
initialize one.rb /N def initialize$/;" f class:0One

Yours might look a little different depending on your Vim setting and the ctags generator. A tag
file is composed of two parts: the tag metadata and the tag list. These metadata (! TAG_FILE. ..) are
usually controlled by the ctags generator. I won’t discuss it here, but feel free to check their docs for
more! The tag list is a list of all the definitions indexed by ctags.

Now go to two.rb, put the cursor on donut, and type Ctrl-]. Vim will take you to the file one.rb on
the line where def donut is. Success! But how did Vim do this?

Tags Anatomy

Let’s look at the donut tag item:
donut one.rb /M def donut$/;" f class:0One

The above tag item is composed of four components: a tagname, a tagfile, a tagaddress, and tag
options.

« donut is the tagname. When your cursor is on “donut”, Vim searches the tag file for a line that
has the “donut” string.

e one.rb is the tagfile. Vim looks for a file one. rb.

« /M def donut$/ is the tagaddress. /.../ is a pattern indicator. * is a pattern for the first
element on a line. It is followed by two spaces, then the string def donut. Finally, $ is a pattern
for the last element on a line.

« f class:One is the tag option that tells Vim that the function donut is a function (f) and is part
of the One class.

Let’s look at another item in the tag list:

Chi6. Tags 133

One one.rb /Mclass One$/;" c
This line works the same way as the donut pattern:

« One is the tagname. Note that with tags, the first scan is case sensitive. If you have 0ne and one
on the list, Vim will prioritize One over one.

o one.rb is the tagfile. Vim looks for a file one. rb.

« /Aclass One$/ is the tagaddress pattern. Vim looks for a line that starts with (1) class and
ends with ($) One.

« c is one of the possible tag options. Since One is a ruby class and not a procedure, it marks it
with a c.

Depending on which tag generator you use, the content of your tag file may look different. At
minimum, a tag file must have either one of these formats:

1. {tagname} {TAB} {tagfile} {TAB} {tagaddress}
2. {tagname} {TAB} {tagfile} {TAB} {tagaddress} {term} {field} ..

The Tag File

You have learned that a new file, tags, is created after running ctags -R .. How does Vim know
where to look for the tag file?

If you run :set tags?, you might see tags=./tags,tags (depending on your Vim settings, it might
be different). Here Vim looks for all tags in the path of the current file in the case of . /tags and the
current directory (your project root) in the case of tags.

Also in the case of ./tags, Vim will first look for a tag file inside the path of your current file
regardless how nested it is, then it will look for a tag file of the current directory (project root). Vim
stops after it finds the first match.

If your 'tags' file had said tags=./tags, tags, /user/iggy/mytags/tags, then Vim will also look at
the /user/iggy/mytags directory for a tag file after Vim finishes searching . /tags and tags directory.
You don’t have to store your tag file inside your project, you can keep them separate.

To add a new tag file location, use the following:

set tags+=path/to/my/tags/file

Chi6. Tags 134

Generating Tags For A Large Project

If you tried to run ctags in a large project, it may take a long time because Vim also looks inside
every nested directories. If you are a Javascript developer, you know that node_modules can be very
large. Imagine if you have a five sub-projects and each contains its own node_modules directory. If
you run ctags -R ., ctags will try to scan through all 5 node_modules. You probably don’t need to
run ctags on node_modules.

To run ctags excluding the node_modules, run:
ctags -R --exclude=node_modules .

This time it should take less than a second. By the way, you can use the exclude option multiple
times:

ctags -R --exclude=.git --exclude=vendor --exclude=node_modules --exclude=db --exclu\
de=log .

The point is, if you want to omit a directory, - -exclude is your best friend.

Tags Navigation

You can get good mileage using only Ctrl-], but let’s learn a few more tricks. The tag jump key
Ctrl-] has an command-line mode alternative: :tag {tag-name}.If you run:

:tag donut

Vim will jump to the donut method, just like doing Ctr1-] on “donut” string. You can autocomplete
the argument too, with <Tab>:

:tag d<Tab>

Vim lists all tags that starts with “d”. In this case, “donut”.

In a real project, you may encounter multiple methods with the same name. Let’s update the two
ruby files from earlier. Inside one. rb:

Chi6. Tags 135

one.rb
class One
def initialize
puts "Initialized"
end

def donut
puts "one donut"

end

def pancake
puts "one pancake"
end

end
Inside two.rb:

two.rb

require './one.rb'

def pancake
"Two pancakes"
end

one = One.new
one.donut
puts pancake

If you are coding along, don’t forget to run ctags -R . again since you now have several new
procedures. You have two instances of the pancake procedure. If you are inside two.rb and you
pressed Ctrl-], what would happen?

Vim will jump to def pancake inside two.rb, not the def pancake inside one.rb. This is because
Vim sees the pancake procedure inside two.rb as having a higher priority than the other pancake
procedure.

Tag Priority

Not all tags are equal. Some tags have higher priorities. If Vim is presented with duplicate item
names, Vim checks the priority of the keyword. The order is:

1. A fully matched static tag in the current file.

Chi6. Tags 136

A fully matched global tag in the current file.

A fully matched global tag in a different file.

A fully matched static tag in another file.

A case-insensitively matched static tag in the current file.

A case-insensitively matched global tag in the current file.

A case-insensitively matched global tag in the a different file.
A case-insensitively matched static tag in the current file.

® N oD

According to the priority list, Vim prioritizes the exact match found on the same file. That’s
why Vim chooses the pancake procedure inside two.rb over the pancake procedure inside one.rb.
There are some exceptions to the priority list above depending on your 'tagcase', 'ignorecase’,
and 'smartcase' settings, but I will not discuss them here. If you are interested, check out :h
tag-priority.

Selective Tag Jumps

It would be nice if you can choose which tag items to jump to instead of always going to the highest
priority tag item. Maybe you actually need to jump to the pancake method in one.rb and not the
one in two.rb. To do that, you can use :tselect. Run:

:tselect pancake

You will see, on the bottom of the screen:

pri kind tag file

1 FCf pancake two.rb
def pancake

2 F f pancake one.rb
class:0One

def pancake

If you type 2, Vim will jump to the procedure in one . rb. If you type 1, Vim will jump to the procedure
in two.rb.

Pay attention to the pri column. You have F C on the first match and F on the second match. This is
what Vim uses to determine the tag priotity. F C means a fully-matched (F) global tag in the current
(c) file. F means only a fully-matched (F) global tag. F C always have a higher priority than F.

If you run :tselect donut, Vim also prompts you to select which tag item to jump to, even though
there is only one option to choose from. Is there a way for Vim to prompt the tag list only if there
are multiple matches and to jump immediately if there is only one tag found?

Of course! Vim has a :tjump method. Run:

Chi6. Tags 137
:tjump donut

Vim will immediately jump to the donut procedure in one.rb, much like running :tag donut. Now
run:

:tjump pancake

Vim will prompt you tag options to choose from, much like running :tselect pancake. With t jump
you get the best of both methods.

Vim has a normal mode key for t jump: g Ctrl-].I personally like g Ctrl-] better than Ctrl-].

Autocompletion With Tags

Tags can assist autocompletions. Recall from chapter 6, Insert Mode, that you can use Ctrl-X
sub-mode to do various autocompletions. One autocompletion sub-mode that I did not mention
was Ctrl-]. If you do Ctrl-X Ctrl-] while in the insert mode, Vim will use the tag file for
autocompletion.

If you go into the insert mode and type Ctrl-x Ctrl-], you will see:

One
donut
initialize

pancake

Tag Stack

Vim keeps a list of all the tags you have jumped to and from in a tag stack. You can see this stack
with :tags. If you had first tag-jumped to pancake, followed by donut, and run : tags, you will see:

TO tag FROM line 1in file/text
1 1 pancake 10 ch16_tags/two.rb
2 1 donut 9 ch16_tags/two.rb

Note the > symbol above. It shows your current position in the stack. To “pop” the stack to go back
to one previous stack, you can run :pop. Try it, then run :tags again:

Chi6. Tags 138

TO tag FROM line 1in file/text
1 1 pancake 1@ puts pancake
> 2 1 donut 9 one.donut

Note that the > symbol is now on line two, where the donut is. pop one more time, then run :tags
again:

TO tag FROM line in file/text
> 1 1 pancake 1@ puts pancake
2 1 donut 9 one.donut

In normal mode, you can run Ctrl-t to achieve the same effect as : pop.

Automatic Tag Generation

One of the biggest drawbacks of Vim tags is that each time you make a significant change, you have
to regenerate the tag file. If you recently renamed the pancake procedure to the waffle procedure,
the tag file did not know that the pancake procedure had been renamed. It still stored pancake in the
list of tags. You have to run ctags -R . to create an updated tag file. Recreating a new tag file this
way can be cumbersome.

Luckily there are several methods you can employ to generate tags automatically.

Generate A Tag On Save

Vim has an autocommand (autocmd) method to execute any command on an event trigger. You can
use this to generate tags on each save. Run:

rautocmd BufWritePost *.rb silent !ctags -R .
Breakdown:

« autocmd is a command-line command. It accepts an event, file pattern, and a command.

« BufWritePost is an event for saving a buffer. Each time you save a file, you trigger a
BufWritePost event.

« .rb is a file pattern for ruby files.

« silent is actually part of the command you are passing. Without this, Vim will display press
ENTER or type command to continue each time you trigger the autocommand.

o Ictags -R . is the command to execute. Recall that !cmd from inside Vim executes terminal
command.

Now each time you save from inside a ruby file, Vim will run ctags -R ..

Chi6. Tags 139
Using Plugins
There are several plugins to generate ctags automatically:

« vim-gutentags®!

« vim-tags®

« vim-easytags®’

« vim-autotag’*

I use vim-gutentags. It is simple to use and will work right out of the box.

Ctags And Git Hooks

Tim Pope, author of many great Vim plugins, wrote a blog suggesting to use git hooks. Check it
out®.

Learn Tags The Smart Way

A tag is useful once configured properly. Suppose you are faced with a new codebase and you want to
understand what functionFood does, you can easily read it by jumping to its definition. Inside it, you
learn that it also calls functionBreak fast. You follow it and you learn that it calls functionPancake.
Your function call graph looks something like this:

functionFood -> functionBreakfast -> functionPancake

This gives you insight that this code flow is related to having a pancake for breakfast.

To learn more about tags, check out :h tags. Now that you know how to use tags, let’s explore a
different feature: folding.

*thttps://github.com/ludovicchabant/vim-gutentags
*https://github.com/szw/vim-tags
**https://github.com/xolox/vim-easytags
**https://github.com/craigemery/vim-autotag
**https://tbaggery.com/2011/08/08/effortless- ctags-with- git.html

https://github.com/ludovicchabant/vim-gutentags
https://github.com/szw/vim-tags
https://github.com/xolox/vim-easytags
https://github.com/craigemery/vim-autotag
https://tbaggery.com/2011/08/08/effortless-ctags-with-git.html
https://tbaggery.com/2011/08/08/effortless-ctags-with-git.html
https://github.com/ludovicchabant/vim-gutentags
https://github.com/szw/vim-tags
https://github.com/xolox/vim-easytags
https://github.com/craigemery/vim-autotag
https://tbaggery.com/2011/08/08/effortless-ctags-with-git.html

Ch17. Fold

When you read a file, often there are many irrelevant texts that hinder you from understanding
what that file does. To hide the unnecessary noise, use Vim fold.

In this chapter, you will learn different ways to fold a file.

Manual Fold

Imagine that you are folding a sheet of paper to cover some text. The actual text does not go away,
it is still there. Vim fold works the same way. It folds a range of text, hiding it from display without
actually deleting it.

The fold operator is z (when a paper is folded, it is shaped like the letter z).

Suppose you have this text:

Fold me
Hold me

Type z£j. Vim folds both lines into one. You should see something like this:
+-- 2 lines: Fold me -----
Here is the breakdown:

« zf zf is the fold operator.
« j is the motion for the fold operator.

You can open a folded text with zo. To close the fold, use zc.

Fold is an operator, so it follows the grammar rule (verb + noun). You can pass the fold operator
with a motion or text object. To fold an inner paragraph, run zfip. To fold to the end of a file, run
z£G. To fold the texts between { and }, run zfa{.

You can fold from the visual mode. Highlight the area you want to fold (v, v, or Ctr1-v), then run
zf.

You can execute a fold from the command-line mode with the : fold command. To fold the current
line and the line after it, run:

Ch17. Fold 141
:,+1fold

,+1 is the range. If you don’t pass parameters to the range, it defaults to the current line. +1 is the
range indicator for the next line. To fold the lines 5 to 10, run :5,1@fold. To fold from the current
line to the end of the line, run : , $fold.

There are many other fold and unfold commands. I find them too many to remember when starting
out. The most useful ones are:

« zR to open all folds.
« zM to close all folds.
« za toggle a fold.

You can run zR and zM on any line, but za only works when you are on a folded / unfolded line. To
learn more folding commands, check out :h fold-commands.

Different Fold Methods

The section above covers Vim’s manual fold. There are six different folding methods in Vim:

Manual
Indent
Expression
Syntax
Diff
Marker

A N

To see which folding method you are currently using, run :set foldmethod?. By default, Vim uses
the manual method.

In the rest of the chapter, you will learn the other five folding methods. Let’s get started with the
indent fold.

Indent Fold

To use an indent fold, change the ' foldmethod' to indent:
:set foldmethod=indent

Suppose that you have the text:

Ch17. Fold 142

One
Two
Two again

If you run :set foldmethod=indent, you will see:

One

+-- 2 lines: Two -----

With indent fold, Vim looks at how many spaces each line has at the beginning and compares it with
the 'shiftwidth' option to determine its foldability. 'shiftwidth' returns the number of spaces
required for each step of the indent. If you run:

:set shiftwidth?

Vim’s default 'shiftwidth' value is 2. On the text above, there are two spaces between the start
of the line and the text “Two” and “Two again”. When Vim sees the number of spaces and that the
'shiftwidth' value is 2, Vim considers that line to have an indent fold level of one.

Suppose this time you only one space between the start of the line and the text:

One
Two
Two again

Right now if you run :set foldmethod=indent, Vim does not fold the indented line because there
isn’t sufficient space on each line. One space is not considered an indentation. However, if you
change the 'shiftwidth' to 1:

:set shiftwidth=1

The text is now foldable. It is now considered an indentation.

Restore the shiftwidth back to 2 and the spaces between the texts to two again. In addition, add
two additional texts:

One
Two
Two again
Three
Three again

Run fold (zM), you will see:

Ch17. Fold 143

One

+-- 4 lines: Two -----
Unfold the folded lines (zR), then put your cursor on “Three” and toggle the text’s folding state (za):

One
Two
Two again
+-- 2 lines: Three -----

What’s this? A fold within a fold?

Nested folds are valid. The text “Two” and “Two again” have fold level of one. The text “Three” and
“Three again” have fold level of two. If you have a foldable text with a higher fold level within a
foldable text, you will have multiple fold layers.

Marker Fold

To use a marker fold, run:
:set foldmethod=marker
Suppose you have the text:

Hello

{{{

world
vim

11}
Run zM, you will see:
hello

+-- 4 lines: -----

Vim sees {{{ and }}} as fold indicators and folds the texts between them. With the marker fold,
Vim looks for special markers, defined by ' foldmarker' option, to mark folding areas. To see what
markers Vim uses, run:

Ch17. Fold 144

:set foldmarker?

By default, Vim uses {{{ and }}} as indicators. If you want to change the indicator to another texts,
like “coffee1” and “coffee2”:

:set foldmarker=coffeel,coffee2
If you have the text:

hello

coffeel
world
vim
coffee2

Now Vim uses coffee1 and coffee2 as the new folding markers. As a side note, an indicator must
be a literal string and cannot be a regex.

Syntax Fold

Syntax fold is determined by syntax language highlighting. If you use a language syntax plugin like
vim-polyglot®, the syntax fold will work right out of the box. Just change the fold method to syntax:

:set foldmethod=syntax

Let’s assume you are editing a JavaScript file and you have vim-polyglot installed. If you have an
array like the following:

const nums = [
one,
two,
three,
four

It will be folded with a syntax fold. When you define a syntax highlighting for a particular language
(typically inside the syntax/ directory), you can add a fold attribute to make it foldable. Below is a
snippet from vim-polyglot JavaScript syntax file. Notice the fold keyword at the end.

*https://github.com/sheerun/vim-polyglot

https://github.com/sheerun/vim-polyglot
https://github.com/sheerun/vim-polyglot

Ch17. Fold 145

syntax region jsBracket matchgroup=jsBrackets start\
=/\[/ end=/\]/ contains=@jsExpression, jsSpreadExpression extend fold

This guide won’t cover the syntax feature. If you're curious, check out :h syntax.txt.

Expression Fold

Expression fold allows you to define an expression to match for a fold. After you define the fold
expressions, Vim scans each line for the value of ' foldexpr'. This is the variable that you have to
configure to return the appropriate value. If the ' foldexpr' returns 0, then the line is not folded.
If it returns 1, then that line has a fold level of 1. If it returns 2, then that line has a fold level of 2.
There are more values other than integers, but I won’t go over them. If you are curious, check out
:h fold-expr.

First, let’s change the foldmethod:

:set foldmethod=expr

“_»

Suppose you have a list of breakfast foods and you want to fold all breakfast items starting with “p”:

donut
pancake
pop-tarts
protein bar
salmon

scrambled eggs

«K_»

Next, change the foldexpr to capture the expressions starting with “p”:
:set foldexpr=getline(v:lnum)[@]==\\"p\\"
The expression above looks complicated. Let’s break it down:

+ :set foldexpr sets up the ' foldexpr' option to accept a custom expression.

« getline() is a Vimscript function that returns the content of any given line. If you run :echo
getline(5), it will return the content of line 5.

« v:1num is Vim’s special variable for the ' foldexpr' expression. Vim scans each line and at that
moment stores each line’s number in v: 1num variable. On line 5, v: 1num has value of 5. On line
10, v: 1num has value of 10.

