

LaTeX Cookbook

Over 100 practical, ready-to-use LaTeX recipes
for instant solutions

Stefan Kottwitz

LaTeX Cookbook
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Aaron Tanna
Publishing Product Manager: Uzma Sheerin
Senior Editor: Kinnari Chohan
Technical Editor: Rajdeep Chakraborthy
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Prashant Ghare
DevRel Marketing Coordinator: Mayank Singh

First published: October 2015
Second edition: March 2024

Production reference: 1230224
Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB

ISBN 978-1-83508-032-0
www.packtpub.com

http://www.packtpub.com

A big thank you to the technical reviewers Izaak Neutelings and Stephan Lukasczyk for their valuable
contributions during the book development process. Additional appreciation goes to Prajakta Naik and
Kinnari Chohan from Packt Publishing, with whom I have collaborated on a book for the second time.

I would also like to thank the DANTE e.V. TeX users group for their enduring support over the years
of the website projects I maintain.

– Stefan Kottwitz

Contributors

About the author
Stefan Kottwitz studied mathematics in Jena and Hamburg. He works as a network and IT security
engineer at Lufthansa Industry Solutions.

For numerous years, Stefan has been providing LaTeX support on internet forums. He manages the
web forums LaTeX.org and goLaTeX.de, along with the question-and-answer platforms
TeXwelt.de and TeXnique.fr. He maintains the TeX graphics gallery sites TeXample.
net, TikZ.net, and PGFplots.net, the TeXlive.net online compiler, the TeXdoc.org
documentation service, and the CTAN.net software mirror.

A moderator of the TeX Stack Exchange site and matheplanet.com, he publishes ideas and news from
the TeX world on his blogs LaTeX.net and TeX.co.

He also authored the LaTeX Beginner’s Guide in 2011, with the second edition in 2021, and LaTeX
Graphics with TikZ in 2023, all published by Packt.

About the reviewers
Izaak Neutelings earned his master’s and Ph.D. degrees from the University of Zurich (UZH). He is
currently engaged in fundamental research in experimental particle physics at the CMS experiment
in CERN, searching for new particles in proton collisions.

He previously served as a technical reviewer for the book LaTeX Graphics with TikZ. His extensive use of
LaTeX includes writing lecture notes for introductory physics courses at UZH, fully illustrated with TikZ
figures. He is a primary contributor to the example collection websites TikZ.net and FeynM.net.

Stephan Lukasczyk holds a B.Sc. and M.Sc. degree in Computer Science and is currently a research
assistant and PhD student at the University of Passau, Germany. His research focuses on automated
test generation for dynamically typed programming languages, along with static and dynamic analysis
techniques for such languages.

He has been an avid LaTeX user since approximately 2006. Since 2021, he has held a position on the
German-speaking TeX User Group (DANTE) board.

Preface� xv

1
Exploring Various Document Classes� 1

Preparing your LaTeX tools� 2
Getting ready� 2
See also� 4

Writing a short text� 5
How to do it...� 5
How it works...� 8
See also� 9

Developing a thesis� 9
Getting ready� 10
How to do it...� 11
How it works...� 12
There’s more...� 15
See also� 17

Designing a book� 17
How to do it...� 17
How it works...� 20
There’s more...� 21
See also� 25

Creating a presentation� 25
How to do it...� 25
How it works...� 29

There’s more...� 31
See also� 35

Designing a CV� 35
Getting ready� 35
How to do it...� 35
How it works...� 38

Writing a letter� 39
How to do it...� 39
How it works...� 40
There’s more...� 41

Producing a leaflet� 42
How to do it...� 42
How it works...� 45
There’s more...� 46

Building a large poster� 48
How to do it...� 48
How it works...� 52
There’s more...� 54

Table of Contents

Table of Contentsviii

2
Tuning the Text� 55

Improving justification and
hyphenation� 56
How to do it...� 56
How it works...� 56

Adding margin notes� 58
How to do it...� 58
How it works...� 59
There’s more...� 59

Converting numbers to words� 60
How to do it...� 60
How it works...� 61
There’s more...� 61

Putting text into a colorful box� 62
How to do it...� 62
How it works...� 64
There’s more...� 65

Visualizing the layout� 65
How to do it...� 65
How it works...� 67
There’s more...� 67

Visualizing boxes of letters
and symbols� 69

How to do it...� 69
How it works...� 70

Typesetting in a grid� 70
How to do it...� 71
How it works...� 72
There’s more...� 73

Absolute positioning of text� 74
How to do it...� 74
How it works...� 77
There’s more...� 78

Adding drop caps� 78
How to do it...� 78
How it works...� 79
There’s more...� 79

Fitting text to a shape� 82
How to do it...� 82
How it works...� 83
There’s more...� 84

Creating a pull quote� 85
How to do it...� 86
How it works...� 87
There’s more...� 88

3
Adjusting Fonts� 91

Using standard font commands� 92
There’s more...� 93

Choosing a document font� 94
Getting ready� 94
How to do it...� 94

There’s more...� 95

Locally switching to a different font� 98
How to do it...� 99
How it works...� 101
There’s more...� 101

Table of Contents ix

Printing font tables� 102
How to do it...� 102
How it works...� 103
There’s more...� 103

Importing just a single symbol
of a font� 105
Getting ready� 105
How to do it...� 106
How it works...� 107

Writing bold mathematical symbols� 107
How to do it...� 107
How it works...� 108
There’s more...� 108

Getting sans-serif mathematics� 110
How to do it...� 111
How it works...� 111
There’s more...� 112

Writing double-stroke letters like
on a blackboard� 113
How to do it...� 114
How it works...� 114
There’s more...� 114

Enabling the searching and copying
of ligatures� 114
How to do it...� 115
How it works...� 115
There’s more...� 115

Suppressing ligatures� 116
How to do it...� 116
How it works...� 116

Adding a contour� 117
How to do it...� 117
How it works...� 118

See also� 118

4
Creating Tables� 119

Designing a legible table� 120
How to do it...� 120
How it works...� 122
There’s more...� 123

Positioning tables� 124
How to do it...� 125
How it works...� 125
There’s more…� 126

Merging cells� 126
How to do it...� 127
How it works...� 128
There’s more...� 129

Splitting a cell diagonally� 130
How to do it...� 131

How it works...� 132

Adding footnotes to a table� 132
How to do it...� 133
How it works...� 135

Aligning numerical data� 136
How to do it...� 136
How it works...� 137
There’s more...� 138

Coloring a table� 138
How to do it...� 139
How it works...� 140

Importing data from an external file� 141
How to do it...� 141
How it works...� 143

Table of Contentsx

5
Working with Images� 145

Including images with optimal quality�146
Getting ready� 146
How to do it...� 147
How it works...� 147
There’s more...� 148

Customizing images� 148
How to do it...� 148

Adding a frame to an image� 149
How to do it...� 149
How it works...� 150

Cutting an image to get rounded
corners� 151
How to do it...� 151
How it works...� 152
There’s more...� 152

Shaping an image like a circle� 152
How to do it...� 153
How it works...� 153
There’s more...� 154

Drawing over an image� 154
How to do it…� 154
How it works...� 156

Aligning images� 157
How to do it...� 157
How it works...� 158

Arranging images in a grid� 158
How to do it...� 158
How it works...� 160

Stacking images� 160
How to do it...� 160
How it works...� 161

6
Creating Graphics� 163
Getting ready� 164

Building smart diagrams� 165
How to do it...� 165
How it works...� 166
There’s more...� 166

Constructing a flowchart� 171
How it works...� 175

Growing a tree� 176
How to do it...� 176
How it works...� 177

There’s more...� 177

Building a bar chart� 180
How to do it...� 180
How it works...� 182

Drawing a pie chart� 183
How to do it...� 183
How it works...� 184
There’s more...� 185

Drawing a Venn diagram� 187
How to do it...� 188

Table of Contents xi

How it works...� 189

Putting thoughts into a mind map� 190
How to do it...� 191
How it works...� 193

Generating a timeline� 194
Getting ready� 194
How to do it...� 194
How it works...� 197

7
Creating Beautiful Designs� 199

Adding a background image� 199
How to do it...� 199
How it works...� 201
There’s more...� 201

Creating beautiful ornaments� 204
Getting ready� 204
How to do it...� 204
How it works...� 206
There’s more...� 207

Preparing pretty headings� 208
How to do it...� 208
How it works...� 209

Producing a calendar� 209
How to do it...� 210

How it works...� 211

Mimicking keys, menu items, and
terminal output� 212
How to do it...� 212
How it works...� 213
There’s more...� 213

Arranging topics like a puzzle� 216
How to do it...� 216
How it works...� 217

Building a word cloud� 218
Getting ready� 218
How to do it...� 218
How it works...� 220
There’s more...� 220

8
Producing Contents, Indexes, and Bibliographies� 223

Tuning tables of contents and lists of
figures and tables� 224
How to do it...� 224
How it works...� 227
There’s more...� 227

Creating a bibliography� 227
How to do it...� 228
How it works...� 230

There’s more...� 232

Adding a glossary� 233
How to do it...� 233
How it works...� 235

Creating a list of acronyms� 236
How to do it...� 236
How it works...� 237

Table of Contentsxii

Producing an index� 238
How to do it...� 238

How it works...� 239
There’s more...� 239

9
Optimizing PDF Files� 243

Using hyperlinks� 243
How to do it...� 244
How it works...� 245
There’s more...� 246

Adding metadata� 249
How to do it...� 249
How it works...� 250
There’s more...� 250

Including copyright information� 251
How to do it...� 252
How it works...� 253
There’s more...� 253

Inserting comments� 253
How to do it...� 253
How it works...� 256

Producing fillable forms� 257
How to do it...� 257

How it works...� 259

Optimizing the output for e-book
readers� 260
How to do it...� 260
How it works...� 261
There’s more...� 262

Removing white margins� 262
Getting ready� 262
How to do it...� 263
How it works...� 263
There’s more...� 264

Combining PDF files� 264
How to do it...� 264
How it works...� 265

Creating an animation� 265
How to do it...� 265
How it works...� 267

10
Writing Advanced Mathematics� 269

Getting started� 270
How to do it...� 270
How it works...� 271
There’s more...� 274

Fine-tuning math formulas� 278
Getting ready� 278
How to do it...� 279

How it works...� 280

Automatic line-breaking in equations� 280
How to do it...� 280
How it works...� 281

Highlighting in a formula� 282
How to do it...� 282
How it works...� 285

Table of Contents xiii

There’s more...� 286

Stating definitions and theorems� 287
How to do it...� 287
How it works...� 289
There’s more...� 290

Drawing commutative diagrams� 293
How to do it...� 293
How it works...� 295
There’s more...� 297

Plotting functions in two dimensions� 298
How to do it...� 299
How it works...� 300
There’s more...� 300

Plotting in three dimensions� 304
How to do it...� 304
How it works...� 306
There’s more...� 306

Drawing geometry pictures� 307
How to do it...� 307
How it works...� 309
There’s more...� 312

Doing calculations� 315
How to do it...� 316
How it works...� 316

Further learning� 317

11
Using LaTeX in Science and Technology� 319

Typesetting an algorithm� 320
How to do it...� 320
How it works...� 322
There’s more...� 323

Printing a code listing� 323
How to do it...� 323
How it works...� 324
There’s more...� 326

Programming with Lua� 327
How to do it...� 327
How it works...� 328
There’s more...� 329
How it works...� 331

Creating graphs� 331
How to do it...� 332
How it works...� 333
There’s more...� 335
How it works...� 337

Writing quantities with units� 337
How to do it...� 338
How it works...� 340

Drawing Feynman diagrams� 340
How to do it...� 340
How it works...� 342
There’s more...� 342

Writing chemical formulas� 342
How to do it...� 342
How it works...� 344
There’s more...� 345

Drawing molecules� 345
How to do it...� 345
How it works...� 347
There’s more...� 347

Representing atoms� 352
How to do it...� 352
How it works...� 353

Table of Contentsxiv

Drawing molecular orbital diagrams
and atomic orbitals� 353
How to do it...� 353
How it works...� 355
There’s more...� 356

Printing a customized periodic table
of elements� 357

How to do it...� 357
How it works...� 358

Drawing electrical circuits� 359
How to do it...� 360
How it works...� 362

See also� 363

12
Getting Support on the Internet� 365

Exploring available LaTeX resources
on the web� 365
How to do it...� 365
There’s more...� 368

Utilizing web forums effectively� 368
How to do it...� 369
How it works...� 370

Crafting high-quality questions� 371
How to do it...� 371

Generating minimal working
examples� 372
How to do it...� 372
There’s more...� 373

13
Using Artificial Intelligence with LaTeX� 375

Getting started with ChatGPT� 376
How to do it...� 376
How it works...� 377
There’s more...� 378

Getting answers to LaTeX questions� 379
How to do it...� 379
How it works...� 380

Improving your content� 380
How to do it...� 380
How it works...� 382
There’s more...� 383

Generating code� 385
How to do it...� 385
How it works...� 386
There’s more...� 386

Index� 389

Other Books You May Enjoy� 400

Preface

LaTeX is a high-quality typesetting software and is very popular, especially among scientists. Its
programming language gives you precise control over every aspect of your documents, regardless
of complexity. LaTeX’s many customizable templates and supporting packages cover most writing
aspects with embedded typographic expertise.

This book will enable you to leverage the latest document classes’ capabilities and explore the newest
packages’ functionalities.

This book starts with examples of common document types. It provides samples for refining text design,
using fonts, embedding images, and creating legible tables. Supplementary parts of the document,
such as the bibliography, glossary, and index, are addressed with LaTeX’s modern approach.

You will learn to create excellent graphics directly within LaTeX; this includes creating diagrams
and plots with ease. The book shows the application of LaTeX in various scientific fields, focusing on
creating figures with new graphics packages.

The example-driven approach of this book will quickly increase your productivity.

The second edition incorporates enhancements, featuring code adjustments to align with LaTeX and
package upgrades. It includes supplementary examples and a new chapter exploring the application
of Artificial Intelligence through ChatGPT, aiding in generating LaTeX code and supporting various
writing tasks.

Who this book is for
If you possess a foundational understanding of LaTeX and seek quick and practical solutions to your
challenges, this book is tailored for you. Advanced readers can leverage the example-driven format to
elevate their expertise. Familiarity with LaTeX’s basic syntax and proficiency in using your preferred
editor for compilation are prerequisites for optimal engagement.

What this book covers
Chapter 1, Exploring Various Document Classes, gives insight into diverse document types, and you’ll
discover how LaTeX is versatile for creating theses, books, CVs, presentations, flyers, and large posters
with tailored examples.

Prefacexvi

Chapter 2, Tuning the Text, focuses on customizing text details within documents. Beginning with
essential fundamentals, we’ll cover practical tips and conclude the chapter with demonstrations of
LaTeX’s capabilities beyond standard paragraph formatting.

Chapter 3, Adjusting Fonts, shows how to make global font choices and explore techniques for adjusting
fonts within your document.

Chapter 4, Creating Tables, explains how to craft visually appealing tables. This includes guidance on
creating legible tables, aligning numeric data, and incorporating colors. It introduces the concept of
floating tables and figures, enabling automated positioning. Additionally, the chapter discusses advanced
topics such as merging and splitting cells and importing table data from external files.

Chapter 5, Working with Images, begins by exploring considerations related to image quality. You’ll
find practical instructions on incorporating, positioning, shaping, and aligning images in LaTeX.

Chapter 6, Creating Graphics, provides step-by-step instructions for crafting compelling graphics.
The chapter leverages modern graphics packages, enabling the creation of comprehensive graphics,
including various types of diagrams and charts.

Chapter 7, Creating Beautiful Designs, guides you on incorporating background images, crafting attractive
ornaments, integrating appealing headings, generating calendars and word clouds, incorporating
symbols for computer keys and menu items, and simulating terminal output.

Chapter 8, Producing Contents, Indexes, and Bibliographies, provides practical solutions for quickly
customizing the table of contents, lists of figures and tables, bibliographies, glossaries, and indexes.

Chapter 9, Optimizing PDF Files, explores the functionalities of PDFs, including metadata, PDF
comments, and fillable forms. You’ll learn techniques for merging PDF files, adjusting margins,
optimizing output for e-books, and creating animations in a PDF.

Chapter 10, Writing Advanced Mathematics, works with LaTeX’s enduring strengths—its exceptional
typesetting capabilities for mathematical formulas. After a quick tutorial, you’ll learn advanced techniques
for refining formulas and creating theorems, diagrams, geometric figures, and plots in 2D and 3D.

Chapter 11, Using LaTeX in Science and Technology, deals with additional scientific fields, including
chemistry, physics, computer science, and various technologies such as electronics. This chapter
provides a comprehensive overview, showcasing how LaTeX can be effectively applied across diverse
fields through specific examples.

Chapter 12, Getting Support on the Internet, starts with a guide to the most valuable Internet resources
for LaTeX. Then, it demonstrates how to efficiently seek support from the TeX online communities.

Chapter 13, Using Artificial Intelligence with LaTeX, provides guidance and examples on harnessing
the capabilities of ChatGPT to streamline code work and enhance your content efficiently.

Preface xvii

To get the most out of this book
The required software for this purpose is TeX Live, version 2023 or later, or MiKTeX, a version of 2023
or later. It is advisable to install a LaTeX editor as well. Chapter 1’s introduction will provide details on
obtaining TeX software and editors, while Chapter 12 will direct you to additional online resources.

An essential tool is texdoc, which opens manuals and additional documentation. To use texdoc,
enter “texdoc keyword” in the Command Prompt. For packages and bundles, the keyword typically
corresponds to the name. If you don’t have the documentation installed or use an online compiler such
as Overleaf, you can access the documentation online at https://texdoc.org/pkg/keyword.

All the code examples in this book are available for download, as explained later in the Customer
Support section. This eliminates the need for manually typing the code or copy-pasting, allowing us
to present the code in the book in snippets and explain it step by step.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/LaTeX-Cookbook. If there’s an update to the code, it will be updated in
the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here’s an example: “You can
access each package’s documentation by calling texdoc at the command line.”

A block of code is set as follows:

\documentclass{article}
\begin{document}
\end{document}

https://texdoc.org/pkg/keyword
https://github.com/PacktPublishing/LaTeX-Cookbook
https://github.com/PacktPublishing/LaTeX-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexviii

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

\begin{figure}[htbp!]
  \centering
  \includegraphics{filename}
  \caption{Some text}
  \label{fig:name}
\end{figure}

Any command-line input or output is written as follows:

$ bibtex document

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here are some examples:

“Artificial Intelligence (AI) refers to machine or software-simulated intelligence.”

“Click the editGPT button to enable the editing mode.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

LaTeX questions: If you have any questions about LaTeX, you can post them at the author’s forum
at https://latex.org.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

https://latex.org
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Preface xix

Share Your Thoughts
Once you’ve read LaTeX Cookbook, we’d love to hear your thoughts! Please click here to go straight
to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1835080324
https://packt.link/r/1835080324

Prefacexx

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83508-032-0

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83508-032-0

1
Exploring Various
Document Classes

Documents vary in shape and size, with distinct formats, sections, and designs. You can use LaTeX
for any kind of document type. This chapter is packed with recipes suitable for an assortment of
document types.

Specifically, we will cover the following:

•	 Preparing your LaTeX tools

•	 Writing a short text

•	 Developing a thesis

•	 Designing a book

•	 Creating a presentation

•	 Designing a curriculum vitae (CV)

•	 Writing a letter

•	 Producing a leaflet

•	 Building a large poster

Throughout this chapter, you will get step-by-step instructions, tips, and tricks to help you create each
document type easily. By the end of this chapter, you’ll have a solid foundation in creating a wide
range of documents using LaTeX.

All example code is available on GitHub for download. You can find all examples of this chapter at
https://latex-cookbook.net/chapter-01, where you can also compile them online.

https://latex-cookbook.net/chapter-01

Exploring Various Document Classes2

Preparing your LaTeX tools
LaTeX has been around for many years. Over time, developers and authors contributed numerous
extensions to its code base.

Such an extension could be one of the following:

•	 Document class: A base file that is the frame of your document. It provides various formatting
styles and usually comes with meaningful default settings, which can be changed via options
when loading it. It often provides commands for authors to modify settings.

•	 Package: A style file with a specific purpose that you can load in addition to the document
class. Packages can be combined. Most of the time, we load many of them by executing the
\usepackage command.

•	 Bundle: A set of closely related packages or classes. In our next recipe, Writing a short text, we
will get to know some bundles.

•	 Template: A document with dummy text that you can take as a starting point and fill in your
headings, texts, formulas, and images. We will look at templates in another recipe, Developing
a thesis.

Those add-ons are incredibly valuable. They are one reason for the enduring success of LaTeX. We
all agree that learning LaTeX can be challenging with its steep learning curve. However, if you don’t
reinvent the wheel and start with a good template or class and a quality set of packages, you can
quickly achieve great results.

The purpose of this book is to assist you in this regard.

Getting ready

To be able to work with LaTeX, you need to have the following installed on your computer:

•	 TeX and LaTeX software, called a TeX distribution

•	 A LaTeX editor, though you could use any text editor

•	 A PDF viewer for seeing the final output

If you already have those installed, great! In that case, you can skip the following paragraphs and
immediately proceed to the first recipe.

A PDF reader is probably already installed on your computer, such as Adobe Reader or the Preview
app on the Mac. Furthermore, most editors come with an integrated PDF previewer. So, let’s have a
look at TeX software and editors.

Preparing your LaTeX tools 3

TeX and LaTeX distributions

There are TeX and LaTeX software collections ready to use and easy to install. Their websites provide
install and update information. You may choose the download site for your system:

•	 TeX Live: On https://tug.org/texlive, you can find download information and
installation instructions for the cross-platform TeX distribution, which runs on Windows,
Linux, Mac OS X, and other Unixes. It is supported by the TeX Users Group (TUG).

•	 MacTeX: This is based on TeX Live and has been significantly customized for Mac OS X.
Essential information is available at https://tug.org/mactex.

•	 MiKTeX: A download and documentation for the Windows-specific distribution can be found
at https://miktex.org.

If you own a Mac, I suggest selecting MacTeX. Otherwise, I recommend using TeX Live because the
TUG provides excellent development and support.

Describing the setup is outside the scope of this book. For TeX Live, you can find a step-by-step
explanation with screenshots in the LaTeX Beginner’s Guide by Packt Publishing. Generally, you can
find detailed setup instructions when you visit the aforementioned internet addresses.

Finally, on Linux systems, such as Ubuntu, Debian, Red Hat, Fedora, and SUSE versions, a TeX Live-
based software package is usually available via the operating system repositories. While it’s usually
not as up to date as an installation via the TeX Live website or a TeX Live DVD, it’s straightforward to
install using the Linux package manager you deploy to install any software there.

I strongly recommend choosing a complete LaTeX installation containing all available software,
packages, and fonts. At the time of writing, it typically requires around 8 GB of disk space, but it
guarantees you won’t encounter any missing packages or dependencies later.

LaTeX editors

There are many LaTeX editors, from small and quick to feature-rich editors. The TeX distributions
already provide the fine editor TeXworks, which I use myself. You set it up with TeX or a package
manager on Linux, and it can be downloaded from https://tug.org/texworks.

You can find a collection of LaTeX editors and additional software at https://latex.net/
software. You may look for alternative editors running on your operating system there.

https://tug.org/texlive
https://tug.org/mactex
https://miktex.org
https://tug.org/texworks
https://latex.net/software
https://latex.net/software

Exploring Various Document Classes4

Using LaTeX online

A complete online cloud solution for LaTeX saves you from installing LaTeX software yourself. The most
advanced one is called Overleaf and comes with an online LaTeX editor that runs in a web browser, so
you can use it even on tablets and smartphones for storing, editing, and compiling even large LaTeX
projects. You can find it at https://www.overleaf.com. While registration is necessary, basic
access to the platform is free. Some advanced features require purchasing a subscription, but it’s worth
noting that many universities and institutions partner with Overleaf and provide enhanced licenses
for their students and employees.

The LaTeX Beginner’s Guide explores Overleaf in more detail; you can find this section online
at https://latexguide.org/overleaf.

If you need help setting up and using LaTeX or an editor, you can visit a LaTeX web forum such
as https://latex.org. In Chapter 12, Getting Support on the Internet, you can find their
addresses and how to use them. You can also meet me there and ask me and our fellow forum users
any LaTeX-related questions.

Once you have done the installation or online setup, you can start with a LaTeX recipe from the
following sections.

See also

Many LaTeX tutorials available on the internet can help you with the first steps. I recommend looking
at the following:

•	 https://learnlatex.org covers the most essential LaTeX basics in short lessons in 10
languages. It is very modern and comes with an online compiler for its examples.

•	 https://texdoc.org/pkg/lshort is the web link for The not so short introduction
to LaTeX2e, a famous introductory text. It has been translated into more than 20 languages,
available at https://ctan.org/pkg/lshort.

•	 https://www.overleaf.com/learn takes you to the Overleaf knowledge base with
various guides and many articles about LaTeX.

•	 https://en.wikibooks.org/wiki/LaTeX takes you to the LaTeX Wikibook, a
collaboratively created extensive guide.

•	 https://www.dickimaw-books.com/latex/novices contains the free introductory
book LaTeX for Complete Novices by Nicola L. C. Talbot. It is somewhat dated but OK for the
first steps.

•	 https://latex2e.org hosts the Unofficial reference manual for LaTeX, an excellent
resource whenever you need to know how to use specific LaTeX commands, environments,
arguments, and syntax in general.

https://www.overleaf.com
https://latexguide.org/overleaf
https://latex.org
https://learnlatex.org
https://texdoc.org/pkg/lshort
https://ctan.org/pkg/lshort
https://www.overleaf.com/learn
https://en.wikibooks.org/wiki/LaTeX
https://www.dickimaw-books.com/latex/novices
https://latex2e.org

Writing a short text 5

•	 https://latexguide.org is the website for the LaTeX Beginner’s Guide, with a sample
chapter, all code examples by chapter, reviews, and additional information in case you’re
considering buying a modern book on paper or in electronic format.

If you still need to learn LaTeX, read one of the guides, and you will then be well prepared to get the
best out of this book.

Writing a short text
While LaTeX is excellent for large documents, it’s as useful for smaller ones, and you get all the features
to work with. Writing down homework or producing a seminar handout, for example, doesn’t need
book-like chapters, and the layout would not be very spacy. So, we will choose a document class that
suits it best.

Class bundles cover commonly used document types. Every LaTeX installation contains a base bundle
with standard classes. There is a class file for articles, one for books, one for reports, one for letters,
and more. It is stable stuff; it has stayed the same for many years. It can be sufficient if you don’t care
about the latest style. It would run even on a 10-year-old LaTeX installation.

In this recipe, we will use a class of the KOMA-Script bundle. This is a set of document classes and
packages designed initially to replace the standard classes and provide more features. In contrast to
the stable base bundle, KOMA-Script has been extensively developed in recent years. It has become
feature-rich and has an excellent user interface. Parts of its functionality are provided in packages that
can be used together with other classes as well. You can identify KOMA-Script classes and packages
by the scr prefix. This prefix stands for Script, which was the initial name of this bundle.

How to do it...

We will start with a complete small document, already using various features. This can be your template,
where you can fill in your own text later.

While we go through the document step by step, you may open the complete code directly with your
editor, so you don’t need to type it. It is contained in the code bundle available on the book’s page at
https://www.packtpub.com and https://latex-cookbook.net:

1.	 Create a .tex document in the editor of your choice. Start with a document class. We will
use the scrartcl KOMA-Script class with A4 paper size, a base font size of 12 pt, and inter-
paragraph space instead of default paragraph indentation:

\documentclass[paper=a4,oneside,fontsize=11pt,
  parskip=full]{scrartcl}

2.	 Begin the document:

\begin{document}

https://latexguide.org
https://www.packtpub.com
https://latex-cookbook.net

Exploring Various Document Classes6

3.	 By running this command, you let LaTeX print a table of contents:

\tableofcontents

4.	 Start a section without numbering:

\addsec{Introduction}

5.	 Add some text:

This document will be our starting point for simple
documents. It is suitable for a single page or up to
a couple of dozen pages.

The text will be divided into sections.

6.	 Start an automatically numbered section with some text:

\section{The first section}
This first text will contain

7.	 Add a bulleted list using an itemize environment. Each list item starts with an \item
command. Using the \ref{label} command, we will already refer to labels we will create later:

\begin{itemize}
  \item a table of contents,
  \item a bulleted list,
  \item headings and some text and math in section,
  \item referencing such as to section
    \ref{sec:maths} and equation (\ref{eq:integral}).
\end{itemize}

8.	 Continue with the text, and start another numbered section:

We can use this document as a template for filling
in our own content.
\section{Some maths}

9.	 Set a label so that we can refer to this point when we would like to refer to this section:

\label{sec:maths}

10.	 Continue with the text. We start using some math expressions in the text. We mark them by
enclosing them in parentheses with a prefixing backslash as follows:

When we write a scientific or technical document, we
usually include math formulas. To get a brief glimpse
of the look of maths, we will look at an integral

Writing a short text 7

approximation of a function \(f(x) \) as a sum with
weights \(w_i \):

11.	 Write a math equation using the equation environment. Again, place a label:

\begin{equation}
\label{eq:integral}
  \int_a^b f(x)\,\mathrm{d}x \approx (b-a)
  \sum_{i=0}^n w_i f(x_i)
\end{equation}

12.	 End the document:

\end{document}

13.	 Compile the document. Do it twice so that the references work. The first page of the output
will be as follows:

Figure 1.1 – A document with sections, math, and referencing

Contents

Introduction 1

1 The first section 1

2 Some maths 1

Introduction

This document will be our starting point for simple documents. It is suitable for a single
page or up to a couple of dozen pages.

The text will be divided into sections.

1 The first section

This first text will contain

• a table of contents,

• a bulleted list,

• headings and some text and math in section,

• referencing such as to section 2 and equation (1).

We can use this document as a template for filling in our own content.

2 Some maths

When we write a scientific or technical document, we usually include math formulas. To
get a brief glimpse of the look of maths, we will look at an integral approximation of a
function f(x) as a sum with weights wi:

∫ b

a
f(x) dx ≈ (b− a)

n∑
i=0

wif(xi) (1)

1

Exploring Various Document Classes8

How it works...

In the first line, we loaded the scrartcl document class. In square brackets, we set options for
specifying an A4 paper size with the oneside option for one-sided printing and a font size of 11 pt.
Finally, we chose to have a full line between paragraphs in the output to distinguish paragraphs easily
by adding the parskip=full option.

The default setting is no space between paragraphs but a small indentation at the beginning of a
paragraph. Remove the parskip option to see it. We chose a paragraph skip because many people
are used to it when working with emails, while indentation costs line space, a precious resource on
small electronic devices.

Without further ado, we began the text with a table of contents.

While the \section command starts numbered sections, we can have an unnumbered section by
the starred \section* version. However, we used the \addsec KOMA-Script command for the
first unnumbered section. That’s because contrary to \section*, the \addsec command generates
an entry in the table of contents.

The empty line in step 5 tells LaTeX to make a paragraph break. Note that a simple line break in the
LaTeX code doesn’t cause a line break or paragraph break in the output.

As bulleted lists are an excellent way to present points clearly, we used an itemize environment in
step 7. Environments start with a \begin command and are finished by an \end command.

Note
If you want a numbered list, use the enumerate environment.

An equation environment has been used to display an automatically numbered formula. We used
a \label command to set an invisible anchor mark so that we could refer to it using its label name
by the \ref command and get the equation number in the output.

Choosing label identifiers
It is a good practice to use prefixes to identify kinds of labels, such as eq:name for equations,
fig:name for figures, tab:name for tables, and so on. Avoid special characters in names,
such as accented characters.

Developing a thesis 9

In step 10, small formulas within text lines have been enclosed in \(... \), which provides inline
math mode. Dollar symbols, such as $... $, can be used instead, making typing easier. However,
the parentheses clarify where the math mode starts and ends, which may be beneficial when many
math expressions are scattered in the text, and the “dollar syntax” is old TeX syntax.

Why did we have to compile it twice? When you use the \label command, LaTeX writes that
position to the .aux file. In the next compiler run, the \ref command can read this and put the
correct reference into the text.

For further information on math typesetting, refer to Chapter 10, Writing Advanced Mathematics,
specifically to the Fine-tuning a formula recipe.

See also

The part of the document before \begin{document} is called the preamble. It contains global
settings. Adding a few lines to our document preamble can improve and modify our document’s
general appearance. Chapter 2, Tuning the Text, starts with beneficial additions to the preamble that
are also useful with small documents.

In Chapter 3, Adjusting Fonts, you can find recipes for changing an entire document’s fonts or
specific elements.

For further customization tasks, such as modifying page layout, adding headers and footers, and
changing sectioning title font, refer to the Designing a book recipe in the current chapter. We will look
at such settings on the occasion of a book example.

Developing a thesis
When you write a large document such as a thesis, you have two main choices: choose a ready-made
template or set up your own document environment. If you have little time and need to start your
thesis fast, a template can come to the rescue.

Beware of outdated and questionable templates found somewhere on the internet. Look first at the
date and at user opinions, such as in web forums. The age of a template is not a problem in itself, as
LaTeX can run it the same way when it’s been written. However, LaTeX developed, and better solutions
came up over time. Legacy code may not benefit from it.

Some universities provide their own template. That may be OK because requirements would be
met for sure; just check if it can be improved – for example, by replacing obsolete packages with
recommended successors.

Exploring Various Document Classes10

An excellent source for checking the quality of a template is the guide to obsolete commands and
packages in LaTeX2e; people call it l2tabu. You can open the English version by typing texdoc
l2tabuen at Command Prompt or at https://texdoc.org/pkg/l2tabuen.

To be clear, the LaTeX base is stable and solid, but there are changes in community-contributed packages.

In the previous recipe, Writing a short text, we took a bottom-up approach and built a document
from scratch, adding what we desired. Now, we will go top-down: let’s use and understand a complete
template, removing what we don’t need.

As we need to choose a template now, let’s take a real gem. The ClassicThesis package by Prof.
André Miede is a thesis template of excellent quality. The design follows the book classic The Elements
of Typographic Style by Robert Bringhurst; we will see some particular points later in this recipe. Its
implementation is thoughtful and modern. Initially written in 2006, it’s also maintained today and
shipped with TeX distributions.

Getting ready

Though the ClassicThesis package may already be installed on your TeX system, named
classicthesis.sty, the whole template is an archive of files that should go into your
working directory.

Download the ClassicThesis archive from the following Comprehensive TeX Archive Network
(CTAN) address: https://ctan.org/pkg/classicthesis.

Instead of fetching single files, choose to download them as a .zip file. Unzip it to where you keep
your personal documents in its own directory. This directory will be your thesis directory.

This package provides a ready-made structured filesystem of the main document, style file, settings
file, and document parts such as abstract, foreword, and chapters in dedicated files. You can edit all
files and fill in your own text.

The ClassicThesis.tex file is the main document. Its filler text is the template’s manual; this
allows us to compile it immediately to look at the output design. Also, you can verify that your TeX
installation can handle it if you need to install additional packages.

https://texdoc.org/pkg/l2tabuen
https://ctan.org/pkg/classicthesis

Developing a thesis 11

How to do it...

After unzipping, your directory will have this structure:

Figure 1.2 – The directory structure of the ClassicThesis template

Exploring Various Document Classes12

Now, follow these steps:

1.	 Rename or copy the ClassicThesis.tex file and choose your own name, such as
MyThesis.tex, but keep it in the same directory.

2.	 Open the main document, MyThesis.tex, and look around to get a feeling of the structure.
Compile it for testing at least twice to get correct referencing so that you know that this starting
point works.

3.	 You can review and edit the settings in the main file, MyThesis.tex, and in the
classicthesis-config.tex configuration file. On the following pages, we will examine
that content.

4.	 Open the existing .tex files, such as Abstract.tex and Chapter01.tex, with your
editor. Remove the filler text and type in your own text. Add extra chapter files as needed, and
include them in the main file, MyThesis.tex, as well. The structure is given; the technical
part of the editing is like cloning files and copying lines; all you need to focus on is the actual
thesis content now.

Don’t worry if the font or margins don’t please you yet. You can change the layout at any time. Let’s
take a closer look now, and then you will know how.

How it works...

We will now look at the functional lines of the main file, MyThesis.tex.

The document preamble starts as follows:

\documentclass[twoside,openright,titlepage,
                numbers=noenddot,headinclude,
                footinclude,cleardoublepage=empty,
                abstract=on,BCOR=5mm,paper=a4,
                fontsize=11pt
                ]{scrreprt}
\input{classicthesis-config}

The template is built on the scrreprt KOMA-Script class. KOMA-Script as a LaTeX bundle is
described in the first recipe of the current chapter, Writing a short text.

You can change the pre-set options to those you need, such as font size or BCOR binding correction.
There are many class options for adjusting the layout. You can read about them in the KOMA-Script
manual, such as by running texdoc koma-script at the command line or at https://
texdoc.org/pkg/koma-script. In our next recipe, Designing a book, we will discuss some
of them in more depth.

https://texdoc.org/pkg/koma-script
https://texdoc.org/pkg/koma-script

Developing a thesis 13

Loading of packages and all the remaining settings is done in a single file, classicthesis-
config.tex. We will look at it later in this recipe.

The document body starts with the following text:

\begin{document}
\frenchspacing
\raggedbottom
\selectlanguage{american}
\pagenumbering{roman}
\pagestyle{plain}

The \frenchspacing command means that there’s only a single space following the punctuation
after a sentence. LaTeX puts extra space between sentences by default, or if you enter the
\nonfrenchspacing command.

The language is set to American English, which is essential for American hyphenation. Actually, you
would need the \selectlanguage command only if you need to switch between languages.

We start with Roman page numbers. The plain page style means we have no page headers for now,
while page numbers are centered in the page footer.

Then, we see the front matter, which is the part of the document where the formal parts before the
actual content go:

\include{FrontBackmatter/DirtyTitlepage}
\include{FrontBackmatter/Titlepage}
\include{FrontBackmatter/Titleback}
\cleardoublepage\include{FrontBackmatter/Dedication}
%\cleardoublepage\include{FrontBackmatter/Foreword}
\cleardoublepage\include{FrontBackmatter/Abstract}
\cleardoublepage\include{FrontBackmatter/Publication}
\cleardoublepage\include{FrontBackmatter/Acknowledgments}
\cleardoublepage\include{FrontBackmatter/Contents}

Each commonly required part of the front matter has its own file. Just edit the file as needed, comment
out using a % sign at the beginning of a line, or remove what you don’t need. The \cleardoublepage
command ends a page but also ensures that the next page starts on the right-hand side. This can mean
inserting an empty page if necessary – that is, a double-page break. It would not happen if you changed
the twoside option to oneside, so you could keep that \cleardoublepage command, which
would act like a \clearpage command when the oneside option was set.

Exploring Various Document Classes14

Finally, we get the main matter:

\cleardoublepage
\pagestyle{scrheadings}
\pagenumbering{arabic}
\cleardoublepage
\part{Some Kind of Manual}\label{pt:manual}
\include{Chapters/Chapter01}
\cleardoublepage
\ctparttext{You can put some informational part
  preamble text here...}
\part{The Showcase}\label{pt:showcase}
\include{Chapters/Chapter02}
\include{Chapters/Chapter03}

In the main matter, the page style is set to scrheadings, and we use Arabic page numbers. The
\pagenumbering command resets the page number to 0.

The thesis is divided into parts. Each one is split into chapters. You can omit the \part lines if your
highest sectioning level should be the chapter level.

Each chapter gets its own .tex file in the Chapters subdirectory, so you can easily handle a massive
text. Furthermore, you could use the \includeonly command to typeset just selected chapters
to speed up writing.

Finally, the main document ends with the back matter:

\appendix
\cleardoublepage
\part{Appendix}
\include{Chapters/Chapter0A}
\cleardoublepage\include{FrontBackmatter/Bibliography}
\cleardoublepage\include{FrontBackmatter/Declaration}
\cleardoublepage\include{FrontBackmatter/Colophon}
\end{document}

The \appendix command resets the sectioning counters and changes to alphabetic numbering;
the following chapters will be numbered by A, B, and so on. As with the front matter, the appendix
parts are divided into several files.

Let’s take a look at the configuration file. Open classicthesis-config.tex. It would take
too much space in the book, so let’s just see some sample lines:

\newcommand{\myTitle}{A Classic Thesis Style\xspace}
\newcommand{\myName}{Andr\'e Miede\xspace}
\newcommand{\myUni}{Put data here\xspace}

Developing a thesis 15

\newcommand{\myLocation}{Darmstadt\xspace}
\newcommand{\myTime}{January 2024\xspace}

Here, you can fill in your own data. Besides being printed on the title page, this data will be used as
metadata for the generated PDF document. There are more supported macros at this place, such as
\mySubtitle, \myProf, and many more. The \xspace command takes care of proper spacing
after such a macro, inserting a space when there’s no punctuation mark following it.

There’s more...

As mentioned, this template contains design decisions inspired by the book The Elements of Typographical
Style by Robert Bringhurst. The most notable are as follows:

•	 It doesn’t use bold fonts – small caps or italics elegantly emphasize what’s important.

•	 The text body is not very wide, allowing reading comfortably without the eyes jumping too
wide from the right back to the left. So, we have wide margins, which can be used for notes.

•	 The table of contents is not stretched to get right-aligned page numbers. To quote the author:
“Is your reader interested in the page number, or does she want to sum the numbers up?” That’s
why the page number follows the title.

Explore the classicthesis-config.tex file further to make modifications. As in the previous
recipe, we apply document-wide changes within the preamble; this file is the place for doing it.

We will take a look at the selected lines of that configuration file.

Getting a right-justified table of contents

The design is not set in stone; you may adjust a lot. Look at the very beginning of classicthesis-
config.tex:

\PassOptionsToPackage{
  drafting=true,
  tocaligned=false,
  dottedtoc=false,
  eulerchapternumbers=true,
  linedheaders=false,
  floatperchapter=true,
  eulermath=false,
  beramono=true,
  palatino=true,
  style=classicthesis
}{classicthesis}

Exploring Various Document Classes16

Here, you can find the options for the actual classicthesis package. For example, if you would
like to see the page numbers in the table of contents right aligned, set the dottedtoc option to
true. These and further options are documented in the template’s manual available by executing the
texdoc classicthesis command or at https://texdoc.org/pkg/classicthesis.

Changing the margins

To fulfill requirements on page margins or implement your layout ideas, you can specify exact page
dimensions by loading the geometry package. Here’s an example:

\usepackage[inner=1.5cm,outer=3cm,top=2cm,bottom=2cm,
  bindingoffset=5mm]{geometry}

Here, you can also provide a value for the space you may lose by the binding and all margins you
would like. It’s a good practice to have a visible inner margin set to half the value of the outer one
because margins would be added in the middle. For single-sided printing, with oneside options,
call the margins left and right.

Place such a line at the end of classicthesis-config.tex so that it will override previously
made original settings.

Modifying the layout of captions

In the classicthesis-config.tex file, you can also change the appearance of captions of
figures and tables. This is the default setup in that file:

\RequirePackage{caption}
\captionsetup{font=small}

Here, the template loads the caption package. The \RequirePackage command is similar to
the \usepackage command except that it can be used before the \documentclass command.
The caption package provides many features for fine-tuning captions. With this setting, captions
have a smaller font than regular text. By adding simple options, you can further adjust the appearance;
for example, by adding the option labelfont=it, you would get italic caption labels. Refer to the
caption package manual at https://texdoc.org/pkg/caption to learn more.

Note
While the caption package is a general solution working with most classes, including KOMA-
Script, the latter now offers extended integrated caption features.

https://texdoc.org/pkg/classicthesis
https://texdoc.org/pkg/caption

Designing a book 17

Centering displayed equations

Another option is responsible for the alignment of displayed equations:

\PassOptionsToPackage{fleqn}{amsmath}
\usepackage{amsmath}

With ClassicThesis, displayed equations will be left aligned. The fleqn option is switching to
this alignment. If you want to restore the default behavior centering the equations, remove that first
line that passes the option or comment it out. But keep the second line, which loads the amsmath
package, as this is the de facto standard package for typesetting mathematics in LaTeX.

See also

You can find many recipes for content elements in the following chapters for your thesis. Especially
for a beautiful thesis, elegant tables are of great value, so you may look at the Designing a legible table
recipe in Chapter 4, Creating Tables.

At https://latextemplates.com, you can find a collection of excellent templates, including
thesis templates.

Overleaf provides hundreds of thesis templates at https://www.overleaf.com/latex/
templates/tagged/thesis, including templates of universities, so check out descriptions and
tags for your university’s name.

Designing a book
A book can be a large document, so we can take a similar approach to the previous recipe. Refer to that
recipe to see how to split your document into handy files and how to organize the directory structure.

Commonly, books are printed two-sided. In contrast to articles, they are divided into chapters, which
start on right-hand pages, have pretty spacy headings, and often a page header showing the current
chapter title. Readability and good typography are essential, so you would hardly find books with an
A4 paper size, double line space, and similar specs, which some institutes expect of a thesis. That’s
why we got dedicated book classes with meaningful default settings and features.

How to do it...

As the Writing a short text recipe explains, our choice will be a KOMA-Script class; this time, it has
the name scrbook.

https://latextemplates.com
https://www.overleaf.com/latex/templates/tagged/thesis
https://www.overleaf.com/latex/templates/tagged/thesis

Exploring Various Document Classes18

Follow these steps:

1.	 Start with the scrbook class and suitable options for paper and font size:

\documentclass[fontsize=11pt,paper=a5,
  pagesize=auto]{scrbook}

2.	 Choose a font encoding with the following command; use T1, which is good for European,
English, or American texts:

\usepackage[T1]{fontenc}

3.	 If you want a non-default font, load it; here, we chose Latin Modern:

\usepackage{lmodern}

4.	 We will load the blindtext package for getting English dummy texts; it also requires loading
the babel package with English settings:

\usepackage[english]{babel}
\usepackage{blindtext}

5.	 Load the microtype package for better text justification:

\usepackage{microtype}

6.	 By running the following command, you can switch off additional space after sentence punctuation:

\frenchspacing

7.	 Begin the document:

\begin{document}

8.	 Provide a title, a subtitle, an author name, and a date. You can also set an empty value if you
don’t want to have something in that titling field:

\title{The Book}
\subtitle{Some more to know}
\author{The Author}
\date{}

9.	 Let LaTeX print the title page:

\maketitle

Designing a book 19

10.	 Print out the table of contents:

\tableofcontents

11.	 In addition to chapters, we will divide this book into parts, so start one:

\part{First portion}

12.	 Start a chapter with a heading. Having text before another heading comes is nice, so let’s have some:

\chapter{The beginning}
Some introductory text comes here.

13.	 As in our first recipe, add a section and text and another part with a chapter and sections. Using the
\Blindtext command, you can generate long dummy text; use the \blindtext command
to get shorter dummy text. The \appendix command switches to alphabetic numbering:

\section{A first section}
Dummy text will follow.
\blindtext
\section{Another section}
\Blindtext
\appendix
\part{Appendix}
\chapter{An addendum}
\section{Section within the appendix}
\blindtext

14.	 End the document:

\end{document}

15.	 Let your editor compile the text to PDF. You will get a 13-page book document with A5 paper
size, a title page, part pages, chapter, section headings, and filler text.

Exploring Various Document Classes20

Take a look at a sample page:

Figure 1.3 – Page 7 of the sample book with chapter and section headings

Note the headings in a sans-serif font. This is an intentional default setting in KOMA-Script classes,
which makes the headings lighter than the standard LaTeX big, bold, and serif headings. You know
– the traditional look.

Now, you can fill in your own text, add chapters and sections, and add features described later in
this recipe.

How it works...

At first, we loaded the scrbook class, made explicitly for writing books. So, it is ready for two-sided
printing with meaningful margins and pleasing proportions of headings and text.

1. The beginning

Some introductory text comes here.

1.1. A first section

Dummy text will follow. Hello, here is some text without a meaning.

This text should show what a printed text will look like at this place.

If you read this text, you will get no information. Really? Is there no

information? Is there a di�erence between this text and some nonsense

like “Huardest gefburn”? Kjift – not at all! A blind text like this gives

you information about the selected font, how the letters are written

and an impression of the look. This text should contain all letters

of the alphabet and it should be written in of the original language.

There is no need for special content, but the length of words should

match the language.

1.2. Another section

Hello, here is some text without a meaning. This text should show what

a printed text will look like at this place. If you read this text, you will

get no information. Really? Is there no information? Is there a di�erence

between this text and some nonsense like “Huardest gefburn”? Kjift

– not at all! A blind text like this gives you information about the

selected font, how the letters are written and an impression of the look.

This text should contain all letters of the alphabet and it should be

written in of the original language. There is no need for special content,

but the length of words should match the language.

7

Designing a book 21

Besides the class’s default settings, we chose a font size of 11 pt and A5 paper size, which is handy for
a book. The pagesize=auto option is essential here: it ensures that the A5 printing area will be
taken over to the PDF page size.

Then, we did the following things, which will be explained in more detail at the beginning of Chapter 2,
Tuning the Text:

•	 Chose the T1 font encoding when loading the fontenc package

•	 Selected the high-quality Latin Modern T1 supporting font set by loading the lmodern
package

•	 Loaded the babel package with support for English

•	 Used the microtype package for getting finer typography

The last package we loaded was blindtext. You don’t need it in your final document; here, it will
serve us to provide filler text. Using such dummy text, we can get a better idea of the final result already
before writing the actual content.

Finally, we switched to the so-called French spacing, which we already saw in the thesis recipe.
Remember – this means that after ending a sentence, we will get a standard interword space, not a
wider space.

There’s more...

You can change the layout of the book in many ways. Choose your settings at the beginning, or even
better: don’t hesitate and start writing your content – once you get a decent amount of text, you can
better see the effect of layout changes. You can do that at any time. Let’s take a look at some design ideas.

Changing the page layout

When a book is bound after printing, this binding can cost space; less of the inner margin may be
visible. You can specify a binding correction to compensate for and preserve layout proportions.
So, if you see 5 mm less of the inner margin after binding, add BCOR=5mm as a class option at the
beginning. A similarly produced book may give you an idea about a good value.

The actual text area has the same ratios as the page itself. This is automatically done by a dividing
construction, described in the KOMA-Script manual. That’s really worth reading. You can open it by
typing texdoc scrguien at Command Prompt or online at https://texdoc.org/pkg/
scrguien. This abbreviation comes from scr for the original package name (Script), gui
for guide, and en for English, and obviously from the ancient limit of 8 characters per filename in
older filesystems.

https://texdoc.org/pkg/scrguien
https://texdoc.org/pkg/scrguien

Exploring Various Document Classes22

Besides those page and text area ratios, the result shows a bottom margin twice as high as the top
margin, and an outer margin with the double width of the inner margin. Imagine an opened book:
the inner margins together appear with the same space as an outer margin. Sometimes, people make
the mistake of thinking that the inner margin should be much bigger because of the binding, but
that’s done by raising BCOR as previously. In Chapter 2, Tuning the Text, you can use the Visualizing
the layout recipe to inspect and understand the margins.

If you want a more extensive text area, which means narrower margins, you can keep the ratios as
described. Just raise the division factor of the mentioned internal construction and take a look to see
if it would suit you. For example, set the DIV=10 class option. Higher values are possible. That’s a
safe and easy way to preserve sane layout proportions.

To sum up, our example with 5 mm binding loss and pretty narrow margins could start like this:

\documentclass[fontsize=11pt,paper=a5,pagesize=auto,
  BCOR=5mm,DIV=12]{scrbook}

Alternatively, you could freely choose text and margin dimensions when requirements by the publisher
or institute need to be met. This can be done by loading the classic geometry package with the
desired measurements, as we saw in the Writing a thesis recipe:

\usepackage[inner=1.5cm,outer=3cm,top=2cm,bottom=4cm,
  bindingoffset=5mm]{geometry}

Designing a title page

You can create your own title page to present more information in a style you desire. Let’s look at an
example that shows some handy commands for it.

Remove the \maketitle command. You can do the same with the \title, \subtitle, \author,
and \date commands. Instead, put this titlepage environment right after \begin{document}:

\begin{titlepage}
  \vspace*{1cm}
  {\huge\raggedright The Book\par}
  \noindent\hrulefill\par
  {\LARGE\raggedleft The Author\par}
  \vfill
  {\Large\raggedleft Institute\par}
\end{titlepage}

Designing a book 23

The titlepage environment creates a page without a page number on it. We started with some
vertical space using the \vspace* command. The \vspace command adds vertical space, which
can be of a positive or a negative value. Here, note the star at the end: this way of calling \vspace
also works at the beginning of a page, where a simple \vspace instance would be ignored. That
default behavior prevents undesired vertical space at the top of a page, which initially may have been
intended as space between texts.

We enclosed each line in curly braces. This is also called grouping, and it is used to keep the effect of
changes, such as the font size, local within the braces. In each line, we did the following:

•	 Switched to a specific font size

•	 Chose left or right alignment

•	 Wrote out the text

•	 Ended with a paragraph break

The \par command is equivalent to an empty line in the input. Sometimes, people use it to keep the
code compact, such as here. We must end the paragraph before the font size changes because that size
defines the space between lines. Hence, we ended the paragraph before we closed the brace group. It’s
good to keep this in mind for when texts are longer.

Our only non-text design element is a modest horizontal line with the \hrulefill command.
The preceding \noindent command just prevents an undesired paragraph indentation, so the line
really starts at the very left.

\vfill inserts stretching vertical space, so we got the last line pushed down to the title page bottom.
If you used several \vfill commands on the same page, the available vertical space would be divided
and distributed equally between them.

We took this scenario to show some commands for positioning text on a page. You can experiment
with the \vspace and \vfill commands and their horizontal companions, \hspace and
\hfill. Just avoid using such commands to “fix” local placement issues in the document when it
would be better to adjust a class or package setting document-wide. If at all, don’t make such tweaks
until the final stage.

Note
The titlepages package provides 40 example title pages in various designs with complete
LaTeX source code. You could choose one, use it, and customize it.

Exploring Various Document Classes24

Adding a cover page

The title page, which we produced previously, is an inner page. That’s why it follows the standard page
layout with the same inner and outer margins as the body text.

The cover is different; for example, it should have symmetric margins and can be designed individually.
To get that deviating layout, it’s recommended to use a separate document for it. Another reason is
that it will usually be printed on different paper or cardboard.

So, you can start with an article-like class as in our first recipe, Writing a short text, then use options
such as twoside=false or the equivalent oneside option to get symmetric margins. Then, you
can position your text as we did with the title page.

Changing the document class

A very well-designed book class is memoir. It is pretty complete in itself, so you don’t need to load
many packages: it already integrates many features of other packages, providing similar interfaces.
memoir has a monolithic, easy-to-use approach, but it needs to take care of package conflicts. It is
not as flexible as choosing the package set by yourself. KOMA-Script, in contrast, provides its features
mostly in packages that can also be used with other classes.

1.	 Start with memoir by changing the first line to the following:

\documentclass[11pt,a5paper]{memoir}

2.	 Remove the \subtitle command, which is not supported.

3.	 To have the title on its own page, surround \maketitle with a titlingpage environment:

\begin{titlingpage}
\maketitle
\end{titlingpage}

4.	 Typeset and compare.

The memoir class provides an extensive manual that can help you to customize your document. It’s
split into two parts. Type texdoc memman at Command Prompt to read the actual manual and
texdoc memdesign to read the part on book design, which is an excellent resource independent
of the class. Alternatively, you can find these manuals at https://texdoc.org/pkg/memman
and https://texdoc.org/pkg/memdesign, respectively.

Another great start with a unique beauty is the tufte-latex class. It comes with a sample-book.
tex file, which you can also download from https://ctan.org/tex-archive/macros/
latex/contrib/tufte-latex. You could open this book file containing some dummy content
and fill in your text. One of its outstanding features is a wide margin for extensive use of side notes
and small figures in the margin.

https://texdoc.org/pkg/memman
https://texdoc.org/pkg/memdesign
https://ctan.org/tex-archive/macros/latex/contrib/tufte-latex
https://ctan.org/tex-archive/macros/latex/contrib/tufte-latex

Creating a presentation 25

See also

A book may contain additional elements such as an index, a glossary, and a bibliography. Refer to
Chapter 8, Producing Contents, Indexes, and Bibliographies, which includes such recipes.

The Overleaf book templates collection at https://www.overleaf.com/latex/templates/
tagged/book can also give you a head start.

Creating a presentation
At a conference or a seminar, speakers often use a projector or screen to present written information
in addition to the talk. Such a presentation document requires a specific kind of layout and features.

In our recipe, we will use the beamer class, which has been designed specifically for this purpose
and provides the following features:

•	 A typical landscape slide format, here 128 mm x 96 mm

•	 Structured frames with dynamic information, such as sectioning

•	 Support for overlays and transition effects

•	 Pre-designed themes for easily changing the look

•	 An intelligent interface for customizing

How to do it...

We will start with a sample presentation document, which we can extend. Follow the next steps:

1.	 Start with the beamer document class:

\documentclass{beamer}

2.	 Choose a theme. Here, we take the theme called Warsaw:

\usetheme{Warsaw}

3.	 Begin the document:

\begin{document}

https://www.overleaf.com/latex/templates/tagged/book
https://www.overleaf.com/latex/templates/tagged/book

Exploring Various Document Classes26

4.	 Provide a title, a subtitle, the author’s name, the institute, and a date:

\title{Talk on the Subject}
\subtitle{What this is about}
\author{Author Name}
\institute{University of X}
\date{June 24, 2015}

5.	 Make a slide using the frame environment. The first one will contain the title page:

\begin{frame}
  \titlepage
\end{frame}

6.	 Make a frame for the table of contents titled Outline. Add the pausesections option
so that the table of contents will be shown stepwise, section by section:

\begin{frame}{Outline}
  \tableofcontents[pausesections]
\end{frame}

7.	 Start a section and a subsection within:

\section{Introduction}
\subsection{A subsection}

8.	 All visible content goes into a frame environment. So also do lists, which are visually better
than normal text in a presentation:

\begin{frame}{Very Informative Title}
  \begin{itemize}
    \item First thing to say.
    \item There is more.
    \item Another short point.
  \end{itemize}
\end{frame}

Creating a presentation 27

9.	 This frame will show an emphasized block with a title:

\begin{frame}{Another Title With Uppercased Words}
  Text
  \begin{alertblock}{A highlighted block}
    Some important information put into a block.
  \end{alertblock}
\end{frame}

10.	 We add another subsection, with a frame with another titled block, and another section with
a slide containing a list. We highlight some words using the \alert command. Finally, end
the document:

\subsection{Another subsection}
\begin{frame}{Informative Title}
  \begin{exampleblock}{An example}
    An example within a block.
  \end{exampleblock}
  Explanation follows.
\end{frame}
\section{Summary}
\begin{frame}{Summary}
  \begin{itemize}
    \item Our \alert{main point}
    \item The \alert{second main point}
  \end{itemize}
  \vfill
  \begin{block}{Outlook}
    Further ideas here.
  \end{block}
\end{frame}
\end{document}

Exploring Various Document Classes28

11.	 Compile and have a look at the produced slides:

Figure 1.4 – Presentation slides

Now, you can adjust the title, author, and date and edit the text in the frames. Then, you can add your
own frames with titles and text.

Introduction
Summary

Talk on the Subject
What this is about

Author Name

University of X

June 24, 2015

Author Name Talk on the Subject

Introduction
Summary

Outline

1 Introduction
A subsection
Another subsection

2 Summary

Author Name Talk on the Subject

1Introduction
Summary

A subsection
Another subsection

Very Informative Title

First thing to say.

There is more.

Another short point.

Author Name Talk on the Subject

Introduction
Summary

A subsection
Another subsection

Another Title With Uppercased Words

Text

A highlighted block

Some important information put into a block.

Author Name Talk on the Subject

1
Introduction

Summary
A subsection
Another subsection

Informative Title

An example

An example within a block.

Explanation follows.

Author Name Talk on the Subject

Introduction
Summary

Summary

Our main point

The second main point

Outlook

Further ideas here.

Author Name Talk on the Subject

1

Creating a presentation 29

How it works...

We loaded the beamer class and chose the theme with the name Warsaw. You could easily replace
it with another theme’s name, compile, and cycle through the themes until you find the best for your
occasion. Pre-installed themes are as follows:

•	 AnnArbor

•	 Antibes

•	 Bergen

•	 Berkeley

•	 Berlin

•	 Boadilla

•	 boxes

•	 CambridgeUS

•	 Copenhagen

•	 Darmstadt

•	 default

•	 Dresden

•	 EastLansing

•	 Frankfurt

•	 Goettingen

•	 Hannover

•	 Ilmenau

•	 JuanLesPins

•	 Luebeck

•	 Madrid

•	 Malmoe

•	 Marburg

•	 Montpellier

•	 PaloAlto

•	 Pittsburgh

Exploring Various Document Classes30

•	 Rochester

•	 Singapore

•	 Szeged

•	 Warsaw

We specified the title, subtitle, author, and talk date, which is then printed by \titlepage. We used
a frame environment, which we will do for each slide.

The next frame contains the table of contents. We provided an Outline frame title as an argument to
the frame in curly braces. For the \tableofcontents command, we added the pausesections
option. By doing this, section titles are printed individually with a pause in between. This allows us
to explain what the auditory will hear before they read further.

As in a standard LaTeX document, we used the \section and \subsection commands. The
heading is not directly printed. The sections and subsections are printed in the frame margin with
the current position highlighted.

We used an itemize environment as in a standard LaTeX document to get a bulleted list. The
enumerate environment for numbered lists and description environment for descriptive lists
also work in beamer frames.

To highlight information, we used so-called block environments. Besides the standard block
environment, we can use exampleblock and alertblock to get a different style or color. The
chosen theme determines the appearance of those blocks.

A more subtle kind of emphasizing is achieved using the \alert command, as seen in the last frame.

Now, you have a template and tools to build up your presentation.

Here are some more quick tips:

•	 Keep time constraints in mind; a frame per minute is a good rule of thumb

•	 Use a few sections, logically split into subsections; it’s better to avoid sub-subsections

•	 Use self-explaining titles for sectioning and frames

•	 Bulleted lists help to keep things simple

•	 Consider avoiding numbering things; one rarely cares about a reference to theorem 2.6 during
a talk

•	 Don’t disrupt the reading flow by footnotes

•	 Graphics, such as diagrams, help the auditory in visualizing

Creating a presentation 31

Note
Slides should support your talk, not the other way around. Did you already bear up with a
presentation where the speaker just read out aloud text from the slides and used fancy transition
effects? You can do it better by focusing on well-crafted content.

There’s more...

The beamer class has unique capabilities and extraordinary design. We will explore it further.

Using short titles and names

Besides the title page, the title of the presentation and the author’s name are additionally printed at
the bottom of each frame. The exact position depends upon the chosen theme.

However, the space might need to be increased for long titles or names. You can give short versions
used at such places, such as by specifying the following text:

\title[Short title]{Long Informative Title}
\author[Shortened name]{Author's Complete Name}
\date[2024/01/24]{Conference on X at Y, January 24, 2024}

The same is possible for the \institute and \subtitle commands if used.

In the same way, you can provide short names for sections and subsections so that they better fit into
their field within the frame margin. Just use the optional argument in square brackets. The \part
and \subsubsection commands work similarly if needed.

Uncovering information piecewise

Showing a complete slide at once may be distracting. People may read ahead instead of listening to
you. You can take them by the hand by showing the content step by step.

The simplest way is by inserting a \pause command. It can go between anything, such as text,
graphics, and blocks. It also works between two \item commands in a bulleted list, though consider
not to pause between items but between whole lists. Use it as in the following line of code:

Text\pause more text\pause\includegraphics{filename}

Such a frame is then layered – that is, divided into overlays. They are internally numbered. If you
would like to show something at a certain overlay, you can tell the beamer class when to uncover it:

\uncover<3->{Surprise!}

Exploring Various Document Classes32

This shows your text on slide 3 of the current frame, and it will stay on the following slides on that
frame. Omit the dash for restricting it only to slide 3. You could also list slides (for example, <3,5>),
give ranges such as <3-5>, and mix slides (<3,5->).

That syntax works with overlay specification-aware commands. Among them, there are \item,
\includegraphics, and even \renewcommand, so you can use them with an overlay specification
such as the following:

\includegraphics<3->{filename}

It should not be too fancy. A presentation still needs a linear structure. Complicated overlays may be
handy for showing and hiding annotation to an object while you explain that.

Refer to the beamer manual for further information about using overlays.

Splitting frames into columns

You can arrange text and images in multiple columns on a frame. It’s convenient for images with
explaining text. Let’s take a look at a sample:

\begin{frame}
  Some text which can use whole frame width
  \begin{columns}[t]
    \begin{column}{0.45\textwidth}
      Sample text in\\
      two lines
    \end{column}
    \begin{column}[T]{0.45\textwidth}
      \includegraphics[width=3cm]{filename}
    \end{column}
  \end{columns}
\end{frame}

We started the multi-column area using the columns environment. You can specify t, b, or c
alignment options for the column’s top, bottom, or centered alignment. Centered is the default. While
t aligns at the baseline of the first line, as usual in LaTeX, there’s a handy additional option, T, which
aligns at the very top.

Each column has been made with the column environment. The column width has been given as
an argument. It understands the same positioning options, so you can override what you set in the
surrounding columns environment. We added [T] here because an image has its baseline at its
bottom, and we wanted to change it to the very top.

Creating a presentation 33

Showing an outline for each section

You can tell the beamer class to give an outline at the beginning of each section by specifying the
following code:

\AtBeginSection{
  \begin{frame}{Outline}
    \tableofcontents[currentsection]
  \end{frame}}

You can also use the \AtBeginSection command for inserting different code. If something should
happen for a starred \section* command too, you can insert the corresponding code within an
optional argument in square brackets.

Removing navigation symbols

By default, every slide shows small navigation symbols; here, at the bottom of a frame. If you don’t
need them, you can save that space and reduce distraction by specifying the following line of code:

\setbeamertemplate{navigation symbols}{}

Changing the font

The default font set with the beamer class is Computer Modern. You can change it to other fonts, as
explained in the Writing a short text recipe.

The default shape is sans-serif. Even the math formulas are sans-serif. It can be more readable with a
low projector resolution or at some distance than with a serif font.

However, if you would like to change to a serif font, you can load the corresponding font theme in
the preamble:

\usefonttheme{serif}

Another available font theme is professionalfonts, which doesn’t change fonts but simply
uses the set you bought. Furthermore, there are structurebold, structureitalicserif,
and structuresmallcapsserif, which change the font in the structure – that is, in headlines,
footlines, and sidebars – to such a shape combination.

Changing the color

The quickest way to change colors is by loading a theme with a thoughtful selection of colors for the
various structural elements. Use a single command, such as the following:

\usecolortheme{dolphin}

Exploring Various Document Classes34

Outer color themes provide a color set for the headline, footline, and sidebar. The author then gave
sea-animal names: dolphin, whale, and seahorse. Then, there are inner color themes for
elements such as color blocks with names of flowers: lily, orchid, and rose. Combine inner
and outer color themes as you like.

Finally, there are complete themes covering all structure aspects: albatross, beaver, beetle,
crane, dove, fly, monarca, seagull, spruce, and wolverine. They are named after flying
animals, except beaver and spruce as external additions.

That’s a lot of names; just cycle through them using the \usecolortheme command to find the
color set you like most.

Loading a theme from the internet

With some labor, you can create your very own theme. The extensive beamer manual will guide you.
However, you may save much time: beamer is very popular among academic users who already use
LaTeX for their papers. So, you can find many themes prepared for universities and institutes but also
designed by various beamer users.

You can find an overview at https://latex-beamer.net.

Explore the gallery there, download a theme you like, add your logo, and tweak it. Instructions are
on that website.

Providing a handout

You can give your auditory a printed version of slides. Just create a version of your document with
the handout option so that no overlays will be used:

\documentclass[handout]{beamer}

Slides are commonly small, so it’s good to print several slides on a single page:

\usepackage{pgfpages}
\pgfpagesuselayout{4 on 1}[a4paper,
  border shrink=5mm, landscape]

This prints four slides on one A4 page in landscape. You can get bigger prints, two slides on each page,
in portrait mode by specifying the following line of code:

\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]

We used the pgfpages package, a utility package coming with the pgf package.

https://latex-beamer.net

Designing a CV 35

See also

For best quality with included graphics, refer to Chapter 5, Working with Images. In Chapter 6, Creating
Graphics, you can find recipes for quickly creating diagrams and charts, which are excellent tools for
visualizing data in a presentation.

Beyond common academic documents such as a thesis, papers, books, and slides, you may need to
present yourself in the working world. The following recipe will prepare you for applying for a job
with style.

Designing a CV
Tabular layouts are prevalent today for a CV. When applying for a job, inform yourself about typical
requirements for the content of a CV. You can then create a simple document with tables that are
consistent and readable.

You can use a template if it needs to be quick or you would like to base it upon a proven modern layout.
We will use the moderncv class and its template in this recipe to quickly produce a CV.

Getting ready

If it’s not already installed on your computer, download and install the moderncv class from CTAN at
https://ctan.org/pkg/moderncv. The easiest is to download it as a .zip file from https://
mirrors.ctan.org/macros/latex/contrib/moderncv.zip.

If your TeX installation provides a package manager, use it for the installation.

There’s a directory of examples containing templates that you can use. Either locate it in the documentation
branch of your TeX directory tree or visit the preceding CTAN link: https://ctan.org/
tex-archive/macros/latex/contrib/moderncv.

How to do it...

We will start using a sample file provided by the moderncv bundle. Follow these steps:

1.	 Copy the template.tex file into your document directory, rename it, and choose your
own name, such as MyCV.tex.

2.	 Open that document, MyCV.tex, and look around to understand the template. Luckily, it is
full of comments on how to use it. Compile it to ensure that this document works.

3.	 Review and edit the class and package options in MyThesis.tex.

https://ctan.org/pkg/moderncv
https://mirrors.ctan.org/macros/latex/contrib/moderncv.zip
https://mirrors.ctan.org/macros/latex/contrib/moderncv.zip
https://ctan.org/tex-archive/macros/latex/contrib/moderncv
https://ctan.org/tex-archive/macros/latex/contrib/moderncv

Exploring Various Document Classes36

4.	 Remove the filler text and type in your own data. At the beginning, your document may look
like this:

\documentclass[11pt,a4paper,sans]{moderncv}
\moderncvstyle{classic}
\moderncvcolor{blue}
\usepackage[scale=0.75]{geometry}
\name{John}{Doe}
\title{CV title}
\address{street and number}{postcode city}{country}
\phone[mobile]{+1~(234)~567~890}
\phone[fixed]{+2~(345)~678~901}
\email{john@doe.org}
\homepage{www.johndoe.com}
\photo[64pt][0.4pt]{picture.jpg}
\begin{document}
\makecvtitle
\section{Education}
\cventry{year--year}{Degree}{Institution}{City}%
  {\textit{Grade}}{Description}
\cventry{year--year}{Degree}{Institution}{City}%
  {\textit{Grade}}{Description}
\section{Experience}
\subsection{Vocational}
\cventry{year--year}{Job title}{Employer}{City}{}%
  {General description\newline{}%
  Detailed achievements:%
\begin{itemize}%
  \item Achievement 1;
  \item Achievement 2, with sub-achievements:
    \begin{itemize}%
    \item Sub-achievement (a)
    \item Sub-achievement (b)
  \end{itemize}
\item Achievement 3.
\end{itemize}}
\cventry{year--year}{Job title}{Employer}{City}{}
  {Description line 1\newline{}Description line 2}
\subsection{Miscellaneous}
\cventry{year--year}{Job title}%
  {Employer}{City}{}{Description}
\section{Languages}
\cvitemwithcomment{Language 1}{Skill level}{Comment}

Designing a CV 37

\cvitemwithcomment{Language 2}{Skill level}{Comment}
\end{document}

5.	 Compile and have a look at the following result:

Figure 1.5 – A CV

John Doe
CV title

street and number
postcode city

country
� +1 (234) 567 890
� +2 (345) 678 901

� john@doe.org
� www.johndoe.com

Education

year–year Degree, Institution, City, Grade
Description

year–year Degree, Institution, City, Grade
Description

Experience

Vocational

year–year Job title, Employer, City
General description
Detailed achievements:
○ Achievement 1;
○ Achievement 2, with sub-achievements:

- Sub-achievement (a)
- Sub-achievement (b)

○ Achievement 3.

year–year Job title, Employer, City
Description line 1
Description line 2

Miscellaneous

year–year Job title, Employer, City
Description

Languages

Language 1 Skill level Comment

Language 2 Skill level Comment

Exploring Various Document Classes38

How it works...

We loaded the moderncv package. We used an 11 pt base font size; 10 pt and 12 pt are also supported.
We selected A4 paper; further paper size options are a5paper, b5paper, letterpaper,
legalpaper, and executivepaper. You can also add landscape as an option. We chose a
sans-serif font, which is fine for such a kind of list; alternatively, you could write roman for a serif font.

We selected the classic style. Other available styles are casual, oldstyle, and banking.

Our color style is blue. Other color options are orange, green, red, purple, gray, and black.

We loaded the geometry package with a scaling factor for reducing the margins.

Using commands such as \name and \address, we entered our personal data.

The \photo command includes our photo; the size options are the height to which it is scaled and
the thickness of the frame around the photo. In this recipe, we used the picture.jpg dummy
photo contained in the moderncv bundle.

The document body is divided into sections and subsections with a unique design.

