PYRYRY
e Us B

PYRY LY
D Bs B
PYYRYRY

e Us B

GOURMET VIM:

A COOKBOOK

WITH 200+

PRACTICAL RECIPES

Gourmet Vim Cookbook
A collection of 200+ Vim recipes

Igor Irianto
This book is for sale at http://leanpub.com/gourmetvim

This version was published on 2021-04-10

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2021 Igor Irianto

http://leanpub.com/gourmetvim
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Firstthings 1
What is thisbook? 1
Some naming conventions L L 1
Where are the Vimscripts? 1
Why did you organize this book this way? 2
How toread thisbook? 2

Navigation 3
Basic Navigations. e 3
Toggle Between Files. 3
Navigating Parentheses, Brackets, and Braces 4
GotoaDifferent Line 4
Same-Line Navigation 4
Screen Adjust L 5
Scroll . o o 5
GototheLast.... 5
Go to the Filename Under the Cursor 6
Go to the Place Where a Text Was Inserted and Enter the Insert Mode 6

Search 7
BasicSearch 7
Starting Regex 7
Stop Searching After the Last Match 8
Show the Search Count 8
Moving the Cursor Below or Abovethe Match 8
Moving the Cursor to the End of the Match 9
Search for a Character Enclosed in a Collection 9
Search for a Keyword at the Start or at the End of the Line 9
Search for a Line Containing a Starting, Middle, and Ending Keyword 10
Greedy vs Non-Greedy Search Patterns 10
Searching for a Keyword Separated by End-of-Line 10
Search for Either Or 11
Avoid Typing Forward-Slashes 11

Marking the Startand EndofaMatch o L L 11

CONTENTS

Search for the Nth Occurrenceinaline 12
Search for Any Text Surrounded by a Particular Pattern 12
Repeat the Last Search 13
Force a Case-Sensitive Search 13
Optional Search 13
Search a Phrase in Multiple Files With Vimgrep 13
Adding Matches to an Existing Quickfix List 14
Alias for Digitsand Words e 14
More Predefined Characters 14
Quickly Search for the Word Under the Cursor 15
FindingaFile 15
Search and Replace in Multiple Files 16
Command-Line Mode 17
Command Suggestion 17
Get the Word Under the Cursor 17
Faster Delete 17
Are There More Commands?. 18
File . . . o 19
Buffers, Windows, Tabs o o 19
Two Different Write Commands With Similar Syntax 19
Save a File That Requires a Root Permission 20
Time Travel 20
Converting the Current Filetoan HTML 20
Openan URL Content et 21
SaveaPartial File. 21
Show the Buffers List 21
Vim Tabs 22
Save the Current File in a Different Directory 22
Open the Man Page From Vim 22
Quitting Vim L 23
Viewing Recent Files 23
Changing Directory 24
Executing a Command When OpeningaFile 24
Getthe Current FileInfo 24
Count Words 25
Deletea File 25
More Concise Way to Saveand Exit 26
Suspend VIm 26
Compiling 26
Persist Local Configuration 27

Savinga Session 28

CONTENTS

History 29
Jumping Around Files Quickly L 29
Trace Edited Texts 30
Search History 30
Command-Line History 30
Vim Histories e 31

Insert Mode 32
Entering Insert Mode 32
Different Ways to Exit Insert Mode 32
Paste a Recently Yanked Text 33
Performing a Quick Calculation 33
Autocompletion 33
Executing a Normal Mode Command While in the Insert Mode 34
Larger Deletes o 34
Scrolling While in the Insert Mode 34
Insert Special Characters 35

Layout 36
Indent and Un-indent Lines 36
Fix the Indentation of the Entire File 36
Redraw the Screen 36
Folding Lines 37
Cursor Visual Helper. 39

Macros And Registers 40
Macro Basics 40
Register Basics 40
Closer Look At Vim Registers 41
Clear UpaRegister. 42
Output Content From Any Register 42
Edit an Existing Macro 43
Use the Blackhole Register to Prevent Register Pollution 43
See the Content From All Registers 44
Execute a Macro Programmatically 44
Quickly Append to an Existing Macro 44
Quickly Paste From the Numbered Register 45
Macro Factory o e 45
Recursive Macro 45

Multi-File Operations 47
Different Ways to Execute a Command In Multiple Files 47
Substitute In Multiple Files 47

Execute a Macro in Multiple Files 48

CONTENTS

Limiting the Filesto Operate On 48
Creatingan Argument List o oo 48
Adding to an Argument List 48
Numbers 50
Quickly Increment or Decrement a NumberonalLine 50
Incrementing Number By More ThanOne 50
Sequentially Increment Multiple Numbers 50
Substitute and Increment Number L oL 51
Quickly Generate Incrementing Numbers Anywhere 52
Get ASCII Value 53
Repeat 54
Repeat the Last Command-Line Command 54
Repeat the Last Change 54
Repeat the Last Substitute. 54
Repeat the Last Executed Macro 55
Repeat the Last External Command 55
Sort . . e 56
Sorting Lines 56
External Sort 57
Reverse Sort e 57
Substitute 58
Basic Substitution 58
Case Insensitive Match 58
Asking For Confirmation Before Substituting 58
Group Match In Substitution 59
Use Very Magic to Avoid Escaping Special Characters 59
Representing the Entire Match 60
Using the Group Match to Remove Words. 60
Reusing the Previous Search Pattern 61
Deleting In Substitution Quicker 61
Using an Expression in a Substitution 61
Removing Trailing Whitespaces 62
Add a New Line In Substitution 62
Repeat the Last Substitute Command 62
Capitalize the First Letter Of Each Word 63
Perform a Chain of Substitutes 63
Repeat the Last Substitute String 63

Repeat the Last Substitution With the Last Search Pattern and the Last Substitute String . 63
Changing the Delimiter 64

CONTENTS

Global Command 65
Global Command Basics 65
Inverse Match L 65
Prepend or Append On Multiple Lines 65
Global Command WithinaRange 66
Delete Blank and Empty Lines 66
Running Global Command Between Matching Patterns 66
Condense Multiple Empty Lines 68
Reuse the Global Command Search Pattern in the Substitute Command 68
The Default Command 68
Use Execute to Run Complex Expressions 69
Reverse AlLLines 69
Surround All Digits With Double Quotes 70
Changing the Delimiter 70
Programmatic Global Command 71

Tags . . 72
What Are Tags? o o 72
Setting Upthe Tag File 74
Tags Navigation. 74
Selective Jump 75
Autocompletion 75
Automatic Tag Generation 75

Text Generation 77
GetaFile Content 77
Getthe Current Date 77
Generate Numbers L 77
Generate IP Addresses 78
Generate Random Dice Throw 78
Generate Numbers Horizontally 78
Transform a Text Into a Numbered List Based On Line Numbers 78

Text Manipulation e 80
How to Speak Vim 80
Changing Cases i 81
Swap Two Characters 82
Replace Mode 82
Using a Command-Line Command As a Motion to an Operator 82
Force Motion e 83
Persistent Undo 83
Undoing In Chunks 83
Join Lines e 84

Using Terminal Commands. 84

CONTENTS

Terminal 85
ViMode 85
Opening Files 85
Diffing With Vim o 85
Running Vim Without Pluginsor Vimrc 86
Open Files in Vim as a Result of Another Command 86
Open Files in Read-Only Mode 86
Open Vim With Vertical and Horizontal Splits 86
Generate New Files Programmatically 87
Passing Text as STDINtoa Command, 87
Using the Terminal From Vim 88
Check Available Vim Features 88

Visual Mode 89
Visual Mode Basicso oo 89
Insert Text on Multiple Lines 89
Quickly Reselect the Previous Visual Highlight. 90
Expanding Visual Highlight Bidirectionally 90
Switching to a Different Visual Mode While in a Visual Mode 90
Visually Highlight the Last Search Term 91
Replace Multiple Characters With Visual Selection 91

Vimre ... e 93
Quick Accessto VImre.o 93
Line Numbers 93
More Helpful Search 93
Smarter Search Case 94
Programmatic Options. 94
Create a Custom Command 95
Conditionally Run Vimrc Settings Based On Directory 95
Organize Vimrc With the Fold Syntax 96
Run a Specific Configuration Depending On File Type 97
Toggle a Boolean Option 97
Split Vimrc Into Multiple Files 98
MappingaNew Key 99
Installing Plugins With Packages 101
Installing Plugins With Plugin Managers 102
Trigger Action On Certain Event 103

Window 104
Splitting Windows Horizontally and Vertically 104
Resizing Windows 104
Close or Zoom the Current Window 105

Moving the Cursor to Another Windows 105

CONTENTS

Open a New Window

Use Two Windows to Diff Files

First things

What is this book?

Text editing is an art.
When programming, we write re-usable codes. Why should it be any different with text editing?

The Gourmet Vim explores the art of efficient text editing using Vim, with 200+ practical examples.
When learning a new skill, examples are indispensable, having numerous examples will solidify
these concepts more effectively.

This book is full of tips and tricks on how to do common (and some uncommon) actions in Vim
that you can practice immediately. It will give you a jump start to use Vim like a pro (even if you’re
already one, there is always something new that you can learn).

When you’re done reading this, you’ll be better at Vim than ever before.

Some naming conventions

Here I refer to commands starting with : as “command-line commands”. Other literatures may refer
to them as “Ex commands”. If you wonder if they are different, they are the same thing.

Here I refer to the terminal commands when accessed from inside Vim as “external commands”. You
may hear them referred to on the internet as “filter command” or “bang operator”. Again, these are
all referring to the same thing.

Where are the Vimscripts?

Some tips in this book utilize Vimscript (Vim’s built-in scripting language). However, you will find
that there is no dedicated section for Vimscript. This is because this book is intended to be mainly
for practical Vim uses.

Including a dedicated Vimscript section will expand the scope of this book exponentially because
now we are dealing with a whole programming language. However, if you want to learn Vimscript
basics, check out my other work Learn-Vim®.

'https://github.com/iggredible/Learn-Vim

https://github.com/iggredible/Learn-Vim
https://github.com/iggredible/Learn-Vim

First things 2

Why did you organize this book this way?

In the beginning, I planned to write a giant monolithic cookbook (I actually did). But it was hard to
search for things. So I decided to split them into different categories.

The recipes are organized loosely under different categories. Expect some overlaps.

How to read this book?

You can read the recipes in any order. They are completely independent.

This is a practical book. To become good in Vim you need to develop your muscle memory, not
head knowledge. You don’t learn how to cook by only reading cookbooks. You learn how to cook
by actually cooking foods.

You need to type along with every command you see in each recipe. Repeat them several times. Try
different variations. Read the :help page for that command. Understand the bigger picture. Your
goal is to be able to execute that command naturally and instinctively.

Learn the concepts, not the commands.

Navigation

Basic Navigations

Problem:
There are too many commands to remember for moving around in Vim.

Solution:
You don’t need to learn all Vim navigation keys. You just need to remember a few important ones
to move comfortably.

A few commands I suggest you to commit to memory if you are just starting out:

« h/j/k/1 - left / down / up / right.

« w/e/b - forward to the start of the next word / forward to the end of the next word / backward
to the beginning of the previous word.

« {/} - previous / next paragraph.

« gg/G - start of the file / end of the file.

That’s all. Less than a dozen keys. You can learn more navigation keys as you progress.
Toggle Between Files

Problem:
You need to quickly return to the previous file.

Solution:
Use Ctrl-* to toggle between the current file and the previously edited file.

When you pass a number to Ctlr-+, Vim will go to that buffer number in your buffer list. If you
have 5 buffers opened and you run:

« 5 Ctrl-*, Vim will go to buffer number 5.
« 2 Ctrl-+, Vim will go to buffer number 2.

You can also use Ctrl-I and Ctr1-0 to quickly go to the next and previous cursor location in the
jump list.

Vim remembers where you have jumped and stores that in a jump list (: jumps). Ctrl-I and Ctrl-0
let you to navigate up and down that list. This is useful for tracing your steps.

A jump is typically a movement that moves your cursor for more than one line (h/j/k/1 aren’t
jumps but {/} are).

Navigation 4

Navigating Parentheses, Brackets, and Braces

Problem:
You are lost in a jungle of parentheses.

Solution:
Use % to go to a matching parentheses / brackets / braces (() [] { }).

If you have expressions like (1ambda (y) ((lambda (x) (* x y)) 3)), you can quickly navigate to
the other end of the parentheses with %.

Go to a Different Line

Problem:
You need to go to a different line number in the file.

Solution:
Vim has different line operators to go to different lines.

« You can go to line number n with :n or nG. If you need to go to line 10, run :1@ or 10G.
« If you pass a count to %, it is now a line operator. 50% jumps to the middle file. 67% jumps to the
2/3 position of the file.

Same-Line Navigation

Problem:
You need to go to a different column in the same line.

Solution:

« Use f and t for a forward and backward in-line search. To go to the next “a” in the current line,
run fa. To go until the next “b”, run tb. To repeat this search, use ; to search forward and , to
search backward.

« Use @ and $ to go to the beginning and the end of the line. You can also go to the first character
of a wrapped line with go and to the last character of a wrapped line with g$. To wrap lines,
run set wrap.

« Use * and g_ to go to the first non-blank and last non-blank of the line.

« Usen| to go to the column number n of the current line. 10| takes you to the 10th column.

Navigation 5

Screen Adjust

Problem:
You need to center your cursor to the center of the screen.

Solution:

« UseH M L to put the cursor at the top, middle, or lower part of the screen.
« Use zb, zz, and zt to move the current line to the bottom, center, or top of the screen.

Scroll

Problem:
You can’t use mouse in Vim, hence you can’t scroll.

Solution:
Vim lets you use Ctrl-E / D / F and Ctrl-Y / U / B to scroll up or down a line / half a screen / a
whole screen.

Go to the Last...

Problem:
You just did an action and you wanted to go back to the location where you did that action.

Solution:
Vim remembers many actions you did. You can quickly go back to the location where you did that
action with marks.

Vim marks can record positions. There are two different mark specificities: line marks (less accurate)
and location marks (more accurate).

A line mark uses a single quote, like 'm (where m is the mark symbol) and a location mark uses a
single backtick, like ““m®“. A line mark will only take you to the correct row. A location mark will
take you to the correct row and column. In the following examples, I will only use the line mark,
but remember that for each line mark, there is a location mark counterpart.

Use '[or '] to go to the start or end of a recently changed or yanked text.
If you recently ran y j on the following phrase:

I am a phrase

I am another phrase

Pressing '] puts your cursor on the second line.

Use '< or '> to go to the start or end of a recently visually highlighted text.

If you recently ran Vj to highlight the current line and the line below on the following phrase:

Navigation 6

I am a phrase
I am another phrase

Pressing '> puts your cursor on the second line.
Use ' . to go to the recently modified line
If you recently inserted, modified, or deleted a text, pressing ' . puts the cursor on that line.

Use '' to quickly jump to the last position before your last jump. Use double backticks for the
location mark counterpart.

Use '0 to go to the last position before you exited Vim.

Go to the Filename Under the Cursor

Problem:
You need to jump to a file.

Solution:
When your cursor is on a filename, use gf to jump to that file.

If your cursor is on “./some_lib.py”, pressing gf will take you to the file some_lib.py relative to the
current directory. If that file doesn’t exist, Vim will throw an error.

Go to the Place Where a Text Was Inserted and Enter
the Insert Mode

Problem:
You recently wrote a text and you needed to add to that text.

Solution:
With gi, you can go to where the last text was inserted and automatically enter the insert mode.

This is useful when you just wrote something and you needed to add to that text. It only works

within a file (if you recently wrote something on a different file, pressing gi won’t take you to the
other file).

Search

Basic Search

Problem:
You need to do a basic keyword search in Vim.

Solution:
You can do a basic keyword search with /keyword to search forward and ?keyword to search
backward. You can either search for a literal word or use a regular expression.

To repeat the last search forward, use n. To repeat the last search backward, use N.

Starting Regex

Problem:
You want to start using a regular expression in your searches, but don’t know where to start.

Solution:
You can get really far with only a little regular expression knowledge. These four should be enough
to get started:

« . - any character.

