
M A N N I N G

Philipp K. Janert
FOREWORDS BY COLIN D. KELLEY

AND THOMAS WILLIAMS

IN ACTION
Understanding data with graphs

Gnuplot in Action

Gnuplot in Action
Understanding Data with Graphs

PHILIPP K. JANERT

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwick, CT 06830 email: orders@manning.com

©2010 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Nermina Miller, Tom Cirtin
Copyeditor: Benjamin Berg

Manning Publications Co. Proofreader: Katie Tennant
Sound View Court 3B Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Marija Tudor

ISBN 978-1-933988-39-9
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09

The purpose of computing is insight,
not numbers.

—R. W. Hamming

 The purpose of computing is insight,
not pictures.

 —L. N. Trefethen

vii

brief contents
PART 1 BASICS ..1

1 ! Prelude: Understanding data with gnuplot 3
2 ! Essential gnuplot 16

3 ! Working with data 29
4 ! Practical matters 49

PART 2 POLISHING ...65
5 ! Doing it with style 67
6 ! Decorations 90

7 ! All about axes 110

PART 3 ADVANCED GNUPLOT ..131
8 ! Three-dimensional plots 133
9 ! Color 152

10 ! Advanced plotting concepts 175

11 ! Terminals in depth 200
12 ! Macros, scripting, and batch operations 222

PART 4 GRAPHICAL ANALYSIS WITH GNUPLOT243
13 ! Fundamental graphical methods 245

14 ! Techniques of graphical analysis 273
15 ! Coda: Understanding data with graphs 301

ix

contents
foreword xvii
foreword xix
preface xxi
acknowledgments xxiii
about this book xxv

PART 1 BASICS ...1

1 Prelude: Understanding data with gnuplot 3
1.1 A busy weekend 4

Planning a marathon 4 ! Determining the future 6

1.2 What is graphical analysis? 9
Data analysis and visualization concepts 10 ! Why graphical
analysis? 12 ! Limitations of graphical analysis 12

1.3 What is gnuplot? 13
Gnuplot isn’t GNU 13 ! Why gnuplot? 14 ! Limitations 15

1.4 Summary 15

CONTENTSx

2 Essential gnuplot 16
2.1 Simple plots 16

Invoking gnuplot and first plots 17 ! Plotting data from a
file 20 ! Abbreviations and defaults 23

2.2 Saving and exporting 24
Saving and loading commands 25 ! Exporting graphs 25
One-step export script 27

2.3 Summary 28

3 Working with data 29
3.1 Managing large data sets 30

Multiple data sets per file: index 30 ! Records spanning multiple
lines: every 31

3.2 Smoothing and summarizing data 32
Plotting unsorted data files 32 ! Smoothing noisy data 35

3.3 Math with gnuplot 38
Mathematical expressions 38 ! Built-in functions 38
User-defined variables and functions 39 ! Complex numbers 40

3.4 Data transformations 41
Simple data transformations 41 ! Pseudocolumns and the column
function 42

3.5 Plotting functions and data 43
Tricks and warnings 44

3.6 Logarithmic plots 44
How do logarithmic plots work? 44

3.7 Summary 47

4 Practical matters 49
4.1 Managing options 50
4.2 Data files 51

Permissible formats and options 51

4.3 Strings 55
Quotes 55 ! String operations 55 ! String applications 57
Crazy example: plotting the Unix password file 58

4.4 Generating textual output 59
The print command 59 ! The set table option 60

CONTENTS xi

4.5 Interacting with gnuplot 61
Getting help 61 ! Command history 61 ! Hot keys and
mousing 62 ! Reading data interactively 63

4.6 Summary 64

PART 2 POLISHING ..65

5 Doing it with style 67
5.1 Choosing plot styles 68

Inline style directives 68 ! Terminal capabilities 69
Global style directives 70

5.2 Plot styles 70
Core styles 71 ! Box styles 72 ! Styles with errorbars or
ranges 78 ! Filled styles 81 ! Other styles 84

5.3 Customizing styles 85
Custom line styles 86 ! Specifying color 87
Worked example: half-tone shading 87

5.4 Summary 89

6 Decorations 90
6.1 Quick start: minimal context for data 91
6.2 Digression: locations on a graph 92
6.3 Additional graph elements: decorations 94

Common conventions 94 ! Arrows 94 ! Text labels 97
Objects 99

6.4 The graph’s legend or key 100
Turning the key on and off 101 ! Placement 101
Layout 101 ! Explanations 102 ! Appearance 104
Default settings 104

6.5 Worked example: features of a spectrum 104
6.6 Overall appearance 106

Size and aspect ratio 106 ! Borders and margins 108

6.7 Summary 109

7 All about axes 110
7.1 Multiple axes 111

Terminology 111 ! Plotting with two coordinate systems 112
Should you do it? 113

CONTENTSxii

7.2 Selecting plot ranges 115
7.3 Tic marks 116

Major tic marks 116 ! Minor tic marks 117 ! Formatting the
tic labels 118 ! Reading tic labels from file 122
Grid and zero axes 123

7.4 A worked example 123
7.5 Special case: time series 124

Turning numbers into names: months and weekdays 124
General time series: the gory details 127

7.6 Summary 130

PART 3 ADVANCED GNUPLOT131

8 Three-dimensional plots 133
8.1 Basics 135
8.2 Options for surface and contour plots 136

Surface plots 136 ! Contour lines 139

8.3 Coordinate axes and view point 141
Borders 142 ! View point 143

8.4 Plotting data from a file using splot 145
Grid format 146 ! Matrix format 148 ! Smooth surfaces 149

8.5 Summary 151

9 Color 152
9.1 Defining palettes 153

Color spaces: a refresher 153 ! The palette option 154

9.2 Creating colored graphs with palettes 157
The pm3d mode 157 ! The colorbox 158 ! Other ways to use
color 160

9.3 Using color for data representation 161
Thoughts on palette design 162 ! Some sample palettes 165
Words of caution 168

9.4 Case studies 169
A smoothly varying function 169 ! A complex figure 171

9.5 Summary 173

CONTENTS xiii

10 Advanced plotting concepts 175
10.1 Multiplot 176

Regular arrays of graphs with layout 177 ! Graphs within a
graph 179 ! Graphs aligned on a common axis 181

10.2 Higher math and special occasions 183
Parametric plots 183 ! Non-Cartesian coordinates 184
Vector fields 188

10.3 Curve fitting 190
Background 190 ! Using the fit command 191 ! Worked
example 195 ! Should you do it? 197

10.4 Summary 199

11 Terminals in depth 200
11.1 Exporting graphs to file 201
11.2 Common terminal options 202

Size 202 ! Fonts 202 ! Enhanced text mode 202
Miscellaneous appearance options 205 ! Flushing output
channels 205

11.3 Standard graphics file formats 206
Bitmaps 206 ! SVG 208

11.4 Print-quality output 209
PostScript 209 ! Using PostScript plots with LaTeX 211
PDF 217

11.5 Interactive terminals 218
wxt 218 ! x11 219 ! aqua 219 ! windows 219

11.6 Other terminals 220
11.7 Summary 221

12 Macros, scripting, and batch operations 222
12.1 Strings and string macros 223
12.2 Calling other programs from gnuplot 224

Executing a command in a subshell 225 ! Capturing the output of
a subprocess 225 ! Input/output redirection (Unix only) 226
Example: watermarking plots 227

12.3 Calling gnuplot from other programs 228
Batch operations 228 ! Invoking gnuplot from other
programs 229 ! Example: creating a font table 232

CONTENTSxiv

12.4 Slideshows with pause and reread 232
12.5 Configuring your workspace 234

Creating custom hot key bindings 236

12.6 Gnuplot for the web 239
Using Gnuplot as a CGI script 239 ! Using gnuplot as a
subprocess to a CGI script 241

12.7 Summary 241

PART 4 GRAPHICAL ANALYSIS WITH GNUPLOT 243

13 Fundamental graphical methods 245
13.1 Relationships 246

Scatter plots 246 ! Logarithmic scales 252

13.2 Counting statistics 256
Jitter plots and histograms 256 ! Kernel density estimates 258
Cumulative distribution functions 259 ! Consider using median
and percentiles 261

13.3 Ranked data 262
13.4 Multivariate data 264

Parallel coordinate plots 264 ! Multivariate analysis 269
Star plots 270 ! Historical perspective: computer-aided data
analysis 271

13.5 Summary 272

14 Techniques of graphical analysis 273
14.1 The core principle of graphical analysis 274
14.2 Iteration and transformation 275

A case study in iteration: car data 275 ! Making data
comparable: monitoring quantities in a control chart 278 ! Honor
the data: truncation and responsiveness 280

14.3 Changing the appearance to improve perception 284
Banking 284 ! Judging lengths and distances 287
Enhancing quantitative perception 289 ! Plot ranges and the
matter of zero 291 ! A tough problem: the display of changing
compositions 292

CONTENTS xv

14.4 Housekeeping 296
The lifecycle of a graph 296 ! Input data files 296 ! Output
files 298

14.5 Reminders for presentation graphics 298
14.6 Summary 300

15 Coda: Understanding data with graphs 301

appendix A Obtaining, building, and installing gnuplot 303
appendix B Gnuplot reference 309
appendix C Resources 345

index 351

xvii

foreword
Thomas Williams was a CS undergrad and I was an EE/CS undergrad at Villanova Uni-
versity. The EE department had just built a VLSI design lab and we were both immedi-
ately drawn to it. The campus had two existing computer labs, both depressing. They
were crammed into dingy basements filled with rows of VT100 terminals and the acrid
smell of burnt coffee. By contrast, the new VLSI lab was on the top floor of the engi-
neering building in a room with high ceilings and plenty of light. Better still, it had a
brand-new Pyramid minicomputer—right there in its own air conditioned room—
that ran Unix. The lab had a dozen AED color displays and a huge HP plotter. Dr. Rich-
ard Perry ran the lab and was happy to let us hack away as much as we wanted.
Together we got a UUCP link that dialed out nightly to Princeton. We got sendmail
and a news reader running. After a few months, the administrators discovered that the
phone bill had skyrocketed due to nightly long distance calls to New Jersey! But we
had Villanova on the Arpanet.

 I’d been taking classes in electromagnetism and signal processing and really
wanted to visualize the equations. Tom had a similar need to visualize differential
equations. There were no reasonable tools on campus to do so. At home I had an
early PC clone with a bootlegged copy of Lotus 123 that could graph data, but graph-
ing a simple equation was a clumsy process to first fill a spreadsheet with data points
and then plot them. And Lotus 123 was never going to work with the HP plotter or
AED terminals we had right there. In the fall of 1986, I suggested to Tom that we write
the program we really wanted. He agreed. We settled on calling it gnuplot as a pun on
a lame program at school that predated ours called “newplot.” It wasn’t until a month

FOREWORDxviii

later that we read Richard Stallman’s Gnu Manifesto. That resonated with us and
matched our thinking perfectly. The common name was simply a lucky coincidence.

 Fortran and Pascal were the prevailing languages taught in school then, but nei-
ther was portable. C was clearly a better fit and Unix was the right OS to start with.
Tom focused on writing the equation parser and P-code evaluator while I focused on
the command-line processor and graphics drivers. The command-line approach was
patterned after Vax/VMS and chosen out of necessity; there were no portable GUIs
then and, besides, we wanted to be able to use dumb terminals to drive the plotters
and printers we had nearby. Within a month we had the basics working. After that we
started porting to every machine we could find with a C compiler: VMS, MS-DOS, and
several flavors of Unix.

 By the fall of 1987, we published gnuplot as open source to newsgroups like
sci.math. We were surprised by the response we got! Notes of thanks and encourage-
ment came in from all around the world. More importantly, we received bug fixes and
patches to make gnuplot more portable to add support for many more terminals and
devices. We folded those in while adding features and fixing bugs ourselves.

 Tom and I both graduated in 1987 and didn’t look at gnuplot much after that. But
it took on a life of its own thanks to the dedicated contributions of others, and now it’s
tremendously more powerful than when we left it. People have continued to add fea-
tures to it, and now there is this book, Gnuplot in Action, to serve as guide to all that
gnuplot has to offer. What a great testament to the benefits of open source!

 —COLIN D. KELLEY

CTO, RingRevenue, Inc.
Original Gnuplot Author

xix

foreword
I smiled when I learned that there would be a book about gnuplot. It had been a long
time since Colin and I were busy compiling new builds, which at the time needed to
be cut up into little “packages” to fit on the relatively new USENET. And a long time
since we heard from the early customers. To be honest, back then, we were pretty sur-
prised at the actual volume of reactions and the diversity of uses people were finding
for it. It made us really happy to realize that universities, researchers, economists, hos-
pitals, and various companies around the world were using it. For me, it was a bell-
wether for the future power of the Internet and open source software. I still
remember when the “University of Free Estonia” sent us an email just days before the
Baltic States had officially announced their independence. And I remember tracking
when we’d been deployed in every inhabited continent (with active websites in Czech,
French, German, Indonesian, Japanese, Portuguese, Slovak, Italian, and more). And
now this new book, Gnuplot in Action, is finally available to help those people starting
out with gnuplot or those stepping up to do more complicated things!

 There are a few fundamental beliefs I’d like readers to understand about gnuplot.
From the beginning, it had to be fun, with no learning curve to create your first few
plots. It had to be free and stay free. It had to be easily available and reliable. We wrote
it to run on every type of computer, every display, every printer we could get our
hands on. But of course we didn’t have everything on hand and new devices launched
all the time. So there was a requirement for gnuplot to be modifiable, so that one
group of users or developers could write new features simply and have the results

FOREWORDxx

included in subsequent versions. Ultimately, gnuplot of today owes most of its success
to the many volunteers who consistently contribute ideas and time to the develop-
ment of the project. The result, hopefully, is a product powerful enough to create
graphs which convey exactly the information their authors intended.

 Enjoy!
—THOMAS “THAW” WILLIAMS

Google
Original Gnuplot Author

xxi

preface
I have been using gnuplot for 15 years, and it’s an indispensable part of my toolset:
one of the handful of programs I can’t do without.

 Initially, I used gnuplot as part of my academic research work as a theoretical con-
densed matter physicist. But much later, when I joined Amazon.com, I found myself
using gnuplot again, this time to analyze the movement of workers in Amazon’s gar-
gantuan warehouses and the distribution of packages to customers. Later yet, I found
gnuplot helpful when analyzing web traffic patterns for the Walt Disney Company.

 I find gnuplot indispensable because it lets me see data, and do so in an easy,
uncomplicated manner. Using gnuplot, I can draw and redraw graphs and look at
data in different ways. I can generate images of data sets containing millions of points,
and I can script gnuplot to create graphs for me automatically.

 These things matter. In one of my assignments, I was able to discover highly rele-
vant information because I was able to generate literally hundreds of graphs. Putting all
of them on a web page next to each other revealed blatant similarities (and differ-
ences) between different data sets—a fact that had never before been noticed, not
least because everybody else was using tools (mostly Excel) that would only allow
graphs to be created one at a time.

 While at Amazon, I discovered something else: data is no longer confined to the
science lab. In a modern corporation, data is everywhere. Any reasonably sophisticated
organization is constantly collecting data: sales numbers, web traffic, inventory, turn-
over, database performance, supply chain details, you name it. Naturally, there’s a con-
tinuous and ever-increasing demand to make use of this data to improve the business.

PREFACExxii

 What this means is that data analysis is no longer a specialist’s job—everybody has
a need for it, even if only to monitor one’s own metrics or performance indicators.
This isn’t a bad thing. The way inputs influence outputs is often not obvious, and plac-
ing decisions on a firmer, more rational footing is reasonable.

 But what I also found at Amazon and elsewhere is that the people doing the data
analysis often don’t have the right toolset, both in terms of actual software tools and in
regard to methods and techniques.

 In many ways, my experience in the corporate world has been an influence while
writing this book. I believe that graphical methods—which are accessible to anyone,
regardless of mathematical or statistical training—are an excellent way to understand
data and derive value from it (much better and more powerful than a five-day statistics
class, and much more flexible and creative than a standard Six-Sigma program).

 And I believe that gnuplot is a very good tool to use for this purpose. Its learning
curve is flat—you can pick up the basics in an hour. It requires no programming skills.
It handles a variety of input formats. It’s fast and it’s interactive. It’s mature. It’s also
free and open source.

 Gnuplot has always been popular with scientists all over—I hope to convince you
that it can be useful to a much larger audience. Business analysts, operations manag-
ers, database and data warehouse administrators, programmers: anybody who wants to
understand data with graphs.

 I’d like to show you how to do it.

xxiii

acknowledgments
Several data repositories on the web were helpful, either because of the data sets avail-
able there or merely as a source of inspiration. Among the most helpful were

! The data set collection and the Data and Story Library (DASL) at StatLib
(http://lib.stat.cmu.edu)

! The UCI Machine Learning Repository at UC Irvine (http://www.ics.uci.edu/
~mlearn/MLRepository.html)

! R. J. Hyndman’s Time Series Data Library (http://www-personal.buseco.
monash.edu.au/~hyndman/TSDL)

! The Exploring Data site at Central Queensland University (http://exploring-
data.cqu.edu.au)

Wherever specific data sets have been used, detailed attribution is given in the text.
 Two resources I relied on more than on any other: the excellent collection of the

University of Washington libraries (Seattle), and the amazingly comprehensive store
of information available at Wikipedia.

 Writing a book is a long process, much more involved than writing a collection of
independent papers of equal length. One of the lessons I learned during the prepara-
tion of this book is this: even if you know that writing a book will take longer than you
expect, it still takes longer than you expect!

 Handling projects of such nature takes true dedication and courage. I would like
to express special appreciation to Marjan Bace and his team at Manning publications
for taking this project on and guiding it to completion.

ACKNOWLEDGMENTSxxiv

 I’d like to thank the original gnuplot authors Colin Kelley and Thomas Williams
for sharing their reminiscences about the early history of gnuplot. I also would like to
thank Professor Nick Trefethen for giving me permission to use his maxim 22 as
motto for this book. It can’t be said any better.

 While writing this book, I enjoyed conversations or correspondence with Nick
Chase, Austin King, and Richard Kreckel. Professor Ethan Merritt answered many of
my questions about gnuplot internals and has been very helpful in a variety of ways.

 Many readers pointed out errors in the manuscript, or provided thoughtful com-
ments and helpful suggestions. Reviewers who took time out of their busy schedules to
read the manuscript at different stages in its development and to provide invaluable
feedback included Mark Pruett, Nishant Sastry, Dawid Weiss, Hans-Bernhard Bröker,
Petr Mikulík, Bas Vodde, Daniel Sebald, Maxim Belushkin, and Scott White. Mitchell
Johnson painstakingly verified the correctness of all gnuplot commands in the text.
I’m grateful for the care and effort everyone expended on behalf of this project.

 Special thanks go to PAUL Schrader (Bremen).
 Finally, this book is about an open source project and has been written using tools

from other open source projects: I’d like to mention iceWM, tcsh, XEmacs, Perl, and
of course gnuplot itself. I’m indebted to their creators, maintainers, and contribu-
tors—without their efforts this book wouldn’t exist.

 My final thoughts go to Angela, who got me started and kept me going. Without
her, nothing would be much worth doing.

xxv

about this book
This book is intended to be a comprehensive introduction to gnuplot: from the basics
to the power features and beyond. Besides providing a tutorial on gnuplot itself, it
demonstrates how to apply and use gnuplot to extract insight from data.

 The gnuplot program has always had complete and detailed reference documenta-
tion, but what was missing was a continuous presentation that tied all the different bits
and pieces of gnuplot together and demonstrated how to use them to achieve certain
tasks. This book attempts to fill that gap.

 The book should also serve as a handy reference for more advanced gnuplot users,
and as an introduction to graphical ways of knowledge discovery.

 And finally, this book tries to show you how to use gnuplot to achieve surprisingly
nifty effects that will make everyone say, “How did you do that?”

Contents of this book

This book is divided into four parts.
 The first part provides a tutorial introduction to gnuplot and some of the things

you can do with it. If you’re new to gnuplot, start here. Even if you already know gnu-
plot, I suggest you at least skim the chapters in this part: you might pick up a few new
tricks. (For example, did you know that you can use gnuplot to plot the Unix pass-
word file? No? Thought so.)

 The second part is about polishing and describes the ways that we can influence the
appearance of a plot: by using different styles (chapter 5); using labels, arrows, and
other decorations (chapter 6); and by changing the axes and the overall appearance

ABOUT THIS BOOKxxvi

of a graph (chapter 7). The material in these chapters has the character of a refer-
ence—this is the place to look up some detail when you need it.

 In part 3, we move on to more advanced concepts. Here’s where we talk about fun
topics such as color (chapter 9) and three-dimensional plots (chapter 8). Chapter 10
introduces more specialized topics, such as plots-within-a-plot, polar coordinates, and
curve fitting. In chapter 11 we’ll talk about gnuplot terminals and ways to export our
work to common file formats, and chapter 12 is about ways to use gnuplot in conjunc-
tion with, or instead of, a programming language.

 In the last part, I’ll take gnuplot for granted, and focus instead on the things you
can do with it. In chapter 13 I’ll present fundamental types of graphs and discuss
when and how to use them. I’ll also show you how to generate such graphs with gnu-
plot. In the remaining two chapters, I focus on the discovery and analysis process
itself, and describe some techniques that I’ve found helpful.

 There are three appendixes. Appendix A describes how to obtain and install gnu-
plot if you don’t already have it. It also contains some pointers in case you want to
build gnuplot from source.

 Appendix B is a command and options reference, grouped by topic, not alphabet-
ically. So if you know that you want to change the appearance of the tic labels, but
you’ve forgotten which option to use, this appendix should point you in the right
direction quickly.

 In appendix C, I list some additional resources (books and web sites) that you
might find helpful. I also give a brief overview of a few tools that are comparable to
gnuplot.

 I’ve tried to be comprehensive in my coverage of gnuplot’s features, with two
exceptions. I don’t cover obsolete or redundant features. I also don’t discuss features
that would only be of interest to a very limited group of users: all material in this book
should (at least potentially) be useful to all readers, no matter what their situation.
Where appropriate, I refer to the standard gnuplot reference documentation for
details not discussed here.

 As far as the examples are concerned, I’ve tried to present fresh or at least unfa-
miliar data sets. This means you won’t find a plot of the Challenger O-Ring data here,
nor Napoleon’s march, nor Playfair’s charts regarding trade with the West Indies.
(The one classic I would’ve liked to include is Anscombe’s Quartet, but I couldn’t
find a suitable context in which to present it. If you’ve never seen it before, go and
look it up yourself.)

How to read this book

This book presents a continuing narrative, and the material is arranged as if the
reader were going to read the book sequentially, cover to cover.

 But I know that most people reach for a piece of documentation when they need
to “get something done, now!” Therefore, I tried to make this book as diveable as possi-
ble: once you’ve mastered the essential gnuplot basics, you should be able to open this

ABOUT THIS BOOK xxvii

book on any chapter that’s relevant to your current task and start reading, without loss
of continuity.

 While the chapters are conceived as largely independent of each other, each chap-
ter presents a continuous, progressive exposition, which is best read in order, and
from start to finish. The nature of the topic demands that concepts need to be intro-
duced early in a chapter and not brought to completion until the end, after necessary
circumstantial material has been introduced.

 My advice to you is that you should feel free to pick any chapter you’re interested
in, but that you should attempt to read each chapter in its entirety, end-to-end, to get
the maximum out of this book. I know that the temptation is great to just read a rele-
vant figure caption and then to take it from there, but I’d advise you against that. Gnu-
plot has many odd quirks, and many useful little tricks as well, which you will not learn
about by just skimming the headlines and the captions. I tried to keep the chapters
short—try to take them in as a whole.

 One caveat: gnuplot is very connected, and explaining one feature often requires
knowledge of some other feature. The most proper way to introduce gnuplot would
have been to follow a strict bottom-up approach: first, introduce string handling and
number formats, followed by the syntax for option management and styles, and finally,
in the last chapter, bring it all together by talking about the plot command. This
would’ve been easy to write, perfectly organized—and excruciatingly boring to read!

 I take a different approach: explain the most common use early, and leave more
exotic variants and applications of commands for later. The price we have to pay is an
increased number of forward references. This is an In Action book: I want to get you
going quickly, without burdening you with unnecessary details early on.

Intended audience

This book was written with two groups of people in mind: those who already know
gnuplot, and those who don’t.

 If you already know gnuplot, I hope that you’ll still find it a useful reference, in
particular in regard to some of the more advanced topics in the second half of this
book. I’ve tried to provide the big-picture explanations and the examples that have
always been missing from the standard gnuplot reference documentation.

 If you’re new to gnuplot, I think you’ll find it easy enough to pick up—in fact, I
can promise you that by the end of chapter 2 you’ll be productive with gnuplot, and
by the end of chapter 3 you’ll be well equipped for most day-to-day data graphing
tasks that may come your way. A flat learning curve was one of the design objectives of
the original gnuplot authors, and the ease with which you can get started is one of the
great strengths of gnuplot today.

 This book doesn’t require a strong background in mathematical methods, and
none at all in statistics: anybody with some college level (or just high-school) math
should be able to read this book without difficulty. (Some familiarity with basic calcu-
lus is advantageous, but by no means required.)

ABOUT THIS BOOKxxviii

 This book should be accessible and helpful to anybody who tries to understand
data. This includes scientists and engineers—in other words the kinds of people
who’ve always been using gnuplot. If this describes you, I think you’ll find this book a
helpful reference and handbook for gnuplot.

 But I think this book will also be helpful to readers who don’t have a primary back-
ground in analytical methods, yet need to deal with data as part of their jobs: business
analysts, technical managers, software engineers. If this is your situation, you may find
the discussions on graphical methods in part 4 particularly helpful.

Conventions

I spell the name of the program in all lowercase, except at the beginning of a sen-
tence, when I capitalize normally. This is in accordance with the usage recommended
in the gnuplot FAQ.

 The gnuplot documentation is extensive and I refer to it occasionally, for addi-
tional detail on topics covered briefly or not at all here. Traditionally, the gnuplot doc-
umentation has been called the online help or online documentation, owing to the fact
that it’s available “online” during a gnuplot session. But since the advent of the Inter-
net, the word online seems to suggest network connectivity—falsely in this context. To
avoid confusion, I’ll always refer to the standard gnuplot reference documentation instead.

 Gnuplot commands are shown using a typewriter font, like this: plot sin(x). Sin-
gle command lines can get long; to make them fit on a page, I occasionally had to
break them across multiple lines. If so, a gray arrow (") has been placed at the begin-
ning of the next line, to indicate that it is the continuation of the previous one:

plot "data" using 1:2 smooth csplines title "data" with lines,

" sin(x) title "model"

The break in the original line is not indicated separately. When using gnuplot in an
interactive session, your terminal program should wrap a line that is too long automat-
ically. Alternatively, you can break lines by escaping the newline with a backslash as
usual. This is useful in command files for batch processing, but you don’t want to do
this during an interactive session, since it messes with the command history feature.

 Gnuplot has a large number of options, and keeping all of them, and their subop-
tions and optional parameters, straight is a major theme running through this book.
Throughout the text, and in the reference appendix B, you’ll find summaries of gnu-
plot commands and their options and suboptions.