Then, the \cventry command makes a typical resume entry for a job or education. Use it as follows:

\cventry[spacing]{years}{job title}
  {employer}{localization}{detail}{job description}

 You can alternatively use this:

\cventry[spacing]{years}{degree}
  {institution}{localization}{grade}{comment}

You can leave the last four arguments empty if you don’t need them.

A simpler line is done using the \cvitem command as follows:

\cvitem[optional spacing length{header}{text}

The \cvitemwithcomment command works similarly, just with another argument printed at
the right.

Some more commands and options are explained in the well-documented template.tex file and
the moderncv.cls class file itself if you look for deeper information beyond this quick start guide.

Writing a letter 39

Writing a letter
Letters have a specific structure. Commonly, they have an addressee field at a fixed position, which
should be visible in the envelope window. It also should show a back address of yourself as the sender.
An opening text and a closing phrase are usual elements; you may add fold marks and enclosures.

How to do it...

We will use a KOMA-Script class specifically designed for letters named scrlttr2. Follow the
following steps:

1.	 Use the scrlttr2 class, activate the address field and fold marks via an option, and align
the sender’s address to the right:

\documentclass[addrfield=true, foldmarks=true,
  fromalign=right]{scrlttr2}

2.	 Provide your name and your address using the \setkomavar command:

\setkomavar{fromname}{Thomas Smith}
\setkomavar{fromaddress}{123 Blvd \\ City, CC 12345}

3.	 Write a date, either \today for today or any date as text:

\date{\today}

4.	 Begin the document:

\begin{document}

5.	 Open a letter environment with the recipient’s address as an argument:

\begin{letter}{Agency \\ 5th Avenue \\
               Capital City, CC 12345}

6.	 Start with an opening, and let your letter text follow:

\opening{Dear Sir or Madam,}
the actual content of the letter follows.

7.	 End with closing words:

\closing{Yours sincerely}

8.	 End the letter environment and the document:

\end{letter}
\end{document}

Exploring Various Document Classes40

9.	 Compile the document. Here is the upper part of the output:

Figure 1.6 – A letter template

That was pretty easy! You got fully fledged formal letter addressing information, envelope window
support, today’s date, phrases, signature, and even fold marks.

Now, you can enter real addresses and actual letter text.

How it works...

When loading the scrlttr2 letter class, we activated the address field, switched on fold marks, and
set the options for right aligning the sender’s address.

The scrlttr2 class is quite different from others, so it has a unique interface. Using the \setkomavar
command, we set the content of class variables, similar to \renewcommand. Here, we put names and
addresses. The KOMA-Script manual explains all available variables. As mentioned in the Developing a
thesis recipe, you can open it by executing texdoc koma-script at Command Prompt or online
at https://texdoc.org/pkg/koma-script.

Thomas Smith
123 Blvd

City, CC 12345

Thomas Smith, 123 Blvd , City, CC 12345

Agency
5th Avenue
Capital City, CC 12345

October 12, 2015

Dear Sir or Madam,

the actual content of the letter follows.

Yours sincerely

Thomas Smith

Writing a letter 41

We used a letter environment for the actual content, including the opening and closing phrases. The
address is a mandatory argument for that environment. You can have several letter environments
in a single document.

There’s more...

To improve input and hyphenation and change the font, look at the first recipes in Chapter 2, Tuning
the Text.

Let’s take a look at some letter-specific options.

Separating paragraphs

Instead of indenting the beginning of paragraphs, you can visualize a paragraph break with an
empty line. For this, add the parskip=full option to the comma-separated list of class options
at the beginning.

Use parskip=half for less space.

Changing the signature

If you would like to use a signature different from your specified name for the address, you can modify
the corresponding variable content in the preamble:

\setkomavar{signature}{Thomas}

It would be indented. You can get it left aligned by specifying the following code:

\renewcommand{\raggedsignature}{\raggedright}

The code just shown also belongs to the preamble.

Adding enclosures

If you would like to add enclosures to your letter, it’s common to mention them. You can do this by
inserting an \encl command right before \end{letter}:

\encl{Curriculum vitae, certificates}

You can change the default encl: option if you like by modifying the corresponding variable before
calling the \encl command:

\setkomavar*{enclseparator}{Attached}

We used the \setkomavar* starred version, which modifies the description of a variable instead
of its content, which actually is : – that is, a colon followed by a space.

Exploring Various Document Classes42

Producing a leaflet
Flyers are a common way to promote an event or to inform about a product. A folded leaflet is
particularly handy as a giveaway and to carry around, so let’s see how to produce one.

How to do it...

The intended layout is very different compared to the already shown document types. Fortunately,
there’s a document class for it, with the name leaflet. We will use this one now. Let us start filling
it with some content:

1.	 Start with the leaflet document class. Choose a base font size of 10 pt, and set the notumble
option, which keeps the back side printed in the same direction:

\documentclass[10pt, notumble]{leaflet}

2.	 Use an extended font encoding:

\usepackage[T1]{fontenc}

3.	 If you want a non-default font, load it. This time, we chose the Linux Libertine font:

\usepackage{libertine}

4.	 Switch to sans-serif as the default font family:

\renewcommand{\familydefault}{\sfdefault}

5.	 For better text justification, load the microtype package:

\usepackage{microtype}

6.	 Load the graphicx package for including a picture:

\usepackage{graphicx}

7.	 Switch off the page numbering:

\pagenumbering{gobble}

8.	 Begin the document:

\begin{document}

Producing a leaflet 43

9.	 Set title, author, and date. Then, print the title:

\title{\textbf{\TeX\ Live Install Party}}
\author{\Large\textbf{Your \TeX\ team}}
\date{\textbf{August 11, City Hall Cellar}}
\maketitle

10.	 Include a centered image. For a demonstration, we chose the CTAN lion, which you can
download at https://ctan.org/lion and convert to PDF:

\begin{center}
  \includegraphics[width=\linewidth]{ctanlion.pdf}
\end{center}

11.	 Add some text:

We'd like to welcome you to our famous yearly
\TeX\ install party! Bring your laptop and have free
cold soft drinks while we assist you in installing
the latest \TeX\ version on your computer.

We will provide

12.	 A bulleted list can be a good idea for a catchy text. Use an itemize environment for it; each
list item starts with an \item command:

\begin{itemize}
  \item a fast internet connection for downloading,
  \item media such as DVDs and USB sticks with
        the latest \TeX,
  \item \TeX\ books for buying with a discount,
  \item chat with \TeX\ experts.
\end{itemize}

13.	 End the page. Fill in more text on the next leaflet pages, which will be printed on the back side
of the paper, next to each other:

\clearpage
Fill in text for page 2 (on the back side)
\clearpage
Fill in text for page 3 (on the back side)
\clearpage
Fill in text for page 4 (on the back side)
\clearpage

https://ctan.org/lion

Exploring Various Document Classes44

14.	 Now, pages 5 and 6 of the leaflet come to the front side of the paper. Use \section to get
a heading:

\section{Schedule}

15.	 You can add a timetable using a tabular environment. By inserting @{} in the column
format options, we suppress spacing at the left and right:

\begin{tabular}{@{}rl@{}}
  6 pm    & Welcome \\
  7:30 pm & Live install presentation \\
  8 pm    & Book authors available for talks
            and signing \\
  9:30 pm & Bar closing
\end{tabular}

16.	 End the paragraph using an empty line, continue with writing text, and finally, end the document:

From 6pm to 10pm: install support
and free \TeX\ copies on DVD on our welcome desk.
\section{Accomodation}
Hotel, Meals, Travel information here
\section{Sponsors}
Information about our local \TeX\ user group
and Open Source projects sponsor
\clearpage
\section{Contact}
Names, Phone numbers, email addresses
\end{document}

Producing a leaflet 45

17.	 Compile and have a look at the first page:

Figure 1.7 – A foldable leaflet

The back side still contains just some dummy text, helping to identify the position where the text
finally lands on the page.

How it works...

In the first line, we loaded the leaflet class with a font size of 10 pt. The tumble option enables
printing the back side upside down, which can be helpful for double-sided printing. This is the default.
We used the notumble option instead, which suppresses that default behavior so that the output is
better readable on the screen.

The next three lines contain our font settings. We used the Linux Libertine font. We specified T1
font encoding. You can read more about encodings in Chapter 2, Tuning the Text, specifically in the
Improving justification and hyphenation recipe. Furthermore, we set the default font family to be
sans-serif. I prefer the clean look of sans-serif on a flyer or a leaflet, which usually contains little text
in narrow columns.

Schedule
6 pm Welcome

7:30 pm Live install presentation
8 pm Book authors available for talks and signing

9:30 pm Bar closing

From 6pm to 10pm: install support and free TEX copies on
DVD on our welcome desk.

Accomodation

Hotel, Meals, Travel information here

Sponsors

Information about our local TEX user group and Open
Source projects sponsor

Contact

Names, Phone numbers, email addresses

TEX Live Install Party

Your TEX team

August 11, City Hall Cellar

We’d like to welcome you to our famous yearly TEX install
party! Bring your laptop and have free cold so� drinks
while we assist you in installing the latest TEX version on
your computer.

We will provide

• a fast internet connection fow downloading,

• media such as DVDs and USB sticks with the latest
TEX

• TEX books for bying with a discount,

• chat with TEX experts.

Exploring Various Document Classes46

The remaining part of the preamble is as follows:

•	 We loaded the microtype package, which improves the justification capabilities by tiny font
adjustments. This is especially useful in a situation with narrow columns, such as in this case.

•	 We loaded the graphicx package to include images such as a logo or a geographic map.

•	 We hid page numbers. The gobble option stands for \gobble, which is a TeX command that
removes the following command or control sequence so that the page number will be absorbed.

Our document body shows the usual sectioning commands and text. You can see that we added an
explicit space after the TeX logo with a backslash and a following space. That’s because a space after
a macro, such as \TeX, indicates the end of the macro. It doesn’t produce a space in print because
punctuation may follow.

To have an image in our template, we used the CTAN lion drawn by Duane Bibby; simply replace it
with your own image – a geographic map or a logo, for example.

The remaining text is straightforward and shows some useful layout details, such as the following:

•	 Centering using the center environment:

\begin{center}
  ...
\end{center}

•	 Arranging points in a bulleted list by using an itemize environment

•	 Setting up a tabular environment for text, which should be aligned in columns

In the \begin{tabular}{@{}rl@{}} line, the rl characters stand for two columns, where the
first one is right-aligned and the second one is left-aligned. The @{code} expression inserts a piece
of code instead of a space before or after a column, so @{} replaces it with nothing, which means
removing it. We’ve got two columns without additional whitespace on the left or the right, saving our
previous line space.

There’s more...

The leaflet class provides some options and commands for customization.

Adding fold marks and cut lines

By default, a small folding mark is printed on the backside. If you would like to omit it, add the
nofoldmark option when loading the class:

\documentclass[10pt,notumble,nofoldmark]{leaflet}

Producing a leaflet 47

You can draw a vertical dotted line with scissor symbols using the \CutLine command in the
preamble with a page number as an argument. The line will go between this one and the preceding
page, which is as follows:

\CutLine{3}

It would print a dotted line with two scissor symbols on the back side, between pages 2 and 3, where
a folding mark would be placed by default. The \CutLine* starred command version would not
print the scissors.

Adjusting the margins

Similar to standard classes, you could use page headers and footers. There are none by default here.
Standard commands such as \setlength{\headheight}{...} and \pagestyle could be
used. leaflet provides an additional command to declare the margins:

\setmargins{top}{bottom}{left}{right}

Adding a background image

You can add an image to the background of a certain page:

\AddToBackground{pagenumber}{\includegraphics{filename}}

Use the \AddToBackground* starred version to let it be printed onto the background of the
combined page.

Instead of using the \includegraphics command, you could use another positioning, including or
drawing code. Here, the Absolute positioning of text recipe in Chapter 2, Tuning the Text, may be helpful.

Changing the sectioning font

The font size of the section headers is already a bit smaller than with standard classes. If you want to
change the headings’ size, shape, or color, you can redefine the \sectfont macro. For example,
if we also enabled using color by \usepackage{xcolor}, we could write the following code:

\renewcommand{\sectfont}{%
  \large\sffamily\bfseries\color{blue}}

This would give a large sans-serif font in bold and with blue color.

For further information regarding fonts, refer to Chapter 3, Adjusting Fonts.

Exploring Various Document Classes48

Building a large poster
We know, for example, informational or scientific posters seen at conferences or on walls in universities
or institutes.

They mostly have specific characteristics in common:

•	 They are large, such as A2, A1, or even A0

•	 People may look at them from far away but also very close

In consequence, we have some requirements for typesetting:

•	 Page layout dimensions should work with such an enormous size.

•	 We need a wide range of font sizes. We should be able to read while standing close, but we also
need large, catchy headings.

•	 The poster should be partitioned into digestible blocks. Specifically, each block should be at
most the usual line width we know from body texts. Too wide lines would make it hard to
focus and skip back to the start of the following line. So, block lines should not be much wider
than 40 or 50 characters long.

•	 Blocks should have distinct headings.

•	 Graphic elements such as colors and lines can divide the text into parts.

•	 Images should be vector graphics or should have a high resolution.

In this recipe, we would like to create a poster of A0 size in landscape orientation. It will show
some blocks containing dummy text as a placeholder, math, and images. As sample images, we will
take a flowchart from Chapter 6, Creating Graphics, and a plot from Chapter 10, Writing Advanced
Mathematics. There, you can find the source code. You can later replace the dummy text and other
parts with your own content.

How to do it...

We will use the tikzposter class. The document is structured in columns and blocks. Follow
these steps:

1.	 Begin with the document class. A0 is the default paper size. We state landscape orientation as
an option:

\documentclass[landscape]{tikzposter}

2.	 Choose a theme that provides a set of colors and decorations. We chose the blue Wave theme:

\usetheme{Wave}

Building a large poster 49

3.	 Load the lipsum package to generate dummy text:

\usepackage{lipsum}

4.	 For dividing wider blocks into text columns, we load the multicol package. Because of the
large paper, we set the column separation and the separation line width to high values:

\usepackage{multicol}
\setlength{\columnsep}{4cm}
\setlength{\columnseprule}{1mm}

5.	 Start the document:

\begin{document}

6.	 Declare the author and title, and print it out:

\title{\LaTeX\ in Use}
\author{John Doe}
\maketitle

7.	 Begin a set of columns:

  \begin{columns}

8.	 Start a column with a width of 65% of the available text width:

  \column{.65}

9.	 Define a block with the title Workflow in the first argument; the second argument contains
dummy text and an image with a caption:

  \block{Workflow}{
    \lipsum[1]
    \begin{tikzfigure}[\LaTeX\ workflow]
      \includegraphics[width=\linewidth]{flowchart}
     \end{tikzfigure}
  }

The tikzposter package provides the tikzfigure environment as a replacement for the
figure environment. The optional argument will be the caption of the figure.

10.	 We are still in the first column and start a set of subcolumns:

  \begin{subcolumns}

11.	 The first subcolumn will take half of the available width – in this case, the width of the left column:

    \subcolumn{.5}

Exploring Various Document Classes50

12.	 Create a block with a bulleted list and a mathematical equation to see how it looks on a poster.
We will also use a colored box and an inner block with a title for the equation:

    \block{Mathematics}{
      Take a coffee, then:
      \bigskip
      \coloredbox{\begin{itemize}
        \item State
        \item Proof
        \item Write in \LaTeX
      \end{itemize}}
      \bigskip
      \innerblock{Integral approximation}{
        \[
          \int_a^b f(x) dx \approx (b-a)
            \sum_{i=0}^n w_i f(x_i)
        \]
      }
    }

13.	 Add a note that will have a callout shape, pointing into the formula:

    \note[targetoffsetx = 4.5cm, targetoffsety = -5cm,
      angle = -30, connection]{Weight function}

14.	 Make another subcolumn, talking the other half of the available width. Insert a block filled
with text, and then end the subcolumns environment:

    \subcolumn{.5}
    \block{Text}{\lipsum[1]}
  \end{subcolumns}

15.	 Now that we are back in our primary column environment, make another column, print a
block with an image and some text, and then end the columns environment:

  \column{.35}
  \block{Plotting functions}{
    \includegraphics[width=\linewidth]{plot}
    \lipsum[4]
  }
\end{columns}

Building a large poster 51

16.	 As we ended the columns, a block would use the whole available width. To keep text readable,
we will now use the multicol package. We divide the text itself into columns using a
multicolumn environment with four columns:

\block{Conclusion and outlook}{
  \begin{multicols}{4}
    \lipsum[10-11]
  \end{multicols}
}

17.	 End the document:

\end{document}

18.	 Compile, and take a look:

Figure 1.8 – A colorful poster with a block layout

LATEX TikZposter

LALALTATA ETET X in UseEX in UseE
John Doe

LATEX in Use

John Doe

Workflow

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis
egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien
est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla.
Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Edit LATEX
BibTEX/
biber

make-
index

LATEX

Fig. 1: LATEX workflow

Mathematics

Take a coffee, then:

• State
•Proof
•Write in LATEX

Integral approximation

∫ b

a

f (x)dx ≈ (b− a)

n∑
i=0

wif (xi)

Text

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum
ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu
libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue
eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada
fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla
et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor
gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc.
Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,
malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec
varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis,
diam. Duis eget orci sit amet orci dignissim rutrum.

Plotting functions

0
90

180
270

360

90

180

270

360

−1

0

1

x
y

f(x, y) = sin(x) sin(y)

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt
ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea
dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum
wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat
quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet
nisl. Vivamus quis tortor vitae risus porta vehicula.

Conclusion and outlook

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullam-
corper quis, commodo eu, libero. Fusce sagittis erat at erat
tristique mollis. Maecenas sapien libero, molestie et, lobor-
tis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam
elementum ullamcorper leo. Morbi dui. Aliquam sagittis.

Nunc placerat. Pellentesque tristique sodales est. Maecenas
imperdiet lacinia velit. Cras non urna. Morbi eros pede, sus-
cipit ac, varius vel, egestas non, eros. Praesent malesuada,
diam id pretium elementum, eros sem dictum tortor, vel con-
sectetuer odio sem sed wisi.

Sed feugiat. Cum sociis natoque penatibus et magnis dis par-
turient montes, nascetur ridiculus mus. Ut pellentesque augue
sed urna. Vestibulum diam eros, fringilla et, consectetuer eu,
nonummy id, sapien. Nullam at lectus. In sagittis ultrices
mauris. Curabitur malesuada erat sit amet massa. Fusce

blandit. Aliquam erat volutpat. Aliquam euismod. Aenean
vel lectus. Nunc imperdiet justo nec dolor.

Weight function

Exploring Various Document Classes52

How it works...

The tikzposter class supports huge paper sizes and large fonts and handles block heights and
spacing between columns. We, as the users, just decided about the relative column width.

Several class options are provided. You can add them to the \documentclass command as we
did with the preceding landscape option:

•	 The paper size can be chosen by a0paper, a1paper, or a2paper. a0paper is the default.

•	 Available font sizes are 12pt, 14pt, 17pt, 20pt, and 25pt. The last one is the default.

•	 With either landscape or portrait, you can select the orientation. portrait is the default.

•	 The standard fleqn option for flush-left equations is supported.

•	 The standard leqno option for equation numbering at the left side is also supported.

You can adjust several lengths. Give them as class options in the key=value form with a measurement
unit such as mm or cm:

•	 margin: The distance between the edge of the poster area and the edge of the paper

•	 innermargin: The distance from the outermost edge of the blocks to the edge of the poster

•	 colspace: The horizontal distance between consecutive columns

•	 subcolspace: The horizontal distance between consecutive columns in a subcolumn environment

•	 blockverticalspace: The distance between the bottom of a block and the top of the
next block below

A sample call using the exact defaults would be:

\documentclass[a0paper, portrait, 25pt, margin=0mm,
  innermargin=15mm, colspace=15mm, subcolspace=8mm,
  blockverticalspace=15mm]{tikzposter}

The package makes use of the very capable graphics language, TikZ. We will see more of TikZ in
Chapter 6, Creating Graphics. For now, the main benefit is that tikzposter provides a lot of
predefined styles and color schemes.

Building a large poster 53

You can use a main layout style with \usetheme{name}. At the time of writing, there were nine
themes available:

•	 Wave: As seen in this recipe

•	 Default (left) and Basic (right):

•	 Rays (left) and Simple (right):

•	 Envelope (left) and Board (right):

LATEX TikZposter

Default

John Doe

Default

John Doe

Block with title

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will
get no information. Really? Is there no information? Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift –
not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text
should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Colored Box

Hello, here is some text without a meaning. This text should show what a printed text will look like
at this place. If you read this text, you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift – not
at all! A blind text like this gives you information about the selected font, how the letters are
written and an impression of the look. This text should contain all letters of the alphabet and it
should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Equation

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Lists

A list:

•First item in a list

–First item in a list

– Second item in a list

–Third item in a list

–Fourth item in a list

–Fifth item in a list

• Second item in a list

•Third item in a list

•Fourth item in a list

•Fifth item in a list

Block with maths

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

∫ ∞

0

e−αx2dx =
1

2

√∫ ∞

−∞
e−αx2dx

∫ ∞

−∞
e−αy2dy =

1

2

√
π

α

A B
Conclusion and outlook

Hello, here is some text without a meaning. This text should
show what a printed text will look like at this place. If you
read this text, you will get no information. Really? Is there
no information? Is there a difference between this text and
some nonsense like “Huardest gefburn”? Kjift – not at all! A
blind text like this gives you information about the selected
font, how the letters are written and an impression of the
look. This text should contain all letters of the alphabet and
it should be written in of the original language. There is
no need for special content, but the length of words should
match the language. Hello, here is some text without a mean-

ing. This text should show what a printed text will look like
at this place. If you read this text, you will get no informa-
tion. Really? Is there no information? Is there a difference
between this text and some nonsense like“Huardest gefburn”?
Kjift – not at all! A blind text like this gives you information
about the selected font, how the letters are written and an im-
pression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language.
There is no need for special content, but the length of words
should match the language. Hello, here is some text without
a meaning. This text should show what a printed text will

look like at this place. If you read this text, you will get no
information. Really? Is there no information? Is there a dif-
ference between this text and some nonsense like “Huardest
gefburn”? Kjift – not at all! A blind text like this gives you
information about the selected font, how the letters are writ-
ten and an impression of the look. This text should contain
all letters of the alphabet and it should be written in of the
original language. There is no need for special content, but
the length of words should match the language. Hello, here is
some text without a meaning. This text should show what a
printed text will look like at this place. If you read this text,

you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like
“Huardest gefburn”? Kjift – not at all! A blind text like this
gives you information about the selected font, how the letters
are written and an impression of the look. This text should
contain all letters of the alphabet and it should be written in
of the original language. There is no need for special content,
but the length of words should match the language.

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

LATEX TikZposter

Basic

John Doe

Basic

John Doe

Block with title

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will
get no information. Really? Is there no information? Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift –
not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text
should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Colored Box

Hello, here is some text without a meaning. This text should show what a printed text will look like
at this place. If you read this text, you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift – not at
all! A blind text like this gives you information about the selected font, how the letters are written
and an impression of the look. This text should contain all letters of the alphabet and it should be
written in of the original language. There is no need for special content, but the length of words
should match the language.

Equation

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Lists

A list:

•First item in a list

–First item in a list

– Second item in a list

–Third item in a list

–Fourth item in a list

–Fifth item in a list

• Second item in a list

•Third item in a list

•Fourth item in a list

•Fifth item in a list

Block with maths

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

∫ ∞

0

e−αx2dx =
1

2

√∫ ∞

−∞
e−αx2dx

∫ ∞

−∞
e−αy2dy =

1

2

√
π

α

A B
Conclusion and outlook

Hello, here is some text without a meaning. This text should
show what a printed text will look like at this place. If you
read this text, you will get no information. Really? Is there no
information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift – not at all! A blind
text like this gives you information about the selected font,
how the letters are written and an impression of the look. This
text should contain all letters of the alphabet and it should
be written in of the original language. There is no need for
special content, but the length of words should match the lan-
guage. Hello, here is some text without a meaning. This text

should show what a printed text will look like at this place.
If you read this text, you will get no information. Really? Is
there no information? Is there a difference between this text
and some nonsense like “Huardest gefburn”? Kjift – not at
all! A blind text like this gives you information about the
selected font, how the letters are written and an impression
of the look. This text should contain all letters of the al-
phabet and it should be written in of the original language.
There is no need for special content, but the length of words
should match the language. Hello, here is some text without
a meaning. This text should show what a printed text will

look like at this place. If you read this text, you will get no
information. Really? Is there no information? Is there a dif-
ference between this text and some nonsense like “Huardest
gefburn”? Kjift – not at all! A blind text like this gives you
information about the selected font, how the letters are writ-
ten and an impression of the look. This text should contain
all letters of the alphabet and it should be written in of the
original language. There is no need for special content, but
the length of words should match the language. Hello, here is
some text without a meaning. This text should show what a
printed text will look like at this place. If you read this text,

you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like
“Huardest gefburn”? Kjift – not at all! A blind text like this
gives you information about the selected font, how the letters
are written and an impression of the look. This text should
contain all letters of the alphabet and it should be written in
of the original language. There is no need for special content,
but the length of words should match the language.

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

1

LATEX TikZposter

Rays

John Doe

Rays

John Doe

Block with title

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will
get no information. Really? Is there no information? Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift –
not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text
should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Colored Box

Hello, here is some text without a meaning. This text should show what a printed text will look like
at this place. If you read this text, you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift – not
at all! A blind text like this gives you information about the selected font, how the letters are
written and an impression of the look. This text should contain all letters of the alphabet and it
should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Equation

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Lists

A list:

•First item in a list

–First item in a list

– Second item in a list

–Third item in a list

–Fourth item in a list

–Fifth item in a list

• Second item in a list

•Third item in a list

•Fourth item in a list

•Fifth item in a list

Block with maths

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

∫ ∞

0

e−αx2dx =
1

2

√∫ ∞

−∞
e−αx2dx

∫ ∞

−∞
e−αy2dy =

1

2

√
π

α

A B
Conclusion and outlook

Hello, here is some text without a meaning. This text should
show what a printed text will look like at this place. If you
read this text, you will get no information. Really? Is there
no information? Is there a difference between this text and
some nonsense like “Huardest gefburn”? Kjift – not at all! A
blind text like this gives you information about the selected
font, how the letters are written and an impression of the
look. This text should contain all letters of the alphabet and
it should be written in of the original language. There is
no need for special content, but the length of words should
match the language. Hello, here is some text without a mean-

ing. This text should show what a printed text will look like
at this place. If you read this text, you will get no informa-
tion. Really? Is there no information? Is there a difference
between this text and some nonsense like“Huardest gefburn”?
Kjift – not at all! A blind text like this gives you information
about the selected font, how the letters are written and an im-
pression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language.
There is no need for special content, but the length of words
should match the language. Hello, here is some text without
a meaning. This text should show what a printed text will

look like at this place. If you read this text, you will get no
information. Really? Is there no information? Is there a dif-
ference between this text and some nonsense like “Huardest
gefburn”? Kjift – not at all! A blind text like this gives you
information about the selected font, how the letters are writ-
ten and an impression of the look. This text should contain
all letters of the alphabet and it should be written in of the
original language. There is no need for special content, but
the length of words should match the language. Hello, here is
some text without a meaning. This text should show what a
printed text will look like at this place. If you read this text,

you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like
“Huardest gefburn”? Kjift – not at all! A blind text like this
gives you information about the selected font, how the letters
are written and an impression of the look. This text should
contain all letters of the alphabet and it should be written in
of the original language. There is no need for special content,
but the length of words should match the language.

Fourth item in a list

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

LATEX TikZposter

Simple

John Doe

Simple

John Doe

Block with title

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will
get no information. Really? Is there no information? Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift –
not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text
should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Colored Box

Hello, here is some text without a meaning. This text should show what a printed text will look like
at this place. If you read this text, you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift – not
at all! A blind text like this gives you information about the selected font, how the letters are
written and an impression of the look. This text should contain all letters of the alphabet and it
should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Equation

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Lists

A list:

•First item in a list

–First item in a list

– Second item in a list

–Third item in a list

–Fourth item in a list

–Fifth item in a list

• Second item in a list

•Third item in a list

•Fourth item in a list

•Fifth item in a list

Block with maths

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

∫ ∞

0

e−αx2dx =
1

2

√∫ ∞

−∞
e−αx2dx

∫ ∞

−∞
e−αy2dy =

1

2

√
π

α

A B
Conclusion and outlook

Hello, here is some text without a meaning. This text should
show what a printed text will look like at this place. If you
read this text, you will get no information. Really? Is there
no information? Is there a difference between this text and
some nonsense like “Huardest gefburn”? Kjift – not at all! A
blind text like this gives you information about the selected
font, how the letters are written and an impression of the
look. This text should contain all letters of the alphabet and
it should be written in of the original language. There is
no need for special content, but the length of words should
match the language. Hello, here is some text without a mean-

ing. This text should show what a printed text will look like
at this place. If you read this text, you will get no informa-
tion. Really? Is there no information? Is there a difference
between this text and some nonsense like“Huardest gefburn”?
Kjift – not at all! A blind text like this gives you information
about the selected font, how the letters are written and an im-
pression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language.
There is no need for special content, but the length of words
should match the language. Hello, here is some text without
a meaning. This text should show what a printed text will

look like at this place. If you read this text, you will get no
information. Really? Is there no information? Is there a dif-
ference between this text and some nonsense like “Huardest
gefburn”? Kjift – not at all! A blind text like this gives you
information about the selected font, how the letters are writ-
ten and an impression of the look. This text should contain
all letters of the alphabet and it should be written in of the
original language. There is no need for special content, but
the length of words should match the language. Hello, here is
some text without a meaning. This text should show what a
printed text will look like at this place. If you read this text,

you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like
“Huardest gefburn”? Kjift – not at all! A blind text like this
gives you information about the selected font, how the letters
are written and an impression of the look. This text should
contain all letters of the alphabet and it should be written in
of the original language. There is no need for special content,
but the length of words should match the language.

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

1

LATEX TikZposter

Envelope

John Doe

Envelope

John Doe

Block with title

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will
get no information. Really? Is there no information? Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift –
not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text
should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Colored Box

Hello, here is some text without a meaning. This text should show what a printed text will look like
at this place. If you read this text, you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift – not
at all! A blind text like this gives you information about the selected font, how the letters are
written and an impression of the look. This text should contain all letters of the alphabet and it
should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Equation

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Lists

A list:

•First item in a list

–First item in a list

– Second item in a list

–Third item in a list

–Fourth item in a list

–Fifth item in a list

• Second item in a list

•Third item in a list

•Fourth item in a list

•Fifth item in a list

Block with maths

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

∫ ∞

0

e−αx2dx =
1

2

√∫ ∞

−∞
e−αx2dx

∫ ∞

−∞
e−αy2dy =

1

2

√
π

α

A B
Conclusion and outlook

Hello, here is some text without a meaning. This text should
show what a printed text will look like at this place. If you
read this text, you will get no information. Really? Is there
no information? Is there a difference between this text and
some nonsense like “Huardest gefburn”? Kjift – not at all! A
blind text like this gives you information about the selected
font, how the letters are written and an impression of the
look. This text should contain all letters of the alphabet and
it should be written in of the original language. There is
no need for special content, but the length of words should
match the language. Hello, here is some text without a mean-

ing. This text should show what a printed text will look like
at this place. If you read this text, you will get no informa-
tion. Really? Is there no information? Is there a difference
between this text and some nonsense like“Huardest gefburn”?
Kjift – not at all! A blind text like this gives you information
about the selected font, how the letters are written and an im-
pression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language.
There is no need for special content, but the length of words
should match the language. Hello, here is some text without
a meaning. This text should show what a printed text will

look like at this place. If you read this text, you will get no
information. Really? Is there no information? Is there a dif-
ference between this text and some nonsense like “Huardest
gefburn”? Kjift – not at all! A blind text like this gives you
information about the selected font, how the letters are writ-
ten and an impression of the look. This text should contain
all letters of the alphabet and it should be written in of the
original language. There is no need for special content, but
the length of words should match the language. Hello, here is
some text without a meaning. This text should show what a
printed text will look like at this place. If you read this text,

you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like
“Huardest gefburn”? Kjift – not at all! A blind text like this
gives you information about the selected font, how the letters
are written and an impression of the look. This text should
contain all letters of the alphabet and it should be written in
of the original language. There is no need for special content,
but the length of words should match the language.

Fourth item in a list

Conclusion and outlookx̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

LATEX TikZposter

Board

John Doe

Board

John Doe

Block with title
Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will
get no information. Really? Is there no information? Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift –
not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text
should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Colored Box

Hello, here is some text without a meaning. This text should show what a printed text will look like
at this place. If you read this text, you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift – not
at all! A blind text like this gives you information about the selected font, how the letters are
written and an impression of the look. This text should contain all letters of the alphabet and it
should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Equation

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Lists
A list:

•First item in a list

–First item in a list

– Second item in a list

–Third item in a list

–Fourth item in a list

–Fifth item in a list

• Second item in a list

•Third item in a list

•Fourth item in a list

•Fifth item in a list

Block with maths
Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

∫ ∞

0

e−αx2dx =
1

2

√∫ ∞

−∞
e−αx2dx

∫ ∞

−∞
e−αy2dy =

1

2

√
π

α

A B
Conclusion and outlook

Hello, here is some text without a meaning. This text should
show what a printed text will look like at this place. If you
read this text, you will get no information. Really? Is there
no information? Is there a difference between this text and
some nonsense like “Huardest gefburn”? Kjift – not at all! A
blind text like this gives you information about the selected
font, how the letters are written and an impression of the
look. This text should contain all letters of the alphabet and
it should be written in of the original language. There is
no need for special content, but the length of words should
match the language. Hello, here is some text without a mean-

ing. This text should show what a printed text will look like
at this place. If you read this text, you will get no informa-
tion. Really? Is there no information? Is there a difference
between this text and some nonsense like“Huardest gefburn”?
Kjift – not at all! A blind text like this gives you information
about the selected font, how the letters are written and an im-
pression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language.
There is no need for special content, but the length of words
should match the language. Hello, here is some text without
a meaning. This text should show what a printed text will

look like at this place. If you read this text, you will get no
information. Really? Is there no information? Is there a dif-
ference between this text and some nonsense like “Huardest
gefburn”? Kjift – not at all! A blind text like this gives you
information about the selected font, how the letters are writ-
ten and an impression of the look. This text should contain
all letters of the alphabet and it should be written in of the
original language. There is no need for special content, but
the length of words should match the language. Hello, here is
some text without a meaning. This text should show what a
printed text will look like at this place. If you read this text,

you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like
“Huardest gefburn”? Kjift – not at all! A blind text like this
gives you information about the selected font, how the letters
are written and an impression of the look. This text should
contain all letters of the alphabet and it should be written in
of the original language. There is no need for special content,
but the length of words should match the language.

look like at this place. If you read this text, you will get no

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

1

Exploring Various Document Classes54

•	 Autumn (left) and Desert (right):

Furthermore, predefined styles for color, title, background, notes, blocks, and inner blocks can be
chosen and composed. There’s support for creating further styles.

The commands you have seen previously can be used immediately without further options. However,
they can be customized via several options.

A complete reference is available by executing texdoc tikzposter at Command Prompt and
online at https://texdoc.org/pkg/tikzposter. You can find a style guide, a feature guide,
and more at https://bitbucket.org/surmann/tikzposter/downloads.

There’s more...

One of the first poster classes is the a0poster class. It supports A0, A1, A2, and A3 paper sizes. It
provides font sizes from 12 pt up to 107 pt. Math formulas are printed in a suitable size. There’s no
specific support for graphics, color, or text placement. For this, you would need additional packages
such as TikZ.

In a previous recipe, you already saw beamer as a presentation class. The beamerposter package
can be used together with it for producing presentations in poster size. It combines the beamer class
with a0poster code. So, you can produce large posters with a wide range of font sizes together with
beamer’s color and graphics capabilities, such as beamer boxes with titles.

As noted before, you can use the texdoc command or the https://texdoc.org website to
access the documentation of the mentioned classes and packages.

LATEX TikZposter

Autumn

John Doe

Autumn

John Doe

Block with title

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will
get no information. Really? Is there no information? Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift –
not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text
should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Colored Box

Hello, here is some text without a meaning. This text should show what a printed text will look like
at this place. If you read this text, you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift – not
at all! A blind text like this gives you information about the selected font, how the letters are
written and an impression of the look. This text should contain all letters of the alphabet and it
should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Equation x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Lists

A list:

•First item in a list

–First item in a list

– Second item in a list

–Third item in a list

–Fourth item in a list

–Fifth item in a list

• Second item in a list

•Third item in a list

•Fourth item in a list

•Fifth item in a list

Block with maths

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

∫ ∞

0

e−αx2dx =
1

2

√∫ ∞

−∞
e−αx2dx

∫ ∞

−∞
e−αy2dy =

1

2

√
π

α

A B
Conclusion and outlook

Hello, here is some text without a meaning. This text should
show what a printed text will look like at this place. If you
read this text, you will get no information. Really? Is there
no information? Is there a difference between this text and
some nonsense like “Huardest gefburn”? Kjift – not at all! A
blind text like this gives you information about the selected
font, how the letters are written and an impression of the
look. This text should contain all letters of the alphabet and
it should be written in of the original language. There is
no need for special content, but the length of words should
match the language. Hello, here is some text without a mean-

ing. This text should show what a printed text will look like
at this place. If you read this text, you will get no informa-
tion. Really? Is there no information? Is there a difference
between this text and some nonsense like“Huardest gefburn”?
Kjift – not at all! A blind text like this gives you information
about the selected font, how the letters are written and an im-
pression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language.
There is no need for special content, but the length of words
should match the language. Hello, here is some text without
a meaning. This text should show what a printed text will

look like at this place. If you read this text, you will get no
information. Really? Is there no information? Is there a dif-
ference between this text and some nonsense like “Huardest
gefburn”? Kjift – not at all! A blind text like this gives you
information about the selected font, how the letters are writ-
ten and an impression of the look. This text should contain
all letters of the alphabet and it should be written in of the
original language. There is no need for special content, but
the length of words should match the language. Hello, here is
some text without a meaning. This text should show what a
printed text will look like at this place. If you read this text,

you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like
“Huardest gefburn”? Kjift – not at all! A blind text like this
gives you information about the selected font, how the letters
are written and an impression of the look. This text should
contain all letters of the alphabet and it should be written in
of the original language. There is no need for special content,
but the length of words should match the language.

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

LATEX TikZposter

Desert

John Doe

Desert

John Doe

Block with title

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will
get no information. Really? Is there no information? Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift –
not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text
should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Colored Box

Hello, here is some text without a meaning. This text should show what a printed text will look like
at this place. If you read this text, you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift – not
at all! A blind text like this gives you information about the selected font, how the letters are
written and an impression of the look. This text should contain all letters of the alphabet and it
should be written in of the original language. There is no need for special content, but the length
of words should match the language.

Equation x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Lists

A list:

•First item in a list

–First item in a list

– Second item in a list

–Third item in a list

–Fourth item in a list

–Fifth item in a list

• Second item in a list

•Third item in a list

•Fourth item in a list

•Fifth item in a list

Block with maths

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If
you read this text, you will get no information. Really? Is there no information? Is there a difference between this
text and some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information about
the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language. There is no need for special content, but the length of
words should match the language.

∫ ∞

0

e−αx2dx =
1

2

√∫ ∞

−∞
e−αx2dx

∫ ∞

−∞
e−αy2dy =

1

2

√
π

α

A B
Conclusion and outlook

Hello, here is some text without a meaning. This text should
show what a printed text will look like at this place. If you
read this text, you will get no information. Really? Is there
no information? Is there a difference between this text and
some nonsense like “Huardest gefburn”? Kjift – not at all! A
blind text like this gives you information about the selected
font, how the letters are written and an impression of the
look. This text should contain all letters of the alphabet and
it should be written in of the original language. There is
no need for special content, but the length of words should
match the language. Hello, here is some text without a mean-

ing. This text should show what a printed text will look like
at this place. If you read this text, you will get no informa-
tion. Really? Is there no information? Is there a difference
between this text and some nonsense like“Huardest gefburn”?
Kjift – not at all! A blind text like this gives you information
about the selected font, how the letters are written and an im-
pression of the look. This text should contain all letters of the
alphabet and it should be written in of the original language.
There is no need for special content, but the length of words
should match the language. Hello, here is some text without
a meaning. This text should show what a printed text will

look like at this place. If you read this text, you will get no
information. Really? Is there no information? Is there a dif-
ference between this text and some nonsense like “Huardest
gefburn”? Kjift – not at all! A blind text like this gives you
information about the selected font, how the letters are writ-
ten and an impression of the look. This text should contain
all letters of the alphabet and it should be written in of the
original language. There is no need for special content, but
the length of words should match the language. Hello, here is
some text without a meaning. This text should show what a
printed text will look like at this place. If you read this text,

you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like
“Huardest gefburn”? Kjift – not at all! A blind text like this
gives you information about the selected font, how the letters
are written and an impression of the look. This text should
contain all letters of the alphabet and it should be written in
of the original language. There is no need for special content,
but the length of words should match the language.

x̄ =
1

n

i=n∑
i=1

xi =
x1 + x2 + . . . + xn

n

1

https://texdoc.org/pkg/tikzposter
https://bitbucket.org/surmann/tikzposter/downloads
https://texdoc.org

2
Tuning the Text

The previous chapter provided recipes for creating entire documents. You may use them as starting
points. Now, we will focus on fine-tuning text elements, such as shaping paragraphs and manipulating,
positioning, and arranging text.

This chapter shows recipes for:

•	 Improving justification and hyphenation

•	 Adding margin notes

•	 Converting numbers to words

•	 Putting text into a colorful box

•	 Visualizing the layout

•	 Visualizing boxes of letters and symbols

•	 Typesetting in a grid

•	 Absolute positioning of text

•	 Adding drop caps

•	 Fitting text to a shape

•	 Creating a pull quote

We will not yet deal with fonts. This topic deserves a whole chapter and will be covered in Chapter 3,
Adjusting Fonts.

This chapter will start with some fundamental principles, explore helpful techniques, and conclude with
practical recipes that illustrate LaTeX’s capabilities that extend beyond conventional paragraph formatting.

Tuning the Text56

Improving justification and hyphenation
Occasionally, you may get warnings such as “overfull \hbox" or notice words hanging into the
margin. This indicates that LaTeX had severe problems with justification. Now, we will look at how to
improve such a situation by ensuring proper hyphenation and integrating microtypographic support.

How to do it...

We can start with any document. We will optimize it by applying particular settings in the preamble.
If you don’t have a document readily available, you can take one from the code package for this book,
specifically for the first chapter, or download one from https://latex-cookbook.net. Take
the following steps:

1.	 Load the babel package with your document languages as options. Use the preferred language
as the last option:

\usepackage[ngerman,english]{babel}

2.	 If you would like to use handy shortcuts of ngerman with English too, add the following lines:

\useshorthands{"}
\addto\extrasenglish{\languageshorthands{ngerman}}

3.	 Load the fontenc package with the T1 option set:

\usepackage[T1]{fontenc}

4.	 Load the microtype package for improved micro-typography:

\usepackage{microtype}

How it works...

Using the babel package, LaTeX employs hyphenation patterns in the chosen language. Here, we
specified two language options:

•	 ngerman: This option adds hyphenation patterns and features for the new German orthography.
This includes commands for German umlauts and quotation marks but also additional shortcut
commands supporting hyphenation, such as the following:

	� "-: This shortcut adds an optional hyphenation point at a specific position in a word. It
keeps other hyphenation points, unlike the standard \- command.

	� "": This shortcut adds a possible hyphenation point, where, in the case of a separation, no
hyphen is added.

https://latex-cookbook.net

Improving justification and hyphenation 57

	� "~: This shortcut inserts a hyphen, but the word will not be hyphenated here.

	� "~ This shortcut inserts a hyphen, and hyphenation is allowed before and after it.

•	 english: This option enables language support with hyphenation patterns for US American
English. If you need British English, use one of the equivalent options british or Ukenglish.

As you’ve observed, babel can also load the convenient ngerman shortcuts for hyphenation
commands so that you can use them with languages other than German. You can find more such
shorthand commands in the babel manual. You can access it by typing texdoc babel at the
command line or by visiting https://texdoc.org/pkg/babel.

Utilizing the modern font encoding T1 enhances the situation further. In the early stages of TeX and
LaTeX, fonts did not contain glyphs for accented characters. They were printed as two characters,
one being the actual accent. That isn’t good for copying and pasting from the final PDF output and
can also disrupt hyphenation.

Note
The term glyph refers to the visual representation of a letter or symbol in writing, particularly
within the context of fonts.

The default encoding is OT1 encoding and encompasses 128 glyphs, meaning it encodes 128 characters.
T1 provides 256 glyphs, so many accented characters are included. That’s why T1 is recommended for
Western European languages. There are further encodings tailored to other languages, such as Cyrillic
and Asian languages. If you want to work with them, look at the fontenc manual by typing texdoc
fontenc at the command line or read it online at https://texdoc.org/pkg/fontenc.

Lastly, we introduced the microtype package to implement microtypographic extensions. For instance,
this package slightly adjusts font sizes, even for individual letters, to improve the full justification.
You can hardly notice the change with the naked eye but can see the effect of less hyphenation and
better overall greyness of the text. Consequently, there are usually smaller white gaps between words.

Note
In typography, greyness refers to the distribution of black and white elements on the page. A
well-balanced visual density can achieve a pleasing overall visual impression.

Furthermore, the microtype package subtly adjusts punctuation at the margin for better optical
alignment rather than relying solely on mechanical justification.

Regarding hyphenation, you may encounter situations where (La)TeX doesn’t hyphenate the very first
word in a paragraph. This occurrence is rare, typically in narrow columns starting with a very long
word. A quick remedy is inserting the command \hspace{0pt} at the beginning of the paragraph
so that the long word is technically not at the paragraph’s start.

https://texdoc.org/pkg/babel
https://texdoc.org/pkg/fontenc

Tuning the Text58

Adding margin notes
You can add notes to the margin to make a text more dynamic, annotate critical passages, and explain
or comment on a piece of the body text. This can enhance understanding and aid in studying.

How to do it...

For our first document with margin notes, we will use the very first document from Chapter 1, Exploring
Various Document Classes. Edit that document as follows:

1.	 Load the marginnote package in the document preamble:

\usepackage{marginnote}

2.	 To highlight margin notes using color, load the xcolor package :

\usepackage{xcolor}

3.	 Choose a font shape, color, or size for the margin notes, such as the following:

\renewcommand*{\marginfont}{\strut\color{blue}%
  \sffamily\scriptsize}

4.	 Within the document text, add margin notes in the lines where you want them to be positioned.
For example, like this:

\addsec{Introduction}
This document will be our starting point for simple
documents.\marginnote{No chapters supported!}
It is suitable for a single page or up to
a couple of dozen pages.

The text will be divided into sections.
\marginnote{Subsections are the next level.}

5.	 Compile the document. In the very first run, the margin notes don’t appear. Compile a second
time and look at the section where we added the margin notes:

Adding margin notes 59

Figure 2.1 – Margin notes

How it works...

The \marginnote command puts the text into the right margin when the document is one-sided.
In a two-sided document, it places the text in the outside margin.

You can achieve the opposite placement using the \reversemarginpar command. The
\normalmarginpar command restores the default placement.

The \marginnote command also supports an optional argument for text in the left margin. The
complete syntax is as follows:

\marginnote[left margin text]{right margin text}

This feature is particularly useful in a two-sided layout. Depending on the position in the text, the
note may be in the left margin on an even-numbered page or in the right margin on an odd-numbered
page. The optional argument allows you to prepare different text versions accordingly.

The \marginfont macro can be used for choosing a specific font, size, color, or any command that
you want to employ before the margin note. In particular, we inserted a \strut command here,
representing a zero-width vertical line with the height of the current text. This ensures that the margin
note’s baseline aligns with the text line’s baseline where it appears, even when using a smaller font.

A margin note should be treated as a single paragraph, so avoid inserting empty lines or using the
\par command within it.

There’s more...

LaTeX already provides margin notes using the following command:

\marginpar[left]{right}

It works very similar to the \marginnote command. However, it uses a float mechanism, so we
cannot use \marginpar in floats or footnotes. That’s one of the reasons why the marginnote
package has been written.

Introduction

This document will be our starting point for simple documents. No chapters

supported!

It is suitable for a single
page or up to a couple of dozen pages.

The text will be divided into sections. Subsections are

the next level.

Tuning the Text60

If you want to explore this alternative approach, you can find more information at https://
latex2e.org/Marginal-notes.html.

Another option for placing notes in the margin is the todonotes package.

Converting numbers to words
Numbers are sometimes written as text instead of using numerals. LaTeX is capable of automatically
converting numbers to words. This feature is especially useful for values originating from LaTeX
counters, such as page or section numbers.

How to do it...

We will load the fmtcount package and use its commands for conversion.

1.	 Start with any document class, such as the article class:

\documentclass{article}

2.	 Load the fmtcount package:

\usepackage{fmtcount}

3.	 Begin the document:

\begin{document}

4.	 Write some text. Proceed the following way:

	� Whenever you like to convert a number to a word, use the command \numberstringnum.

	� For printing a counter value as a word, use \numberstring.

	� For a similar purpose, but in ordinal form, use \ordinalstringnum or \ordinalstring.

Enter the following lines to practice the new commands:
This document should have \numberstringnum{32}
pages. Now, we are on page \numberstring{page}
in the \ordinalstring{section} section.

5.	 End the document:

\end{document}

6.	 Compile the document. All numbers and counters are displayed as text so that you will get the
following text in the PDF document:

This document should have thirty-two pages. Now, we are on page one in the first section.

https://latex2e.org/Marginal-notes.html
https://latex2e.org/Marginal-notes.html

Converting numbers to words 61

How it works...

The fmtcount package provides the following set of commands that print out numbers as words:

•	 \ordinalstring{counter}: This prints the value of a counter as an ordinal in text.

•	 \numberstring{counter}: This prints the counter’s value as text.

•	 \ordinalstringnum{number} and \numberstringnum{number}: These two
commands do the same job but are based on an actual number instead of a counter.

•	 \Ordinalstring{counter} , \Numberstring{counter} ,
\Ordinalstringnum{number}, and \Numberstringnum{number}: These are the
capitalized versions; they print the initial letter in uppercase.

There’s more...

The fmtcount package offers even more, such as multilingual capabilities, gender support, and
support for new enumeration styles. We shall take a look at these features now.

Multilingual support

The fmtcount package supports several languages, such as English, Spanish, Portuguese, French,
German, and Italian. It tries to detect the language option already passed to the babel or polyglossia
packages. You can explicitly load required definitions by adding \FCloadlang{language} to
the preamble, with a language name understood by the babel package.

Gender

All the preceding commands support an optional gender argument at the end, taking one of the
following values: m (masculine), f (feminine), or n (neuter). It is used like the following:

\numberstring{section}[f]

The masculine value is the default setting.

Enumerated lists

The moreenum package provides new enumeration styles based on the fmtcount package. Here’s
an example:

\documentclass{article}
\usepackage{moreenum}
\begin{document}
\begin{enumerate}[label=\Nthwords*]
  \item live
  \item long

Tuning the Text62

  \item prosper
\end{enumerate}
\end{document}

The items will now be numbered First, Second, and Third instead of the default 1., 2., and 3. A label
command \Nwords* would print One, Two, and Three. Lowercase versions start with a small letter n.

In addition to the fmtcount package, the moreenum package loads the enumitem package and
provides a similar key=value interface.

Putting text into a colorful box
You often see important content put into a colored box, a common practice on posters and slides,
although it’s also used in other documents. In this recipe, we will put a little text and whole paragraphs
into a colored box, including making a title for the box.

How to do it...

We will use the tcolorbox package. It is based on the pgf bundle, so you need to have also that
package installed.

We will create a box with the defaults, a titled box with split content, and boxes placed inline that fit
the width of the content. Proceed as follows:

1.	 Create a small document based on any document class. The article class is a simple choice.
Load the blindtext package to generate dummy text. This time, we will use the pangram
option to create short pangrams as dummy text. The blindtext package requires the babel
package, so we will load it before. We also set English as the language. Furthermore, load the
tcolorbox package. So, our base document looks like this:

\documentclass{article}
\usepackage[english]{babel}
\usepackage[pangram]{blindtext}
\usepackage{tcolorbox}
\begin{document}
\end{document}

2.	 Create a simple box by inserting this code right after the \begin{document} line:

\begin{tcolorbox}
  \blindtext
\end{tcolorbox}

Putting text into a colorful box 63

This gives you the following box with the text:

Figure 2.2 – Text in a box

3.	 Now, use the following code snippet:

\begin{tcolorbox}[title=\textbf{Examples},
  colback=blue!5!white, colframe=blue!75!white]
  The text below consists of pangrams.
  \tcblower
  \blindtext[3]
\end{tcolorbox}

The new box has a title and is divided into two parts, as shown here:

Figure 2.3 – A colored box with a title

4.	 Now try this setting and box command in the same document:

\tcbset{colframe=green!50!black,colback=white,
  colupper=green!30!black,fonttitle=\bfseries,
  center title, nobeforeafter, tcbox raise base}
  Normal text \tcbox{Boxed text}

It results in this:

Figure 2.4 – Drawing a box around inline text

The quick brown fox jumps over the lazy dog. Jackdaws love my big
Sphinx of Quartz. Pack my box with five dozen liquor jugs. The five
boxing wizards jump quickly. Sympathizing would fix Quaker objectives.

Examples

The text below consists of pangrams.

The quick brown fox jumps over the lazy dog. Jackdaws love my big
Sphinx of Quartz. Pack my box with five dozen liquor jugs.

Normal text Boxed text

Tuning the Text64

5.	 Then, try this variation:

\tcbox[left=0pt, right=0pt, top=0.5ex, bottom=0pt,
  boxsep=0pt, toptitle=0.5ex, bottomtitle=0.5ex,
  title=Sample table]{
  \begin{tabular}[t]{rl}
    Number & 100 \\
    Sum    & 350
  \end{tabular}}

You can see that we can create boxes with titles, even with nontrivial content, such as this
tabular material:

Figure 2.5 – Putting a table into a colored box

How it works...

We loaded the blindtext package with the pangram option, enabling us to generate short sample
texts that served as placeholder content within our boxes.

We loaded the tcolorbox package. The LaTeX environment with the same name then generated
the boxes for us.

The first box was done without any option with default settings. In the subsequent box, we used
the key=value interface to specify a title and the colors for the frame and the background. The
\tcblower command split the box for us using a dashed line.

Moving forward, we used the \tcbset command to define options that would apply to all subsequent
boxes. Using it in the preamble is a good idea when we have multiple boxes sharing common
characteristics. We set the color, applied a bold typeface, and centered the title. Furthermore, we
used the nobeforeafter option to avoid additional space before and after the box. The raise
base option lifted the entire box so that the content’s baseline aligns with the baseline of the outer
text. This is apparent in Figure 2.4.

The last boxes were created using the \tcbox command. While it understands most options of the
tcolorbox environment, there are two differences:

•	 The \tcbox command doesn’t provide a lower part, unlike the tcolorbox environment
with the \tcblower command.

Sample table

Number 100
Sum 350

Visualizing the layout 65

•	 The \tcbox command cannot be split across pages, a limitation absent in the
tcolorbox environment.

The \tcbox command is a good choice for boxes within text. As in our example, it works seamlessly
with tabular code and images.

There’s more...

The tcolorbox package is highly versatile and provides many options and styles. The latter are
referred to as skins. For in-depth information, I recommend consulting the package manual. The wealth
of its features is described on more than 500 pages. You can access the manual by typing texdoc
tcolorbox at the command line or by visiting https://texdoc.org/pkg/tcolorbox.

The mdframed package offers a similar approach. Based on the classic framed package, it works with
the modern graphics packages TikZ and PSTricks to create colored boxes that can be split across pages.

Visualizing the layout
When designing a document, obtaining precise information about the dimensions and positioning
of layout elements, such as the text body, header, footer, and the space allocated for the margin notes,
is often helpful. LaTeX can print helplines for you to examine and finetune the layout.

How to do it...

We will use the showframe package. Take the following steps:

1.	 Open your document or any sample for testing. Here, we will use the very first document from
Chapter 1, Exploring Various Document Classes.

2.	 Add the following line at the end of your preamble:

\usepackage{showframe}

3.	 Compile the document. You can see frames around the text body, the margin note area, the
header, and the footer as you can see here:

https://texdoc.org/pkg/tcolorbox

Tuning the Text66

Figure 2.6 – A page layout overview

Examining the layout can inspire adjustments, such as modifying the margins or other page dimensions.
When you no longer need these helplines, you can deactivate the package by either commenting out
\usepackage{showframe} or simply removing that line.

Contents

Introduction 1

1 The first section 1

2 Some maths 1

Introduction

This document will be our starting point for simple documents. It is suitable for a single
page or up to a couple of dozen pages.

The text will be divided into sections.

1 The first section

This first text will contain

• a table of contents,

• a bulleted list,

• headings and some text and math in section,

• referencing such as to section 2 and equation (1).

We can use this document as a template for filling in our own content.

2 Some maths

When we write a scientific or technical document, we usually include math formulas. To
get a brief glimpse of the look of maths, we will look at an integral approximation of a
function f(x) as a sum with weights wi:

∫ b

a
f(x) dx ≈ (b− a)

n∑
i=0

wif(xi) (1)

Visualizing the layout 67

How it works...

We loaded the showframe package that generated the desired help lines on all document pages.
The package belongs to the eso-pic bundle, which will help us in the recipe Absolute positioning
of text later in the current chapter. As the showframe package visualizes layout dimensions, it can
help with positioning in relation to margins or text body.

There’s more...

There are alternatives to the showframe package. Let's take a look at them.

Using geometry

If you have already loaded the geometry package to specify page dimensions such as paper size
and margin, you could add the showframe option instead of loading the separate package with the
same name in one of the following ways:

•	 You can add it while loading the package as follows:

\usepackage[a4paper, bindingoffset=5mm,
  showframe]{geometry}

•	 Alternatively, you can activate it by calling the \geometry command after the geometry
package has already been loaded, but also in the preamble:

\geometry{showframe}

Examining the page layout details

The layout package provides a command that prints an overview of the layout and, in addition, the
values of various page layout variables. Let’s take a look at the following steps:

1.	 Load the layout package:

\usepackage{layout}

2.	 Insert the \layout command right after the \begin{document} line.

3.	 Take a look at the output, here done with our very first recipe in Chapter 1, Exploring Various
Document Classes:

Tuning the Text68

Figure 2.7 – A detailed page layout with dimensions

This image is entirely generated by the \layout command, showing the current values of the
document you are working on.

Header

Body

Footer

Margin
Notes

i8� -

i7

?

6

i1� -

�-i3 i10� -

�-i9

6

?

i11

i2
?

6

6

?

i4
6

?

i5
6

?

i6

1 one inch + \hoffset 2 one inch + \voffset

3 \oddsidemargin = 2pt 4 \topmargin = -41pt

5 \headheight = 18pt 6 \headsep = 21pt

7 \textheight = 635pt 8 \textwidth = 448pt

9 \marginparsep = 12pt 10 \marginparwidth = 49pt

11 \footskip = 50pt \marginparpush = 6pt (not shown)

\hoffset = 0pt \voffset = 0pt

\paperwidth = 597pt \paperheight = 845pt

Visualizing boxes of letters and symbols 69

Visualizing boxes of letters and symbols
LaTeX utilizes boxes to organize and position text and symbols, whether entire paragraphs or individual
letters and symbols. In this recipe, we will closely examine the dimensions of these boxes, the spacing
between them, and the resulting dimensions of dynamically adjusted space. This will give us a deeper
understanding of typesetting.

In this section, we will use LuaLaTeX. LuaLaTeX is a variant of LaTeX based on the LuaTeX compiler
that integrates the Lua scripting language within TeX. It’s a modern alternative to the pdfLaTeX
compiler we usually utilize in this book if not mentioned otherwise. In Chapter 11, Using LaTeX in
Science and Technology, we will explore Lua programming.

How to do it...

We will additionally load the lua-visual-debug package. Then, we will compile with LuaLaTeX
as follows:

1.	 Open your document or any sample file. Again, we will use the document from our first recipe
in Chapter 1, Exploring Various Document Classes.

2.	 Add the following line at the end of your preamble:

\usepackage{lua-visual-debug}

3.	 In your editor, switch to LuaLaTeX for typesetting and compile the document. Take a look at
these cut-outs of the output. The text has some annotations as follows:

Figure 2.8 – Visualizing text layout

Formulas consist of many tiny boxes:

Figure 2.9 – Visualizing math layout

Contents

Introduction 1

1 The first section 1

2 Some maths 1

Introduction

This document will be our starting point for simple documents. It is suitable for a single
page or up to a couple of dozen pages.

The text will be divided into sections.

1 The first section

This first text will contain

• a table of contents,

• a bulleted list,

• headings and some text and math in section,

• referencing such as to section 2 and equation (1).

We can use this document as a template for filling in our own content.

2 Some maths

When we write a scientific or technical document, we usually include math formulas. To
get a brief glimpse of the look of maths, we will look at an integral approximation of a
function f(x) as a sum with weights wi:

∫ b

a
f(x) dx ≈ (b− a)

n∑
i=0

wif(xi) (1)

Contents

Introduction 1

1 The first section 1

2 Some maths 1

Introduction

This document will be our starting point for simple documents. It is suitable for a single
page or up to a couple of dozen pages.

The text will be divided into sections.

1 The first section

This first text will contain

• a table of contents,

• a bulleted list,

• headings and some text and math in section,

• referencing such as to section 2 and equation (1).

We can use this document as a template for filling in our own content.

2 Some maths

When we write a scientific or technical document, we usually include math formulas. To
get a brief glimpse of the look of maths, we will look at an integral approximation of a
function f(x) as a sum with weights wi:

∫ b

a
f(x) dx ≈ (b− a)

n∑
i=0

wif(xi) (1)

Tuning the Text70

Examining the boxes may give us insight into tweaking formulas. In Chapter 10, Writing Advanced
Mathematics, you can read about fine-tuning math formulas. When you no longer need the box
visualization lines, you can deactivate the package by either commenting or deleting the line
\usepackage{lua-visual-debug}.

How it works...

We simply loaded the lua-visual-debug package, which requires LuaLaTeX because of the
package’s dependency on LuaTeX. It did all the work for us; now we need to understand the output:

•	 LaTeX’s boxes are highlighted with a thin border. A red rule denotes a zero-width box.

•	 A filled rectangle means a kern. This is a fixed vertical or horizontal spacing. A positive kern
is colored yellow. A negative kern is colored red.

•	 Tick lines stand for glue. This means vertical or horizontal space. Unlike kern, it can be
stretched or shrunken. The lines start and end with a tick. So you can recognize places where
glues are touching.

•	 The blue rectangle below the baseline marks a point where hyphenation is allowed.

•	 A square means a penalty. This is an internal value that TeX tries to minimize in its
line-breaking algorithm. A blank square means a maximum penalty. Otherwise, it’s filled with gray.

This visualization can help you with debugging the document’s typesetting.

Even if you use pdfLaTeX, you could briefly switch to LuaLaTeX just for this purpose, and then
continue with pdfLaTeX. Alternatively, you could work with a simplified copy of that document part
you need to analyze with LuaLaTeX.

Typesetting in a grid
In addition to full horizontal justification, LaTeX adjusts the page content vertically to maintain a
consistent page height. Consequently, the internal spacing within a page can vary. As a result, lines
on adjacent pages may look shifted.

For two-sided prints with very thin paper, matching baselines would look much better. Especially
in two-column documents, it may be desirable to have baselines of adjacent lines at precisely the
same height.

In this recipe, our goal is to arrange lines on a grid. Regular text lines shall be placed at a baseline
grid. Displayed formulas, figures, tables, and captions are allowed to have a different baseline, but the
subsequent text should return to the grid.

Typesetting in a grid 71

How to do it...

We’ll use the grid package specifically developed for grid typesetting. Follow these steps:

1.	 Begin by creating a small two-column example with placeholder text to which we can apply
the grid commands. Here is a straightforward code snippet that you can use for the start:

\documentclass{article}
\usepackage[english]{babel}
\usepackage{blindtext}
\usepackage{microtype}
\begin{document}
\twocolumn
\section*{Two columns}
\blindtext[3]
\begin{figure}
  \centering
  \fbox{\makebox(50,50){}}
  \caption{A dummy figure}
\end{figure}
\begin{equation}
  \sum_n f(n)
\end{equation}
Text
\end{document}

2.	 Take a first look. Compare the height of the text lines in the left- and right-hand columns.
Observe that the baselines of the text are not yet aligned:

Figure 2.10 – Text without alignment on a grid

Two columns

Hello, here is some text without a mean-
ing. This text should show what a
printed text will look like at this place.
If you read this text, you will get no
information. Really? Is there no in-
formation? Is there a difference be-
tween this text and some nonsense like
“Huardest gefburn”? Kjift – not at all!
A blind text like this gives you informa-
tion about the selected font, how the
letters are written and an impression
of the look. This text should contain
all letters of the alphabet and it should
be written in of the original language.
There is no need for special content, but
the length of words should match the
language. Hello, here is some text with-
out a meaning. This text should show
what a printed text will look like at this
place. If you read this text, you will
get no information. Really? Is there no
information? Is there a difference be-
tween this text and some nonsense like
“Huardest gefburn”? Kjift – not at all!
A blind text like this gives you informa-
tion about the selected font, how the
letters are written and an impression
of the look. This text should contain
all letters of the alphabet and it should
be written in of the original language.
There is no need for special content, but
the length of words should match the
language. Hello, here is some text with-
out a meaning. This text should show
what a printed text will look like at this
place. If you read this text, you will
get no information. Really? Is there no
information? Is there a difference be-
tween this text and some nonsense like
“Huardest gefburn”? Kjift – not at all!
A blind text like this gives you informa-
tion about the selected font, how the
letters are written and an impression
of the look. This text should contain

Figure 1: A dummy figure

all letters of the alphabet and it should
be written in of the original language.
There is no need for special content,
but the length of words should match
the language.

∑
n

f(n) (1)

Text

Tuning the Text72

3.	 Now we add the grid package to the preamble with font size options as follows:

\usepackage[fontsize=10pt,baseline=12pt]{grid}

4.	 Then, put the equation into a gridenv environment. It shall look like this:

\begin{gridenv}
  \begin{equation}
    \sum_n f(n)
  \end{equation}
\end{gridenv}

5.	 Compile the document and take a look at what has changed. Examine the baselines in the
following screenshot closely:

Figure 2.11 – Text and math with alignment on a grid

How it works...

We specified the font size and the baseline height as options for the grid package because the default
settings don’t produce the desired results.

Two columns
Hello, here is some text without a mean-
ing. This text should show what a
printed text will look like at this place.
If you read this text, you will get no
information. Really? Is there no in-
formation? Is there a difference be-
tween this text and some nonsense like
“Huardest gefburn”? Kjift – not at all!
A blind text like this gives you informa-
tion about the selected font, how the
letters are written and an impression
of the look. This text should contain
all letters of the alphabet and it should
be written in of the original language.
There is no need for special content, but
the length of words should match the
language. Hello, here is some text with-
out a meaning. This text should show
what a printed text will look like at this
place. If you read this text, you will
get no information. Really? Is there no
information? Is there a difference be-
tween this text and some nonsense like
“Huardest gefburn”? Kjift – not at all!
A blind text like this gives you informa-
tion about the selected font, how the
letters are written and an impression
of the look. This text should contain
all letters of the alphabet and it should
be written in of the original language.
There is no need for special content, but
the length of words should match the
language. Hello, here is some text with-
out a meaning. This text should show
what a printed text will look like at this
place. If you read this text, you will
get no information. Really? Is there no
information? Is there a difference be-
tween this text and some nonsense like

Figure 1: A dummy figure

“Huardest gefburn”? Kjift – not at all!
A blind text like this gives you informa-
tion about the selected font, how the
letters are written and an impression
of the look. This text should contain
all letters of the alphabet and it should
be written in of the original language.
There is no need for special content,
but the length of words should match
the language.

∑
n

f(n) (1)

Text

Typesetting in a grid 73

The grid package makes some changes that help to stay in the grid. This is how it works:

•	 Elastic space, also called glue or rubber space, is either removed or replaced with fixed space.

•	 The heights of many frequently used items are adjusted to be multiples of the baseline
height, ensuring they fit precisely within the grid. This has been made, for example, for the
following elements:

	� Section headings

	� Figures and tables

	� Displayed equations

Note
Enclosing equation environments within a gridenv environment is advisable for
proper spacing.

We have a quick solution for double-column grid typesetting. Some compromises are necessary, such
as accepting a changed section heading size.

There’s more...

The gridset package provides a command, \vskipnextgrid, which advances to the next grid
position. It can be used as a simple fix without being a complete solution. It requires two or more
typesetting runs until all is adjusted. So, you need to look at the affected place and repeat compiling
if needed, mainly when repeatedly using the \vskipnextgrid command.

Note
At the time of writing, the gridset package was still in alpha status without official support.

The gridset package and the \vskipnextgrid command can also be used in addition to
the grid package. If you encounter issues with grid package, you can rectify them by inserting a
\vskipnextgrid command.

For instance, the amsmath package’s multiline displayed equations could challenge the grid package.
We will illustrate such a case and demonstrate how to fix it as follows:

1.	 Load the amsmath package in the preamble:

\usepackage{amsmath}

Tuning the Text74

2.	 Additionally, load the gridset package:

\usepackage{gridset}

3.	 In the document, create an align environment as follows:

\begin{align}
  y &= \sum_{n=1}^3 f(n) \\
    &= f(1) + f(2) + f(3)
\end{align}

4.	 Directly after it, add the following line. It ends the paragraph, skips to the next position in the
grid, and avoids inserting paragraph indentations:

\par\vskipnextgrid\noindent

5.	 Add some text following it.

6.	 Compile the document once. The position of the previously added text may still not yet fit the grid.

7.	 Compile again. The \vskipnextgrid command will adjust the spacing to match the
baseline grid.

The \vskipnextgrid command may have problems in the two-column mode. In such instances,
we can resolve the problem by breaking the paragraph, adjusting the position, and suppressing the
indentation of the following paragraph.

Absolute positioning of text
LaTeX takes care of full justification, balancing text height, and positioning floating objects such as
figures and tables. It does a great job, but sometimes, we may need to tell LaTeX to put text or an
image precisely at a specific position on a page.

Most positioning commands work in relation to the current position in the document. Now, we would
like to output text at an absolute position.

How to do it...

We will use the eso-pic package for precise positioning. We will print text at the edge of the page,
in the middle, and at specific positions. We will break down the code into small steps. However, you
can copy the entire code from GitHub or the book’s website at https://latex-cookbook.net.

Follow these steps:

1.	 Start with any document class. We chose the article class with A5 paper size.

\documentclass[a5paper]{article}

https://latex-cookbook.net

Absolute positioning of text 75

2.	 Load the lipsum package so that you can generate placeholder text:

\usepackage{lipsum}

3.	 Load the graphicx package; we will later use its rotating feature:

\usepackage{graphicx}

4.	 Load the showframe package for visualizing page dimensions, just to help us in the draft state:

\usepackage{showframe}

5.	 Load the eso-pic package, which does the positioning for us:

\usepackage{eso-pic}

6.	 Load the classic picture package to place pictures with coordinates:

\usepackage{picture}

7.	 We will print the page number by ourselves, so disable the original page numbering:

\pagestyle{empty}

8.	 Start the document:

\begin{document}

9.	 Add the page number to all pages as follows:

\AddToShipoutPictureBG{%
  \setlength{\unitlength}{1cm}%
  \put(2.5,2){Test document}%
  \put(\paperwidth-2cm,2cm){\llap{\thepage}}%
}

10.	 Add some text to a single page as follows. Note the star (*) that we will discuss below.

\AddToShipoutPictureBG*{%
  \AtPageLowerLeft{Page bottom left}%
  \AtPageUpperLeft{\raisebox{-\height}{Page
    top left}}%
  \AtTextUpperLeft{\raisebox{-\height}{%
    \color{red}Text area top left}}%
}

Tuning the Text76

11.	 Add a Confidential sign on top of the page:

\AddToShipoutPictureFG{%
  \AtPageCenter{\rotatebox{15}{\makebox[0pt]{%
    \Huge\bfseries\color{red}Confidential}}}%
}

12.	 Print some placeholder text. It starts at the beginning of the page, as usual. Finally, end
the document.

\lipsum
\end{document}

13.	 Compile the document and take a look at the first page:

Figure 2.12 – A page with overprinted text

Test document 1

Page bottom left

Page top left

Text area top leftLorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut
purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis.
Curabitur dictum gravida mauris. Nam arcu libero, nonummy
eget, consectetuer id, vulputate a, magna. Donec vehicula au-
gue eu neque. Pellentesque habitant morbi tristique senectus
et netus et malesuada fames ac turpis egestas. Mauris ut leo.
Cras viverra metus rhoncus sem. Nulla et lectus vestibulum
urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida
placerat. Integer sapien est, iaculis in, pretium quis, viverra ac,
nunc. Praesent eget sem vel leo ultrices bibendum. Aenean fau-
cibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac,
nulla. Curabitur auctor semper nulla. Donec varius orci eget
risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis,
diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel,
wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium
at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed
accumsan bibendum, erat ligula aliquet magna, vitae ornare
odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Sus-
pendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum
sociis natoque penatibus et magnis dis parturient montes, nasce-
tur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper
vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue
non, volutpat at, tincidunt tristique, libero. Vivamus viverra
fermentum felis. Donec nonummy pellentesque ante. Phasel-
lus adipiscing semper elit. Proin fermentum massa ac quam.
Sed diam turpis, molestie vitae, placerat a, molestie nec, leo.
Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec,

C

o

n

fi

d

e

n

t

i

a

l

Absolute positioning of text 77

How it works...