¢ N+ - ONe or more 1n.

e n* - ZE€ro or more n.

» n{2,5} - between two to five n.

You have to escape the + and { } symbols or else Vim will treat them as a literal character.

» &« 9 <«

« /d.g matches “dog”, “dig”, “dug”.

« /a\+ matches “a”, “aa”, “aaaaaaaaaa”, etc.

€« 9

« /a* matches “”, “a”, “aaaaa”, etc.
« /z\{2,5\} matches “zz”, “zzz”, “zzzz”, and “zzzzz”

Search 8

Stop Searching After the Last Match

Problem:
You want to stop searching when you reach the last match instead of looping back to the top of the
file.

Solution:
This default feature to loop the search matches is enabled by the 'wrapscan' option. To stop it, use
the 'nowrapscan' option (set nowrapscan).

Suppose that in the current document there were 3 matches. When you reached the third match,
Vim will automatically cycle back to the first match. Sometimes you want the search to stop after
the last match.

With 'nowrapscan' on, Vim now will stop searching after the 3rd match.

Show the Search Count

Problem:
You want to know how many keyword matches is in the file.

Solution:
To display the match number, add this in your vimre:

set shortmess-=S

Now when you search (/keyword), Vim will display the number of matches, like [3/5].

Moving the Cursor Below or Above the Match

Problem:
You need to offset the cursor when searching by a few lines.

Solution:

To offset it by n lines, use /pattern/n. Your cursor will land on the nth line below the keyword
match. If you run /donut/3, your cursor will go to 3 lines below the “donut” match. This is the same
as running /donut/+3.

To go to the third line above the match, run /donut/-3.

Search 9

Moving the Cursor to the End of the Match

Problem:
The cursor always lands at the first character of the match and you need to offset it to the right end
of the match.

Solution:
Use the e offset modifier when searching. If you run /donut/e, the cursor will no longer be on the
“d” of “donut”, but will be on the “t” of “donut”.

To offset the offset, add numbers to the argument:

«K_»

« /donut/e-2 to offset it 2 characters to the left of the end match (cursor will be on the letter “n
of “donut”).

« /donut/e+3 to offset it 3 characters to the right of the end match (cursor will be 3 characters
after “donut”).

Search for a Character Enclosed in a Collection

Problem:
You want to search for either “A”, “B”, or “C”.

Solution:
Use Vim collection ([]) to search for any enclosed character. Run /[ABC] to match either “A”, “B”, or
“C”.

You can use a collection for a sequence of characters too.

« /[A-Z] to search for any uppercase letter.
+ /[@-9] to search for any number.
« /[A-Za-z] to search for any lowercase or uppercase letter.

Search for a Keyword at the Start or at the End of the
Line
Problem:

You are searching for “Donut” but it has to be at the start of the line.

Solution:

« To search for “Donut” at the start of the line, use /*Donut.
« To search for “donut” at the end of the line, use /donut$.

Search 10

Search for a Line Containing a Starting, Middle, and
Ending Keyword

Problem:
You need to search for a line that starts with “strawberry”, has “banana” somewhere in the middle,
and ends with “chocolate”. You don’t care what goes in-between.

Solution:
Use /*strawberry.*banana.*chocolate$.

« "strawberry means that the line starts with “strawberry”.

« .* means zero or more of any character. . *banana.* means that anything goes before and after
“banana”.

« chocolate$ means that the line ends with “chocolate”.

Greedy vs Non-Greedy Search Patterns

Problem:
Sometimes you need to search for the longest pattern and sometimes you need to search for the
shortest pattern.

Solution:
There are two types of search patterns: greedy and non-greedy.

+ Greedy matches the longest pattern. . * is an example of greedy.
« Non-greedy matches the shortest pattern. \{-} is an example of non-greedy.

If you have a string “chocolatedonutdonut”, running /ch.*donut matches the entire string “choco-
latedonutdonut” (longest match) while running /ch\{-}donut matches “chocolatedonut” (shortest
match).

Searching for a Keyword Separated by End-of-Line

Problem:
You need to find keywords that are separated by end-of-line.

Solution:
The _. pattern searches for the subsequent pattern with end-of-line. It is best used with \{-} or *
(non-greedy or greedy) modifiers.

Given the text:

Search 11

strawberry
blueberry
chocolate
pancakes
and more
pancakes

« /strawberry_.\{-}pancakes matches (non-greedy) “strawberry”, followed by anything, in-
cluding newlines, then the first “pancakes” on line 4.
« /strawberry_.*pancakes matches (greedy) “strawberry” to the last “pancakes” on line 6.

Search for Either Or

Problem:
You need to match for either “pancakes” or “waffles”.

Solution:
/pancakes\ |waffles searches for either “pancakes” or “waffles”.

Avoid Typing Forward-Slashes

Problem:
When you are searching for a path or an URL, like /some/very/long/path, it is a hassle having to
escape the forward slashes.

Solution:
Instead of searching with / and having to escape every single ,/ in the pattern like
/\/some\/very\/long\/path, use the ? search operator instead. ?/some/very/long/path.

Note that ? will search backward, but you can just use N to search “forward”. This saves you from
having to type escapes.

Marking the Start and End of a Match

Problem:
You want to match for a part of a longer pattern.

Solution:
Use the \zs (start) and \ze (end) to mark the start and end of a match.

Given the following text:

Search 12

sugardonut
chocodonut
chocolate

Explanation:

« To match the “donut” in “chocodonut”, run /choco\zsdonut.
« To match the “choco” in “chocodonut”, run /choco\zedonut.
« To match “do” in “sugardonut”, run /sugar \zsdo\zenut.

Search for the Nth Occurrence in a Line

Problem:
You need to search for every 2nd occurrence on each line.

Solution:
Running /\(.\{-}\zsdonut\)\{2\} will match every second “donut” occurrences (with very magic:
/\v(.{-}\zsdonut){2})

Chocolate donut, blueberry donut, raspberry donut

Search for Any Text Surrounded by a Particular
Pattern

Problem:
You need to search for any text, any length, that is surrounded by a pair of double-quotes.

Solution:
To search for any text that is surrounded by a pair of double-quotes, use /" [*"]*".

This pattern is useful to search for a body of text surrounded by a character.

« To search for any text surrounded by a pair of single quotes, use /' [*']*".
« To search for any text surrounded by a pair of commas, use /, [*,]*".

The collection syntax, [], when you add a caret (*) means character negation. [*"]* means zero or
more any non-double-quote character. [*'] means any non-single-quote character.

Search 13

Repeat the Last Search

Problem:
You want to repeat the last search.

Solution:
To repeat the last search, use // or ??. You can also run an empty search /<Enter> or ?<Enter> to
use the last search.

Force a Case-Sensitive Search

Problem:
You have ignorecase and smartcase options and you need to specifically search for a lowercase
word.

Solution:
Adding \C to the keyword forces a case-sensitive search.

This is useful if you have ignorecase and smartcase settings because Vim will do a case insensitive
search if you do /donut. However, /donut\C will explicitly match for “donut” and not “Donut” or
“DONUT”.

Optional Search

Problem:
You need to search for optional phrases in a word.

Solution:
The \= modifier makes the preceding character optional.

If you have the string “hero”, “heroes”, and “heros”, /hero\(es\)\= will match “hero” and “heroes”
(the suffix “es” is optional). While /heros\= will match “hero” and “heros” (the suffix “s” is optional).

Search a Phrase in Multiple Files With Vimgrep

Problem:
You need to search for “food” inside multiple files.

Solution:
Vim has a built-in grep to search in files named :vim (you read that right, this command is called
vim, short for :vimgrep).

Search 14

To search for “food” in all Javascript files recursively, run :vimgrep /food/ **/*.js. To search for
“food” in all Javascript files in the current directory, run :vimgrep /food/ *.js.

Vimgrep uses quickfix (:h quickfix). Use :copen to display the results.

Alternatively, you can also use the terminal grep program. Vim has a :grep command that uses
whatever command is assigned to the 'grepprg' option (by default, it uses the terminal grep). To
search for “donut” in the current directory, run :grep "donut" . -R.

Adding Matches to an Existing Quickfix List

Problem:
You did a search with vimgrep and you need to add more items to the result.

Solution:
Vimgrep has an append version: : vimgrepa.

If you run :vimgrep /breakfast/ **/*.js followed by :vimgrep /lunch/ **/%.js, the second
vimgrep search overwrites the first one. That’s not good.

To add the search results, first run :vimgrep /breakfast/**/*.js, then run :vimgrepa /lunch/
*k /% js. Now you have a list of both “breakfast” and “lunch” searches.

Alias for Digits and Words

Problem:
Typing [@-9] is too verbose. Is there a shorter alias?

Solution:
Vim has predefined characters to help with search. \d is an alias for digits [0-9]. To search for a

» &«

digit followed by “foo”, run /\dfoo. This will match “1foo”, “2fo0”.

Similarly, \w is an alias for a “word” character [@-9A-Za-z_]. To search for the number 0 followed
by any two word characters like “0ab” or “0a1” or “0_17, run /@\w\w.

More Predefined Characters

Problem:
You wonder if there are more useful aliases like \d and \w.

Solution:
The next 5 useful character aliases (in my opinion), are:

Search 15

\s Whitespace character (space and tab)

\S Non-whitespace character (everything except space and tab)
\w Word character [0-9A-Za-z_]

\1 Lowercase alphas [a-z]

\u Uppercase character [A-Z]

If you want to see the whole list, check out :h /character-classes.

Quickly Search for the Word Under the Cursor

Problem:
You want to quickly search for the word your cursor is on.

Solution:

Use * and # to search for the word under the cursor forward and backward. If your cursor is on the
word “donut”, if you press *, Vim does /\<donut\>. \< and \> means the beginning and end of a
word. It matches “chocolate donut” but not “chocolatedonut”.

To match the latter, use g* and g#. These commands are similar to * and #, but instead of treating
the word under the cursor as a whole word, Vim treats it as a string pattern. If your cursor is on the

word “donut” and you press g*, Vim does /donut. It matches “glazed donut”, “donuts”, “donutman”,
etc.

Finding a File

Problem:
You need to search and open a file.

Solution:

At the very core, you can open a file in Vim with :e yourfile.txt. Vim also has the : find command.
When you open a file with either :e or : find, you can use <Tab> to autocomplete the directory and/or
file name. Try it yourself: go to the directory with several files and press :e then <Tab>. You'll find
that Vim tries to autocomplete the name.

You may wonder, what’s the difference between :edit and : find? The difference is that : find finds
file in a path while edit doesn’t.

To check what your paths are, run:
:set path?

By default, yours probably look like this: path=., /usr/include, ,. The big picture here is that you
can edit your path so you can find files faster.

Suppose that this is your project structure:

Search 16

app/
assets/
controllers/
application_controller.rb
comments_controller.rb
users_controller.rb

The above is an example of a Rails project structure. To go to the users_controller.rb from the
root directory, you have to go through several directories and pressing a considerable amount
of tabs. You have to do something like :find a<Tab>c<Tab>u<Tab> before finally getting to
app/controllers/users_controller.rb.

Let’s create a shortcut for the controllers/ directory by adding the controller path to the current
"path'. Run:

:set path+=app/controllers/

Now when you type : find u<Tab>, Vim now searches inside app/controllers/ for files starting
with u. You’ve created a path shortcut for autocompletion! You can update the path with frequently-
visited paths.

Search and Replace in Multiple Files

Problem:
You need to substitute texts in multiple files.

Solution:
You can use :vimgrep or :grep combined with cfdo to do multiple-file substitution.

Let’s say you want to replace all “pancake” with “waffle” inside all files.

First, find all the instances of that word with :grep "pancake" . -R (you can also run :vimgrep
/pancake/ **). Then run :cfdo %s/pancake/waffle/g | update.

Command-Line Mode

Command Suggestion

Problem:
You want to see all the relevant commands.

Solution:
While you are in the command-line mode, press Ctr1-D for a list of relevant commands.

»

If you type :h fo, then press Ctr1-D, Vim shows all relevant keywords containing the phrase “fo”.

Get the Word Under the Cursor

Problem:
You want to get the word under the cursor to use it in your command.

Solution:
While in the command-line mode, you can get:

o The filename under the cursor with Ctr1-R Ctrl-F.
« The word under the cursor with Ctr1-R Ctrl-w.

o The current line with Ctr1-R Ctri-L.

 The current file name with Ctr1-rR %.

Faster Delete

Problem:
Deleting one character at a time in the command-line mode takes forever.

Solution:
If you make a mistake typing a command-line command, you can delete faster with:

Ctrl-H Delete one character
Ctrl-w Delete one word
Ctrl-U Delete the entire line

These are the same shortcuts as the insert mode.

Command-Line Mode

Are There More Commands?

Problem:
You want to learn what other commands Vim has.

Solution:
To get a list of all command-line commands, check out

:h ex-cmd-index.

18

File
Buffers, Windows, Tabs

Problem:
You heard that Vim uses buffers, windows, and tabs, but you’re not sure what they mean.

Solution:
Buffers, windows, and tabs are Vim’s approach to file and layout management. Many text editors
only use two abstractions: windows and tabs.

So what is this buffer? A buffer is an in-memory space for text. When you open a file in Vim, Vim
opens a buffer to store that file data. When you open 3 files in Vim, you have 3 buffers opened.

By the way, make sure you have the set hidden option in Vimrc. Without it, whenever you switch
buffers and if your current buffer has unsaved changes, Vim complains and prompts you to save the
file. This can slow you down.

A window is a viewport on a buffer. From the outside, Vim windows look like most text editors’
windows. You can have multiple windows opened and arranged vertically and / or horizontally.
Multiple windows can point to the same buffer. Remember, each buffer represents each opened file.
You can have two windows opened and with both pointing to the same buffer, file1.txt. You can
have only one window open but you actually have 3 opened buffers, filel.txt, file2.txt, and
file3.txt. A window is what you use to see buffers. A buffer is the actual file.

A tab is a collection of windows. Think of it like a layout for windows. In modern text editors, if
you close a tab, the file in that tab goes away. Similarly, in a web browser, if you close a web page
tab, that page is gone. In Vim, a tab does not represent an open file (remember, a buffer represents
the actual file). You can close a tab with a window displaying file1.txt, but that file is still opened
in the buffer behind the scene.

In short:
« A buffer is an in-memory space of a file.
« A window is a viewport on a buffer.

« Two windows can point to the same buffer or two windows can point to two different buffers.
« A tab is a layout for windows.

Two Different Write Commands With Similar Syntax

Problem:
You get two very different results running :w ! food and :w! food. What’s the difference?

File 20

Solution:
:w !food and :w! food are actually two different commands (although their syntaxes are very
similar).

« :w ! food executes the external command food (if if doesn’t exist, it throws an error) with your
buffer content as the STDIN.
« :w! food saves the current buffer as food.

Save a File That Requires a Root Permission

Problem:
You need to save a file but you need to do it with a root permission

Solution:

Save the file that requires a root permission with :w !sudo tee %. This uses similar write syntax as
above. Recall that :w !cmd executes the terminal command cmd. In this case, the command is sudo
tee.

% in Vim represents the current file.

Time Travel

Problem:
You need to restore your file state to the state it was 15 minutes ago.

Solution:
You can go back to an earlier text state with :earlier. To go back to the text state 15 minutes ago,
run :earlier 15m. This command accepts other units: s (seconds), h (hours), d (days), and f (number
of saves).

To go to a later state, there is a : later counterpart (I wish I could just run :1later 8h and be done
with my work, but that won’t work...).

Converting the Current File to an HTML

Problem:
You want to convert the current file to a HTML, a la Vim.

Solution:
Vim has a :%TOhtml to convert the HTML version of the current document. It will generate a new
file in the current directory your_original_file_name.txt.html.

File 21

Open an URL Content

Problem:
You need to edit the content of a web page.

Solution:
You can fetch the content of an URL directly vim https://www.google.com/.

Save a Partial File

Problem:
You need to save only parts of a file.

Solution:
You can save a partial file with : {range1}, {range2}w filename. To save lines 5 and 10 as partial_-
stuff.txt, run :5,10w partial_stuff.txt.

