

Hacking Vim 7.2

Ready-to-use hacks with solutions for common
situations encountered by users of the Vim editor

Kim Schulz

 BIRMINGHAM - MUMBAI

Hacking Vim 7.2

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2010

Production Reference: 1230410

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849510-50-9

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

Credits

Author
Kim Schulz

Reviewers
Boris Fersing

Thomas Moyer

Development Editors
Darshana D. Shinde

Amey Kanse

Technical Editors
Madhumita Singh

Conrad Sardinha

Copy Editor
Sneha Kulkarni

Indexer
Hemangini Bari

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Lata Basantani

Project Coordinator
Shubhanjan Chatterjee

Proofreader
Lynda Silwoski

Production Coordinator
Adline Swetha Jesuthas

Cover Work

Adline Swetha Jesuthas

About the Author

Kim Schulz has an M.Sc. in Software Engineering from Aalborg University
in Denmark. He has been an active developer in the Linux and open source
communities since 1997, and has worked with everything from translation and
bug fixing to producing a full-blown software system.

Throughout this entire time, Vim has been Kim's "weapon" of choice and it is the
first program he installs whenever he sits by a new computer.

Today Kim works as a Software engineer at CSR Plc, developing software for the
next generation mobile and wireless technologies.

Kim is also the owner of a web hosting and development company, Devteam
Denmark, that specializes in hosting of websites developed using the Fundanemt
Content Management System—a CMS that Kim is a co-developer of.

I would like to thank my wife, Line, for letting me take the time to
write this book. Without her positive attitude and help, I would
never have gotten this book ready.

I would also like to add a great thank you to Bram Moolenaar for
developing the Vim Editor—I appreciate the fruits of your work
every day.

About the Reviewers

Boris Fersing is an amateur photographer and student in computational linguistics
at the University of Saarland, Germany. For his studies, he participated in many
projects and used many programming languages (SML, C/C++, Java, Ruby, Prolog)
and Vim was always his editor of choice.

He also worked as system administrator for a department of the University of
Saarland. With this job he learned how to use some Unix tools and improved his
knowledge about the Vim editor.

I really would like to thank the author for writing such a nice book.
It was a pleasure to review it. The information it contains is really
interesting. I recommend this book to everyone who wants to learn
more about Vim.

Thomas Moyer is a graduate student in Computer Science and Engineering at
Pennsylvania State University. He is currently looking at areas of Computer Security
including trusted computing hardware and Web 2.0 security. He spends a great deal
of time using Vim for editing both code and also writing papers. He has completed a
Master's degree from Penn State and is currently working on his Ph.D.

I would like to thank my wife and daughter for all of their support,
and also the rest of my family. I would also like to thank the
members of the Systems and Internet Infrastructure Security Lab
at Penn State for their continued support.

Table of Contents
Preface	 1
Chapter 1: Getting Started with Vim	 7

Getting Vim	 8
vi, Vim, and friends	 8

vi	 9
STEVIE	 9
Elvis	 10
nvi	 10
Vim	 11
Vile	 13
Compatibility	 14

Vim is charityware	 15
Common terminology	 15
Summary	 16

Chapter 2: Personalizing Vim	 17
Where are the configuration files?	 18
Changing the fonts	 20
Changing color scheme	 21

Personal highlighting	 22
Example 1: Mark color characters after a certain column	 24
Example 2: Mark tabs not used for indentation in code	 25
Example 3: Preventing errors caused by IP addresses	 26

A more informative status line	 26
Toggle menu and toolbar	 28
Adding your own menu and toolbar buttons	 29

Adding a menu	 29
Adding toolbar icons	 32

Table of Contents

[ii]

Modifying tabs	 33
Work area personalization	 37

Adding a more visual cursor	 37
Adding line numbers	 39
Spell checking your language	 40
Adding helpful tool tips	 43
Using abbreviations	 46

Example 1: Using abbreviations for quick address insertion	 47
Modifying key bindings 	 49

Summary	 52
Chapter 3: Better Navigation	 53

Faster navigation in a file	 54
Context-aware navigation	 54

Moving around within a code file	 54
Moving in a code file	 56

Navigating long lines	 59
Faster navigation in Vim help	 60

Faster navigation in multiple buffers	 61
Open referenced files faster	 62

Search and you will find	 63
Search the current file	 64

Example 1: Find the next occurrence of a word	 64
Example 2: Search for a word under the cursor	 65

Search in multiple files	 65
Search the help system	 67

X marks the spot	 68
Visible markers—using signs	 68
Hidden markers—using marks	 71

Summary	 72
Chapter 4: Production Boosters	 73

Using templates	 74
Using template files	 74
Abbreviations as templates	 76
Snippets with the snipMate script	 78

Using tag lists	 80
Easier taglist navigation	 83
Other usages of taglists	 83

Using autocompletion	 84
Autocompletion with known words	 84
Autocompletion using dictionary lookup	 85

Table of Contents

[iii]

Omnicompletion	 86
All-in-one completion	 89

Using macro recording	 90
Using sessions	 93

Simple session usage	 93
Satisfy your own session needs	 96

Sessions as a project manager	 97
Registers and undo branching	 98

Using registers	 99
The unnamed register 	 100
The small delete register	 100
The numbered registers	 100
The named registers	 101
The read-only registers	 101
The selection and drop registers	 102
The black hole register 	 102
Search pattern register	 102
The expression register	 103

Using undo branching	 103
Folding	 107

Simple text file outlining	 110
Using vimdiff to track the changes	 111
Navigation in vimdiff 	 113
Using diff to track changes	 114

Open files anywhere	 115
Faster remote file editing	 117

Summary	 118
Chapter 5: Advanced Formatting	 121

Formatting text	 121
Putting text into paragraphs	 122
Aligning text	 124
Marking headlines	 125
Creating lists	 127

Formatting code	 129
Autoindent 	 130
Smartindent	 130
Cindent	 131
Indentexpr	 132
Fast code-block formatting	 132
Auto format pasted code	 135

Table of Contents

[iv]

Using external formatting tools	 136
Indent	 136
Berkeley Par	 137
Tidy	 138

Summary	 139
Chapter 6: Basic Vim Scripting	 141

Syntax-color schemes	 141
Your first syntax-color file	 142

Syntax regions	 143
Color scheme and syntax coloring	 147

Using scripts	 147
Script types	 148
Installing scripts	 148

Uninstalling scripts	 150
Script development	 150

Script writing basics	 151
Types	 152
Variables	 153
Conditions	 157
Working with lists and dictionaries	 159
Loops	 164
Creating functions	 168

Summary	 172
Chapter 7: Extended Vim Scripting	 175

Script structure	 175
Script header	 176
Script-loaded check	 176
Script configuration	 177
Key mappings	 178
Functions	 180
Putting it all together	 180

Scripting tips	 182
Gvim or Vim?	 182
Which operating system?	 183
Which version of Vim?	 183
Printing longer lines	 185

Debugging Vim scripts	 186
Distributing Vim scripts	 189

Making Vimballs	 190

Table of Contents

[v]

Remember the documentation	 191
Using external interpreters	 194

Vim scripting in Perl	 195
Vim scripting in Python	 196
Vim scripting in Ruby	 198

Summary	 199
Appendix A: Vim Can Do Everything	 201

Vim games	 201
Game of Life	 202
Nibbles	 202
Rubik's cube	 203
Tic-Tac-Toe	 204
Mines	 204
Sokoban	 205
Tetris	 206

Programmers IDE	 206
Mail program	 210
Chat with Vim	 211
Using Vim as a Twitter client	 212

Appendix B: Vim Configuration Alternatives	 215
Tips for keeping your vimrc file clean	 215
A vimrc setup system	 217
Storing vimrc online	 221

Index	 223

Preface
Back in the early days of the computer revolution, system resources were limited
and developers had to figure out new ways to optimize their applications. This was
also the case with the text editors of that time. One of the most popular editors of that
time was an editor called Vim. It was optimized to near-perfection for the limited
system resources on which it ran.

The world has come a long way since then, and even though the system resources
have grown, many still stick with the Vim editor.

At first sight, the Vim editor might not look like much. However, if you look beneath
the simple user interface, you will discover why this editor is still the favorite editor
for so many people even today!

This editor has nearly every feature you would ever want, and if it's not in the editor,
it is possible to add it by creating plugins and scripts. This high level of flexibility
makes it ideal for many purposes, and is also one of the reasons why Vim is still one
of the most advanced editors.

Many new users join the Vim user community everyday and want to use this editor
in their daily work. And even though Vim can sometimes be complex to use, they
still favor it above other editors. This is a book for these Vim users.

With this book, Vim users can make their daily work in the editor more comfortable
and thereby optimize their productivity. In this way, they will not only have an
optimized editor, but also an optimized workflow. The book will help them move
from just using Vim as a simple text editor to a situation where they feel at home and
can use it for many of their daily tasks.

Good luck and happy reading!

Preface

[2]

What this book covers
Chapter 1, Getting Started With Vim, introduces Vim and a few well-known relatives;
their history and relation to vi is briefly described.

Chapter 2, Personalizing Vim, introduces how to make Vim a better editor for you by
modifying it for your personal needs. It shows ways of modifying fonts, the color
scheme, the status line, menus, and toolbar.

Chapter 3, Better Navigation, introduces some of the ways in which Vim helps us to
navigate through files easily. It explains an alternative way for boosting navigation
through files and buffers in Vim.

Chapter 4, Production Boosters, introduces you to features in Vim. It describes how
to use templates, autocompletion, folding, sessions, and working with registers.

Chapter 5, Advanced Formatting, introduces simple tricks to format text and code.
It also discusses how external tools can be used to give Vim just that extra edge it
needs to be the perfect editor.

Chapter 6, Basic Vim Scripting, is especially for those who want to learn how to
extend Vim with scripts. The chapter introduces scripting basic, and helps you
write your first script.

Chapter 7, Extended Vim Scripting, takes off where Chapter 6 left the scripting by
giving tips about how to write better scripts. An introduction to using external
scripting languages will also be given in this chapter.

Appendix A, Vim Can Do Everything, has a listing of games that have been
implemented with Vim scripting; it also provides an overview of chat and mail
scripts and has a section on using Vim as an IDE.

Appendix B, Vim Configuration Alternatives, shows how to keep your Vim
configuration files well-organized and retain your Vim configuration across
computers by storing a copy of it online.

What you need for this book
Over the course of the last decade, Vim has evolved into a feature-rich editor. This
means that some of the features from the later versions of Vim are not accessible in
the older versions of Vim.

Vim is available for a wide variety of platforms and not all recipes will work on all
platforms. This is typically due to the use of system-specific functionality that is not
available on other platforms.

Preface

[3]

This book will focus on two of the platforms where Vim is most widespread, namely
Linux and Microsoft Windows. As the Linux system resembles the system used in
most Unix platforms, the recipes will work on other *NIX platforms.

You can find the latest source code and binary packages for the Vim
Editor at www.vim.org. If you use Linux it is, however, most likely that
Vim is already packed with your Linux distribution as it is the default
editor on most Linux systems.

Who this book is for
If you are a Vim user who wants to get more out of this legendary text editor, this
book is for you. It focuses on making life easier for the intermediate to experienced
Vim users.

New to Vim?
Even though this book is written assuming that the reader is already be familiar with
Vim basics, it can still be used by newcomers to Vim.

If you are unsure about your extent of knowledge about Vim in order to continue
reading this book, then I would recommend that you try out the Vimtutor that is
included with your Vim installation.

Simply execute the Vimtutor program (placed together with your Vim installation)
on your computer and it will then guide you through a range of practical lessons that
teach you the Vim basics. Expect that it will take around 30 minutes to complete the
entire Vimtutor tutorial.

The Vimtutor is available in many different languages. To use it in your language,
you simply have to use the two-letter country code (such as ca, cs, de, el, eo, es, fr, hr,
hu, it, ja, no, ro, and zh) as an argument to the Vimtutor program. For example, for
the German version, you would use "vimtutor de".

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[4]

Code words in text are shown as follows: "If you look in the Vim help system by
typing :help 'statusline', you will see that the status line can contain a wide
variety of pieces of information."

A block of code is set as follows:

function! InfoGuiTooltip()
 "get window count
 let wincount = tabpagewinnr(tabpagenr(),'$')
 let bufferlist=''
 "get name of active buffers in windows
 for i in tabpagebuflist()
 let bufferlist .= '['.fnamemodify(bufname(i),':t').'] '
 endfor
 return bufname($).' windows: '.wincount.' ' .bufferlist ' '
endfunction

Any command-line input or output is written as follows:

:amenu icon=/path/to/icon/myicon.png ToolBar.Bufferlist :buffers<cr>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "This
command looks for the word Error (marked with a ^) at the beginning of all lines".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[5]

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/0509_Code.zip to
directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

Preface

[6]

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with Vim
The Vim editor (or Vi IMproved) was first released by Bram Moolenaar in
November 1991 as a clone of the Unix vi editor for the Amiga platform.

The first release of Vim for the Unix platform was out a year later, and it started
to become an alternative to the vi editor right away.

The combination of a more liberal licensing model, and the fact that Vim started to
become a superset of vi's functionality resulted in it becoming progressively more
popular with the open source community. Soon more and more Linux distributions
started adopting Vim as an alternative to vi. Even if the users thought they used vi
(if they actually executed the vi command), they opened Vim (the vi command had
simply been substituted with a link to the vim command, which has often led to the
misunderstanding that vi and Vim are actually the same program).

During the late 90s, Vim took over where vi was lacking behind in the so-called editor
war that existed between the vi editor and the Emacs editor. Bram implemented a lot
of the missing features that the Emacs community used as arguments for why Emacs
was better than vi / Vim, but he did it without ever neglecting the main focus areas
that the vi editor had right from the beginning.

Today, Vim is a feature-rich, fully configurable editor, loved by many. It
supports syntax-highlighting of more than 200 different programming languages,
autocompletion for a fast growing number of languages, folding, undo / redo,
multiple buffers / windows / tabs, and a lot of other features.

In this chapter, we will take a look at the following items:

•	 How to get and install the vim editor
•	 The vim family of editors
•	 The license that vim is released under
•	 Common terminology used throughout the book

So, let's get started with this book.

Getting Started with Vim

[8]

Getting Vim
You might already be familiar with the Vim editor and have used it for a long time.
If, however, you haven't played around with Vim yet, this is the right time to get a
copy and install it on your system.

You will always be able to get the latest version of the Vim editor from the project
web page at:

http://www.vim.org

This book primarily focuses on Vim version 7.2, but don't worry if
you have an older version—you can always upgrade your installation
if you find that you need it.

On computers running Microsoft Windows, you simply run the downloaded
.exe file and it will then take you through the installation. After installation,
a shortcut to gVim will be available in the start menu.

On computers running Linux, the installation depends on the Linux distribution you
are using. Chances are that you already have Vim installed as it comes pre-installed
on most distributions today. If it is not already installed, then refer to the distributions
package manager (for example Aptitude in debian, urpmi in Mandriva, and Synaptics
in Ubuntu) to see how to install Vim. If no package manager is available, you can
always install Vim from the source you downloaded using the previously mentioned
link. See the readme file for information on the exact commands to use in order to
install it.

vi, Vim, and friends
Vim is just one of many derivatives of the original vi that Bill Joy released back in
1976. Some have a feature list very close to that of vi, while others have chosen to
add a wide variety of new features. Vim belongs to the group of vi clones that has
chosen to add extra features. In the next section, we will introduce some of the
better-known clones of vi and briefly describe the distinct features that each
clone has.

Chapter 1

[9]

vi
vi is the original root of the Vim family tree. It was created by Bill Joy in 1976 for one
of the earlier versions of Berkeley Software Distribution (BSD). The editor was an
extension of the most common editor at that time, ex. Ex was, in turn, an extension of
the Unix editor ed. The name "vi" is actually an abbreviation of visual in ex. As the
name indicates, vi was actually just a command that started the ex editor in one of its
modes—the visual mode.

vi was one of the first editors to introduce the concept of modality. What this means
is that the editor has different modes for different tasks—one mode for editing text,
another for selecting text, and yet another for executing commands.

This modality is one of the main features in vi, which makes enthusiasts like the
editor, but it is also what makes others dislike it even more.

Not much has changed in vi since the first version, but it is still one of the most used
editors in the Unix community. This is mainly because vi is considered a required
application for Unix to comply with the Single Unix Specification (SUS)—and
hereby be able to call itself a Unix.

STEVIE
In 1987, Tim Thompson got his first Atari ST (Sixteen / Thirty-two). In this platform,
there weren't any really good editors and so, he decided to clone the vi editor, which
was known from the Unix platform. In June 1987, he released an editor under a
license that resembles what has later become known as open source. He released it
on Usenet and named it STEVIE—an abbreviation for ST Editor for VI Enthusiasts.

It was very simple and provided only a very small subset of the functionality that
vi provided. It did, however, provide a familiar environment for vi users moving
to the ST.

After the release, Tim Thompson discontinued work on the editor. But soon
Tony Andrews took over, and within a year he had ported it to Unix and OS/2.
More features were added along the way, but at some point around 1990, the
development stopped.

STEVIE as an editor might not have survived throughout the years, but since both
Tim and Tony released the source code on Usenet as public-domain for anyone to
use, a lot of the later vi clones have been both inspired and based on this code.

Getting Started with Vim

[10]

Elvis
STEVIE was one of the more common editors around. It was, however, full of bugs
and had some quite impractical limitations. Steve Kirkendall, who at that time used
the operating system Minix, noticed one very big limitation, that is, the STEVIE
editor held the entire file in memory while editing. This was not an optimal solution
when using Minix, so Steve decided to rewrite the editor to use a file as buffer
instead of editing in RAM. This turned into Elvis, version 1.0.

Even though Elvis was an improvement over the vi editor, it still suffered from
some of the same limitations that vi had—maximum length of lines and only a
single file buffer.

Steve Kirkendall decided to rewrite Elvis completely to get rid of the limitations,
and this turned into Elvis version 2, which is the generation of the editor currently
available (version 2.2).

With generation 2 of Elvis, Steve also included support for a range of other features
that weren't in the original vi editor. Among these, a few features that are interesting
and worth mentioning are:

•	 Syntax highlighting
•	 Multiple windows support
•	 Networking support (HTTP and FTP)
•	 Simple GUI frontends

Elvis is not actively developed anymore, but is still widely used. It is available
for Unix, MS Windows (console or GUI with WinElvis), and OS/2.

The latest version of the Elvis editor can always be found here at
http://elvis.the-little-red-haired-girl.org/.

nvi
nvi, or new vi (as its full name is), is a result of a license dispute between AT&T
and the Computer Science Research Group (CSRG) at University of California,
Berkeley. vi was based on an original code from the ed editor, which was under
the AT&T System V Unix license, so it was not possible for CSRG to distribute vi
with BSD.

Chapter 1

[11]

CSRG decided to replace the vi editor with an alternative editor under a freer
license—their own BSD license.

Keith Bostic was the man that took on the job to make the new vi. The vi clone Elvis
was already freely available, but Keith wanted an editor that resembled the original
vi editor even more. He took the code for Elvis and transformed it into an almost 100
percent vi compatible clone—the nvi editor. Only the Open Mode and the lisp edit
option from the original vi functionality set is left out.

By the release of 4.4BSD, the vi editor was completely substituted by nvi, and the
software distribution was once again completely covered by a free license.

Today nvi is the default vi editor in most BSD-derived distributions such as NetBSD,
FreeBSD, and OpenBSD, and has evolved into a more feature-rich editor than the
original vi.

Compared to the original vi editor, nvi has been extended to support new features
such as:

•	 Multiple edit buffers
•	 Unlimited undo
•	 Extended regular expressions
•	 CScope support
•	 Primitive scripting support in Perl and Tcl / Tk

Keith Bostic is still the maintainer of the nvi source code, but not much development
has been done to the code for some time now.

The latest version of the nvi editor can always be found here at
http://www.bostic.com/vi/.

Vim
The Vim editor is the golden child of the vi family. Ever since Bram Moolenaar
released the first version of Vim to the public in November 1991, this editor has
evolved into one of the most feature-rich editors around.

Getting Started with Vim

[12]

The first version of Vim was, like the Elvis editor, based on the source code of the
STEVIE editor. Bram, however, released Vim only for the Amiga platform, which
was one of the most widespread platforms, at that time, among home computer
enthusiasts. At that time Vim was an abbreviation for Vi IMitation, which described
Vim quite well, in that it simply tried to do what vi did.

However, a year later in 1992, Bram made a port of his Vim editor for the Unix
platform. The result of this was that Vim went beyond simply being a clone of vi for
a different platform, to becoming a competitor. The development of Vim was quick
and fast, and soon Vim had a range of features that the original vi editor did not
have. Because of this, the abbreviation Vim was at some point changed into being
Vi IMproved instead of Vi IMitation.

Within a couple of years, Vim grew to having a range of features that a lot of vi users
missed. This made more and more users switch over to using Vim instead of vi as
their primary editor.

In 1998, the fifth generation of Vim was released, and with it one of the most used
features of today, scripting, was introduced.

Now, it was possible for the user to write their own scripts for Vim, and in that
way expand the functionality of the editor. This was a really strong addition to the
feature set of Vim because it would normally have required coding in a lower-level
language, and recompilation of the editor in order to add even simple features.

A lot of features have been added to Vim throughout the last decade, and many
of these are quite unique compared to the other editors and vi clones in particular.

Here, we will list just a few of the more distinct features of Vim, as the complete
feature list would be too long:

•	 Editing multiple files in multiple buffers, windows, and tabs
•	 Advanced scripting language
•	 Support for scripting in Perl and Python
•	 Syntax highlighting for more than 200 programming languages
•	 Unlimited undo / redo with branching
•	 Context-aware completion of words and functions
•	 Advanced pattern-matching with regular expressions
•	 Close integration with a wide range of compilers, interpreters, and debuggers
•	 More than 1500 Vim scripts freely available online

Chapter 1

[13]

Vim is available for an enormous variety of platforms such as all types of Unix,
Linux, MS Dos, MS Windows, AmigaOS, Atari MiNT, OS/2, OS/390, MacOS,
OpenVMS, RISC OS, and QNX.

Vile
Vile maybe the vi clone that looks least like the original vi editor—some would
even say that it's not a clone at all. Vile is actually an attempt to bring the best of
two worlds together in one editor—the modality of vi and the feature set of Emacs.

This also explains the name Vile, which is the shortform for VI Like Emacs.

The Vile editor project was started by Paul Fox during the summer of 1990. The code
was based on the core code from the public-domain editor, MicroEmacs. Paul then
modified it to have modality and other vi-like features.

The MicroEmacs code did not have all the features of the Emacs editor, but it had
support for long lines and editing multiple files in multiple windows at the same
time. These were features that vi did not have and which many programmers needed
in their editor.

A lot of work was done to get the MicroEmacs code to be more vi-like, and several
other developers joined the project. Thomas E. Dickey joined the project in 1992 and
added a wide variety of features to Vile and fixed a lot of bugs in the code.

In 1994, Kevin Buettner joined the project and started working on the GUI version of
vile—xvile. He added support for some of the most common widget sets at that time,
such as Athena, OpenLook, Motif, and the Xt Toolkit.

Today, Thomas is the primary maintainer of Vile and the development is steered by
him. His time for working on the editor is, however, very limited. So, it is mostly
only bugfixes that he adds to the editor.

Vi and Vile are not very similar in the way they work, and only a minor subset of
the vi features are present in Vile. The main features of Vile are:

•	 Editing modes—one mode for each file type
•	 Vile procedure language for macros
•	 (Experimental) Perl support
•	 Named functions that can be bound to keys as the user wishes

Vile is available for Unix, Linux, BeOS, OS/2, VMS, and MS Windows and exists
in both a console version and a GUI version.

Getting Started with Vim

[14]

The latest version of the vile editor can always be found here at
http://invisible-island.net/vile/vile.html.

Compatibility
Though all the vi clones have at some point tried to behave like the vi editor, most
of them have evolved in very different directions. This means, even though a
lot of them support features such as syntax highlighting, they do not necessarily
implement them in the same way. Therefore, a syntax file from Vim cannot be used
in Elvis.

Even the features that originate from vi are not necessarily implemented the same
way. Some of the clones have implemented features less accurately than others.
Maybe the idea behind the feature is the same, but the actual result of using it is
completely different.

In the following table, I have tried to give a percentage of how accurately the
mentioned clones resemble the vi editor (0 percent being least compatible and 100
percent being completely compatible). The comparison has been done by looking at
how much effort the clone developers have made in order to implement the features
of vi as precisely as possible.

Clone vi compatibility Comment
STEVIE 10% Only a very small feature set in common.

Vile 10% Only general concepts such as modes in common.

Elvis 80% Large feature set in common, some features behave quite
differently though.

Nvi 95% Nearly perfect compatibility, but a range of the features
behave differently.

Vim 99% In the "compatible mode", nearly all features are compatible.

In the table, only the features that the clones share with vi are considered. This
means, even though, for example, Vim has a lot of features that vi does not have,
it still resembles vi very precisely on the features that they share. Besides this, Vim
implements nearly all of the features that vi has. Only some of the features that
Bram Moolenaar considered as bugs in vi are implemented differently in Vim. Note
that in order to make Vim 99 percent compatible with vi, you will have to set it into
compatible mode with the command:

:set compatible

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Chapter 1

[15]

In Vim you can read more about vi and Vim differences with the command:
:help vi-differences

Another interesting observation is that even though STEVIE implemented a subset of
the vi functionality very accurately, it did not implement enough of the vi features to
be considered a close relative.

Vim is charityware
Bram Moolenaar, the developer of the Vim editor, has chosen to release Vim under a
so called charityware license. What this means is that you can copy Vim as much as
you like, but in exchange you are encouraged to make donations to a charity.

You can read more about the project if you open Vim and execute the command:

:help uganda

You can also get more information about how you can sponsor the Vim project if
you go to the website http://www.vim.org/sponsor/.

As a Vim sponsor, you will get to vote for new features that should be implemented
in Vim. So, besides supporting a good cause, you will also get some say on how Vim
will evolve in the future.

Common terminology
Some words tend to have a different meaning depending on who you ask, hence,
we have made a short list of some of the words here:

•	 Hacker: A technology interested person that likes to explore tech-related
things and optimize them to fit his and others' needs.

•	 Hacking: The process a hacker goes through when exploring and optimizing
his software or hardware. "Hacking Vim" would hence refer to the process of
optimizing the Vim editor to fit the hacker's (user's) needs.

•	 Script: A textual program consisting of one or more lines of code that runs
in an interpreter. A script can be written in many different programming
languages, but will have to use one that matches the interpreter.

•	 Interpreter: A program that reads lines in a script and executes them one by
one. An interpreter can be built into another program such as the Vim editor.

Getting Started with Vim

[16]

Summary
In this chapter, we introduced Vim and looked at what this book is about. Vim is just
one of many clones of the old Unix vi editor, so, to get a broader view of the vi family
tree, this chapter introduced some of the more well-known clones. Their history and
relation to vi were briefly described and we learned that even though the vi clones at
some point have tried to be like vi, they are not really compatible with each other.

We looked a bit at the concept of charityware, and how the author of the Vim
editor uses that to raise money for children in need in Uganda. Finally, we took
a look at some of the terminology used in this book and why the book is called
"Hacking Vim".

You are now ready to go on with the next chapter and learn about how to
personalize your Vim editor.

Personalizing Vim
If you tend to use your computer a lot for editing files, you soon realize that having a
good editor is of paramount importance. A good editor will be your best friend and
help you with your daily tasks. But what makes an editor good?

Looking at the different editors available, we see that developers try to make
some of them the best by adding features they think the users need. Other editors
have accepted that they are not the best and instead try to be the simplest, most
user-friendly, or fastest-loading editor around.

With the Vim editor, no one decides what's best for you. Instead, you are given the
opportunity to modify a large range of settings to make Vim fit your needs. This
means, the power is in the hands of the user, rather than the hands of the developers
of the editor.

Some settings have to do with the actual layout of Vim (for example, colors and
menus), while others change areas that affect how we work with Vim such as the
key bindings that map certain key combinations to specific tasks.

In this chapter, we will introduce a list of recipes that will help you personalize
Vim in such a way that it becomes your personal favorite.

You will find recipes for the following personalization tasks:

•	 Changing the fonts
•	 Changing the color scheme
•	 Personal highlighting
•	 A more informative status line
•	 Toggle menu and toolbar
•	 Adding your own menu and toolbar buttons
•	 Work area personalization

Personalizing Vim

[18]

Some of these tasks contain more than one recipe because there are different aspects
for personalizing Vim for that particular task. It is you, the reader, who decides
which recipes (or parts of it) you would like to read and use.

Before we start working with Vim, there are some things that you need to know
about your Vim installation, such as where to find the configuration files.

Where are the configuration files?
When working with Vim, you need to know a range of different configuration files.
The location of these files is dependent on where you have installed Vim and the
operating system that you are using.

In general, there are three configuration files that you must know where to find:

•	 vimrc

•	 gvimrc

•	 exrc

The vimrc file is the main configuration file for Vim. It exists in two versions—global
and personal.

The global vimrc file is placed in the folder where all of your Vim system files are
installed. You can find out the location of this folder by opening Vim and executing
the following command in normal mode:

:echo $VIM

The examples could be:

•	 Linux: /usr/share/vim/vimrc
•	 Windows: c:\program files\vim\vimrc

The personal vimrc file is placed in your home directory. The location of the home
directory is dependent on your operating system. Vim was originally meant for
Unixes, so the personal vimrc file is set to be hidden by adding a dot as the first
character in the filename. This normally hides files on Unix, but not on Microsoft
Windows. Instead, the vimrc file is prepended with an underscore on these systems.
So, examples would be:

•	 Linux: /home/kim/.vimrc
•	 Windows: c:\documents and settings\kim_vimrc

Chapter 2

[19]

Whatever you change in the personal vimrc file will overrule any previous setting
made in the global vimrc file. This way you can modify the entire configuration
without having to ever have access to the global vimrc file.

You can find out what Vim considers as the home directory on your system by
executing the following command in normal mode:

:echo $HOME

Another way of finding out exactly which vimrc file you use as your personal file
is by executing the following command in the normal mode:

:echo $MYVIMRC

The vimrc file contains ex (vi predecessor) commands, one on each line, and is the
default place to add modifications to the Vim setup. In the rest of the book, this file
is just called vimrc.

Your vimrc can use other files as an external source for configurations. In the vimrc
file, you use the source command like this:

source /path/to/external/file

Use this to keep the vimrc file clean, and your settings more structured. (Learn more
about how to keep your vimrc clean in Appendix B, Vim Configuration Alternatives).

The gvimrc file is a configuration file specifically for Gvim. It resembles the vimrc
file previously described, and is placed in the same location as a personal version as
well as a global version. For example:

•	 Linux: /home/kim/.gvimrc and /usr/share/vim/gvimrc
•	 Windows: c:\documents and settings\kim_gvimrc and c:\program

files\vim\gvimrc

This file is used for GUI-specific settings that only Gvim will be able to
use. In the rest of the book, this file is called gvimrc.

The gvimrc file does not replace the vimrc file, but is simply used for configurations
that only apply to the GUI version of Vim. In other words, there is no need to have
your configurations duplicated in both the vimrc file and the gvimrc file.

The exrc file is a configuration file that is only used for backwards compatibility
with the old vi / ex editor. It is placed at the same location (both global and local) as
vimrc, and is used the same way. However, it is hardly used anymore except if you
want to use Vim in a vi-compatible mode.

Personalizing Vim

[20]

Changing the fonts
In regular Vim, there is not much to do when it comes to changing the font because
the font follows one of the terminals. In Gvim, however, you are given the ability to
change the font as much as you like.

The main command for changing the font in Linux is:

:set guifont=Courier\ 14

Here, Courier can be exchanged with the name of any font that you have, and 14
with any font size you like (size in points—pt).

For changing the font in Windows, use the following command:

:set guifont=Courier:14

If you are not sure about whether a particular font is available on the computer
or not, you can add another font at the end of the command by adding a comma
between the two fonts. For example:

:set guifont=Courier\ New\ 12, Arial\ 10

If the font name contains a whitespace or a comma, you will need to escape it with
a backslash. For example:

:set guifont=Courier\ New\ 12

This command sets the font to Courier New size 12, but only for this session. If you
want to have this font every time you edit a file, the same command has to be added
to your gvimrc file (without the : in front of set).

In Gvim on Windows, Linux (using GTK+), Mac OS, or Photon, you
can get a font selection window shown if you use this command:
:set guifont=*.

If you tend to use a lot of different fonts depending on what you are currently
working with (code, text, logfiles, and so on.), you can set up Vim to use the correct
font according to the file type. For example, if you want to set the font to Arial size
12 every time a normal text file (.txt) is opened, this can be achieved by adding the
following line to your vimrc file:

autocmd BufEnter *.txt set guifont=Arial\ 12

Chapter 2

[21]

The window of Gvim will resize itself every time the font is changed. This means, if
you use a smaller font, you will also (as a default) have a smaller window. You will
notice this right away if you add several different file type commands like the one
previously mentioned, and then open some files of different types. Whenever you
switch to a buffer with another file type, the font will change, and hence the window
size too.

You can find more information about changing fonts in the Vim help
system under Help | guifont.

Changing color scheme
Often, when working in a console environment, you only have a black background
and white text in the foreground. This is, however, both dull and dark to look at.
Some colors would be desirable.

As a default, you have the same colors in the console Vim as in the console you
opened it from. However, Vim has given its users the opportunity to change the
colors it uses. This is mostly done with a color scheme file. These files are usually
placed in a directory called colors wherever you have installed Vim.

You can easily change the installed color schemes with the command:

:colorscheme mycolors

Here, mycolors is the name of one of the installed color schemes. If you don't know
the names of the installed color schemes, you can place the cursor after writing:

:colorscheme

Now, you can browse through the names by pressing the Tab key. When you find
the color scheme you want, you can press the Enter key to apply it.

The color scheme not only applies to the foreground and background color, but also
to the way code is highlighted, how errors are marked, and other visual markings in
the text.

You will find that some color schemes are very alike and only minor things have
changed. The reason for this is that the color schemes are user supplied. If some
user did not like one of the color settings in a scheme, he or she could just change
that single setting and re-release the color scheme under a different name.

Personalizing Vim

[22]

Play around with the different color schemes and find the one you like. Now, test it
in the situations where you would normally use it and see if you still like all the color
settings. In Chapter 6, Basic Vim Scripting, we will get back to how you can change a
color scheme to fit your needs perfectly.

Personal highlighting
In Vim, the feature of highlighting things is called matching.

With matching, you can make Vim mark almost any combination of letters, words,
numbers, sentences, and lines. You can even select how it should be marked (errors
in red, important words in green, and so on).

Matching is done with the following command:

:match Group /pattern/

The command has two arguments. The first one is the name of the color group that
you will use in the highlight.

Compared to a color scheme, which affects the entire color setup, a color
group is a rather small combination of background (or foreground) colors
that you can use for things such as matches. When Vim is started, a wide
range of color groups are set to default colors, depending on the color
scheme you have selected.
To see a complete list of color groups, use the command:
:so $VIMRUNTIME/syntax/hitest.vim.

Chapter 2

[23]

The second argument is the actual pattern you want to match. This pattern is a
regular expression and can vary from being very simple to extremely complex,
depending on what you want to match. A simple example of the match command
in use would be:

:match ErrorMsg /^Error/

This command looks for the word Error (marked with a ^) at the beginning of all
lines. If a match is found, it will be marked with the colors in the ErrorMsg color
group (typically white text on red background).

If you don't like any of the available color groups, you can always define your own.
The command to do this is as follows:

:highlight MyGroup ctermbg=red guibg=red gctermfg=yellow
 guifg=yellow term=bold

This command creates a color group called MyGroup with a red background and
yellow text, in both the console (Vim) and the GUI (Gvim). You can change the
following options according to your preferences:

ctermb Background color in console
guibg Background color in Gvim
ctermf Text color in console
guifg Text color in Gvim
gui Font formatting in Gvim
term Font formatting in console (for example, bold)

If you use the name of an existing color group, you will alter that group for the rest
of the session.

When using the match command, the given pattern will be matched until you
perform a new match or execute the following command:

:match NONE

Personalizing Vim

[24]

The match command can only match one pattern at a time, so Vim has provided you
with two extra commands to match up to three patterns at a time. The commands are
easy to remember because their names resemble those of the match command:

:2match

:3match

You might wonder what all this matching is good for, as it can often seem quite
useless. Here are a few examples to show the strength of matching.

Example 1: Mark color characters after a certain
column
In mails, it is a common rule that you do not write lines more than 74 characters (a
rule that also applies to some older programming languages such as, Fortran-77).
In a case like this, it would be nice if Vim could warn you when you reached this
specific number of characters.

This can simply be done with the following command:

:match ErrorMsg /\%>73v.\+/

Here, every character after the 73rd character will be marked as an error. This match
is a regular expression that when broken down consists of:

\%> Match after column with the number right after this
73 The column number
V Tells that it should work on virtual columns only
.\+ Match one or more of any character

Chapter 2

[25]

Example 2: Mark tabs not used for indentation in
code
When coding, it is generally a good rule of thumb to use tabs only to indent code,
and not anywhere else. However, for some it can be hard to obey this rule. Now,
with the help of a simple match command, this can easily be prevented.

The following command will mark any tabs that are not at the beginning of the line
(indentation) as an error:

:match errorMsg /[^\t]\zs\t\+/

Now, you can check if you have forgotten the rule and used the Tab key inside the
code. Broken down, the match consists of the following parts:

[^ Begin a group of characters that should not be matched
\t The tab character
] End of the character group
\zs A zero-width match that places the "matching" at the beginning of the

line, ignoring any whitespaces
\t\+ One or more tabs in a row

This command says: Don't match all the tab characters; match only the ones that are
not used at the beginning of the line (ignoring any whitespaces around it).

If instead of using tabs you want to use the space character for indentation, you
can change the command to:

:match errorMsg /[\t]/

This command just says: Match all the tab characters.

Personalizing Vim

[26]

Example 3: Preventing errors caused by IP
addresses
If you write a lot of IP addresses in your text, sometimes you tend to enter a wrong
value in one (such as 123.123.123.256). To prevent this kind of an error, you can add
the following match to your vimrc file:

match errorMsg /\(2[5][6-9]\|2[6-9][0-9]\|[3-9][0-9][0-9]\)[.]
 \[0-9]\{1,3\}[.][0-9]\{1,3\}[.][0-9]\{1,3\}\|
 \[0-9]\{1,3\}[.]\(2[5][6-9]\|2[6-9][0-9]\|\
 \\ \[3-9][0-9][0-9]\)[.][0-9]\{1,3\}[.][0-9]
 \\{1,3\}\|\[0-9]\{1,3\}[.][0-9]\{1,3\}[.]\(2[5]
 \\ \[6-9]\|\2[6-9][0-9]|[3-9][0-9][0-9]\)[.]
 [0-9]\{1,3\}
 \\|[0-9]\{1,3\}[.][0-9]\{1,3\}[.][0-9]\{1,3\}[.]
 \\(2[5][6-9]\|2[6-9][0-9]\|\[3-9][0-9][0-9]\)/

Even though this seems a bit too complex for solving a small possible error, you have
to remember that even if it helps you just once, it is worth adding.