We’ve loaded several packages. Here’s a breakdown of what each package does:
•	 The lipsum package provides us with placeholder text, which we get by the \lipsum command.

•	 While the graphicx package is primarily for including images, we loaded it because we use
its \rotatebox command to rotate text in Step 11.

•	 The showframe package draws lines around text and margin areas, as we saw in the recipe
Visualizing the layout.

•	 The eso-pic package does the main job here. It provides commands for printing text or
graphics independent of the current position on the page. It can do this in the background,
which means behind the text, but also in the foreground, overwriting the regular text.

•	 The picture package is a classic package for drawing simple pictures. In our case, we use it
for putting text at specific coordinates. The \put command expects (x,y) formatted cartesian
coordinates with plain numbers, which are interpreted as factors of the \unitlength size.
Alternatively, you can use lengths as arguments with arbitrary units, such as 10mm.

We configured an empty page style to ensure that there are no default header and footer texts. In the
document, we called the following eso-pic commands:

•	 The \AddToShipoutPictureBG command takes LaTeX’s picture commands, which
are put into a picture environment at the lower left corner of the page. This is printed onto
the page background behind the standard text layer.

Here, we first defined the base unit length to be 1 centimeter. In the following \put command,
we used factors to this length for printing Test document near the lower left corner. Finally, we
printed the current page number near the lower right corner. We calculated with paper width
and centimeter values. The picture package brings this syntax. The \llap command puts
its argument to the left side of a zero-width box, thus making it right-aligned.

This background content will be repeated on subsequent pages.

•	 The \AddToShipoutPictureBG* command works like the \AddToShipoutPictureBG
command but applies only to the current page.

•	 Using the \AtPageLowerLeft command, we positioned text in the lower-left corner of the
page. The \AtPageUpperLeft command works similarly for the upper-left corner. We just
lowered the text by its own height. The \AtTextUpperLeft command is the corresponding
command for the text area.

•	 The \AddToShipoutPictureFG command works like the \AddToShipoutPictureBG
command but operates on the page foreground. We positioned the word Confidential in huge
red lettering, rotated above the text, in the middle of the page.

•	 The \AddToShipoutPictureFG* command works the same in the foreground but affects
only the current page.

Tuning the Text78

There’s more...

There are alternative ways to achieve what we just did. There are several packages that offer a
similar functionality:

•	 While the eso-pic package is based on the atbegshi package, the latter can be used directly.

•	 The everyshi package does a similar job. The atbegshi package is a modern reimplementation
of it.

•	 The textpos package is based on the everyshi package, focuses on positioning blocks of
text on a page, and provides a convenient user interface.

Comprehensive graphics packages provide their own methods in addition.

•	 The TikZ package can be used to place text in relation to the current page node in
overlay mode. This is explained in LaTeX Graphics with TikZ, Chapter 9, Using Layers,
Overlays, and Transparency. You can find the examples from this chapter at https://tikz.
org/chapter-09.

•	 The PSTricks bundle contains the pst-abspos package for placing an object at an arbitrary
position on the page.

If any of it aligns better with your work tools, you may look closer. As you saw in other recipes, you
can access each package’s documentation by calling texdoc at the command line, followed by the
package name, and hitting the return key. For online access, just type the package name into the search
field at https://texdoc.org.

Adding drop caps
In older texts, such as in fairy tale books, we sometimes see the first paragraph in a text starting with
a huge letter while the following text flows around it. This design element is referred to as a drop cap
or an initial. We will now use this design for our own text.

How to do it...

We will use the lettrine package, which offers a dedicated command for this purpose. Follow
these steps:

1.	 Start a document with any document class. In this example, we’ve opted for the book class.
We will use A6 paper size because the recipe is easier to show with little text.

\documentclass{book}
\usepackage[a6paper]{geometry}

https://tikz.org/chapter-09
https://tikz.org/chapter-09
https://texdoc.org

Adding drop caps 79

2.	 Load the lettrine package:

\usepackage{lettrine}

3.	 Begin the document:

\begin{document}

4.	 Start a paragraph with the command \lettrine{letter}{further introduction},
as follows:

\lettrine{O}{nce upon a time}, professional writers
used a mechanical machine called a typewriter. It
commonly printed fixed-width characters. Emphasizing
was done by writing all capitals and by underlining.

5.	 End the document:

\end{document}

6.	 Compile the document. Now, look at the shape of our paragraph:

Figure 2.13 – A paragraph starting with a drop cap

How it works...

For this simple example, we used the basic book class. We loaded the geometry package to get
a handy A6 paper size. The final command in the preamble loaded the lettrine package, which
provides precisely the design we are looking for. The command \lettrine{O}{nce upon a
time} prints one large letter O, followed by the text in the second pair of braces, which is printed in
small caps. The remaining text flows around the large letter.

There’s more...

The design of the dropped capitals can be customized. Let’s take a look at some available options.

Once upon a time, professional writer used
a mechanical machine called a typewriter.

It commonly printed fixed-width characters. Em-
phasizing was done by writing all capitals, and
by underlining.

Tuning the Text80

Changing the drop cap size

By default, the dropped capital spans two lines. You can alter the number of lines it covers by setting
the optional argument lines as follows:

\lettrine[lines=3]{O}{nce upon a time}

Now, a huge O covers three lines. Additionally, you can enlarge it by setting the loversize option,
either independently or in conjunction with the previously mentioned option:

\lettrine[lines=3,loversize=0.2]{O}{nce upon a time}

The loversize option accepts values greater than -1 and smaller than or equal to 1, indicating the
resizing factor. For instance, a value of 0.1 means enlarging by 10 percent.

The lettrine package provides a key=value interface. More options are available to control
further aspects, such as the gap between the drop cap and the subsequent text and vertical shifting.
You can also let drop caps hang into the margin. Those features are explained in the manual. You can
open it using texdoc lettrine at the command line or by visiting https://texdoc.org/
pkg/lettrine.

Coloring the initial

The easiest way to get colored drop caps is using the well-known commands of the color or xcolor
package, such as:

\usepackage{xcolor}
...
\lettrine{\textcolor{red}{A}}{nother} time

Color names
A complete list of available colors and names is contained in the xcolor manual. You can
open it by typing texdoc xcolor at the command prompt or at https://texdoc.
org/pkg/xcolor. You may need to set an option to access predefined names, such as
svgnames, dvipsnames, or x11names.

The coloredlettrine package provides an even fancier way. It provides bicolor initials that are
based on the EB Garamond font. Internally, the initials are divided into two fonts. One provides the
background ornaments, the other the actual letters. This separation allows individual coloring. We
will use the OpenType version of EB Garamond. OpenType requires compilation with XeLaTeX or
LuaLaTeX. Many LaTeX editors support those compilers too.

https://texdoc.org/pkg/lettrine
https://texdoc.org/pkg/lettrine
https://texdoc.org/pkg/xcolor
https://texdoc.org/pkg/xcolor

Adding drop caps 81

As of the time of writing this book, the coloredlettrine package was still in development.
There was just a small set of initials available. ´That’s why we will refer to the development sources.

1.	 Download the package files from https://github.com/raphink/coloredlettrine.
There you find a .ins file and a .dtx file. Put them together into the same folder on
your computer. Compile the file coloredlettrine.ins with LaTeX. This produces
coloredlettrine.sty, which you can place in your TeX installation or your document folder.

2.	 Get the latest version of EB Garamond from https://bitbucket.org/georgd/
eb-garamond/downloads and install the font. Specifically, unzip the downloaded file and
install at least the EBGaramond-InitialsF1.otf and EBGaramond-InitialsF2.otf
files. On a Mac, double-click the files to see the contents and then click the install button shown.

3.	 The coloredlettrine package contains an example that you can compile. Here, let’s modify
our example from the recipe’s start:

\documentclass{book}
\usepackage[a6paper,hmargin=1.5cm]{geometry}
\usepackage{microtype}
\usepackage{coloredlettrine}
\renewcommand{\EBLettrineBackColor}{SlateBlue}
\setcounter{DefaultLines}{3}
\renewcommand{\DefaultLraise}{0.25}
\renewcommand{\DefaultFindent}{0.3em}
\renewcommand{\DefaultNindent}{0pt}
\begin{document}
\coloredlettrine{O}{nce upon a time}, professional
writers used a mechanical machine called a typewriter.
It commonly printed fixed-width characters.
Emphasizing was done by writing all capitals
and by underlining.

\coloredlettrine{T}{oday}, we prefer variable-width
letters. It's common to provide subtle emphasis by
using italics or to add greater emphasis by using
bold text.
\end{document}

https://github.com/raphink/coloredlettrine
https://bitbucket.org/georgd/eb-garamond/downloads
https://bitbucket.org/georgd/eb-garamond/downloads

Tuning the Text82

4.	 Choose XeLaTeX or LuaLaTeX for typesetting, compile, and have a look:

Figure 2.14 – Colorful drop caps

You can use the \coloredlettrine command exactly like the \lettrine command
since it is just a wrapper for it. You can redefine the macros \EBLettrineBackColor and
\EBLettrineFrontColor to choose the color.

In this example, we set default values for lettrine parameters, which we otherwise would have
needed to provide as key=value options, as explained earlier in this recipe. This way can save
you from defining your own macro. It is described in the manual, which you can open by texdoc
lettrine or at https://texdoc.org/pkg/lettrine.

Fitting text to a shape
There are situations when text doesn’t have a strict rectangular shape. For example, if you want to print
on a DVD or compact disc label, the whole text should fit within a circular boundary.

How to do it...

The shapepar package can typeset paragraphs in a particular shape, such as a circle, a hexagon,
or a heart. The shape size will be automatically adjusted to accommodate the provided text. We will
now try it with a heart:

1.	 Start a small document, load the blindtext package for dummy text and the shapepar package:

\documentclass{article}
\usepackage{blindtext}
\usepackage{shapepar}

OO nce upon a time, professional writer
used a mechanical machine called a
typewriter. It commonly printed fixed-

width characters. Emphasizing was done by writ-
ing all capitals, and by underlining.

TT oday, we prefer variable-width letters.
Now it is common to gently emphasize
using italic, or heavier using bold.

https://texdoc.org/pkg/lettrine

Fitting text to a shape 83

2.	 In the document body, use the \shapepar command with a shape type argument, and then
your text, as follows:

\begin{document}
\shapepar{\heartshape}\blindtext[2]
\end{document}

3.	 Compile and have a look:

Figure 2.15 – Text in the shape of a heart

How it works...

We loaded the blindtext package, which provides filler text via the \blindtext command,
which is excellent for testing. Then we loaded the shapepar package.

That package provides the \shapepar command, which is used as follows:

\shapepar[scale length]{shape command}
  text of the paragraph

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Etiam lobortis facili-

sis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent
imperdiet mi nec ante. Donec ullam- corper, felis non sodales commodo,

lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc
nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique
neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue
a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit
mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris
lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis
sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet
mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit
ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc,
molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in
sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Duis fringilla tristique neque. Sed interdum libero ut metus.
Pellentesque placerat. Nam rutrum augue a leo. Morbi

sed elit sit amet ante lobortis sollicitudin. Praesent
blandit blandit mauris. Praesent lectus tellus,

aliquet aliquam, luctus a, egestas a, turpis.
Mauris lacinia lorem sit amet

ipsum. Nunc quis urna dic-
tum turpis accum-

san sem-
per.

Tuning the Text84

Here, we used \heartshape as the shape command, which typesets the following paragraph of
text with the shape of a heart. The shape applies only to the next paragraph’s text. The text is not an
argument; it just follows like plain text.

The scale length value is optional. It’s a LaTeX length, which will be used as a base unit within
the shape definition. If not given, it’s automatically calculated for optimal shape filling.

There’s a short command version as follows:

\heartpar{text}

This command is equivalent to this code:

\shapepar{\heartshape} text\ \ \heartsuit\par

It prints the text in a heart shape and ends it with a heart symbol.

There’s more...

We can shape text in various ways. Furthermore, we can let the text flow around a shape. In other
words, we can cut out shapes from the text.

Further shapes

The following list contains the predefined shapes and corresponding short commands:

•	 Square: \squareshape and \squarepar

•	 Circle: \circleshape and\circlepar

•	 Circle with a hole: \CDlabshape and \CDlabel. The latter command fits text to a compact
disc or DVD; attention: the package manual currently calls the shape \CDshape

•	 Diamond: \diamondshape and\diamondpar (like a rhomboid)

•	 Heart: \heartshape and \heartpar

•	 Five-point star: \starshape and \starpar

•	 Hexagon: \hexagonshape and \hexagonpar

•	 Hexagon with a hole: \nutshape and \nutpar (like a nut for a bolt)

•	 Rectangle: \rectangleshape{height}{width} (no short version)

The rectangle shape doesn’t provide a short command version. You can use it as follows:

\shapepar{\rectangleshape{40}{20}} text

Creating a pull quote 85

Use it without the units for the length, as it internally uses the scale length, as noted above. So,
height and width basically define the aspect ratio of the rectangle.

The mentioned holes in the shapes above are circular.

Cutting out shapes

For text cutouts, the \shapepar command has a companion that allows you to create cutouts using
a specific shape:

\cutout {side} (horizontal offset, vertical offset)
  settings \shapepar ...

It cuts out the text with the specified shape from the following text. The side option can be l for
left or r for right. You can use offsets for shifting. Optionally used settings would be local to that
instance. It can contain commands such as modifying \cutoutsep, which is the separation between
outer text and shaped text, 12 pt by default.

For further details, please consult the package’s manual. Here’s an example that cuts out a circle from
a paragraph with blind text and fills it with a few words:

\cutout{l} (5ex,2\baselineskip) \setlength{\cutoutsep}{8pt}
  \shapepar{\circleshape} a few words of text\par
\blindtext

This will generate the following output:

Figure 2.16 – A circular cut-out

Creating a pull quote
To capture readers’ interest in a text, we can present a brief and appealing excerpt as a quotation. We
can pull out some text. In a two-column layout, it looks nice to put the quotation into a window at

a few
words of
text

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis fa-
cilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent
imperdiet mi nec ante. Donec ullamcorper, felis non sodales com-
modo, lectus velit ultrices augue, a dignissim nibh lectus placerat
pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit.

Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, con-
sectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut
metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet
ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tel-
lus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet
ipsum. Nunc quis urna dictum turpis accumsan semper.

Tuning the Text86

the center of the page between the two columns, with the regular text flowing around it. It’s also an
excellent way of embedding images.

How to do it...

One approach is to use the shapepar package to cut out space from the text, like in the previous
recipe. However, doing it twice, once for each column, would take some work.

The pullquote package provides a solution. It can typeset a balanced two-column text layout with
a cut-out window. This can be filled with text or an image. The shape is arbitrary.

We will use placeholder text and highlight a quote by Donald Knuth, the creator of TeX.

1.	 Download the file pullquote.dtx from https://bazaar.launchpad.net/~tex-sx/
tex-sx/development/view/head:/pullquote.dtx.

2.	 Click on “browse files” and download also pq-alice.jpg, pq-duck.pdf, and pullquote_
test.tex, to have filler images and a sample file. The image files are used by pullquote.dtx
so you need them for compiling it.

3.	 Compile pullquote.dtx with pdfLaTeX. Do it twice for correct references. It will generate
a pullquote.sty file and the documentation file pullquote.pdf. Place the files where
your LaTeX can find them or simply in the document’s folder.

4.	 Start with a document class, load the lipsum package for dummy text, and load the
pullquote package:

\documentclass{article}
\usepackage{lipsum}
\usepackage{pullquote}

5.	 Create a command that prints your quote in a paragraph box:

\newcommand{\myquote}{%
  \parbox{4cm}{
    \hrule\vspace{1ex}
    \textit{I can't go to a restaurant and order food
      because I keep looking at the fonts on the
       menu.}

    \hfill Knuth, Donald (2002)%
    \vspace{1ex}
    \hrule
  }%
}

https://bazaar.launchpad.net/~tex-sx/tex-sx/development/view/head:/pullquote.dtx
https://bazaar.launchpad.net/~tex-sx/tex-sx/development/view/head:/pullquote.dtx

Creating a pull quote 87

6.	 In the document, use a pullquote environment with the self-defined macro in the argument
and dummy text, as follows:

\begin{document}
\begin{pullquote}{object=\myquote}
  \lipsum[1]
\end{pullquote}
\end{document}

7.	 Compile and have a look:

Figure 2.17 – A pull quote with text

How it works...

We loaded the lipsum package, which gives us Lorem Ipsum Latin filler text. Then, we loaded the
pullquote package. We defined a macro, which prints the quote.

For our example, we made a paragraph box with lines above and below, printing italic text and the
author’s name. To avoid undesired white space, we commented out the line breaks at some places by
a % sign at the end.

In the document, we made a pullquote environment with that macro as a pulled object within the
argument and dummy text to fill the space around.

pullquote finished the rest for us. It handles the following tasks:

•	 Putting the object into a box

•	 Measuring its height and width

I cant go to a restaurant
and order food because I
keep looking at the fonts on
the menu.

Knuth, Donald (2002)

Lorem ipsum dolor sit amet, con-
sectetuer adipiscing elit. Ut pu-
rus elit, vestibulum ut, placerat ac,
adipiscing vitae, felis. Curabitur
dictum gravida mauris.
Nam arcu libero, non-
ummy eget, consectetuer
id, vulputate a, magna.
Donec vehicula augue
eu neque. Pellentesque
habitant morbi tristique
senectus et netus et malesuada fames
ac turpis egestas. Mauris ut leo. Cras
viverra metus rhoncus sem. Nulla et
lectus vestibulum urna fringilla ultri-

ces. Phasellus eu tellus sit amet tor-
tor gravida placerat. Integer sapien
est, iaculis in, pretium quis, viverra ac,
nunc. Praesent eget sem vel leo ultri-

ces bibendum. Aenean
faucibus. Morbi dolor
nulla, malesuada eu, pul-
vinar at, mollis ac, nulla.
Curabitur auctor sem-
per nulla. Donec var-
ius orci eget risus. Duis

nibh mi, congue eu, accumsan eleifend,
sagittis quis, diam. Duis eget orci sit
amet orci dignissim rutrum.

Tuning the Text88

•	 Adding space for the distance

•	 Normalizing the total height to be an integral multiple of the value specified for the
\baselineskip command to match several text lines

•	 Calculating the vertical position

•	 Determining the shape of the paragraph

•	 Balancing the text columns according to the specified shape

•	 Organizing and printing the entire construct

There are some limitations. Ideally, the text within the environment should consist of simple paragraphs
of text. This means that lists such as itemize, displayed math, section headings, and modified vertical
spacing, in general, are undesirable. Such non-simple elements may trouble the calculation. However,
it’s already great for images and text boxes.

There’s more...

The key=value list in the argument of the pullquote environment supports further parameters.
In addition to the default rectangular shape, there’s a circular shape. We can specify it via the shape
option. The following example will illustrate it. We will create a TikZ picture to have an actual circled
element as a quote. So, we need to load the tikz package as well.

You can test this functionality with the following code, similar to the previous example:

\documentclass{article}
\usepackage{lipsum}
\usepackage{pullquote}
\usepackage{tikz}
\newcommand{\mylogo}{%
  \begin{tikzpicture}
    \node[shape=circle, draw=gray!40, line width=3pt,
      fill={gray!15}, font=\Huge] {\TeX};
  \end{tikzpicture}%
}
\begin{document}
\begin{pullquote}{shape=circular, object=\mylogo}
  \lipsum[1]
\end{pullquote}
\end{document}

Creating a pull quote 89

The code will produce this layout:

Figure 2.18 – A pull quote with an image

TikZ is a highly versatile graphics package. You can read more about it in Chapter 6, Creating Graphics.
We could also have used an external image using \includegraphics. To learn more about this
method, refer to the recipe Shaping an image like a circle in Chapter 5, Working with Images.

For arbitrary shapes specified by shape functions, consult the package manual. It also explains image
inclusion support with the shape=image option. Then, the cut-out dimensions would be calculated
from the image dimensions. To utilize this feature, the free ImageMagick program would need to be
installed on the system since it would then be called internally.

TEX

Lorem ipsum dolor sit amet, con-
sectetuer adipiscing elit. Ut purus
elit, vestibulum ut, placerat ac, adip-
iscing vitae, felis. Curabitur
dictum gravida mauris. Nam
arcu libero, nonummy eget,
consectetuer id, vulputate a,
magna. Donec vehicula augue
eu neque. Pellentesque habitant
morbi tristique senectus et netus
et malesuada fames ac turpis egestas.
Mauris ut leo. Cras viverra metus rhon-
cus sem. Nulla et lectus vestibulum

urna fringilla ultrices. Phasellus eu tel-
lus sit amet tortor gravida placerat. In-
teger sapien est, iaculis in, pretium quis,

viverra ac, nunc. Praesent eget
sem vel leo ultrices bibendum.
Aenean faucibus. Morbi dolor
nulla, malesuada eu, pulvinar
at, mollis ac, nulla. Curabitur
auctor semper nulla. Donec var-

ius orci eget risus. Duis nibh mi,
congue eu, accumsan eleifend, sagittis
quis, diam. Duis eget orci sit amet orci
dignissim rutrum.

3
Adjusting Fonts

When LaTeX was young, documents looked quite similar, since there was little choice of fonts. Over
time, many new fonts have been created and gained support in LaTeX.

To find the perfect fonts for your documents, visit the LaTeX Font Catalogue at https://tug.
org/FontCatalogue.

In this chapter, we will see how to choose fonts globally and adjust them within the document. We
will specifically cover the following:

•	 Using standard font commands

•	 Choosing a document font

•	 Locally switching to a different font

•	 Importing just a single symbol of a font

•	 Printing font tables

•	 Writing bold mathematical symbols

•	 Getting sans-serif fonts for mathematics

•	 Writing double-stroke letters as if on a blackboard

•	 Enabling the searching and copying of ligatures

•	 Suppressing ligatures

•	 Adding a contour

https://tug.org/FontCatalogue
https://tug.org/FontCatalogue

Adjusting Fonts92

Using standard font commands
Before we start, let’s look at some standard LaTeX commands to switch between fonts. Experienced
LaTeX users can skip this section. We will keep this very short, as other introductory texts usually
cover font commands in detail. Specifically, the LaTeX Beginner’s Guide covers fonts in Chapter 10,
Using Fonts, which is an excellent place to start.

Fonts for text have five main attributes:

•	 Family: This denotes the style of a font, whether it has serifs or not, and whether it’s proportional
or monospaced. The latter is also called the typewriter style. You can switch to a family using
one of these commands:

	� \rmfamily: This switches to a Roman font, where the characters have serifs. It is the
default font family.

	� \sffamily: This command changes to a sans-serif font.

	� \ttfamily: This switches to a typewriter font.

•	 Encoding: We covered this in the previous chapter and concluded that T1 encoding is usually
a good choice for common Latin text, which the following command can activate:

\usepackage[T1]{fontenc}

•	 Series: This denotes how heavy a font is. Use the following commands to change the weight:

	� \bfseries: This command activates the bold font.

	� \mdseries: This switches to medium font, which is the default.

•	 Shape: This stands for the overall design style of a font. A font family can contain several shapes:

	� \upshape: This command chooses upright text, which is the default.

	� \slshape: This makes text slanted, where characters appear inclined to the right.

	� \itshape: This switches to an italic font style, which is also inclined to the right but with
particular design and aesthetics, making it very different from the upright shape.

	� \scshape: This switches to small capitals. In this style, lowercase letters look like capital
letters, only smaller. This is a popular choice for an elegant appearance.

Using standard font commands 93

•	 Size: A document has a specific base font size. That size is specified as an option for the document
class, as we did in the first chapter. Then, the following commands can be used to switch to a
different size in the document or within a macro:

	� In increasing order, we get a larger text size using one of the \large, \Large, \LARGE,
\huge, and \Huge commands

	� In decreasing order, we get a smaller text size using any of the \small, \footnotesize,
\scriptsize, and \tiny commands

	� We can switch back to the regular size using the \normalfont command

You can limit the effect of these commands using environments. You can also limit the impact using
curly braces – for example, {\bfseries ... }.

There’s another consistent syntax to modify short pieces of text, using the following commands:

•	 \textrm{...} switches the argument to Roman text, \textsf{...} switches it to sans-
serif, and \texttt{...} switches it to typewriter text

•	 \textbf{...} makes the argument bold, and \textmd{...} makes it medium weight

•	 \textit{...} switches the argument to italic style, \textsl{...} makes it slanted,
\textsc{...} applies the small caps style to it, and \textup{...} chooses the upright
style for it

There’s no such command for font size with text as an argument. It’s unusual anyway to manually
change the font size within the surrounding text. Just think of calculating the interline distance for
the paragraph, which is calculated from the font size.

There’s more...

Classes and packages use these font commands to define consistent styles. As the author, we state
elements such as section headings, footnotes, subscripts, and emphasized snippets, while LaTeX
chooses the corresponding size, shape, and series.

What if you wanted to use those commands yourself? It’s perfect practice to use such font commands
only in the preamble, in macro definitions, and not in the document body text. For example, instead
of scattering \textbf{...} commands all over the text for bold author names, you should define
an author name style – for example, like this:

\newcommand{\authorname}[1]{\textbf{#1}}

This allows you to implement easy and consistent changes in a single place, the preamble, such as
when you would later decide to use lowercase or italics instead.

Adjusting Fonts94

A macro for each required formatting brings logic into the text, and you can modify all occurrences
simultaneously by changing a single macro in the preamble.

Choosing a document font
The default font has the name Computer Modern and is of excellent quality. It’s a whole font family
containing bold, italic, sans-serif, typewriter, and more font versions. All the fonts are well-composed
to fit together.

If you want to change a font, use a complete bundle or carefully select font families based on shape
and size. That’s because, besides giving an excellent appearance to the document overall, it is essential
that all font families are compliant with each other when they are used together.

This recipe will look at some font sets and recommended combinations.

Getting ready

The files for the fonts you would like to use should already be installed on your TeX system. If necessary,
install them. Use the package manager of your LaTeX distribution, such as the MiKTeX package
manager if you use MiKTeX on Windows, or the TeX Live manager tool called tlmgr.

If you have TeX Live installed, it offers the possibility to install entire font collections so that you can
run the tlmgr tool at the command line:

tlmgr install collection-fontsrecommended
tlmgr install collection-fontsextra

If sufficient hard disk space is available, installing all fonts or even all packages of the TeX distribution
could save you some headaches later, ensuring you would not miss any fonts.

TeX Live installs only free fonts without restrictions, distributed by the supplier. There’s a tool called
getnonfreefonts to download and install further fonts. For documentation and downloads,
visit https://www.tug.org/fonts/getnonfreefonts.

How to do it...

Fonts with LaTeX support often come with a package. As the author, you can load the package, and
that package takes care of loading and activating the fonts.

So, commonly, these steps would be followed in the preamble:

1.	 Switch to the required font encoding. Most modern fonts work with T1, as explained in
Chapter 2, Tuning the Text:

\usepackage[T1]{fontenc}

https://www.tug.org/fonts/getnonfreefonts

Choosing a document font 95

2.	 Load the font package:

\usepackage{fontname}

The fontname argument is the name, or the shortcut to the name, of a font that you need to
know, for example, by visiting the LaTeX Font Catalogue.

3.	 If your default document font should be sans-serif, you can switch to that:

\renewcommand{\familydefault}{\sfdefault}

In the following recipe, you will see another method of choosing a font that works locally. Here, we
will continue with a document-wide font choice.

There’s more...

Let’s take a look at some good alternative fonts and their combinations. It’s essential to have a set of
serif, sans-serif, mono-spaced, and math fonts that match each other in size and appearance.

Use each code given next together with the setting \usepackage[T1]{fontenc}.

We will take a look at the sample output so that you can compare the font selections. Note that you
may see a lower quality than in a LaTeX document, as the production of this book may require images
in bitmap format, particularly with the Kindle and EPUB formats. Depending on the print or screen
resolution, this can result in blurry or pixelated output.

You can see the code of the following examples also at https://latex-cookbook.net/
chapter-03, with a preview and online compiling.

To demonstrate this, we will revisit our very first example from the first chapter, only with some of the
code reduced. We will see how Roman, sans-serif, italic, and typewriter fonts harmonize.

Latin Modern

Latin Modern is very similar to the default Computer Modern font. It is of excellent quality. This font
bundle covers the usual requirements, such as having serif, sans-serif, typewriter, and symbol fonts.
Load the fonts using the following command:

\usepackage{lmodern}

https://latex-cookbook.net/chapter-03
https://latex-cookbook.net/chapter-03

Adjusting Fonts96

Latin Modern gives us the following appearance:

Figure 3.1 – Latin Modern

It is still similar to the default font we saw in our very first recipe.

Kepler fonts

The Kepler fonts are a complete and well-designed set of fonts in various shapes. There are upright
and slanted Greek letters, bold math symbols, old-style numbers, and several weights, from light to
bold extended. Even slanted small caps are available. You can get the whole set using this command:

\usepackage{kpfonts}

The appearance of our sample changes to the following:

Figure 3.2 – Kepler fonts

The typefaces harmonize well. They are not very heavy. For example, the typewriter code matches the
grayness of the standard text better, since it doesn’t look as heavy as in the previous sample.

1 Some maths

To see the math font design, we will look at an integral approximation of a function
f(x) as a sum with weights wi. Key commands are \int, \approx and \sum.

∫ b

a
f(x) dx ≈ (b − a)

n∑
i=0

wif(xi) (1)

1 Some maths

To see the math font design, we will look at an integral approximation of a function
f (x) as a sum with weights wi . Key commands are \int, \approx and \sum.

∫ b

a
f (x)dx ≈ (b − a)

n∑

i=0

wif (xi) (1)

Choosing a document font 97

Font combinations

Some fonts exist only as text fonts, math fonts, or in a specific shape. Combining different fonts
regarding taste and scaling can be challenging. Here are some examples that work fine together:

\usepackage{libertine}
\usepackage[libertine,cmintegrals,cmbraces,
  vvarbb]{newtxmath}
\usepackage[scaled=0.95]{inconsolata}

Together, they give us this appearance:

Figure 3.3 – Libertine with nextxmath font and Inconsolata typewriter font

We loaded the Linux Libertine font. It is less dense than a Times font but denser than Computer
Modern. Then, we added the newtxmath font, which is a Roman math font, but told it to use the
Libertine font when appropriate and use Computer Modern integral and braces symbols. The last
option tells the newtxmath package to use another good blackboard font with \mathbb. Try this
selection and see whether you like it; omit options to compare it with the default settings. For details
and further features, refer to the newtx manual via texdoc or at https://texdoc.org/
pkg/newtx.

Finally, we loaded the excellent mono-spaced font Inconsolata for a typewriter shape and scaled it
to match our text font.

Now, let’s try another combination:

\usepackage[sc,osf]{mathpazo}
\usepackage[T1,small,euler-digits]{eulervm}
\usepackage[scaled=0.86]{berasans}
\usepackage[scaled=0.84]{beramono}

1 Some maths

To see the math font design, we will look at an integral approximation of a function f (x) as
a sum with weightswi . Key commands are \int, \approx and \sum.

∫ b

a
f (x) dx ≈ (b − a)

n∑
i=0

wi f (xi) (1)

https://texdoc.org/pkg/newtx
https://texdoc.org/pkg/newtx

Adjusting Fonts98

You can see the difference, such as a more upright shape, for integral and summation signs and variables:

Figure 3.4 – The Mathpazo font with Euler virtual math and Bera for a typewriter style

We loaded the mathpazo package, which gives us a Palatino text font. We replaced its Palatino italic-
like math font with the Euler Virtual Math font. It’s basically the Euler font, with missing symbols
taken from Computer Modern, which is why it’s called virtual.

In addition, we loaded the Bera sans-serif font and the mono-spaced Bera shape for the typewriter
text; both are appropriately scaled.

You may have noticed the sc and osf options for mathpazo, and for Palatino, which gives us a
genuine small caps font and uses old-style figures as default.

Now, you have some excellent suggestions for a fine font selection. Using any of them, your document
will look professionally designed but still different from a LaTeX standard document.

Locally switching to a different font
A typographically good document with a consistent appearance commonly uses just a few fonts, each
with a purpose. Common font choices are as follows:

•	 Serif body text

•	 Sans-serif for headings

•	 Monospaced for source code

Each font family is defined in the preamble, usually implicitly done by packages. There are LaTeX
commands to switch between families, shapes, and weights, but what if you also wanted to use a
completely different font, such as a second serif font? This recipe will help to achieve that.

1 Some maths

To see the math font design, we will look at an integral approximation of a function
f(x) as a sum with weights wi. Key commands are \int, \approx and \sum.

∫b
a
f(x)dx ≈ (b− a)

n∑
i=0

wif(xi) (1)

Locally switching to a different font 99

How to do it...

We will take a look at two ways to switch to a completely different font:

•	 Defining a command

•	 Defining an environment

In each case, we need to know the shortcut code for the font. The code is based on Karl Berry’s
naming scheme; you can read about it by running texdoc fontname at the command line or
online at https://texdoc.org/pkg/fontname. You don’t need to study this guide; just look
at the documentation for the font package you are using. For your convenience, here is a selection of
frequently used font families and their code terms:

•	 Avant Garde: pag

•	 Bookman: pbk

•	 Charter: bch

•	 Computer Concrete: ccr

•	 Computer Modern Roman: cmr

•	 Computer Modern Sans Serif: cmss

•	 Computer Modern Typewriter: cmtt

•	 Courier: pcr

•	 Garamond: mdugm

•	 Helvetica: phv

•	 Inconsolata: fi4

•	 Latin Modern: lmr

•	 Latin Modern Sans Serif: lmss

•	 Latin Modern Typewriter: lmtt

•	 New Century Schoolbook: pnc

•	 Palatino: ppl

•	 Times: ptm

•	 Utopia: put

•	 Zapf Chancery: pzc

•	 Zapf Dingbats: pzd

https://texdoc.org/pkg/fontname

Adjusting Fonts100

We will use the Zapf Chancery font for our recipe.

A command to change the font

To avoid the repetition of command sequences within a document, we will define a macro to change
the font. This ensures consistent future adjustments.

Define a simple macro for the change. Write it into your preamble:

\newcommand{\zapf}{\fontfamily{pzc}\selectfont}

In your document, use it to switch the font. Group the command with the text to be affected. Consider
ending the paragraph before you end the group, which can be done using an empty line or the
\par command.

You can group commands using curly braces:

{\zapf Text in Zapf Chancery\par}

Another way to change the font, which may be a better choice to understand the code clearly, is
the following:

\begingroup
\zapf
Text in Zapf Chancery
\par
\endgroup

An environment for changing the font

Creating an environment is an even more explicit way of restricting the effect of the change. Add the
following command to your preamble:

\newenvironment{zapfenv}{\fontfamily{pzc}\selectfont}{}

Now, you can use it in your document:

\begin{zapfenv}
Text in Zapf Chancery
\par
\end{zapfenv}

You can save some work by moving the final paragraph break to the environment definition. This way,
you don’t always need to type the \par command before closing the environment. The definition
will be as follows:

\newenvironment{zapfenv}{\fontfamily{pzc}\selectfont}{\par}

Locally switching to a different font 101

How it works...

At first, we chose the font family, which has yet to affect the font. We need to use the \selectfont
command to apply the change.

Both grouping and the use of an environment keep the change local. This means that after ending the
group or environment, the following text will have the same font as earlier.

The font properties at the end of the paragraph determine how TeX formats a paragraph, especially
its line spacing. That’s why we break the paragraph within the group or environment, not directly
afterward. Otherwise, for example, in case of switching to a bigger font, we could have a paragraph
with a big font but with a small line spacing from the outer font.

There’s more...

If you want to use several different font families within a document, you can make the macro and the
environment more variable by introducing an argument. The definitions can be changed to the following:

\newcommand{\setfont}[1]{\fontfamily{#1}\selectfont}
\newenvironment{fontenv}[1]{\fontfamily{#1}%
  \selectfont}{\par}

The usage with this command changes to the following:

{\setfont{pzc} Text in Zapf Chancery\par}

Using the environment, it changes to this:

\begin{fontenv}{pzc}
Text in Zapf Chancery
\end{fontenv}

There’s also a command to switch back to the default font family. You can use it to reset to the default
font family of the document explicitly:

\normalfont

You can change more parameters of the chosen font. In such cases, you can define some macros for
several purposes, such as various heading fonts. Look at this example:

\newcommand{\latin}{\fontencoding{T1}\fontfamily{lmr}%
  \fontshape{sl}\fontseries{b}\fontsize{16pt}{20pt}
  \selectfont}

Adjusting Fonts102

Here, we switch to T1 encoded Latin Modern Roman with a slanted shape and bold weight. Furthermore,
we set a font size of 16 pt and a line spacing of 20 pt. For detailed information, refer to the LaTeX2e
font selection guide, accessible at the command line with the texdoc fntguide command and
available for download at https://texdoc.org/pkg/fntguide.

As with all physical font settings, such changes should not be directly called within a document.
They are useful within global formatting commands. For example, to use the Zapf Chancery font in
KOMA-Script chapter headings, use this command:

\setkomafont{chapter}{\normalcolor\zapf\Huge}

Generally, once you know how to adjust the font, you can use those commands within your own
macros, such as to define the appearance of keywords, code, or hyperlinks.

Printing font tables
The last recipes showed how to print text in a particular font. This gives you a visual representation
immediately. In addition, you may want to see the entire set of characters and symbols in a font. You
can let LaTeX print a font table for you to achieve this.

Note
We will use the term glyph when we refer to the graphic representation of a particular character
or symbol in a font.

How to do it...

The fonttable package can print the character set of a font in the shape of a table. It’s straightforward,
as follows:

1.	 In your document’s preamble, load the fonttable package:

\usepackage{fonttable}

2.	 In the document’s body, use the following command to display the character table of the Zapf
Dingbats font:

\fonttable{pzdr}

3.	 Compile, and then you will see the following table in your document:

https://texdoc.org/pkg/fntguide

Printing font tables 103

Figure 3.5 – The Zapf Dingbats character table

How it works...

The \fonttable command prints a table showing all the symbols of the font. Each cell contains the
decimal position in the character set, while columns and rows show the hexadecimal and octal numbering.

There’s more...

The \xfonttable command prints a table of font characters with particular properties. It takes
four arguments – encoding, family, series, and shape. For example, you can print the character table
of the T1 encoded Zapf Chancery medium italic font with the following command:

\xfonttable{T1}{pzc}{m}{it}

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́4x 32 ✁ 33 ✂ 34 ✃ 35 ✄ 36 ☎ 37 ✆ 38 ✇ 39

˝2x
0́5x ✈ 40 ✉ 41 ☛ 42 ☞ 43 ✌ 44 ✍ 45 ✎ 46 ✏ 47

0́6x ✐ 48 ✑ 49 ✒ 50 ✓ 51 ✔ 52 ✕ 53 ✖ 54 ✗ 55

˝3x
0́7x ✘ 56 ✙ 57 ✚ 58 ✛ 59 ✜ 60 ✝ 61 ✞ 62 ✟ 63

1́0x ✠ 64 ✡ 65 ✢ 66 ✣ 67 ✤ 68 ✥ 69 ✦ 70 ✧ 71

˝4x
1́1x ★ 72 ✩ 73 ✪ 74 ✫ 75 ✬ 76 ✭ 77 ✮ 78 ✯ 79

1́2x ✰ 80 ✱ 81 ✲ 82 ✳ 83 ✴ 84 ✵ 85 ✶ 86 ✷ 87

˝5x
1́3x ✸ 88 ✹ 89 ✺ 90 ✻ 91 ✼ 92 ✽ 93 ✾ 94 ✿ 95

1́4x ❀ 96 ❁ 97 ❂ 98 ❃ 99 ❄ 100 ❅ 101 ❆ 102 ❇ 103

˝6x
1́5x ❈ 104 ❉ 105 ❊ 106 ❋ 107 ● 108 ❍ 109 ■ 110 ❏ 111

1́6x ❐ 112 ❑ 113 ❒ 114 ▲ 115 ▼ 116 ◆ 117 ❖ 118 ◗ 119

˝7x
1́7x ❘ 120 ❙ 121 ❚ 122 ❛ 123 ❜ 124 ❝ 125 ❞ 126 127

2́4x 160 ❡ 161 ❢ 162 ❣ 163 ❤ 164 ❥ 165 ❦ 166 ❧ 167

˝Ax
2́5x ♣ 168 ♦ 169 ♥ 170 ♠ 171 ① 172 ② 173 ③ 174 ④ 175

2́6x ⑤ 176 ⑥ 177 ⑦ 178 ⑧ 179 ⑨ 180 ⑩ 181 ❶ 182 ❷ 183

˝Bx
2́7x ❸ 184 ❹ 185 ❺ 186 ❻ 187 ❼ 188 ❽ 189 ❾ 190 ❿ 191

3́0x ➀ 192 ➁ 193 ➂ 194 ➃ 195 ➄ 196 ➅ 197 ➆ 198 ➇ 199

˝Cx
3́1x ➈ 200 ➉ 201 ➊ 202 ➋ 203 ➌ 204 ➍ 205 ➎ 206 ➏ 207

3́2x ➐ 208 ➑ 209 ➒ 210 ➓ 211 ➔ 212 → 213 ↔ 214 ↕ 215

˝Dx
3́3x ➘ 216 ➙ 217 ➚ 218 ➛ 219 ➜ 220 ➝ 221 ➞ 222 ➟ 223

3́4x ➠ 224 ➡ 225 ➢ 226 ➣ 227 ➤ 228 ➥ 229 ➦ 230 ➧ 231

˝Ex
3́5x ➨ 232 ➩ 233 ➪ 234 ➫ 235 ➬ 236 ➭ 237 ➮ 238 ➯ 239

3́6x 240 ➱ 241 ➲ 242 ➳ 243 ➴ 244 ➵ 245 ➶ 246 ➷ 247

˝Fx
3́7x ➸ 248 ➹ 249 ➺ 250 ➻ 251 ➼ 252 ➽ 253 ➾ 254 255

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Adjusting Fonts104

You will get the following output:

Figure 3.6 – The Zapf Chancery italic font character table

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́0x ` 0 ´ 1 ˆ 2 ˜ 3 ¨ 4 ˝ 5 ˚ 6 ˇ 7

˝0x
0́1x ˘ 8 ¯ 9 ˙ 10 ¸ 11 ˛ 12 ‚ 13 ‹ 14 › 15

0́2x “ 16 ” 17 „ 18 « 19 » 20 – 21 — 22 23

˝1x
0́3x 24 ı 25 26 ff 27 fi 28 fl 29 ffi 30 ffl 31

0́4x 32 ! 33 " 34 # 35 $ 36 % 37 & 38 ’ 39

˝2x
0́5x (40) 41 * 42 + 43 , 44 - 45 . 46 / 47

0́6x 0 48 1 49 2 50 3 51 4 52 5 53 6 54 7 55

˝3x
0́7x 8 56 9 57 : 58 ; 59 < 60 = 61 > 62 ? 63

1́0x @ 64 A 65 B 66 C 67 D 68 E 69 F 70 G 71

˝4x
1́1x H 72 I 73 J 74 K 75 L 76 M 77 N 78 O 79

1́2x P 80 Q 81 R 82 S 83 T 84 U 85 V 86 W 87

˝5x
1́3x X 88 Y 89 Z 90 [91 \ 92] 93 ^ 94 _ 95

1́4x ‘ 96 a 97 b 98 c 99 d 100 e 101 f 102 g 103

˝6x
1́5x h 104 i 105 j 106 k 107 l 108 m 109 n 110 o 111

1́6x p 112 q 113 r 114 s 115 t 116 u 117 v 118 w 119

˝7x
1́7x x 120 y 121 z 122 { 123 | 124 } 125 ~ 126 - 127

2́0x Ă 128 Ą 129 Ć 130 Č 131 Ď 132 Ě 133 Ę 134 Ğ 135

˝8x
2́1x Ĺ 136 L’ 137 Ł 138 Ń 139 Ň 140 141 Ő 142 Ŕ 143

2́2x Ř 144 Ś 145 Š 146 Ş 147 Ť 148 Ţ 149 Ű 150 Ů 151

˝9x
2́3x Ÿ 152 Ź 153 Ž 154 Ż 155 IJ 156 İ 157 d̄ 158 § 159

2́4x ă 160 ą 161 ć 162 č 163 d’ 164 ě 165 ę 166 ğ 167

˝Ax
2́5x ĺ 168 l’ 169 ł 170 ń 171 ň 172 173 ő 174 ŕ 175

2́6x ř 176 ś 177 š 178 ş 179 t’ 180 ţ 181 ű 182 ů 183

˝Bx
2́7x ÿ 184 ź 185 ž 186 ż 187 ij 188 ¡ 189 ¿ 190 £ 191

3́0x À 192 Á 193 Â 194 Ã 195 Ä 196 Å 197 Æ 198 Ç 199

˝Cx
3́1x È 200 É 201 Ê 202 Ë 203 Ì 204 Í 205 Î 206 Ï 207

3́2x Ð 208 Ñ 209 Ò 210 Ó 211 Ô 212 Õ 213 Ö 214 Œ 215

˝Dx
3́3x Ø 216 Ù 217 Ú 218 Û 219 Ü 220 Ý 221 Þ 222 SS 223

3́4x à 224 á 225 â 226 ã 227 ä 228 å 229 æ 230 ç 231

˝Ex
3́5x è 232 é 233 ê 234 ë 235 ì 236 í 237 î 238 ï 239

3́6x ð 240 ñ 241 ò 242 ó 243 ô 244 õ 245 ö 246 œ 247

˝Fx
3́7x ø 248 ù 249 ú 250 û 251 ü 252 ý 253 þ 254 ß 255

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Importing just a single symbol of a font 105

You can also use the fonttable package to get an impression of how the font looks in regular text.
The \fonttext command prints some example sentences in the chosen font. Give the font name
as an argument, as follows:

\fonttext{pzcmi7t}

Now, you get some regular text, where you can see the shape and appearance of the font. Apart from
regular text, it also shows ligatures, umlauts, and accents, which are characters with diacritical marks.
This allows you to evaluate the completeness of the character set and whether it’s suitable for your
purpose. This is such a piece of text:

Figure 3.7 – Text using the Zapf Chancery font, with ligatures, umlauts, and diacritical marks

You can try the full code examples at https://latex-cookbook.net/chapter-03.

For more information, run texdoc fonttable at the command line or visit https://texdoc.
org/pkg/fonttable to see the entire package documentation.

Importing just a single symbol of a font
There are many packages that provide symbols. You often get the new commands for additional
symbols by simply loading a package, using the \usepackage command. However, name conflicts
can exist if other packages already use the same command name. It can result in an error or silently
overwriting the command.

In this recipe, we will see how to choose one or more specific symbols from a package and access
them, without loading the whole package.

We will choose a binary relation symbol from the mathabx package. This will be a symbol for less
or equal. Later, we will import its negation.

Getting ready

In this recipe, we need to take a look at the source code of the symbol package to imitate part of what
it does, so prepare yourself:

•	 Locate the mathabx.sty file and open it. At the command prompt, the kpsewhich
mathabx.sty command gives you the location, but you can also use your file manager to
search for it.

¿But aren’t Kafka’s Schloß and Æsop’s

Œuvres often naı̈ve vis-à-vis the dæmonic

phœnix’s official rôle in fluffy soufflés?

https://latex-cookbook.net/chapter-03
https://texdoc.org/pkg/fonttable
https://texdoc.org/pkg/fonttable

Adjusting Fonts106

•	 In mathabx.sty, you can see \input mathabx.dcl. There are symbol declarations.
Open this file as well. It is in the same folder, but the kpsewhich mathabx.dcl command
will find it.

•	 Type texdoc fntguide to open the Guide to LaTeX2e font selection. This is optional, but
the manual can help you to understand it.

How to do it...

We will copy the required lines of code from the font package to our document. Follow the following steps:

1.	 From the mathabx.sty file, copy all the necessary font declarations to your document preamble:

\DeclareFontFamily{U}{matha}{\hyphenchar\font45}
\DeclareFontShape{U}{matha}{m}{n}{
      <5> <6> <7> <8> <9> <10> gen * matha
      <10.95> matha10 <12> <14.4> <17.28> <20.74>
      <24.88> matha12
      }{}
\DeclareSymbolFont{matha}{U}{matha}{m}{n}
\DeclareFontSubstitution{U}{matha}{m}{n}

2.	 From the mathabx.dcl file, copy all the required font declarations to your document preamble:

\DeclareMathSymbol{\leq}{3}{matha}{"A4}
\DeclareMathSymbol{\nleq}{3}{matha}{"A6}

3.	 Test those declarations in the document body:

If $A \leq B$, then $B \nleq A$.

4.	 Take a look at the output:

Figure 3.8 – The redefined relation symbols

Compare this to the symbols in the default font without our redefinition, using the \leq and \not\leq
commands for the relation symbols:

Figure 3.9 – The default relation symbols

You can see the rationale for changing the look of such a specific symbol, regarding parallel lines,
writing habits, and vertical centering.

If A ≤ B, then B �≤ A.

If A ď B, then B ę A.

Writing bold mathematical symbols 107

How it works...

By simply copying and pasting, we copied the behavior of the symbol package. We chose only the
relevant symbols. The commands are described in detail in the aforementioned Guide to LaTeX2e
font selection; refer to it for more information. Here, we primarily need to copy the commands from
the package source code.

We redefined the original \leq command, since we don’t need to have two versions, as it’s recommended
to decide on only one for consistency. However, you can freely choose a name, such as the following:

\DeclareMathSymbol{\myleq}{3}{matha}{"A4}

Writing bold mathematical symbols
There are several ways to get bold mathematical symbols. LaTeX directly provides a classic method.
Take a look at this code:

\boldmath $y=f(x)$\unboldmath

It works like this:

1.	 In text mode, we switch to bold math alphabets.

2.	 We enter math mode, in which bold symbols are always chosen, if available.

3.	 We leave math mode.

4.	 While in text mode, we switch the math alphabet back to normal – non-bold.

However, this makes all symbols a formula bold. This kind of emphasis is somewhat rare today, as it
destroys the uniform grayness of the text from a typographer’s point of view.

A more common requirement is to get bold versions of certain symbols. For example, bold symbols
are often used for vectors and number systems.

In this recipe, we will take the most recommendable approach to get bold symbols.

How to do it...

We will use the bm package, as follows:

1.	 Load the bm package in your preamble. Do this after all packages, which define symbol fonts,
because the package works on a higher level. If you are not sure about this, add the following
line below all font packages:

\usepackage{bm}

Adjusting Fonts108

2.	 Declare a command for each bold symbol:

\bmdefine{\balpha}{\alpha}
\bmdefine{\bX}{X}

3.	 Use the new macros in your document within math mode.

How it works...

The bm package does the following for us:

•	 Determines the available bold math fonts and uses them if available

•	 Defaults to the so-called poor man’s bold if no bold version can be found, which means
overprinting with slight offsets

•	 Keeps the correct spacing of the symbol

•	 Respects the meaning of symbols, such as delimiters

As math mode was made for math symbols, the new bold symbols can only be used in that mode.

There’s more...

There are alternative ways to write bold symbols. Let’s take a look at some of these.

Standard LaTeX

One standard command is \mathbf{argument}, which prints the argument in bold. However,
there are a few drawbacks:

•	 It switches from italics to an upright shape. So, what originally had the look of a variable now
gets the appearance of an operator.

•	 It doesn’t support many special characters – for example, \mathbf{\alpha} prints a regular
non-bold Greek alpha letter.

AMS-LaTeX and amsmath

The amsmath bundle, specifically its amsbsy package, provides the \boldsymbol{argument}
command, which also prints its argument in bold. It works for many more symbols, such as Greek
letters. Even if there’s no bold version available, you can use \pmb{argument}, which provides a
poor man’s bold version of the argument.

Writing bold mathematical symbols 109

Comparing the bm and amsmath packages

This recipe recommends the bm package, which produces a look similar to what \boldsymbol
from amsmath does because it takes exceptional care of meaning and spacing in math mode. For a
visual comparison, let’s build a formula with many bold symbols to see the effects.

Add the following example to your LaTeX editor:

\documentclass{article}
\usepackage{bm}
\bmdefine{\bX}{X}
\bmdefine{\bi}{i}
\bmdefine{\bMinus}{-}
\bmdefine{\bSum}{\sum}
\bmdefine{\bLeft}{(}
\bmdefine{\bRight}{)}
\begin{document}
\[\sum_{i} (- X_{i}) \]
\[\bSum_{\bi} \bLeft \bMinus \bX_{\bi} \bRight \]
\end{document}

Compile that example so that we can compare the regular and bold versions:

Figure 3.10 – A comparison of regular and bold symbols

Now, we switch to the amsmath version:

\documentclass{article}
\usepackage{amsmath}
\newcommand{\bX}{\boldsymbol{X}}
\newcommand{\bi}{\boldsymbol{i}}
\newcommand{\bMinus}{\boldsymbol{-}}
\newcommand{\bSum}{\boldsymbol{\sum}}
\newcommand{\bLeft}{\boldsymbol{(}}
\newcommand{\bRight}{\boldsymbol{)}}
\begin{document}
\[\sum_{i} (- X_{i}) \]
\[\bSum_{\bi} \bLeft \bMinus \bX_{\bi} \bRight \]
\end{document}

∑
i

(−Xi)

∑∑∑
i

(−Xi)

Adjusting Fonts110

The output is as follows:

Figure 3.11 – A comparison of regular and bold symbols with amsmath

You can see what happened:

•	 The summation symbol is not bold

•	 The summation index has moved to another position

•	 The spacing between the parenthesis and the minus sign has become too wide

•	 The italic correction after the X is lost because the kerning is too high – that is, the index is
too far right now

If you already work with the amsmath package and the \boldsymbol command, switching to
the bm package is easy – simply add \usepackage{bm} after \usepackage{amsmath}. The
bm package redefines the \boldsymbol command to become its own version. This way, all flaws
in the previous amsmath example will immediately be fixed.

Getting sans-serif mathematics
There are situations where a sans-serif font is required for documents. It can be, for example, a
requirement by a university or institute. It may even be a design decision – for example, presentation
slides often use a sans-serif font. It’s the default behavior of the LaTeX beamer class.

You can switch to sans-serif for the default text font family using this command:

\renewcommand{\familydefault}{\sfdefault}

In such a case, it’s desirable to print math formulas in sans-serif as well to get a consistent design. The
beamer class already does this.

In this recipe, we will do that for an arbitrary class. We will change all math formulas to have a
sans-serif font.

∑
i

(−Xi)

∑
i
(−Xi)

Getting sans-serif mathematics 111

How to do it...

We will use the sfmath package. Follow these steps to get sans-serif math formulas:

1.	 Load the sfmath package. Do it after font packages or commands that change \sfdefault:

\usepackage{sfmath}

2.	 If you use the default font – that is, Computer Modern – additionally load the
sansmathaccent package:

\usepackage{sansmathaccent}

3.	 In your document, write math formulas as usual. For example, copy this formula from Chapter 1,
Exploring Various Document Classes:

\[
  \int_a^b f(x)\,\mathrm{d}x \approx (b-a)
  \sum_{i=0}^n w_i f(x_i)
\]

4.	 Compile the document. Take a look at the appearance of the output:

Figure 3.12 – The formula with the sans-serif math font

The math formulas are now written in sans-serif. Looking closer, you can see that the sum operator
still has serifs, however.

How it works...

The sfmath package switches to sans-serif math for the whole document. It automatically detects the
available sans-serif font. That’s why loading it after any change to \sfdefault by another package
is essential. For example, if you use Helvetica, write \usepackage{helvet} and then write
\usepackage{sfmath} afterward.

There’s an issue with math accents. For example, with the default Computer Modern font, math
accents such as \tilde, \dot, and \hat may be slightly misplaced, since the Computer Modern
sans-serif font doesn’t provide the positioning information. The sansmathaccent package comes
to the rescue. It corrects that behavior in the specific case of the sfmath package, together with the
Computer Modern font. That’s why we loaded that too.

∫ b

a

f (x) dx ≈ (b − a)
n∑

i=0

wi f (xi)

Adjusting Fonts112

There’s more...

Instead of automatic font selection, you can let the sfmath package explicitly use a particular font
using a package option:

•	 cm: This is for Computer Modern sans-serif

•	 lm: This selects Latin Modern sans-serif

•	 helvet: This is used for Helvetica

•	 cmbright: This sets the CM-Bright font

•	 tx: This chooses the txfonts Times font bundle with a Helvetica-like sans-serif font

•	 px: This selects the pxfonts Palatino font bundle, which also has a Helvetica-like sans-serif font

Using one of the following options, you can gain even more control over the font:

•	 T1experimental: This is used to get a T1 encoded math font. It is experimental and required
if you use the Latin Modern font.

•	 AlphT1experimental: This is for using T1 encoding for the \mathrm, \mathbf,
\mathit, and \mathsf commands.

•	 mathrmOrig, mathbfOrig, mathitOrig, and mathsfOrig: These are used to preserve
the original behavior of the \mathrm, \mathbf, \mathit, and \mathsf commands,
respectively. Otherwise, the \mathrm command would also use, for example, a sans-serif font.

•	 slantedGreek: Use this to get slanted uppercase Greek letters.

So, loading the sfmath package could look like this:

\usepackage[helvet,slantedGreek]{sfmath}

An alternative approach

Instead of the sfmath package, you can load the sansmath package:

\usepackage{sansmath}

Now, you can switch on sans-serif math using the sansmath command.

To end this setting, you can use the \unsansmath command to stop it. There’s even a sansmath
environment that switches to sans-serif math inside. So, this package provides a finer approach in a
situation when you don’t need consistent sans-serif math throughout the entire document.

Writing double-stroke letters like on a blackboard 113

Sans-serif fonts with direct math support

The easiest way is to switch to a sans-serif font that directly supports mathematics. Of course, this
depends on whether you like that font at all. Here are two possibilities.

Arev Sans

Bitstream Vera Sans, designed as a sans-serif screen font, has been extended to include Greek, Cyrillic,
and a lot of mathematical symbols. The result is the arev package. All you need for sans-serif math
and text is to load the package:

\usepackage{arev}

The previous equation now becomes this:

Figure 3.13 – Sans-serif math with the arev package

Where does the name Arev come from? Read the word backward.

Kepler fonts

We already talked about the Kepler font bundle in the first recipe of this chapter. This complete font
set also supports sans-serif math. This is a complete font set that also supports sans-serif math. You
can get sans-serif formulas using the following command with options:

\usepackage[sfmath,lighttext]{kpfonts}

The previous example with Kepler fonts now looks like this:

Figure 3.14 – Sans-serif math with the Kepler fonts

Writing double-stroke letters like on a blackboard
Mathematicians need a lot of symbols for variables, constants, vectors, operators, sets, spaces, and
many other objects. So, they use small and big Latin and Greek letters, calligraphic letters, or write
upright, italic, or bold so that they can be distinguished from each other in the same document.

∫ b


ƒ ()d ≈ (b − )

n
∑

=0

ƒ ()

∫ b

a
f (x)dx ≈ (b − a)

n�

i=0

wi f (xi)

Adjusting Fonts114

When writing on a blackboard or a whiteboard in a lecture, it’s challenging to write bold letters. So,
double-stroke letters were invented. A typographer may prefer these, as they don’t destroy the grayness
of text, in contrast to bold symbols.

How to do it...

We will use the dsfont package. Follow these steps to get double-stroke letters:

1.	 Load the dsfont package:

\usepackage{dsfont}

2.	 In your document, use the \mathds command:

\[
  \mathds{N} \subset \mathds{Z} \subset
  \mathds{Q} \subset \mathds{R} \subset \mathds{C}
\]

3.	 Compile; the output will be the following:

Figure 3.15 – Double-stroke letters

How it works...

The dsfont package provides double-stroke capital letters for the whole alphabet; lowercase letters
are not supported. That’s a design decision. The symbols for 1, h, and k have been added at some stage.

There’s more...

There are alternative font packages – amssymb, bbold, and bbm. They provide similar symbols. I
selected the dsfont package because it matches the style I know from my math studies.

Such symbols, and thousands more, can be found in the Comprehensive LaTeX Symbol List. You
can use the texdoc symbols command at the command line or open it online at https://
texdoc.org/pkg/symbols.

Enabling the searching and copying of ligatures
Sometimes, two or more consecutive characters are joined to a single glyph. This is called a ligature.
Depending on the font, LaTeX commonly does it for ff, fi, fl, ffi, ffl, and so on. That’s because font
makers designed specific glyphs for certain character combinations.

N ⊂ Z ⊂ Q ⊂ R ⊂ C

https://texdoc.org/pkg/symbols
https://texdoc.org/pkg/symbols

Enabling the searching and copying of ligatures 115

While it looks fine in print and on screen, there is a caveat – if you copy text from the produced PDF
file into another document, such as a text or a Word file, the ligatures may appear broken.

Another problem is searching for words containing ligatures in PDF files, which can fail, as the ligature
ff differs from the letter combination ff.

We will now tackle both challenges.

How to do it...

We will stick to the commonly used pdfLaTeX. There are several possible ways to fix it. The first way is this:

1.	 Input the glyphtounicode.tex file into your document’s preamble:

\input{glyphtounicode}

2.	 On the next line, activate the required pdfTeX feature:

\pdfgentounicode=1

How it works...

The glyphtounicode.tex file is part of pdfTeX and should already be installed on your computer.
You can find it using the kpsewhich glyphtounicode.tex command at the command line.
However, if you use the \input command, LaTeX will also find it. That file contains proper translations
for alphabetic presentation, such as the following:

\pdfglyphtounicode{ff}{0066 0066}
\pdfglyphtounicode{fi}{0066 0069}
\pdfglyphtounicode{fl}{0066 006C}
\pdfglyphtounicode{ffi}{0066 0066 0069}
\pdfglyphtounicode{ffl}{0066 0066 006C}

By setting \pdfgentounicode=1, we enabled the translation.

There’s more...

The cmap package also enables you to search for and copy characters to make PDF files. Just load it
like this:

\usepackage{cmap}

The mmap package is an extension of the cmap package, which also works with math symbols. You
can load it instead of cmap, as follows:

\usepackage{mmap}

Adjusting Fonts116

If these methods don’t work with a particular font or encoding and you still need to fix it, refer to the
following recipe.

Suppressing ligatures
A ligature is a combination of several letters in a single glyph. Ligatures improve the readability and
visual quality of text, and thus, we should retain them. However, there may be a reason to disable
them – for example, in verbatim text, such as source code.

Furthermore, it’s possible that searching or copying ligatures in a PDF file would fail, which we
discussed in the previous recipe.

How to do it...

We will now see how to deactivate ligatures. We will use the microtype package:

1.	 Load the microtype package:

\usepackage{microtype}

2.	 Disable ligatures entirely:

\DisableLigatures{encoding = *, family = * }

3.	 If you would like to restrict that feature to a certain font, you can specify it instead, such as
the following:

\DisableLigatures{encoding = T1, family = tt* }

4.	 You can even suppress just selected ligatures using the following command. Specify the letter
that starts the ligature:

\DisableLigatures[f]{encoding = *, family = * }

How it works...

Suppressing ligatures is one of the many features of the microtype package. You can switch off
some or all the ligatures using the aforementioned interface. However, be aware that the text may not
look so nice anymore. Even the kerning of the font is disabled.

Besides the well-known letter ligatures, LaTeX knows a lot more, such as double quote marks, guillemots,
and wide dashes, done by -- and ---. So, it can be a good idea not to turn off all ligatures. When
all are turned off, there are still commands to write those ligatures, such as \textendash and
\textemdash for the wide dashes.

Adding a contour 117

Adding a contour
When text is printed over a background, it is much more with a contour present to overprint the
background. This contour may be white. This way, there would be a nice clearance around the text.

Another utilization would be to improve the visibility of text with very light colors for better reading
on a white background.

Let’s see how to achieve that.

How to do it...

Our example will use the color yellow for chapter headings in a book. This is hardly readable, so we
will add a black contour to improve the readability:

1.	 We will use the scrbook class, which supports chapter headings, so start your document
with the following:

\documentclass{scrbook}

2.	 Load the contour package. Use the outline option to print a real outline; otherwise,
copies of the original text will be used to create a contour. Specify the thickness of the contour
as a length, as follows:

\usepackage[outline]{contour}
\contourlength{1.5pt}

3.	 Define a macro for the new chapter font style of our chapter headings:

\newcommand{\chapterfont}[1]{%
  \protect\contour{black}{\textcolor{yellow}{#1}}}

4.	 Apply that style to the chapter headings:

\setkomafont{chapter}{\Huge\chapterfont}

5.	 Now, your chapter headings will be yellow with a black contour. You can verify this by completing
the code in a small compilable document. Add the following to your document:

\begin{document}
\chapter{Introduction}
Text follows.
\end{document}

Adjusting Fonts118

6.	 Compile, and take a look at the output:

Figure 3.16 – Characters with a contour around them

How it works...

The contour package creates a contour by placing copies of the text around it. The thickness of this
contour can be specified as seen in the preceding figure.

The \setkomafont command can use a macro at the end, which takes an argument. In this case,
this will be the heading text handed over to our newly defined macro.

A vector font is required, which is recommendable in any case. This should be a so-called Type 1 font.
With pdfLaTeX, TrueType fonts are supported too.

If your engine supports it, you can even let contour generate a real outline of the text instead of using
copies, which should result in better quality. For example, with pdfTeX, you can add package options
to enable it, as follows:

\usepackage[pdftex,outline]{contour}

Without those two options, the contour package would auto-detect the engine and create the
contour, by printing text copies behind the original text.

See also
With XeLaTeX and LuaLaTeX, you can use even system fonts such as TrueType fonts and feature-rich
OpenType fonts. That’s LaTeX based on the new engines called XeTeX and LuaTeX.

The TeX User Group has a good page to start with XeLaTeX: https://www.tug.org/xetex/.

LuaLaTeX is a good choice for additional programming features, since it adds the Lua programming
language. You can read more about it at https://www.luatex.org.

11 IntroductionIntroduction

Text follows.

https://www.tug.org/xetex/.
https://www.luatex.org

4
Creating Tables

In this chapter, you will find recipes for crafting aesthetically pleasing tables. Specifically, this chapter
covers the following topics:

•	 Designing a legible table

•	 Positioning tables

•	 Merging cells

•	 Splitting a cell diagonally

•	 Adding footnotes to a table

•	 Aligning numeric data

•	 Coloring a table

•	 Importing data from an external file

With LaTeX, we can create and print complex tables. In this chapter, we will first focus on achieving
good readability. We will then continue to explore helpful design elements.

We assume you know the basics of tabular environments from an introduction to LaTeX such as LaTeX
Beginner’s Guide, Second Edition, Packt Publishing, Chapter 6, Creating Tables. You can find the code
examples of that chapter online at https://latexguide.org/chapter-06.

While the recipes are based on standard LaTeX tabular environments, you can use them similarly
with tabular*, tabularx, tabulary, and related environments. Let’s have a brief look at them:

•	 The tabular* environment, a standard LaTeX environment, achieves a desired table width
by adjusting the spacing between columns. The table width is given as an additional argument
to the environment. The syntax and usage are explained here: https://latex2e.org/
tabular.html.

https://latexguide.org/chapter-06
https://latex2e.org/tabular.html
https://latex2e.org/tabular.html

Creating Tables120

•	 The tabularx environment comes from the package with the same name. It also spans the
table to a given width. It’s probably the most popular and highly recommendable tool for this
purpose. In contrast to the tabular* environment, which adjusts inter-column space, it
achieves that by automatically calculating column widths, trying to distribute the available
space evenly. Read more about it using texdoc tabularx at the command line or access
it online at https://texdoc.org/pkg/tabularx.

•	 The tabulary environment from the tabulary package also balances column widths
but tries to give more space to columns that have more content. This sophisticated approach
introduces new column types with a width proportional to the width of the most extended
entry in each column. You can consult the manual using texdoc tabulary or find it online
at https://texdoc.org/pkg/tabulary.

•	 The array environment works similarly to the tabular environment but is designed for
use in math mode.

Now, let’s look at good table design.

Designing a legible table
When we learn how to write tables with LaTeX, we learn how to write in rows and columns and draw
lines between cells and borders around the table. However, indiscriminately applying borders can
result in a table that looks like the following one:

Figure 4.1 – A table with vertical and horizontal lines

Such a habit may arise from using WYSIWYG (which stands for What You See Is What You Get)
software such as Excel or Word to write tables. However, while such a grid helps enter data, reading
is challenging.

Well-crafted books feature more legible tables. Let’s take a look at how to create a reader-friendly table.

How to do it...

We will use the booktabs package, written with an emphasis on good design. In particular, it
enhances the lines within tables. It pays specific attention to horizontal lines with improved spacing
and adjustable thickness.

∗ 1 2 3
1 1 2 3
2 2 4 6
3 3 6 9

https://texdoc.org/pkg/tabularx
https://texdoc.org/pkg/tabulary

Designing a legible table 121

For our example, we will sketch a table displaying the availability of certain structuring features in
LaTeX’s base classes. Here’s how to do this:

1.	 Specify the class. You could use the article class for now:

\documentclass{article}

2.	 Load the booktabs package:

\usepackage{booktabs}

3.	 Load the bbding package, which provides a checkmark symbol:

\usepackage{bbding}

4.	 Set up a table environment within the document body and create the tabular layout. For
convenience, here’s the complete remaining code to copy:

\begin{document}
\begin{table}
  \centering
  \renewcommand{\arraystretch}{1.6}
  \begin{tabular}{lccccc}
    \toprule
    Class   & Part page  & Chapters   & Abstract   &
                    Front-/Backmatter & Appendix name
    \\
    \cmidrule(r){1-1}\cmidrule(lr){2-2}
    \cmidrule(lr){3-3}\cmidrule(lr){4-4}
    \cmidrule(lr){5-5}\cmidrule(l){6-6}
    article &            &            & \Checkmark \\
    book    & \Checkmark & \Checkmark &            &
              \Checkmark & \Checkmark              \\
    report  & \Checkmark & \Checkmark & \Checkmark &
                         & \Checkmark              \\
    \bottomrule
  \end{tabular}
  \caption{Structuring differences between standard
           \LaTeX\ classes}
  \label{comparison}
\end{table}
\end{document}

Creating Tables122

5.	 Compile the document and review the outcome:

Figure 4.2 – A table with only horizontal lines

How it works...

We used a table environment to generate a table with a caption. This is the standard container for
producing tables with captions that can also be referenced. The table and tabular environments
are explained in introductions to LaTeX such as LaTeX Beginner’s Guide. Please consult such a book
to learn the basics if needed.

Now, let’s focus on the actual structure and the line improvements. In a nutshell, an ampersand symbol
(&) ends a column, and a double backslash (\\) completes a row.

While you can end a row at any time using \\, it’s good practice to use all column separators (&),
even if the cells are empty. It makes inserting values in cells easier and helps align subsequent rows
and their respective columns.

Ending a line in the source code after \\ is also a good idea. Additionally, align ampersands, if
possible, as this enhances code readability and makes filling the correct columns easier. Remember
that several consecutive spaces are treated as one, so additional spacing won’t negatively impact your
document’s appearance.

The booktabs package provides commands for horizontal lines, also called rules. This term originates
from the British typesetting tradition. The key distinctions between the booktabs package and
standard LaTeX tabular lines are the following:

•	 There is more space above and below a line by default

•	 There are several kinds of rules with customizable thickness

Class Part page Chapters Abstract Front-/Backmatter Appendix name

article �

book � � � �

report � � � �

Table 1: Structuring differences between standard LATEX classes

Designing a legible table 123

In particular, the commands are as follows:

•	 \toprule: This command is used for a thick line at the top by default

•	 \midrule: This command prints a line within the table, which is by default thinner than a
top or bottom line

•	 \bottomrule: This command prints a line at the bottom of the table, having the same
thickness as the top line by default

•	 \cmidrule: This command is used for a line spanning over one, two, or more columns and
has the same thickness as the \midrule command

The last command has a more intricate syntax, as follows:

\cmidrule[thickness](trim){a-b}

The thickness argument is optional and can specify your desired thickness, such as 1pt.

The trim argument is also optional and lets you specify horizontal trimming: r for right and l for
left. Both can be combined, as we did in the preceding example.

The mandatory a-b argument defines that the line will span from column a to column b.

All commands understand an optional argument for thickness; for instance, you could also write the
\toprule[1pt] command to generate a top line with a width of 1 pt.

While the fundamental use can be seen in our example, the package manual explains more options for
tweaking, such as changing the default thickness for each kind of rule and adjusting trimming. You
can read the manual by running texdoc booktabs at the command line or visiting https://
texdoc.org/pkg/booktabs.

There’s more...

In addition to using excellent tools such as the booktabs package, well-considered design is the
key to great tables. So, let’s sum up valuable advice given by typographers:

•	 Respect the reading direction. This means you should always design with the following
principles in mind:

	� Write text horizontally

	� Never use vertical lines

	� A few horizontal lines can support reading in the structure, such as below the header or
between groups of content

https://texdoc.org/pkg/booktabs
https://texdoc.org/pkg/booktabs

Creating Tables124

These rules can be changed for tables when columns are expected to be read from top to bottom.