 Within these summaries, I use a few syntactic conventions. My intent is to stay close
to the usage familiar from the standard gnuplot reference documentation, but also to
follow more general conventions (such as those used for Unix man pages):

[...] # Square brackets for optional parts
[|] # Vertical bars to separate alternatives
{ ... } # Curly braces for user-supplied input

For parameters supplied by the user, it’s not always clear from the context what kind of
information the command expects: is it a string or a number? If it’s a number, is it an

ABOUT THIS BOOK xxix

index into some array or a numerical factor? And so on. I’ve tried to clarify this situa-
tion by prefixing each user-supplied input parameter with a type indicator, terminated
by a colon. I summarize the prefixes and their meanings in table 1.

Many gnuplot options and directives
have abbreviated forms, some of which I
use frequently in the latter parts of the
book. Table 2 lists both the abbreviated
and the full forms. Also keep in mind
that an empty filename inside the plot
command uses the most recently named
file in the same command line again.!

Hardware and software requirements

This book describes version 4.2.x of gnu-
plot, which was initially released in
March 2007. The most current bug-fix
release at the time of this writing is ver-
sion 4.2.5, released in March 2009.

 After being stagnant for a long time,
gnuplot development has picked up
again in the last few years, so that things
have changed significantly since gnuplot
version 3.7. I won’t explain obsolete or
deprecated features, and only make cur-
sory remarks (if that) regarding back-
ward compatibility.

 Some installations and distributions still use gnuplot 4.0 (or older). Not all examples
in this book will work with version 4.0 of gnuplot or earlier. If this is your situation, you

Table 1 Type indicators for user-supplied parameters

Prefix Description

str: A string

int: An integer number

flt: A floating-point number

idx: An integer number, which is interpreted as index into an existing array

clr: A color specification—for example, rgbcolor "red" or rgb "#FFFF00"

pos: A pair of coordinates, comma separated, optionally containing coordinate system
specifiers—for example, 0,0 or first 1.1, screen 0.9

enum: A gnuplot keyword as unquoted string

Table 2 Abbreviations for the frequently used
directives to the plot command and for the most
important options

Abbreviation Full

i index

ev every

u using

s smooth

s acs smooth acsplines

t title

w l with lines

w linesp or w lp with linespoints

w p with points

set t set terminal

set o set output

set logsc set logscale

ABOUT THIS BOOKxxx

should upgrade, either by installing a precompiled binary of version 4.2, or by compil-
ing gnuplot from source. Appendix A tells you how to do it.

 The current development version is gnuplot 4.3, which will be released eventually
as minor gnuplot release 4.4 (or potentially as major 5.0 release). Except for some fea-
tures that I’ve worked on myself (such as the smooth cumul and smooth kdens fea-
tures I’ll introduce in chapter 14), I won’t have much to say about upcoming features
in the next gnuplot release.

 I assume you have access to a reasonably modern computer (not older than five
years or so), running any flavor of Unix/Linux, a recent release of MS Windows, or
Mac OS X. Although gnuplot has been ported to many other platforms in the past,
most of them are by now obsolete, and I won’t talk about them in this book.

About the author
My education is in physics, and I’ve worked as technology consultant, software engi-
neer, technical lead, and project manager, for small startups and in large corporate
environments, both in the U.S. and overseas.

 I first started using gnuplot when I was a graduate student, and it has become an
indispensable part of my toolbox: one of the handful of programs I can’t do without.
Recently, I’ve also started to contribute a few features to the gnuplot development
version.

 I provide consulting services specializing in corporate metrics, business intelli-
gence, data analysis, and mathematical modeling through my company, Principal
Value, LLC (www.principal-value.com). I also teach classes on software design and data
analysis at the University of Washington.

 I hold a Ph.D. in theoretical physics from the University of Washington.

Author online
Purchase of Gnuplot in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/GnuplotinAction.
This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum. It also provides
links to the source code for the examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the Author Online remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

ABOUT THIS BOOK xxxi

About the title
By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive sci-
ence, the things people remember are things they discover during self-motivated
exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play, and,
interestingly, retelling of what is being learned. People understand and remember
new things, which is to say they master them, only after actively exploring them.
Humans learn in action. An essential part of an In Action guide is that it’s example-
driven. It encourages the reader to try things out, to play with new code, and explore
new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want just when they want it.
They need books that aid them in action. The books in this series are designed for
such readers.

About the cover illustration
The figure on the cover of Gnuplot in Action is captioned “A peer of France.” The title
of Peer of France was held by the highest-ranking members of the French nobility. It
was an extraordinary honor granted only to few dukes, counts, and princes of the
church. The illustration is taken from a 19th-century edition of Sylvain Maréchal’s
four-volume compendium of regional dress customs published in France. Each illus-
tration is finely drawn and colored by hand.

 The rich variety of Maréchal’s collection reminds us vividly of how culturally apart
the world’s towns and regions were just 200 years ago. Isolated from each other, people
spoke different dialects and languages. In the streets or in the countryside, it was easy
to identify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life-certainly for a more varied and fast-paced technologi-
cal life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

Part 1

Basics

Gnuplot is a tool for visualizing data and analyzing it using graphical
methods. This first part provides an introduction to all those features of gnuplot
that you are going to need on a daily basis.

 Chapter 1 introduces gnuplot and describes the kinds of problems it is
designed to solve. I also define some important terms and provide a brief over-
view of gnuplot’s history.

 Chapter 2 is a quick start tutorial on gnuplot—you will learn everything to
become productive with gnuplot right here.

 Chapter 3 goes into more depth on the way gnuplot handles data. We will
talk about file handling, data transformations, and math.

 Chapter 4 discusses a variety of practical matters, from string handling to
gnuplot’s help feature.

3

Prelude: Understanding
data with gnuplot

Gnuplot is probably the most widely used open source program for plotting and
visualizing data. In this book, I want to show you how to use gnuplot to make plots
and graphs of your data: both quick and easy graphs for your own use and highly
polished graphs for presentations and publications.

 But I also want to show you something else: how to solve data analysis problems
using graphical methods. The art of discovering relationships in data and extract-
ing information from it by visual means is called graphical analysis and I believe gnu-
plot to be an excellent tool for it.

 As a teaser, let’s take a look at some problems and how we might be able to
approach them using graphical methods. The graphs here and in the rest of the
book (with very few exceptions) have been, of course, generated with gnuplot.

This chapter covers
! Warm-up examples
! What is graphical analysis?
! What is gnuplot?

4 CHAPTER 1 Prelude: Understanding data with gnuplot

1.1 A busy weekend
To get a feeling for the kinds of problems that we may be dealing with, and for the
kinds of solutions that gnuplot can help us find, let’s look at two examples. Both take
place during a long and busy weekend.

1.1.1 Planning a marathon

Imagine you’re in charge of organizing the local city marathon. There will be more
than 2,000 starters, traffic closed around the city, plenty of spectators—and a major
Finish Line Festival to celebrate the victors and help the wounded. The big question
is: when should the Finish Line crew be ready to deal with the majority of runners? At
what point do we expect the big influx of the masses?

 You still have the results from last year’s event. Assuming that the starters haven’t
improved dramatically over the last year (probably a safe assumption), you do a
quick average on the completion times and find that last year’s average was 172 min-
utes. To be on the safe side, you calculate the standard deviation as well, which
comes out to about 15 minutes. So you tell your crew to be ready for the big rush
starting two and a half hours (150 minutes) after the start, and feel reasonably well
prepared for the event.

 So it comes as a surprise when on the big day, plenty of runners start showing up on
the finish line after only 130 minutes—a good 20 minutes earlier than the expected
onset of the rush. In terms of event management, being off by 20 or 30 minutes isn’t
catastrophic, yet it is a bit strange. The next day you wonder: what went wrong?

 Let’s look at the data to see what we can learn about it. So far, all we know of it is
the mean and the standard deviation.

 The mean is convenient: it is easy to calculate and it summarizes the entire data set
in a single number. But in forming the mean, we lost a lot of information. To under-
stand the whole data set, we have to look at it. And since we can’t understand data by
looking at more than 2,000 individual finish times, this means we’ll have to plot it.

 It will be convenient to group the runners by completion time and to count the
number of participants that completed during each full minute. The resulting file
might start like this:

Minutes Runners
133 1
134 7
135 1
136 4
137 3
138 3
141 7
142 24
...

Now we plot the number of runners against the completion (see figure 1.1).

5A busy weekend

It is immediately obvious where we went wrong: the data is bimodal, meaning it has
two peaks. There is an early peak at around 150 minutes, and a later main peak at
180 minutes.

 Actually, this makes sense: a major sporting event such as a city marathon attracts
two very different groups of people: athletes, who train and compete throughout the
year and are in it to win, and a much larger group of amateurs, who come out once a
year for a big event and are mostly there to participate.

 The problem is that for such data, the mean and standard deviation are obviously
bad representations—so much so that at the time when we expected the big rush
(170 minutes), there’s actually a bit of a lull at the finish line!

 The take-home message here is that it is usually not a good idea to rely on sum-
mary statistics (such as the mean) for unknown data sets. We always should investigate
what the data looks like. Once we’ve confirmed the basic shape, we can choose how to
summarize our findings best.

 And of course, there is always more to learn. In this example, for instance, we see
that after about 200 minutes, almost everybody has made it, and we can start winding
down the operation. The actual “tail” of the distribution is quite small—actually, a bit
surprisingly so (I would’ve expected to see a greater number of stragglers, but possi-
bly many runners who are really slow drop out of the race when they realize they’ll
place badly).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 120 140 160 180 200 220 240

Figure 1.1 Number of finishers versus time to complete (in minutes)

6 CHAPTER 1 Prelude: Understanding data with gnuplot

USING GNUPLOT

Let’s look at the gnuplot command that was used to generate figure 1.1. Gnuplot is
command-line–oriented: after you start gnuplot, it drops you into an interactive com-
mand session, and all commands are typed at the interactive gnuplot prompt.

 Gnuplot reads data from simple text files, with the data arranged in columns as
shown previously. To plot a data file takes only a single command, plot, like this:1

plot "marathon" using 1:2 with boxes

The plot command requires the name of the data file as argument in quotes. The rest
of the command line specifies which columns to use for the plot, and in which way to
represent the data. The using 1:2 declaration tells gnuplot to use the first and sec-
ond column in the file called marathon. The final part of the command, with boxes,
selects a box style, which is often suitable to display counts of events.

 Gnuplot handles most everything else by itself: it sizes the graph and selects the
most interesting plot range, it draws the border, and it draws the tic marks and their
labels. All these details can be customized, but gnuplot typically does a good job at
anticipating what the user wants.

1.1.2 Determining the future

The same weekend when 2,000 runners are running through the city, a diligent grad-
uate student is working on his research topic. He studies diffusion limited aggregation
(DLA), a process wherein a particle performs a random walk until it comes in contact
with a growing cluster of particles. At the moment of contact, the particle sticks to the
cluster at the location where the contact occurred and becomes part of the cluster.
Now, a new random walker is released to perform a random walk, until it sticks to the
cluster. And so on.

 Clusters grown through this process have a remarkably open, tenuous structure
(as in figure 1.2). DLA clusters are fractals, but rather little is known about them with
certainty.2

 The DLA process is very simple, so it seems straightforward to write a computer
program to grow such clusters in a computer, and this is what our busy graduate stu-
dent has done. Initially, all seems well, but as the simulation progresses, the cluster
seems to grow more and more slowly. Excruciatingly slowly, in fact. The goal was to
grow a DLA cluster of N=100,000 particles. Will the program ever finish?

 Luckily, the simulation program periodically writes information about its progress
to a log file: for each new particle added to the cluster, the time (in seconds) since the
start of the simulation is recorded. We should be able to predict the completion time

1 Depending on your gnuplot setup and initialization, your graphs may look slightly different than the figures
shown in this chapter. We’ll discuss user-defined appearance options starting in chapter 5.

2 The original paper on DLA was “Diffusion Limited Aggregation, A Kinetic Critical Phenomenon” by T. A. Wit-
ten and L. M. Sander, and appeared in Physical Review Letters Vol. 41, p. 1400 in 1981. It is one of the most
quoted papers from that journal of all time. If you want to learn more about DLA and similar processes, check
out Fractals, Scaling, and Growth Far From Equilibrium by Paul Meakin (1998).

7A busy weekend

from this data, but an initial plot (figure 1.3) is just not very helpful; there are too
many ways that this curve can be extrapolated to larger cluster sizes.

 The time consumed by many computer algorithms grows as a simple power of the
size of the problem. In our case, this would be the number N of particles in the cluster
T ~ Nk, for some value of k. Our research student therefore plots the running time of

Figure 1.2 A DLA cluster of N=30,000
particles, drawn with gnuplot

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5000 10000 15000 20000 25000 30000

R
un

 T
im

e
[s

ec
]

Cluster Size

Figure 1.3 Time required to grow a DLA cluster

8 CHAPTER 1 Prelude: Understanding data with gnuplot

his simulation program on a double logarithmic plot versus the cluster size (see
figure 1.4). The data points fall on a straight line, indicating a power law. (I’ll explain
later how and why this works.) Through a little trial and error, he also finds an equa-
tion that approximates the data quite well. The equation can be extended to any clus-
ter size desired and will give the time required. For N=100,000 (which was the original
goal), we can read off T=300,000 seconds (or more), corresponding to 83 hours or
four days, so we can tell our friend that there is no point in spending the weekend in
the lab—he should go out (maybe run a marathon), and come back on Monday. Or
perhaps work on a better algorithm. (For simulations of DLA cluster growth, dramatic
speedups over the naive implementation are possible. Try it if you like.)
USING GNUPLOT

Again, let’s see how the graphs in this section were created. The easiest to understand
is figure 1.3. Given a file containing two columns, one listing the cluster size and the
other listing the completion time, the command is simply

plot "runtime" using 1:2 with lines

The only difference compared to figure 1.1 is the style: rather than boxes, I use line
segments to connect consecutive data points: with lines.

 Did you notice that figure 1.3 and figure 1.4 contain more than just data? Both
axes are now labelled! Details such as labels and other helpful decorations often make
the difference between a mediocre and a high-quality graph, because they provide the
observer with the necessary context to fully understand the graph.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1000 10000 100000

R
un

 T
im

e
[s

ec
]

Cluster Size

data
model

Figure 1.4 Time required to grow a DLA cluster in a double-logarithmic plot,
together with an approximate mathematical model

9What is graphical analysis?

 In gnuplot, all details of a graph’s appearance are handled by setting the appropri-
ate options. To place the labels on the x and y axes in figure 1.3, I used

set xlabel "Cluster Size"
set ylabel "Run Time [sec]"

Figure 1.4 is drawn using double-logarithmic axes. This is another option, which is set
as follows:

set logscale

Figure 1.4 shows two curves: the data together with a best “fit.” Plotting several data
sets or mathematical functions together in one plot is easy: we just list them one after
another on the command line for the plot command:

plot "runtime" using 1:2 title "data" with lines,
" 1.2*(x/1000)**2.7 title "model"

This command introduces a further gnuplot feature: the title directive. It takes a
string as argument, which will be displayed together with a line sample in the plot’s
key or legend (visible in the upper left of figure 1.4).

 Finally, we come to figure 1.2. That’s a somewhat different beast. You’ll notice that
the border and the tic marks are missing. The aspect ratio (the ratio of the graph’s
width to its height) has been constrained to 1, and a single dot has been placed at the
position of each particle in the cluster. Here are the most important commands that I
used:

unset border
unset xtics
unset ytics

set size square

plot "cluster" using 1:2 with dots

You see that gnuplot is really simple to use. In the next section, I’d like to talk more
about using graphical methods to understand a data set, before coming back to gnu-
plot and discussing why it is my favorite tool for this kind of activity.

1.2 What is graphical analysis?
These two examples should have given you an idea of what graphical analysis is and
how it works. The basic steps are always the same:

1 Plot the data.
2 Inspect it, trying to find some recognizable behavior.
3 Compare the actual data to data that represents the hypothesis from the previ-

ous step (as we did in the second example earlier, when we plotted running
time of the simulation program together with a power-law function).

4 Repeat.

10 CHAPTER 1 Prelude: Understanding data with gnuplot

We may try more sophisticated things, but this is the basic idea. If the hypothesis in
the second step seems reasonably justified, we’ll often try and remove its effect, for
instance by subtracting a formula from the data, to see whether there is any recogniz-
able pattern in the residual. And so on.

 Iteration is a crucial aspect of graphical analysis: plotting the data this way and that
way; comparing it to mathematical functions or to other data sets; zooming in on
interesting regions or zooming out to detect the overall trend; applying logarithms or
other data transformations to change its shape; using a smoothing algorithm to tame
a noisy data set; and so on. During an intense analysis session using a new but promis-
ing data set, it’s not uncommon to produce literally dozens of graphs.

 None of these graphs will be around for long. They’re transient, persisting just
long enough for us to form a new hypothesis, which we’ll try to justify in the next
graph we draw. This also means that these graphs won’t be “polished” in any way, since
they’re the graphical equivalent to scratch paper: notes of work in progress, not
intended for anyone but ourselves.

 This isn’t to say that polishing doesn’t have its place. But it comes later in the pro-
cess: once we know what the results of our analysis are, we need to communicate them
to others. At this point, we’ll create “permanent” graphs, which will be around for a
long time—maybe until the next departmental presentation, or (if the graph will be
part of a scientific publication, for instance) possibly forever!

 Such permanent graphs have different requirements: other people must be able to
understand them, possibly years later, and most likely without us there to explain them.
Therefore, graph elements such as labels, captions, and other contextual information
become very important. Presentation graphs must be able to stand by themselves.

 Presentation graphs also should make their point clearly. Now that we know the
results of our analysis, we should find the clearest and most easily understood way
of presenting our findings. A presentation graph should make one point and make
it well.

 Finally, some would argue that a presentation graph should “look good.” Maybe. If
it makes its point well, there is no reason why it shouldn’t be visually pleasing as well.
But that is an afterthought. Even a presentation graph is about the content, not the
packaging.

1.2.1 Data analysis and visualization concepts

Data analysis and visualization is a broad field. Besides different graphical approaches,
there are of course also other methods, which may do entirely without visual help. I
think it will help to introduce and distinguish a number of terms and concepts for dif-
ferent activities in data analysis. At times, the boundaries between these different con-
cepts may be fuzzy, but I think the overall distinctions are clear.

Graphical analysis Graphical analysis is an investigation of data using graphical
methods. The purpose is the discovery of new information about the underlying data
set. In graphical analysis, the proper question to ask is often not known from the out-
set, but is discovered as part of the analysis process.

11What is graphical analysis?

Presentation graphics In contrast to graphical analysis, presentation graphics is con-
cerned with communicating information and results that are already understood. The
discovery has been made; now it merely needs to be communicated clearly.

Control charts I use the term control chart somewhat loosely for situations where we
already know the questions to ask of the data (as in the case of presentation graphics),
but where the primary audience for the graph isn’t the public, but the people who
created the data themselves. Besides classical control charts (for example in quality
engineering), many plots of experimental data fall into this category, because the
question is determined at the outset and the graph is drawn to extract specific infor-
mation to answer it.

Reality representation What graphical analysis, presentation graphics, and control
charts have in common is that they are “digital”: some aspect of reality has been mea-
sured and translated into numbers, and it is these numbers that are plotted (tempera-
ture, stock price, electric field strength, response time... whatever).

 Reality representation, by contrast, tries to construct an image that is in some form
analogous to the system under consideration. A regular topographic map is a simple
form of reality representation. More complex computer-assisted methods include
three-dimensional solid body imaging, many ray-tracing systems, most immersive vir-
tual reality methods, and many network flow or relationship-connectivity visualization
systems.

 Data analysis using reality representation is a large, amorphous, and highly experi-
mental field.

Image analysis Image analysis takes a two- or (rarely) three-dimensional image of
the system under investigation and tries to detect significant structure in this image,
often using color variations to indicate changes in value—think medical imaging.
Image analysis may either be highly automated (using signal-processing methods) or
be done visually. In the latter case, it shares aspects with graphical analysis.

Statistical analysis This is the classical definition of data analysis. Statistical analysis
typically tries to characterize a data set by calculating some mathematical quantity
(such as the mean, the median, or the standard deviation) from the data. Statistical
analysis gives a quantitative answer to a known, well-posed question.

 Statistical analysis works great if we know what questions to ask of the data, and if
we want to perform essentially similar analyses repeatedly (for instance, after varying
some control parameter in a prescribed fashion). But it’s not applicable if the ques-
tions to ask are yet unknown. And it can be misleading even otherwise, as our mara-
thon example has shown: statistical analysis always makes some (silent) assumptions
about the data that may not be fulfilled in practice. These challenges are well-known
in the statistical community.

Exploratory data analysis Exploratory (or initial) data analysis (EDA or IDA) is a
term sometimes used in the statistical literature to describe the initial examination of
data to determine its basic characteristics. Graphs typically play a large role. What

12 CHAPTER 1 Prelude: Understanding data with gnuplot

makes it different from graphical analysis is that it is only seen as precursor to a “real”
formal statistical analysis.

1.2.2 Why graphical analysis?

Graphical analysis is a discovery tool. We can use it to reveal as-yet unknown informa-
tion in data. In comparison to statistical methods, it helps us discover new and possibly
quite unexpected behavior.

 Moreover, it helps us develop an intuitive understanding of the data and the infor-
mation it contains. Since it doesn’t require particular math skills, it is accessible to any-
one with an interest and a certain amount of intuition.

 Even if rigorous model building is our ultimate goal, graphical methods still need
to be the first step, so that we can develop a sense for the data, its behavior, and qual-
ity. Knowing this, we can then select the most appropriate formal methods.

1.2.3 Limitations of graphical analysis

Of course, graphical analysis has limitations and its own share of problems.

! Graphical analysis doesn’t scale. Graphical analysis is a manual process that can’t
easily be automated. Each data set is treated as a separate special case, which
isn’t feasible if there are thousands of data sets.

But this problem is sometimes more apparent than real. It can be remarkably
effective to generate a large number of graphs and browse them without study-
ing each one in great depth. It’s totally possible to scan a few hundred graphs
visually, and doing so may already lead to a high-level hypothesis regarding the
classification of the graphs into a few subgroups, which can then be investigated
in detail. (Thank goodness gnuplot is scriptable, so that preparing a few hun-
dred graphs poses no problem.)

! Graphical analysis yields qualitative, not quantitative results. Whether you regard
this as a strength or a weakness depends on your situation. If you’re looking for
new behavior, graphical analysis is your friend. If you’re trying to determine the
percentage by which a new fertilizer treatment increases crop production, sta-
tistical analysis is the way to go.

! It takes skill and experience. Graphical analysis is a creative process, using induc-
tive logic to move from observations to hypothesis. There is no prescribed set of
steps to move from a data set to conclusions about the underlying phenomena,
and not much that can be taught in a conventional, classroom format.

But by the same token, it does not require formal training, either. Ingenu-
ity, intuition, and curiosity are the most important character traits. Everyone
can play this game, if they’re interested in finding out what the data tries to
tell them.

13What is gnuplot?

1.3 What is gnuplot?
Gnuplot is a program for exploring data graphically. Its purpose is to generate plots
and graphs from data or functions. It can produce highly polished graphs, suitable for
publication, and simple throw-away graphs, when we’re merely playing with an idea.

 Gnuplot is command-line–driven: you issue commands at a prompt, and gnuplot
will redraw the current plot in response. Gnuplot is also interactive: the output is gen-
erated and displayed immediately in an output window. Although gnuplot can be
used as a background process in batch-mode, typical use is highly interactive. On the
other hand, its primary user interaction is through a command language, not through
a point-and-click GUI interface.

 Don’t let the notion of a command language throw you: gnuplot is easy to use—
really easy to use! It takes only one line to read and plot a data file, and most of the
command syntax is straightforward and quite intuitive. Gnuplot does not require pro-
gramming or any deeper understanding of its command syntax to get started.

 So this is the fundamental workflow of all work with gnuplot: plot, examine,
repeat—until you have found out whatever you wanted to learn from the data. Gnu-
plot supports the iterative process model required for exploratory work perfectly.

1.3.1 Gnuplot isn’t GNU

To dispel one common confusion right away: gnuplot isn’t GNU software, has nothing
to do with the GNU project, and isn’t released under the GNU Public License (GPL).
Gnuplot is released under a permissive open source license.

 Gnuplot has been around a long time—a very long time! It was started by Thomas
Williams and Colin Kelley in 1986. On the gnuplot FAQ, Thomas has this to say about
how gnuplot was started and why it is named the way it is:

I was taking a differential equation class and Colin was taking Electromagnetics, we both
thought it’d be helpful to visualize the mathematics behind them. We were both working as
sys admin for an EE VLSI lab, so we had the graphics terminals and the time to do some
coding. The posting was better received than we expected, and prompted us to add some,
albeit lame, support for file data.

Any reference to GNUplot is incorrect. The real name of the program is “gnuplot.” You
see people use “Gnuplot” quite a bit because many of us have an aversion to starting a
sentence with a lower case letter, even in the case of proper nouns and titles. gnuplot is not
related to the GNU project or the FSF in any but the most peripheral sense. Our software was
designed completely independently and the name “gnuplot” was actually a compromise. I
wanted to call it “llamaplot” and Colin wanted to call it “nplot.” We agreed that “newplot”
was acceptable but, we then discovered that there was an absolutely ghastly pascal program
of that name that the Computer Science Dept. occasionally used. I decided that “gnuplot”
would make a nice pun and after a fashion Colin agreed.

14 CHAPTER 1 Prelude: Understanding data with gnuplot

For a long time (about 10 years), the stable major version of gnuplot was version 3.7.x,
until version 4.0.0 was released in 2004. As part of the 4.x release, gnuplot has
acquired a number of useful new features, including

! Palette-mapped color mode (pm3d), which makes it possible to choose colors
for plots from continuous, user-defined color gradients (palettes).

! Much better text-handling capabilities, including the ability to read text from a
file and use text as a plot style, support for common string functions, and
“enhanced” text mode, allowing the use of formatting commands and special
characters in gnuplot graphs.

! New plot styles: filled curves and boxes, histograms, and vectors.
! Improved output handling, including an entirely new interactive terminal

based on the wxt widget set using the Cairo and Pango graphics and font librar-
ies, resulting in a dramatically improved visual appearance over previous inter-
active gnuplot terminals. There are also many marginal improvements to other
terminals, including a unified treatment of common pixmap file formats (GIF,
PNG, JPG) using libgd.

The current release of gnuplot is version 4.2.5 (released in March, 2009). Gnuplot
continues to be actively developed—if you’d like to contribute, subscribe to the devel-
opers’ mailing list: gnuplot-beta@lists.sourceforge.net.

1.3.2 Why gnuplot?

I have already mentioned the most important reasons why I like gnuplot: easy to learn,
easy to use, excellent support for iterative, exploratory use, yet nevertheless scriptable
for bulk or offline processing, able to produce publication-quality graphs.

 Here are some other reasons why I believe gnuplot is a good tool for many situa-
tions. Gnuplot is

! Stable, mature, and actively maintained.
! Free and open source.
! Available on all three platforms currently in use: Linux/Unix, Windows,

Mac OS X.
! Able to generate polished, publication-quality graphs, and offering detailed

control over the final appearance of plots.
! Supporting all common graphics formats (and quite a few less common ones).
! Able to read regular text files as input, and is tolerant regarding the specifics of

the input file format. (No need for the data to be in some special archive file
format!)

! Capable of handling large data sets (easily many millions of data points)
and fast.

! Modest in its resource consumption.

15Summary

1.3.3 Limitations

It is important to remember that gnuplot is a data-plotting tool, nothing more, noth-
ing less. In particular, it is neither a numeric or symbolic workbench, nor a statistics
package. It can therefore only perform rather simple calculations on the data. On the
other hand, it has a flat learning curve, requiring no programming knowledge and
only the most basic math skills.