If you want to match valid IP addresses, you can use this, which is a
much simpler command:
match todo /\(\(25[0-5]\|2[0-4][0-9]\|[01]\?[0-9]
 [0-9]\?\)\.\)
 \\ \{3\}\(25[0-5]\|2[0-4][0-9]\|[01]\?
 [0-9][0-9]\?\)/

A more informative status line
At the bottom of the Vim editor, you will find two things:

•	 The command line buffer (where you can input commands)
•	 The status line

In the default configuration, Vim has a simple and quite non-informative status line.
To the right it shows the number of the current row and column, and to the left it
shows the name of the file currently open (if any).

Whenever you execute a Vim command, the status line will disappear and the
command buffer will be shown in that line instead. If the command you execute
writes any messages, then those will be shown on the right of the status line.

Chapter 2

[27]

For simple and fast file editing, this status line is adequate. But if you use Vim
everyday and for a lot of different file formats, it would be nice to have a more
informative status line.

In this recipe, we see some examples of how the status line can be made a lot more
informative with simple methods.

The command that sets how the status line should look is simply called:

:set statusline format

Here, format is a string such as printf (known from C programming) that describes
how the status line should look.

If you look in the Vim help system by typing :help 'statusline', you will see that
the status line can contain a wide variety of pieces of information. Some of these are
more useful in your daily work than others.

My status line always contains information about:

•	 Name of the file that I am editing
•	 Format of the file that I am editing (DOS, Unix)
•	 File type as recognized by Vim for the current file
•	 ASCII and hex value of the character under the cursor
•	 Position in the document as row and column number
•	 Length of the file (line count)

The following command will turn your status line into a true information bar with
all the previously mentioned information:

:set statusline=%F%m%r%h%w\ [FORMAT=%{&ff}]\ [TYPE=%Y]\ [ASCII=\%03.3b]\
[HEX=\%02.2B]\ [POS=%04l,%04v]\ [%p%%]\ [LEN=%L]

I have added a [] around each of the pieces of information so that it is easier to
distinguish them from each other. This is purely to give a visual effect and can be left
out if necessary.

Personalizing Vim

[28]

However, we now see that the status line still shows the old non-informative status
line, as in the default installation. This problem occurs because Vim, by default, does
not show the status line at all. Instead, it just shows the command buffer with a little
bit of information in it. To tell Vim that you would like to have a real status line
shown, you will have to add the following setting to your vimrc file. This command
will make sure that your status line is always shown as the second-last line in the
editor window:

:set laststatus=2

You will now see that the command buffer gets a place of its own in the last line of
the editor window. This way there's always room for the status line and you will
always have information about the file right in front of you. The status line does, of
course, take up some of the editing area, but it is then up to you to decide whether it
should be shown or not. You can always remove it for the rest of the editing session
by executing the following command from within Vim:

:set laststatus=0

Toggle menu and toolbar
If you are used to working with Vim in the console mode, you are also quite used to
having no menus and toolbars at the top of the window. However, when you move
to Gvim, you will soon realize that both the menu and the toolbar are present by
default in the GUI.

Many believe that extra room for text is far more important than the menu and the
toolbar. If you are one of those persons, you might like to remove the menu and
toolbar while working in Gvim. However, some scripts add useful functionality in
the menu and it is, therefore, important to have menus. The solution for this could
be toggling if the menu and toolbar are shown or not.

The following code maps the key combination Ctrl+F2 to toggle the menu and
toolbar in Gvim. You can add it to your vimrc file if you want this functionality.

map <silent> <C-F2> :if &guioptions =~# 'T' <Bar>
 \set guioptions-=T <Bar>
 \set guioptions-=m <bar>
 \else <Bar>
 \set guioptions+=T <Bar>
 \set guioptions+=m <Bar>
 \endif<CR>

Now, whenever you don't need the menu and toolbar, you can just press Ctrl+F2 and
you will get the full space for your text.

Chapter 2

[29]

If you want either the menu or the toolbar to be hidden all the time, add one of the
following lines to your vimrc file.

To remove the menu completely, add:

:set guioptions-=m

To remove the toolbar completely, add:

:set guioptions-=T

Other parts of the GUI can be modified with the set guioptions
command. To find out what you can modify, look in
:help 'guioptions'.

Adding your own menu and toolbar
buttons
If you are in Gvim, you can make a handy menu with all the functionality you
use the most. You might not always need to use it from the menu, but whenever
you forget how to use it, you can always just find it there. If you need to get to the
functionality really fast, you can even add it directly in the toolbar of Gvim.

In this recipe, we look at both how to make your own menu and, later, how to add
extra buttons to the toolbar in Gvim. Let's start with the menu construction.

Adding a menu
Building a menu is basically just executing a command for each item you want in the
menu. As long as you follow the right naming convention, you will see a nice little
menu with all your items in it.

Personalizing Vim

[30]

Let's start with a simple example. Say you want to add a menu like the buffers menu,
but for tabs.

The command you will need to use is:

:menu menupath command

This command works much like the map command, except that instead of mapping a
command to a key combination, here the mapping is done to a menu item.

The command has two arguments. The first is the actual path in the menu where
the item should be placed, and the second argument is the command that the menu
item should execute. If, for instance, you want to add a menu item called Next to the
menu item Tabs, then you would need to use a command like this:

:menu Tabs.Next <ESC>:tabnext<cr>

So, now you have a menu called Tabs with one menu item called Next. Now, the
Next menu item executes the following command:

:tabnext

This command is prepended with <ESC> to get into the normal mode, and then <cr>
to actually execute the command. If you haven't added <ESC>, this command won't
work. Another way to get around this is by adding specific menu items according to
the current mode. For this, Vim has a range of alternatives to the :menu command:

•	 :nmenu for the Normal mode
•	 :imenu for the Insert mode, ^O is prepended
•	 :vmenu for the Visual mode, ^C is prepended and ^\^G is appended
•	 :cmenu for the Command-line mode, ^C is prepended and ^\^G is appended
•	 :omenu for the OP-pending mode, ^C is prepended and ^\^G is appended

Chapter 2

[31]

The prepended parts (^O and ^C) are to get into normal mode.

The ^O (Ctrl + O) is especially for insert mode because it gets you back into insert
mode after executing the command.

^\^G (Ctrl + \, Ctrl + G) is to handle the special case wherein the global insert
mode setting is set to true and Vim has the insert mode as the default mode (Vim is
modeless). In this case, it will get you back into the insert mode and in the rest of the
case, it will get you back in the mode you just came from.

Instead of setting the same menu item for each and every mode, you can
just replace the commands with this single command:
:amenu menu-path command

According to the current mode, this command prepends and appends
things to the right.

So, let's go to our new Tabs menu, and add some more items and functionality to it.
With the following, it should look similar to the Buffers menu:

:amenu Tabs.&Delete :confirm tabclose<cr>

:amenu Tabs.&Alternate :confirm tabn #<cr>

:amenu <silent> Tabs.&Next :tabnext<cr>

:amenu <silent>Tabs.&Previous :tabprevious<cr>

The observant reader might have noticed that some new things have been added in
the commands.

The first thing is the <silent> tag in the last two commands. By adding this, we
can avoid the command being echoed in the command-line buffer during execution.
Although, this is purely a cosmetic functionality, the & in the menu path is a more
functional extension. By adding & in front of one of the letters in the last part of the
menu path, you can define a keyboard shortcut for an item. This makes it easy to
navigate to that particular item in the menu and execute it.

Personalizing Vim

[32]

Let's say that you want to go to the next tab by executing the Tabs | Next menu
item. Now, you can do so by simply pressing Alt + T + N. This is Alt + T for opening
Tabs, and N (N because the & is in front of the N in Next) to call the Next item. If
another menu item uses the same character for a shortcut, you can cycle through it
by pressing the Alt key repeatedly.

If you would like to have a line that separates some of the items in your
drop-down menu, you can use the name SEP for the item and ":" for the
command:
:amenu Tabs.-SEP-:

The menu that we have created will only exist as long as Vim is open in
this session. So, in order to get it into your menu all the time, you need to
add it to your vimrc file (without the : in front of the commands).

So, now we have a simple Tabs menu that looks a bit like the Buffers menu. It does
not, however, have the functionality that lists active buffers in the Buffers menu.
This does not make much of a difference when you realize that buffers can be hidden
for the user, but tabs cannot. You can, in other words, always see exactly how many
tabs you have and what they are called by just looking at the tab bar.

A Personal menu can be used for a lot of other interesting things. If you work
with many types of files, you can even start having menus for specific file types
or submenus for the different types in the same menu.

A submenu is constructed by following the naming convention in the menu path.
So, if you want to navigate through Tabs | Navigation | Next, you will simply have
to add the Next menu item with the Tabs.Navigation.&Next menu path.

Adding toolbar icons
So, now that we know how to make our menus, adding our own icons to the toolbar
isn't that difficult. Actually, Vim is constructed in such a way that the toolbar is just
another menu with a special name. Hence, adding an icon to the toolbar is just like
adding an item to a menu.

In the case of a toolbar menu, you will be able to add items to it by using a menu
path that starts with the name ToolBar. To add an item to the toolbar that gives
access for executing the :buffers command (show list of open buffers), all you
have to do is to execute the following command:

:amenu icon=/path/to/icon/myicon.png ToolBar.Bufferlist :buffers<cr>

Chapter 2

[33]

Of course, you will need to have an icon placed somewhere that can be shown in the
toolbar.

The path to the icon is given with the icon argument to the amenu command. If
you do not give a path to the file, but only the filename, then Vim will look for
the icon in a folder called bitmaps/ in the Vim runtime path (execute :echo
$VIMRUNTIME to see where it is). The type of icons supported is dependent on the
system you use it on.

And that's really it! After executing the command, you will see your icon in the
toolbar as the last one on the right. If you press it, it will execute the:buffers
command and show you a buffer list.

As with the menus, you can add toolbar buttons that are only shown in specific
modes using the mode-specific menu commands imenu, vmenu, cmenu, and so on.

If you want your menu or toolbar icon placed elsewhere than to the right
of the others, then you can use priorities. Read more about how you can
do this in :help menu-priority and :help sub-menu-priority.

Modifying tabs
Ever since the release of Vim version 7.0, there has been support for tabs or tab pages
as it is called. Tab pages are not like the normal tabs in other applications; rather they
are a way to group your open files. Each tab can contain several open buffers and
even several windows at the same time.

What makes tabs special is the commands that you would normally execute on all
open buffers / windows (such as :bufdo, :windo, :all, and :ball) are limited to
only the windows and buffers in the current tab page.

Normally, tab pages are shown as a list of tabs at the top of the window (just above
the editing area). Each tab has a label, which by default shows the name of the file
in the currently active buffer. If more windows are open at the same time in the tab
page, then the tab label will also show a number telling how many windows.

Personalizing Vim

[34]

Sometimes you might like to have the label on the tabs telling you something
different. For instance, if you often have one tab for each project, then it would
be nice to name the tab according to the name of the project in it.

The label on the tabs is set in a way very similar to the one used for the status line
(see the A more informative status line section). But here, instead of setting the status
line property, you set the tabline property:

:set tabline=tabline-layout

However, if you are in Gvim use the following line:

:set guitablabel

Even though setting the tabline resembles the way you set the status line, it is a bit
more troublesome. This is mainly because you need to take care of whether the tab
is an active one or not. So, let's start with a little example for Vim.

When we have a lot of tabs, they tend to take up too much space in the tab page,
especially if they contain the entire name of the file in the currently active buffer.
We want to have only the first six letters of the name of the active buffer in the tab
label. The active tab should also be easy to distinguish from the other tabs. So, let's
make its colors white on red like error messages.

The following script in Vim script does just that (learn more about how to create
Vim scripts in Chapter 6).

 function ShortTabLine()
 let ret = ''
 for i in range(tabpagenr('$'))
 " select the color group for highlighting active tab
 if i + 1 == tabpagenr()
 let ret .= '%#errorMsg#'
 else
 let ret .= '%#TabLine#'
 endif
 " find the buffername for the tablabel
 let buflist = tabpagebuflist(i+1)
 let winnr = tabpagewinnr(i+1)
 let buffername = bufname(buflist[winnr – 1])
 let filename = fnamemodify(buffername,':t')
 " check if there is no name

Chapter 2

[35]

 if filename == ''
 let filename = 'noname'
 endif
 " only show the first 6 letters of the name and
 " .. if the filename is more than 8 letters long
 if strlen(filename) >=8
 let ret .= '['. filename[0:5].'..]'
 else
 let ret .= '['.filename.']'
 endif
 endfor
 " after the last tab fill with TabLineFill and reset tab page #
 let ret .= '%#TabLineFill#%T'
 return ret
 endfunction

Now, we have the function and just need to add it to our vimrc file, along with
a line that sets the tabline to the output of our function. This can be done with the
following command:

:set tabline=%!ShortTabLine()

The result is a more compact tablist as shown in the following screenshot:

Changing the tabline in Gvim is a bit different, but still follows almost the same basic
ideas. However, when in the GUI, you do not have to consider things such as the
color of the active tab, or whether it is actually active or not because this is all a part
of the GUI design itself.

So, let's simplify the ShortTabLine() function a bit so that it only sets the tab label:

 function ShortTabLabel()
 let bufnrlist = tabpagebuflist(v:lnum)
 " show only the first 6 letters of the name + ..
 let label = bufname(bufnrlist[tabpagewinnr(v:lnum) – 1])
 let filename = fnamemodify(label,':h')
 " only add .. if string is more than 8 letters
 if strlen(filename) >=8
 let ret=filename[0:5].'..'
 else
 let ret = filename
 endif
 return ret
 endfunction

Personalizing Vim

[36]

So, now we just have to set the guitablabel property to the output of our function:

:set guitablabel=%{ShortTabLabel()}

The result will be fine, small tabs as shown in the following figure.

If you want to remove the tabs bar completely from Gvim,
then you can use the::set showtabline=0 command
(set to 1 to show it again).

Now we have limited the information in the tabs, but we would still like to have
the information somewhere. For that we have a nice little tip—use the tool tips.

The nice thing about tool tips is that when you don't activate them (hold your cursor
over some area, for example, a tab), you don't see them. This way you can have the
information without it filling up the entire editor.

To set the tool tip for a tab, you will need to use the following command:

:set guitabtooltip

This property should be set to the value you want to show when the mouse cursor
hovers over the tab.

To test it, you can try it with a simple execution like this:

:set guitabtooltip='my tooltip'

Now, this only shows a static text in the tool tip. We need some more information
there. We removed the path from the filenames on the tabs, but sometimes it is
actually nice to have this information available. With the tool tips, this is easily
shown with the following command:

:set guitabtooltip=%!bufname($)

As with the tabs, the contents of the tool tip can be constructed by a function. Here,
we have constructed a small function that shows all the information you would
normally have in the tabs, but in a more organized way:

function! InfoGuiTooltip()
 "get window count

Chapter 2

[37]

 let wincount = tabpagewinnr(tabpagenr(),'$')
 let bufferlist=''
 "get name of active buffers in windows
 for i in tabpagebuflist()
 let bufferlist .= '['.fnamemodify(bufname(i),':t').'] '
 endfor
 return bufname($).' windows: '.wincount.' ' .bufferlist ' '
endfunction

Use the code described previously like this:

:set guitabtooltip=%!InfoGuiTooltip()

In the following screenshot, you can see how the resulting tool tip will look in Gvim:

You can probably imagine many other interesting ways to use the small information
space that the tabs and tool tips provide. Following the previous example, you
should have no problems in implementing them.

Work area personalization
In this section, we introduce a list of smaller, good-to-know modifications for the
editor area in Vim. The idea with these recipes is that they all give you some sort of
help or optimization when you use Vim for editing text or code.

Adding a more visual cursor
Sometimes, you have a lot of syntax coloring in the file you are editing. This can
make the task of tracking the cursor really hard. If you could just mark the line the
cursor is currently in, then it would be easier to track it.

Many have tried to fix this with Vim scripts, but the results have been near useless
(mainly due to slowness, which prevented scrolling longer texts at an acceptable
speed). Not until version 7 did Vim have a solution for this. But then it came up
with not just one, but two possible solutions for cursor tracking.

Personalizing Vim

[38]

The first one is the cursorline command, which basically marks the entire line with,
for example, another background color without breaking the syntax coloring. To turn
it on, use the following command:

:set cursorline

The color it uses is the one defined in the CursorLine color group. You can change
this to any color or styling you like, for example:

:highlight CursorLine guibg=lightblue ctermbg=lightgray

See the Personal highlighting section for more information on how to change a
color group.

If you are working with a lot of aligned file content (such as tab-separated data),
the next solution for cursor tracking comes in handy:

:set cursorcolumn

This command marks the current column (here the cursor is placed) by coloring
the entire column through the entire file, for example.

As with the cursor line, you can change the settings for how the cursor column
should be marked. The color group to change is named cursorcolumn.

Adding both the cursor line and column marking makes the cursor look like a
crosshair, thus making it impossible to miss.

Chapter 2

[39]

Even though the cursorline and cursorcolumn functionalities
are implemented natively in Vim, it can still give quite a slowdown
when scrolling through the file.

Adding line numbers
Often when compiling and debugging code, you will get error messages stating that
the error is in some line. One could, of course, start counting lines from the top to
find the line, but Vim has a solution to go directly to some line number. Just execute
:XXX where XXX is the line number, and you will be taken to the XXX line.

Alternatively, you can go into normal mode (press the Esc key) and then simply
use XXXgg or XXXG (again XXX is the line number). Sometimes, however, it is nice to
have an indication of the line number right there in the editor, and that's where the
following command comes in handy:

:set number

Now, you get line numbers to the left of each line in the file. By default, the numbers
take up four columns of space, three for numbers, and one for spacing. This means
that the width of the numbers will be the same until you have more than 999 lines.
If you get above this number of lines, an extra column will be added and the content
will be moved to the right.

Of course, you can change the default number of columns used for the line numbers.
This can be achieved by changing the following property:

:set numberwidth=XXX

Replace XXX with the number of columns that you want.

Even though it would be nice to make the number of columns higher
in order to get more spacing between code and line numbers, this is
not achievable with the numberwidth property. This is because the
line numbers will be right-aligned within the columns.

Personalizing Vim

[40]

In the following figure, you can see how line numbers are shown as right-aligned
when a higher number of columns are set in numberwidth:

You can change the styling of the line numbers and the columns they
are in by making changes to the LineNr color group.

Spell checking your language
We all know it! Even if we are really good spellers, it still happens from time to time
that we misspell a word or hit the wrong keys. In the past, you had to run your texts
(that you had written in Vim) through some sort of spell checker such as Aspell
or Ispell. This was a tiresome process that could only be performed as a final task,
unless you wanted to do it over and over again.

With version 7 of Vim, this troublesome way of spell checking is over. Now, Vim
has got a built-in spell checker with support for more than 50 languages from
around the world.

The new spell checker marks the wrongly written words as you type them in, so
you know right away that there is an error.

The command to execute to turn on this helpful spell checker feature is:

:set spell

This turns on the spell checker with the default language (English). If you don't use
English much and would prefer to use another language in the spell checker, then
there is no problem changing this. Just add the code of the language you would like
to use to the spelllang property. For example:

:set spelllang=de

Chapter 2

[41]

Here, the language is set to German (Deutsch) as the spell checker language of
choice. The language name can be written in several different formats. American
English, for example, can be written as:

•	 en_us
•	 us
•	 American

Names can even be an industry-related name such as medical. If Vim does not
recognize the language name, Vim will highlight it when you execute the
property-setting command.

If you change the spelllang setting to a language not already installed,
then Vim will ask you if it should try to automatically retrieve it from the
Vim homepage.

Personally, I tend to work in several different languages in Vim, and I really don't
want to tell Vim all the time which language I am using right now.

Vim has a solution for this. By appending more language codes to the spelllang
property (separated by commas), you can tell Vim to check the spelling in more
than one language.

:set spelllang=en,da,de,it

Vim will then take the languages from the start to the end, and check if the words
match any word in one of these languages. If they do, then they are not marked
as a spelling error. Of course, this means that you can have a word spelled wrong
in the language you are using but spelled correctly in another language, thereby
introducing a hidden spelling error.

You can find language packages for a lot of languages at the Vim FTP site:
ftp://ftp.vim.org/pub/vim/runtime/spell.

Spelling errors are marked differently in Vim and Gvim.

In regular Vim, the misspelled word is marked with the SpellBad color group
(normally, white on red).

Personalizing Vim

[42]

In Gvim, the misspelled word is marked with a red curvy line underneath the word.
This can, of course, be changed by changing the settings of the color group. (See the
Personal highlighting section for more information.)

Whenever you encounter a misspelled word, you can ask Vim to suggest better ways
to spell the word. This is simply done by placing the cursor over the word, going into
the normal mode (press Esc), and then pressing Z + =.

If possible, Vim will give you a list of good guesses for the word you were actually
trying to write. In front of each suggestion is a number. Press the number you find
in front of the right spelling (of the word you wanted) or press Enter if the word is
not there.

Often Vim gives you a long list of alternatives for your misspelled word, but unless
you have spelled the word completely wrong, chances are that the correct word
is within the top five of the alternatives. If this is the case, and you don't want to
look through the entire list of alternatives, then you can limit the output with the
following command:

:set spellsuggest=X

Set X to the number of alternative ways of spelling you want Vim to suggest.

Chapter 2

[43]

Adding helpful tool tips
In the Modifying tabs recipe, we learned about how to use tool tips to store more
information using less space in the tabs in Gvim. To build on top of that same idea
with this recipe, we move on and use tool tips in other places in the editor.

The editing area is the largest part of Vim. So, why not try to add some extra
information to the contents of this area by using tool tips?

In Vim, tool tips for the editing area are called balloons and they are only shown
when the cursor is hovering over one of the characters. The commands you will
need to know in order to use the balloons are:

•	 The first command is the one you will use to actually turn on this
functionality in Vim.
:set ballooneval

•	 The second command tells Vim how long it should wait before showing the
tool tip/balloon (the delay is in milliseconds and as a default is set to 600).
:set balloondelay=400

•	 The last command is the one that actually sets the string that Vim will show
in the balloon.
:set ballonexpr="textstring"

This can either be a static text string or the return of some function.
In order to have access to information about the place where you are hovering
over a character in the editor, Vim provides access to a list of variables holding
such information:

v:beval_bufnr Number of the buffer in which the hovered area is
v:beval_winnr Number of the window in which the hovered area is shown
v:beval_lnum Line number on which the hovered character is situated
v:beval_col Number of the column in which the hovered character is
v:beval_text Word to which the hovered character is connected

Personalizing Vim

[44]

So with these variables in hand, let's look at some examples.

Example 1:

The first example is based on one from the Vim help system. It shows how to make a
simple function that will show the information from all the available variables.

function! SimpleBalloon()
 return 'Cursor is at line/column: ' . v:beval_lnum .
 \'/' . v:beval_col .
 \ ' in file ' . bufname(v:beval_bufnr) .
 \ '. Word under cursor is: "' . v:beval_text . '"'
endfunction
set balloonexpr=SimpleBalloon()
set ballooneval

The result will look similar to the following screenshot:

Example 2:

Let's look at a more advanced example that explores the use of balloons for specific
areas in editing. In this example, we will put together a function that gives us great
information balloons for two areas at the same time:

•	 Misspelled words: The balloon gives ideas for alternative words
•	 Folded text: The balloon gives a preview of what's in the fold

So, let's take a look at what the function should look for, to detect if the cursor is
hovering over either a misspelled word or a fold line (a single line representing
multiple lines folded behind it).

In order to detect if a word is misspelled, the spell check would need to be turned on:

:set spell

Chapter 2

[45]

If it is on, then calling the built-in spell checker function—spellsuggest()—would
return alternative words if the hovered word was misspelled. So, to see if a word is
misspelled, just check if the spellsuggest() returns anything. There is, however,
a small catch. spellsuggest() also returns alternative, similar words if the word
is not misspelled. To get around this, another function has to be used on the input
word before putting it into the spellsuggest() function. This extra function is the
spellbadword(). This basically moves the cursor to the first misspelled word in the
sentence that it gets as input, and then returns the word. We just input a single word
and if it is not misspelled, then the function cannot return any words. Putting no
word into spellsuggest() results in getting nothing back, so we can now check if a
word is misspelled or not.

It is even simpler to check if a word is in a line, in a fold. You simply have to call
the foldclosed()function on the line number of the line over which the cursor
is hovering (remember v:beval_lnum ?), and it will return the number of the
first line in the current fold; if not in a fold, then it returns -1. In other words, if
foldclosed(v:beval_lnum) returns anything but -1 and 0, we are in a fold.

Putting all of this detection together and adding functionality to construct the
balloon text ends up as the following function:

function! FoldSpellBalloon()
 let foldStart = foldclosed(v:beval_lnum)
 let foldEnd = foldclosedend(v:beval_lnum)
 let lines = []
 " Detect if we are in a fold
 if foldStart < 0
 " Detect if we are on a misspelled word
 let lines = spellsuggest(spellbadword(v:beval_text)[0], 5, 0)
 else
 " we are in a fold
 let numLines = foldEnd - foldStart + 1
 " if we have too many lines in fold, show only the first 14
 " and the last 14 lines
 if (numLines > 31)
 let lines = getline(foldStart, foldStart + 14)
 let lines += ['-- Snipped ' . (numLines - 30) . ' lines --']
 let lines += getline(foldEnd - 14, foldEnd)
 else
 "less than 30 lines, lets show all of them
 let lines = getline(foldStart, foldEnd)
 endif
 endif
 " return result

Personalizing Vim

[46]

 return join(lines, has("balloon_multiline") ? "\n" : " ")
endfunction
set balloonexpr=FoldSpellBalloon()
set ballooneval

The result is some really helpful balloons in the editing area of Vim that can improve
your work cycle tremendously. The following screenshot shows how the information
balloon could look when it is used to preview a folded range of lines from a file:

Instead, if the balloon is used on a misspelled word, it will look like the
following screenshot:

In Chapter 4, Production Boosters, you can learn more about how to use
folding of lines to boost productivity in Vim.

Using abbreviations
We all know the feeling of writing the same things over and over again, a dozen
times during a day. This feeling is the exact opposite of what the philosophy of Vim
tries to teach us.

Chapter 2

[47]

The philosophy of Vim says that if you write a thing once, it is okay. However, if
you're writing it twice or more times, then you should find a better way to do it.

One of the methods for getting around writing the same sentences over and over
again is by using abbreviations.

In Vim, abbreviations are created with one of the following commands depending on
which mode they should be available in:

•	 :abbreviate: Abbreviations for all modes
•	 :iabbrev: Abbreviations for the insert mode
•	 :cabbrev: Abbreviations for the command line only

All of the commands take two arguments—the abbreviation and the full text it
should expand to.

So, let's start with a simple example of where the abbreviations can come in handy.

Example 1: Using abbreviations for quick address
insertion
I have moved around a bit during the last few years, so a common task for me is
writing messages where I tell about my new address. It didn't take me long before I
had an abbreviation ready, so I didn't have to write the entire address.

Here is what it looked like:

:iabbrev myAddr 32 Lincoln Road, Birmingham B27 6PA, United Kingdom

Now every time I need to write my address, I just write myAddr and as soon as I
press the Space key after the word, it expands to the entire address.

Vim is intelligent about detecting whether you are writing an abbreviation or
it is just part of another word. This is why myAddr only expanded to the full
address when I pressed the Space key after the word. If the character right after my
abbreviation was a normal alphabetic letter, then Vim would know that I wasn't
trying to use my abbreviation and it would not expand the word. The examples with
the abc abbreviation are as follows.

abc<space> and
abc<enter>

Both expand

123abc<space> Will not expand as the abbreviation is part of a word
abcd<space> Will not expand because there are letters after the

abbreviation
abc Will not expand until another special letter is pressed

Personalizing Vim

[48]

A good place to keep your abbreviations so that you don't have to execute all the
commands by hand is in a file in your VIMHOME. Simply place a file there—let's call it
abbreviations.vim and write all your abbreviations in it. Then, in your vimrc file,
just make sure that the file is read, which is done with the source command:

:source $VIM/abbreviations.vim

Every time you realize that you will need a new abbreviation, you first execute it and
then you add it to your abbreviations.vim.

By now you have probably realized that you can use abbreviations for a lot of
other interesting things. But anyway, here is a short list of examples to give you
some ideas:

•	 Correct typical keypress errors:

 :iabbr teh the

•	 Simple templates for programming:

 :iabbr forx for(x=0;x<100;x++){<cr><cr>}

•	 Easy commands in the command line:

 :cabbr csn colorscheme night

Getting used to adding your abbreviations to a file every time you find a new one
might seem weird and inconvenient at first. At the end of the day, however, you will
realize that it has saved you a lot of typing and that it will keep doing so. The only
thing you have to do is add your abbreviations and reload the abbreviations file once
in a while.

Sometimes, it can be annoying that abbreviations automatically change when you
actually wanted to write something else. Let's say that you have an abbreviation for
your address called "addr", but you actually want to write the word "addressed". In
that case, your abbreviation would kick in and you would not be able to write the
word easily.

A solution for this is to change your abbreviation to use a function that asks you
whether or not to use the abbreviation before it actually inserts the word.

An example of such a function could be the following:

function! s:AbbrAsk(abbr,expansion)
 let answer = confirm("Use the abbreviation '" . a:abbr . "'?",
"&Yes\n&No", 1)
 return answer == 1 ? a:expansion : a:abbr
endfunction

Chapter 2

[49]

The function is called AbbrAsk and takes two arguments. The first argument is the
abbreviation and the second argument is the expanded abbreviation. For our address
example, this function would be used as follows:

:iabbrev <expr> addr <SID>AbbrAsk('addr', "your full address
here")

So, now when you write the letters addr, you will be asked whether you would like
to use the abbreviation or not.

Modifying key bindings
All of us have probably, at some point, used an editor other than Vim. Because of
this, most of us have learned to use some very specific keyboard shortcuts for doing
different tasks.

Even though the key bindings for the keyboard shortcuts in Vim are created with
ease and use of speed in mind, sometimes it can still be faster to use the shortcuts
you already know.

To facilitate this, Vim gives you the possibility to rebind almost every single key
binding it has.

In this recipe, we will learn how to change the key bindings when using Vim in
different modes.

The main commands to know when dealing with key bindings are:

•	 :map: For the Normal, Insert, Visual, and Command-line modes
•	 :imap: For the Insert mode only
•	 :cmap: For the Command-line mode only
•	 :nmap: For the Normal mode only
•	 :vmap: For the Visual mode only

Each of the command takes two arguments—the first is what keys the command
should be bound to, and the second is the command to bind. So, let's look at
an example.

Say you can't really get used to saving an open file by executing :w in the normal
mode because you are used to using Ctrl-S to save a file and would like to keep it
like that.

Personalizing Vim

[50]

A mapping for this could be:

:map <C-s> :w<cr>

Notice the <C-s> in the key binding. This is the Vim way for writing 'key
combination Ctrl+S'. Instead of C (Ctrl), you could also use A (Alt) or M (Meta).
The <cr> at the end of the command is what actually executes the command.
Without it, the command would simply be written to the command line but
not executed.

There are several other special notations for some of the other keyboard keys.
The following table shows the most common of them:

Keys Notation
<BS> Backspace
<Tab> Tab
<CR> Enter
<Enter> Enter
<Return> Enter
<Esc> Escape
<Space> Space
<Up> Up arrow
<Down> Down arrow
<Left> Left arrow
<Right> Right arrow
<F1> - <F12> Function keys 1 to 12
#1, #2..#9,#0 Function keys F1 to F9, F10
<Insert> Insert
 Delete
<Home> Home
<End> End
<PageUp> Page up
<PageDown> Page down

Maybe you only want to be able to save when you are in the insert mode and
actually editing the file. To change the command for this, you only need to
have the following:

:imap <C-s> <esc>:w<cr>a

Chapter 2

[51]

So, what happens now is that you map the Ctrl+S to do a combination of key presses.
First, press <esc> (the Escape key) to get out of the insert mode and into the normal
mode. Then, use :w<cr> to execute the actual saving of the file, and finally the a to
get back into the insert mode and go to the end of the line.

You could expand the mappings to fit all of the standard copy / paste / cut / save
shortcuts from many applications. This could be constructed like this:

" save file (ctrl-s)
:map <C-s> :w<cr>
" copy selected text (ctrl-c)
:vmap <C-c> y
" Paste clipboard contents (ctrl-v)
:imap <C-p> <esc>P
" cut selected text (ctrl-x)
:vmap <C-x> x

If you are in Gvim, you can even get dialogs shown for the save-as and Open
functionalities.

"Open new file dialog (ctrl-n)
 :map <C-n> :browse confirm e<cr>
"Open save-as dialog (ctrl-shift-s)
 :map <C-S-s> :browse confirm saveas<cr>

You can get into a situation where you map a key combination in which the first key
is actually bound to a function of its own. An example could be the $ key, which is
bound to the "jump to end of line" functionality in Vim. You might, however, want
to have a key binding like $1 for some functionality, $2 for some other functionality,
and so on. The mapping could then look like:

:map $1 :MyFunction1()<cr>

:map $2 :MyFunction2()<cr>

Now when you press $, Vim will wait for one second after you press the $ key,
and if it does not get the second character in the key binding before the timeout, it
will execute the normal "jump to end of line" functionality. However, if you press 1
before the timeout, it will execute your Myfunction1()function instead.

With the ability to change the keyboard mapping in Vim, you really have an access
to a powerful way of modifying the editor completely according to your needs.

You can read more about mappings in the Vim help system under:
 :help key-mapping.

Personalizing Vim

[52]

Summary
In this chapter, we looked at how to make Vim a better editor for you by modifying
it according to your personal needs.

We started by learning about how basic modifications of font and color scheme
can give your editor a personalized look.

Then we dived a bit deeper into using colors for marking search matches, thereby
making them easily recognizable.

To get the most out of an editor like Vim, you would often like it to have a large
area for editing the files and less space spilled on the GUI. We looked at ways of
modifying both the status line and tabs to be smaller and more informative.

Even though the menu bar and toolbar can be unimportant and just take up screen
real estate, they can also be very useful additions to your editor. In this chapter,
we learned how to add our own menu to the menu bar and even how to add
icons that are full of functionality to the toolbar.

Many things can be done to the editing area to make it fit your personal needs. In
this chapter, we looked at how to make it easier to get an overview of the editing
area. Better and more visual cursors have been proposed, and line numbers have
been added to the area.

We also looked at how to make the spell checker in Vim follow your preferred
language, so that you will never again misspell a word. If using spell checker is not
enough to correct your errors, then maybe the use of abbreviations can help you.

Finally, we looked at how we can change the key bindings in Vim in such a way
that it will react on keyboard shortcuts you are used to from other editors.

You have a fully personalized Vim editor with all the recipes in this chapter and
you are now ready to move on and learn more about how you can optimize your
navigation around the files in Vim.

Better Navigation
Working with large files, or many files at the same time, can be a troublesome task.
Sometimes, you realize that you waste more time looking for content to edit than
doing the actual editing.

The philosophy of Vim is all about not wasting our valuable time, so Vim has means
for optimizing the way we navigate files.

In this chapter, we will look at some of the ways in which Vim helps us easily
navigate through our files, whether we're dealing with one file or fifty files. Some
recipes use marks to mark a spot for later return, while others use search techniques
to find the place you are looking for.

The recipes in this chapter cover the following areas:

•	 Faster navigation in a file
•	 Faster navigation in the Vim help system
•	 Faster navigation in multiple buffers
•	 Faster lookup of files using the Vim file explorer
•	 In-file searching
•	 Searching in multiple files or buffers with vimgrep
•	 Using marks as a tool for navigation
•	 Using signs as a tool to get a better overview

After reading this chapter, you should be able to boost your navigation speed and
have no problems finding the files you are looking for.

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Better Navigation

[54]

Faster navigation in a file
Sometimes even the simplest of tasks, like navigating through a single file, can be
optimized. Vim offers several methods of navigation within a file, which can adapt to
the contents of the file and how it is organized. Some of these methods are obvious,
while others are more complex.

Context-aware navigation
Mostly, the files we are editing are well structured. If our files are text, then this
structure can be in the form of paragraphs, sentences, and words, or at other times
code with functions, blocks, and code lines.

Vim supports jumping around the file according to the structure in the file. It also
has key bindings that make it easy to go to the exact place in the file.

Let's look at some examples:

•	 Moving around within a text file
•	 Moving in a code file

Moving around within a code file
You are working on a normal text file and in the middle of a sentence you realize that
you have forgotten to make the first letter in the paragraphs uppercase. You could,
of course, use the arrow keys or the H | J | K | L navigation keys to move to the
beginning of the paragraph to correct this. However, it would be faster to just press
the following in the normal mode:

{

You are now placed at the beginning of the paragraph, or in the empty line just
above it (if one exists). Now, you go into the normal mode by pressing the Esc key
and then use the { movement command to go to the beginning of the paragraph. The
same can be applied if you want to go back to the end of the paragraph—you simply
have to use the counterpart of {, namely:

}

Maybe you were not actually working at the end of the paragraph, but rather on
correcting some text in the middle of the paragraph. Vim remembers where you
were making changes to the file previously (and actually up to 999 of the last places
you have changed something) and you can ask it to take you back to the correct
place. Just use the following command in the normal mode:

g,

Chapter 3

[55]

Using this command several times in a row will loop you through locations of
previous changes in the file. As with the { command, this command also has a
counterpart that moves forward through the list of recent locations where changes
have taken place. The command for this is:

g;

Vim will alert you if you get to one of the ends of the list of changes.

Maybe it wasn't at the beginning of the paragraph that you forgot to capitalize a
letter, but rather at the beginning of the current sentence. Again, Vim helps you
move faster and offers you a pair of commands to move to the beginning and end
of the current sentence. The commands are as follows:

•	 (: Move to the beginning of the sentence
•): Move to the end of the sentence

Vim doesn't want us to waste any time when working with it. Even though you
could easily go through the letters of a word by simply using the arrow keys, Vim
still thinks this is waste of key presses and instead offers a set of commands for word
movement such as:

•	 w: Move to the beginning of the next word
•	 b: Move to the beginning of the previous word
•	 e: Move to the end of the word

These commands can be combined such that if you want to go to the end of the next
word, you simply press:

we

When it comes to what a word actually consists of, Vim has two definitions. In Vim
we have:

•	 A word consisting of alphabetic letters, numbers, dashes, and underscores
•	 A WORD consisting of any character except whitespaces (tab and space)

The previously mentioned movement commands work on word, and of course Vim
has the same commands available for WORD. Simply use the same commands, but
use them in uppercase instead (for example, use w to go to the beginning of the next
word).

Better Navigation

[56]

If you want to execute one of the commands mentioned in this section
more than once in a row, simply add the number of times you want it
executed in front of the command. For example, 5g to go to the place
you changed something five changes ago.

Moving in a code file
Compared to text files, code does not have any paragraphs or sentences to navigate
through. It does, however, frequently contain a lot of structures and blocks, each of
which has a very specific contextual meaning within the code. An example could be
the simple code block:

If(a == b)
 {
 print "a and b are the same";
 }

Here, the line with print is within the context of the if block surrounding it.