Show the Buffers List

Problem:
You need to see which buffers are open.

Solution:
Vim has the commands :1s, :buffers, and : files to show the buffers list.

Why use the buffer? Buffer is Vim’s approach to quickly go to different files quickly. Most text
editors have only two abstractions: windows and tabs. Vim has three: buffers, windows, and tabs.

Vim saves all the currently opened files in memory, in buffers. If you have file1.txt, file2.txt,
and file3.txt opened, you have 3 buffers.

There are different approaches to jump to a particular buffer:

« Numerical approach: to go to buffer #9, run :buf 9.

« Filename approach: to go to file2.txt buffer, run :buf file2.txt.

« :bnext and :bprevious go to the next and previous buffer in the list.

« :brewind goes to the first buffer in the buffer list (:blast goes to the last buffer - having a blast
yet :D?).

Finally, use :bd filel.txt to remove file1.txt from the buffer list.

Buffer is a clever approach to file management when editing with Vim. It creates for you a list of
shortcut files. I strongly recommend that you utilize buffers more in your daily Vim editing!

File 22

Vim Tabs

Problem:
You need to open a different tab.

Solution:
Vim has a tab system to contain your window layouts. All buffers are shared between different tabs.

Some useful tab navigations are:

:tabnew file.txt Open file.txt in a new tab

:tabclose Close the current tab
:tabnext Go to next tab
:tabprevious Go to previous tab
:tablast Go to last tab
:tabfirst Go to first tab

By the way if you want to start Vim with multiple tabs, run this from the terminal:

vim -p filel.txt file2.txt file3.txt

Save the Current File in a Different Directory

Problem:
You need to save the current file in a different directory with the same name.

Solution:
To quickly save the current file in a different directory with the same name, run :w
a/different/directory/% (recall that % is Vim’s special variable for the current file).

Open the Man Page From Vim

Problem:
You need to quickly search the man page definition for the word under the cursor.

Solution:
Use K to quickly open up the man page for the word under the cursor.

File 23

Quitting Vim

Problem:
You can’t exit Vim.

Solution:
This is a classic Vim question. The truth is, there are many ways to exit Vim.

The standard ways:
°q

“wqg

:q!

‘ga

:qal

The “T know commands that most people don’t” ways:
X

. Xa

;quita

rexit

:conf wqga

The normal mode way:

77
ZQ

The “T enjoy pain and suffering” way:
:!ps ax | grep vim | grep -v grep | awk '{print $1}' | xargs kill -9
Finally, the brute force way:

Unplug your computer. Bzzt.

Viewing Recent Files

Problem:
You need to go to a recently edited file.

Solution:
Vim has :oldfiles to display, chronologically, the files you’ve edited in the past.

Combine this with :browse to browse and select one of the recently opened files (:browse oldfiles).

File 24

Changing Directory

Problem:
You need to change the current directory.

Solution:
You can change the directory from Vim with :cd {path}.

« You can go to the previous directory with :cd -.
« You can go to a different directory with :cd some/other/dir/.

You can also print the current directory name with : pwd.

Executing a Command When Opening a File

Problem:
You need to modify the file you are about to open with some Vim commands.

Solution:
You can pass a command when opening a file with :edit with +{cmd}.

To substitute all “toast” with “bagel” when you open break fast.txt, run :edit +%s/toast/bagel/g
breakfast.txt.

Get the Current File Info

Problem:
You need to get the current file name to the clipboard.

Solution:
You can copy the current filename to the clipboard with : let @*=expand("%")

Explanation:

« @* is one of the clipboard registers.
« =expand("%") gets the current file name

If you use this often, add this mapping in vimre:
nnoremap <Leader>cf :let @*=expand("%")<CR>

You can add various modifiers to the % current file pattern. Some useful ones are:

File 25

%:p (full path)

%:. (relative to current directory)
%:h (head of file)

%:t (tail of file)

%:e (extension of file)

Count Words

Problem:
You need to count the words in the current file.

Solution:
You can count words with g Ctr1-G. It will return something like:

Col 1 of ©; Line 141 of 157; Word 748 of 774; Byte 4489 of 4976

You can also use visual selection to specify the text block. Highlight a block of text, then press g
Ctrl-G.

Selected 5 of 293 Lines; 7@ of 1884 Words; 359 of 10928 Bytes

Alternatively, you can count the occurrence of a specific keyword with :s command and the gn

flags:

« To count characters: :%s/./&/gn
« To count empty lines: :%s/*$/&/gn
« To count a specific word, “donut”: :%s/\<donut\>/&/gn

Delete a File

Problem:
You need to delete a file.

Solution:
You can delete files from Vim with the delete() function. Run either :call delete(expand('%'))
or :call delete(@%) to delete the current file.

However, this still leaves the deleted file on the current buffer. Add :bdelete! to delete the current
buffer.

For a more complete command:

File 26

:call delete(@%) | bdelete!

More Concise Way to Save and Exit

Problem:
:wq to save and exit is a hassle to type. Is there a shorter way to do this?

Solution:
Instead of :wq to save file, use : x to type 33% less.

The :x command will:

« Save if there are unsaved changes then close the buffer, or
« Close the buffer if there are no unsaved changes.

Suspend Vim

Problem:
You need to suspend Vim.

Solution:
You can suspend Vim with :stop or :suspend. You can also press Ctrl-z at any time from inside
Vim.

To return, run fg from the terminal.

Compiling

Problem:
You need to compile from Vim.

Solution:
Vim has a :make command that is similar to the make program. In fact, the :make program uses
whatever command is defined by the 'makeprg', which by default is using the make command.

If you have a Makefile:

File 27

all:

echo "build, run"
build:

g++ hello.cpp -o hello
run:

./hello

Running :make build will run the build command and running :make will run all.

You can change it to run any command. You can make it to run typescript, ruby, g++, anything. For
example, to change it to run g++ on the current file, run :set makeprg=g++\ %.

Persist Local Configuration

Problem:
You need to persist some settings in Vim so they will still be there when you re-open Vim.

Solution:
You can use Vim View to persist Vim settings so when you close and re-open Vim, they will still be
there. Think of View as a configuration “snapshot”.

Before you exit Vim, your cursor was probably on a specific row and column. Maybe you had some
folds and created local mappings. When you take a View of the current file, Vim takes a snapshot of
these settings.

The attributes that Vim remembers can be viewed (pun intended) inside the 'viewoptions' setting.
Run set viewoptions? to see what Vim currently has. For example, if you want to add to the
'viewoptions' the localoptions attribute, run :set viewoptions+=localoptions.

To save a view, run :mkview. Vim saves a view in the path specified by 'viewdir' (to see it, run :set

viewdir?).

The next time you open that file again, load your View with : 1oadview and you should have the old
settings back!

If you want to automate the View creation when you leave a buffer, add this in Vimrc:
autocmd BufWinLeave *.txt mkview

To automate loading View when you open a buffer, add this in Vimrc:

autocmd BufWinEnter *.txt silent loadview

To see all attributes that a viewoptions can save, check out :h 'viewoptions'.

File 28

Saving a Session

Problem:
You want to preserve the window layout the next time you re-open Vim.

Solution:
Sometimes you leave Vim with multiple windows opened, folds created, and buffers opened, and
you want to preserve them so when you return, everything looks just like it did before you left.

You can do that with Vim Session. A Session is similar to View, except it has a broader scope. A View
doesn’t save your layout but a Session does.

Session saves whatever attributes are defined in 'sessionoptions' (set sessionoptions? to see
it). You can add, subtract, or update it. To remove the terminal attribute for example, run :set
sessionoptions-=terminal. To see all the attributes the 'sessionoptions' supports, check out :h

'sessionoptions’.

To save a session, run :mksession. This will create a file Session.vim in the project root file. By
the way, if you want to save the session somewhere else, you can pass it a new path argument like
:mksession ~/some/other/place.vim.

To open Vim using a previously saved session, run vim -S Session.vim or you can run :source
Session.vim from Vim.

History

Jumping Around Files Quickly

Problem:
You need to quickly jump to places that you have been to.

Solution:
Some movements in Vim count as jumps. Vim remembers these jumps and stores them in the jump
list.

To see the jump list, use : jumps. The jump list shows all the places you’ve jumped to recently. You
can travel up and down the jump list with Ctr1-0 and Ctr1-1.

Vim considers these commands as jump commands:

Go to the marked line

Go to the marked position
Go to the line

Search forward

NN @

Search backward
Repeat the last search, same direction

=Z 5

Repeat the last search, opposite direction
Find match
Go to the last sentence

B

Go to the next sentence

Go to the last paragraph

Go to the next paragraph

Go to the the last line of displayed window
Go to the middle line of displayed window
Go to the top line of displayed window

Go to the previous section

e e/ T2 S M

[
] Go to the next section
s Substitute

:tag Jump to tag definition

Try this: move around with jump movements, then press Ctr1-0 and Ctrl-I a few times. Ctrl-0
and Ctrl-I are two of my favorite commands.

History 30

Trace Edited Texts

Problem:
You need to trace some texts you recently edited.

Solution:
Vim tracks the locations of your recently edited texts. You can view them with : changes.

You can go up and down this list with g; and g,. Vim makes it easy to trace recently changed texts.

Search History

Problem:
You need to search the previous searches.

Solution:
Sometimes you need to re-search a keyword but you can’t quite remember what the keyword was
exactly. q/ and g? can help you. They can show the history of previous searches.

Typing q/ or q? show all the / or ? searches you've done. It will open a new window that you can
navigate around. If you press <Enter> on one of the keywords, Vim will do a search using that word.

Command-Line History

Problem:
You need to run a command similar to a command you executed before.

Solution:
q: shows the history of the command-line commands.

If you press q:, Vim will take you to a history window with a list of command-line commands
you have used. Regular Vim navigation works here. If you press <Enter> on a command, Vim will
execute that command.

If in the past you ran :s/strawberryhoneypancakes/kale/g and you want to run
:s/strawberryhoneywaffles/kale/g, instead of retyping the commands all over, why not
find that command from the command history, modify it slightly, and then execute it?

Press g:, find that command in history, then edit it. Once you’re done, run it.

The great thing about these histories (q:, g/, q?) is that you can use Vim navigation, making
navigation in this mode very easy.

Another way to enter the command-line history is while you’re in the command-line mode (:), press
Ctrl-F. This also works with / and ?. During the / or ? search, type Ctr1-F to open the search history
window.

History

Vim Histories

Problem:
You want to know what other things Vim store.

Solution:
Vim stores 5 different histories

:his ¢ or :

‘his
‘his
‘his
‘his

S

e

or

or

i or

or

/ or ?

v ®

command-line history (q:)
search history (g/ or g?)
expression history

input history

debug history

31

Insert Mode

Entering Insert Mode

Problem:
You need to go to the insert mode.

Solution:
There are many ways to enter the insert mode. The most common ones are:

Insert text before the cursor

Insert text before the first non-blank character of the line
Append text after the cursor

Append text at the end of line

Starts a new line below the cursor and insert text

O 0 > ¥ H &

Starts a new line above the cursor and insert text

If you’re new to Vim, don’t memorize them all. Start with i first. Then commit a and o to memory.
Finally, you can commit their uppercase counterparts.

Different Ways to Exit Insert Mode

Problem:
Your keyboard doesn’t have an <Esc> key and you need to quickly exit insert mode.

Solution:
Normally (pun intended) you can exit the insert mode with <Esc>. However, not all keyboards have
the <Esc> key (like tablet keyboards). You can use either Ctrl-[or Ctrl-C to escape in addition to

<Esc>.

Alternatively, you can create a mapping to escape while in the insert mode:
inoremap jk <Esc>

I find that the <Esc> button is too far, so I map the <Caps-1lock> button to <Esc>. If you search for
Bill Joy’s ADM-3A keyboard (the Vi creator), you will see that his <Esc> key is not located on the
far top left like modern keyboards but to the left of g key. This is why I think it makes sense to map
<Caps lock> to <Esc>.

Insert Mode 33

Paste a Recently Yanked Text

Problem:
You need to paste a previously yanked text.

Solution:

If you need to paste a text while in the insert mode, you could first quit the insert mode then paste it
with p, but that is mode-switching. A better way to paste text while in insert mode is to use Ctr1-R
0. Doing Ctr1-R while in the insert mode lets you to insert the content of a register. 0 is the yank
register.

You can insert from any other registers as well. If you need to paste the content from the register,
run Ctrl-R a.

Performing a Quick Calculation

Problem:
You need to do a quick calculation and insert the calculation result.

Solution:
To do a quick calculation while in the insert mode, you can use Ctr1-R to use the expression register

).

For example: Ctr1-R =1+1<Enter>.

Autocompletion

Problem:
You need to autocomplete a word.

Solution:
The insert mode has built-in autocompletions.

While in the Insert mode, use Ctr1-P for word completion. By pressing Ctr1-P in the insert mode,
Vim searches backward for existing words that start with the text under the cursor (pressCtr1-N for
forward search).

There are other auto-completions. Some of the common ones are:

« Ctrl-X Ctrl-L for a line autocompletion.

* Ctrl-X Ctrl-F for a filename autocompletion.

 Ctrl-X Ctrl-K for a dictionary autocompletion. Note: this method requires you to set the
"dictionary' first. Assuming that there is a dictionary in /usr/share/dict/words (your
computer should have some sort of dictionary path somewhere), add that path into the
dictionary using set dictionary=/usr/share/dict/words.

Insert Mode 34

For more, check out :h ins-completion.

Executing a Normal Mode Command While in the
Insert Mode

Problem:
You need to execute a normal-mode command without exiting insert mode.

Solution:
You can execute a normal mode command while in the insert mode with Ctr1-0.

For example:

« Ctrl-0 zz to center the screen.
« Ctrl-0 /food to jump to the next “food”.

Larger Deletes

Problem:
You need to delete text chunks.

Solution:

« Press Ctrl-U to delete the entire line.
« Press Ctrl-w to delete the word before the cursor.

Meanwhile, D in normal mode deletes to the end of the line, but there is no insert mode command
that does that, so why not create one?

Add the following mapping:
inoremap <C-d> <C-0>D

Now when you press Ctrl-D in Insert mode, Vim deletes to the end of the line.

Scrolling While in the Insert Mode

Problem:
You need to scroll from insert mode.

Solution:
Press Ctr1-X Ctrl-E and Ctrl-X Ctrl-Y to scroll down and up.

Insert Mode 35

Insert Special Characters

Problem:
You need to enter special characters like the II.

Solution:
Use Vim digraph. To enter a greek Pi, in insert mode, press Ctrl-K Px*.

How did I know to use P*? I looked it up the digraph table (:h digraph-table). You can enter all
sorts of characters like ® Q A © I etc.

Layout

Indent and Un-indent Lines

Problem:
You need to indent and unindent lines.

Solution:
The < and > operators can indent and un-indent lines.

 To indent the next 3 lines, run >2j.
« To indent to the end of the file, run >G.
« >> and << to indent and un-indent the current line.

Fix the Indentation of the Entire File

Problem:
The entire file’s indentation is messy.

Solution:
={motion} can correct the indent of the lines indicated by the motion.

For example, =G fixes the indentation of the current line to the end of the file. A common practice is
to use gg=G to correct the indentation of the entire file.

Note that the = operator uses the program defined in the 'equalprg' setting, which by default is
empty (when it is empty, Vim uses 'indent").

Redraw the Screen

Problem:
Occasionally Vim will display a stagnant screen after running a certain scripts.

Solution:
If Vim is showing a stagnant or “buggy” display, you may need to refresh it by either running
:redraw! or pressing Ctrl-L.

Layout 37

Folding Lines

Problem:
You want to fold rows of lines.

Solution:
I don’t like to fold my clothes but I like to fold rows of lines.

Why would you ever fold anything?

When you read a file, there are often many irrelevant texts that obstruct you from understanding
what that file does in the big picture. To hide this unnecessary noise, use Vim fold.