 Gnuplot is also no drawing tool. All its graphs are depictions of some data set. It
has only very limited support for arbitrary box-and-line diagrams, and none at all for
free-hand graphics.

 Finally, gnuplot makes no attempt at what I earlier called “reality representation.”
It is a tool for quantitative analysis, and therefore its bread and butter are dot and line
plots. It has no support for three-dimensional solid body imaging, ray-tracing, fisheye
functionality, and similar techniques.

 Overall, though, I regard these limitations more as strengths in disguise: in the
Unix tradition, gnuplot is a rather simple tool, doing (mostly) one thing, and doing it
very, very well.

1.4 Summary
In this chapter, I showed you a couple of examples that demonstrate the power of
graphical methods for understanding data. I have also tried to suggest a suitable
method for dealing with data analysis problems. Start with a plot of the data and use it
to identify the essential features of the data set. Then iterate the process to bring out
the behavior you’re most interested in. And finally (not always, but often) develop a
mathematical description for the data, which can then be used to make predictions
(which, by their nature, go beyond the information contained in the actual data set).

 Our tool in doing this kind of analysis will be gnuplot. And it is gnuplot, and how
to use it, that we’ll turn to next. Once we have developed the skills to use gnuplot well,
we’ll return to graphical analysis and discuss useful techniques for extracting the most
information possible from a data set, using graphs.

16

Essential gnuplot

In this chapter, we introduce gnuplot’s most important features: generating plots,
saving them to a file, and exporting graphs to common graphics file formats. In the
next chapter, we’ll talk about data transformations and the organization of data
sets. By the end of the next chapter, you’ll know most of the commands you’ll use
on a day-to-day basis.

 Are you surprised that a couple of chapters are sufficient to get us this far? Con-
gratulations, you just discovered why gnuplot is cool: it makes easy things easy, and
hard things possible. This chapter and the next cover the easy parts; as to the hard
parts... well, that’s what the rest of this book is all about.

2.1 Simple plots
Since gnuplot is a plotting program, it should come as no surprise that the most
important gnuplot command is plot. It can be used to plot both functions (such as

This chapter covers
! Invoking gnuplot
! Plotting functions and data
! Saving and exporting

17Simple plots

sin(x)) and data (typically from a file). The plot command has a variety of options
and subcommands, through which we can control the appearance of the graph as well
as the interpretation of the data in the file. The plot command can even perform
arbitrary transformations on the data as we plot it.

2.1.1 Invoking gnuplot and first plots

Gnuplot is a text-based plotting program: we interact with it through command-line-like
syntax, as opposed to manipulating graphs using the mouse in a WYSIWYG fashion.
Gnuplot is also interactive: it provides a prompt at which we type our commands. When
we enter a complete command, the resulting graph immediately pops up in a separate
window. This is in contrast to a graphics programming language (such as PIC), where
writing the command, generating the graph, and viewing the result are separate activ-
ities, requiring separate tools. Gnuplot has a history feature, making it easy to recall,
modify, and reissue previous commands. The entire setup encourages you to play with
the data: making a simple plot, changing some parameters to hone in on the interest-
ing sections, eventually adding decorations and labels for final presentation, and in
the end exporting the finished graph in a standard graphics format.

 If gnuplot is installed on your system, it can usually be invoked by issuing the
command:

gnuplot

at the shell prompt. (Check appendix A for instructions on obtaining and installing
gnuplot, if your system doesn’t have it already.) Once launched, gnuplot displays a
welcome message and then replaces the shell prompt with a gnuplot> prompt. Any-
thing entered at this prompt will be interpreted as gnuplot commands until you issue
an exit or quit command, or type an end-of-file (EOF) character, usually by hitting
Control-D.

 Probably the simplest plotting command we can issue is

plot sin(x)

(Here and in the following, the gnuplot> prompt is suppressed to save space. Any
code shown should be understood as having been entered at the gnuplot prompt,
unless otherwise stated.)

 On Unix running a graphical user interface (X11), this command opens a new
window with the resulting graph, looking something like figure 2.1.

 Please note how gnuplot has selected a “reasonable” range for the x values auto-
matically (by default from -10 to +10) and adjusted the y range according to the values
of the function.

 Let’s say we want to add some more functions to plot together with the sine. We
recall the last command (using the up-arrow key or Control-P for “previous”) and edit
it to give

plot sin(x), x, x-(x**3)/6

18 CHAPTER 2 Essential gnuplot

This will plot the sine together with the linear function x and the third-order polyno-
mial x - 1/6 x3, which are the first few terms in the Taylor expansion of the sine.1 (Gnu-
plot’s syntax for mathematical expressions is straightforward and similar to the one
found in almost any other programming language. Note the ** exponentiation opera-
tor, familiar from Fortran or Perl. Appendix B has a table of all available operators
and their precedences.) The resulting plot (see figure 2.2) is probably not what we
expected.

 The range of y values is far too large, compared to the previous graph. We can’t
even see the wiggles of the original function (the sine wave) at all anymore. Gnuplot
adjusts the y range to fit in all function values, but for our plot, we’re only interested
in points with small y values. So, we recall the last command again (using the up-arrow
key) and define the plot range that we are interested in:

plot [][-2:2] sin(x), x, x-(x**3)/6

The range is given in square brackets immediately after the plot command. The first
pair of brackets defines the range of x values (we leave it empty, since we’re happy
with the defaults in this case); the second restricts the range of y values shown. This
results in the graph shown in figure 2.3.

1 A Taylor expansion is a local approximation of an arbitrary, possibly quite complicated, function in terms of
powers of x. We won’t need this concept in the rest of this book. Check your favorite calculus book if you want
to know more.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

sin(x)

Figure 2.1 Our first plot: plot sin(x)

19Simple plots

We can play much longer with function plots, zoning in on different regions of inter-
est and trying out different functions (check the reference section in appendix B for a
full list of available functions and operators), but instead let’s move on and discuss
what gnuplot is most useful for: plotting data from a file.

-200

-150

-100

-50

 0

 50

 100

 150

 200

-10 -5 0 5 10

sin(x)
x

x-(x**3)/6

Figure 2.2 An unsuitable default plot range: plot sin(x), x, x-(x**3)/6

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-10 -5 0 5 10

sin(x)
x

x-(x**3)/6

Figure 2.3 Using explicit plot ranges: plot [][-2:2] sin(x), x, x-(x**3)/6

20 CHAPTER 2 Essential gnuplot

2.1.2 Plotting data from a file

Gnuplot reads data from text files. The data is expected to be numerical and to be
stored in the file in whitespace-separated columns. Lines beginning with a hashmark (#)
are considered to be comment lines and are ignored. Listing 2.1 shows a typical data
file containing the share prices of two fictitious companies, with the equally fictitious
ticker symbols PQR and XYZ, over a number of years.

Average PQR and XYZ stock price (in dollars per share) per calendar year
1975 49 162
1976 52 144
1977 67 140
1978 53 122
1979 67 125
1980 46 117
1981 60 116
1982 50 113
1983 66 96
1984 70 101
1985 91 93
1986 133 92
1987 127 95
1988 136 79
1989 154 78
1990 127 85
1991 147 71
1992 146 54
1993 133 51
1994 144 49
1995 158 43

The canonical way to think about this is that the x value is in column 1 and the y value
is in column 2. If there are additional y values corresponding to each x value, they are
listed in subsequent columns. (We’ll see later that there’s nothing special about the
first column. In fact, any column can be plotted along either the x or the y axis.)

 This format, simple as it is, has proven to be extremely useful—so much so that
long-time gnuplot users usually generate data in this way to begin with. In particular,
the ability to keep related data sets in the same file is a big help (so that we don’t
need to keep PQR’s stock price in a separate file from XYZ’s, although we could if we
wanted to).

 While whitespace-separated numerical data is what gnuplot expects natively,
recent versions of gnuplot can parse and interpret significant deviations from this
norm, including text columns (with embedded whitespace if enclosed in double
quotes), missing data, and a variety of textual representations for calendar dates, as
well as binary data (see chapter 4 for a more detailed discussion of input file formats,
and chapter 7 for the special case when one of the columns represents date/time
information).

Listing 2.1 A typical data file: stock prices over time

21Simple plots

 Plotting data from a file is simple. Assuming that the file shown in listing 2.1 is
called prices, we can simply type

plot "prices"

Since data files typically contain many different data sets, we’ll usually want to select
the columns to be used as x and y values. This is done through the using directive to
the plot command:

plot "prices" using 1:2

This will plot the price of PQR shares as a function of time: the first argument to the
using directive specifies the column in the input file to be plotted along the horizon-
tal (x) axis, while the second argument specifies the column for the vertical (y) axis. If
we want to plot the price of XYZ shares in the same plot, we can do so easily (as in fig-
ure 2.4):

plot "prices" using 1:2, "prices" using 1:3

By default, data points from a file are plotted using unconnected symbols. Often this
isn’t what we want, so we need to tell gnuplot what style to use for the data. This is
done using the with directive. Many different styles are available. Among the most
useful ones are with linespoints, which plots each data point as a symbol and also
connects subsequent points, and with lines, which just plots the connecting lines,
omitting the individual symbols.

plot "prices" using 1:2 with lines,
" "prices" using 1:3 with linespoints

 40

 60

 80

 100

 120

 140

 160

 180

 1975 1980 1985 1990 1995

"prices" u 1:2
"prices" u 1:3

Figure 2.4 Plotting from a file: plot "prices" using 1:2, "prices" using 1:3

22 CHAPTER 2 Essential gnuplot

This looks good, but it’s not clear from the graph which line is which. Gnuplot auto-
matically provides a key, which shows a sample of the line or symbol type used for each
data set together with a text description, but the default description isn’t very mean-
ingful in our case. We can do much better by including a title for each data set as
part of the plot command:

plot "prices" using 1:2 title "PQR" with lines,
" "prices" using 1:3 title "XYZ" with linespoints

This changes the text in the key to the string given as the title (figure 2.5). The title
has to come after the using directive in the plot command. A good way to memorize
this order is to remember that we must specify the data set to plot first and provide the
description second: define it first, then describe what you defined.

 Want to see how PQR’s price correlates with XYZ’s? No problem; just plot one
against the other, using PQR’s share price for x values and XYZ’s for y values, like so:

plot "prices" using 2:3 with points

We see here that there’s nothing special about the first column. Any column can be
plotted against either the x or the y axis; we just pick whichever combination we need
through the using directive. Since it makes no sense to connect the data points in the
last plot, we’ve chosen the style with points, which just plots a symbol for each data
point, but no connecting lines (figure 2.6).

 40

 60

 80

 100

 120

 140

 160

 180

 1975 1980 1985 1990 1995

PQR
XYZ

Figure 2.5 Introducing styles and the title keyword: plot "prices" using
1:2 title "PQR" with lines, "prices" using 1:3 title "XYZ" with
linespoints

23Simple plots

A graph like figure 2.6 is known as a scatter plot and can show correlations between two
data sets. In this graph, we can see a clear negative correlation: the better PQR is
doing, the worse XYZ’s stock price develops. We’ll revisit scatter plots and their uses
later in chapter 13.

 Now that we’ve seen the most important, basic commands, let’s step back for a
moment and quickly introduce some creature comforts that gnuplot provides to the
more experienced user.

2.1.3 Abbreviations and defaults

Gnuplot is very good at encouraging iterative, exploratory data analysis. Whenever we
complete a command, the resulting graph is shown immediately and all changes take
effect at once. Writing commands isn’t a different activity from generating graphs,
and there’s no need for a separate viewer program. (Graphs are also created almost
instantaneously; only for data sets including millions of points is there any noticeable
delay.) Previous commands can be recalled, modified, and reissued, making it easy to
keep playing with the data.

 There are two more features which gnuplot offers to the more proficient user:
abbreviations and sensible defaults.

 Any command and subcommand or option can be abbreviated to the shortest,
nonambiguous form. So the command

plot "prices" using 1:2 with lines,
" "prices" using 1:3 with linespoints

 40

 60

 80

 100

 120

 140

 160

 180

 40 60 80 100 120 140 160

"prices" u 2:3

Figure 2.6 Any column can be used for either x or y axis: plot "prices"
using 2:3 with points

24 CHAPTER 2 Essential gnuplot

would much more likely have been issued as

plot "prices" u 1:2 w l, "prices" u 1:3 w lp

This compact style is very useful when doing interactive work and should be mastered.
From here on, I’ll increasingly start using it. (A list of the most frequently used abbre-
viations can be found in table 2 in the section on conventions in the front of the book.)

 But this is still not the most compact form possible. Whenever a part of the com-
mand isn’t given explicitly, gnuplot first tries to interpolate the missing values with val-
ues the user has provided, and, failing that, falls back to sensible defaults. We’ve
already seen how gnuplot defaults the range of x values to [-10:10], but adjusts the y
range to include all data points.

 Whenever a filename is missing, the most recent filename is interpolated. We can
use this to abbreviate the last command even further:

plot "prices" u 1:2 w l, "" u 1:3 w lp

Note that the second set of quotation marks must be there.
 In general, any user input (or part of user input) will remain unaffected until

explicitly overridden by subsequent input. The way the filename is interpolated in the
preceding example is a good example for this behavior. In later chapters, we’ll see
how options can be built up step by step, by subsequently providing values for differ-
ent suboptions. Gnuplot helps to keep commands short by remembering previous
commands as much as possible.

 One last example concerns the using directive. If it’s missing entirely and the data
file contains multiple columns, gnuplot plots the second column versus the first (this
is equivalent to using 1:2). If a using directive is given, but lists only a single column,
gnuplot will use this column for y values and provide x values as integers starting at
zero. This is also what happens when no using is given and the data file contains only
a single column.

 Let’s close this section with a general comment regarding the syntax of gnuplot
commands. Gnuplot syntax is mostly positional, not keyword oriented. This makes for
compact commands, since the meaning of an abbreviation can be inferred from the
position within the command. The price to pay is that occasionally subcommands that
are expected earlier in the command need to be specified, even if we do not want to
change their default settings. In this case, they are left blank. We’ve encountered this
in the way empty brackets for the x range have to be supplied, even if we only want to
change the y range, or in the way empty quotes indicate that the previous filename
should be used again.

2.2 Saving and exporting
There are two ways to save our work in gnuplot: we can save the gnuplot commands
used to generate a plot, so that we can regenerate the plot at a later time. Or we can
export the actual graph to a file in one of a variety of supported graphics file formats,
so that we can print it or include it in web pages, text documents, or presentations.

25Saving and exporting

2.2.1 Saving and loading commands

If we save the commands that we used to generate a plot to file, we can later load them
again and in this way regenerate the plot where we left off. Gnuplot commands can be
saved to a file simply using the save command:

save "graph.gp"

This will save the current values of all options, as well as the most recent plot com-
mand, to the specified file. This file can later be loaded again using the load command:

load "graph.gp"

The effect of loading a file is the same as issuing all the contained commands (includ-
ing the actual plot command) at the gnuplot prompt.

 An alternative to load is the call command, which is similar to load, but also takes
up to 10 additional parameters after the filename to load. The parameters are avail-
able inside the loaded file in the variables $0 through $9. Strings are passed without
their enclosing quotes, and the special variable $# holds the number of parameters to
call. We can use call to write some simple scripts for gnuplot.

 Command files are plain text files, usually containing exactly one command per
line. Several commands can be combined on a single line by separating them with a
semicolon (;). The hashmark (#) is interpreted as a comment character: the rest of
the line following a hashmark is ignored. The hashmark isn’t interpreted as a com-
ment character when it appears inside quoted strings.

 The recommended file extension for gnuplot command files is .gp, but you may
also find people using .plt instead.

 Since command files are plain text files, they can be edited using a regular text edi-
tor. It’s sometimes useful to author them manually and load them into gnuplot, for
instance to set up preferences or to imitate a limited macro capability (we’ll give an
example later in the chapter).

 We’ll discuss command files in more detail in chapter 12 on batch operations and
user configurations.

2.2.2 Exporting graphs

As we’ve just seen, saving a set of plotting commands to a file is very simple. Unfortu-
nately, exporting a graph in a file format suitable for printing is more complicated. It’s
not actually difficult, but unnecessarily cumbersome and prone to errors of omission.
In this section, we’ll first look at the steps required to export a printable graph from
gnuplot; then we’ll discuss the ways this process can go wrong. Finally, I’ll show you a
simple script that takes most of the pain out of the experience.

 For any graph we want to generate (using gnuplot or anything else), we need to
specify two things: the format of the graph (GIF, JPG, PNG, and so on) and the output
device (either a file or the screen). In gnuplot, we do this using the set command:

set terminal png # choose the file format
set output "mygraph.png" # choose the output device

26 CHAPTER 2 Essential gnuplot

We’ll discuss the set command in much more detail in chapter 4. For now, it’s enough
to understand that it sets a parameter (such as terminal) to a value. However, and this
is often forgotten, it does not generate a plot! The only commands to do so are plot,
splot (which is used for three-dimensional graphs, which we’ll discuss in chapter 8),
and replot (which simply repeats the most recent plot or splot command).

 So, with this in mind, the complete sequence to export a graph from gnuplot and
to resume working is shown in listing 2.2.

plot exp(-x**2) # some plot command
set terminal png # select the file format
set output "graph.png" # specify the output filename
replot # repeat the most recent plot command,

with the output now going to the
specified file.

set terminal x11 # restore the terminal settings
set output # send output to the screen again,

by using an empty filename.

This example demonstrates an important point: after exporting to a file, gnuplot does
not automatically revert back to interactive mode—instead, all further output will be
directed to the specified file. Therefore, we need to explicitly restore the interactive
terminal (x11 in this example) and the output device. (The command set output
without an argument sends all output to the interactive device, usually the screen.)
This should come as no surprise. As we’ve seen before, gnuplot remembers any previ-
ous settings, and so neither the terminal nor the output setting change until we
explicitly assign them a different value.

 Nevertheless, this behavior is rather different than what we’ve come to expect from
user interfaces in most programs: we usually do not have to restore the interactive ses-
sion explicitly after exporting to a file. It’s also unexpected that three separate com-
mands are required to generate a file (set terminal, set output, and replot),
making it easy to forget one.

 It’s helpful to understand the technical and historical background for this particu-
lar design. Gnuplot was designed to be portable across many platforms, at a time (late
1980s!) when graphic capabilities were much less dependable than today. In fact, it
wasn’t even safe to assume that the computer had an interactive graphics terminal at
all (only an attached hardware plotter, for example). So all graphics generation was
encapsulated into the terminal abstraction. And since it wasn’t safe to assume that
every installation would have a graphics-capable interactive terminal as well as a plot-
ter or a file-based output device, the same terminal abstraction was used for both the
interactive session as well as the printable export, requiring you to switch between dif-
ferent modes in a way that seems so cumbersome today.

 Nevertheless, what we really want most of the time is a simple export routine,
which takes the name of a file to export to, as well as the desired file format, and does
all the required steps in one fell swoop. In the next section, I show you how to build
one yourself.

Listing 2.2 The complete workflow to generate a PNG file from gnuplot

27Saving and exporting

2.2.3 One-step export script

The multistep process we just described to generate printable graphics from gnuplot
is clearly a nuisance. Luckily, we can use the call command introduced earlier to
bundle all required steps into one handy macro.

 The call command executes all commands in a single file. Therefore, we can put
all commands required to generate (for example) a PNG file and to restore the gnu-
plot session back to its original state into a command file, which we can then invoke
through a single call command. And because call can take arguments, we can even
pass the name of the desired output file as part of the same command.

 If the commands shown in listing 2.3 are placed into a file, this file can be exe-
cuted using call and will write the most recent plot to a PNG file and restore the ini-
tial session to its original state.

set terminal push # save the current terminal settings
set terminal png # change terminal to PNG
set output "$0" # set the output filename to the first option
replot # repeat the most recent plot command
set output # restore output to interactive mode
set terminal pop # restore the terminal

Here we’ve used the two pseudoterminals push and pop to help with the back-and-forth
between the interactive and file terminals. The former (push) saves the current termi-
nal settings onto a stack; the latter (pop) restores the terminal to the state saved on the
stack. Neither makes any assumptions about the choice of interactive terminal, and
therefore both can safely be used in scripts that must be portable across architectures.

 Assuming the file shown in listing 2.3 was named export.gp in the current direc-
tory, we would call it like this, to write the current plot to a file called graph.png:

call "export.gp" "graph.png"

Here, both arguments are quoted. Quoting the second argument isn’t strictly neces-
sary, but highly recommended to avoid unexpected parsing of the output filename.
The quotes are stripped before the argument is made available to the command file in
the $0 variable.

 Before leaving this section, one last word of advice: always save the commands used
to generate a plot to a command file before exporting to a printable format. Always. It’s
almost guaranteed that you’ll want to regenerate the plot to make a minor modifica-
tion (such as fixing the typo in a label, or adding one more data set, or adjusting the
plot range slightly) at a later time. This can only be done from the commands saved to
file using save, not from plots exported to a graphics file. In chapter 11, section 11.1,
I’ll give an improved version of the export script which does both at the same time—
that’s how I generate all of my graphs.

Listing 2.3 A useful script to export the current plot to file

28 CHAPTER 2 Essential gnuplot

2.3 Summary
In this chapter, we learned how to do the most important things with gnuplot: plot-
ting, saving, and exporting. In detail, we discussed

! How to plot functions or data with the plot command: plot sin(x)
! How to restrict the plot range using bracket notation: plot [0:5] sin(x)
! How to select which columns from a data file to plot through using: plot

"data" using 1:2
! How to save our work to file with the save command and how to load it again

using load
! How to export a graph to a printable file format using set output, set termi-

nal, and replot
! How to write simple scripts and use them through the call command

This means that we can do the three most important things for day-to-day work
already: generate a plot, save it to file, and export it. In the next chapter, we’ll learn
about further things we can do with data in gnuplot: smoothing and filtering.

29

Working with data

Working with data is what gnuplot is all about. In this chapter, we look at three
blocks of functionality, all of which help us to perform increasingly complicated
operations on data. First we look at some special gnuplot syntax to pick out only
parts from a larger file—often useful when dealing with data sets that are larger or
more complicated than the straightforward ones we’ve considered so far. Then we
discuss commands to smooth or otherwise clean up messy data sets. And finally,
after taking a quick look at its math capabilities, we introduce gnuplot’s data trans-
formation features, which allow us to perform arbitrary data manipulations when
generating a plot. These are particularly useful, and we’ll make use of them many
times going forward.

 Everything I describe in this chapter is part of the plot command, similar to the
using or title directives we’ve encountered before. Actually, there’s even more to

This chapter covers
! Managing large data sets

! Smoothing and summarizing data

! Math with gnuplot

! Data transformations

30 CHAPTER 3 Working with data

the plot command than this: we’ll encounter some additional features in the follow-
ing chapters on style and coordinate systems (axes). You can check appendix B for a
full list of available directives. All directives to the plot command can be used
together (potentially leading to long command lines), but they have to occur in
proper order. Check the appendix for details.

3.1 Managing large data sets
Sometimes data sets have more internal structure than the simple one-record-per-line
model we used in the previous chapter. Two cases in particular are reasonably com-
mon and must be dealt with: files containing data blocks—that is, different data sets
one after another in a single file—and files containing records that span several lines
each. We’ll show how to handle each case in turn.

3.1.1 Multiple data sets per file: index

Here is a common scenario: some long-running program is performing a complex cal-
culation. Periodically, it summarizes its results up to that point and appends them to
an output file; it then continues its calculations. We want to use gnuplot to look at the
contents of the resulting file.

 The important issue here is that each intermediate result isn’t a single data point,
but an entire data set, spanning many rows (and, potentially, many columns as well) in
the data file. Say the program simulates the structure of a liquid undergoing a freez-
ing transition and writes the correlation function to file every 1,000 timesteps. The file
might then look something like the file shown in listing 3.1.

Liquid/Solid transition simulation - density=0.0017
x: first col; corr(x): second col
t=0
0 0.99
1 0.03
2 0.01
3 0.02
4 0.01

t=1000
0 0.98
1 0.10
2 0.05
3 0.01
4 0.02

t=2000
0 0.99
1 0.32
2 0.14
3 0.08
4 0.03

Listing 3.1 A data file containing several sets

31Managing large data sets

This data file looks as if several distinct data files (for different times t) had been
appended to one another. Since this situation is sufficiently common, gnuplot pro-
vides a way to handle it. But first, we need to look at the meaning of blank lines in a
data file.

 For gnuplot, blank lines in a data file are significant. A single blank line indicates
a discontinuity in the data. The data above and below the blank line will be treated
as belonging to the same data set (and be shown using the same line color and line
style), but no connecting line will be drawn between the record before and after
the blank.

 In contrast, double blank lines are used to distinguish data sets in the file. Each set
can be addressed in the plot command as if it were in a separate file using the index
directive to plot.

 The index directive follows immediately after the filename in the plot syntax and
takes at least one numeric argument specifying which data set from the file to select.
In line with the C language convention for indexing into arrays, index counts from 0
(zero). Therefore, to plot only the correlation function for t=1000, we could use

plot "data" index 1 using 1:2 w linespoints

This picks out only the data set with index 1 and shows it with linespoints.
 The index directive can take up to three arguments, separated by colons (similar

to the syntax familiar from using):

index {int:start}[:{int:end}][:{int:step}]

If only a single argument is given, only the corresponding data set is plotted. If two
arguments are present, they’re treated as the index of the first and last data set (inclu-
sive) to be shown: plot "data" index 2:5 will plot four data sets total. A third argu-
ment is interpreted as a step size. Accordingly, plot "data" index 2:5:2 will plot only
the data in sets 2 and 4. Only the first argument is mandatory.

 So, in summary, the index directive lets us select consecutive sets of data from a
file. The every option, which we discuss next, solves a different problem.

3.1.2 Records spanning multiple lines: every

Imagine that the data file mixes (in a regular fashion) different records in the same
data set, for instance temperature and pressure readings, as in listing 3.2.

time - value
0 100.03 # temperature
0 2.10 # pressure
1 100.26 # t
1 2.02 # p
2 101.34 # t
2 1.95 # p
3 102.41 # t
3 1.87 # p

Listing 3.2 A data file containing interleaved data sets

32 CHAPTER 3 Working with data

Here, each record for a single time really spans two lines: the first line gives the tem-
perature and the second the pressure. If we want to plot only the temperature against
time, we can use the every directive to pick up only the relevant subset of all lines:

plot "data" every 2 using 1:2 with lines

Using the every directive, we can control how we step through individual lines. The
syntax looks similar to the syntax used for index, except that individual arguments are
separated by two colons. Unfortunately, this similarity is somewhat deceiving, because
the order of the arguments isn’t the same for every as it is for index:

every {int:step}[::{int:start}[::{int:end}]]

The first argument is the increment, followed (optionally) by the first and last line
number. Line numbers are counted from zero. Don’t forget to use double colons with
the every directive: single colons won’t generate an error message, but will lead to
strange and hard-to-predict behavior.1

 The index and every directives can be used to pick out certain parts from a data
file. But what do we do if the data itself is noisy or otherwise not fit to plot directly?
That’s the job of the smooth directive, which is the topic of the next section.

3.2 Smoothing and summarizing data
Gnuplot provides the smooth directive to the plot command as a simple tool to plot
noisy or otherwise messy data files. For more sophisticated operations, check out sec-
tion 3.4 on data transformations.

 The smooth directive takes an additional parameter, which must be one of the
following:

unique, frequency, bezier, sbezier, csplines, acsplines

(The current development version of gnuplot, version 4.3, contains two additional
algorithms: cumul and kdens. Since they aren’t part of the current release, I’m not
going to talk about them here, but we’ll discuss them in section 13.2 of chapter 13.)