Because Vim is the favorite editor of many programmers, it offers a lot of movement
commands to use when you are working with code. Common for all of them is that
the parts of the code you want to jump between need to have a contextual connection
to each other.

A simple example could be a construction such as the #if-#else-#endif
construction from the C programming language. Here we have a beginning (#if),
an end (#endif) and a midpoint (#else).

So, if you are in the line with #if and press the following command:

%

You will go to the #else part. Pressing it again will take you to the #endif, and yet
another execution of the command will get you back to the #if.

Vim does not know all programming language constructs, but by default it
knows most of the contextual constructs of the C programming language.
Besides this, it knows the normal block construction methods from most
programming languages—the use of parentheses and brackets (for example,
{ is the block start and } is the block end).

Chapter 3

[57]

If you want Vim to know the constructs of many other programming
languages, then install the mtchit plugin. This plugin is available with
Vim as of version 7.0, but can also be found at http://www.vim.org/
scripts/.

Simply by knowing the programmer's common use of parentheses / brackets, Vim
can provide us with several useful navigation commands. This means that as long as
the code uses some start parenthesis / bracket to begin a block and the counterpart
to end it, Vim will understand it.

Let's say you are in a function that consists of many lines and you want to go to
the beginning of the function. Mostly, the brackets surrounding the contents of a
function are the outermost pair of brackets around the place in the file where you
currently are (given that you are editing the current function). So, for Vim to find the
beginning of the function, it simply has to find the outermost bracket pair and then
go to the opening bracket.

function myExample() {
 ...many lines of code...
 /* cursor is placed at the beginning of this line */
 ...many lines of code...
}

In the previous example, the % command would take us to the closing bracket and
pressing it again would take us to the opening bracket. But, what if the cursor was
actually placed inside another pair of brackets? In that case, the % command would
only move the cursor to them, and not the beginning of the function.

Again, Vim has some handy commands for you:

•	 [[and][: Move backwards / forward to the next section beginning (for
example, start of a function)

•	 [] and]]: Move backwards / forward to the next section end (for example,
end of a function)

Executing these commands multiple times in a row takes you to the beginning / end
of the next / previous section, and therefore gives you a convenient way of cycling
through the functions in a file.

So if you have two or more functions in the file and the cursor is currently at the
beginning of the first function, pressing [key twice will take you to the beginning of
the next function, and so on. If you want to go back to the previous function, you
just have to press]] and Vim will take you right back to the beginning of the
previous function.

Better Navigation

[58]

Note that in most object-oriented languages, the class beginning / end is
often the outermost section.

Often, you just want to go to the beginning of the current block (for example,
the beginning of a while loop) because it is here that you have defined all the local
variables for the scope of this block. For this also, Vim has a set of
movement commands:

•	 [{: Move to the beginning of the block
•]}: Move to the end of the block

If the block in the code is a comment, then it does not have any brackets around it.
So Vim cannot use the brackets to navigate to its beginning /end.

Therefore, Vim has some special movement commands for comment blocks:

•	 [/: Move to the beginning of the comment block
•]/: Move to the end of the comment block

By default, not all comment formats are supported by Vim. It supports the comment
formats used in the C programming language (/* */), C++ (//), and in many
scripting languages (#). However, it is possible to add support for extra comment
formats when you add support for the syntax of new programming languages.

Sometimes, when you work on a piece of code, you tend to forget how a variable
is actually defined. Vim has a command that can help you look up the definition of
the variable (or the first occurrence of it, in the case of interpreted languages such as
Python) if it is defined in the current file. The command is as follows, and should be
entered while the cursor is placed on the variable name you want to look up:

gd

This command is easy to remember if you just think of the phrase "Goto Declaration"
and take the first letter from the two words.

What this command actually does is that it starts by going to the beginning of
the current section (remember the [[command) because this is where the local
definitions are normally placed. Then, it makes a search forward in the file for the
first occurrence of the variable name. If it does not find it before reaching the place
where you started the lookup, then it moves to the first line of the file and again
searches forward in the file looking for any global definitions of the variable. If it still
does not find the definition, then Vim does a * search for the variable in the file (read
more about the * search in the Search and you will find section).

Chapter 3

[59]

If you know that the variable is globally defined, or if you want the global definition
of the variable, then Vim has a command that starts by looking from line one of the
file, instead of looking in the current section first. The command is:

gD

Vim is naturally smart enough to ignore any references to the variable in comment
blocks because these are definitely not the declaration of the variable.

If Vim finds the variable definition (or the first available usage of the variable in the
file), then it moves the cursor to this place.

Put 1 in front of the gd command (like 1gd) if you want Vim to ignore all
the matches that are inside a { } block that ends before the current cursor
position (for example, in another function block earlier in the file).

Navigating long lines
Some like their long lines visually wrapped in Vim, while others want them to
extend beyond the border of the editor (that is, not shown). Personally, I like to
have my text lines wrapped because it makes the overview of the text a lot better.
However, this does introduce an irritating problem. If you have a long line and it
is wrapped, then the wrapped part shows up as a new line in the visualization of
the file contents. This is not a problem in itself, but navigating to the wrapped part
of the line is. If you use the arrow keys, or J / K to navigate between the lines, then
it simply ignores the wrapped part of the line and goes directly to the next actual
line in the file. If you dislike this behavior, then here's a short little recipe to fix this
problem.

I have discovered that if I hold down the Alt key while I use the up / down arrows
to navigate the lines in the file, then Vim should follow the lines as shown visually in
Vim, and not as the actual lines in the file. The key mappings to make this work are
as follows and should simply be added to your vimrc file:

map <A-DOWN> gj
map <A-UP> gk
imap <A-UP> <ESC>gki
imap <A-DOWN> <ESC>gji

The mapping works in the normal mode and the insert mode. If you want this to
happen without having to remember to hold down the Alt key, then simply remove
the A- part of the key combination to which the commands are mapped (for example,
map <DOWN> gj).

Better Navigation

[60]

Faster navigation in Vim help
Vim comes with a very useful and comprehensive help system that you have
probably by now already played around with. What you might not know, however,
is that the help system comes with a hyperlink support that resembles the hyperlinks
we know from the Internet. There are two types of links—subject links marked as
"some subject" and option links marked as "option".

A subject link refers to the beginning of a section in the help system, whereas the
option links take you directly to the description of a certain option. When you place
the cursor on a link, you can press Ctrl+] to follow the link no matter what type of
link it is. This is very nice, but if you are using a non-English keyboard layout, the
key for] is often not available with a single key press. In this case, it could be nice to
remap the key to some other key. In an Internet browser, you could navigate to a link
and press Enter, and to reflect this you could have a mapping like the following:

nmap <buffer> <CR> <C-]>

If you are in a browser and want to return to the previous page you visited, then
you can press the Backspace key. It would be nice to have this in the Vim help
system. Hence, a mapping like the following could be useful:

nmap <buffer> <BS> <C-T>

Now we can move forward and backward in the hyperlinks in the help system with
easy-to-remember key bindings. Now, let's also add some easy navigation keys for
finding the next / previous place where a subject or an option link is situated in the
currently open help file. This way we can easily scroll through the help file until we
find what we are looking for.

nmap <buffer> o /''[a-z]\{2,\}''<CR>
nmap <buffer> O ?''[a-z]\{2,\}''<CR>
nmap <buffer> s /\|\S\+\|<CR>
nmap <buffer> S ?\|\S\+\|<CR>

Now you can press o to go to next place where an option link is, or s if you want to
go to the next subject link. The same is available if you want to move backwards.
You just have to press the capital letters instead—hence, O for the previous option
link and S for the previous subject link.

To prevent the mappings from interfering with other key mappings, you can
add them to a file called help.vim and place it in $VIMHOME/ftplugin/.

Chapter 3

[61]

So now, we are only missing a final bit of our improved help system navigation. We
need a way to open the help system a bit faster. Normally, when you press the F1
key, the help system opens on the default page. However, it would be nice if the key
did a lookup of the word currently under the cursor. So let's look at a key mapping
for this:

:map <F1> <ESC>:exec "help ".expand("<cWORD>")<CR>

This one is a bit hard. As the :help command is normally used for looking up Vim
commands, the commands on the line after the :help are not interpreted. Because of
this, we have to wrap the command in the :exec command.

To get the word under the cursor, we use <cWORD>. The WORD part is in uppercase,
which means that all characters except whitespaces (space and tab) can be part of the
word. This is needed because Vim commands can contain special characters other
than alphanumeric (think of, if you were to look up <cWORD>).

This key mapping can be used from outside the help system and could, therefore, be
added to your vimrc file, and not placed in help.vim.

Faster navigation in multiple buffers
Often, you are not just working on one file, but have multiple files open. For every
file you have open, you have a Vim buffer. A buffer can be shown or hidden, which
means that to find the file you want to work on, you will need to find the buffer
containing it.

You could, of course, bring up the list of buffers and find the right buffer in the list.
To show the list of buffers, you can use the command:

:buffers

This list is not interactive. So in order to select the buffer you want to go to, you need
to look up the number at the beginning of the line where the file is listed. This is the
number of the buffer where the file is placed. With this number, you can now go
directly to the buffer by executing the following command:

:buffer N

where N is the number of the buffer.

This way of navigating the buffers is not always the most efficient. You could also
cycle through the buffers using the following commands:

•	 :bnext

•	 :bprevious

Better Navigation

[62]

Even though these commands can be accessed through their shorter names :bn and
:bp, they are still commands you have to write in the normal mode. This means that
it takes at least five key presses to execute the command, which is not convenient.

So, in order to make this buffer cycling a lot faster, you could add the following
mapping to your vimrc file:

map <C-right> <ESC>:bn<CR>
map <C-left> <ESC>:bp<CR>

What these map lines do is make it possible to use Ctrl+left arrow key to go to
previous buffer and Ctrl+right arrow key to go to next buffer. So, by holding down
Ctrl while pressing the left / right keys repetitively, you can easily and quickly cycle
through the files you have open.

If you want to toggle back and forth between the current and previous
buffer, you can use Ctrl+6 (Ctrl+o Ctrl+6 if in the insert mode) or :e #.

Open referenced files faster
In many programming languages, you can include other files in the current file,
and thereby split the contents across multiple files. Often, the inclusion of the file
resembles something like:

#include "somefile.h"

Here, we have "somefile.h" as the name of the file we included.

It would be nice to have an easy way to open the included file. Vim has a command
that helps you in doing exactly that. Move the cursor to the place in the file where the
filename of the file you want to open is, and execute the following command in the
normal mode:

gf

You can remember this command by thinking of the goto file. Vim looks for the file
in several different places as follows:

•	 Vim looks in the places it has defined in the path option and relative to
the currently open file

•	 If not found, Vim uses the suffixadd function to see if it can find the file
by adding one of the suffixes (for example, adding .c to the filename)

Chapter 3

[63]

•	 If still not found, Vim uses the includeexpr expression to convert the
filename to something that is hopefully understandable as a filename (for
example, java.com.http is translated to java/com/http.java).

If Vim finds the file, it opens the file in the current buffer; and if not, it returns an
error message. If the buffer you are currently in is not saved, or if anything else is
going on such that Vim cannot abandon the currently open file, then Vim cannot
open the file. This can be quite annoying, but it is a problem we can prevent from
happening. By simply adding the following command to your vimrc file, you will
always open the new file in another buffer and Vim does not have to abandon the
currently open file:

:map gf :edit <cfile><CR>

This command simply overwrites the gf command and instead opens the file under
the cursor with the :edit command. If it does not exist, this command opens a new
empty buffer.

If you want Vim to support filenames with spaces when using gf, add the
following to your vimrc: set isfname+=32.
32 is the decimal number representing space in the ASCII table.

Search and you will find
We all know the feeling of having seen the things we have misplaced somewhere,
but not remembering exactly where. What we normally do in a situation like this is
search for the thing we are missing.

In Vim, we can do the exact same thing. Let's split the search into three cases
as follows:

•	 Searches in the current file
•	 Searches in multiple files
•	 Searches in the help files

In the following sections, we will look at recipes that help you with the three types
of search.

Better Navigation

[64]

Search the current file
Even though your file might not be that long, it can still be a pain to find something
you are looking for. Vim has several ways to help you find what you are looking for.

So, let's look at some examples.

Example 1: Find the next occurrence of a word
You know that you have the text you are looking for somewhere near the word
"someWord". To find this, you simply need to perform a search for it by executing
the following command in the normal mode:

?someWord

The command searches backwards in the file for the first occurrence of the word after
the question mark. If you are at the end of the file, this is the perfect way to search for
a word. However, if you are at the beginning of the file it would make more sense to
search forward in the file. This is done by exchanging the question mark for a slash:

/someWord

The word might be in the file several times, and maybe the first place you found
wasn't the place you were looking for. No worries. You simply need to press n to
go to the next occurrence of the word in the direction of the search. If you would
rather change the direction, simply press N instead and it will find the preceding
occurrence of the word.

If you want to do the same search again, simply use ?? or // instead of writing the
entire word again.

If you add set incsearch, your search will be live and the cursor will start jumping
through the file as you type. Every time you input the next character of the search
word, the cursor location will be moved to the next / previous occurrence of a word
matching the search word.

You have to press Enter in order to actually execute the search in the end,
or else the cursor will go back to where it came from. To cancel a search
and go back to where you came from, you can simply press the Esc key.

Chapter 3

[65]

Example 2: Search for a word under the cursor
If you are already near one occurrence of the word you are looking for, but it is just
not the right one, or maybe you want to look through all places where a certain word
is used and the word is already written, why use extra key presses on writing the
word again? Vim has just the right commands for you. Place the cursor on or just in
front of the word you want to search for, and press either of the following two keys
in the normal mode:

*

The first one searches for the previous occurrence of the word under the cursor,
and the second one searches for the next occurrence of the word. Pressing the key
multiple times jumps to the next / previous occurrence of the word repeatedly. This
makes it really fast to jump through all occurrences of the word.

Maybe your word isn't actually a complete word, but just a part of a word. Vim has
a command for this too. Simply press the following key combination in the normal
mode:

g#

g*

Now Vim not just jumps to the next occurrence of the word, but also to any
occurrences where the word is part of another word. For example, placing the cursor
on the word "foo" and pressing g# will make Vim jump to the next "foo" in both
"foobar" and "food".

Search in multiple files
Maybe what you are looking for is not in the current file. Maybe you are not
even sure which file you should be looking in to find what you are looking for.
On a Unix-flavored operating system like GNU / Linux, you typically have the
command-line tool grep that looks for certain words or patterns in all the files
specified. In Microsoft Windows, there is a similar tool available as the FIND and
FINDSTR commands. However, these are not commonly used by Windows users.
In order to provide all Vim users (no matter which platform) with a way to search
through files, Vim has its very own grep command. The command to use is:

:vimgrep /pattern/[j][g] file file2... fileN

Better Navigation

[66]

This command takes two arguments. The first is the pattern you want to search for.
You can use Vim's regular expressions in the pattern or you can just write a word.
The pattern needs to be enclosed in /, and after the last / you can add either of the
two flags j and g. The flags help you select how much to get in your result, and how
it should be presented to you.

Instead of / around your pattern, you can use any non-ID
character. A non-ID character is any character not defined in the
isindent option.

If the g flag is added, then the result will include a line for each match of the pattern.
This means that if your pattern is matched three times in the same line, then you
will get the line three times in your result. If the j flag is added to the end of your
pattern, then you will not be presented with the result. It will just be updated into
your quickfix list for later retrieval (see :help quickfix for more information about
quickfix lists). Without the j flag, you will be moved directly to the first match and
the rest of the result will be added to your quickfix list.

To show your quickfix list with the vimgrep result, simply use
the :clist command or navigate to next / previous match with
:cnext / :cprevious.

The second argument to the vimgrep command is the list of files you want to search
through. The file list can consist of a single filename, a list of filenames, or a pattern
using the star wildcard (for example, *.c *.h). You can also use the ** wildcard
such as **/*.c if you want to search in all the C files in the current folder, and
recursively through all subdirectories.

Chapter 3

[67]

Search the help system
Sometimes when you need help for something in Vim, you might not know what
exactly you should look for. Of course, you could start going through the entire help
system, but it consists of several different files and thousands of possible keywords.

So, Vim has the right command to help you out here. As in the previous recipe,
the keyword is grep, and for the Vim help system it is centered around the
following command:

:helpgrep pattern [@LANG]

The command takes one argument, the pattern you search for, plus one optional
argument to limit the language. Let's look at an example to make it clearer. You need
some information on autocompletion, but you do not know where to look for it. As
English is the only language you understand, you would want the help to be in the
same language. A search for this could look like the following:

:helpgrep completion@en

What the command does is search for the word completion through all the English
(en) documentation. The command takes you to the first match it finds, and the rest
of the matches are added to the quickfix list for later retrieval.

If you want to use the location list instead of the quickfix
list for your result, then you can use the :lhelpgrep
command instead.

The helpgrep command does not actually look through all the documentation when
searching, but uses a tag list containing tags for all the available documentation
to look up a pattern. This tag list is, however, not created automatically. So it is
important to note that if you install a Vim plugin that has its own documentation,
then you need to use the following command:

:helptags /path/to/documentation

The path to the documentation only needs to be where you have installed the
new documentation. But in order for the Vim to actually be able to find the
documentation, it has to be in a docs/ directory in one of the places defined in
the runtimepath in Vim (see :help 'runtimepath').

Better Navigation

[68]

X marks the spot
Sometimes when editing a line in a file, you have to go somewhere else in the file to
look up something. Afterwards, it can be difficult to find the line you were editing,
and you waste valuable time.

Wouldn't it be nice if you could mark the spot before leaving it, such that it is easy
to find later?

Vim has some tools for you that can do just that. We can split it into two categories:

•	 Visible markers
•	 Hidden markers

In the following two sections, we will look at the possible ways of adding marks in
Vim, and then it's up to you to figure out which one fits your needs the best.

Visible markers—using signs
In Vim, we have a nice feature for marking a line with a visible mark—signs. A sign
is a mark that will show up in the leftmost column in the editor.

If you want to change the color of the column in which the sign is shown,
then you can use the following command:
:highlight SignColumn guibg=darkgrey

Depending on whether you are using Vim in a console or as Gvim, the sign can be
either a combination of characters (for example, >>) or an icon. To use the signs,
you will need a bit of setting up. You only have to do this once if you have it in
your vimrc file.

The first thing you have to do is define the signs you want to have. The command
you need to use is as follows:

:sign define name arguments

The arguments can be one of the following:

•	 linehl: The color group you want to mark the line with.
•	 text: The text used as a sign in console Vim (for example, >> !! or ++). A

maximum of two characters can be used per sign.
•	 texthl: The color group you want the sign text marked with.

Chapter 3

[69]

•	 icon: The full path to the icon you want for the sign in Gvim. The icon
should be small enough to fit the size of only two characters. The format
should be a bitmap format, but .xpm format is preferred.

An example could be:

:sign define information text=!> linehl=Warning texthl=Error icon=/path/
to/information.xpm

Now, we have defined a sign and have added it to our vimrc file, and we are ready
to place the sign somewhere. The command is:

:exe ":sign place 123 line=" . line(.) ."name=information file=" .
expand("%:p")

Replace the number 123 with any number you will use as ID for this sign.

As you can see, this is a bit harder; but it can easily be mapped to a key.

What it does is add the sign named information under the ID 123 to the current
line (line(.)) in the currently open file (expand("%:p")). Mapping this to a line
is as follows:

:map <F7> :exe ":sign place 123 line=" . line(".") ."name=information
file=" . expand("%:p")<CR>

This maps the information sign to the F7 key such that it will be placed in the current
line whenever you press the F7 key.

Sometimes, we also want to remove the sign again. In Vim, this is called to "unplace"
a sign:

:sign unplace ID

Better Navigation

[70]

The ID is the ID you gave your sign when you placed it (123 in the previous
example). This removes the sign from all the places where you have added the
sign with that ID. You might want to remove it only from the current file, and can
therefore add another argument for the file like this:

:sign unplace ID file=name

Or you can use this to remove the sign from the buffer:

:sign unplace ID buffer=bufferno.

Here, bufferno is the number of the current buffer (see :buffers).

If you want to remove the sign in the current line, then you can simply use:

:sign unplace

Let's map this to Ctrl-F7 just to make it symmetric with the sign placement mapping
we have defined earlier:

:map <C-F7> :sign unplace<CR>

If you have added several signs with the same ID to a file, then the
previous mapping will only remove the uppermost sign with the
specific ID and not the one in the current line.

As this is a chapter about navigation, we also need to know a bit about navigating to
a sign. This is called sign-jumping in Vim and uses the following command:

:sign jump ID file=file

Here ID is the ID of the sign you want to jump to and file is the file you want to
find the sign in. Instead of file=file, you can use buffer=bufferno.

Again, if the sign has been added with the same ID several times in the file / buffer,
then it will jump to the first sign in the file.

Paul Rouget has created a Vim script that makes the usage of signs a lot
easier. You can find it here: http://www.vim.org/scripts/script.
php?script_id=1580.

Chapter 3

[71]

Hidden markers—using marks
Marks is a fast and easy way to add a mark to the current line so that you can later
jump to it easily. Basically, it consists of a normal mode command that sets the mark
and a normal mode command to jump to the mark. You won't be able to see if a line
is marked or not unless you open the list of marks.

So, let's look at how to mark the current line. We simply press the m key in the
normal mode followed by one of these characters—0-9, a-z, or A-Z. For instance, if
you press m + a it means that the current line is marked with the mark named "a". If
you later want to jump to this line, then you simply press '+a (single quote + mark
name) and you will be taken to the beginning of the line you marked (if indented,
then to just before the first non-whitespace character).

In some cases it might not be efficient to be placed at the beginning of the line, but
it would be much better to be placed where you were when you added the mark.
To jump to this place instead, you simply replace the single quote with a ` (backtick)
like `+a.

The different mark names have different meanings and work areas as follows:

Mark Usage
0-9 These are marks set from .viminfo and normally only used by Vim itself

(for example, mark 0 is the place where cursor was when the file was last
exited). A user can, however, use this to make an "open recently used"
functionality.

a-z These are marks only available in the current file. These marks are deleted
when the file is closed. You can only jump to a lowercase mark if you are
inside the buffer containing the file.

A-Z These are marks available across files. These marks can be jumped to even
if you are not in the file where the mark is situated. If a viminfo file is
available, then these marks are saved until next time you edit a file.

You can always get a complete list of your marks by using the following command:

:marks

This shows which files the different marks are set in and on what lines. To delete one
or more marks, you can use the command:

:delmarks markid markid...markid

The examples of how it can be used are:

:delmarks a b c

:delmarks a-c

Better Navigation

[72]

:delmarks a f-i 1-4

If you want to delete all marks in the current buffer, then simply use the command:

:delmarks!

Other types of marks are set by Vim all the time when using it. These can be marks
for where the cursor was the last time the insert mode was exited, beginning / end of
text selected in the visual mode, the last place you changed something, and so on.

Look in :help mark-motions for more information on how to use marks and which
other types of marks you have available.

Summary
In this chapter, we looked at alternative ways for boosting the speed at which we
navigate through files and buffers in Vim.

First, we looked at how to navigate through a single file faster by using the
contextual structure of the file for navigation. We also looked at a nice recipe for how
we can make it easier to navigate files with long, wrapped lines.

Next, we looked at how to to navigate the Vim help system faster and learned how
simple key bindings can make the help navigation more intuitive and recognizable.

Now we knew how to navigate inside a file, but we also needed to know how to
navigate between files and buffers. The next section took us through how to navigate
the buffers faster and how to open a file that is referenced by another file with only
two key presses.

We can navigate in many ways, and in the preceding sections we looked at how to
use the search mechanisms in Vim to navigate not only the open files, but also files
on the disk. We also learned how to use searches in the help system to find help on
topics we could not find normally.

Finally, we have looked at how to use signs and marks to jump around in files, and
how Vim helps us simply by adding some marks automatically when we use it.

So, we have learned how to navigate around in a file faster with Vim. You are now
ready to move to the next chapter where we will take a look at how to boost your
productivity by using even more of the built-in Vim functionality.

Production Boosters
In this chapter, we will look at how even small changes can make work go faster and
more smoothly in Vim. Some recipes introduce you to features in Vim, while others
will show you how scripts can help.

It doesn't matter whether you use Vim for making small changes to configuration
files, or if you use it as your primary editor in a large development project. You
will find recipes in this chapter that can help you improve your performance when
using Vim.

This chapter contains recipes that cover the following topics:

•	 Templates using simple template files
•	 Templates using abbreviations
•	 Autocompletion using known words and tag lists
•	 Autocompletion using omnicompletion
•	 Vim macros and macro recording
•	 Using sessions
•	 Project management using sessions
•	 Registers and undo branches
•	 Folding for better overview and outlining
•	 vimdiff for change tracking
•	 Opening files everywhere using netrw

After reading this chapter, you should be able to boost your productivity in Vim
by several percent.

Production Boosters

[74]

Using templates
No matter what type of files you are working with, there are always some basic
things to set up when starting off with a new file. Creating this setup is a tedious
task, and even worse is the fact that you have to do it again when you start on a new
file. So, why spend a lot of time on these things when you could just as well create
templates for these types of structural patterns?

In the next couple of sections, we will look at recipes for different types of templates.
Some templates will be file-type specific while others will be using user input to
trigger small-content templates (for example, code snippets used by programmers).

So, let's get started on creating some templates.

Using template files
Every time you start working on a new file, it is most likely that the first thing you'll
do is add some sort of header (or other information) to the file. What you have to
add is, of course, dependent on which file type you are working on. Some examples
could be as follows:

•	 Adding basic structure (<html>, <head>, and <body>) to new HTML files
•	 Adding a header to all C files and also a main function to the main.c files
•	 Adding the main class structure to a Java file

You can probably find many other things you would like to add to the file types you
work with.

So, how do we create a template file? Let's use an HTML file template as an example.
The structure in such a file is quite static, and hence great to have a template for. Our
simple template could look like:

<html>
 <head>
 <title></title>
 <meta name="generator" content="Vim" />
 <meta name="author" content="Kim Schulz"/>
 </head>
 <body>
 <p>Content goes here...</p>
 </body>
</html>

We create a directory in our VIMHOME called templates/ and place a file with the
previous HTML code in the directory. We save the file as html.tpl.

Chapter 4

[75]

Now the first template is in place, but we need to get it loaded into all-new HTML
files that we create. To do so, we add the following auto-command to our vimrc file:

:autocmd BufNewFile *.html 0r $VIMHOME/templates/html.tpl

This command ensures that when you create a new file with the *.html file
extension, the content of your template file is read into your new file. This way your
file gets prepared with the template's content before you can start editing it.

All this is very nice, but after adding a bunch of templates, you might get tired of
adding lines to your vimrc file. So, let's make our first line a bit more intelligent:

:autocmd BufNewFile * silent! 0r $VIMHOME/templates/%:e.tpl

What this single line does is that whenever you open a file, it looks for a template
that matches the extension of the file. For example, when creating the index.html
file, it looks in $VIMHOME/templates/ for a file named html.tpl.

If there is no template for the file type, then it simply creates an empty file as usual.

Let's take these templates even further by adding support for placeholders (for places
where you want to add text to the file, fast). A placeholder could look very different
depending on what you like, but I propose something like <+KEYWORD+>. So, if we
take a line from the HTML template mentioned previously and add a placeholder to
it, it would look like this:

 <html>
 <head>
 <title><+TITLE+></title>
 <meta name="generator" content="<+GENERATOR+>" />
 <meta name="author" content="<+AUTHOR+>"/>
 </head>
 <body>
 <p><+CONTENT+></p>
 </body>
 </html>

Now, we have the placeholders in place and only need a way to jump between them.
So, let's add a command to our vimrc that will make it easy to make this jump. We
want to use Ctrl+j as the jump key binding because it can easily be used in the insert
mode and j (for jump) makes it easy to remember. The command could look like this:

nnoremap <c-j> /<+.\{-1,}+><cr>c/+>/e<cr>
inoremap <c-j> <ESC>/<+.\{-1,}+><cr>c/+>/e<cr>

Production Boosters

[76]

Now, you can easily jump to the next placeholder in the file, change the text, and
jump on to the next placeholder simply by pressing the Ctrl-j text, the Ctrl-j text,
and so on.

By having the keyword in the placeholder, you can easily see what you are supposed
to add there.

You can mark your placeholders by adding a match command to your
vimrc: match Todo /<+.\++>/ (replace Todo with whatever color
group you like).

Abbreviations as templates
In the previous section, we learned how to make templates for entire file types. So
now, let's look at how to make templates for patterns inside the file content itself.

In Chapter 2, Personalizing Vim, we briefly looked at how to use abbreviations for
limiting the amount of key presses whenever possible. Now, let's take the idea of
using abbreviations and copy it to our template system. Let's look at the command
and what it's all about, just to refresh our memory:

:iabbrev match replace-string

We only want this command to work in insert mode as this is where the pattern
templates should be used. An example could be the following pattern template
for a C file:

:iabbrev <buffer> for(for (x=0;x<var;x++){<cr><cr>}

This gives us a nice little for loop whenever we input for(in the contents of the file.
The (is added to prevent manually written for loops from being converted. The
inserted content will look like this:

for (x=0;x<var;x++)
 {
 }

Having <buffer> in front of an abbreviation limits its availability
to the current buffer.

As you can see, this is quite static code. In order to make it a bit more flexible,
let's use the placeholder concept we introduced in the previous section.

Chapter 4

[77]

Because the placeholders in this case are more like jump points, we simplify them
to be just <+++>. Besides this, we need one single placeholder for where the cursor
should be placed after inserting the pattern template. In case of the previous
example, it would be nice to have the cursor placed right after the start parenthesis.

So to make this work, we introduce the !cursor! placeholder and the command will
look like this:

iabbrev for(for(!cursor!;<+++>;<+++>){<cr><+++><cr>}<Esc>

:call search('!cursor!','b')<cr>cf!:

(All of the previous command should be on one line.)

Now, whenever the for(abbreviation is written, the for loop is inserted, and the
cursor is moved to the placeholder !cursor! (which is removed). So, you will be
ready to fill in the parameters for the for loop and jump to the next parameters
with Ctrl+j.

It probably won't take you long to realize that many programming languages have
the same main structures (such as the for loop), but they differ just enough to not be
able to use the same pattern template. So, let's go back and look at what we already
have in our template system, and see if we can make the templates file type aware.

In the previous section, we opened a template file depending on the extension of the
file. It looked like this:

:autocmd BufNewFile * silent! 0r $VIMHOME/templates/%:e.tpl

Let's modify this such that it also loads the appropriate abbreviations for our pattern
templates.

To make the code clearer, we also move the functionality out into a function of its
own. It could look like the following:

function! LoadTemplate(extension)
 silent! :execute '0r $VIMHOME/templates/'. a:extension. '.tpl'
 silent! execute 'source $VIMHOME/templates/'.a:extension.'.patter
ns.tpl'
endfunction

And to actually call the function, we change autocmd to look like this:

:autocmd BufNewFile * silent! call LoadTemplate('%:e')

The LoadTemplate function looks in the templates folder in your $VIMHOME for two
files, EXTENSION.tpl and EXTENSION.patterns.tpl where EXTENSION is replaced
with the extension of the file you are currently opening.

Production Boosters

[78]

The first file will hold your template for the file type, and the second file will contain
the abbreviation commands for all the patterns you have created for this particular
file type. If it does not find the file, then silent! will make sure that it does not give
you an error message, but simply returns nothing to you.

So, now it is up to you to fill in the templates and thereby complete your personal
templating system.

Many template system scripts exist for Vim. Most of them are based on
the same concept as described in this chapter. However, they have added
even more functionality. I will recommend that you look at mu-template
by Gergely Kontra if you would like more templating options than
those described here at http://www.vim.org/scripts/script.
php?script_id=222.

Snippets with the snipMate script
Many template system scripts exist for Vim and most of them are based on the
concepts already described. But sometimes you do want Vim to make your life
simpler when working with specific file formats. In those cases, you could benefit
from using a snippet script. Snippets are like the abbreviations described for
templates earlier, but can be a lot more advanced.

If you would like to work with snippets in Vim, I would recommend that you look
at the snipMate script at http://www.vim.org/scripts/script.php?script_
id=2540.

The snipMate script makes it easy for you to define even advanced snippets for your
file formats without getting into too much Vim scripting yourself.

If you, for example, want to create a snippet for the for loop we made earlier using
iabbrev, you could do it like this:

snippet for
 for (${1:i} = 0; $1 < ${2:count}; 1{3:++}) {
 ${4:/* code */}
 }

This text is added to a file placed in $VIMHOME/snippets called FILETYPE.snippet
(where FILETYPE is the actual file type; for example, c for the C code or php for the
PHP code).

Chapter 4

[79]

The first line tells the snippet script that a new snippet is started and that it should
be executed when the for word is written and the Tab key is pressed. (This tells the
snippet script to complete the snippet.)

The next line is where the real magic goes on. It actually starts by writing a snippet
of code looking like this:

for (i = 0; I < count; i++) {
 /* code */
}

However, after the snippet is inserted, it places the cursor in the first i and goes into
the insert mode. That way you can easily change the i into another variable name.
Now the magic begins because not only is the first i changed, but the second one
(with ++ after) is also changed automatically. After changing i (if needed), you press
the Tab key and the cursor will jump to count and again go into the insert mode. You
can now change count and press the Tab key once again. This time it moves to the
++ and pressing Tab again takes you in /*code */ where you are now ready to fill in
the code.

It couldn't be more easy to move between the different variable parts of the snippet.

The snipMate system works by looking for special marks created with
${NUMBER:INITIAL_VALUE}. The NUMBER in the mark indicates the sequence in which
you will jump to it when pressing the Tab key. If the NUMBER is 1, then the cursor will
be placed there first. If the NUMBER is 3, this is where you will go after pressing the
Tab key twice, and so on. The INITIAL_VALUE is the text that will be put in the first
added snippet before you start changing it. This means that ${1:i} will put the i
text and place the cursor on this i first.

If you need the same variable in several places, you can simply refer to it by using
$NUMBER. For example, if you want to add the i in several places, you could do it by
placing $1 in other places in the snippet. All places where you put $1 will initially
show up as i and will automatically change when you change the first i in the snippet.

This is just the basics of how to create snippets for the snipMate plugin. But once you
have installed it, you will be able to read more about it in the Vim help system.

You can also find a lot of inspiration in the snippets that are included with the script.
Here you will find ready-made snippets for many common file formats such as .c,
.php, .perl, .java, .html, .tex, and even Vim scripting.

Production Boosters

[80]

You can download the snipMate script and read about how to install
it directly from the Vim script repository at http://www.vim.org/
scripts/script.php?script_id=2540.

Using tag lists
Tag lists are like a programmer's dictionary. A tag list is actually a file containing
all sorts of keywords that can identify parts of a program. It can be function names,
variable names, class methods, and so on depending on the programming language
that you are using. Tag list files are actually not an output from Vim, but rather an
output from one of the several tag list generators. Among these, the best known are
as follows:

•	 Exuberant Ctags: For C, C++, Java, Perl, Python, Vim, Ruby (and 25 others)
•	 Vtags: For Verilog files
•	 Jtags: For Java files
•	 Hdrtags: For C / C++, Asm, Lex / Yacc, LaTeX, Vim, and Maple
•	 Ptags: For Perl files

Because Ctags is absolutely the most used and the one that supports the most
languages, it will be the one we use in the following examples.

We will work with a project written in C that consists of three files:

•	 main.c: The main file containing the main function of the program
•	 myfunctions.c: The source for the functions needed in the program
•	 myfunctions.h: The header file for the functions in myfunctions.c

The code in the files is almost done, so let's make a tag file for the files.

We invoke the ctags command-line program as follows in the directory where your
source files are placed:

ctags *.c *.h

You will now notice that a new file called tags has been created in the directory
where you invoked the ctags command. This file is your tags file and contains
information about all the functions and variables in your code.

Chapter 4

[81]

The ctags program takes a lot of arguments for choosing a programming
language and so on. See ctags—help for more information.

We need to tell Vim that it should use the tags file, which is done by setting the
tags setting.

:set tags=/path/to/tags

Now, Vim knows about the tags and you are ready to use it in your work.

In the main file, we use the functions from the myfunctions.c file. Let's say there is
a function called calcValue, but you are not sure which arguments it takes. Here, it
would be nice to see how it is defined and it is here the tags file comes in handy. You
simply start typing the function name until the (like this:

myvalue = calcValue(

Now, place the cursor on the function name, go into the normal mode, and then
press Ctrl-]. One of the following two things happens:

•	 There is only one match, and you are moved directly to where the function
is defined

•	 There are multiple possible matches and a list of matches is shown

In the second case, you can select which of the matches in the list you want to jump
to. This is nice if you are working with languages where you can overload functions
and hence have multiple editions of a function.

After you have looked at the function, you need to go back and actually complete the
code that you've started. To do so, simply press Ctrl+t and you will be brought back
to where you originally came from.

In Gvim, you can also use the mouse to go to the definition of a keyword.
Just hold down the Ctrl key while pressing mouse-button 1.

You can view jumping between tags as using a tag stack. When you go to a keyword,
you push the tag on the stack and when you go back to the previous place, you pop a
tag off the stack.

Production Boosters

[82]

You can actually see the stack by using the following command:

:tags

The tag in the list that is marked with > at the beginning of the line is the tag you are
currently at. When using Ctrl+] and Ctrl+t, you move up and down in the stack, but
you can also work the stack with commands:

•	 :tag: Move to the next tag in the stack
•	 :pop: Move to the previous tag in the stack

When you have used a lot of tags and jumped around between them, it might be nice
to get a list of the ones you have available. To get such a list, simply use one of the
following commands:

•	 :tselect

•	 :ptselect

The first one gives you a list of matching tags, and you can then select the one you
want by pressing the number you find at the beginning of the line.

The second command does the same, except that it shows the list in a preview
window. If you selected the wrong tag in the list, or just want to see one of the
others, then you can move between them with the following commands:

•	 :tnext: Move to the next tag in the list
•	 :tprev: Move to the previous tag in the list

You might not see the strength of the tag lists in this example, but imagine that your
project was not just three files, but 1000 files across hundreds of directories. So you
suddenly just can't go around remembering where each function is, and you would
need a thorough indexing mechanism like tag files.

Chapter 4

[83]

Easier taglist navigation
On most non-English keyboard layouts, the] key is not directly available and you
would need to press, for example, Ctrl+Alt + G + r+9 to execute the Ctrl+] tag jump.
In those cases, it would be nice to map the commands to more accessible keys. I use
the following mappings:

:nmap <buffer> <F7> <C-]>

:nmap <buffer> <S-F7> <C-T>

:nmap <buffer> <A-F7> :ptselect<cr>

:nmap <buffer> <F8> :tnext<cr>

:nmap <buffer> <C-F8> :tprev<cr>

Now, you can jump back and forth between tags with F7 and Ctrl+F7, get a list
of the tags with Alt+F7, and go through the used tags with F8 and Ctrl+F8.