Vim supports 6 different folds:

Manual
Indent
Expression
Syntax
Diff
Marker

R A

The manual fold lets you to fold rows manually (you can’t fold characters, just lines). The operator
is zf and it works just like any operation: it accepts a motion. If you have the text:

Line one
Line two

With your cursor on “Line one”, run zfj to fold both lines. Folded lines look something like:
+-- 2 lines: Line one -----

To open a folded text, use zo. To close a fold, use zc. You can also use the : fold command-line. My
two favorite fold methods are zR to open all folds and zM to close all folds. The manual fold is useful
when you want to do quick, impromptu folds.

To use the indent fold method, change the ' foldmethod' option to indent: set foldmethod=indent.
Vim will fold indented lines according to the 'shiftwidth' option.

If you have the text:

Layout 38

One
Two
Two again

The latter 2 lines, having 2 spaces of indentation, will be folded. This will only work if you have
'shiftwidth' value of 2 btw. The indent fold is useful when dealing with texts that use indent
structure, like Python or YAML files.

The expression fold lets you define an expression to determine folding. You need to first tell Vim
to use the expression fold with set foldmethod=expr, then Vim will use whatever expression you
define for ' foldexpr' option.

©_»

For example, if you want to fold all items starting with “p”:

donut
pancake
pop-tarts
protein bar
salmon

scrambled eggs

Run :set foldexpr=getline(v:lnum)[@]==\\"p\\".Iwon’t go into Vimscript deeply here, but the

€. »

'foldexpr' expression will return true only if the first character of the current line starts with “p”.

The syntax fold can fold lines based on syntax options. To use it, first set the fold method with :set
foldmethod=syntax. Again, I won’t cover how syntax definitions work in Vim here, but in general,
if you use syntax plugins like vim-polyglot? the syntax fold should work right out of the box. Vim
uses the syntax definition to determine what to fold.

The diff fold works immediately when you do a vimdiff. If you run vimdiff filel.txt file2.txt,
Vim automatically sets the foldmethod to diff and folds all the identical lines.

The marker fold is used to fold the lines marked by a pattern. You can set it up with :set
foldmethod=marker. By default, Vim uses {{{, }}} patterns as fold identifiers. Vim will fold any
rows between the identifier.

If you have:

*https://github.com/sheerun/vim-polyglot

https://github.com/sheerun/vim-polyglot
https://github.com/sheerun/vim-polyglot

Layout 39

Hello

{{{

world
vim

1)

When Vim sees {{{ and }}}, those lines will be folded. You can change the indicators by updating
the ' foldmarker' option values. To change it to <<< and >>>, run :set foldmarker=<<<,>>>.

Cursor Visual Helper

Problem:
You need to draw a straight line across the file.

Solution:
Use :set cuc ('cursorcolumn') to display a column that spans across the entire screen. Try it!

To turn it off, run :set nocuc. If the cursor column has a hard-to-see highlight, you can change the
highlight to white by running :highlight CursorColumn guibg=#FFFFFF.

Macros And Registers

Macro Basics

Problem:
You need to record a command sequence to a register.

Solution:
You can record a sequence of actions inside registers a-z and replay them later. This procedure is

called a macro.

To record a macro, press q, followed by the register character (example: qq to record a macro in
register q). To stop recording, press q again.

For example:
qaguujq

* ga to record a macro in the register a.
« gUU to uppercase the current line.
« j to go down one line.

To replay a recorded macro on register a, run @a. To play the last executed macro, run ee.

Register Basics

Problem:
You heard that Vim can save texts in different registers.

Solution:
Vim registers work like your computer clipboard. Vim comes shipped with 10 registers. I won’t go
over them in detail here. They are:

« The unnamed register ("").

« The numbered registers ("0-9).

« The small delete register ("-).

« The named registers ("a-z).

« The read-only registers (":, "., and "%).
« The alternate file register ("#).

Macros And Registers 41

« The expression register ("=).

« The selection registers ("* and "+).
« The black hole register ("_).

« The last search pattern register ("/).

They can be used in a composition with other operators. Run " followed by the register symbol, then
the operator. Registers are commonly used with the yank (y) operator and the delete (d) operator, but
it can be used with other operators too. You can also enter the content of a register directly. :put a
outputs the content from register a. While in insert mode, you can press Ctr1-R a to get the content
from register a.

If you need to yank the current word into register a, run "ayiw. To paste that content, run "ap.

Registers and macros are closely related. If you think about it, macros are executed registers. When
you record a macro in register a (qaguljq), you are actually recording a string of instructions (if
you don’t believe me, after running qaguUjq, run "ap and you should see the key sequence of your
actions printed out).

Closer Look At Vim Registers

Problem:
You saw that Vim has 10 registers. How do you use them?

Solution:
As mentioned above, Vim has 10 different registers. Some are automatically filled by Vim while
some have to be explicitly inserted.

The unnamed register stores the last text you yanked, changed, or deleted. The unnamed register is
like a computer’s standard copy / paste operation. To get the text from the unnamed register, do ““p.
The paste commands, p and P, automatically pastes from the unnamed registers.

There are two types of numbered registers: the 0 register and the 1-9 registers.

The 0 register is reserved for the yanked register (also known as the yank register). If you yank a
line, like yy, it will be stored in register 0. "@p to paste it.

The 1-9 registers are reserved for deletions or changes. If you delete a line, dd, the deleted text will
be stored in the numbered register starting from 1 going all the way up to 9, chronologically. If you
do dd 3 times, the most recent deletion will be stored in register 1, the second most recent deletion
in 2, and the third recent deletion in 3. To paste them, use "1p, "2p, "3p, etc.

The small delete register stores deletions or changes that are less than one line. If you delete a word
(like diw), you can access it with "-p (the registers 1-9 only store deletes or changes that are at least
one line size).

The named register is probably one of the most used registers. It uses the characters a-z to store
yanked, changed, or deleted texts. To delete a word into the register a, run "adiw. To paste it, run
"ap. To yank the rest of the line into the register b, run "by$. To paste it, run "bp.

Macros And Registers 42

The read-only registers are automatically handled by Vim. . stores the last inserted text, : stores the
last executed command-line command, and % stores the name of the current file.

The alternate file register stores the name of the alternate file (the other file you just edited).

The expression register lets you evaluate Vimscript expressions. To get the result of calculating the
expression 1 + 1, run "=1+1<Enter>, then press p.

The selection registers, * and + are used to connect Vim to your computer clipboard. By default, if you
copy something (for example, a text that you copy from a website), you can’t paste it immediately to
Vim and vice versa (if you yank something in Vim, you can’t paste it outside of Vim). To paste a text
from the system clipboard into Vim, run either "+p or "*p. The difference between * and + registers
are historical. If Vim has +xterm_clipboard and your machine uses X11’s primary selection, Vim
uses * register. If your machine uses X11’s clipboard selection, Vim uses +. To be frank, don’t worry
about it too much. Most of the time, they are interchangeable.

However, I find that doing "*p to paste and "*yy to yank is a lot of work. Add this in vimrc:
set clipboard=unnamed

This connects the unnamed (p) register to the clipboard system. Now you can yank and paste
naturally with p.

The black hole register lets you delete, yank, and change text without storing it into the register. If
you delete a line using "_dd, Vim won’t save it in the numbered registers.

The last search pattern register / and ? stores the last search term.

Clear Up a Register

Problem:
You need to empty a register.

Solution:
To quickly clear up the register a, run gag. This command records an empty macro, effectively
emptying that register.

Output Content From Any Register

Problem:
You need to output the content from a register directly.

Solution:

The :put command can output the content from any register

« :put a prints the register a.
« :pu _ prints from the blackhole register (in this case, it outputs a blank line).

Macros And Registers 43

Edit an Existing Macro

Problem:
You need to edit an existing macro.

Solution:
To edit an existing macro in register a:

« Run :put a to output the macro steps.
« Edit or add steps to it.
« Run "ay$ to yank it back to register a.

You can now execute the updated macro with @a.

For example, if you have a macro to uppercase the current line then go one line below in register a
(qaguujq), if you want to add to that macro a movement to the next word (w), do this:

1. Run :put a to paste the instruction string “gUUj”.

2. Add the needed action, “w” to the instruction string, making it: “gUUjw”.

3. RUN "Av$ FROM THE START OF THAT LINE TO YANK IT BACK TO REGISTER A.

4. Now running @a will uppercase the current line, go down one line, and go to the next word.

An alternative is to edit it on the command-line mode.

« Type :let @a = (don’t press <Enter> yet!)
+ PressCtrl-R a. Vim will output the content of register a.
+ You can now edit it.

Use the Blackhole Register to Prevent Register
Pollution

Problem:
Some commands, like :d, save the affected texts into the register but you don’t want to store the
affected texts into the register.

Solution:
Use the blackhole register _ to make changes without storing it to any register.

This is particularly useful if you are running a common on multiple rows and that command’s side
effect saves to a register.

Instead of running :g/donut/d to delete all lines that contain “donut” and pollute the numbered
registers, running :g/donut/d _ deletes all lines that contain “donut” without polluting the
numbered register.

Macros And Registers 44

See the Content From All Registers

Problem:
You want to see what your current registers are.

Solution:
To see the text from all registers, run :registers. You can also check for a specific register by passing
the register name as an argument. Run :register a to see the content of the register a.

Execute a Macro Programmatically

Problem:
You need to execute a macro on multiple lines at the same time.

Solution:
You can run a macro programmatically using the :normal command.

To execute macro a on lines 5-10, run :5,10 normal @a.

You can also combine this with other commands, like the global command. To execute macro a on
lines containing “const”, run :g/const/normal @a.

If you need to execute a macro on multiple files on the lines that contain the word “const”, you can
run :argdo g/const/normal @a.

Quickly Append to an Existing Macro

Problem:
You want to add a few more instructions at the end of an existing macro.

Solution:
Use the uppercase letter of that register to append to an existing macro.

If you have the following macro to uppercase the current line then go down one line:

gqagUujq

Later you want to add dd after j. Instead of recording the macro from scratch, simply run gAddq. qA
adds the action dd to the existing macro in register a. To put it in another word, Vim automatically
adds the dd operation on top of the guuj operations.

Macros And Registers 45

Quickly Paste From the Numbered Register

Problem:
You need to paste sequentially from the numbered registers ("1P, "2P, "3P).

Solution:
When you paste from the numbered register ("1P) followed by a dot command ., Vim automatically
increments the numbered register.

Try this: paste from the numbered register 1 with "1P, then run . (this executes "2P), then run . again
(this executes "3P).

Macro Factory

Problem:
You want to duplicate and combine macros.

Solution:

Recall that macro registers are really variables where you can store strings of instructions to be
executed or texts to be outputted. Since macros are just texts, you can perform string operations on
them.

To combine macros b and c and save in the register a, run :let @ = @ . @c (. in a Vimscript
expression is a string concatenation; don’t confuse it with the dot command). In fact, if you want to
add an additional operation to a macro, like dd, you can do it with :let @a = @b . @c . 'dd’.

Recursive Macro

Problem:
You need to run a recursive macro.

Solution:
If you have the text:

chocolate donut
mochi donut
powdered sugar donut

0 Q T o

plain donut

If you want to toggle the case of the first word using a recursive macro, run:

Macros And Registers 46
gaqgalW~ j@aq
Steps breakdown:

« gaq records an empty macro. It is imperative in a recursive macro to start with an empty register.
When you recursively call that macro, it will run whatever is in that register.

« ga records in register a.

ow~j goes to the first character in the current line, then goes to the next WORD, then toggles

the case of the character under the cursor, then finally goes down one line.

« @a executes the macro a (this is the recursive part - you’re still recording macro a and here you
are also executing macro a).

« q stops recording.

Multi-File Operations

Different Ways to Execute a Command In Multiple Files

Problem:
You need to execute a Vim command across multiple files.

Solution:
Vim has 8 different means to execute commands across multiple files.

:argdo arg list files

:bufdo buffers

:windo windows in the current tab
:tabdo tabs

:cdo each item in the quickfix list
:cfdo each file in the quickfix list
:1do each item in the location list
:1fdo each file in the location list

These commands require you to make a list in their respective categories (argument list, buffer list,
window list, tab list, quickfix list, and location list) before you can run the command.

« To create an argument list, run :args filel.txt file2.txt file3.txt

« To create a buffer list, just open more files (like :e filel.txt)

« To create a window list, create more split windows (like :vsplit filel.txt)

« To create a tab list, create more tabs (like : tabnew tab1)

« To create a quickfix list, use a command that uses quickfix (like :vimgrep /searchkeyword/
* . txt)

« To create a location list, use a command that uses location list (like : 1vimgrep /searchkeyword/
* . txt)

In this section, I’ll use :argdo, but overall the flow is the same for all of them.
Substitute In Multiple Files

Problem:
You need to substitute across multiple files.

Solution:
To substitute and save across multiple files, run :argdo %s/donut/pancake/g | update

The update command is to save each file.

Multi-File Operations 48

Execute a Macro in Multiple Files

Problem:
You need to run a macro across multiple files.

Solution:
To execute a macro in multiple files, you can use the :normal command. To execute macro in register
a, run :argdo normal @a | update.

Limiting the Files to Operate On

Problem:
You only need to run the command on only the first 5 files.

Solution:
You can limit the number of files you want to operate on with a range when running the -do
command.

To substitute only the first 5 items in the argument list: :1,5argdo s/pancake/waffle/g | update.

Creating an Argument List

Problem:
You need to quickly create an argument list.

Solution:
The argument list is needed to run the :argdo command.

« To get all the markdown files in the current directory, run :args *.md.
« To get all the markdown files in the current directory recursively, run :args **/*.md.

Once you get all the files, you can view them with :args.

Adding to an Argument List

Problem:
You already created an argument list and you need to add more items.

Solution:
Use :arga to add to the argument list.

Multi-File Operations 49

Supposing you created an argument list of all markdown files that start with “a” by running :args
a*.md, then later you also want to add a list of of all markdown files that start with “b”. If you run
:args b*.md, it will replace the first markdown list. To achieve this, run :arga b*.md. Now you have

©

a list of markdown files that start with “a” and “b”.

If you call :arga without argument, Vim will add the current buffer to the argument list.

Numbers

Quickly Increment or Decrement a Number on a Line

Problem:
You need to quickly increment or decrement a number on the current line.

Solution:
Vim has Ctrl-A and Ctrl-X operators to increment and decrement the next closest number (from
the cursor) in the current line.

If you have the text:

dozens of donut: 2
calories per donut: 200

»

« If your cursor is on the first line and you press Ctr1-A, the cursor will automatically go to “2
and increment it to “3”.

« If your cursor is on the second line and you press Ctr1-X, the cursor will automatically go to
“200” and decrement it to “199”.

Incrementing Number By More Than One

Problem:
The increment / decrement operators (Ctrl-A and Ctrl-X) only adds or subtracts one each time.

Solution:
You can pass a count before the increment / decrement operators.

If you run 10 Ctrl-A at the start of the line with “T ate 2 donuts”, it will increment it into “T ate 12
donuts”. Now that is sweet!

Likewise if you run 5 Ctr1-X on the same line, it will decrement it into “T ate 7 donuts”.

Sequentially Increment Multiple Numbers

Problem:
You need to increment numbers on multiple rows, sequentially.

Numbers 51

Solution:
If you use visual selection to highlight multiple rows and run Ctr1-A, Vim will increment into the
same number across the rows.

However, if you run g Ctrl-A or g Ctrl-X in visual selection, it will sequentially increment the
numbers on each line.

If you have the text:

break fasto

break fast@

break fasto

If you visually highlight all 3 lines then press g Ctrl-A, Vim will increment each line:
break fast1

breakfast2
breakfast3

Substitute and Increment Number

Problem:
You need to increment numbers using substitution.

Solution:
You can do this by utilizing the substitute command with the global.

Suppose that you have the following:

#* I'm a header

1'm another header

T'm yet another header

And you want to substitute ## into incrementing numbers, like:
1.) I'm a header

2.) I'm another header

3.) I'm yet another header

Run:

Numbers 52
let i =1 | g/t##/s//\=1 . '.)'/g | let i +=1

« let i = 1 sets the variable i to equal 1.

« g/r##/ runs the global command that matches the *## pattern (lines starting with “##”).

« s// to use the substitute command. If you leave the search pattern blank, Vim will use the same
search pattern as the global command search pattern (which is r##).