 The first two are different from the rest—they provide means to summarize (or
otherwise sanitize/clean) data from messy files. The last four provide smooth
approximations to noisy data. We’ll look at them second, but first we’ll discuss
unique and frequency.

3.2.1 Plotting unsorted data files

The unique directive sorts the values chosen by the using statement for the x axis. If
any x value occurs more than once, it will be replaced with a single data point having

1 I am simplifying here. Gnuplot recognizes an additional concept known as a data block in a file, as a set of
consecutive lines delimited from each other using single blank lines. Data blocks are functionally redundant
with data sets (delimited by double blank lines). Data blocks can be selected through additional arguments
to the every directive, which are placed between the double colons. This is why it’s not illegal to use single
colons in this context. If you want to know more about data blocks, check the standard gnuplot reference
documentation.

33Smoothing and summarizing data

the average of all corresponding y values. The frequency directive works the same way
except that it forms the sum of all y values for each x value (instead of the average).

 There are two different uses for unique. The first is a convenient shorthand to deal
with unsorted data files such as the file in listing 3.3.

1970 1
1974 4
1979 4
1971 3 # out of order!
1973 6
1978 5
1980 2

When plotting such a file with a style that connects subsequent data points with lines
(such as lines or linespoints), the graph won’t look right because gnuplot by
default joins points according to their order in the file, not according to the order of
the x values (see figure 3.1)

plot "jumbled" u 1:2 smooth unique with linespoints

We could sort the file externally, but unique does this for us on the fly (compare
figure 3.2).

 The second use for unique is to deal with messy data files, such as the one in
listing 3.4, which contains the temperature in three different cities, measured over a
number of years. Note how the file isn’t in a particularly good format (see the com-
ments in the file).

Listing 3.3 An unsorted data file: the years are not in ascending order

 0

 1

 2

 3

 4

 5

 6

 7

 1970 1972 1974 1976 1978 1980

"jumbled" u 1:2

Figure 3.1 Plotting a messy datafile: plot "jumbled" using 1:2 with linespoints

34 CHAPTER 3 Working with data

Temperature for three cities.
City codes (column 3): Portway (=1), Abermore (=2), Flagwell (=3)
Format: Year Temperature City
... Portway and Abermore only, annually
1990 32 1
1990 29 2
1991 33 1
1991 27 2
1992 31 1
1992 29 2
1993 32 1
1993 26 2
... now Flagwell tacked on, bi-annually
1991 27 3
1993 29 3

If we just want to get a general sense of the temperature development overall, unique
will do this for us in a snap. The following command shows us both the original data
points (unconnected), and the trend of the average temperature (compare
figure 3.3):

plot [1989:1994][25:34] "messy" using 1:2 smooth uniq with linesp,

" "" using 1:2 with points

Listing 3.4 A messy data file

 0

 1

 2

 3

 4

 5

 6

 7

 1970 1972 1974 1976 1978 1980

"jumbled" u 1:2

Figure 3.2 Using smooth unique lets us sort x values on the fly:
plot "jumbled" u 1:2 smooth unique with linespoints

35Smoothing and summarizing data

The frequency option has a different purpose: together with data transformations, it
can be used to generate histograms of statistical data. We’ll see an example later in
section 13.2 of chapter 13.

3.2.2 Smoothing noisy data

While both unique and frequency summarize existing data, the remaining modes of
the smooth directive generate smooth representations of the data by replacing the raw
data with a mathematical description and plotting its values instead. The different
modes generate different mathematical approximations to the data.2

! bezier calculates and plots a Bézier approximation of order n (where n is the
number of data points). The curve is guaranteed to pass through the first and
last data point exactly, but in general won’t pass through any of the internal
points. The resulting curve usually appears particularly smooth.

! sbezier first applies the unique transformation to the data, then calculates and
plots a Bézier approximation to the results.

2 Bézier curves are usually explained in books on computer graphics. A standard is Computer Graphics: Principles
and Practice in C by James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes (2nd ed, 1995).
Splines are a topic in numerical analysis. A popular title is Numerical Recipes in C: The Art of Scientific Computing
by William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling (2nd ed, 1992). Material
for both Bézier curves and splines can easily be found on the web as well.

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 1989 1990 1991 1992 1993 1994

"messy" u 1:2
"" u 1:2

Figure 3.3 Using smooth unique can also find the averages for multi-valued data
sets: plot [1989:1994][25:34] "messy" using 1:2 smooth unique with
linespoints, "" using 1:2 with points

36 CHAPTER 3 Working with data

! csplines applies a unique transformation, then calculates natural cubic splines
to the result and plots these. The resulting curve passes exactly through all data
points. As opposed to the Bézier curve (which is defined for the entire data
set), splines are defined locally (between any two consecutive data points) and
joined smoothly at the points. They’re therefore most suited for data that’s
already quite smooth.

! acsplines applies the unique transformation to the raw data, then forms a
weighted cubic splines approximation. The weight is taken from a mandatory
third argument to the using directive.

Before going any further, an example will help. Let’s consider again PQR’s stock from
section 2.1.2. As usual for share prices, the data is quite noisy, making it hard to see
the overall trend. So we smooth it:

plot "prices" using 1:2 with linespoints,
" "" using 1:2 title "bezier" smooth bezier,
" "" using 1:2 title "csplines" smooth csplines

The results are shown in figure 3.4. We see both the raw (noisy) data, as well as the
Bézier curve and the spline approximation. Note how the Bézier curve is a global
approximation, providing a smooth representation of the entire data set. In contrast,
splines are local approximations, smoothly connecting adjacent segments individually.

 The weighted spline approximation (that is, smooth acsplines) modifies the local
character of the spline approximation. Using weighted splines, each point contributes

 40

 60

 80

 100

 120

 140

 160

 1975 1980 1985 1990 1995

"prices" u 1:2
bezier

csplines

Figure 3.4 Using the smooth directive: plot "prices" using 1:2 with
linesp, "" using 1:2 title "bezier" smooth bezier, "" using 1:2
title "csplines" smooth csplines

37Smoothing and summarizing data

only according to its weight to the approximation, but the interpolation curve is no
longer forced to pass through every point in the data set exactly. The weight is taken
from a mandatory third column in the using specification, and can either be a con-
stant (the same for all points in the data set) or vary from point to point.

 In general, the greater the weight, the more each individual data point contributes
to the interpolation curve. In the limit of infinite weight, the spline passes through all
points exactly, recovering the behavior of the smooth csplines algorithm. In the
opposite extreme, as the weight goes to zero, each point’s individual contribution is
reduced and the curve becomes smoother. In the limit of zero weight, the curve
degenerates into a straight-line fit of the data. Figure 3.5 demonstrates this effect.

 In figure 3.5, all weights were constants, but it’s also possible to give each data
point its own weight factor. This gives us the ability to take into account the uncer-
tainty in each particular data point. Let’s assume a data file contains not only x and y
values, but also the standard error in each y value. We may then plot a weighted spline
curve using this information like so: plot "data" u 1:2:(1/$3**2) s acs. Points with
larger errors are quadratically suppressed when forming the spline approximation.
(This was a first example of inline data transformations, which we’ll formally intro-
duce in section 3.4 later in this chapter.)

 The ability to adjust the “stiffness” of an interpolation curve continuously through
a control parameter, as we’ve done in figure 3.5, can help us understand the structure
of a data set. We’ll see some applications of this technique in chapters 13 and 14.

 40

 60

 80

 100

 120

 140

 160

 1975 1980 1985 1990 1995

Weight: 1
1/50

50
1/10000

Figure 3.5 The effect of different weights on the acsplines algorithm: plot
[1975:1995][40:160] "prices" using 1:2 with points, "" u 1:2:(1) smooth
acsplines 1, "" using 1:2:(1/50.) smooth acsplines 2, "" using 1:2:(50) smooth
acsplines 3, "" using 1:2:(1/10000.) smooth acsplines 4

38 CHAPTER 3 Working with data

3.3 Math with gnuplot
Not surprisingly, gnuplot can evaluate mathematical expressions and includes sup-
port for many mathematical functions. Gnuplot’s syntax for mathematical expres-
sions is straightforward and similar to the conventions found in other programming
languages.

 Gnuplot ships with its own math library, which these days is only used when the sys-
tem math library is found insufficient. The most notable extension that gnuplot’s
math library provides is support for complex numbers.

3.3.1 Mathematical expressions

Gnuplot uses standard infix syntax for mathematical expressions, including the nor-
mal operators for the four basic arithmetical operations, as in most C-like languages.
Parentheses can be used to change the order of evaluation. Gnuplot has the exponen-
tiation operator (**), found in Fortran and Perl. All these operate either on floating-
point values or on integers. Integer division truncates, so that 3/2 yields 1. Integers are
promoted to floating-point values in mixed expressions, but in some situations trunca-
tion occurs in expressions involving variables. If nontruncating division is desired, it’s
always safer to force the use of floating-point arithmetic by writing x/2. or x/2.0. Two
mathematical operators exist that accept only integer arguments: the familiar modulo
operator %, and a unary factorial operator: n! = 1 * 2 * ... * (n-1) * n.

 All the usual relational and logical operators are available as well, including the
ternary conditional operator (?:). A full list can be found in appendix B.

3.3.2 Built-in functions

Gnuplot provides all the mathematical functions you’ve come to expect on any scien-
tific calculator: square root, exponential function and logarithms, and trigonometric
and hyperbolic functions. It also supports some less-standard functions related to the
Bessel functions, the error integral, and the gamma function. You can execute help
functions from within gnuplot or check appendix B for the full list.

 The standard gnuplot distribution contains a file called stat.inc in the demo/
folder, which defines many additional functions, most of them related to various prob-
ability distributions. You can load this file into your current gnuplot session using
load, and then use these functions the same way you would use built-ins.

 Gnuplot also includes a random number generator, which can be quite useful at
times. It can be accessed through the function rand(x). If called with an argument that
is equal to zero, the function returns a pseudo random number between zero and one.

 The algorithm used to generate the pseudo random numbers requires two seeds
to be set; given the same values for the seeds, exactly the same sequence of numbers
will be returned. Gnuplot doesn’t have a separate function to set the seeds; instead
this is accomplished by providing special values as arguments to rand(x). Check
table 3.1 for details. Keep in mind that rand(x) is a function, and therefore must be
called as an expression, even if only setting the seeds. The command print rand(-1),
for example, can be used to reset the seeds to their default values.

39Math with gnuplot

3.3.3 User-defined variables and functions

It’s easy to define new variables simply by assigning an expression to a name. For
instance, we might want to define some useful mathematical constants. (We don’t
need to define pi, since it’s already defined by gnuplot—the only such predefined
constant.) Listing 3.5 shows some more useful constants we may want to define.

e = 2.71828182845905 # The base of the natural logarithm
sqrt2 = sqrt(2) # The square-root of 2
euler = 0.57721566490153 # The Euler-Mascheroni constant

Here, euler is the Euler-Mascheroni constant (usually represented using the Greek
letter gamma), which is “the most important number that you’ve never heard of
before” (J. Stopple).3

 Functions can be defined in a similar fashion, as shown in listing 3.6.

f(x) = -x * log(x)

gauss(x, m, s) = exp(-0.5*((x-m)/s)**2)/sqrt(2*pi*s**2)

Using the factorial operator to generate binomial coefficients
binom(n, k) = n!/(k!*(n-k)!)

min(a, b) = (a < b) ? a : b # Using the ternary "?" operator
step(x) = (x < 0) ? 0 : 1 # A piece-wise defined function

Functions can have up to 10 variables and can contain other functions and operators.
We use them as we would use any other function. Assuming we had issued the defini-
tions in listing 3.6, we could then simply write plot sin(x), f(x).

 By default, gnuplot assumes that the independent dummy variable, which is auto-
matically replaced by a range of x values when plotting a function, is labeled x, but
this can be changed using the set dummy command. For example, set dummy t will
make t the independent variable.

Table 3.1 The rand(x) function is used both to access the random number generator and to set its
seeds, depending on the value of the argument.

Invocation Description

rand(0) Returns the next pseudo random number, using the current values of both seeds

rand(-1) Resets both seeds to a standard value

rand(x) For x>0,sets both seeds to a value based on the value of x

rand({x,y}) For x,y>0, sets the first seed to x and the other seed to y

Listing 3.5 Examples of user-defined variables (constants)

3 Read his wonderful A Primer of Analytic Number Theory (2003) to find out why you should care. The quote can
be found on page 49.

Listing 3.6 Examples of user-defined functions

40 CHAPTER 3 Working with data

 All other variables occurring in a function definition (parameters) must have been
assigned values before we can plot (that is, evaluate) the function. For convenience,
it’s possible to assign values to parameters as part of the plot command. The following
code snippet draws two lines, one for a=1 and one for a=2 (also compare figure 3.6):

g(x) = cos(a*x)/a
plot a=1, g(x), a=2, g(x)

All functions and variables have global scope. There’s no such thing as a private vari-
able or local scope!

 Lists of all user-defined variables and functions can be generated using the follow-
ing two commands:

show variables
show functions

3.3.4 Complex numbers

I mentioned earlier that gnuplot has limited support for complex numbers, so let’s
take a quick look. (If you don’t know what complex numbers are, you probably want
to skip this section.)

 Complex numbers are pairs of numbers, the so-called real and imaginary parts. In
gnuplot, a complex number is indicated using curly braces ({}). The following
expression would be interpreted as the complex number z = 1 + i, where i is the imag-
inary unit.

z = { 1, 1 }

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

Figure 3.6 Assigning to variables as part of the plot command:
plot a=1, g(x), a=2, g(x)

41Data transformations

Gnuplot can perform simple arithmetic on complex numbers, such as { 1, 1 } + { -1, 0 }.
Furthermore, many of the built-in mathematical functions (such as sin(x), exp(x), and
so forth) can accept complex arguments and return complex numbers as results. We
can use the special functions real(x) and imag(x) to pick out the real and imaginary
parts, respectively.

 One important limitation of gnuplot’s complex numbers is that both parts must be
numeric constants—not variables, not expressions! We can always work around this
limitation, though, by using a complex constant as part of a more general expression.
For example, the following command will plot real and imaginary parts of the expo-
nential function, evaluated for imaginary argument:

plot real(exp(x*{0,1})), imag(exp(x*{0,1}))

Complex numbers are of fundamental importance in mathematics and theoretical
physics, and have important applications in signal processing and control theory.
Gnuplot’s ability to handle them makes it particularly suitable for such applications.

 Now that we’ve seen what mathematical operations we can perform, let’s see how
we can apply them to data.

3.4 Data transformations
As stated before, gnuplot is first and foremost a plotting tool: a program that allows us
to generate straightforward plots of raw data in a simple and efficient manner. Specif-
ically, it’s not a statistics package or a workbench for numerical analysis. Large-scale
data transformations are not what gnuplot is designed for. Properly understood, this is
one of gnuplot’s main strengths: it does a simple task and does it well, and does not
require learning an entire toolset or programming language to use.

 Nevertheless, gnuplot has the ability to perform arbitrary transformations on the
data as part of the plot command. This allows us to apply filters to the data from within
gnuplot, without having to take recourse to external tools or programming languages.

3.4.1 Simple data transformations

An arbitrary function can be applied to each data point as part of the using directive
in the plot command. If an argument to using is enclosed in parentheses, it’s not
treated as a column number, but as an expression to be evaluated. Inside the paren-
theses, you can access the values of the column values for the current record by pre-
ceding the column number with a dollar sign ($) (as in shell or awk programming).
Some examples will help to clarify.

 To plot the square root of the values found in the second column versus the values
in the first column, use

plot "data" using 1:(sqrt($2)) with lines

To plot the average of the second and third columns, use

plot "data" using 1:(($2+$3)/2) with lines

42 CHAPTER 3 Working with data

To generate a log/log plot, we can use the following command (although the logscale
option, discussed in section 3.6, is the preferred way to achieve the same effect):

plot "data" using (log($1)):(log($2)) with lines

Here are some more creative uses. To plot two data sets of different magnitude on a
similar scale, use this (assuming that the data in column three is typically greater by a
factor of 100 than the data in column two):

plot "data" using 1:2 with lines, "" using 1:($3/100) with lines

If the data file contains the x value in the first column, the mean in the second, and
the variance in the third, we can plot the band in which we expect 68 percent of all
data to fall as

plot "data" using 1:($2+sqrt($3)) with lines,
" "" using 1:($2-sqrt($3)) with lines

All expressions involving operators or functions can be part of using expressions,
including the conditional operator:

plot "data" using 1:($2 > 0 ? log($2) : 0) with lines

Finally, it should be kept in mind that the expression supplied in parentheses can be a
constant. The following command uses the frequency directive to count the number
of times each of the values in the first column (assumed to be integers) has occurred.
The resulting plot is a histogram of the values in the first column (remember that
smooth frequency sums up the values supplied as y values and plots the sum):

plot "data" using 1:(1) smooth frequency with lines

A fundamental limitation to all these transforms is that they can only be applied to a
single record at a time. If you need aggregate functions over several records (sums or
averages, for example), or across different data sets, you’ll have to perform them
externally to gnuplot. Nevertheless, the ability to apply an arbitrary filter to each data
point, and to combine different data points for the same x value, is often tremen-
dously useful.

3.4.2 Pseudocolumns and the column function

Gnuplot defines two pseudocolumns that can be used together with data transforma-
tions. The column 0 contains the line number in the current data set; the column -2
contains the index of the current data set within the data file. When a double blank
line is encountered in the file, the line number resets to zero and the index is incre-
mented. We could use these pseudocolumns, for instance, like this:

plot "data" using 0:1 # Plot first column against line number
plot "data" using 1:-2 # Plot data set index against first column

Another way to pick out a column is to use the column(x) function. This function eval-
uates its argument and uses the value (which should be an integer) to select a column.
For instance, we may have a variable x (possibly obtained through some complicated

43Plotting functions and data

expression) and want to use x as column specifier. No problem: plot "data" u 1:
(column(x)). The column(x) function is only available inside parenthetical expres-
sions when used as part of the using directive.

 The column(x) function and pseudocolumns work together quite well. For
instance, in this example, we plot all values from a file, but add a constant vertical off-
set of 1.5 to values from different data sets (to separate curves from different data sets
from each other, so that we can distinguish them more easily):

plot "data" using 1:($2 + 1.5*column(-2)) with lines

There’s one other function we should mention in this context: valid(x). It returns
true only if the value of the column with column number x is a valid number. We can
use this function to test values from messy files, and only plot those that are valid.

3.5 Plotting functions and data
There are two options that we might want to know about when plotting functions and
data: set samples and set clip.

 The set samples controls the number of points at which a function is evaluated to
generate a plot. It defaults to 100 points, but this may not be sufficient for curves
including cusps or singularities. A value of 300–500 works well—it rarely makes sense
to set a sampling rate higher than the horizontal number of pixels of the output
device (which is usually around 600). This option has no effect when plotting data,
unless one of the smoothing algorithms is used; the smooth curve will be sampled
according to the value of the set samples option.

 Changing the number of sampling points is easy: simply give an integer argument
to set samples:

set samples 300 # Now 300 points are used

The set clip option controls how gnuplot plots points that are too close to or out-
side the plot range:

set clip points set clip [one | two]

The first version, set clip points, is only relevant when using a style that shows dis-
crete plotting symbols (such as with points, with linespoints, and so on). If it’s
active, symbols that would touch or overlap the borders of the plot are suppressed.
Exactly how many points are clipped depends on the symbol size: for larger symbols,
more points need to be clipped. (See chapter 5 for more detail on styles and ways to
influence the symbol size.)

 The second version controls how gnuplot plots line segments connecting points if
at least one of the points falls outside the currently visible plot range. If set clip one
is active, line segments are drawn if at least one of the end points falls into the visible
plot range. If set clip two is active, line segments are drawn even if both end points
are outside the current plot range, but a straight line connecting them crosses the vis-
ible range. In no case are parts of the line segment drawn outside the visible range. By
default, set clip one is on, but set clip two is off.

44 CHAPTER 3 Working with data

3.5.1 Tricks and warnings

Gnuplot math allows for a few tricks, which can be used to good effect in some
situations—or which may trip up the unwary.

! First, remember that integer division truncates! This means that 1/4 evaluates to 0
(zero). If you want floating-point division, you must promote at least one of the
numbers to floating point: 1/4.0 or 1.0/4 will evaluate to 0.25, as expected.

! Gnuplot tends to be pretty tolerant when encountering undefined values:
rather than failing, it just doesn’t produce any graphical output for data points
with undefined values. This can be used to suppress data points or generate
piecewise functions. For example, consider the following function:

f(x) = abs(x) < 1 ? 1 : 1/0

It’s only defined on the interval [-1:1], and a plot of it will only show data
points for this interval.

! A similar method can be used to exclude certain data points when plotting data
from a file. For example, the following command will only plot data points for
which the y value is less than 10:

plot "data" using 1:($2 < 10 ? $2 : 1/0) with linespoints

This 1/0 technique is a good trick that’s frequently useful, in particular in conjunction
with the ternary operator, as in these examples.

3.6 Logarithmic plots
Lastly, let’s see how we can generate logarithmic plots. Logarithmic plots are a cru-
cial technique in graphical analysis. In gnuplot, it’s easy to switch to and from loga-
rithmic plots:

set logscale # turn on double logarithmic plotting
set logscale x # turn on logarithmic plotting for x-axis only
set logscale y # for y-axis only

unset logscale # turn off logarithmic plotting for all axes
unset logscale x # for x-axis only
unset logscale y # for y-axis only

We can provide a base as a second argument: set logscale y 2 turns on binary loga-
rithms for the y axis. (The default is to use base 10.)

 We’ll talk some more about uses for set logscale in chapter 13.

3.6.1 How do logarithmic plots work?

Logarithmic plots are a truly indispensable tool in graphical analysis. Fortunately, it’s
possible to understand what they do even without detailed understanding of the
mathematics behind them. However, the math isn’t actually all that hard, so in this
section, I’ll try to explain how logarithmic plots work and how they’re used.

45Logarithmic plots

 Let’s just quickly recapitulate the most relevant properties of logarithms. The
defining relation for the log function is

n = logb b
n

There isn’t a single log function, but infinitely many; we always need to specify the base
b, with respect to which the logarithm needs to be taken.

 Logarithms with respect to different bases are related to one another in a simple
way:

logax = logab log bx

Logarithms to two specific bases are used most often: the logarithm to base 10 (typi-
cally abbreviated log) and the so-called natural logarithm to base e=2.7818... (abbrevi-
ated ln). Be aware that the notation just introduced (log(x) and ln(x)) is common in
mathematical contexts, but when using gnuplot’s built-in functions, log(x) refers to
the natural logarithm; you must use log10(x) for the logarithm to base 10.

 Logarithms have many interesting properties, two of which are of fundamental
importance:

log(x y) = log(x) + log(y)

and

log(xk) = k log(x)

We can see that the logarithm of a product equals the sum of the logarithms, so these
two relations can be summarized by saying that logarithms turn products into sums
and powers into products. We’ll see how these relationships are at the core of logarith-
mic plots.

 In a logarithmic plot, we don’t plot the actual values; instead we plot their loga-
rithms. But tic marks on the axes are usually labeled with the actual values (not their
logarithms). Here’s an example: we want to plot the values of 1, 10, 100, and 1000.
Their logarithms (to basis 10) are 0, 1, 2, and 3, respectively (since 103 = 1000 and so
on). In a logarithmic plot, we’ll place tic marks at equal distance from each other (at
the locations 0, 1, 2, and 3), but label them 1, 10, 100, and 1000.

 In figure 3.7 we demonstrate these aspects. The y axis on the left is scaled logarith-
mically. Comparing the values on the left-hand y axis to the units of the right-hand y
axis shows how a logarithmic axis is linear in the exponent to which the base must be
raised to obtain the actual value (that is, it’s linear in the logarithm). Also note how
the same relative change results in the same visual length when using logarithmic
scales: both scale arrows have the same length and represent a 100 percent change,
although the absolute change is different for both arrows (1 to 2 on the left, 100 to
200 on the right).

 We can switch on logarithmic plotting either on only a single axis (usually the y
axis) or on both, yielding a single or double logarithmic plot, respectively. Single loga-
rithmic plots are sometimes referred to as semi-log plots, and double logarithmic plots
are also known as log-log plots. Both plots are used for different purposes.

46 CHAPTER 3 Working with data

 There are two uses for single logarithmic plots. First of all, if we have data with expo-
nential behavior, showing it on a single logarithmic plot will let the data fall onto a
straight line:

y(x) = e a x ⇒! log(y(x)) = a x

In other words, if y(x) is an exponential function of x, then log(y(x)) is a linear func-
tion (straight line) of x. We can use single logarithmic plots in this way to determine,
for instance, the half-life of a radioactive substance from measured decays.

 The other use for single logarithmic plots is common in finance: on a single log-
arithmic plot, all relative changes have the same size, no matter how large the underly-
ing absolute changes.

 Here’s an example: If a stock we own falls by $10 in a single day, our reaction will
be different depending on whether we paid $20 or $100 initially. In the first case, we
lost 50 percent of our money, but in the second, we lost only 10 percent. What we
really care about are relative changes, not the absolute ones. What we therefore want
is a plot in which all changes of the same relative magnitude result in the same dis-
tance on the graph. That’s exactly what semi-log plots do for us. If the value before the
change is y1 and the value after the change is y2 = g y1, where g equals 1.1 (corres-
ponding to a 10 percent gain), then the change in absolute terms is

y1 - y2 = y1 - g y1 = (1 - g) y1

which depends on the overall size of the value y1. But if we consider logarithms, we find

log(y1) - log(y2) = log(y1) - log(g y1) = log(y1) - log(g) - log(y1) = - log(g)

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100
-1

 0

 1

 2

 3

 4

V
al

ue

P
ow

er
 o

f 1
0

100%

100%200

400

800
600

Figure 3.7 A semi-log plot. See the text for details. (Labels for some of the minor tic
marks on the left axis have been provided.)

47Summary

which is independent of the overall value and depends only on the relative size of the
change, g. This is why long-term charts of, for example, the Dow-Jones index are usu-
ally shown as semi-log plots: a 10 percent drop today or in 1929 results in the same dis-
tance covered on the graph, despite the fact that the Dow-Jones is over 13,000 today,4

but stood around 300 then.
 Double logarithmic plots serve a different purpose: they help us identify power law

behavior—that is, data that follows an equation such as the following (C is a constant):

y(x) = C xk

The analysis goes through as previously, but we end up with logarithms now on both
sides of the equation:

log(y(x)) = k log(x) + log(C)

The resulting graph is a straight line, with a slope that depends on the exponent k.
We’ve seen an example of this in chapter 1, when estimating the completion time of a
long-running computer program.

 Double logarithmic plots are very important. Power laws occur in many different
contexts in the real world, but aren’t always easy to spot. Go back to figure 1.3 in
chapter 1: many different curves will seem to fit the data about equally well. But
once plotted on a double-log plot (see figure 1.4), the linear shape of the data
stands out and provides a strong and easily recognizable indicator of the underlying
power law behavior.

 Log and log-log plots are part of the standard toolset. When faced with a new data
set, I typically plot it both ways, just to see whether there’s some obvious (exponential
or power law) behavior in it that wasn’t apparent immediately. They’re also useful
when dealing with data that changes over many orders of magnitude. Learn how to
use them!