Other usages of taglists
Taglists are used by programmers not only for looking up functions and variable
definitions, but also for a lot of other interesting things. Just to give you an idea,
here's a short list of examples where they are used in Vim scripts:

•	 lookupfile.vim: Hari Krishna Dara has created a script that can use tag lists
to find files in a tagged project simply by writing the filename. Find the latest
version of the script at:
http://www.vim.org/scripts/script.php?script_id=1581.

•	 taglist.vim: Yegappan Lakshmanan has created the taglist plugin for
Vim, which is very popular among programmers. It is a complete source
code browser that gives a great overview of the functions, keywords,
variables, definitions, and so on in a split window. In Gvim, it can even give
you a complete menu with the tags of the project. You can find a lot more
information about this plugin at:
http://www.vim.org/scripts/script.php?script_id=1581.

•	 ctags.vim: Gary Johnson and Alexey Marinichev have created a simple yet
powerful plugin called ctags.vim. It simply shows the name of the function
the cursor is currently placed in, that is, in the status bar or window title. The
script automatically generates tag files for the currently opened file using the
program Exuberant Ctags. Find more information about the script at
http://www.vim.org/scripts/script.php?script_id=610.

Production Boosters

[84]

•	 autoproto.vim: Jochen Baier has created a very useful script for C
programmers. This script shows the prototype of the currently typed in
function in a preview window whenever the programmer presses the first (
after the function name. Find more information about the script at:
http://www.vim.org/scripts/script.php?script_id=1553.

You can read a lot more about tags and how to use them in the Vim
help system under :help tags.

Using autocompletion
As a Vim user that obeys the philosophy of Vim, you will do anything to minimize
the number of key presses because extra keys pressed equals extra time wasted.

So, why type each word to the end when Vim is able to guess what you are typing
and automatically complete the word for you?

In Vim, there are multiple ways to autocomplete the words you are typing. Some
methods simply complete words you have written once in one of the opened buffers,
while others involve analyzing the code you are working on—not just the current
file, but the entire source tree.

In the following sections, we will look at three different ways to use autocompletion
in Vim:

•	 Autocompletion with known words
•	 Autocompletion using a dictionary file
•	 Context-aware autocompletion with omnicompletion

There will also be some small tricks on how to make it more comfortable to use
autocompletion by using well-recognizable key bindings.

Autocompletion with known words
In this recipe, we will look at the simplest type of autocompletion and at the same
time the most overlooked type—autocompletion with known words.

No matter what you are writing, you will eventually write the same words
repeatedly. In Vim, you can simply type in the first couple of letters of the word
and then press Ctrl+n.

Chapter 4

[85]

Example:

You want to write the sentence "I have beautiful flowers in my flower garden".

Since you have no text besides this in the file, you will have to write the entire first
part of the text until it looks like "I have beautiful flowers in my f".

Now, you would normally continue typing the word "flower". But as it is already
there, you can simply press Ctrl+n and the word will expand to "flower".

As your text evolves, you will see that you can start using autocompletion on more
and more words.

What Ctrl+n actually does is look for a matching word by going forward through the
file. If you know that you have just used the word, then it will be faster to use Ctrl+p
instead because Vim will then search backwards in the file for a matching word. In
general, you won't feel the difference unless you are working with really large files,
or there are many possible matches.

Autocompletion using dictionary lookup
A neat trick is to find a large dictionary file with all kinds of words in your favorite
language, and then load this file into Vim as a dictionary (such files can be easily
found on the Internet). To load the file into Vim as a dictionary, simply add it to the
dictionary setting with:

:set dictionary+=/path/to/dictionary/file/with/words

Now, Vim suddenly knows a lot of words beforehand, and you can simply
autocomplete using these words. However, something is different. Now the words
we use to look in are not the words from one of the open buffers, but keywords
from one of the dictionary files available in the dictionary setting. This is why you
will need to use another key binding in order to do the completion this time.

ctrl-x ctrl-k

Production Boosters

[86]

By pressing Ctrl+x, you get into a completion mode and by pressing Ctrl+k, you do a
lookup for a keyword (remember k for keyword) in the dictionaries.

Other completion types are available. Some of them are in the following list:

Ctrl+x plus:

•	 Ctrl+l: Complete whole lines of the text
•	 Ctrl+n: Complete words from the current buffer
•	 Ctrl+k: Complete words from the dictionaries
•	 Ctrl+t: Complete words from the thesaurus (see :help 'thesaurus')
•	 Ctrl+i: Words from the current and included files
•	 S: Spelling the suggestions (Vim 7.0 and newer only)

Others will be described in the next sections.

Omnicompletion
We all have our perfect solution for what should be autocompletable and what
shouldn't. In Vim, there was no way to give the user complete control over what to
do about completion until version 7.0 came out.

Vim 7.0 introduced a new completion technique called omnicompletion. It gave the
user the possibility to define exactly how the functionality of the completion should
work—in fact, then, the user would have to write the completion function himself or
herself (unless someone else had already done it).

Chapter 4

[87]

As with the completions mentioned in the previous section, the completion is
invoked by typing in some letters and then going into completion mode by pressing
Ctrl+x followed by Ctrl+o to make an omnicompletion.

To add your own completion function, you simply do the following:

:set omnifunc=MyCompleteFunction

Now, you would just have to create a function called MyCompleteFunction that
gives you the completions. This setting is only available to the currently active
buffer, and you will have to set it for all buffers where you want to use it.

Setting omnifunc is normally done in a file type plugin such that it is
bound to a single file type.

So, let's look at an example of how such a function could look like. For instance,
assume that you have a file with all your contacts with one name and e-mail
address on each line like this:

Kim Schulz|kim@schulz.dk
John Doe|john.doe@somedomain.com
Jane Dame|jd@somedomain2.com
Johannes Burg|jobu@somedomain3.net
Kimberly B. Schwartz|kbs@somedomain.com
...

Now, you would like to insert an e-mail address by writing a name and doing
autocompletion on it. A function for this could look like this:

function! CompleteEmails(findstart, base)
 if a:findstart
 " locate the start of the word
 let line = getline('.')
 let start = col('.') - 1
 while start > 0 && line[start - 1] =~ '\a'
 let start -= 1
 endwhile
 return start
 else
 " find contact names matching with "a:base"
 let res = []
 " we read contactlist file and sort the result
 for m in sort(readfile('/home/kim/.vim/contacts.txt'))
 if m =~ '^' . a:base
 let contactinfo = split(m, '|')

Production Boosters

[88]

 " show names in list, but insert email address
 call add(res, {'word': contactinfo[1],
 \ 'abbr': contactinfo[0].' <'.contactinfo[1].'>', 	
 \ 'icase': 1})
 endif
 endfor
 return res
 endif
 endfunction

The function takes two arguments that are needed for an omnicompletion function.
The first time Vim calls the function, it sets the first argument, findstart, to 1 (and
base is empty). This means that this is the first invocation, and that it should find the
beginning of the word you have written so far.

Vim then invokes the function again, and this time with findstart set to 0 and base
set to the word you have started autocomplete on. This time the function opens up
the contact list file and reads it line by line into a list. It sorts the list such that the list
in the completion pop-up is ordered, and then it iterates over the list.

The lines are split at the |, and then the ones that begin with the same letters as
the word you completed on are added to a result that the function will return. The
function can modify how the pop-up content looks and what it should match on.
This is done not by adding the e-mail addresses, but instead by building a dictionary
(see :help Dictionary) where some specific keys are set. In this case, we use three
keywords as follows:

•	 Word: The actual word that should be inserted
•	 Abbr: This word is used instead of word in the pop-up list
•	 Icase: If this is a non-zero value, then the matching is case insensitive

Other keywords and their functionality can be found in the help system under
this command:

:help 'omnifunc'

So, now Vim has a list of words for its popup, or in this case small lines such as:

"Kim Schulz <kim@schulz.dk>"

Whenever you write some letters such as ki and then press Ctrl+x Ctrl+o, Vim will
show the popup with all the names that start, with ki.

Chapter 4

[89]

To move between the items in the list, you can keep pressing Ctrl+o to cycle through
the list. Alternatively, you can press Ctrl+n to move forward in the list and Ctrl+p to
go backwards in the list.

All-in-one completion
You might wonder how you will ever be able to remember all these keyboard
shortcuts, and why you could not just use the same for all completion types
depending on which one you have available. With Vim, you can do this if you
want. So, let's look at how we can do this in a way that is easy for you to remember.

Nearly any other editor that supports completion has this functionality mapped
to the Tab key.

In the help system, you will find a function called CleverTab(). The following
command will take you right to where you can find the function:

:help ins-completion

This function let's you use Tab to complete words instead of Ctrl+n. It can
distinguish between whether it should insert a tab character or do the completion. If
you pressed Tab at the beginning of the line (indention) or after another whitespace
character, it inserts a tab character. In the rest of the cases, it would try to do known
word completion.

We take this CleverTab function and extend it even further such that it selects the
completion method to use from the following prioritized list:

•	 Omnicompletion
•	 Dictionary completion
•	 Known word completion

Production Boosters

[90]

A function that can do this, could look like the following:

function! SuperCleverTab()
 "check if at beginning of line or after a space
 if strpart(getline('.'), 0, col('.')-1) =~ '^\s*$'
 return "\<Tab>"
 else
 " do we have omni completion available
 if &omnifunc != ''
 "use omni-completion 1. priority
 return "\<C-X>\<C-O>"
 elseif &dictionary != ''
 " no omni completion, try dictionary completio
 return "\<C-K>"
 else
 "use omni completion or dictionary completion
 "use known-word completion
 return "\<C-N>"
 endif
 endif
endfunction
" bind function to the tab key
inoremap <Tab> <C-R>=SuperCleverTab()<cr>

Add the function and the binding to your vimrc file, and then you are ready to do
completion with your Tab key.

You simply have to press the Tab key to do your completion, and the function checks
to see if it should insert a tab character. If not, then it checks to see if you have a
omnicompletion function (in omnifunc) available. If this is also not the case, then it
looks if there is a dictionary available. If you have no dictionaries available, then it
falls back on using the simple known word completion.

Using macro recording
Probably the most overseen production booster when working with monotonic
structured text is the ability to record input macros to do them over and over again.

The interface for doing this is extremely simple, but nearly everything can be
recorded. So it reveals a very powerful tool.

Chapter 4

[91]

Let's start by looking at the commands to use:

•	 qa: Record from now on into register a. Any register can be used,
but q is often used for simplicity.

•	 q: If pressed while recording, the recording is ended.
•	 @a: Executes the recording in register a (replace with any register).
•	 @@: Repeats the last executed command.

You can add any number before the @ to repeat the execution of the recording that
number of times. For example, 15@a will execute the recording in register a 15 times.

So, let's look at a normal recording session in Vim:

qq
command1
command2
....
commandN
q
10@q

You might wonder what this can be used for, because when is it exactly that you
need to execute a list of commands over and over again. This is best shown with
an example.

Imagine you have a large list with information. It could, for example, be a log file
from a Unix system that could look something like this:

Oct 8 21:23:34 laptopia kernel: ACPI: bus type pci registered
Oct 8 21:23:34 laptopia kernel: PCI: PCI BIOS revision 2.10 entry at
0xe9694
Oct 8 21:23:34 laptopia kernel: Setting up standard PCI resources
Oct 8 21:23:34 laptopia kernel: ACPI: Subsystem revision 20060127
Oct 8 21:23:34 laptopia kernel: ACPI: Interpreter enabled
Oct 8 21:23:34 laptopia kernel: ACPI: Using IOAPIC for interrupt
routing
Oct 8 21:23:34 laptopia kernel: ACPI: PCI Root Bridge [PCI0]
(0000:00)
Oct 8 21:23:34 laptopia kernel: PCI quirk: region 1000-107f claimed
by ICH6
Oct 8 21:23:34 laptopia kernel: PCI quirk: region 1300-133f claimed
by ICH6
Oct 8 21:23:34 laptopia kernel: PCI: Ignoring BAR0-3 of IDE
controller 001:1
Oct 8 21:23:34 laptopia kernel: PCI: Transparent bridge –
0000:00:1e.0
...

Production Boosters

[92]

Now, you want to convert this file into an HTML file where the information is
presented in a table with each column of text represented by a table column. You
basically want each line to look like this:

<tr><td>Oct 8 21:23:34</td><td>laptopia</td><td>kernel:</td><td>ACPI
...</td><tr>

You could start editing the file line by line, until you come to the end of the file.
But how about just editing one line while recording it, and then playing back the
commands on the other lines? The command execution could look like the following,
starting with the cursor placed at the beginning of the first line:

Qa Start recording into register a
i<tr><td>[ESC] Go into the insert mode, insert first HTML, and go back to the

normal mode
/ [CR] Search forward for whitespace
3n Advance three whitespace searches forward
xi</td><td>[ESC] Delete whitespace, go into the insert mode, and add HTML to

the normal mode
n Go to the next whitespace
xi</td><td>[ESC] Delete whitespace, go into the insert mode, and add HTML to

the normal mode
n Go to the next whitespace
xi</td><td>[ESC] Delete whitespace, go into the insert mode, and add HTML to

the normal mode
A</td></tr>[ESC] Append the final HTML to the end of the line and go in the

normal mode
j^ Advance a line and move to the beginning of it
q End macro recording

For all instances of [ESC], press the Esc key, and for all instances
of [CR], press the Enter key.

We now have the full macro recorded and the cursor is placed correctly at the
beginning of the next line. This means that we are ready to replay the macro over
and over again and the cursor will automatically move to the next line after a replay.

You can play back the recording with @a or you can simply play back the command
on each line in the file with 9999@a. All you need now is to add a header and a footer
to the file, but that is not really interesting here.

Chapter 4

[93]

This is just one place where macro recordings can be used and if you think back, you
will probably remember situations where you could have optimized your work by
using a macro recording.

Using sessions
Have you ever wondered how much information Vim actually holds for you? It
holds a wide range of settings and things, some of which are:

•	 Open files, buffers, windows, and tabs
•	 Command history
•	 Points of change in the text
•	 Selections and undo branches
•	 Size of windows, splits, and the GUI window
•	 Place of cursor

The stored information can be split into three different categories:

•	 The first type of setting is called a View and applies to a single window in
Vim. A view can be saved and restored such that a window will have the
same look and setup every time you use the view.

•	 The second type of setting is called Sessions. It is a collection of views and
information about how they are interoperating. Like views, sessions can also
be saved for a later retrieval.

•	 The final type of setting includes all the rest, that is, all the global settings
that do not directly apply to any window in Vim. These settings are stored
with the session such that they can also be saved / restored.

In the following sections, we will look at how sessions can be used for different tasks
during your daily work in Vim.

Simple session usage
When using sessions, the most basic thing to do is to save the currently running
session (the default session when no special session is loaded) to a session file such
that you can load it again later when you need to. The main command to use is:

:mksession FILE

Or if you only want to save the current view, use this:

:mkview FILE

Production Boosters

[94]

FILE is the name of the file you want to save your session to or view in. If no
filename is given, Vim uses a file called Session.vim that it puts in the current
work directory.

If you have previously saved a session with the same filename, you can
add a ! after mksession to make it overwrite the file.

When working with views, you can have many different views at the same time. If
every view is saved in the current working directory, then it would be filled up with
view files. To prevent this, you can tell Vim where it should place the view files with
the following command:

:set viewdir=$HOME/.vim/views

In the previous case, you will set it to store the view files in a directory called views,
which is placed in your $HOME/.vim/ directory.

So as an example, we could say that you have three windows open and just before
closing Vim you use this:

:mksession

Then the next time you want to open Vim with the same session, you simply start
Vim with the command-line argument -S; for example:

vim -S Session.vim

Now, Vim will be started with the same settings as when you saved the session.
Alternatively, you can open Vim as you normally would and then use the following
command to load the session file:

:source Session.vim

In the case of views, you can instead use the following:

:loadview View.vim

Loading a session can change the entire layout of the editor, whereas loading a view
will only change the layout of the active window.

Chapter 4

[95]

If you want Vim to remember settings such as cursor placement and folds
when moving between multiple folders, you can add the following to
your vimrc file:
set viewdir=$VIMHOME/views/

autocmd BufWinLeave * mkview

autocmd BufWinEnter * silent loadview

A view of the buffer is saved whenever you show another buffer in
the same window, and it is restored when you show the buffer in the
window again.

The trick is to add commands for saving a session when quitting Vim, and restoring
the session when opening Vim. This way you can open and close Vim without losing
the settings, a list of open files, and so on. You can do this by simply adding the
following commands to your vimrc file:

autocmd VimEnter * call LoadSession()
autocmd VimLeave * call SaveSession()
function! SaveSession()
 execute 'mksession! $HOME/.vim/sessions/session.vim'
endfunction
function! LoadSession()
 if argc() == 0
 execute 'source $HOME/.vim/sessions/session.vim'
 endif
endfunction

If you close Vim now, then it saves a session file in $HOME/.vim/sessions/
session.vim.

Depending on how you open Vim, it either opens the file specified on the command
line or reopens the latest session. For example:

•	 vim file.txt: This opens Vim without loading the last session.
•	 vim: This opens Vim with the last session loaded. The previously opened

files are reopened.

If you want to store additional settings besides what Vim stores in the session file,
you can add an extra session file. This is done by creating a file named like your
session file, except that the .vim extension is replaced by x.vim. For example,
Session.vim has the extra session file, Sessionx.vim. The extra session file should
be placed in the same folder as the session file itself. You can then add all the Vim
commands you want to in this file, and these will be executed once the session file
has been read.

Production Boosters

[96]

Satisfy your own session needs
It is not always that you want everything saved in your session. Sometimes, it
might just be the files you had open that you want to save information about. Other
times you want to store every single piece of information you can about a session.
Fortunately, Vim gives you a way to set up what you want it to save in a session file.

The setting you should work with is called sessionoptions and can be set with:

:set sessionoptions=OPTIONS

OPTIONS is a comma-separated list with one or more of the following options:

blank Save empty windows
buffers Save information about all buffers, including the hidden and

unloaded buffers
curdir Save information about the current work directory
folds Save information about the folds in the buffer contents
globals Save information about global variables; only variables

starting with an uppercase letter and of the type String or
Number will be saved

help Save the help window
localoptions Save information about local options and mappings you

have created for a single window
options Save all options, both local and global
resize Save information about the size of the UI window (lines

and columns)
sesdir If set, the current directory is the place where the session

file is saved (cannot be used when curdir is also set)
slash Change the backslashes in all paths to slashes (make

Windows paths Unix compatible)
tabpages Save information about all tab pages and not only the active

one, which is the default without this option
unix Use Unix line endings, even on Windows system
winpos Save information on where the UI Window was placed on

the screen
winsize Save the size of all open windows.

Chapter 4

[97]

The options marked with bold are the ones Vim has turned on as per default. Instead
of setting the entire list of options, whenever you want to add or remove a single
one, you can instead use the += and -= operators. If you, for example, have the
default options but would like to have winpos added to the options and also have
folds removed, then simply do this:

:set sessionoptions+=winpos

:set sessionoptions-=folds

You can see which options you have in your sessions options using:

:echo &sessionoptions

You can, in fact, see any of the settings in Vim by simply using the
:echo and adding an & in front of the setting's name—for example,
:echo &somesetting.

Sessions as a project manager
You might sometimes want to use session files as a sort of primitive project file with
information about some project you are working on. So, when working on a project
and having a lot of files and windows open, you simply use:

mksession!

This command would help you save the current session to the Session.vim file in
the folder that you are working from. It would then be ideal if Vim automatically
loaded the session for the project if there was a project file (Session.vim). So, why
not make this possible? Simply add the following to your vimrc file:

silent source! Session.vim

Now, if there is a Session.vim file in the folder where you start Vim, then it will
load it. So, as long as you keep the session file in the project directory, you can easily
reload the project in Vim over and over again—just remember to save the the session
again if you open new files or change the windows / buffers.

Production Boosters

[98]

This is just a simple way of using sessions as a project manager, but it can be made a
lot more advanced. Wenzhi Liang has created a practical script that adds a Projects
menu item to Gvim. In this menu, it is possible to save the current session as a
named project. Later, you can restore the project (which is now available directly in
the menu) or you can switch between projects with a single click of a menu item. If
you don't need a project anymore, then you can simply choose to delete it through
the menu.

You can find the latest version of the script and read more about it on this
home page at:

http://www.vim.org/scripts/script.php?script_id=279

The script demands that you have both Perl and Bash installed
on your computer.

Registers and undo branching
You might know the feeling when you delete or cut something from your text, and
realize later that you needed that text elsewhere. If you have already copied / cut
another piece of text, then the old text is gone because the clipboard normally has
room only for one piece of text—but not in Vim.

In Vim, you have two tools that can help when you modify your text and need to
keep a track of deleted / copied text or changes to the text in general:

•	 Registers: Registers is sort of an advanced clipboard with multiple buffers for
storing your clippings, deleted, and copied text.

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Chapter 4

[99]

•	 Undo branching: Undo branching is a simple form of version control built
into Vim. It gives you the possibility to roll back the changes to a file until
a certain time or a certain number of changes. If you later regret undoing
some changes, you can go back and find an undo branch containing those
exact changes.

The next two sections will tell you more about how to use both registers and undo
branching in your daily work. After reading them, you will easily see why these
tools are very strong tools and how they can help you in your daily work in Vim.

Using registers
In many programs and operating systems, you only have access to a single clipboard
for the text you cut or copy. This is not the case with Vim because here you have
access to not one, not two, but nine different clipboards, or register types as they
are called.

Some of the register types overlay each other's working area, while others have
a very unique purpose. You can use the registers in connection with a range of
commands and movements such as yank, delete, and paste. The registers are all
named with " in front of the name, for example "x. So, let's look at how to use a
register. Let's just say that we use the register called "x in the examples. What x
actually should be will be explained later.

To store a piece of text that you want to copy into a register, you can use the normal
y for the yank, except that you start out by telling it where to yank it to:

"x y (or "x yy if you want to copy the entire line).

Same is the case when cutting text with the x command:

"x x

Or, when deleting text with the d command:

"x d

So, now you have the text stored in the register "x and you want to paste it again.
You can simply use the P (after cursor) and p (before cursor) commands to paste
the text and start out by telling Vim which register to paste:

"x p or "x P

Production Boosters

[100]

If you have forgotten which register you used, then you can simply type in
this command:

:registers

So, now you know how to use the registers with the basic commands in Vim, and
it is time to look a bit further at the different register types. The following sections
describe each of the nine types of registers.

The unnamed register
The unnamed register is called so because it is accessed through "", hence
resembling the empty string or no name. Vim automatically fills this register
whenever some text is yanked with y or deleted with one of the following
commands: d (delete), c (delete and go into insert mode), s (substitute), or x (cut).
What this register does is point to the last used register, which also means that it will
work even if you use a specific register when deleting / yanking a text. For example,
"xdd will fill both the x register and the unnamed register.

If you paste some text with p or P without specifying any register, then it actually
gets the text it pastes from the unnamed register.

The small delete register
Whenever you delete less than one line of text, Vim will move it into a very specific
register—the small delete register ("-). The only exception to this case is when you
specify another register to use.

The numbered registers
The numbered registers are named "0, "1, "2, and so on up to "9. They can be split
into two types. The first type is register "0, which always contains the last deleted (d
or x) / changed (c) text. When you delete or change something new, then register "0
is overwritten with the new text.

Like register "0, register "1 also contains the last changed / deleted text. There is,
however, the difference that register "1 will not be updated if another register is
specified, or if the text is less than one-line long (the small delete register is then
used). For compatibility with vi, there is an exception where register "1 is used no
matter what the length is. This is if one of the following movement commands is
used in your change / delete: %, (,), {, }, `, /, ?, n, N.

Chapter 4

[101]

Unlike register "0, the contents of register "1 are not deleted whenever a new text
is added. Instead, it is moved to register "2. If register "2 was already full, then this
text is moved to register "3 first, and so on until register "9. The contents of register
"9 will be overwritten whenever any new content is added. This way the registers
from "1 to "9 can function as a delete / change history such that you can get access
to earlier deleted text even if you have deleted new text more recently.

The named registers
There are two types of named registers—"a to "z and "A to "Z.

If you use the lowercase registers such as "a, then they work like a normal register
that you can copy deleted or changed data into. When a new text is added to a
register, the old contents are discarded.

If you instead use the uppercase registers (for example, "A) then the previous content
of the register is not deleted, but the new text is instead appended to the register.

If you add the value '>' to your coptions, then the
appended text in uppercase registers is split by a new line:
:set coptions+='>'.

Since you have complete control over the named registers, they are most likely the
type of registers you will get familiar with first.

The read-only registers
There are four different read-only registers. What makes these registers so special
is that only Vim has access to them. You only have access to pasting them with
the normal P, p, or :put commands. The contents of the read-only registers are
quite different:

•	 "%: This register always contains the name of the file in the currently
active buffer.

•	 "#: This register always contains the name of the previous file in the
currently active buffer, also called the alternate file.

•	 ".: This register always contains the last inserted text. Therefore, you will be
able to repeat the last inserted text by executing the normal mode command
".P.

Production Boosters

[102]

•	 ":: This register contains the command you last executed on the command
line. If you repeat a command from the history, then this register will not be
overwritten with the command. You will have to write at least one character
of the command in order to get it stored in the register.

The selection and drop registers
This register type consists of three registers: "*, "+, and "~. The registers are used
to store and retrieve the text you have selected in Gvim. The "* register actually
accesses the clipboard of your windowing system. If you use Microsoft Windows,
then you wont feel any difference between using "* and "+. On Linux, however,
there is a difference between the two registers because the Clipboard in X11 (the
windowing system) has not just one selection register, but three. The contents of the
"+ register are any text you have selected. They are typically inserted by pressing
the middle button on the mouse. However, the contents of the "* register are altered
only if you actually tell Vim to yank the text.

These registers can be accessed from any GUI application, and are part of the normal
copy-paste procedure you know from your daily work.

The last register in this group is the drop register "~. This register contains the last
selection that has been dropped into Vim. So, if you select some text in another
application and drag it to your Gvim window to drop it there, then "~ register will
contain this text.

The black hole register
As the name of this register indicates, this register works like a black hole—
everything that goes into it never comes out again. This register is used if you want
to completely delete some text and don't even want a record of it in any register. The
black hole register is "- and an example of using it is "-x or "-dd. If you try to read
out the text you have just written to this register, you will see that no matter what
you do, it doesn't return anything.

Search pattern register
Whenever you do a search with the / command, the pattern you are searching for
is automatically added to the search pattern register. The register name "/ is easy to
remember because it resembles the search command / and just has the quotes added
to show that it is, in fact, a register. Vim uses this register when you have hlsearch
(highlight search pattern) turned on. You can use this to your advantage because
as this is a register, you can just change its contents to get hlsearch to highlight
something different. To change the contents of the register without doing a new
search, you can simply use:

Chapter 4

[103]

:let "/ = PATTERN

Here, PATTERN is what you want hlsearch to highlight.

The expression register
The expression register is the last register type in Vim. Calling it a register is,
however, not exactly accurate because it does not store text as the normal registers
do. You cannot even write to it. Instead, it opens up the possibility to get access to
the command line, execute an expression, and then get the result returned as if it
were already stored in the register.

You get access to the expression register by simply typing its name "=. After
pressing the equal sign, the cursor will be moved to the command line. You can see
that you are working inside the expression register if there is an equal sign as the
first character on the command line. You can now write the expression you want
the result of and then end by pressing the Return key, or alternatively press the Esc
key to return without executing the expression. If you press the Return key without
writing any expression, then Vim will find the latest expression executed and use
this instead. The expression needs to be valid and should return a string. If the
result of the expression is a number, then Vim automatically converts it into a string.
However, if you are unsure what type the result has, then simply use the string()
function to convert the result before returning it.

Look at :help expression to see how to put together a valid
Vim expression.

Using undo branching
We all know the feature where we can undo changes that we have done to a text.
Normally you would just press the undo button in the tool bar or use the right key
combination and then the last change to the text would be reverted.

Vim has taken it a bit further and added the concept of branching to this.

In this recipe, we will look at just what undo branching is and how it can help you in
your work.

Production Boosters

[104]

Let's start by defining what an undo branch is in Vim. Let's say that you have a file
where you have applied a range of changes. At some point, you realize that the last
four changes were wrong and that you do not need them at all. You execute undo (u
in the normal mode) four times in a row (or press 4u) as you normally would, and
then the last four changes are gone. At this point, you have used undo as you would
in any other editor. Now you see that you need to make an extra change to the file—
let's say that you needed to correct a spelling error—and you add that also.

Normally, your four undo changes would be gone—but not in Vim.

When you reverted the four changes and added the new changes, you actually
added another branch to your undo branch tree. The tree looks like this:

 edit(reverted)-edit(reverted)-edit(reverted)-edit(reverted)

 /

edit-edit-edit-edit—edit (spelling corretion)

In one branch you have the four changes you reverted, and in the other branch you
have your most recent change (the spelling correction). If you just keep adding /
editing your text from now on, you would only have these two branches in your
undo tree. But you could also add other branches to your undo branch tree simply
by doing another undo followed by another edit. In the end, you could end up with
quite a branch-filled tree with all the undo and edit actions you have done.

At this point, it might be nice to get an overview of the branches you currently have.
This is done with the following command:

:undolist

This will get you a list that shows you three pieces of information about each
branch—the change number (used to identify a branch), the number of changes in a
branch, and the time of the branch creation. It could look like this:

number changes time ~
6 5		 12:12:11
11 8	 	 14:01:15

If you want to go to one of the specific change numbers, then simply use:

:undo N

Here N is the change number.

Chapter 4

[105]

You could also move backwards in the list of changes using the following normal
mode command:

g- (Use g+ if you want to move forward instead.)

So, what is the difference between using g- and u to go back through the changes?
Let's visualize it with an example.

Write the following text in Vim:

My name is Jim

Then go to the J and press x three times to delete the name Jim. You now have:

My name is Jim
My name is im
My name is m
My name is

Now you realize that your name is Jimmy, so you undo the change:

My name is m
My name is im
My name is Jim

You now have one branch with the deletion of the name Jim. Now, change the name
to Jimmy:

My name is Jimm
My name is Jimmy

But wait! Your name is actually Kim and not Jimmy. Jim was close to Kim, so let's
undo back to this place using u and change J to K.

My name is Jimm
My name is Jim
My name is im
My name is Kim

Another branch was added when you were undoing the change from Jim to Jimmy.

Now, let's go back through the changes with multiple executions of g-:

My name is Kim
My name is im

Production Boosters

[106]

(Vim changes to new branch after bracket)

My name is Jim
My name is Jimm
My name is Jimmy

(Vim changes to new branch after bracket)

My name is
My name is m
My name is im
My name is Jim

Now, let's compare this to using u for undoing the changes:

My name is Kim
My name is im
My name is Jim
My name is Jimm
My name is Jimmy
My name is Jim

As you can see, the u command only takes you directly through the changes that are
not in branches, whereas g- takes you through every single change in every branch.

So basically, undo branches can give you access to any text state your file content
has had.

Instead of going step-by-step through the changes in all the branches, you could
instead jump a time slice back in your "edit time". For this, Vim has two commands
that jump different time slices back and forth in the undo history depending on the
argument. The commands are like this:

:earlier Ns

:earlier Nm

:earlier Nh

:later Ns

:later Nm

:later Nh

Here N is the number of seconds (s), minutes (m), or hours (h) you want to jump back
/ forward in time. If you use the :undolist function, then you can see the time of
the changes and from this you can calculate how far back / forward to jump.

Chapter 4

[107]

It might take some time to get used to having the undo branches, but when you have
gotten used to them, they will help you a lot in your work.

Folding
Often, when you work with large files, especially code, it can be hard to get a good
overview. In Vim, there is a special feature that helps you get around this—folding
text blocks into folds. In this recipe, we will look at how to use folds to make your
code easier to overview.

A fold is a way of folding a range of lines (for example, a function scope) into one
single line without losing the contents. An example could be the following code:

function myFunction(){
 var a = 1;
 var b = 0;
 var c = a+b;
 return c;
}

If this is folded, then it could be set to look like this:

+-- 6 lines: function myFunction(){ ------------------------------

In this case, the folding follows the syntax of the code and uses the { } to figure out
where to do the folding. Besides using syntax, Vim can also do folding according to
the following:

•	 Manual fold marks: Manually mark fold (see :help fold-manual)
•	 Indent folds: Use indentation as fold indication (see :help fold-indent)
•	 Expression folds: Use an expression to find folds (see :help fold-expr)
•	 Syntax folds: Use syntax as a fold indication (see :help fold-syntax)
•	 Diff folds: Fold unchanged text (see :help fold-diff)
•	 Marker folds: Insert markers in the text as a fold indication

(see :help fold-marker)

Which type of fold indication should be used depends on the type of the text you are
working on, and also what you find to be the best for you.

Production Boosters

[108]

So, let's look at how you actually do the folding. The first thing to do is to actually
activate the functionality:

:set foldenable

Now, Vim knows that it should watch out for folding commands when in the normal
mode. There is a range of commands you can use to open and close folds, but the
primary ones are as follows:

•	 zc: Close a fold
•	 zo: Open a fold
•	 zM: Close all folds
•	 zR: Open all folds

If we take the syntax folding method as an example, then you just need to place the
cursor somewhere in the area you want to fold (for example, inside a function scope)
and then you go into the normal mode and press zc to close the fold. Now you will
see the function get folded into a single line. In the following figure, you can see both
the folded and the unfolded code mixed together:

If you don't want to remember commands for both the opening and the
closing folds, then simply bind a key to toggle a fold open or closed. This
could be, for example, space: :nnoremap <space> za.

If you find that the design of the folded line is not giving you the information you
need, then you can change it easily. Simply change the value of the foldtext option
to point to another function that returns the line you want:

:set foldtext=MyFoldFunction()

The function could look like the following:

function! MyFoldFunction()

Chapter 4

[109]

 let line = getline(v:foldstart)
 " cleanup unwanted things in first line
 let sub = substitute(line, '/*\|*/\|^\s+', '', 'g')
 " calculate lines in folded text
 let lines = v:foldend - v:foldstart + 1
 return v:folddashes.sub.'...'.lines.' Lines...'.getline(v:foldend)

This function changes your folded line to look like this:

+--function myFunction(){...6 Lines...}----------------------------

You can see that the function used three different variables whose names start with
v:. These are variables set by Vim and contain:

•	 v:foldstart: Line number of first line in fold
•	 v:foldend: Line number of last line in fold
•	 v:folddashes: Contains a dash (-) for each level of folding a fold

The last variable gives a fast indication of how many levels down are you in the
folding tree. Suppose you have this:

if (x != y){
 if (y !=x){
 print "x not y";
 }
}

Then v:folddashes in the innermost if will contain "--" (second level), but in the
outermost if it will contain "-" (first level).

The dashes at the end of the fold line are automatically added. If you want a different
character instead of a dash, then this can also be changed. If you, for example, want
to change it to equal sign (=) instead of dashes, then simply use this:

:set fillchars=fold:=

You might wonder why dashes, but there is actually quite an obvious explanation.
Vim has another fold setting called foldcolumn that tells it how many columns to
the left of the text it should use for fold information. It actually uses the columns to
draw an ASCII fold tree where the dashes in the folds are the leaves. For example:

| some text
+- a first level fold ----------------------------------
|
	 beginning of open fold.
2 indication of fold level
2 - do -

Production Boosters

[110]

- open fold beginning level 1
+-- a second level fold.
| more text
| more text

As you can see, it basically draws a tree which looks like this:

|
+-
|
+--
|
+-
+--

To set how wide the tree should be, simply use:

:set foldcolumn=N

Here, N is a number between 0 and 12. A value of 1 or 2 is recommended only if you
have a few levels of folds; otherwise you should use 3-5.

You can execute a command on all folds that are either open or closed:
•	 :folddoopen cmd: Execute cmd on all lines that are not in a

closed fold
•	 :folddoclose cmd: Execute cmd on all lines in the closed folds

Simple text file outlining
Sometimes when you write a simple text file in Vim and you suddenly realize that
it has grown from simple to long and chaotic, you could really use a good way to
outline the text. In this recipe, we look at how to use folding in Vim to do just that,
especially if you think quite a bit about how you structure your text.

Let's say you have a text like this:

Chapter 1
Section 1 – Vim help
here is some text about the vim help system.
Section 2 – vim scripts
this section contains info about vim scripts.

Chapter 4

[111]

Now you would like to fold the text such that only the section headers are shown.
If you use manual folding (:set foldmethod=manual), this is quite simple. You
simply need to mark all lines in a section (including header line) and then press Z +
F. Now you have created a fold containing those lines. If you start from the outside
and go inwards, then you can have say Chapter 1 as the first level, and each section
as fold level 2. If you close the section folds, it would look like this:

-Chapter 1
+Section 1 – Vim help (2)
+Section 2 – vim scripts (4)

To make it look exactly as the previous example, you will need the
following settings:
:set foldcolumn=1

:set fillchars=fold:\ "there is a space after the \

:set foldtext=getline(v:foldstart).' ('.v:foldstart.')'

As you can see, this looks a lot like the table of contents in a book, but the difference
is that this is just a simple text file. As long as you add new text to the sections by
appending it to the previous lines (newlines are okay), Vim will still know that your
added text is part of the fold.

If you later want to delete a fold, then you simply mark the text again in the visual
mode and then press Z + D.

If you want to use a different formatting of your text (for example, having = = around
the section headers), you can do that—as long as you mark your own folding areas,
then you won't feel a difference.

Using vimdiff to track the changes
Sometimes you have multiple versions of the same file—maybe they are the same
and maybe they are not. On Unix systems, there has been a program called diff
available for many years (first release in 1974), but on other operating systems you
most likely do not have this. This program gives the user an output that shows the
differences between two files. Vim has a solution for you that gives this functionality
and even presents it in an easy-to-overview format, vimdiff. This recipe will show
you how to use Vim to get an overview of changes to your file compared to other
versions of the same file.

Production Boosters

[112]

vimdiff is actually a built-in diff program, which uses colors to show the
differences between two files (shown in two windows in Vim split vertically or
horizontally). The following figure shows what a vimdiff session could look like:

There are several different ways to activate vimdiff. On many systems, a program
shortcut is made that is called vimdiff. In those cases, you can simply use:

vimdiff file1 file2

This is actually a shortcut for writing this:

vim -d file1 file2

You will need to supply at least two versions of the file, but up to four versions of the
file are supported.

If you are already in an open Vim session, then you can also activate the diff mode
in Vim. To do so, you will have to use one of the following commands:

•	 :diffsplit filename: Split the window horizontally and show the
filename file in both of the windows. All diff-specific settings are set for
both windows.

•	 :vert diffsplit filename: Split the window vertically and show the
filename file in both of the windows. All diff-specific settings are set for
both windows.

•	 :diffthis: Add the current window to the existing set of diff-enabled
windows. This could be used if you want to diff a file again with yet
another version.

Chapter 4

[113]

An example could be to see which changes you have made to the currently
active file since the last time Vim saved a backup of the file (those copies
of the files saved with ~ after the name). If you are working on a file called
main.c, then you could at any time save the file and then execute the
following command:
:vert diffsplit main.c~
Now the current window is split vertically into two, and you will be able to
see the changes you have made to the file marked with colors (depending on
your color theme).