Ch17. Fold 146

« [@] in the context of getline(v:1num)[@] is the first character of each line. When Vim scans
a line, getline(v:1num) returns the content of each line. getline(v:1num)[@] returns the first
character of each line. On the first line of our list, “donut”, getline(v:1num)[@] returns “d”.
On the second line of our list, “pancake”, getline(v:1num)[@] returns “p”.

« ==\\"p\\" is the second half of the equality expression. It checks if the expression you just
evaluated is equal to “p”. If it is true, it returns 1. If it is false, it returns 0. In Vim, 1 is truthy
and 0 is falsy. So on the lines that start with an “p”, it returns 1. Recall if a ' foldexpr' has a
value of 1, then it has a fold level of 1.

After running this expression, you should see:

don

-

ut
3 lines: pancake -----

salmon

scrambled eggs

Diff Fold

Vim can do a diff procedure to compare two or more files.

If you have filet.txt:

vim
vim
vim
vim
vim
vim
vim
vim
vim

vim

is awesome
is awesome
is awesome
is awesome
is awesome
is awesome
is awesome
is awesome
is awesome

is awesome

And file2.txt:

Ch17. Fold 147

vim is awesome
vim is awesome
vim is awesome
vim is awesome
vim is awesome
vim is awesome
vim is awesome
vim is awesome
vim is awesome

emacs is ok
Runvimdiff filel.txt file2.txt:

+-- 3 lines: vim is awesome -----
vim is awesome
vim is awesome
vim is awesome
vim is awesome
vim is awesome
vim is awesome

[vim is awesome] / [emacs is ok]

Vim automatically folds some of the identical lines. When you are running the vimdiff command,
Vim automatically uses foldmethod=diff. If you run :set foldmethod?, it will return diff.

Persisting Fold

You loses all fold information when you close the Vim session. If you have this file, count . txt:

one
two
three
four

five

Then do a manual fold from line “three” down (: 3, $fold):

Ch17. Fold 148

one
two
+-- 3 lines: three ---

When you exit Vim and reopen count . txt, the folds are no longer there!

To preserve the folds, after folding, run:
:mkview

Then when you open up count. txt, run:
:loadview

Your folds are restored. However, you have to manually run mkview and loadview. I know that one
of these days, I will forget to run mkview before closing the file and I will lose all the folds. How can
we automate this process?

To automatically run mkview when you close a .txt file and run loadview when you open a .txt
file, add this in your vimre:

autocmd BufWinlLeave *.txt mkview
autocmd BufWinEnter *.txt silent loadview

Recall that autocmd is used to execute a command on an event trigger. The two events here are:

« BufWinLeave for when you remove a buffer from a window.
« BufWinEnter for when you load a buffer in a window.

Now after you fold inside a .txt file and exit Vim, the next time you open that file, your fold
information will be restored.

By default, Vim saves the fold information when running mkview inside ~/.vim/view for the Unix
system. For more information, check out :h 'viewdir'.

Learn Fold The Smart Way

When I first started Vim, I neglected ot learn fold because I didn’t think it was useful. However,
the longer I code, the more useful I find folding is. Strategically placed folds can give you a better
overview of the text structure, like a book’s table of content.

When you learn fold, start with the manual fold because that can be used on-the-go. Then gradually
learn different tricks to do indent and marker folds. Finally, learn how to do syntax and expression
folds. You can even use the latter two to write your own Vim plugins.

Ch18. Git

Vim and git are two great tools for two different things. Git is a version control tool. Vim is a text
editor.

In this chapter, you will learn different ways to integrate Vim and git together.
Diffing

Recall in the previous chapter, you can run a vimdiff command to show the differences between
multiple files.

Suppose you have two files, file1.txt and file2.txt.

Inside filel.txt:

pancakes
waffles
apples

milk
apple juice

yogurt
Inside file2.txt:

pancakes
waffles
oranges

milk
orange juice

yogurt

To see the differences between both files, run:

Ch1s. Git 150
vimdiff filel.txt file2.txt
Alternatively you could run:

vim -d filel.txt file2.txt

filel.txt | unix 8 | text 100K

"filed.txt" 9L,

Basic diffing with Vim

vimdiff displays two buffers side-by-side. On the left is file1.txt and on the right is file2.txt.
The first differences (apples and oranges) are highlighted on both lines.

Suppose you want to make the second buffer to have apples, not oranges. To transfer the content
from your current position (you’re currently on filel.txt) to file2.txt, first go to the next diff
with Jc (to jump to the previous diff window, use [c). The cursor should be on apples now. Run
:di ffput. Both files should now have apples.

Chis. Git 151

milk
appl orang

yogurt yogurt

filel.txt | unix
rdiffput

Diffing apples

If you need to transfer the text from the other buffer (orange juice, file2.txt) to replace the text
on the current buffer (apple juice, file1.txt), with your cursor still on file1.txt window, first go
to the next diff with Jc. Your cursor now should be on apple juice. Run :diffget to get the orange
juice from another buffer to replace apple juice in our buffer.

:diffput puts out the text from the current buffer to another buffer. :diffget gets the text from
another buffer to the current buffer.

If you have multiple buffers, you can run :diffput fileN.txt and :diffget fileN.txt to target
the the fileN buffer.

Vim As A Merge Tool

“I love resolving merge conflicts!” - Nobody

I don’t know anyone who likes resolving merge conflicts. However, they are inevitable. In this
section, you will learn how to leverage Vim as a merge conflict resolution tool.

First, change the default merge tool to use vimdiff by running:

Chis. Git 152

git config merge.tool vimdiff
git config merge.conflictstyle diff3
git config mergetool .prompt false

Alternatively, you can modify the ~/.gitconfig directly (by default it should be in root, but yours
might be in different place). The commands above should modify your gitconfig to look like the
setting below, if you haven’t run them already, you can also manually edit your gitconfig.

[core]
editor = vim
[merge]
tool = vimdiff
conflictstyle = diff3
[difftool]
prompt = false
Let’s create a fake merge conflict to test this out. Create a directory /food and make it a git repository:
git init

Add a file, break fast . txt. Inside:

pancakes
waffles
oranges

Add the file and commit it:

git add .
git commit -m "Initial breakfast commit"”

Next, create a new branch and call it apples branch:
git checkout -b apples
Change the breakfast. txt:

pancakes

waffles

apples

Save the file, then add and commit the change:

Chis. Git 153

git add
git commit -m "Apples not oranges”

Great. Now you have oranges in the master branch and apples in the apples branch. Let’s return to
the master branch:

git checkout master

Inside breakfast . txt, you should see the base text, oranges. Let’s change it to grapes because they
are in season right now:

pancakes
waffles
grapes

Save, add, and commit:

git add
git commit -m "Grapes not oranges"”

Now you are ready to merge the apples branch into the master branch:
git merge apples
You should see an error:

Auto-merging breakfast.txt
CONFLICT (content): Merge conflict in breakfast.txt
Automatic merge failed; fix conflicts and then commit the result.

A conflict, great! Let’s resolve the conflict using our newly-configured mergetool. Run:

git mergetool

Chis. Git 154

Three-way mergetool with Vim

Vim displays four windows. Pay attention to the top three:

« LOCAL contains grapes. This is the change in “local”, what you are merging into.

« BASE contains oranges. This is the common ancestor between LOCAL and REMOTE to compare
how they diverge.

« REMOTE contains apples. This is what is being merged into.

At the bottom (the fourth window) you see:

pancakes
waffles

<{<<<<<< HEAD
grapes

[T1111] db63958
oranges

apples
>>>>>>> apples

The fourth window contains the merge conflict texts. With this setup, it is easier to see what change
each environment has. You can see the content from LOCAL, BASE, and REMOTE at the same time.

Chis. Git 155

Your cursor should be on the fourth windows, on the highlighted area. To get the change from LoCAL
(grapes), run :diffget LOCAL. To get the change from BASE (oranges), run :diffget BASE and to get
the change from REMOTE (apples), run :diffget REMOTE.

In this case, let’s get the change from LOCAL. Run :di ffget LOCAL. The fourth window will now have
grapes. Save and exit all files (:wgal1) when you are done. That wasn’t bad, right?

If you notice, you also have a file breakfast.txt.orig now. Git creates a backup file in case things
don’t go well. If you don’t want git to create a backup during a merge, run:

git config --global mergetool.keepBackup false

Git Inside Vim

Vim does not have a native git feature built-in. One way to run git commands from Vim is to use
the bang operator, !, in the command-line mode.

Any git command can be run with !:

:1git status

:1git commit

:lgit diff

:1git push origin master

You can also use Vim’s % (current buffer) or # (other buffer) conventions:

:1git add % " git add current file

:1git checkout # git checkout the other file

One Vim trick you can use to add multiple files in different Vim window is to run:
:windo !git add %

Then make a commit:

:1git commit "Just git-added everything in my vim window, cool"

The windo command is one of Vim’s “do” commands, similar to argdo that you saw previously. windo
executes the command on each window.

Alternatively, you can also use bufdo !git add % to git add all buffers or argdo !git add % to git
add all the file arguments, depending on your workflow.

Ch1s.

Git 156

Plugins

There are many Vim plugins for git support. Below is a list of some of the popular git-related plugins
for Vim (there is probably more at the time you read this):

One

vim-gitgutter®’
vim-signify?®
vim-fugitive®
gv.vim*
vimagit*
vim-twiggy**

rhubarb*®

of the most popular ones is vim-fugitive. For the remaining of the chapter, I will go over a

several git workflow using this plugin.

Vim-fugitive

The vim-fugitive plugin allows you to run the git CLI without leaving the Vim editor. You will find
that some commands are better when executed from inside Vim.

To get started, install the vim-fugitive with a vim plugin manager (vim-plug*‘, vundle*’, dein.vim*’,

etc).

Git Status

When you run the :Git command without any parameters, vim-fugitive displays a git summary
window. It shows the untracked, unstaged, and staged file(s). While in this “git status” mode, you
can do several things:

Ctrl-N/Ctrl-P to go up or down the file list.
- to stage or unstage the file name under the cursor.
s to stage the file name under the cursor.

*"https://github.com/airblade/vim-gitgutter
**https://github.com/mhinz/vim-signify
*https://github.com/tpope/vim-fugitive
“*https://github.com/junegunn/gv.vim
“‘https://github.com/jreybert/vimagit
“*https://github.com/sodapopcan/vim-twiggy
“*https://github.com/tpope/vim-rhubarb
“*https://github.com/junegunn/vim-plug
“*https://github.com/VundleVim/Vundle.vim
“*https://github.com/Shougo/dein.vim

https://github.com/airblade/vim-gitgutter
https://github.com/mhinz/vim-signify
https://github.com/tpope/vim-fugitive
https://github.com/junegunn/gv.vim
https://github.com/jreybert/vimagit
https://github.com/sodapopcan/vim-twiggy
https://github.com/tpope/vim-rhubarb
https://github.com/junegunn/vim-plug
https://github.com/VundleVim/Vundle.vim
https://github.com/Shougo/dein.vim
https://github.com/airblade/vim-gitgutter
https://github.com/mhinz/vim-signify
https://github.com/tpope/vim-fugitive
https://github.com/junegunn/gv.vim
https://github.com/jreybert/vimagit
https://github.com/sodapopcan/vim-twiggy
https://github.com/tpope/vim-rhubarb
https://github.com/junegunn/vim-plug
https://github.com/VundleVim/Vundle.vim
https://github.com/Shougo/dein.vim

Chis. Git 157

« u to unstage the file name under the cursor.
« > / < to display or hide an inline diff of the file name under the cursor.

M breakfast.txt

Lun

IEEETM RO | index | -
grapes
milk
hash browns

Fugitive Git

For more, check out :h fugitive-staging-maps.

Git Blame

When you run the :Git blame command from the current file, vim-fugitive displays a split blame
window. This can be useful to find the person responsible for writing that buggy line of code so you
can yell at him / her (just kidding).

Some things you can do while in this "git blame" mode:

« g to close the blame window.

« A to resize the author column.

o C to resize the commit column.

« D to resize the date / time column.

For more, check out :h :Git_blame.

Chis. Git 158

Fugitive Git Blame

Gdiffsplit

When you run the :Gdiffsplit command, vim-fugitive runs a vimdiff of the current file’s latest
changes against the index or work tree. If you run :Gdiffsplit <commit>, vim-fugitive runs a

vimdiff against that file inside <commit>.

Chis. Git 159

Fugitive Gdiffsplit

Because you are in a vimdiff mode, you can get or put the diff with :diffput and :diffget.

Gwrite And Gread

When you run the :Gwrite command in a file after you make changes, vim-fugitive stages the
changes. It is like running git add <current-file>.

When you run the :Gread command in a file after you make changes, vim-fugitive restores the file
to the state prior to the changes. It is like running git checkout <current-file>. One advantage of
running :Cread is the action is undo-able. If, after you run :Gread, you change your mind and want
to keep the old change, you can just run undo (u) and Vim will undo the :Gread action. This would
not have been possible if you had run git checkout <current-file> from the CLIL

Gclog

When you run the :Gclog command, vim-fugitive displays the commit history. It is like running the
git log command. Vim-fugitive uses Vim’s quickfix to accomplish this, so you can use :cnext and
:cprevious to traverse to the next or previous log information. You can open and close the log list
with :copen and :cclose.

Chis. Git 160

mmitte

add milk

IEEETTM RO | 567d7d9faSa76c28280b28b4004c213cf 3ebablc | -

Fugitive Git Log

While in this "git log" mode, you can do two things:

« View the tree.
« Visit the parent (the previous commit).

You can pass to :Gclog arguments just like the git log command. If your project has a long commit
history and you only need to view the last three commits, you can run :Gclog -3.If you need to
filter it based on the committer’s date, you can run something like :Gclog --after="January 1"
--before="March 14".

More Vim-Fugitive

These are only a few examples of what vim-fugitive can do. To learn more about vim-fugitive, check
out :h fugitive.txt. Most of the popular git commands are probably optimized with vim-fugitive.
You just have to look for them in the documentation.

If you are inside one of vim-fugitive’s “special mode” (for example, inside :Git or :Git blame
mode) and you want to learn what shortcuts are available, press g?. Vim-fugitive will display the
appropriate :help window for the mode you are in. Neat!

Chis. Git 161

Learn Vim And Git The Smart Way

You may find vim-fugitive to be a good compliment to your workflow (or not). Regardless, I would
strongly encourage you to check out all the plugins listed above. There are probably others I didn’t
list. Go try them out.

One obvious way to get better with Vim-git integration is to read more about git. Git, on its own, is
a vast topic and I am only showing a fraction of it. With that, let’s git going (pardon the pun) and
talk about how to use Vim to compile your code!

Ch19. Compile

Compiling is an important subject for many languages. In this chapter, you will learn how to compile
from Vim. You will also look at ways to take advantage of Vim’s :make command.

Compile From the Command Line

You can use the bang operator (!) to compile. If you need to compile your .cpp file with g++, run:
:1g++ hello.cpp -0 hello

However, having to manually type the filename and the output filename each time is error-prone
and tedious. A makefile is the way to go.

The Make Command

Vim has a :make command to run a makefile. When you run it, Vim looks for a makefile in the
current directory to execute.

Create a file named makefile in the current directory and put these inside:

all:

echo "Hello all"
foo:

echo "Hello foo"
list_pls:

1s
Run this from Vim:
:make

Vim executes it the same way as when you’re running it from the terminal. The :make command
accepts parameter just like the terminal make command. Run:

Ch19. Compile 163

:make foo
" Qutputs "Hello foo"

:make list_pls
" Outputs the 1ls command result

The :make command uses Vim’s quickfix to store any error if you run a bad command. Let’s run a
nonexisting target:

:make dontexist

You should see an error running that command. To view that error, run the quickfix command : copen
to view the quickfix window:

|| make: *** No rule to make target “dontexist'. Stop.

Compiling With Make

Let’s use the makefile to compile a basic .cpp program. First, let’s create a hello.cpp file:
#include <iostream>

int main() {

std: :cout << "Hello!\\n";
return 0;

7

Update your makefile to build and run a . cpp file:

all:

echo "build, run"
build:

g+t+ hello.cpp -0 hello
run:

./hello
Now run:
:make build

The g++ compiles . /hello.cpp and creates . /hello. Then run:

Ch19. Compile 164

:make run

You should see "Hello!" printed on the terminal.

Different Make Program

When you run :make, Vim actually runs whatever command that is set under the makeprg option. If
you run :set makeprg?, you'll see:

makeprg=make

The default : make command is the make external command. To change the : make command to execute
g++ {your-file-name} each time you run it, run:

:set makeprg=g++\ %

The \ is to escape the space after g++. The % symbol in Vim represents the current file. The command
g++\\ % is equivalent to running g++ hello.cpp.

Go to . /hello.cpp then run :make. Vim compiles hello.cpp and creates a.out because you didn’t
specify the output. Let’s refactor it so it will name the compiled output with the name of the original
file minus the extension. Run or add this to vimre:

set makeprg=g++\ %\ -o\ %<
The breakdown:

« g++\ % is the same as above. It is equivalent to running g++ <your-file>.
« -o is the output option.
« %< in Vim represents the current file name without an extension (hello.cpp becomes hello).

When you run :make from inside ./hello.cpp, it is compiled into ./hello. To quickly
execute ./hello from inside ./hello.cpp, run :!./%<. Again, this is the same as running

1. /{current-file-name-minus-the-extension}.

For more, check out :h :compiler and :h write-compiler-plugin.

Auto-compile On Save

You can make life even easier by automating compilation. Recall that you can use Vim’s autocmd to
trigger automatic actions based on certain events. To automatically compile . cpp files on each save
add this on your vimre:

Ch19. Compile 165

autocmd BufWritePost *.cpp make

Each time you save inside a .cpp file, Vim executes the make command.