«\=i . '.)'/g uses the expression \=i . '.)' as the substitute pattern (the variable i

concatenated with the string “.)”. The g is the global flag.
« let i += 1 increments the variable i by 1 with each iteration.

Quickly Generate Incrementing Numbers Anywhere

Problem:
You need to generate a list with incrementing numbers.

Solution
If you need to create a list quickly, you can generate incrementing number prefixes on the fly. Here
is how you can do this using visual mode and the number increment operator.

Suppose that you have this list:

first item
second item
third item

1. Put your cursor on the first character on the first line, the character “f” in “first”,
2. Activate the block-wise visual mode (Ctr1-V),

3. Go down two lines.

4. Press I to activate insert mode before the cursor and type “0. “. Press <Esc>.

You should have:

©. first item
@. second item
Q. third item

5. Press gv to quickly highlight the previously selected visual mode. Vim will automatically
highlight all “0” texts.

6. Press g Ctrl-A to sequentially increment numbers and you’re done!

Numbers 53

1. first item
2. second item
3. third item

Get ASCII Value

Problem:
You need to get an ASCII value of a character.

Solution:
If you run ga, Vim will print the ASCII value of the character under the cursor (in decimal,
hexadecimal, and octal).

Repeat

Repeat the Last Command-Line Command

Problem:
You need to repeat the last command-line command.

Solution:
Repeat the last command-line command witha:.

If you just ran :s/donut/pancake, you can repeat it with @:.
Repeat the Last Change

Problem:
You need to repeat the last change you made.

Solution:
You can repeat the last change with . (the dot command).

If you type “I love breakfast”, you can insert that text again by pressing the dot command (.).
Repeat the Last Substitute

Problem:
You need to repeat the last substitute.

Solution:
Repeat the last substitute with :& or &. If you do :s/donut/waffle/g, then you run &, Vim will run
:s/donut/waffle on that line. Vim doesn’t remember the g flag though.

To repeat the last substitute and remember the flags, you can use :&&. If you do :s/donut/waffle/g
and if you run :88&, Vim will run :s/donut/waffle/g on that line.

To repeat the last substitute on all lines with the same flags, use g&.

If you do :s/donut/pancake/g, then run g&, Vim runs :%s/donut/pancake/g. Technically Vim runs
:%s//~/&, which consists of:

« %s to sub on all lines

« // to repeat the last pattern
« ~ to repeat the sub string

« & to use the last flag

Repeat

Repeat the Last Executed Macro

Problem:
You need to repeat the last executed macro

Solution:
You can repeat the last executed macro with ee.

If you just executed macro a with @a, running @@ will execute that macro again.

Repeat the Last External Command

Problem:
You need to repeat the last external command.

Solution:
You can repeat the last external-command execution (: ! {emd}) with :11.

If you justran : !1s -1, running :!! will re-run : !1s -1.

55

Sort

Sorting Lines

Problem:
You need to sort multiple lines alphabetically.

Solution:
Vim has the :sort command to sort multiple rows. A few things you can do:

« To sort the entire file, run :sort.
 To sort between lines 5-10, run :5,10 sort.

This command also accepts flags to sort rows in different manners.

If you have duplicate lines:

pancake
donut
waffle
donut

Run :sort u to sort them and to remove the duplicates.

Vim :sort does not sort numbers correctly. If you have:

2 donuts
1 donut

11 donut
10 donuts

Running :sort will give you:

1 donut
10 donuts
11 donut
2 donuts

To fix this, run :sort n.

To sort based on pattern with :sort /pattern/.

Sort 57

pancake, donut, waffle
sushi, pasta, taco
apple, banana, carrot
water, apple juice, milk

« If you want to sort based on the second item (“donut” vs “pasta”, “banana”, “apple juice”), you
can use :sort /,/. Vim will use the characters after the match to sort.

« If you want to sort based on the third item (“waffle” vs “taco” vs “carrot” vs “milk”), you can
use :sort /,.\+,/.

External Sort

Problem:
You need to use a different sorting program.

Solution:
Recall that you can use external commands as filters. Your terminal probably comes with a sort
command. To sort using the terminal sort command, run :%!sort.

Note: when using an external command to filter texts in Vim, pass it a range.

« To sort the entire file, run :%!sort.
» To unique sort lines 5 to 10, run :5,10!sort -u.

Reverse Sort

Problem:
You need to do a reverse sort.

Solution:
You can do a reverse sort with :sort!.

You can also use the terminal sort command, :%!sort -r.

Substitute

Basic Substitution

Problem:
You need to substitute a pattern.

Solution:
The substitute command is a versatile Vim command and probably the one you’ll use often. Its basic
syntax is:

:s/patterni/pattern2

To substitute “donut” with “pancake” in the current line, run :s/donut/pancake. Note that if you
have multiple “donut” on the same line, Vim will only substitute the first one. To substitute multiple
instances, pass to it the global (g) flag: :s/donut/pancake/g.

You can perform substitution in a range.

« To substitute “donut” with “pancake” between lines 2 and 5: :2,5s/donut/pancake/g.
« To substitute “donut” with “pancake” on the entire buffer, run :%s/donut/pancake/g.

Case Insensitive Match

Problem:
You need to do a case insensitive substitution match.

Solution:
Use the i flag for a case insensitive match.

If you run :%s/dOnuT/salad/gi, it will substitute “donut”, “dOnuT”, and “DONUT” to “salad”. This
is useful if you’re matching a phrase that has varying cases.

Asking For Confirmation Before Substituting

Problem:
You want Vim to ask for confirmation before substituting.

Substitute 59

Solution:
Use the c flag for a confirmation before substituting.

If you are working in a large buffer and you need to substitute some, but not all of the matches, this
is a perfect solution.

Suppose that you need to substitute “donuts” with “waffle”, you can run :%s/donut/waffle/gc.

Chocolate donut
Strawberry donut
Vanilla donut

If you only need to substitute the first and third match, after running the substitute command, Vim
will ask you for a confirmation on each match. Just say yes on the first one, no on the second one,
and yes on the third one.

Group Match In Substitution

Problem:
You need to reverse the order of a pattern.

Solution:
You can group the match pattern and refer them as \n (where n is the integer).

If you want to substitute “chocolate donut” into “donut chocolate”, you can just do :s/chocolate
donut/donut chocolate.

But what if you need to make the second word the first and the first word second? You need a group
match.

To turn “chocolate donut” into “donut chocolate”, run :s/\(.\+\) \(.\+\)/\2 \1/g.

« The first group \(.\+\) matches “chocolate” and is represented by \1.
« The second group \(.\+\) matches “donut” and is represented by \2.

Another example: if you need to swap the 1st letter to 2nd, the 2nd letter to the 3rd, the 3rd to 1st,
you can run :s/M\(\w\)\(\w\)\(\w\)/\2\3\1/g. This will swap “123” to “231”, “abc” to “bca”.

Use Very Magic to Avoid Escaping Special Characters

Problem:
You are sick and tired of escaping special characters.

Solution:

Some characters, when doing search / substitution, have special meanings (like ., (), or +). There
are times when you have to escape a plethora of characters. Use the very magic flag \v to avoid
escaping special characters.

Substitute 60

« To turn “chocolate donut” into “donut chocolate” with very magic, run:s/\v(.+) (.+)/\2 \1/g
(contrast that with :s/\(.\+\) \(.\+\)/\2 \1/g).

« To swap the 1st letter to 2nd, 2nd to 3rd, and 3rd to 1st with very magic, run
rs/\A(\w) (\w) (\w) /\2\3\1/g (contrast that with :s/A\(\w\)\(\Ww\)\(\w\)/\2\3\1/9).

Representing the Entire Match

Problem:
You need a way to represent “the entire match” pattern.

Solution:
In a group match, \0 is a special keyword that represents the entire match.

If you have the string “pancake” and you want to update “pancake” into “fluffy pancake”, instead of
running :s/pancake/fluffy pancake, you canrun :s/pancake/fluffy \0/.\0 represents the entire
match, which is the word “pancake”.

If you need to add parentheses around “pancake”, you can run :s/pancake/(\@)/g to give you
“(pancake)”.

Alternatively, & is also another keyword for the entire match: :s/pancake/fluffy &/ and
:s/pancake/(&)/g.

Using the Group Match to Remove Words

Problem:
You need to reuse parts of the search pattern.

Solution:
You can use group matches, \1 \2 \3 etc, to remove words.

You can delete subsequent duplicate lines with :%s/(.+)\n\1/\1/g. Here you are using \1 as a
pattern to substitute and pattern to substitute into. If you have:

chocolate
donut

donut

Vim deletes the second “donut”.

Another example, if you have a list of phone numbers:

Substitute 61

123-123-1234
111-111-11114

If you want to get rid of the area code (the first 3 digits), you can run : %s/\v(\d{3}-) (\d{3}-) (\d{4})/\2\3.
You'll get:

123-1234
111-1111

Reusing the Previous Search Pattern

Problem:
You just searched for a word (/some keyword) and you don’t want to retype that word again when
doing substitution.

Solution:
If you use an empty substitute search pattern, Vim will use the previous search pattern!

If you recently searched for /donut and then you run :%s//pancake/g, this is equal to
:%s/donut/pancake/g. Why type more if you can type less?

Deleting In Substitution Quicker

Problem:
When you’re using a substitution to delete, like in :s/donut//, is there a faster way to do this?

Solution:
If you leave the substitute pattern blank, Vim assumes that you want to delete them:

« :%s/waffles removes all “waffles” in a buffer.
« :%s/M\n removes all empty lines in a buffer.

Using an Expression in a Substitution

Problem:
You need to do a complicated substitution using an expression

Solution:
You can use the expression register in substitution with \={expr}.

To substitute all __DATE__ string with today’s date, you can run :%s/__DATE__/\=strftime("%c")/g.
strftime() is a Vimscript function (:h strftime()).

Substitute 62

Removing Trailing Whitespaces

Problem:
You have trailing whitespaces all over the buffer.

Solution:
To remove trailing whitespaces, run :%s/\s\+$//g.

« \s represents whitespace characters (literal spaces and tabs).
« \+ means one or more preceding character.
+ $ here means the end of the line.

Together, \s\+$ means one or more whitespace characters at the end of the line. Recall that the :s
command automatically deletes if you leave the second half blank, so :%s/\s\+$ works too.

Add a New Line In Substitution

Problem:
You need to add a new line to a phrase.

Solution:
Substitution can also be used to add new lines. Use the \r pattern.

If you want to add a new line after each line that starts with “pancakes”, run
:%s/"pancakes.*/\0\r/g:

Repeat the Last Substitute Command

Problem:
You need to repeat the last substitute command.

Solution:
:s repeats the last substitute command without the flag.

If you recently did :s/pancake/donut and you repeat it :s will quickly repeat that. Alternatively,
you can also press &. & is the normal mode version of :s.

If you recently did :s/pancake/donut/g and you want to keep the g flag, run :&&.

Substitute 63

Capitalize the First Letter Of Each Word

Problem:
You need to capitalize the first letter of each word in a line.

Solution:
Run :s/\<./\u\@/g to capitalize the first letter of each word in a line.

« \<. is the pattern for the beginning of a word.
« \u is a special keyword modifier to uppercase the subsequent pattern.
« \@ represents the entire match.

Perform a Chain of Substitutes

Problem:
You need to substitute a few phrases simultaneously.

Solution:
You can chain multiple substitutions with |.

To substitute “good” to “awesome”, “bad” to “terrible”, and “ugly” to “hideous”, run:

:s/good/awesome/ | s/bad/terrible/ | s/ugly/hideous/

Repeat the Last Substitute String

Problem:
You need to do a different substitution but with the same substitute string as your previous

substitution.

Solution:
Use the ~ pattern in substitution to repeat the last substitute string.

If you recently ran :s/pancake/donut/g, then :s/waffle/~/g, Vim will also substitute “waffle” with
“donut”, the last substitute string.

Repeat the Last Substitution With the Last Search
Pattern and the Last Substitute String

Problem:
You just searched with /. You just performed a substitution. Now you need to substitute using the
last search pattern but with the same previous substitute string.

Substitute 64

Solution:
Use : ~ to repeat the last substitution using the last search pattern and the last substitute string

If you recently ran :s/pancake/donut/ and you recently searched /mochi, running :~ will do
:s/mochi/donut/.

Changing the Delimiter

Problem:
You got lost in the jungle of front-slashes.

Solution:
You need to substitute a web URL with a long path like https://mysite.com/a/b/c/d/e and you
end up with something like :s/https:\/\/mysite.com\/a\/b\/c\/d\/e/hello/.

Frankly it is hard to tell which forward slashes are part of the substitution patterns and which ones
are the delimiters. Vim lets you change the substitution delimiter with any single-byte characters
(except for alphabets, numbers, ", |, and \). What that means is that you can do something like:

:sthttps:\/\/mysite.com\/a\/b\/c\/d\/ethello+
or
:s@https:\/\/mysite.com\/a\/b\/c\/d\/e@hello@

With this, the distinction between / as the literal character and the delimiters are clearer.

Global Command

Global Command Basics

Problem:
You don’t know how to use the global command.

Solution:
Global command is a useful command to execute a command on multiple lines. The general pattern
is :g/pattern/command.

For example, to delete all lines containing “let”, you can use :g/let/d.

Inverse Match

Problem:
You want to run the global command on non-matching lines instead of matching lines.

Solution:
The command :g/let/d deletes all lines containing the word “let”. What if you want to delete all
lines not containing “let”?

You can use the inverse global command with g! or v. Run either :g!/let/d or :v/let/d.

Prepend or Append On Multiple Lines

Problem:
You need to append a semicolon on all lines containing “const”.

Solution:
From normal mode, you can enter insert mode at the end of the line with A. You can take replicate
normal mode commands with the normal command.

To add a semicolon at the end of all lines containing “const”, run :g/const/normal A;.

By the way, recall that you can enter insert mode at the start of the line with I. To add “const” at
the start of all lines containing “;”, run :g/; /normal Iconst .

Global Command 66

Global Command Within a Range

Problem:
You need to execute the global command within a range, not on the entire file.

Solution:

You can run :5,10g/donut/s/pancakes/waffles/g to execute the global command between lines 5
and 10.

You can also run the global command between a marked range. The command
:'a, 'bg/donut/s/pancakes/waffles/g executes the global command between the marks 'a
and 'b.

Delete Blank and Empty Lines

Problem;
You need to quickly get rid of empty lines.

Solution:
The global command is great to for deleting multiple empty and blank lines lines.

« Run :g/*$/d to delete all empty lines.
e Run :g/*\s*$/d to delete all blank lines.

Running Global Command Between Matching Patterns

Problem:
You need to execute the global command only between pattern1 and pattern2.

Solution:
The global command accepts the form of :g/patterni/, /pattern2/ {cmd} to execute cmd between
patterni and pattern2.

If you want to delete the text between “apples” and “oranges”, excluding “apples” and “oranges”,
run :g/apples/+, /oranges/- d.If you want to delete “apples” and “oranges” too, run :g/apples/,
/oranges/ d.

Global Command

apples
bananas

oranges

apples
blueberries
pineapple
mangos

oranges
papayas

Explanation:

e patterni is apples.

» pattern2 is oranges.

o The + means one line below and - means one line above.
¢ d is the delete command.

If you want to sort only the items inside the parentheses, run :g/(/+1,/)/-1 sort.

chokeberry
blueberry
acaiberry

apples

carrots

bananas

Explanation:

« patternt is ((left parentheses).
« pattern2 is) (right parentheses).

67

 The +1 in /(/+1 and the -1 in /)/-1 means that the global command will affect texts after (

and before).
« sort is the command to execute.

Global Command 68

Condense Multiple Empty Lines

Problem:
You have multiple empty lines in a file and you need to wrap them into single lines.

Solution:
You can condense multiple empty lines with :g/*$/,/./-1 j.

If you have:
Hello
There are

many empty

lines

in here

Running :g/*$/,/./-1 j will condense the empty lines into single lines. This global command uses
two patterns: /*$/ (empty line) and /. /-1 (one line before a non-empty line). The command to be
executed is the join command (: j).