•	 Maybe it wasn't actually you who made the changes to one of the versions of
the file and maybe another developer just sent you a patch for your file. But
don't worry, Vim can still give you a nice diff view of the changes the patch
makes to your version of the file. Simply open your version of the file and
then with it in the active window, execute this command :vert diffpatch
patchfile or just :diffpatch patchfile.

Here, patchfile is the patch the other developer sent you. Now Vim will open
another window with your file, and then apply the patch to it. Next, it will set up
all the diff settings for the windows such that the changes are colored.

Navigation in vimdiff
Navigation in the vimdiff windows is a bit different than in the normal
Vim windows.

When, for instance, you scroll through the file in one of the windows in the diff
split, you will see that the other part of the diff windows is also scrolled. In fact, the
windows follow each other in a way such that the current line in one window is the
same line (if available) as in the other window. This is called scrollbind:

•	 It can be turned on using:
	 :set scrollbind

•	 It can be turned off using:

	 :set noscrollbind

You can edit the files in the diff windows and you will see that the diff colors are
updated accordingly; if not, then try executing the following command:

:diffupdate

Production Boosters

[114]

When you are in one of the diff windows, you might want to jump fast between
changes done to the file. This is done with the following commands in the
normal mode:

•	 [c: Go to start of the previous change
•]c: Go to start of the next change

This way you can navigate between relevant areas in a file and get a good idea of
which changes have been made to the file.

When the cursor is placed in one of the changes that you can see in the vimdiff
window, you might realize that this change is also needed in the other version of the
file. So now you could copy the lines in the change and insert them into the other file
in the right place. But why invest time in this when Vim has made it a lot easier for
you? Vim has a function that simply puts the change from one file version into the
correct place in another version of the same file. The command is this:

:diffput

This command should be executed when the cursor is placed in the change you want
to move to the other file version. If, on the other hand, you are in the file without the
change, then you could either move to the other file and then put the change back
into the first file; or use the Vim way of doing it with the following command:

:diffget

Alternatively, you can use do in the normal mode for getting a change and dp for
putting a change.

Read more about vimdiff in :help vimdiff.

Using diff to track changes
From the previous section, we know how to use vimdiff to make a diff of different
versions of the same file. But what if you really just want to know what you have
changed in the current buffer before saving it? This recipe gives you a little trick
to check for changes between the version of the file you have on your hard drive
and the one you have in the buffer. In other words, it will show you what you have
changed in the buffer since the last time you saved.

Chapter 4

[115]

What you have to do is to add the following function to your vimrc file:

 function! DiffWithFileFromDisk()
 let filename=expand('%')
 let diffname = filename.'.fileFromBuffer'
 exec 'saveas! '.diffname
 diffthis
 vsplit
 exec 'edit '.filename
 diffthis
 endfunction

The function stores a temporary copy of the file you have in the current buffer
(including latest changes), and then it diffs this file against the version of the
file you have on your hard drive.

To call the function, use the following command:

:call DiffWithFileFromDisk()

Or, if you want to access it faster, then you can bind a key to the command like this:

:nmap <F7> :call DiffWithFileFromDisk()<cr>

This binds the F7 key to the function call, and then you just have to go into the
normal mode and press F7 to see the changes marked in the diff mode.

Now, you can quickly and easily go through the changes that you have made to
the file and check if all of them are important.

Open files anywhere
System administrators and web developers have one thing in common, which can
be a big point of annoyance for both of them if they don't have an easy way to get
around it. They both work with files that are most often placed on remote servers of
some sort.

The system administrator mostly gets around the problem by logging in on the
remote server through, for example, an SSH (secure shell) connection, and then
edits the configuration files and so on directly on the server.

The web developer, on the other hand, gets around the problem by uploading and
downloading the files between the remote computer and his or her local computer
using an FTP client or by using systems such as Webdav.

Production Boosters

[116]

But what if it didn't have to be that way? What if they could simply edit the files on
the remote system directly from their local system? In Vim, this is possible without
any further extensions besides what normally comes with it. Vim has a system called
netrw (for net read / write), which comes in handy whenever you want to work with
files on remote servers. Let's get right to it and start with an example.

Imagine a web developer, John, who has his home page placed on a remote system
called remote.server.com. He wants to edit his index.html file, which resides in
the public_html/ directory in his home directory on the server. In this case, the web
developer could simply open the file in Vim like this:

vim ftp://john@remote.server.com/public_html/index.html

Vim recognizes that it needs to use the FTP protocol and then connects to the FTP
server on remote.server.com using john as the username. If a password is needed
to log in, then Vim will prompt you for it. Vim transfers a temporary copy of the file
to the local machine and then lets you edit it like any other file. The only difference is
that whenever you save the file, it is saved onto the remote server also.

If he had already opened Vim, then John could instead open the site with one of the
following commands:

:Nread ftp://john@remote.server.com/public_html/index.html

:Nread remote.server.com john PASSWORD public_html/index.html

Change PASSWORD to be the password you want to use for the FTP server. Besides
reading a file from a remote server, you can also open a local file and write it to
the remote server, or go about opening a file on one remote server and save it onto
another. The command for writing a file to a remote FTP server is:

:Nwrite ftp://user@server/path/to/filename

:Nwrite server user password path/filename

The format of the arguments from :Nread and :Nwrite can differ from
protocol to protocol. Use :Nread ? and :Nwrite ? to get help on the
exact syntax.

Besides the FTP protocol, Vim supports many other protocols such as:

•	 SCP
•	 SFTP
•	 RCP
•	 HTTP (read-only)
•	 DAV

Chapter 4

[117]

•	 rsync (read-only)
•	 fetch (read-only)

To use these, you simply change the ftp part of the previous example to one of the
other protocol names (in lowercase).

There is, however, a catch. Vim is dependent on external command-line programs in
order to use the different protocols. On Linux systems, most of these programs are
available by default. But on Mircosoft Windows, only FTP is available. You can find
a list of the external programs that Vim uses as a default and an explanation of how
to change them in the help system:

:help netrw-externapp

Besides reading and writing files, Vim is also able to give you a directory listing such
that you can use it for finding the right remote files to edit. You just have to point
your :Nread to a directory instead of a file. For example:

:Nread scp://user@server/some/directory/

You can select any file in the directory listing and it will then be opened in Vim as if
it was a local file.

If you use Linux, then you can store usernames and passwords for remote
sites in a .netrc file in your home directory. See :help netrw-netrc
for more information.

Faster remote file editing
So now you have learned how to work with remote files directly, and you will at
some point get into a situation where you have several remote files open at the same
time. But then you suddenly hit an annoying situation—you need to log in every
time you move to another buffer with, for example, :bufferprev and :buffernext.

As a default, Vim tries to reload the contents of a buffer whenever it is shown in a
window. This means that if the file in the buffer is a remote file, then Vim will need
to log in again in order to check if the file should be reloaded.

But is that actually necessary? If you can live with the fact that a remote file can
be edited by another person while you are editing it remotely (without you being
notified about it), you can trick Vim into not reloading the file.

Production Boosters

[118]

Each buffer has a set of options that tells Vim what to do with the particular buffer
in different situations. One of the options is bufhidden, which tells Vim what to do
when a buffer is hidden (not shown in a window). This option is normally not set to
anything, but if you set it to hide, then you tell Vim to just hide the buffer when it is
not in a window, and then just show it again when you show it again in a window.
Simply, add the following to your vimrc file:

:set bufhidden=hide

And that's basically it. Now you won't have to re-log in whenever you switch buffer
and will feel just as if you were editing a local file.

Summary
In this chapter, we have been looking at how to improve our daily work in Vim.
Many approaches have been touched, each with a specific area to optimize.

We started out by looking at how to use templates to minimize the amount of text
to enter. The first time, our templates were simple ones that used the abbreviation
functionality in Vim to emulate the insertion of a template. Next, we improved on our
template system by creating template files for specific file types and thereby made it
possible to insert an entire skeleton into a programming file. Finally, we looked at how
to use the snipMate script to make advanced snippets for any file format.

After the templates, we moved on and looked at another way to minimize the
word entry time—autocompletion. Different approaches for autocompletion were
discussed and a function was proposed for binding all autocompletion to a single
key—Tab.

By recording a list of commands, you can get around the boring task of entering the
same commands over and over again. We looked at how to do Vim macro recording
and use this to change a simple text file into a fine HTML file in a matter of minutes.

Next up was Vim sessions and how to use it for everything from saving the look of a
window to using sessions as a full-fledged project manager.

With registers, you have the possibility to use not one, not two, but nine different
registers / clipboards.

Using the folding of the text, you can get a better overview of a file because every
unnecessary part is hidden in a fold. You can even use folding for creating simple
outlines of a text file.

Chapter 4

[119]

So now the file is changed, but what has actually been touched in the file? We looked
at how to use the built-in diff functionality in Vim. This gives you an improved
overview of where and what you have changed in the active files, and you can even
undo or add new changes while still maintaining the good diff overview.

Working with files on the local machine is one thing, and working on remote files is
another. In Vim, it is possible to work in and navigate remote files directly. This way
you won't know whether the file is local or remote.

After reading this chapter and playing around with the recipes, you should soon feel
how your workday has improved.

Now, you are ready to move on to the next chapter where we will look at how to use
the formatting options of Vim to easily format your text and code.

Advanced Formatting
Often, the simplest modification to a text or a piece of code is what changes it from
being obscure to being easily readable. In this chapter, we will look at some of the
simple tricks you can use to format the text you are working on—no matter whether
it is plain text or code.

This chapter will have recipes in three categories:

•	 Text formatting
•	 Code formatting
•	 Using external formatter programs

After reading this chapter, you should have a good idea about what is possible and
what is not when it comes to text formatting in Vim.

Formatting text
Even though most people prefer graphical word processors such as Microsoft Word
or OpenOffice Writer when they want to write plain text, there are still times where
an editor such as Vim will do it just as well. In the following sections, we will look at
how to use the strengths of Vim when formatting normal text.

Advanced Formatting

[122]

Putting text into paragraphs
This recipe is probably one of the simplest in this book, but at the same time one
of the most versatile when it comes to formatting plain text. Imagine that you are
writing a piece of text, and just keep on writing without bothering about changing
lines or formatting the text. At some point, you might end up with one or more very
long lines and conclude that you should start formatting the text. At this point, you
have two choices:

•	 Go through the text and add the formatting manually
•	 Use the strength of Vim and format the entire paragraph with one command

Obviously, the latter option is the fastest one and at the same time the formatting
will be consistent. So, let's look at which command to use for this:

gqap

This command is actually a combination of a command and a movement,
specifically:

•	 gq: Format everything the next movement moves over
•	 ap: "A paragraph" moves over the current paragraph

In other words, the command created by combining gq and ap simply tells Vim to
move over the current paragraph and format it. A paragraph is defined as all the
lines between two empty lines. In order to change to another paragraph, you simply
add an empty line.

The formatting that Vim adds to the text is basically nice line breaks such that the
lines are not longer than a specific length (split correctly between words).

The text formatting width is defined in the Vim option textwidth such that if you
want a maximum of 80 characters on each line, then you would need to have the
following in your vimrc file:

:set textwidth=80

If the option is set to 0, then Vim sets it to the width of the window—but never more
than the number of characters defined in the textwidth setting.

Chapter 5

[123]

You can set how Vim formats a paragraph by setting the Vim option
called formatoptions. See :help 'formatoptions' and :help
'fo-table' for more information on how to set this option.

gq can be used together with any movement command and after performing the
formatting, it will place the cursor where it ends (typically at the end of the last line
in that particular area). If, instead, you want the cursor to go back to the place where
it originally was before executing the command, then simply change gq to gw. If you
have the cursor placed at the beginning of the first line and do gwap, then the cursor
will remain there even though the paragraph is formatted.

You can repeat the formatting multiple times by prepending the command with the
number of times it should be repeated, for example, 5gqap will format the current
and the next four paragraphs. If you want to format all the paragraphs in a file, you
can do it with the 1gqG command.

This formatting command does not only apply to plain text, but also to any other
type of content and you can decide what formatting it should apply.

You can set any function to be the formatter for any given file format, simply by
setting it in the Vim option called formatexpr. If, for instance, you work with a C
source code file, you should simply have the following in your vimrc file:

:set formatexpr=c#Formatter()

This tells Vim that when it opens a file of type C, it should use the function called
Formatter() in the autoloaded file for the C file type.

Autoloaded files can be found in your VIMHOME in a folder called
autoload. Files are named as the file type and appended with
.vim. For example, VIMHOME/autoload/c.vim for the C file type.

A formatting function has three variables that you can use to find the text you have
told it to format:

•	 v:num: The line number of the first line to format
•	 v:count: The number of lines to format
•	 v:char: This variable holds a character that is going to be inserted,

it can be empty

A simple formatting function could look like this:

function! MyFormatter()
 let first = v:num

Advanced Formatting

[124]

 let last = v:num + v:count
 while(first<=last)
 call setline(first, '> '. getline(first))
 let first = first+1
 endwhile
endfunction

This formatting function takes all the lines it is set to work on, and then prepends
the lines with > like quoted text in e-mails.

The previously mentioned formatting function is a very simple one. If it is a bit more
advanced, the complexity of the function rises quite fast. This is why the number of
publicly available formatting functions is limited to a very few (that are created for
very specific purposes).

Aligning text
One of the most basic formatting options in most word processors is the ability to
align the text left, right, or center. Some of them can even align justified such that the
text is spread equally along the lines, so that the line endings of all lines are as near
to the margins as possible.

Even though this kind of formatting is quite common in word processors, there are
very few plain text editors that have this functionality, and Vim is one of them.

Vim supports three types of alignment—left aligned, right aligned, and centered. But
before we look at how they work, we have to realize something about why this type
of alignment is uncommon in plain text editors.

The fact is that in common text editors, there is no hidden information. The text you
see is what you have—no page width, no alignments, nothing.

In word processors, on the other hand, there is a lot of information hidden in the
document, and this tells the editor how to format text as the user wants it.

As this is not possible in text editors such as Vim, the user will have to supply
the editor with information about the preferred text width—for example, in order
to give the editor margins to align against.

With this in mind, let's take a look at the commands starting with how to center
a text.

:[range]center WIDTH

Chapter 5

[125]

Here, range is the range of lines you want to center, and WIDTH is the maximum
number of characters you want on each line. Typically, you select the lines you want
to center in the visual mode (use Shift+v and move the cursor to select lines) and then
start typing in the command. You will see that after pressing :, Vim automatically
adds the range you have selected as '<, '>. This basically means from first selected
line ('<) to the last selected line ('>).

Next, you just have to write center and the width you want the text to have. You
can leave out the width if you have set the Vim option, textwidth.

If the option is set to 0 and you still leave out the width, then Vim just expects you to
want a text width of 80 characters. It probably won't take you long to realize that the
text is not centered as in a word processor, but simply indented the correct amount
with whitespaces. This also means that whenever you change the text in the centered
line, you will have to re-center the text.

The next command is the left-align command:

:[range]left INDENT

Again, this command needs a range of lines to work on and, if needed, a number of
characters to indent all the lines with. This means that you can set the left margin of
those lines exactly where you want it.

Finally, there is the right-align command, which aligns the lines with the right
margin. Again, there is the problem that Vim does not necessarily know the width of
the text, and hence you have to supply it with this information. The command is as
follows:

:[range]right WIDTH

The lines are again indented with whitespaces such that the line ends are all aligned
according to the width you define. As with centered text, you will have to re-align
the text whenever you change anything in a line because it will grow beyond the
right margin.

Marking headlines
When you write documents in a plain text editor, you sometimes need to create your
own formatting and markup in order to make the text more readable.

To improve readability, one of the major things that you can do is mark the strings
that act as headlines for the sections of text.

Advanced Formatting

[126]

In word processors, this is normally done by making the font larger and bold, but in
Vim this is not possible because only one font size is allowed in the document. So,
Vim users will have to mark the headlines another way.

My personal way of marking a line as a headline is by adding a line underneath it.

An example could be:

My Headline
===========
This is the text on the document. It could contain one
or more lines of text.

Different types of marks could be used for different levels of headlines:

Level1
======
Level2

-Level3-

To make it easier to add the underlining of the headlines, it can be wrapped in a
macro in Vim. This way you don't have to worry whether you have added less /
too much underlining of the headline.

A macro for the first two levels of headlines could look like this:

yypVr=o

Broken down in parts, this says:

•	 yy: Yank the current line
•	 p: Paste the copied line
•	 V: Select the entire line
•	 r: Replace the selected characters with the following characters

(in this case, =)
•	 o: Add a new line below the cursor and place cursor on it in the insert mode

This macro basically takes the current line (the headline line) and duplicates it. Then
it takes the duplicate and replaces all characters in it with some character (- or = in
this case). Finally, it inserts a new line and goes back into the insert mode.

In the case of the third headline level, we have to take another approach as it is not
an underlining, but rather an appending or a prepending of a dash (headline). For
this, a simple substitution could be used.

Chapter 5

[127]

:s/\(.*\)/-\1-/

If we again break it into pieces, it consists of three main parts:

•	 :s///: The substitution command.
•	 \(.*\): Regular expression that takes all characters in the current line and

remembers that this is the search pattern.
•	 -\1-: This is the replacement pattern. It tells Vim to insert a dash followed

by the first matched subpattern (everything between \(and \)) from the
previously mentioned search, followed by another dash.

Remembering these macros can be a bit hard, but you can easily create Vim
mappings such that you can have a shortcut for each of the headline markings, for
example:

:map h1 yypVr=o

:map h2 yypVr-o

:map h3 :s/\(.+\)/-\1-/<cr>o

Now, you can just go into the normal mode and press h1, h2, or h3 to add the
appropriate headline-level formatting. If you don't want it to insert an empty line
under the headline and go into the insert mode, then simply remove the o from the
end of each mapping.

Creating lists
Bullet lists and numbered lists are common structures in documents. In this recipe,
we will look at how to make the task of creating these lists in Vim a lot easier.

Let's start by looking at how we can create a Vim function that takes a range of selected
lines and converts them into a bullet list. In this case, a bullet list looks like this:

* first item
* second item
* third item

So, a function that adds * to the beginning of all the selected lines could look like this:

function! BulletList()
 let lineno = line(".")
 call setline(lineno, " * " . getline(lineno))
endfunction

Advanced Formatting

[128]

Looking at this quite simple function, you will see that all it does is get the current
line and replace it with a copy of itself, prepended with a couple of spaces, a bullet
(in this case an *), and then a tab space.

Obviously, it only does its work on one line. However, if you select a range of lines,
Vim will call this function over and over again for each selected line—starting from
the top down. This works fine when you need to add the same to every line and
don't have to tell them apart.

However, this is not the case for numbered lists because you have to know how far
in the numbers you have gotten.

So, let's take a look at a function that converts a range of selected lines into a
numbered list—one line for each item:

function! NumberList() range
 " set line numbers in front of lines
 let beginning=line("'<")
 let ending= line("'>")
 let difsize = ending-beginning +1
 let pre = ' '
 while (beginning <= ending)
 if match(difsize, '^9*$') == 0
 let pre = pre . ' '
 endif
 call setline(ending, pre . difsize . "\t" . getline(ending))
 let ending=ending-1
 let difsize=difsize-1
 endwhile
endfunction

This function is a bit more complex; without losing the simplicity of the task it
should solve—adding numbers in front of each selected line.

However this function does add a little extra to that—it right aligns the numbers
like this:

 1 item1
 2 item2
 ...
 10 item10
 11 item11
 ...
100 item100
 ...

Chapter 5

[129]

In order to perform this alignment, it needs to take care of two issues:

•	 It needs to know the largest number in the list
•	 It needs to be able to work on all the lines at once

The first issue is handled by looking at the line number of the first and the last line
in the selected range, and the difference is then the number of lines. Thus we get
the largest number in the numbered list. This is only possible because the second
issue is also taken care of, without which the function would only know about the
current line.

The solution for this is simply to add the range keyword after the function name,
and thereby tell Vim that the function will work on the entire range and not just
one line.

The function goes through the lines in the range from the last line to the first.
Whenever it hits a number that contains only the number 9 (such as 99 or 9999),
it knows that it has one character less in the number (for example, going from line
1000 to line 999). Instead of the character it now misses, it simply prepends an extra
space to the indentation. This way the numbers are kept right-aligned all the time,
no matter how many lines you select to have in your range.

On http://www.vimoutliner.org, you can find a Vim script that
uses headline formatting, list formatting, and so on to do outlining
documents. If you like to do outlining in Vim, this is the script to use.

Formatting code
Formatting code often depends on many different things. Each programming
language has its own syntax, and some languages rely on formatting like indentation
more than others. In some cases, the programmer is following style guidelines given
by an employer so that code can follow the company-wide style.

So, how should Vim know how you want your code to be formatted? The short
answer is that it shouldn't! But by being flexible, Vim can let you set up exactly
how you want your formatting done.

Advanced Formatting

[130]

However, the fact is that even though formatting differs, most styles of formatting
follow the same basic rules. This means that in reality, you only have to change the
things that differ. In most cases, the changes can be handled by changing a range of
settings in Vim. Among these, there are a few especially worth mentioning:

•	 Formatoptions: This setting holds formatting-specific settings
(see :help 'fo')

•	 Comments: What are comments and how they should be formatted
(see :help 'co')

•	 (no)expandtab: Convert tabs to spaces (see :help 'expandtab')
•	 Softtabstop: How many spaces a single tab is converted to

(see :help 'sts')
•	 Tabstop: How many spaces a tab looks like (see :help 'ts')

With these options, you can set nearly every aspect of how Vim will indent your
code, and whether it should use spaces or tabs for indentation. But this is not enough
because you still have to tell Vim if it should actually try to do the indentation for you,
or if you want to do it manually. It you want Vim to do the indentation for you, you
have the choice between four different ways for Vim to do it. In the following sections,
we will look at the options you can set to interact with the way Vim indents code.

Autoindent
Autoindent is the simplest way of getting Vim to indent your code. It simply stays
at the same indentation level as the previous line. So, if the current line is indented
with four spaces, then the new line you add by pressing Enter will automatically
be indented with four spaces too. It is then up to you as to how and when the
indentation level needs to change again. This type of indentation is particularly good
for languages where the indentation stays the same for several lines in a row. You
get autoindent by using :set, autoindent, or :set ai.

Smartindent
Smartindent is the next step when you want a smarter indent than autoindent. It still
gives you the indentation from the previous line, but you don't have to change the
indentation level yourself. Smartindent recognizes the most common structures from
the C programming language and uses this as a marker for when to add / remove
the indentation levels. As many languages are loosely based on the same syntax as C,
this will work for those languages as well. You get smart indent by using any of the
following commands:

•	 :set smartindent

•	 :set si.

Chapter 5

[131]

Cindent
Cindent is often called clever indent or configurable indent because it is more
configurable than the previous two indentation methods. You have access to three
different setup options:

cinkeys This option contains a comma-separated list of keys that Vim
should use to change the indentation level. An example could
be: :set cinkeys="0{,0},0#,:", which means that it should
reindent whenever it hits a {, a } or a # as the first character on
the line, or if you use : as the last character on the line (as used
in switch constructs in many languages).The default value for
cinkeys is "0{, 0}, 0), :, 0#, !^F, o, O, and e". See :help
cinkeys for more information on what else you can set in this
option.

cinoptions This option contains all the special options you can set
specifically for cindent. A large range of options can be set
in this comma-separated list. An example could be:set
cinoptions=">2,{3,}3", which means that we want Vim to add
two extra spaces to the normal indent length, and we want to place
{ and } three spaces as compared to the previous line. So, if we
have a normal indent to be four spaces, then the previous example
could result in the code looking like this (dot marks represent a
space):

if(a == b)
...{
......print "hello";
...}

The default value for cinoptions is this quite long string: ">s,e0,
n0,f0,{0,}0,^0,:s,=s,l0,b0,gs,hs,ps,ts,is,+s,c3,C0,/0,(
2s,us,U0,w0,W0,m0,j0,)20,*30" . See :help 'cinoptions' for
more information on all the options.

cinwords This option contains all the special keywords that will make Vim
add indentation on the next line. An example could be: :set cinw
ords="if,else,do,while,for,switch", which is also the default
value for this option. See :help 'cinwords' for more information.

Advanced Formatting

[132]

Indentexpr
Indentexpr is the most flexible indent option to use, but also the most complex.
When used, indentexpr evaluates an expression to compute the indent of a line.
Hence, you have to write an expression that Vim can evaluate. You can activate
this option by simply setting it to a specific expression such as:

:set indentexpr=MyIndenter()

Here, MyIndenter() is a function that computes the indentation for the lines it is
executed on.

A very simple example could be a function that emulates the autoindent option:

function! MyIndenter()
 " Find previous line and get its indentation
 let prev_lineno = s:prevnonblank(v:lnum)
 let ind = indent(prev_lineno)
 return ind
endfunction

Adding just a bit more functionality than this, the complexity increases quite
fast. Vim comes with a lot of different indent expressions for many programming
languages. These can serve as inspiration if you want to write your own indent
expression. You can find them in the indent folder in your VIMHOME.

You can read more about how to use indentexpr in :help 'indentexpr' and :help
'indent-expression'.

Fast code-block formatting
After you have configured your code formatting, you might want to update your
code to follow these settings. To do so, you simply have to tell Vim that it should
reindent every single line in the file from the first line to the last. This can be done
with the following Vim command:

1G=G

If we split it up, it simply says:

1G: Go to the first line of the file (alternatively you can use gg)

=: Equalize lines; in other words, indent according to formatting configuration

G: Go to the last line in the file (tells Vim where to end indenting)

Chapter 5

[133]

You could easily map this command to a key in order to make it easily accessible:

:nmap <F11> 1G=G

:imap <F11> <ESC>1G=Ga

The last a is to get back into the insert mode as this was where we originally were.
So, now you can just press the F11 key in order to reindent the entire buffer correctly.

Note that if you have a programmatic error, for example, missing a
semicolon at the end of a line in a C program, the file will not be correctly
indented from that point on in the buffer. This can sometimes be useful to
identify where a scope is not closed correctly (for example, a { not closed
with a }).

Sometimes, you might just want to format smaller blocks of code. In those cases,
you typically have two options—use the natural scope blocks in the code, or select a
block of code in the visual mode and indent it.

The last one is simple. Go into the visual mode with, for example, Shift+v and then
press = to reindent the lines.

When it comes to using code blocks on the other hand, there are several different
ways to do it. In Vim, there are multiple ways to select a block of code. So in order to
combine a command that indents a code block, we need to look at the different types
and the commands to select them:

i{ Inner block, which means everything between { and } excluding
the brackets. This can also be selected with i} and iB.

a{ A block, which means all the code between { and } including the
brackets. This can also be selected with a} and aB.

i(Inner parenthesis, meaning everything between (and) excluding
the parentheses. Can also be selected with i) and ib.

a(A parentheses, meaning everything between (and) including the
parenthesis. Can also be selected with a) and ab.

i< Inner < > block, meaning everything between < and > excluding
the brackets. Can also be selected with i>.

a< A < > block, meaning everything between < and > including the
brackets. Can also be selected with a>.

i[Inner [] block, meaning everything between [and] excluding
the square brackets. Can also be selected with i].

a[A [] block, meaning everything between [and], including the
square brackets. This can also be selected with a].

Advanced Formatting

[134]

So, we have defined what Vim sees a block of code as; now, we simply have to tell
it what to do with the block. In our case, we want to reindent the code. We already
know that = can do this. So, an example of a code block reindentation could look like
this:

=i{

Let's execute the code block reindentation in the following code (| being the place
where the cursor is):

if(a == b)
 {
 print |"a equals b";
 }

This would produce the following code (with default C format settings):

if(a == b)
 {
 print |"a equals b";
 }

If, on the other hand, we choose to use a{ as the block we are working on, then the
resulting code would look like this:

if(a == b)
 {
 print "a equals b";
 }

As you can see in the last piece of code, the =a{ command corrects the indentation of
both the brackets and the print line.

In some cases where you work in a code block with multiple levels of code blocks,
you might want to reindent the current block and maybe the surrounding one. No
worries, Vim has a fast way to do this. If, for instance, you want to reindent the
current code block and besides that want to reindent the block that surrounds it,
you simply have to execute the following command while the cursor is placed in the
innermost block:

=2i{

This simply tells Vim that you will equalize / reindent two levels of inner blocks
counting from the "active" block and out. You can replace the number 2 with any
number of levels of code blocks you want to reindent. Of course, you can also swap
the inner block command with any of the other block commands, and that way select
exactly what you want to reindent.

So, this is really all it takes to get your code to indent according to the setup you have.

Chapter 5

[135]

Auto format pasted code
The trend among programmers tells us that we tend to reuse parts of our code, or
so-called patterns. This could mean that you have to do a lot of copying and pasting
of code.

Most users of Vim have experienced what is often referred to as the stair effect when
pasting code into a file. This effect occurs when Vim tries to indent the code as it
inserts it. This often results in each new line to be indented to another level, and you
ending up with a stair:

code line 1
 code line 2
 codeline 3
 code line 4
 ...

The normal workaround for this is to go into the paste-mode in Vim, which is done
by using:

:set paste

After pasting your code, you can now go back to your normal insert mode again:

:set nopaste

But what if there was another workaround? What if Vim could automatically indent
the pasted code such that it is indented according to the rest of the code in the file?
Vim can do that for you with a simple paste command.

p=`]

This command simply combines the normal paste command (p) with a command
that indents the previously inserted lines (=`]). It actually relies on the fact that when
you paste with p (lowercase), the cursor stays on the first character of the pasted text.
This is combined with `], which takes you to the last character of the latest inserted
text and gives you a motion across the pasted text from the first line to the last.

So, all you have to do now is map this command to a key and then use this key
whenever you paste a piece of code into your file.

Advanced Formatting

[136]

Using external formatting tools
Even though experienced Vim users often say that Vim can do everything, this is
of course not the truth—but is close. For those things that Vim can't do, it is smart
enough to be able to use external tools.

In the following sections, we will take a look at some of the most used external tools
that can be used for formatting your code, and how to use them.

Indent
The Indent program is probably one of the most used external programs for Vim. It
has been around since the late 80s for various Unix platforms, and has also later been
imported to other platforms including Microsoft Windows.

As the name indicates, this program indents code—especially the code that
resembles the C code in syntax. What you may wonder is why you would use an
external program for this when Vim can handle this task just fine. This is a good
question because Vim can do this very well, but the Indent program does it better
and at the same time makes it easier to standardize the indentation among multiple
editors.

By specializing only in indenting code, indent is able to indent code more effectively
than the limited indent functionality included in Vim, for which indenting is "a
feature" and not "the feature". Indent specializes in understanding the code and
indents it according to the code—even if there is a syntactic error in the code.

So, how do you use Indent from within Vim? Previously, we have seen several
different options for how Vim should indent your code. There is, however, one
option that overrules all of them:

:set equalprog=PROGRAM

What this option does is set the external program that Vim should use for
indentation when using the commands with = . In the case of Indent, you simply
change PROGRAM to the path to your Indent program. Now, whenever you use one
of the indentation commands such as 1G=G, it takes the involved lines and pipes
them through the program you have defined in equalprog. You can even supply the
program with command-line arguments if needed.

In the case of Indent, there are so many different command-line arguments that you
will get a better result by configuring its configuration file.

Chapter 5

[137]

You can always find the latest version of the Indent program at this
address: http://www.gnu.org/software/indent/.

Berkeley Par
In the early 90s, Adam M. Costello began working on a simple command-line
program whose only purpose was to reformat a given text with a paragraph in it
according to the user's wishes. The program was called Par and, within a year or
two, it evolved into a very feature-rich program that could reformat nearly any
type of paragraph.

This, of course, makes Par an ideal external friend for Vim. So, let's look at some
examples of how it can be used.

If, for instance, you want your text to be nicely formatted in paragraphs with no
more than 78 characters on each line, then you could simply use it as:

:set formatprg=par\ -w78

The formatprg option in Vim tells it which program to use for formatting of the text
when one of the gq commands is used. Notice that the space between the program
name and its option is escaped with a backslash. This is needed in order for Vim to
see the entire string as one option and not two.

Note that Vim will only use formatprg when formatexpr is empty.
Otherwise, the formatexpr will be used.

From earlier on, we know that Vim cannot justify the text such that both ends of
the lines are aligned with the margins. Fortunately, Par can help us here. By simply
adding a j (for "justify") to our previous formatprg value, we can get Par to justify
the text:

:set formatprg=par\ -w78j

Par cannot only be used on a normal text, but also on some parts of the
code—the comments.

If you, for instance, have the following comment:

/**/
/* This function helps you modify a string and remove all */
/*	 unnecessary characters . */
/* Don't use this on widechar strings or strings shorter than 10 */
/* characters */
/**/

Advanced Formatting

[138]

You could select it in Vim and then do:

!par 60r

(Vim adds '<, '> in front of ! as a range).

This will give you the following result:

/**/
/* This function helps you modify a string and remove all */
/* unnecessary characters . Don't use this on widechar */
/* strings or strings shorter than 10 characters */
/**/

With a single command, you have transformed an ugly, unformatted comment into a
nicely formatted and aligned comment.

The manual page for Par gives a lot of examples on what else it is capable of.

You could easily map different Par commands to different keys in Vim
and this way have formatting keys for all text, comments, lists, and so on.

Tidy
If you work with web development or XML files, the tidy program could easily
become your next best friend besides Vim. This program cleans up the code that is
fed to it and makes it compliant for the World Wide Web Consortium (W3C) . Being
W3C-compliant means that the code is constructed such that it follows the HTML
guidelines set by the (W3C).

As a web programmer, I once in a while get in a situation where I have to open
someone else's HTML or XML file only to find that it is one big mess. Because of this,
I run all files with the .xml, .htm, or .html extension through tidy when opening it.
This is done using autocommands (au for short) in Vim, which I have added to my
vimrc file.

For XML this looks as follows:

au FileType xml exe ":silent 1,$!tidy --input-xml true --indent yes
-q"

For HTML files, it looks like this:

au FileType html,htm exe ":silent 1,$!tidy --indent yes -q"

Chapter 5

[139]

Please note that this will alter the file you open without you knowing anything about
what it has changed. In both cases, Vim expects to find a program called tidy in your
path, no matter if you are in Linux or Windows.

As you can see from the arguments I have given for the tidy program, it can also be
used for reformatting the indentation of the HTML / XML. This option makes the
file very readable and it gets a lot easier to get an overview of a file after opening it.

Since tidy checks for errors in the document, you could assign it to a key, so that at
any time you could check if the changes you have made are in fact W3C compliant.

You can always find the latest version of tidy here at:
http://tidy.sourceforge.net/.

Summary
In this chapter, we have looked at how to get better at formatting both our text
and code.

First, we looked at how you can format your text into easily readable paragraphs
with the help of a couple of simple Vim commands. We also looked at how to justify
the text and why this is not normally so easy to achieve in a plain text editor such as
Vim. Next, we created functions for marking headlines and generating both bulleted
lists and numbered lists. We learned that Vim is very flexible and you can tell it, for
instance, whether you want to get it to run your function once for each line you have
selected, or whether it should simply let you handle it and feed your function with
all the lines at once.

From here we moved on to looking at how to format your code in Vim, and
especially how to indent code. We learned that since we all have our own special
coding style, it is often hard to make a generic functionality for code formatting. Vim
handles this by giving the user a flexible interface for setting up exactly how he or
she wants it to format the code. We also looked at a couple of recipes for how we can
format a block of code fast, and even how to format the code that you paste into Vim
from other places.

Finally, we took a look at how we can use an external tool to give Vim that extra
edge it needs to be the perfect editor. External tools can help you format both text
and code, and we took a short look at some of the most popular ones to see how they
can work together with Vim.

Advanced Formatting

[140]

At this point, you should be pretty comfortable with modifying Vim to your needs
by using the built-in functions. Now, let's move on to the next chapter and look at
how you can extend Vim by writing your own Vim scripts.

Basic Vim Scripting
One of Vim's most powerful features is the extensibility it offers by allowing power
users to write scripts. With this feature, you can add nearly any feature to Vim and
easily share it with other Vim users.

In this chapter, we will look at some of the basic aspects of script writing for Vim.
The chapter will contain recipes focusing on the following subjects:

•	 Creating syntax-coloring scripts for Vim
•	 How to install and use scripts in Vim
•	 Different types of scripts
•	 How to develop scripts in Vim
•	 Basic syntax of a Vim script
•	 How to use other scripting languages when writing Vim scripts

After you have read this chapter, you should have a basic idea about how to use the
script functionality in Vim. You should also be able to write your own simple scripts
for Vim and, thereby, be able to add features to Vim.

Syntax-color schemes
For many programmers, the ability to get the code colored according to the syntax
is one of the most important features in Vim. Syntax coloring gives both a better
overview of the code and can help the user discover errors in the code. In Vim,
the syntax-coloring system uses script files that very much resemble a Vim script
file—they just define colors rather than functionality. In the following section, we
will take a look at how to create such a syntax-color scheme.

Basic Vim Scripting

[142]

Your first syntax-color file
Looking at syntax coloring in a simple way, it's all about identifying certain
words and structures in the text, and then giving them the correct color according
to what they are. In most cases, however, it is a bit more advanced than that. The
syntax-coloring needs to be context-aware in order to be usable. Let's look at an
example where we have the following code that we want to syntax color:

/* if x equals y then return the value */
if (x == y)
 {
 return x;
 }

If we simply match on words and symbols, we could get quite a good result. This is
done with the following match strings in Vim (as previously described in Chapter 2,
Personalizing Vim):

:syntax keyword myVars x y

:syntax match mySymbols "[{}();=]"

:syntax keyword myKeywords if return

:highlight myVars ctermfg=red guifg=red

:highlight mySymbols ctermfg=blue guifg=blue

:highlight myKeywords ctermfg=green guifg=green

The result is shown in the following screenshot:

As you can see, the code part is acceptably syntax-colored, but what about the
comment part of the code? Because we just match on single words, the same words
in the comment are matched too, and hence get the same color as the code. This
makes it very hard to distinguish the comments from the code.

Chapter 6

[143]

So, what have we learned from this little example? There is, in fact, more to syntax
coloring than finding words and giving them colors. So, let's add a bit of context
awareness by saying that it should look for anything between /* and */, and mark
it as a comment, and then go on and syntax color the rest. The parts of the code that
have been colored once will not be colored again by other rules. Hence, the order of
the rules matter. The code for doing this in Vim could look like:

:syntax match myComments "/*.**/"

:syntax keyword myVars x y

:syntax match mySymbols "[{}();=]"

:syntax keyword myKeywords if return

:highlight myVars ctermfg=red guifg=red

:highlight mySymbols ctermfg=blue guifg=blue

:highlight myKeywords ctermfg=green guifg=green

:highlight myComments ctermfg=yellow guifg=yellow

This results in the code looking like this:

So, now we actually have a decent syntax coloring for this little piece of code.
Of course, this is just a small example and it uses a very limited amount of the
syntax-coloring functionality in Vim. Let's move on and take a look at some of
the other possibilities you have.

Syntax regions
In our previous example, we selected the comment line using the match option for
the syntax command. In some cases, however, it is hard to create a suitable match
and other simpler approaches are needed.