Switching Compiler

Vim has a :compiler command to quickly switch compilers. Your Vim build probably comes with
several pre-built compiler configurations. To check what compilers you have, run:

:e $VIMRUNTIME/compiler/<Tab>

You should see a list of compilers for different programming languages.

To use the :compiler command, suppose you have a ruby file, hello.rb and inside it has:
puts "Hello ruby"

Recall that if you run :make, Vim executes whatever command is assigned to makeprg (default is
make). If you run:

:compiler ruby

Vim runs the $VIMRUNTIME/compiler/ruby.vim script and changes the makeprg to use the ruby
command. Now if you run :set makeprg?, it should say makeprg=ruby (this depends on what is
inside your $VIMRUNTIME/compiler/ruby.vim file or if you have another custom ruby compilers.
Yours might be different). The :compiler {your-lang} command allows you to switch to different
compilers quickly. This is useful if your project uses multiple languages.

You don’t have to use the :compiler and makeprg to compile a program. You can run a test script,
lint a file, send a signal, or anything you want.

Creating A Custom Compiler

Let’s create a simple Typescript compiler. Install Typescript (npm install -g typescript) to your
machine. You should now have the tsc command. If you haven’t played with typescript before, tsc
compiles a Typescript file into a Javascript file. Suppose that you have a file, hello. ts:

const hello = "hello";
console.log(hello);

If you run tsc hello.ts, it will compile into hello.js. However, if you have the following
expressions inside hello.ts:

Ch19. Compile 166

const hello = "hello";
hello = "hello again";
console.log(hello);

This will throw an error because you can’t mutate a const variable. Running tsc hello.ts will
throw an error:

hello.ts:2:1 - error TS2588: Cannot assign to 'person' because it is a constant.
2 person = "hello again";

NN

Found 1 error.
To create a simple Typescript compiler, in your ~/.vim/ directory, add a compiler directory
(~/.vim/compiler/), then create a typescript.vim file (~/.vim/compiler/typescript.vim). Put

this inside:

CompilerSet makeprg=tsc
CompilerSet errorformat=%f:\ %m

The first line sets the makeprg to run the tsc command. The second line sets the error format to

display the file (2£), followed by a literal colon (:) and an escaped space (\), followed by the error
message (%m). To learn more about the error formatting, check out :h errorformat.

You should also read some of the pre-made compilers to see how others do it. Check out :e
$VIMRUNTIME/compiler/<some-language> .vim.

Because some plugins may interfere with the Typescript file, let’s open the hello.ts without any
plugin, using the --noplugin flag:

vim --noplugin hello.ts

Check the makeprg:

:set makeprg?

It should say the default make program. To use the new Typescript compiler, run:
:compiler typescript

When you run :set makeprg?, it should say tsc now. Let’s put it to the test. Run:

Ch19. Compile 167
:make %

Recall that % means the current file. Watch your Typescript compiler work as expected! To see the
list of error(s), run :copen.

Async Compiler

Sometimes compiling can take a long time. You don’t want to be staring at a frozen Vim while
waiting for your compilation process to finish. Wouldn’t it be nice if you can compile asynchronously
so you can still use Vim during compilation?

Luckily there are plugins to run async processes. The two big ones are:

« vim-dispatch*’
« asyncrun.vim*®

In the remaining of this chapter, I will go over vim-dispatch, but I would strongly encourage you to
try all of them out there.

Vim and NeoVim actually supports async jobs, but they are beyond the scope of this chapter. If you're
curious, check out :h job-channel-overview. txt.

Plugin: Vim-dispatch
Vim-dispatch has several commands, but the two main ones are :Make and :Dispatch commands.

Async Make

Vim-dispatch’s :Make command is similar to Vim’s :make, but it runs asynchronously. If you are in
a Javascript project and you need to run npm t, you might attempt to set your makeprg to be:

:set makeprg=npm\\ t
If you run:
:make

Vim will execute npm t, but you will be staring at the frozen screen while your JavaScript test runs.
With vim-dispatch, you can just run:

“"https://github.com/tpope/vim-dispatch
“*https://github.com/skywind3000/asyncrun.vim

https://github.com/tpope/vim-dispatch
https://github.com/skywind3000/asyncrun.vim
https://github.com/tpope/vim-dispatch
https://github.com/skywind3000/asyncrun.vim

Ch19. Compile 168
:Make

Vim will run npm t asynchronously. This way, while npm t is running on a background process, you
can continue doing whatever you were doing. Awesome!

Async Dispatch

The :Dispatch command is like the :compiler and the :! command. It can run any external
command asynchronously in Vim.

Assume that you are inside a ruby spec file and you need to run a test. Run:
:Dispatch bundle exec rspec %
Vim will asynchronously run the rspec command against the current file (%).

Automating Dispatch

Vim-dispatch has b:dispatch buffer variable that you can configure to evaluate specific command
automatically. You can leverage it with autoemd. If you add this in your vimre:

autocmd BufEnter *_spec.rb let b:dispatch = 'bundle exec rspec %'

Now each time you enter a file (BufEnter) that ends with _spec.rb, running : Dispatch automatically

executes bundle exec rspec {your-current-ruby-spec-file}.

Learn Compile The Smart Way

In this chapter, you learned that you can use the make and compiler commands to run any process
from inside Vim asynchronously to complement your programming workflow. Vim’s ability to
extend itself with other programs makes it powerful.

Ch20. Views, Sessions, And Viminfo

After you worked on a project for a while, you may find the project to gradually take shape with its
own settings, folds, buffers, layouts, etc. It’s like decorating your apartment after living in it for a
while. The problem is, when you close Vim, you lose those changes. Wouldn’t it be nice if you can
keep those changes so the next time you open Vim, it looks just like you had never left?

In this chapter, you will learn how use View, Session, and Viminfo to preserve a “snapshot” of your
projects.

View

A View is the smallest subset of the three (View, Session, Viminfo). It is a collection of settings for
one window. If you spend a long time working on a window and you want to preserve the maps
and folds, you can use a View.

Let’s create a file called foo.txt:

fool
foo2
foo3
foo4
foob
foob
foo7
foo8
foo9
foo10

In this file, create three changes:

1. On line 1, create a manual fold zf4j (fold the next 4 lines).
2. Change the number setting: setlocal nonumber norelativenumber. This will remove the
number indicators on the left side of the window.

3. Create a local mapping to go down two lines each time you press j instead of one: : nnoremap
<buffer> j jj.

Your file should look like this:

Ch20. Views, Sessions, And Viminfo 170

+-- 5 lines: fool -----
foob
foo7
foo8
foo9
foo10

Configuring View Attributes

Run:

‘set viewoptions?

By default it should say (yours may look different depending on your vimrc):
viewoptions=folds,cursor,curdir

Let’s configure viewoptions. The three attributes you want to preserve are the folds, the maps, and
the local set options. If your setting looks like mine, you already have the folds option. You need to
tell View to remember the 1ocaloptions. Run:

:set viewoptions+=localoptions

To learn what other options are available for viewoptions, check out :h viewoptions. Now if you
run :set viewoptions?, you should see:

viewoptions=folds, cursor,curdir, localoptions

Saving The View

With the foo.txt window properly folded and having nonumber norelativenumber options, let’s
save the View. Run:

:mkview
Vim creates a View file.

View Files

You might wonder, “Where did Vim save this View file?” To see where Vim saves it, run:

Ch20. Views, Sessions, And Viminfo 171
:set viewdir?

The default should say ~/.vim/view (if you have a different OS, it might show a different path.
Check out :h viewdir for more). If you want to change it to a different path, add this into your
vimre:

set viewdir=$HOME/else/where

Loading The View File
Close the foo.txt if you haven’t, then open foo.txt again. You should see the original text
without the changes. That’s expected.

To restore the state, you need to load the View file. Run:
:loadview
Now you should see:

+-- 5 lines: fool -----
foob
foo7
foo8
foo9
foo10

The folds, local settings, and local mappings are restored. If you notice, your cursor should also be
on the line where you left it when you ran :mkview. As long as you have the cursor option, View
also remembers your cursor position.

Multiple Views

Vim lets you save 9 numbered Views (1-9).

Suppose you want to make an additional fold (say you want to fold the last two lines) with :9,10
fold. Let’s save this as View 1. Run:

:mkview 1

If you want to make one more fold with :6,7 fold and save it as a different View, run:

Ch20. Views, Sessions, And Viminfo 172
:mkview 2

Close the file. When you open foo. txt and you want to load View 1, run:

:loadview 1

To load View 2, run:

:loadview 2

To load the original View, run:

:loadview

Automating View Creation

One of the worst things that can happen is, after spending countless hours organizing a large file
with folds, you accidentally close the window and lose all fold information. To prevent this, you
might want to automatically create a View each time you close a buffer. Add this in your vimre:

autocmd BufWinLeave *.txt mkview
Additionally, it might be nice to load View when you open a buffer:
autocmd BufWinEnter *.txt silent loadview

Now you don’t have to worry about creating and loading View anymore when you are working
with txt files. Keep in mind that over time, your ~/.vim/view might start to accumulate View files.
It’s good to clean it up once every few months.

Sessions

If a View saves the settings of a window, a Session saves the information of all windows (including
the layout).

Creating A New Session

Suppose you are working with these 3 files in a foobarbaz project:

Inside foo.txt:

Ch20. Views, Sessions, And Viminfo 173

fool
foo2
foo3
foo4
foob
foob
foo7
foo8
foo9
foo10

Inside bar . txt:

bar1
bar2
bar3
bar4
barb
bar6
bar7
bar8
bar9
bar10

Inside baz . txt:

baz1
baz2
baz3
baz4
bazb
baz6
baz7
baz8
baz9
baz10

Let’s say that your windows layout look like the following (using strategically placed split and
vsplit):

Ch20. Views, Sessions, And Viminfo 174

Alacritty

foar1

flbar2

Ellnar3

Ellbara

Eoars

ERbart

(Wbar7

7 ElE]

(lbaro

[l foo10 flbarie

NORMAL B G125 unix | utf-8 | text FEI0% 1:1

el

Session Layout

To preserve this look, you need to save the Session. Run:
:mksession

Unlike mkview where it saves to ~/.vim/view by default, mksession saves a Session file (Session.vim)
in the current directory. Check out the file if you’re curious what’s inside.

If you want to save the Session file somewhere else, you can pass an argument to mksession:
:mksession ~/some/where/else.vim

If you want to overwrite the existing Session file, call the command with a ! (:mksession!
~/some/where/else.vim).

Loading A Session
To load a Session, run:
:source Session.vim

Now Vim looks like just the way you left it! Alternatively, you can also load a Session file from the
terminal:

Ch20. Views, Sessions, And Viminfo 175

vim -S Session.vim

Configuring Session Attributes

You can configure the attributes Session saves. To see what is currently being saved, run:
:set sessionoptions?

Mine says:

blank,buffers,curdir, folds,help, tabpages,winsize,terminal

If you don’t want to save terminal when you save a Session, remove it from the session options.
Run:

:set sessionoptions-=terminal

If you want to add an options when you save a Session, run:
:set sessionoptions+=options

Here are some attributes that sessionoptions can store:

« blank stores empty windows

« buffers stores buffers

« folds stores folds

« globals stores global variables (must start with an uppercase letter and contain at least one
lowercase letter)

« options stores options and mappings

« resize stores window lines and columns

« winpos stores window position

« winsize stores window sizes

« tabpages stores tabs

« unix stores files in Unix format

For the complete list check out :h 'sessionoptions'.

Session is a useful tool to preserve your project’s external attributes. However, some internal
attributes aren’t saved by Session, like local marks, registers, histories, etc. To save them, you need
to use Viminfo!

Ch20. Views, Sessions, And Viminfo 176
Viminfo

If you notice, after yanking a word into register a and quitting Vim, the next time you open Vim
you still that text stored in the register. This is actually a work of Viminfo. Without it, Vim won’t
remember the register after you close Vim.

If you use Vim 8 or higher, Vim enables Viminfo by default, so you may have been using Viminfo
this whole time without knowing it!

You might ask: “What does Viminfo save? How does it differ from Session?”

To use Viminfo, first you need to have +viminfo feature available (: version). Viminfo stores:

+ The command-line history.

« The search string history.

« The input-line history.

« Contents of non-empty registers.

« Marks for several files.

« File marks, pointing to locations in files.

« Last search / substitute pattern (for ‘n’ and ‘&’).
« The buffer list.

« Global variables.

In general, Session stores the “external” attributes and Viminfo the “internal” attributes.

Unlike Session where you can have one Session file per project, you normally will use one Viminfo
file per computer. Viminfo is project-agnostic.

The default Viminfo location for Unix is $HOME/.viminfo (~/.viminfo). If you use a different OS,
your Viminfo location might be different. Check out :h viminfo-file-name. Each time you make
“internal” changes, like yanking a text into a register, Vim automatically updates the Viminfo file.

Make sure that you have nocompatible option set (set nocompatible), otherwise your Viminfo will
not work.

Writing And Reading Viminfo

Although you will use only one Viminfo file, you can create multiple Viminfo files. To write a
Viminfo file, use the :wviminfo command (:wv for short).

:wv ~/.viminfo_extra

To overwrite an existing Viminfo file, add a bang to the wv command:

Ch20. Views, Sessions, And Viminfo 177

wv! ~/ . viminfo_extra

By default Vim will read from ~/.viminfo file. To read from a different Viminfo file, run :rviminfo,
or :rv for short:

:rv ~/.viminfo_extra
To start Vim with a different Viminfo file from the terminal, use the i flag:
vim -i viminfo_extra

If you use Vim for different tasks, like coding and writing, you can create a Viminfo optimized for
writing and another for coding.

vim -i viminfo_writing

vim -i viminfo_coding

Starting Vim Without Viminfo

To start Vim without Viminfo, you can run from the terminal:
vim -i NONE

To make it permanent, you can add this in your vimre file:
set viminfo="NONE"

Configuring Viminfo Attributes

Similar to viewoptions and sessionoptions, you can instruct what attributes to save with the
viminfo option. Run:

:set viminfo?

You will get:

Ch20. Views, Sessions, And Viminfo 178
| '100,<50,510,h
This looks cryptic. Let’s break it down:

« | saves global variables that start with an uppercase letter and don’t contain lowercase
letters. Recall that g: indicates a global variable. For example, if at some point you wrote the
assignment let g:FOO = "foo", Viminfo will save the global variable F00. However if you did
let g:Foo = "foo", Viminfo will not save this global variable because it contains lowercase
letters. Without !, Vim won’t safe those global variables.

+ '100 represents marks. In this case, Viminfo will save the local marks (a-z) of the last 100 files.
Be aware that if you tell Viminfo to save too many files, Vim can start slowing down. 1000 is
a good number to have.

« <50 tells Viminfo how many maximum lines are saved for each registers (50 in this case). If
I yank 100 lines of text into register a ("ay99j) and close Vim, the next time I open Vim and
paste from register a ("ap), Vim will only paste 50 lines max. If you don’t give maximum line
number, all lines will be saved. If you give it 0, nothing will be saved.

« 510 sets a size limit (in kb) for a register. In this case, any register greater than 10kb size will
be excluded.

« h disables highlighting (from hlsearch) when Vim starts.

There are other options that you can pass. To learn more, check out :h 'viminfo'.

Using Views, Sessions, And Viminfo The Smart Way

Vim has View, Session, and Viminfo to take different level of your Vim environment snapshots. For
micro projects, use Views. For larger projects, use Sessions. You should take your time to check out
all the options that View, Session, and Viminfo offers.

Create your own View, Session, and Viminfo for your own editing style. If you ever need to use Vim
outside of your computer, you can just load your settings and you will immediately feel at home!

Ch21. Vimrc

In the previous chapters, you learned how to use Vim text editor. This is great, but not the whole
thing. To use Vim more effectively, you will need to learn how to configure it. The best place to start
is your vimrc. TBC

In the previous chapters, you learned how to use Vim. In this chapter, you will learn how to orgnize
and configure vimre.

How Vim Finds Vimrc

The conventional wisdom for vimre is to add a .vimrc dotfile in the root directory ~/.vimre (it
might be different depending on your OS).

Behind the scene, Vim looks at multiple places for a vimrc file. Here are the places that Vim checks:

e $VIMINIT

e $HOME/ .vimrc

e $HOME/.vim/vimrc

o $EXINIT

e $HOME/ .exrc

e $VIMRUNTIME/default.vim

When you start Vim, it will check the above six locations in that order for a vimrc file. The first
found vimrec file will be used and the rest is ignored.

First Vim will look for a $VIMINIT. If there is nothing there, Vim will check for $HOME/.vimre. If
there is nothing there, Vim will check for $HOME/ . vim/vimre. If Vim finds it, it will stop looking and
use $HOME/ . vim/vimre.

The first location, $VIMINIT, is an environment variable. By default it is undefined. If you want to use
~/dotfiles/testvimrc as your $VIMINIT value, you can create an environment variable containing
the path of that vimrc. After you runexport VIMINIT="1let $MYVIMRC="$HOME/dotfiles/testvimrc"
| source $MYVIMRC', Vim will now use ~/dotfiles/testvimrc as your vimre file.

The second location, $HOME/ . vimrc, is the conventional path for many Vim users. $HOME in many
cases is your root directory (~). If you have a ~/.vimrc file, Vim will use this as your vimre file.

The third, $HOME/.vim/vimrc, is located inside the ~/.vim directory. You might have the ~/.vim
directory already for your plugins, custom scripts, or View files. Note that there is no dot in vimrc
file name ($HOME/.vim/.vimrc won’t work, but $HOME/ . vim/vimrc will).

Ch21. Vimrc 180

The fourth, $EXINIT works similar to $VIMINIT.
The fifth, $HOME/ . exrc works similar to $HOME/ . vimrc.

The sixth, $VIMRUNTIME/defaults.vim is the default vimrc that comes with your Vim build. In my
case, have Vim 8.2 installed using Homebrew, so my path is (/usr/local/share/vim/vimsg2). If Vim
does not find any of the previous six vimre files, it will use this file.