Alternatively, if you have the cat program in the terminal, you can also run : %!cat -s (the -s stands
for “squeeze”) to squeeze multiple empty lines into single lines.

Reuse the Global Command Search Pattern in the
Substitute Command

Problem:
You want to reuse the global command pattern in the substitute command.

Solution:
Vim will actually re-use the global command pattern if it is followed-up with the substitute command
with a blank search pattern.

:g/apples/s//oranges/g is the same as :g/apples/s/apples/oranges/g.

The Default Command

Problem:
You want to print the global command results.

Global Command 69

Solution:
If you don’t pass any {cmd} to the global command, Vim will automatically run the print command

(:p).
:g/bagel is the same as :g/bagel/p.

Note that this command has a pattern of g/re/p. This is the same grep command found in the
terminal.

This pattern, g/re/p, originally comes from the Ed editor (remember that?).

Use Execute to Run Complex Expressions

Problem:
You want to run the global command using a complex expression.

Solution:
You can use Vim’s :execute command with the global command.

Given a list of filenames (without any extension):

filel
file2
file3

To generate new markdown files for each line. Run :g/*/execute "w " . getline(".") . ".md".

The command executes :w filel.md, :w file2.md, and :w file3.md. Vim will generate filel.md,
file2.md, and file3.md. Neat!

Reverse All Lines

Problem:
You need to reverse the order of each line.

Solution:
To reverse all lines, just run :g/*/m 0.

« » will target all lines in a file.
« m @ is a move command. It will move each line, into the 1st line, effectively reversing the entire
order.

Global Command 70

Surround All Digits With Double Quotes

Problem:
You need to surround any digits with double quotes.

Solution:
Given the following text:

const one = 1
const two = 2

const three = 3

const nope = "don't mind me"
const four = 4
const five = 55

Run :g/\d\+/s//"&" /g to get:

const one = "1"

const two = "2"

const three = "3"

const nope = "don't mind me"
const four = "4"

const five = "GH"
Explanation:

« The pattern \d\+ matches one or more digits.

« s// is a substitute command with a blank substitute pattern. Recall that if you leave the search
pattern blank, Vim will use the pattern used by the global command.

« "&" is the substitute pattern. Recall that & represents the entire match. "&" surrounds the entire
match with double quotes.

Changing the Delimiter

Problem:
You got lost in the sea of /.

Solution:
Just like you can change the delimiter of the substitute command, you can also change the delimiter
of the global command with any single-byte characters.

This is a valid global command:

Global Command 71

:g@console@d
If you are using a global command with the substitute command, you can do something like this:
g@one@s+const+let+g

It is easier to see which part belongs to the global command and which belongs to the substitute
command.

Programmatic Global Command

Problem:
You need to programmatically run the global command.

Solution:
The global command is very versatile. You can enhance the global command with Vimscript.

A few things of you can do:

 Delete even lines with :g/*/if line(".") % 2 != 0 | norm! d$
« Delete lines that are less than 3 char long with :g/*/if strlen(getline(".")) < 3 | d

Tags

What Are Tags?

Problem:
You want to understand about Vim’s tag system.

Solution:

In many modern editors, you can click on a function or class definition and it will take you to where
that function or class is defined. You can do that in Vim with tags. Although you can just search for
any definition with grep, vimgrep, or external libraries like (fzf.vim), tags are the best tool for this
kind of job.

Think of a Vim tag like an address book:

Name Address

Iggy1l 123 Awesome St, 12345
Iggy2 987 Incredible Ave, 98765
Iggy3 555 Handsome Rd, 55555

To look for Iggy1’s address, first you open the address book, then search for Iggy1 on the Name
column, then search for the corresponding address. Tags work the same way. Instead of having
name-address table, Vim tags store word definitions and their locations in the project.

So how do you get started with tags?

You need a tool called tag generator to generate this address file. Modern Vim doesn’t come with a
tag generator so you have to download it separately. There are several options you can choose, but
the one I recommend is either Universal Ctags®> or Exuberant Ctags®. Follow the direction on their
websites how to install it.

Here I'll use the Universal Ctags. After you install it, you should get the ctags command. If you use
a different tags generator, you can still follow along.

Assume that you have two ruby files:

*https://github.com/universal-ctags/ctags
“http://ctags.sourceforge.net

https://github.com/universal-ctags/ctags
http://ctags.sourceforge.net/
https://github.com/universal-ctags/ctags
http://ctags.sourceforge.net/

Tags 73

one.rb
class One
def initialize
puts "Initialized"

end
def donut
puts "Bar"
end
end

two.rb

require './one'

one = One.new
one.donut

Running ctags -R . from the terminal will generate a basic tag file (named tags). The -R means a
recursive call.

Inside that file:

One one.rb /*class One$/;" c
donut one.rb /" def donut$/;" f class:0One
initialize one.rb /M def initialize$/;" f class:One

Yours may have additional rows, but it should at least contain a word definition and its address.

If you look at one of them:
donut one.rb /M def donut$/;" f class:0One

donut is the tag name. When your cursor is on “donut”, Vim searches the tag file for a row that
contains “donut”.

one.rb /* def donut$/;" is the address. It consists of two parts:

« one.rb is the file name. Vim looks for a file one. rb.

« /% def donut$/ is the address. /. ../ is a pattern indicator. * is a pattern for the first element
on a line. It is followed by two spaces, then the string def donut. Finally, $ is a pattern for the
last element on a line. This is the same as if you're searching with /* def donut$.

« f class:One is the tag option that tells Vim that “donut” is a function (f) and is part of the One
class.

In short, a tag file is an address book that tells Vim where to find a particular definition.

Tags 74

Setting Up the Tag File

Problem:
You successfully created a tag file but you don’t know how to set it up.

Solution:
Run :set tags?, Vim will display tags=. /tags, tags (depending on your Vim settings, it might be
a little different). Vim looks at the tags option for locations where it can find the tag file.

You can add or remove path locations. If you prefer to have a centralized tags for your projects, you
can do something like set tags+=/path/to/your/tags. Vim will search for tags definition in order.
If Vim finds a tag file in . /tags (the current directory) it will use that and not the other tag files. If
there is no tag file in the current directory, Vim will check the next path, tags (the project root file).
Finally, it will look for tags in /path/to/your/tags.

Tags Navigation

Problem:
You want to quickly jump to a method definition.

Solution:
If your cursor is on “donut”, you can jump to “donut” origin by pressing Ctr1-] or by running :tag
donut (assuming that you already have a tag file properly set up in the correct path)

What if you have multiple methods with the same name? Vim will jump to the definition with a
higher tag priority.

Wait, what is tag priority? When a tag file contains duplicate item names, Vim decides which address
to jump to based on the tag priority.

The priorities are, in order:

A fully matched static tag in the current file.

A fully matched global tag in the current file.

A fully matched global tag in a different file.

A fully matched static tag in another file.

A case-insensitively matched static tag in the current file.
A case-insensitively matched global tag in the current file.
A case-insensitively matched global tag in a different file.
A case-insensitively matched static tag in the current file.

S S A

Tags 75

Selective Jump

Problem:
You want to choose which keyword to jump to, regardless of tag priority.

Solution:

Suppose that you have two “pancake” keyword definitions. If you press Ctr1-] while your cursor
is on the word “pancake”, Vim decides it for you based on its tag priority. But what if you want to
jump to the one with less priority? How can you fight back Vim’s dictatorship?

With g ctrl-], if Vim finds multiple matches, you can choose which definition to jump. The
command-line alternative is the command :tjump pancake.

Autocompletion

Problem:
You want to use tags for autocompletion.

Solution:
You can use autocompletion in insert mode using tags. Just press Ctr1-X Ctrl-] and Vim will
autocomplete according to the tag file.

Automatic Tag Generation

Problem:
You don’t want to keep running the tags generator manually.

Solution:
Your code changes over time. You add, update, and remove methods and classes. Meanwhile, the tag
file does not know about these changes so it keeps the old definitions.

Ideally you need to re-runctags -R . each time you make a significant change, but that takes a ton of
work! The good news is, you can use Vim autocommand (: autocmd) to generate tags automatically.

For example, if you want to automatically generate tags each time you save a ruby file, run:
:autocmd BufWritePost *.rb silent !ctags -R .

Another alternative is to use external plugins to manage the tags. Some popular tag plugins are (the
list is not comprehensive, so check out if there are better ones to suit your coding style):

+ vim-gutentags’

*https://github.com/ludovicchabant/vim-gutentags

https://github.com/ludovicchabant/vim-gutentags
https://github.com/ludovicchabant/vim-gutentags

Tags

» vim-tags®
« vim-easytags’
- vim-autotag®

“https://github.com/szw/vim-tags
"https://github.com/xolox/vim-easytags
*https://github.com/craigemery/vim-autotag

76

https://github.com/szw/vim-tags
https://github.com/xolox/vim-easytags
https://github.com/craigemery/vim-autotag
https://github.com/szw/vim-tags
https://github.com/xolox/vim-easytags
https://github.com/craigemery/vim-autotag

Text Generation

Get a File Content

Problem:
You need to get the content of another file into the current file.

Solution:
You can read the content of a file with :r myfile.txt. By default it will put the content below the
current line. If you want to have it on the first line, run :0r myfile.txt.

Get the Current Date

Problem:
You need to get the current date quickly.

Solution:
Your terminal probably has a date command. Recall that you can insert from a file with :r
somefile.txt. You can get the current date with :r !date.

This command also works with other external commands:

« If you need to get all the filenames in the current directory, run :r !1s.

« If you need to get the response of a curl command, run :r lcurl -s
https://jsonplaceholder.typicode.com/posts (by the way, the -s flag in this command
stands for silent).

Generate Numbers

Problem:
You need to quickly generate numbers from 1 to 10.

Solution:
Run :put =range(1,10) to generate the numbers 1 to 10.

The put method outputs the text from the given register. In this case, = is the expression register. The
expression is range(1,10).

By the way, the range() command also accepts an optional third parameter, stride. Run
:put=range(1,10@,2) to generate numbers 1 to 10 incremented by 2. Run :put=range(10,1,-1) to
generate decrementing numbers.

Text Generation 78

Generate IP Addresses

Problem:
You need to generate different IP addresses.

Solution:
To generate a sequential IP addresses, use : for i in range(1,10) | put ='192.168.@."'.1i | endfor.

This is an expansion of the put + range method above using the for loop and string concatenation.

Generate Random Dice Throw

Problem:
You want to generate a random number between 1 to 6.

Solution:
To generate 10 different dice rolls, you can use rand():

:for i in range(1,10) | put='Roll the dice: ' . (rand() % 6 + 1) | endfor

Generate Numbers Horizontally

Problem:
You need to generate a number series on the same line.

Solution:
To generate numbers horizontally, use put and join.

e :put=join([1,2,3,4], \" - \") togenerate 1-2-3-4.
« :put=join(range(1,10), \"', '\") to generate 1’, ‘2’, ‘3, “4’, ... “10 (it won’t generate the first
and last single-quote, you can just add them manually).

Transform a Text Into a Numbered List Based On Line
Numbers

Problem:
You want to turn a text into a numbered list based on line numbers.

Solution:
To create a numbered list on multiple lines, run :%s/*/\=printf('%-2s', line('.')).

If you have following text starting on line 1:

Text Generation

Breakfast is good
But lunch is better
Dinner is still the best

Run :%s/*"/\=printf("%-2s", line(".")) to get:

1 Breakfast is good
2 But lunch is better
3 Dinner is still the best

Command breakdown:

« * represents the start of the line.

« \= allows you to use Vimscript expression in a substitution.

« printf('%-2s') prints the string with space (the -2 is the field with, padded left).
e line('.") is the current line number.

79

Text Manipulation

How to Speak Vim

Problem:
You are having trouble remembering myriads of Vim commands.

Solution:
Don’t try to remember every command. Instead, break it down into smaller chunks. Vim commands
contain a grammar-like pattern (let’s call it the “Vim Grammar”) to create compositions.

There is one rule in Vim grammar:
verb + noun

Operators are verbs and motions are nouns. Most actions are done by following that rule. You only
need to master a handful of operator and navigation keys to become productive.

For example:

« To delete the next word, run dw; verb (d) + noun (w).

« To yank two characters to the left, y2h; verb (y) + noun (2h). Note that you can pass a count
before the motion (2h).

« To change the next line, cj; verb (c) + noun (j).

Texts often come structured. There is a concept of a “word”, a “paragraph”, a “parentheses”, etc in a
file. Vim has an abstraction known as text objects to address these structures. There are two different
text objects: inner (i + object) and outer (a + object) text objects. This looks complicated, but once
you get it, it’s fairly simple and intuitive.

A text object is the noun in the Vim grammar rule of verb + noun. You need to pass an operator
before a text object.

const hello = function() {
console.log("Hello Vim");
return true;

If your cursor is on the “H” in “Hello™:

Text Manipulation 81

« To delete the entire “Hello Vim”: di (.
« To delete the function block (surrounded by {}): di{.
« To delete the “Hello” string: diw.

If you are new to Vim, you don’t have to remember dozens of operators. You can start by just
committing these 3 to memory:

« d (delete).
« ¢ (change).
+ y (yank).

Changing Cases

Problem:
You need to change the case of your text.

Solution:
There are different ways to change the case of your text.

To change the case of a single character:

« ~ toggles the case of the character the cursor is on. If your cursor is on “d” in “donut”, pressing
~ toggles it to uppercase.

« vu lowers the case of the character the cursor is on. If your cursor is on “D” in “Donut”, pressing
vu lowers the case to “d”.

« vU uppercases the case of the character the cursor is on. If your cursor is on “d” in “donut”,
pressing vU ups the case to “D”.

To change the case using a motion:

« g~ {motion} toggles the case of the texts indicated by motion. When combined with g, g~ acts
as an operator. To toggle the case of the next two words, run g~2w. To toggle the case of the
current inner word, run g~iw.

« gu {motion} lowers the case of the texts indicated by motion. To lowercase the text inside the
(), run gui(.

« gU {motion} ups the case of the texts indicated by motion. To uppercase to the end of the file,
run guG.

To change the case of the current line:
« To togglecase the current line, run g~~.

« To lowercase the current line, run guu.
« To uppercase the current line, run guu.

Text Manipulation 82

Swap Two Characters

Problem:
You need to quickly swap two adjacent characters.

Solution:
I do these kinds of typos all the time when editing: typing “teh” instead of “the”, “cosnt” instead of
“const”, etc. The easiest way to fix a two-character typo is to use xp.

x deletes the character under the cursor and p pastes that recently deleted character.

Replace Mode

Problem:
You need to replace characters with the ones you are typing.

Solution:
Vim has a replace mode that you can access with R. When in the Replace mode, Vim replaces the
existing character with each character you type.

You can also use the virtual replace mode with gr. This command is similar to R, except when you
press <Tab>, it will replace multiple characters (as opposed to only one character in replace mode).

Using a Command-Line Command As a Motion to an
Operator

Problem:
There is not really a problem, but it’s neat to know.

Solution:
In Vim, you can use : as a motion to an operator. In the context of Vim grammar verb + noun, the
:cmd can act as a noun for a verb.

« To delete from the current position to the first match of “b”: d:call search("b").
« To delete from the current position to line 10: d:10.

The examples above look like a lot of work just to do a simple task and you’re probably wondering
when you will ever need this. The truth is, haven’t spent a lot of time on this revelation.

However, if you have an arsenal of Vimscript functions that can move your cursor based on a
complex pattern, like d:call FindWordsIn("Spanish"), d:call FindEnglishAdjectives(), etc,
this can be a useful feature. Also keep in mind that you can use it with any terminal command
(d: ! {some_command}).Maybe someone will figure out a way to use this effectively.

Text Manipulation 83

Force Motion

Problem:
You need to run an operator on columns.

Solution:
You can force a motion to be line-wise, character-wise, or block-wise, like the visual mode.

In this case, if you need to run the delete operator on the three columns containing 0s:

broeak fast
lu@nch

di@nner

With your cursor on the “0” in the first line, run dCtr1-v2j (note that this is similar to block-wise
Visual mode).

Persistent Undo

Problem:
Each time you close and re-open Vim, you wish that you can undo the last action you did right
before you closed Vim.