In Vim, you can select entire regions of the code and color them, simply by setting
what a region starts with and what it ends with. To build on our previous example,
let's make a region-syntax command to substitute our old match command:

:syntax region myComments start=/\/*/ end=/*\//

Basic Vim Scripting

[144]

With this command, I can easily match any of the following comment blocks:

/* single line comment */
/*************************************
 * multi line comments
 *************************************/
/* multi line comment
 */

But the region option can do more than just setting what a region starts and ends
with. It also allows you to set which other things inside the region you want to be
colored by other syntax rules. One thing I often use is the ability to give keywords
in my function comments such as FIXME, OBSOLETE, TODO, and so on, so that I could
have the code like this:

/* function: splitString()
 * args : string
 * OBSOLETE
 */
function splitString(string){
...

All we have to do now is make a keyword group that colors the specific keyword
like this:

:syntax keyword myKeywords OBSOLETE FIXME TODO

We have to modify the region command in order to tell that it is allowed to contain
other syntax elements. The command will then look like this:

:syntax region myComments start=/\/*/ end=/*\// contains=myKeywords

If more than one syntax group needs to be containable inside your region, then you
simply add them in the contains list separated by a comma.

You can tell Vim that a region is correct only if both the start and end are
on the same line, by adding the one-line option to your syntax command.
Without this option, Vim will start syntax coloring the code from when it
hits the start, until it hits the matching end (or the end of the file).

Chapter 6

[145]

At some point, you might want a region to be able to be nested inside another region.
In that case, you will have to tell Vim that it should make this possible. You do so by
adding the contained option to the end of your region command:

:syntax region myComments start=/\/*/ end=/*\// contains=myKeywords
contained

In some cases, a block could be anything else in the code, and then of course you
don't want to write all the syntax groups. Here, you simply set contains to be ALL.

Other keywords such as ALL exist in Vim:

ALLBUT If this is the first item in the list, then all subsequent syntax groups in
the list will not be able to be colored in this region

CONTAINED If this is in the list, then the syntax groups with the contained option
are able to be syntax-colored in this region

TOP If this is in the list, then all the syntax groups except those having the
contained option are included

With these you can easily select a large range of syntax groups without having to
write them all down. An example could be to select all but the myComments group.
This is done with the following:

:syntax region myCodeblock start=/{/ end=/}/ contains=ALLBUT,myComments

If you know that some syntax groups are often used together, then you
can join them into a cluster: :syntax cluster myCluster contai
ns=myKeywords,mySymbols,myConditions. A cluster can be used
by adding a @ in front of the name: :syntax region myComments
start=/\/*/ end=/*\// contains=@myCluster.

Now, all you have to do is combine everything in one file and place it in a directory
called syntax in your VIMHOME. The name of the file needs to be the name of the file
type you use for your programming language files appended with .vim. This means
that example files with the C programming language have the.c file extension and
hence their syntax file is called c.vim.

In the previous examples, all my syntax group names are prepended with my, which
is because the syntax for my programming language is called my (imaginary, of
course). Had it been the syntax for the C programming language instead, then it
would be a good idea to give all the groups names that begin with c (cKeywords,
cConditions, cSymbols, and so on.).

Just to follow the example, we say that the files in the programming language are
named with a .my file extension. For simplicity, I want Vim to know my files as
having the my file type.

Basic Vim Scripting

[146]

If the file type you are using for your files is not known by Vim, then you have to
register it for the syntax file to work. This is done by adding a couple of lines to your
filetype.vim file in your VIMHOME. If the file does not exist, then simply create it. In
the case of the My programming language, I would need to add the following lines:

 augroup filetypedetect
 autocmd BufNewFile,BufRead *.my setfiletype my
 augroup END

This code tells Vim that it should add everything between the two augroup lines
to the filetypedetect auto-command group. This is the group of commands that
Vim uses to figure out which file type to give a file that it opens or works on.

In our case, it simply adds a line that makes Vim set the file type to my whenever it
creates or opens a file with the .my extension. Many other autocmd lines could be
added in between the augroup lines if you need it to distinguish from other file
types as well.

Now that Vim detects we are working on files with the my file type, it automatically
looks for a matching syntax file. It does this by looking in your VIMHOME/syntax/
directory for a file with a name matching the file type—in this case, my.vim.

This is all you need to get started on creating your own syntax files that Vim can
automatically load whenever you open one of your files.

The best way to learn about how to create a syntax file is by looking at
other people's syntax files. Vim comes bundled with syntax files for a
wide variety of file types you can use as inspiration or extend with your
own commands.

On the other hand, if you just want to add some extra syntax recognition to an
already existing syntax file, you have two options. You could, of course, find the
existing syntax file on your system and modify it with your additions. A better
solution, however, would be to use the post-processing feature in Vim, which makes
it possible to overwrite existing scripting, syntax, and so on that Vim has already
loaded. This way, whenever a script is updated on your system, you don't have to
add your changes again because they are completely separated from the script itself.

The secret of how to use the post processor is all about where you place your script
files. In your VIMHOME, you have a directory called after (if it does not exist, simply
create it). Whenever Vim looks for a script, syntax file, or color scheme in your
runtime path and finds it, it looks for the same file in the after directory. So, if
it found the VIMHOME/syntax/c.vim file, then it looks for a file named VIMHOME/
after/syntax/c.vim to see if there is anything from the first file it should overwrite.
The same is the case for scripts found in any of the following directories:

Chapter 6

[147]

•	 plugin

•	 ftplugin

•	 indent

•	 autoload

•	 syntax

•	 colors

You just add any of these directories to your after directory whenever you need
a file to be placed in it. If Vim finds it, it will use it.

Color scheme and syntax coloring
In our previous example, we added our own highlighting color groups with the
:syntax command in Vim. This gives you complete control over the colors, but
you also limit yourself to use only those colors. Hence, it might not follow the
colors defined by the color scheme you use in the rest of Vim.

A better approach is to use the color groups already defined in Vim, and thereby
split the color definition and syntax highlighting into two parts. This way, whenever
you change the color scheme in Vim, your syntax coloring will change accordingly.

You can find a list of all defined colors by using this command:

:highlight

Or, you can take a look inside one of the color scheme files available
for Vim. You will find the color schemes in a folder called color in
your VIMHOME, or wherever your Vim has been installed.

Using scripts
We all have some particular features that we simply can't live without in our editor
of choice. Some features are simple modifications such as specific key bindings, while
others are large and complex extensions throughout the entire editor. Of course, Vim
will not be able to satisfy everyone's needs, so instead it opens up for developers to
extend through scripts.

Basic Vim Scripting

[148]

What if you are not a programmer, or do not have the time to develop your own
scripts for Vim? Not a problem. Vim is given away free of charge under the charity
license; a lot of script developers have decided that they will also give away the
scripts they have developed for free. Many of them even put their scripts for easy
download on the online Vim community site http://www.vim.org, which means
that you can easily search for scripts that do exactly what you want them to do.

Script types
On the Vim Community site, you will find scripts that solve many kinds of tasks,
ranging from simple things such as inserting the date in the text to full programming
IDEs inside Vim. But actually, there are some defined groups of script types that Vim
knows of.

If we look at the script types that add features to Vim, we can split them into two
groups. The first group is the Global plugins group, which consists of scripts that
will be initialized when Vim starts or when the user executes some specific function
call. This kind of script is typically used for adding menus to Gvim, adding extra
functionality to already existing functions in Vim, or maybe changing some feature
in Vim to fit the user's need.

The second group is the File-Type plugins group. Scripts in this group are bound to
a particular file type (or multiple file types), and the script is only loaded whenever
a file of this type is opened or created. The functionality of the scripts in this group
could be adding features specific to a particular file type, or the tools used in relation
to it. An example could be adding key bindings that make it easy to call a compiler
for a certain programming language, or it could be a function that automatically
adds a comment above all functions a programmer writes. The scripts in this group
also include the scripts for adding syntax coloring, though these are often installed
elsewhere than the rest of the scripts in this group.

Installing scripts
When you download scripts, they typically come in one of the three formats:

•	 As a single .vim script file
•	 As a compressed (typically Zip) file that typically contains one or more .vim

files (both global and file type-dependent) and documentation.
•	 As a Vimball, which is an automatic Vim script installation written in Vim

If the script you want to install is just a Vim script file, then normally all it takes to
install it is to copy it to the VIMHOME/plugin directory, or VIMHOME/ftplugin if it is
a file type-dependent script.

Chapter 6

[149]

If you are on a multiuser system, you can install it for all users at the same time by
installing it in directories with the same names, instead of in your VIMHOME, which is
located where Vim is installed on your system.

If the script comes in a compressed file instead, it can be hard to tell how to install
it. Typically, you will simply have to place the file in your VIMHOME and then
uncompress it there. This normally places the files in the right folders according to
how Vim wants them. In any case, there might be a README or INSTALL file where
you can read how to install the script.

If you have found the script on the online Vim Community at
http://www.vim.org, then you will find instructions for
installation on the page that describes the script.

The third and last way to install Vim scripts is by using the Vimball installation
system—an installation system created for Vim 7 and newer. This system takes a
range of files and combines them into a single Vim script archive with the extension
.vba—a Vimball.

Before you start using Vimballs, you will need to have the Vimball script installed.
This adds the functionality for reading and installing Vimballs. As with most other
scripts for Vim, you will be able to find the script on the online Vim community site.

The latest version of the Vimball script can always be found here at:
http://www.vim.org/scripts/script.php?script_id=1502.

When you have the Vimball script installed, you are ready to use Vimballs for
installing other Vim scripts.

Let's say that you have a Vimball called myscript.vba and want to install it. You
simply open the Vimball in Vim. Vim will now tell you how to install the script.
This is normally done by executing the following command:

:source %

This installs the script in the first place found in the runtimepath option in Vim.
If you want to install the script elsewhere, you can do so by using the following
command instead:

:UseVimball PATH

Basic Vim Scripting

[150]

You need to replace PATH with the path where you want Vim to install the script.
Please note that some scripts only work when they are installed in the correct place.

Sometimes, you do not want to install a script unless you know what it contains. If
this is the case, then the Vimball script has a command that will give you a list of
the files that you will get installed if you decide to install the Vimball. To get the list
of files in the Vimball, execute the following command after you have opened the
Vimball in Vim:

:VimballList

If the files and directories listed are the ones you expected, then you are ready to
install the file, and can then use either the :source or the :UseVimball command
to install it.

Uninstalling scripts
There is normally no automatic way of uninstalling scripts after they are installed,
and you will have to go through the files one by one and uninstall them manually.
Having said that, the Vimball script does, in fact, have an uninstall mechanism.

If you remember the name of the Vimball you used to install a Vim script, then you
can later use this very same Vimball name to uninstall the script. You just have to
execute the following command in Vim:

:RmVimball VIMBALLNAME

Replace the VIMBALLNAME with the name of the Vimball you used to install the script.
If the script was not installed in the default place (if installed with :UseVimball),
then you can add the installation path as a second argument to the command, and
thereby tell the Vimball script where to find the files it should remove.

:RmVimball VIMBALLNAME PATH

In order to be able to bind a Vimball name to the files it needs to delete, the script
will create a file called .VimballRecord in your VIMHOME. Note that if you remove
this file, you will not be able to uninstall any of the Vimballs you have previously
installed unless you do it manually.

Script development
At some point when using Vim, you might find a feature it does not have, and which
you need it to have. So now is probably a good time to learn how to make your own
scripts for Vim such that you can add this missing functionality.

However, before you start, there are a couple of questions you should consider.

Chapter 6

[151]

First of all, you should make sure that no one else has already created a script that
adds what you need—why invent the wheel again? If someone has created a script
that does nearly what you need, then why not just help the developer by adding
the extra features to that script and thereby make it work for both him or her and
you? This shortens the development time and limits the number of similar scripts
floating around.

If you didn't find any scripts that matched your needs, you need to get working on
the script. In this case, you should consider from the start whether or not you want to
distribute your script to others when it is done. Bram Moolenaar released Vim free of
charge for you to use, and other Vim script developers have done the same with their
scripts. I would urge you to get into the spirit of sharing and do the same with your
Vim scripts.

You can find out more about open source licenses on this address:
http://www.opensource.org/.

In case you do decide to share your scripts, you should (from the beginning)
remember that Vim is available for a wide variety of platforms and it would be
preferable for your script to work on those too. This basically means that:

•	 You should never expect that some external program is available
•	 You should never expect that an external program is installed where you

have it installed
•	 You should remember that file systems are different on different platforms
•	 You should remember that some Vim functionalities are available only on

some platforms
•	 You should try to make things as configurable as possible—others might not

want things how you want them

With this in mind, you are ready to start looking at how Vim scripts are put together.
So, let's move on to look at some actual Vim script code.

Script writing basics
In the next few sections, we will take a look at all the basic types and structures you
will need to know in order to be able to write a good Vim script.

If you are already a programmer who knows one or more programming languages,
or scripting languages, then you will most likely find many similarities between
them and how the Vim scripting language is constructed.

Basic Vim Scripting

[152]

Types
In Vim there are, roughly speaking, only two types—strings and numbers. When I
say roughly speaking, it is because within those two types there are other subtypes.
A number can be represented in three different ways depending on how you want it:

•	 Decimal number: 1, 2, 3, 10, 100, and so on
•	 Hexadecimal: 0x01, 0x02, 0x03, 0x0A, 0x64
•	 Octal: 01, 02, 03, 012, 0144

Decimal numbers are used as they are, but you need to prepend hexadecimal
numbers with 0x, and octal with 0. Vim will easily be able to use the numbers in
calculations together, no matter if they are of the same kind or not. This means that
you could easily make calculations saying:

:echo 10 + 0x0A + 012

This would result in Vim replying with 30.

In Vim, a string is represented as a normal text string encapsulated in either single
quotes or double quotes, for example:

:echo "this is a string"

:echo 'this is a string'

If you need to use the character you used to encapsulate the string inside the string,
then you can escape it with a backslash:

:echo "this is a string with a \" double quote"

:echo 'the double quote " does not need escaping here'

Whether to use single or double quotes depends on the situation.

In a single-quoted string, everything is shown as it is represented in the written
string—also known as a literal string. This means that you cannot use special
escaped characters in the string.

For example, this will work:

:echo "string with\n two lines"

But this won't:

:echo 'string with\n two lines'

Chapter 6

[153]

Besides the newline character \n, there are others available in Vim:

\n Newline, line break
\r Carriage return
\t Tab space
\123 Octal numbers (123 can be any number)
\x123 Hexadecimal number (123 can be any number)
\u Character encoded as up to 4 hex numbers (for example, \u01fc34)
\f Form feed
\e Esc
\b Backspace

Besides these escape characters, you can always insert the Vim-specific key acronyms
such as <CR> and <ESC> by prepending them with a backslash—\<CR>. Even the
Vim-specific key shortcuts (such as <C-W> for Ctrl+W) can be inserted by escaping
them with a backslash.

Variables
In Vim, there are five types of variables, which (even though are defined the same
way) can be used very differently. The five types are as follows:

•	 String: A simple string such as "this is a string"
•	 Number: A numeric value such as 123 or 0x123
•	 List: An ordered sequence of items (an ordered array)
•	 Dictionary: An unordered associative array holding key-value pairs
•	 Funcref: A reference to a function

The name of the variable can include alphanumeric characters and underscore.
It cannot, however, start with a number and hence must start with a letter or
an underscore.

Always use meaningful variable names if possible—remember that others
might need to read and understand your code afterwards. To prevent
your variables from conflicting with others' variables, you can make your
variable names unique by—for example—prepending them with your
initials like this: KSmyvariable. If there is more than one developer on
the script, then you can instead use an abbreviation of the script name.
For example, Vim sort script could have variables such as VSmyvariable
or VSSmyvariable.

Basic Vim Scripting

[154]

All of the variable types are defined with the :let command as follows:

:let myvar = VALUE

Here, VALUE depends on the type of the variable. In the case of strings and numbers,
the value is simply defined as the types in Vim, for example:

:let mystringvar = "a string"

:let mynumbervar = 123

When working with string and number variables in Vim, there is an automatic
conversion going on between the two types depending on how you use them.
This means that even though you execute this:

:let mystringvar="123"

you can still use this:

:let mynumbervar=mystringvar-23

and mystringvar is automatically converted in place when the other number is
subtracted from it.

You can force a string to become a number by adding 0 to it, for
example, :let mynumber=mystringvar+0. To force conversion
from a number to a string, you can use the string() function: :let
mystring=string(mynumber).

This automatic conversion, however, stops when we move to lists and dictionaries
because these can contain different types within their value. In the following table,
you can see examples of how the automatic conversion works:

Input (type) Result (type)
"hello" . "world" (string.string) "hello world" (string)
"number" . 123 "number 123" (string)
"123" + 10 133 (number)
"123" - 10 . "hits" "113 hits" (string)
"123" - 10 + "hits" 113 (number)

To define a list, use square brackets to enclose a comma-separated list of values:

:let mylistvar1 = [1,2,"three",0x04, myfivevar]

A list can contain other lists and hence can be a list of lists:

:let mylistvar2 = [[1,2,3],["four","five","six"]]

Chapter 6

[155]

As you can see, the previous examples contain strings, numbers, and lists as item
types in the list. This makes this type of variable very suitable as a storage container
for various values.

Later, we will look at how to use the values in a list variable and how to work with
multiple lists together.

If you want to create a variable of the type dictionary, it is done with the following
let command:

:let mydictvar1 = {1: "one", 2: "two", 3: "three"}

This creates a dictionary with three items where the key is the number and the
value is the number spelled out with letters (for example, 1 is the key and "one"
is the value).

It does not matter whether you write a number key (as mentioned previously) or
a string, as Vim will always convert it into a string. So, the previous example will
actually define key-value pairs as 1:one.

You can also create dictionaries with nested dictionaries. This is done as follows:

:let mydictvar2 = {1: "one",2: "two","tens":{0: "ten",1: "eleven"}}

As you can see, the key doesn't have to follow any strict order, and doesn't have
to be a number (see "tens" in the example).

Later, we will look at how to access the values in a dictionary, and how to move
from dictionary to list and back.

The final variable type is the funcref type. This type can contain a reference to a
function and can, in contrast to the other types, be executed. To define a funcref
variable, use the following command:

:let Myfuncrefvar = function("Myfunction")

This ties the Myfunction function to the Myfuncrefvar variable. Notice that the
variable name starts with a capital letter. This is because all user-defined function
names in Vim need to have a capital first letter in the name, and hence all variables
that can be executed as functions should have the same restriction.

To use a funcref variable later on, you simply use it as a normal variable name,
except that you add parentheses after the name like this:

:echo Myfuncrefvar()

Alternatively, it can simply be called with the :call command:

:call Myfuncrefvar()

Basic Vim Scripting

[156]

If the function tied to the variable takes arguments, then these are simply added in
the parentheses like this: Myfuncrefvar(arg1, arg2,...,argN).

When you work with variables in Vim, there are different scopes you can make
them available in. This means that you can have some variables available only in
a function, while others are global in Vim.

As a Vim script developer, you have to mark the variable yourself to tell Vim in
which scope the variable should be available. This is done by adding a scope marker
at the beginning of the variable name.

If you define a variable in Vim without specifying which scope it belongs to,
then it belongs to the global scope by default—unless it is defined in a function,
which causes it to only be available in the function itself. The following eight
scopes are available:

•	 v: Vim predefined global scope
•	 g: Global scope
•	 b: Buffer scope—only available in the buffer where it was defined
•	 t: Tab scope—only available in the Vim tab where it was defined
•	 w: Window scope—only available to the current Vim window (viewport)
•	 l: Function scope—local to the function it is defined in
•	 s: Sourced file scope—local to a Vim script loaded using :source
•	 a: Argument scope—used in arguments for functions

Did you know that comments in Vim scripts are created by having a
quote as the first non-space character on the line: " this is a comment?

So for an example that uses some of the scope names, we could look at the
following function:

let g:sum=0
function SumNumbers(num1,num2)
 let l:sum = a:num1+a:num2
 "check if previous sum was lower than this
 if g:sum < l:sum
 let g:sum=l:sum
 endif
 return l:sum
endfunction
" test code, this will print 7 (value of l:sum)

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Chapter 6

[157]

echo SumNumbers(3,4)
" this should also print 7 (value of g:sum)
echo g:sum

Even though you are able to have both local and global variables with the same
naming, it is in general a bad practice to use the same names in a local scope if
you already know that it is in use in the global scope.

Try to use the correct scopes whenever possible. This way you can
prevent the global scope from overflowing with variables you do not
control and whose origin you do not know.

Conditions
When creating a script for Vim, it is often necessary to be able to check if some
condition is met before executing some code. In most programming and scripting
languages today, the structure for doing this conditional check is the if condition
check. This is also the case for Vim. In Vim scripting, the simplest format for
expressing this is as follows:

if condition
 code-to-execute-if-condition-is-met
endif

If the condition evaluates to true, then the code between the if and the endif
lines is executed. If the condition evaluates to false, then the code is not executed.

So, what can we use as condition in this if construct? There at two types of
conditions you can use here—conditions using logic operators or string operators.
So, let's take a look at how these operators look. In general, the format is:

value1 OPERATOR value2

Here, OPERATOR is the operator that compares value1 with value2. An example
could be:

value1 >= value2

This evaluates to true if value1 is higher than or equal to value2. This is just one
of the logical operators available. The following is a full list of the logical operators:

•	 val1 == val2: True if val1 equals to val2
•	 val1 != val2: True if val1 is not equal to val2
•	 val1 > val2: True if val1 is higher than val2

Basic Vim Scripting

[158]

•	 val1 < val2: True if val1 is lower than val2
•	 val1 >= val2: True if val1 is higher than or equal to val2
•	 val1 <= val2: True if val1 is lower than or equal to val2

These operators can be used on both string values and numeric values because Vim
can automatically convert back and forth between those types. In the case of strings,
the operators work on the letters of the string one by one to see if their ASCII value
is higher, lower, or equal to the one in the other string. For example, "bbb">"aaa" is
true whereas "abc">"abd" is false (because c has a lower ASCII value that d).

When you work only with strings, there are some more conditions you would want
to have available. These are the partial matches that you would want to use if you
want to check whether a string contains a certain substring or character. In Vim, the
operators for this look like this:

•	 str1 =~ str2: True if str1 contains the str2 substring or is equal to str2
•	 str1 !~ str2: True if str1 does not contain, and is not equal to the str2

substring

When using these operators, str2 is typically a pattern and can use Vim's regular
expressions (see :help regexp for more information). This means that you cannot
only match simple strings, but can actually do advanced matches.

All these conditional operators can be used in the if construct and as you will see
later, they can also be used elsewhere.

Let's look at some other cases where conditions are useful and can help make your
code more structured.

In some cases, you might want to execute one piece of code if the condition evaluates
to true, but another piece of code if it evaluates to false. Here, you could have two if
conditions—one checking if the condition is true, and one checking if the condition is
false. There is, however, another method.

With the if-else-endif construction, you can do just that. The format for expressing
this in Vim scripting is as follows:

if condition
 code-to-execute-if-condition-is-true
else
 code-to-execute-if-condition-is-NOT-true
endif

Chapter 6

[159]

Another case could be when you have a range of conditions and depending on
which one evaluates to true, the correct piece of code should be executed. This could
be done with the following:

if condition1
 code-to-execute-if-condition1-is-true
else
 if condition2
 code-to-execute-if-condition2-is-true
 endif
endif

As you can see, only one of condition1 and condition2 can be evaluated as true,
but both can be evaluated as false. However, this code is cluttered and the extra
endif can lead to incorrectly-ended if constructs if placed incorrectly.

A better way to write this is with the if-elseif-else construct, which is formatted as
follows:

if condition1
 code-to-execute-if-conition1-is-true
elseif condition2
 code-to-execute-if-condition2-is-true
endif

This code does exactly the same as the previous example, except that it is a lot more
readable. You can have more than one elseif, which means that you can have
multiple conditions in the same structure without problems.

Later, when we come to working with loops, we will see how conditions can also be
used there.

Working with lists and dictionaries
Previously, we have looked at how to create lists and dictionaries. Now, let's move
on a bit and look at how to use the data we have stored in them.

When you have a list variable and you want to use one of the values it contains, you
simply have to use the name of the variable with square brackets after it and with
the index of the value you want. Index means the place in which the item is placed
in the list, starting with first item being placed at index 0. So, if we want to echo the
"three" value from the following list:

:let mylistvar1 = [1,2,"three",0x04, myfivevar]

Basic Vim Scripting

[160]

It has index 2 and hence could be done like this:

:echo mylistvar1[2]

If we have a list of lists such as mylistvar2:

:let mylistvar2 = [[1,2,3],["four","five","six"]]

and want to echo the "four" value, then we need to access the index 0 of the inner
list which is placed at index 1 of the outer list. This is done with:

:echo mylistvar2[1][0]

A point to note about lists in Vim is the possibility to use negative indices. Whenever
a negative index is used, it will count from the back rather than from the front. So, to
echo the four value from mylistvar2, it would look like this:

:echo mylistvar2[-1][-3]

Notice that -0 does not exist and hence the last item in a list is index -1.

If you try to access a non-existing index of a list, Vim will give you an
error. You can prevent this error from showing up by using the get()
function instead, :echo get(mylistvar1, 2) where 2 is the index
you want to try to access.

If you want to add another item to an already existing list in Vim, you have multiple
choices. The simple way to do it is by using the add() function. An example of how
this works is as follows:

:let mylistvar3 = [1,2,3,4]

:call add(mylistvar3, 5)

:echo mylistvar3

This adds the item "5" to the list and then prints the entire list, which now holds five
items. Another way to do it is to use the list concatenation functionality in Vim. To
concatenate two lists in Vim, you just have to use the + operator. An example of this
is as follows:

:let mylistvar4 = [1,2,3,4]

:let mylistvar4 = mylistvar4 + [5,6,7,8]

:echo mylistvar4

This creates a list with four items (values 1-4), takes its value list and concatenates
it with another list (containing the values 5-8), and then puts the concatenated list
back into the mylistvar4 variable. Finally, it echoes the list, which is now eight
items long.

Chapter 6

[161]

Instead of concatenating list one with list two before putting the value
back into list one, you can do the entire thing in one move by using
the combined equal operator, +=. This takes the right-hand side of the
operator and adds it (concatenates) to the left-hand side. For example:
:let mylistvar4 += [5,6,7,8]

If the list you concatenate with is only one item, then it basically works like using
the add function.

Besides using the + operator for concatenation, you can also use the extend()
function. An example of how this works could look as follows:

:let mylistvar5 = [1,2,3,4]

:call extend(mylistvar5, [5,6,7,8])

:echo mylistvar5

Note that there is a very big difference between using the add() and extend()
functions for adding elements to the list. If instead of using extend() you used
add() in the previous command, then you would have added a list in the list
resulting in mylistvar5. This looks like the following:

mylistvar5 = [1,2,3,4,[5,6,7,8]]

This only has five items, the fifth of which is a list containing another four items.

To remove an item from a list, you do it as if you were adding an item to the list.
But now the function name is remove(). For example:

:call remove(mylistvar5, 3)

This removes the item with index 3 from the list in mylistvar5.

So, let's move on and look at how we can access and modify a dictionary variable.
Previously, we created a dictionary variable looking like this:

:let mydictvar1 = {1: "one", 2: "two", 3: "three"}

Accessing this particular dictionary actually looks very much like accessing a list.
If, for instance, we want to have the "two" value from the dictionary, we use the []
appended to the end again as with the lists:

:echo mydictvar1[2]

Basic Vim Scripting

[162]

This looks a lot like the list we accessed, but notice what happens if we change the
keys in the dictionary from numbers to some string:

:let mydictvar4 = {'banana': 'yellow', 'apple': 'green'}

And now, we want to access it again to get the color of the apple:

:echo mydictvar4['apple']

This will print the word 'green' to the screen. An alternative way to do the same if
your key is all alphabetic (ASCII) letters, numbers, or underscores is the following:

:echo mydictvar4.apple

The first character of the key must always be an ASCII letter.

So, compared to the list where everything was ordered and every item had an index,
the directory is unordered and the key from the key-value pair is used to get the
value instead of the index.

To change one of the values in the directory variable, you just use the following:

:let mydictvar4['apple'] = 'red'

To add another item to the dictionary, you do exactly as in the previous example,
except that you use a key that is not already there in the dictionary.

As something special, you can attach a function to the dictionary variable and use
it to make distinct things on or with the contents of the dictionary variable. This is
better explained with an example, so let's see how that works.

Say, we want to be able to take a number and convert each of its digits into the
same number written with letters. Let's call the convert function and the dictionary
variable it is attached to so that it looks like this:

let mynumbers = {0:'zero',1:'one',2:'two',3:'three',4:'four',

 5:'five',6:'six',7:'seven',8:'eight',9:'nine'}

The function could look like this:

function mynumbers.convert(numb) dict
 return join(map(split(a:numb,'\zs'),'get(self, v:val,"unknown")'))
endfunction

If we look at the function, there are a couple of things you need to notice.

The first thing is that this function is built like a normal function, except that
the function name contains the name of your dictionary variable and we have
the dict keyword after the function argument.

Chapter 6

[163]

This keyword is what tells Vim that it should treat this function as a dictionary
function and open up for the usage of a special variable—self. From now on, the
self variable refers to the dictionary to which this function is bound. This means
that we could basically do self[1] to get the value "one" and so on. The contents
of the function itself are a combination of four functions:

•	 split: Splits the argument stored in a:numb into an unnamed list. For
example:
:let a = split("one two")

:echo a; " this prints "one"

•	 map: Maps a given command to every element in a list (the one from split).
For example:
:let mylist = ["one", "two", "three"]

:call map(mylist, "<" . v:val . ">")

:echo mylist[0] " this prints <one>

•	 get: Gets value from self where key is equal to v:val (value from map).
For example:
:let mylist2 = ["one","two", "three"]

:echo get(mylist2, 2,"none") " prints three

:echo get(mylist2, 3, "none") " prints "none"

•	 join: Joins all the elements returned by the map-get combination.
For example:

:let mylist3 = ["one", "two", "three"]

:let mystring = join(mylist3, "+")

:echo mystring " prints one+two+three

(See :help split(), :help join(), :help map(), :help get() for
more information.)

So translated into a more understandable description, the mynumbers.convert
function takes a range of digits (a:numb) and splits it into individual digits. It then
uses each digit as a key to look up the value in the dictionary variable (mynumbers,
known as self), joins all the returned values into a string by putting a whitespace
between the values, and finally the string is returned.

So, now you can use your dictionary variable as a converter from numbers to written
number names like this:

:echo mynumbers.convert(12345)

Basic Vim Scripting

[164]

This prints "one two three four five", which is the 12345 argument in words. This is a
functionality that opens up a lot of new possibilities.

Loops
When you are working with lists and dictionaries, it is often a needed functionality
to be able to go through some or all of the items in the list / dictionary. For this a
programmer would typically use loops, and this is also the case in Vim.

In Vim you have two available looping types:

•	 For loop
•	 While loop

In the next sections, we will look at how to work with these loops.

For loops
Let's start by taking a look at the for loop in different situations.

The for loop can be constructed in several different ways, of which this is
the simplest:

for var in range
 do-something
endfor

In this case, we go through all values one by one and for each one of them, the myvar
variable is updated to hold the value. An example could be:

for myvar in range(1,10)
 echo myvar
endfor

This uses the range()function to construct a range of numbers from 1 to 10 and
then the for loop goes through them beginning with 1. The myvar variable will
be updated for each iteration with the value found at the current number from the
range. After executing this for loop, it will have printed the numbers 1 through 10.

This does not use a list, but can easily be changed so that it does. So, let's look at how
that is constructed:

for var in list
 do-somthing
endfor

Chapter 6

[165]

This is very simple, but let's look at an example to see how it works:

let mylist = ['a','b','c','d','e','f','g','h','i','j','k']
for itemvar in mylist
 echo itemvar
endfor

After executing this, it will have printed the letters a through k one by one. And
there really isn't more to it when using a list.

When you use dictionaries, it takes a bit more work to get the values printed. This
is because the value is bound to a key and not to an index. But we have a helper
function that just extracts the keys from the dictionary and serves them to the for
loop as if they were a list. The function's name is keys(). So, let's take a look at how
we can use this in a for loop:

let mydict = {a: "apple", b:"banana", c: "citrus" }
for keyvar in keys(mydict)
 echo mydict[keyvar]
endfor

In this case, we get a list of keys from the mydict dictionary. We go through them
one by one, giving keyvar the value of the current key. The value of keyvar is then
used to look up the matching value in the mydict dictionary.

As the items in a dictionary are not ordered, in the previous example you could end
up getting the values printed as banana citrus apple. There is, however, a function
that will help you sort the keys and hence put the values in order. You simply have
to use the sort()function on the list you get out of the keys() function.

let mydict = {a: "apple", b:"banana", c: "citrus" }
for keyvar in sort(keys(mydict))
 echo mydict[keyvar]
endfor

This, of course, requires that the names of the keys can be ordered individually by
using a normal sort algorithm. In the previous case, there is no problem because a is
before b, which is before c.

The sort function can actually take another argument, which is a
function name. This way you can make your own sort algorithm to use
when sorting special values. See :help sort() for more information
and an example.

Basic Vim Scripting

[166]

While loops
The next type of loop we will look at is the while loop. This type of loop, as the name
indicates, runs for as long as some condition is true (remember how we previously
defined what a condition is in the Conditions section). The basic construction for a
while loop is as follows:

while condition
 execute-this-code
endwhile

Here, the code between the while and the endwhile lines is executed as long as the
condition evaluates to true. So, let's look at an example of how that could work:

let x=0
while x <= 5
 echo "x is now " x
 let x+=1
endwhile

This example defines a variable x with the value of 0 and then goes into a loop that
runs as long as x is lower than 5. For each iteration in the loop, it prints the value of x
and then increments the value of x by 1. This will result in Vim printing:

x is now 0

x is now 1

x is now 2

x is now 3

x is now 4

x is now 5

When you use a while loop, there are some extra features available by using some
specific statements inside the loop scope.

The first statement is the break, which makes the loop end right where it is, and Vim
then jumps to the line right after the endwhile. An example could be:

let x=0
let y = 1000
while x <= 1000
 let y -= 10
 if y <= x
 break
 endif
 let x += 1
endwhile

Chapter 6

[167]

This creates two variables x and y, and gives them the values 0 and 1000. Then it
goes into a while loop where it subtracts 10 from the y for each loop iteration. And
now the break statement comes into the picture because we now check with an if
condition to see if the y variable is smaller than or equal to the x variable. If this is the
case, we don't want to loop anymore and call the break. This ends the loop and takes
us to just after the loop.

The second statement you can use in the while loop is the continue statement.

This statement takes you back to the while line in the while loop without executing
the remaining lines under it.

An example of this could be the following:

let x=0;
while x <= 5
 let x+=1
 if x == 2
 continue
 endif
 echo "x is now " x
endwhile

This example basically loops x through the values 1-5. We want it to print out the
value of x every time, except when x equals 2. So, in order to leave out the loop
iteration where x equals 2, we check to see what the value is, and if it is 2, then we
use the continue statement.

The output from this will be:

x is now 1

x is now 3

x is now 4

x is now 5

And that's all you need to know about loops to get you started with writing your
own scripts.

The break and continue statements can also be used in the for
loop in the same way as shown in the examples with the while loop.

Basic Vim Scripting

[168]

Creating functions
Throughout this book, we have already used different pieces of code that were
constructed as a Vim function. We have, however, never actually gotten to look
into how to actually construct a function and what exactly a function is.

Let's start by looking at the structure of a simple function:

function Name(arg1, arg2,...argN) keyword
 code-to-execute-when-function-is-called
endfunction

The Name is the name you want to call your function. It has to start with a capital
letter and can only contain letters, numbers, and underscores.

The arg1-argN are arguments that the user of the function is required to give when
calling the function. If you don't need any arguments from the user, then you can
simply leave them out (having an empty () after the function name). You can have
as many as 20 arguments for a function in Vim, and simply name them as you would
like them to be used later in the code inside the function.

After the argument parentheses, it is possible to add a keyword that tells Vim
something about what this function is used to do and how it should call it. We have
already seen in this book that the keyword can have the following values:

•	 Dict: Tell Vim that this function is bound to a dictionary (covered in this
chapter)

•	 Range: Tell Vim that this function is called once for a range of lines and
not once for each line it is called on (Chapter 5, Advanced Formatting, when
learning to create lists)

However, in most cases, you do not need this keyword and hence you can just leave
it out.

Inside the function, you have all the code that you want executed when the function
is called. All variables in this code are local to the function and will not be reachable
later when the function has finished executing. If you need to use a variable from
outside the function, you can either get it into the function as an argument, or you
can use the variable name directly inside the function by adding the global scope
marker g: to the variable name.

Chapter 6

[169]

If you get a variable into a function as an argument, then the value is
merely copied into the function, and the variable outside the function
will not be updated when the value is changed inside the function.

The variables that you get into the function as an argument will have the scope
marker a: in front of the name when used in the code.

Here is an example of how a simple function could look that takes two arguments
and prints their sum:

function PrintSum(num1, num2)
 let sum = a:num1 + a:num2
 echo "the sum is ".sum
endfunction

This shows how to use the arguments in the function, but you might also want to be
able to update a global variable with the sum. So, let's update the example to do this:

let sum = 0
function PrintSum(num1, num2)
 let sum = a:num1 + a:num2
 echo "the sum is ".sum
 let g:sum = sum
endfunction

Now, you can still use the sum variable after the function has ended. Let's say you
did this:

let sum = 1
call PrintSum(4,5)
echo sum

Then this will print the value 9 since the PrintSum function has updated the global
sum variable.

Updating global variables directly is, however, not considered a good programming
practice and Vim also gives you another way of updating the global variable—the
return statement.

Basic Vim Scripting

[170]

The return statement makes the function return a value and end the execution of the
function whenever Vim hits the statement. The returned value can then be assigned
to the sum global variable directly when the function is called. So, let's once again
update our example to use the return statement:

function PrintSum(num1, num2)
 let sum = a:num1 + a:num2
 echo "the sum is " sum
 return sum
endfunction

Now, you can change the function call to be as follows:

let sum = PrintSum(4,5)
echo sum

If the function had additional lines after the line with the return statement, they
would never be executed because the function finishes execution after returning.
This also means that you can only return one value from a function.

You can have multiple return statements in your function, but the
function will return when the first one is reached. However, some
consider multiple return points to be a bad programming practice,
unless it is not possible to get around without making the code less
understandable.

Variable argument list
In the previous example, we only had two arguments for the functions. But what if
you wished to calculate the sum of more than just those two? In Vim, you can have
a variable length argument list by defining your function to have ... as the last
argument in the argument list.

So, let's rewrite our sum function once again to take as many arguments as you like
(but at least two to have something to sum):

function PrintSum(num1, num2,...)
 let sum = a:num1 + a:num2
 let argnum = 1
 while argnum <= a:0
 let sum += a:{argnum}
 let argnum+=1
 endwhile
 echo "the sum is " sum
 return sum
endfunction

Chapter 6

[171]

This new function introduces some new variables.