3.7 Summary
In this chapter, we covered what’s really the “meat” of gnuplot: working with data. We
learned special commands to deal with large and with messy data sets. In detail, we’ve
seen

! The index specifier to the plot command, which lets us pick out only part of a
data file

! The every specifier to the plot command, which allows us to select only a sub-
set of records from a data file

! The smooth directive, which helps us summarize or approximate a noisy data set

Even more importantly, we also introduced inline data transformations. They give us
the ability to apply a random function to individual data points as they’re being

4 This statement was true when this section was first written. As the book went to press, the Dow-Jones index
had fallen below 9,000 points. (These two data points indicate the length of time it took to complete the man-
uscript!)

48 CHAPTER 3 Working with data

plotted. This will turn out to be extremely handy in our work. The most important fea-
tures we’ve introduced are

! User-defined functions and variables.
! The syntax for inline transformations. If the arguments to the using directive

are enclosed in parentheses, their contents is evaluated as a mathematical
expression. Columns from the data file are available as column numbers, pre-
fixed with a dollar sign: plot "data" using 1:(sqrt($2)).

! The pseudocolumn 0 stands for the line number in the data file.

Finally, we introduced logarithmic plots and discussed why and how they work, and
what they’re good for.

 This concludes what we need to know to get started doing data analysis using gnu-
plot. In the next chapter, we’ll turn away from gnuplot’s core functionality of dealing
with data and generating plots, and instead talk about a host of useful features which
make our work with gnuplot easier.

49

Practical matters

In the previous two chapters, we looked at ways to manipulate and visualize data
using gnuplot, which is the core task that gnuplot was designed for. Before moving
on to more sophisticated application areas, let’s close this introductory part of the
book by looking at some features of gnuplot that don’t directly have much to do
with data and visualization, but that are useful to have around.

 First, we’ll learn how to view and manipulate options, which are gnuplot’s way of
controlling details of its operation. Then we’ll summarize what we’ve learned about
input file formats and show how we can use options to customize some aspects of
file handling. From files, it’s only a small step to strings: gnuplot can read strings
from files and make them part of a graph. We’ll see how to do this, and learn about
gnuplot’s facilities to handle and manipulate strings.

This chapter covers
! Understanding and managing options
! Data file details
! Handling strings
! Interacting with gnuplot
! Getting help

50 CHAPTER 4 Practical matters

 The last part of this chapter talks about useful tricks relating to gnuplot’s interac-
tive terminals. In the process, we’ll also learn how to use gnuplot’s online help system
and history feature.

 This chapter is a bit of a grab-bag of useful features. What they all have in common
is that they help us be more productive with gnuplot, without directly being related to
the manipulation and plotting of data. This chapter deals with the “other stuff.”

4.1 Managing options
Gnuplot has relatively few commands (such as the plot, save, and load commands
we’ve already encountered in two preceding chapters), but a large number of options.
These options are used to control everything, from the format of the decimal point to
the name of the output file. There are more than 100 such options available, and
countless suboptions for each. Check appendix B for a complete categorized refer-
ence of available options.

 The three commands used to manipulate individual options are

! show to display the current value of an option
! set to change the value of an option
! unset to disable a specific option, or to return it to its default value

There’s also a fourth command, reset, which returns all options to their default val-
ues. The only options not affected by reset are the ones directly influencing output
generation: terminal and output.

 We’ve already encountered the set command, when we discussed output file for-
mats in chapter 2:

set terminal postscript
set output "graph.ps"

The syntax of all three commands is straightforward. Here, we first set the global style
for functions to unconnected points, then display the current settings for the style
function option, and finally return it to its default value:

set style function points
show style function
unset style function

The show command is also used more generally to display all kinds of information
about gnuplot’s internal state, not just options which can be changed using set. In
the previous chapter, we already encountered show variables and show functions,
which display all user-defined variables and functions.

 Another useful command is

show version long

This prints the current version of gnuplot, together with a copyright notice and some
pointers to the online documentation. More importantly, it also shows the compile-
time flags that gnuplot was compiled with. This is particularly relevant, since some fea-
tures have only recently been added to gnuplot, and may not be enabled on all

51Data files

platforms. You can use show version long to see which flags your version of gnuplot
was built with.

 Finally, we can use show all to see a listing of all possible options and their values.
Be prepared for a long listing!

4.2 Data files
By default, gnuplot data files are ASCII text files that contain data in whitespace-
separated columns. We can pick out any column and print its values against any other
column by means of the using directive. All of this should be old hat by now (or go
back and check section 2.1.2 to refresh your memory).

 Using text files as primary data store has a number of advantages: we don’t need
special tools to generate or read them, and it’s easy to write scripts to pre- or postpro-
cess them. If necessary, we can even load them into any text editor and manipulate
them by hand. In addition, text files are largely portable across most current com-
puter architectures (so that files generated on Unix, say, can be opened and read on
Windows)—except for the choice of the linebreak indicator (newline character).
Gnuplot expects lines in input files to be terminated by whatever the local operating
system (or rather, the local C library) considers the “native” newline character. If you
encounter problems reading files generated on a different platform, try converting
newlines to the local format. (The same argument applies to the files gnuplot writes:
lines are terminated with the native newline character on the given system.)

 Besides the regular, column-oriented file format, gnuplot can also read files in a
packed matrix layout, with n rows of m columns each, representing data on a regular
n-by-m grid. We’ll discuss them in chapter 8 on multidimensional plots.

4.2.1 Permissible formats and options

Several aspects of the file format can be controlled through options. For instance, we
can choose additional characters to indicate comment lines in data files. In this sec-
tion, we look at the fine points of input file formats: numbers and missing values, com-
ments, and strings.
NUMBER FORMATS

Gnuplot can read both integers and floating point numbers, as well as numbers in sci-
entific notation: a floating-point number, followed by an upper- or lowercase character
'e', followed by an integer, which is interpreted as a power of 10. The numeric value
of such a field is obtained after multiplying the floating-point part by 10 raised to the
appropriate power. An example will make this clear: in scientific notation, the value
35,100 would be encoded 3.51e4; the value -0.0001 would be written -1e-4.

 We can also allow the letters 'd' or 'q' (both upper- and lowercase) instead of 'e'
or 'E' for Fortran D or Q constants, by setting

set datafile fortran

This option is off by default, since it requires additional parsing, and should only be
enabled if actually needed.

52 CHAPTER 4 Practical matters

COMMENTS

Comments can be included in a data file on lines starting with the comment character
(#). The line must start with the comment character and is ignored entirely. If gnuplot
encounters a # in any location other than the first one in the line, it isn’t interpreted
as a comment character, and any text following it is interpreted as additional data.
This isn’t a problem as long as only columns preceding it are specified in the using
declaration of the plot command.

 We can make gnuplot interpret additional characters as comment characters by
using the set datafile commentschars command:

set datafile commentschar ["{str:chars}"]

For example, to tell gnuplot that the exclamation point indicates a comment line in a
data file, we’d say

set datafile commentschar "!"

The string can contain any number of characters, all of which will be interpreted as a
comment character if found at the beginning of a line, which will result in the line
being ignored. Resetting this option to a new value overrides all previous settings.
FIELD SEPARATOR

By default, fields (columns) are separated from one another by whitespace, which
means any number of space or tab characters. We can change the field separator using
the set datafile separator command:

set datafile separator ["{str:char}" | whitespace]

For example, to make the comma a field separator, we’d use

set datafile separator ","

Separator characters aren’t interpreted as separators when inside quoted strings:
quoted strings are always interpreted as the entry of a single column.

 Only a single character can be defined as field separator at any given time. (This
isn’t true when using whitespace.)

 To reset, we can issue set datafile separator whitespace or simply set datafile
separator, so that columns will be split on whitespace again.
MISSING VALUES

We can use the set datafile missing command to specify the string that will be used
in a data file to denote missing data:

set datafile missing ["{str:str}"]

An example would be set datafile missing "NaN", which interprets the IEEE float-
ing-point indicator NaN (“Not-a-Number”) as missing value. There is no default value
for this parameter.

 Having an indicator for missing values is important when using a whitespace-sepa-
rated file format: if the missing value were just left blank, gnuplot wouldn’t recognize
it as a column value at all, and use the value from the next column instead.

53Data files

 The interpretation of missing values in a data set depends on the precise syntax of
the using directive. Let’s look at two examples. Listing 4.1 shows a file containing a
missing value.

1 10
2 10
3 11
4 12
5 NaN
6 11
7 11
8 10
9 10

If we plot this file using

plot "data" using 1:2 with linespoints

the fifth record (containing the missing value) will be ignored and the data will be
plotted with one continuous, unbroken line. On the other hand, the command

plot "data" using 1:($2) with linespoints

will also ignore the fifth record, but will treat it as a blank line, and therefore not draw
a connecting line across the gap (see figure 4.1).

Listing 4.1 A data file containing a missing value

 9

 10

 11

 12

 0 2 4 6 8 10

 10

 11

 12

 13

Missing value skipped:
plot ’data’ u 1:($2)

Missing value interpolated:
plot ’data’ u 1:2

Figure 4.1 Gnuplot treats missing values differently, depending on the plot
syntax. The file is the same as in listing 4.1.

54 CHAPTER 4 Practical matters

STRINGS AND TITLE STRINGS

If gnuplot has been built with support for data strings (see section 4.3 in this chapter),
gnuplot can read and process text fields found in input files. A valid text field can be
any string of printable characters not including blank spaces. If the string contains
blanks, it must be enclosed in double quotes to prevent gnuplot from interpreting the
blanks as column separator. (Single quotes don’t work!) The enclosing double quotes
are stripped off and aren’t part of the field’s value. If a field contains whitespace and is
protected by enclosing double quotes, it must not contain double quotes as part of the
string value. If you need to use quotation marks and blanks in the same string, you
must use single quotes inside the string and double quotes to enclose the entire field.
If you have designated a non-whitespace character as column separator using set
datafile separator, the same considerations apply: strings containing the separator
must be protected with double quotes. Listing 4.2 shows some ways that strings can be
used in a data file.

Year Title
1965 Yesterday # Bare string without blanks
1966 "Yellow Submarine" # Blanks require double quotes
1969 "Maxwell's Silver Hammer" # Sgl quote inside dbl quotes

Strings can be placed directly onto the plot, either using the with labels style (see
section 4.3.4 later in this chapter) or the ticslabels() family of functions (see sec-
tion 7.3.4 in chapter 7, and the examples in section 13.3 in chapter 13). Finally, it’s
possible to use the values of the first line in an input file as entries into the legend or
key of a plot (see section 6.4.4 in chapter 6).

 For more information on string handling, check section 4.3 on string handling
later in this chapter.
MORE TRICKS WITH DATA FILES

For the most part, input file parsing with gnuplot is very robust and works without
much tinkering. One good piece of advice is to always specify all required columns
explicitly via the using directive. If this is done, gnuplot silently skips any garbage
(fields it can’t parse) in the file, treating them as missing values. If one relies on the
default columns (without the using directive), gnuplot will instead silently bail when
it encounters an unparseable field. This is most likely to happen when doing casual
work with small files containing only two columns, sometimes leading to mysterious
failures. My advice: make it a habit always to specify all columns with using.

 For the sake of completeness, I want to mention two additional features related to
the handling of data files.

 It’s possible to parse more complicated record formats than the ones we’ve dis-
cussed so far by passing a format string, which describes the format of each record, to
using. The format string must be compatible with the scanf() family of functions,
familiar from the standard C library. Check the standard gnuplot reference documen-
tation if you believe this is of relevance to you, but given the well-known fussiness of

Listing 4.2 Strings in data files need only be quoted if they contain whitespace.

55Strings

scanf(), this is rarely the best path forward. If a file has a format that can’t be parsed
normally by gnuplot, it’s usually a better idea to convert it to a gnuplot-compatible for-
mat using a small conversion program in Perl, awk, or a similar tool. Also, time and
date strings are handled in a special way: don’t attempt to parse them using a scanf()-
like format string. Use the special commands described in section 7.5 in chapter 7
instead to parse and process such data.

 Finally, gnuplot can read certain binary packed file formats. Again, if this is of rele-
vance to you, I suggest the standard gnuplot reference documentation. Unless you
have very special needs, I recommend you stick with text files.

4.3 Strings
String handling is a new feature in the 4.2 release of gnuplot and may not be enabled
in all installations. Before proceeding, you should check whether your version of gnu-
plot is built with support for strings by running show version long. Among the com-
pile-time options, you want to find +DATASTRINGS and +STRINGVARS (both with a plus
sign). If gnuplot on your system is built without support for strings, you might have to
compile your own—appendix A tells you how to.

 In this section, we’ll first look at the way strings are quoted, and then introduce
operations that gnuplot can perform on strings. We conclude with some example
applications that demonstrate what we just learned.

4.3.1 Quotes

You can assign a string constant to a gnuplot variable. String constants must be
enclosed in quotes, either single or double quotes. The difference is that escaped con-
trol characters (such as \n) are interpreted as control characters within double quoted
strings, but are treated literally (that is, not interpreted) inside of single quoted strings.
(Reminiscent of the behavior of Perl strings, for instance.)

 A double-quoted string can contain single quotes; to obtain a double quote inside
of a double quoted string, it must be escaped with a preceding backslash. Within sin-
gle-quoted strings (which don’t recognize the backslash as escape operator), we can
get a single quote by doubling it:

a = 'This is a string.'
b = "First Line\nSecond Line."

c = "Double quote\" escaped."
d = 'Single quote'' escaped.'

4.3.2 String operations

Strings can be assigned to variables just as numbers can. Strings are converted to num-
bers silently, if possible; only integers (not floating-point numbers) are promoted to
strings:

x = '3.14' # String
y = 2 + x # Promotes to number: now y = 5.14

56 CHAPTER 4 Practical matters

a = 4 # Number (integer!)
b = 'foo' . a # Promotes to string: now b = foo4

There are three operators acting on strings and a handful of functions. The first of
the operators is the concatenation or “dot” operator:

a = 'baz'
b = "foo" . 'bar'
c = b . a # c is now "foobarbaz"

The other two operators are comparison operators, for use in conditionals: eq
(equals) returns true if both of its arguments are equal, and ne (not equals) returns
true if they differ.

a = 'foo'
b = 'bar'

c = a eq 'foo' ? 'equal' : 'different'

Strings can be indexed like arrays, using a syntax similar to the syntax used to indicate
plot ranges:

a = "Gnuplot"
b = a[2:4] # b is now "nup"
c = a[4:] # c is now "plot"

The first character in the string has index 1 (not zero!). If we leave either the begin-
ning or the end of the substring empty, it will default to the beginning or the end of
the entire string, as shown.

 There are a small number of functions to analyze and parse strings (see table 4.1)
and we can define our own string functions, in the same way that we define functions
operating on numbers:

head(s) = s[1:3]
a = head("January") # a is now "Jan"

Table 4.1 String functions

Function Description

strlen("str") Takes a string and returns the number of characters in the
string.

substr("str", i, j) Takes a string and two integers. Equivalent to str[i:j].

strstrt("str", "key") Takes two strings. Returns the index of the first character of the
string key in the string str, or zero if not found.

words("str") Takes a string. Strips leading and trailing whitespace, then
breaks the string into tokens on whitespace. Returns the num-
ber of tokens found. Newlines and tabs are interpreted as
whitespace only if the string was double-quoted.

57Strings

4.3.3 String applications

Let’s conclude this section on strings and string handling with a brief look at practical
uses for strings within gnuplot.

 There are two different ways to place strings onto a graph: either as individually
(or manually) placed options using the set command, or read from a data file and
placed automatically by gnuplot. We’ll discuss manual placement of labels and tic
marks in chapters 6 and 7 on decorations and axes.

 In regards to automatic placement of strings, three different uses stand out. First
of all, we can use labels as data and place strings, rather than symbols, onto a plot
using the with labels style (see listing 4.3). When using this style, we must supply a
third column to the using directive (see section 5.2.5 for details). Values in this col-
umn will be interpreted as strings and placed onto the plot at the position specified by
the values from the first and second colum.

plot 'data' using 1:2:3 with labels

We can apply inline data transformations to the with labels style. Of course, the only
possible operations are string operations. The stringcolumn(n) function is often use-
ful in this context: it returns the value of column n as a string (whereas the column(n)
function returns the value of column n as a number). We’ll show an example for all of
this in the next section.

 We can also read the labels to be used for tic marks from a file, through the ticla-
bels() family of functions, which we’ll describe in section 7.3.4, when we discuss axes
labeling in general. You can find an example of its use in listing 4.4.

word("str", n) Takes a string and an integer. Strips leading and trailing
whitespace, then breaks the string into tokens on whitespace.
Returns the nth token found. (Tokens are counted starting at 1,
not at zero.) Newlines and tabs are interpreted as whitespace
only if the string was double-quoted.

sprintf("format", ...) Returns a formatted string. Equivalent to the sprintf() func-
tion in the C standard library.

gprintf("format", ...) Returns a formatted string. Similar to sprintf(), but uses
gnuplot’s format specifiers. See section on 7.3.3 on set
format for details.

system("string") Takes a shell command as string and executes it in a subshell.
Returns the output of the shell command. (More detail in chap-
ter 12.)

Listing 4.3 Printing strings from the data file using with labels

Table 4.1 String functions (continued)

Function Description

58 CHAPTER 4 Practical matters

plot "data" using 1:2:xticlabels(3) with lines

Finally, we can use the first noncomment entry in the data file as label for the data set
in the plot’s legend (the key), by giving the column number as argument to the title
option of the plot command (see listing 4.5—more details in section 6.4.4).

plot "data" using 1:2 title 2 with lines

4.3.4 Crazy example: plotting the Unix password file

As a crazy example of what is possible, let’s plot a typical Unix password file with
gnuplot!

 Here is the file (see listing 4.6). (For non-Unix users: each line in the file describes
a user. Each line consists of several fields, separated by colons. The first field is the
username, the third field is a numeric user ID, and the fifth field is a textual descrip-
tion of the user. The other fields are of no relevance to us here.)

at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash
daemon:x:2:2:Daemon:/sbin:/bin/bash
ftp:x:40:49:FTP account:/srv/ftp:/bin/bash
games:x:12:100:Games account:/var/games:/bin/bash
ldap:x:76:70:User for OpenLDAP:/var/lib/ldap:/bin/bash
lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/bash
mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false
man:x:13:62:Manual pages viewer:/var/cache/man:/bin/bash
mysql:x:60:108:MySQL database admin:/var/lib/mysql:/bin/false
news:x:9:13:News system:/etc/news:/bin/bash
ntp:x:74:103:NTP daemon:/var/lib/ntp:/bin/false
postfix:x:51:51:Postfix Daemon:/var/spool/postfix:/bin/false
sshd:x:71:65:SSH daemon:/var/lib/sshd:/bin/false
uucp:x:10:14:Unix-to-Unix CoPy system:/etc/uucp:/bin/bash
wwwrun:x:30:8:WWW daemon apache:/var/lib/wwwrun:/bin/false

To plot this file, we need to set the field separator to be the colon (:) and are then
able to plot it using the with labels style (see section 5.2.5 in chapter 5).

 Just for fun, we also make the letter 'm' the comment character. Verify how the
records starting with an 'm' don’t show up in the graph!

 In the plot (see listing 4.7; the resulting graph is shown in figure 4.2), we use
the numeric user ID as the x coordinate and the line number in the file as the y
coordinate. The label, printed at the resulting position, consists of each user’s login
name, stacked (by virtue of a newline character) on top of the textual description
of the user.

Listing 4.4 Reading x axis tic labels from file using xticlabels()

Listing 4.5 Reading text for the graph’s key from the data file

Listing 4.6 A text file that can be plotted by gnuplot

59Generating textual output

set datafile separator ':'
set datafile commentschar "m"
plot [-20:150][:27] "/etc/passwd"
" u 3:($0+2):(stringcolumn(1) . "\n" . stringcolumn(5)) w labels

4.4 Generating textual output
Gnuplot creates graphs—after all, that’s the whole point! Nevertheless, sometimes it
can be useful to have gnuplot create textual output. For example, we may want to
export the results from gnuplot’s spline interpolation algorithm to a file, so that we
can use them in another application. Or we may have applied some inline data trans-
formation and want to get our hands on the resulting data for some reason.

 Gnuplot has two different facilities for generating text: the print command and
the set table option.

4.4.1 The print command

The print command evaluates one or more expressions (separated by commas) and
prints them to the currently active printing channel—usually the screen:

print sin(1.5*pi)
print "The value of pi is: ", pi

The device to which print will send its output can be changed through the set print
option:

Listing 4.7 Plotting a text file (the Unix password file) with gnuplot

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80

/etc/passwd

at
Batch jobs daemon

daemon
Daemon

ftp
FTP account

games
Games account

ldap
User for OpenLDAP

lp
Printing daemon

news
News system

ntp
NTP daemon

postfix
Postfix Daemon

sshd
SSH daemon

uucp
Unix-to-Unix CoPy system

wwwrun
WWW daemon apache

Figure 4.2 Demonstrating string functions and the with labels plot style

60 CHAPTER 4 Practical matters

set print # print to STDERR
set print "-" # print to STDOUT
set print "{str:filename}" [append] # print to file

By default, print sends its output to standard error (usually the current terminal if
gnuplot is run interactively). But output can be redirected either to standard output
(using the special filename -), or to a regular file (simply by giving the filename as
argument to set print). Each invocation of set print creates a new file (clobbering
any existing file of the same name), unless the additional keyword append has been
specified. On systems that support input/output redirection, it’s possible to specify a
shell command as recipient of the output from the print command, by starting the
filename with the pipe symbol (|) (see section 12.2.3).

 Some gnuplot commands that generate textual output use the set print option
internally to determine where to send their output (an example is the show palette
palette command; check section 9.1.2).

4.4.2 The set table option

The set table facility gives us access to the data that makes up a graph as text. In other
words, using set table, we can obtain the values of all points shown in a plot as
numeric expressions.

 The command to generate output as numbers, as opposed to graphics, is the set
table command:

set table ["{str:filename}"]

As long as set table is active, all output will be directed to the specified file (or to the
current value of set output if no file was named). To return gnuplot to creating
graphics, use unset table. (Don’t forget!)

 Similar to what we found for the set terminal command, it’s important to remem-
ber that set table doesn’t generate any output: it merely selects a channel to which
the output will be sent. Only plot or replot commands generate actual output. One
of them must be issued after set table; otherwise the resulting file will be empty. (In
fact, in previous versions of gnuplot, what is now the set table facility was exposed as
one of the terminals: set terminal table.)

 Both x and y values will be printed to the file as two separate columns. If the plot
contains several curves, they’ll be written to the file one after another, as separate data
sets. The data format is taken from the value of the set format option, which is also
used for formatting axis tic labels (see section 7.3.3). The third column contains a
marker indicating whether this data point was within the plot range or outside of it: an
i for “inside,” an o for “outside”, or u if the point is undefined.

 For data from a file, only the data points read from the input file will be written to
the output file. For functions, including Bézier and Spline approximations, the num-
ber of data points depends on the value of the set samples option (see section 3.5).

61Interacting with gnuplot

4.5 Interacting with gnuplot
By now, you should be familiar with the basic gnuplot edit-view workflow. In this sec-
tion, I introduce some convenience features that can help make the work go more
smoothly. First, we learn how to access the built-in help system and the command his-
tory feature. Then I explain how to use keyboard shortcuts (hot keys) and the mouse
to interact with gnuplot. Finally, we look at ways to read data from the interactive ter-
minal, rather than from a file.

4.5.1 Getting help

Gnuplot has an extensive, built-in online help system (“online” in the sense that it’s
accessible from within the gnuplot session; it has nothing to do with network connec-
tivity to the Internet). To get started, enter help at the gnuplot prompt. Alternatively,
you can go directly to the reference page for a specific command by entering the
name of the command as argument to the help command. For example, to learn
about the plot command, you’d use

help plot

The online help is very detailed and comprehensive, so you should become familiar
with it. But keep in mind that it’s a reference, not a tutorial. If you know the name of the
command or option you are looking for, it’s great. But if you want to find all relevant
options for a specific task, navigating the online help can be very frustrating.

 This is what appendix B of this book is for: there, you’ll find all commands and
options, grouped by topic. The appendix can therefore be used as a roadmap to the
online help system.

4.5.2 Command history

Gnuplot has a history feature, making it possible to recall the most recent commands.
(The size of the history buffer is controlled by the set historysize option.) The his-
tory feature is bound to the up- and down-arrow keys, as well as to the Ctrl-p and
Ctrl-n key combinations.

 If you want more control over the command history, you can use the history com-
mand. The history command can be used in three ways: to print all or parts of the
command history, to search it, or to reexecute a command:

history [quiet] [{int:max}] ["{str:filename}" [append]] # show
history ?"{str:cmd}" # search
history !"{str:cmd}" # execute

The first line shows how to print the command history to the screen, or (if a filename
is given) to a file. Optionally, history clobbers any existing file of the same name,
unless the append keyword is used. By default, the command history is shown together
with line numbers, but they can be suppressed through the quiet option. Finally, we
can restrict the output to the last max entries by providing a numerical argument. For
example, the command history quiet 5 will plot the last five commands to screen,
suppressing line numbers. The current output on my system is shown in listing 4.8.

62 CHAPTER 4 Practical matters

plot sin(x)
plot [-2:2] sin(x)
plot [-2:2] sin(x), x
plot [-2:2][-1:1] sin(x), x
history quiet 5

Alternatively, we can give a command, or just its beginning, as argument to history,
prefixed by either a question mark (?) or an exclamation point (!). If the question
mark is used, gnuplot will search the command history and show only those entries
that start with the string provided. If the exclamation point is used, the most recent
matching entry in the command history will be executed again. For example, history
?"set term" will show all commands that changed the terminal setting.

4.5.3 Hot keys and mousing

When we issue a plot command, gnuplot pops up a new window containing the plot
(assuming of course that we’re working with one of the interactive terminals, and not
currently exporting graphs to file). The new window containing the graph is automat-
ically raised or active.

 When a graphics window is active like this, we can invoke gnuplot commands
through keyboard shortcuts or mouse clicks. In this section, we look at some of the
default bindings provided by gnuplot. In chapter 12, we’ll see how to define our own
keyboard or mouse shortcuts.
HOT KEYS

Hitting the spacebar when the plot window is active raises the gnuplot command win-
dow. This is convenient when doing actual work: you can iteratively continue working
on a single graph without ever having to take your hands off the keyboard!

 Grid lines can be toggled on or off through the hot key g. Logarithmic plotting is
bound to l (y axis only) and L (in this case, gnuplot scales only the axis closest to the
mouse pointer logarithmically). Hitting q closes the current plot window.

 Some other interesting default bindings are listed in table 4.2, and we can get a dis-
play of all currently defined key bindings by pressing h while the plot window is active.

 I don’t find most of the default bindings all that useful, but in chapter 12 I’ll show
you how to install a set of convenient hot key bindings yourself.

Listing 4.8 Typical output from the command: history quiet 5

Table 4.2 Selected default hot key bindings

Key Function

Spacebar Raise command window and switch keyboard focus to it

q Close the current plot window

g Toggle grid lines on the plot

r Toggle crosshair (ruler) at current mouse position

63Interacting with gnuplot

MOUSING

In interactive terminals, we can use the mouse to navigate the graph. By default,
mouse actions should be enabled, but in case they aren’t, we can enable them using
the command

set mouse

When the mouse is active, the current coordinates are always displayed at the bottom
of the plot window. We can place a temporary crosshair at the current mouse position
by hitting the r key. Hitting r again switches the crosshair off. While the crosshair is
active, its location and the relative distance of the mouse pointer from the crosshair
coordinate are shown in the plot window, together with the absolute coordinates of
the mouse pointer.