Solution:
An undo file allows you to preserve the undo history even after you close Vim; you can create an
undo file with :wundo and load it with :rundo

Edit somefile.txt, then create an undo file with :wundo! somefile.undo (you can give it any name),
then close Vim and reopen somefile.txt. Run :rundo somefile.undo to load the undo file. You can
now undo from that file as if you never exited Vim.

Undoing In Chunks

Problem:
After you typed a long paragraph, when you undo, Vim removes the entire paragraph even though
you only need to undo the last sentence.

Solution:
Vim undo undoes the last “change”. All the texts that you typed while you’re in the insert command
count as a single change. You can exit the insert mode after each sentence to create smaller changes.

Alternatively, you can create an undo chunk with Ctr1-G u to break your change into smaller parts
without leaving insert mode. Here’s how.

Text Manipulation 84

If you type ipancake breakfast<Esc> then you pressu, Vim will undo the entire “pancake breakfast”.
To add a break-point, run ipancake <Ctrl-G u>breakfast<Esc>. Now when you press u, Vim will
remove only “breakfast”.

Join Lines

Problem:
You need to join the next line to the current line.

Solution:

If you press J, Vim will join the line below the current line to the current line. Vim automatically
adds an extra space when joining two lines, so if you don’t want the extra line, use gJ to join two
lines without a space. If you are on visual mode, you can join all highlighted lines with J.

The : j (short for : join) is the command-line version of J. By running just : j, Vim will act like J. If
you want to join all lines, run :%j.

Using Terminal Commands

Problem:
You need to filter your texts using the terminal commands

Solution:
Vim has a bang (!) operator to filter the text through the external command.

For example, if you have the following text that you need to tabularize and remove the rows without
Sﬂok”:

Id[Name|Cuteness

01 |Puppy | Very

02|Kitten|Ok

@3 |Bunny | Ok

You can achieve this using the column terminal command and the awk command. Just run:
'}column -t -s "[|" | awk 'NR > 1 && /Ok/ {print $0}'

You'll get a clean, filtered table:

02 Kitten Ok
@3 Bunny 0Ok

This is one of Vim’s shining features because it lets you extend Vim’s capability to use external
commands in addition to Vim’s internal commands, allowing you to compose more complex actions.

Terminal

Vi Mode

Problem:
You want to use Vi keybindings in the terminal.

Solution:
To set the Vi mode in the terminal, runset -o vi (not supported by all terminals, but most terminals
should have it).

Now when you press <Esc>, the you’ll enter Vi Normal mode. Some available features are:

« Line navigations (o, $, w, etc).

« Go through history with j and k.

« Search the command history with ?some command or /other command and follow-up with n and
N.

- Etc.

Opening Files

Problem:
You want to quickly open multiple files.

Solution:
You can open multiple files at once with vim filel.txt filel.txt file3.txt.

You can use glob to open multiple files in Vim :

« Runvim *. js to open all Javascript files in the current directory.
« Runvim **/*_ js to open all Javascript files recursively.

Diffing With Vim

Problem:
You need to perform a quick diff between two or more files.

Solution:
Run vimdiff filel.txt file2.txt to perform diff with Vim. Alternatively, you can also run vim
-d filel.txt file2.txt.

Terminal 86

Running Vim Without Plugins or Vimrc

Problem:
You need to run Vim without plugins.

Solution:

« To launch Vim without plugins but with vimrc, run vim --noplugin
« To launch Vim with plugins but without vimrc, run vim -u NORC
« To launch Vim without plugins and vimrc, run vim -u NONE

These are useful when you need to debug Vim.

Open Files in Vim as a Result of Another Command

Problem:
You need to pass the output of terminal commands to open files in Vim.

Solution:
You can run vim followed by $(command). Some use cases:

« You can open all your git status files, run vim $(git status --porcelain | awk '{print
$21).

« You can open the result of the find command with vim $(find . -name "my_file*. js).

Open Files in Read-Only Mode

Problem:
You need to open files without modifying it.

Solution:
vim -R filename.txt opens the file in read-only mode. This is a good alternative for less. You get
the benefit of Vim navigation without worrying that you may accidentally edit it.

Open Vim With Vertical and Horizontal Splits

Problem:
You want to open multiple files in Vim with horizontal or vertical splits.

Solution:

Terminal 87

« You can open Vim with multiple vertical splits with vim -0 firstfile.txt secondfile.txt
« You can open Vim with multiple horizontal splits withvim -o firstfile.txt secondfile.txt

You can also open Vim with multiple horizontal windows with vim -on and horizontal windows
with vim -0On, where n is the number of windows.

« To open Vim with 2 horizontal windows, run vim -o2.
« To open Vim with 3 vertical windows, run vim -05.

Generate New Files Programmatically

Problem:
You want to generate new files programmatically in Vim.

Solution:
You can programmatically generate multiple new buffers with vim hello{1..10}.txt.

Passing Text as STDIN to a Command

Problem:
You are given a file from which you need to execute terminal commands from

Solution:
You can utilize Vim to execute terminal commands with :%w !sh. Vim will use the text in the buffer
and pass it as a STDIN.

If you have the following text:

filel.txt
file2.txt
file3.txt

« Run :%s/\v(.+)(\.txt)/mv & \1\.md/g to change each line from “testN.txt” into “mv testN.txt
testN.md”.
« Run :%w !sh to execute the instruction.

This effectively executes mv filel.txt filel.md, mv file2.txt file2.md, and mv file3.txt
file3.md.

Terminal 88

Using the Terminal From Vim

Problem:
Most modern editors have a built-in terminal. You want that too.

Solution:
Vim (8.1 and up) has a terminal-mode that you can access with the :terminal command.

For more, check out :h terminal.txt.

Check Available Vim Features

Problem:
You want to see what features are supported in your current Vim build.

Solution:
You can run vim --version to see what versions are available. Likewise, you can also run :version
from inside Vim.

Visual Mode

Visual Mode Basics

Problem:
You don’t know how to use Vim’s visual mode.

Solution:
Vim’s visual mode is similar to highlights in most text editors (you highlight a body of text, then
you apply changes to the highlighted texts).

There are three different visual modes:

« v - character-wise visual mode
« V - line-wise visual mode
« Ctrl-V block-wise visual mode.

Try them out! Use each of the different visual modes to get a feel. You can use Vim navigation to
expand or contract the highlighted area. To exit the visual mode, press <Esc>.

You can also perform an operation to the highlighted body of text. For example, if you press d while
having a body of text highlighted, that body of text will be deleted.

Insert Text on Multiple Lines

Problem:
You need to insert text on multiple lines.

Solution:
You can insert text on multiple lines with the block-wise visual mode (Ctr1-V).

If you have:

strawberry
chocolate

sugar

Once you’ve highlighted multiple columns with the block-wise visual mode, you can use either I to
insert text before the cursor or A to insert text after the cursor.

Visual Mode 90

« To insert the word “sweet” at the start of each line, use the visual block-wise selection (<Ctr1-v>
and down) to highlight all 3 lines, then type 0Isweet <Esc>.

« To insert the word “donut” at the end of each line, use the visual block-wise selection (<Ctr1-v>
and down) to highlight all 3 lines, then type $A donut<Esc>.

Quickly Reselect the Previous Visual Highlight

Problem:
You need to re-select the last visual highlight.

Solution:
Run gv to visually highlight the previous visual selection.

If you highlight a body of text with either v, v, or Ctr1-v, then you leave the Visual mode, the next
time you press gv, Vim will re-select the same block of text. Use this when you forget to apply an
additional operation to the previously highlighted test.

Expanding Visual Highlight Bidirectionally

Problem:
You need to expand your visual highlight in any direction.

Solution:
Pressing o or 0 while in visual highlight moves the cursor to the other end of the visual highlight.

Suppose that you start highlighting the text below you, then you realize that you also need to
highlight the text above you. If you move up, it will shrink the visual selection. To expand the
highlight to the text above, first change the cursor location.

To change the cursor location, press either o or 0. With your cursor now on the opposite location,
you can now expand to highlight the text above you as well.

Switching to a Different Visual Mode While in a Visual
Mode

Problem:
You're currently in the character-wise visual mode but you need to switch to line-wise visual mode.

Solution:
While in a visual mode, you can switch to a different visual mode by pressing another visual mode
command.

Visual Mode 91

« If you're in the character-wise visual mode (v), pressing line-wise visual mode command (V)
switches it to the line-wise visual mode.

« If you’re in the line-wise visual mode (v), pressing the block-wise visual mode command
(Ctr1-v) switches it to the block-wise visual mode.

« If you’re in the block-wise visual mode (Ctr1-V), pressing the same visual mode command, in
this case block-wise visual mode command (Ctr1-V), will exit the visual mode.

Visually Highlight the Last Search Term

Problem:
You recently searched with /donut and you realized that you needed to jump back to that word and
modify it.

Solution:
Press gn to jump to the next last search term (similar to pressing n after /hello) and automatically
highlights that search term.

Suppose that you have the following text:

one donut
two donut
three donut
four donut

If you had just searched for /donut, if you press gn, Vim will jump to the next “donut” phrase and

do a visual mode highlight.

This is also useful when combined with the dot command (.). Press gn. Vim will highlight the next
“donut”. Then press d to delete it. To delete subsequent donuts, just run n (next match) and .. You
can now repeatn . n . n . etc

Replace Multiple Characters With Visual Selection

Problem:
The replace operator r only replaces one character at a time.

Solution:
When you use r{something} on a visual highlight, Vim will replace all of the highlighted texts at
once.

In markdown, === represents a header. You can quickly generate a header on the following text with
this method:

Visual Mode
My awesome title

 Yank the line with yy.
« Paste it with p.
« Visually highlight the pasted text with v.

« Replace the selection with “=” by running r=.

yypVr=. That’s all you need to create:

My awesome title

92

Vimrc

Quick Access to Vimrc

Problem:
You need to quickly access vimrc.

Solution:
If you edit vimrc often, it can be useful to create a shortcut to go there and another to source it.

I have the following mapping in my vimre:

nnoremap <Leader>vs :source ~/.vimrc<CR>

nnoremap <Leader>ve :vsplit ~/.vimrc<CR>

When I need to open vimre, I just run <Leader>ve. When I want to source my changes, after I save
the vimre, [just run <Leader>vs.

Line Numbers

Problem:
You need a clearer indicator to tell you which line you’re on.

Solution:
Use :set number to display numbers on the left column.

Also, you might want to consider using :set relativenumber to display relative numbers on the
left column. This setting is useful for line operations. You can easily see how far down or up the text
is that you want to delete.

More Helpful Search

Problem:
You need to highlight the word as you’re typing the search phrase.

Solution:
set incsearch sets up incremental search. With this, Vim will highlight the match as you are typing
the search phrase.

Vimrc 94

This is best combined with set hlsearch to highlight all matches.

However, there are times when you don’t want Vim to display highlight. To remove the highlight,
run :noh.

[have this mapping to quickly run noh by pressing <Esc> twice because I use noh often.

nnoremap <Esc><Esc> :noh<return><Esc>.

Smarter Search Case

Problem:
You need Vim to search smarter and ignore case when needed.

Solution:
Use set ignorecase smartcase to do both case insensitive and smartcase search.

« If you search using all lowercase or all uppercase (homogeneous case) letters, Vim will do a
case insensitive search.
« If you mix the case of the search case, Vim will do a case sensitive search.

Given:

hello
HELLO
Hello

+ /hello matches “hello”, “Hello” “HELLO”.
« /Hello matches “Hello”.
« /HELLO matches “HELLO”.

Programmatic Options

Problem:
You need to set some options programmatically.

Solution:
You can use & to set an option in vimrc instead of set. With this, you can use Vimscript expressions
on your options.

Instead of set background=light, you can run let &background = "light".

To set different background values depending on the current time, use:

Vimrc

let &background = strftime("%H") < 10 ? "light" : "dark"

Create a Custom Command

Problem:
You need to create your own : command.

Solution:

You can create a custom command-line command with : command.

The following will create a custom command :GimmeDate.

function MyDate()
echo call("strftime", ["%F"])
endfunction

command GimmeDate call MyDate()

Now when you run :GimmeDate, Vim will run call MyDate().

Conditionally Run Vimrc Settings Based On Directory

Problem:

95

You want to have some options only when you’re doing work and a different set of options on

personal projects.

Solution:

To set your background to dark when you’re on a “Work” directory and to set your background to

light when you’re not on a “Work” directory, add this to your vimre:

let cwd = getcwd()
if cwd =~% "Work"
echom "WORK STUFF"
set background=dark
else
echom "NON WORK STUFF"
set background=light
endif

Vimrc 96

Organize Vimrc With the Fold Syntax

Problem:
Your vimrec is getting too long and too hard to read.

Solution:
The fold syntax can help to organize vimrec.

Vim fold syntax by default uses {{{ and }}}. To activate it, run :set foldmethod=marker. You can
toggle the fold with za.

To automatically setup marker folds for all vim related files including vimre, add this at the start of
your vimrec:

augroup filetype_vim

autocmd!

autocmd FileType vim setlocal foldmethod=marker
augroup END

You can now organize your vimrc based on categories, like:

" Plugins {{{

call plug#*begin('~/.vim/plugged"')
your plugin here

call plug#*end()

"1}

" Setups {{{
set relativenumber number
set ignorecase smartcase

more setup here

"

" Functions {{{

function! SomeUsefulFunction()
dosomething

endfunction

"3

Each time you open vimrec, this is what you’ll see:

Vimre 97

+-- 5 lines: Plugins -------
+-- 5 lines: Setups --------

+-- 5 lines: Functions -----

Run a Specific Configuration Depending On File Type

Problem:
You want to use different options depending on the current file type.

Solution:
Vim allows you to run specific configurations when you’re on a certain file type.

Vim can generally detect the type of the file you're on. To check the file type of the file you're
currently on, run :set ft?.

For example, if you are on test1.py, running :set ft? will return filetype=python.

Vim has a filetype plugin runtime system that lets you run a particular Vim script depending on the
filetype. You can find it inside the .vim directory. It is usually located in the root path.

Inside this .vim directory, create a directory named ftplugin. Inside it, create a file with the name
of the file type you want to have the custom settings. In this case, let’s create two filetype plugin
files, one for python and one for ruby.

~/.vim/ftplugin/python.vim
Inside it:

set background=light

~/.vim/ftplugin/ruby.vim
Inside it:

set background=dark

When I open test.py, Vim has a light background. When I open test.rb, Vim will have a dark
background.

Toggle a Boolean Option

Problem:
You need to quickly toggle any Vim boolean options.

Solution:
You can toggle any Vim boolean option values with ! suffix.

Vimrc 98

Some values like number, relativenumber, wrapscan, etc contain boolean values (set number, set
relativenumber, set wrapscan). Their opposite values are usually prefixed with no: nonumber,

norelativenumber, nowrapscan, etc.

One way to turn off set number is to run set nonumber. A quicker way is to toggle it with set

number!.

By the way, recall that @: can repeat the last command-line command. Since :set number! is just a
command-line command, you can use @: to toggle between Vim boolean options quickly.

Split Vimrc Into Multiple Files

Problem:
Your vimrc got too big and you want to split it into multiple smaller files.

Solution:
You can keep your vimrc small by splitting it into multiple smaller files.

To use this, create a new directory for your vimre files called settings/ (you can name it anything
you want): ~/.vim/settings/.

Suppose that you want to split your vimrc into 4 sections, create these 4 files:

. Third-party plugins (~/.vim/settings/plugins.vim).
« General settings (~/.vim/settings/configs.vim).

 Custom functions (~/.vim/settings/functions.vim).
« Key mappings (~/.vim/settings/mappings.vim).

Inside your main vimre, add:

source $HOME/.vim/settings/plugins.vim
source $HOME/.vim/settings/configs.vim
source $HOME/.vim/settings/functions.vim
source $HOME/.vim/settings/mappings.vim

The key here is to use the : source command. It is similar to import or require in many programming
languages. Inside each of these setting files, add the usual vimrc settings and configs.