The argnum is a counter that we use to go through all the arguments after the
num1 and num2.

The number of arguments that the function has been given is stored in the special
variable a:0. So we use this as a stop for our argnum counter when we increase it.

To access each of the variables, we now use our argnum variable value as index to
look up the argument in the list of optional arguments by using the a:{argnum}
variable. You can see the a:{} as a list of the optional arguments (those after num2)
given to the function, and then argnum is used as the index to look up.

For each extra argument in the argument list, we add the value to our sum and
when done, we print the sum and return the value to the global scope.

This means that now we can do:

let sum = 0
let sum = PrintSum(4,5,6)
echo sum
let sum = PrintSum(4,5,6,5,4,3,2,1)
echo sum
let sum = PrintSum(1234,5432,3333)
echo sum

The result of this will be the following values:

15

30

9999

If you would rather have all the optional arguments as a list variable in the function,
then Vim has another special variable called a:000, which acts as a list. With this, we
can rewrite our function to look like this:

function PrintSum(num1, num2,...)
 let sum = a:num1 + a:num2
 for arg in a:000
 let sum += arg
 endfor
 echo "the sum is " sum
 return sum
endfunction

Basic Vim Scripting

[172]

This time the values of the optional arguments are passed into the arg variable one
by one in the for loop, and then we use the arg variable to add to the sum.

When you have created a function but do not want to use it anymore, you can
remove it from your Vim session by using this command:

:delfunction function-name

Here, function-name is the name of the function you want to delete.

To see what a function does, you can use the :function command
to show it to you. In case of the previous example, you could use:
:function PrintSum. If you leave out the function name, you will
instead get a list of all available functions.

Besides the functions you create yourself, Vim also comes pumped full of functions
for miscellaneous tasks. You can read more about the different functions in the help
system under this:

:help 'function-list'

Summary
This chapter was especially meant for those who wanted to learn how to extend
Vim with scripts. It started out with one of the simplest types of scripts for Vim—the
syntax schemes. We learned how to create a syntax file for programming languages
(or other syntactic contents) such that we can get some nice coloring of the contents.

After this, we moved on and looked at how one actually uses scripts in Vim. This
was done by looking at the different types of script that are available for Vim and
where to find them. We ended this session by looking at not only how to install Vim
scripts, but also how to uninstall them again afterwards—a functionality, it turns out
you can only easily use after installing a script in Vim.

So at this point, we knew how to install and use scripts, and it was time to move on
to the actual development of scripts for Vim.

We started out by looking at the basic types in Vim and learned that Vim is nearly
typeless (only two basic types). There were, however, many types of variables, and
these are really useful for storing all the data needed when creating scripts.

So now, we knew about most of the basic structures of the Vim scripting language,
and it was time to learn how to create functions.

Chapter 6

[173]

We learned that by the use of a single keyword, Vim can be told how to call the
function. This made it possible for us to bind a function to, for example, a dictionary
variable. Thereby, we could have some extra functions that work directly on the
contents of the dictionary.

With all this in hand, you are now ready to proceed to the next chapter where we
will take a look at how you put it all together as a well-structured script file.

Extended Vim Scripting
In the previous chapter, we learned the basics of how to write a script for Vim.
It is now time to learn how to put it all together in a structured manner and test
your script.

This chapter will contain recipes focusing on the following subjects:

•	 How to structure a Vim script
•	 Tips for when you develop Vim scripts
•	 How to debug a Vim script
•	 How to use other scripting languages when writing Vim scripts

After you have read this chapter, you should be able to write your own scripts for
Vim in both Vim script language and other languages. This means that you are now
ready to extend the functionality of Vim.

Script structure
We have been through all the basics of Vim scripting, so now let's take a look at how
to put it all together to form a complete script.

Since a Vim script is often just a single file, let's take this as being the goal of our
example too. We also want to prepare the script for being made available to others
and hence make the code very readable.

In the following sections, we will outline each of the elements of a well-formatted script.

Extended Vim Scripting

[176]

Script header
A script should preferably always begin with a header that states what this script is
all about. A script header should contain the following details:

•	 Who the maintainer is (you)
•	 The version when it was last updated
•	 A notice about which license you have released the script under (most

importantly)

This could look like:

" myscript.vim : Example script to show how a script is structured.
" Version : 1.0.5
" Maintainer : Kim Schulz<kim@schulz.dk>
" Last modified : 01/01/2007
" License : This script is released under the Vim License.

Notice how each line is prepended with a ". This means that the line is a comment
from the quote until the end of the line.

Other information could be placed in the header, like maybe that the script depends
on another script, or needs to be used with at least some specific Vim version.

Script-loaded check
It is always a good practice to check if the script has already been loaded once, and if
it has, then unload the functions before moving on. This is good because the script is
not only installed globally on the system but also in the user's own VIMHOME.

An example on how to check if a script has already been loaded could look like this:

if exists("loaded_myscript")
 finish "stop loading the script
endif
let loaded_myscript=1

If the script has never been loaded, the if condition will be false and we will go on
and set the loaded_myscript variable.

The next time we try to load the script, the if condition will evaluate to true because
loaded_myscript now exists and the script will then stop loading.

Chapter 7

[177]

In some cases, it is not the best choice to just stop loading the script, because the user
might have changed the version of the script in his or her VIMHOME. So instead of
just calling finish, you could instead unload the functions and then just let the script
create the functions again. The code to do this looks like the following:

if exists("loaded_myscript")
 delfunction MyglobalfunctionB
 delfunction MyglobalfunctionC
endif
let loaded_myscript=1

As you don't know if the user is in a compatible mode (more like vi, less like Vim), it
is a good idea to store the user's compatible mode, while in your script. This makes it
possible for your script to use Vim-specific functionality without problems. Add the
following after the loaded check:

:let s:global_cpo = &cpo " store current compatible-mode
 " in local variable

:set cpo&vim " go into nocompatible-mode

And then in the end of your script you set it all back as before:

:let &cpo = s:global_cpo

Script configuration
As other users open the script and start looking at it from the top, this is a good place
to put all configurable settings. This can be things such as path to external programs,
names of specific files the script needs, file types it should work on, and so on.

A user of the script might want to change the settings in his or her vimrc file, and
you should therefore make sure that you do not overwrite his or her settings. This
can be done by checking that the setting does not already exist and only setting it if
it doesn't.

An example of settings for this script could be:

" variable myscript_path
if !exists("myscript_path")
 let s:vimhomepath = split(&runtimepath,',')
 let s:myscript_path = s:vimhomepath[0]."/plugin/myscript.vim"
else
 let s:myscript_path = myscript_path
 unlet myscript_path

Extended Vim Scripting

[178]

endif

" variable myscript_indent
if !exists("myscript_indent")
 let s:myscript_indent = 4
else
 let s:myscript_indent = myscript_indent
 unlet myscript_indent
endif

The example sets two configuration variables—myscript_path and myscript_
indent. We check to see if the variable exists, and if it does not, then we set the
default value in the script-scope variable name (for example, s:myscript_path).

If the user has already set this variable, then the value is assigned to the script-scope
variable of the same name.

Finally, the user-defined variable is removed with unlet, so it does not float around
in global scope with no purpose—configuration is only needed in the script and not
in the global scope.

Key mappings
Now it is time to add your key mappings, if your script needs any. These could
be for calling functions, setting variables, and other things. As with configuration
variables, mappings is an area where the user might not want the same settings
like you—or maybe some other script has already made the same mappings that
you want. So let's look at a mapping example with a check to see if a mapping
already exists:

if !hasmapto('<Plug>MyscriptMyfunctionA')
 map <unique> <Leader>a <Plug>MyscriptMyfunctionA
endif

We have several different pieces put together here when we construct the mapping
and mapping check:

•	 hasmapto(): Function to check if a mapping to your function exists.
•	 <unique>: This tells Vim that it should give an error if a similar map exists.
•	 <Leader>: Lets the user decide which map leader to use. <Leader> is

replaced by the contents of the global variable mapleader.
•	 <Plug>: This is a way to make a unique global identifier for a function, such

that it will not clash with other functions in the global scope.

Chapter 7

[179]

After putting it all together, we have created a check to see if some mapping is
already made to the unique function identifier <Plug>MyscriptMyfunctionA. If a
map does not exists, then <Leader>a is mapped to the identifier—unless <Leader>a
is already used and Vim instead gives an error.

But you may wonder how do we get from <Plug>MyscriptMyfunctionA to the
actual function, MyfunctionA(), in the script. Well, we have to perform some extra
mappings to get this done.

noremap <unique> <script> <Plug>MyscriptMyfunctionA <SID>MyfunctionA
noremap <SID>MyfunctionA :call <SID>MyfunctionA()<CR>

The first mapping maps our unique <Plug>MyscriptMyfunctionA identifier to
<SID>MyfunctionA. We use <SID> here, because this little tag is exchanged with
Vim's own unique ID for the current script, and this is needed if we want to make a
global mapping to a function that is only available in the script scope (for example,
s:MyfunctionA).

The second mapping binds the actual function (<SID>MyfunctionA(), which is
s:MyfunctionA()) to the global mapping <SID>MyfunctionA.

So what actually happens is that when you press \a (having mapleader set to
\), then your first mapping translates this into <Plug>MyscriptMyfunctionA.
This is defined in the script and hence <SID> now has the right value. Therefore,
<Plug>MyscriptMyfunctionA is again translated further into <SID>MyfunctionA,
which is finally mapped into the actual call of the local function s:MyfunctionA().

You might find this complicated and a bit too much, and you might be right with a
relatively unique function name like MyfunctionA(). But what if the function was
called Add(), Delete(), Convert(), or some other function name that many scripts
could have implemented. In those cases, the function names would clash and Vim
would not know which one to use. You could of course just give your functions
some weird unique names, but that will in the end just make your script code
cluttered and pollute the global scope with unnecessary functions.

For more information, see:
:help <SID>

:help <Plug>

:help 'script-local'

Extended Vim Scripting

[180]

Functions
The functions are probably the most important part. We have already seen how a
function is created and noticed that it might be better than all functions that are not
directly needed in the global scope and are added to the script scope with the s:
scope marker. So an example of this could be:

" this is our local function with a mapping
function s:MyfunctionA()
 echo "this is the script-scope function MyfunctionA speaking"
endfunction

" this is a global function which can be called by anyone
function MyglobalfunctionB()
 echo "Hello from the global-scope function myglobalfunctionB"
endfunction
" this is another global function which can be called by anyone
function MyglobalfunctionC()
 echo "Hello from MyglobalfuncionC() now calling locally:"
 call <SID>MyfunctionA()
endfunction

The first function is a private function, which is only available in the script scope,
while the other two are both available in the global scope. Notice, however, how it is
possible for one of the global functions to call the local function because it knows the
correct <SID> for the current script.

Putting it all together
If you have followed the description in the previous sections, you now have all you
need in order to make a complete script.

So let's put it all together and see it as a full script example:

" myscript.vim – Example script to show how a script is structured.
" Version : 1.0.5
" Maintainer : Kim Schulz<kim@schulz.dk>
" Last modified : 01/01/2007
" License : This script is released under the Vim License.

" check if script is already loaded
if exists("loaded_myscript")
 finish "stop loading the script
endif
let loaded_myscript=1

Chapter 7

[181]

 let s:global_cpo = &cpo "store compatible-mode in local variable
 set cpo&vim " go into nocompatible-mode
" ######## CONFIGURATION ########
" variable myscript_path
if !exists("myscript_path")
 let s:vimhomepath = split(&runtimepath,',')
 let s:myscript_path = s:vimhomepath[0]."/plugin/myscript.vim"
else
 let s:myscript_path = myscript_path
 unlet myscript_path
endif

" variable myscript_indent
if !exists("myscript_indent")
 let s:myscript_indent = 4
else
 let s:myscript_indent = myscript_indent
 unlet myscript_indent
endif

 " ######## FUNCTIONS #########
 " this is our local function with a mapping
function s:MyfunctionA()
 echo "This is the script-scope function MyfunctionA speaking"
endfunction

" this is a global function which can be called by anyone
function MyglobalfunctionB()
 echo "Hello from the global-scope function myglobalfunctionB"
endfunction
" this is another global function which can be called by anyone
function MyglobalfunctionC()
 echo "Hello from MyglobalfuncionC() now calling locally:"
 call <SID>MyfunctionA()
endfunction

" return to the users own compatible-mode setting
:let &cpo = s:global_cpo

Extended Vim Scripting

[182]

And there you have it! Our very first Vim plugin script! It might not have that much
functionality, but it shows very well how you should structure your script to make
it more understandable. Vim has other types of scripts such as file type plugins,
compiler plugins, and library scripts. You can read more about how to modify your
script in order to make it like these types of scripts in:

:help 'write-filetype-plugin'

:help 'write-compiler-plugin'

:help 'write-library-script'

On the Vim online community site, http://www.vim.org, you will find
thousands of scripts, which you can use as inspiration. Some of these are
even library scripts that add functions you can use in your own script to
speed up development.

Scripting tips
In this section, we will look at a few extra tips that can be handy when you create
scripts for Vim. Some are simple code pieces you can add directly in your script,
while others are good-to-know tips.

Gvim or Vim?
Some scripts have extra features when used in the GUI version of Vim (Gvim). This
could be adding menus, toolbars, or other things that only work if you are using Gvim.
So what do you do to check if the user runs the script in a console Vim or in Gvim?
Vim has already prepared the information for you. You simply have to check if the
feature gui_running is enabled. To do so, you use a function called has(), which
returns 1 (true) if a given feature is supported / enabled and 0 (false), otherwise.

An example could be:

if has("gui_running")
 "execute gui-only commands here.
endif

This is all you need to do to check if a user has used Gvim or not. Note that it is not
enough to check if the feature "gui" exists, because this will return true if your Vim is
just compiled with GUI support—even if it is not using it.

Chapter 7

[183]

Look in :help 'feature-list' for a complete list of other features
you can check with the has() function.

Which operating system?
If you have tried to work with multiple operating systems such as Microsoft
Windows and Linux, you will surely know that there are many differences.

This can be everything from where programs are placed, to which programs you
have available and how access to files is restricted.

Sometimes, this can also have an influence on how you construct your Vim script
as you might have to call external programs, or use other functionality, specific
for a certain operating system.

Vim lets you check which operation system you are on, such that you can stop
executing your script or make decisions about how to configure your script.
This is done with the following piece of code:

if has("win16") || has("win32") || has("win64")|| has("win95")
 " do windows things here
elseif has("unix")
 " do linux/unix things here
endif

This example only shows how to check for Windows (all flavors available) and
Linux / Unix. As Vim is available on a wide variety of platforms, you can of course
also check for these. All of the operating systems can be found in:

:help 'feature-list'

Which version of Vim?
Throughout the last decade or two, Vim has developed and been extended with
a large list of functions. Sometimes, you want to use the newest functions in your
script, as these are the best / easiest to use. But what about the users who have a
version of Vim that is older than the one you use, and hence don't have access to
the functions you use?

Extended Vim Scripting

[184]

You have three options:

1.	 Don't care and let it be the user's own problem (not a good option).
2.	 Check if the user uses an old version of Vim, and then stop executing

the script if this is the case.
3.	 Check if the user has too old a version of Vim, and then use alternative code.

The first option is really not one I would recommend anyone to use, so please don't
use it.

The second option is acceptable, if you can't work around the problem in the old
version of Vim. However, if it is possible to make an alternative solution for the
older version of Vim, then this will be the most preferable option.

So let's look at how you can check the version of Vim.

Before we look at how to check the version, we have to take a look at how the version
number is built.

The number consists of three parts:

•	 Major number (for example, 7 for Vim version 7)
•	 Minor number (for example, 3 for Vim version 6.3)
•	 Patch number (for example, 123 for Vim 7.0.123)

The first two numbers are the actual version number, but when minor features /
patches are applied to a version of Vim, it is mostly only the patch number that is
increased. It takes quite a bit of change to get the minor number to increase, and a
major part of Vim should change in order to increase the major version number.

Therefore, when you want to check which version of Vim the user is using, you do
it for two versions—major and minor versions and patch number. The code for this
could look like:

if v:version >= 702 || v:version == 701 && has("patch123")
 " code here is only done for version 7.1 with patch 123
 " and version 7.2 and above
endif

The first part of the if condition checks if our version of Vim is version 7.2 (notice
that the minor version number is padded with 0 if less than 10) or above. If this is
not the case, then it checks to see if we have a version 7.1 with patch 123. If patch
version 124 or above is included, then you also have patch 123 automatically.

Chapter 7

[185]

Printing longer lines
Vim was originally created for old text terminals where the length of lines was
limited to a certain number of characters. Today, this old limitation shows up
once in a while.

One place where you meet this limitation of line length is when printing longer lines
to the screen using the "echo" statement. Even though you use Vim in a window
where there are more than the traditional 80 characters per line, Vim will still prompt
you to press Enter after echoing lines longer than 80 characters. There is, however, a
way to get around this, and make it possible to use the entire window width to echo
on. Window width means the total number of columns in the Vim window minus a
single character. So if your Vim window is wide enough to have 120 characters on
each line, then the window width is 120-1 characters.

By adding the following function to your script, you will be able to echo screen-wide
long lines in Vim:

" WideMsg() prints [long] message up to (&columns-1) length
function! WideMsg(msg)
 let x=&ruler | let y=&showcmd
 set noruler noshowcmd
 redraw
 echo a:msg
 let &ruler=x | let &showcmd=y
endfunction

This function was originally proposed by the Vim script developer Yakov
Lerner on the Vim online community site at http://www.vim.org.

Now whenever you need to echo a long line of text in your script, instead of using
the echo statement you simply use the function Widemsg(). An example could be:

:call WideMsg("This should be a very long line of text")

The length of a single line message is still limited, but now it is limited to the width
of the Vim window instead of the traditional 80-1 characters.

Extended Vim Scripting

[186]

Debugging Vim scripts
Sometimes things in your scripts do not work exactly as you expect them to. In these
cases, it is always good to know how to debug your script.

In this section, we will look at some of the methods you can use to find your error.

Well-structured code often has fewer bugs and is also easier to debug.

In Vim, there is a special mode to perform script debugging. Depending on what you
want to debug, there are some different ways to start this mode. So let's look at some
different cases.

If Vim just throws some errors (by printing them at the bottom of the Vim window),
but you are not really sure where it is or why it happens, then you might want to
try to start Vim directly in debugging mode. This is done on the command line by
invoking Vim with the -D argument.

vim -D somefile.txt

The debugging mode is started when Vim starts to read the first vimrc file it loads
(in most cases the global vimrc file where Vim is installed). We will look at what to
do when you get into debug mode in a moment.

Another case where you might want to get into debug mode is when you already
know which function the error (most likely) is in, and hence, just want to debug that
function. In that case you just open Vim as normal (load the script with the particular
function if needed) and then use the following command:

:debug call Myfunction()

Here everything after the :debug is the functionality you want to debug. In this
case, it is a simple call of the function Myfunction(), but it could just as well be
any of the following:

:debug read somefile.txt

:debug nmap ,a :call Myfunction() <CR>

:debug help :debug

So let's look at what to do when we get into the debugging mode.

Chapter 7

[187]

When reaching the first line that it should debug, Vim breaks the loading and shows
something like:

Entering Debug mode. Type "cont" to continue.
cmd: call MyFunction()
>

Now you are in the Vim script debugger and have some choices for what to make
Vim do.

If you are not familiar with debugging techniques, it might be a good idea
to read up on this subject before starting to debug your scripts.

The following commands are available in the debugger (shortcuts are in parentheses):

•	 cont (c): Continue running the scripts / commands as normal (no
debugging) until the next breakpoint (more about this later).

•	 quit (q): Quit the debugging process without executing the last lines.
•	 interrupt (i): Stop the current process like quit, but go back to

the debugger.
•	 step (s): Execute the next line of code and come back to the debugger when

it is finished. If a line calls a function or sources a file, then it will step into the
function / file.

•	 next (n): Execute the next command and come back to the debugger when
it is finished. If used on a line with a function call, it does not go into the
function but steps over it.

•	 finish (f): Continue executing the script without stopping on breakpoints.
Go into debug mode when done.

So now you simply execute the different commands to go through the lines of the
script / function to see how it jumps through the if conditions, and so on. If you
want to execute the same command multiple times, you simply press Enter without
feeding a new command.

You can at any point execute another Ex command if needed (see :help 'ex-
command-index'), but note that you don't have direct access to the variables,
among others, in the debugger, unless they are global.

Sometimes, the place you want to get to is many lines into the code, and you really
don't want to step all the way through the code until you get to that place.

Extended Vim Scripting

[188]

In that case, you can insert a breakpoint at the exact line where you want to start the
real debugging, and then just execute a cont as the first command. A breakpoint is
inserted by one of the following commands, depending on how you want it inserted:

breakadd func linenum functionname
breakadd file linenum filename
breakadd here

The first example sets a breakpoint on a particular function. The functionname can
be a pattern such as Myfunction* if you, for instance, want to break on any function
with a name that begins with Myfunction.

Sometimes, however, it is not in a function that the problem resides, but rather
around a specific line in a file. If this is the case, then you should use the second
command, where you give it a line number and a filename pattern as arguments to
tell it where to break.

The final command is used if you have already stepped to the right place in the
file but want to be able to break on it the next time you go through the code in the
debugger. This command simply sets a breakpoint on the current line, in the current
file, where you currently are in the debugger.

You can at any point of time get a list of breakpoints with the following command:

:breaklist

If a breakpoint is no longer needed, you have to delete it. As when adding
breakpoints, there are a few different ways to delete them also.

The simplest way to do it is by simply finding the number of the breakpoint in the
list of breakpoints, and then using the following command:

:breakdel number

Alternatively, you can delete the breakpoints the same way as you added them—
except that you now use breakdel instead of breakadd:

:breakdel func linenum functionname

:breakdel file linenum file

breakdel here

If you want to remove all breakpoints, you can do it in one step by using this
command:

:breakdel *

Chapter 7

[189]

You can add a breakpoint directly on the command line when going into
debug mode. Simply use the -c argument as follows:
vim -D -c 'breakadd file 15 */.vimrc' somefile.txt

Distributing Vim scripts
Now that your script is ready, it is time for you to distribute the script (if you have
chosen to do so). The online Vim community has become the de facto place to
publish scripts for others to find. Because of this, I urge you to do the same. But
before you get to this, there are a couple of things you have to get ready.

First of all, you need to figure out whether your script needs to be packed into a
compressed file such as a ZIP file, or if it should just be distributed as a single .vim
file. The main reason for choosing the first option is that your script consists of
multiple files (such as main script, file type plugin, syntax file, documentation, and
so on).

How to create ZIP files (or related file types) is beyond what this chapter will look at,
but here are a couple of pointers on how I make my ZIP files "install ready":

•	 Create the ZIP file including the folders where the files are placed relative to
your VIMHOME. For example, consider that you have:
VIMHOME/plugin/myscript.vim

VIMHOME/syntax/mylang.vim

VIMHOME/doc/myscript.txt

Then the ZIP file should contain the three folders: plugin, syntax, and doc
with one file in each. This makes the installation easy, as you simply have to
go into your VIMHOME and then unpack the ZIP file.

•	 Always include a help file for your script. This file should be installed in
VIMHOME/doc/ and contain descriptions of what the script does, which
settings it has, and how to use it.

Even though you only have one script file, it can still be a good idea to put it in a
ZIP file together with a help file. This makes it easier for you to remember to add
documentation. We will look more at how to create Vim documentation in the
next section.

Extended Vim Scripting

[190]

Making Vimballs
Another, maybe even more interesting, alternative is to make a Vimball. We have
previously looked at how to use Vimballs to install scripts, so it could now be
interesting to look a bit at how to create one.

The command to create a Vimball is constructed as:

:[range]MkVimball filename.vba

This sure seems simple, right? And it really is. There is, however, a bit of preparation
you need to do before calling this function.

The first thing you have to do is to open a new empty buffer in Vim with:

:enew

Now you add the paths to all the files (one on each line) relative to your VIMHOME.
Considering the previous ZIP file example, it could look like:

plugin/myscript.vim
doc/myscript.txt
syntax/mylang.vim

When this is done you are actually ready to execute the command across the range
of lines. Place the cursor on the first line in the buffer, go into normal mode, and
use the keys Shift+v to select all the lines with paths on. Now all you have to do is
execute the command:

:MkVimball myscript.vba

Vim will automatically add the range of the lines you have selected in front of the
command. The filename myscript.vba can be any name, but if the file already
exists, then a warning is given, but no file is written.

If you really want to overwrite an existing file, then just add an ! after the MkVimball
command to tell Vim that you mean it. There is no more to it. You now have a
Vimball file called myscript.vba, which can be installed as described earlier in
this chapter.

Remember that you need to install the Vimball script in order to use the
Vimball functions we have described at. The latest version of the Vimball
script can always be found here: http://www.vim.org/scripts/
script.php?script_id=1502.

Chapter 7

[191]

Remember the documentation
Vim has a very comprehensive help system with help for nearly any aspect of using
Vim. But what happens when a user installs your script and wants to find "help"
about it? If you haven't added documentation with your script installation, then the
user will be out of luck and find no help in the help system. But why not follow the
good concept that Vim has started about documenting everything? In other words:
"Please include documentation when you release a script for Vim."

So let's take a look at how to create Vim documentation so that it has links, markers,
tags, and so on, just like the real Vim documentation.

A Vim documentation document is just a plain text file with some special markup.
When you create a new document, the first line is the most important of them all. So
let's start by looking at that line:

docname.txt single line of description

The first * should be the very first character on the very first line of the file.

The docname.txt is the name of the file you are currently editing. Vim uses this
when linking to the file from the "local additions" list in the Vim help system
(see :help local-additions). The description after the second * is a one-line
description of what this document is all about. In the case of our example, this line
could be:

myscript.txt Documentation for example script myscript.vim

After this line, you place the actual contents of the document.

Typically, this starts with a longer description of what this document is about, and
what it will explain. This could include your name and contact information (e-mail
address, home page, and so on). After that, a table of contents could be added if the
document is long enough to need one (we add it here as an example). It could, in the
case of myscript.vim, look like this (including the first line):

myscript.txt Documentation for example script myscript.vim

Script : myscript.vim – Example script for vim developers
Author : Kim Schulz
Email : <kim@schulz.dk>
Changed: 01/01/2007
===
 *	myscript-intro*

1. Overview~

Extended Vim Scripting

[192]

This document gives a short introduction to the example
script myscript.vim.
This script is made as an example for vim users on how to
structure a simple vim plugin script such that it is easy
to read and figure out.
The following is covered in this document:

 1. Overview |myscript-intro|
 2. Mappings |myscript-mappings|
 3. Functions |myscript-functions|
 4. Todo |myscript-todo|
===

In this example, we use most of the formatting tags you have available for Vim
documents. Let's go through them one by one to see what they mean.

The first markup is the *...*, which marks keywords that the Vim help system can
jump to. In this case, we have *myscript-intro*, which makes it possible to jump
directly to this section in the documentation with:

:help 'myscript-intro'

The next quite simple marker is ~ after the Overview headline. This marks the line
with a different color from the rest of the text.

Then we come to |...| around some keywords next to each item in the table of
contents. This creates a link to a particular section with a matching keyword (marked
with *...*). The lines with equal signs are just a good way to mark section borders;
they are not actually a markup type.

The following sections would be formatted in the same way, except if they had a
part that shows a piece of Vim code. In that case, another markup would be used. An
example of this could be in the function section. So let's take that as an example:

===
 myscript-functions
3. Functions~
Besides the functions available via mappings (as described
in |myscript-mappings|) there are some extra global func-
tions available.

MyglobalfunctionB()~
This function is one of the global functions in this script.
An example of usage could be: >
 :call MyglobalfunctionB()
 <

Chapter 7

[193]

 Vim returns:
 Hello from the global-scope function myglobalfunctionB~

 MyglobalfunctionC()~
 This function is a global function that also calls one of
 the internal functions ("s:MyfunctionA()") in the script.
 An example of usage could be: >
 :call MyglobalfunctionC()
 <
 Vim returns:
 Hello from MyglobalfuncionC() now calling locally:~
 This is the script-scope function MyfunctionA speaking~
===

The special markup in this section is the >...< around the code examples. This is
used to mark the code, while we use the ~ colored lines to mark the return from Vim.

That is basically all you need to know in order to create readable documentation for
your script.

When the user wants to install the documentation, he or she places it in VIMHOME/
doc/ and then he or she uses the following command:

:helptags docdir

Here docdir is the path to VIMHOME/doc/. If any of the keywords you have added
are already used, then Vim will give you a warning, and you have to change it before
distributing the documentation.

Want to distribute your documentation in multiple languages? Take a
look in the help system for more information:
:help 'help-translated'.

Extended Vim Scripting

[194]

Using external interpreters
Even though you can do nearly everything with Vim scripts, there are, however,
some things that might be smarter or faster to do in other languages. The developers
of Vim have recognized this need, and therefore implemented the possibility to
interface with other scripting languages from within Vim. There are in particular
three languages that you have access to:

•	 Perl
•	 Python
•	 Ruby

In the following sections, will we take a peek at how to interface with these scripting
languages and which variables you have access to.

The support for these language interfaces is not included in Vim by default, and you
will have to either compile Vim yourself to get it, or find a precompiled version that
supports them.

To check if your version supports one of the languages, you simply run Vim on the
command line with -version argument:

vim –version

Then, you look through the list of features to see if it has one of the following in the
list:

+perl

+python

+ruby

It needs to say + in front of the language name to show that it is included. If it instead
says, for example, -perl, then Perl support is not included.

Alternatively, you can just open up Vim and then test for the features with the has()
function:

:echo has("perl")

:echo has("python")

:echo has("ruby")

It should return 1 for the languages you have support for.

Chapter 7

[195]

Vim scripting in Perl
Perl is a very popular scripting language that has been around for quite some time
now. It is very powerful when it comes to parsing text and other similar tasks. This
also makes it very useful from within Vim.

The simplest way to use Perl in Vim is with the following command:

:perl command

This executes the Perl command in the argument command. Note that the values you
set with the Perl command will persist throughout the entire Vim editing session.

Often you would, however, like to execute more than just a single command and
hence you have to use another command.

In that case you can use:

:perl << endpattern
 perl code here
endpattern

This executes all the Perl code between the endpattern at the beginning and at
the end.

In Perl, Python, or Ruby, you can use anything for your endpattern, but
the last one needs to be the only word on that particular line, and should
be at the beginning of the line. If you leave out the first endpattern,
then Vim defaults to use a single dot as endpattern.

An example that just prints a single line of text to Vim could be:

:perl << EOF
 VIM::Msg("this is a text");
EOF

Note how EOF is used as endpattern, and that in the Perl code I used a function
called VIM::Msg() to print a message into Vim. This is just one among many
functions you can use to interface between Vim and Perl. Other examples of Vim
functions you can use from Perl are:

•	 VIM::buffers(): Return a list of all buffers open in Vim.
•	 VIM::SetOption("option"): Set a Vim option from Perl.
•	 $curbuf->Name(): Returns the name of the current buffer.
•	 $curbuf->Set(100, "fooo"): Replace line 100 in current buffer

with new text.

Extended Vim Scripting

[196]

•	 $curwin->SetCursor(15,8): Set cursor at line 15, column 8 in current
window.

You can find a full list of the Vim-specific functions you can use from within Perl by
looking in the help system with:

:help perl-pverview

If you put Perl code in your script, you should always remember to check if the user
has support for Perl in his or her version of Vim.

It is always a good idea to have your Perl code wrapped in Vim functions in your
script. This way it is easy to implement your script, and for an inexperienced user,
the script will look normal and work as usual. An example of how to wrap Perl in a
function could be:

function MoveCursor(row,col)
 if has("perl")
 perl << EOF
 ($oldrow,$oldcol) = $curwin->Cursor();
 VIM::Msg("Old position was: ($oldrow,$oldcol)");
 $curwin->Cursor(row,col);
EOF
 else
 echo "perl not available. canceling function call"
 endif
endfunction

This function gets the old position of the cursor in the current window, prints that
position, and then moves the cursor to the position that matches the two arguments
for the function (row and column).

If the user does not have Perl support, then a message about this will be written.
Note how the EOF is placed entirely to the left, even though the rest of the code
is indented. This is strictly needed in order for Vim to be able to recognize it as
the endpattern.

Vim scripting in Python
Through the recent years, Python has become the favorite scripting language for
many programmers. This is mainly for its ease of use and strict rules about indenting
(which lead to more readable code).

As with Perl, there is also an interface for Python in Vim, such that you can break out
of Vim and use Python in your script. There are three main ways to use Python:

Chapter 7

[197]

1.	 When you only want to execute a single Python statement from Vim:
:python statement. An example could be:

 :python print "hello Vim developer"

2.	 If you want to execute a larger amount of Python code at the same time, you
can use the following from Vim:
:python << endpattern

 python statements here

endpattern

This executes all the Python code between the endpatterns.
3.	 The third option for using Python from within Vim is by executing an entire

Python script file. This is done with the following command from Vim:
 :pyfile file.py

Replace file.py with the name of the script you want to execute.
Sometimes your Python script expects to get some command-line arguments. It is,
however, not possible to pass these in the pyfile command.

There is, however, a workaround where you set the arguments in sys.argv before
executing the Python script file. An example could be:

:python import sys
:python sys.argv = ["argument1", "argument2"]
:pyfile myscript.py

To make it easier to interface between Python and Vim, there is a Python module
available called vim. This module gives access to some extra functionality in Vim.
Here is an example of usage in a Python script:

import vim
window = vim.current.window
window.height =200
window.width = 10
window.cursor = (1,1)

You can find a complete list of available functions in the help system in:

:help 'python-vim'

It is always a good idea to wrap your Python code into Vim functions if
you use it in a Vim script.

Extended Vim Scripting

[198]

Vim scripting in Ruby
For many programmers in the western world, Ruby has been an unknown language
until just recently. It has, however, been quite a popular programming language
in Asia for some time, and after its introduction as a scripting language for web
development it has become quite popular in the rest of the world. A real strength of
Ruby is said to be the fact that it is truly object oriented, which makes the language
very modular.

Vim has a nice interface for Ruby, such that you can use it from within Vim. This
can be done in several different ways. The simplest way to execute single Ruby
commands in Vim is with the following: :ruby command.

Replace command with any single-line Ruby command. An example could be:

:ruby print "Hello from Ruby"

You might, however, want to execute several lines of Ruby in a sequence. This can
be done with the following Vim command:

:ruby << endpattern
 ruby commands here
endpattern

This executes all the Ruby code between the endpatterns. If you set any variables or
create any objects in the code, then these will be stored for later use in Vim.

Here is an example of what this could look like:

:ruby << EOF
 window = VIM::Window.current
 window.height = 250
 window.width = 35
 window.cursor = (10,10)
EOF

If your Ruby code is in a file, then you can even load this file directly in Vim and
execute it. This is done with the following command:

:rubyfile file.rb

This is basically an alternative to using:

:ruby load 'file.rb'

Again all objects, among others, that you create in the script are stored in Vim for
later usage, unless you remove them in the script.

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Chapter 7

[199]

To interface with Vim from your Ruby script, there is a Vim module available
for Ruby. The module is called VIM and contains methods for a variety of
Vim-related tasks.

Here are some examples of what it can be used for:

•	 VIM::Set_option('option'): Set a vim option
•	 VIM::Message("message"): Print a message in Vim
•	 $curwin.height: The height of the current window
•	 $curbuf.width: The width of the current buffer
•	 VIM::Buffer.current.append(10, "line"): Append a line to current

buffer
•	 VIM::Buffer.current.length: Return the number of lines in current buffer

You can find a full list of available methods and objects in:

:help 'ruby-vim'

Always remember to check if the user has Ruby available before
using it in your script.

Summary
This chapter has been a chapter especially for those who wanted to learn how to
create complete scripts for Vim.

Having learned about how the different parts of a script were constructed, it was
time to see how we put it all together in a script. We took a top-down approach and
went through a script example—line by line.

An important lesson learned was that a script programmer does not know how
the user has his or her Vim configured and hence has to make sure that the correct
settings exist and that the script does not break any of the users settings.

We learned how to use variables and functions that are only available in the scope
of the script, such that we don't pollute the global scope with all our variables and
functions. Again this was to help the user such that only the relevant functionality is
available to him or her.

After looking at the structure of the script example, we ended the chapter with a
couple of tips about how to make your script check for all sorts of things such as the
operating system and the version of Vim.

Extended Vim Scripting

[200]

Having created a script, it was time to learn how to debug it if something went
wrong in the script. This took us through the debug mode in Vim and we learned
how to step through the code line by line.

The script was ready and it was time to distribute it to others. We therefore took a
look at how to distribute your script to others, such that they can also install and
use it.

Documentation is an important part of a distributed script, so we looked at how
the Vim documentation markup language works and how we can use it to create
documentation for our script. Having documentation for our script also makes our
script show up in the Vim help system under local additions. This makes it easy to
jump directly to the documentation by the use of tags and keywords.

For some people, the Vim scripting language is not enough to satisfy all needs.
Because of this, we looked at how to use external scripting languages from
within Vim.

We looked at three languages, as these are some of the most popular ones available
in Vim—Perl, Python, and Ruby. We noted that these external languages are not
actually available in Vim by default, but had to be enabled at compile time. There
are, however, precompiled versions of Vim available that contain these languages.

We went through the three different languages and learned how to execute a single
command from the language, a range of commands, and in the case of Python and
Ruby, even entire scripts.

We also learned that all of the languages have their own modules available such that
they can interface with Vim. These modules give access to many of the functions you
normally find in Vim and you can thereby control Vim directly from the script.

So that's it! After reading this, you should now be able to create your own
well-structured, distributable Vim scripts and be able to debug them to find
problems. You can now go on to the appendices and see what types of scripts
other vim users have created in order to make Vim do nearly anything.

Vim Can Do Everything
It was once said that Vim can do everything. This might not be entirely true, but
Vim can surely do a lot of different things that you might not have imagined it can.

In this appendix, we will take a look at some of the things that Vim users have made
it do via Vim scripting or by combining it with other programs.

This appendix will take you through everything from games and mail clients,
to IRC chatting and complete development IDE setups—all done in Vim.

Vim games
Even though Vim is a text editor, people have spent a lot of time on creating scripts
that make it do other things (other than being an editor). Among these are small
games that you can play directly inside the Vim editor. Notice that these are not just
simple games like ''20 questions'' where everything can be done in text. These are
actual graphical games! The graphics are not the best because they are created as
so-called ASCII-art. They are, however, enough to give reasonably good game-play,
and hours of fun.

So let's take a quick rundown on some of the games that Vim users have created for
Vim in Vim script.

Vim Can Do Everything

[202]

Game of Life
The first game is not really a game, but still a script worth mentioning. The Game of
Life is what's normally called a zero-player-game because you don't play the game,
but rather just watch how the game plays itself. The game has a simple artificial
intelligence that emulates the evolution of cells. The cells follow some very basic rules:

1.	 Any living cell with fewer than two living neighbors dies, as if by loneliness.
2.	 Any living cell with more than three living neighbors dies, as if

by overcrowding.
3.	 Any living cell with two or three living neighbors lives, and moves

on as being the next generation.
4.	 Any dead cell with exactly three living neighbors comes to life.