For the remaining of this chapter, I am assuming that the vimrc uses the ~/.vimrc path.

What To Put In My Vimrc?

A question I asked when I started was, “What should I put in my vimrc?”

The answer is, “anything you want”. The temptation to copy-paste other people’s vimre is real, but
you should resist it. If you insist to use someone else’s vimrc, make sure that you know what it does,
why and how s/he uses it, and most importantly, if it is relevant to you. Just because someone uses
it doesn’t mean you’ll use it too.

Basic Vimrc Content

In the nutshell, a vimrc is a collection of:

« Plugins

« Settings

« Custom Functions

o Custom Commands
» Mappings

There are other things not mentioned above, but in general, this covers most use cases.

Plugins

In the previous chapters, I have mentioned different plugins, like fzf.vim*’, vim-mundo®, and vim-
fugitive®".

Ten years ago, managing plugins was a nightmare. However, with the rise of modern plugin
managers, installing plugins can now be done in seconds. I am currently using vim-plug®* as my
plugin manager, so I will use it in this section. The concept should be similar with other popular
plugin managers. I would strongly recommend you to check out different ones, such as:

“https://github.com/junegunn/fzf.vim
*https://github.com/simnalamburt/vim-mundo
**https://github.com/tpope/vim-fugitive
*?https://github.com/junegunn/vim-plug

https://github.com/junegunn/fzf.vim
https://github.com/simnalamburt/vim-mundo
https://github.com/tpope/vim-fugitive
https://github.com/tpope/vim-fugitive
https://github.com/junegunn/vim-plug
https://github.com/junegunn/fzf.vim
https://github.com/simnalamburt/vim-mundo
https://github.com/tpope/vim-fugitive
https://github.com/junegunn/vim-plug

Ch21. Vimrc 181

« vundle.vim®?
» vim-pathogen®*
 dein.vim?®’

There are more plugin managers than the ones listed above, feel free to look around. To install vim-
plug, if you have a Unix machine, run:

curl -flLo ~/.vim/autoload/plug.vim --create-dirs https://raw.githubusercontent.com/j\
unegunn/vim-plug/master/plug.vim

To add new plugins, drop your plugin names (Plug 'github-username/repository-name') between
the call plug#*begin() and the call plug*end() lines. So if you want to install emmet-vim and
nerdtree, put the following snippet down in your vimre:

call plug#*begin('~/.vim/plugged')
Plug 'mattn/emmet-vim'
Plug 'preservim/nerdtree'’

call plug#*end()

Save the changes, source it (:source %), and run :PlugInstall to install them.

In the future if you need to remove unused plugins, you just need to remove the plugin names from
the call block, save and source, and run the :PlugClean command to remove it from your machine.

Vim 8 has its own built-in package managers. You can check out :h packages for more information.
In the next chapter, I will show you how to use it.

Settings

It is common to see a lot of set options in any vimrc. If you run the set command from the command-
line mode, it is not permanent. You will lose it when you close Vim. For example, instead of running
:set relativenumber number from the Command-line mode each time you run Vim, you could just
put these inside vimrc:

set relativenumber number

Some settings require you to pass it a value, like set tabstop=2. Check out the help page for each
setting to learn what kind of values it accepts.

You can also use a let instead of set (make sure to prepend it with &). With let, you can use an
expression as a value. For example, to set the 'dictionary' option to a path only if the path exists:

>*https://github.com/VundleVim/Vundle.vim
**https://github.com/tpope/vim-pathogen
**https://github.com/Shougo/dein.vim

https://github.com/VundleVim/Vundle.vim
https://github.com/tpope/vim-pathogen
https://github.com/Shougo/dein.vim
https://github.com/VundleVim/Vundle.vim
https://github.com/tpope/vim-pathogen
https://github.com/Shougo/dein.vim

Ch21. Vimrc 182

let s:english_dict = "/usr/share/dict/words"

if filereadable(s:english_dict)
let &dictionary=s:english_dict
endif

You will learn about Vimscript assignments and conditionals in later chapters.

For a list of all possible options in Vim, check out :h E355.

Custom Functions

Vimrec is a good place for custom functions. You will learn how to write your own Vimscript functions
in a later chapter.

Custom Commands

You can create a custom Command-line command with command.

To create a basic command GimmeDate to display today’s date:
:command! GimmeDate echo call("strftime", ["%F"])

When you run :GimmeDate, Vim will display a date like “2021-01-1".

To create a basic command with an input, you can use <args>. If you want to pass to GimmeDate a
specific time/date format:

:command! GimmeDate echo call("strftime", [<args>])

:GimmeDate "%F"
" 2020-01-01

:GimmeDate "%H:%M"
" 11:30

If you want to restrict the number of arguments, you can pass it -nargs flag. Use -nargs=0 to pass
no argument, -nargs=1 to pass one argument, -nargs=+ to pass at least one argument, -nargs=* to
pass any number of arguments, and -nargs=? to pass 0 or one arguments. If you want to pass nth
argument, use -nargs=n (where n is any integer).

<args> has two variants: <f-args> and <q-args>. The former is used to pass arguments to Vimscript
functions. The latter is used to automatically convert user input to strings.

Using args:

Ch21. Vimrc 183

:command! -nargs=1 Hello echo "Hello <args>

:Hello "Iggy"

returns 'Hello Iggy'

:Hello Iggy
" Undefined variable error

Using q-args:

:command! -nargs=1 Hello echo "Hello <g-args>

:Hello Iggy

returns 'Hello Iggy'
Using f-args:

:function! PrintHello(personi, person2)

echo "Hello " . a:personi and " . a:person2

:endfunction
:command! -nargs=* Hello call PrintHello(<f-args>)

:Hello Iggyl Iggy2

returns "Hello Iggyl and Iggy2"

The functions above will make a lot more sense once you get to the Vimscript functions chapter.

To learn more about command and args, check out :h command and :args.

Maps

If you find yourself repeatedly performing the same complex task, it is a good indicator that you
should create a mapping for that task.

For example, I have these two mappings in my vimrc:

nnoremap <silent> <C-f> :GFiles<CR>

nnoremap <Leader>tn :call ToggleNumber()<CR>

On the first one, I map Ctrl-F to fzf.vim®® plugin’s :Gfiles command (quickly search for Git
files). On the second one, I map <Leader>tn to call a custom function ToggleNumber (toggles

*https://github.com/junegunn/fzf.vim

https://github.com/junegunn/fzf.vim
https://github.com/junegunn/fzf.vim

Ch21. Vimrc 184

norelativenumber and relativenumber options). The Ctrl-F mapping overwrites Vim’s native page
scroll. Your mapping will overwrite Vim controls if they collide. Because I almost never used that
feature, I decided that it is safe to overwrite it.

By the way, I personally like to use <Space> as the leader key instead of Vim’s default. To change
your leader key, add this in your vimre:
let mapleader = "\<space>"

The nnoremap command used above can be broken down into three parts:

« map is the map command.
« n represents the normal mode.
* nore means non-recursive.

At minimum, you could have used nmap instead of nnoremap (nmap <silent> <C-f> :Gfiles<CR>).
However, it is a good practice to use the non-recursive variant to avoid potential infinite loop.

Here’s what could happen if you don’t map non-recursively. Suppose you want to add a mapping
to B to add a semi-colon at the end of the line, then go back one WORD (recall that B n Vim is a
normal-mode navigation key to go backward one WORD).

nmap B A;<esc>B

When you press B... oh no! Vim adds ; uncontrollably (interrupt it with ctr1-c). Why did that
happen? Because in the mapping A; <esc>B, the B does not refer to Vim’s native B function (go back
one WORD), but it refers to the mapped function. What you have is actually this:

A; <esc>A; <esc>A; <esc>A;esc> ...
To solve this problem, you need to add a non-recursive map:
nnoremap B A;<esc>B

Now try calling B again. This time it successfully adds a ; at the end of the line and go back one
WORD. The B in this mapping represents Vim’s original B functionality.

Vim has different maps for different modes. If you want to create a map for insert mode to exit insert
mode when you press jk:

inoremap jk <esc>

The other map modes are: map (Normal, Visual, Select, and Operator-pending), vmap (Visual and
Select), smap (Select), xmap (Visual), omap (Operator-pending), map! (Insert and Command-line), 1map
(Insert, Command-line, Lang-arg), cmap (Command-line), and tmap (terminal-job). I won’t cover
them in detail. To learn more, check out :h map.txt.

Create a map that’s most intuitive, consistent, and easy-to-remember.

Ch21. Vimrc 185
Organizing Vimrc

Over time, your vimrc will grow large and become convoluted. There are two ways to keep your
vimre to look clean:

« Split your vimre into several files.
« Fold your vimre file.

Splitting Your Vimrc

You can split your vimrc to multiple files using Vim’s source command. This command reads
command-line commands from the given file argument.

Let’s create a file inside the ~/.vim directory and name it /settings (~/.vim/settings). The name
itself is arbitrary and you can name it whatever you like.

You are going to split it into four components:

o Third-party plugins (~/.vim/settings/plugins.vim).
« General settings (~/.vim/settings/configs.vim).
« Custom functions (~/.vim/settings/functions.vim).
-](eylnappings(m%.vim/settings/mappings.vim).

Inside ~/.vimre:

source $HOME/.vim/settings/plugins.vim
source $HOME/.vim/settings/configs.vim
source $HOME/.vim/settings/functions.vim
source $HOME/.vim/settings/mappings.vim

Inside ~/.vim/settings/plugins.vim:
call plug#begin('~/.vim/plugged')
Plug 'mattn/emmet-vim'

Plug 'preservim/nerdtree'’
call plug#*end()

Inside ~/.vim/settings/configs.vim:

Ch21. Vimrc 186

set nocompatible
set relativenumber

set number
Inside ~/.vim/settings/functions.vim:

function! ToggleNumber ()
if(&relativenumber == 1)
set norelativenumber
else
set relativenumber
endif
endfunc

Inside ~/.vim/settings/mappings.vim:

inoremap jk <esc>
nnoremap <silent> <C-f> :GFiles<CR>

nnoremap <Leader>tn :call ToggleNumber()<CR>

Your vimrc should works as usual, but now it is only four lines long!

With this setup, you easily know where to go. If you need to add more mappings, add them
to the /mappings.vim file. In the future, you can always add more directories as your vimrc
grows. For example, if you need to create a setting for your colorschemes, you can add a
~/.vim/settings/themes.vim.

Keeping One Vimrc File

If you prefer to keep one vimrc file to keep it portable, you can use the marker folds to keep it
organized. Add this at the top of your vimrc:

" setup folds {{{
augroup filetype_vim

autocmd!

autocmd FileType vim setlocal foldmethod=marker
augroup END

"

Vim can detect what kind of filetype the current buffer has (:set filetype?). If it is a vim filetype,
you can use a marker fold method. Recall that a marker fold uses {{{ and }}} to indicate the starting

and ending folds.
Add {{{ and }}} folds to the rest of your vimrc (don’t forget to comment them with "):

Ch21. Vimrc 187

" setup folds {{{
augroup filetype_vim
autocmd!
autocmd FileType vim setlocal foldmethod=marker
augroup END
" 11
" plugins {{{
call plug#*begin('~/.vim/plugged')
Plug 'mattn/emmet-vim'
Plug 'preservim/nerdtree’
call plug#*end()

"

configs {{{
set nocompatible
set relativenumber

set number

"

" functions {{{
function! ToggleNumber ()
if(&relativenumber == 1)
set norelativenumber
else
set relativenumber
endif

endfunc

")
" mappings {{{

inoremap jk <esc>

nnoremap <silent> <C-f> :GFiles<CR>

nnoremap <Leader>tn :call ToggleNumber()<CR>

"

Your vimrce should look like this:

Ch21. Vimrc

+-- 6 lines:

+-- 6 lines:

+-- 5 lines:

+-- 9 ilnes:

+-- 5 lines:

setup folds -----

plugins ---------

configs ---------

functions -------

mappings --------

Running Vim With Or Without Vimrc And Plugins

If you need to run Vim without both vimrec and plugins, run:

vim -u NONE

If you need to launch Vim without vimrc but with plugins, run:

vim -u NORC

If you need to run Vim with vimrc but without plugins, run:

vim --noplugin

If you need to run Vim with a different vimrc, say ~/.vimrc-backup, run:

vim -u ~/.vimrc-backup

Configure Vimrc The Smart Way

188

Vimrc is an important component of Vim customization. A good way to start building your vimrc
is by reading other people’s vimrcs and gradually build it over time. The best vimrc is not the one
that developer X uses, but the one that is tailored exactly to fit your thinking framework and editing

style.

Ch22. Vim Packages

In the previous chapter, I mentioned using an external plugin manager to install plugins. Since
version 8, Vim comes with its own built-in plugin manager called packages. In this chapter, you will
learn how to use Vim packages to install plugins.

To see if your Vim build has the ability to use packages, run :version and look for +packages
attribute. Alternatively, you can also run :echo has('packages') (if it returns 1, then it has the
packages ability).

Pack Directory

Check if you have a ~/.vim/ directory in the root path. If you don’t, create one. Inside it, create a
directory called pack (~/.vim/pack/). Vim automatically knows to search inside this directory for
packages.

Two Types Of Loading

Vim package has two loading mechanisms: automatic and manual loading.
Automatic Loading

To load plugins automatically when Vim starts, you need to put them in the start/ directory. The
path looks like this:

~/.vim/pack/*/start/

Now you may ask, “What is the * between pack/ and start/?” * is an arbitrary name and can be
anything you want. let’s name it packdemo/:

~/.vim/pack/packdemo/start/
Keep in mind that if you skip it and do something like this instead:
~/.vim/pack/start/

The package system won’t work. It is imperative to put a name between pack/ and start/.

For this demo, let’s try to install the NERDTree’” plugin. Go all the way to the start/ directory (cd
~/ .vim/pack/packdemo/start/) and clone the NERDTree repository:

*"https://github.com/preservim/nerdtree

https://github.com/preservim/nerdtree
https://github.com/preservim/nerdtree

Ch22. Vim Packages 190

git clone https://github.com/preservim/nerdtree.git

That’s it! You are all set. The next time you start Vim, you can immediately execute NERDTree
commands like :NERDTreeToggle.

You can clone as many plugin repositories as you want inside the ~/.vim/pack/*/start/ path. Vim
will automatically load each one. If you remove the cloned repository (rm -rf nerdtree/), that
plugin will not be available anymore.

Manual Loading

To load plugins manually when Vim starts, you need to put them in the opt/ directory. Similar to
automatic loading, the path looks like this:

~/.vim/pack/*/opt/
Let’s use the same packdemo/ directory from earlier:
~/.vim/pack/packdemo/opt/

This time, let’s install the killersheep®® game (this requires Vim 8.2). Go to the opt/ directory (cd
~/.vim/pack/packdemo/opt/) and clone the repository:

git clone https://github.com/vim/killersheep.git

Start Vim. The command to execute the game is :Ki11KillKill. Try running it. Vim will complain
that it is not a valid editor command. You need to manually load the plugin first. Let’s do that:

:packadd killersheep

Now try running the command again :Ki11KillKill. The command should work now.

You may wonder, “Why would I ever want to manually load packages? Isn’t it better to automatically
load everything at the start?”

Great question. Sometimes there are plugins that you won’t use all the time, like that KillerSheep
game. You probably don’t need to load 10 different games and slow down Vim startup time. However,
once in a while, when you are bored, you might want to play a few games. Use manual loading for
nonessential plugins.

You can also use this to conditionally add plugins. Maybe you use both Neovim and Vim and there
are plugins optimized for Neovim. You can add something like this in your vimre:

*®https://github.com/vim/killersheep

https://github.com/vim/killersheep
https://github.com/vim/killersheep

Ch22. Vim Packages 191

if has('nvim')

packadd! neovim-only-plugin
else

packadd! generic-vim-plugin
endif

Organizing packages

Recall that the requirement to use Vim’s package system is to have either:
~/.vim/pack/*/start/

Or:

~/.vim/pack/*/opt/

The fact that * can be any name can be used to organize your packages. Suppose you want to group
your plugins based on categories (colors, syntax, and games):

~/.vim/pack/colors/
~/.vim/pack/syntax/
~/.vim/pack/games/

You can still use start/ and opt/ inside each of the directories.

~/.vim/pack/colors/start/
~/.vim/pack/colors/opt/

~/.vim/pack/syntax/start/
~/.vim/pack/syntax/opt/

~/.vim/pack/games/start/
~/.vim/pack/games/opt/

Adding Packages The Smart Way

You may wonder if Vim package will make popular plugin managers like vim-pathogen, vundle.vim,
dein.vim, and vim-plug obsolete.

The answer is, as always, “it depends.”

Ch22. Vim Packages 192

I still use vim-plug because it makes it easy to add, remove or update plugins. If you use many plugins,
it may be more convenient to use plugin managers because it is easy to update many simultaneously.
Some plugin managers also offer asynchronous functionalities.

If you are a minimalist, try out Vim packages. If you a heavy plugin user, you may want to consider
using a plugin manager.

Ch23. Vim Runtime

In the previous chapters, I mentioned that Vim automatically looks for special paths like pack/ (Ch.
22) and compiler/ (Ch. 19) inside the ~/.vim/ directory. These are examples of Vim runtime paths.

Vim has more runtime paths than these two. In this chapter, you will learn a high-level overview
of these runtime paths. The goal of this chapter is to show you when they are called. Knowing this
will allow you to understand and customize Vim further.

Runtime Path

In a Unix machine, one of your Vim runtime paths is $HOME/.vim/ (if you have a different OS like
Windows, your path might be different). To see what the runtime paths for different OS are, check
out :h 'runtimepath'.In this chapter, I will use ~/.vim/ as the default runtime path.

Plugin Scripts

Vim has a plugin runtime path that executes any scripts in this directory once each time Vim starts.
Do not confuse the name “plugin” with Vim external plugins (like NERDTree, fzf.vim, etc).