Inside ~/.vim/settings/plugins.vim:

Vimrc 99

call plug#*begin('~/.vim/plugged')
Plug 'mattn/emmet-vim'
Plug 'preservim/nerdtree'’

call plug#*end()

Inside ~/.vim/settings/configs.vim:

set nocompatible
set relativenumber

set number
Inside ~/.vim/settings/functions.vim:

function! ToggleNumber ()
if(&relativenumber == 1)
set norelativenumber
else
set relativenumber
endif
endfunc

Inside ~/.vim/settings/mappings.vim:

inoremap jk <esc>
nnoremap <silent> <C-f> :GFiles<CR>

nnoremap <Leader>tn :call ToggleNumber()<CR>

Now your main vimrc is only 4 lines long!

Mapping a New Key

Problem:
You need to create custom mappings.

Solution:
If you find yourself repeatedly performing the same complex task, it is a good indicator that you
should create a new key mapping. There are a number of things that you can map.

The first is the leader key. I like using <Space> as my leader key. You can change the leader key with:

Vimrc 100

let mapleader = "\<space>"
You can also re-map operators and commands. For example, I have these two mappings in my vimre:

nnoremap <silent> <C-f> :GFiles<CR>

nnoremap <Leader>tn :call ToggleNumber()<CR>

The first mapping is a map to fzf.vim plugin’s :GFiles command. The second mapping is a custom
function call (I have a function called ToggleNumber(). By using <C-£>, I am overwriting Vim’s
native Ctrl-F native page scroll feature. If your mapping collides with Vim’s native command, it
will be overwritten.

The command I use to map, nnoremap, is actually composed of three components:

« n represents the normal mode.
« nore means non-recursive.
« map is the map command.

Vim has a mapping for all sorts of modes. The nnoremap means it will work in normal mode.

If I want to create mapping in insert mode, I'll use the i prefix:
inoremap jk <Esc>

This only works in insert mode and not in normal mode.

It is also important to use the non-recursive version (by using nnoremap and inoremap instead of
nmap and imap) because you could accidentally create an infinite loop.

Let’s do an example. The mapping below supposedly moves the cursor to the end of the line, adds a
semi-colon, then go back one WORD.

nmap B A;<Esc>B

So what happens when you press B? Vim adds ; uncontrollably (interrupt with ctr1-c), because
in the mapping, the B in A; <Esc>B doesn’t refer to Vim’s native back-one-WORD action, but itself.
What you actually have is a recursive call of:

A; <esc>A; <esc>A; <esc>A;esc>. ..

What you want is for Vim to use Vim’s native B back-one-WORD action, so you use the non-recursive
map:

Vimrc 101

nnoremap B A;<Esc>B

In general when you’re not sure whether to use nore or not, always use it.

The other map modes are: map (Normal, Visual, Select, and Operator-pending), vmap (Visual and
Select), smap (Select), xmap (Visual), omap (Operator-pending), map! (Insert and Command-line),
Imap (Insert, Command-line, Lang-arg), cmap (Command-line), and tmap (terminal-job). I won’t
cover them in detail. To learn more, check out :h map.txt.

You may find that it is easier to copy someone else’s vimrc. Although that’s fine, I would suggest
building your own vimrc from scratch. Everyone codes differently. Create a set of mappings that
work best for you. Make your vimre yours.

Installing Plugins With Packages

Problem:
You want to install plugins with Vim.

Solution:
Ever since version 8, Vim comes with its own built-in plugin manager called packages.

Vim will check inside a directory named pack inside the . vim directory (~/.vim/pack/). The package
feature supports two loading mechanisms:

« Automatic plugin loading.
« Manual plugin loading.

To load a plugin automatically, you need to put it inside the start/ directory using the following
path:

~/.vim/pack/*/start/

Note the asterisk * means an arbitrary name. You can name it anything you want. In this case, let’s
call it packdemo:

~/.vim/pack/packdemo/start/

You cannot skip the directory between pack/ and start/. If you try to do this, it won’t work. You
must put a directory name between pack/ and start/.

~/.vim/pack/start/

Suppose that you want to install the NERDTree plugin. In the terminal, go all the way to the start/
directory and clone the NERDTree repository there.

Vimrc 102

cd ~/.vim/pack/packdemo/start/
git clone https://github.com/preservim/nerdtree.git

That’s all. Once the library plugin is inside the start/ directory, Vim automatically uses it when
it starts. The next time you start Vim, you can now use the NERDTree commands. You can clone
however many plugin repositories as you need inside this path. To remove a plugin, just remove
that plugin directory from the start/ directory.

To load plugins manually, you need to put it inside the opt/ directory:
~/.vim/pack/*/opt/

Again, the * stands for “any directory name”. You can use the same directory name or a different
one. In this case, let’s use packdemo/ name again.

~/.vim/pack/packdemo/opt/
Now let’s install the killersheep game (requires Vim 8.2).

cd ~/.vim/pack/packdemo/opt/
git clone https://github.com/vim/killersheep.git

Now when you start Vim, the game won’t be available yet. To activate a package in the opt/ directory
manually, run :packaddd {package-name}.

:packadd killersheep

Now run the killership command, :Ki11Kil1Kill. Enjoy!

Installing Plugins With Plugin Managers

Problem:
You need to install plugins without Vim’s packages.

Solution:
There are many Vim plugin manager available out there:

« vim-plug’
« vundle.vim*®

*https://github.com/junegunn/vim-plug
°https://github.com/VundleVim/Vundle.vim

https://github.com/junegunn/vim-plug
https://github.com/VundleVim/Vundle.vim
https://github.com/junegunn/vim-plug
https://github.com/VundleVim/Vundle.vim

Vimrc 103

« vim-pathogen™
+ dein.vim*?
+ ... and many more!

I personally use vim-plug, but most plugin managers are also equally good. Many of them are also
easy to install. Check them out and find the one you like best!

Trigger Action On Certain Event

Problem:
You want to perform a specific action each time a file is saved.

Solution:
Vim has an autocommand that fires when a certain event is triggered, : autocmd.

For example, to set a filetype to awesomefile each time you open an .awesome file extension, add
this in vimrec:

autocmd BufNewFile,BufRead *.awesome set filetype=awesomefile
To automatically generate tags when you’re saving a Python file, run:
autocmd BufWritePost *.py silent !ctags -R .

Autocommand supports myriads of different events. To see what all the events are, check out :h
autocommand-events.

https://github.com/tpope/vim-pathogen
?https://github.com/Shougo/dein.vim

https://github.com/tpope/vim-pathogen
https://github.com/Shougo/dein.vim
https://github.com/tpope/vim-pathogen
https://github.com/Shougo/dein.vim

Window

Splitting Windows Horizontally and Vertically

Problem:
You need to split the current windows.

Solution:

« YoucanuseCtrl-W s or :sp to split the window horizontally. You can also do : sp somefile.txt
to explicitly specify which file to open on the split window.

« YoucanuseCtrl-W v or :vsp to split the window vertically. You can also do : vsp somefile.txt
to explicitly specify which file to open on the split window.

Resizing Windows

Problem:
You need to resize the current window.

Solution:
You can change the window length and width:

« To make the current window longer or shorter, run Ctr1-w + or Ctrl-w -.
« To increase or decrease the current window width, run Ctr1-w > or Ctri-w <.

Alternatively, you can also resize with:

« To set the current window height N, run zN<Enter> (ex: z1@<Enter> to set the window height
to 10). You can also run :resize N to set the height to N (ex: res 10 to set it to 10).

« To set the current window width, run Ctr1-w |. By default, it will set it to the max width. You
can also run :vertical res N where N is the width (ex: :vertical res 10 to set it to 10).

Finally, if you have multiple windows open with different heights and widths, runCtr1l-w = to make
all windows to have equal sizes.

Window 105

Close or Zoom the Current Window

Problem:
You need to quickly close the current window or zoom the current window.

Solution:

« Use Ctrl-W c to close the current window (you can’t close it if it is the last window). You can
also run :close.

« Use Ctr1-w o to “enlarge” the current window and close other open windows. You can also
run :on.

Moving the Cursor to Another Windows

Problem:
You have multiple windows open and you need to move your cursor to a different window.

Solution:
Use Ctrl-W h/j/k/1 to go to the left, down, up, or right window.

You can also Use Ctrl-W w to move to another window. You can pass a count to this command. If
yourun3 Ctrl-W w, Vim will go to the 3rd window.

Open a New Window

Problem:
You need to quickly open a new window.

Solution:

« Use Ctrl-W n or :new to create a new horizontally split buffer.
« Use :vnew to create a new vertically split buffer.

Use Two Windows to Diff Files

Problem:
You need to diff two files from Vim.

Solution:
To create a diff between two files, you can use :diffthis. Here is how to use it:

« First open file.txt in Vim.

Window 106

« Then open another file, file2.txt, in split mode (:vsp file2.txt).
« In the first buffer, run :diffthis.

« In the second buffer, run :diffthis.

 To turn it off, run :diffoff.

Essentially, you need to run the di ffthis command from each window.

	Table of Contents
	First things
	What is this book?
	Some naming conventions
	Where are the Vimscripts?
	Why did you organize this book this way?
	How to read this book?

	Navigation
	Basic Navigations
	Toggle Between Files
	Navigating Parentheses, Brackets, and Braces
	Go to a Different Line
	Same-Line Navigation
	Screen Adjust
	Scroll
	Go to the Last…
	Go to the Filename Under the Cursor
	Go to the Place Where a Text Was Inserted and Enter the Insert Mode

	Search
	Basic Search
	Starting Regex
	Stop Searching After the Last Match
	Show the Search Count
	Moving the Cursor Below or Above the Match
	Moving the Cursor to the End of the Match
	Search for a Character Enclosed in a Collection
	Search for a Keyword at the Start or at the End of the Line
	Search for a Line Containing a Starting, Middle, and Ending Keyword
	Greedy vs Non-Greedy Search Patterns
	Searching for a Keyword Separated by End-of-Line
	Search for Either Or
	Avoid Typing Forward-Slashes
	Marking the Start and End of a Match
	Search for the Nth Occurrence in a Line
	Search for Any Text Surrounded by a Particular Pattern
	Repeat the Last Search
	Force a Case-Sensitive Search
	Optional Search
	Search a Phrase in Multiple Files With Vimgrep
	Adding Matches to an Existing Quickfix List
	Alias for Digits and Words
	More Predefined Characters
	Quickly Search for the Word Under the Cursor
	Finding a File
	Search and Replace in Multiple Files

	Command-Line Mode
	Command Suggestion
	Get the Word Under the Cursor
	Faster Delete
	Are There More Commands?

	File
	Buffers, Windows, Tabs
	Two Different Write Commands With Similar Syntax
	Save a File That Requires a Root Permission
	Time Travel
	Converting the Current File to an HTML
	Open an URL Content
	Save a Partial File
	Show the Buffers List
	Vim Tabs
	Save the Current File in a Different Directory
	Open the Man Page From Vim
	Quitting Vim
	Viewing Recent Files
	Changing Directory
	Executing a Command When Opening a File
	Get the Current File Info
	Count Words
	Delete a File
	More Concise Way to Save and Exit
	Suspend Vim
	Compiling
	Persist Local Configuration
	Saving a Session

	History
	Jumping Around Files Quickly
	Trace Edited Texts
	Search History
	Command-Line History
	Vim Histories

	Insert Mode
	Entering Insert Mode
	Different Ways to Exit Insert Mode
	Paste a Recently Yanked Text
	Performing a Quick Calculation
	Autocompletion
	Executing a Normal Mode Command While in the Insert Mode
	Larger Deletes
	Scrolling While in the Insert Mode
	Insert Special Characters

	Layout
	Indent and Un-indent Lines
	Fix the Indentation of the Entire File
	Redraw the Screen
	Folding Lines
	Cursor Visual Helper

	Macros And Registers
	Macro Basics
	Register Basics
	Closer Look At Vim Registers
	Clear Up a Register
	Output Content From Any Register
	Edit an Existing Macro
	Use the Blackhole Register to Prevent Register Pollution
	See the Content From All Registers
	Execute a Macro Programmatically
	Quickly Append to an Existing Macro
	Quickly Paste From the Numbered Register
	Macro Factory
	Recursive Macro

	Multi-File Operations
	Different Ways to Execute a Command In Multiple Files
	Substitute In Multiple Files
	Execute a Macro in Multiple Files
	Limiting the Files to Operate On
	Creating an Argument List
	Adding to an Argument List

	Numbers
	Quickly Increment or Decrement a Number on a Line
	Incrementing Number By More Than One
	Sequentially Increment Multiple Numbers
	Substitute and Increment Number
	Quickly Generate Incrementing Numbers Anywhere
	Get ASCII Value

	Repeat
	Repeat the Last Command-Line Command
	Repeat the Last Change
	Repeat the Last Substitute
	Repeat the Last Executed Macro
	Repeat the Last External Command

	Sort
	Sorting Lines
	External Sort
	Reverse Sort

	Substitute
	Basic Substitution
	Case Insensitive Match
	Asking For Confirmation Before Substituting
	Group Match In Substitution
	Use Very Magic to Avoid Escaping Special Characters
	Representing the Entire Match
	Using the Group Match to Remove Words
	Reusing the Previous Search Pattern
	Deleting In Substitution Quicker
	Using an Expression in a Substitution
	Removing Trailing Whitespaces
	Add a New Line In Substitution
	Repeat the Last Substitute Command
	Capitalize the First Letter Of Each Word
	Perform a Chain of Substitutes
	Repeat the Last Substitute String
	Repeat the Last Substitution With the Last Search Pattern and the Last Substitute String
	Changing the Delimiter

	Global Command
	Global Command Basics
	Inverse Match
	Prepend or Append On Multiple Lines
	Global Command Within a Range
	Delete Blank and Empty Lines
	Running Global Command Between Matching Patterns
	Condense Multiple Empty Lines
	Reuse the Global Command Search Pattern in the Substitute Command
	The Default Command
	Use Execute to Run Complex Expressions
	Reverse All Lines
	Surround All Digits With Double Quotes
	Changing the Delimiter
	Programmatic Global Command

	Tags
	What Are Tags?
	Setting Up the Tag File
	Tags Navigation
	Selective Jump
	Autocompletion
	Automatic Tag Generation

	Text Generation
	Get a File Content
	Get the Current Date
	Generate Numbers
	Generate IP Addresses
	Generate Random Dice Throw
	Generate Numbers Horizontally
	Transform a Text Into a Numbered List Based On Line Numbers

	Text Manipulation
	How to Speak Vim
	Changing Cases
	Swap Two Characters
	Replace Mode
	Using a Command-Line Command As a Motion to an Operator
	Force Motion
	Persistent Undo
	Undoing In Chunks
	Join Lines
	Using Terminal Commands

	Terminal
	Vi Mode
	Opening Files
	Diffing With Vim
	Running Vim Without Plugins or Vimrc
	Open Files in Vim as a Result of Another Command
	Open Files in Read-Only Mode
	Open Vim With Vertical and Horizontal Splits
	Generate New Files Programmatically
	Passing Text as STDIN to a Command
	Using the Terminal From Vim
	Check Available Vim Features

	Visual Mode
	Visual Mode Basics
	Insert Text on Multiple Lines
	Quickly Reselect the Previous Visual Highlight
	Expanding Visual Highlight Bidirectionally
	Switching to a Different Visual Mode While in a Visual Mode
	Visually Highlight the Last Search Term
	Replace Multiple Characters With Visual Selection

	Vimrc
	Quick Access to Vimrc
	Line Numbers
	More Helpful Search
	Smarter Search Case
	Programmatic Options
	Create a Custom Command
	Conditionally Run Vimrc Settings Based On Directory
	Organize Vimrc With the Fold Syntax
	Run a Specific Configuration Depending On File Type
	Toggle a Boolean Option
	Split Vimrc Into Multiple Files
	Mapping a New Key
	Installing Plugins With Packages
	Installing Plugins With Plugin Managers
	Trigger Action On Certain Event

	Window
	Splitting Windows Horizontally and Vertically
	Resizing Windows
	Close or Zoom the Current Window
	Moving the Cursor to Another Windows
	Open a New Window
	Use Two Windows to Diff Files