In 1996, a guy who calls himself Eli the Bearded created a Vim script that implements
these rules and prints a Game of Life in the current buffer. It was not particularly
fast, but was meant as a proof-of-concept implementation. For most people this game
will be quite boring, but for Game of Life enthusiasts, this implementation could be
very interesting.

You can find the Game of Life at the following site: http://www.vanhemert.co.uk/
vim/vimacros/life1.vim.

Nibbles
When I got my very first PC back in 1986, I only had one game to play. This was a
game called Nibbles. I have spent a lot of time playing this game, where I had to
control a small worm moving around, in different levels. In each level, it had to eat
some things in order to grow. For each thing it ate, another part was added to the
end of the worm, and after a while the worm was really long. You could not cross
the boundaries or wall of the level and you were not allowed to cross your own tail
as well.

In 2004, Hari Krishna Dara recreated this fine game as a Vim script. He only
implemented a few levels, but made it possible to easily add more levels, if needed.
The game-play was nice and it ran quite smoothly, if you keep in mind that it
reprints parts of the text over and over again.

Appendix A

[203]

You can find the latest version of the game at the following address:
http://www.vim.org/scripts/script.php?script_id=91.

Rubik's cube
In 1974, a Hungarian sculptor and professor of architecture, Ernő Rubik created a
complex mechanical cube consisting of 27 smaller cubes. The sides had different
colors such that each face of the cube had the same color. However, if you turned
the layers that the smaller cubes created, you could scramble the colors, and the
puzzle of the game was to get it back into an unscrambled setup again.

In 2005, more than 30 years after the first Rubik's cube, Olivier Vermersch recreated
the game of Rubik's cube in Vim script. The Vim version of the cube can still give the
player hours of fun and mind puzzle.

Vim Can Do Everything

[204]

The script that makes it possible to play the game is available via the online Vim
community. Instructions on how to download and play this game can be found at
this address: http://www.vim.org/scripts/script.php?script_id=1271.

Tic-Tac-Toe
Most of the children of the modern world know the simple game of Tic-Tac-Toe
and have played it at some point of their life. So, why not implement this game in
Vim, such that you can play against your favorite editor to see which of you is the
smarter one?

In 1996, Kevin Earls decided to do so, and this ended up as a list of Vim macros
that combined to give a nice little Tic-Tac-Toe game inside a Vim buffer.

Even though the artificial intelligence for the opponent (Vim) is not that advanced,
it can still be quite hard to win against.

You can find the script file you need to use, in order to get this game, at
Mr. Earls' home page. Installation and usage instructions are inside the script:
http://www.vanhemert.co.uk/vim/vimacros/ttt.vim.

Mines
Back in 1995, when Microsoft released Windows 95, one of the games that came
with it was a little game called Mines or Minesweeper. The game was a mixture of
a simple numeric puzzle, and a gamble game. The player had to get an entire area
cleared of mines, by either clicking on areas without mines (guessing) or calculating
where the mines were, and marking them with a flag. To calculate the placement of
the mines, you had to get an area cleared first. This revealed some numbers that said
how many mines there were in the squares next to this particular area. When you
calculate where a mine is placed, you mark it with a flag.

Appendix A

[205]

In 2004, Charles E. Campbell recreated this game in Vim script, such that you can get
up a minefield in an empty Vim buffer. You can play the game in different difficulty
levels. Although you can win the easy mode quite easily, you can get a headache
while trying to get the mines marked on time in the higher levels.

You can find the script that makes this possible on the Vim online community by
following this link: http://vim.sourceforge.net/scripts/script.php?script_
id=551.

On this site, you will also find information about how to install and use this game.

Sokoban
I have to admit that I just love to play puzzle games, so I obviously also like the game
Sokoban. The game play is simple and so is the user interface—however, the puzzles
are mind-bending and quite hard. The task is to be a small man who has to move
some boxes around in mazes / corridors. Sounds easy right? The man can however,
only push and not pull the boxes. So, whenever it gets into a corner or blind alley,
the box is stuck and you cannot get through that level without restarting.

In 2002, Mike Sharpe recreated this game in Vim using the level definitions from the
old Linux game XSokoban. He kept the user interface very simple but the game play
is still great.

You can find the game XSokoban at the following address:
http://www.cs.cornell.edu/andru/xsokoban.html.

If you want to play this fine game, then you can find the script and installation
instructions on the Vim online community site at this address: http://www.vim.
org/scripts/script.php?script_id=211.

Vim Can Do Everything

[206]

Tetris
The final game for Vim that I am going to mention in this appendix is a real
classic—Tetris, where blocks of different sizes and shapes fall down and need to be
placed properly to produce complete rows. This game can be dated back to 1985;
the Russian Alexey Pajitnov designed and created it. Since then, the game has been
implemented for almost any platform, and in hundreds of different variations over
the same theme.

In 2002, Gergely Kontra decided to implement this game in Vim script and this
turned into yet another fine implementation of this classic game. The game even
has different modes and keeps a high-score list so that you can play against your
own previous records.

You can find the game at the Vim online community site at the following address:
http://www.vim.org/scripts/script.php?script_id=172.

Here, you will also find instructions about installation and how to play.

Programmers IDE
Throughout this book, I have talked about features in Vim that could be used
when you are a programmer, several times. Personally, I use Vim for nearly all the
programming tasks that I do, but I am often met with skeptical comments from
other programmers: "How can you use such a primitive editor?", "How can you live
without an Integrated Development Environment (IDE)?", they say. Well, Vim can
give you just that if you want it.

So before we look at how, let's look at what an IDE is (or could be).

Appendix A

[207]

A typical IDE, if we talk of programs such as MS Visual Studio®, basically consists
of the following things:

•	 An editor with automatic indentation, syntax coloring, and autocompletion
•	 An integrated compiler that makes it possible to jump directly to compile

errors in the code
•	 An integrated debugger that makes it possible to step through the code
•	 A file explorer such that you can look through the files to add to the project
•	 A project browser to look through the files included in the project
•	 A tag browser to look through the tags (definitions, functions,

methods, classes)
•	 An easy way to jump between files, definitions, and so on
•	 Maybe integration with some version / revision control system

So are all of these things, at all, possible in Vim? Now, let's go through all of the
items, one by one, and see how we can get that functionality in Vim.

The first item is obvious, as Vim is an editor it does just that.

The second item in the list is the integration with a compiler. Vim is often used for
programming, so it is built with support for compiler integration. For most common
programming languages, the settings for compiler integration in Vim are already set.
But if they are not, you can learn more about how to set up this feature in:

:help compiler

This functionality can be linked to a so-called quickfix list, which makes it easy to
jump from a compile error to the place in the code where the actual error exists.
You can then jump back and forth between the errors, correct them and then compile
once again.

To learn more about quickfix lists, look in the help system under:

:help quickfix

The next item is an integrated debugger. This feature is, unlike the previous ones,
not standard in Vim. There are, however, several different scripts that make the
integration of debuggers in Vim easy. If you are using Linux, there is a script
available called VimDebug. This script makes it possible to integrate gdb (C / C++
debugger), jdb (Java debugger), pdb (Python debugger), and the Perl debugger. You
can find the latest version of this script at http://www.vim.org/scripts/script.
php?script_id=663.

Vim Can Do Everything

[208]

An alternative and more fully-featured debugger integration is called Clewn. This
system integrates the gdb debugger with Vim and lets you use all of the functionality
that the debugger would normally have. It even supports remote debugging if
you want to debug an external system, without leaving your own system. You
can find Clewn with instructions about installation and usage at http://clewn.
sourceforge.net.

The next item is the file explorer. Vim comes with its own file explorer that makes it
possible to browse directories and files on your system. However, a script has been
constructed that makes the file browser even more compatible with an IDE-like setup.
The script is called VtreeExplorer, and this makes it possible not only to browse the
files, but also to see the contents of directories as a tree, which you can fold and unfold.
This makes it very fast to navigate. You can find the script and information about
how to use it here: http://vim.sourceforge.net/scripts/script.php?script_
id=184.

Let's move on to the project manager part of the IDE. This component should make it
possible to combine files into a project such that when you open a project, all the files
in that particular project are also opened. If you are using Gvim, the script ProjMgr is
a good choice when it comes to managing projects in Vim. It creates a menu item that
holds lists of the available projects and the possibility to create new projects. You can
find the script here: http://vim.sourceforge.net/scripts/script.php?script_
id=279.

A version for normal console Vim is also available and can be found here:
http://www.vim.org/scripts/script.php?script_id=69.

When it comes to browsing tags, it can be done in two variations. You can perform
completion of tags and function names, among others, and then browse through
the possibilities, or you can have a window that shows all of the available tags.
To create such a window, I will recommend the script called TagList. This script
supports all of the programming languages that the Ctags program (which it is
also dependent on) supports. It shows a window with a nice list of all definitions,
functions, methods, and classes, among others, and you can easily browse it and
jump to the declaration of the tag. You can find the script and information about
how to install it at http://vim-taglist.sourceforge.net.

Appendix A

[209]

When it comes to moving around in the Vim editor window itself, Vim already has
the shortcuts gf and gd, which take you to the file or declaration of the tag under
the cursor. This makes it very fast to jump around in the files.

Finally, there is the integration with version / revision control systems such as CVS,
SVN, and Perforce. As with all the other functionality that you need to construct a
Vim IDE, this integration is of course also available via scripts. I would recommend
the following scripts for the mentioned systems:

•	 CVS and SVN, which are located at http://vim.sourceforge.net/
scripts/script.php?script_id=90

•	 Perforce, which is located at http://vim.sourceforge.net/scripts/
script.php?script_id=240

So we have all the parts to complete our Vim IDE, and all we have to do now is put
all the parts together and integrate them. If you don't want to go through this task,
then some other Vim users have already done the job for you. An example is the Vim
JDE (Just a Development Environment), which integrates many of the mentioned
scripts and combines them into a feature-rich IDE for Java, C, and C++ developers.
You can find JDE and how to install it here:

http://www.vim.org/scripts/script.php?script_id=1213.

Vim Can Do Everything

[210]

Another possibility is to follow one of the Vim tips on the Vim online community site
where you can find tips that tell you how to set up the different scripts in order to
integrate them. An example of such a tip is located at http://www.vim.org/tips/
tip.php?tip_id=1439.

Mail program
Vim has for many years been able to be integrated in different programs and among
those have been some mail clients—most notable is the open source mail client, Mutt.

For some Vim users, however, this was not enough, and they started to implement
entire e-mail clients in Vim script—including support for sending, fetching, and
organizing mail directly from within Vim.

You can find the latest version of the free open source mail client Mutt
here: http://www.mutt.org/.

In 2004, Suresh Govindachar created what he called The Mail Suite (TMS) for
Vim. It was a mail client implemented partly in Vim script and partly in Perl script
(embedded in Vim script). TMS has all you need in order to work with e-mails,
and it even makes it possible to use all the features of Vim at the same time.

You can find The Mail Suite and instructions about installation and usage at
http://www.vim.org/scripts/script.php?script_id=1052.

Another person who decided to implement an e-mail client in Vim was David
Elentok. In 2005, he started creating an e-mail client for Vim by using a single Vim
script and two Python scripts. The script is still in development, but already offers
many of the main features you would want from an e-mail client.

You can find Mr. Elentok's scripts at the following address:
http://www.ee.bgu.ac.il/~elentok/files/vim/vim-mail/.

Here, you can also find installation instructions and follow the development.

Appendix A

[211]

Chat with Vim
These days we almost never find a computer without some sort of chat application
installed in it. It has, however, not always been like that. Back in the late 1980s,
the concept of chatting on the Internet was limited to the Bulletin boards on some
BBSs, but in 1988 the Finish guy Jarkko Oikarinen implemented a client-server chat
solution he called Internet Relay Chat (IRC). During the next decade, IRC became
very popular and more and more people joined the chat networks every day. The
concept was simple. Get an IRC client, let it connect to an IRC network server, join
a chat channel about your favorite subject, and chat with people there.

Many IRC clients exist, and in 2004, the Japanese Vim user Madoka Machitani
started implementing an IRC client in Vim. He called the client VimIRC and what he
constructed was a very feature-rich client that supports chatting in multiple channels
on multiple networks. You can even use your normal Vim commands such as I, /,
and ?, among others.

Vim Can Do Everything

[212]

There is, however, a small problem when chatting from within Vim (besides the
fact that it takes time from your actual project). In order for the chat to stay online,
it has to create a loop that keeps updating everything. When you move to another
buffer that has nothing to do with the IRC client, this loop is stopped and you are
eventually disconnected from the network. So the trick to get this chat client working
optimally is to start it in a Gvim or Vim of its own. This can be done directly on the
command line with:

gvim -i NONE -i .vimircrc -c VimIRC

Here .vimircrc is the path to a Vim configuration file with VimIRC-specific settings.

You can find the latest version of the VimIRC script at this address:
http://www.vim.org/scripts/script.php?script_id=931.

Look at the top of the script for a thorough description of how to install and
configure the script.

You can chat with other Vim users if you use the IRC network
irc.freenode.net and join the channel called #vim. See you there!

Using Vim as a Twitter client
In recent years, social networking has become very popular. One of the most
popular platforms for sharing small "status updates" with friends is Twitter
(http://www.twitter.com).

The Vim user Po Shan Cheah has created a script for Vim that makes it possible for
you to read your friends' status updates. You can also post your own status updates
and send privates messages to Twitter friends directly from within Vim.

The script is called TwitVim and can be found at the Vim script repository, which is
located at http://www.vim.org/scripts/script.php?script_id=2204.

The script output is very simple and basically lists the last status updates from your
friends on request. An example can be seen in the following picture:

Appendix A

[213]

TwitVim uses the command-line program cURL (http://curl.haxx.se/) to fetch
the information from Twitter. So, in order to use the script, you will have to install
cURL on your computer.

You can visit http://www.twitter.com for more information on
Twitter and to sign up for an account for free.

Vim Configuration
Alternatives

In Chapter 2, we looked at the main configurations files that Vim uses, and
throughout the rest of the book, things were added to the vimrc configuration files.
In the end, you might have a vimrc file full of settings mixed up in one big mess,
making it hard to find things in the file.

In this appendix, we take a look at some ideas as to how to keep your vimrc
file clean and well organized. The recipes range from simple tips to entire
configurations systems.

Finally, we will take a look at how it is possible to use the same vimrc file on many
different computers, simply by storing a copy of it online.

Tips for keeping your vimrc file clean
Your vimrc file is the heart of your personal Vim setup. Without this file, you
are bound to have the same setup as the rest of the system. This is also the main
reason for keeping this file clean and up-to-date, such that you always know what
it contains, and where to find things in the file. It seems like a weird claim that you
might not be able to find something in the file. I have, however, found myself in a
situation where I had a vimrc file with more than 2000 lines. Then, I realized that I
had to clean up my file in order to get in a state where I could again find things in it.
Hence, here are some tips on how you can keep your vimrc file clean and organized:

Vim Configuration Alternatives

[216]

1.	 Always have Vim in nocompatible mode
This tip might not make your vimrc file any cleaner—at least not directly. It
is, however, a very important tip. Having Vim in nocompatible mode, opens
up a lot of features in Vim that other tips and scripts might take advantage of.
So the first tip is to always have the following at the beginning of your vimrc
file: set nocompatible.

2.	 Use comments
At some point, we all have come across a tip about changing something
in Vim, and then just added it to our vimrc file. Later, when we return
to our vimrc file to modify it or perform a cleanup, we suddenly can't
remember what that piece of Vim script did and why we added it. We
don't even remember from where we got it. So instead of getting into this
problem of not knowing what things do, just add comments to the things
you add. What should you write? I would recommend that you write what
it does (description), where you got it from (source), and who originally
authored it (author). With this information, it is more likely that you can
trace back to where you got it from, and in this way you make it possible
to decide whether or not to keep the code. Comments are inserted by
adding a " (double quote) in front of the comment like: "This is a comment.

3.	 Group data
Often scripts need some extra settings or maybe you want to perform some
extra key bindings (maps) for some functionality in the scripts. To make
it clear what belongs together, it is a good idea to group the data. You can
group it according to many different things, but I would recommend the
following (ordered from the beginning of the file and downwards):

°° General system-wide setup
°° Key mappings for your own macros
°° Script-specific settings ordered per script
°° "Playground" with all of the script snippets and macros you

find and test

4.	 Use multiple files
Sometimes your vimrc file becomes really large, and no matter what you do
the file is still cluttered. In that case, it might be better to split it into multiple
files. To do so, you simply copy the parts you like (for example, the mapping
group described in the previous tip) to a file with a descriptive name, and
replace it in your vimrc file with a line that sources that particular file. In
the case of the key mappings, the file could be called mappings.vim, and in
your vimrc file you would then have, for example, source $HOME/.vim/map-
pings.vim.

Appendix B

[217]

5.	 Use other files for tests
Previously, when I wanted to test some new piece of Vim script, macro, or
mapping, I would just add it to the end of my vimrc file. Mostly, however, I
forgot to remove it, and over time my vimrc file got filled with my test code.
Instead of doing what I did, you should instead have an alternative file to
add your code tests, and then simply source it to get the functionality into
Vim. If you like the functionality, then you move the code to the right place
in your vimrc file (or other settings file) and if not, simply delete the file.

6.	 Use specific files for different operating systems / computers
If you, like I, have multiple computers that you use Vim on, you might
experience that some vimrc configurations do not apply to all of the
computers. This could be if the settings are operating system specific or if
one computer, for example, has a small screen while the others might have
bigger screens. In those cases, you can split out the system-specific settings
/ configurations into different files. This way you can have all of your
generic configurations in a file you copy out on all systems and then have a
system-specific file on each system that you just keep where it is needed.

If you follow these tips, you should hopefully be able to keep your vimrc file on
a clean level, such that you always know where to change the settings for a
certain task.

A vimrc setup system
When you use Vim, you will normally have to open up a configuration file in order
to change the settings permanently. You can change all of them from within Vim, but
after closing Vim, all of the settings are lost again.

But what if you had a system in Vim such that you could go into a settings menu,
and the changes you made there were permanent for the system (until you change
them again!)? This is actually possible with a little help from some Vim scripts
created by Jos van RisWick.

By using his script, and creating your vimrc file using his special syntax, you can
make it possible not only to make local changes permanent, but also to change the
values in an easy-to-use settings wizard.

This is achieved by using the comments surrounding the setting as a placeholder
for the information you are shown in the setup wizard. As I find this system both
very smart and very different from what we normally use in Vim, I will give a short
introduction to show how you use it.

Vim Configuration Alternatives

[218]

So let's start by getting the parts we need in order to use this setup system.

The main script and all function scripts it relies on can be found at the following
address: http://www.vim.org/scripts/script.php?script_id=1894.

The package contains the following scripts:

•	 setup.vim: The main script
•	 array.vim: Helper functions to work with string arrays
•	 arrayg.vim: Helper functions to work with string arrays (global)
•	 strfun.vim: Helper function to manipulate strings
•	 tableaf.vim: Script used to display tab leafs in the setup system

To install, you need to go into your VIMHOME and unpack the ZIP file. This will add
all of the files to the plugin/ folder.

Now you are ready to modify your vimrc file, but before you do that I urge you to
make a copy of your existing vimrc file—just in case you don't like the setup system
after all.

Before we start adding settings to our vimrc file (or other settings files), let's take a
look at the syntax for using the setup system. As mentioned earlier, the trick is to
use the comments surrounding the setting. Such a comment needs to have a very
distinct syntax in order for the script to know what to do with it. The basic syntax is
as follows: "|ID|tabname|text|command|extra|val1|val2|val3|.

Let's split it up into parts:

Part Description
" Begin comment.
ID An identifier which the script can use to distinguish the different

groups of settings. When the script is started, you tell it which group
of settings it should work on.

tabname Name of the tab (called leaf in the script) to add the setting to.

text Text to show in relation to the setting.
command The actual command to execute to set the setting. An example could

be set textwidth= where the actual value is removed.

Appendix B

[219]

Part Description
extra If the command was, for example, a map, then the variable part is

what keys to map and not the command. In that case, you would
also want to be able to set what command to map the keys to. This
is what you add in the extra field. If you don't need it, simply leave
it out (like ||).

val1-val3 These are the default values you can use as arguments for the
command. When in the setup system, you can cycle through the
different values by using tab the key.

Now we have the basic syntax, so let's take an example of how this could look like:

"|SETTINGS|Layout|Set the text width|set tw=||50|70|90|
set tw=60
"|SETTINGS|Layout|Show a ruler?|let &ruler=||0|1|
let &ruler=1

This example shows two typical ways of setting up Vim—setting an option with
set, and setting an option with let. By using & before the variable name, you tell
Vim that the right-hand side of the equal sign is an expression that it should evaluate
before setting it. This also means that if the type of the result of the expression is not
the right one for the option, it will be converted automatically. The line below the
comment is the actual setting as you want it per default.

If you simply want to add a comment in one of the tabs, you can do so by using
a % symbol instead of the command, as follows:

"|SETTINGS|Layout|Here you will find layout settings|%|

You can also use this to add empty lines as spacers by replacing the text with
a whitespace.

Now that you know how to create your settings you need to set up the script itself.

This is done in the script file setup.vim and can be found by simply searching for
HERE2 in the setup.vim file. The second time you hit the search word you are in the
right place (the first one is in the introduction comments). Here, you will find the
following settings:

" Import settings from these files HERE:
let setup_files=Arr("settings.vim","mappings.vim","scripts.vim")
let setup_group="SETTINGS"

Vim Configuration Alternatives

[220]

The first setting, setup_files, is an array containing a list of the name of the
files you have your settings in. In the previous example, the files settings.vim,
mappings.vim, and scripts.vim are used.

The second setting tells the script which ID (as previously described) to use in this
current setup. Here, we use SETTINGS, which means that all settings with a comment
line above that starts with |SETTINGS| will be used.

Now you are almost ready and set to use the setup wizard, but you just need to
change one more setting in the setup.vim file.

Because we have the settings split into several files, we need to make Vim aware of
their existence. Therefore, we set the vimrc file to include (called "to source" in Vim)
the different settings files. Because of this we also need Vim to reload our vimrc file,
in order to load the new changes, and for this, we have a special setting in the file.

Search for HERE1 in the setup.vim file and once again go to the second hit from the
top of the file. Here you will find a line where the script sources some file:

 autocmd bufleave _setup source ~/.vimrc

This is an auto-command which is executed when you leave the setup wizard. You
need to set it to source your vimrc file (or alternatively all of your external setting
files), such that Vim will use the new settings.

Now you are all set up and it is time to learn how to start and navigate the Vim setup
wizard. To start the setup wizard, you go into normal mode and press s. The cursor
is placed on the first setting on the first tab in the settings editor. A number of key
maps are now available for you to navigate and use the settings wizard.

You can see the different keyboard shortcuts in the following list:

Keyboard shortcuts Description
r or R Enter replace mode to change a setting
s Save changes and quit the editor
q Quit without saving the changes
<space> Cycle through the tab leaves
j Move to next setting on the current tab leaf
k Move to previous setting on the current tag leaf
<tab> Show alternative values for the selected setting
<cr> Accept change on current line
<esc> Redraw current tab leaf (normal mode)
<esc> Discard change (insert /replace mode)

Appendix B

[221]

And that is really all you need in order to have an easy-to-use setup wizard built
into Vim. So in the following screenshot, let's take a look at how the final result could
look like in Vim:

Storing vimrc online
If you use Vim on many different computers, it is often annoying that you have to
set up each Vim editor as you like it, or have to live with the many different setups.

These days where nearly all computers are connected to the Internet, an obvious
solution to accommodate this problem is to store a copy of your vimrc file online.
We already know that Vim can fetch and edit files from online sources such as web
and FTP servers, but when you need to fetch and read a vimrc file instead for just
reading your normal vimrc file, you will hit some problems. Normally, when Vim
needs to read files on the net, it will use its netrw plugin. However, when Vim is
reading the vimrc file it has not yet loaded the plugins, and hence cannot read the
online version of the vimrc file.

This is, however, a problem we can get around with a bit of scripting, so let's take a
look at how we can do this:

function! GetNetVimrc(vimrc_url)
 source $VIMRUNTIME/plugin/netrwPlugin.vim
 Nread a:vimrc_url
 let tmpfile = tempname()
 save! tmpfile
 source tmpfile
 delete(tmpfile)
 enew
endfunction

Vim Configuration Alternatives

[222]

All of the functionality is combined in the GetNetVimrc function. This function takes
a URL to where your vimrc file is stored online. The function starts by sourcing the
netrw plugin, such that Vim gets access to the net read and write functions. Next, it
uses the Nread function to read the vimrc file (given by the argument) from the net
into the current buffer. The content of the buffer, which is actually the vimrc read
from the net, is now written to a temporary file, which is then sourced to load the
settings. Finally, the temporary file is deleted and a new clean buffer is opened.

So what do you actually have to do to get this to work?

First of all you will have to store your vimrc file online, somewhere where it is
accessible. Besides this you will have to add the previous function to the vimrc
file on all of the computers where you want to use your online vimrc version.

To actually activate the function, you could call it manually as:

:call GetNetVimrc("http://www.domain.com/myvimrc")

You can also simply add the previous line to all the vimrc files where you added
the function.

Now Vim will act the same way on all computers you use, and if you update your
online vimrc file, the changes will also be available on all of the other computers the
next time you use Vim there.

Remember that you can change your online vimrc file directly from within Vim.
Simply use the Nread and Nwrite functions to read and write the file.

Index
Symbols
:diffsplit filename command 112
:diffthis command 112
:pop command 82
:ptselect command 82
:tag command 82
:tnext command 82
:tprev command 82
:tselect command 82
:vert diffsplit filename command 112
<cWORD> 61
<Leader> 178
<Plug> 178
<silent> tag 31
<unique> 178

A
AbbrAsk 49
amenu command 33
argnum variable 171
Aspell 40
autocompletion

about 84
all-in-one completion 89, 90
dictionary completion 85, 86
known word completion 84, 85
omnicompletion 86-88

autoindent 130
autoproto.vim 84

B
balloons 43
Berkeley Par, external formatting tools 137
black hole register 102

buffers command 32

C
calcValue function 81
charityware license 15
cindent

about 131
setup options 131

code block formatting
commands 133

code, formatting
about 129
autoindent 130
cindent 131
code-block, formatting 132-134
indentexpr 132
pasted code, auto formatting 135
settings 130
smartindent 130

color scheme 147
color scheme, Vim

changing 21
configuration files

exrc file 19
gvimrc file 19
types 18
vimrc file 18, 19

context-aware navigation
about 54
code file, moving around within 54, 55
code file, moving in 56-58

ctags command-line program 80
ctags.vim 83
cURL 213
cursorline command 38

[224]

D
debugger commands

about 187
cont 187
finish 187
interrupt 187
next 187
quit 187
step 187

debugging
Vim scripts 186-188

drop registers 102

E
editor area, Vim

abbreviations, using 46-48
key bindings, modifying 49, 51
line numbers, adding 39
personalizing 37
spell check 40-42
tooltips, adding 43-46
editor area, Vimvisual cursor, adding 37, 38

Elvis
about 10
features 10

Emacs editor 13
expression register 103
exrc file 19
external formatting tools

about 136
Berkeley Par 137
Indent 136
Tidy 138
using 136

external interpreters
using in Vim scripting 194

F
file explorer 208
file navigation

about 54
context-aware navigation 54
long lines, navigating 59

File-Type plugins group 148
fold

about 107
diff, using to track changes 114
simple text file outlining 110, 111
types 107
using 107-109
vimdiff, using to track changes 111

foldclosed() function 45
fonts, Vim

changing 20
for loop 164, 165
formatexpr 123
formatting, Vim

code, formatting 129
external formatting tools, using 136
text, formatting 121

functions
creating 168-170
variable argument list 170-172

G
Game of Life 202
get function 163
Global plugins group 148
guitablabel property 36
gvimrc file 19

H
hacker 15
hacking 15
hasmapto() 178
helpgrep command 67
hidden markers

about 71
marks, using 71

I
IDE 208
indentexpr 132
Indent, external formatting tools 136
integrated compiler 207
integrated debugger 207
interpreter 15
Ispell 40

J

[225]

join function 163

K
key bindings, editor area

modifying 49, 51
keys() function 165
keyvar 165

L
line numbers, editor area

adding 39
loaded_myscript variable 176
LoadTemplate function 77
lookupfile.vim 83
loops

about 164
for loop 164
types 164
while loop 164

M
macro recording

about 90
using 90-92

map command 30
map function 163
marks 71
matching feature, Vim 22
menu commands 30
MicroEmacs code 13
Mines 204
MS Visual Studio® 207
Mutt 210
mydict dictionary 165
MyIndenter() function 132

N
named registers 101
navigation, in multiple buffers 61
navigation, in Vim help 60
Nibbles
numbered registers 100
nvi

about 10

features 11

O
omnicompletion 86-88

P
Perl 195
personal highlighting, Vim

about 22, 23
color characters, marking 24
errors, preventing 26
tabs not used for indentation, marking 25

PrintSum function 169
project browser 208
Python 196

R
range() function 164
read-only registers 101
registers

about 98
drop registers 102
expression register 103
named registers 101
numbered registers 100
read-only registers 101
search pattern register 102
selection registers 102
small delete register 100
unnamed register 100
using 99

remote files
editing 117, 118
working in 115-117

Rubik's cube 203
Ruby 198

S
script 15
script development

about 150, 151
script writing basics 151

scripting tips, Vim
GVim, using 182

[226]

longer lines, printing 185
multiple operating systems, working

with 183
versions, of Vim 183

scripts. See Vim script
script structure, Vim. See Vim script

structure
script writing basics

about 151
conditions 157, 158
dictionaries, working with 159-163
functions, creating 168
lists, working with 159-163
loops 164
types 152
variables 153-157

scrollbind 113
search pattern register 102
search, Vim

examples 64, 65
help system, searching 67
searching, in current file 64
searching, in multiple files 65, 66

selection registers 102
sessionoptions

blank 96
buffers 96
curdir 96
folds 96
globals 96
help 96
localoptions 96
options 96
resize 96
sesdir 96
slash 96
tabpages 96
unix 96
winpos 96
winsize 96

sessions
sessionoptions 96
simple session usage 93-95
using 93
using, as project manager 97, 98

setup options, cindent
cinkeys 131

cinoptions 131
cinwords 131

ShortTabLine() function 35
sign 68
Single Unix Specification (SUS) 9
small delete register 100
smartindent 130
snipMate plugin 79
snipMate system 79
Sokoban 205
sort() function 165
spelllang property 40
spellsuggest() function 45
split function 163
status line, Vim 26, 28
ST Editor for VI Enthusiasts . See STEVIE
STEVIE 9
suffixadd function 62
sum function 170
syntax coloring 142, 143, 147
syntax-color schemes 141
syntax regions 143-146

T
tabs, Vim

modifying 33-37
tag browser 208
tag list generators

about 80
Ctags 80
Hdrtags 80
Jtags 80
Ptags 80
Vtags 80

tag lists
about 80
taglist navigation 83
uses 83
using 80-82

taglist.vim 83
templates

abbreviations, using 76, 77
about 74
snippets, with snipMate script 78, 79
template files, using 74, 75

Tetris 206

[227]

text, formatting
about 121
headlines, marking 125, 126
lists, creating 127-129
text, aligning 124
text, putting into paragraphs 122, 123

The Mail Suite (TMS) 210
Tic-Tac-Toe 204
Tidy, external formatting tools 138
TwitVim 212

U
undo branching

about 98
using 103-106

unnamed register 100

V
variables

about 153
dictionary 153
funcref 153
list 153
number 153
string 153

v:folddashes variable 109
v:foldend variable 109
v:foldstart variable 109
vi 9
vi compatibility 14, 15
Vile

about 13
features 13

Vim
about 7, 11
advanced formatting 121
autocompletion 84
charityware license 15
color scheme, changing 21
command line buffer 26
configuration files 18
download link 8
editor area, personalizing 37
extensibility 141
features 12
fonts, changing 20

hidden markers 71
mail program 210
marks, adding 68
matching 22
menu, adding 29-32
menu, toggling 28, 29
personal highlighting 22, 23
personalizing 17
scripting tips 182
script structure 175
search 63
status line 26
syntax-color schemes 141
tabs, modifying 33-37
toolbar icons, adding 32, 33
toolbar, toggling 28, 29
using, as Twitter client 212
visible markers 68-70

Vimballs
creating 190

vimdiff
about 112
navigation 113
using, to track changes 111

vimdiff session 112
Vim documentation 191, 193
Vim editor. See Vim
Vim games

about 201
Game of Life 202
Mines 204
Nibbles 202
Rubik's cube 203
Sokoban 205
Tetris 206
Tic-Tac-Toe 204

VimIRC 211, 212
vimrc file

about 18, 19
cleaning, tips 215
online storing 221

vimrc file, cleaning tips
comments, using 216
data, grouping 216
multiple files, using 216
Vim, using in nocompatible mode 216

vimrc setup system 217, 219

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

[228]

Vim script
debugging 186-188
distributing 189
external interpreters, using 194
installing 148, 149
scripting tips 182
structure 175
types 148
uninstalling 150
using 147

Vim scripting, in Perl 195, 196
Vim scripting, in Python 196, 197
Vim scripting, in Ruby 198, 199
Vim script structure

about 175
functions 180
key mappings 178, 179
script configuration 177
script header 176
script-loaded check 176

visible markers
about 68-70
sign, using 68-70

visual cursor, editor area
adding 37

W
while loop 166, 167

X
xvile 13

Thank you for buying
Hacking Vim 7.2

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Visual C++ Windows
Applications by Example
ISBN: 978-1-847195-56-2 Paperback: 440 pages

Code and explanation for real-world MFC C++
Applications

1.	 Learn C++ Windows programming by
studying realistic, interesting examples

2.	 A quick primer in Visual C++ for programmers
of other languages, followed by deep, thorough
examples

3.	 Example applications include a Tetris-style
game, a spreadsheet application, a drawing
application, and a word processor

Programming Windows
Workflow Foundation: Practical
WF Techniques and Examples
using XAML and C#
ISBN: 978-1-904811-21-3 Paperback: 252 pages

A C# developer's guide to the features and
programming interfaces of Windows Workflow
Foundation

1.	 Add event-driven workflow capabilities to your
.NET applications.

2.	 Highlights the libraries, services and internals
programmers need to know

3.	 Builds a practical "bug reporting" workflow
solution example app

Please check www.PacktPub.com for information on our titles

C# 2008 and 2005 Threaded
Programming: Beginner's Guide
ISBN: 978-1-847197-10-8 Paperback: 416 pages

Exploit the power of multiple processors for faster,
more responsive software.

1.	 Develop applications that run several tasks
simultaneously to achieve greater performance,
scalability, and responsiveness in your
applications

2.	 Build and run well-designed and scalable
applications with C# parallel programming.

3.	 In-depth practical approach to help you
become better and faster at managing different
processes and threads

GDI+ Application Custom Controls
with Visual C# 2005
ISBN: 978-1-904811-60-2 Paperback: 276 pages

A fast-paced example-driven tutorial to building
custom controls using Visual C# 2005 Express Edition
and .NET 2.0

1.	 Learn about custom controls and the GDI+

2.	 Walks through great examples like PieChart
control

3.	 Customize and develop your own controls

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Getting Started with Vim
	Getting Vim
	vi, Vim, and friends
	vi
	STEVIE
	Elvis
	nvi
	Vim
	Vile
	Compatibility

	Vim is charityware
	Common terminology
	Summary

	Chapter 2: Personalizing Vim
	Where are the configuration files?
	Changing the fonts
	Changing color scheme
	Personal highlighting
	Example 1: Mark color characters after a certain column
	Example 2: Mark tabs not used for indentation in code
	Example 3: Preventing errors caused by IP addresses

	A more informative status line
	Toggle menu and toolbar
	Adding your own menu and toolbar
buttons
	Adding a menu
	Adding toolbar icons

	Modifying tabs
	Work area personalization
	Adding a more visual cursor
	Adding line numbers
	Spell checking your language
	Adding helpful tool tips
	Using abbreviations
	Example 1: Using abbreviations for quick address insertion

	Modifying key bindings

	Summary

	Chapter 3: Better Navigation
	Faster navigation in a file
	Context-aware navigation
	Moving around within a code file
	Moving in a code file

	Navigating long lines

	Faster navigation in Vim help
	Faster navigation in multiple buffers
	Open referenced files faster

	Search and you will find
	Search the current file
	Example 1: Find the next occurrence of a word
	Example 2: Search for a word under the cursor

	Search in multiple files
	Search the help system

	X marks the spot
	Visible markers—using signs
	Hidden markers—using marks

	Summary

	Chapter 4: Production Boosters
	Using templates
	Using template files
	Abbreviations as templates
	Snippets with the snipMate script

	Using tag lists
	Easier taglist navigation
	Other usages of taglists

	Using autocompletion
	Autocompletion with known words
	Autocompletion using dictionary lookup
	Omnicompletion
	All-in-one completion

	Using macro recording
	Using sessions
	Simple session usage
	Satisfy your own session needs

	Sessions as a project manager

	Registers and undo branching
	Using registers
	The unnamed register
	The small delete register
	The numbered registers
	The named registers
	The read-only registers
	The selection and drop registers
	The black hole register
	Search pattern register
	The expression register

	Using undo branching
	Folding
	Simple text file outlining
	Using vimdiff to track the changes
	Navigation in vimdiff
	Using diff to track changes

	Open files anywhere
	Faster remote file editing

	Summary

	Chapter 5: Advanced Formatting
	Formatting text
	Putting text into paragraphs
	Aligning text
	Marking headlines
	Creating lists

	Formatting code
	Autoindent
	Smartindent
	Cindent
	Indentexpr
	Fast code-block formatting
	Auto format pasted code

	Using external formatting tools
	Indent
	Berkeley Par
	Tidy

	Summary

	Chapter 6: Basic Vim Scripting
	Syntax-color schemes
	Your first syntax-color file

	Syntax regions
	Color scheme and syntax coloring

	Using scripts
	Script types
	Installing scripts
	Uninstalling scripts

	Script development
	Script writing basics
	Types
	Variables
	Conditions
	Working with lists and dictionaries
	Loops
	Creating functions

	Summary

	Chapter 7: Extended Vim Scripting
	Script structure
	Script header
	Script-loaded check
	Script configuration
	Key mappings
	Functions
	Putting it all together

	Scripting tips
	Gvim or Vim?
	Which operating system?
	Which version of Vim?
	Printing longer lines

	Debugging Vim scripts
	Distributing Vim scripts
	Making Vimballs

	Remember the documentation
	Using external interpreters
	Vim scripting in Perl
	Vim scripting in Python
	Vim scripting in Ruby

	Summary

	Appendix A: Vim Can Do Everything
	Vim games
	Game of Life
	Nibbles
	Rubik's cube
	Tic-Tac-Toe
	Mines
	Sokoban
	Tetris

	Programmers IDE
	Mail program
	Chat with Vim
	Using Vim as a Twitter client

	Appendix B: Vim Configuration Alternatives
	Tips for keeping your vimrc file clean
	A vimrc setup system
	Storing vimrc online

	Index