 We can use the mouse to zoom in on a graph by dragging the mouse while holding
mouse button 3 (often the right mouse button). Click into the graph with mouse
button 3 and drag while holding the button down, then click with mouse button 1 to
replot only the section of the graph in the indicated region. Hit u (unzoom) to return
to the previous setting. When using the mouse to set the plot range in this way, both
the x and the y range are fixed according to the mouse coordinates.

 The mouse can be used for additional effects. The current mouse coordinates are
written to gnuplot variables whenever we click in the plot windows, and are therefore
available in user-defined functions. In chapter 12, we’ll look at some cool macros that
make use of this to place arrows onto the plot using only the mouse.

4.5.4 Reading data interactively

All data that’s rendered by the plot command must be read from a file: gnuplot
doesn’t maintain any data sets in memory. Nevertheless, sometimes you want to plot
just a few points without creating a file for them. In situations like this, it’s possible to
enter the data in the command window.

 When given the special filename -, gnuplot attempts to read data from standard
input, which in an interactive session is the command window. Gnuplot will show a
prompt at which data can be typed. Finish each line by hitting the return key. Gnuplot
will keep prompting for data until either an end-of-file (EOF) character (typically
Ctrl-D) is encountered or the character e is entered on a line by itself.

l (lowercase letter L) Toggle y axis logarithmic scale

L Toggle logarithmic scaling for the axis closest to the mouse pointer

u Unzoom (after zooming using the mouse)

h Help: show all key bindings

Table 4.2 Selected default hot key bindings (continued)

Key Function

64 CHAPTER 4 Practical matters

 It’s even possible to read data from standard input multiple times within the same
plot command: plot '-', '-' will read data until an end-of-file character is encoun-
tered and then expect to read more data (for the second “file”) until finding a second
EOF character. Of course, the data entered at a prompt this way can have multiple col-
umns, from which we can select some with using, and all the other features of the
plot command can be used as well.

 Although this feature can be used interactively, it’s mostly intended for situations
where gnuplot is used in batch-mode as part of larger scripts (we’ll talk more about
that in chapter 12). When used interactively, this feature quickly becomes inconve-
nient, because (as explained earlier), gnuplot doesn’t maintain data sets in memory
and therefore all data has to be manually reentered every single time one wants to
plot or replot the graph.

4.6 Summary
This chapter was somewhat of a grab-bag of useful features that make life easier. In
particular, we talked about

! Gnuplot’s commands for option management: set, unset, and show.
! The file format for gnuplot data files. We also introduced all the options that

can be used to customize aspects of input file handling.
! String handling in gnuplot.
! Obtaining textual instead of graphical output.
! The online help system and how to use it.
! Special key bindings, which we can use when the plot window is active.
! How to use the mouse with gnuplot.

This concludes the first part of the book. We now have all features and commands at
our disposal to work efficiently with gnuplot. In the next part, we’ll take the basics for
granted, and instead talk in detail about the different ways that we can affect the
appearance of a graph: the “looks.” Stay tuned.

Part 2

Polishing

This part is about all the different features gnuplot provides to make a
graph both pretty and informative.

 Chapter 5 talks about different styles with which to represent data, such as
lines, symbols, or bars. I’ll also explain how to define your own custom styles.

 Chapter 6 introduces all kinds of decorations that we can use to make a
graph more informative. You will learn about arrows, labels, and ways to custom-
ize the graph’s legend.

 Chapter 7 describes how to control the way axes and tic marks are drawn.
This chapter also explains how to handle timeseries data and how to use calen-
dar dates as tic labels.

67

Doing it with style

The following three chapters describe the different ways to control the appearance
of a plot: how to make it look just right. In this chapter, we’ll discuss the various
ways to display data, and in the next chapter we’ll talk about all the other stuff that
goes onto a plot, such as labels, borders, arrows, and similar decorations. Since axes
and their labels can provide so much relevant information about a plot, they’ve
been given their own chapter (chapter 7) which is the third and last in this part.

 This chapter consists of three parts. First I describe the syntax for choosing a
specific style for a plot. Then I’ll give a comprehensive, illustrated catalog of avail-
able styles. And finally, I’ll talk about ways you can define your own custom styles.

 Only the first section in this chapter is required reading, because here is where I
explain how to choose plot styles and where I introduce the important concept of
terminal capabilities. For the rest of this chapter, feel free to just look at the figures
so that you get a sense for the kinds of plots that gnuplot can create. You can always
come back to this chapter when you need a specific plot type.

This chapter covers
! Choosing plot styles
! Plot style gallery
! Customizing styles

68 CHAPTER 5 Doing it with style

5.1 Choosing plot styles
Different types of data call for different display styles. For instance, it makes sense to
plot a smooth function with one continuous line, but to use separate symbols for a
sparse data set where each individual point counts. Experimental data often requires
error bars together with the data, whereas counting statistics call for histograms.
Choosing an appropriate style for the data leads to graphs that are both informative
and aesthetically pleasing.

 There are two ways to choose a style for the data: inline, as part of the plot com-
mand, or globally, using the set style directive. Let’s talk about inline styles first, and
then come back to global preferences later, once we’ve had a chance to introduce the
notion of terminal capabilities, because it is up to the terminal which styles are actually
available.

5.1.1 Inline style directives

We have already seen inline styles in chapter 2: by giving the with keyword as part of
the plot command, we can specify which style to use:

plot "data" u 1:2 with lines, "" u 1:3 with linespoints,
" "" u 1:4 with points

As usual, keywords can be abbreviated to the shortest unambiguous form, so we’d
probably write w l, w linesp or w lp, and so on.

 In graphical analysis, we often want to plot several similar data sets together on the
same plot, usually so that we can compare them directly to one another:

plot "data" u 1:2 w l, "" u 1:3 w l, "" u 1:4 w l

All of these are plotted using the same style (with lines). Now the question is: which
curve is which (see figure 5.1)?

 Gnuplot helps us here by plotting each curve with a different line pattern (or dif-
ferent symbol, or different color, depending on the specific style chosen). Styles are
chosen from a list of available patterns. If we need to plot more data sets than there
are different styles, the selection begins again at the beginning.

 We can overrule this automatic progression of plot styles by fixing the specific style
to use:

plot "data" u 1:2 w l 2, "" u 1:3 w l 2, "" u 1:4 w l

This will plot the second and third column in the data file using the second style from
the list of available styles for the current terminal. Fixing a specific style like this
doesn’t affect the way the internal style counter is incremented, so the fourth column
of the data will be displayed using the third style from the selection.

 All this brings up the question: how many styles are there, and what are they?
There’s no absolute answer to this question; it all depends on the output format, or
rather, the terminal.

69Choosing plot styles

5.1.2 Terminal capabilities

Gnuplot itself knows little about rendering a graph—this is left to the individual
terminal devices. This way, gnuplot itself makes no assumptions about the platform it
is running on and can be very portable. Output devices obviously differ widely in their
capabilities—we can’t get color plots from a black-and-white printer. On the other
hand, an interactive color terminal (such as X11) gives us color, but possibly only a
smaller selection of patterns and available fonts.

 Gnuplot has a built-in command called test that generates a standard test image.
The test image shows all available line styles and fill patterns, and also attempts to
demonstrate more advanced terminal capabilities, such as the ability to rotate text
through an arbitrary angle. To use the test command, we first need to select the ter-
minal we are interested in and set the name of the output file (if it’s not an interactive
terminal) like so:

set terminal postscript
set output "test.ps"
test

Note that the command is test—not plot test!
 Along the right side of figure 5.2 we see the available line and symbol styles, fill pat-

terns along the bottom, and line widths on the left side. We can also see what kinds of
arrows the terminal supports, and whether it has the ability to rotate text. For a Post-
Script terminal as shown in the figure, all these features are supported.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

"data" u 1:2
"data" u 1:3
"data" u 1:4

Figure 5.1 Gnuplot chooses a different line style for each curve automatically.

70 CHAPTER 5 Doing it with style

5.1.3 Global style directives

Although inline styles give us a lot of control over the detailed representation of the
data, they can be clumsy, in particular in large plot commands containing many data
sets. This is where global styles come in.

 By default, data (from a file) is plotted using the points style, while functions are
plotted with lines. We can change these defaults using the set command, which we
introduced in chapter 4. To specify the global defaults, we can use

set style data {enum:style}
set style function {enum:style}

Here, the {style} parameter can either be a style family (such as lines or points),
or a specific style (such as lines 3). If only the family is indicated, gnuplot will iterate
through all available styles in that family as usual, but if we choose one specific style,
only that one will be used for all curves. Inline styles override global styles, as you
would expect.

 Now that we know how to choose styles, it’s time to look at the possible choices. So,
let’s take a tour of the big catalog of available plot styles.

5.2 Plot styles
There are well over two dozen styles available in gnuplot. Here we look at those most
useful for ordinary, two-dimensional data. We’ll encounter some additional styles in
chapter 8 on multidimensional plots.

Terminal Test

12345678901234567890
test of character width:

left justified
centre+d text

right justified

ro
ta

te
d

ce
+n

tr
ed

 te
xt

 ro
tat

ed
 by

 +
45

 de
g

 rotated by -45 deg

show ticscale -1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 lw 1

 lw 2
 lw 3
 lw 4
 lw 5
 lw 6

linewidth

pattern fill
 0 1 2 3 4 5 6 7 8 9

(color) filled polygon:

Figure 5.2 The standard test image to demonstrate terminal capabilities, shown here for
the PostScript terminal

71Plot styles

5.2.1 Core styles

There are four styles I would call “core” styles, because they are so generally useful:
with points, with lines, with linespoints, and with dots.These styles represent
data with simple symbols or lines on the plot (see figure 5.3).

POINTS

The points style plots a small symbol for each data point. The symbols aren’t con-
nected to each other. This is the default style for data (see figure 5.3).

 The size of the symbol can be changed globally using the set pointsize com-
mand. The parameter is a multiplier, defaulting to 1.0:

set pointsize {flt:mult}

It is also possible to change the pointsize inline:

plot "data" u 1:2 w points pointsize 3

LINES AND LINESPOINTS

The lines style does not plot individual data points, only straight lines connecting
adjacent points. This is the default style for functions, and the preferred style for
dense data sets without too much noise.

 Many aspects of lines, including their width and color, can be customized using
set style line. Since lines are such fundamental objects, I have collected all this
material in a separate section at the end of this chapter for easier reference
(section 5.3).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10

points
lines

linespoints
dots

Figure 5.3 The four core styles: with points, with lines, with linespoints,
and with dots

72 CHAPTER 5 Doing it with style

 The linespoints style is a combination of the previous two: each data point is
marked with a symbol, and adjacent points are connected with straight lines. This style
is mostly useful for sparse data sets.
DOTS

The dots style prints a “minimal” dot (a single pixel for bitmap terminals) for each
data point. This style is occasionally useful for very large, unsorted data sets (such as
large scatter plots). Figure 1.2 in chapter 1 was drawn using dots.

5.2.2 Box styles

Box styles, which draw a box of finite width, are sometimes useful for counting statis-
tics, or for other data sets where the x values cannot take on a continuous spectrum of
values.
STEPS

Gnuplot offers three styles to generate steplike graphs, consisting only of vertical and
horizontal lines (see figure 5.4). The only difference between the three styles is the
location of the vertical step:

! histeps style places the vertical step midway between adjacent x values.
! steps style places the vertical step at the end of the bin.
! fsteps style places the vertical step at the front of the bin.

If in doubt, the histeps style is probably the most useful one.

 26

 28

 30

 32

 34

 36

 38

 40

 42

 1994 1995 1996 1997 1998 1999 2000 2001

fsteps
steps

histeps

Figure 5.4 The three steps styles. The same data set is shown three times (vertically
shifted). Individual data points are represented by symbols; the three steps styles are
shown in different line styles. Note how different the same data set can appear,
depending on the exact location of the vertical steps.

73Plot styles

BOXES AND IMPULSES

In contrast to the step styles from the previous section, the boxes style plots a box cen-
tered at the given x coordinate from the x axis (not from the graph border) to the y
coordinate (see figure 5.5). The width of the box can be set in one of three ways:

! Supplied as third parameter to using.
! Set globally through the set boxwidth option.
! Otherwise, boxes are sized automatically to touch adjacent boxes.

If a third column is supplied in the using directive, it is interpreted as the total width
of the box in the same coordinates that are used for the x axis. The set boxwidth
option has the following syntax:

set boxwidth [{flt:size}] [absolute | relative]

The size parameter can either be a measure of the absolute size of the box in x axis
coordinates, or it can denote a fraction of the default box size, which is the width of
the box if it touches adjacent boxes. If absolute mode isn’t stated explicitly, relative
sizing is assumed. A boxwidth of -2 can be used to force automatic sizing of boxes
(with adjacent boxes touching each other). The impulses style is similar to the boxes
style with a boxwidth set to zero. The examples in figure 5.5 make this more clear.

 Boxes can be filled or shaded, according to the value of the set style fill option.
It has the following syntax:

set style fill [empty | solid [{flt:density}] | pattern [{idx:n}]]
 [border [{idx:linetype}] | noborder]

-15

-10

-5

 0

 5

 10

 15

 20

-10 -5 0 5 10

plot u 1:2 w boxes - default width
plot u 1:2:(0.75) w boxes - fixed width
plot u 1:2:3 w boxes - variable width
plot u 1:2 w impulses

Figure 5.5 Box and impulse styles. The widths of boxes can be set globally or for
each box individually. The second data set uses a fixed width (enclosed in parentheses
in the using directive); the third one reads values for variable box widths from file.

74 CHAPTER 5 Doing it with style

Density is a numeric value between 0.0 (empty) and 1.0 (solid); the color used is the
same as the current line type. Available fill patterns vary from terminal to terminal.
Use the test command to see what’s available. By default, each box is bounded by a
border in the current linetype. This can be changed using the border attribute. The
border can be turned off entirely using noborder.
HISTOGRAMS

The histogram styles are a recent addition to gnuplot and are somewhat of a depar-
ture from gnuplot’s usual processing model, in that they have the concept of a data set.
The overall appearance of the plot depends on both row and column information
simultaneously.

 Histograms are the result of counting statistics. For the sake of discussion, let’s
assume that there are three parties (Red, Blue, and Green) and we want to show the
number of votes for each party. The outcome of a single election can be shown easily
using, for instance, the histeps style.

 But what to do if elections are held annually, and we want to show the results for a
number of years in one plot? To make matters concrete, let’s consider a specific data
file, shown in listing 5.1.

Year Red Green Blue
1990 33 45 18
1991 35 42 19
1992 34 44 14
1993 37 43 25
1994 47 15 30
1995 41 14 32
1996 42 20 35
1997 39 21 31

One possible solution would be to plot the data as a regular time series (see
figure 5.6):

set style data linesp
plot "histo" u 1:2 t "Red", "" u 1:3 t "Green", "" u 1:4 t "Blue"

Often this is exactly what we want, but this format can be clumsy, in particular if there
are many competing parties or if there is a lot of variation year over year. The histo-
gram style offers an alternative.

 Using set style histogram clustered generates a sequence of histograms (see
figure 5.7). Each histogram corresponds to one row in the input file (in our example,
this corresponds to one year):

set style fill pattern
set style histogram clustered
plot "histo" u 2 t "Red" w histograms,
" "" u 3 t "Green" w histograms, "" u 4 t "Blue" w histograms

Instead of inline styles, we can use global styles and achieve the same result:

Listing 5.1 Data for figure 5.6 and figure 5.7

75Plot styles

set style fill pattern
set style histogram clustered
set style data histograms
plot "histo" u 2 t "Red", "" u 3 t "Green", "" u 4 t "Blue"

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1990 1991 1992 1993 1994 1995 1996 1997

Red
Green

Blue

Figure 5.6 Election results as a time series. The data file is shown in listing 5.1.

 10

 15

 20

 25

 30

 35

 40

 45

 50

-1 0 1 2 3 4 5 6 7 8

Red
Green

Blue

Figure 5.7 Election results using set style histogram clustered. This is the
same data set as in figure 5.6.

76 CHAPTER 5 Doing it with style

For all of the histogram styles, it is usually a good idea to have the boxes filled to
make them more easily distinguishable, and so we have enabled this option here. We
can control the spacing between consecutive histograms using the optional gap
parameter to the set style command: set style histogram clustered gap 2. The
size of the gap is measured in multiples of individual boxes in the histograms. (To
create gaps within each histogram, so that neighboring boxes don’t touch each other,
use set boxwidth.)

 Keep in mind that the way gnuplot reads the data file for histograms is a bit unusual:
each new row generates a new histogram cluster, but the histogram style accepts only a
single column in the using directive. We therefore have to list the file repeatedly in the
same plot command to generate meaningful histograms, as shown previously.

 Finally, the labels gnuplot places along the x axis aren’t very meaningful. We can
either set explicit labels for each histogram using the set xtics add command or we
can read a textual label from the data file using the function xticlabels() (or
xtic() for short). The effect of the latter is demonstrated in figure 5.8. Both of these
commands will be treated in more detail in chapter 7 on axes.

 Besides the clustered histogram style we looked at so far, there is also a stacked
style. Using this style, the individual boxes aren’t placed next to one another, but
stacked on top of each other, so that each vertical box comprises an entire histogram.
By default, adjacent boxes touch each other, but as usual, set boxwidth can be used
to control the width of individual boxes (see figure 5.8).

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

1990 1991 1992 1993 1994 1995 1996 1997

Red
Green

Blue

Figure 5.8 Election results using set style histogram rowstacked. This is the
same data set yet again. Note the effect of the xtic() function, which is used to
read x axis labels directly from the data file.

77Plot styles

set style fill pattern
set style histogram rowstacked
set style data histograms
plot "histo" u 2:xtic(1) t "Red", "" u 3 t "Green", "" u 4 t "Blue"

There are two additional histogram styles, which I won’t describe here in detail, since
they’re similar to the ones we discussed already. The set style histogram errorbars
style is similar to the clustered style, except that it reads two values for each box, the
second being the uncertainty in the data, represented with a standard errorbar. The
set style histogram columnstacked style is equivalent to the rowstacked style,
except that each vertical box is built from a single column (not row) in the input file.

 One last directive related to histograms is newhistogram (see figure 5.9). It can
be used to have several sets of clustered histograms on the same plot. An example
will suffice:

set style fill pattern
set style histogram clustered
set style data histograms
plot newhistogram "Election Results",
" "histo1" u 2 t "Red", "" u 3 t "Green", "" u 4 t "Blue",
" newhistogram "Campaign Spending",
" "histo2" u 2 t "Red", "" u 3 t "Green", "" u 4 t "Blue"

The syntax for the newhistogram command is a bit unintuitive (I still tend to get it
wrong), so let me point out the salient features: the newhistogram keyword is followed
by a mandatory string label (an empty string is permitted), a mandatory comma, and
then the rest of the plot command follows, starting with the filename.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

-2 0 2 4 6 8 10 12 14 16 18

Red
Green

Blue

Red
Green

Blue

Campaign SpendingElection Results

Figure 5.9 Using newhistogram, we can put several histograms into a single graph.

78 CHAPTER 5 Doing it with style

Histograms such as those discussed in this section look good and are frequently used
in business presentations or in the media. But they make it difficult to see trends in
the data, and in particular quantitative comparison of data can be quite difficult. In
section 14.3.5, we’ll discuss this matter in more detail.

5.2.3 Styles with errorbars or ranges

Sometimes we don’t just want to show a single data point, but also want to indicate
some range with it. This may be the experimental uncertainty (the errorbar), or it may
be the range over which some quantity has changed during the observation interval
(this is typical of financial charts). Gnuplot offers several styles that place an indicator
for such a range onto the plot. First we’ll look at styles that draw regular errorbars
(both in vertical and in horizontal directions). Then we’ll go on to discuss styles that
allow us to indicate several ranges at once (but only in the vertical direction).
STYLES WITH ERRORBARS

There are two basic styles to show data with errorbars in gnuplot: errorbars and
errorlines. The errorlines style is similar to the linespoints style (a symbol for
each data point, adjacent points connected by straight lines), while the errorbars
style is similar to the points style (disconnected symbols).

 These styles draw errorbars in addition to the actual data. Errorbars can be drawn
in either x or y direction, or in both. To select a direction, prefix the style with x, y, or
xy respectively, as in set style data xerrorbars or plot "file" with xyerror-
lines. Table 5.1 summarizes all available combinations.

Errorbars are drawn in the current line style. A tic mark is placed at the ends of each
errorbar (see figure 5.10). The size of the tic mark can be controlled using the set
bars option:

set bars [small | large | fullwidth | {flt:mult}]

The parameter is a multiplier, defaulting to 1.0. The symbolic names small and large
stand for the values 0.0 and 1.0, respectively. The value fullwidth is only relevant to
histogram styles (more on that in a minute). Finally, the tic marks can be turned off
entirely using unset bars.

 We must supply additional information to styles with errorbars. Just the x and y
coordinates aren’t enough; we must also provide data about the size of the uncertain-
ties. Usually, this data comes from the data file, in the form of one or two additional
columns. If one additional column is given, it’s interpreted as a range dy to be added

Table 5.1 All possible combinations of errorbars and errorlines styles

Errorbars in
x direction

Errorbars in
y direction

Errorbars in both
directions

Unconnected symbols xerrorbars yerrorbars xyerrorbars

Connected symbols xerrorlines yerrorlines xyerrorlines

79Plot styles

and subtracted from the corresponding data value, so that the errorbar would be
drawn from (x, y -dy) to (x, y+dy). If two additional columns are supplied, they are
interpreted as the absolute coordinates of the lower and upper end of the errorbar
(not the ranges), so that errorbars are drawn from (x, ylow) to (x, yhigh). Correspond-
ing logic applies to errorbars drawn in x direction.

 As usual, the columns to use are indicated through the using directive to plot:

plot "data" using 1:2:3 w yerrorbars # (x, y, dy)
plot "data" using 1:2:3:4:5:6 w xyerrorbars # (x, y, xlow, xhigh,
 # ylow, yhigh)

Data transformations (see section 3.4 in chapter 3) are often useful in this context.
Here are some examples:

! If the input file contains only the variance (instead of the standard deviation,
which is usually plotted as error) together with the data, we can apply the neces-
sary square root inline: plot "data" u 1:2:(sqrt($3)) w yerrorb.

! If we know that the uncertainty in the data is a fixed number (such as 0.1), we
can supply it directly: plot "data" u 1:2:(0.1) w yerrorl.

! If the data supplied in the file is of the unsupported form (x, y, ylow, yhigh, dx),
we can build up the required plot command manually:
plot "data" u 1:2:($1-$5):($1+$5):3:4 w xyerrorl.

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2 2.5

yerrorlines
xyerrorbars

boxxyerrorbars
boxerrorbars

Figure 5.10 Different plot styles showing uncertainty in the data. From top to bottom:
connected symbols using errorlines, unconnected symbols using errorbars,
ranges indicated as boxes using boxxyerrorbars, and finally errors on top of a
histogram using boxerrorbars.

80 CHAPTER 5 Doing it with style

As a final style to visualize data with uncertainty in both directions, there’s the boxxy-
errorbars style. It’s similar to the xyerrorbars style, except that the range of uncer-
tainty is shown as a rectangular box centered at the data point, rather than as a cross
of errorbars.

 The last style that uses errorbars is boxerrorbars (not to be confused with boxxy-
errorbars), which is a combination of the boxes and yerrorbars styles. It is displayed
as a box, with a vertical errorbar centered at its top. It might be used, for instance, for
histograms that have some uncertainty in their counting statistics. The additional val-
ues required for the errorbar are supplied as the third (or third and fourth) argu-
ments to the using directive. In any case, the box width is provided as the last
argument to using.

 The styles that we’ve discussed in this section are mostly used to plot data stem-
ming from scientific experiments or calculations, where we want to show the uncer-
tainty in the data clearly. But there are other situations, where we want to indicate a
range (or even several ranges) together with the data. Those will be the topic of the
next section.
TIME SERIES STYLES

Gnuplot offers two styles that are mostly useful for time series data, although they can
be used for other purposes as well: the candlesticks style (also known as bar-and-whis-
kers plot) and the financebars style. Both have the ability to show two ranges in a sin-
gle (the vertical) direction, for instance the typical band of variation and the highest
and lowest values ever. Both are frequently used for financial data (such as stock
prices) and I’ll discuss them in those terms.

 Both require five columns of data: the x value, followed (in order) by the opening,
low, high, and closing prices. As usual, the appropriate columns are selected through
the using directive to the plot command.

 Both styles represent the maximum range (low to high) by a vertical line. They dif-
fer in the way the secondary (opening to closing) range is displayed: in the candle-
sticks style, a box of finite width is overlaid the vertical line; in the financebars style,
tic marks indicate the opening and closing values. The size of the tic marks is con-
trolled by the set bars option familiar from errorbars styles (see figure 5.11).

 Details of the candlesticks can be controlled through some additional options.
First of all, if the closing value is greater than the opening one, three vertical lines are
drawn inside the box; otherwise, the box is left empty. The width of the box can be
changed through the set boxwidth option. (If boxwidth is unset, the value of set
bars will be used instead, but this usage is deprecated and should be avoided.) Finally,
tic marks can be placed at the ends of the vertical line by appending the keyword
whiskerbars (or whisker) to the plot command. The size of these tic marks can be
controlled independently from the box width by appending a numerical value to the
whiskerbars keyword. This value is interpreted as a multiplier giving the length of the
tic mark relative to the box width. Finally, the box will be filled with color or patterns
according to the set style fill option.

81Plot styles

A few examples will make this more clear:

plot "data" u 1:2:3:4:5 w candlesticks # Plain
plot "data" u 1:2:3:4:5 w cand whiskerbars # Tic marks same length
 # as boxwidth
plot "data" u 1:2:3:4:5 w cand whisker 0.1 # Tic marks one tenth
 # of boxwidth

Neither the financebar nor the candlesticks style connect consecutive entries. If
that’s what we want, we’ll have to do so explicitly. Keep in mind that it’s not even clear
what should be connected in these styles—they don’t have a concept of a “middle”
value. This is why we have to supply a sixth column containing some form of average
value, which can then be connected like so: plot "data" u 1:2:3:4:5 w cand, "" u 1:
6 w lines.

 The candlesticks style in particular is quite versatile and can be used to good
effect in a variety of situations.

5.2.4 Filled styles

As of version 4.2, gnuplot has the ability to fill the area between two curves in two-
dimensional plots with color or patterns. This is accomplished through the filled-
curves style. The appearance of the filled regions is determined by the settings of the
fill style, which is controlled by the set style fill option, which we discussed earlier
in section 5.2.2.

 We need to distinguish between different cases, depending on the nature of the
boundaries of the fill region:

 8

 10

 12

 14

 16

 18

 20

 22

-6 -4 -2 0 2 4 6

candlesticks
financebars

Figure 5.11 Styles for time series: financebars and candlesticks

82 CHAPTER 5 Doing it with style

! Fill the area between two curves.
! Fill the area between one curve and one straight line (which may be one of the

coordinate axes or a plot boundary.
! Treat a single curve as a closed polygon and fill its interior.
! Specify an additional point that will be included when constructing the

polygon.

The first case is simple. It requires a data set with at least three columns, correspond-
ing to the x value and the y values for both curves (see figure 5.12):

plot "data" u 1:2:3 w filledcurves

This style is only available when plotting data from a file—it can’t be used when plot-
ting functions with gnuplot.