If you create a very wide table and choose to print it rotated by 90 degrees, such as by using
the sidewaystable environment from the rotating package, you have a new reading
direction, and text and lines should follow it as indicated in the preceding instructions.

•	 Minimize what doesn’t belong to the information, such as lines, dividers, boxes, colors, and
font changes. Consequently, don’t use double lines.

•	 Leave white space around the table. Then, you may not need top and bottom lines.

Generally, white space gives invisible support to the structure, so we increased the default
\arraystretch value of 1 to 1.6. In the upcoming recipe, the impact of structuring with white
space becomes even more apparent.

Here’s some final advice for optimizing the table layout:

•	 Align text for optimal readability

•	 Align decimal values at the decimal point for easier comparison

•	 Instead of repeatedly using units within individual cells, place the unit in the column header

•	 Instead of repeating values, consider merging neighboring cells

The recipes later in this chapter will support us regarding these points.

Finally, let’s look at the positioning of the caption. Traditionally, captions for figures are positioned
below the figure, so you first see the visual content and then receive an explanation and additional
context. Standard LaTeX treats tables in the same fashion.

However, as tables can often contain complex and data-rich content, consider placing the caption
before the table. This allows you to explain the content and context, so the reader understands it
before studying the data within the table. That’s a widely followed convention. Take a look at the TeX
FAQ at https://texfaq.org/FAQ-destable to learn about table design with captions at
the top. We will do this in the Adding footnotes to a table recipe later in this chapter, so you also have
a proper example.

Positioning tables
Tables can get quite big. If there’s insufficient free space on a page to accommodate the table, that
table will be pushed to the next page. This would leave white space at the end of the page. You could
manually move some text to compensate. But imagine having a large document with many tables;
manually moving images to balance page breaks can become cumbersome. Fortunately, LaTeX offers
an automated solution for managing this.

https://texfaq.org/FAQ-destable

Positioning tables 125

How to do it...

This is the standard way of including tables:

1.	 Use a table environment.

2.	 Center the content, if desired, using the \centering command.

3.	 Write a caption.

4.	 Add a label for cross-referencing.

5.	 Write the table content using a tabular environment.

A typical code sequence looks like this:

\begin{table}[htbp!]
  \centering
  \caption{A description}
  \label{tab:name}
  \begin{tabular}{...}
    ...
  \end{tabular}
\end{table}

You can reference the table number in your document using the \label{tab:name} command.

How it works...

That automatic process is known as floating. This principle applies to table and figure environments
when you include images, which we’ll discuss in the following chapter. When you use a table
environment, its content can float within the text to find the next available location while allowing
the text to occupy the page space optimally. For instance, if a page runs out of space, a table can move
to the top of the following page. Text, which comes after the table in the document code, would be
repositioned before the table or figure to fill the page. This might seem a bit perplexing initially, but
it ultimately aids in optimizing page breaks.

In case you find that a table has moved too far away from its intended location, you can add placement
options. We used the htbp! option in the preceding code. These characters allow placement here
(if space allows), top, bottom, or on a dedicated page. The exclamation mark relaxes some default
typographical constraints to ensure tables don’t float too far ahead. All options together cause the
table’s output to be as close as possible to the position in the code. Omit an option to disallow certain
places. For example, without the b option, a table would not float to the bottom but may float to the
top of a page.

Creating Tables126

The \caption command at the beginning sets text above the table and gives it a number. If you
use the \label command for cross-referencing, ensure it comes after the \caption command to
obtain the correct number. The tab: prefix has been used because it’s a good practice in code writing
to indicate types of cross-references, such as fig: for figures and eq: for equations.

There’s more…

If the automated positioning of tables or figures isn’t the best fit for your document, there are methods
to restrict or temporarily deactivate it. We will look at these options now.

Limiting floating

Floating tables and figures don’t cross chapter borders. However, they may go to a later section within
the same chapter. If you would like to limit the floating behavior so tables and figures remain within
the same section, load the placeins package in your preamble with the section option:

\usepackage[section]{placeins}

You can also load the placeins package without the option. It gives you the new \FloatBarrier
command, which you can use to prevent floating beyond this point.

Note
The \clearpage command ends a page and forces the output of all floating tables and figures
that still need to be placed.

Fixing the position of a table or figure

Sometimes, tables or figures should stay at a certain position. Disabling floating is straightforward:
don’t use a table or figure environment. However, if you would like to use the same syntax as
the preceding, just without floating, you can achieve it using the float package. Add the following
command to your document preamble:

\usepackage{float}

Then, start a table environment with the H option:

\begin{table}[H]

Merging cells
As suggested in the table design advice in the first recipe of this chapter, instead of duplicating identical
values in adjacent cells, you can leave the other cells empty if it’s evident to the reader that the same
values apply.

Merging cells 127

We can support the meaning by merging cells and centering the cell value over the new width or height.

How to do it...

Merging and centering can be done horizontally, vertically, or both combined. We will start with the
horizontal method, spanning cells over multiple columns. This is often used for table headers that
apply to several columns. So, in this recipe, we will combine header texts.

As modeling clay, we will take the differences between various LaTeX compilers. While the LaTeX
format remains the same, the underlying TeX engine causes differences. We will arrange them now.
Follow these steps:

1.	 Specify the class; you could use the article class for now:

\documentclass{article}

2.	 Load the array package, which provides useful commands:

\usepackage{array}

3.	 Load the booktabs package to get nicer lines:

\usepackage{booktabs}

4.	 Load the metalogo package to write TeX logos:

\usepackage{metalogo}

5.	 Define how you would like to stretch the table row spacing:

\renewcommand{\arraystretch}{1.6}

6.	 To get the table, copy the following code into your editor; an explanation follows. For completeness,
this is the whole remaining document body:

\begin{document}
\begin{tabular}{@{}p{1.5cm}p{1.6cm}
                >{\raggedleft}p{1cm}
                >{\raggedright}p{1.6cm}r@{}}
  Compiler & \multicolumn{2}{c}{Input}
           & \multicolumn{2}{c}{Output} \\
   \cmidrule(r){1-1}\cmidrule(lr){2-3}
   \cmidrule(l){4-5}
           & Encoding & Images  & Fonts & Format \\
   \cmidrule(lr){2-2}\cmidrule(lr){3-3}
   \cmidrule(lr){4-4}\cmidrule(l){5-5}
   \LaTeX & utf8, ascii, applemac, latin1, \ldots

Creating Tables128

     & EPS & Type 1, Type 3 & DVI \\
   pdf\LaTeX & utf8, ascii, applemac, latin1, \ldots
    & PDF PNG JPG & Type 1, Type 3 & PDF \\
  \XeLaTeX, \LuaLaTeX & utf8 & PDF PNG JPG & Type 1,
          Type 3, OpenType, Graphite, TrueType & PDF\\
\end{tabular}
\end{document}

7.	 Compile the document and take a look at the output:

Figure 4.3 – A table with merged header cells

How it works...

We will take a minute to look at the tabular column specifier options:

•	 @{code}: This option inserts the given code instead of the column separation space. The
code can be a command, such as a symbol or a space macro. Here, we set it to be empty, thus
achieving left alignment with the lines.

•	 p{width}: This option specifies that cells have a specific width and have line breaks. The p
stands for paragraph.

Compiler Input Output

Encoding Images Fonts Format

LATEX utf8, ascii,
applemac,
latin1, . . .

EPS Type 1,
Type 3

DVI

pdfLATEX utf8, ascii,
applemac,
latin1, . . .

PDF
PNG
JPG

Type 1,
Type 3

PDF

X ELATEX,
LuaLATEX

utf8 PDF
PNG
JPG

Type 1,
Type 3,
Open-
Type,
Graphite,
TrueType

PDF

Merging cells 129

•	 >{code}: This option inserts code before a cell of the column, while <{code} does it afterward.
This comes from the array package and is documented in the manual. Here, we use it to
insert the \raggedleft command to avoid the default full justification. Full justification
isn’t so nice in table cells because, in narrow columns, it could lead to excessive space between
words that are hard to hyphenate.

•	 r, l, and c: These options stand for right-aligned, left-aligned, and centered, respectively.

Now, look at the Input cell, which spans over two columns. We used the following command:

\multicolumn{number of columns}{formatting}{text}

Here, we set 2 as the number of columns to span, c for centered formatting, and finally, the cell
text follows.

Note
In addition to cell merging, the \multicolumn command is an easy way to alter the formatting
of a single cell. The \multicolumn{1}{formatting}{text} command defines the
formatting of a single cell independently of the table’s global column formatting.

We used very few lines for this table to convey its structure, which is nevertheless clearly visible thanks
to the spacing.

There’s more...

As mentioned, we can also span cells over multiple rows. When dealing with an odd number of rows
to span, we could simply fill the row in the middle. So, let’s look at a case where we need centering
by merging.

Compile this short example showing selected classes of major LaTeX bundles:

\documentclass{article}
\usepackage{booktabs}
\usepackage{multirow}
\begin{document}
\begin{tabular}{cc}
  Bundle & Main classes \\
  \cmidrule(lr){1-1}\cmidrule(lr){2-2}
  \addlinespace
  \multirow{4}{*}{\LaTeX\ base} & article  \\
       & book     \\
       & report   \\
       & letter   \\
  \addlinespace

Creating Tables130

  \multirow{4}{*}{KOMA-Script}  & scrartcl \\
       & scrbook  \\
       & scrreprt \\
       & scrlttr2 \\
\end{tabular}
\end{document}

This code will produce the following table:

Figure 4.4 – A table with vertically merged cells

We loaded the multirow package and used this command:

\multirow{number of rows}[struts]{width}[correction
   value]{text}

Here, the number of rows argument may even be negative, in which case the spanning would
reach backward. The optional correction value argument can be a positive or negative LaTeX
length added for fine-tuning.

The other optional struts argument is only interesting if you insert so-called \bigstrut commands.
A strut is an invisible vertical rule matching the full height of a line of text; see also https://
latex2e.org/_005cstrut.html. A big strut shall match a table row height, including the
\hline space. Here, you may specify their number. If you want to explore this, please consult the
multirow manual, in the Using bigstrut section. Open it via texdoc multirow at the command
line or find it at https://texdoc.org/pkg/multirow.

While you can define a width value for the text, we wrote * to use the natural text width of the cells’ text.

Splitting a cell diagonally
If we need a header for the first column but also for the entries of the first row, the top-left cell can be
split to contain both header entries, separated by a diagonal line.

Bundle Main classes

LATEX base

article
book
report
letter

KOMA-Script

scrartcl
scrbook
scrreprt
scrlttr2

https://latex2e.org/_005cstrut.html
https://latex2e.org/_005cstrut.html
https://texdoc.org/pkg/multirow

Splitting a cell diagonally 131

How to do it...

We will use the slashbox package. It is part of MiKTeX but not part of TeX Live. Users of TeX Live
can download it from CTAN at https://ctan.org/pkg/slashbox.

In this recipe, we will build a timetable. It’s intended to be filled out by hand later, so we use vertical
lines for delimiting fields. Follow these steps:

1.	 Use any document class; here, we use the article class:

\documentclass{article}

2.	 Load the slashbox package:

\usepackage{slashbox}

3.	 Within the document body, create the tabular layout:

\begin{document}
\renewcommand{\arraystretch}{1.8}
\begin{tabular}{|l|c|c|c|c|c|}
  \hline
  \backslashbox{Time}{Weekday} & Monday   & Tuesday
                & Wednesday    & Thursday & Friday \\
  \hline
  8--10  & & & & & \\
  10--12 & & & & & \\
  12--14 & & & & & \\
  14--16 & & & & & \\
  \hline
\end{tabular}
\end{document}

4.	 Compile and take a look:

Figure 4.5 – A diagonally split header cell

����������Time
Weekday

Monday Tuesday Wednesday Thursday Friday

8–10

10–12

12–14

14–16

https://ctan.org/pkg/slashbox

Creating Tables132

How it works...

We used vertical lines because the table should be read by day, that is, by column. The slashbox
package provides these two commands:

•	 \slashbox[width][trim]{left top text}{right bottom text}

•	 \backslashbox[width][trim]{left bottom text}{right top text}

The optional arguments are for adjusting when the automatic calculation doesn’t fit your needs. You can
specify the width of the slashed column. You can choose trimming of the default left and right column
separation space by stating l, r, or lr for left trim, right trim, or cutting at both sides, respectively.

The diagonal line can run from the upper-left to the lower-right corner, like a backslash, or from the
lower-left to the upper-right corner, like a slash symbol.

Adding footnotes to a table
It’s advisable to keep entries concise in tables, especially row header text; otherwise, the table is more
complicated to read. For example, long headers could make it harder for our eyes to follow a row
with short entries but wide spaces. One approach to adding necessary details while keeping the table
short and crisp is using footnotes.

Rather than placing the notes at the foot of the page, adding them directly at the foot of the table is a
good idea. We also call them table notes. These are some reasons for and benefits of this approach:

•	 Tables are usually self-contained objects for reference.

•	 While commonly footnotes are written at the bottom of the page to retain the text flow, it’s
enough to move a table note below the table so as not to disturb the table content. There’s no
need to push notes further down to the bottom of the page.

•	 Tables can be repositioned to achieve better page breaks; in such cases, their notes should
remain together with that table.

•	 Table notes can be independent of text footnotes. This saves headaches about keeping footnote
numbering in order.

Footnotes in minipage environments already work this way, so you could wrap your table in a
minipage environment as a first possibility. In this recipe, we will take a more sophisticated approach.

Adding footnotes to a table 133

How to do it...

Let’s first quickly look at the caption. We placed it above the table so the reader knows what data
comes next. We used the tablecaptionabove option of the scrartcl class to get proper
caption spacing. That’s because conventional LaTeX caption spacing is designed for captions below
a table, not above it. Take a look at https://texfaq.org/FAQ-destable for information
and alternative ways.

We are using the threeparttable package, which can generate footnotes below tables with the
same width as the table body. With a normal tabular or related environment, which may be inside
a table environment, take the following steps:

1.	 Load the threeparttable package in your document preamble:

\usepackage{threeparttable}

2.	 Surround your original tabular environment with a threeparttable environment. In other
words, place the \begin{threeparttable} command before the tabular environment
and put the \end{threeparttable} command after the tabular environment.

3.	 Within a table cell, add table notes using the \tnote{symbol} command, where the symbol
argument is mandatory and can be any number, letter, or symbol you choose. Here’s an example:

… & cell text\tnote{1} & …

4.	 Right before the end of the threeparttable environment, which means right before the
\end{threeparttable} command, insert a tablenotes environment. There, insert
your footnotes in the form of a list:

\begin{tablenotes}
  \item[1] Your first remark
  \item[2] Another remark
\end{tablenotes}

Let’s apply this to the first recipe of this chapter, as follows:

1.	 Take the full recipe code and insert commands as described in the preceding steps. For
our example, we will add three notes. We will use the scrartcl class together with the
tablecaptionabove option because we place the caption above the table. The code now
becomes the following:

\documentclass[tablecaptionabove]{scrartcl}
\usepackage{booktabs}
\usepackage{bbding}
\usepackage{threeparttable}
\begin{document}
\begin{table}

https://texfaq.org/FAQ-destable

Creating Tables134

  \centering
  \renewcommand{\arraystretch}{1.6}
   \caption{Structuring differences between standard
           \LaTeX\ classes}
  \label{comparison}
  \begin{threeparttable}
    \begin{tabular}{lccccc}
      \toprule
      Class   & Part page  & Chapters
        & Abstract\tnote{1}
        & Front-/Backmatter\tnote{2}
        & Appendix name\tnote{3} \\
      \cmidrule(r){1-1}\cmidrule(lr){2-2}
      \cmidrule(lr){3-3}\cmidrule(lr){4-4}
      \cmidrule(lr){5-5}\cmidrule(l){6-6}
      article &            &            & \Checkmark\\
      book    & \Checkmark & \Checkmark &            &
                \Checkmark & \Checkmark             \\
      report  & \Checkmark & \Checkmark & \Checkmark &
                           & \Checkmark             \\
      \bottomrule
    \end{tabular}
    \begin{tablenotes}
      \item[1] An environment: \verb|\begin{abstract}|
               \ldots \verb|\end{abstract}|
      \item[2] Commands: \verb|\frontmatter|,
               \verb|\mainmatter|, \verb|\backmatter|
      \item[3] The \verb|article| class provides the
               \verb|\appendix| command without
               ``Appendix'' prefix.
    \end{tablenotes}
  \end{threeparttable}
\end{table}
\end{document}

2.	 Compile that code and examine the changes:

Adding footnotes to a table 135

Figure 4.6 – Table notes

How it works...

In contrast to the conventional \footnote command, using the threeparttable package
requires additional manual effort. We need to do the following:

•	 Choose symbols or numbers

•	 Take care of the numbering order ourselves

•	 Write the list of notes manually with the correct symbol or number

Like a tabular environment, a threeparttable environment takes an optional argument for
vertical placement, which can be t for top, b for bottom, or c for centered alignment. Top alignment is
the default. That environment doesn’t float. However, you can put the threeparttable environment
into a table environment as usual, with a caption and a label for referencing so that it can float.

The behavior of threeparttable notes can be customized by options. They can be globally given to
the \usepackage command or locally applied to a tablenotes environment. These are as follows:

•	 para: Table notes will subsequently be printed without line breaks in between

•	 flushleft: There will be no hanging indentation for table notes

•	 online: Instead of superscript, table note symbols will be printed by the \item command
in standard size at the line base

•	 normal: This is the default formatting, which means superscript symbols, hanging indentation,
and line breaks between table notes

Table 1: Structuring differences between standard LATEX classes

Class Part page Chapters Abstract1 Front-/Backmatter2 Appendix name3

article �

book � � � �

report � � � �

1 An environment: \begin{abstract} . . . \end{abstract}
2 Commands: \frontmatter, \mainmatter, \backmatter
3 The article class provides the \appendix command without “Appendix” prefix.

Creating Tables136

Further commands for fine-tuning are provided and are described in the package manual. You can
open it by typing texdoc threeparttable at the command line or on the internet at https://
texdoc.org/pkg/threeparttable.

Aligning numerical data
Standard alignment options in table columns are left, right, and centered. However, we may need more
precise alignment options when dealing with numerical values. The most effective way to compare
number magnitudes is by aligning digits at specific positions, such as decimal points. Integers can
simply be right aligned. Numbers with decimal fractions could be filled up with zeroes to get decimal
points aligned, but that would add vacuous noise. Adding zeroes also could lead to a wrong impression
of accuracy.

In the case of fractions, it’s good to align at the decimal points directly. In this recipe, we will
implement this.

How to do it...

The siunitx package is primarily intended for typesetting values with units consistently. It provides
a tabular column type for aligning at decimal points as an additional benefit. We will use this now
as follows:

1.	 Load the siunitx package in your preamble:

\usepackage{siunitx}

2.	 Use S as the column specifier for a column with alignment at decimal points like this:

\begin{tabular}{lSS}

3.	 Within a table cell, simply write the number. For good legibility, insert some spaces in the
source code to get decimal points aligned. Repeating space characters doesn’t hurt, though
it’s not required.

4.	 To avoid this special alignment, such as in the case of row headers, enclose the cell text in curly
braces, like this:

… & {atomic mass} & …

https://texdoc.org/pkg/threeparttable
https://texdoc.org/pkg/threeparttable

Aligning numerical data 137

Let’s try it with a concise but complete example. We will use the siunitx package described just
now, as well as the chemformula package. The chemformula package makes typing chemical
formulas easier. We will see more of this package in Chapter 11, Using LaTeX in Science and Technology.
Follow these steps:

1.	 Put this code into your LaTeX editor:

\documentclass{article}
\usepackage{booktabs}
\usepackage{siunitx}
\usepackage{chemformula}
\begin{document}
  \begin{tabular}{lSS}
    \toprule
              & {atomic mass} & {total mass} \\
    \midrule
    \ch{C}    &    12.011     & 12.011       \\
    \ch{H}    &     1.00794   &  6.04764     \\
    \ch{C2H6} &               & 30.06964     \\
    \bottomrule
  \end{tabular}
\end{document}

2.	 Compile that example and take a look at the outcome:

Figure 4.7 – A table with values aligned at the decimal point

How it works...

By default, an S column places the numbers so that the decimal points are in the center of the cell
and horizontally aligned to each other.

atomic mass total mass

C 12.011 12.011
H 1.007 94 6.047 64
C2H6 30.069 64

Creating Tables138

You can customize the alignment of numbers in an S column. Proper alignment implies reserving
space for the numbers. You can specify the number of integers, decimal places, and alignment type
by using the \sisetup command of the siunitx package, as follows:

\sisetup{table-format = 2.5,
    table-number-alignment = right}

Here, the table-format parameter will be parsed so that the siunitx package knows we reserve
space for two integer figures and five decimal places.

The format string can be even more sophisticated. Look at this string:

table-format = +2.5e+2

It additionally reserves space for an exponent with two decimals, an exponent sign, and a mantissa
sign. This is useful for numbers such as -22.31442 x 10⁻¹⁰.

The package manual describes further options. It is worth reading since the siunitx package is
an excellent choice when you need to print numbers with units. You can read the manual by typing
texdoc siunitx at the command line or at https://texdoc.org/pkg/siunitx.

We will meet this package again in Chapter 11, Using LaTeX in Science and Technology.

There’s more...

Further packages can be used for the same purpose, namely dcolumn and rccol. Both provide
tabular column types for the proper alignment of numbers. They are the classics, but siunitx is a
capable, innovative, and very actively maintained package that even impelled LaTeX3 development,
so you can safely use it for future work.

Coloring a table
Sometimes, we see zebra-striped tables with alternating row colors. This design is intended for
supporting horizontal reading without the need for separating lines.

While some people like that design, some find it harder to read. For example, while looking at a table,
the eye may scan one color first and then jump back, scanning the rows with the other color. So, when
we decide to go for this design, we should consider the following:

•	 Make the color variation small to prevent the eye from jumping across even or odd rows. The
information should be visually stronger than the distinction between those two layers.

•	 Keep a good contrast between color and text. For example, black text with a dark gray background
is hardly readable.

•	 Have a different color for the header to emphasize it.

https://texdoc.org/pkg/siunitx

Coloring a table 139

How to do it...

We will use the xcolor package for this task. The sample data for this table, which we will also use
in later recipes, has been taken from https://distrowatch.com. It measures the interest in
Linux distributions based on page hits over a year in 2023.

Let’s work on an example as follows:

1.	 Start with a document class:

\documentclass{article}

2.	 Load the xcolor package with the tables option for table support:

\usepackage[table]{xcolor}

3.	 Declare alternating row colors:

\rowcolors{2}{gray!30}{white}

4.	 Define a macro for the table header appearance:

\newcommand{\head}[1]{%
  \textcolor{white}{\textbf{#1}}}

5.	 Enlarge the default tabular line spacing:

\renewcommand{\arraystretch}{1.5}

6.	 In the actual tabular environment, use the \rowcolor{color} command to color any
row and the \head{text} command for cells with header commands. Here is the code for
the table within the remaining document body:

\begin{document}
\begin{table}
  \centering
  \sffamily
  \begin{tabular}{rlr}
    \rowcolor{black!75}
       & \head{Distribution} & \head{Hits} \\
     1 & MX Linux    & 2717 \\
     2 & Mint        & 2097 \\
     3 & EndeavourOS & 2055 \\
     4 & Manjaro     & 1382 \\
     5 & Debian      & 1316 \\
     6 & Ubuntu      & 1083 \\
     7 & Pop! OS     & 1063 \\
     8 & Fedora      & 1056 \\

https://distrowatch.com

Creating Tables140

     9 & openSUSE    & 748  \\
    10 & Lite        & 685
  \end{tabular}
\end{table}
\end{document}

Figure 4.8 – A zebra-striped table

How it works...

The xcolor package implicitly loads the colortbl package, the standard package for coloring
tables. The colortbl package provides three main commands:

•	 \columncolor[color model]{color name}[left overhang][right
overhang]: This command has an optional xcolor model argument, which can be rgb
or cmyk. The mandatory color name argument can be any color name supported by the
xcolor package. The remaining two optional arguments define the overlap to the left and
the right. Only the color name is mandatory. The \columncolor command is intended for
placing within tabular column definitions by the >{…} syntax.

•	 \rowcolor: This command has the same arguments. The command has to be at the beginning
of the first cell in the row and is valid for the entire row.

•	 \cellcolor[color model]{color name}: This command colors a single cell.

Distribution Hits

1 MX Linux 2717

2 Mint 2097

3 EndeavourOS 2055

4 Manjaro 1382

5 Debian 1316

6 Ubuntu 1083

7 Pop! OS 1063

8 Fedora 1056

9 openSUSE 748

10 Lite 685

Importing data from an external file 141

Using these commands, you can color tables in any way you want.

The xcolor package provides another useful command, which we used in our example:

\rowcolors[commands]{start row number}{odd-row}{even-row}

This command colors odd and even rows with alternating colors, starting from a given row number.
Optionally, you can supply commands executed at each row. Examples of such commands are
\hline and \noalign{…}.

In our example, we used just one \rowcolor command for the header and one \rowcolors
command for the remaining rows. We used white for the text color for better readability within a
header row with a darker color. Alternatively, with the black text color, you could choose a color that
keeps the text readable, such as with the \rowcolor{gray} command.

Both the colortbl and xcolor package manuals explain further commands and details, accessible
via texdoc, at https://texdoc.org/pkg/xcolor and https://texdoc.org/pkg/
colortbl, respectively.

Importing data from an external file
It can be convenient to fetch the data for the row entries from an external file. This is particularly useful
for large datasets, especially when the data originates from an external data source or application, such
as an Excel spreadsheet. Such applications often provide an export feature, particularly exporting to a
Comma-Separated Values (CSV) file. Such files have plain text format with a simple tabular structure,
with each line representing a table row and commas separating the cells.

Only a few lines are needed to import such a CSV file into a LaTeX table.

How to do it...

We will load the datatool package, let it import data from a comma-separated file, sort it, and
print it. Follow these steps:

1.	 Store your data in the same folder as your main tex document. Here, we will use the data
from the previous recipe, stored in a file named linux.csv:

Distribution,Hits
MX Linux,2717
Mint,2097
EndeavourOS,2055
Manjaro,1382
Debian,1316
Ubuntu,1083
Pop! OS,1063

https://texdoc.org/pkg/xcolor
https://texdoc.org/pkg/colortbl
https://texdoc.org/pkg/colortbl

Creating Tables142

Fedora,1056
openSUSE,748
Lite,685

2.	 Start with a document class, such as the article class, and load the booktabs package for
improved tabular layout and the datatool package for data handling:

\documentclass{article}
\usepackage{booktabs}
\usepackage{datatool}

3.	 With the following datatool commands, load the data from the file and sort it:

\DTLloaddb{Linux}{linux.csv}
\DTLsort{Hits=descending}{Linux}

4.	 Start the document and set up a tabular environment:

\begin{document}
\begin{tabular}{rlr}
  & Distribution & Hits \\
  \cmidrule(lr){2-2}\cmidrule(lr){3-3}

5.	 Use this command to iterate through the data, building tabular rows:

  \DTLforeach{Linux}{%
    \distribution=Distribution, \hits=Hits}{%
      \theDTLrowi & \distribution & \hits \\}

6.	 End the tabular environment and the document:

\end{tabular}
\end{document}

7.	 Compile and take a look at the output:

Figure 4.9 – Displaying imported data

Distribution Hits

1 MX Linux 2717
2 Mint 2097
3 EndeavourOS 2055
4 Manjaro 1382
5 Debian 1316
6 Ubuntu 1083
7 Pop! OS 1063
8 Fedora 1056
9 openSUSE 748
10 Lite 685

Importing data from an external file 143

How it works...

The datatool package is a powerful tool for working with external data. Here, we read in a file,
sorted it by a chosen key, and printed it.

Let’s review the steps we took:

1.	 We loaded the datatool package using the \usepackage command.

2.	 We loaded the linux.csv file into a database with the name Linux. The command syntax
is as follows:

\DTLloaddb[options]{database name}{file name}

Here, options may contain the following settings:

	� omitlines=n: This option specifies an integer number of n lines to skip at the start.

	� noheader=true or noheader=false: This option indicates whether the file contains
a header. By default, the presence of a header is assumed. If you specify noheader without
a value, true is assumed.

	� keys={key1,key2,…}: This option specifies the keys for the database; it would override
values from an existing header.

	� header={header1,header2,…}: This specifies the headers; it would override a header
from the file. For example, these header entries would be used in easy printing with the
\DTLdisplaydb{database name} command.

3.	 By default, it’s assumed that commas separate the data. You can change this using the
\DTLsetseparator{character} command to use any character or by calling the
\DTLsettabseparator command without an argument to choose tab as the separator.

4.	 We sorted the database using this command:

\DTLsort[replacement keys]{sort criteria}{database
  name}

Here, the sort criteria argument is a list of keys with an optional order, which can be set
to descending or ascending. The latter is the default if you just list keys. If the current
key is empty, the optional list of replacement keys is used in the given order.

5.	 While we could simply print all using the \DTLdisplaydb{database name} command
or the \DTLdisplaylongdb{database name} command, when using the longtable
package, we iterated through the database for maximum flexibility:

\DTLforeach[condition]{database name}{assign
  list}{text}

Creating Tables144

The result of this macro is text for each row, which can include commands but with replacements
done with the assign list argument values in the form of a command=key list, as in our
recipe. We did not use the optional condition argument, which is a Boolean value that can
be calculated using the \ifthenelse command and related commands. This value, which
is by default true, decides whether to use text for the current row.

The manual is comprehensive and worth reading. We just saw a short example here, but you can do a lot
more. As with most packages, you can access the datatool manual by typing texdoc datatool
at the command line and reading it online at https://texdoc.org/pkg/datatool.

https://texdoc.org/pkg/datatool
https://texdoc.org/pkg/datatool

5
Working with Images

In LaTeX, you can easily include external images in your documents. This chapter begins with essential
pointers for including images and then explores helpful techniques for arranging and adjusting them.

Specifically, we will cover the following:

•	 Including images with optimal quality

•	 Customizing images

•	 Adding a frame to an image

•	 Cutting an image to get rounded corners

•	 Shaping an image like a circle

•	 Drawing over an image

•	 Aligning images

•	 Arranging images in a grid

•	 Stacking images

LaTeX supports a limited range of image file formats. First, we will speak about supported formats
and their practical differences in usability and quality. Then, we will explore methods to enhance the
decorative aspects of images, particularly photos.

Finally, we will arrange images with alignment, in a grid, or layering.

While this chapter is about using images, you can read about creating images in Chapter 6, Creating Graphics.

Starting from this chapter, we’ll streamline the content to focus on necessary commands without
reiterating the \documentclass command at the start and the \end{document} command
at the end of each example. You can access, edit, compile, and download the code examples for this
chapter at https://latex-cookbook.net/chapter-05.

https://latex-cookbook.net/chapter-05

Working with Images146

Including images with optimal quality
First, it’s crucial to ensure that your images are of good quality initially.

Bitmap images, such as JPG/JPEG and PNG files, possess a fixed number of pixels, so they may
become blurry or pixelated when scaled.

Vector images, in contrast, maintain quality even when scaled. You can zoom in and out, and they
keep looking fine. An example of this is the Scalable Vector Graphic (SVG) format. LaTeX does not
natively support it. However, SVG images can be converted to Portable Document Format (PDF)
and PostScript (PS), which are also vector formats, though they can contain bitmap images.

SVG images can also be converted to TiKZ images. We will speak about TikZ in Chapter 6, Creating
Graphics. In any case, opting for vector formats over bitmap formats is advisable.

Today, the pdfLaTeX compiler is the most widely used. It allows the direct inclusion of PDF images.
Furthermore, it supports the mentioned bitmap formats, JPG/JPEG and PNG. Classic LaTeX, which
generates Device Independent (DVI) format files, only supports the Encapsulated PostScript
(EPS) format. This PostScript format has some limitations; for example, it cannot span several
pages. It’s intended to be embedded in documents. To simplify usage, an EPS file contains additional
dimension information.

Getting ready

When creating diagrams or drawings through an external program, always try to export them in a
vector format. Often, programs can export to PDF or PS format. There are also printer drivers, which
generate PDF or PS files based on GhostScript, a widely used PostScript language interpreter.

If your images are initially bitmap images, such as photos or screenshots, there’s usually nothing to
gain by simply converting to PDF or EPS format. Situations in which images can be vectorized by
interpolating with a tool are pretty rare and are for relatively simple images. For example, the Inkscape
graphics program has a so-called tracing feature for vectorizing bitmaps.

So, for different types of images, we should prepare differently:

•	 Drawings and diagrams: Save them in a scalable format such as PDF or EPS.

•	 Photos: Capture them with high resolution. If the camera saves as JPG, you can directly include
them. However, change them to PNG format if you want to edit them. That’s because PNG
provides lossless compression, unlike JPG, where you may lose quality whenever you save it.

•	 Screenshots: Save these in PNG format and not as JPG. It’s a bitmap anyway, but PNG preserves
the original quality without lossy compression. You can obtain high-resolution screenshots of
smaller dialog windows if you switch to a larger system font and use the highest screen resolution.

Don’t resize the images before including them. The PDF viewer or printer driver will do the scaling
based on the device’s resolution.

Including images with optimal quality 147

How to do it...

The graphicx package serves as our primary tool. Follow these steps:

1.	 Select a supported format. If necessary, convert your image to a compatible format. With
classical LaTeX, which produces DVI output, use the EPS format. With pdfLaTeX, use PDF,
JPG/JPEG, or PNG formats.

2.	 Load the graphicx package in the document preamble:

\usepackage{graphicx}

3.	 At the place in the document where the image should appear, insert the following command:

\includegraphics{filename}

If you need to fit a certain width or height, add it as an argument, as follows, using, for example,
half of the width of the text:

\includegraphics[width=0.5\textwidth]{filename}

Note that you can use absolute values with units such as cm, mm, or in, like this:
\includegraphics[width=5cm, height=3cm,
  keepaspectratio]{filename}

Here, the keepaspectratio option ensures image proportions remain intact. The width
and height options are the maximum bounds, so the image will not exceed any of those
two dimensions.

4.	 For bitmaps, you may enable interpolation as follows:

\includegraphics[interpolate]{filename}

How it works...

The \includegraphics command has a mandatory argument: the image’s filename. The name
can be used without a filename extension. In that case, pdfLaTeX would first look for a .pdf file
with that name; if it cannot find it, it tries .png, then .jpg, and then .PDF, .PNG, and .JPG, in
that order. That’s for convenience; you can use the full name with an extension if ambiguity arises.

Moreover, the \includegraphics command understands numerous options in the key=value
format. This way, we specified width and height. Additional options are shown in the following recipe.

The interpolate option activates the interpolation for bitmaps, which PDF supports. If you zoom
in on a raster image, you won’t see big pixels. Instead, a capable PDF reader would apply a smooth
transition between adjacent color values.

Working with Images148

There’s more...

In the previous chapter, in the Positioning tables section, we talked about automatic table placement
and using captions and labels for referencing. That mechanism, which we call floating, works the
same with images.

The code of a floating figure looks like the following:

\begin{figure}[htbp!]
  \centering
  \includegraphics{filename}
  \caption{Some text}
  \label{fig:name}
\end{figure}

The explanation of the htbp! options and how floating works in general are in the previous chapter.

There’s an extensive document about using imported graphics in LaTeX. It includes a thorough
explanation of the concept of floats. You can find it on CTAN at https://mirrors.ctan.org/
info/epslatex/english/epslatex.pdf.

Customizing images
Before you add an image such as a photo to your document, it’s best to preprocess it using graphics
software. LaTeX isn’t designed for image post-processing. However, there are some basic ways to
customize how an image is included.

How to do it...

The graphicx package allows customization via simple options:

•	 You can scale an image by specifying a scaling factor, such as the following:

\includegraphics[scale=0.5]{filename}

•	 You can resize an image to a fixed width using width and height options, as in the
previous recipe.

•	 You can rotate an image by specifying an anti-clockwise rotation angle, like so:

\includegraphics[angle=90]{filename}

https://mirrors.ctan.org/info/epslatex/english/epslatex.pdf
https://mirrors.ctan.org/info/epslatex/english/epslatex.pdf

Adding a frame to an image 149

•	 You can rotate around a particular origin by adding a key, such as c for the center, B for the
baseline, and l, r, t, and b for left, right, top, and bottom, respectively. A combination would
be understood, such as tl for the top-left corner. The default rotation point is the center of
the image:

\includegraphics[angle=90,origin=c]{filename}

•	 You can trim and clip, such as in this example, where we cut 1 cm off the left, 2 cm off the
bottom, 3 cm off the right, and 4 cm off the top:

\includegraphics[trim=1cm 2cm 3cm 4cm,clip]{filename}

For a comprehensive understanding, read the details in the package manual, which is accessible by
typing texdoc graphicx at the command line or by visiting https://texdoc.org/pkg/
graphicx.

Adding a frame to an image
One way to add a basic frame to an image or to text is by using one of the following commands:
\frame{...}, \framebox{...}, or \fbox{...}. However, these commands generate
a plain box with thin black lines and a certain distance to the content. How about changing the
color, line thickness, or distance? The classic way to do the latter is by changing the LaTeX lengths,
\fboxrule and \fboxsep. It can be a bit cumbersome, particularly when dealing with varying
lengths. Fortunately, there’s an easier way to accomplish that.

How to do it...

We will load the adjustbox package. It provides several handy commands for modifying boxes. It
implicitly loads the graphicx package and exports its own features to the \includegraphics
command. Follow these steps:

1.	 Load the xcolor package:

\usepackage{xcolor}

2.	 Load the adjustbox package together with the export option:

\usepackage[export]{adjustbox}

3.	 At the place in your document where the image is to be placed, use the \includegraphics
command, as in the previous recipe. This time, add the cframe option:

\includegraphics[width=10cm,
  cframe=red!50!black 5mm]{filename}

https://texdoc.org/pkg/graphicx
https://texdoc.org/pkg/graphicx

Working with Images150

4.	 Compile the document, as I did with a photo of my dog. Now, you can see a frame fitting right
around the image:

Figure 5.1 – A photo with a frame

How it works...

The xcolor package provides commands for specifying colors by name and blending different
colors. Here, we used the syntax red!50!black, which means we’ve selected a color that’s a 50:50
percent mix of red and black.

The adjustbox package can export some of its features. We activated that export; now, we can use
additional options with the known \includegraphics command. We chose the cframe option
for a colored frame, which has this syntax:

cframe=color thickness separation margin

The color parameter is mandatory and requires the xcolor package. The other values are optional
lengths but are understood in this order. So, we chose a frame thickness of 5 mm and kept the default
zero inner separation and outer margin.

A similar frame option works without the color value and up to three lengths given for thickness,
separation, and margin.

The cfbox and fbox options work in a similar war. They internally rely on the \fbox command
instead of the \frame command. In other words, they use a default thickness of the \fboxrule
value and, for content separation, the \fboxsep value.

Cutting an image to get rounded corners 151

Cutting an image to get rounded corners
In the previous recipe, we obtained an image with sharp corners. However, there might be instances
where you’d prefer rounded corners. Let’s see how to achieve this neat effect.

How to do it...

We will use a few features of a very modern (La)TeX graphics package called TikZ. People usually
spell it that way. Its name and features are explained in Chapter 6, Creating Graphics, where we will
talk much more about it. Follow these steps:

1.	 Load the tikz package in your preamble:

\usepackage{tikz}

2.	 Declare a box for storing the image:

\newsavebox{\picbox}

3.	 Define a macro that allows us to use our recipe repeatedly:

\newcommand{\cutpic}[3]{
  \savebox{\picbox}{\includegraphics[width=#2]{#3}}
  \tikz\node[draw, rounded corners=#1, line width=4pt,
    color=white, minimum width=\wd\picbox,
    minimum height=\ht\picbox, path picture = {
      \node at (path picture bounding box.center) {
        \usebox{\picbox}};
    }] {};}

4.	 Use the new macro within your document to include an image:

\cutpic{1cm}{8cm}{filename}

5.	 Compile the document to see the effect:

Figure 5.2 – A photo with a frame and rounded corners

Working with Images152

How it works...

After loading the TikZ package, we created a box for storing the image. We defined a macro; its first
task is to put our image into the box using the \savebox command.

The new \cutpic macro takes three arguments:

•	 A length value for the rounded corners

•	 The width of the image

•	 The filename of the image

The \tikz command is an abbreviation for \begin{tikzpicture} … \end{tikzpicture},
which is handy for simple figures. Here, the figure is just a single node with some options.

The rounded corners=width option produces the shape of a rounded rectangle for the node. We
chose to let it draw in white color with 4 pt thickness. At this place, you can choose any color you like.

While the node has an empty node text, we required a minimum height and width to match the size
of our image. Now, our box comes into play: we measured its width and height for handing over to
the node with the \wd and \ht TeX primitive commands.

Finally, we used an advanced TikZ option. The path picture=code option fills a drawing path
by executing the given code. That path will clip the result of the code. So, instead of filling it with a
color, a pattern, or a shade, we printed out the image using the \usebox command. For this, we
encapsulated the image in its own node and placed it at the center.

There’s more...

TikZ often provides multiple methods to achieve the same result. An alternative approach would be
to use the current bounding box node to define a clip path or simply draw a rectangle with rounded
corners in white over the image.

Using nodes has advantages, such as getting anchors for alignment, connecting by edges or arrows,
naming that node and referring to it, and getting shapes and further options right away. You can also
use nodes for alignment, as seen in a later recipe in this chapter.

While we’ll explore several TikZ examples in Chapter 6, Creating Graphics, we will again use it to help
us customize images in the following recipes.

Shaping an image like a circle
A circular shape can add a stylish touch to portrait photographs, an organizational chart, or photos
on a website.

Shaping an image like a circle 153

How to do it...

As in the previous recipe, we will define a TikZ macro for this purpose. Take a look at the following steps:

1.	 Load the TikZ package:

\usepackage{tikz}

2.	 Define a macro so we can use it often:

\newcommand{\roundpic}[4][]{
  \tikz\node [circle, minimum width = #2,
    path picture = {
      \node[#1] at (path picture bounding box.center){
        \includegraphics[width=#3]{#4}};
    }] {};}

3.	 Use the new macro within your document to include an image:

\roundpic[xshift=-1cm,
  yshift=-2.6cm]{5.8cm}{9cm}{filename}

4.	 Compile the document. When I used a photo of my dog (here using xshift and yshift
to select the desired area of the photo), I got the following image:

Figure 5.3 – A photo cut into a circle

How it works...

Refer to the previous recipe to understand the TikZ node construction with the path picture
option. This time, we used a circle for the outer node, so our image got cropped in a circular shape.
We used four arguments. The first optional argument can contain node options. In our example, we
used them to shift the image for better positioning in the cut window. The subsequent options are the
node’s width, the image’s width, and, of course, the name of the image file.

Working with Images154

There’s more...

Typically, when we insert images, the baseline is at the bottom. We can change it to be at the center
for positioning. In such a case, we can give the node a name and then tell TikZ to use the center of
the node as the baseline for aligning the entire image, as follows:

\newcommand{\roundpic}[4][]{
  \tikz[baseline=(photo.center)]
    \node (photo) [circle, minimum width = #2,
      path picture = {
        \node [#1] at (path picture bounding box.center)
        {\includegraphics[width=#3]{#4}};
}] {};}

Then, the center of the photo would be aligned with the baseline of adjacent text. This alignment may
be preferred for small images embedded within the text.

Drawing over an image
If you need to add text, arrows, or other annotations to an image, it’s recommended to do so directly
within LaTeX. This offers several advantages compared to using external graphics software:

•	 Font consistency: You can use the same fonts in your annotations in the image as those used
throughout your LaTeX document, ensuring visual uniformity

•	 Style consistency: Styles such as line widths, colors, and arrow types adhere to the style of
your other drawings

•	 Scalability: Your annotations scale seamlessly and will remain sharp and high-quality

•	 Macro integration: You can use macros from your preamble or packages in your annotations

How to do it…

We will draw with TikZ. We use the onimage package for this example. If it’s not available in your TeX
distribution or on CTAN, you can download it from Launchpad: https://bazaar.launchpad.
net/~tex-sx/tex-sx/development/view/head:/onimage.dtx. The .dtx filename
extension stands for DocTeX, which is used to have the package and documentation in a single file.
You can read more about it at https://texfaq.org/FAQ-dtx.

https://bazaar.launchpad.net/~tex-sx/tex-sx/development/view/head:/onimage.dtx
https://bazaar.launchpad.net/~tex-sx/tex-sx/development/view/head:/onimage.dtx

Drawing over an image 155

Here’s how to use that .dtx file:

1.	 Download onimage.dtx to your computer.

2.	 Compile onimage.dtx with pdfLaTeX. That generates several files, including a .pdf and
a .sty file.

3.	 Read the onimage.pdf file, which is the package documentation.

4.	 Copy the onimage.sty file to your LaTeX document folder.

Now, follow these steps with your own LaTeX document:

1.	 Within the LaTeX document preamble, load the onimage package:

\usepackage{onimage}

2.	 Define TikZ styles for your annotations:

\tikzset{annotations/.style = {
  tsx/show help lines,
  every path/.append style = {very thick,
    color = yellow},
  every node/.append style = {yellow,
    font = \bfseries\sffamily}}}

3.	 In your document body, use the tikzonimage environment:

\begin{tikzonimage}[width=.8\textwidth]{filename}
  [annotations]
  \draw[dashed] (0.59,0.71)  -- (0.86,0.12)
                (0.634,0.71) -- (0.86,0.12);
  \draw[dotted] (0.56,0.85)  -- (0.86,0.12)
                (0.66,0.85)  -- (0.86,0.12);
  \draw (0.3,0.4) edge[->] (0.68,0.4)
        (0.3,0.4) edge[->] (0.3,0.93);
  \node[rotate=90] at (0.28,0.8) {height};
  \node            at (0.62,0.35) {velocity};
\end{tikzonimage}

4.	 Compile the document. To show the result, I again used a photo of my dog. You can see the
additional illustrations:

Working with Images156

Figure 5.4 – Drawing over a photo

How it works...

Loading the onimage package automatically loaded the TikZ graphics package.

Using the \tikzset command, we defined a style named annotations to apply it at several
places easily. In this style, we activated the tsx/show help lines option, which draws a grid
over the image. We can use this later to get coordinates visually. For the final document, we comment
out or delete this option to remove the grid.

Furthermore, we defined that every path in such annotations should be drawn yellow and very
thick, and all text in nodes should have a bold sans-serif font in yellow. Since we did this only for the
annotations style, other drawings won’t be affected.

For the image itself, we used the tikzonimage environment. Its syntax is as follows:

\begin{tikzonimage}[image options]{filename}[TikZ options]
  ... your TikZ code ...
\end{tikzonimage}

This handy environment has the following features:

•	 It implicitly creates a tikzpicture environment with the given TikZ options

•	 It includes the image within a node, passing image options and the filename parameter
to the \includegraphics command

Aligning images 157

•	 It provides a coordinate system with the origin at the lower-left corner of the image

•	 The coordinate system adjusts relative to the image size’s dimensions, wherein the point (1,1)
denotes the upper-right corner of the image

•	 It draws a grid of helplines if desired

As this has already been done for us, we can focus on the actual drawing commands. We used standard
TikZ syntax:

•	 Drawing dashed and dotted lines between coordinates in parentheses; all lines inherit the
very thick and yellow style

•	 Drawing arrows, which are edges with an arrow shape, is done by the -> option

•	 Placing a rotated node and a regular node with text, inheriting the yellow bold sans-serif font
from the annotations style

The grid helps to get the desired coordinates for precise placement, adjust the estimated coordinates, and
compile again. As the coordinates are relative, resizing the entire image does not impact their accuracy.

You can leverage additional TikZ capabilities, such as shapes, arrows, colors, fadings, and transparency.
We will explore some of these functionalities in Chapter 6, Creating Graphics.

Aligning images
By default, the baseline of an image is at its bottom. So, adjacent images would be aligned at the bottom.
There may be instances where top alignment or vertical center alignment is preferred.

How to do it...

We will use the \height command for shifting to get vertical centering. Take the following steps:

1.	 Load the graphicx package. For testing, or if you don’t have images, add the demo option
to use black rectangles in place of images:

\usepackage[demo]{graphicx}

2.	 In your document, use the \raisebox command together with half of the \height value:

\raisebox{-0.5\height}{\includegraphics[height=4cm,
  width=8cm]{filename1}}
\hfill
\raisebox{-0.5\height}{\includegraphics[height=2cm,
  width=4cm]{filename2}}

Working with Images158

3.	 Your images (in the demo case, black-filled rectangles) will be vertically aligned:

Figure 5.5 – Images with vertically-centered alignment

How it works...

The \height command returns the current height above the baseline. The\totalheight command
would include the height below the baseline, which, in our case, doesn’t exist.

We raised each box by minus half its height to get vertical centering. Even text before or after would
be aligned to the middle because we lowered all the boxes.

Writing the following command would give us top alignment of the images:

\raisebox{-\height}{\includegraphics{...}}

The adjustbox package provides many more commands for aligning boxes with text or images.

Instead of black-filled rectangles as placeholder images, LaTeX provides example images. We will use
them in the final recipe of this chapter.

Arranging images in a grid
The \includegraphics command could load a more extensive set of photos, plots, or diagrams
with some space in between, for example, positioned using minipage environments. A \foreach
loop may help if the filenames can be generated programmatically.

In this recipe, we will produce a grid of aligned images with arbitrary names, which will be easy
to arrange.

How to do it...

We will use a tabular environment for positioning. That’s no surprise yet. However, we will read
in the tabular cell content, which we will then use as filenames for inclusion. The collcell
package provides the required feature. Follow these steps:

1.	 Load the graphicx package and the collcell package:

\usepackage{graphicx}
\usepackage{collcell}

Arranging images in a grid 159

2.	 Define a command for including an image with a chosen width and height:

\newcommand{\includepic}[1]{%
  \includegraphics[width=3cm,height=2cm,
  keepaspectratio]{#1}}

3.	 Define a new column type that uses that new command in its column specification. We use
the letter i for an image:

\newcolumntype{i}{@{\hspace{1ex}}
  >{\collectcell\includepic}c<{\endcollectcell}}

4.	 In your document, use a tabular environment with the new column type. Again, photos
of my dog will serve as an example. The cells contain the basic filename – that is, meadow for
meadow.jpg, and so on:

\begin{tabular}{iii}
  meadow  & sea     & beach \\
  blanket & tunnel  & tired \\
  pond    & chewing & halfasleep
\end{tabular}

5.	 Compile the document and check out the result:

Figure 5.6 – A gallery of photos

Working with Images160

How it works...

To streamline our code, we used the \newcolumntype command of the array package. This
package is implicitly loaded by the collcell package. The @{\hspace{1ex}} expression is the
code for changing the inter-column space to 1ex, which is helpful in adjusting the tabular spacing.
The array syntax >{...} inserts code before a cell, while the <{...} syntax inserts code afterward.

However, we cannot simply write code such as >{\includegraphics{} and <{}}, just to
enclose the filename in the \includegraphics{...} command. The compiler interprets the
curly braces literally, mixing array syntax with the \includegraphics command argument braces.

The collcell package comes to the rescue. Its \collectcell command starts reading the cell
content. Its \endcollectcell command states the end of that content, which will be provided
to the user’s macro. The latter is the argument for the \collectcell command; in our case, it’s
the \includepic command. We defined this macro to encapsulate the \includegraphics
command and our desired options, including the image width.

With this column type in use, we can effortlessly input image file names in the cells. Of course, it can
be combined with conventional column types as needed.

Stacking images
We can also stack images on top of one another, such as for a fancy photo collage. This can be combined
with previous recipes such as rotating and framing. Let’s focus on stacking here.

How to do it...

The stackengine package allows things to be placed above each other. It can handle text and math
as well as images. Let’s try it with the latter, using sample images. Here’s how to proceed:

1.	 In your document preamble, load the mwe package. It provides dummy images and automatically
loads the graphicx package, which we otherwise load ourselves, as before:

\usepackage{mwe}

2.	 Load the stackengine package:

\usepackage{stackengine}

3.	 In the document body, use the \stackinset command. It takes six arguments. This sounds
like a lot of work, but it allows flexible positioning. The syntax is as follows:

\stackinset{horizontal alignment}
    {horizontal offset}
    {vertical aligment}
    {vertical offset}
    {image above}{image below}

Stacking images 161

In our recipe, we use right and top alignment and shift by 2 cm horizontally and vertically:
\stackinset{r}{2cm}{t}{2cm}{%
  \includegraphics{example-image}}{%
  \includegraphics[angle=-10]{example-image}}

4.	 Compile, and we get the following:

Figure 5.7 – Stacked images

How it works...

Let’s look at the specifics of the earlier syntax:

•	 Horizontal alignment can be l for left, c for center, or r for right aligned. In the case of right
alignment, the offset means shifting to the left by this length, otherwise to the right.

•	 Vertical alignment can be t for top, c for center, or b for bottom alignment. In the case of top
alignment, the offset means shifting down by this length, otherwise, upward.

You can also specify negative lengths or leave it empty for zero offset.

Apart from images, you can use \stackinset for stacking letters and symbols, for example,
the following:

\stackinset{c}{}{c}{}{\star}{O}

This produces a big letter O with a star inside as follows:

Figure 5.8 – Stacked symbols

ImageImage

O�

Working with Images162

You can mix images and text. This way, you could place any annotation over an image, such as by
using commands such as the following:

\stackinset{l}{1em}{t}{1em}{Inside annotation}{%
  \includegraphics[width=5cm]{example-image}}

This results in the following:

Figure 5.9 – An image with an annotation

You can nest multiple \stackinset commands to add several annotations or stack several
images together.

To see all features in detail, look at the stackengine manual. You can access it using the texdoc
stackengine command at the command line or open it at https://texdoc.org/pkg/
stackengine.

Image
Inside annotation

https://texdoc.org/pkg/stackengine
https://texdoc.org/pkg/stackengine

6
Creating Graphics

In this chapter, we will explore LaTeX’s extensive graphic capabilities. You will learn to create impressive
graphics of various kinds.

This chapter covers the following topics:

•	 Building smart diagrams

•	 Constructing a flowchart

•	 Growing a tree

•	 Building a bar chart

•	 Drawing a pie chart

•	 Drawing a Venn diagram

•	 Putting thoughts into a mind map

•	 Generating a timeline

A picture is worth a thousand words. Presenting a single image can significantly simplify the
understanding of complex concepts. Diagrams, in particular, help to distill pertinent information,
showcase relationships and process sequences, and facilitate quantity comparisons.

In this chapter, you will primarily find recipes for various diagram types, complemented by further
valuable graphic recipes.

All the recipes in this chapter are based on the highly capable graphics package pgf/TikZ. pgf stands for
Portable Graphics Format, serving as the backend, while TikZ is the name of the frontend. That name
is an abbreviation for “TikZ ist kein Zeichenprogramm,” which translates as “TikZ is not a drawing
program.” The following recursive acronym, created in the tradition of GNU, should tell potential
users what to expect – no WYSIWYG, which means you cannot see the output during creation but
after compiling. Nonetheless, TikZ offers all the advantages of TeX, including high quality, macros,
reusability, and access to a wealth of libraries and packages.

Creating Graphics164

Another capable graphics package for LaTeX is PSTricks, which has a rich history and numerous
features, is built on PostScript, and works with conversion tools to generate PDF documents.

In this chapter, we opt for TikZ due to its highly readable syntax, comprehensive documentation, and
compatibility with all TeX engines (pdfTeX, XeTeX, and LuaTeX) and formats (LaTeX, plain TeX, and
ConTeXt). Finally, our choice is influenced by TikZ’s increasing popularity in the LaTeX community
over the years.

We won’t cover drawing basic shapes such as rectangles or circles; the TikZ manual already covers
this. Instead, we’ll begin by exploring modern packages designed for specific purposes, enabling the
creation of comprehensive and functional graphics.

For learning TikZ, I recommend my book LaTeX Graphics with TikZ, Packt Publishing, 2023. It
covers many details, including drawing and aligning nodes, edges, and arrows, and using colors,
transparency, styles, coordinate calculations, and transformations. Visit https://tikz.org to
learn more about the book.

Getting ready

To compile the recipes in this chapter, ensure you have TikZ installed. Note that while TikZ is the
common name, the actual package name is pgf, which you can locate in your LaTeX installation’s
package manager. To work with this book, you need version 3.0 or later.

Many of the recipes also utilize additional packages alongside TikZ. Be sure to have each mentioned
package installed when starting a recipe. In any case, I recommend a complete TeX installation.

To provide numerous complete and usable recipes in this graphics chapter, we won’t delve into the
basics of TikZ commands. You can always refer to the reference manual to learn about them. I assume
you have some familiarity with nodes, edges, and styles, but feel free to consult the manual when you
need a deeper understanding of these concepts. However, I will provide detailed explanations of how
the recipes function.

For more in-depth customization and understanding, keep the TikZ manual readily available. You can
easily access it by typing texdoc tikz or texdoc pgf at the command line. This also applies
to the other packages used in this chapter.

If you’re reading the book without access to a TeX installation with documentation, or if you use an
online LaTeX solution such as Overleaf, visit https://texdoc.org/pkg/tikz. The excellent
website at https://tikz.dev provides the manual in an HTML version.

The websites https://tikz.net and https://texample.net are collections of hundreds
of TikZ graphics examples, with full source code and an integrated online compiler. If you want to
draw anything, an example from those websites can be an excellent start.

https://tikz.org
https://texdoc.org/pkg/tikz
https://tikz.dev
https://tikz.net
https://texample.net

Building smart diagrams 165

Building smart diagrams
At first, let’s focus on a quick win – getting a diagram with minimal technical effort. So we would just
need to fill in our thoughts.

The smartdiagram package makes building diagrams of various types very easy.

How to do it...

Once you have loaded the smartdiagram package, you only need a simple command. Follow
these steps:

1.	 As always, begin with any document class:

\documentclass{article}

2.	 Load the smartdiagram package:

\usepackage{smartdiagram}

3.	 Start the document:

\begin{document}

4.	 Define the diagram. An option in square brackets defines the type, and an argument in curly
braces contains a comma-separated list of items:

\smartdiagram[flow diagram:horizontal]{Edit,
  \LaTeX, Bib\TeX/ biber, make\-index, \LaTeX}

5.	 End the document:

\end{document}

6.	 Compile, and take a look at the output:

Figure 6.1 – A horizontal flow chart

Edit LATEX
BibTEX/
biber

make-
index

LATEX

Creating Graphics166

How it works...

We generated the image with a straightforward call to the \smartdiagram command and the
required arguments. The syntax of the command is as follows:

\smartdiagram[type of diagram]{list of items}

We’ve selected a horizontal flow diagram. To obtain a vertical layout, use flow diagram without
the :horizontal suffix to get a vertical layout. There is a defined set of diagram types. Instead of
merely listing them, let’s create some examples to observe the outcomes.

There’s more...

We can change both the diagram type and the items to produce various diagrams. If there’s a root or
central item, it should always be the first in the list.

Circular diagram

Let’s try a circular diagram. It’s counter-clockwise by default. Add :clockwise to the option to
get a clockwise order:

\smartdiagram[circular diagram:clockwise]{Edit,
  pdf\LaTeX, Bib\TeX/ biber, make\-index, pdf\LaTeX}

Figure 6.2 – A circular diagram

Edit

pdfLATEX

BibTEX/
biber

make-
index

pdfLATEX

Building smart diagrams 167

Bubble diagram

Consider using a bubble diagram for a straightforward way to present key terms in a central context.
The initial item in the list resides in the center circle, while the rest are positioned in colored circles
surrounding it, with slight overlapping to convey their close connection.

To get macros for further TeX logos, we will also load the dtk-logos package, so add to the preamble
the following:

\usepackage{dtklogos}

You can download this package at https://github.com/dante-ev/dtk-bibliography
and put it in your document folder.

Alternatively, you could use the metalogo package, available at https://ctan.org/pkg/
metalogo, which provides logo commands such as \XeTeX. Another option is combining strings,
such as writing Lua\TeX, to achieve the same effect.

The smartdiagram call becomes the following:

\smartdiagram[bubble diagram]{\TeX\ engines,
  \TeX\ (dvi), pdf\TeX, \XeTeX, \LuaTeX, \ConTeXt}

Figure 6.3 – A bubble diagram

TEX engines

TETET X (dvi)EX (dvi)E

pdfTEpdfTEpdfT XEXE

X EX EX TETEETET XEXE

LuaTELuaTELuaT XEXE

ConTEConTEConT XtEXtE

https://github.com/dante-ev/dtk-bibliography
https://ctan.org/pkg/metalogo
https://ctan.org/pkg/metalogo

Creating Graphics168

Constellation diagram

A constellation diagram gives a slightly different form. In this, each item is in a colored
circle connected to the center, which is again the first item:

\smartdiagram[constellation diagram]{\TeX\ software,
  Editor, Compiler, Converter, PDF Reader}

Figure 6.4 – A constellation diagram

Descriptive diagram

For nicely arranged items with a description, there’s the descriptive diagram. As a consequence,
the items are now a list of small lists. We use additional curly braces to hide the comma within an
item so that it won’t be taken as an item separator:

\smartdiagram[descriptive diagram]{
  {Style,{Define shapes, colors, shading,
          and line styles for nodes and arrows}},
  {Position, {Place nodes using a matrix,
              relative or absolute positioning}},
  {Relation, Insert edges or arrows
             between selected nodes},
  {Label, Add labels on edges or arrows}}

TEX
software

Editor

Compiler

Con-
verter

PDF
Reader

Building smart diagrams 169

This gives us the following diagram:

Figure 6.5 – A descriptive diagram

Also, the diagram shows some tasks related to drawing with TikZ, which will later be helpful for us.

A priority descriptive diagram

If your descriptive diagram has a certain order and you would like to emphasize that, use a priority
descriptive diagram, such as the following:

\smartdiagram[priority descriptive diagram]{
  Develop a document structure,
  Choose a document class,
  Select suitable packages,
  Setup the document preamble,
  Write your document,
  Finetune the layout}

Style
Define shapes, colors, shading, and
line styles for nodes and arrows

Position
Place nodes using a matrix,

relative or absolute positioning

Relation
Insert edges or arrows
between selected nodes

Label Add labels on edges or arrows

Creating Graphics170

Figure 6.6 – A priority descriptive diagram

Animating a diagram

You can quickly animate such a diagram in a presentation made with the beamer class. It’s as simple
as the following:

•	 Using the beamer class

•	 Using a frame environment for the diagram

•	 Writing \smartdiagramanimated instead of \smartdiagram

This, applied to one of the preceding examples, results in the following:

\documentclass{beamer}
\usepackage{smartdiagram}
\begin{document}

Develop a document structure

Choose a document class

Select suitable packages

Setup the document preamble

Write your document

Finetune the layout

Constructing a flowchart 171

\begin{frame}
  \smartdiagramanimated[circular diagram]{Edit,
  pdf\LaTeX, Bib\TeX/ biber, make\-index, pdf\LaTeX}
\end{frame}
\end{document}

The diagram will then be built step by step, frame by frame.

Further customization

Of course, you can set the colors and shapes of all elements. For details, refer to the smartdiagram
manual, as usual via texdoc.

Constructing a flowchart
We used predefined chart types in the prior recipe, Building smart diagrams. If greater flexibility is
required, creating custom diagrams from scratch is a viable option. Doing this is simple, and it’s an
excellent way to develop your skills in drawing with TikZ.

Just as we observed in the descriptive diagram from the first recipe, we’ll do the following:

1.	 Define shapes and colors.

2.	 Place nodes using a matrix.

3.	 Insert labeled arrows between selected nodes.

Of course, the actions of each step can be adjusted as needed. It’s common to position nodes and
arrows initially and later refine the shapes and colors.

Now, let’s dive into it. Follow the following steps, and refer to the graphical output to understand the
purpose of each drawing task.

1.	 Start with a document class:

\documentclass{article}

2.	 Load the geometry package, and specify a vertical margin so that our long chart will fit the page:

\usepackage[a4paper,vmargin=3cm]{geometry}

3.	 Load the tikz package:

\usepackage{tikz}

4.	 Load the matrix, calc, and shapes TikZ libraries:

\usetikzlibrary{matrix,calc,shapes}

Creating Graphics172

5.	 Define styles for the nodes, which is our first major step in these steps:

\tikzset{
  treenode/.style = {shape=rectangle, rounded corners,
                     draw, anchor=center,
                     text width=5em, align=center,
                     top color=white,
                     bottom color=blue!20,
                     inner sip=1ex},
  decision/.style = {treenode, diamond,
                     inner sep=0pt},
  root/.style     = {treenode, font=\Large,
                     bottom color=red!30},
  env/.style      = {treenode,
                     font=\ttfamily\normalsize},
  finish/.style   = {root, bottom color=green!40},
  dummy/.style    = {circle,draw}
}

6.	 Create some useful shortcuts for edge types:

\newcommand{\yes}{edge node [above] {yes}}
\newcommand{\no}{edge  node [left]  {no}}

7.	 Begin the document:

\begin{document}

8.	 Begin the TikZ picture. Add the desired options; here, we declare –latex as the default arrow
tip for edges:

\begin{tikzpicture}[-latex]

9.	 Now, we come to the second major step, which is positioning. Start a matrix with the name chart:

  \matrix (chart)

10.	 Define options for the matrix:

    [
      matrix of nodes,
      column sep      = 3em,
      row sep         = 5ex,
      column 1/.style = {nodes={decision}},
      column 2/.style = {nodes={env}}
    ]

Constructing a flowchart 173

11.	 Now, add the actual matrix contents, which will be the nodes of our flowchart. Like with
tabular, columns are separated by &, and lines are ended by \\. This is also necessary for
the last line. We modify the style for a particular node by inserting |<style>| before the
node content. A final semicolon ends the \matrix command with options:

    {
      |[root]| Formula           &                 \\
      single-line?               & equation        \\
      centered?                  & gather          \\
      aligned at relation sign?  & align, flalign  \\
      aligned at several places? & alignat         \\
      first left, centered,
        last right?              & multline        \\
      & & |[decision]| numbered? \\
      & & |[treenode]| Add a \texttt{*}
                                 & |[finish]| Done \\
    };

12.	 And now, for the third major step, we draw arrows. Draw downwards “no” edges in the first
column and “yes” edges to the right. We use \foreach loops to reduce the amount of code.
The final edge goes to the last node in the bottom-right corner:

  \draw
    (chart-1-1) edge (chart-2-1)
    \foreach \x/\y in {2/3, 3/4, 4/5, 5/6} {
      (chart-\x-1) \no (chart-\y-1) }
    \foreach \x in {2,...,6} {
       (chart-\x-1) \yes (chart-\x-2) }
   (chart-7-3) \no  (chart-8-3)
   (chart-8-3) edge (chart-8-4);

13.	 Draw a line back to the start:

 \draw
   (chart-6-1) -- +(-2,0) |- (chart-1-1)
     node[near start,sloped,above] {no, reconsider};

14.	 Draw lines from the nodes in the second column to another node down in the third column:

  \foreach \x in {2,...,6} {
   \draw (chart-\x-2) -| (chart-7-3);}

15.	 Draw a “yes” edge to the final node in the bottom-right corner:

 \draw   (chart-7-3)  -| (chart-8-4)
   node[near start,above] {yes};

Creating Graphics174

16.	 End the picture and the document:

\end{tikzpicture}
\end{document}

17.	 Compile and examine the output:

Figure 6.7 – A complex flow chart

Formula

single-line? equation

centered? gather

aligned at
relation
sign?

align,

flalign

aligned
at several
places?

alignat

first left,
centered,
last right?

multline

numbered?

Add a * Done

no

no

no

no

yes

yes

yes

yes

yes

no

n
o,

re
co
n
si
d
er

yes

Constructing a flowchart 175

How it works...

Precisely positioning the nodes is a critical aspect here. Manually specifying coordinates for nodes
would be a cumbersome and error-prone task. An alternative is to employ the relative positioning of
nodes. However, the most straightforward method is establishing a matrix, allowing us to position
nodes as quickly as in a tabular structure. However, it necessitates a grid-like structure. TikZ offers
a matrix library with a dedicated section in the manual. For a comprehensive understanding of all
available options, please consult it. In this context, we’ve solely defined the spacing between rows and
columns, as well as some column styles.

Styles can be locally defined – for instance, as options within a tikzpicture environment. To
facilitate repeated usage, global definitions can be more desirable. To achieve this, we employed the
\tikzset command. It takes a list of style assignments as an argument. You saw the principle:

thingy/.style = {list of style options}

You can either redefine existing styles or create your own unique styles. Now, you can effortlessly
apply this new style name as an option wherever required, eliminating the need to list specific options
repeatedly. This approach provides the same advantages as LaTeX macros, enhancing readability and
ensuring consistency.

You can combine styles and employ them in the creation of derived styles. In this instance, we’ve
defined a foundational style for tree nodes and developed additional styles inherited from it, while
incorporating distinct attributes.

Let’s return to our code – our matrix structure is as follows:

\matrix (name) [options] {
  entry & entry & … \\
  entry & entry & … \\
  …
};

Each node within the matrix now has a name assigned to it for additional drawing. We can reference
a node using the (name-row-column) syntax, as we did with the following command:

\draw (chart-1-1) edge (chart-2-1);

This command creates a vertical edge that connects the top-left node of our chart to the node below.
To define column styles, we employed the convenient nodes={decision} syntax, which says all
nodes should have this style. We still can apply local styles, so we used the |[style]| shortcut at
the beginning of a matrix cell.

After the matrix, we used \draw to draw all the edges. They are arrows in our case, since we added
the –latex option to the tikzpicture environment to create this particular arrow tip.

Creating Graphics176

We harnessed the power of \foreach loops to handle repetitive tasks efficiently. The simplified
syntax is as follows:

\foreach <variables> in {<list>} { <commands> }

In this context, the commands can encompass variables substituted with values from the list, iterating
through the entire list. The \foreach command is comprehensively covered in a dedicated section
within the TikZ manual. For our recipe, familiarity with this syntax and examples involving one and
two variables should be sufficient for a fundamental understanding.

A special edge is drawn using the -| syntax. This means a horizontal line and then a vertical line to
the destination. |- is the counterpart that does it the other way around. For details regarding drawing
syntax and available options, refer to the TikZ manual. It also contains tutorials, which are helpful
for quickly diving in.

Growing a tree
A widespread type of hierarchical graph is a tree. Tree nodes have children connected by edges, usually
displayed in rows when growing down or in columns when growing horizontally.

How to do it...

We will use basic TikZ without extra packages. Follow these steps:

1.	 Start with a document class:

\documentclass{article}

2.	 Load the tikz package:

\usepackage{tikz}

3.	 Start the document:

\begin{document}

4.	 Begin with a TikZ picture, and specify options for it:

\begin{tikzpicture}[sibling distance=10em,
  every node/.style = {shape=rectangle,
    rounded corners, draw, align=center,
    top color=white, bottom color=blue!20}]]

5.	 Draw a node and add children to it:

  \node {Formulas}
    child { node {single-line} }

Growing a tree 177

    child { node {multi-line}
      child { node {aligned at}
        child { node {relation sign} }
        child { node {several places} }
        child { node {center} } }
      child { node {first left,\\centered,\\
                    last right} }
    };

6.	 End the picture and the document:

\end{tikzpicture}
\end{document}

7.	 Compile, and take a look at the output:

Figure 6.8 – A vertical tree

How it works...

To avoid overlapping, we defined a distance between siblings. As all the nodes are the same, we defined
one style for all, using a rounded rectangle as a drawn border and a color fading from white to light
blue. We did it by setting those options to every node/.style. This default style simplifies
writing. We can still change specific node styles.

There’s more...

We can play with diagram types and items to get different diagrams. If there’s a root item or a central
item, it’s always the first in the list.

Formulas

single-line multi-line

aligned at

relation sign several places center

first left,
centered,
last right

Creating Graphics178

Creating a decision tree

Our recipe started with a vertical tree. We can also draw it in the horizontal direction. Let’s do it this
way now. We will use this occasion to introduce TikZ styles. A style is a set of options. Styles make
drawing easier, similar to macros – we don’t need to repeat the same options repeatedly. Instead, we
refer to a desired style. Styles can be combined.

We will now go through the steps in detail:

1.	 Again, start with a document class:

\documentclass{article}

2.	 Load the tikz package:

\usepackage{tikz}

3.	 Use the \tikzset command to define your new styles:

\tikzset{
  treenode/.style = {shape=rectangle, rounded corners,
                     draw, align=center,
                     top color=white,
                     bottom color=blue!20},
  root/.style     = {treenode, font=\Large,
                     bottom color=red!30},
  env/.style      = {treenode,
                     font=\ttfamily\normalsize},
  dummy/.style    = {circle,draw}
}

4.	 Start the document:

\begin{document}

5.	 Begin with the TikZ picture:

\begin{tikzpicture}

6.	 Add options to the TikZ picture. As before, use square brackets:

  [
    grow                    = right,
    sibling distance        = 6em,
    level distance          = 10em,
    edge from parent/.style = {draw, -latex},

Growing a tree 179

    every node/.style       = {font=\footnotesize},
    sloped
  ]

7.	 Declare the nodes and children in the tree hierarchy. If an edge needs to be labeled, add a node
using the edge from parent option after the node:

  \node [root] {Formula}
    child { node [env] {equation}
      edge from parent node [below] {single-line?} }
    child { node [dummy] {}
      child { node [dummy] {}
        child { node [env] {align\\flalign}
          edge from parent node [below]
                           {at relation sign?} }
        child { node [env] {alignat}
          edge from parent node [above] {at several}
                           node [below] {places?} }
        child { node [env] {gather}
          edge from parent node [above] {centered?} }
        edge from parent node [below] {aligned?} }
      child { node [env] {multline}
        edge from parent node [above, align=center]
                {first left,\\centered,}
              node [below] {last right}}
        edge from parent node [above] {multi-line?}};

8.	 End the TikZ picture and the document:

\end{tikzpicture}
\end{document}

9.	 Compile, and take a look at the output:

Creating Graphics180

Figure 6.9 – A horizontal tree

The main difference is grow=right, used to get a horizontal tree. Besides that, we used various
custom styles for nodes. After a node is connected to its parent by an edge, we use the edge from
parent option to add a node with label text.