Go to ~/.vim/ directory and create a plugin/ directory. Create two files: donut.vim and
chocolate.vim.

Inside ~/.vim/plugin/donut.vim:
echo "donut!"

Inside ~/.vim/plugin/chocolate.vim:
echo "chocolate!"

Now close Vim. The next time you start Vim, you will see both "donut!" and "chocolate!" echoed.
The plugin runtime path can be used for initializations scripts.

Filetype Detection

Before you start, to ensure that these detections work, make sure that your vimrc contains at least
the following line:

Ch23. Vim Runtime 194

filetype plugin indent on

Check out :h filetype-overview for more context. Essentially this turns on Vim’s filetype detection.

When you open a new file, Vim usually knows what kind of file it is. If you have a file hello.rb,
running :set filetype? returns the correct response filetype=ruby.

Vim knows how to detect “common” file types (Ruby, Python, Javascript, etc). But what if you have
a custom file? You need to teach Vim to detect it and assign it with the correct file type.

There are two methods of detection: using file name and file content.

File Name Detection

File name detection detects a file type using the name of that file. When you open the hello.rb file,
Vim knows it is a Ruby file from the .rb extension.

There are two ways you can do file name detection: using ftdetect/ runtime directory and using
filetype.vim runtime file. Let’s explore both.

ftdetect/

Let’s create an obscure (yet tasty) file, hello.chocodonut. When you open it and you run :set
filetype?, since it is not a common file name extension Vim doesn’t know what to make of it. It
returns filetype=.

You need to instruct Vim to set all files ending with .chocodonut as a “chocodonut” file type.
Create a directory named ftdetect/ in the runtime root (~/.vim/). Inside, create a file and name it
chocodonut.vim (~/.vim/ftdetect/chocodonut.vim). Inside this file, add:

autocmd BufNewFile,BufRead *.chocodonut set filetype=chocodonut

BufNewFile and BufRead are triggered whenever you create a new buffer and open a new buffer.
* . chocodonut means that this event will only be triggered if the opened buffer has a .chocodonut
filename extension. Finally, set filetype=chocodonut command sets the file type to be a chocodonut

type.

Restart Vim. Now open hello.chocodonut file and run :set filetype?. It returns
filetype=chocodonut.

Scrumptious! You can put as many files as you want inside ftdetect/. In the future, you can maybe
add ftdetect/strawberrydonut.vim, ftdetect/plaindonut.vim, etc., if you ever decide to expand
your donut file types.

There are actually two ways to set a file type in Vim. One is what you just used set
filetype=chocodonut. The other way is to run setfiletype chocodonut. The former command set
filetype=chocodonut will always set the file type to chocodonut type, while the latter command
setfiletype chocodonut will only set the file type if no file type was set yet.

Ch23. Vim Runtime 195

Filetype File

The second file detection method requires you to create a filetype.vim in the root directory
(~/.vim/filetype.vim). Add this inside:

autocmd BufNewFile,BufRead *.plaindonut set filetype=plaindonut

Create ahello.plaindonut file. When you open it and run :set filetype?, Vim displays the correct
custom file type filetype=plaindonut.

Holy pastry, it works! By the way, if you play around with filetype.vim, you may notice that this
file is being run multiple times when you open hello.plaindonut. To prevent this, you can add a
guard so the main script is run only once. Update the filetype.vim:

if exists("did_load_filetypes")
finish
endif

augroup donutfiletypedetection
autocmd! BufRead,BufNewFile *.plaindonut setfiletype plaindonut
augroup END

finish is a Vim command to stop running the rest of the script. The "did_load_filetypes"
expression is not a built-in Vim function. It is actually a global variable from inside
$VIMRUNTIME/filetype.vim. If yOLfre curious, run :e $VIMRUNTIME/filetype.vim. You will
find these lines inside:

if exists("did_load_filetypes")
finish
endif

let did_load_filetypes =1

When Vim calls this file, it defines did_load_filetypes variable and sets is to 1. 1 is truthy in Vim.
You should read the rest of the filetype.vim too. See if you can understand what it does when Vim
calls it.

File Type Script

Let’s learn how to detect and assign a file type based on the file content.

Suppose you have a collection of files without an agreeable extension. The only thing these files
have in common is that they all start with the word “donutify” on the first line. You want to assign
these files to a donut file type. Create new files named sugardonut, glazeddonut, and frieddonut
(without extension). Inside each file, add this line:

Ch23. Vim Runtime 196

donutify

When you run the :set filetype? from inside sugardonut, Vim doesn’t know what file type to
assign this file with. It returns filetype=.

In the runtime root path, add a scripts.vim file (~/.vim/scripts.vim). Inside it, add these:

if did_filetype()
finish
endif

if getline(1) =~ 'M\\<donutify\\>'
setfiletype donut
endif

The function getline(1) returns the text on the first line. It checks if the first line starts with the
word “donutify”. The function did_filetype() is a Vim built-in function. It will return true when
a file type related event is triggered at least once. It is used as a guard to stop re-running file type
event.

Open the sugardonut file and run :set filetype?, Vim now returns filetype=donut. If you open
another donut files (glazeddonut and frieddonut), Vim also identifies their file types as donut types.

Note that scripts.vim is only run when Vim opens a file with an unknown file type. If Vim opens
a file with a known file type, scripts.vim won’t run.

File Type Plugin

What if you want Vim to run chocodonut-specific scripts when you open a chocodonut file and to
not run those scripts when opening plaindonut file?

You can do this with file type plugin runtime path (~/.vim/ftplugin/). Vim looks inside this
directory for a file with the same name as the file type you just opened. Create a chocodonut.vim
(~/.vim/ftplugin/chocodonut.vim):

echo "Calling from chocodonut ftplugin"
Create another ftplugin file, plaindonut.vim (~/.vim/ftplugin/plaindonut.vim):
echo "Calling from plaindonut ftplugin"

Now each time you open a chocodonut file type, Vim runs the scripts from
~/.vim/ftplugin/chocodonut.vim. Each time you open a plaindonut file type, Vim runs the
scripts from ~/.vim/ftplugin/plaindonut.vim.

One warning: these files are run each time a buffer file type is set (set filetype=chocodonut for
example). If you open 3 different chocodonut files, the scripts will be run a total of three times.

Ch23. Vim Runtime 197

Indent Files

Vim has an indent runtime path that works similar to ftplugin, where Vim looks for a file named the
same as the opened file type. The purpose of these indent runtime paths is to store indent-related
codes. If you the file ~/.vim/indent/chocodonut.vim, it will be executed only when you open a
chocodonut file type. You can store indent-related codes for chocodonut files here.

Colors

Vim has a colors runtime path (~/.vim/colors/) to store color schemes. Any file that goes inside
the directory will be displayed in the :color command-line command.

If you have a ~/.vim/colors/beautifulprettycolors.vim file, when you run :color and press tab,
you will see beautifulprettycolors as one of the color options. If you prefer to add your own color
scheme, this is the place to go.

If you want to check out the color schemes other people made, a good place to visit is vimcolors™.
Syntax Highlighting

Vim has a syntax runtime path (~/.vim/syntax/) to define syntax highlighting.

Suppose you have a hello.chocodonut file, inside it you have the following expressions:

(donut "tasty")
(donut "savory")

Although Vim now knows the correct file type, all texts have the same color. Let’s add a
syntax highlighting rule to highlight the “donut” keyword. Create a new chocodonut syntax file,
~/ .vim/syntax/chocodonut .vim. Inside it add:

syntax keyword donutKeyword donut
highlight link donutKeyword Keyword

Now reopen hello.chocodonut file. The donut keywords are now highlighted.

This chapter won’t go over syntax highlighting in depth. It is a vast topic. If you are curious, check
out :h syntax.txt.

t60

The vim-polyglo
languages.

plugin is a great plugin that provides highlights for many popular programming

**https://vimcolors.com/
“*https://github.com/sheerun/vim-polyglot

https://vimcolors.com/
https://github.com/sheerun/vim-polyglot
https://vimcolors.com/
https://github.com/sheerun/vim-polyglot

Ch23. Vim Runtime 198

Documentation

If you create a plugin, you will have to create your own documentation. You use the doc runtime
path for that.

Let’s create a basic documentation for chocodonut and plaindonut keywords. Create a donut. txt
(~/.vim/doc/donut . txt). Inside, add these texts:

chocodonut Delicious chocolate donut

plaindonut No choco goodness but still delicious nonetheless

If you try to search for chocodonut and plaindonut (:h chocodonut and :h plaindonut), you won’t
find anything.

First, you need to run :helptags to generate new help entries. Run :helptags ~/.vim/doc/

Now if you run :h chocodonut and :h plaindonut, you will find these new help entries. Notice that
the file is now read-only and has a “help” file type.

Lazy Loading Scripts

All of the runtime paths that you learned in this chapter were run automatically. If you want to
manually load a script, use the autoload runtime path.

Create an autoload directory (~/.vim/autoload/). Inside that directory, create a new file and name
it tasty.vim (~/.vim/autoload/tasty.vim). Inside it:

echo "tasty.vim global"
function tasty#*donut()

echo "tasty#*#donut"
endfunction

Note that the function name is tasty#*donut, not donut (). The pound sign (*) is required when using
the autoload feature. The function naming convention for the autoload feature is:

function fileName*#functionName()

endfunction

Ch23. Vim Runtime 199

In this case, the file name is tasty.vim and the function name is (technically) donut.

To invoke a function, you need the call command. Let’s call that function with :call
tasty#donut().

The first time you call the function, you should see both echo messages (“tasty.vim global” and
“tasty#donut”). The subsequent calls to tasty#*donut function will only display “testy#donut” echo.

When you open a file in Vim, unlike the previous runtime paths, autoload scripts aren’t loaded
automatically. Only when you explicitly call tasty#*donut(), Vim looks for the tasty.vim file and
loads everything inside it, including the tasty*donut () function. Autoload is the perfect mechanism
for functions that use extensive resources but you don’t use often.

You can add as many nested directories with autoload as you want. If you have the runtime
path ~/.vim/autoload/one/two/three/tasty.vim, you can call the function with :call
one#twoHthree#tasty#*donut().

After Scripts

Vim has an after runtime path (~/.vim/after/) that mirrors the structure of ~/.vim/. Anything in
this path is executed last, so developers usually use these paths for script overrides.

For example, if you want to overwrite the scripts from plugin/chocolate.vim, you can
create ~/.vim/after/plugin/chocolate.vim to put the override scripts. Vim will run the
~/.vim/after/plugin/chocolate.vim after ~/.vim/plugin/chocolate.vim.

$VIMRUNTIME

Vim has an environment variable $VIMRUNTIME for default scripts and support files. You can check
it out by running :e $VIMRUNTIME.

The structure should look familiar. It contains many runtime paths you learned in this chapter.

Recall in Chapter 21, you learned that when you open Vim, it looks for a vimrc files in seven different
locations. I said that the last location Vim checks is $VIMRUNTIME /default.vim. If Vim fails to find
any uservimre files, Vim uses a default.vim as vimrec.

Have you ever tried running Vim without syntax plugin like vim-polyglot and yet your file is still
syntatically highlighted? That is because when Vim fails to find a syntax file from the runtime path,
Vim looks for a syntax file from $VIMRUNTIME syntax directory.

To learn more, check out :h $VIMRUNTIME.

Ch23. Vim Runtime 200

Runtimepath Option

To check your runtimepath, run :set runtimepath?

If you use Vim-Plug or popular external plugin managers, it should display a list of directories. For
example, mine shows:

runtimepath=~/.vim,~/.vim/plugged/vim-signify,~/.vim/plugged/base16-vim,~/.vim/plugg\
ed/fzf.vim,~/.vim/plugged/fzf,~/.vim/plugged/vim-gutentags,~/.vim/plugged/tcomment_v\
im,~/.vim/plugged/emmet-vim,~/.vim/plugged/vim-fugitive,~/.vim/plugged/vim-sensible, \
~/.vim/plugged/lightline.vim,

One of the things plugin managers does is adding each plugin into the runtime path. Each runtime
path can have its own directory structure similar to ~/.vim/.

If you have a directory ~/box/of/donuts/ and you want to add that directory to your runtime path,
you can add this to your vimre:

set rtp+=$HOME/box/of/donuts/

If inside ~/box/of/donuts/, you have a plugin directory (~/box/of/donuts/plugin/hello.vim)
and a ftplugin (~/box/of/donuts/ftplugin/chocodonut.vim), Vim will run all scripts from
plugin/hello.vim when you open Vim. Vim will also run ftplugin/chocodonut.vim when you
open a chocodonut file.

Try this yourself: create an arbitrary path and add it to your runtimepath. Add some of the runtime
paths you learned from this chapter. Make sure they work as expected.

Learn Runtime The Smart Way

Take your time reading it and play around with these runtime paths. To see how runtime paths
are being used in the wild, go to the repository of one of your favorite Vim plugins and study its
directory structure. You should be able to understand most of them now. Try to follow along and
discern the big picture. Now that you understand Vim directory structure, you're ready to learn
Vimscript.

Ch24. Vimscript Basic Data Types

In the next few chapters, you will learn about Vimscript, Vim’s built-in programming language.

When learning a new language, there are three basic elements to look for:

e Primitives
« Means of Combination
« Means of Abstraction

In this chapter, you will learn Vim’s primitive data types.

Data Types

Vim has 10 different data types:

o Number

o Float

« String

o List

« Dictionary
« Special

o Funcref
 Job

« Channel

« Blob

I will cover the first six data types here. In Ch. 27, you will learn about Funcref. For more about Vim
data types, check out :h variables.

Following Along With Ex Mode

Vim technically does not have a built-in REPL, but it has a mode, Ex mode, that can be used like
one. You can go to the Ex mode with Q or gQ. The Ex mode is like an extended command-line mode
(it’s like typing command-line mode commands non-stop). To quit the Ex mode, type :visual.

You can use either :echo or :echom on this chapter and the subsequent Vimscript chapters to code
along. They are like console.log in JS or print in Python. The :echo command prints the evaluated
expression you give. The :echom command does the same, but in addition, it stores the result in the
message history:.

Ch24. Vimscript Basic Data Types 202

:echom "hello echo message"

You can view the message history with:
.messages

To clear your message history, run:

:messages clear

Number

Vim has 4 different number types: decimal, hexadecimal, binary, and octal. By the way, when I say
number data type, often this means an integer data type. In this guide, I will use the terms number
and integer interchangeably.

Decimal

You should be familiar with the decimal system. Vim accepts positive and negative decimals. 1, -1,
10, etc. In Vimscript programming, you will probably be using the decimal type most of the time.

Hexadecimal

Hexadecimals start with 0x or X. Mnemonic: Hexadecimal.

Binary

Binaries start with @b or @8. Mnemonic: Binary.

Octal

Octals start with @, 0o, and 0. Mnemonic: Octal.

Printing Numbers

If you echo either a hexadecimal, a binary, or an octal number, Vim automatically converts them to
decimals.

Ch24. Vimscript Basic Data Types

:echo 42

returns 42

:echo 052

returns 42

:echo 0b101010

returns 42

:echo 0x2A

returns 42

Truthy and Falsy

In Vim, a 0 value is falsy and all non-0 values are truthy:.

The following will not echo anything.

:if o
echo "Nope"
rendif

However, this will:
if 1

echo "Yes"
;endif

Any values other than 0 is truthy, including negative numbers. 100 is truthy. -1 is truthy.

Number Arithmetic

Numbers can be used to run arithmetic expressions:

203

Ch24. Vimscript Basic Data Types 204

:echo 3 + 1

returns 4

: echo 5 - 3
" returns 2

:echo 2 * 2

returns 4

:echo 4 / 2
" returns 2

When dividing a number with a remainder, Vim drops the remainder.

:echo 5 / 2

returns 2 instead of 2.5

To get a more accurate result, you need to use a float number.
Float

Floats are numbers with trailing decimals. There are two ways to represent floating numbers: dot
point notation (like 31.4) and exponent (3.14e01). Similar to numbers, you can use positive and
negative signs:

:echo +123.4
" returns 123.4

:echo -1.234e2
" returns -123.4

:echo 0.25

returns 0.25

:echo 2.5e-1
" returns 0.25

You need to give a float a dot and trailing digits. 25e-2 (no dot) and 1234. (has a dot, but no trailing
digits) are both invalid float numbers.

Float Arithmetic

When doing an arithmetic expression between a number and a float, Vim coerces the result to a
float.

Ch24. Vimscript Basic Data Types 205

:echo 5/ 2.0

returns 2.5
Float and float arithmetic gives you another float.

:echo 1.0 + 1.0

returns 2.0

String

Strings are characters surrounded by either double-quotes ("") or single-quotes (' *). “Hello”, “123”,
and ‘123.4° are examples of strings.

String Concatenation
To concatenate a string in Vim, use the . operator.

:echo "Hello" world"

returns "Hello world"

String Arithmetic

When you run arithmetic operators (+ - * /) with a number and a string, Vim coerces the string
into a number.

:echo "12 donuts" + 3

returns 15

When Vim sees “12 donuts”, it extracts the 12 from the string and converts it into the number 12.
Then it performs addition, returning 15. For this string-to-number coercion to work, the number
character needs to be the first character in the string.

The following won’t work because 12 is not the first character in the string:

:echo "donuts 12" + 3

returns 3

This also won’t work because an empty space is the first character of the string:

Ch24. Vimscript Basic Data Types

:echo " 12 donuts" + 3

returns 3
This coercion works even with two strings:

:echo "12 donuts" + "6 pastries”

returns 18

This works with any arithmetic operator, not only +:

:echo "12 donuts" * "5 boxes"

returns 60

:echo "12 donuts" - 5

returns 7

:echo "12 donuts" / "3 people”

returns 4

A neat trick to force a string-to-number conversion is to just add 0 or multiply by 1:

:echo "12" + 0O

returns 12

recho "12" * 1

returns 12

When arithmetic is done against a float in a string, Vim treats it like an integer, not a float:

:echo "12.0 donuts" + 12
" returns 24, not 24.0

Number and String Concatenation

You can coerce a number into a string with a dot operator (.):

:echo 12 . "donuts"

returns "12donuts"

The coercion only works with number data type, not float. This won’t work:

206

Ch24. Vimscript Basic Data Types 207

:echo 12.0 . "donuts"
" does not return "12.0donuts" but throws an error

String Conditionals

Recall that 0 is falsy and all non-0 numbers are truthy. This is also true when using string as
conditionals.