 The two lines in this example cross each other, and we can distinguish the
enclosed areas depending on whether the first or the second line is greater than (that
is, above) the other. In figure 5.12, all enclosed areas are shaded, but we could restrict
shading to only one of the two kinds of areas by appending either the keyword above
or below. For example, the command plot "data" u 1:2:3 w filledcurves above
would shade only the areas indicated in the graph.

 Filling the area between a curve and a straight line is more complicated, because
we have to specify the location of the straight line, and also have to indicate whether
we want to fill on both sides of it or only on one. Figure 5.13 shows both cases. (In all

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

above

above

Figure 5.12 Shading the area between two curves: plot "data" u 1:2:3 w
filledcurves. The areas that would be shaded if the above keyword was given
are indicated.

83Plot styles

examples in this section, the limiting line is horizontal. The vertical case works in the
same way.)

 The bottom curve was created using the following:

plot -cos(x)/(1+0.1*x**2) w filledc y1=0

Here, the bordering straight line is located at y=0 and filling occurs both above and
below this line. This is the default. If we want to fill on only one side of the bound-
ary line, we need to indicate this using the keywords above and below. For example,
if we had wanted to shade only the areas with positive y values, we could have said
plot -cos(x)/(1+0.1*x**2) w filledc above y1=0.

 What do we do if we want to fill both above and below certain thresholds for the
same curve, as in the middle curve in figure 5.13? The filledcurves style allows for
only one limit at a time, but we can help ourselves by overlaying several plots with dif-
ferent locations for the boundary line. The middle curve in figure 5.13 was drawn
using the following command:

plot 0.5*cos(x)+1.25 w filledc above y1=1.5,
" 0.5*cos(x)+1.25 w filledc below y1=1.0

You can see how we draw the same curve twice, once filling above the upper thresh-
old, and once filling below the lower one. For more complicated shading tasks, we can
use user-defined functions that are trimmed (using the ternary operator) where we
want the shading to end. The top curve in figure 5.13 was generated this way, using
the following:

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-10 -5 0 5 10

Figure 5.13 Shading between a curve and horizontal straight lines

84 CHAPTER 5 Doing it with style

plot 1/cosh(x)+2,
" 1/cosh(x)+2 < 2.6 ? 1/cosh(x)+2 : 2.6 w filledc above y1=2.4

After these examples, let’s look at all options of the filledcurves style:

filledcurves [above | below] [x1 | y1 | x2 | y2][={flt:limit}]

filledcurves closed
filledcurves xy = {flt:x},{flt:y}

The first usage is the one we’ve been discussing so far. Note how the limiting value can
be given with respect to either the first or the second coordinate system (see chapter
6, section 6.2). Specifying a limiting value for x1 or x2 will lead to a vertical boundary
line. The limiting value defaults to zero if not specified otherwise.

 The second and third uses treat the curve as a closed polygon (if necessary by con-
necting the leftmost with the rightmost point of the graph) and attempt to fill its inte-
rior. The third use specifies an additional point, which will be included in the
polygon. Both of these modes make most sense when used together with parametric
plots (see chapter 10, section 10.2.1).

5.2.5 Other styles

Two styles allow us to encode information by other means than the position on the
graph: with labels lets us read a test string from the input file and place it on the
plot, and pointsize variable lets us change the symbol size according to the values
in the data set.

 Let’s look at an example that demonstrates both styles. Listing 5.2 shows a short
data file containing the additional information we’ll use for labels and symbol sizes as
additional columns. Given this file, we can generate the plot in figure 5.14 using the
following commands:

plot [0:6][0:3.5] "labels" u 1:2:3 w p pt 6 ps var,
" "" u ($1+0.25):($2-.25):4 w labels

Both styles require a third column as part of the using declaration, the contents of
which are interpreted as labels or desired symbol sizes, respectively. Variable symbol
sizes are most easily recognized if the symbols are circles, which for this terminal set-
ting are chosen by pointtype 6 (or pt 6 for short). Then follows the pointsize
variable (abbreviated ps var) specification. Labels are chosen using with labels,
and I make sure that all labels are offset a little down and to the right, so that they
don’t overlap with any of the circles.

x y size label
1 2.6 3 ABC
2 2.1 6 EFG
3 1.0 2 PQR
4 1.2 1 UVW
5 1.6 4 XYZ

Listing 5.2 Data for figure 5.14

85Customizing styles

The with labels style in particular is quite versatile and we’ll see some examples that
use it in chapter 13. On the other hand, you should exercise some caution when using
pointsize variable. For instance, it’s not necessarily clear to the observer whether
the radius or the area of the symbol is proportional to the encoded quantity. More
generally, it’s not easy to estimate and compare symbol sizes accurately, so that infor-
mation can easily be lost when encoding it this way. I’ll have more to say about visual
perception in chapter 14.

This concludes our overview of styles for regular, two-dimensional xy-plots. We’ll dis-
cuss additional styles for surface and contour plots in chapter 8.

5.3 Customizing styles
The drawing elements for data are lines and points. Lines and points come in differ-
ent types (such as solid, dashed, and dotted for lines, or square, triangular, and circu-
lar for points), and different widths or sizes (respectively). Finally, they may have
color. Of course, the specific range of possible selections depends on the terminal,
and we can use the test command to see all available choices. For portability reasons,
though, two line types are guaranteed to be present in any terminal: the linetype -1
is always a solid line in the primary foreground color (usually black). The linetype 0
is a dotted line in the same color.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6

ABC

EFG

PQR

UVW

XYZ

Figure 5.14 Encoding additional information through symbol size or the use of
textual labels: pointsize variable and with labels. The corresponding data
file is shown in listing 5.2.

86 CHAPTER 5 Doing it with style

5.3.1 Custom line styles

Besides the predefined line types that exist for a given terminal, we can form our own
customized styles as well. In this section, we look at this possibility, and also take the
opportunity to talk about the syntax for style specification in more detail.

 To define a new line style, use the set style line command:

set style line {int:index} [[linetype | lt] {idx:linetype}]
 [[linewidth | lw] {flt:linewidth}]
 [[pointtype | pt] {idx:pointtype}]
 [[pointsize | ps] {flt:pointsize}]
 [[linecolor | lc] {clr:colorspec}]

set style line {int:index} default

The command set style line ... creates a new entry in a sequence of user-defined
line styles. The base for each new style is the corresponding system style; only those
properties explicitly named in the set style line command are changed.

 The linetype and pointtype options refer to the dash pattern for lines and the
shape of the symbol used for data points, respectively. Check the test command for
your terminal to see the available patterns and symbols.

 The linewidth and pointsize options are measured as multipliers relative to the
default size. (In other words, the default for both linewidth and pointsize is 1.) Val-
ues less than 1 are possible.

 The colorspec must be a valid color specification, using any one of the syntax vari-
ants described in the following section.

 A user-defined combination of linetype, linewidth, pointtype, pointsize, and
linecolor (even if many of these properties have default values), created using the
set style line command, is referred to as a linestyle, and can be used wherever
an individual linetype, linewidth or similar option is expected. For instance, we can
use custom line styles in a plot by specifying their index, like so:

set style line 1 lt 3 lw 2
set style line 2 lt 3 lw 4

plot "data" u 1:2 w l ls 1, "data" u 1:3 w l ls 2

Finally, we can make gnuplot switch entirely to using our custom styles. As we’ve seen
before, if there is more than one data set, gnuplot cycles through all available plot
styles automatically (unless we request a specific style, of course). Usually, gnuplot
only uses the predefined styles. However, using the command

set style increment [default | userstyle]

we can choose which set of line types to use. The argument default makes gnuplot
choose system styles only, while userstyle makes gnuplot choose preferentially from
custom styles. I say “preferentially” because gnuplot will fall back to a system style if a
custom style isn’t found for some index.

87Customizing styles

5.3.2 Specifying color

In the previous section, I referred to a colorspec. A colorspec identifies a color in gnu-
plot. In this section, we look at the syntax for colorspecs.

 A colorspec begins with the keyword rgbcolor (or abbreviated rgb), followed by
the actual identifier. Three different formats for the identifier are available:

rgbcolor "{str:colorname}"
rgbcolor "{#RRGGBB}"
rgbcolor variable

In the first format, we would use an explicit color name, for example rgbcolor "blue".
Gnuplot knows 78 distinct colors; you can find a listing of all known color names and
their RGB components by issuing this command: show palette colornames.

 The second format uses an explicit RGB-triple in hexadecimal representation, pre-
ceded by a hashmark. This format is familiar, for instance, from cascading style sheet
(CSS) indicators. So, to select blue, we could write rgbcolor "#0000FF" or rgb
"#0000ff" (capitalization doesn’t matter).

 Finally, rgbcolor variable means that the color is read together with the actual
data from the file. This mode is only available for three-dimensional plots generated
using the splot command, which we will study in chapter 8. For more details on rgb-
color variable, check the standard gnuplot reference documentation.

 Although we won’t make use of this now, I want to mention that there is yet
another way to write a colorspec: we can select a color from a continuous spectrum or
palette of colors by specifying the position of the color within that spectrum. This
allows us to select a color based on the values of the data being plotted, so that we can
generate density or other false-color plots. We’ll come back to them in chapter 9.

5.3.3 Worked example: half-tone shading

Let’s look at a quick example that will put many of the topics we’ve just introduced
together.

 In section 5.2.2 we drew some figures, such as figure 5.7, which contained boxes
filled with different fill patterns to help distinguish them from one another. Instead of
fill patterns, we can choose to have boxes filled with different fill colors, simply by say-
ing set style fill solid instead of set style fill pattern. But what if we want
a solid fill style (that is, no patterns), but need to generate output in black and white
(as for this book, for example)?

 In such a case, we want to replace the different colors with different shades of gray.
We also want gnuplot to choose automatically from all available shades, the way it usu-
ally cycles through all available colors or line types.

 To achieve this effect, we have to set up a sequence of custom styles, consisting
entirely of grayscales. We can then use the set style increment user command to
force gnuplot to choose from this collection of custom styles only. Listing 5.3 demon-
strates the required commands and figure 5.15 shows the resulting graph.

88 CHAPTER 5 Doing it with style

set style line 1 lc rgb 'grey30'
set style line 2 lc rgb 'grey50'
set style line 3 lc rgb 'grey70'

set style increment user

set style fill solid 1 border -1

set style histogram rowstacked
set style data histogram

plot "histo" u 2:xtic(1) t "Red", "" u 3 t "Green", "" u 4 t "Blue"

Let’s step through the commands:

1 Set up three custom styles (labeled 1, 2, and 3), specifying different shades of
gray as line color (lc for short).

2 Force gnuplot to choose from the custom line styles whenever possible through
set style increment user.

3 Switch to a solid fill style at full saturation (solid 1). This will take the color of
each line style and apply it as the fill color.

4 Also request a border to be drawn around the boxes, using the maximally visi-
ble default line type -1 (a solid, black line for almost all terminals).

5 Draw the histogram as usual.

Listing 5.3 Defining and using custom styles—see figure 5.15

 0

 20

 40

 60

 80

 100

 120

1990 1991 1992 1993 1994 1995 1996 1997

Red
Green

Blue

Figure 5.15 A histogram drawn with custom fill styles—see listing 5.3

89Summary

This example employed several of the techniques we learned in this chapter: custom
styles, color specs, fill styles, and histograms. The most important aspect is that you
understand how to define your own styles and how to make gnuplot use them when-
ever possible. This will allow you to tailor the appearance of your graphs to your spe-
cific needs (as we did in this example).

5.4 Summary
This chapter was a bit of an illustrated catalogue: a place where all of gnuplot’s major
plot styles are demonstrated by way of an example. As such, I’m not disappointed if you
didn’t read the chapter from start to finish: it’s perfectly fine to just look at the figures
until you find one that does what you need, and then read the accompanying section.

 In the first section, we learned how to choose plot styles (either inline, as part of
the plot command, or globally, by fixing the appropriate options with set).

 We also introduced the important topic of terminal capabilities early in this chap-
ter: what we can show on a gnuplot-generated graph depends on the capabilities of
the output device or terminal. For each possible choice of terminal, we can use the
test command to generate a test image that demonstrates the chosen terminal’s capa-
bilities in a standardized fashion.

 Everything we did in this chapter is there to visualize data. By contrast, in the next
chapter (chapter 6), we look at things we may want to put on a plot in addition to the
data: labels, arrows, and other decorations.

90

Decorations

Data alone doesn’t tell a story. To be useful, the data needs to be placed into con-
text: at least, we must tell the observer what the data is (such as position versus
time, particle count versus scattering angle, stock price versus date, or whatever)
and what units the data is plotted in (centimeters or inches, seconds or minutes,
dollars or euros). No plot is complete without this information.

 But we can do much more to make a graph useful and informative: we can add
arrows and annotations on the graph to point out and explain interesting features.
We may also want to provide special tic marks and labels to make quantitative infor-
mation stand out more. Or we may need to change the overall size and shape of the
entire graph to accommodate a specific data set.

 In this chapter, we discuss all the means that gnuplot offers to put additional
information on a plot (in addition to the actual data). Because much of this mate-
rial is quite dry, I’ve gathered the most important commands and options

This chapter covers
! Locations on a graph
! Adding arrows, labels, and other decorations
! Providing explanations using a key
! Changing the overall appearance

91Quick start: minimal context for data

together in the next section. Unless you have special needs, this may be all you need
to know right now—gnuplot is quite good at automatically “doing the right thing” in
most situations.

6.1 Quick start: minimal context for data
For the sake of concreteness, let’s go back to the DLA (diffusion limited aggregation)
example of section 1.1.2 and in particular figure 1.4. We’ll use this plot as our exam-
ple throughout this section.

 The absolute quickest way to add the most important contextual information to
the plot is to give it a title, such as

set title "Run Time (in seconds)
" vs. Cluster Size (in thousands of particles)"

This tells the observer both what is plotted (computation time versus system size) as
well as the relevant units (time is given in seconds, while particles are counted by the
thousands), conveniently packaged into a single command. This is the bare minimum.

 The title is centered at the top of the graph (as in figure 6.1—you may want to go
back to section 1.1.2 to learn about the context in which this example arose).

 With a little additional effort we can put labels on the axes, using the set xlabel
and set ylabel commands. This frees up the title for contextual information about
the data in the plot, like so:

set xlabel "Cluster Size [thousands]"
set ylabel "Running Time [sec]"
set title "DLA Growth Program: Run Time
" vs Cluster Size (Double Logarithmic)"

Finally, we have the key (or legend), which relates line types to data sets. By default,
it’s placed in the top-right corner of the graph, but this may not be suitable if it would
interfere with data. We can change the position of the key using the keywords

left, right, top, bottom, center

in the set key command, for example, set key right center, to place the key verti-
cally centered on the right side of the graph. The order of the keywords doesn’t mat-
ter, and if only one is given, all other options retain their values. Finally, the key can be
suppressed entirely using unset key.

 We have already seen (in section 2.1.2) how we can change the string describing
the data set in the key using the title option to the plot command. To suppress an
entry in the key, we can either use the notitle option or provide an empty title string.
In the following command, only the actual data curve will have an entry in the key, but
the fitted curve won’t:

plot [0.5:40][.5:30000] "dla-log-short" u 2:6 title "data" w p,
" 1.2*x**2.7 notitle

Now we can put all of this together. Listing 6.1 summarizes all commands that were
used to build figure 6.1.

92 CHAPTER 6 Decorations

set xlabel "Cluster Size [thousands]"
set ylabel "Running Time [sec]"
set title "DLA Growth Program: Run Time
" vs Cluster Size (Double Logarithmic)"

set key top left
set logscale

plot [0.5:40][.5:30000] "dla-log-short" u 2:6 title "data" w p,
" 1.2*x**2.7 notitle

This concludes our quick start, and may be all you need for now. In the rest of this
chapter, we’ll discuss all the miscellaneous options that are available in case we aren’t
happy with the defaults. But first I need to describe the different ways you can refer to
a location on the plot.

6.2 Digression: locations on a graph
First, let’s establish some terminology. The entire area of the plot is referred to as the
screen or the canvas. On the canvas there is the actual graph, which is surrounded by a
border (unless we explicitly turn the border off). The region outside the border is
called the margin. All these are indicated in the figure 6.2.

 We can provide up to two different sets of axes to a plot. This is occasionally useful
when comparing different data sets side by side: each data set can be presented with
its own coordinate system in a single graph. The primary coordinate system (named

Listing 6.1 The set of commands used to create figure 6.1

 1

 10

 100

 1000

 10000

 1 10

R
un

ni
ng

 T
im

e
[s

ec
]

Cluster Size [thousands]

DLA Growth Program: Run Time vs Cluster Size (Double Logarithmic)

data

Figure 6.1 Providing minimal context to a plot using a title and axes labels. See listing 6.1.

93Digression: locations on a graph

first) is plotted along the bottom and left borders. The secondary coordinate system
(second) is plotted along the top and right borders. By default, the secondary system
not shown, instead the primary system is displayed on all four borders. (You’ll find
more information on axes and coordinate systems in chapter 7.)

 Now that we know what all parts of a graph are called, we can talk about the differ-
ent ways to specify locations. Gnuplot uses five different coordinate systems:

first, second, graph, screen, character

The first two refer to the coordinates of the plot itself. The third and fourth (graph
and screen) refer to the actual graph area or the entire canvas, respectively, placing
the origin (0,0) at the bottom-left corner and the point (1,1) in the top-right corner
(see figure 6.2). Finally, the character system gives positions in character widths and
heights from the origin (0,0) of the screen area. Obviously, positions in this last coor-
dinate system depend on the font size of the default font for the current terminal.

 Coordinates are given as pairs of numbers separated by a comma. As necessary,
each number in this pair can be preceded by one of the five coordinate specifiers. The
default is first, and if no coordinate system is given explicitly for y, the one for x is
used for both values.1

 We’ll see many examples of coordinate specifications in the rest of this chapter.

1 Although it may seem weird to use different coordinate systems in the same coordinate pair, this feature is
occasionally very useful. For example, we can use the following command to place a vertical line at a fixed x
location and let it extend over the full range of the graph, independent of the y range: set arrow from 1.25,
graph 0 to 1.25, graph 1.

fir
st

se
co

nd

first

second

Border

Margin

graph (0,0)

screen (0,0)

graph (1,1)

screen (1,1)

Figure 6.2 The parts of a gnuplot graph: canvas, border, margin

94 CHAPTER 6 Decorations

6.3 Additional graph elements: decorations
I use the term decorations for all additional graphical elements that can be placed onto
the graph, but do not (primarily) represent data. The most useful decorations are
arrows and text labels, but gnuplot can also draw arbitrary rectangles. (The current
development version of gnuplot allows additional shapes.)

6.3.1 Common conventions

All decorations are created using the set ... command (see chapter 4). It’s very
important to remember that this command does not generate a replot event: the deco-
rations won’t appear on the plot until the next plot, splot, or replot command has
been issued!

 Keep in mind that decorations aren’t taken into account by the autoscale feature,
which automatically attempts to adjust the plot ranges in such a way as to display the
relevant parts of the data. In other words, if a decoration (or a part of it) falls outside
the plot range (either the explicitly given or the automatically selected one), it will not
appear on the plot. (More on autoscaling in section 7.2.)

 So that we can later refer to a specific object (such as an arrow or a text label), we
can give each object a numeric tag, for instance set arrow 3 Now we can make
changes to this arrow only by providing this tag in the next call to set arrow or even
eliminate it using unset arrow 3. If we omit the label, gnuplot will assign the next
unused number automatically. Arrows, labels, and objects have separate counters.

 Finally, all decorations have a number of options that control their appearance on
the plot. In general, we specify these options inline as part of the set ... call. For
arrows and rectangles, we can also fix these options globally through appropriate set
style commands. Inline styles can still be used to override global settings.

6.3.2 Arrows

Arrows are generated using the set arrow command, which has the following set of
options:

set arrow [{idx:tag}] [from {pos:from}][[to|rto] {pos:to}]
 [[arrowstyle | as {idx:style}]
 | [[nohead | head | backhead | heads]
 | [size {flt:length} [,{flt:angle}]
 [,{flt:backangle}]]
 [filled | empty | nofilled]
 [front | back]
 [[linetype | lt {idx:type}]
 [linewidth | lw {int:width}]
 | [linestyle | ls {idx:style}]]
]
]

We need to specify the two endpoints of the arrow, using the from and to keywords.
When using rto (relative to), the second set of coordinates is interpreted as relative to
the first: set arrow from 1,1 rto 2,0 draws a horizontal arrow of length 2.

95Additional graph elements: decorations

 If we’ve defined custom arrow styles (see the next section), we can simply choose
one of them with arrowstyle (as is a synonym for arrowstyle). Alternatively, we can
provide the required information inline. Let’s go through the options in some detail.
CUSTOMIZING ARROW APPEARANCE

By default, arrows have a single head at the destination endpoint. This behavior can
be changed using the four keywords explained in the table 6.1.

We can also change the form of the head using the size keyword. This option takes two
or three parameters. The length gives the length of each side of the head. The units
are taken from the x axis of one of the coordinate systems; by default first is used.

 You can set the angle that the side of the head makes with the arrow’s “backbone”
using the angle argument. The angle is measured in degrees. It’s not restricted to val-
ues smaller than 90 degrees, so that it’s possible to terminate an arrow with a perpen-
dicular crossbar (for example, to create scale indicators as in figure 6.6), or to create
even more creative arrowheads.

 The backangle option only takes effect when either filled or empty is used. It
measures the angle the back of the head makes with the arrow. The backangle is mea-
sured in the same direction as the angle option. Choosing a backangle greater than
angle but less than 90 creates a “feathered” arrowhead. Making backangle greater
than 90 but less than 180 creates a diamond-shaped head. All these terms are
explained in figure 6.3.

 The arrowhead can be filled with the current line color using filled. Using empty
just draws the outline of the arrowhead (see figure 6.4).

 The arrow is drawn in front of the plotted data if we use front; if back is given, the
arrow is drawn underneath the data.

 If we’ve defined custom line styles, we can choose one of them. Alternatively, we
can specify linetype and linewidth explicitly.

From To

nohead none none

head none head

backhead head none

heads head head

Table 6.1 Options to
set arrow ... controlling
the generation of arrowheads

AngleBackangle

Figure 6.3 The parameters that control the
shape of an arrowhead

96 CHAPTER 6 Decorations

CUSTOM ARROW STYLES

Instead of fixing all options on each arrow individually, we can create custom arrow
styles using set style arrow. Each arrow style is given an index, and we can choose
one of the custom styles when creating an arrow: set arrow arrowstyle 3 ... will
draw an arrow using style 3. Attempting to create an arrow in a style that has not been
explicitly defined will generate an error.

set style arrow {idx:index} default

set style arrow {idx:index} [nohead | head | backhead | heads]
 [size {flt:length} [,{flt:angle}]
 [,{flt:backangle}]]
 [filled | empty | nofilled]
 [front | back]
 [[linetype | lt {idx:type}]
 [linewidth | lw {int:width}]
 | [linestyle | ls {idx:style}]]

The options available for arrow styles are the same as for individual arrows. The
default keyword resets all arrow properties to their default values.
MORE TRICKS WITH ARROWS

The arrow facility is quite flexible and can be used for purposes other than placing
explicit arrows on a plot. Here are some ideas.

 Since an arrow without a head is just a straight line, we can use set arrow ... to
draw arbitrary straight lines on a plot. In particular, arrows can be used to draw vertical
lines. (We don’t need arrows to draw horizontal lines of course; just say plot 1, -1 to
draw horizontal lines at y=-1 and y=+1.)

-10 -5 0 5 10

set arrow

set arrow heads

set arrow nohead

set arrow heads size 0.3,90

set arrow empty

set arrow filled size 0.5,15,165

set arrow empty size 0.75,30,60

(check main text for description)

Figure 6.4 Different arrow forms and the commands used to generate them.
See listing 6.2 for the last one.

97Additional graph elements: decorations

 The ability to mix different coordinate systems in the same coordinate specifica-
tion can come in handy in this context. For example, if we want to draw a vertical line
at x=0.5 from the lower to the upper boundary, we can simply say set arrow from
0.5, graph 0 to 0.5, graph 1, without having to worry about the exact values of
the vertical plot range.

 A set of short arrows without heads can be used to draw custom tic marks, if
gnuplot’s built-in tic marks are insufficient (see chapter 7 for more information on
tic marks).

 Arrows with customized heads can be used to indicate a scale or range on a
graph—figure 6.6 contains such an arrow used for this purpose.

 Finally, we can generate an arrow with two different heads by generating two single-
headed arrows back to back. We can also overlay arrows to generate more sophisti-
cated effects. In listing 6.2, we show the commands used to generate the bottom arrow
in figure 6.4.

set arrow 1 from 0,-9 to 6, -9 size 0.5,30
set arrow 2 from 0,-9 to 5.75, -9 size 0.5,30
set arrow 3 from 0,-9 to 1, -9 backhead size 0.3,90

As we’ve seen, arrows are a versatile graph element. But more often than not, we’ll
want to combine them with some textual explanation. That’s what labels are for.

6.3.3 Text labels

Text labels are a natural companion to arrows: the arrow shows the observer where to
look, and the label explains what is happening. There are fewer options for labels
compared to arrows, so let’s discuss them quickly.

set label [{idx:tag}] ["{str:text}"] [at {pos:location}]
 [left | center | right]
 [rotate [by {int:degrees}] | norotate]
 [font "{str:name}[,{int:size}]"]
 [[no]enhanced] [front | back]
 [textcolor | tc [{clr:colorspec}
 | lt {idx:type}
 | ls {idx:style}]]
 [point lt|pt {idx:pointtype}
 | ps {idx:pointsize} | nopoint]
 [offset {pos:off}]

The label text is typically a constant, but it can also be a string variable or any string-
valued expression (see chapter 4 for more information about string handling in gnu-
plot).

 By default, the text is placed flush left at the position specified by the at ... loca-
tion, but this can be controlled using the left, center, and right keywords.

 Gnuplot allows text to be rotated, but not all terminals support arbitrary angles.
Use the test command to see what’s possible (see section 5.1.2).

 We can control the stacking order with front and back as for arrows.

Listing 6.2 Commands used to generate the double-feathered arrow in figure 6.4

98 CHAPTER 6 Decorations

 The color of the text can be selected using textcolor (abbreviated tc), which
takes two different kinds of arguments: either a colorspec (see section 5.3) or the
index of an existing line type or line style, preceded by one of the keywords lt or ls,
respectively. If the latter form is chosen, the color of the indicated line type or line
style will be used for the text of the label.

 Using point, a symbol can be placed at the position specified with at and the text
label is shifted relative to it. The point style and size can be fixed using lt (line type),
pt (point type), or ps (point size), and the offset can be customized using offset.
The nopoint option suppresses the point.

 Finally, a specific font can be chosen using the font option. The keyword noen-
hanced suppresses the interpretation of enhanced-mode control characters in the text
string, even if enhanced mode is active for the current terminal (read chapter 11 for
an in-depth discussion of font selection and enhanced text mode).

 Besides the fully general set label facility that I just described, gnuplot offers two
specialized labelling commands: to add a label to any axis of the plot, or to add a title
to the entire graph. Both provide convenient shortcuts for common situations.
TITLE

The title option is a label with some special defaults. For instance, it’s automatically
placed centered at the top of the graph.