Building a bar chart
A classical way to display categories with corresponding values is a bar chart. It consists of rectangular
bars that are proportional to the represented values. The primary purpose is to compare those
values visually.

We can use vertical or horizontal bars.

How to do it...

We will use the pgfplots package. It’s for natively plotting in LaTeX with a convenient user interface.
We will use it to produce a horizontal bar chart.

Follow these steps:

1.	 Start with a document class:

\documentclass{article}

2.	 Load the pgfplots package:

\usepackage{pgfplots}
\pgfplotsset{width=7cm,compat=1.18}

Formula

equation

single-line?

align

flalign

at relation sign?

alignat
at several

places?

gather

cen
ter

ed
?

aligned?

multline
first

left,

cent
ered

,

last
righ

t

multi-
line?

Building a bar chart 181

3.	 Begin the document:

\begin{document}

4.	 Begin a TikZ picture, which will be the container for the plot:

\begin{tikzpicture}

5.	 Open an axis environment:

  \begin{axis}

6.	 Give options to the axis:

 [
    title    = Contributions per category
               at LaTeX-Community.org,
    xbar,
    y axis line style = { opacity = 0 },
    axis x line       = none,
    tickwidth         = 0pt,
    enlarge y limits  = 0.2,
    enlarge x limits  = 0.02,
    nodes near coords,
    symbolic y coords = {LaTeX, Tools,
                         Distributions, Editors},
  ]

7.	 Add a plot:

  \addplot coordinates { (57727,LaTeX) (5672,Tools)
           (2193,Distributions) (11106,Editors) };

8.	 Add another plot:

  \addplot coordinates { (14320,LaTeX) (1615,Tools)
           (560,Distributions)  (3075,Editors)  };

9.	 Add a legend:

  \legend{Topics, Posts}

10.	 End the axis environment, the TikZ picture, and the whole document:

  \end{axis}
\end{tikzpicture}
\end{document}

Creating Graphics182

11.	 Compile, and take a look at the output:

Figure 6.10 – A horizontal bar chart

How it works...

The \addplot command does the plotting work – we called it with a set of specific coordinates. In
our case, we used numeric values and symbolic coordinates for the subjects.

We design the plot by adding options to the axis environment. This is the specific pgfplots
environment, with a lot of options for customizing. Here’s what we did:

•	 We provided a title.

•	 We set xbar as a style to get bars in the x direction. Specifically, this means that horizontal
bars will be placed from y=0 to the x coordinate.

•	 Omitting unnecessary diagram parts means less distraction. This helps to focus and understand
the content, so we did the following:

	� Chose a completely opaque line style for the y-axis so that it won’t be printed

	� Hid the x-axis using the axis x line = none option

	� Removed the x-axis ticks by setting their width to zero

•	 We slightly enlarged the x and y limits to get a better display.

•	 We got nodes with values near the bars by enabling the nodes near coords option.

•	 We defined symbolic coordinates as y values to assign numeric (x) values to (y) subjects.

LaTeX

Tools

Distributions

Editors

57,727

5,672

2,193

11,106

14,320

1,615

560

3,075

Contributions per category at LaTeX-Community.org

Topics

Posts

Drawing a pie chart 183

To summarize, xbar defined the plot style, and symbolic y coords let us use string values. The
other axis options were just for design purposes. There are many more possible settings, so refer to the
pgfplots manual for further customization. You can open it by entering texdoc pgfplots at
the Command Prompt or visiting https://texdoc.org/pkg/pgfplots.

Drawing a pie chart
Pie charts are famous for showing proportions. Their main characteristic is that all items usually sum
up to 100%. They are displayed as segments of a disc.

How to do it...

We will use the pgf-pie package, which builds on TikZ and is specialized in generating pie charts.
Follow these steps:

1.	 Start with a document class:

\documentclass{article}

2.	 Load the pgf-pie package:

\usepackage{pgf-pie}

3.	 Begin the document:

\begin{document}

4.	 Begin a TikZ picture, which will be the container for the pie chart:

\begin{tikzpicture}

5.	 Draw the pie chart using this command:

 \pie [rotate = 180]
    {62/\TeX\ Live and Mac\TeX,
     32/MiK\TeX\ and Pro\TeX t, 6/Other \TeX}

6.	 End the TikZ picture and the whole document:

\end{tikzpicture}
\end{document}

https://texdoc.org/pkg/pgfplots

Creating Graphics184

7.	 Compile, and take a look at the output:

Figure 6.11 – A pie chart

How it works...

\pie is the only command of the pgf-pie package. The syntax is as follows:

\pie[options]{number1/text1, number2/text2, …}

The backslashes in our example were just because of the \TeX macro and the following space.

Let’s take a look at available options with example values:

•	 pos = 4,6: This option positions the center at the point (4,6). The default center is (0,0).

•	 rotate = 90: This option turns the chart by 90 degrees.

•	 radius = 5: This sets the chart’s radius size to 5; the default size is 3.

•	 color = red: This chooses a red color for all slices. We can use any color syntax that TikZ
understands, such as red!80!black, for a mix of 80% red and 20% black.

•	 color = {red!20, red!40, red!60}: This sets a specific red color value for each
of the three slices.

•	 explode = 0.1: This moves all the slices outwards by 0.1.

TEX Live and MacTEX

62%

MiKTEX and ProTEXt

32%

Other TEX

6%

Drawing a pie chart 185

•	 explode = { 0.2, 0, 0}: This moves just the first slice of three outwards by 0.2.

•	 sum = 50: This defines the reference sum as 50 instead of the default sum of 100.

•	 sum = auto: This calculates the sum from the slice values.

•	 scale font: This scales the font size according to the slice value.

•	 before number = { \$ }: This inserts a text before the values – in this case, a dollar
sign. It is empty by default.

•	 after number = { percent }: This adds a text after each value – in this case, the word
“percent”. With sum = 100, the default is the % symbol; otherwise, it is empty.

•	 text = pin: This sets the text next to the slice, connected by a short line.

•	 text = inside: This places the text within the slice.

•	 text = legend: This produces a separate legend.

•	 style = drop shadow: This adds a shadow below the chart.

There’s more...

The pie-chart package offers further chart designs. Let’s look at those and apply some of the
preceding styles.

Square chart

The square option gives a quadratic design. Adding the scale font and color options, we
arrive at the following:

  \pie [square, scale font,
        color = {blue!10, blue!20, blue!40}] { ... }

Creating Graphics186

With the values from our recipe, we get the following:

Figure 6.12 – A square chart

Polar area chart

The polar option changes the layout so that the slices get equal angles, but the radius represents the
size. We add the explode and text=legend options:

  \pie [polar, explode=0.1, text=legend] { ... }

Then, we get the following:

Figure 6.13 – A polar chart

62%

TEX Live and MacTEX

32% MiKTEX and ProTEXt

6%

Other TEX

62%

32%

6%

TEX Live and MacTEX

MiKTEX and ProTEXt

Other TEX

Drawing a Venn diagram 187

Cloud chart

The cloud option produces a set of discs with a size according to the given values. This time, we put
the text inside, scale it, and use a larger radius:

  \pie [cloud, text=inside, scale font, radius=6] { ... }

Now, the result is as follows:

Figure 6.14 – A cloud chart

Drawing a Venn diagram
A Venn diagram displays several sets with their relationships. Commonly, these are overlapping circles.
Such sets can stand for specific properties. If an element has two such properties, it would belong to
an overlapping area, the intersection of the two sets.

In this recipe, we will draw a Venn diagram of three sets.

TEX Live and MacTEX
62%

MiKTEX and ProTEXt
32%

Other TEX
6%

Creating Graphics188

How to do it...

We will draw colored circles and apply blending to their intersections. Follow these steps:

1.	 Choose a document class:

\documentclass{article}

2.	 Load the tikz package:

\usepackage{tikz}

3.	 Begin the document:

\begin{document}

4.	 Begin a TikZ picture environment:

\begin{tikzpicture}

5.	 Use a scope environment to apply a style to a part of the drawing. Here, we apply color blending:

  \begin{scope}[blend group=soft light]

6.	 Draw the diagram parts, which are, in our case, just filled circles:

    \fill[red!30!white]   (90:1.2) circle (2);
    \fill[green!30!white] (210:1.2) circle (2);
    \fill[blue!30!white]  (330:1.2) circle (2);

7.	 End scope. The blending effect will end at the end of the environment because environments
keep settings local:

  \end{scope}

8.	 Add nodes with text for descriptions:

  \node at (90:2)    {Typography};
  \node at (210:2)    {Design};
  \node at (330:2)    {Coding};
  \node [font=\Large] {\LaTeX};

9.	 End the TikZ picture and the document:

\end{tikzpicture}
\end{document}

Drawing a Venn diagram 189

10.	 Compile, and take a look at the output:

Figure 6.15 – A Venn diagram

How it works...

We created three filled circles. The center of each circle is specified in polar coordinates, with a given
angle and distance from the origin. This makes radial placement easier. For example, the first circle
has its center at (90:1.2), which means at 90 degrees above the origin, at a distance of 1.2. The radius
of each circle is 2, so they overlap.

Normally, overlapping means that the final circle overrides what is below. We still want to look “behind”
the circles to see the intersections. A classical approach is to use transparency, such as the following:

\begin{scope}[opacity=0.5]
   ...
\end{scope}

This lets the background shine through. We used a scope environment to keep the setting local. The
opacity value can be between 0, which means fully transparent, and 1, which means fully opaque.

Another pleasing way is using the blend mode feature of the PDF standard. That’s what we did. It
involves mixing colors in a certain way. In short, here are the possible modes:

•	 normal: Any object is drawn over the background.

•	 multiply: Color values of mixed color values are multiplied. A black factor always produces
black, and a white factor doesn’t cause a change. Generally, we get darker colors as the product.

Typography

Design Coding

LATEX

Creating Graphics190

•	 screen: This complements the color values, multiplies, and then complements again. A white
factor always produces white, and a black color doesn’t cause a change. Generally, we get lighter
colors in such a mix.

•	 overlay: This mode works like the multiply or screen option, depending on the
background color, resulting in an interesting overlay.

•	 darken: The darker one of the mixed colors is chosen.

•	 lighten: The lighter color of the mix is chosen.

•	 color dodge: The background is brightened to reflect the foreground.

•	 color burn: The background is darkened to reflect the foreground.

•	 hard light: This works like the multiply or screen option, depending on the foreground
color, and gives a result like a rugged spotlight.

•	 soft light: This option darkens or lightens the color, depending on the foreground color,
and works like a softened spotlight.

•	 difference: In this mode, darker colors are subtracted from lighter colors.

•	 exclusion: This works like the difference mode but with lower contrast.

•	 hue: Here, the resulting color has the foreground’s hue and the background’s saturation
and luminosity.

•	 saturation: With this option, the resulting color has the saturation of the foreground and
the hue and luminosity of the background.

•	 color: In this mode, the resulting color has the foreground hue and the background’s saturation
and luminosity.

•	 luminosity: This is like the inverse of the color mode. The resulting color has the foreground’s
luminosity and the background’s hue and saturation.

These modes are described in the PDF standard, cited in the TikZ manual in the Blending section.

What seems ambitious for just overlapping colors in a Venn diagram could help overlay drawings.
You can try out those modes to see what fits your needs best.

Putting thoughts into a mind map
A mind map visualizes information or ideas. Usually, there’s a primary concept in the center; major
concepts branch out from it. Smaller ideas start from the major concepts, so it can look like a spider web.

In this recipe, we will draw a mind map of TeX concepts.

Putting thoughts into a mind map 191

How to do it...

We will use the TikZ mindmap library. Follow these steps:

1.	 Start with a document class:

\documentclass{article}

2.	 Load the geometry package with the landscape option so that our wide map will fit the page:

\usepackage[landscape]{geometry}

3.	 Load the tikz package and the mindmap library:

\usepackage{tikz}
\usetikzlibrary{mindmap}

4.	 Load the dtk-logos package to get additional TeX-related logo macros:

\usepackage{dtk-logos}

5.	 Start the document and begin the TikZ picture:

\begin{document}
\begin{tikzpicture}

6.	 Start path with options:

  \path [

7.	 Provide the mindmap option, and choose a white text color:

    mindmap,
    text = white,

8.	 Adjust the styles for the levels of the map:

    level 1 concept/.append style =
      {font=\Large\bfseries, sibling angle=90},
    level 2 concept/.append style =
      {font=\normalsize\bfseries},
    level 3 concept/.append style =
      {font=\small\bfseries},

9.	 Define some styles to use for related concepts, and end the option list:

    tex/.style     = {concept, ball color=blue,
      font=\Huge\bfseries},
    engines/.style = {concept,

Creating Graphics192

      ball color=green!50!black},
    formats/.style = {concept,
      ball color=blue!50!black},
    systems/.style = {concept,
      ball color=red!90!black},
    editors/.style = {concept,
      ball color=orange!90!black}
  ]

10.	 Now, place the central concept node and its children. The structure is similar to the tree recipe
in this chapter. End the path with a semicolon:

  node [tex] {\TeX} [clockwise from=0]
    child[concept color=green!50!black,
      nodes={engines}] {
      node {Engines} [clockwise from=90]
        child { node {\TeX} }
        child { node {pdf\TeX} }
        child { node {\XeTeX} }
        child { node {Lua\TeX} }}
    child [concept color=blue, nodes={formats}] {
      node {Formats} [clockwise from=300]
        child { node {\LaTeX} }
        child { node {\ConTeXt} }}
    child [concept color=red, nodes={systems}] {
      node {Systems} [clockwise from=210]
        child { node {\TeX Live} [clockwise from=300]
          child { node {Mac \TeX} }}
        child { node {MiK\TeX} [clockwise from=60]
          child { node {Pro \TeX t} }}}
    child [concept color=orange, nodes={editors}] {
      node {Editors} };

11.	 End the picture and the document:

\end{tikzpicture}
\end{document}

Putting thoughts into a mind map 193

12.	 Compile, and examine the output:

Figure 6.16 – A mind map

How it works...

The crucial component here is the mindmap style, which introduces additional styles and settings
for implicit use, including the concept style for nodes. These settings mainly determine the
fundamental appearance.

Initially, we refined the design by introducing style options for each sub-concept level. Consequently,
we selected a bold font to enhance the legibility of white text within darker concepts, and we opted
for smaller font sizes for concepts situated farther from the root. While doing this, we included a
sibling angle value to tell TikZ the angle between significant concepts. If we were to have more
concepts, we might select a smaller angle.

Additionally, we created custom styles that build upon the standard concept node style by incorporating
ball shading, imparting a three-dimensional appearance. On the one hand, this serves as a demonstration
of how to include additional embellishments. On the other hand, removing the ball color option
to adopt a more modest style might result in a somewhat plain appearance. You can try colors and
shadings provided by TikZ.

TEX Engines

TEX

pdfTEX

X ETEX

LuaTEX

Formats

LATEXConTEXt

Systems

TEXLive

Mac
TEX

MiKTEX

Pro
TEXt

Editors

Creating Graphics194

The path is just like a tree in our earlier tree recipe. Notable options are the following:

•	 A start angle: This is set using the clockwise from = … syntax, where you can use the
counterclockwise option as an alternative

•	 nodes = {style name}: This option applies our chosen style to all child nodes

•	 concept color: This option is for the color behind our ball shading, and it also applies to
the node connections

The mindmap library has a dedicated section in the TikZ manual. There, you can read about alternative
connections between nodes and adding annotations.

Generating a timeline
Creating a line and adding ticks, date values, and annotations is straightforward using essential
TikZ functions.

Using the timeline library, we’ll explore an alternative and colorful pre-designed approach in
this recipe.

Getting ready

Until the timeline library becomes an official part of TikZ or becomes available on CTAN, you can
download the tikzlibrarytimeline.code.tex file from the author’s repository at https://
github.com/cfiandra/timeline. You can install it in the TeX tree like any other package,
but the easiest way is to put it into the same folder as your main TeX document.

How to do it...

The timeline library builds on TikZ but provides its own high-level commands. Follow these steps:

1.	 Start with a document class with a paper size that is big enough:

\documentclass[a3paper]{article}

2.	 Load the geometry package with the landscape option, since our diagram will be more
wide than high:

\usepackage[landscape]{geometry}

3.	 Load the tikz package and the timeline library:

\usepackage{tikz}
\usetikzlibrary{timeline}

https://github.com/cfiandra/timeline
https://github.com/cfiandra/timeline

Generating a timeline 195

4.	 Start the document and begin the TikZ picture:

\begin{document}
\begin{tikzpicture}

5.	 State the number of weeks:

  \timeline{5}

6.	 Define the time phases:

  \begin{phases}
    \initialphase{involvement degree=3cm,
      phase color=blue}
    \phase{between week=1 and 2 in 0.4,
      involvement degree=5cm,
      phase color=green!50!black}
    \phase{between week=2 and 3 in 0.2,
      involvement degree=6cm,phase color=red!40!black}
    \phase{between week=3 and 4 in 0.5,
      involvement degree=3cm,phase color=red!90!black}
    \phase{between week=4 and 5 in 0.3,
      involvement degree=2.5cm,
      phase color=red!40!yellow}
  \end{phases}

7.	 Add some text nodes as annotations on the left side:

  \node [xshift=-0.6cm, yshift=1cm, anchor=east,
         font=\Large\bfseries] at (phase-0.180)
         {Author};
  \node [xshift=-0.6cm, yshift=-1cm, anchor=east,
         font=\Large\bfseries] at (phase-0.180)
         {Publisher};

8.	 Add milestones to the upper side of the timeline:

  \addmilestone{at=phase-0.120, direction=120:1cm,
    text={Concept}, text options={above}}
  \addmilestone{at=phase-0.90, direction=90:1.2cm,
    text={Outline}}
  \addmilestone{at=phase-1.110,direction=110:1.5cm,
    text={Research}}
  \addmilestone{at=phase-2.100,direction=100:1cm,
    text={Writing}}
  \addmilestone{at=phase-2.60,direction=90:1.5cm,

Creating Graphics196

     text={First draft}}
  \addmilestone{at=phase-3.90,direction=90:1.2cm,
    text={Second draft}}
   \addmilestone{at=phase-4.90,direction=90:0.8cm,
     text={Approval of print draft}}

9.	 Add milestones to the lower side of the timeline:

   \addmilestone{at=phase-0.270,direction=270:1cm,
     text={Concept Review}, text options={below}}
   \addmilestone{at=phase-2.270,direction=270:1cm,
    text={First Review}}
   \addmilestone{at=phase-3.250,direction=250:0.8cm,
     text={Second Review}}
   \addmilestone{at=phase-3.300,direction=270:1.5cm,
     text={Approval required}}
   \addmilestone{at=phase-4.260,direction=270:2.2cm,
    text={Draft for printing}}
  \addmilestone{at=phase-4.300,direction=300:1cm,
    text={Publication}}

10.	 End the picture and the document:

\end{tikzpicture}
\end{document}

11.	 Compile, and examine the output:

Figure 6.17 – A timeline diagram

Week 1 Week 2 Week 3 Week 4 Week 5

Author

Publisher

Concept

Outline

Research
Writing First draft

Second draft

Approval of print draft

Concept Review

First Review

Second Review

Approval required

Draft for printing

Publication

Generating a timeline 197

How it works...

Using the \timeline{5} command, we created a filled rectangle with five weeks. Choose another
number for more or fewer weeks. There’s a node for each week that you can use for additional drawing;
simply refer to the (week-1) node and so on as a named node.

Within the phases environment, we defined the filled circles standing for the various time phases.
Let’s look at sample phase arguments to understand their use:

•	 between week=1 and 2 in 0.4: This means starting at week 1 and ending at week 2,
with an offset of 0.4 for fine-tuning

•	 involvement degree: This is the radius of the phase circle

•	 phase color: This is the fill color of the phase circle

That’s a specific syntax for such essential elements.

Finally, we added milestones. These are text nodes connected with a line to a phase:

•	 at: This means the starting position. It’s good to use relative positioning such as phase-1.
north for above the phase-1 node. We used the phase-n.angle TikZ syntax here.

•	 direction: This has been given as polar values such as (angle:distance).

•	 text: This is the text within the node. We used the text options key to customize the
placement. This option is sticky so that it will be remembered. The text has been placed above
until we change text options to below, which is then kept.

The library offers an excellent quick start. You can use the means of TikZ for further design.

7
Creating Beautiful Designs

LaTeX also provides design concepts for non-standard documents, such as photobooks, calendars,
greeting cards, colorful presentations, and fairy tale books.

This chapter explores such design ideas with a practical focus, including the following:

•	 Adding a background image

•	 Creating beautiful ornaments

•	 Preparing pretty headings

•	 Producing a calendar

•	 Mimicking keys, menu items, and terminal output

•	 Arranging topics like a puzzle

•	 Building a word cloud

Adding a background image
We can add background graphics such as watermarks, pre-designed letterheads, or photos to any
LaTeX document. In this recipe, we will walk you through the steps to achieve this.

How to do it...

We will utilize the background package written by Gonzalo Medina for this task. In this recipe,
you can use any LaTeX document. We will start with the article class and add some dummy text.
You may also use a document example from another recipe for this or access this one at https://
latex-cookbook.net/chapter-07.

We will insert some commands into our document preamble, which means between
\documentclass{…} and \begin{document}. It takes just two steps:

1.	 Loading the background package

2.	 Setting up the background using the \backgroundsetup command with options

https://latex-cookbook.net/chapter-07
https://latex-cookbook.net/chapter-07

Creating Beautiful Designs200

Here we go:

1.	 Load the background package:

\usepackage{background}

2.	 Set up the background. Optionally, specify the scaling factor, rotation angle, and opacity. Provide
the command for printing on the background. We will use \includegraphics here with
a drawing of the CTAN lion from https://latex-cookbook.net/ctanlion.pdf,
originally at https://ctan.org/lion:

\backgroundsetup{scale = 1, angle = 0, opacity = 0.2,
  contents = {\includegraphics[width = \paperwidth,
  height = \paperheight, keepaspectratio]
  {ctanlion.pdf}}}

3.	 Compile at least twice to let the layout settle. Now, all of your pages will show a light version
of the image over the entire page background, like the following:

Figure 7.1 – A page with a background picture

1 Heading on level 1 (section)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis
sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec
ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue,
a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies
vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit
amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum
libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit
sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent
lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem
sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis
facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet
mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices
augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie
ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem
ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque.
Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a
leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit
mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis.
Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan
semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis
facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet
mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices
augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie
ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem
ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque.
Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a
leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit
mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis.
Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan
semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis
facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet
mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices
augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie
ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem
ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque.
Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a
leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit
mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis.
Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan
semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis

1

https://latex-cookbook.net/ctanlion.pdf
https://ctan.org/lion

Adding a background image 201

How it works...

The background package can place any text, drawing, or image on the page background. It allows
you to customize various aspects, such as positioning, color, and opacity. The example already
showed some straightforward parameters, which can be specified as package options or through the
\backgroundsetup command. You can use the \backgroundsetup command as often as
you like to make adjustments.

The contents option contains the actual commands to be applied to the background. This can be
\includegraphics, some text, or any sequence of drawing commands.

The package is built upon TikZ and the everypage package. Due to this architecture, it may require
multiple compilation runs for precise positioning. This is because TikZ writes marks into the .aux
file, which are then read and processed during subsequent LaTeX runs.

There’s more...

Instead of images, you could display dynamic values such as the page number or the head mark
with the chapter title. This can be achieved without relying on packages such as fancyhdr,
or scrlayer-scrpage.

The following command places a page number in the background in the following ways:

•	 It’s positioned at the top of the page

•	 It can be placed with customizable rotation, here 0 degrees

•	 It’s scaled to four times the size of normal text

•	 It’s colored with 80 percent of standard blue (mixed with 20 percent of white)

•	 It’s vertically shifted downward by 2ex

•	 We place dashes around it

Here it goes:

\backgroundsetup{placement = top, angle = 0,
  scale = 4, color = blue!80,vshift = -2ex,
  contents = {--\thepage--}}

Creating Beautiful Designs202

Here is a screenshot of the top of page 7:

Figure 7.2 – A decorative page numbering

Let’s look at an example to see how you can draw with TikZ on the background. We’ll draw a rounded
border and fill the interior background with a light yellow color:

\usetikzlibrary{calc}
\backgroundsetup{angle = 0, scale = 1, vshift = -2ex,
  contents = {\tikz[overlay, remember picture]
\draw [rounded corners = 20pt, line width = 1pt,
       color = blue, fill = yellow!20, double = blue!10]
       ($(current page.north west)+(1,-1)$)
       rectangle ($(current page.south east)+(-1,1)$);}}

Here, we initially loaded the calc library, which enabled us to perform coordinate calculations that
we used later on. A TikZ image in overlay mode draws a rectangle with rounded corners. It features
double lines with yellow in between. The rectangle’s dimensions were calculated from the position of
the current page node, representing the whole page. The final result looks like this:

–7–

placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis
sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, ali-
quet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet
ipsum. Nunc quis urna dictum turpis accumsan semper.

• Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobor-
tis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent
imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo,
lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus
nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Prae-
sent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque
placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis
sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, ali-
quet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet
ipsum. Nunc quis urna dictum turpis accumsan semper.

2.1.1 Example for list (4*itemize)

• Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobor-
tis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent
imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo,
lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus
nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Prae-
sent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque
placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis
sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, ali-
quet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet
ipsum. Nunc quis urna dictum turpis accumsan semper.

– Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam
lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin.
Praesent imperdiet mi nec ante. Donec ullamcorper, felis non so-
dales commodo, lectus velit ultrices augue, a dignissim nibh lectus
placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper
in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit
amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed
interdum libero ut metus. Pellentesque placerat. Nam rutrum augue
a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent
blandit blandit mauris. Praesent lectus tellus,
tus a, egestas a, turpis. Mauris lacinia lorem sit
quis urna dictum turpis accumsan semper.

⇤ Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam
lobortis facilisis sem. Nullam nec mi et neque pharetra sollici-
tudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis

Adding a background image 203

Figure 7.3 – A page with a colored background and frame

The entire code is available at https://latex-cookbook.net/chapter-07, too.

The next recipe will include another example, which prints ornaments at the page corners.

Here’s a summary of the selected options with their default values:

•	 contents: This can be text, images, or drawing commands; Draft is the default text.

•	 placement: This can be center, top, or bottom, with center as the default option.

•	 color: This is a color expression that TikZ understands, with red!45 as the default.

•	 angle: This is a value between -360 and 360, with 0 as the default for top and bottom
and 60 for center.

1 Heading on level 1 (section)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis
sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec
ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue,
a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies
vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit
amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum
libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit
sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent
lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem
sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis
facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet
mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices
augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie
ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem
ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque.
Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a
leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit
mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis.
Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan
semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis
facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet
mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices
augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie
ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem
ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque.
Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a
leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit
mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis.
Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan
semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis
facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet
mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices
augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie
ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem
ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque.
Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a
leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit
mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis.
Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan
semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis

https://latex-cookbook.net/chapter-07

Creating Beautiful Designs204

•	 opacity: This is a value for the transparency between 0 and 1. The default is 0.5.

•	 scale: This is a positive value. The default is 8 for top and bottom and 15 for center.

•	 hshift and vshift: These can be any length for horizontal or vertical shifting. The default
is 0 pt.

Further options for TikZ node parameters are explained in the package manual, which contains
some examples. It also shows how to select just certain pages to have this background. You can open
it by typing texdoc background at the command line or at https://texdoc.org/pkg/
background.

More packages can do a similar task to what we showed in this recipe, for example, the watermark
and xwatermark packages, and the everypage and eso-pic packages, which don’t require TikZ.

Creating beautiful ornaments
Especially in older books, we find typographic ornaments such as calligraphic flowers. In this recipe,
we will create a greeting card with such ornaments.

Getting ready

We will use the pgfornament package written by Alain Matthes and based on designs by Vincent
Le Moign and Chennan Zhang. At the time of writing, it contains 196 high-quality vintage ornaments.
It’s included with TeX Live and MiKTeX; ensure you have it installed.

How to do it...

We will use a KOMA-Script class because of its arbitrary base font size. The calligra package made
by Gerd Neugebauer provides a font with a hand-written style:

1.	 Load the document class, set paper and text dimensions, and choose a page style without the
printed page number:

\documentclass[paper=a6,landscape,
               fontsize=30pt]{scrartcl}
\areaset{0.9\paperwidth}{0.68\paperheight}
\pagestyle{empty}

2.	 Activate T1 font encoding and load the calligra font package:

\usepackage[T1]{fontenc}
\usepackage{calligra}

https://texdoc.org/pkg/background
https://texdoc.org/pkg/background

Creating beautiful ornaments 205

3.	 Load the pgfornament package. It implicitly uses TikZ. In addition, load the calc library,
which will be used for coordinate calculations:

\usepackage{pgfornament}
\usetikzlibrary{calc}

4.	 Now we write the document body:

\begin{document}
\centering
\begin{tikzpicture}[
  pgfornamentstyle/.style = {color = green!50!black,
                             fill  = green!80!black},
  every node/.style = {inner sep = 0pt}]
  \node [text width = 8cm, outer sep = 1.2cm,
    text centered, color = red!90!black] (Greeting)
    { \calligra Happy Birthday,\\Dear Mom!\\[-1ex]
      \pgfornament[color = red!90!black,
        width = 2.5cm]{72}};
  \foreach \corner/\sym in {north west/none,
    north east/v, south west/h, south east/c} {
      \node [anchor = \corner] (\corner)
        at (Greeting.\corner)
        {\pgfornament[width = 2cm,
         symmetry = \sym]{63}};}
  \path (north west) -- (south west)
          node [midway, anchor = east]
               {\pgfornament[height = 2cm]{9}}
        (north east) -- (south east)
          node [midway, anchor = west]
               {\pgfornament[height = 2cm,
                symmetry = v]{9}};
  \pgfornamenthline{north west}{north east}{north}{87}
  \pgfornamenthline{south west}{south east}{south}{87}
\end{tikzpicture}
\end{document}

Creating Beautiful Designs206

5.	 Compile the document and take a look at the outcome:

Figure 7.4 – A greeting card with floral ornaments

How it works...

The pgfornament package is a collection of vector ornaments that can be scaled while maintaining
high quality. There are calligraphic flowers, tree leaves, and generally symbols and lines to achieve
this kind of vintage design. The package’s documentation contains much information on its usage
and capabilities.

The fundamental command is \pgfornament[options]{number}, where the number option
corresponds to the chosen ornament in the order they are listed in the package’s manual. The following
options can be used in a comma-separated list of expressions:

•	 scale: This can be a positive value, with 1 as the default

•	 width and height: These are LaTeX lengths

•	 color: This can be any color that TikZ understands

•	 ydelta: This can be set to shift the ornament vertically

•	 symmetry: This can be a value v, h, c, or none to get the ornament with vertical, horizontal,
central, or no mirroring

In our example, we used the command with options in the following way:

•	 We set the TikZ inner sep style option to eliminate additional whitespace around nodes.

•	 We set the pgfornamentstyle option to be dark green and filled with lighter green.

•	 A node called Greeting contains the handwritten text in a dark red Calligra font. In addition,
it includes ornament no. 72.

Happy Birthday,
Dear Mom!

Creating beautiful ornaments 207

•	 Using the TikZ \foreach syntax, we placed ornament no. 63 at each corner with a suitable
symmetry, with relative positioning to our Greeting node.

•	 We placed ornament no. 9 on the left and right sides. We used the midway option to put them
right in the middle of the stated corners.

•	 Finally, we used the \pgfornamenthline command to add ornament lines no. 87 to the
top and bottom edges.

There’s more...

In the previous recipe, we talked about using the background package to print things on the
page background. You can combine this with ornaments. This code in your preamble will print nice
triangular ornaments with suitable symmetry in each corner of the page:

\usepackage{pgfornament}
\usepackage{background}
\backgroundsetup{angle = 0, scale = 1, opacity = 1,
  color = black!60,
  contents = {\begin{tikzpicture}[remember picture,
    overlay]
    \foreach \pos/\sym in {north west/none, north east/v,
      south west/h, south east/c} {
        \node[anchor = \pos] at (current page.\pos)
          {\pgfornament[width=2cm, symmetry=\sym]{63}};}
  \end{tikzpicture}}}

Figure 7.5 – Ornaments on the background of a page

We used the current page node for positioning relative to the page corners. Remember that this
may require several compilation runs to achieve the final placement. You can find a complete code
sample at https://latex-cookbook.net/chapter-07.

Lorem ipsum dolor sit amet,

consectetuer adipiscing elit. Ut

purus elit, vestibulum ut, plac-

erat ac, adipiscing vitae, felis.

Curabitur dictum gravida mau-

ris. Nam arcu libero, nonummy

1

https://latex-cookbook.net/chapter-07

Creating Beautiful Designs208

Some fonts provide typographical ornaments as glyphs; fourier-orns, adforn, and webomints
are excellent examples.

Preparing pretty headings
This recipe will show how to bring some color into document headings.

How to do it...

We will use TikZ for coloring and positioning. Take the following steps:

1.	 Set up a basic document with support for filler text:

\documentclass{scrartcl}
\usepackage[automark]{scrlayer-scrpage}
\usepackage[english]{babel}
\usepackage{blindtext}

2.	 Load TikZ beforehand, and pass a naming option to the implicitly loaded xcolor package
for using names for predefined colors:

\PassOptionsToPackage{svgnames}{xcolor}
\usepackage{tikz}

3.	 Define a macro that prints the heading given as an argument:

\newcommand{\tikzhead}[1]{%
  \begin{tikzpicture}[remember picture,overlay]
    \node[yshift=-2cm] at (current page.north west)
      {\begin{tikzpicture}[remember picture, overlay]
         \path[draw=none, fill=LightSkyBlue] (0,0)
               rectangle (\paperwidth,2cm);
         \node[anchor=east, xshift=.9\paperwidth,
           rectangle, rounded corners=15pt,
           inner sep=11pt, fill=MidnightBlue,
           font=\sffamily\bfseries] {\color{white}#1};
    \end{tikzpicture}
  };
\end{tikzpicture}}

4.	 Use the new macro for the headings, printing \headmark, and complete the document with
some filler text:

\clearscrheadings
\ihead{\tikzhead{\headmark}}
\pagestyle{scrheadings}

Producing a calendar 209

\begin{document}
\tableofcontents
\clearpage
\blinddocument
\end{document}

5.	 Compile the document and take a look at a sample page header:

Figure 7.6 – A fancy page header

How it works...

We’ve created a macro that draws a filled rectangle spanning the entire page width. We’ve placed a
node with text inside this rectangle, shaped as a rectangle with rounded corners. This provided another
brief look at TikZ’s drawing syntax.

Here are the key takeaways:

•	 Refer to the current page node for positioning, as in the first recipe of this chapter

•	 Use the drawing macro within a header command

The rest are drawing syntax and style options described in the TikZ manual. You can read it using
texdoc tikz at the command prompt or by visiting https://texdoc.org/pkg/tikz.

Producing a calendar
Self-made customized calendars can be a great gift. Also, having a personalized calendar for professional
and educational purposes is helpful.

In this recipe, we’ll generate a full-year calendar with all the months presented in a tabular layout. You
can adjust it to print just one month below an image or for other specific needs.

2 Lists

ii. Second item in a list

b) Second item in a list

2. Second item in a list

2.3 Example for list (description)

First item in a list

Second item in a list

Third item in a list

Fourth item in a list

Fifth item in a list

2.3.1 Example for list (4*description)

First item in a list

First item in a list

First item in a list

First item in a list

Second item in a list

Second item in a list

Second item in a list

Second item in a list

https://texdoc.org/pkg/tikz

Creating Beautiful Designs210

How to do it...

We will use the powerful TikZ package again since it provides a calendar library:

1.	 Set up document class and page dimensions. Furthermore, change to the empty page style
to not have page numbering:

\documentclass{article}
\usepackage[margin = 2.5cm, a4paper]{geometry}
\pagestyle{empty}

2.	 Load TikZ and its calendar and positioning libraries:

\usepackage{tikz}
\usetikzlibrary{calendar,positioning}

3.	 To save typing and more easily change the year, we define a macro for the year and one for
calling the TikZ \calendar command:

\newcommand{\calyear}{2025}
\newcommand{\mon}[1]{\calendar[dates = \calyear-#1-01
  to \calyear-#1-last] if (Sunday) [red];}

4.	 Now, we write the document containing a TikZ picture. The month calendars are arranged in
a matrix:

\begin{document}
\begin{tikzpicture}[every calendar/.style = {
    month label above centered,
    month text = {\Large\textsc{\%mt}},
    week list,
  }]
  \matrix (Calendar) [column sep=4em, row sep=3em] {
      \mon{01} & \mon{02} & \mon{03} \\
      \mon{04} & \mon{05} & \mon{06} \\
      \mon{07} & \mon{08} & \mon{09} \\
      \mon{10} & \mon{11} & \mon{12} \\ };
      \node [above = 1cm of Calendar, font = \Huge]
        {\calyear};
  \end{tikzpicture}
\end{document}

Producing a calendar 211

5.	 Compile the document and have a look at the output:

Figure 7.7 – A year calendar

How it works...

We used a matrix to easily position the 12 month calendars; we just specified the row and column spacing.

While the given calendar style settings are pretty much self-explanatory, modifying them requires
knowing the options. The library is extensively explained in the TikZ manual, together with some
examples, at https://texdoc.org/pkg/tikz.

Based on the date calculation features and existing styles of the calendar library, you can use the bells
and whistles of TikZ to get a colorful, fancy calendar. Some outstanding examples can be found in the
TikZ gallery at https://www.texample.net/tikz/examples/feature/calendar-
library/.

January
1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

February
1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28

March
1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

April
1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30

May
1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

June
1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30

July
1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

August
1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

September
1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30

October
1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

November
1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

December
1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

2025

https://texdoc.org/pkg/tikz
https://www.texample.net/tikz/examples/feature/calendar-library/
https://www.texample.net/tikz/examples/feature/calendar-library/

Creating Beautiful Designs212

Mimicking keys, menu items, and terminal output
Technical documentation and software manuals often explain keyboard shortcuts, guide users through
program menus, show terminal command output, and provide information on file locations.

This recipe helps in writing such guides.

How to do it...

We will use the menukeys package developed by Tobias Weh and Jonathan P. Spratte. Let’s keep it
concise and try out the main commands. Follow these steps:

1.	 Start a short document and load the menukeys package in it:

\documentclass[parskip=full]{scrartcl}
\usepackage{menukeys}
\begin{document}
\section*{Running \TeX works}

2.	 In the body text, use \menu for menu entries, \keys for keyboard combinations, and
\directory for a path, as follows:

In the main menu, click \menu{Typeset > pdfLaTeX}
for choosing the \TeX\ compiler. Then press
\keys{\cmd + T} for typesetting.
Click \menu{Window > Show > Fonts} for seeing
the fonts used by the document.

Press \keys{\shift + \cmd + F} for full screen.

The program is installed in
\directory{/Applications/TeX/TeXworks.app}.
\end{document}

3.	 Compile the document and take a look:

Figure 7.8 – Menu and key symbols within text

Running TEXworks

In the main menu, click Typeset pdfLaTeX for choosing the TEX compiler. Then press
+ T for typesetting. Click Window Show Fonts for seeing the fonts used by the

document.

Press + + F for full screen.

The program is installed in Applications TeX TeXworks.app.

Mimicking keys, menu items, and terminal output 213

How it works...

The menukeys package provides three primary commands that parse their arguments as a list:

•	 \keys{combination}: This command prints a key combination given by a list of keys
separated by + symbols

•	 \menu{sequence}: This command prints a sequence of menu entries separated by > symbols

•	 \directory{path} This command prints a file path in typewriter font, with components
separated by / symbols

The input as separated lists follows standard conventions, and the output mimics what we expect to
see on a computer screen.

Various aspects can be customized. Several predefined styles exist, such as rounded and angular menus;
rounded, angular, and shadowed keys; and vintage typewriter keys. Paths can use folder symbols. If
the short example whetted your appetite and you would like to modify the appearance further, have
a look at the package’s manual. As usual, you can read it using the texdoc menukeys command
at the command line or at https://texdoc.org/pkg/menukeys.

There’s more...

The sim-os-menus package written by Cédric Pierquet can draw context menus. You can use it
the following way:

1.	 Load the package:

\usepackage{sim-os-menus}

2.	 In addition, load the xfp package for floating-point calculations because the sim-os-menus
package uses it internally. With TeX Live 2023 or newer, you don’t need to load it:

\usepackage{xfp}

3.	 Do the following when using the \ContextMenu command:

	� Use style options in square brackets

	� State menu items as a comma-separated list

	� Draw an arrow by writing (>) at the end of an item

	� Write (*) to indicate the start of a new level, just one per level

	� Use § as a separator symbol to start the next level

https://texdoc.org/pkg/menukeys

Creating Beautiful Designs214

Here’s an example:
\ContextMenu[Font=\sffamily]{Open, Open with(>),
  Rename, Run(>)(*), Delete §
  LaTeX, BibTeX, MakeIndex}

4.	 Compile a document with these lines, and you’ll get the following output:

Figure 7.9 – A context menu

The menu can be customized with colors and symbols, supporting nesting up to five levels. For details,
please look at the package manual by running texdoc sim-os-menus at the command line or
at https://texdoc.org/pkg/sim-os-menus.

Are you interested in that package? It offers even more. It can simulate PDF viewers, image viewers,
and terminal windows. In contrast to bitmap screenshots from real applications, it uses scalable TikZ
graphics for better quality. Let’s see what this means by looking at the terminal simulation. It works
like this:

1.	 Open a terminal environment, either TermMac, TermUnix, or TermWin, for macOS, Unix/
Linux, or Windows terminal style. Leave the mandatory argument empty or choose an option;
here, I’ve used hbox for automatic sizing to the content dimensions:

\begin{TermMac}{hbox}

2.	 Insert your terminal window content; I’ve shortened it here:

stefan@laptop ~ % ping latex.org
...
stefan@laptop ~ % }

3.	 End the terminal environment:

\end{TermMac}

4.	 When you compile the document, you get a picture of a terminal window with text; here is
my complete ping output:

Open

Open with �

Rename

Run �

Delete

LaTeX

BibTeX

MakeIndex

https://texdoc.org/pkg/sim-os-menus

Mimicking keys, menu items, and terminal output 215

Figure 7.10 – A macOS terminal window

With the TermUnix environment, the result looks like this:

Figure 7.11 – A Unix terminal window

And using the TermWin environment, you get this picture:

Figure 7.12 – A Windows terminal window

Terminal Mac

stefan@laptop ~ % ping latex.org

PING latex.org (78.46.26.59): 56 data bytes

64 bytes from 78.46.26.59: icmp_seq=0 ttl=55 time=45.882 ms

64 bytes from 78.46.26.59: icmp_seq=1 ttl=55 time=31.600 ms

64 bytes from 78.46.26.59: icmp_seq=2 ttl=55 time=36.364 ms

^C

--- latex.org ping statistics ---

3 packets transmitted, 3 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 31.600/37.949/45.882/5.937 ms

stefan@laptop ~ %

Terminal UNiX

stefan@laptop ~ % ping latex.org

PING latex.org (78.46.26.59): 56 data bytes

64 bytes from 78.46.26.59: icmp_seq=0 ttl=55 time=45.882 ms

64 bytes from 78.46.26.59: icmp_seq=1 ttl=55 time=31.600 ms

64 bytes from 78.46.26.59: icmp_seq=2 ttl=55 time=36.364 ms

^C

--- latex.org ping statistics ---

3 packets transmitted, 3 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 31.600/37.949/45.882/5.937 ms

stefan@laptop ~ %

� Terminal Win

stefan@laptop ~ % ping latex.org

PING latex.org (78.46.26.59): 56 data bytes

64 bytes from 78.46.26.59: icmp_seq=0 ttl=55 time=45.882 ms

64 bytes from 78.46.26.59: icmp_seq=1 ttl=55 time=31.600 ms

64 bytes from 78.46.26.59: icmp_seq=2 ttl=55 time=36.364 ms

^C

--- latex.org ping statistics ---

3 packets transmitted, 3 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 31.600/37.949/45.882/5.937 ms

stefan@laptop ~ %

Creating Beautiful Designs216

Of course, you can customize terminal window properties, such as title, alignment, and width.
Furthermore, you can choose among many options processed by the drawing commands from the
tcolorbox package that’s internally used here. You can find the details in the sim-os-menus
package manual, as previously, and further options in the tcolorbox manual.

Just for a brief demonstration of how the syntax looks with options, here’s a quick example:

\begin{TermMac}[Title = stefan - shell,
  Width=10cm]{sharpish corners}

Here, we have the sim-os-menus options in square brackets, setting the title and width of the
terminal window. The sharpish corners option is for the underlying color box from the
tcolorbox package and changes our round corners to sharp corners. Again, the package manuals
provide a complete reference.

Arranging topics like a puzzle
Cédric Pierquet has created numerous useful and entertaining packages, often centered around
graphics, including functionalities for printing playing cards, Scrabble boards, Tangram puzzles, and
Wordle grids. You can find a comprehensive list of his contributions at https://ctan.org/
author/pierquet.

Let’s just try a package by him that gives a simple yet effective method to organize topics in a
puzzle-like layout.

How to do it...

We will use the thematicpuzzle package developed by Cédric Pierquet. Additionally, we will
load the xfp package to enable internal floating-point calculations. With TeX Live 2023 or newer, you
can omit this step. Moreover, we will use the fontawesome5 package authored by Marcel Krüger,
allowing us to incorporate Font Awesome 5 icons. Take the following steps:

1.	 Start with a document class. Here, we use the standalone class as we just want to generate
a small picture:

\documentclass[border=10pt]{standalone}

2.	 Load the three mentioned packages, and begin with the document:

\usepackage{thematicpuzzle}
\usepackage{xfp}
\usepackage{fontawesome5}
\begin{document}

https://ctan.org/author/pierquet
https://ctan.org/author/pierquet

Arranging topics like a puzzle 217

3.	 Utilize the \ThematicPuzzle command. Here’s an example where I visualize the interaction
of LaTeX-related tools. I will explain the options further shortly:

\ThematicPuzzle[FontLabels = {\tiny\sffamily},
  Labels = { Editor, LaTeX, BibTeX,
             MakeIndex, Tools, PDF},
  BgColors = {green!90, yellow!20, red!20, blue!20,
  orange!60, yellow!30},
  IconsColor = {red!90!black}]
  { \faEdit, \faFileExport, \faBookOpen,
    \faClipboardList, \faTools,\faFilePdf }

4.	 End the document:

\end{document}

5.	 Compile the document and take a look:

Figure 7.13 – Arranging topics like a puzzle

How it works...

To start, we employed the fontawesome5 package to utilize the icon font from https://
fontawesome.com. That’s a huge commercial icon library, where parts of it can freely be used. I
anticipate the release of version 6 of the LaTeX package in 2024 since the original font is now available
in version 6. The manual contains the entire list of hundreds of icon commands. You can open it
through texdoc fontawesome5 or at https://texdoc.org/pkg/fontawesome5.

The \ThematicPuzzle command has a mandatory argument in curly braces, representing the
list of topics, one for each puzzle piece. It can be any text or symbol. We used the fontawesome5
icons here.

� � � � � �
Editor LaTeX BibTeX MakeIndex Tools PDF

https://fontawesome.com
https://fontawesome.com
https://texdoc.org/pkg/fontawesome5

Creating Beautiful Designs218

We added optional style values in square brackets:

•	 FontLabels: This is the command for setting the font of the labels

•	 Labels: This is a comma-separated list of labels below the puzzle pieces

•	 BgColors: That’s a list of colors for the puzzle pieces

•	 IconsColor: This determines the color of the icons and labels

That’s quickly done and a nice add-on to a presentation slide.

That was a linear puzzle. You can create bigger two-dimensional puzzles using the jigsaw package.
I demonstrated examples in the book LaTeX Graphics with TikZ, in Chapter 15, Having Fun with
TikZ. You can find the code of my examples with output at https://tikz.org/chapter-15.

Building a word cloud
A visual representation of a concept can show information quickly and intuitively in a more engaging
way than a textual explanation. A popular example is a word cloud, which displays words in different
sizes based on their frequency or importance within a particular context. People like word clouds because
they provide a quick and visually appealing way to grasp the most significant keywords of a topic.

So, we will define a word cloud and learn how to generate word clouds automatically from PDF or
text files.

Getting ready

We will use the wordcloud package programmed by Maxime Chupin. It is included in TeX Live
and MiKTeX, but you can also get it from https://ctan.org/pkg/wordcloud. The package
requires LuaLaTeX, so choose this as the compiler in your editor. The wordcloud package uses Lua
for parsing LaTeX commands and arguments, building lists of words from a text file, and generating
MetaPost code. That code is interpreted by the luamplib package. So, you must have both packages
and MetaPost installed with your TeX distribution.

How to do it...

The key is a single command with a particular argument list. Follow these steps:

1.	 Start a short document and load the wordcloud package:

\documentclass{article}
\usepackage{wordcloud}
\begin{document}

https://tikz.org/chapter-15
https://ctan.org/pkg/wordcloud

Building a word cloud 219

2.	 Within the body text, use the \wordcloud command and provide a list of words and numerical
weights. Their order doesn’t matter. Here, we additionally demonstrate that we can wrap it in
a \textsf command to use sans-serif fonts:

\textsf{\wordcloud[scale=1,rotate=45,margin=0.5pt,
  usecolor]{(\textrm{\LaTeX},10);(graphics,6);
  (fonts,7);(images,5);(tables,5);(bibliographies,2);
  (mathematics,3);(PDF,5);(headings,4);(paragraphs,3);
  (diagrams,3);(commands,4);(packages,5);(classes,6);
  (hyphenation,2);(macros,6);(justification,2);
  (footnotes,4);(cross-references,2);(spacing,3);
  (lines,4);(colors,5);(captions,5);(hyperlinks,3);
  (chapters,5)}}

3.	 End the document:

\end{document}

4.	 Compile the document, and have a look at the output:

Figure 7.14 – A word cloud

LATEX
fonts

gra
ph

ics

macros

cla
sse

s
captions col

ors

packagesim
age

s

chapters

PDF

tables

foo
tno

tes

commands

lin
es

headings

spa
cin

g

mathematics
hyp

erl
ink

s
paragraphs

dia
gra

ms

cross-references

hyp
hen

ati
on

bibliographies

jus
tifi

cat
ion

1

Creating Beautiful Designs220

How it works...

The wordcloud command takes a semicolon-separated list in the form (word,weight). It takes
optional arguments for rotating, scaling, margins, and coloring. Consult the package’s manual to see all
available options using the texdoc wordcloud command at the command line or at https://
texdoc.org/pkg/wordcloud.

There’s more...

The wordcloud package can read a text file, find the most used words, and display them in a
cloud shape.

If your content is in PDF format, you can use the pdftotext tool to convert it to plain text. The pdftotext
tool is part of the Xpdf software suite and is also available with the Poppler library, so you must have
one installed. Alternatively, you can use an online conversion tool if the data is not confidential.

For our example, we will use the Formatting information document written by Peter Flynn, a beginner’s
introduction to typesetting with LaTeX. Our word cloud shall automatically show the most used
words, so we have an idea of the tutorial’s content, which is nearly 300 pages long. The document can
be downloaded from CTAN at https://ctan.org/pkg/beginlatex.

Once we’ve converted the PDF document into a text file called beginlatex.txt, we can generate
a word cloud with 80 words using the following command:

\wordcloudFile[usecolor]{beginlatex.txt}{80}

If you would like to omit often-used non-LaTeX words, you can exclude them from the word cloud
using the following case-sensitive command with example words and re-compile:

\wordcloudIgnoreWords{You ,you, just, want, from, them
  for, the, same}

I did this for that tutorial document and got the following result:

https://texdoc.org/pkg/wordcloud
https://texdoc.org/pkg/wordcloud

Building a word cloud 221

Figure 7.15 – A word cloud generated from a document

That’s a mesmerizing cloud of 80 keywords easily generated from a 300-page document. The arrangement
looks pretty circular. If you don’t like a word arrangement, you can recompile and get a slightly different
version. Personally, I like this mix of LaTeX keywords and normal words, so the brain even notices
phrases in the cloud. This could be the top slide of a LaTeX introduction presentation.

LATEX
Th

e
your

wh
ich

information

us
e

document Fo
rm

at
tin

g

text

TE
X

command

bu
t

will

fil
e

all

an
y

files
on

e
other

se
e

This

lik
e

they

fo
nt

using

us
edexample

ty
pe

there
pa

ck
ag

e

need

fo
nt

s

may

al
so

CHAPTER

on
ly

more

en
d

name

lin
e

space

m
ak

esection

lis
ts

systems

co
m

m
an

ds

get

ed
ito

r

Document

fo
rm

at

what

be
ca

us
e

their
pa

ge

new

do
cu

m
en

ts

into

pa
ck

ag
es

item

its

There
ea

ch
after

te
xm

f

how wa
y

program

tit
le

PostScript

en
vi

ro
nm

en
t

system

ht
tp

standard

de
fa

ul
t

very
tw

o

many

ty
pe

se
t

typesetting

be
gi

n

1

8
Producing Contents, Indexes,

and Bibliographies

LaTeX provides features for automatically creating tables of contents, lists of figures and tables,
bibliographies, glossaries, and indexes. This chapter equips you with recipes for quickly starting and
customizing such lists.

In this chapter, we will deal with the following:

•	 Tuning tables of contents and lists of figures and tables

•	 Creating a bibliography

•	 Adding a glossary

•	 Making a list of acronyms

•	 Generating an index

We will start with the table of contents. While it’s straightforward to create one by simply using the
\tableofcontents command, the format is pretty rigidly determined by the document class. We
will see ways to modify it easily. The same can be used for the list of figures and the list of tables, which
can be generated utilizing the \listoffigures or \listoftables commands, respectively.

Especially for scientific work, a list of references is essential. It’s also called a bibliography. Using the
very modern biblatex package, our recipe will provide a quick start.

Another recipe will show you how to create a glossary to explain scientific or technical vocabulary
to the reader.

The final recipe demonstrates generating a sorted index to let your reader quickly search keywords.

Producing Contents, Indexes, and Bibliographies224

Tuning tables of contents and lists of figures and tables
Especially when starting to use LaTeX, the automatic creation of a table of contents (ToC) is impressive.
The ToC with section titles and page numbers is generated from your heading texts in commands
such as \part, \chapter, and \section. The lists of figures and tables work precisely in the
same way, while they use the texts in \caption for the list entries.

The default table of contents design follows a widely used style. In some cases, though, you might
need to adjust it.

How to do it...

We will use the tocstyle package for customizing, which belongs to the KOMA-Script bundle. You
can try the recipe settings in your own document or use our book example from Chapter 1, Exploring
Various Document Classes.

Automatic correction of widths

The default widths of numbers in the ToC remain fixed, so large section or page numbers can potentially
overlap with the text. It can also happen with Roman numbering, where the numbers are even broader.

Fortunately, resolving this is straightforward with the following code:

\usepackage[tocindentauto]{tocstyle}

Despite its somewhat unintuitive name, this option automatically adjusts the indentation of textual
entries, preventing overlap with numbers. It’s important to note that generating a ToC now requires
three runs, so the widths are calculated and settled.

Printing a flat table of contents

By default, a ToC is graduated. This means that lower-level sectioning entries would be indented.
Our book example from Chapter 1, Exploring Various Document Classes, has a graduated table of
contents as follows:

Tuning tables of contents and lists of figures and tables 225

Figure 8.1 – A standard table of contents

To have all content entries left aligned, specifically all section numbers at the left, use the tocflat option:

\usepackage[tocflat]{tocstyle}

Then, the ToC changes to this:

Figure 8.2 – A flat table of contents

Contents

I. First portion 5

1. The beginning 7
1.1. A first section 7

1.2. Another section 7

II. Appendix 11

A. An addendum 13
A.1. Section within the appendix 13

Contents

I. First portion 5

1. The beginning 7
1.1. A first section . 7

1.2. Another section . 7

II. Appendix 11

A. An addendum 13
A.1. Section within the appendix 13

Producing Contents, Indexes, and Bibliographies226

Still, the content entries will be aligned, which means that the section numbers will be set in a box
of equal width. You can omit this, pushing everything to the left, using the tocfullflat option:

\usepackage[tocfullflat]{tocstyle}

Now, you get this:

Figure 8.3 – A left-aligned table of contents

The effects are even more noticeable if subsections are added to the ToC.

You can combine options by adding them, separated by commas, using \usepackage
[tocindentauto,tocflat]{tocstyle}.

Getting KOMA-Script-like, sans-serif headings

KOMA-Script classes use a modern design of headings, which are sans-serif and bold, so they are not
as heavy as the default classic serif headings. Also, bold ToC entries are sans-serif. You saw this earlier.

You can get the same behavior with other classes using the following commands:

\usepackage{tocstyle}
\usetocstyle{KOMAlike}

Contents

I. First portion 5

1. The beginning 7
1.1. A first section . 7

1.2. Another section . 7

II. Appendix 11

A. An addendum 13
A.1. Section within the appendix 13

Creating a bibliography 227

How it works...

You need several compiler runs to benefit from the automatic adjustments of the tocstyle package.
Expect at least three runs:

1.	 In the first run, LaTeX writes all entries from commands, such as \chapter and \section,
to the external table of contents file. The name of this file ends with .toc. The lists of figures
and tables end with .lof and .lot, respectively.

2.	 In the following run, LaTeX can read the entries of the external file for printing the ToC. Widths
are calculated and written into the .aux file.

3.	 In the next run, the ToC is produced using the known entries from the .toc file and the known
widths from the .aux file. Of course, changes in section and page numbers would require
running it again. That’s a general consequence of straight compiling using external files: several
compiler runs can be needed until things are entirely settled.

There’s more...

Loading the tocstyle package without options produces a graduated ToC, like with standard
classes. But it strongly tries to avoid page breaks between a ToC entry and its parent, automatically
adjusting the widths. So, simply loading it can already be a relief.

The package provides many commands for fine-tuning the style of the ToC, which is challenging. Refer
to the package manual for details, which you can open using texdoc tocstyle at the command
line or https://texdoc.org/pkg/tocstyle.

Creating a bibliography
The traditional method of producing a bibliography, or a list of references, uses BibTeX. This is an
external program for building a bibliography from a plain text database with a chosen style and citing
references in the text.

LaTeX Beginner’s Guide, Second Edition has a BibTeX tutorial for creating bibliographies. Refer to this
guide for learning about the classic way. In our cookbook, we will use an advanced package called
biblatex, which is generally considered to be the successor of BibTeX.

Here’s why biblatex stands out:

•	 It is a complete reimplementation of LaTeX’s standard bibliographic features

•	 It supports the BibTeX database format but understands further formats

https://texdoc.org/pkg/tocstyle

Producing Contents, Indexes, and Bibliographies228

biblatex entirely uses TeX macros for formatting. BibTeX styles, in contrast, are programmed in
a postfix stack language. So, for customizing styles with biblatex, you don’t need to learn another
language. There are more benefits:

•	 It supports subdivided bibliographies

•	 You can generate multiple bibliographies within a single document

•	 You can have separate lists of bibliographic shorthands

•	 The biblatex package can still use BibTeX as the backend but works with a new and capable
backend called biber

Using the biber backend with the biblatex package is highly recommended for several reasons:

•	 It can most notably process UTF-8 input, including accented characters and Unicode symbols.
BibTeX, in contrast, requires 7-bit ASCII text.

•	 You can customize the sorting, such as considering capitalization and following sorting guidelines
of various languages. It can automatically use your operating system locale.

•	 Handling names is more flexible, such as correctly citing names with prefixes.

•	 Multiple bibliographies in the same document, such as per chapter, can be produced in one
run, while BibTeX needs one run for each chapter.

•	 The biber backend can even sort each bibliography in the document independently and differently.

•	 Unlike BibTeX, biber hardly encounters memory limitations, which can sometimes
pose challenges.

How to do it...

We will start with the same small example of LaTeX Beginner’s Guide, so that you can compare the
new biblatex approach with the classic BibTeX way.

Follow these steps:

1.	 With any text or LaTeX editor, start a new document and add these bibliography entries:

@book{DK86,
  author = "D.E. Knuth",
  title = "The {\TeX}book",
  publisher = "Addison Wesley",
  year = 1986
}
@article{DK89,
  author = "D.E. Knuth",

Creating a bibliography 229

  title = "Typesetting Concrete Mathematics",
  journal = "TUGboat",
  volume = 10,
  number = 1,
  pages = "31--36",
  month = apr,
  year = 1989
}
@book{Lamport,
  author = "Leslie Lamport",
  title = "\LaTeX: A Document Preparation System",
  publisher = "Addison Wesley",
  year = 1986
}

2.	 Save that document. You can choose any filename. Here, we give the name texbooks.bib.

3.	 Now, we start the LaTeX document. Begin with a document class:

\documentclass{scrartcl}

4.	 Load the biblatex package:

\usepackage{biblatex}

5.	 Add the bibliography file with the full filename, including the extension:

\addbibresource{texbooks.bib}

6.	 Start your LaTeX document body. For citing references, use the \autocite command, which
is more context-aware than the standard \cite command:

\begin{document}
\section*{Recommended texts}
To study \TeX\ in depth, see \autocite{DK86}. For
writing math texts, see \autocite{DK89}. The
basic reference for \LaTeX\ is \autocite{Lamport}.

7.	 At the place where you would like to print the bibliography, insert this command:

\printbibliography

8.	 Finish your document:

\end{document}

Producing Contents, Indexes, and Bibliographies230

9.	 Compile the document and take a look:

Figure 8.4 – A document with citations

10.	 Still, there’s no bibliography. For the cited references, we see just the keys.

11.	 Run the biber command on the document. Click the corresponding editor button if your
editor provides one or run it at the command prompt. Give the document name as an argument,
but without the .tex extension:

biber filename

12.	 Recompile the document and take another look:

Figure 8.5 – A list of references

How it works...

biblatex and biber support the classic bibliography file format known from BibTeX. LaTeX
Beginner’s Guide, the BibTeX reference, and the biblatex package manual describe the latter. Please
consult the latter for complete information.

First, we need to load the package. You can specify many customizing options when loading it using
the \usepackage command. Some of the most valuable options are the following:

•	 backend: This option can be biber (default), bibtex, bibtex8 (8-bit version), or
bibtexu (unsupported Unicode version)

Recommended texts

To study TEX in depth, see [DK86]. For writing math texts, see [DK89]. The basic
reference for LATEX is [Lamport].

Recommended texts

To study TEX in depth, see [1]. For writing math texts, see [2]. The basic reference for
LATEX is [3].

References

[1] D.E. Knuth. The TEXbook. Addison Wesley, 1986.

[2] D.E. Knuth. “Typesetting Concrete Mathematics”. In: TUGboat 10.1 (Apr. 1989),
pp. 31–36.

[3] Leslie Lamport. LATEX: A Document Preparation System. Addison Wesley, 1986.

Creating a bibliography 231

•	 style: This option can get the name of the style for the bibliography and citation

•	 bibstyle: This option is the name of a bibliography style

•	 citestyle: This option is the name of a citation style

•	 natbib: When you choose this option, biblatex loads commands for citation commands
of natbib, which is a popular package for author-year citations with BibTeX

So, you could load the biblatex package in the preceding example this way:

\usepackage[
  backend = biber,
  style   = authoryear,
  natbib  = true
]{biblatex}

Then you get author-year notations in both citations and the bibliography as follows:

Figure 8.6 – References in author-year style

The \addbibresource command loads your bibliography. It provides several options, given in
the key=value notation. The following options are most noticeable:

•	 label: This option is a name that you can use instead of the entire resource name in a reference
section in the case of multiple bibliographies.

•	 location: This option can be used for a local file (default) or remotely for an Internet address,
which can be a website or an FTP server.

•	 datatype: This option declares the format of the resource. It can have one of the following values:

	� bibtex: This value decides, using the classic BibTeX format, which is the default

	� ris: This value enables the Research Information Systems format

Recommended texts

To study TEX in depth, see (Knuth, 1986). For writing math texts, see (Knuth, 1989).
The basic reference for LATEX is (Lamport, 1986).

References

Knuth, D.E. (1986). The TEXbook. Addison Wesley.
— (1989). “Typesetting Concrete Mathematics”. In: TUGboat 10.1, pp. 31–36.
Lamport, Leslie (1986). LATEX: A Document Preparation System. Addison Wesley.

Producing Contents, Indexes, and Bibliographies232

	� zoterordfxml: This value declares the Zotero RDF/XML format

	� endnotexml: This value chooses the EndNote XML format

You can load several files, even directly from the internet:

\addbibresource{maths.bib}
\addbibresource{history.bib}
\addbibresource[location=remote,
  label=tex]{http://latex.org/texbooks.bib}

The \autocite command generates a citation like the \cite command but avoids double
punctuation marks and takes care that, if you use footnote citations, the footnote mark is printed after
the punctuation. The command’s behavior can also be customized with an option in the preamble. For
example, with the autocite=plain package option, it works like the standard \cite command,
while the autocite=footnote option makes it work like the \footcite command, making
it easy to switch.

The \printbibliography command handles the printing of your sorted and styled bibliography.
It understands some optional parameters for customizing its appearance, which are all detailed in
the manual.

Note
\addbibresource replaces the older BibTeX command \bibliography. The latter
takes just the file name and is not so flexible.

There’s more...

While this recipe serves as a quick start, browsing the comprehensive manual is highly recommended
for customizing your bibliography. You can open it as usual by typing texdoc biblatex at the
command line or visiting https://texdoc.org/pkg/biblatex. You can access the biber
manual in the same way.

The biblatex manual lists further predefined styles such as numeric, alphabetical, and
author-year variations.

On CTAN, there are a lot of additional biblatex styles available for download: http://ctan.
org/topic/biblatex. Check whether one matches your requirements; otherwise, the manual
can guide you in your final adjustment. Luckily, you can use LaTeX for that instead of the BibTeX
postfix language.

https://texdoc.org/pkg/biblatex
http://ctan.org/topic/biblatex
http://ctan.org/topic/biblatex

Adding a glossary 233

Note
Both biblatex and biber underwent substantial development in tandem. Ensure that your
versions are compatible with each other. The biber manual provides a compatibility matrix
in its introduction section.

Adding a glossary
When your document contains terms needing clarification, a glossary becomes invaluable. It’s an
alphabetized roster of words or phrases accompanied by their explanations. Enhancing this further
involves incorporating back-references, indicating where these terms are used within the text.

How to do it...

We will work with the glossaries package. Follow these steps:

1.	 Start with any document class. For our example, we decided on the scrartcl class because,
with the parskip option, we don’t start with a paragraph indentation. But you could use the
article class without options as well:

\documentclass[parskip=half]{scrartcl}

2.	 Load the glossaries package and choose the style called long3col:

\usepackage[style=long3col]{glossaries}

3.	 Use the following command to tell the package to create a glossary:

\makenoidxglossaries

4.	 Create the first glossary entry for the word TeX. Using a key=value interface, state the name
and a word indicating the sort order because the name is a macro. Finally, write a description.
All of them should be in curly braces:

\newglossaryentry{tex}{
  name = {\TeX},
  sort = {TEX},
  description = {Sophisticated digital
                 typesetting system, famous for
                 high typographic quality of
                 mathematical formulae}
}

Producing Contents, Indexes, and Bibliographies234

5.	 Repeat this for each glossary entry. We will do this for LaTeX and TikZ:

\newglossaryentry{latex}{
  name ={\LaTeX},
  sort = {LATEX},
  description = {Document markup language based on
                 \gls{tex}, widely used in academia}
}
\newglossaryentry{tikz}{
  name = {Ti\emph{k}Z},
  sort = {TikZ},
  description = {Extremely capable graphics
                 language for drawing with \gls{tex}}
}

6.	 Start the document:

\begin{document}

7.	 Write some text. When you use the words that are part of the glossary, use the
\gls{label} command:

\gls{tikz} works with plain \gls{tex}. However,
it is mostly used with \gls{latex}.

8.	 Use the following command to print the glossary:

\printnoidxglossary

9.	 End the document:

\end{document}

10.	 Compile two times and take a look at the outcome:

Adding a glossary 235

Figure 8.7 – A glossary

How it works...

This is the basic procedure:

1.	 Define your terms and abbreviations. This can also be done in a separate file, which you could
load using the \input command.

2.	 Reference those entries using the \gls command, as you would do with the \ref command
to a label.

3.	 Display the glossary list.

The glossaries package offers impressive capabilities, including various predefined layouts known
as styles. We chose long3col for a longtable design with three columns. There are further
longtable and supertabular styles and several list layouts similar to the standard LaTeX
description list available.

Note
There’s a package with a similar name called glossary. This is an older version by the same
author; it is now obsolete and glossaries should be used instead.

All the features of the glossaries package are explained in the user guide, which you can access by
typing texdoc glossaries at the command line or by opening it online at https://texdoc.
org/pkg/glossaries. If you feel overwhelmed by the amount of reference information, you could
read the beginner’s guide instead for a quick start. It can be opened using texdoc glossariesbegin
or at https://texdoc.org/pkg/glossariesbegin.

TikZ works with plain TEX. However, it is mostly used with LATEX.

Glossary

LATEX Document markup language based on TEX, widely
used in academia

1

TEX Sophisticated digital typesetting system, famous for
high typographic quality of mathematical formulae

1

TikZ Extremely capable graphics language for drawing
with TEX

1

https://texdoc.org/pkg/glossaries
https://texdoc.org/pkg/glossaries

Producing Contents, Indexes, and Bibliographies236

Creating a list of acronyms
For documents with many acronyms or abbreviations, a table showing their short form and the
extended version is expected. This allows for compact writing and adds convenience for the reader.

The difference to a glossary is that we don’t list explanations, just the longer forms.

How to do it...

We will again use the glossaries package. Since the concepts of a glossary and a list of acronyms
are closely related, it provides an acronym mode, too. So, we will now use it that way. Take these steps:

1.	 Begin with a document class. It doesn’t matter which one, so we’ll take the same as in the
previous recipe:

\documentclass[parskip=half]{scrartcl}

Load the glossaries package and choose the long3col style, like in the previous recipe.
For acronym support, add the acronym option:

\usepackage[acronym,style=long3col]{glossaries}

2.	 Choose an acronym style. We take long-sc-short here, where sc stands for small caps
in the short form:

\usepackage[acronym,style=long3col]{glossaries}

3.	 Define a new acronym using the \newacronym command and three arguments: a label,
the short form, and the long form. Since we use small caps anyway, writing the short form in
lowercase is recommended:

\newacronym{ctan}{CTAN}{Comprehensive
  \TeX\ Archive Network}

4.	 Define further acronyms as needed in the same way:

\newacronym{tug}{TUG}{\TeX\ Users Group}
\newacronym{dante}{DANTE}{Deutschsprachige
  Anwendervereinigung \TeX}

5.	 Use this command to tell the package to create defined glossaries, which also applies to a list
of acronyms:

\makenoidxglossaries

6.	 Start the document:

\begin{document}

Creating a list of acronyms 237

7.	 Write some text. Like with the glossary in the previous recipe, for acronyms, use the
\gls{label} command:

The \gls{ctan} has been founded by members of the
\gls{tug} and of the German speaking group ``\gls{dante}''.

The \gls{ctan} project is actually independent of
\gls{tug} and \gls{dante}, but \gls{dante} is still
the main supporter.

8.	 Use this command to print the list of acronyms:

  \printnoidxglossary[type=\acronymtype]

9.	 End the document:

\end{document}

10.	 Compile two times and take a look:

Figure 8.8 – A list of acronyms

How it works...

It works exactly like the previous recipe about glossaries. The only substantial addition is the
following command:

\newacronym{label}{short version}{long version}

This command defines each acronym.

The Comprehensive TEX Archive Network (CTAN) has been founded by members of
the TEX Users Group (TUG) and of the German speaking group “Deutschsprachige
Anwendervereinigung TEX (DANTE)”.

The CTAN project is actually independent of TUG and DANTE, but DANTE is still
the main supporter.

Acronyms

CTAN Comprehensive TEX Archive Network 1

DANTE Deutschsprachige Anwendervereinigung TEX 1

TUG TEX Users Group 1

Producing Contents, Indexes, and Bibliographies238

Producing an index
In longer documents such as technical books, including an index is customary. An index comprises
a comprehensive list of words alongside corresponding page numbers. It is typically positioned at the
document’s end, guiding readers to the occurrences of those words or phrases within the document.
This compilation encompasses keywords, topics, and individuals’ names, facilitating easy navigation
and reference within the document.

How to do it...

Indexing is typically carried out at the very end of the writing process. While reading through the
document, the \index{keyword} command should be placed for each relevant keyword occurrence.
A good place can be right before that keyword appears in the text. Don’t include a space between
\index{...} and the indexed word.