In the following if statement, Vim coerces “12donuts” into 12, which is truthy:

:if "12donuts”
echo "Yum"
rendif

returns "Yum"
On the other hand, this is falsy:

:if "donutsi12"
echo "Nope"
rendif

rerturns nothing

Vim coerces “donuts12” into 0, because the first character is not a number.

Double vs Single quotes

Double quotes behave differently than single quotes. Single quotes display characters literally while
double quotes accept special characters.

What are special characters? Check out the newline and double-quotes display:

:echo "hello\nworld"
" returns
" hello

world

:echo "hello \"world\""

returns "hello "world""

Compare that with single-quotes:

Ch24. Vimscript Basic Data Types 208

echo 'hello\nworld'

returns 'hello\nworld'

:echo 'hello \"world\"'

returns 'hello \"world\"'

Special characters are special string characters that when escaped, behave differently. \n acts like a
newline. \" behaves like a literal ". For a list of other special characters, check out :h expr-quote.

String Procedures

Let’s look at some built-in string procedures.

You can get the length of a string with strlen().

;echo strlen("choco")

returns 5
You can convert string to a number with str2nr():

:echo str2nr("12donuts")

returns 12

recho str2nr("donuts12")

returns 0

Similar to the string-to-number coercion earlier, if the number is not the first character, Vim won’t
catch it.

The good news is that Vim has a method that transforms a string to a float, str2float():

recho str2float("12.5donuts")

returns 12.5

You can substitute a pattern in a string with the substitute() method:

:echo substitute("sweet", "e", "o", "g")

returns "swoot"

The last parameter, “g”, is the global flag. With it, Vim will substitute all matching occurrences.
Without it, Vim will only substitute the first match.

Ch24. Vimscript Basic Data Types 209

:echo substitute("sweet", "e", "o", "")

returns "swoet"

The substitute command can be combined with get1line(). Recall that the function getline() gets
the text on the given line number. Suppose you have the text “chocolate donut” on line 5. You can
use the procedure:

;echo substitute(getline(5), "chocolate", "glazed", "g")

returns glazed donut

There are many other string procedures. Check out :h string- functions.

List

A Vimscript list is like an Array in Javascript or List in Python. It is an ordered sequence of items.
You can mix-and-match the content with different data types:

[1,2,3]

['a', 'b', 'c']
[1,'a"', 3.14]
[1,2,[3,4]]

Sublists

Vim list is zero-indexed. You can access a particular item in a list with [n], where n is the index.

;echo ["a", "sweet", "dessert"][Q]

returns "a

;echo ["a", "sweet", "dessert"][2]

returns "dessert"

If you go over the maximum index number, Vim will throw an error saying that the index is out of
range:

;echo ["a", "sweet", "dessert"][999]

returns an error

When you go below zero, Vim will start the index from the last element. Going past the minimum
index number will also throw you an error:

Ch24. Vimscript Basic Data Types 210

cecho ["a", "sweet", "dessert"][-1]

returns "dessert"

;echo ["a", "sweet", "dessert"][-3]

" returns "a

cecho ["a", "sweet", "dessert"][-999]

returns an error

You can “slice” several elements from a list with [n:m], where n is the starting index and m is the
ending index.

:echo ["chocolate", "glazed", "plain", "strawberry", "lemon", "sugar", "cream"][2:4]
" returns ["plain", "strawberry", "lemon"]

If you don’t passm ([n:]), Vim will return the rest of the elements starting from the nth element. If
you don’t pass n ([:m]), Vim will return the first element up to the mth element.

:echo ["chocolate", "glazed", "plain", "strawberry", "lemon", "sugar", "cream"][2:]

returns ['plain', 'strawberry', 'lemon', 'sugar', 'cream']

:echo ["chocolate", "glazed", "plain", "strawberry", "lemon", "sugar", "cream"][:4]

returns ['chocolate', 'glazed', 'plain', 'strawberry', 'lemon']
You can pass an index that exceeds the maximum items when slicing an array.
:echo ["chocolate", "glazed", "plain", "strawberry", "lemon", "sugar", "cream"][2:99\

9]
" returns ['plain', 'strawberry', 'lemon', 'sugar', 'cream']

Slicing String

You can slice and target strings just like lists:

Ch24. Vimscript Basic Data Types 211

:echo "choco"[Q]

returns "c

:echo "choco"[1:3]

returns "hoc"

:echo "choco"[:3]

returns choc

:echo "choco"[1:]

returns hoco

List Arithmetic

You can use + to concatenate and mutate a list:

:let sweetlList = ["chocolate", "strawberry"]
:let sweetlList += ["sugar"]
:echo sweetlList

returns ["chocolate", "strawberry", "sugar"]

List Functions

Let’s explore Vim’s built-in list functions.

To get the length of a list, use len():

:echo len(["chocolate", "strawberry"])

returns 2
To prepend an element to a list, you can use insert():

:let sweetlList = ["chocolate", "strawberry"]
:call insert(sweetlList, "glazed")

:echo sweetlList

returns ["glazed", "chocolate", "strawberry"]

You can also pass insert() the index where you want to prepend the element to. If you want to
prepend an item before the second element (index 1):

Ch24. Vimscript Basic Data Types 212

:let sweeterList = ["glazed", "chocolate", "strawberry"]
:call insert(sweeterList, "cream", 1)

:echo sweeterlist
" returns ['glazed', 'cream', 'chocolate', 'strawberry']

To remove a list item, use remove(). It accepts a list and the element index you want to remove.

:let sweeterlList = ["glazed", "chocolate", "strawberry"]
:call remove(sweeterList, 1)

:echo sweeterlist
" returns ['glazed',6 'strawberry']

o

You can use map() and filter() on a list. To filter out element containing the phrase “choco”

:let sweeterlList = ["glazed", "chocolate", "strawberry"]
:call filter(sweeterList, 'v:val !~ "choco"')
:echo sweeterlist

" returns ["glazed", "strawberry"]
:let sweetestList = ["chocolate", "glazed", "sugar"]
:call map(sweetestlList, 'v:val . " donut"')

:echo sweetestlList

returns ['chocolate donut', 'glazed donut', 'sugar donut']

The v:val variable is a Vim special variable. It is available when iterating a list or a dictionary using
map() or filter(). It represents each iterated item.

For more, check out :h list-functions.

List Unpacking

You can unpack a list and assign variables to the list items:

Ch24. Vimscript Basic Data Types 213

:let favoriteFlavor = ["chocolate", "glazed", "plain"]
:let [flavor1, flavor2, flavor3] = favoriteFlavor

:echo flavor1i

returns "chocolate"

:echo flavor2

returns "glazed"
To assign the rest of list items, you can use ; followed with a variable name:

:let favoriteFruits = ["apple", "banana", "lemon", "blueberry", "raspberry"]
:let [fruit1, fruit2; restFruits] = favoriteFruits

:echo fruitil

returns "apple"

:echo restFruits

returns ['lemon', 'blueberry', 'raspberry']

Modifying List
You can modify a list item directly:

:let favoriteFlavor = ["chocolate", "glazed", "plain"]
:let favoriteFlavor[@] = "sugar"
:echo favoriteFlavor

returns ['sugar', 'glazed', 'plain']

You can mutate multiple list items directly:

:let favoriteFlavor = ["chocolate", "glazed", "plain"]
:let favoriteFlavor[2:] = ["strawberry", "chocolate"]
:echo favoriteFlavor

returns ['chocolate', 'glazed', 'strawberry', 'chocolate']
Dictionary

A Vimscript dictionary is an associative, unordered list. A non-empty dictionary consists of at least
a key-value pair.

Ch24. Vimscript Basic Data Types 214

{"breakfast": "waffles", "lunch": "pancakes"}
{"meal": ["breakfast", "second breakfast", "third breakfast"]}
{"dinner": 1, "dessert": 2}

A Vim dictionary data object uses string for key. If you try to use a number, Vim will coerce it into
a string.

:let breakfastNo = {1: "7am", 2: "Qam", "411ses": "11am"}

:echo breakfastNo

returns {'1': '7Tam', '2': 'Qam', '11ses': '11am'}
If you are too lazy to put quotes around each key, you can use the #{} notation:

:let mealPlans = #{breakfast: "waffles", lunch: "pancakes", dinner: "donuts"}

:echo mealPlans

returns {'lunch': 'pancakes', 'breakfast': 'waffles', 'dinner': 'donuts'}
The only requirement for using the #{} syntax is that each key must be either:

« ASCII character.

« Digit.

« An underscore (_).
« A hyphen (-).

Just like list, you can use any data type as values.

:let mealPlan = {"breakfast": ["pancake", "waffle", "hash brown"], "lunch": WhatsFor\
Lunch(), "dinner": {"appetizer": "gruel", "entree": "more gruel"}}

Accessing Dictionary

To access a value from a dictionary, you can call the key with either the square brackets (['key'])
or the dot notation (.key).

Ch24. Vimscript Basic Data Types 215

:let meal = {"breakfast": "gruel omelettes", "lunch": "gruel sandwiches", "dinner": \

"more gruel"}

:let breakfast = meal['breakfast']
:let lunch = meal.lunch

:echo breakfast

returns "gruel omelettes”

:echo lunch
" returns "gruel sandwiches"”

Modifying Dictionary

You can modify or even add a dictionary content:

:let meal = {"breakfast": "gruel omelettes", "lunch": "gruel sandwiches"}

:let meal.breakfast = "breakfast tacos"

:let meal["lunch"] = "tacos al pastor"

:let meal["dinner"] = "quesadillas"

:echo meal

" returns {'lunch': 'tacos al pastor', 'breakfast': 'breakfast tacos', 'dinner': 'qu\

esadillas'}

Dictionary Functions

Let’s explore some of Vim’s built-in functions to handle Dictionaries.

To check the length of a dictionary, use len().

:let mealPlans = #{breakfast: "waffles", lunch: "pancakes", dinner: "donuts"}

:echo len(meaPlans)

returns 3

To see if a dictionary contains a specific key, use has_key ()

Ch24. Vimscript Basic Data Types

:let mealPlans = #{breakfast: "waffles", lunch:

:echo has_key(mealPlans, "breakfast")

returns 1

:echo has_key(mealPlans, "dessert")

returns @

216

"pancakes", dinner: "donuts"}

To see if a dictionary has any item, use empty(). The empty() procedure works with all data types:

list, dictionary, string, number, float, etc.

:let mealPlans = #{breakfast: "waffles", lunch: "pancakes", dinner: "donuts"}
:let noMealPlan = {}

:echo empty(noMealPlan)

" returns 1

:echo empty(mealPlans)

" returns 0

To remove an entry from a dictionary, use remove().

:let mealPlans = #{breakfast: "waffles", lunch: "pancakes", dinner: "donuts"}
;echo "removing breakfast: " . remove(mealPlans, "breakfast")

" returns "removing breakfast: 'waffles'""

:echo mealPlans

" returns {'lunch': 'pancakes', 'dinner': 'donuts'}

To convert a dictionary into a list of lists, use items():

:let mealPlans = #{breakfast: "waffles", lunch: "pancakes", dinner: "donuts"}
:echo items(mealPlans)

" returns [['lunch', 'pancakes'], ['breakfast', 'waffles'], ['dinner', 'donuts']]

filter() and map() are also available.

Ch24. Vimscript Basic Data Types 217

:let breakfastNo = {1: "7am", 2: "Qam", "11ses": "11am"}
:call filter(breakfastNo, 'v:key > 1')

:echo breakfastNo
" returns {'2': 'Qam', '11ses': '11am'}

:let mealPlans = #{breakfast: "waffles", lunch: "pancakes", dinner: "donuts"}

:call map(mealPlans, 'v:key . " and milk"')

:echo mealPlans
" returns {'lunch': 'lunch and milk', 'breakfast': 'breakfast and milk', 'dinner': '\

dinner and milk'}
The v:key is Vim’s special variable, much like v:val. When iterating through a dictionary, v:key
will hold the value of the current iterated key.

To see more dictionary functions, check out :h dict-functions.
Special Primitives

Vim has special primitives:

e v:false
e v:true
e vV:inone
e v:inull

By the way, v: is Vim’s built-in variable. They will be covered more in a later chapter.

In my experience, you won’t use these special primitives often. If you need a truthy / falsy value,
you can just use 0 (falsy) and non-0 (truthy). If you need an empty string, just use "". But it is still
good to know, so let’s quickly go over them.

True

This is equivalent to true. It is equivalent to a number with value of non-0 . When decoding json
with json_encode(), it is interpreted as “true”.

:echo json_encode({"test": v:true})

returns {"test": true}

False

This is equivalent to false. It is equivalent to a number with value of 0. When decoding json with
json_encode(), it is interpreted as “false”.

Ch24. Vimscript Basic Data Types 218

:echo json_encode({"test": v:false})

returns {"test": false}

None

It is equivalent to an empty string. When decoding json with json_encode(), it is interpreted as an
empty item (null).

:echo json_encode({"test": v:none})

returns {"test": null}

Null

Similar to v:none.

recho json_encode({"test": v:null})

returns {"test": null}

Learn Data Types The Smart Way

In this chapter, you learned about Vimscript’s basic data types: number, float, string, list, dictionary,
and special. Learning these is the first step to start Vimscript programming.

In the next chapter, you will learn how to combine them for writing expressions like equalities,
conditionals, and loops.

Ch25. Vimscript Conditionals And
Loops

After learning what the basic data types are, the next step is to learn how to combine them together
to start writing a basic program. A basic program consists of conditionals and loops.

In this chapter, you will learn how to use Vimscript data types to write conditionals and loops.

Relational Operators

Vimscript relational operators are similar to many programming languages:

equal to

not equal to

greater than

greater than or equal to
less than

O 0 99 0 0 W
v
I}

O T T T T O

less than or equal to
For example:

:echo 5 ==

:echo 5 1= 5
:echo 10 > 5
:echo 10 >= 5
:echo 10 < 5
:echo 5 <=5

Recall that strings are coerced into numbers in an arithmetic expression. Here Vim also coerces
strings into numbers in an equality expression. “5fo0” is coerced into 5 (truthy):

:echo 5 == "Hfoo"

returns true

Also recall that if you start a string with a non-numerical character like “foo05”, the string is converted
into number 0 (falsy).

Ch25. Vimscript Conditionals And Loops 220

echo 5 == "foob5"

returns false

String Logic Operators
Vim has more relational operators for comparing strings:

a=~b
al~b

For examples:
let str = "hearty breakfast"”

echo str =~ "hearty"

returns true

echo str =~ "dinner"

returns false

echo str !~ "dinner"

returns true

The =~ operator performs a regex match against the given string. In the example above, str =~
"hearty" returns true because str contains the “hearty” pattern. You can always use == and !=,
but using them will compare the expression against the entire string. =~ and ! ~ are more flexible
choices.

echo str == "hearty"

returns false

echo str == "hearty breakfast"

returns true
Let’s try this one. Note the uppercase “H”:

echo str =~ "Hearty"

" true

It returns true even though “Hearty” is capitalized. Interesting... It turns out that my Vim setting is
set to ignore case (set ignorecase), so when Vim checks for equality, it uses my Vim setting and
ignores the case. If I were to turn off ignore case (set noignorecase), the comparison now returns
talse.

Ch25. Vimscript Conditionals And Loops 221

set noignorecase
echo str =~ "Hearty"

returns false because case matters

set ignorecase
echo str =~ "Hearty"

returns true because case doesn't matter

If you are writing a plugin for others, this is a tricky situation. Does the user use ignorecase or
noignorecase? You definitely do not want to force your users to change their ignore case option. So
what do you do?

Luckily, Vim has an operator that can always ignore or match case. To always match case, add a #
at the end.

set ignorecase
echo str =~% "hearty"

returns true

echo str =~# "HearTY"

returns false

set noignorecase
echo str =~# "hearty"

" true

echo str =~%# "HearTY"

false

echo str !~# "HearTY"

" true
To always ignore case when comparing, append it with ?:

set ignorecase
echo str =~? "hearty"
" true

echo str =~? "HearTY"

" true

set noignorecase

echo str =~? "hearty"

Ch25. Vimscript Conditionals And Loops 222

" true

echo str =~? "HearTY"
" true

echo str !~? "HearTY"

" false

[prefer to use * to always match the case and be on the safe side.

If

Now that you have seen Vim’s equality expressions, let’s touch a fundamental conditional operator,
the i f statement.

At minimum, the syntax is:

if {clause}
{some expression}
endif

You can extend the case analysis with elseif and else.

if {predicatel}
{expressioni}
elseif {predicate2}
{expression2}
elseif {predicate3}
{expression3}
else
{expression4}
endif

For example, the plugin vim-signify®* uses a different installation method depending on your Vim
settings. Below is the installation instruction from their readme, using the i f statement:

“*https://github.com/mhinz/vim-signify

https://github.com/mhinz/vim-signify
https://github.com/mhinz/vim-signify

Ch25. Vimscript Conditionals And Loops

if has('nvim') || has('patch-8.0.902')

Plug 'mhinz/vim-signify'’
else

Plug 'mhinz/vim-signify', { 'branch': 'legacy' }
endif

Ternary Expression

Vim has a ternary expression for a one-liner case analysis:

{predicate} ? expressiontrue : expressionfalse
For example:

echo 1 ? "I am true" : "I am false"

223

Since 1 is truthy, Vim echoes “I am true”. Suppose you want to conditionally set the background to

dark if you are using Vim past a certain hour. Add this to vimre:

let &background = strftime("%H") < 18 ? "light" : "dark"

&background is the 'background' option in Vim. strftime("%H") returns the current time in hours.