We will use the makeidx package. We will now insert the indexing commands while writing. Follow
these steps:

1.	 Start with a document class. We will use the same as in the previous recipes:

\documentclass[parskip=half]{scrartcl}

2.	 Load the makeidx package:

\usepackage{makeidx}

3.	 Use this command to generate the index:

\makeindex

4.	 Begin the document:

\begin{document}

5.	 Write the text; insert the \index command right before the essential keywords:

While \index{glossary}glossary entries are simply
printed in the text, an \index{acronyms}acronym
is firstly fully printed with the short version
in parentheses, later only in the short version.

6.	 Use this command to print the index:

\printindex

7.	 End the document:

\end{document}

Producing an index 239

8.	 Compile a first time.

9.	 Run the makeindex command in your editor or execute the makeindex filename
command at the command line.

10.	 Compile again with LaTeX and have a look at the output. Here’s how the document body looks like:

Figure 8.9 – The document body

And here’s the document index:

Figure 8.10 – An index of a document

How it works...

Each \index command generates an entry with a keyword and page number in an auxiliary file.
The external makeindex program then processes this file. During the second run, its output is read
and printed.

Note
The latexmk tools can automate this process. So, you would just need a single latexmk call,
which calls LaTeX for you, and even biber or bibtex and makeindex, if required. It runs
often enough to resolve cross references. You can read about it using texdoc latexmk at
the command line or https://texdoc.org/serve/latexmk/0.

There’s more...

Indexing is typically considered one of the final tasks in document preparation. However, creating
macros can streamline the process if you prefer to add index entries as you write. An everyday use
case involves defining macros like a keyword program, which displays a word in a specific style and
simultaneously adds an index entry.

While glossary entries are simply printed in the text, an acronym is firstly fully printed
with the short version in parentheses, later only in the short version.

Index

acronyms, 1

glossary, 1

https://texdoc.org/serve/latexmk/0

Producing Contents, Indexes, and Bibliographies240

Index entries can have sub-entries. They are added behind the main entry, separated by an exclamation
mark, such as using the following command:

\index{main topic:sub topic}

We can put those two thoughts into a sample macro for packages that does the following:

1.	 Creates a sub-entry for the package topic.

2.	 Establishes a sub-entry for a given topic.

3.	 Prints it with some formatting.

This shall be the macro:

\newcommand{\package}[2]{\index{packages!\texttt{#2}}%
  \index{#1!package \texttt{#2}}\texttt{#2}}

Let’s now extend our text so that we have more index entries to play with, even though it may look
a bit overdone:

While \index{glossary}glossary
\index{glossary!entry}entries are
simply printed in the text, an \index{acronym}acronym
is firstly fully printed with the
\index{acronym!short version}short version in
\index{parentheses}parentheses, later only
in the short version.

A glossary can be done using one of the packages
\package{glossary}{glossaries} or
\package{glossary}{nomencl}.
For a list of acronyms, suitable are
\package{acronyms}{acronym}, \package{acronyms}{acro}
and also \package{acronyms}{glossaries}.

Compile twice. The output now changes to the following:

Figure 8.11 – More document text

While glossary entries are simply printed in the text, an acronym is firstly fully printed
with the short version in parentheses, later only in the short version.

A glossary can be done using one of the packages glossaries or nomencl. For a list of
acronyms, suitable are acronym, acro and also glossaries.

Producing an index 241

Figure 8.12 – A comprehensive index

You can see the sub-entries and typewriter formatting for package names.

Index

acronym, 1
short version, 1

acronyms
package acronym, 1
package acro, 1
package glossaries, 1

glossary, 1
entry, 1
package glossaries, 1
package nomencl, 1

packages
acronym, 1
acro, 1
glossaries, 1
nomencl, 1

parentheses, 1

9
Optimizing PDF Files

Initially, LaTeX produced output in DVI format. This stands for device independent file. It is still
supported; however, today there are newer page description languages, such as PostScript (PS) and
the widely favored Portable Document Format (PDF).

There are converters from DVI to PS, PS to PDF, and DVI to PDF. A modern TeX compiler, called
pdfTeX, can directly generate PDF output. Combined with the LaTeX format, this is called pdfLaTeX,
and it’s pretty much the standard today.

In this chapter, we will use LaTeX to utilize the features of the PDF format. We will cover recipes for
the following tasks:

•	 Using hyperlinks

•	 Adding metadata

•	 Including copyright information

•	 Inserting comments

•	 Producing fillable forms

•	 Optimizing the output for e-book readers

•	 Removing white margins

•	 Combining PDF files

•	 Creating an animation

Using hyperlinks
Initially, LaTeX was used primarily to produce high-quality prints on paper. Since the output was device-
independent from the beginning, the results can also be viewed on screens, tablets, and smartphones.

Optimizing PDF Files244

With electronic publishing, we gain access to convenient functionalities, most notably hyperlinks,
enabling effortless navigation within documents. This recipe focuses on using LaTeX to incorporate
hyperlinks into a PDF.

How to do it...

We will use the hyperref package, which provides a user-friendly interface for accessing numerous
PDF features, particularly hyperlinks. We can test it with examples from Chapter 1, Exploring Various
Document Classes. Here are the steps to follow:

1.	 Open the book example from the first chapter in your editor.

2.	 At the end of the preamble, add this line for loading the hyperref package:

\usepackage{hyperref}

3.	 Compile at least twice so LaTeX can process the data in the .aux file written by the
hyperref package.

4.	 Take a PDF viewer, such as the Adobe Acrobat Reader, and have a look at the table of contents:

Figure 9.1 – A table of contents with hyperlinks and bookmarks

5.	 You can spot hyperlinks by the red borders around the entries. Each table of contents entry is
a hyperlink now. Click on an entry to navigate to the corresponding chapter or section in the
document body.

6.	 On the left, you can see bookmarks for additional navigation.

Using hyperlinks 245

The hyperref package does a lot more for us. Let’s sum up the most significant changes:

•	 All entries in the table of contents, list of figures, list of tables, and similar listings are now
clickable hyperlinks, directing to their corresponding location in the body text.

•	 Footnote markers now serve as direct links to their respective sections, eliminating the need
for manual scrolling.

•	 Citations are linked to their entries in the bibliography, providing easy access to referenced sources.

•	 References done using the \ref command become hyperlinks pointing to the location where
the label was set. This applies, for example, to figure and table captions, headings, and equations.

How it works...

While enabling hyperlinks was easy, the internal operations of the hyperref package are extensive.
It redefines numerous commands of classes and packages to incorporate hyperlink functionality.

Therefore, as a rule of thumb, load the hyperref package after all other packages to let it override
their features. There are exceptions, such as the cleveref and amsrefs packages, and those
reliant on the hyperref package, such as the bookmark, hypcap, and hypernat packages. A
comprehensive maintained list can be found at https://latex.net/hyperref.

Similar to most packages, the hyperref package can be configured using options such as
\usepackage[linkcolor={blue}]{hyperref}. It provides a key=value interface.
Alternatively, after loading the package, you can set such options using the following command:

\hypersetup{key1 = value1,
            Key2 = value2,
            ...
}

In both cases, some keys can be set without a value, which would then default to true.

Using the \hypersetup command is preferable for the following reasons:

•	 LaTeX expands values in the package options early, which can be undesirable.

•	 LaTeX removes spaces in options.

•	 Some options, such as metadata, are better set after loading the hyperref package.

•	 While curly braces can protect the values in options, you may omit them in the
\hypersetup command.

•	 If a document class already loads the hyperref package, as the beamer class does, or another
package, you should not load it again using the \usepackage{hyperref} command. You
can still utilize the \hypersetup command.

https://latex.net/hyperref

Optimizing PDF Files246

In a later recipe, Adding metadata, we will directly compare. Besides this, we will systematically use
the \hypersetup command. The following pages provides plenty of examples.

There’s more...

In addition to the default behavior, the hyperref package provides the user with commands for
explicitly setting anchors and links. We can customize the link appearance. Over time, the hyperref
package developed a fully fledged PDF interface. We will also explore some of its PDF-specific features.

Inserting custom hyperlinks

You can create your own anchors, assign names to them, and create links to those anchors. Additionally,
you can link them directly to internet addresses.

Linking to a place within the document

Take a look at this short example:

\documentclass{article}
\usepackage{hyperref}
\begin{document}
See \hyperlink{mytarget}{next page}.
\newpage
\hypertarget{mytarget}{Here} starts a new page.
\end{document}

It works like this:

•	 We used the \hypertarget command to create an internal link named mytarget, which
is added to a printed piece of text

•	 We used the \hyperlink command to link to that anchor, printing text with a hyperlink

As you can see, we can link to the target even before it has been set. That’s why we need two compiler
runs: LaTeX doesn’t know the target in the first run before it’s defined.

Linking to labeled objects

A single command is sufficient when we have already defined a label, as we can see here:

\begin{equation}
  \label{eq:einstein}
  E = mc^2
\end{equation}

Using hyperlinks 247

Now, we can write the following:

Refer to the \hyperref[eq:einstein]{mass-energy
  equivalence}.

We got a hyperlink with text instead of a number as we would have with the \ref command. Note
the following:

•	 We used square brackets for the label argument and curly braces for the link text.

•	 A common way to categorize labels is using prefixes such as eq: for equations and fig: for
figures. It helps with keeping the code organized but is optional.

Linking to the internet

Let’s take a quick look at some further commands. We will use samples of real-world addresses instead
of placeholders for immediate understanding of the usage, as follows:

•	 The \href{https://latex.org}{LaTeX Forum} command prints text with a
hyperlink to an address

•	 The \url{https://tikz.net} command prints the formatted address with a hyperlink

•	 The \nolinkurl{https://texdoc.org} command prints the formatted address
without a link

The \hyperref command accepts more options. Here is the rather complex syntax:

\hyperref{address}{category}{name}{text}

That command prints the text and links it to address#category.name.

Let’s see a sample for this command:

\newcommand{\baseaddress}{https://tikz.org/}
\newcommand{\chapter}{chapter-13}
\hyperref{\baseaddress\chapter}{plot}{3D}
  {Plotting in 3D}

The generated hyperlink points to http://tikz.org/chapter-13#plot.3D.

Generally, to avoid confusing the arguments, here’s a mnemonic: the first argument is the name or
label of a target, which is invisible, and the last argument, if needed, is the text that appears printed.

http://tikz.org/chapter-13#plot.3D

Optimizing PDF Files248

Changing color and shape

The default highlighting by red borders can seem a bit intrusive. You can remove them by adding the
hidelinks option:

\hypersetup{hidelinks}

The links are still clickable. As an indication for the reader, PDF viewing software usually changes the
mouse pointer when hovering over a link.

However, you can decide to color the text of hyperlinks instead of the default frames. This is an example:

\usepackage{xcolor}
\hypersetup{
    colorlinks,
    linkcolor = {red!75!black},
    citecolor = {green!40!black},
    urlcolor  = {blue!40!black}
}

Here, we loaded the xcolor package to use its color-mixing syntax. We get a color for internal links
in the document with 75 percent red plus black. Then, we set colors for citations and external links
to the internet.

Blackening the hyperlinks, that is, getting darker colors, may be less intrusive and look better in print.
Colored links are actually printed, in contrast to the default borders, so you may still choose to use
the hidelinks option for printing. Hyperlinks on regular paper don’t need emphasizing.

To get a consistent link color for all kinds of links, you can set the allcolors option.

Getting back-references in the bibliography

To get a backlink for each bibliography item to where it has been cited, you can set the backref option:

\hypersetup{backref}

The section number will be printed and linked at the end of each bibliography item. Valid optional
values for the backref key are section, slide, page, none, and false.

If you would like to have backlink page numbers at the end of bibliography items, use the following:

\hypersetup{pagebackref}

Adding metadata 249

Hyperlinking index entries

Since an index is for looking up something, hyperlinks to the corresponding place in the text are
quite natural. It’s not enabled by default. However, you can switch it on using the following option:

\hypersetup{hyperindex}

Adding metadata
Standard PDFs contain concealed fields for descriptive information, such as the author’s name and
the document title. These fields serve archival purposes and are utilized by internet search engines,
so it’s advisable to use them. This recipe will demonstrate how to edit this metadata.

How to do it...

We will use the hyperref package interface. Let’s again use our examples from Chapter 1, Exploring
Various Document Classes:

1.	 Open the book example from the first chapter in your editor.

2.	 At the end of the preamble, load the hyperref package:

\usepackage{hyperref}

3.	 Set up metadata information. Here, we use some dummy text:

\hypersetup{pdfauthor   = The Author,
            pdftitle    = The Book,
            pdfsubject  = Draft version,
            pdfkeywords = {book, draft},
            pdfproducer = TeX version,
            pdfcreator  = LaTeX editor}

4.	 Compile your document.

5.	 Inspect the document properties using a PDF viewer such as Adobe Acrobat Reader. You can
find the meta information there. It can look like this:

Optimizing PDF Files250

Figure 9.2 – Document properties with PDF metadata

How it works...

Some metadata is set automatically, such as the creation date and the pdfTeX compiler version as
producing software. You can overwrite it and set your own data using the \hypersetup command.

Values containing commas, such as the keywords in our example, must be enclosed in curly braces
since commas are otherwise used to separate options.

There’s more...

In the first recipe, we explained why \hypersetup is preferable over options to \usepackage.
Let’s see how it looks in the latter case, especially for preserving the spaces in values:

\usepackage[pdfauthor   = {The\ Author},
            pdftitle    = {The\ Book},
            pdfsubject  = {Draft\ version},
            pdfkeywords = {{book, draft}},
            pdfproducer = {TeX\ version},
            pdfcreator  = {LaTeX\ editor}]{hyperref}

Including copyright information 251

We should use curly braces for grouping to enable safe option parsing. The space with the preceding
backslash is a forced space; otherwise, it would get lost. It looks a bit more complicated, especially if
you were to set many more other options.

An alternative interface for setting metadata lets you even set your own keys. This is the pdfinfo
option, which works this way:

\hypersetup{pdfinfo = {
              Author   = The Author,
              Title    = The Book,
              Subject  = Draft version,
              Keywords = {book, draft},
              Producer = TeX version,
              Creator  = LaTeX editor,
              Version  = 2.0,
              Comment  = Contains dummy text}}

We set the known data and added our own keys.

For completeness, we can declare metadata without hyperref by using a pdfTeX command if this
compiler is used:

\pdfinfo{
  /Author (The Author)
  /Title (The Book)
  /Subject (Draft version)
  /Keywords (book, draft)
  /Producer (pdfTeX 1.40.0)
  /Creator (LaTeX editor)}

That’s an unusual syntax that calls for using the hyperref package.

Including copyright information
We added author, producer, and creator information in the previous recipe. We can even add a field
for our own copyright information. However, there’s a specific place for copyright information. Even
after adding metadata like we did earlier, Adobe Acrobat Reader and other PDF viewers may still
display Copyright Status: Unknown and an empty copyright notice. We can change this.

Optimizing PDF Files252

How to do it...

The hyperxmp package can embed the required information. Follow these steps to add
copyright information:

1.	 Open the book example from the first chapter in your editor.

2.	 At the end of the preamble, load the hyperref package:

\usepackage{hyperref}

3.	 On the next line, load the hyperxmp package:

\usepackage{hyperxmp}

4.	 Set up copyright information as follows:

\hypersetup{
  pdfcopyright = {Copyright 2024 by Stefan Kottwitz.
    All rights reserved.},
  pdflicenseurl =
    {http://latex-community.org/license/}}

5.	 Compile your document.

6.	 Take a PDF viewer and inspect the document properties. For example, in PDF-XChange Viewer,
click on File | Document Properties | Additional Metadata. You will see the following:

Figure 9.3 – PDF copyright information

Inserting comments 253

How it works...

Adobe Systems, Inc. supports the eXtensible Metadata Platform (XMP) for embedding metadata. This
method takes eXtensible Markup Language (XML) formatted attributes for inclusion within documents.

The hyperxmp package processes the hyperref package keys and adds further keys, such as those
we used earlier in this chapter. So, we don’t even need to deal with XML directly.

For a comprehensive overview of all options, including contact information, refer to the hyperxmp
manual. As usual, you can access it using texdoc hyperxmp at the command prompt or at https://
texdoc.org/pkg/hyperxmp.

There’s more...

The xmpincl package is more flexible than the hyperxmp package but doesn’t have such a handy
interface. You can create a separate XML file, such as metadata.xmp, which can be included in
the PDF:

\usepackage{xmpincl}
\includexmp{metadata}

If you want to use it, please consult the package manual for complete details and a sample xmp file, as
XML markup is beyond the scope of this book, and hyperxmp already solves the task of our recipe.

Inserting comments
When collaborating, you may want to append notes or comments to a document, offering extra details
to share with co-authors, which can later be eliminated from the final version. The PDF standard
supports comments, and so does LaTeX.

How to do it...

We will insert some comments into our small document example from Chapter 1, Exploring Various
Document Classes. For brevity, we will directly look at the essential commands. As with all recipes,
the full source code can be downloaded. Follow these essential steps for inserting comments:

1.	 Load the xcolor package in the preamble to get color support:

\usepackage[svgnames]{xcolor}

2.	 Load the pdfcomment package in the preamble:

\usepackage{pdfcomment}

https://texdoc.org/pkg/hyperxmp
https://texdoc.org/pkg/hyperxmp

Optimizing PDF Files254

You could define some default settings if you wish to, such as the following. Add them when
loading the pdfcomment package, as follows:

\usepackage[author={Your name}, icon=Note,
  color=Yellow, open=true]{pdfcomment}

3.	 To insert a simple comment with a marker symbol at a certain place in the document, call the
\pdfcomment command right at that position:

\pdfcomment{Simple documents don't have chapters.}

4.	 You can let the comment marker appear in the margin instead:

\begin{equation}
  \pdfmargincomment{The equation environment produces
    a centered equation with whitespace before
    and after it.}
  ...
\end{equation}

5.	 To mark visible content while showing a comment, select it by grouping it within curly braces and
use \pdfmarkupcomment on it. Here, we highlight and comment on the word sections:

The text will be divided into
\pdfmarkupcomment{sections}{You could additionally
  use subsections.}.

6.	 Markup comments can be tooltips that become visible when hovering the mouse pointer over
it. They can be added as follows:

\pdftooltip{formulas}{Formulas can be inline or
  displayed in their own paragraph}

7.	 You can embrace whole environments with a sideline comment:

\begin{pdfsidelinecomment}[color=Red]{A bulleted list}
  \begin{itemize}
    \item ...
  \end{itemize}
\end{pdfsidelinecomment}

8.	 Furthermore, you can place free text somewhere on the document with custom dimensions,
color, and transparency, like the following:

\pdffreetextcomment[subject={Summary}, width=7.5cm,
  height=2.2cm, opacity=0.5, voffset=-3cm]{The
  whole document is an example showing how to write

Inserting comments 255

  a small document.
  Now we enriched it with sample comments.}

9.	 With all those comments in our small sample document, compile twice and examine the results.
Here’s a simple comment, a markup comment, and a sideline comment:

Figure 9.4 – Different styles of PDF comments

Here, you can see a tooltip, a side comment, markup comments in math mode, and a
free-text comment:

Figure 9.5 – Tooltips and comments in math mode

10.	 To make all comments invisible in the final published version, add the final option:

\usepackage[...,final]{pdfcomment}

Optimizing PDF Files256

How it works...

There are a lot of style options for customizing the appearance of comments. You saw a selection in
this recipe. The complete set is described in the pdfcomment manual. As usual, you can open it by
typing texdoc pdfcomment at the command prompt or visit https://texdoc.org/pkg/
pdfcomment.

You can apply such options globally, as we did using the \usepackage command in the second
step, or locally. In that case, use the options within square brackets as we usually do in LaTeX:

\pdfcomment[icon=Insert, color=red, opacity=0.5,
  author=Me]{The comment}

You can do it similarly with the \pdfmarkupcomment command:

\pdfmarkupcomment[markup=StrikeOut,
  color=red]{Text}{The comment}

While some options, such as width, height, and color, are self-explanatory, let’s take a look at
some special options.

The icon option can have these values according to the PDF standard taken from the manual:

Figure 9.6 – PDF standard icons

Adobe Acrobat Reader supports further icons, as follows:

Figure 9.7 – Adobe Acrobat Reader PDF icons

As a markup option, you can choose Highlight, Underline, Squiggly, and StrikeOut.

https://texdoc.org/pkg/pdfcomment
https://texdoc.org/pkg/pdfcomment

Producing fillable forms 257

Producing fillable forms
PDF files can be interactive. Users can fill out forms before printing the entire document. With LaTeX,
you can produce such forms. In this recipe, we will create a form.

How to do it...

Once again, we will use the hyperref package. We aim to produce small paper sheets for a survey
as a fillable PDF form. A yellow background shall distinguish it from other papers. The format will
be landscape. Let’s begin the process:

1.	 Start a new document with A6 paper in landscape format and a small inter-paragraph space
instead of paragraph indentation, as follows:

\documentclass[a6paper,landscape,
  parskip=half]{scrartcl}

2.	 Set a small margin to save space on the screen:

\usepackage[margin=0.4cm]{geometry}

3.	 Set the background color as 30% yellow:

\usepackage{xcolor}
\pagecolor{yellow!30}

4.	 Choose an empty page style, so we won’t get page numbers:

\pagestyle{empty}

5.	 Load the hyperref package:

\usepackage{hyperref}

6.	 Start the document and start a Form environment:

\begin{document}
\begin{Form}

7.	 For positioning, we will use a tabular environment. Within that, we use commands for
form elements, such as \TextField, \ChoiceMenu, \CheckBox, and \PushButton:

  \begin{tabular}{|lr|}\hline
    \textbf{Dear \TeX\ user, please help in
      our survey.} &
      \PushButton[width=1cm, onclick =
         {app.alert("You may use a pseudonym for the
          name.")}]{Info}\\[0.5ex] \hline

Optimizing PDF Files258

    & \\
    \TextField[width=5cm]{Name:} &
    \TextField[width=3cm]{Profession:} \\
    & \\
    \ChoiceMenu[radio, radiosymbol=6,
      width=0.5cm]{Software:\quad}{\TeX\ Live,
      MiK\TeX}
    &\ChoiceMenu[combo, width=3cm]{Editor:}%
    {TeXworks,TeXstudio,TeXmaker,TeXshop,
    WinEdt,Kile,Emacs,vi} \\
    & \\
    Membership in:
    \hfill\CheckBox[width=0.5cm]{TUG}\hfill
    \CheckBox[width=0.5cm]{DANTE e.V.} &
    \TextField[width=3cm]{Other:}\\ & \\ \hline
  \end{tabular}

8.	 Announce the use the remaining space for notes:

  \par
  \textbf{Notes:}
  \par

9.	 Provide a text field where the user may write several lines:

  \TextField[multiline, width=0.94\paperwidth,
    height=10\baselineskip]{ }

10.	 End the form and the document:

\end{Form}
\end{document}

11.	 Compile the document and test it by filling in some values using a capable PDF viewer such
as Adobe Acrobat Reader:

Producing fillable forms 259

Figure 9.8 – A fillable PDF form

12.	 Save the PDF file, close it, and open it to verify that it keeps your data.

How it works...

We used the following three commands for fillable elements:

•	 \TextField[options]{label}: This gives a fillable text field

•	 \CheckBox[options]{label}: This prints a box that can be checked or unchecked

•	 \ChoiceMenu[options]{label}{list of choices}: This produces a drop-down
menu where we can choose an element of a list

Some of the possible options are the following:

•	 width, height, and borderwidth: These are the dimensions of the element

•	 charsize: This is the font size of the element text

•	 color, backgroundcolor, and bordercolor: These are the colors of the element

•	 maxlen: This is the maximum allowed characters in a text field

•	 value: This is an initial value, such as default text in a field

•	 combo, radio, and popdown: This can be true or false for the type of element

Optimizing PDF Files260

•	 radiosymbol: This is the Zapf Dingbats symbol for the radio button

•	 checked: This can be true or false; it decides whether a field is selected by default

Use it as key=value syntax, like in our example. All possible options are described in the
hyperref manual.

We also placed a button in our form using the following command:

\PushButton[onclick={app.alert(text)}]{label}

This command prints a button with label text on it. If clicked, it opens a pop-up window via
JavaScript, displaying text. You can also add options like in step 7 of this recipe.

You can use other JavaScript commands, for example, to let the user enter text in the pop-up window:

\PushButton[width=1cm, onclick =
  {app.response("What was your original motivation
  to start with LaTeX?")}]{Question}

An entire program can be inserted, such as for using and evaluating the input. You may also bind
JavaScript code to other actions, such as onmouseover and onselect. Such actions are listed in
the hyperref manual.

Form commands should only be used within a Form environment. There should be at most one Form
environment in the file. However, it can be extensive.

Optimizing the output for e-book readers
A traditional book comprises a set of pages; LaTeX, too, follows this tradition. However, today,
e-book reading devices, such as Kindle and iPad, and even smartphones have gained popularity for
reading documents.

In this recipe, we will see how to make a document e-book-friendly.

How to do it...

We will set up a preamble for a document that could nicely be read on an electronic device such as a
tablet reader. Perform the following steps:

1.	 Choose a suitable document class. Choose small headings and a small inter-paragraph skip
instead of paragraph indentation. The latter costs too much space on an already narrow display.
Use this:

\documentclass[fontsize=11pt,headings=small,
  parskip=half]{scrreprt}

Optimizing the output for e-book readers 261

2.	 Set a small paper size matching a common screen ratio, and choose a small margin:

\usepackage[papersize={3.6in,4.8in},
  margin=0.2in]{geometry}

3.	 Choose a well-designed font that is also easily readable on the screen. Especially with a low
screen resolution, a sans-serif font may be a good choice:

\usepackage[T1]{fontenc}
\usepackage{lmodern}
\renewcommand{\familydefault}{\sfdefault}

4.	 Load the microtype package for improving justification, which is even more important for
smaller screens:

\usepackage{microtype}

5.	 Choose the empty page style. If chapter or part pages have their own style, set those to empty
as well:

\pagestyle{empty}
\renewcommand{\partpagestyle}{empty}
\renewcommand{\chapterpagestyle}{empty}

6.	 Use the hyperref package for easier browsing via hyperlinks. You may prefer colored links
over framed appearance, as we saw in the first recipe of this chapter:

\usepackage{hyperref}
\hypersetup{colorlinks}

7.	 In your document, use relative sizes instead of absolute values, such as the following:

\includegraphics[width=0.8\textwidth]{text}

How it works...

A tablet or smartphone differs significantly from a book, even though some reading software simulates
traditional things such as page flipping. Our approach honors the difference.

We chose a document class that works in one-sided mode. There’s no need to insert blank pages to
let chapters start on the right-hand-side pages.

With a KOMA-Script class, we can choose smaller headings than default by setting a class option,
so we chose the scrreprt class. With other classes, you could change headings and their spacing
using the titlesec package.

Optimizing PDF Files262

The default paragraph indentation would make our already narrow text even harder to justify fully, so
we would remove that. Setting a parskip option does that automatically. We even used the half
parskip option to reduce spacing. With a non-KOMA-Script class, load the parskip package.

We don’t need excessive margins added to the mechanical margins of the reading device, so we use
the geometry package to get small margins.

Choosing the font is a matter of taste. Serif fonts often display poorly on low-resolution displays, so
sans-serif fonts were usually preferred. However, today’s screens offer a very high resolution, so the
decision is up to your taste.

Furthermore, e-book reading software can already display page numbers, so we don’t need to reserve
space for them. The empty page style avoids page numbering.

There’s more...

We can go even further when designing e-books. Why turn pages when we can scroll endlessly? We
could forget all the challenges raised by page breaks, such as the concept of floating figures and tables.
They could stay where we place them because no page break would get in the way. Boris Veytsman
and Michael Ware described an approach in Ebooks and paper sizes: Output routines made easier in
TUGboat, Vol. 32, No.3: https://www.tug.org/TUGboat/tb32-3/tb102veytsman-
ebooks.pdf.

Removing white margins
To reuse the PDF output of your LaTeX document in another document, in an e-book, or on a website,
it’s usually a good idea to remove the margins or at least make them smaller.

Getting ready

For this recipe, you need to have installed:

•	 The PS interpreter software Ghostscript

•	 The programming language Perl

•	 The pdfcrop script

Fortunately, TeX Live automatically installs internal versions of Ghostscript and Perl, offering pdfcrop
as a package. So, TeX Live users are lucky. You may need to install the software if you don’t use TeX
Live. You can find more information at https://www.ghostscript.com, https://www.
perl.org, and https://ctan.org/pkg/pdfcrop.

https://www.tug.org/TUGboat/tb32-3/tb102veytsman-ebooks.pdf
https://www.tug.org/TUGboat/tb32-3/tb102veytsman-ebooks.pdf
https://www.ghostscript.com
https://www.perl.org
https://www.perl.org
https://ctan.org/pkg/pdfcrop

Removing white margins 263

How to do it...

The actual procedure is easy, given that the command line won’t be an obstacle for you, as you use
LaTeX. Follow these steps:

1.	 Go to the command line:

	� On Linux or Unix, open a shell

	� On Ubuntu Linux and macOS, the shell you need to open is called Terminal

	� On Windows, open Command Prompt or run the program called cmd

2.	 Change into the directory of your generated PDF file.

3.	 Given the document name is filename.pdf, execute the following command:

pdfcrop filename

4.	 A file named filename-crop.pdf has been generated; open it to verify the result.

How it works...

The pdfcrop program takes the PDF file and uses Ghostscript to calculate the bounding box for
each page. It produces another PDF file where the margins are removed.

The output is automatically named with –crop as the name suffix. However, you can give the output
filename as a parameter. The syntax for the command is the following:

pdfcrop [options] filename[.pdf] [outputname]

You don’t need to tell the program the PDF file extension for the input file.

Using the following options, you can decide to keep some margins:

•	 Keep a 20 PS-point margin on each side:

  pdfcrop --margins 20 input.pdf output.pdf

•	 Keep 10, 20, 30, and 40 PS points at the left, top, right, and bottom, in this order:

  pdfcrop --margins '10 20 30 40' input.pdf output.pdf

A PS point is 1/72 inch; in TeX, it’s called a big point, written as 1 bp. The classical TeX point is slightly
different; 1 point means 1/72.27 inch.

You can display options and information using the following command:

pdfcrop --help

Optimizing PDF Files264

There’s more...

You can remove the margins that are already in the source code.

If the class doesn’t matter, for example, because you are just generating a graphic, you could use the
standalone class as follows:

•	 For a document without margins:

\documentclass{standalone}

•	 To get a 10-point margin:

\documentclass[border=10pt]{standalone}

•	 For a margin of 10, 20, 30, and 40 points at the left, right, bottom, and top:

\documentclass[border={10pt 20pt 30pt
  40pt}]{standalone}

You can freely choose another unit, such as in or cm.

The standalone class provides more handy features and is well documented.

The older preview package does a similar job. It can extract the environments of a LaTeX document
as separate graphic files.

Combining PDF files
Combining the source code of two LaTeX documents can be pretty challenging, especially if they are
based on different classes. However, combining their PDF output is pretty straightforward.

How to do it...

We will use the pdfpages package.

We can test it with the flyer example from the first chapter together with the form example of the
current chapter. Let’s get going:

1.	 Start a document and choose any class:

\documentclass{article}

2.	 Load the pdfpages package:

\usepackage{pdfpages}

Creating an animation 265

3.	 Begin the document:

\begin{document}

4.	 Include the first PDF file using the \includepdf command. It takes a page range as an
option. Use a dash (-) for the entire page range:

\includepdf[pages=-]{flyer}

5.	 Include the second PDF file:

\includepdf[pages=-]{form}

6.	 End the document:

\end{document}

7.	 Compile once, and look at the newly generated file containing the flyer and the form.

How it works...

The pdfpages package is primarily for including PDF files in a LaTeX document, entirely or partially.
The pages=- option means all pages. We could have specified a page range, such as pages={3-
6}, and more complex choices are possible, such as pages={1,3-6,9}.

We created a new document as a container and included both source PDF files.

This way, you can combine very different files, such as an application letter, your curriculum vitae,
and various scanned certificates, into a single file for an online job application.

Creating an animation
To show a developing process or visualize changes, an in-place animation can be more convenient
than a series of images.

As an example application, we will draw a recursively defined fractal curve, the Koch curve. An
animation shall present the stages of the curve, which becomes more complex with more recursions.

How to do it...

The animate package provides a simple way to generate an animation. Let’s try this with the Koch
curve to show growing complexity by performing the following steps:

1.	 Start with any document class. Here, we’ve chosen the standalone class, which we already
mentioned earlier. So, the animation tightly fits on the page:

\documentclass[border=10pt]{standalone}

Optimizing PDF Files266

2.	 Load the animate package:

\usepackage{animate}

3.	 Load the TikZ package. Furthermore, load the lindenmayersystems library to produce
fractals and the shadings library for filling with a shading:

\usepackage{tikz}
\usetikzlibrary{lindenmayersystems,shadings}

4.	 We define the fractal with the library’s syntax. Don’t worry about it, as it’s just for having stuff
to play with. The definition is as follows:

\pgfdeclarelindenmayersystem{Koch curve}{
  \rule{F -> F-F++F-F}}

5.	 Start the document:

\begin{document}

6.	 We use an animateinline environment. We specify options for showing control buttons,
automatically starting the animation, and looping. That means that the animation restarts. The
mandatory argument in curly braces is the speed, here, two frames per second:

\begin{animateinline}[controls,autoplay,loop]{2}

7.	 We use the \multiframe command to produce five frames, which we state as the first
argument. The second argument is a variable, n, starting at 0 and incrementing by 1 in each
step. Within this command, we will print the curve of order \n. Just take the TikZ curve code
as it is since we are focusing on the animation:

  \multiframe{5}{n = 0+1}{
    \begin{tikzpicture}[scale = 80]
      \shadedraw[shading = color wheel]
      [l-system = { Koch curve, step=2pt, angle=60,
                  axiom=F++F++F, order=\n }]
      lindenmayer system -- cycle;
    \end{tikzpicture}
  }

8.	 End the animateinline environment and the document:

\end{animateinline}
\end{document}

Creating an animation 267

9.	 Compile the document and open it in a capable PDF viewer, such as Adobe Acrobat Reader.
Here are steps 2 and 5 of the animation. You can click the buttons to play backward or forward
and increase or decrease the speed.

Figure 9.9 – Screenshots of a PDF animation

How it works...

We used two main features of the package:

•	 The animateinline environment creates an animation from the environment’s content, not
external files. Any drawing package, such as TikZ or PSTricks, can be used. We used TikZ here.

•	 The \multiframe command lets us build a loop around drawing commands. The syntax
is as follows:

\multiframe{number of frames}{variable =
  initial value+increment}{drawing code
  with \variable}

The rest was drawing with TikZ. The \shadedraw command creates the actual drawing while filling
it with shading. Here, we used shiny shading called color wheel. It provides a nice glimpse of
the TikZ package while keeping our focus on animating it. You can refer to my book LaTeX Graphics
with TikZ to learn more about that excellent package.

With the animate package, you can also assemble animations from existing image files. The command
for this is as follows:

\animategraphics[options]{frame rate}{file
  basename}{first}{last}

Optimizing PDF Files268

Options can be used, as shown earlier. If you set file basename to frame-, first to 4, and
last to 12, that command would play the sequence from frame-4.png to frame-12.png, if
they exist in PNG format. The filename extension is used automatically, so with pdfLaTeX, it would
look for PNG, JPG, and PDF files.

For further details, you can refer to the manual, which you can open by using texdoc animate
or at https://texdoc.org/pkg/animate.

https://texdoc.org/pkg/animate

10
Writing Advanced Mathematics

LaTeX stands out for its excellent quality in typesetting formulas, making it the preferred software
for mathematical writing. Beyond mathematics, LaTeX proves beneficial in various scientific fields
reliant on complex formulas, which we will see in Chapter 11, Using LaTeX in Science and Technology.

The current chapter offers specific techniques for everyday math tasks. We assume readers possess a
foundational knowledge of mathematical writing with LaTeX, but a brief tutorial is included to assist
beginners. If you are already proficient in writing math, feel free to skip ahead.

This chapter covers the following topics:

•	 Getting started

•	 Fine-tuning a formula

•	 Automatic line breaking in equations

•	 Highlighting in a formula

•	 Writing theorems and definitions

•	 Drawing a commutative diagram

•	 Plotting functions in two dimensions

•	 Plotting in three dimensions

•	 Drawing geometry pictures

•	 Doing calculations

We’ll explore recipes for creating graphics centered around mathematical concepts, including visualizing
maps and functions and engaging in geometry exercises. At the end of this chapter, you’ll find a curated
list of documentation and online resources dedicated to mathematics in LaTeX.

Writing Advanced Mathematics270

Getting started
LaTeX utilizes a distinct syntax for mathematical expressions, requiring explicit declaration to
differentiate between mathematical elements and regular text for accurate rendering. Let’s explore
the fundamentals of writing math!

How to do it...

We will practice the fundamentals of mathematics now. Let’s craft a document together. We will go
through the following steps:

1.	 As usual, start with a document class:

\documentclass{article}

2.	 Begin the document:

\begin{document}

3.	 Let’s have an unnumbered section for our text:

\section*{The golden ratio}

4.	 Create a statement incorporating mathematical content. Enclose each mathematical expression
within parentheses, preceded by a backslash:

The symbol for the golden ratio is the Greek
letter \(\varphi \). Its value is the positive
solution of \(x^2 - x - 1 = 0 \).

5.	 Continue the text; this time, the math content shall be displayed centered:

It can be calculated to:
\[
  \varphi = \frac{1 + \sqrt{5}}{2} = 1.618 \ldots
\]

6.	 End the document:

\end{document}

Getting started 271

7.	 Compile and take a look at the outcome:

Figure 10.1 – Mathematical formulas in LaTeX

How it works...

Mathematics is composed differently than regular text. For instance, letters appear in italics by default
to differentiate variables from standard text. Hence, in LaTeX, it’s crucial to specify the beginning and
end of the math mode, even for individual symbols embedded in the text.

Math styles

There are two fundamental math styles in LaTeX:

•	 Inline math: A formula is embedded within regular text. Write it as follows:

text \(formula \) more text

•	 Displayed math: For emphasizing a formula or when its size demands better readability within
its own paragraph, square brackets are used instead of parentheses as follows:

\[formula \]

Such a displayed formula is centered with space before and after it. So, there should not be
empty lines in the code before or after, as it would cause additional paragraph breaks, leading
to more vertical space around the formula.

Note
The older TeX syntax $...$ is available for inline math within LaTeX. It’s shorter and remains
popular. However, it’s advised against using the other TeX syntax $$...$$ for displayed math
as it can result in inconsistent vertical spacing in LaTeX.

The golden ratio

The symbol for the golden ratio is the Greek letter ϕ. Its value is the positive
solution of x2 − x− 1 = 0. It can be calculated to:

ϕ =
1 +

√
5

2
= 1.618 . . .

Writing Advanced Mathematics272

Greek letters

You observed the Greek letter phi previously. Typically, the command for a Greek letter mirrors its
name preceded by a backslash. So, there are the \alpha, \beta, \gamma, \delta commands,
and so on, for representing lowercase Greek letters, and \Gamma, \Delta, and so on, for uppercase
Greek letters. However, Greek letters that resemble Latin letters, such as A, B, and E for capital Alpha,
Beta, and Epsilon letters, don’t have a default LaTeX command since they can be directly typed as
regular characters and, of course, appear in italics in math mode.

Math symbols

Mathematicians are ingenious. They invented numerous math symbols, such as for operations and
relations. Generations of mathematicians have used LaTeX, so nearly any math symbol we can think
of is provided by LaTeX or as an additional package such as latexsym or amssymb. Load such a
package as always by employing the \usepackage command.

However, you need to know the command for a symbol. An extensive list of more than 18.000
symbols sorted by topic provides clear tables with explanations. You can open it on your computer at
the command prompt by typing texdoc symbols or visiting it online at https://texdoc.
org/pkg/symbols.

Searching in that list can take a bit of time, though. The Detexify app comes to the rescue: it’s a clever
online tool that takes hand-drawn symbols, such as those drawn using the mouse or a touch screen,
and gives you, in return, LaTeX commands that produce such a symbol. You can find it at https://
detexify.kirelabs.org.

Here, you can see how it works on my poorly mouse-drawn surface integral symbol:

https://texdoc.org/pkg/symbols
https://texdoc.org/pkg/symbols
https://detexify.kirelabs.org
https://detexify.kirelabs.org

Getting started 273

Figure 10.2 – Using the Detexify app to identify symbols

The Detexify app displays the LaTeX command, the expected output, and the required package. The
list of suggestions is sorted, showcasing the best match at the top, as seen in our test case.

The Detexify app is also available as a mobile app for Apple and Android devices.

Squares and fractions

You saw further LaTeX commands in our first example:

•	 \sqrt{expression} gives a square root of the expression. There’s an optional argument
for other roots. For example, type \sqrt[3]{x} to denote the third root of x.

•	 \frac{numerator}{denominator} prints a fraction, with the numerator above the
denominator, separated by a line.

Writing Advanced Mathematics274

Tip
In LaTeX, spaces within formulas are ignored, allowing you to insert as many spaces as you
like. You can improve the readability of complex formulas that way.

There’s more...

For writing formulas, there’s quite a bit more to cover. Let’s take a glance at some syntax involved.

Subscripts and superscripts

Subscripts, acting like indices, are denoted by adding them with an underscore. For example, x1 can
be written as x_1.

Superscripts, functioning as exponents, are attached using a caret. So, x2 is written as x^2.

If a subscript or superscript should contain more than one character, enclose them within curly braces,
such as in x_{ij} and y^{12}.

You can combine subscripts and superscripts by aligning them directly. Nesting them is possible,
but ensure clear grouping using curly braces. For instance, consider this code illustrating different
meanings due to braces:

\[
  x^{n_1} \neq x^n_1
\]

On the left side, x is raised to the power of n1. On the right side, x1 is introduced to the power of n:

Figure 10.3 – Comparing nested superscripts and subscripts

Even expressions with the same mathematical meaning can display variations in their appearance
when printed, depending on how you set the braces:

\[
  {x^2}^3 = x^{2^3}
\]

On the left side, there are two exponents. On the right side, one exponent is nested within another,
appearing in smaller font size:

xn1 �= xn
1

Getting started 275

Figure 10.4 – Multiple exponents

So, use braces to define the actual meaning. In particular, their inclusion becomes necessary to avoid
errors when dealing with multiple superscripts or subscripts.

Operators

Usually, variables are written in italics, while mathematical functions, also called operators, are
typically displayed in upright Roman letters because of their different meanings. Many operators
are predefined, allowing you to access them simply using a backslash, such as \lim, \sin, \cos,
\log, \min, and \max. Should you find an operator missing, you can define it yourself. Load the
amsmath package to do this, so ensure that your preamble contains this line:

\usepackage{amsmath}

Then, you can define a new operator, “diff,” in your preamble using the following command:

\DeclareMathOperator{\diff}{diff}

You will notice that subscripts or superscripts of operators in displayed equations can be positioned
below or above them, respectively, as seen with \lim, for instance. You can achieve the same for your
new operator if you add a star:

\DeclareMathOperator*{\diff}{diff}

We will use our own operators in one of the following recipes: Drawing commutative diagrams.

Numbering and referencing equations

Displayed formulas can be automatically numbered for cross-referencing purposes. Follow these steps:

1.	 Start an equation environment:

\begin{equation}

2.	 Give it a label:

  \label{parabola}

3.	 Write the formula:

  y = x^2 + 1

x23 = x23

Writing Advanced Mathematics276

Equations or formulas, when displayed, will receive an automatically incremented number
enclosed in parentheses at the right, denoted as (1), and so forth.

4.	 End the equation environment:

\end{equation}

5.	 Now, you can reference it anywhere in the whole document, such as here:

See formula (\ref{parabola}).

Note that we manually included the parentheses. However, if you’ve loaded the amsmath package, which
is advisable anyway, you can use its command to display the references enclosed within parentheses:

See formula \eqref{parabola}.

Note
For resolving references, LaTeX requires a second compiler run. The label is written to the
external .aux file during the first run, enabling the second run to locate it there and accurately
link the references.

Writing multi-line formulas with alignment

It’s crucial to load the amsmath package, a must-have for writing mathematics with LaTeX. Add
this to your preamble:

\usepackage{amsmath}

Now, you have several options.

Aligning at the relation symbol

Here’s how to align equations at the relation symbol:

•	 Utilize the align environment

•	 Identify the relation symbol for alignment by inserting an ampersand symbol (&) immediately
before it

•	 Indicate line breaks using the \\ command

So, your code will look similar to this:

\begin{align}
  y &= x^2 + 1 \\
  z &= 0
\end{align}

Getting started 277

Now, the equations are correctly aligned at the equation sign:

Figure 10.5 – An aligned equation system

Note
While browsing the internet or reviewing older documents, you might encounter the eqnarray
environment used for equation alignment. It’s strongly advised against using the eqnarray
environment as the spacing around the relational symbols can be incorrect compared to
regular equations.

Centering a block of equations

Centering a set of equations is simpler compared to the previous example:

•	 Use the gather environment

•	 Break lines using \\

So, your code will now look similar to the following:

\begin{gather}
  y = x^2 + 1 \\
  z = 0
\end{gather}

The lines are centered on each other and in the middle of the page.

Adjusting numbering

The equation, align, gather, and further amsmath environments are numbered by default.
You can turn off this numbering using their respective starred environment version equation*
(corresponding to \[... \] in standard LaTeX), align*, gather*, and so forth.

Alternatively, to suppress numbering for specific lines within these environments, append the
\nonumber command at the end of a line like this:

\begin{gather}
  y = x^2 + 1 \nonumber \\
  z = 0
\end{gather}

y = x2 + 1 (1)

z = 0 (2)

Writing Advanced Mathematics278

As mentioned, you can add labels to each line you choose for referencing purposes. Note that having
a number as a tag is only meaningful when accompanied by a reference. Tags primarily exist for
reference, not for counting.

Custom tags
Instead of having numbers, you can set your own tags, such as * by inserting \tag{*} on a
formula line.

The mathtools package provides additional assistance in this context. It shows equation numbers
and tags only if there’s a reference by one of the \eqref or \refeq commands (the mathtools
reference command version). Activate this functionality as follows:

\usepackage{mathtools}
\mathtoolsset{showonlyrefs,showmanualtags}

This package offers much more, as you’ll discover in the following recipe.

Fine-tuning math formulas
While LaTeX excels in typesetting formulas, there are instances where the layout may need enhancement.
This recipe provides quick solutions to address such issues.

Getting ready

Let’s have a look at misalignment and spacing, issues with subscripts and superscripts that can easily occur:

1.	 Open the following sample document with your LaTeX editor. You can take it from the code
archive provided with the book or directly copy and paste it from the e-book:

\documentclass{article}
\usepackage{dsfont}
\begin{document}
\[
  \lim_{n\to\infty} \sup_{x\in\mathds{R}} f_n(x^2)
    < n \Big(\sum_{x\in\mathds{R}, n\in\mathds{N}}
    \big| f_n(x^2) \big| \Big)
\]
\end{document}

2.	 Compile and take a look at the formula:

Fine-tuning math formulas 279

Figure 10.6 – Regular formulas with deficiencies

Although the LaTeX code is OK, you can see that several places could benefit from refinement:

•	 The subscripts below the operators on the left side of the equation lack vertical alignment

•	 The excessive space surrounding the sum symbol should be reduced

•	 The exponent 2 is slightly higher than the parentheses

Let’s rectify these issues.

How to do it...

The mathtools package offers numerous enhancements and tools for mathematical writing. It is a
valuable companion to the amsmath package. Here’s a guide on how to utilize it:

1.	 Add the \usepackage{mathtools} command to the preamble.

2.	 Write the \adjustlimits command before the \lim operator.

3.	 Insert the \smashoperator{ command before the \sum and write the } argument closing
brace after the subscript.

4.	 Change the x^2 expression to \cramped{x^2} to lower the exponent at both places slightly.
Now, your formula reads like this:

\[
  \adjustlimits\lim_{n\to\infty} \sup_{x\in\mathds{R}}
    f_n(\cramped{x^2})
    < n \Big(\smashoperator{\sum_{x\in\mathds{R},
    n\in\mathds{N}}}
    \big\lvert f_n(\cramped{x^2}) \big\rvert \Big)
\]

5.	 Compile the document, review the output, and compare it with the original formula:

Figure 10.7 – Improved mathematical typesetting

lim
n→∞

sup
x∈R

fn(x
2) < n

(∑
x∈R,n∈N

∣∣fn(x2)
∣∣)

lim
n→∞

sup
x∈R

fn(x2) < n
(∑
x∈R,n∈N

∣∣fn(x2)
∣∣)

Writing Advanced Mathematics280

How it works...

Loading the mathtools package implicitly includes the amsmath package, addressing known
errors within amsmath. Unlike amsmath, which is relatively static, mathtools has been developed
to provide additional tools amassed over the years from various authors, focusing on fine-tuning
mathematical layouts.

Some of the tools we’ve recently utilized include the following:

•	 \adjustlimits: This command aligns the limits of two consecutive operators. The syntax
is as follows:

\adjustlimits{operator1}_{limit1} {operator2}_{limit2}

•	 \smashoperator: This command ensures that the widths of subscript and superscript
are disregarded.

•	 \cramped: This command enforces a more compact LaTeX style, slightly lowering exponents
from their default position. This is especially advantageous for inline math, preventing undesired
stretching of line spacing.

Automatic line-breaking in equations
Typically, we meticulously design formulas, especially in multiline equations, manually selecting
optimal breakpoints and alignment positions. However, envision a lengthy chain of calculations, like
those found in proofs or mathematical assignments. It would be incredibly beneficial if LaTeX could
automatically wrap displayed formulas the way it handles regular text. And indeed, it’s achievable.

How to do it...

The breqn package is specifically crafted for this precise purpose. This recipe will illustrate its
functionality. We’ll employ the beamer class because seminar slides typically have space limitations.
Follow these steps:

1.	 Specify the document class:

\documentclass[12pt]{beamer}

2.	 As the beamer class uses sans-serif math font by default, we switch to the serif math font as
in regular documents:

\usefonttheme[onlymath]{serif}

3.	 Load the breqn package:

\usepackage{breqn}

Automatic line-breaking in equations 281

4.	 Begin the document and a frame for a presentation slide:

\begin{document}
\begin{frame}

5.	 Write your mathematical formula without paragraph breaks or spaces, as you would typically
construct simple math. While you can use line breaks in the editor, they’re not mandatory. The
crucial aspect here is to employ a dmath* environment:

\begin{dmath*}
  \left(\frac{f}{g} \right)^\prime(x)
    = \lim_{h \rightarrow 0}
      \left(\frac{1}{ g(x+h) g(x) } \right)
      \left[
             \frac{ f(x+h) - f(x) }{h} g(x)
            -\frac{ g(x+h) - g(x) }{h} f(x)
      \right]
    = \frac{f^\prime(x)g(x)-f(x)g^\prime(x)}{g^2(x)}
  \end{dmath*}

6.	 End the frame and the document:

\end{frame}
\end{document}

7.	 Compile and take a look at the output:

Figure 10.8 – Comprehensive equations with automatic line breaking

How it works...

The key feature of the breqn package is handling excessively lengthy displayed formulas. When a
formula exceeds a certain width, the package automatically breaks it at suitable points. Subsequent
lines are typically indented and often commence with a relation symbol.

(
f

g

)′

(x) = lim
h→0

(
1

g(x+ h)g(x)

)[
f(x+ h)− f(x)

h
g(x)

− g(x+ h)− g(x)

h
f(x)

]

=
f ′(x)g(x)− f(x)g′(x)

g2(x)

Writing Advanced Mathematics282

An implicit yet highly beneficial feature is the support for automatically scaled delimiters across line
breaks. In particular, this refers to the \left and \right commands together with delimiters such as
parentheses. The multi-line math environments from the amsmath package, such as the align and
gather environments, would cause an error if there’s one on a line but its counterpart is on another
line. The standard fix is inserting the \right. and \left. commands, which produce an invisible
delimiter. However, this doesn’t guarantee equal measured heights for both lines, potentially resulting
in delimiter pairs of different sizes. Alternatively, one might resort to manual adjustments using one of
the \big, \Big, \bigg, or \Bigg commands. The breqn package effectively resolves these issues.

Giving the breqn package a try could prove beneficial. It can significantly expedite the process of
writing tasks such as math homework or proofs involving extensive calculations.

Tip
The authors of the breqn package recommended loading the breqn package after all other
math-related packages, such as amsmath, amssymb, mathpazo, or mathptmx. So, for
example, the breqn package detects and uses options provided to the amsmath package, such
as the leqn and fleqn options. A good rule of thumb is to load sophisticated or recently
developed packages late.

Highlighting in a formula
In intricate formulas or equations, emphasizing a specific part can be incredibly useful. Methods such
as color highlighting or framing can effectively achieve this emphasis and are particularly beneficial
in presentations where altering the highlighted area per frame helps explain the content.

To test the effectiveness of these methods beyond simple basic math, we’ll tackle more complex
material using the amsmath matrices. We aim to illustrate a matrix transposition by highlighting
submatrices and incorporating arrows.

How to do it...

We will use the TikZ graphics package for this. Such a comprehensive package initially seems hefty
for this purpose. However, its versatility in providing consistent styles and enabling a wide range of
graphical functionalities makes it an ideal choice.

Let’s dive into an example, breaking down each step to showcase how TikZ can be utilized. Follow
these steps:

1.	 Start with any document class:

\documentclass{article}

Highlighting in a formula 283

2.	 Load the amsmath package so we can write matrices:

\usepackage{amsmath}

3.	 Load the TikZ package:

\usepackage{tikz}

4.	 In addition, load the fit library, which we will use for auto-fitting to nodes:

\usetikzlibrary{fit}

5.	 Define a macro for adding overlays:

\newcommand{\overlay}[2][]{\tikz[overlay,
  remember picture, #1]{#2}}

6.	 Declare a style that shall be applied for a highlighted area:

\tikzset{
  highlighted/.style = { draw, thick, rectangle,
               rounded corners, inner sep = 0pt,
               fill = red!15, fill opacity = 0.5
  }
}

7.	 Define a command for highlighting an area. The area shall be rectangular and will have
encompassing nodes named left and right. The style from the preceding code will be applied.
The name provided as an argument will be stored as the name for this area for future referencing:

\newcommand{\highlight}[1]{%
  \overlay{
    \node [fit = (left.north west) (right.south east),
           highlighted] (#1) {}; }
}

8.	 Define another command that prints text as a node and flags it with a name:

\newcommand{\flag}[2]{\overlay[baseline=(#1.base)]
  {\node (#1) {$#2$};}}

9.	 After these preparations, begin your document:

\begin{document}

10.	 Start a displayed equation:

\[

Writing Advanced Mathematics284

11.	 Write a matrix using the pmatrix environment of amsmath. In any cell flagged for later use,
use the \flag{name}{content} command for the content:

  M = \begin{pmatrix}
    \flag{left}{1} & 2 & 3 & 4 & 5 \\
    6 & 7 & 8 & 9 & 10 \\
    11 & \flag{before}{12} & \flag{right}{13} &
         14 & 15 \\
    16 & 17 & 18 & 19 & 20
  \end{pmatrix}

12.	 Add the first highlighting to a sub-matrix and name it N:

\highlight{N}

13.	 Add some horizontal space. Write the transposed matrix with the desired flags. Again, highlight
the interesting part, which is the transposed sub-matrix. We chose the name NT. Then, end
the equation:

  \qquad
  M^T = \begin{pmatrix}
    \flag{left}{1} & 6 & 11 & 16 \\
    2 & 7 & \flag{after}{12} & 17 \\
    3 & 8 & \flag{right}{13} & 18 \\
    4 & 9 & 14 & 19 \\
    5 & 10 & 15 & 20
  \end{pmatrix}
  \highlight{NT}
\]

14.	 Now, we will add further bells and whistles. Start our \overlay macro:

\overlay{

15.	 Draw a thick, red, dotted line between interesting nodes, which we flagged previously using
the names before and after:

  \draw[->, thick, red, dotted] (before) -- (after);

16.	 Draw another such line, this time dashed, between our sub-matrices:

  \draw[->, thick, red, dashed] (N) -- (NT)
    node [pos=0.68, above] {Transpose};

Highlighting in a formula 285

17.	 Add labels to the sub-matrices, then add the closing brace for \overlay:

    \node[above of = N] { N   };
    \node[above of = NT] { N^T };
}

18.	 End the document:

\end{document}

19.	 Compile the document twice. After the second run, our result is as follows:

Figure 10.9 – Highlighting parts of a matrix

How it works...

The key is the small \overlay macro, which is used in the following manner:

\overlay[options]{drawing commands}

This creates a TikZ picture with three significant properties:

•	 The overlay option ensures that the bounding box of the current image remains unchanged.
It’s essentially drawing but without requiring space.

•	 The remember picture option lets TikZ remember the position of the current picture. It
writes this value into the .aux file. Using the value from the .aux file is the reason, while a
subsequent run may be required for correct positioning.

•	 The third property is determined by the optional argument of \overlay, denoted by #1, and
defaults to being empty. This allows for the addition of options as needed.

Our next key command is the \flag macro:

\flag{name}{content}

M =




1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20







1 2 3 4 5
6 7 8 9 10
11 12 13

MT =




1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20





1 6 11 16
2 7 12
3 8 13

Transpose

N
NT

Writing Advanced Mathematics286

This macro prints the content while labeling it with a specific name, internally utilizing the \overlay
macro. It adds the baseline=(#1.base) option, which makes the baseline of the generated node
correspond to the content’s baseline, not the center.

Regarding highlighting, initially, we utilized the \tikzset command to establish a global style
named highlighted. We chose the shape of a rounded rectangle and added color and transparency.
You can freely customize this style using colors, shapes, shadings, and more, whatever TikZ provides.

Now consider this macro:

\highlight{name}

Also, this macro uses \overlay to apply our style to an area. This necessitates flagging two positions
beforehand with the names left and right. It utilizes TikZ’s fit feature to calculate a rectangular
area that exactly fits the given positions. In our case, these are the top-left corner (northwest of the
left node) and the bottom-right corner (southeast of the right node).

Once the desired flags were added, we created another overlay with some drawing commands. We
can use any TikZ drawing command and the names we defined with the \flag command. So, we
added arrows and labels to the drawing.

We did many tasks in this recipe, such as coloring areas and adding labels and arrows relatively
positioned to the content. Having these compact yet sophisticated macros in our document, we can
add such flags in text, math, lists, tables, drawings, or any desired location. This allows us to draw
over the document independently of the underlying layout.

There’s more...

The tikzmark package follows the same approach and can be employed similarly. Our direct method
grants maximum control, yet exploring the tikzmark package might align better with your needs. In
the book LaTeX Graphics with TikZ, in Chapter 9, Using Layers, Overlays, and Transparency, I showed
you how to use the tikzmark package for this purpose.

Basic commands such as \textcolor for coloring and \boxed from the amsmath package suffice
for less complex requirements. The empheq package is another option for emphasizing equations or
parts of them. You can check out their documentation using texdoc or visit https://texdoc.org.

The same applies to TikZ: call texdoc tikz at the command prompt or visit https://texdoc.
org/pkg/tikz. The website https://texample.net, which I maintain, contains examples
similar to this recipe and hundreds of more graphical illustrations.

https://texdoc.org
https://texdoc.org/pkg/tikz
https://texdoc.org/pkg/tikz
https://texample.net

Stating definitions and theorems 287

Stating definitions and theorems
In rigorously structured mathematical documents, specific textual components, such as definitions,
theorems, lemmas, examples, and remarks are often numbered for effective cross-referencing. This
structured approach is prevalent in self-contained scientific works such as theses.

For example, let’s create a definition, a theorem along with its proof, a lemma, and an additional note.
All of these elements will be automatically numbered to facilitate cross-referencing. Let’s apply this
to the Pythagorean theorem we know from school geometry.

How to do it...

We’ll continue utilizing the amsmath package, specifically a part of it, the amsthm package. Here
are the steps to follow:

1.	 As usual, start with a document class. For our recipe, the article class is sufficient:

\documentclass{article}

2.	 Load the amsmath and amsthm packages:

\usepackage{amsmath}
\usepackage{amsthm}

3.	 Define a theorem environment with the internal name thm, printing “Theorem” in the document:

\newtheorem{thm}{Theorem}

4.	 Do the same for lem as a lemma environment:

\newtheorem{lem}{Lemma}

5.	 Switch the theorem style to definition:

\theoremstyle{definition}

6.	 Define a definition environment with the internal name dfn, printing “Definition” in the document:

\newtheorem{dfn}{Definition}

7.	 Switch the theorem style to remark:

\theoremstyle{remark}

8.	 Define an unnumbered environment for notes, so insert a star:

\newtheorem*{note}{Note}

Writing Advanced Mathematics288

9.	 Begin the document:

\begin{document}

10.	 Write up a definition:

\begin{dfn}
  The longest side of a triangle with a right angle
  is called the \emph{hypotenuse}.
\end{dfn}

11.	 Add a note:

\begin{note}
  The other sides are called \emph{catheti},
  or \emph{legs}.
\end{note}

12.	 Write a theorem. Give it the optional name Pythagoras. Insert a label for cross-referencing:

\begin{thm}[Pythagoras]
  \label{pythagoras}
  In any right triangle, the square of the hypotenuse
  equals the sum of the squares of the other sides.
\end{thm}

13.	 Continue with the proof. We keep it short here. Let’s have a cross-reference to a later written lemma:

\begin{proof}
  The proof has been given in Euclid's Elements,
  Book 1, Proposition 47. Refer to it for details.
  The converse is also true, see lemma \ref{converse}.
\end{proof}

14.	 Add a lemma with an internal label:

\begin{lem}
  \label{converse}
  For any three positive numbers \(x\), \(y\),
  and \(z\) with \(x^2 + y^2 = z^2\), there is a
  triangle with side lengths \(x\), \(y\) and \(z\).
  Such triangle has a right angle, and the hypotenuse
  has the length \(z\).
\end{lem}

Stating definitions and theorems 289

15.	 Add another note. Refer to the theorem of Pythagoras:

\begin{note}
  This is the converse of theorem \ref{pythagoras}.
\end{note}

16.	 End the document:

\end{document}

17.	 Compile twice to get the cross-references right. Examine how our environments are printed:

Figure 10.10 – Definitions, theorems, lemmas, proofs, and notes

How it works...

The amsthm package provides the \newtheorem command, which creates an environment for us.
This environment has a built-in counter that increments automatically, facilitating easy cross-referencing
using labels. Notably, the notation and body come with distinct formatting, as you saw in the output:

•	 The default style is plain. It prints the label in bold, the optional name in parentheses in
regular upright font, and the body text in italics.

•	 The definition style generates a bold label and standard upright body text.

•	 The note style features an italic label and standard upright body text.

Switching the style using the \theoremstyle command is valid for the subsequent
\newtheorem definitions.

Definition 1. The longest side of a triangle with a right angle is called the
hypotenuse.

Note. The other sides are called catheti, or legs.

Theorem 1 (Pythagoras). In any right triangle, the square of the hypotenuse
equals the sum of the squares of the other sides.

Proof. The proof has been given in Euclid’s Elements, Book 1, Proposition 47.
Refer to it for details. The converse is also true, see lemma 1.

Lemma 1. For any three positive numbers x, y, and z with x2+ y2 = z2, there
is a triangle with side lengths x, y and z. Such triangle has a right angle, and
the hypotenuse has the length z.

Note. This is the converse of theorem 1.

Writing Advanced Mathematics290

Choosing environment names that aren’t already used by TeX or LaTeX commands is essential,
ensuring they’re unique. So, \newtheorem{def}{Definition} would not work, as \def is
already a TeX command.

We can utilize cross-references as usual: insert a \label with a name. Then, you can use \ref
anywhere to point to the number of the environment where we placed the label. Usually, not-referenced
environments, such as notes or corollaries, can be defined without numbers if you use the starred
form \newtheorem* as we did previously for notes.

The proof environment is an exceptional predefined environment that starts with “Proof ” and
automatically includes the quod erat demonstrandum symbol as an endmark.

The amsthm package provides an additional \newtheoremstyle command that takes nine
arguments so that you can customize the fonts and spacing of the environment for both the head and
body. You can find the parameters in the manual, accessible by texdoc amsthm at the command line
or online at https://texdoc.org/pkg/amsthm, enabling you to create customized designs.

There’s more...

While styling and customizing the design aspects are crucial, ensuring accurate and systematic
numbering within these environments is equally fundamental. Let’s look at this and more.

Adjusting the numbering

When dealing with various definitions, theorems, lemmas, and similar elements, it can be beneficial
to avoid separate numbering sequences. It can feel disjointed if, for instance, theorem 5 is immediately
followed by lemma 2. To unify these numbering sequences, you can utilize an existing counter by
specifying it in square brackets after the element’s name. Here’s an example setup for your recipe:

\newtheorem{thm}{Theorem}
\newtheorem{lem}[thm]{Lemma}
\newtheorem{dfn}[thm]{Definition}

This configuration will utilize the thm counter for numbering theorems, lemmas, and definitions,
ensuring a consistent numbering pattern.

Furthermore, you can assign numbering based on sectional units such as chapters or sections if you
like. For instance, to number theorems per chapter, use the following:

\newtheorem{thm}{Theorem}[chapter]

Or, you can number the theorems per section:

\newtheorem{thm}{Theorem}[section]

https://texdoc.org/pkg/amsthm

Stating definitions and theorems 291

Additionally, if you prefer the numbering to appear before the title, such as 1.5 Theorem instead of
Theorem 1.5, you can use the \swapnumbers command in the preamble before defining the theorems.

An alternative theorem package

The ntheorem package is a viable alternative to the amsthm package. It provides compatible styles
with similar appearances, so the result will be pretty much the same if you load it instead of amsthm
in this way:

\usepackage[amsmath,amsthm,thmmarks]{ntheorem}

One notable advantage of ntheorem is its improved placement of endmarks. When concluding a
proof with a displayed equation, amsthm might shift the endmark slightly below it. The ntheorem
package, however, doesn’t exhibit this behavior. Nevertheless, I usually avoid ending a proof abruptly
with a formula or diagram, just as I would only conclude a seminar presentation with a final statement.
Including a closing note is generally good practice.

Additionally, ntheorem introduces its own styles and offers different customization options. To explore
its functionalities further, refer to the package documentation by running the texdoc ntheorem
command at the command line or visiting https://texdoc.org/pkg/ntheorem.

Additional theorem tools

The thmtools package is another valuable addition, regardless of whether you use amsthm or
ntheorem. Here’s what it brings to the table:

•	 Automatic generation of a list of theorems, similar to lists of tables and figures

•	 Capability to entirely restate an existing theorem statement at another place

•	 A key = value interface for managing numbering style and other properties

•	 Support for intelligent referencing, such as automatically adding the theorem name to a reference

•	 Shaded and boxed designs, implicitly using the shadethm and thmbox packages

•	 Additional options for tweaking the design

To generate a list of theorems, add the following line to your preamble:

\usepackage{thmtools}

Later in your document, use this command:

\listoftheorems

https://texdoc.org/pkg/ntheorem

Writing Advanced Mathematics292

Make sure to compile your document at least twice. Our small recipe document with shared numbering
results in this short list:

Figure 10.11 – A list of theorems

You can imagine that naming definitions and lemmas adds value, just as we’ve done with the theorems.

Finally, let’s look at the mentioned emphasizing options of thmtools through shading and boxing.
This can be implemented as follows:

1.	 Load the thmtools package:

\usepackage{thmtools}

2.	 Load the xcolor package so you can use color definitions:

\usepackage{xcolor}

3.	 Instead of using the \newtheorem command, use the following command with a color you like:

\declaretheorem[shaded={bgcolor=red!15}]{Theorem}

4.	 For definitions, take a box design instead of \newtheorem, and use this command with a
color you like:

\declaretheorem[thmbox=L]{Definition}

5.	 In the body text, write your definitions as follows:

\begin{Definition}[name]
  ...
\end{Definition}

6.	 Write your theorems like this:

\begin{Theorem}[name]
  ...
\end{ Theorem}

List of Theorems

1 Definition . 1
Note . 1

2 Theorem (Pythagoras) . 1
3 Lemma . 1

Note . 1

Drawing commutative diagrams 293

Applied to our recipe, we get the following result:

Figure 10.12 – Highlighting in theorem environments

To further explore the package, take a look at the manual using texdoc thmtools at the command
line or by visiting https://texdoc.org/pkg/thmtools.

Drawing commutative diagrams
Commutative diagrams are common in algebra, particularly in category theory. Here, vertices represent
objects such as groups or modules, while arrows signify morphisms, acting as maps between these
objects. The defining feature of these diagrams is their commutativity, ensuring that regardless of the
directed path within the diagram, the outcome remains consistent as long as the starting and ending
points match.

Such diagrams are vital in visualizing algebraic properties and are pivotal in navigating through
entire proofs. That’s why our next focus will be on them. To kick things off, we’ll explore a diagram
representing the first isomorphism theorem in group theory.

How to do it...

We’ll employ the TikZ package, though we’ll only tap into a fraction of its capabilities. We’ll use it
because it offers a rich collection of arrowheads, tails, and utilities for positioning and labeling. Here’s
a breakdown of the document creation:

1.	 Start with a document class:

\documentclass{article}

2.	 Load the TikZ package:

\usepackage{tikz}

3.	 Load the matrix library of TikZ:

\usetikzlibrary{matrix}

Definition 1

The longest side of a triangle with a right angle is called the hypotenuse.

Theorem 1 (Pythagoras). In any right triangle, the square of the hypotenuse
equals the sum of the squares of the other sides.

https://texdoc.org/pkg/thmtools

Writing Advanced Mathematics294

4.	 Load the amsmath package:

\usepackage{amsmath}

5.	 Declare any operators you will need that are not defined yet:

\DeclareMathOperator{\im}{im}

6.	 Begin the document and open a TikZ picture environment:

\begin{document}
\begin{tikzpicture}

7.	 Use the \matrix command and provide a name for the matrix. We choose m:

  \matrix (m)

8.	 Specify the matrix options. We’ll set all nodes to be in math mode. Additionally, we’ll define
the row and column distance:

    [
      matrix of math nodes,
      row sep    = 3em,
      column sep = 4em
    ]

9.	 The matrix content is enclosed in curly braces, followed by a semicolon. It’s similar to the
regular tabular, array, or matrix environments. However, we must conclude the final
line with a line break using \\:

    {
      G              & \im \varphi \\
      G/\ker \varphi &             \\
    };

10.	 Now, we will draw the arrows. These will be edges, with nodes acting as labels. Start with a path
and include the desired arrowhead as an option:

  \path[-stealth]

11.	 Draw an edge between matrix nodes, referencing them using the implicitly provided name
(m-row-column). After the edge, include a node that acts as a label:

    (m-1-1) edge node [left] {π} (m-2-1)

Drawing commutative diagrams 295

12.	 Draw the next edge using the |- operation to achieve a horizontal edge:

    (m-1-1.east |- m-1-2)
      edge node [above] {φ} (m-1-2)

13.	 Draw the final edge and conclude the path with a semicolon:

    (m-2-1) edge
      node [below] {$\tilde{\varphi}$} (m-1-2);

14.	 End the picture and the document:

\end{tikzpicture}
\end{document}

15.	 Compile and take a look at the diagram:

Figure 10.13 – A commutative diagram

How it works...

Besides loading the necessary packages, the basic procedure is as follows:

1.	 Define macros, operators, or styles.

2.	 Put all objects in a matrix.

3.	 Draw labeled arrows as edges with nodes.

For Step 1, we just defined the im operator for the “image” of a map. The ker operator is already defined.

In Step 2, we chose a matrix of math nodes, ensuring all node content is in math mode. While we just
needed the spacing between rows and columns, you could define styles for specific rows or columns.
TikZ manual offers further insight into customizing.

In Step 3, we made every edge an arrow. This is inherited from the -stealth path option, which
rendered an arrow with a stealth tip.

G imϕ

G/ kerϕ

π

ϕ

ϕ̃

Writing Advanced Mathematics296

We could apply tip and tail styles for single arrows as well. Let’s have a quick demonstration. Load
the arrows.meta library:

\usetikzlibrary{arrows.meta}

Note
You can load several libraries simultaneously, such as by \usetikzlibrary{matrix,arrows.
meta}.

Now, you have a lot of customizable styles for arrow tips, which you can use at both ends. There are
barbs, harpoons, brackets, caps, triangles, and many more than typical arrow styles, and you can
customize them via options. The TikZ manual provides a reference section with arrow tips. Here, we
have space for a short sample. After you load the arrows.meta, change the path to the following:

  \path
    (m-1-1) edge [->>] node [left] {π} (m-2-1)
    (m-1-1.east |- m-1-2)
      edge [->] node [above] {φ} (m-1-2)
    (m-2-1.east) edge [{Hooks[right,length=0.8ex]}->,
      dashed] node [below] {$\tilde{\varphi}$} (m-1-2);

The diagram now looks like this:

Figure 10.14 – A diagram with customized arrow tips

We gave the arrow specification as an option for each edge. While the dash - means the base edge,
tail, and head come before or after. Let’s see examples:

•	 The ->> syntax gives a double head that is commonly used for surjective maps.

•	 The [{Hooks[right,length=0.8ex]}-> code starts with a hook and ends with a single
arrowhead, which stands for an injective map. Furthermore, the edge is dashed, often used to
mark the unique structure-preserving map, making the diagram commute.

While it might seem intricate, having this level of control and tuning power is much better than
having no flexibility.

G imϕ

G/ kerϕ

π

ϕ

ϕ̃

Drawing commutative diagrams 297

There’s more...

Diagrams often grow complex, expanding with more columns, rows, an abundance of arrows, and
numerous labels. In these instances, employing the \foreach loops with calculation options can
offer a solution. Look at this diagram:

Figure 10.15 – A comprehensive commutative diagram

It’s used in proving the so-called five lemma. Let’s see how to generate it efficiently:

1.	 Start the document like we did before. In addition, load the calc library:

\documentclass{article}
\usepackage{tikz}
\usetikzlibrary{matrix,calc}
\begin{document}

2.	 Begin the TikZ picture. This time, we use the arrow options for the whole picture and define
a label style to have labels in smaller sizes:

\begin{tikzpicture}[-stealth,
  label/.style = { font=\footnotesize }]

3.	 Write the matrix:

  \matrix (m) [
      matrix of math nodes,
      row sep    = 4em,
      column sep = 4em]
  {  A_0 & A_1 & A_2 & A_3 & A_4 \\
     B_0 & B_1 & B_2 & B_3 & B_4 \\ };

A0 A1 A2 A3 A4

B0 B1 B2 B3 B4

f1

f ′
1

g1

f2

f ′
2

g2

f3

f ′
3

g3

f4

f ′
4

g4 g5

Writing Advanced Mathematics298

4.	 Now, let’s save work using a for loop:

  \foreach \i in {1,...,4} {
  \path
    let \n1 = { int(\i+1) } in
      (m-1-\i) edge node [above, label] {f_\i}
      (m-1-\n1)
      (m-2-\i)
        edge node [below, label] {f^\prime_\i}
      (m-2-\n1)
      (m-1-\i)
        edge node [left, label] {g_\i} (m-2-\i);
  }

5.	 One arrow to go, then we end the picture and the document:

  \path (m-1-5) edge node [left, label] {g_5}
    (m-2-5);
\end{tikzpicture}
\end{document}

That’s it!

The \foreach command repeats the action for the 1, 2, 3, and 4 values for the \i loop variable here.

We computed \n1 as \i+1 for each path since we’re drawing edges to the subsequent node. We used
the \let operation provided by the calc library. Roughly said, we can use it for numbers like so:

\path let \n1 = { formula } in ... <drawing using
  number n1 somewhere>

We can also use it for points like this:

\path let \p1 = { formula } in ... <drawing using the
  point p1 somewhere>

Multiple expressions can be included within a let operation. The TikZ manual comprehensively
describes the let operation; you likely grasp its concept already.

Plotting functions in two dimensions
Function plots are integral in mathematics for visualizing properties such as roots and extreme
points. This recipe explores how to create function plots in a coordinate system easily. Let’s plot the
polynomial function f(x) = x3 - 5x.

Plotting functions in two dimensions 299

How to do it...

We’ll use the pgfplots package, built on PGF/TikZ. Now, it’s set to plot a function for us. Here’s
the step-by-step process:

1.	 Start with a document class. We decided on the standalone class for this recipe, which
is great for creating single graphics with just a small margin. However, you can choose the
article class or another one as well:

\documentclass[border=10pt]{standalone}

2.	 Load the pgfplots package:

\usepackage{pgfplots}

3.	 Begin the document and open a tikzpicture environment:

\begin{document}
  \begin{tikzpicture}

4.	 Begin an axis environment with centered axis lines:

    \begin{axis} [axis lines=center]

5.	 Call the plot command. As an option, use the range for x called the domain. Choose a thick
line and smooth plotting:

      \addplot [domain=-3:3, thick, smooth]
        { x^3 - 5*x };

6.	 End the axis, tikzpicture, and document environments:

    \end{axis}
  \end{tikzpicture}
\end{document}

Writing Advanced Mathematics300

7.	 Compile and take a look at our plot:

Figure 10.16 – A diagram of a function in the Cartesian coordinate system

How it works...

Within a tikzpicture environment, we placed an axis environment provided by the
pgfplots package.

The axis environment takes all options for lines, ticks, labels, grids, and styles that apply to the
coordinate system and the plot’s appearance. We will see some of them later on in the following recipe.

The \addplot command receives the function’s formula. It understands distinct options dedicated
to each individual plot, such as the domain, number of samples, color, thickness, and other styles.
You can use multiple \addplot commands within a single-axis environment to generate several
plots within one drawing.

Our first function plot required a formal setup using environments, but we achieved the plot quite
effectively using just a few simple commands.

There’s more...

Now that we’ve covered the fundamental steps for plotting, let’s explore various plotting styles.

Adding ticks and grid

At the start of our recipe, we used traditional centered axis lines. However, an axis is often a rectangular
box that encapsulates the plot. Let’s practice this. In addition, we will add a grid and choose the places
for the axis ticks along with their labels.

−3 −2 −1 1 2 3

−10

−5

5

10

Plotting functions in two dimensions 301

The settings of our plots are always the same within a tikzpicture environment, so we can
condense the code shown here to focus solely on the relevant axis environment:

\begin{axis} [grid, xtick = {-360,-270,...,360}]
  \addplot [domain=-360:360, samples=100, thick]
    { sin(x) };
\end{axis}

This gives us the following result:

Figure 10.17 – The sine function

Reducing axes

Using a grid and numerous ticks can help examine particular function values. Still, it might be better
to have simplified axes, perhaps even slightly offset, for a broader perspective of the function. There’s a
suitable style that you can use. If you download the file from https://pgfplots.net/media/
tikzlibrarypgfplots.shift.code.tex and put it into your document folder, you can
load this style in your preamble with the following command:

\usepgfplotslibrary{shift}

−360−270−180−90 0 90 180 270 360

−1

−0.5

0

0.5

1

https://pgfplots.net/media/tikzlibrarypgfplots.shift.code.tex
https://pgfplots.net/media/tikzlibrarypgfplots.shift.code.tex

Writing Advanced Mathematics302

Now, change the axis option grid to shift, and you will get this view:

Figure 10.18 – The sine function with reduced axes

You can adjust the default shift value of 10 pt. For instance, alter the code to shift=15pt.

The same library can be used in three dimensions; we return to that in the following recipe.

Plotting in polar coordinates

The standard axis environment uses Cartesian coordinates, but the pgfplots package also offers
logarithmic and polar axes.

Functions can also be described within a polar coordinate system. In this setup, each point is defined by
its distance from the origin, 0, and the angle to a reference axis. Consequently, the function’s argument
represents an angle, and its value corresponds to the distance from the origin. Let’s attempt a polar plot:

1.	 In your document preamble, add the following after the \usepackage{pgfplots} command:

\usepgfplotslibrary{polar}

2.	 Within a tikzpicture environment, like we just saw, write the axis with the plot using the
polaraxis package, just hiding the axis lines this time:

\begin{polaraxis}[hide axis]
  \addplot[domain=0:180,smooth] {sin(x)};
\end{polaraxis}

−360−270−180 −90 0 90 180 270 360

−1

−0.5

0

0.5

1

Plotting functions in two dimensions 303

3.	 Compile, and you will get a simple circle:

Figure 10.19 – The sine function in a polar coordinate system

So, the sine function, previously represented as a wave in our Cartesian coordinate plot, appears as
a circle in polar coordinates. This transition illustrates how altering the axis can provide valuable
visual insights.

A comprehensive polar plot shows angles, radius, and a grid featuring circular and radial lines. The
earlier sine circle displayed a circle for 180 degrees. If, for example, we adjust the factor in the argument
to 6, we’d anticipate a compressed circle every 30 degrees:

\documentclass[border=10pt]{standalone}
\usepackage{pgfplots}
\usepgfplotslibrary{polar}
\begin{document}
\begin{tikzpicture}
  \begin{polaraxis}
    \addplot[domain=0:360,samples=300] {sin(6*x)};
  \end{polaraxis}
\end{tikzpicture}
\end{document}

Writing Advanced Mathematics304

Compiling this document results in this output:

Figure 10.20 – A variant of a sine function in a polar coordinate system

Plotting in three dimensions
Visualizing functions with two arguments can be challenging. We can create three-dimensional plots
in documents; however, achieving this in print or as a PDF demands a projection, a viewpoint, or an
angle, along with considerations about depth, causing certain portions to be obscured while others
remain visible.

Previously, we plotted the function f(x) = sin(x). Now, by adding an additional dimension, we’ll visualize
the function f(x,y) = sin(x)sin(y).

How to do it...

Like in the previous recipe, we will use the pgfplots package. Follow these steps:

1.	 Start with a document class. Like in the previous recipe, we use the standalone class. But
it’s fine if you choose the article class instead:

\documentclass[border=10pt]{standalone}

2.	 Load the pgfplots package:

\usepackage{pgfplots}

3.	 Begin the document and open a tikzpicture environment:

\begin{document}
  \begin{tikzpicture}

0

30

60
90

120

150

180

210

240
270

300

330

0 0.5 1

Plotting in three dimensions 305

4.	 Begin an axis environment with options:

    \begin{axis} [
      title = {$f(x,y) = \sin(x)\sin(y)$},
      xtick = {0,90,...,360},
      ytick = {90,180,...,360},
      xlabel = x, ylabel = y,
      ticklabel style = {font = \scriptsize},
      grid
    ]

5.	 Invoke the three-dimensional plot command using the surface style, define the domain (i.e.,
the range for x and y), and choose a number of samples:

      \addplot3 [surf, domain=0:360, samples=60]
        { sin(x)*sin(y) };

6.	 End the axis, the tikzpicture, and document environments:

    \end{axis}
  \end{tikzpicture}
\end{document}

7.	 Compile and take a look at the outcome:

Figure 10.21 – A three-dimensional surface plot

0
90

180
270

360

90

180

270

360

−1

0

1

x
y

f(x, y) = sin(x) sin(y)

Writing Advanced Mathematics306

How it works...

The previous recipe already covered the fundamentals of the pgfplots package and the
axis environment.

Now, we employed the \addplot3 command analogous to the \addplot command from the
previous recipe, utilizing two variables.

3 in \addplot3 stands for three-dimensional. As \addplot already is the two-dimensional
version, there’s no \addplot2 command.

The \addplot3 command understands similar options. In addition, you can choose a three-
dimensional-specific style. We decided on the surf option for generating a surface plot.

There’s more...

We’re going to explore another style for the axis.

Reducing axes

As previously mentioned, we will apply a style for reduced and shifted axes. If you don’t have it already,
download the file at https://pgfplots.net/media/tikzlibrarypgfplots.shift.
code.tex and put it into your document folder. Load this style in your preamble with this command:

\usepgfplotslibrary{shift}

Now, we can use the shift style. To see a new function, we will use it with an exponential function.
The brief but complete code shall be as follows:

\documentclass[border=10pt]{standalone}
\usepackage{pgfplots}
\usepgfplotslibrary{shift}
\begin{document}
\begin{tikzpicture}
  \begin{axis} [shift3d]
    \addplot3 [surf, colormap/hot2, domain = -2:2,
      samples = 50] { x/exp(x^2+y^2) };
  \end{axis}
\end{tikzpicture}
\end{document}

https://pgfplots.net/media/tikzlibrarypgfplots.shift.code.tex
https://pgfplots.net/media/tikzlibrarypgfplots.shift.code.tex

Drawing geometry pictures 307

Compile and see the distraction-free plot:

Figure 10.22 – A three-dimensional surface plot with reduced axes

The default shift value is set at 10 pt, but you can customize it, for instance, by employing shift3d=15pt.

While in the previous recipe, the shifted axis style was utilized in two dimensions, in this case, it’s
applied to a three-dimensional plot.

Drawing geometry pictures
Geometry is a traditional field in mathematics that’s familiar from school days, involving compass
and ruler constructions. Using LaTeX for drawing geometric constructions and explanations can
particularly interest math teachers. These underlying constructions can also aid in general drawings
requiring line intersections and circle tangents, even if they don’t seem strictly geometric. Therefore,
in this recipe, we’ll revisit the drawings from school geometry.

How to do it...

We’re going to utilize the tkz-euclide package, an extension of TikZ. Our initial objective is to
create an equilateral triangle. Afterward, we’ll include additional details. Follow these instructions:

1.	 Start with a document class. It could be any one; here, we can use the standalone class to
focus on a single image:

\documentclass[border=10pt]{standalone}

−2 −1
0

1
2 −2

0

2

−0.4

−0.2

0

0.2

0.4

Writing Advanced Mathematics308

2.	 Load the tkz-euclide package:

\usepackage{tkz-euclide}

3.	 Begin the document and open a TikZ picture environment:

\begin{document}
\begin{tikzpicture}

4.	 Define some starting points:

  \tkzDefPoint(0,0){A}
  \tkzDefPoint(4,1){B}

5.	 Calculate further points. Here, we will to an intersection of the circle around A through B with
the circle around B through A:

  \tkzInterCC(A,B)(B,A)

6.	 Get the calculated points and give them the names C and D:

  \tkzGetPoints{C}{D}

7.	 Now, we start drawing. Draw the triangle with the corners A, B, and C:

  \tkzDrawPolygon(A,B,C)

8.	 Draw all points A, B, C, and D:

  \tkzDrawPoints(A,B,C,D)

9.	 Print labels to the points and use options for positioning:

  \tkzLabelPoints[below left](A)
  \tkzLabelPoints(B,D)
  \tkzLabelPoint[above](C){C}

10.	 Add the auxiliary circles of our intersection to the drawing with decent dots:

  \tkzDrawCircle[dotted](A,B)
  \tkzDrawCircle[dotted](B,A)

11.	 Add markers at C and D, like it is done with a compass, for illustration:

  \tkzCompass[color=red, very thick](A,C)
  \tkzCompass[color=red, very thick](B,C)
  \tkzCompass[color=red, very thick](A,D)
  \tkzCompass[color=red, very thick](B,D)

Drawing geometry pictures 309

12.	 End the picture and the document:

\end{tikzpicture}
\end{document}

13.	 Compile and have a look at our first result:

Figure 10.23 – A triangle construction

How it works...

The initial reaction might be, OMG, another syntax! However, this approach ensures unambiguous
identification of commands associated with the tkz-euclide package by prefixing them with \tkz.
So, it prevents potential clashes with commands from other packages that might have the same name.

Optional arguments are enclosed in square brackets, allowing the use of general TikZ key-value pairs,
such as specifying red color or very thick lines. Mandatory arguments are enclosed in curly brackets
as per usual. Coordinates, named points, line segments, and circles are represented using parentheses.

The package documentation is available by typing texdoc tkz-euclide at the command line
or visiting https://texdoc.org/pkg/tkz-euclide.

A

B

D

C

https://texdoc.org/pkg/tkz-euclide

Writing Advanced Mathematics310

A practical approach involves the following:

•	 Define points with coordinates

•	 Calculate further points, such as by using intersections or projections

•	 Draw circles and lines in points in the order you like; for instance, you could draw the points
later than lines and circles to see them on top

•	 Add labels

•	 Optionally, use TikZ commands to include additional elements

Now, let’s explore the fundamental commands with sample values for easier syntax comprehension,
diverging from the detailed reference manual format.

Defining points

You can assign names to points by specifying coordinates or mathematical formulas. Here are some
commands, along with their explanations:

•	 The \tkzDefPoint(1,2){P} command defines a point with the name P at x coordinate
1 and y coordinate 2. tkz-euclide employs centimeters as the default length unit.

•	 The \tkzDefPoints{1/2/A, 4/5/B} command defines the points A at (1,2) and B at
(4,5). As you see, you can define multiple points simultaneously.

•	 You can use calculations, such as in the expression \tkzDefPoint({2*ln(3) },
{sin(FPpi/2}){P} utilizing the syntax of the fp package. Refer to texdoc fp or
https://texdoc.org/pkg/fp for details.

•	 You can optionally label it directly, such as here:

•	 \tkzDefPoint[label=left:P]((1,2){P}.

Calculating points

For later use, you can let the tkz-euclide package calculate points at intersections. Have a look
at the following commands and their effect:

•	 \tkzInterLL(A,B)(C,D) intersects the line through the points A and B with the line
through C and D

•	 \tkzGetPoint{X} defines a point with the name X as a result of the last operation, like
the line intersection above

•	 \tkzInterLC(A,B)(C,D) intersects the line through A and B with the circle around C
through D

https://texdoc.org/pkg/fp

Drawing geometry pictures 311

•	 \tkzInterCC(A,B)(C,D) intersects the circle around A and through B with the circle
around C through D

•	 \tkzGetPoints{X}{Y} defines points with the names X and Y as a result of the last
operation, like for the intersection above

There are further possible calculations:

•	 \tkzDefPointBy[translation = from A to B](X) defines a point as the
translation of X by the line through A and B.

•	 \tkzDefPointBy[rotation = center M angle 90](X) rotates the point X
around the center point M by 90 degrees.

•	 \tkzDefPointBy[rotation in rad = center M angle pi/2](X) rotates
the point X around the center point M by pi/2, which is in Radian and means 90 degrees like
the preceding.

•	 \tkzDefPointBy[symmetry = center M](X) reflects the point X at the point M.

•	 \tkzDefPointBy[reflection = over A--B](X) reflects the point X at the line
through A and B.

•	 \tkzDefPointBy[projection = onto A--B](X) defines a point as the orthogonal
projection from X to the line through A and B.

•	 \tkzDefPointBy[homothety = center M ratio 0.3](X) calculates a homothety
of the point X with center point M and ratio 0.3.

•	 \tkzDefPointBy[inversion = center M through P](X) calculates an inversion
of the point X with center point M and through the point P.

Again, you can get the result of the calculation by \tkzGetPoint.

•	 \tkzDefPointsBy[operation](A,B,C) defines point using operations like the
preceding operations; the results will be called “A,” “B,” and “C.”

Drawing objects

You can draw objects such as points, lines, and circles using one of these commands:

•	 \tkzDrawPoint(A) draws point A as a filled circle.

•	 \tkzDrawPoints(A,B,C) draws a list of points; here A, B, and C.

•	 \tkzDrawLine(A,B) draws the line through the points A and B with an offset before A
and after B. You can modify that offset by an option: \tkzDrawLine[add=0 and 1]
(A,B) starts exactly at A but adds 1 cm after B.

Writing Advanced Mathematics312

•	 \tkzDrawLines(A,B C,D E,F) draws lines through the points A and B, C and D, E
and F, respectively. It understands the same offset as the preceding.

•	 \tkzDrawSegment(A,B) draws the line segment from point A to B.

•	 \tkzDrawSegments(A,B C,D) draws the line segments from point A to point B, and
the one from C to D.

•	 \tkzDrawCircle(A,B) draws a circle around points A through B.

All drawing commands understand TikZ options, such as in the following snippet:

\tkzDrawCircle[color=blue, fill=yellow, opacity=0.5](A,B)

Printing labels

You can print labels to objects using one of the following commands:

•	 \tkzLabelPoint(P){P_1} draws a label for the point P, with subscript 1.

•	 \tkzLabelPoints(A,B,C) draws labels for the points A, B, and C.

•	 \tkzLabelLine[left, pos=0.2](A,B){L} draws a label L left of the line through
A and B, at the position 0.2, so near the start.

•	 \tkzLabelSegment[above, pos=0.8](A,B){S} draws a label S above the
segment from A to B, at the position 0.8, so near the end. 0.5 is the default position, which
means the middle between A and B.

•	 \tkzLabelSegments[above](A,B C,D) labels the segments from A to B and C to D.

•	 \tkzLabelCircle[draw, fill=yellow](A,B)(90){Circle of Apollonius}
draws a rectangular node, filled with yellow color and the text “Circle of Apollonius” at a
position of 90 degrees.

There’s more...

Let’s use the same commands from the previous section to expand our drawing. Insert these commands
just before the \end{tikzpicture} statement:

\tkzInterLC(A,B)(B,A)
\tkzGetPoints{F}{E}
\tkzDrawPoints(E)
\tkzLabelPoints(E)
\tkzDrawPolygon(A,E,D)
\tkzMarkAngles[fill=yellow,opacity=0.5](D,A,E A,E,D)
\tkzMarkRightAngle[size=0.65,fill=red,opacity=0.5](A,D,E)
\tkzLabelAngle[pos=0.7](D,A,E){α}

Drawing geometry pictures 313

\tkzLabelAngle[pos=0.8](A,E,D){β}
\tkzLabelAngle[pos=0.5,xshift=-1.4mm](A,D,D){90°}
\tkzLabelSegment[below=0.6cm,align=center,
  font=\small](A,B){Reuleaux\\triangle}
\tkzLabelSegment[above right,sloped,
  font=\small](A,E){hypotenuse}
\tkzLabelSegment[below,sloped,font=\small](D,E){opposite}
\tkzLabelSegment[below,sloped,font=\small](A,D){adjacent}
\tkzLabelSegment[below right=4cm,
  font=\small](A,E){Thales circle}

Compile the extended code, and take a look at the effect of those commands:

Figure 10.24 – A Reuleaux triangle construction

A

B

D

C

E

α

β

90◦

Reuleaux
triangle

hypo
tenus

e

op
po
sit
e

adjacent Thales circle

Writing Advanced Mathematics314

To witness the simplicity of defining circles tangentially or by their peripheral points, try this short
exercise using the commands mentioned previously:

\documentclass[border=10pt]{standalone}
\usepackage{tkz-euclide}
\begin{document}
\begin{tikzpicture}
  \tkzDefPoints{0/0/A, 5/0/B, 1/4/C}
  \tkzDefCircle[in](A,B,C)
  \tkzGetPoint{M}
  \tkzDefCircle[circum](A,B,C)
  \tkzGetPoint{N}
  \tkzDefPointBy[projection=onto A--B](M)
  \tkzGetPoint{a}
  \tkzDefPointBy[projection=onto B--C](M)
  \tkzGetPoint{b}
  \tkzDefPointBy[projection=onto A--C](M)
  \tkzGetPoint{c}
  \tkzDrawCircle[very thick](M,a)
  \tkzDrawCircle[very thick](N,B)
  \tkzDrawPolygon[very thick](A,B,C)
  \tkzDrawLines[dotted](N,A N,B N,C)
  \tkzDrawLines[dashed](M,a M,b M,c)
  \tkzMarkRightAngles(M,a,B M,b,C M,c,C)
  \tkzDrawPoints(A,B,C,M,N,a,b,c)
  \tkzLabelPoints[below left](A,M,a,c)
  \tkzLabelPoints[below right](B)
  \tkzLabelPoints[above](C,b)
  \tkzLabelPoints[below](N)
\end{tikzpicture}
\end{document}

The command names are self-explanatory. As with most geometric constructions, there’s a specific
sequence to follow: initially defining objects and then referencing them later. Additionally, drawing
commands placed later overlap those drawn earlier, allowing you to control the visibility hierarchy
by selecting the drawing order.

Doing calculations 315

When you compile this sample code, you will get this result:

Figure 10.25 – A triangle with inner circle and outer circle

This geometry package built on TikZ significantly simplifies creating geometric constructions.

Doing calculations
Besides writing math, sometimes it’s useful to actually calculate something. We have several options:

•	 The calc package offers basic math with LaTeX, with lengths and counters

•	 The fp package provides fixed-point arithmetic with high precision

•	 pgfmath belongs to the PGF/TikZ package, providing many functions and a good parser

•	 LuaLaTeX is a version of LaTeX that allows programming calculation in Lua

Here, let’s work with the pgfmath functionality, as we already worked with TikZ, and it’s better
documented than the other options.

A

M

a

c

B

C

b

N

Writing Advanced Mathematics316

How to do it...

Follow these steps:

1.	 Start a document, load the TikZ package, and begin your document without indentation at
the beginning:

\documentclass{article}
\usepackage{tikz}
\begin{document}
\noindent

2.	 In your text, use the \pgfmathparse command for calculating and the \pgfmathresult
command for printing:

In a right-angled triangle, the two shortest sides
got widths of 3 and 7, respectively. The longest
side has a width of \pgfmathparse{sqrt(3^2 +
7^2)}\pgfmathresult.

3.	 Use the \pgfmathprintnumber command for formatted printing:

The smallest angle is about \pgfmathparse{atan(3/7)}
\pgfmathprintnumber[precision=2]{\pgfmathresult}
degrees.

4.	 End the document:

\end{document}

5.	 Compile, and look for the values:

Figure 10.26 – Calculating within the text

How it works...

There are essentially two steps involved:

1.	 Parsing and calculating: Use the \pgfmathparse command.

In a right-angled triangle the two shortest sides got widths of 3 and 7, respec-
tively. Then, the longest side has a width of 0.0. The smallest angle is about
23.2 degrees.

Further learning 317

2.	 Printing or utilizing the result: Accomplished this using \pgfmathresult. Additionally,
\pgfmathprintnumber allows printing the result with the desired precision.

You can construct formulas using typical operation symbols, parentheses, and well-known functions
such as sqrt for square root, ln for natural logarithm, min and max, and numerous trigonometric
functions such as sin, cos, and tan. For more in-depth information, please refer to the pgfmath
section in the PGF/TikZ manual.

If high-precision calculations are necessary, I’d recommend switching to LuaTeX or utilizing the fp
package. The reason is that the precision of the pgfmath functions is confined by TeX’s internal
capabilities. However, for drawing purposes where accuracy in micrometers isn’t critical, pgfmath
serves well.

Further learning
The previous chapters offered quick-start recipes, but in-depth reference manuals for mathematics
with LaTeX exist. The amsmath manual is one such comprehensive resource, detailing the package
extensively. Access it by typing texdoc amsmath at the command prompt or online via https://
texdoc.net/pkg/amsmath.

For an even more comprehensive document, visit https://ctan.org/pkg/voss-mathmode.

We used TikZ a lot to visualize mathematics. The manual is available by typing texdoc tikz at
the command prompt and at https://texdoc.org/pkg/tikz.

There’s a section in the TikZ example gallery with many example math drawings with complete code
at https://texample.net/tikz/examples/area/mathematics.

Even more examples are at https://tikz.net/category/mathematics.

There’s a gallery for two-dimensional and three-dimensional plots with extensive math at https://
pgfplots.net/tikz/examples/area/mathematics. I maintain the mentioned websites.
If you have questions regarding the examples, mathematics with LaTeX, or this book, you can tell
them to me in the LaTeX Community forum at https://latex.org.

https://texdoc.net/pkg/amsmath
https://texdoc.net/pkg/amsmath
https://ctan.org/﻿pkg/voss-mathmode
https://texdoc.org/pkg/tikz
https://texample.net/tikz/examples/area/mathematics
https://tikz.net/category/mathematics
https://pgfplots.net/tikz/examples/area/mathematics
https://pgfplots.net/tikz/examples/area/mathematics
https://latex.org

11
Using LaTeX in

Science and Technology

While the prior chapter focused on mathematics, we’ll now explore various scientific fields such as
chemistry, physics, computer science, technology, and electronics. Given the significant reliance on
mathematics in these disciplines, make sure you also explore Chapter 10, Writing Advanced Mathematics.
This chapter will be an overview, showing specific recipes for how LaTeX can be used across diverse
scientific domains.

We’ll cover the following main topics:

•	 Typesetting an algorithm

•	 Printing a code listing

•	 Programming with Lua

•	 Creating graphs

•	 Writing quantities with units

•	 Drawing Feynman diagrams

•	 Writing chemical formulas

•	 Drawing molecules

•	 Representing atoms

•	 Drawing molecular orbital diagrams and atomic orbitals

•	 Printing a customized periodic table of elements

•	 Drawing electrical circuits

This chapter aims to showcase various packages through practical examples while providing insights
into their utilization. For more intricate details, the manuals of these packages serve as a reference.

Using LaTeX in Science and Technology320

Typesetting an algorithm
An algorithm constitutes a fundamental concept within computer science. It represents a systematic
set of step-by-step operations executed to accomplish specific tasks, such as calculations or data
processing, e.g., sorting.

Algorithms can be visualized using a flow chart, which we made in Chapter 6, Creating Graphics. In
this recipe, we will print an algorithm using pseudocode with syntax highlighting. Our example will
show the calculations that display the Mandelbrot set, a visually stunning classic fractal generated
by computations involving complex numbers.

How to do it...

We will utilize the algorithmicx package written by Szász János. We will break down the process
into several small steps for more transparent comprehension. As usual, the complete code is available
for download from https://latex-cookbook.net, eliminating the need for manual typing.
At the end, you will see an image with the output. Consider switching between the output image and
the quite comprehensive instructional steps to observe the incremental construction of the algorithm
layout. Here it goes:

1.	 As usual, start with a document class. Load additional packages you intend to use; in this case,
we need the dsfont and mathtools packages:

\documentclass{article}
\usepackage{dsfont}
\usepackage{mathtools}

2.	 Load these three algorithm packages:

\usepackage{algorithm}
\usepackage{algorithmicx}
\usepackage{algpseudocode}

3.	 You can define your own commands—in our case, a statement for local variables:

\algnewcommand{\Local}{\State\textbf{local
  variables: }}

4.	 We define any other macros we need. We’ll also create a shortcut \Let command for recurring
variable assignments using the \State command. To ensure proper left-hand side alignment,
we’ll use the \mathmakebox command to put an argument in a box with a minimum width
of 1em:

\newcommand{\Let}[2]{\State
  $\mathmakebox[1em]{#1} \gets #2$}

https://latex-cookbook.net

Typesetting an algorithm 321

5.	 Start the document:

\begin{document}

6.	 Open an algorithm environment:

\begin{algorithm}

7.	 Provide a caption and a label for cross-referencing:

  \caption{Mandelbrot set}
  \label{alg:mandelbrot}

8.	 Start an algorithmic environment with an n option for numbering every nth line. We
choose 1 as this option, numbering each single line:

  \begin{algorithmic}[1]

9.	 You can state requirements if any exist:

    \Require{$c_x, c_y, \Sigma_{\max} \in \mathds{R},
      \quad i \in \mathds{N}, \quad i_{\max} > 0,
      \quad \Sigma_{\max} > 0$}

10.	 We write down the function name with arguments:

    \Function{mandelbrot}{$c_x, c_y, i_{\max},
              \Sigma_{\max}$}

11.	 Now we use our own \Local macro for declaring local variables:

      \Local{$x, y, x_1, y_1, i, \Sigma$}

12.	 We use a statement to initialize local variables:

      \State $x, y, i, \Sigma \gets 0$}

13.	 We can add a comment to the line:

      \Comment{initial zero value for variables}

14.	 Now, write down a while loop that contains assignments:

      \While{$\Sigma \leq \Sigma_{\max}$
             and $i < i_{\max}$}
        \Let{x_1}{x^2 - y^2 + c_x}
        \Let{y_1}{2xy + c_y}
        \Let{x}{x_1}
        \Let{y}{y_1}

Using LaTeX in Science and Technology322

        \Let{\Sigma}{x^2 + y^2}
      \EndWhile

15.	 Add an if … then conditional statement:

      \If{$i < i_{\max}$}
        \State \Return{i}
      \EndIf

16.	 We specify a return value and end the function:

      \State \Return{0}
    \EndFunction

17.	 End all open environments and the document:

  \end{algorithmic}
\end{algorithm}
\end{document}

18.	 Compile and take a look at the outcome:

Figure 11.1 – An algorithm with pseudocode

How it works...

The algorithm environment is a wrapper that allows the algorithm to float to a good position, just
like figures and tables. So, page breaks within algorithms are avoided and pages can be well filled.
Furthermore, it supports captions and labels for cross-referencing and adds the \listofalgorithms
command, which generates a list of algorithms similar to a list of figures.

Algorithm 1 Mandelbrot set

Require: cx, cy,Σmax ∈ R, i ∈ N, imax > 0, Σmax > 0
1: function mandelbrot(cx, cy, imax,Σmax)
2: local variables: x, y, x1, y1, i,Σ
3: x, y, i,Σ ← 0 ▷ initial zero value for variables
4: while Σ ≤ Σmax and i < imax do
5: x1 ← x2 − y2 + cx
6: y1 ← 2xy + cy
7: x ← x1

8: y ← y1
9: Σ ← x2 + y2

10: end while
11: if i < imax then
12: return i
13: end if
14: return 0
15: end function

Printing a code listing 323

The inner algorithmic environment does the specific typesetting. It supports commands that are
commonly used in algorithm descriptions. These are the commands we used:

•	 The \Require command is for a short list of requirements for the algorithm. The output
starts with the Require: keyword in bold.

•	 The \Function command prints the function keyword in bold, followed by the function
name in small caps and parameters in parentheses. The \EndFunction command prints
end function in bold.

•	 The \While and \EndWhile commands generate a loop in the manner while ... do ...
end while.

•	 The \If and \EndIf commands generate a conditional statement in the manner if ... then
... end if.

•	 The \State command starts a new algorithm line with a suitable indentation.

The complete set of commands is described in the package manual, accessed by inputting texdoc
algorithmicx or going to https://texdoc.org/pkg/algorithmicx.

There’s more...

There’s more than the pseudocode style. You can use the algpascal layout, which supports Pascal
language syntax and performs the block indentation automatically. To achieve this, replace the command
\usepackage{algpseudocode} with the command \usepackage{algpascal}. In the
same way, you can use the algc layout instead, which is the equivalent of the C language.

Experienced users may define their own command sets. This and existing layout features are described
in the package manual.

Printing a code listing
Documentation often includes code snippets, as well as computer science theses. While the first recipe
of this chapter handed pseudocode for algorithms and the subsequent recipe did actual programming,
our focus now shifts to typesetting the code. To keep it concise, we’ll use a simple “hello world”
program as an example.

How to do it...

We’ll utilize the listings package initially written by Carsten Heinz and designed explicitly for
this task. Follow these steps:

1.	 Start with any document class:

\documentclass{article}

https://texdoc.org/pkg/algorithmicx

Using LaTeX in Science and Technology324

2.	 Load the listings package:

\usepackage{listings}

3.	 Begin the document:

\begin{document}

4.	 Begin a lstlisting environment with an option for the language:

\begin{lstlisting}[language = C++]

5.	 Continue with the code you would like to print:

// include standard input/output stream objects:
#include <iostream>
// the main method:
int main()
{
    std::cout << "Hello TeX world!" << std::endl;
}

6.	 End the lstlisting environment and the document:

\end{lstlisting}
\end{document}

7.	 Compile and have a look at the output:

Figure 11.2 – A C++ listing

How it works...

The fundamental steps are straightforward:

1.	 Load the listings package.

2.	 Enclose each code listing within a lstlisting environment, optionally specifying the
language as seen previously.

// inc l ude standard input / output stream o b j e c t s :
#include <iostream>
// the main method :
int main ()
{

std : : cout << ”He l lo TeX world ! ” << std : : endl ;
}

Printing a code listing 325

The manual provides a comprehensive list of supported languages, continually expanding for over 25
years. You can define your own language style or find one for your favorite language online.

Commands and environments within the listings package use the \lst prefix to avoid naming
conflicts with other packages.

You can tailor the appearance of all your listings with a single command:

\lstset{key1 = value1, key2 = value2}

This command offers an extensive key=value interface with numerous keys. Let’s look at how to
use it, focusing on particularly useful keys.

Modify the preceding example in this way:

1.	 Add the xcolor package to your document preamble:

\usepackage{xcolor}

2.	 Load the inconsolata package to utilize an excellent typewriter font:

\usepackage{inconsolata}

3.	 Define macros, such as the programming language logo, to maintain a consistent appearance:

\newcommand{\Cpp}{C\texttt{++}}

4.	 After \usepackage{listings}, insert settings via key=value:

\lstset{
  language         = C++,
  basicstyle       = \ttfamily,
  keywordstyle     = \color{blue}\textbf,
  commentstyle     = \color{gray},
  stringstyle      = \color{green!70!black},
  stringstyle      = \color{red},
  columns          = fullflexible,
  numbers          = left,
  numberstyle      = \scriptsize\sffamily\color{gray},
  caption          = A hello world program in \Cpp,
  xleftmargin      = 0.16\textwidth,
  xrightmargin     = 0.16\textwidth,
  showstringspaces = false,
  float,
}

Using LaTeX in Science and Technology326

5.	 With these settings, you can now utilize the \begin{lstlisting} command without
additional arguments. Compile your adjusted example and observe the changes:

Figure 11.3 – A customized listing

There’s more...

Like the standard LaTeX verbatim environment and the \verb command, lstlisting provides
a companion for embedding small code snippets inline—the command \lstinline does it. Write
it as follows:

Use \lstinline!#include <iostream>! for
including i/o streams.

You can use any character as a delimiter instead of the exclamation mark as long as it doesn’t appear
in the code snippet.

For longer listings, you can save them in external files. Instead of the standard \input command,
use the following command:

\lstinputlisting[options]{filename}

The same options available for the lstlisting environment can be applied here. For instance, the
following command includes only lines 4 to 10:

\lstinputlisting[firstline=4, lastline=10]{filename}

This allows the breakdown of lengthier listings along with explanatory text.

Similar to the regular LaTeX \listoffigures command, you can generate a list of listings with
their captions using the \lstlistoflistings command.

Listing 1: A hello world program in C++

1 // include standard input/output stream objects:
2 #include <iostream>
3 // the main method:
4 int main()
5 {
6 std::cout << "Hello TeX world!" << std::endl;
7 }

Programming with Lua 327

Programming with Lua
While LuaTeX comes with numerous more advancements regarding, for example, font support and
MetaPost graphics support, we will focus on pure Lua programming in this section to carve out
benefits to program and use algorithms.

TeX, primarily a text-processing language, has limited programming capabilities and needs advanced
data-handling functionalities. That makes general-purpose programming a challenge. To address
this, TeX developers sought a scripting language to add modern programming capabilities. Their
strategic choice was Lua, a versatile, lightweight, and highly portable scripting language designed
to be embedded in other applications. This decision led to the development of LuaTeX, a new TeX
engine that, combined with the LaTeX format, is called LuaLaTeX.

While LuaTeX offers various advancements, including enhanced font and MetaPost support, this recipe
uses pure Lua programming to run algorithms directly within our LaTeX document.

Note
Use the LuaLaTeX compiler option in your LaTeX editor for the examples in this chapter.

How to do it...

Let’s implement an iterative algorithm, Heron’s method (also called the Babylonian method), to
calculate the square root of a number. This method is detailed at https://en.wikipedia.
org/wiki/Methods_of_computing_square_roots#Heron’s_method. In essence,
it works as follows:

1.	 Start with an estimate, x, which could approximate the square root of n.

2.	 If x is smaller than the actual square root, then n/x is larger than the root since x*x = n is
our objective. Conversely, if x is greater than the root, n/x would be smaller. To refine our
approximation, we select the average of x and n/x as the new value for x.

3.	 Go back to step 2 and repeat this process multiple times.

Let’s see how to do this calculation in LaTeX! Follow these steps to get the square root of 2:

1.	 Start with any document class:

\documentclass{article}

2.	 Load the luacode package for extended Lua support:

\usepackage{luacode}

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Heron’s_method
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Heron’s_method

Using LaTeX in Science and Technology328

3.	 Begin the document with some text:

\begin{document}
The value of $\sqrt{2}$ is \approx

4.	 Open a luacode environment:

\begin{luacode}

5.	 Now use Lua—declare your variable x with an initial value of 1:

  local x = 1
  for i=1,10 do
    x = (x + 2/x)/2
  end

6.	 Print the result to the LaTeX document:

  tex.print(x)

7.	 End the luacode environment and the document:

\end{luacode}
\end{document}

8.	 Compile using LuaLaTeX and have a look at the output:

Figure 11.4 – Output of text and calculated result

How it works...

We utilized a luacode environment from the package by Manuel Pégourié-Gonnard to embed a
Lua program in our LaTeX document. We defined a variable and employed a for loop to compute
the final value through ten iterative repetitions. Using the tex.print command, we displayed the
value of the Lua variable within our document.

The Lua language is comprehensively documented at https://www.lua.org/docs.html.

While we went through this example to understand how to embed Lua code, there’s an alternate
calculation method. Lua features a mathematical library that provides various mathematical functions.
For instance, to print the value of the square root of 2, you could execute this command:

tex.print(math.sqrt(2))

The value of
√
2 is ≈1.4142135623731

https://www.lua.org/docs.html

Programming with Lua 329

You don’t need the luacode environment and package for small Lua code snippets such as this.
You can execute any single-line Lua code using the \directlua command. You can modify the
previous code to have this as the LaTeX document body:

The value of $\sqrt{2}$ is
\approx\directlua{tex.print(math.sqrt(2))}.

The output will be the same as in the previous figure. The mathematical library is documented in
Section 6.7 of the current Lua reference manual, with version 5.4 available at https://www.
lua.org/manual/5.4/manual.html#6.7, and you can find examples for all functions at
http://lua-users.org/wiki/MathLibraryTutorial.

There’s more...

Let’s explore a more comprehensive example that shows the excellent integration of Lua with LaTeX.
Utilizing the pgfplots package developed by Christian Feuersänger alongside Lua, we’ll generate
an image illustrating the Mandelbrot set through the algorithm outlined at the beginning of this
chapter. Follow these steps:

1.	 Start with any document class. I opted again for the standalone class with some white margin:

\documentclass[border=10pt]{standalone}

2.	 Load the pgfplots package and initialize it with options for the plot width and the version
for compatibility:

\usepackage{pgfplots}
\pgfplotsset{width=7cm, compat=1.18}

3.	 Load the luacode package and open a luacode environment:

\usepackage{luacode}
\begin{luacode}

4.	 Enter the following Lua code for a function declaration following the algorithm detailed at
the beginning of this chapter. Define and initialize local variables with an initial value of zero,
perform calculations within a while loop, and transfer the result to TeX:

  function mandelbrot(cx, cy, imax, smax)
    local x, y, x1, y1, i, s
    x, y, i, s = 0, 0, 0, 0
    while (s <= smax) and (i < imax)  do
      x1 = x * x - y * y + cx
      y1 = 2 * x * y + cy
      x = x1
      y = y1

https://www.lua.org/manual/5.4/manual.html#6.7
https://www.lua.org/manual/5.4/manual.html#6.7
http://lua-users.org/wiki/MathLibraryTutorial

Using LaTeX in Science and Technology330

      i = i + 1
      s = x * x + y * y
    end
    if (i < imax) then
      tex.print(i)
    else
      tex.print(0)
    end
  end

5.	 End the l u a c o d e environment, begin the document body, and open a
tikzpicture environment:

\end{luacode}
\begin{document}
\begin{tikzpicture}

6.	 Like in the previous chapter, open a pgfplots axis environment with the following options
in square brackets:

\begin{axis}[
  colorbar,
  point meta max = 30,
  tick label style = {font=\tiny},
  view={0}{90}]

7.	 Use the \addplot3 command to generate a 3D plot. The Z-values of the plot command are
calculated using the \directlua command with the mandelbrot function:

  \addplot3 [surf, domain = -1.5:0.5, shader = interp,
             domain y = -1:1, samples = 200]
      { \directlua{mandelbrot(\pgfmathfloatvalueof\x,
          \pgfmathfloatvalueof\y,10000,4)} };

8.	 Close the axis and tikzpicture environment and finish the document:

  \end{axis}
\end{tikzpicture}
\end{document}

9.	 Compile the document using LuaLaTeX. The complex calculation may take some time. This
is the generated plot:

Creating graphs 331

Figure 11.5 – The Mandelbrot set

How it works...

We combined a luacode environment, where we defined a Lua function, with the \directlua
command in the document.

We utilized the pgfplots package to iterate through (x,y) values. The result of the Lua mandelbrot
function is a color. While we aimed to generate a two-dimensional image, the result is used as the Z-value
in a 3D plot. That Z-value is colored in proportion to its value. The picture looks two-dimensional
because we chose a viewing angle directly above the xy-plane.

Creating graphs
Graph theory, commonly employed in fields such as operations research and computer science,
typically involves models and drawings primarily composed of repeated vertices, edges, and labels.
There are LaTeX packages that help efficiently generate consistent graphs.

−1.5 −1 −0.5 0 0.5
−1

−0.5

0

0.5

1

0

10

20

30

Using LaTeX in Science and Technology332

How to do it...

The tkz-graph package developed by Alain Matthes provides a user-friendly interface, various
preconfigured styles, and extensive customization options. Let’s start with a minimal example:

1.	 Begin with any document class. In this case, I’ve opted for the standalone class to generate a
compact PDF containing the desired image. Additionally, I’ve included an option for a border
value to create a slight margin around the graph.

\documentclass[border=10pt]{standalone}

2.	 Load the tkz-graph package:

\usepackage{tkz-graph}

3.	 Define the distance between two vertices in cm:

\SetGraphUnit{3}

4.	 Begin the document body:

\begin{document}

5.	 Open a tikzpicture environment. Here, you may optionally rotate the graph, giving a
value in degrees:

\begin{tikzpicture}[rotate=18]

6.	 Define a set of vertices. Optionally, choose a shape for their positioning:

  \Vertices{circle}{A,B,C,D,E}

7.	 Decide which vertices shall be connected by edges in which order:

  \Edges(A,B,C,D,E,A,D,B,E,C,A)

8.	 Close the tikzpicture environment and end the document:

\end{tikzpicture}
\end{document}

Creating graphs 333

9.	 Compile and have a look at the picture:

Figure 11.6 – A basic graph

How it works...

After loading the tkz-graph package, we used the \SetGraphUnit command to choose a
value in centimeters for the distance between the vertices because the default value of 1 cm is pretty
small. We did this in the preamble, so it’s applied to all graphs consistently. We can also use the
\SetGraphUnit command in the document within the tikzpicture environment. In that
case, it applies only to the current TikZ picture.

We used the \Vertices command to define a set of vertices. We can name them using capital letters,
small letters, numbers, or even mathematical expressions such as x_1. The initial argument defines
the geometric structure of the graph, providing various options:

•	 line: This option places the vertices along a line.

•	 circle: This option places all vertices on a circle.

•	 square: With this option, the vertices are positioned as corners of a square. This should be
used only with exactly four vertices.

•	 tr1, tr2, tr3, tr4: The vertices are placed in four different types of rectangular triangle
formations. Use it with precisely three vertices.

While that doesn’t look like many choices, you can use several \Vertices commands to build
a complex graph. There’s a node option to help with positioning. First, define a node or, better, a
coordinate as follows:

\coordinate (a) at (4,2);

A

B

C

D E

Using LaTeX in Science and Technology334

Then, you can use the Node option to place the vertices starting at that node or coordinate position
like so:

\Vertices[Node]{square}{a,b,c,d}

That helps in assembling larger graphs by combining multiple smaller graphs.

Finally, we used the \Edges command that generates a sequence of edges by connecting a list of
vertices in their given order.

We can easily modify the appearance of the graph using a single command. Insert the following
command into your document preamble after you loaded the tkz-graph package:

\GraphInit[vstyle=Shade]

Compile and see how the graph has changed:

Figure 11.7 – A graph with a shading style

The vstyle option provides various graph styles, defining how vertices are displayed, and some
styles produce non-regular edges:

•	 Empty: This option gives simple vertices without a circle or any border.

•	 Classic: Using this option, vertices are displayed as filled circles, and the vertex name is
positioned outside of the circle.

•	 Normal: This option gives circular vertices with the vertex name inside.

•	 Simple: This option generates black-filled circular vertices without printing the vertex names.

•	 Art: This option turns vertices to shaded balls without printing the vertex name in orange by
default. The edges are regular lines but colored orange, too.

•	 Shade Art: This works like the Art option but with thicker orange lines and black borders
for edges.

A

B

C

D E

Creating graphs 335

•	 Shade: This option looks like Shade Art but has vertex names inside the balls, just as you
saw in Figure 11.7.

•	 Hasse: This style produces circular, non-filled vertices without printing names.

•	 Dijkstra: This style prints circular vertices with the name inside

•	 Welsh: This style produces circular vertices with the name outside the vertex node.

The edges are regular black lines except with the Art, Shade, and Shade Art options.

There’s more...

You can create your own graph style or customize the existing styles. Let’s explore the additional
features with a more complex example. Follow these steps:

1.	 Like in the previous example, start with the document class, load the tkz-graph package,
choose a basic style, and set a distance between the nodes in centimeters:

\documentclass{standalone}
\usepackage{tkz-graph}
\GraphInit[vstyle = Shade]
\SetGraphUnit{5}

2.	 Modify the styles called VertexStyle, EdgeStyle, and LabelStyle. Use the .append
style syntax to add new settings to the pre-defined style without replacing them. You can
use regular TikZ options as follows:

\tikzset{
  VertexStyle/.append style =
    { inner sep = 5pt, font = \Large\bfseries},
  EdgeStyle/.append style   = {->, bend left},
  LabelStyle/.append style  =
    { rectangle, rounded corners, draw,
      minimum width = 2em, fill = yellow!50,
      text = red, font = \bfseries}
}

3.	 You can also use the \renewcommand macro to modify style elements like this for a different
vertex ball color:

\renewcommand{\VertexBallColor}{blue!30}

4.	 Begin the document and open a tikzpicture environment:

\begin{document}
\begin{tikzpicture}

Using LaTeX in Science and Technology336

5.	 Declare a first vertex B:

  \Vertex{B}

6.	 Set a vertex A to the west (WE) and C to the east (EA):

  \WE(B){A}
  \EA(B){C}

7.	 Draw edges between the vertices:

  \Edge[label = 1](A)(B)
  \Edge[label = 2](B)(C)
  \Edge[label = 3](C)(B)
  \Edge[label = 4](B)(A)

8.	 Add loops, which are edges from a vertex to itself:

  \Loop[dist = 4cm, dir = NO, label = 5](A.west)
  \Loop[dist = 4cm, dir = SO, label = 6](C.east)

9.	 Adjust the bend angle of the edges for the final two wider edges:

  \tikzset{EdgeStyle/.append style = {bend left = 50}}
  \Edge[label = 7](A)(C)
  \Edge[label = 8](C)(A)

10.	 End the picture and the document:

\end{tikzpicture}
\end{document}

11.	 Compile and have a look at the result:

Figure 11.8 – A customized graph

BA C

1 2

34

5 6

7

8

Writing quantities with units 337

How it works...

Similar to other recipes in this book, the basic procedure is as follows:

1.	 Define styles.

2.	 Position vertices.

3.	 Add edges.

4.	 Repeat if needed.

For positioning vertices, there’s a simple syntax:

<direction>(B){A}

<direction> can be as follows:

•	 \EA for placing B to the east of A

•	 \WE for positioning it to the west

•	 \NO for positioning it to the north

•	 \SO for positioning it to the south

•	 \NOEA, \NOWE, \SOEA, and \SOWE work as combinations of the preceding directional commands

The entire \Edge syntax is as follows:

\Edge[options](vertex1)(vertex2)

Options can be line width, labels, styles, and colors. For such detailed options, please refer to the
package manual available by running texdoc tkz-graph via the command line or online at
https://texdoc.org/serve/tkz-graph/0.

Writing quantities with units
Unlike pure mathematics, we often encounter units alongside quantities in natural sciences such as
chemistry, physics, and engineering. It’s essential to distinguish units from variables. Consider this
example: let’s create a formula that multiplies the speed s of one meter per second by the factor m. At
first glance, it might seem straightforward like this:

\(m \cdot s = m \cdot 1 m s^{-1} \)

https://texdoc.org/serve/tkz-graph/0

Using LaTeX in Science and Technology338

The LaTeX standard output would be as follows:

Figure 11.9 – A bad example of printing variables and units

What do you think about this? Units and variables seem identical. Imagine multiplying both sides of
the equation by s or dividing by m... it becomes pretty perplexing. Furthermore, our space between
1 and m has been lost.

To adhere to common standards in writing, we often require the following:

•	 Upright presentation of units to differentiate them from italicized math variables

•	 A small space between a quantity and its accompanying unit

•	 Customizable appearance without changing the formula code, especially when a journal
requests a different style

•	 Semantic writing—replacing abbreviations such as “m” and “s” with complete terms such as
“meters” and “seconds”—enhances clarity

•	 Intelligent parsing of numbers within quantities

•	 Incorporating features such as striking out or highlighting to explain a calculation effectively

Is it possible to achieve all of these requirements? Definitely!

How to do it...

The siunitx package by Joseph Wright offers methods to align with international standards for
unit systems while allowing customization to suit various typographic styles.

Now, let’s rectify the formula mentioned earlier by following these steps:

1.	 Start with any document class:

\documentclass{article}

2.	 Load the siunitx package:

\usepackage{siunitx}

3.	 Begin the document:

\begin{document}

m · s = m · 1ms−1

Writing quantities with units 339

4.	 Write the preceding formula but this time use the command \SI{quantity}{units}:

\(m \cdot s = m \cdot \qty{1}{\m\per\s} \)

5.	 End the document for now:

\end{document}

6.	 Compile and take a look:

Figure 11.10 – Improved display of variables, values, and units

7.	 You can also opt for longer, more natural unit names to achieve the same result as mentioned earlier:

\(m \cdot s = m \cdot \qty{1}{\meter\per\second} \)

8.	 Let’s adjust the reciprocal units. After loading the siunitx package, add the following line
to your preamble:

\sisetup{per-mode = symbol}

9.	 Compile to see the difference:

Figure 11.11 – Alternative display of units

10.	 If you want to emphasize changes, you can use the cancel and color packages. Add them
to your preamble:

\usepackage{cancel}
\usepackage{color}

11.	 Let’s test this together with scientific, exponential notation. So, modify your formula line as follows:

\(m \cdot s = m \cdot
  \qty{1e-3}{\cancel\m\highlight{red}\km\per\s} \)

12.	 Compile to see the latest result:

Figure 11.12 – Emphasizing in a formula

m · s = m · 1m s−1

m · s = m · 1m/s

m · s = m · 1× 10−3��mkm/s

Using LaTeX in Science and Technology340

How it works...

The command \qty{quantity}{units} accomplishes two tasks:

•	 It interprets the quantity in its initial argument, effectively formatting numbers and comprehending
complex numbers and exponential notations. The output formatting eliminates unnecessary
spaces and groups large numbers into blocks of three with a thin space.

•	 It processes the units provided, ensuring proper typesetting with a thin space between the
quantity and unit.

In essence, \qty combines two commands, which you also can use directly:

•	 \num{numbers} parses numbers in the argument and formats them properly.

•	 \unit{units} typesets the units. For example, \unit{\kilo\gram\meter\per
\square\second}, or the shorter \unit{\kg\m\per\square\s}, gives the following:

Figure 11.13 – Combined units

The package implements a basic set of SI standardized units via macros, including derived units. You
can utilize \meter, \metre, \gram, and so on, as well as derived units such as \newton, \watt,
\hertz, among many others. Even non-SI units are supported, such as \hour or \hectare. The
package also supports common prefixes such as \kilo, \mega, and \micro. For a comprehensive
list of features, refer to the detailed manual accessible via the texdoc siunitx command from
the command line or by visiting https://texdoc.org/pkg/siunitx.

Drawing Feynman diagrams
A Feynman diagram is a mathematical visualization of the behavior of subatomic particles. There are
several ways to generate them using LaTeX.

How to do it...

We will use the tikz-feynman package. The author documented it in J. Ellis, ‘TikZ-Feynman:
Feynman diagrams with TikZ’, (2016), arXiv:1601.05437 [hep-ph], and you can access the documentation
executing texdoc tikz-feynman via the command line or at https://texdoc.org/pkg/
tikz-feynman.

kgm/s2

https://texdoc.org/pkg/siunitx
https://texdoc.org/pkg/tikz-feynman
https://texdoc.org/pkg/tikz-feynman

Drawing Feynman diagrams 341

The positions of the vertices are calculated using Lua, so we must compile with LuaLaTeX. Follow
these steps:

1.	 Start with any document class:

\documentclass[border=10pt]{standalone}

2.	 Load the tikz-feynman package:

\usepackage{tikz-feynman}

3.	 Load additional useful TikZ libraries and begin the document:

\usetikzlibrary{positioning,quotes}
\begin{document}

4.	 Utilize the \feynmandiagram command as follows:

\feynmandiagram [horizontal=a to b] {
  i1 [particle=e^-] -- [fermion] a
    -- [fermion] f1 [particle=e^-],
  a -- [photon, "γ", red, thick,
      momentum' = {[arrow style=red]k}] b,
  i2 [particle=μ^-] -- [anti fermion] b
    -- [anti fermion] f2 [particle=μ^-],
};

5.	 End the document:

\end{document}

6.	 Compile and look at the result:

Figure 11.14 – A Feynman diagram

k

γ

e−

e− µ−

µ−

Using LaTeX in Science and Technology342

How it works...

We used i1 and f1 as initial and final nodes for one part and i2 and f2 for the other part. a and
b are the nodes in the middle.

fermion, anti fermion, and photon are predefined line styles. You can also add TikZ styles.

The particle option is used to set labels. The momentum option adds further annotations.

There’s more...

You can consider the alternative packages feynmf and feynmp. Visit https://feynm.net
to explore a gallery of Feynman diagrams generated by various packages. Visit https://wiki.
physik.uzh.ch/cms/latex:feynman to see a vast amount of examples.

Writing chemical formulas
The presentation of chemical formulas and equations differs from mathematical ones in several ways:

•	 Atomic symbols are represented by upright letters, distinct from italicized mathematical variables

•	 Numbers are often employed as subscripts, signifying the count of atoms.

•	 The alignment of numerous subscripts and superscripts is essential for a good formula layout

•	 Left subscripts and superscripts are also required in some cases

•	 Special symbols for bonds and arrows are necessary for chemical equations

However, accomplishing such requirements is challenging with basic LaTeX. Let’s find a more
effective solution.

How to do it...

We’ll utilize the chemformula package that Clemens Niederberger wrote to practice chemical
notation in LaTeX. Let’s start:

1.	 Choose a document class, such as scrartcl of the KOMA-Script bundle, and the
chemformula package and begin with the document:

\documentclass{scrartcl}
\usepackage{chemformula}
\begin{document}

https://feynm.net
https://wiki.physik.uzh.ch/cms/latex:feynman
https://wiki.physik.uzh.ch/cms/latex:feynman

Writing chemical formulas 343

2.	 Start with an unnumbered section to verify that formulas work in headings. Use the \ch
command for writing formulas. Give atoms and numbers as arguments straight away, without
the _ and ^ syntax used when writing mathematics:

\section*{About \ch{Na2SO4}}
\ch{Na2SO4} is sodium sulfate.

3.	 Electric charges of ions are written directly without using _ and ^:

It contains \ch{Na+} and \ch{SO4^2-}.

4.	 Adducts can be denoted with a star or a dot, with numbers automatically identified as stoichiometric
factors. Leave a blank space as a separator as here:

\ch{Na2SO4 * 10 H2O} is a decahydrate.

5.	 Chemical formulas can also be used in math mode. For instance, create a centered equation
with a forward arrow, also called a reaction arrow, indicated by ->:

\[
  \ch{Na2SO4 + 2 C -> Na2S + 2 CO2}
\]

6.	 We can have it numbered, too, like math equations. This time, we use an equilibrium arrow, <=>:

\begin{equation}
  \ch{Na2SO4 + H2SO4 <=> 2 NaHSO4}
\end{equation}

7.	 If a number is left of an atom, it acts as a left subscript. But we can clearly indicate the meaning
using _ and ^ before an atom, such as for isotopes:

\section*{Isotopes}
\ch{^{232}_{92}U140} is uranium-232.

8.	 Different bond types (single, double, triple) are represented by -, =, or +, respectively. We can
see this in a list of hydrocarbons:

\begin{itemize}
  \item \ch{H3C-CH3} is ethane,
  \item \ch{H2C=CH2} is ethylene,
  \item \ch{H2C+CH2} is ethyne.
\end{itemize}

9.	 That’s enough for now, let’s finish the document:

\end{document}

10.	 Compile and see what you have done:

Using LaTeX in Science and Technology344

Figure 11.15 – Chemical formulas

How it works...

The input syntax is designed to be natural and straightforward:

•	 Atoms are represented by letters

•	 Numbers are automatically formatted as subscripts, signifying the number of atoms in the formula

•	 Stoichiometric numbers, representing molecule quantities, precede the molecule with a space
in between

This simplicity not only aids in typing but also allows effortless copy-pasting from PDFs, Word
documents, or the internet.

The most common bonds are written as follows:

•	 - represents a single bond

•	 = indicates a double bond

•	 + signifies a triple bond

The following syntax defines reaction arrows:

•	 ->, <-: These draw regular arrows pointing to the right or the left

•	 -/>, </-: These draw broken arrows pointing to the right or the left (do not react)

•	 <->: This draws a resonance arrow (arrows with tips at the left and the right)

About Na2SO4

Na2SO4 is sodium sulfate. It contains Na+ and SO 2–
4 . Na2SO4 ·10H2O is a decahydrate.

Na2SO4 + 2C Na2S + 2CO2

Na2SO4 + H2SO4 2NaHSO4 (1)

Isotopes

232
92U140 is uranium-232.

Hydrocarbons

• H3C CH3 is ethane,

• H2C CH2 is ethylene,

• H2C CH2 is ethyne.

Drawing molecules 345

•	 <>: This draws a right-facing arrow at the top and a left-facing arrow under it

•	 <=>: This draws an equilibrium arrow (half of an arrow tip at each side)

•	 <=>>: This draws an equilibrium arrow with a tendency to the right, so the top arrow to the
right is larger

•	 <<=>: This draws an equilibrium arrow with a tendency to the left, so the lower arrow to the
left is larger

You can incorporate mathematical equations, chemical expressions, or text above or below arrows
by using this syntax:

<=>[\text{above}] [\text{below}]

The package manual elaborates on more arrow types and additional features. Access it using the
command texdoc chemformula using the command line or open it at https://texdoc.
org/pkg/chemformula.

There’s more...

The mhchem package operates similarly but varies in certain aspects, as outlined in the chemformula
manual. The newer chemformula package was designed for enhancements and is part of the
chemmacros bundle, which brings even more features for chemical notation.

A comprehensive collection of TeX chemistry packages, along with descriptions, is accessible
at https://www.cnltx.de/known-packages.

There’s another package list on CTAN: https://ctan.org/topic/chemistry.

We’ll explore another exceptional package for drawing molecules in our upcoming recipe.

Drawing molecules
In the previous example, we practiced writing molecular formulas. Now, let’s delve into visualizing
them. We’ll create a visual representation of a cluster of atoms interconnected by various types of lines.

How to do it...

This seemingly complex task becomes much simpler with the chemfig package developed by
Christian Tellechea. It offers a concise syntax for rendering molecular structures. Let’s create a few:

1.	 Start with any document class and load the chemfig package:

\documentclass{article}
\usepackage{chemfig}

https://texdoc.org/pkg/chemformula
https://texdoc.org/pkg/chemformula
https://www.cnltx.de/known-packages
https://ctan.org/topic/chemistry

Using LaTeX in Science and Technology346

2.	 Let’s organize molecules in a table. To do this, widen the rows slightly and initiate a tabular
environment with a column aligned to the right and another to the left:

\renewcommand{\arraystretch}{1.5}
\begin{tabular}{rl}

3.	 For molecules, use the \chemfig command. Represent atoms as letters and depict a single
bond using a dash:

  Hydrogen: & \chemfig{H-H} \\

4.	 Depict a double bond using an equal sign:

  Oxygen:   & \chemfig{O=O} \\

5.	 Use a tilde for a triple bond:

  Ethyne:   & \chemfig{H-C~C-H}

6.	 End the table and add some space:

\end{tabular}
\qquad

7.	 Enclose branches within parentheses. Incorporate options using square brackets separated by
commas. The first option indicates an angle. As we’ll see later, you can specify multiples of 45
degrees or arbitrary angles. The second option signifies a factor for interatomic distance. We’ll
set it to 0.8 for a more compact drawing. Use this for the methane structure:

Methane: \chemfig{[,0.8]C(-[2]H)(-[4]H)(-[6]H)-H}

8.	 Finish the document:

\end{document}

9.	 Compile and take a look at the drawings:

Figure 11.16 – Visual representations of molecules

Hydrogen: H H

Oxygen: O O

Ethyne: H C C H

Methane: C

H

H

H

H

Drawing molecules 347

How it works...

The chemfig employs TikZ for its drawing functions, handling the bounding box automatically to
prevent overlap with other text. Experienced users have the flexibility to embed TikZ code if needed.

The primary command is \chemfig, which requires an argument consisting of the following arguments:

•	 Letters for atoms

•	 Symbols for bonds, such as -, =, and ~ for simple, double and triple bonds, respectively

•	 Options for bonds in square brackets, separated by commas

•	 Branches of atoms and bonds within parentheses

The most crucial option for bonds is the angle. It can be specified as follows:

•	 An integer number representing a multiple of 45 degrees, such as [2] for 90 degrees

•	 An absolute angle in degrees, indicated by a double colon, such as [:60] for 60 degrees

•	 A relative angle in degrees, marked by two double colons, such as [::30] for 30 degrees in
relation to the previous bond

Positive and negative numbers are allowed.

A branch enclosed in parentheses allows you to open a path using an opening parenthesis, structure it
as shown previously, and conclude it using a closing parenthesis. This returns you to the same position
from where the branch started.

Tip
In complex molecules, find the longest chain and draw it first. Then, add the branches. Use
relative angles for easy rotation of the entire molecule.

There’s more...

There are further features we should take a look at.

Drawing rings

Molecular rings are commonly represented as regular polygons. They can be drawn using this syntax:

atom*n*(code)

Here, n indicates the number of sides of the polygon, and the chemfig code within parentheses
depicts the structural arrangement within the ring.

Using LaTeX in Science and Technology348

For instance, the famous Benzene ring with all its atoms can be drawn this way:

\chemfig{C*6((-H)-C(-H)=C(-H)-C(-H)=C(-H)-C(-H)=)}

This line gives us the following picture:

Figure 11.17 – The Benzene ring with all atoms

Naming molecules

Underneath a molecule, its name can be written using this syntax:

\chemname[distance]{\chemfig code}{name}

The optional distance value defines the distance to the baseline of the molecule, defaulting to
1.5 ex. For instance, to place the name Benzene below the carbon skeleton of a Benzene ring, use
the following:

\chemname{\chemfig{*6(=-=-=-)}}{Benzene}

This will result in the following drawing:

Figure 11.18 – The simplified Benzene ring with a label

C

H C

H

C

H

C

HC

H

C

H

Benzene

Drawing molecules 349

Using building blocks

In LaTeX, you can create new macros using the \newcommand syntax. The chemfig package
provides a similar feature—you can create your own macros for recurring use as follows:

\definesubmol{name}{code}

Now, we can use this macro in formulas by writing !name as a shortcut. For instance, this defines a
molecular section with a carbon atom and two hydrogen atoms:

\definesubmol{C}{-C(-[2]H)(-[6]H)}

We can use the !C shortcut to draw the Pentane molecule:

\chemfig{H!C!C!C!C!C-H}

Remarkably, this concise code generates a considerably large molecule representation:

Figure 11.19 – The Pentane molecule

Applying style options

We can apply various style options to molecule drawings. The \chemfig command takes one optional
argument in square brackets, which is a list of key=value options, and a mandatory argument for
the molecule code in curly braces. It looks like this:

\chemfig[key1=value1, key2=value2, ...]{code}

Here are two commonly used styles:

•	 chemfig style: This is a list of options that apply to the entire tikzpicture environment
of the molecule, grouped in braces

•	 atom style: This is a list of options for the atom nodes, again grouped in braces

For instance, applying these options would scale the entire picture and set the nodes to appear blue:

\chemfig[chemfig style = {scale=1.5, transform shape},
  atom style = {color=blue}]{H-C~C-H}

H C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

H

Using LaTeX in Science and Technology350

These options would result in thicker lines and a 15-degree rotation of the nodes:

\chemfig[chemfig style = {thick},
  atom style = {rotate=15}]{C(-[2]H)(-[4]H)(-[6]H)-H}

Here is the combined output from both lines:

Figure 11.20 – Customized molecule drawings

Note
You may come across an outdated syntax on the internet: in a previous version of the package,
the \chemfig command had two optional arguments, each enclosed in square brackets,
as follows:

\chemfig[options for tikzpicture][options for nodes]{code}

The first argument’s options modified the entire tikzpicture environment of the molecule,
and the second argument’s options adjusted the style of each node. Rewrite it using chemfig
and atom styles.

For more options and features, please read the package manual by inputting texdoc chemfig
using the command line or online at https://texdoc.org/pkg/chemfig.

Using ready-drawn carbohydrates

Though chemfig simplifies drawing, creating complex molecules can still be time-consuming,
especially when dealing with numerous structures when you write lecture notes or a thesis covering
carbohydrates. Fortunately, we don’t have to start from scratch every time.

The carbohydrates package provides a lot of chemfig-drawn carbohydrates for you to use. It
includes trioses, tetroses, pentoses, and hexoses in various models: the Fischer (full and skeleton),
Haworth, and chain models. You can draw them as ring isomers and as chain isomers.

Let’s have a look at how easy it becomes, for example, with glucose:

\glucose[model=fischer, chain]\quad
\glucose[model={fischer=skeleton}, chain]

H C C H C

H

H

H

H

https://texdoc.org/pkg/chemfig

Drawing molecules 351

This draws the Fischer models; the skeleton version doesn’t show the H and C atoms:

Figure 11.21 – Glucose molecules displayed using the Fischer models

Now let’s draw glucose but with other models:

\glucose[model=haworth, chain]\hfill
\glucose[model=haworth, ring]\hfill
\glucose[model=chain, ring]

We get the following drawings:

Figure 11.22 – Glucose molecules displayed using the Haworth and chain models

Already implemented are the following molecules:

•	 \glycerinaldehyde (triose)

•	 \erythrose, \threose (tetroses)

•	 \ribose, \arabinose, \xylose, \lyxose (pentoses)

•	 \allose, \altrose, \glucose, \mannose, \gulose, \idose, \galactose,
\talose (hexoses)

C

OH

C OHH

COH H

C OHH

C OHH

C OHH

H

O

OH

OH

OH

OH

OH

OH

OH

O

OH

OH

OH

OH

O

OH

OH

OH

OH

OH

O

OHOH

OH

OH

Using LaTeX in Science and Technology352

The package manual tells you all the details about options and usage. You can open it using the command
line by running the command texdoc chemformula or online at https://texdoc.org/
pkg/carbohydrates.

Representing atoms
Now that we’ve mastered drawing molecules, shall we explore further? Can we draw atoms? Absolutely!

How to do it...

We’ll utilize a package named after the renowned physicist Niels Bohr and written by Clemens
Niederberger—the bohr package. Follow these steps:

1.	 Start with a document class, load the bohr package, and begin with the document:

\documentclass{article}
\usepackage{bohr}
\begin{document}

2.	 Use the command \bohr{number of electrons}{element name}, to draw the
Fluorine atom:

\bohr{10}{F}

3.	 For the next drawing, adjust the nucleus radius as follows:

\setbohr{nucleus-radius=1.5em}

4.	 With this adjustment, there’s more space at the center for an ion symbol. In this instance,
employ the \bohr command with an optional argument specifying the number of electron
shells within square brackets. This will illustrate a sodium ion:

\bohr[3]{10}{$\mathrm{Na^+}$}

5.	 That’s all for now! Conclude the document:

\end{document}

6.	 Compile to see the result:

https://texdoc.org/pkg/carbohydrates
https://texdoc.org/pkg/carbohydrates

Drawing molecular orbital diagrams and atomic orbitals 353

Figure 11.23 – Atoms and electrons

How it works...

It was pretty straightforward. However, I wanted to demonstrate how one can write about science
effortlessly today.

After loading the package, all we required was this single command:

\bohr[number of shells]{number of electrons}{element name}

The \setbohr command provides a key=value interface for further fine-tuning. We’ll skip over
the extensive list of optional parameters to avoid overwhelming those who aren’t working with physics
or chemistry. You can read all customization details in the manual, which you can open by running
texdoc bohr via the command line or online at https://texdoc.org/pkg/bohr.

Drawing molecular orbital diagrams and atomic orbitals
A molecular orbital (MO) diagram describes chemical bonding in molecules and displays energy
levels. First, we will create such an MO diagram, and then we will draw atomic orbitals with a more
visual approach.

How to do it...

We will use the tikzorbital package written by Germain Salvato-Vallverdu. These are the steps:

1.	 Start with any document class; we choose the standalone class here. Then load the
tikzorbital package that implicitly loads TikZ:

\documentclass[border=10pt]{standalone}
\usepackage{tikzorbital}

FF Na+Na+

https://texdoc.org/pkg/bohr

Using LaTeX in Science and Technology354

2.	 Load the positioning and quotes TikZ libraries and begin the document:

\usetikzlibrary{positioning,quotes}
\begin{document}

3.	 Open a tikzpicture environment, and define a custom ^ style to get small, center-aligned
sans-serif text where we want it:

\begin{tikzpicture}[note/.style =
  {align = center, font = \sffamily\scriptsize}]

4.	 Use the \drawLevel command to draw an energy level line, that we call 1s1, with an electron
visualized in the upward direction:

  \drawLevel[elec = up]{1s1}

5.	 Continue using drawLevel commands, now with a positioning coordinate and a width option:

  \drawLevel[elec = up, pos = {(5,0)}]{1s2}
  \drawLevel[elec = pair, pos = {(2,-2)},
    width = 2]{sigma}
  \drawLevel[pos = {(2,2)}, width = 2]{sigmastar}

6.	 Draw a dashed line between the various right and left anchors of the energy level lines:

  \draw[dashed]
    (right 1s1) -- (left sigma)
    (right 1s1) -- (left  sigmastar)
    (left  1s2) -- (right sigmastar)
    (left  1s2) -- (right sigma);

7.	 Draw labels for the energy levels:

  \node[left]  at (left 1s1) {{$1s_1$}};
  \node[right] at (right 1s2) {{$1s_2$}};
  \node[right] at (right sigma) {σ};
  \node[right] at (right sigmastar) {σ^*};

8.	 Print some text nodes for explanation using our note style:

  \node[below = 0.4cm of middle 1s1, note]
    {Atomic\\Orbital};
  \node[below = 0.4cm of middle 1s2, note]
    {Atomic\\Orbital};
  \node[below = 0.4cm of middle sigma, note]
    {Molecular Orbital};

Drawing molecular orbital diagrams and atomic orbitals 355

9.	 Finish the drawing with an arrow indicating the energy level:

  \draw[very thick, -stealth] (-1.5,-2.5)
    to["Energy", note, sloped] (-1.5,2.5);

10.	 End the tikzpicture environment and the document:

\end{tikzpicture}
\end{document}

11.	 Compile and look at the outcome:

Figure 11.24 – A molecular orbital diagram

How it works...