If it is not yet 6 PM, use a light background. Otherwise, use a dark background.

Or

The logical “or” (| |) works like many programming languages.

{Falsy expression} || {Falsy expression} false
{Falsy expression} || {Truthy expression} true
{Truthy expression} || {Falsy expression} true
{Truthy expression} || {Truthy expression} true

Vim evaluates the expression and return either 1 (truthy) or 0 (falsy).

Ch25. Vimscript Conditionals And Loops 224

echo 5 || ©

returns 1

echo 5 || 5

returns 1

echo @ || ©

returns 0

echo "foo5" || "foob"

returns 0

echo "5foo" || "foob5"

returns 1
If the current expression evaluates to truthy, the subsequent expression won’t be evaluated.

let one_dozen = 12

echo one_dozen || two_dozen
" returns 1
echo two_dozen || one_dozen

returns error

Note that two_dozen is never defined. The expression one_dozen || two_dozen doesn’t throw any
error because one_dozen is evaluated first found to be truthy, so Vim doesn’t evaluate two_dozen.

And

The logical “and” (8&) is the complement of the logical or.

{Falsy Expression} && {Falsy Expression} false
{Falsy expression} && {Truthy expression} false
{Truthy Expression} && {Falsy Expression} false
{Truthy expression} && {Truthy expression} true

For example:

Ch25. Vimscript Conditionals And Loops 225

echo 0 && @

returns 0

echo 0 && 10

returns 0

Unlike “or”, “and” will evaluate the subsequent expression after it reaches the first falsy expression.
It will continue to evaluate the subsequent truthy expressions until the end or when it sees the first
falsy expression.

let one_dozen = 12
echo one_dozen && 10

returns 1

echo one_dozen && v:false

returns @

echo one_dozen && two_dozen

returns error

echo exists("one_dozen") && one_dozen == 12

returns 1

For

The for loop is commonly used with the list data type.
let breakfasts = ["pancakes", "waffles", "eggs"]
for breakfast in breakfasts

echo breakfast
endfor
It works with nested list:

let meals = [["breakfast", "pancakes"], ["lunch", "fish"], ["dinner", "pasta"]]

for [meal_type, food] in meals

echo "I am having " . food . " for . meal_type

endfor

You can technically use the for loop with a dictionary using the keys() method.

Ch25. Vimscript Conditionals And Loops 226

let beverages = #{breakfast: "milk", lunch: "orange juice", dinner: "water"}
for beverage_type in keys(beverages)

echo "I am drinking beverages|[beverage_type] . " for beverage_type

endfor

While

Another common loop is the while loop.

let counter =1
while counter < 5

echo "Counter is: . counter

let counter += 1

endwhile
To get the content of the current line to the last line:

let current_line = line(".")
let last_line = line("$")

while current_line <= last_line
echo getline(current_line)

let current_line += 1

endwhile

Error Handling

Often your program doesn’t run the way you expect it to. As a result, it throws you for a loop (pun
intended). What you need is a proper error handling.

Break

When you use break inside a while or for loop, it stops the loop.

To get the texts from the start of the file to the current line, but stop when you see the word “donut”:

Ch25. Vimscript Conditionals And Loops

let 1line = 0
let last_line = line("$")
let total_word = ""

while line <= last_line
let line += 1

let line_text = getline(line)

if line_text =~#% "donut"
break

endif

echo line_text

let total_word .= line_text .

endwhile

echo total_word
If you have the text:

one
two
three
donut
four

five

227

Running the above while loop gives “one two three” and not the rest of the text because the loop

breaks once it matches “donut”.

Continue

The continue method is similar to break, where it is invoked during a loop. The difference is that

instead of breaking out of the loop, it just skips that current iteration.

Suppose you have the same text but instead of break, you use continue:

Ch25. Vimscript Conditionals And Loops

let 1line = 0
let last_line = line("$")
let total_word = ""

while line <= last_line
let line += 1

let line_text = getline(line)

if line_text =~#% "donut"
continue

endif

echo line_text

let total_word .= line_text .

endwhile

echo total_word

228

This time it returns one two three four five. It skips the line with the word “donut”, but the loop

continues.

Try, Finally, And Catch

Vim has a try, finally, and catch to handle errors. To simulate an error, you can use the throw

command.

try
echo "Try"
throw "Nope"
endtry

Run this. Vim will complain with "Exception not caught: Nope error.

Now add a catch block:

try

echo "Try"

throw "Nope"
catch

echo "Caught it"
endtry

Now there is no longer any error. You should see “Try” and “Caught it” displayed.

Let’s remove the catch and add a finally:

Ch25. Vimscript Conditionals And Loops 229

try

echo "Try"

throw "Nope"

echo "You won't see me"
finally

echo "Finally"
endtry

Run this. Now Vim displays the error and “Finally”.
Let’s put all of them together:

try

echo "Try"

throw "Nope"
catch

echo "Caught it"
finally

echo "Finally"
endtry

This time Vim displays both “Caught it” and “Finally”. No error is displayed because Vim caught it.

Errors come from different places. Another source of error is calling a nonexistent function, like
Nope() below:

try

echo "Try"

call Nope()
catch

echo "Caught it"
finally

echo "Finally"
endtry

The difference between catch and finally is that finally is always run, error or not, where a catch
is only run when your code gets an error.

You can catch specific error with :catch. According to :h :catch:

Ch25. Vimscript Conditionals And Loops 230

catch /Mim:Interrupt$/. " catch interrupts (CTRL-C)
catch /MVim\\%((\\a\\+)\\)\\=:E/. " catch all Vim errors

catch /AVIm\\Z((\\a\\+)\\)\\=:/. " catch errors and interrupts
catch /Mim(write):/. " catch all errors in :write

catch /AVIm\\%((\\a\\+)\\)\\=:E123:/ " catch error E123
catch /my-exception/. catch user exception
catch /.*/ " catch everything

catch. same as /.*/

Inside a try block, an interrupt is considered a catchable error.

try
catch /MVim:Interrupt$/
sleep 100

endtry

In your vimre, if you use a custom colorscheme, like gruvbox®?, and you accidentally delete the
colorscheme directory but still have the line colorscheme gruvbox in your vimre, Vim will throw
an error when you source it. To fix this, I added this in my vimrc:

try

colorscheme gruvbox
catch

colorscheme default
endtry

Now if you source vimre without gruvbox directory, Vim will use the colorscheme default.

Learn conditionals the smart way

In the previous chapter, you learned about Vim basic data types. In this chapter, you learned how to
combine them to write basic programs using conditionals and loops. These are the building blocks
of programming.

Next, let’s learn about variable scopes.

“*https://github.com/morhetz/gruvbox

https://github.com/morhetz/gruvbox
https://github.com/morhetz/gruvbox

Ch26. Vimscript Variables And Scopes

Before diving into Vimscript functions, let’s learn about the different sources and scopes of Vim
variables.

Mutable And Immutable Variables

You can assign a value to a variable in Vim with let:
let pancake = "pancake"
Later you can call that variable any time.

echo pancake

returns "pancake"
let is mutable, meaning you can change the value at any time in the future.

let pancake = "pancake"
let pancake = "not waffles"

echo pancake

returns "not waffles”
Notice that when you want to change the value of a set variable, you still need to use let.

let beverage = "milk"

beverage = "orange juice"

" throws an error

You can define an immutable variable with const. Being immutable, once a variable value is assigned,
you cannot reassign it with a different value.

Ch26. Vimscript Variables And Scopes 232

const waffle = "waffle"
const waffle = "pancake"

" throws an error

Variable Sources

There are three sources for variables: environment variable, option variable, and register variable.

Environment Variable

Vim can access your terminal environment variable. For example, if you have the SHELL environment
variable available in your terminal, you can access it from Vim with:

echo $SHELL
" returns $SHELL value. In my case, it returns /bin/bash

Option Variable

You can access Vim options with & (these are the settings you access with set).

For example, to see what background Vim uses, you can run:

echo &background

returns either "light" or "dark"

Alternatively, you can always run set background? to see the value of the background option.

Register Variable

You can access Vim registers (Ch. 08) with @.

Suppose the value “chocolate” is already saved in register a. To access it, you can use @a. You can
also update it with let.

Ch26. Vimscript Variables And Scopes 233

echo @a

returns chocolate
let @a .= " donut"

echo @a

returns "chocolate donut"”

Now when you paste from register a ("ap), it will return “chocolate donut”. The operator .=
concatenates two strings. The expression let @a .= " donut" is the same as let @a = @a . "
donut"

Variable Scopes

There are 9 different variable scopes in Vim. You can recognize them from their prepended letter:

g: Global variable

{nothing} Global variable

b: Buffer-local variable
Window-local variable
Tab-local variable

Sourced Vimscript variable
Function local variable

Function formal parameter variable

< O = 0 =

Built-in Vim variable

Global variable

When you are declaring a “regular” variable:
let pancake = "pancake"

pancake is actually a global variable. When you define a global variable, you can call them from
anywhere.

Prepending g: to a variable also creates a global variable.
let g:waffle = "waffle"

In this case both pancake and g:waffle have the same scope. You can call each of them with or
without g:.

Ch26. Vimscript Variables And Scopes 234

echo pancake

returns "pancake"

echo g:pancake
"returns "pancake"

echo waffle

returns "waffle"

echo g:waffle

returns "waffle"

Buffer Variable

A variable preceded with b: is a buffer variable. A buffer variable is a variable that is local to the
current buffer (Ch. 02). If you have multiple buffers open, each buffer will have their own separate
list of buffer variables.

In buffer 1:
const b:donut = "chocolate donut"
In buffer 2:
const b:donut = "blueberry donut"

If you run echo b:donut from buffer 1, it will return “chocolate donut”. If you run it from buffer 2,
it will return “blueberry donut”.

On the side note, Vim has a special buffer variable b: changedtick that keeps track of all the changes
done to the current buffer.

1. Run echo b:changedtick and note the number it returns..
2. Make changes in Vim.
3. Run echo b:changedtick again and note the number it now returns.

Window Variable

A variable preceded with w: is a window variable. It exists only in that window.

In window 1:

Ch26. Vimscript Variables And Scopes 235

const w:donut = "chocolate donut"”

In window 2:

const w:donut = "raspberry donut"

On each window, you can call echo w:donut to get unique values.

Tab Variable

A variable preceded with t: is a tab variable. It exists only in that tab.
In tab 1:

const t:donut = "chocolate donut"

In tab 2:

const t:donut = "blackberry donut"”

On each tab, you can call echo t:donut to get unique values.

Script variable

A variable preceded with s: is a script variable. These variables can only be accessed from inside
that script.

If you have an arbitrary file dozen.vim and inside it you have:

let s:dozen = 12

function Consume()
let s:dozen -= 1
echo s:dozen " is left"

endfunction

Source the file with :source dozen.vim. Now call the Consume function:

Ch26. Vimscript Variables And Scopes 236

:call Consume()

returns "11 is left"

:call Consume()
" returns "10 is left"

:echo s:dozen

" Undefined variable error

When you call Consume, you see it decrements the s:dozen value as expected. When you try to get
s:dozen value directly, Vim won’t find it because you are out of scope. s:dozen is only accessible
from inside dozen.vim.

Each time you source the dozen.vinm file, it resets the s:dozen counter. If you are in the middle of
decrementing s:dozen value and you run :source dozen.vim, the counter resets back to 12. This
can be a problem for unsuspecting users. To fix this issue, refactor the code:

if lexists("s:dozen")
let s:dozen = 12
endif

function Consume()
let s:dozen -=1
echo s:dozen

endfunction

Now when you source dozen.vim while in the middle of decrementing, Vim reads
lexists("s:dozen"), finds that it is true, and doesn’t reset the value back to 12.

Function Local And Function Formal Parameter variable

Both the function local variable (1 :) and the function formal variable (a:) will be covered in the next
chapter.

Built-in Vim Variables

A variable prepended with v: is a special built-in Vim variable. You cannot define these variables.
You have seen some of them already.

« v:version tells you what Vim version you are using.

« v:key contains the current item value when iterating through a dictionary.

v:val contains the current item value when running a map() or filter() operation.
* v:true,v:false, v:null, and v:none are special data types.

There are other variables. For a list of Vim built-in variables, check out :h vim-variable or :h v:.

Ch26. Vimscript Variables And Scopes 237

Using Vim Variable Scopes The Smart Way

Being able to quickly access environment, option, and register variables give you a broad flexibility
to customize your editor and terminal environment. You also learned that Vim has 9 different
variable scopes, each existing under a certain constraints. You can take advantage of these unique
variable types to decouple your program.

You made it this far. You learned about data types, means of combinations, and variable scopes. Only
one thing is left: functions.

Ch27. Vimscript Functions

Functions are means of abstraction, the third element in learning a new language.

In the previous chapters, you have seen Vimscript native functions (len(), filter(), map(), etc.)
and custom functions in action. In this chapter, you will go deeper to learn how functions work.

Function Syntax Rules

At the core, a Vimscript function has the following syntax:

function {FunctionName}()
{do-something}
endfunction

A function definition must start with a capital letter. It starts with the function keyword and ends
with endfunction. Below is a valid function:

function! Tasty()
echo "Tasty"
endfunction

The following is not a valid function because it does not start with a capital letter.

function tasty()
echo "Tasty"
endfunction

If you prepend a function with the script variable (s:), you can use it with a lower case. function
s:tasty() is a valid name. The reason why Vim requires you to use an uppercase name is to prevent
confusion with Vim’s built-in functions (all lowercase).

A function name cannot start with a number. 1Tasty() is not a valid function name, but Tasty1 () is.
A function also cannot contain non-alphanumeric characters besides _. Tasty - food(), Tasty&food(),
and Tasty. food() are not valid function names. Tasty_food() is.

If you define two functions with the same name, Vim will throw an error complaining that the
function Tasty already exists. To overwrite the previous function with the same name, add a ! after
the function keyword.

Ch27. Vimscript Functions 239

function! Tasty()
echo "Tasty"
endfunction

Listing Available Functions

To see all the built-in and custom functions in Vim, you can run : function command. To look at
the content of the Tasty function, you can run : function Tasty.

You can also search for functions with pattern with : function /pattern, similar to Vim’s search
navigation (/pattern). To search for all function containing the phrase “map”, run : function /map.
If you use external plugins, Vim will display the functions defined in those plugins.

If you want to look at where a function originates, you can use the :verbose command with the
: function command. To look at where all the functions containing teh word “map” are originated,
run:

:verbose function /map

When I ran it, I got a number of results. This one tells me that the function fz f#vim*maps autoload
function (to recap, refer to Ch. 23) is written inside ~/.vim/plugged/fzf.vim/autoload/fzf/vim.vim

file, on line 1263. This is useful for debugging.

function fzf#vim*maps(mode, ...)

Last set from ~/.vim/plugged/fzf.vim/autoload/fzf/vim.vim line 1263

Removing A Function

To remove an existing function, use :delfunction {function-name}. To delete Tasty, run
:delfunction Tasty.

Function Return Value

For a function to return a value, you need to pass it an explicit return value. Otherwise, Vim
automatically returns an implicit value of 0.

function! Tasty()
echo "Tasty"

endfunction

An empty return is also equivalent to a 0 value.

Ch27. Vimscript Functions 240

function! Tasty()
echo "Tasty"
return

endfunction

If you run :echo Tasty() using the function above, after Vim displays “Tasty”, it returns 0, the
implicit return value. To make Tasty() to return “Tasty” value, you can do this:

function! Tasty()
return "Tasty"
endfunction

Now when you run :echo Tasty(), it returns “Tasty” string.

You can use a function inside an expression. Vim will use the return value of that function. The
expression :echo Tasty() . " Food!" outputs “Tasty Food!”

Formal Arguments

To pass a formal argument food to your Tasty function, you can do this:

function! Tasty(food)

return "Tasty . a:food

endfunction

echo Tasty("pastry")

returns "Tasty pastry"

a: is one of the variable scopes mentioned in the last chapter. It is the formal parameter variable. It
is Vim’s way to get a formal parameter value in a function. Without it, Vim will throw an error:

function! Tasty(food)
return "Tasty " . food
endfunction

echo Tasty("pasta")

returns "undefined variable name" error

Function Local Variable

Let’s address the other variable you didn’t learn on the previous chapter: the function local variable
(1:).

When writing a function, you can define a variable inside:

Ch27. Vimscript Functions 241

function! Yummy()
let location = "tummy"

return "Yummy in my location

endfunction

echo Yummy ()

returns "Yummy in my tummy"

In this context, the variable location is the same as 1:1location. When you define a variable in
a function, that variable is local to that function. When a user sees location, it could easily be
mistaken as a global variable. I prefer to be more verbose than not, so I prefer to put 1: to indicate
that this is a function variable.

Another reason to use 1:count is that Vim has special variables with aliases that look like regular
variables. v: count is one example. It has an alias of count. In Vim, calling count is the same as calling
v:count. It is easy to accidentally call one of those special variables.

function! Calories()

let count = "count"
return "I do not " . count . " my calories"
endfunction

echo Calories()

" throws an error

The execution above throws an error because let count = "Count" implicitly attempts to redefine
Vim’s special variable v:count. Recall that special variables (v:) are read-only. You cannot mutate
it. To fix it, use 1 : count:

function! Calories()

let 1l:count = "count"
return "I do not " . l:count . " my calories”
endfunction

echo Calories()

returns "I do not count my calories"”

Calling A Function

Vim has a :call command to call a function.

Ch27. Vimscript Functions 242

function! Tasty(food)

return "Tasty . a:food

endfunction

call Tasty("gravy")
The call command does not output the return value. Let’s call it with echo.
echo call Tasty("gravy")

Woops, you get an error. The call command above is a command-line command (:call). The
echo command above is also a command-line command (:echo). You cannot call a command-line
command with another command-line command. Let’s try a different flavor of the call command:

echo call("Tasty", ["gravy"])

returns "Tasty gravy"

To clear any confusion, you have just used two different call commands: the :call command-line
command and the call() function. The call() function accepts as its first argument the function
name (string) and its second argument the formal parameters (list).