The \drawLevel command is the most relevant here, as it draws a thick line with arrows representing
the spin of the electrons at that level. It understands the following options:

•	 elec: This defines the number of electrons with their direction. The value can be up, down,
updown, or pair, with the last two both having the same effect of displaying two electrons
in the up and down directions, as seen in Figure 11.24.

•	 pos: This is the position of the left side of the energy level as (x,y) coordinate, enclosed in curly
braces to ensure the correct parsing. If you omit it, (0,0) will be used.

•	 width: This is the width of the energy level, which is 1 by default.

Some style options allow customizing color, thickness, arrows, and line style, as listed in the manual.
You can open the manual by running texdoc tikzorbital at the command prompt or
visiting https://texdoc.org/pkg/tikzorbital.

1s1 1s2

σ

σ∗

Atomic
Orbital

Atomic
Orbital

Molecular Orbital

E
n
er
g
y

https://texdoc.org/pkg/tikzorbital

Using LaTeX in Science and Technology356

The \drawLevel command generates anchors to the left, right, and middle of it that we
can use for drawing.

Apart from the \drawLevel command, we used TikZ commands for drawing lines and nodes; you
can read more about the TikZ commands in my book, LaTeX Graphics with TikZ, or start at https://
tikz.org.

A good starting point to learn more about MO diagrams is https://en.wikipedia.org/
wiki/Molecular_orbital_diagram. I wrote this example in LaTeX to represent one of the
figures at https://www.ch.ic.ac.uk/vchemlib/course/mo_theory/main.html,
where you can also find more MO diagrams.

There’s more...

The tikzorbital package provides the \orbital command to visualize atomic orbitals. Here’s
a quick example:

\begin{tikzpicture}
  \orbital{dyz}
  \orbital[pos = {(2.4,0)}]{dx2y2}
  \orbital[pos = {(4.5,0)}]{dz2}
\end{tikzpicture}

This gives us the following picture:

Figure 11.25 – Atomic orbitals

Furthermore, the package provides an \atom command that can even be used to build molecule
drawings. Here’s an example that displays the diatomic molecule hydrogen fluoride (HF):

\begin{tikzpicture}
  \atom[name=F, color=red]{
    blue/270/south/2, blue/180/west/2,
    blue/90/north/2,  blue/0/east/1}
  \atom[name=H, color=gray, pos={(1.5,0)},
      scale=0.7]{gray/180/west/1}
\end{tikzpicture}

https://tikz.org
https://tikz.org
https://en.wikipedia.org/wiki/Molecular_orbital_diagram
https://en.wikipedia.org/wiki/Molecular_orbital_diagram
https://www.ch.ic.ac.uk/vchemlib/course/mo_theory/main.html

Printing a customized periodic table of elements 357

The output of this code is the following:

Figure 11.26 – The hydrogen fluoride molecule

This shall quickly demonstrate what we can achieve using a few commands of the tikzorbital
package. If you are interested, you can take a deep dive into the package manual, which also provides
other examples.

Printing a customized periodic table of elements
In the previous recipes, we read a lot about atoms and elements. Do you remember that huge poster
of the periodic table of elements in the chemistry room at your school? Let’s make it ourselves!

How to do it...

We will use the pgf-PeriodicTable package written by Hugo Gomes. Take the following steps:

1.	 Start with any document class:

\documentclass[border=10pt]{standalone}

2.	 Load the pgf-PeriodicTable package:

\usepackage{pgf-PeriodicTable}

3.	 Begin the document:

\begin{document}

4.	 Use the \pgfPT command:

\pgfPT

5.	 End the document:

\end{document}

F H

Using LaTeX in Science and Technology358

6.	 Compile and look at the result:

Figure 11.27 – The periodic table of elements

How it works...

That was too easy. The \pgfPT command understands many options, and you can customize a
lot, including the colors. Let’s leave a detailed reference to the package manual that you can find
at https://texdoc.org/pkg/pgf-PeriodicTable.

Let’s use that command to print, for example, the IUPAC groups 1 and 2 (also known as the lithium
group and the beryllium group), periods 2 and 3, as follows:

\documentclass[border=10pt]{standalone}
\usepackage{pgf-PeriodicTable}
\usepgfPTlibrary{colorschemes}
\pgfPTGroupColors{example}{G1=red!90!black, G2=orange}
\begin{document}
\pgfPT[show title = false, back color scheme = example,
  legend box = {draw=blue!50, fill=blue!20},
  show extra legend,
  Z list = {1,3,4,11,12}]

57–71

lanthanoids

89–103

actinoids

1

H
hydrogen

1.008

2

He
helium
4.0026

3

Li
lithium
6.94

4

Be
beryllium
9.0122

5

B
boron
10.81

6

C
carbon
12.011

7

N
nitrogen
14.007

8

O
oxygen
15.999

9

F
fluorine
18.998

10

Ne
neon
20.18

11

Na
sodium
22.99

12

Mg
magnesium

24.305

13

Al
aluminium

26.982

14

Si
silicon
28.085

15

P
phosphorus

30.974

16

S
sulfur
32.06

17

Cl
chlorine
35.45

18

Ar
argon
39.95

19

K
potassium

39.098

20

Ca
calcium
40.078

21

Sc
scandium

44.956

22

Ti
titanium
47.867

23

V
vanadium

50.942

24

Cr
chromium

51.996

25

Mn
manganese

54.938

26

Fe
iron

55.845

27

Co
cobalt
58.933

28

Ni
nickel
58.693

29

Cu
copper
63.546

30

Zn
zinc

65.38

31

Ga
gallium
69.723

32

Ge
germanium

72.63

33

As
arsenic
74.922

34

Se
selenium
78.971

35

Br
bromine
79.904

36

Kr
krypton
83.798

37

Rb
rubidium
85.468

38

Sr
strontium

87.62

39

Y
yttrium
88.906

40

Zr
zirconium

91.224

41

Nb
niobium
92.906

42

Mo
molybdenum

95.95

43

Tc
technetium

[98]

44

Ru
ruthenium

101.07

45

Rh
rhodium
102.91

46

Pd
palladium

106.42

47

Ag
silver

107.87

48

Cd
cadmium
112.41

49

In
indium
114.82

50

Sn
tin

118.71

51

Sb
antimony
121.76

52

Te
tellurium

127.6

53

I
iodine
126.9

54

Xe
xenon
131.29

55

Cs
caesium
132.91

56

Ba
barium
137.33

57

La
lanthanum

138.91

58

Ce
cerium
140.12

59

Pr
praseodymium

140.91

60

Nd
neodymium

144.24

61

Pm
promethium

[145]

62

Sm
samarium

150.36

63

Eu
europium
151.96

64

Gd
gadolinium

157.25

65

Tb
terbium
158.93

66

Dy
dysprosium

162.5

67

Ho
holmium
164.93

68

Er
erbium
167.26

69

Tm
thulium
168.93

70

Yb
ytterbium
173.05

71

Lu
lutetium
174.97

72

Hf
hafnium
178.49

73

Ta
tantalum
180.95

74

W
tungsten
183.84

75

Re
rhenium
186.21

76

Os
osmium
190.23

77

Ir
iridium
192.22

78

Pt
platinum
195.08

79

Au
gold

196.97

80

Hg
mercury
200.59

81

Tl
thallium
204.38

82

Pb
lead

207.2

83

Bi
bismuth
208.98

84

Po
polonium

[209]

85

At
astatine

[210]

86

Rn
radon
[222]

87

Fr
francium

[223]

88

Ra
radium
[226]

89

Ac
actinium

[227]

90

Th
thorium
232.04

91

Pa
protactinium

231.04

92

U
uranium
238.03

93

Np
neptunium

[237]

94

Pu
plutonium

[244]

95

Am
americium

[243]

96

Cm
curium
[247]

97

Bk
berkelium

[247]

98

Cf
californium

[251]

99

Es
einsteinium

[252]

100

Fm
fermium

[257]

101

Md
mendelevium

[258]

102

No
nobelium

[259]

103

Lr
lawrencium

[266]

104

Rf
rutherfordium

[267]

105

Db
dubnium

[268]

106

Sg
seaborgium

[269]

107

Bh
bohrium

[270]

108

Hs
hassium

[270]

109

Mt
meitnerium

[278]

110

Ds
darmstadtium

[281]

111

Rg
roentgenium

[282]

112

Cn
copernicium

[285]

113

Nh
nihonium

[286]

114

Fl
flerovium

[289]

115

Mc
moscovium

[290]

116

Lv
livermorium

[293]

117

Ts
tennessine

[294]

118

Og
oganesson

[294]

1

2

3

4

5

6

7

6

7

1

2

4 5 6 7 8 9 10 11 12

13 14 15 16 17

18

3

Periodic Table of Elements

Z

CS solid
liquid
gaseous
syntheticN

Ar

Ra

Z: Atomic Number
Ra: Radioactive
CS: Chemical Symbol
N: Name
Ar: Relative Atomic Mass

https://texdoc.org/pkg/pgf-PeriodicTable

Drawing electrical circuits 359

\end{document}

This gives us the following output:

Figure 11.28 – A customized part of the periodic table of elements

Drawing electrical circuits
Technical documents in the domain of electrical engineering often comprise numerous formulas
and many drawings. LaTeX excels in math typesetting, making it a top choice for authors. As we
explored in a prior section of this chapter, the siunitx package makes representing electrical units
in compliance with standards easy.

Drawing electrical circuits directly in LaTeX has various benefits. Unlike importing external images,
drawings done within LaTeX can have annotations that precisely match the text regarding fonts and
styles for perfect consistency.

Therefore, this section focuses on generating circuit diagrams. We aim to design a circuit featuring
typical electrical components such as resistors, diodes, capacitors, bulbs, and more.

Note
The drawing in this recipe serves as a sample, and attempting to replicate it with actual
components at home is not advised.

1

H
hydrogen

1.008
3

Li
lithium
6.94

4

Be
beryllium
9.0122

11

Na
sodium
22.99

12

Mg
magnesium

24.305

1

2

3

1

2

Z

CS solid
liquid
gaseous
syntheticN

Ar

Ra

Z: Atomic Number
Ra: Radioactive
CS: Chemical Symbol
N: Name
Ar: Relative Atomic Mass

Using LaTeX in Science and Technology360

How to do it...

The TikZ graphics package provides several libraries for drawing electrical and logical circuits. We’ll
select one that adheres to the IEC standard. The code is a bit long, so it’s recommended to download
it with the code bundle from the publisher’s website or from https://latex-cookbook.net/
chapter-11. Here’s a step-by-step guide:

1.	 Start with a document class. For this illustration, choose the standalone class, which
generates a PDF file matching the size of our drawing. Then, load the tikz package:

\documentclass[border=10pt]{standalone}
\usepackage{tikz}

2.	 Load the circuits.ee.IEC TikZ library, symbols complying with the IEC norm:

\usetikzlibrary{circuits.ee.IEC}

3.	 Begin the document:

\begin{document}

4.	 Open a tikzpicture environment and define the following options:

	� The desired style

	� The x and y unit dimensions

	� An annotation style for a smaller font size

	� Graphic symbol settings, if desired

	� A switch contact style

Here’s the command with selected sample values:
\begin{tikzpicture}[
    circuit ee IEC,
    x = 3cm, y = 2cm,
    every info/.style = {font = \scriptsize},
    set diode graphic = var diode IEC graphic,
    set make contact graphic =
      var make contact IEC graphic,
  ]

5.	 Start by drawing six contact points in two rows, three per row. Utilize a \foreach loop
for convenience:

  \foreach \i in {1,...,3} {
    \node [contact] (lower contact \i) at (\i,0) {};

https://latex-cookbook.net/chapter-11
https://latex-cookbook.net/chapter-11

Drawing electrical circuits 361

    \node [contact] (upper contact \i) at (\i,1) {};
  }

6.	 As we defined the contacts’ names, given in parentheses, we can refer to them using upper
contact 1, lower contact 3, and similar. So, we will connect the upper-left contact
and the lower-left contact by a line with a diode in the middle:

  \draw (upper contact 1) to [diode]
    (lower contact 1);

7.	 We saw that we stated the component name as an option for the path. We can do the same for
a capacitor:

  \draw (lower contact 2) to [capacitor]
    (upper contact 2);

8.	 The component keys can have options. So, we draw a line with a resistor, which has an electrical
resistance of 6 ohm, with that value as annotation:

  \draw (upper contact 1) to [resistor = {ohm = 6}]
        (upper contact 2);

9.	 Annotations can be different. Here, we use a symbol for an adjustable resistor:

  \draw (lower contact 2) to [resistor = {adjustable}]
        (lower contact 3);

10.	 We can have even more options. Useful options are near start and near end for positioning
two components at a line:

  \draw (lower contact 1) to [
      voltage source = {near start,
      direction info = {volt = 12}},
            inductor = {near end}]
    (lower contact 2);

11.	 Do it similarly for an open contact and a battery with some text as annotation:

  \draw (upper contact 2) to
      [make contact = {near start},
             battery = {near end,
                info = {loaded}}]
    (upper contact 3);

Using LaTeX in Science and Technology362

12.	 Let’s finish with a bulb. We will make it a bit bigger than the default:

  \draw (lower contact 3) to
      [bulb = {minimum height = 0.6cm}]
    (upper contact 3);

13.	 End the tikzpicture environment and the document:

\end{tikzpicture}
\end{document}

14.	 Compile and have a look at the circuit:

Figure 11.29 – A fictional electronic circuit

How it works...

The TikZ manual references the circuit libraries, showcasing symbols and their associated options. We
can only outline some selected details of the breadth of content here. But here’s a stepwise summary
of our approach:

1.	 Load the necessary library and defining styles, either as an option to the tikzpicture
environment or globally through the \tikzset command.

2.	 Position contacts and other nodes, which can be done using pure coordinates combined with
a \foreach loop or with the aid of the positioning TikZ library. Another option would
be utilizing a TikZ matrix of nodes.

3.	 Draw lines between the nodes using to paths, which take components as options.

Components can have further options, such as for additional information (info above), positioning
(near start or near end), or color and size.

In our example, we opted for verbose naming and ample spacing to enhance code readability, a practice
particularly beneficial in complex drawings.

6Ω

12V

loaded

See also 363

Access the TikZ manual by entering texdoc tikz via the command line or read it online by visiting
https://texdoc.org/pkg/tikz. The relevant sections are in a Circuit Libraries section in
the Libraries part. You can also go directly to https://tikz.dev/library-circuits to
read that section online.

See also
While scientific and technical writing is often based on mathematical writing, there are distinct field-
specific notations, conventions, and requisites.

Developers and power users in the LaTeX community created numerous LaTeX packages and classes
dedicated to a certain scientific field. The CTAN catalog is a good place to explore what’s out there.
Visit the CTAN topic categories; here are a few examples:

•	 https://ctan.org/topic/physics

•	 https://ctan.org/topic/biology

•	 https://ctan.org/topic/chemistry

•	 https://ctan.org/topic/astronomy

•	 https://ctan.org/topic/electronic

You can also visit https://ctan.org/topics/cloud to find the field of science you are
looking for.

LaTeX’s capability to generate scientific illustrations is fascinating. There’s an abundance of examples
available, and I curate a TikZ gallery featuring diverse drawings alongside different scientific disciplines.
The gallery is conveniently organized by scientific field, allowing you to explore various graphics
created using LaTeX. For example:

•	 https://texample.net/tikz/examples/area/physics/ showcases approximately
50 examples, encompassing 3D atom clusters, energy level diagrams, optics, mechanics,
astronomy, and more

•	 https://texample.net/tikz/examples/area/chemistry/ presents 15
illustrations for chemistry, including a periodic table of elements

•	 https://texample.net/tikz/examples/area/computer-science/ contains
around 40 drawings covering networks, database topics, protocols, algorithms, and related topics

Even more drawings with their code can be found at https://tikz.net. Over 500 TikZ examples
are available to explore by topic, spanning physics, engineering, computing, mathematics, and beyond.

These curated resources offer a rich repository of LaTeX-generated graphics across various scientific
domains. Take their source code as a basis for your own drawings.

https://texdoc.org/pkg/tikz
https://tikz.dev/library-circuits
https://ctan.org/topic/physics
https://ctan.org/topic/biology
https://ctan.org/topic/chemistry
https://ctan.org/topic/astronomy
https://ctan.org/topic/electronic
https://ctan.org/topics/cloud
https://texample.net/tikz/examples/area/physics/
https://texample.net/tikz/examples/area/chemistry/
https://texample.net/tikz/examples/area/computer-science/
https://tikz.net

12
Getting Support on the

Internet

During the initial stages of LaTeX, user groups were the primary support sources, helping through
installation disks and personalized help. However, the advent of the internet has made information
incredibly accessible. Although groups such as TeX User Group and DANTE still play crucial roles
in significant resources such as TeX Live and Comprehensive TeX Archive Network (CTAN), you
can independently update and find information today. Additionally, various online TeX communities
provide avenues for seeking help. This chapter will guide you through utilizing these resources effectively.

In this chapter, we will talk about the following topics:

•	 Exploring available LaTeX resources on the web

•	 Utilizing web forums effectively

•	 Crafting high-quality questions

•	 Generating minimal working examples

Exploring available LaTeX resources on the web
There are many LaTeX websites, and I’ve compiled a concise guide highlighting some excellent
starting points.

How to do it...

In this recipe, you’ll find a list of internet addresses and brief descriptions. Click on any of them to delve
deeper into their content and explore further sites. Over time, website links might change, leading to
some links becoming inactive. For the most recent list of addresses, you can visit https://latex-
cookbook.net/chapter-12.

https://latex-cookbook.net/chapter-12
https://latex-cookbook.net/chapter-12

Getting Support on the Internet366

Software archives and catalogs

Some sites function as archives and catalogs, simplifying the search and navigation of the extensive
software available:

•	 https://ctan.org is the most significant software and package archive. CTAN houses
over 6,500 packages for TeX, LaTeX, and associated tools. You can peruse packages by name
or topic and utilize a site-wide search function. CTAN serves as a distribution network for TeX
distributions, TeX Live, and MiKTeX, operating via a central server and mirrored servers worldwide.

•	 The traditional TeX Catalogue is a manually curated catalog of the most significant TeX and
LaTeX packages, organized for browsing by topic, alphabetically, or in a logical hierarchy. It
is no longer maintained but is still available at https://ctan.net/obsolete/help/
Catalogue.

•	 https://tug.org/FontCatalogue is the LaTeX Font Catalogue. It showcases an
indexed list with examples of numerous fonts with direct LaTeX support.

User groups

Longstanding user groups form the backbone of LaTeX support on the internet, contributing to
TeX development and CTAN while maintaining their independent home pages. Here are some of
their websites:

•	 The home of the international TeX Users Group (TUG) is https://tug.org. The website
is a gateway to the world of TeX with a lot of content.

•	 The website of the German-speaking TeX user group DANTE is https://www.dante.
de. It has a lot of links to information in German, member journals, and event information.

•	 The homepage of the French-speaking TeX user group GUTenberg is https://www.
gutenberg-asso.fr. It includes newsletters and periodicals.

•	 The UK TeX Users Group has dissolved recently, but their contributions remain relevant. The
website archive is available at http://uk-tug-archive.tug.org.

•	 The LaTeX project website https://www.latex-project.org primarily serves as a
hub for developers of the next LaTeX version, offering informative updates and insights.

Web forums and discussion groups

The most active sites on the internet are web forums. The following sites are the most relevant today:

•	 The highly active and mature LaTeX community support forum https://latex.org has
hosted over 100,000 categorized, tagged, and searchable posts since 2008. Queries here are
promptly addressed. It also manages an article archive and a LaTeX news portal at https://
latex.net.

https://ctan.org
https://ctan.net/obsolete/help/Catalogue
https://ctan.net/obsolete/help/Catalogue
https://tug.org/FontCatalogue
https://tug.org
https://www.dante.de
https://www.dante.de
https://www.gutenberg-asso.fr
https://www.gutenberg-asso.fr
http://uk-tug-archive.tug.org
https://www.latex-project.org
https://latex.org
https://latex.net
https://latex.net

Exploring available LaTeX resources on the web 367

•	 The commercial question-and-answer platform https://tex.stackexchange.com
doesn’t provide news or articles, only questions and answers. While that platform has been very
successful, this business case is now threatened by upcoming artificial intelligence chatbots
such as ChatGPT, which are trained to do programming, including with LaTeX. This costs the
website page visits and, thus, advertisement revenue.

•	 A very active question-and-answer site in German is https://texwelt.de.

•	 Another German web forum that is well-frequented and more discussion-based is https://
golatex.de.

•	 You can find a French-speaking question-and-answer site at https://texnique.fr.

•	 In the Usenet, accessible via a Usenet reader or Google Groups, you can find a discussion group
for TeX and LaTeX called comp.text.tex.

•	 A German-speaking Usenet discussion group is de.comp.text.tex.

Frequently asked questions (FAQs)

Discussion groups, web forums, and mailing lists gather frequently asked questions, making them
available online. Checking these resources could provide answers to your questions and save you
time. Here is a list of sites with FAQs:

•	 The English language TeX FAQ at https://texfaq.org was initially collected by the UK
TeX Users Group and is today maintained by various contributors, including me. Most topics
are covered with links to recommended packages.

•	 The Visual LaTeX FAQ at https://ctan.net/info/visualfaq provides a document
with more than a hundred text samples. Click on any interesting detail and it will lead you to
the corresponding page of the TeX FAQ.

•	 The LaTeX pictures how-to at https://ctan.net/info/l2picfaq is a question-and-
answer collection about working with images and floats.

•	 The FAQ for MacTeX users is hosted at https://tug.org/mactex/faq.html.

•	 Two different German FAQs can be found at https://texfragen.de and https://
wiki.dante.de.

•	 The GUTenberg group maintains a French TeX FAQ at https://faq.gutenberg-asso.fr.

https://tex.stackexchange.com
https://texwelt.de
https://golatex.de
https://golatex.de
https://texnique.fr
https://texfaq.org
https://ctan.net/info/visualfaq
https://ctan.net/info/l2picfaq
https://tug.org/mactex/faq.html
https://texfragen.de
https://wiki.dante.de
https://wiki.dante.de
https://faq.gutenberg-asso.fr

Getting Support on the Internet368

TeX distributions

Several TeX software distributions are available for straightforward installation. Choose the appropriate
collection based on your operating system; the following websites offer guidance on installation and updates:

•	 TeX Live: Visit https://tug.org/texlive for download information and installation
instructions for the cross-platform TeX distribution, compatible with Windows, Linux, macOS,
and other Unix systems. The TeX Users Group supports it.

•	 MacTeX: This distribution is derived from TeX Live and has been significantly customized
for macOS; details about this distribution can be found at https://tug.org/mactex.

•	 MiKTeX: For this Windows-specific distribution, visit https://miktex.org for download
and documentation. Recently, it has been ported to Unix-based systems.

There’s more...

Besides my blog, https://texblog.net, there are numerous TeX and LaTeX blogs, many of which
are showcased in the Community aggregator on https://texample.net. The front page provides
a glimpse of the latest posts from the blogosphere, and both blogs and post extracts are archived there.

For LaTeX support via email, various mailing lists are available for subscription. I have compiled
collections of these lists on https://texblog.net/latex-link-archive/mailinglists.

LaTeX editors, PDF viewers, and supplementary tools each have their own home pages. I have compiled
links to these specific pages on my blog at https://texblog.net/latex-link-archive/
distribution-editor-viewer/. This resource allows you to access information about the
editor or tool you use conveniently.

Moreover, online LaTeX editors run directly in a web browser, making LaTeX accessible on tablets and
smartphones. The most prominent is Overleaf at https://www.overleaf.com, which offers
real-time collaborative editing and a code-less mode. It’s a commercial service with free access to the
basic features, while premium features require a paid subscription. However, many universities and
institutes partner with Overleaf to give their students premium access.

The online compiler at https://texlive.net is commonly integrated into web forums.

Utilizing web forums effectively
In the early days, LaTeX support was provided through Usenet and mailing lists. Nowadays, internet
forums have become the primary platform for LaTeX assistance.

Forums thrive on user questions and community responses. The vitality of forums is rooted in users’
inquiries and the collaborative efforts of readers who provide answers. You are encouraged to ask
any LaTeX-related questions on these forums, as they warmly welcome queries. Let’s explore how to
engage here.

https://tug.org/texlive
https://tug.org/mactex
https://miktex.org
https://texblog.net
https://texample.net
https://texblog.net/latex-link-archive/mailinglists
https://texblog.net/latex-link-archive/distribution-editor-viewer/
https://texblog.net/latex-link-archive/distribution-editor-viewer/
https://www.overleaf.com
https://texlive.net

Utilizing web forums effectively 369

How to do it...

As an example, let’s take a look at the LaTeX.org forum. Established in January 2008, it has
accumulated more than 100,000 posts as of the publication of this book. I manage this forum, and I
can assure you that we genuinely appreciate good questions.

So let’s have a walk together:

1.	 With any internet browser, visit the address https://latex.org. The top of the browser
window will show an overview:

Figure 12.1 – A LaTeX web forum

http://LaTeX.org
https://latex.org

Getting Support on the Internet370

2.	 Click the header of any category, such as Graphics, Figures & Tables, to see the forum
category view:

Figure 12.2 – LaTeX forum topics

3.	 Explore different topics by clicking on bold titles and utilizing the search field at the top right,
as shown in the first screenshot of this recipe.

4.	 To initiate a discussion on a new topic or post a question, click the New topic button in the
top-left corner.

How it works...

While reading forum posts doesn’t require registration, posting does. This is necessary to prevent
the influx of spam posts from advertisers. Therefore, please register with a preferred login alias name
to contribute. Registering comes with the advantage of being able to subscribe to topics and receive
email notifications for any responses to your posts. Select any pseudonym to maintain anonymity.

The forum’s post editor includes standard formatting tools for:

•	 Applying bold or italic styles and adjusting font size or color

•	 Quoting sections of previous posts

•	 Creating numbered or bulleted lists

•	 Adding images

•	 Inserting hyperlinks (URLs)

•	 Attaching files such as PDFs or log files

Crafting high-quality questions 371

In addition to these general features, LaTeX-specific functionalities include:

•	 A Code button that transforms code snippets into human-readable code with LaTeX syntax
highlighting and facilitates one-click access to an online LaTeX editor that compiles your code

•	 An inline LaTeX code button for embedding LaTeX code within text

•	 A CTAN button that converts a package name into a link leading to the CTAN package
homepage, making life easier for advisors

•	 A documentation button that transforms a keyword into a link directing to the corresponding
manual at https://texdoc.org, again to make it easier to answer with references

•	 Topic status options such as Solved for filtering unsolved questions

These features, particularly the last mentioned and the various shortcuts, aim to make working with
LaTeX, CTAN, and documentation as user-friendly as possible. This sets the LaTeX forum apart from
general forums and even TeX Stack Exchange, which functions similarly to other commercial Stack
Exchange network sites.

As the forum’s maintainer, I am directly reachable through the platform, as I consistently visit and
review new topics daily. I have already posted more than 10,000 answers in the forum, and I’m reading
every single question. I’m more than happy to provide support, especially regarding examples from
this book.

While you can ask ChatGPT and other AI chatbots LaTeX-related questions and likely receive a
functional answer, as demonstrated in the next chapter, you can get human feedback from qualified
experts in a LaTeX forum. So, visit us at https://latex.org!

Crafting high-quality questions
As mentioned, I appreciate good questions, and most forum users share this sentiment. Sometimes, I
dedicate an hour to creating a TikZ drawing for a user, while others work hard to troubleshoot error
messages or output issues. We usually enjoy the process, especially when the questions are well-constructed.

How to do it...

We welcome challenges, particularly when we can figure out solutions. To make this happen, questions
should adhere to the following guidelines:

•	 Provide as much information as possible

•	 Include the error message text, if available

•	 Format code properly using the syntax highlighting feature

•	 Show your effort if you have made some progress

https://texdoc.org
https://latex.org

Getting Support on the Internet372

It’s also advisable to perform a forum search before posting, using relevant keywords. A similar
question may have already been addressed.

And here’s the ultimate advice that comes close to guaranteeing a solution for almost every LaTeX
problem: post a minimal working example.

The following recipe will explain this.

Generating minimal working examples
The most effective way to seek help from anyone is to post the problem in a readily understandable
manner, sparing readers from the need to ask for additional details. That’s like serving the problem on
a silver platter with a complete, illustrative, and minimal code example that can be easily compiled,
making the resolution process straightforward. This approach is perfect in a forum, allowing readers
to test and address the issue promptly. In other words:

•	 Post the complete code so readers can try to compile it

•	 The code should show the problem

•	 Remove non-relevant stuff so it’s as small as possible

Then, it’s usually easy to solve it. It’s handy enough to post in a forum, and the readers can quickly
try it out.

How to do it...

A good strategy is the “divide and conquer” method—resolving a problem by breaking it into smaller
parts until only simple issues remain. To isolate the cause of a problem, follow these steps:

1.	 Duplicate your document. If it comprises multiple files, copy them all. Proceed with modifications
on the duplicate, not the original.

2.	 Eliminate a substantial portion of the document copy you suspect does not contain the root
cause. This can include the following:

	� Moving \end{document} upwards

	� Deleting lines

	� Commenting out lines using the percent sign (%)

	� Commenting out or removing \include or \input commands

	� For included files, deleting or commenting out lines or inserting \endinput, which can
be moved upwards later

Generating minimal working examples 373

3.	 Recompile the document:

	� If the problem persists and still needs to be narrowed down as much as possible, return to
step 2 and remove another part.

	� If the problem disappears, you identified the removed part as the likely cause. Restore that
part using the editor’s undo feature and proceed to step 2, removing other parts and refining
the affected area.

4.	 Simplify the document further using the following steps:

	� Removing non-relevant packages, such as by commenting out or deleting corresponding
\usepackage lines

	� Removing macro and environment definitions if irrelevant

	� Replacing images with rectangles such as \rule{...}{...} or using the demo option
in the graphicx package:

\usepackage[demo]{graphicx}

	� Substituting long texts with generated dummy text from packages such as blindtext,
lipsum, or kantlipsum

	� Reducing complex math formulas

	� Replacing a bibliography file with a filecontents* environment

5.	 Verify if the document is now simple enough or if the previous steps must be repeated. Your
efforts in isolating the problem may have already revealed the solution. Otherwise, the minimal
example is ready for posting in a forum.

Forum regulars love problems where they can copy and paste, fix, verify the solution, and post the answer.

Don’t worry if the procedure looks like it requires a lot of effort. The thorough explanation is just a
bit long. Often, just a few removals and tests can lead to the solution.

There’s more...

In the previous section, we used a top-down approach to contain the problem methodically. An
alternative strategy is the bottom-up approach, wherein we initiate with a small test document and
progressively expand it to showcase the problem. While this method can be advantageous, mainly
when a rough idea of the problem’s origin exists, the challenge lies in accurately reproducing the issue.
Without successful reproduction, the reduced example lacks relevance.

Getting Support on the Internet374

When employing the bottom-up approach, the document must adhere to specific criteria:

•	 It should be complete, spanning from\documentclass to \end{document}

•	 It should show the problem when compiled

•	 It should be as concise as possible

•	 It should be compatible with any basic LaTeX system, so, for instance, not based on a specific
journal document class

So, consider the following approaches:

•	 Use a standard class such as article, book, or report

•	 Avoid system-dependent configurations such as input encoding and uncommon fonts

•	 Try loading only commonly used packages

Forum readers or other remote helpers often dislike installing something just to test your code. A
reasonable compromise could be using the mwe package, which automatically loads the blindtext
and graphicx packages and provides several dummy images; this makes a minimal example elegant.
Or you can use the standalone class, which crops the PDF to the actual content, which is better
than an A4 or letter page just for showing an issue with a small drawing.

13
Using Artificial Intelligence

with LaTeX

In recent years, there has been remarkable progress in artificial intelligence (AI), which refers to
machine or software-simulated intelligence. AI involves processing extensive data and learning through
logic, statistics, and algorithmic training.

Generative AI, in particular, can create text, images, and videos. This is highly useful for us, as LaTeX
revolves around text, both regarding content and source code. Text generation involves using a large
language model (LLM) trained on vast datasets. You can give it some input text, a so-called prompt,
and it predicts the following words based on the statistical relationships it has learned. So, based on
the LLM’s language expertise and training data, you may get an excellent answer to your question or
a response that at least seems to fit somehow, as good as it can be.

An example of such an LLM system is ChatGPT (Chat Generative Pre-trained Transformer),
a chatbot developed by OpenAI research. It has gained widespread popularity for its impressive
conversational abilities. Users can engage in conversations with ChatGPT, obtaining answers and
refining the interaction in terms of language, writing tone, formality, and level of detail.

This chapter will explore leveraging ChatGPT to assist us in LaTeX writing tasks. We’ll cover the
following topics:

•	 Getting started with ChatGPT

•	 Getting answers to LaTeX questions

•	 Enhancing content

•	 Generating code

Note
To showcase ChatGPT, I’ll present some output here and highlight prompt and response texts
in italics.

Using Artificial Intelligence with LaTeX376

Getting started with ChatGPT
In this book, we will use ChatGPT version 3.5. This chatbot is available for free and is trained on data
up to January 2022. Newer versions are subscription-based paid services.

This version is sufficient for our purposes here, as LaTeX has a history spanning over 30 years and
was well established by 2022, ensuring a substantial amount of available data.

With GPT-3.5, the maximum combined limit for input and output is 4,096 tokens. A token means a
unit of text usually equivalent to a word, a subword, or a single character, so we may estimate about
3,000 words on average.

How to do it...

To get started, all you need is a web browser. Follow these steps:

1.	 Open the ChatGPT website at https://chat.openai.com.

2.	 If you don’t have an account, click on Sign up. Once your account is created, click on Log in.

3.	 You can use a Google or Gmail account, a Microsoft account, or an Apple ID for a quick sign-
up. Alternatively, enter your email address and choose a password.

4.	 To verify your email address, you will receive an email from OpenAI, and you need to click
the Verify email address button.

5.	 Now, you are logged in and ready to chat! You can ask any question or provide instructions
to ChatGPT.

Here’s an example where I’ll quote ChatGPT’s entire response to give you an idea of what to anticipate.
I’ll keep subsequent examples more concise:

Prompt: Tell me why LaTeX is excellent.

Response: LaTeX is fantastic for a few reasons! Here are some:

1.	 Professional Typesetting: It’s unbeatable for creating high-quality documents, especially for
academic papers, reports, theses, and books. The typesetting quality is top-notch, allowing for
precise control over formatting, equations, and bibliographies.

2.	 Mathematical Typesetting: It’s a go-to tool for mathematicians, scientists, and engineers because
it beautifully renders complex mathematical equations and symbols, often a pain point in other
word processors.

3.	 Cross-Referencing and Citations: LaTeX makes referencing and citation management a
breeze. Its automated referencing system ensures accurate and consistent numbering and linking
throughout the document.

https://chat.openai.com

Getting started with ChatGPT 377

4.	 Portability and Compatibility: LaTeX documents can be easily converted to various formats
(PDF, HTML, etc.) without compromising quality, and the files themselves are plain text, making
them portable and easily readable across different platforms.

5.	 Community and Packages: There’s a vast collection of packages and templates available, created
and shared by a vibrant community. This means you can find solutions to almost any typesetting
problem or document style you might need.

6.	 Separation of Content and Formatting: LaTeX encourages the separation of content from design,
allowing you to focus on writing without getting distracted by formatting concerns.

7.	 Free and Open Source: LaTeX is free to use and has been maintained and improved over the
years by a dedicated community. It’s available on various operating systems.

While it has a learning curve, once you get the hang of it, LaTeX can significantly streamline
document creation and produce beautiful, professional-looking output.

That takes quite some space here! I’ll keep it because every point is on topic here, and you notice
ChatGPT’s typical response style: it may begin with an introduction, often organizes information into
bullet points, and concludes with a final statement. This can lead to lengthy responses.

How it works...

ChatGPT retains information from previous chat interactions. You can reference earlier responses
and instruct ChatGPT to condense, elaborate, seek additional details, or even ask for rephrasing or
translation into another language. Let’s experiment with rephrasing the previous response:

Prompt: Shorten it without using bullet points.

Response: LaTeX is fantastic for professional-quality documents, especially in academia. It excels
in mathematical typesetting, automates referencing, and offers portability to various formats. Its
community support and open-source nature make it a top choice for precise, beautifully formatted
content despite a learning curve.

It’s worth noting that ChatGPT often exhibits an enthusiastic tone. That’s why I usually explicitly request
a more neutral, non-promotional tone. We will see that in the recipe Improving your content later in
this chapter. For now, let’s take the opposite approach – we’ll test how far we can push ChatGPT to
get a funny text. We can request increased excitement and repeat the step. I’ll skip some responses
and just present the final one:

Prompt: Tell me the same, but more excited.

...

Prompt: Be even more excited.

...

Prompt: Now get super crazy excited like mad!

Using Artificial Intelligence with LaTeX378

Response: LaTeX, oh my stars and galaxies, it’s the intergalactic wizardry of document creation!
It’s like wielding the Infinity Gauntlet of academic prowess, effortlessly crafting documents that
make textbooks jealous! Think of it as a quantum leap into a universe where math equations
sparkle like cosmic fireworks! References? It’s like summoning an army of citation superheroes
who zip through your document with lightning speed! And transformation? It’s shape-shifting
into any format faster than the speed of thought—from PDFs to HTML to whatever dimension
you desire! The community? It’s a supernova explosion of brilliance, sharing secrets and rocketing
you toward document perfection at warp speed! Using LaTeX is like being the cosmic conductor
of mind-boggling, exhilarating content creation—an adventure that blasts you beyond the
stratosphere of awesomeness!

On one hand, it’s fun to play with the language model this way; on the other hand, it shows how
capable it is in building vibrant sentences. Even if you tell ChatGPT to construct an entertaining
poem about LaTeX with some particular words you like to see in it, it gets it done and responds with
a humorous, rhyming text.

Note
The answers may vary depending on the context and what ChatGPT has seen and learned.
In particular, initiate a new chat for a new subject so ChatGPT doesn’t use unrelated context
from a prior conversation.

Now that we know the system, we can discuss more details in the upcoming recipes.

There’s more...

You can also use ChatGPT on your smartphone. The ChatGPT mobile app even includes a voice
conversation feature. It’s powered by Whisper, an excellent open source speech recognition system.
It converts spoken words into text; you can choose from five voices for audio output. You can use it to
engage in questions and answers, take notes on the go, and even have ChatGPT enhance or translate
your notes, which can later be shared on your computer.

If you are willing to subscribe with a monthly payment, you can upgrade your plan to ChatGPT Plus.
Then, you can use version 4, which offers significant advantages, including a higher token limit of
32,000, improved training on newer data, and access to current internet information. An update to
version 5 is already anticipated.

There are alternative AI writing assistants available, such as the following:

•	 Gemini: This is considered a top ChatGPT alternative, maintained by Google, and suitable for
both writing and coding tasks. Visit https://gemini.google.com.

•	 Claude: This is operated by Anthropic, with support from Google and Amazon, and is ideal for
analyzing large inputs and document analysis. Find more information at https://claude.ai.

https://gemini.google.com
https://claude.ai

Getting answers to LaTeX questions 379

•	 Grok: This was launched by xAI and is backed by Elon Musk. It’s tailored for entertaining chats
and can be found at https://x.ai.

•	 Llama: Version 2 is an open source chatbot developed by Meta. Explore it at https://www.
llama2.ai.

There will be new tools and integration of such AI bots into applications such as word processors,
code editors, and web browsers.

Note
AI assistants, including ChatGPT, process and store your input, potentially using it for training
and analysis, so avoid using online AI for confidential data.

Getting answers to LaTeX questions
ChatGPT is a vast knowledge base. Ask any questions to get elaborate answers.

How to do it...

You can ask straightforward questions and explore the answers, such as these randomly chosen
prompt examples:

•	 What are the benefits of LaTeX?

•	 What is the difference between XeLaTeX and LuaLaTeX?

•	 When using LaTeX, how should I determine whether to utilize the \include command or the
\input command?

•	 How do I create a presentation in LaTeX similar to PowerPoint?

•	 Where is the error in the following LaTeX code? Then, add the code.

For an excellent question where you can expect an optimal answer, be specific and provide as much
context as possible, as you would in a LaTeX support forum.

Follow up with further questions or instructions, such as the following command prompts:

•	 Provide more details

•	 Show particular examples

•	 Explain specific details

•	 Break the answer down into smaller steps

https://x.ai
https://www.llama2.ai
https://www.llama2.ai

Using Artificial Intelligence with LaTeX380

•	 Clarify what’s not apparent enough

•	 Add more context and make a reattempt to answer

As long as the conversation remains within the same chat thread, ChatGPT will retain the context
for follow-up inquiries.

How it works...

ChatGPT finds the answers in its huge knowledge database and uses its linguistic capabilities to
generate natural responses, like in a normal conversation.

Asking questions to a chatbot and engaging in detailed conversations about responses and your further
queries differ significantly from interactions in internet forums where any user can publicly comment
on your questions, code, or style. ChatGPT may offer a quick and enjoyable conversational experience
with a much lower barrier to asking a question, and it’s much easier than typing keywords into a search
engine. This might contribute to the declining popularity of web forums. However, competent users
can still be found online, and ultimately, these forums serve as a valuable source from which AI learns.

In the following recipe, we’ll explore the creation of optimal input and learn how ChatGPT processes it.

Improving your content
You can leverage ChatGPT to enhance the quality of your content.

How to do it...

The most direct approach is to provide ChatGPT with your original text and instruct it to enhance it.
Clearly outline ChatGPT’s role in this task and specify the desired tone.

For instance, use a prompt like the following:

Prompt: Act as a technical editor. Maintain an informal yet sober and technical tone, and avoid
excessive enthusiasm. Rephrase the following texts, preserving what sounds good but improving
overall quality.

Then, provide your text paragraph by paragraph, look at ChatGPT’s responses, and see if there are
any corrections or improvements that you would like to keep. This ensures corrections to spelling and
grammar, adherence to the desired tone, and, also important, identification of synonyms that could
amplify the impact and clarity of your initial writing.

As an example, let’s consider a brief text excerpt from https://en.wikipedia.org/wiki/
LaTeX:

Prompt: LaTeX uses the TeX typesetting program for formatting its output, and is itself written
in the TeX macro language.

https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/LaTeX

Improving your content 381

Response: LaTeX formats its output using the TeX typesetting program and is written in the TeX
macro language itself.

In my view, this slight rephrasing improves the sentence.

Various tools and browser extensions utilize ChatGPT in the background. Let’s look at one that aids us
in editing. editGPT is a ChatGPT-powered editor available at https://editgpt.app. You can
use it as a standalone editor or, if you use Firefox or a Chrome-compatible web browser, as a browser
extension directly integrated with the ChatGPT website. Here, we’ll opt for the latter. Follow these
steps to install the extension:

1.	 Download and install the editGPT extension from the Chrome or Firefox extension store. As
a Microsoft Edge user, you can also use the Chrome extension.

2.	 Go to the ChatGPT website at https://chat.openai.com.

Start a chat and type any prompt with the text you want to edit and an instruction to rephrase
or proofread it.

3.	 The editGPT button will appear at the top of the browser window. You may need to refresh
the web page if it doesn’t show up.

4.	 Click the editGPT button to enable the editing mode. In this mode, every ChatGPT response
will now display statistics while highlighting deleted phrases in red and added phrases in green.
In this way, you can evaluate the changes.

5.	 Click the editGPT button again to turn off the editing mode.

The following screenshot shows the previous ChatGPT response in editing mode:

Figure 13.1 – ChatGPT highlighting the changes

When you click the Open in Editor button, your text opens in a separate editing window as depicted here:

https://editgpt.app
https://chat.openai.com

Using Artificial Intelligence with LaTeX382

Figure 13.2 – The ChatGPT editor aka editGPT

The buttons allow you to select features such as grammar correction, proofreading, fixing awkward
parts, and refining phrases. For more extensive documents or multiple requests, you may need to sign
up for a free or paid account at https://editgpt.app.

If you are a macOS User, you may also try the BetterTouchTool application available at https://
folivora.ai. It aids with keyboard shortcuts, offers new mouse gestures, and includes ChatGPT
support. Briefly said, you can configure the prompt to be used, and then, in any application, such
as your LaTeX editor, highlight text, press a key, and the text will be transformed according to the
preconfigured prompt. Multiple configurations are possible.

Note
The ChatGPT website and any ChatGPT-powered tool may change in appearance, features,
free availability, or pricing over time.

Our editing demonstration was just a tiny example. In a real-life workflow, you may finish writing an
entire chapter, then utilize ChatGPT to rephrase ideas using synonyms for variety, avoiding excessive
repetition. Finally, you can apply another excellent grammar checker, such as Grammarly Pro, to
enhance your grammar and tone further.

How it works...

ChatGPT processes your input text and follows your instructions. Its pre-trained knowledge helps it
to contextualize the content. ChatGPT is leveraging its learned language patterns to correct grammar
and rephrase your text in the desired tone, as it’s trained in many writing styles and linguistic nuances.

In general, you have various options to build your prompt to get the output you desire:

•	 Define the role of ChatGTP using phrases such as “You are...” and “Act like a...”

•	 Specify the role of the recipient, such as a child, a student, or a professor

https://editgpt.app
https://folivora.ai
https://folivora.ai

Improving your content 383

•	 Tell it what you want, such as “I want...” or “I need...”

•	 Outline the task, such as “You should...” and “Do the following...”

•	 Exclude undesired elements using phrases such as “Don’t use ...” either at the beginning or later
while requesting another try of the response

•	 Specify the desired tone, such as “Your tone is informal and motivating”

•	 Request a particular output format, such as a bullet list, a numbered list, a table, or code in
any language

•	 Provide any relevant context imaginable

•	 Optionally, offer an example of your expectations

As ChatGPT is not human, you may omit friendly words such as “please” to keep your input concise,
allowing more words in both your input and output because such a ChatGPT prompt, together with
your text, can be comprehensive. You can instruct ChatGPT to apply the prompt to all the subsequent
input texts so you don’t need to repeat it. Once you have crafted prompts that suit your requirements,
copy and store them somewhere, particularly if you work on content over a long period of time.

There’s more...

Another helpful use of ChatGPT is to overcome writer’s block. You can instruct ChatGPT to generate
a few ideas or key points to help you kickstart your writing. Let’s say you would like to create some
diagrams showing how LaTeX can be used for this purpose. To get to a point where you can start, for
example, you could use such a prompt:

Prompt: Provide the six most commonly used diagram types in a bullet list, explain them, and
tell me which field of science or business is most popular for every kind.

Response:

1.	 Flowcharts:

	� Explanation: A flowchart is a visual representation of a process or workflow, using different
shapes to represent different steps or activities and arrows to show the flow of control.

	� Popular Applications:

	� Business: Process optimization, project management, decision-making.

	� Science: Experimental procedures, data analysis workflows.

ChatGPT proceeds to explain pie charts, bar charts, Venn diagrams, Gantt diagrams, and mind maps.
You can continue like this:

Prompt: For each diagram type, name a LaTeX package that supports generating such diagrams.

Using Artificial Intelligence with LaTeX384

ChatGPT will list packages for each kind of diagram, even with an entire code example that you may
use as a starting point, like the following snippet of the ChatGPT output:

Figure 13.3 – ChatGPT output with code

Click the Copy code button at the top right corner of the code window to copy the code to the
clipboard, and then paste it into your LaTeX editor for further work.

You can quickly get some starting points and continue in your own manner.

The ChatGPT answers may give a kick-off, though I would always be careful to check if an answer is
correct and use my thoughts and writing. I would not copy and paste text from ChatGPT to directly
use it because it can be considered plagiarism, not just because it’s machine output: what ChatGPT
says comes from its training data, and that may even contain original phrases of other authors, even
though it’s machine processed. Creativity and correctness remain the author’s responsibility.

Additional ways to integrate ChatGPT into your writing process include the following:

•	 Brainstorming through curious questions and discussing the answers

•	 Telling ChatGPT to draft an abstract, introduction, or summary of your original text

•	 Designing a table of contents

•	 Structuring your ideas in a bulleted list or using a table

•	 Drafting content rapidly with less concern for grammar and allowing ChatGPT to suggest corrections

•	 Writing in your native language and using ChatGPT to translate it into another language

•	 Generate a LaTeX document based on your text

The last point will be our next topic.

Generating code 385

Generating code
ChatGPT was also heavily trained in coding, making it proficient in generating code, including LaTeX.
You can use it to create code snippets or even entire document templates, saving time and effort.

How to do it...

Proceed with your AI conversation like you would do with a human programming assistant as follows:

1.	 Ensure you mention LaTeX as the code language in the input prompt or earlier in the chat.
Clearly state your requirement, such as this one:

Prompt: Generate the LaTeX code snippet for a matrix with m rows and n columns using a_ij
entries and dots.

2.	 ChatGPT will respond with an output similar to the following:

Figure 13.4 – ChatGPT wrote LaTeX code for a matrix

3.	 Ask for an explanation of parts you want to know more about, like so:

Prompt: What is the bmatrix environment doing?

ChatGPT will respond by telling you the meaning and explaining the syntax. It will even tell
you that the amsmath package is required for this.

4.	 Request changes if needed using prompts like the ones in these examples:

Prompt: Use the variable x instead of a in the matrix cells.

Using Artificial Intelligence with LaTeX386

Prompt: Use parentheses instead of square brackets as delimiters.

ChatGPT will adjust the code as requested, using x_ij in the matrix cells and replacing the
bmatrix environment with a pmatrix environment.

5.	 Highlight, copy, and paste the code into your LaTeX editor, or use the Copy code button.

6.	 Compile the code to see how it appears in the PDF output:

Figure 13.5 – The ChatGPT code compiled with LaTeX

How it works...

ChatGPT integrates its knowledge of LaTeX with its language processing capabilities, which are
also trained in programming languages. It offers more than a mere reproduction of training data: as
demonstrated, you can test ChatGPT’s comprehension of the code and ask for accurate adjustments.
ChatGPT can serve as your coding companion.

There’s more...

There are endless possibilities for what you can request. One significant benefit is that you can
quickly get usable code snippets, saving you from extensive typing, such as for a large table template,
an axis plot within a tikzpicture environment, or an entire document template to fill in, like
with this prompt:

Prompt: Create a LaTeX beamer presentation with three sections, three slides per section, and a
table of contents using the Singapore theme.

From what I tested, I consistently received usable results. ChatGPT can even draw graphs or plots for
you. When it comes to more creativity, ChatGPT gives it a shot, but the results may appear amusing.
Try letting it draw a robot; for example, it gets the basics done, but the drawing looks funny.

You are not restricted to LaTeX syntax. For example, you can state some book details, and ChatGPT
will understand and generate the corresponding BibTeX entries for you, as demonstrated here:

Prompt: Create a BibTeX entry of this book: Stefan Kottwitz, LaTeX Graphics with TikZ, Packt
Publishing, 2023.




x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn




Generating code 387

You will get the following response:

Figure 13.6 – A BibTeX database entry generated by ChatGPT

The AI understood what it meant and autonomously populated the fields in the BibTeX syntax.

Note
You just saw that ChatGPT can translate from LaTeX-generated output, such as single references
or an entire bibliography, back to LaTeX code. With ChatGPT version 4 and above, you can
upload entire PDF documents and use a prompt such as Create LaTeX code for the attached
document. You can provide further instructions to adjust the generated code.

If you use the Overleaf LaTeX cloud solution, you can try the Writefull extension. It’s a language tool
trained on published papers to support you with language feedback in academic writing. It incorporates
the TeXGPT feature that allows applying ChatGPT directly in your code editing window and generates
code for elements such as tables, figures, and formulas.

Index

Symbols

\AddToShipoutPictureBG command 77
\AddToShipoutPictureFG command 77
\AtPageLowerLeft command 77
\hypersetup 250
\usepackage 250

A
algorithm

typesetting 320-323
algorithmicx package 320
AMS-LaTeX and amsmath 108
amsmath package

versus bm package 109, 110
animate package 265, 267
animation

creating 265-268
Anthropic 378
atomic orbitals

drawing 353-356
atoms

representing 352, 353
axes

reducing 301, 302, 306, 307

B
Babylonian method 327
background image

adding 199-204
back-references

getting, in bibliography 248
bar chart

building 180-183
Bard

reference link 378
beamer class

capabilities and extraordinary design 31
beamer class, capabilities and

extraordinary design
color, modifying 33
font, modifying 33
frames into columns, splitting 32
handout, providing 34
information piecewise, uncovering 31
navigation symbols, removing 33
outline for each section, showing 33
short titles and names, using 31
theme, loading from internet 34

beamer class, presentation
creating 25-30

Index390

beamerposter package 54
beautiful ornaments

creating 204-207
beryllium group 358
BetterTouchTool application 382
biber 228
biblatex package 223
bibliography

creating 227-232
BibTeX 227
big point 263
bitmap images 146
Bitstream Vera Sans 113
blend mode feature 189
bm package

versus amsmath package 109, 110
bold mathematical symbols

AMS-LaTeX and amsmath 108
bm and amsmath packages,

comparing 109, 110
standard LaTeX 108
writing 107, 108

book
cover page, adding 24
designing 17-21
document class, modifying 24
page layout, modifying 21
title page, designing 22, 23

boxes
visualizing 69, 70

bubble diagram 167
building blocks

using 349

C
calculations

options 315-317

calendar
producing 209-211

cells
merging 126-129
splitting, diagonally 130-132

chain model 350
ChatGPT 376

alternative AI 378
reference link 376
used, for generating code 385-387
used, for improving content 380-384
using 376-378
working 377, 378

ChatGPT Plus 378
ChatGPT version 3.5 376
chemical formulas

writing 342-345
circular diagram 166
Claude

reference link 378
cloud chart 187
code listing

printing 323-326
coloredlettrine package 80-82
Command Prompt 263
Comma-Separated Values (CSV) file 141
comments

inserting 253-256
commutative diagrams

drawing 293-298
Comprehensive LaTeX Symbol List 114
Comprehensive TeX Archive

Network (CTAN) 10, 365
Computer Modern 94
constellation diagram 168
contour

adding 117, 118

Index 391

copyright information
including 251-253

custom hyperlinks
inserting 246
linking, to internet 247
linking, to labeled objects 246
linking, to place within document 246

customized periodic table, of elements
printing 357-359

custom tags 278
CV

designing 35-38

D
DANTE

reference link 366
data

importing, from external file 141-144
decision tree

creating 178-180
definitions

stating 287-290
descriptive diagram 168, 169
Detexify app 272
Device Independent (DVI) format 146
device independent file 243
DistroWatch

URL 139
DocTeX 154
document font

fonts, combining 97, 98
Kepler fonts 96
Latin Modern 95
selecting 94, 95

double-stroke letters, on blackboard
writing 113, 114

drop cap
adding 78, 79
initial, coloring 80
size, changing 80

DVI format 243

E
electrical circuits

drawing 359-362
Encapsulated PostScript (EPS) format 146
equations

automatic line-breaking 280-282
numbering and referencing 275

eso-pic package 74, 77
Euler Virtual Math font 98
eXtensible Markup Language (XML) 253
eXtensible Metadata Platform (XMP) 253
external file

data, importing from 141-144

F
Feynman diagrams

drawing 340-342
feynmf packages

drawing 342
feynmp packages

drawing 342
figures and tables

lists 224
fillable forms

producing 257-260
Fischer 350
five lemma 297
floating 125, 148
flowchart

constructing 171-176

Index392

fmtcount package 61
commands 61
enumeration styles 61, 62
gender argument 61
language support 61

Font Awesome 5 icons 216
font encoding 18
fonts

switching, command 100
switching, environment 100
switching, locally 98-102

font tables
printing 102-105

footnotes
adding, to table 132-136

formula
highlighting 282-286

French spacing 21
functions, in two dimensions

axes, reducing 301, 302
plotting 298-300
plotting, in polar coordinates 302-304
ticks and grid, adding 300

G
geometry package 262

using 67
geometry pictures

drawing 307-315
labels, printing 312
objects, drawing 311
points, calculating 310, 311
points, defining 310

Ghostscript 146, 262
URL 262

glossary
adding 233-235

glyph 102
Grammarly Pro 382
graphicx package 77
graphs

creating 331-337
gridset package 73
grid typesetting 70-73
Grok

reference link 379
grouping 23
GUTenberg

reference link 366

H
Haworth model 350
Heron’s method 327
high-quality questions

crafting 371
hydrogen fluoride molecule 357
hyperlinks

color and shape, modifying 248
using 243-246

hyperref package 244-246,
249-251, 253, 257, 261

hyperxmp package 252, 253

I
ImageMagick program 89
images

aligning 157, 158
arranging, in grid 158-160
customizing 148, 149
cutting, to get rounded corners 151, 152
drawing, over 154-157
frame, adding to 149, 150
including, with optimal quality 146-148

Index 393

shaping, like circle 152-154
stacking 160-162

index
entries, hyperlinking 249
producing 238-241

Inkscape graphics program 146
inner color themes 34
IUPAC 358

J
justification and hyphenation

improving 56, 57

K
Kepler fonts 96, 113
Koch curve 265
KOMA-Script 224

bundle 5, 342
classes 226

L
l2tabu 10
large poster

building 48-54
building, characteristics 48

LaTeX blogs
reference link 368

LaTeX community support forum
reference link 366

LaTeX distributions 3
LaTeX editors 3
LaTeX Font Catalogue 366
LaTeX online

using 4

LaTeX questions
answers, obtaining to 379

LaTeX resources
exploring, on web 365
frequently asked questions (FAQs) 367
software archives and catalogs 366
TeX distributions 368
user groups 366
web forums and discussion groups 366

LaTeX tools 2
extension 2
LaTeX editors 3
LaTeX online, using 4
TeX and LaTeX distributions 3
tutorials 4, 5

Latin Modern 95, 96
Latin Modern T1 21
layout

visualizing 65-67
leaflet

background image, adding 47
fold marks and cut lines, adding 46
margins, adjusting 47
producing 42-46
sectioning font, modifying 47

legible table
designing 120-123

letter
enclosures, adding 41
paragraphs, separating 41
signature, modifying 41
writing 39-41

ligatures
searching and copying option,

enabling 114-116
suppressing 116

Linux Libertine 97
lipsum package 77, 87

Index394

list, of acronyms
creating 236, 237

lithium group 358
Llama

reference link 379
Lua 327

programming with 327-331
LuaLaTeX 69, 218, 327, 341
LuaTeX 327
lua-visual-debug package 69

M
MacTeX

reference link 368
URL 3

Mandelbrot 320
margin notes

adding 58
working 59, 60

mathematical
definitions and theorems, stating 287-290
highlighting, in formula 282-286

mathematics
fundamentals 270, 271

mathematics, formulas
equations, numbering and

referencing 275, 276
multi-line formulas, writing

with alignment 276
operators 275
subscripts and superscripts 274, 275

mathematics, fundamentals
Greek letter 272
squares and fractions 273, 274
styles 271
symbols 272, 273

math formulas
fine-tuning 278-280

math mode 271
menu items 212-216
metadata

adding 249, 250
MetaPost 327
MetaPost code 218
mhchem package 345
microtype package 261
MiKTeX 131

reference link 368
URL 3

mind map
drawing 190-194

minimal working examples
generating 372-374

molecular orbital (MO) diagram
drawing 353-356

molecules
drawing 345-347
features 347

molecules, features
building blocks, using 349
naming 348
ready-drawn carbohydrates, using 350-352
rings, drawing 347
style options, applying 349, 350

multi-line formulas, with alignment
block of equations, centering 277
numbering, adjusting 277, 278
relation symbol, aligning 276
writing 276-278

N
ntheorem package 291

Index 395

numbering
adjusting 290, 291

numbers to words
converting 60

numerical data
aligning 136-138

O
operators 275
outer color themes 34
output, for e-book readers

optimizing 260-262
Overleaf 4

reference link 368
Overleaf LaTeX cloud solution 387

P
page layout package

examining 67
parskip package 262
Pascal language syntax 323
pdfcrop program 263
pdfcrop script 262
PDF files

combining 264, 265
pdfLaTeX 146, 243
pdfpages package 264, 265
pdfTeX 243
pdftotext tool 220
Perl 262

URL 262
pgfplots package 329, 330
picture package 77
pie chart

cloud option 187
drawing 183-185

polar area chart 186
square chart 185, 186

polar chart 186
polar coordinates

plotting 302-304
poor man’s bold 108
Portable Document Format (PDF) 146, 243
PostScript (PS) 146, 243
preamble 9
pretty headings

preparing 208, 209
preview package 264
priority descriptive diagram 169
prompt 375
pseudocode 320
PSTricks 78
pull quote

creating 85-88

Q
quantities, with units

writing 337-340

R
ready-drawn carbohydrates

using 350
Reuleaux triangle construction 313
rings

drawing 347
rules 122

S
sans-serif font 92

Index396

sans-serif fonts, with direct math support
Bitstream Vera Sans 113
Kepler font 113

sans-serif mathematics 110, 111
alternative approach 112
font, with package option 112
options, using 112
with direct math support 113

Scalable Vector Graphic (SVG) format 146
Script 5
shapepar package 82
shape text

cutting out shapes 85
fitting 82-84
predefined shapes 84, 85

shell 263
short text

writing 5-9
showframe package 67, 77
single symbol, of font

importing 105-107
slashbox

download link 131
smart diagrams

animating 170, 171
bubble diagram 167
building 165, 166
circular diagram 166
constellation diagram 168
customization 171
descriptive diagram 168, 169
priority descriptive diagram 169

square chart 185, 186
standard font commands

attributes 92, 93
using 92-94

standard LaTeX 108
strut 130

style options
applying 349, 350

T
table

coloring 138-141
footnotes, adding to 132-136
positioning 124, 125
with vertically merged cells 130

table layout
optimizing 124

table notes
benefits 132

table of contents (ToC)
automatic correction, of widths 224
KOMA-Script classes 226
printing 224-226
tuning 224, 227

tables/figures
floating, limiting 126
position, fixing 126

tcolorbox package 62, 65
Terminal 263
terminal output 212-216
TeX 233
TeX Catalogue 366
TeX distribution 2, 3
texdoc command

URL 54
texdoc hyperxmp

reference link 253
texdoc pdfcomment

reference link 256
TeX FAQ

reference link 124
URL 367

TeXGPT feature 387

Index 397

TeX Live 365
reference link 368
URL 3

text
positioning 74-78
putting, into colored box 62-64

TeX Users Group (TUG) 3
URL 366

TeXworks 3
theorems

stating 287-290
thesis

developing 9-15
displayed equations, centering 17
layout of captions, modifying 16
margins, modifying 16
right-justified table of contents,

obtaining 15, 16
thmtools package 291-293
three-dimensional plots 304-306

axes, reducing 306, 307
ticks and grid

adding 300
TikZ 151
tikzmark package 286
tikzorbital package 356
tikz package 88, 89
TikZ package 78
tikzposter class 48
TikZ styles 178
timeline library

generating 194-197
titlesec package 261
tkz-graph package 335, 336
tokens 376
topics

arranging, like puzzle 216, 217
tracing feature 146

tree
growing 176, 177

TrueType fonts 118
Type 1 font 118
typewriter style 92

U
UK TeX Users Group

reference link 366

V
vector images 146
Venn diagram

blend mode feature 189
drawing 187-190

vertical tree 177

W
web forums

utilizing 368-371
What You See Is What You Get

(WYSIWYG) 120
Whisper 378
white margins

removing 262, 263
word cloud

building 218-221
Writefull extension 387

X
xcolor package 253
xmpincl package 253
Xpdf software 220

Index398

Z
Zapf Chancery font 100
Zapf Dingbats font 102
zebra-striped tables 138

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

LaTeX Beginner's Guide

Stefan Kottwitz

ISBN: 978-1-80107-865-8

•	 Make the most of LaTeX s powerful features to produce professionally designed texts

•	 Download, install, and set up LaTeX and use additional styles, templates, and tools

•	 Typeset math formulas and scientific expressions to the highest standards

•	 Understand how to include graphics and work with figures and tables

•	 Discover professional fonts and modern PDF features

•	 Work with book elements such as bibliographies, glossaries, and indexes

•	 Typeset documents containing tables, figures, and formulas

https://packt.link/1801078653

401Other Books You May Enjoy

LaTeX Graphics with TikZ

Stefan Kottwitz

ISBN: 978-1-80461-823-3

•	 Understand the TikZ language and how to use its libraries and packages

•	 Draw geometric shapes with text and add arrows, labels, and decorations

•	 Apply transformations and use transparency, shading, fading, and filling features

•	 Define styles and program with loops to streamline your code

•	 Build trees, graphs, and mind maps and draw easy curves with smooth transitions

•	 Produce block diagrams and flow charts to visualize process steps

•	 Generate line charts and bar charts to showcase your data

•	 Plot data sets and mathematical functions in two and three dimensions

https://packt.link/1804618233

402

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished LaTeX Cookbook, we’d love to hear your thoughts! If you purchased the book
from Amazon, please click here to go straight to the Amazon review page for this book and share
your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1835080324

403

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83508-032-0

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83508-032-0

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: Exploring Various
Document Classes
	Preparing your LaTeX tools
	Getting ready
	See also

	Writing a short text
	How to do it...
	How it works...
	See also

	Developing a thesis
	Getting ready
	How to do it...
	How it works...
	There’s more...
	See also

	Designing a book
	How to do it...
	How it works...
	There’s more...
	See also

	Creating a presentation
	How to do it...
	How it works...
	There’s more...
	See also

	Designing a CV
	Getting ready
	How to do it...
	How it works...

	Writing a letter
	How to do it...
	How it works...
	There’s more...

	Producing a leaflet
	How to do it...
	How it works...
	There’s more...

	Building a large poster
	How to do it...
	How it works...
	There’s more...

	Chapter 2: Tuning the Text
	Improving justification and hyphenation
	How to do it...
	How it works...

	Adding margin notes
	How to do it...
	How it works...
	There’s more...

	Converting numbers to words
	How to do it...
	How it works...
	There’s more...

	Putting text into a colorful box
	How to do it...
	How it works...
	There’s more...

	Visualizing the layout
	How to do it...
	How it works...
	There’s more...

	Visualizing boxes of letters and symbols
	How to do it...
	How it works...

	Typesetting in a grid
	How to do it...
	How it works...
	There’s more...

	Absolute positioning of text
	How to do it...
	How it works...
	There’s more...

	Adding drop caps
	How to do it...
	How it works...
	There’s more...

	Fitting text to a shape
	How to do it...
	How it works...
	There’s more...

	Creating a pull quote
	How to do it...
	How it works...
	There’s more...

	Chapter 3: Adjusting Fonts
	Using standard font commands
	There’s more...

	Choosing a document font
	Getting ready
	How to do it...
	There’s more...

	Locally switching to a different font
	How to do it...
	How it works...
	There’s more...

	Printing font tables
	How to do it...
	How it works...
	There’s more...

	Importing just a single symbol of a font
	Getting ready
	How to do it...
	How it works...

	Writing bold mathematical symbols
	How to do it...
	How it works...
	There’s more...

	Getting sans-serif mathematics
	How to do it...
	How it works...
	There’s more...

	Writing double-stroke letters like on a blackboard
	How to do it...
	How it works...
	There’s more...

	Enabling the searching and copying of ligatures
	How to do it...
	How it works...
	There’s more...

	Suppressing ligatures
	How to do it...
	How it works...

	Adding a contour
	How to do it...
	How it works...

	See also

	Chapter 4: Creating Tables
	Designing a legible table
	How to do it...
	How it works...
	There’s more...

	Positioning tables
	How to do it...
	How it works...
	There’s more…

	Merging cells
	How to do it...
	How it works...
	There’s more...

	Splitting a cell diagonally
	How to do it...
	How it works...

	Adding footnotes to a table
	How to do it...
	How it works...

	Aligning numerical data
	How to do it...
	How it works...
	There’s more...

	Coloring a table
	How to do it...
	How it works...

	Importing data from an external file
	How to do it...
	How it works...

	Chapter 5: Working with Images
	Including images with optimal quality
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Customizing images
	How to do it...

	Adding a frame to an image
	How to do it...
	How it works...

	Cutting an image to get rounded corners
	How to do it...
	How it works...
	There’s more...

	Shaping an image like a circle
	How to do it...
	How it works...
	There’s more...

	Drawing over an image
	How to do it…
	How it works...

	Aligning images
	How to do it...
	How it works...

	Arranging images in a grid
	How to do it...
	How it works...

	Stacking images
	How to do it...
	How it works...

	Chapter 6: Creating Graphics
	Getting ready
	Building smart diagrams
	How to do it...
	How it works...
	There’s more...

	Constructing a flowchart
	How it works...

	Growing a tree
	How to do it...
	How it works...
	There’s more...

	Building a bar chart
	How to do it...
	How it works...

	Drawing a pie chart
	How to do it...
	How it works...
	There’s more...

	Drawing a Venn diagram
	How to do it...
	How it works...

	Putting thoughts into a mind map
	How to do it...
	How it works...

	Generating a timeline
	Getting ready
	How to do it...
	How it works...

	Chapter 7: Creating Beautiful Designs
	Adding a background image
	How to do it...
	How it works...
	There’s more...

	Creating beautiful ornaments
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Preparing pretty headings
	How to do it...
	How it works...

	Producing a calendar
	How to do it...
	How it works...

	Mimicking keys, menu items, and terminal output
	How to do it...
	How it works...
	There’s more...

	Arranging topics like a puzzle
	How to do it...
	How it works...

	Building a word cloud
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Chapter 8: Producing Contents, Indexes, and Bibliographies
	Tuning tables of contents and lists of figures and tables
	How to do it...
	How it works...
	There’s more...

	Creating a bibliography
	How to do it...
	How it works...
	There’s more...

	Adding a glossary
	How to do it...
	How it works...

	Creating a list of acronyms
	How to do it...
	How it works...

	Producing an index
	How to do it...
	How it works...
	There’s more...

	Chapter 9: Optimizing PDF Files
	Using hyperlinks
	How to do it...
	How it works...
	There’s more...

	Adding metadata
	How to do it...
	How it works...
	There’s more...

	Including copyright information
	How to do it...
	How it works...
	There’s more...

	Inserting comments
	How to do it...
	How it works...

	Producing fillable forms
	How to do it...
	How it works...

	Optimizing the output for e-book readers
	How to do it...
	How it works...
	There’s more...

	Removing white margins
	Getting ready
	How to do it...
	How it works...
	There’s more...

	Combining PDF files
	How to do it...
	How it works...

	Creating an animation
	How to do it...
	How it works...

	Chapter 10: Writing Advanced Mathematics
	Getting started
	How to do it...
	How it works...
	There’s more...

	Fine-tuning math formulas
	Getting ready
	How to do it...
	How it works...

	Automatic line-breaking in equations
	How to do it...
	How it works...

	Highlighting in a formula
	How to do it...
	How it works...
	There’s more...

	Stating definitions and theorems
	How to do it...
	How it works...
	There’s more...

	Drawing commutative diagrams
	How to do it...
	How it works...
	There’s more...

	Plotting functions in two dimensions
	How to do it...
	How it works...
	There’s more...

	Plotting in three dimensions
	How to do it...
	How it works...
	There’s more...

	Drawing geometry pictures
	How to do it...
	How it works...
	There’s more...

	Doing calculations
	How to do it...
	How it works...

	Further learning

	Chapter 11: Using LaTeX in
Science and Technology
	Typesetting an algorithm
	How to do it...
	How it works...
	There’s more...

	Printing a code listing
	How to do it...
	How it works...
	There’s more...

	Programming with Lua
	How to do it...
	How it works...
	There’s more...
	How it works...

	Creating graphs
	How to do it...
	How it works...
	There’s more...
	How it works...

	Writing quantities with units
	How to do it...
	How it works...

	Drawing Feynman diagrams
	How to do it...
	How it works...
	There’s more...

	Writing chemical formulas
	How to do it...
	How it works...
	There’s more...

	Drawing molecules
	How to do it...
	How it works...
	There’s more...

	Representing atoms
	How to do it...
	How it works...

	Drawing molecular orbital diagrams and atomic orbitals
	How to do it...
	How it works...
	There’s more...

	Printing a customized periodic table of elements
	How to do it...
	How it works...

	Drawing electrical circuits
	How to do it...
	How it works...

	See also

	Chapter 12: Getting Support on the Internet
	Exploring available LaTeX resources on the web
	How to do it...
	There’s more...

	Utilizing web forums effectively
	How to do it...
	How it works...

	Crafting high-quality questions
	How to do it...

	Generating minimal working examples
	How to do it...
	There’s more...

	Chapter 13: Using Artificial Intelligence with LaTeX
	Getting started with ChatGPT
	How to do it...
	How it works...
	There’s more...

	Getting answers to LaTeX questions
	How to do it...
	How it works...

	Improving your content
	How to do it...
	How it works...
	There’s more...

	Generating code
	How to do it...
	How it works...
	There’s more...

	Index
	Other Books You May Enjoy