To learn more about :call and call(), check out :h call() and :h :call.
Default Argument

You can provide a function parameter with a default value with =. If you call Breakfast with only
one argument, the beverage argument will use the “milk” default value.

function! Breakfast(meal, beverage = "Milk")
return "I had " . a:meal "and " . a:beverage . " for breakfast"
endfunction

echo Breakfast("Hash Browns")

returns hash browns and milk

echo Breakfast("Cereal", "Orange Juice")

returns Cereal and Orange Juice
Variable Arguments

You can pass a variable argument with three-dots (. . .). Variable argument is useful when you don’t
know how many variables a user will give.

Suppose you are creating an all-you-can-eat buffet (you’ll never know how much food your
customer will eat):

Ch27. Vimscript Functions 243

function! Buffet(...)
return a:1

endfunction

If you run echo Buffet("Noodles"), it will output “Noodles”. Vim uses a:1 to print the first
argument passed to ..., up to 20 (a:1 is the first argument, a:2 is the second argument, etc). If
you run echo Buffet("Noodles", "Sushi"), it will still display just “Noodles”, let’s update it:

function! Buffet(...)
return a:1 . " " . a:2
endfunction

echo Buffet("Noodles", "Sushi")
" Returns "Noodles Sushi"

The problem with this approach is if you now run echo Buffet("Noodles") (with only one variable),
Vim complains that it has an undefined variable a: 2. How can you make it flexible enough to display
exactly what the user gives?

Luckily, Vim has a special variable a:0 to display the length of the argument passed into

function! Buffet(...)
return a:0
endfunction

echo Buffet("Noodles")

returns 1

echo Buffet("Noodles", "Sushi")

returns 2

echo Buffet("Noodles", "Sushi", "Ice cream", "Tofu", "Mochi")

returns 5

With this, you can iterate using the length of the argument.

Ch27. Vimscript Functions 244

function! Buffet(...)
let 1:food_counter = 1
let 1:foods = ""
while 1:food_counter <= a:0
let 1:foods .= a:{1:food_counter} . " "
let 1:food_counter += 1
endwhile
return 1:foods
endfunction

The curly braces a: {1: food_counter} is a string interpolation, it uses the value of food_counter
counter to call the formal parameter arguments a:1, a:2, a: 3, etc.

echo Buffet("Noodles")

returns "Noodles"

echo Buffet("Noodles", "Sushi", "Ice cream", "Tofu", "Mochi")

returns everything you passed: "Noodles Sushi Ice cream Tofu Mochi"

The variable argument has one more special variable: a: 000. It has the value of all variable arguments
in a list format.

function! Buffet(...)
return a:000
endfunction

echo Buffet("Noodles")

returns ["Noodles"]

echo Buffet("Noodles", "Sushi", "Ice cream", "Tofu", "Mochi")

returns ["Noodles", "Sushi", "Ice cream", "Tofu", "Mochi"]

Let’s refactor the function to use a for loop:

Ch27. Vimscript Functions 245

function! Buffet(...)
let 1:foods = ""
for food_item in a:000
let 1:foods .= food_item . " "
endfor
return 1:foods

endfunction

echo Buffet("Noodles", "Sushi", "Ice cream", "Tofu", "Mochi")

returns Noodles Sushi Ice cream Tofu Mochi

Range

You can define a ranged Vimscript function by adding a range keyword at the end of the function
definition. A ranged function has two special variables available: a: firstline and a: lastline.

function! Breakfast() range
echo a:firstline
echo a:lastline

endfunction

If you are on line 100 and you run call Breakfast(), it will display 100 for both firstline and
lastline. If you visually highlight (v, v, or Ctr1-V) lines 101 to 105 and run call Breakfast(),
firstline displays 101 and lastline displays 105. firstline and lastline displays the minimum
and maximum range where the function is called.

You can also use :call and passing it a range. If you run :11,20call Breakfast(), it will display
11 for firstline and 20 for lastline.

You might ask, “That’s nice that Vimscript function accepts range, but can’t I get the line number
with line(".")? Won't it do the same thing?”

Good question. If this is what you mean:

function! Breakfast()
echo line(".")
endfunction

Calling :11,20call Breakfast() executes the Break fast function 10 times (one for each line in the
range). Compare that if you had passed the range argument:

Ch27. Vimscript Functions 246

function! Breakfast() range
echo line(".")
endfunction

Calling 11,20call Breakfast() executes the Break fast function once.

If you pass a range keyword and you pass a numerical range (like 11,20) on call, Vim only executes
that function once. If you don’t pass a range keyword and you pass a numerical range (like 11,20)
on call, Vim executes that function N times depending on the range (in this case, N = 10).

Dictionary

You can add a function as a dictionary item by adding a dict keyword when defining a function.

If you have a function SecondBreak fast that returns whatever break fast item you have:

function! SecondBreakfast() dict
return self.breakfast
endfunction

Let’s add this function to the meals dictionary:

let meals = {"breakfast": "pancakes", "second_breakfast": function("SecondBreakfast"\
), "lunch": "pasta"}

echo meals.second_breakfast()

returns "pancakes"

With dict keyword, the key variable self refers to the dictionary where the function is stored (in
this case, the meals dictionary). The expression sel f.breakfast is equal to meals.breakfast.

An alternative way to add a function into a dictionary object to use a namespace.

function! meals.second_lunch()
return self.lunch

endfunction

echo meals.second_lunch()
" returns "pasta"

With namespace, you do not have to use the dict keyword.

Ch27. Vimscript Functions 247

Funcref

A funcref is a reference to a function. It is one of Vimscript’s basic data types mentioned in Ch. 24.

The expression function("SecondBreakfast") above is an example of funcref. Vim has a built-in
function function() that returns a funcref when you pass it a function name (string).

function! Breakfast(item)

return "I am having . a:item . " for breakfast"

endfunction

let Breakfastify = Breakfast

returns error

let Breakfastify = function("Breakfast")

echo Breakfastify("oatmeal")

returns "I am having oatmeal for breakfast"

echo Breakfastify("pancake")

returns "I am having pancake for breakfast"”

In Vim, if you want to assign a function to a variable, you can’t just run assign it directly like l1et
MyVar = MyFunc. You need to use the function() function, like let MyFar = function("MyFunc").

You can use funcref with maps and filters. Note that maps and filters will pass an index as the first
argument and the iterated value as the second argument.

function! Breakfast(index, item)

return "I am having " . a:item . " for breakfast"
endfunction
let breakfast_items = ["pancakes", "hash browns", "waffles"]

let first_meals = map(breakfast_items, function("Breakfast"))
for meal in first_meals

echo meal
endfor

Lambda

A better way to use functions in maps and filters is to use lambda expression (sometimes known as
unnamed function). For example:

Ch27. Vimscript Functions 248

let Plus = {x,y -> x + y}
echo Plus(1,2)

returns 3

let Tasty = { -> 'tasty'}
echo Tasty()

returns "tasty"
You can call a function from insisde a lambda expression:

function! Lunch(item)

return "I am having " . a:item . " for lunch"
endfunction
let lunch_items = ["sushi", "ramen", "sashimi"]

let day_meals = map(lunch_items, {index, item -> Lunch(item)})
for meal in day_meals

echo meal
endfor

If you don’t want to call the function from inside lambda, you can refactor it:

let day_meals = map(lunch_items, {index, item -> "I am having item . " for lunch\

"}

Method Chaining

You can chain several Vimscript functions and lambda expressions sequentially with ->. Keep in
mind that -> must be followed by a method name without space.

Source->Method1()->Method2()->...->MethodN()
To convert a float to a number using method chaining:

echo 3.14->float2nr()

returns 3

Let’s do a more complicated example. Suppose that you need to capitalize the first letter of each
item on a list, then sort the list, then join the list to form a string.

Ch27. Vimscript Functions 249

function! Capitalizer(word)
return substitute(a:word, "*\.", "\\u&", "g")
endfunction

function! CapitalizelList(word_list)
return map(a:word_list, {index, word -> Capitalizer(word)})

endfunction
let dinner_items = ["bruschetta", "antipasto", "calzone"]
echo dinner_items->CapitalizelList()->sort()->join(", ")

returns "Antipasto, Bruschetta, Calzone"

With method chaining, the sequence is more easily read and understood. I can just glance atdinner_-
items->Capitalizelist()->sort()->join(", ") and know exactly what is going on.

Closure

When you define a variable inside a function, that variable exists within that function boundaries.
This is called a lexical scope.

function! Lunch()

let appetizer = "shrimp"

function! SecondLunch()
return appetizer
endfunction

return funcref("SecondLunch")

endfunction

appetizer is defined inside the Lunch function, which returns SecondLunch funcref. Notice that
SecondLunch uses the appetizer, but in Vimscript, it doesn’t have access to that variable. If you try
to run echo Lunch()(), Vim will throw an undefined variable error.

To fix this issue, use the closure keyword. Let’s refactor:

Ch27. Vimscript Functions 250

function! Lunch()
let appetizer = "shrimp"

function! SecondLunch() closure
return appetizer
endfunction

return funcref("SecondLunch")
endfunction

Now if you run echo Lunch()(), Vim will return “shrimp”.

Learn Vimscript Functions The Smart Way

In this chapter, you learned the anatomy of Vim function. You learned how to use different special
keywords range, dict, and closure to modify function behavior. You also learned how to use
lambda and to chain multiple functions together. Functions are important tools for creating complex
abstractions.

This concludes this Vim guide. However, your Vim journey doesn’t end here. In fact, it actually
starts now. You should have sufficient knowledge to go on your own. You may even create your
own plugins. Learning Vim is a lifelong pursuit, so never stop learning!

Happy Vimming, friends!

	Table of Contents
	New To Vim? Read This First
	Why This Guide Was Written
	How To Transition To Vim From Using A Different Text Editor
	How To Read This Guide
	More Help
	Syntax
	Vimrc
	Future, Errors, Questions
	I Want More Vim Tricks
	Thank Yous

	Ch01. Starting Vim
	Installing
	The Vim Command
	Exiting Vim
	Saving A File
	Help
	Opening a File
	Arguments
	Opening Multiple Windows
	Suspending
	Starting Vim The Smart Way

	Ch02. Buffers, Windows, and Tabs
	Buffers
	Exiting Vim
	Windows
	Tabs
	Moving In 3D
	Using Buffers, Windows, and Tabs The Smart Way

	Ch03. Searching Files
	Opening And Editing Files
	Searching Files With Find
	Find And Path
	Searching In Files With Grep
	Browsing Files With Netrw
	Fzf
	Setup
	Fzf Syntax
	Finding Files
	Finding In Files
	Other Searches
	Replacing Grep With Rg
	Search And Replace In Multiple Files
	Learn Search The Smart Way

	Ch04. Vim Grammar
	How To Learn A Language
	Grammar Rule
	Nouns (Motions)
	Verbs (Operators)
	Verb And Noun
	More Nouns (Text Objects)
	Composability And Grammar
	Learn Vim Grammar The Smart Way

	Ch05. Moving In A File
	Character Navigation
	Relative Numbering
	Count Your Move
	Word Navigation
	Current Line Navigation
	Sentence And Paragraph Navigation
	Match Navigation
	Line Number Navigation
	Window Navigation
	Scrolling
	Search Navigation
	Jump
	Learn Navigation The Smart Way

	Ch06. Insert Mode
	Ways To Go To Insert Mode
	Different Ways To Exit Insert Mode
	Repeating Insert Mode
	Deleting Chunks In Insert Mode
	Insert From Register
	Scrolling
	Autocompletion
	Executing A Normal Mode Command
	Learn Insert Mode The Smart Way

	Ch07. The Dot Command
	Usage
	What Is A Change?
	Multi-line Repeat
	Including A Motion In A Change
	Learn The Dot Command The Smart Way

	Ch08. Registers
	The Ten Register Types
	Register Operators
	Calling Registers From Insert Mode
	The Unnamed Register
	The Numbered Registers
	The Small Delete Register
	The Named Register
	The Read-Only Registers
	The Alternate File Register
	The Expression Register
	The Selection Registers
	The Black Hole Register
	The Last Search Pattern Register
	Viewing The Registers
	Executing A Register
	Clearing A Register
	Putting The Content Of A Register
	Learning Registers The Smart Way

	Ch09. Macros
	Basic Macros
	Safety Guard
	Command Line Macro
	Executing A Macro Across Multiple Files
	Recursive Macro
	Appending A Macro
	Amending A Macro
	Macro Redundancy
	Series Vs Parallel Macro
	Learn Macros The Smart Way

	Ch10. Undo
	Undo, Redo, And UNDO
	Breaking The Blocks
	Undo Tree
	Persistent Undo
	Time Travel
	Learn Undo The Smart Way

	Ch11. Visual Mode
	The Three Types Of Visual Modes
	Visual Mode Navigation
	Visual Mode Grammar
	Visual Mode And Command-line Commands
	Adding Text On Multiple Lines
	Incrementing Numbers
	Selecting The Last Visual Mode Area
	Entering Visual Mode From Insert Mode
	Select Mode
	Learn Visual Mode The Smart Way

	Ch12. Search And Substitute
	Smart Case Sensitivity
	First And Last Character In A Line
	Repeating Search
	Searching For Alternative Words
	Setting The Start And End Of A Match
	Searching Character Ranges
	Searching For Repeating Characters
	Predefined Character Ranges
	Search Example: Capturing A Text Between A Pair Of Similar Characters
	Search Example: Capturing A Phone Number
	Basic Substitution
	Repeating The Last Substitution
	Substitution Range
	Pattern Matching
	Substitution Flags
	Changing The Delimiter
	Special Replace
	Alternative Patterns
	Substituting The Start And The End Of A Pattern
	Greedy And Non-Greedy
	Substituting Across Multiple Files
	Substituting Across Multiple Files With Macros
	Learning Search And Substitution The Smart Way

	Ch13. The Global Command
	Global Command Overview
	Inverse Match
	Pattern
	Passing A Range
	Normal Command
	Executing A Macro
	Recursive Global Command
	Changing The Delimiter
	The Default Command
	Reversing The Entire Buffer
	Aggregating All TODOs
	Black Hole Delete
	Reduce Multiple Empty Lines To One Empty Line
	Advanced Sort
	Learn The Global Command The Smart Way

	Ch14. External Commands
	The Bang Command
	Reading The STDOUT Of A Command Into Vim
	Writing The Buffer Content Into An External Command
	Executing An External Command
	Filtering Texts
	Normal Mode Command
	Learn External Commands The Smart Way

	Ch15. Command-line Mode
	Entering And Exiting The Command-line Mode
	Repeating The Previous Command
	Command-line Mode Shortcuts
	Register And Autocomplete
	History Window And Command-line Window
	More Command-line Commands
	Learn Command-line Mode The Smart Way

	Ch16. Tags
	Tag Overview
	Tag Generator
	Tags Anatomy
	The Tag File
	Generating Tags For A Large Project
	Tags Navigation
	Tag Priority
	Selective Tag Jumps
	Autocompletion With Tags
	Tag Stack
	Automatic Tag Generation
	Generate A Tag On Save
	Using Plugins
	Ctags And Git Hooks
	Learn Tags The Smart Way

	Ch17. Fold
	Manual Fold
	Different Fold Methods
	Indent Fold
	Marker Fold
	Syntax Fold
	Expression Fold
	Diff Fold
	Persisting Fold
	Learn Fold The Smart Way

	Ch18. Git
	Diffing
	Vim As A Merge Tool
	Git Inside Vim
	Plugins
	Vim-fugitive
	Git Status
	Git Blame
	Gdiffsplit
	Gwrite And Gread
	Gclog
	More Vim-Fugitive
	Learn Vim And Git The Smart Way

	Ch19. Compile
	Compile From the Command Line
	The Make Command
	Compiling With Make
	Different Make Program
	Auto-compile On Save
	Switching Compiler
	Creating A Custom Compiler
	Async Compiler
	Plugin: Vim-dispatch
	Learn Compile The Smart Way

	Ch20. Views, Sessions, And Viminfo
	View
	Sessions
	Viminfo
	Using Views, Sessions, And Viminfo The Smart Way

	Ch21. Vimrc
	How Vim Finds Vimrc
	What To Put In My Vimrc?
	Basic Vimrc Content
	Organizing Vimrc
	Running Vim With Or Without Vimrc And Plugins
	Configure Vimrc The Smart Way

	Ch22. Vim Packages
	Pack Directory
	Two Types Of Loading
	Organizing packages
	Adding Packages The Smart Way

	Ch23. Vim Runtime
	Runtime Path
	Plugin Scripts
	Filetype Detection
	File Type Plugin
	Indent Files
	Colors
	Syntax Highlighting
	Documentation
	Lazy Loading Scripts
	After Scripts
	$VIMRUNTIME
	Runtimepath Option
	Learn Runtime The Smart Way

	Ch24. Vimscript Basic Data Types
	Data Types
	Following Along With Ex Mode
	Number
	Float
	String
	List
	Dictionary
	Special Primitives
	Learn Data Types The Smart Way

	Ch25. Vimscript Conditionals And Loops
	Relational Operators
	If
	Ternary Expression
	Or
	And
	For
	While
	Error Handling
	Learn conditionals the smart way

	Ch26. Vimscript Variables And Scopes
	Mutable And Immutable Variables
	Variable Sources
	Variable Scopes
	Using Vim Variable Scopes The Smart Way

	Ch27. Vimscript Functions
	Function Syntax Rules
	Listing Available Functions
	Removing A Function
	Function Return Value
	Formal Arguments
	Function Local Variable
	Calling A Function
	Default Argument
	Variable Arguments
	Range
	Dictionary
	Funcref
	Lambda
	Method Chaining
	Closure
	Learn Vimscript Functions The Smart Way