 The title option takes the following arguments, which should be familiar from
the label discussed previously.

set title ["{str:text}"]
 [font "{str:name}[,{int:size}]"][[no]enhanced]
 [textcolor | tc [{clr:colorspec}
 | lt {idx:type}
 | ls {idx:style}]]
 [offset {pos:off}]

Only the behavior of the offset directive requires an explanation. It can be used to
shift the title from its default position by a specified amount. What’s unusual is that by
default it interprets its argument as given in the character coordinate system. With
this in mind, the following commands are entirely equivalent—both shift the title
down by the height of a single character:

set title "..." offset 0,-1
set title "..." offset character 0,-1

AXIS LABELS

The commands that place labels on the axes of a plot are also variants of the standard
set label command. Since labels can be placed onto any axis, there’s an entire family
of related commands, all differentiated by prefixes (such as x and y), that indicate
which axis the label belongs to. (We haven’t discussed these prefixes yet, but will do so
in chapter 7). In the following synopsis, the underscore (_) stands for any of the per-
missible prefixes.

set _label ["{str:text}"] [offset {pos:offset}]
 [font "{str:name}[,{int:size}]"]

99Additional graph elements: decorations

 [textcolor | tc [{clr:color}
 | lt {idx:type}
 | lt {idx:style}]]
 [[no]enhanced]
 [rotate by {int:degrees}]

All the options are a strict subset of the ones available for the plain set label
command.

 Finally, always keep in mind that both set title and the axis label commands are
merely standard text labels with some convenient defaults. If they don’t give you suffi-
cient control to achieve the effect you’re looking for, you can always use explicit set
label commands instead.

 Besides arrows and labels, which primarily are intended to add explanations to a
graph, gnuplot also offers the user the ability to place arbitrary graph objects on a plot.
This is done using the set object command.

6.3.4 Objects

The set object ... facility can place arbitrary geometrical objects on a graph. At the
time of this writing, only rectangles with their sides parallel to the axes of the plot are
supported, but future versions of gnuplot will also include circles and ellipses as
objects that can be added in this fashion.

set object [{idx:tag}] rectangle [from {pos:from} [to|rto] {pos:to}
 | center|at {pos:ctr}
 size {pos:extent}]
 [default]
 [front | back | behind]
 [fillcolor | fc {clr:color}]
 [fillstyle | fs {idx:style}]
 [linewidth | lw {flt:width}]

set style rectangle [front | back | behind]
 [fillcolor | fc {clr:color}]
 [fillstyle | fs {idx:style}]
 [linewidth | lw {flt:width}]

Most of the options are familiar by now, so we only need to discuss placement and siz-
ing in detail.

 Rectangles can be specified in two ways. We can either fix two corners that are
diagonally across from each other using from and to or rto, or we can fix the center
of the rectangle using either center or at, followed by the width and height. As usual,
all positions, as well as the size can be given in any one of the coordinate systems.

 The familiar front and back options exist to control the stacking order. There is
also the behind option, which will place the current rectangle behind everything else
on the plot. This is intended primarily to provide colored backgrounds for graphs.

 Instead of providing all the detail inline, we can also define a global rectangle style
using set style rectangle. Currently, only a single rectangle style can be defined in
this way and will be used for all rectangles if no specific options are used inline as part
of the set object rectangle command.

100 CHAPTER 6 Decorations

 Arrows, labels, and objects are graphical elements that we can use to make graphs
more interesting and more informative. But they aren’t the only elements that can go
on a plot besides data, and aren’t even the most useful ones. The single most useful
element is probably the graph’s legend or key, which explains what all the lines and sym-
bols on the plot stand for. Gnuplot’s set key facility is very powerful, and therefore
deserves a section by itself.

6.4 The graph’s legend or key
We all know the little boxes on hiking maps explaining what all the symbols mean:
thick red lines indicate highways, white is for country roads, and thin dashed lines
mean unpaved gravel. And the odd-looking symbol with a roof: right, that’s an out-
house. In gnuplot, this box is called the key.

 The key (or legend) explains the meaning of each type of line or symbol placed on
the plot. Because gnuplot generates a key automatically, it’s the most convenient way
to provide this sort of explanation. On the other hand, relying on the key separates
the information from the actual data. I therefore often find it preferable to place
arrows and labels directly on the graph instead, to explain the meaning of each curve
or data set. A separate key excels again when there are so many curves that individual
arrows and labels would clutter the graph.

 As usual, almost anything about the key can be configured. The full command syn-
opsis is as follows:

set key [on|off] [default]

 [[at {pos:position}]
 | [inside | lmargin | rmargin | tmargin | bmargin]]
 [left | right | center] [top | bottom | center]

 [vertical | horizontal] [Left | Right]
 [[no]reverse] [[no]invert]

 [[no]autotitle [columnheader]] [[no]enhanced]
 [samplen {flt:len}] [spacing {flt:factor}]

 [title "{str:text}"]
 [width {int:chars}] [height {int:chars}]
 [[no]box [[linetype | lt {idx:type}]
 [linewidth | lw {int:width}]
 | [linestyle | ls {idx:style}]]]

As you can see, there are a lot of suboptions! To make information easier to find, I’ve
broken the following explanation into separate sections under their own headings.
First we talk about the key as a whole and its position on the plot; then I’ll explain the
internal layout of information within the key itself. And finally, I’ll show you how to
affect the overall appearance of the key, and how to restore sanity, if you’re in danger
of getting lost in all the options.

101The graph’s legend or key

6.4.1 Turning the key on and off

The entire key can be suppressed using either of the following two commands:

set key off
unset key

The command set key on enables it again.

6.4.2 Placement

The key can be placed at any position on the entire canvas. The most straightforward
(but not necessarily the most convenient) method is to fix a specific location using the
at option. The location can be prefixed by any of the standard coordinate system pre-
fixes. The keywords left, right, top, bottom, and center can be used to align the key
relative to the specified position. For instance,

set key at 0,0 left top

places the top-left corner of the key at the origin of the coordinate system.
 As usual, with great power comes great responsibility. When using the explicit at

option, gnuplot does not rearrange the plot in any way to make room for the key: this
must be done explicitly by the user. Instead, we can use several predefined keywords
to place the key relative to the graph. When using these keywords, the borders of the
graph are automatically adjusted to make room for the key.

 We can use the keywords left, right, top, bottom, and center to push the key
into the desired position. We can place the key inside the plot using inside (this is the
default), or on any one of the margins, using lmargin, rmargin, tmargin, bmargin
(meaning the left, right, top, and bottom margin, respectively). We can use combina-
tions of position specifiers, such as set key left top. The effect of these options is
cumulative, so that the following two examples will have the same effect:

set key bottom left

or

set key bottom
set key left

One surprising exception is that the keyword center by itself is interpreted as the cen-
ter of the graph (both horizontally and vertically).

6.4.3 Layout

The samples in the key can either be stacked vertically or aligned horizontally using
the vertical and horizontal keywords. The alignment of the labels within the key is
controlled using the Left and Right options (note the capitals). The default is
vertical Left.

 Usually, the textual description of the line sample is to the left, with the line sam-
ple on the right. This arrangement can be interchanged using reverse.

 Entries in the key are made in the order in which the corresponding data sets
occur in the plot command. If we want to sort entries in some specific way, we need to

102 CHAPTER 6 Decorations

list the data sets in the appropriate order in the plot command. But we can invert the
stacking order of the samples within the key through invert. This is mainly useful to
force the ordering of labels in the key to match the order of box types in a stacked his-
togram (see section 5.2.2).

6.4.4 Explanations

The explanation is a bit of text that assigns a meaning to each line sample or symbol
type included in the key. The string for the explanation can come from one of two
places. The usual (and until recently, the only) source for the explanatory text is the
plot command itself. But the most recent versions of gnuplot added the possibility to
embed the explanation together with the data in the input file. Let’s take a look at
both methods.
TAKING EXPLANATIONS FROM THE PLOT COMMAND

Usually, the explanatory text is taken from the plot command, using the title
keyword:

plot "data" u 1:2 title "Experiment" w l, sin(x) title "Theory" w l

If no explicit title has been set in the plot command, gnuplot will generate a standard
description, based on the filename and the selection of columns plotted.

 There are several ways to suppress key entries. First of all, keep in mind that if an
empty string is given as argument to the title keyword, gnuplot will not generate a
key entry for the corresponding data set. (To generate a key entry without a visible
explanation, use a string consisting only of whitespace as argument.) Alternatively, we
can use the notitle keyword in the plot command instead. Finally, using the noauto-
title option to set key suppresses all key entries that don’t have an explicit title
string in the plot command.

 Interpretation of control characters in the key can be suppressed using the
noenhanced flag (see chapter 11 for details on enhanced text mode).
TAKING EXPLANATIONS FROM THE DATA FILE

The option set key autotitles columnhead, which is only available when gnuplot is
built with support for data strings, makes gnuplot take the explanations for the key
from the first noncomment line in the data file.

 Let’s look at an example. Listing 6.3 shows a data file suitable for use with this
option: note how the first line, containing the column headings (which will be used in
the key of the plot) isn’t a comment line! We can plot this file using the following (see
figure 6.5):

set style data linesp
set key autotitle columnhead
plot "data" u 1:2, "" u 1:3, "" u 1:4

Without the key autotitle columnhead option, we’d have to include the explanations
explicitly in the plot command, like so:

plot "data" u 1:2 t "Wheat", "" u 1:3 t "Barley", "" u 1:4 t "Rye"

103The graph’s legend or key

Year Wheat Barley Rye # Not a comment line!
1990 8 6 14
1991 10 5 12
1992 10 7 15
1993 11 5 13
1994 9 6 12

There is yet another way to achieve the same effect: if the argument to the title key-
word in the plot command is a number instead of a string, then this number is inter-
preted as a column number, and the entry in the key is taken from the first
noncomment line in this column:

plot "data" u 1:2 t 2, "" u 1:3 t 3, "" u 1:4 t 4

Note that the title can be taken from a different column than the data, which can be
useful in combination with data transformations: commands such as plot "data"
using 1:($2/$3) title 2 are legal.

 The ability to take explanations directly from the data file is an interesting new fea-
ture, adding significant convenience in particular when plotting many data sets in the
same plot. Nevertheless, I am a bit uncomfortable with the way it mixes data and com-
ments in the same file without an easy way to distinguish the two, making files using
this format harder to use with data processing filters or as input to other programs.
(I’d probably have preferred to make the line containing the column heads a

Listing 6.3 Data for the set key autotitle columnhead example (figure 6.5)

 4

 6

 8

 10

 12

 14

 16

 1990 1991 1992 1993 1994

Wheat
Barley

Rye

Figure 6.5 A plot of the file in listing 6.3 using the set key autotitle
columnhead option

104 CHAPTER 6 Decorations

comment line, but indicate it through a special marker, such as a doubled hashmark
or other comment character at the beginning of the line.) Judge for yourself.

6.4.5 Appearance

The length of the line sample in the key can be controlled using samplen. The sam-
ple length is the sum of the tic length (see chapter 7), and the argument given to
samplen times the character width. A negative argument to samplen suppresses the
line sample.

 The vertical spacing between lines in the key is controlled using spacing. The
spacing is the product of the point size, the vertical tic size, and the argument to
spacing. This parameter does not influence the horizontal spacing between entries in
horizontal mode.

 The entire key can be given a title, using the title option, and be surrounded by a
frame using box. In this case, it may be necessary to adjust the size of the box: this can
be done using the width and height parameters. Both take the number of characters
to be added or subtracted from the calculated size of the key, before the box is drawn.
In particular, if any text label in the key contains control characters for enhanced text
mode, the size of the autogenerated box may be incorrect. Finally, the parameters of
the lines used to draw the box can be adjusted using the usual options.

6.4.6 Default settings

Just to provide a reference, the default settings for the key are

set key on right top vertical Right noreverse noinvert autotitle
" samplen 4 spacing 1.25 title '' nobox

The previous command is equivalent to the much shorter

set key default

which can occasionlly be helpful to restore sanity when experimenting with key place-
ment and layout.

 Now that we’ve seen all of the different graph elements that can be used in a gnu-
plot figure, it’s time to put everything together and look at a worked example. That’s
what we’ll do next.

6.5 Worked example: features of a spectrum
To put all the things we’ve learned together, let’s study a more extensive example (see
figure 6.6). The plot shows some (supposedly) experimental data, together with two
theoretical curves that might explain the data from the experiment. The data in this
example is fake, but the plot is real enough!

 Listing 6.4 gives the commands used to generate this graph, as they would have
been entered at the gnuplot prompt. Let’s step through them in detail—there is
much to learn.

105Worked example: features of a spectrum

set terminal wxt enhanced

set key top left box

set arrow 1 from -4,.35 to -3.4,0.2
set label 1 "Cusp at x=-{/Symbol p} ?" at -6,0.4

set arrow 2 from 5,-.2 to 5,.95 nohead linetype 4
set label 2 "Singularity at x=5" at 5,1 center

set arrow 3 from -1,0.2 to 1,0.2 heads size 0.1,90
set label 3 "Full Width at\nHalf Maximum" at 0,0.15 center

plot [-7:7][-.2:1.1] "spectrum.dat" u 1:2 t "data" w p,
" 1/(1+x**2) t "Lorentzian", exp(-x**2) t "Gaussian"

1 First, we select our favorite terminal (wxt in this case), making sure to use the
enhanced mode. We haven’t learned about enhanced text mode for terminals yet
(we’ll do so in chapter 11)—suffice it to say that enhanced mode allows us to
use special characters (such as Greek letters) and things such as subscripts and
superscripts in our labels.

2 We move the key to the top-left corner, so that it doesn’t interfere with the data
and surround the key with a box.

3 We place an arrow and a label onto the graph, pointing out an oddity in the
data. Note the odd form of the label text: {/Symbol p}. These characters have a
special meaning in enhanced text mode. Here, we select the Symbol font for
the character p, which is a lowercase Greek letter !.

Listing 6.4 The commands used to generate the plot in figure 6.6

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2 0 2 4 6

Cusp at x=-π ?

Singularity at x=5

Full Width at
Half Maximum

data
Lorentzian
Gaussian

Figure 6.6 A complicated plot. See listing 6.4 for the commands used to generate it.

106 CHAPTER 6 Decorations

4 We use an arrow without heads to place a vertical line on the plot. The line
shows the vertical asymptote as the data approaches the singularity at x=5.

5 Yet another creative use for an arrow, this time with two customized heads. This
arrow isn’t used to point out a feature in the graph, but to give an indication of
a scale. (The “Full Width at Half Maximum” is commonly used in spectroscopy
to measure the width of a spectral line.)

6 The label for the last arrow contains an explicit line break, so that it spreads
over two lines. Remember from chapter 4 that escaped characters (such as the
\n here) in double-quoted strings are interpreted as control characters.

7 Finally, finally: plot the data!

I hope this example gives you an idea of what can be achieved using decorations.
Arrows and labels can be used to explain the data and point out specific features, but
nothing prevents us from getting more creative.

 Everything we’ve discussed in this chapter so far related to graphical elements we
put on the graph itself: simple decorations, such as arrows, labels, and objects, and
complex aggregates, such as the key. But there are other, more global aspects of a
graph we may want to control: its overall size and aspect ratio and the way the actual
plot is contained within the entire graph. That’s what we turn to now.

6.6 Overall appearance
Besides the individual decorations we just discussed, there are some features of a plot
that determine its general appearance: the overall size and aspect ratio, and the pres-
ence or absence of axes and gridlines, borders and margins.

6.6.1 Size and aspect ratio

We have to distinguish between the size of the plot and the size of the canvas. The lat-
ter determines the size of the output file (or screen), while the former affects the size
of the graph on the canvas. The canvas size is specified using the

set terminal {enum:terminaltype} size {flt:x},{flt:y}

command, which we’ll discuss in chapter 11 on files and output devices. Here, we’re
interested in the size of the plot on the screen or canvas, which is controlled by the
set size command:

set size [[no]square | ratio {flt:r} | noratio]
 [{flt:x} [,{flt:y}]]

The numeric values x, y scale the plot with respect to the screen. For values less than
1.0, the graph won’t fill the entire screen; for values greater than 1.0, only part of the
graph will be shown. If y is omitted, the plot will be scaled in both directions by x. For
example, set size 0.5 will reduce the extent of the plot by half along both axes, while
keeping the overall canvas size fixed.

107Overall appearance

 If the size of the graph is smaller than the size of the canvas, it’s not clear where on
the canvas the graph should be located. The graph’s position on the screen is fixed
using the set origin option:

set origin {flt:x},{flt:y}

The arguments give the origin of the graph in screen coordinates.
 The ratio option and its relatives (square and noratio) provide a shorthand to

control the aspect ratio of the plot; that is, the ratio of the y axis length to the x axis
length. Setting set size ratio 2 will therefore result in a plot that’s twice as tall as
wide, and set size square is a synonym for set size ratio 1.

 Negative values for the ratio have a special meaning: set size ratio -1 will scale
the graph so that the length of the x axis unit is equal to the length of the y axis unit.
For ratio -2, the y axis unit has twice the length of the x axis unit; for ratio -0.5, the
x axis unit is twice the y axis unit’s length. Figure 6.7 demonstrates all these settings.

 With nosquare and noratio, we reset the aspect ratio of the graph to the default
value of the terminal (typically a value around 1.25 to 1.5—the postscript terminal
defaults to 10/7; the GIF/JPG/PNG terminal defaults to 600/480). Note that neither
command resets the scale given by x, y.

 It’s possible to give contradictory hints to gnuplot when prescribing both scale val-
ues in addition to the aspect ratio. In such cases, gnuplot attempts to maintain the

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

Default

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-3 -2 -1 0 1 2 3

set size 0.5

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-3 -2 -1 0 1 2 3

set size ratio -1

Figure 6.7 Controlling overall image size and aspect ratio with set size. Clockwise from top left:
default settings, aspect ratio 10/7; full plot size, aspect ratio 1/1; reduced plot on full-size canvas,
default aspect ratio; full plot size, x unit with same apparent length as y unit.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

set size ratio 1

108 CHAPTER 6 Decorations

desired aspect ratio without exceeding the minimum area given by the scale values.
It’s always possible to avoid these situations by fixing only two of the values. My recom-
mendation is to control the size of the plot on the canvas through the x or y scale values,
and to control the aspect ratio using the ratio option. The effect of both of these
options is intuitively clear, and no ambiguity is possible.

6.6.2 Borders and margins

By default, gnuplot puts borders on all four sides of the plot. This is actually quite suit-
able if the graph is going to be used in a larger text document (because it gives the
plot a “frame” separating it from surrounding text), but can feel cluttered for a stand-
alone diagram. And it’s simply unsuitable for some special diagrams that don’t fit
neatly into a rectangular box. For these reasons, gnuplot gives us the ability to control
all parts of the border, using the set border option:

set border [{int:mask}] [front | back]
 [[linetype | lt {idx:type}]
 [linewidth | lw {int:width}]
 | [linestyle | ls {idx:style}]]

The only argument that isn’t familiar by now is mask. This argument is a bit-mask in
form of an integer, each bit referring to one side of the border. A mask value of 1
refers to the bottom, 2 to the left, 4 to the top, and 8 to the right, so that 15 (1+2+4+8)
paints borders on all four sides. (There are additional bits used for three-dimensional
plots using splot—we’ll discuss them in chapter 8.) To draw borders on some, but not
all sides, we first need to unset all borders, and then switch on those we want to see:

unset border # Unset all borders
set border 3 # Switch on bottom and left border: 3=1+2

If tic marks are drawn on the border (as is the default), unsetting the border does not
unset the tic marks: they must be controlled separately using options we discuss in
chapter 7.

 By default, gnuplot calculates the size of the margins automatically, based on the
presence or absence of tics, axis labels, the plot title, and other decorations placed
outside the borders. If necessary, we can fix margins manually, using the following
commands:

set bmargin [{int:margin}] # bottom margin
set lmargin [{int:margin}] # left margin
set tmargin [{int:margin}] # top margin
set rmargin [{int:margin}] # right margin

show margin # show current settings

If an argument is given, it’s interpreted as the desired size of the margins in character
widths and heights, using the current terminal’s default font. Gnuplot makes a best-
effort attempt to determine the average character size for variable-width fonts, either
by using the nominal font size in printer points (PostScript) or by sampling the size of

109Summary

a test string (libgd-based bitmap terminals).2 Omitting the argument restores the
default automatic sizing.

6.7 Summary
In this chapter, we learned how to decorate our graphs with additional image ele-
ments: overall descriptions, such as graph title or key, and additional graphic ele-
ments, such as labels and arrows. We also learned how to change the overall size and
aspect ratio of the entire graph.

 Specifically, we saw

! The set title command, to give an overall description to the plot.
! The set xlabel and set ylabel commands, which can be used to provide

labels for the axes.
! The set arrow command, which can be used to place arrows and other straight

lines directly on the graph.
! The set label command, to add text labels to a plot.
! The set object facility for adding arbitrary rectangles.
! The complex set key command, which allows us to customize the explanation

of lines and symbols used to plot data. The most important directives of the set
key command are
– unset key to suppress the key altogether.
– set key top left, and so on, to move the key to a different spot on the

canvas.
! The set size command, to change the size of the actual plot on the canvas

(changing the size of the canvas is done using set terminal size ...; see chap-
ter 11) and to affect the aspect ratio of the plot.

! The set origin option determines the position of the actual graph on the
canvas.

! The set border option, to turn the borders around the plot on or off.

We also studied some ways that these decorations can be used in creative ways to
achieve somewhat special visual effects, such as unusual arrowheads, and so forth.

 In the following chapter, we’ll take a look at the last important thing that gives a
plot context: the axes, and their subdivisions and labels. Stay tuned.

2 In the current development version of gnuplot, the position of margins can also be specified explicitly using
the screen coordinate system, using a new command syntax: set bmargin at screen Check the stan-
dard gnuplot reference documentation for details.

110

All about axes

In this chapter, we finally come to coordinate axes and their labeling. Treating
them last, after discussing plot styles and decorations, may seem surprising, given
how critical well-labeled coordinate axes are to achieving an informative graph. On
the other hand, gnuplot’s default behavior for axes-related options is perfectly ade-
quate in almost all situations, so that explicit customization is rarely required.

 One topic deserves special consideration, namely, the use of multiple axes on
the same plot, and this is what we’ll discuss first. Then we move on and describe all
the ways that axes and their labels can be customized. Lastly, we treat the special case
when one axis (usually the x axis) represents time, in other words, when the plot
shows a time series. Time series plots pose special challenges, since now the labels
aren’t simply numeric. Instead, we need to worry about things such as the names of
months and weekdays, potentially in different languages, too! This has long been a
problem to gnuplot users, and so I’ll devote significant space to this application.

 But first, let’s talk about multiple axes on the same plot.

This chapter covers
! Using multiple axes
! Selecting plot ranges
! Customizing tic marks and tic labels
! Plotting time series with gnuplot

111Multiple axes

7.1 Multiple axes
Gnuplot gives us the ability to plot graphs using two different coordinate systems
within the same plot. Typically, these coordinate systems will share one axis (otherwise
there’s no good reason to have them on the same plot), but they may also be entirely
independent.

 Plots involving two different y axes usually make the most sense when we want to
compare two data sets side by side which have very different units. As a typical example,
let’s study figure 7.1, which compares the average ice cream consumption (in some
community) over consecutive four-week periods with the mean temperature during
the same period.1

 Figure 7.1 is a good example of why we might want to use multiple axes on a plot:
the two quantities (ice cream consumption and temperatures) have a different nature,
and are also numerically quite different. Yet, once we put them next to each other, the
correlation becomes clear (not too surprisingly, in this example).

7.1.1 Terminology

As we’ve just seen, gnuplot can handle two sets of axes on a single plot. The conse-
quence is that all commands and options to manipulate axes-related properties come
in two versions—one for each set of axes. In this section, we summarize the naming
conventions associated with these commands.

1 This example was inspired by the “Ice Cream Consumption” story, found on the StatLib’s Data and Story
Library (DASL) at http://lib.stat.cmu.edu/DASL/Datafiles/IceCream.html.

 100

 120

 140

 160

 180

 200

 220

 240

 260

01 Apr 01 Jul 01 Oct 01 Jan 01 Apr 01 Jul 01 Oct 01 Jan 01 Apr 01 Jul
-5

 0

 5

 10

 15

 20

 25

M
ea

n
Ic

ec
re

am
 C

on
su

m
pt

io
n

pe
r

H
ea

d
[G

ra
m

s]

M
ea

n
T

em
pe

ra
tu

re
 [C

el
si

us
]

Icecream
Temperature

Figure 7.1 Using multiple axes on a plot to compare two different quantities side by
side. (See listing 7.2 find out how this plot was made.)

112 CHAPTER 7 All about axes

 The primary coordinate system is usually plotted along the bottom and left borders
of the graph. (This corresponds to the first coordinate system we introduced in sec-
tion 6.2.) If the secondary system (second) is used, it’s plotted along the top and right
borders.

 Be default, the secondary system isn’t used. Instead, the tic marks (but not the
labels) of the primary system are mirrored on the opposite sides of the plot.

 All options that modify aspects of the coordi-
nate systems can be applied to any of the axes:
either the x or the y axis, in either the primary or
the secondary coordinate system. The actual
commands and options are prefixed to indicate
which specific axis a command should be
applied to (see table 7.1). Omitting the prefix
applies the option to all axes.

 In the rest of this chapter, I’ll frequently dis-
cuss only one variant of any option—typically the one for the x axis of the primary
coordinate system. It should be understood that everything applies to all other axes as
well, just by selecting the appropriate prefix per table 7.1.

7.1.2 Plotting with two coordinate systems

The best way to understand how multiple coordinate systems are used in the same
plot is through an example. Listing 7.1 shows the beginning of the data file from fig-
ure 7.1, and the complete set of commands used to generate the plot from the data
file is in listing 7.2.

Date Consumption[g] Temperature[Celsius]
1951-04-01 179.8 6.01
1951-04-29 180.8 13.34
1951-05-27 186.5 17.78
1951-06-24 202.1 19.38
1951-07-22 190.1 19.48
...

The first three lines (from set timefmt to set xdata) tell gnuplot how to parse and
format the calendar date used along the x axis. We’ll discuss them in section 7.5 later
in this chapter.

 Next, we switch off the mirroring of the primary axis’s tic marks on the opposite
(right) side of the plot (set ytics nomirror) and instead explicitly switch on tic marks
for the secondary y axis (set y2tics).

 We make sure that labels are placed on the graph—this step is crucial when using
multiple axes, since otherwise the viewer has no chance of figuring out which data set
goes with which axis. We also modify the key from its default location and appearance
(see section 6.4 if you need a refresher on any of the options).

Listing 7.1 The beginning of the data file from figure 7.1

Table 7.1 Prefixes used to indicate the
selected coordinate system

Primary Secondary

x axis x x2

y axis y y2

113Multiple axes

 Finally, the actual plot command. The only thing new here are the axes keywords
and their arguments. These directives tell the plot command which combination of
axes to use for each data set. For example, axes x1y2 means that the data should be
plotted according to the primary x axis, but the secondary y axis.

 There are four possible combinations of axes that can be used, and they can be
selected using x1y1, x1y2, x2y1, and x2y2.

set timefmt "%Y-%m-%d"
set format x "%d%b%y"
set xdata time

set ytics nomirror # Switch mirroring of primary system OFF
set y2tics # Switch secondary system ON

set ylabel "Mean Icecream Consumption per Head [Grams]"
set y2label "Mean Temperature [Celsius]"

set key top left reverse Left

plot ["1951-03-25":]
" "icecream" u 1:2 t "Icecream" axes x1y1 w linesp,
" "" u 1:3 axes x1y2 t "Temperature" w linesp

I hope this example convinced you that using multiple axes in gnuplot is really quite
simple (we’ll also study a further example in section 7.4). A different question is
whether you should do it.

7.1.3 Should you do it?

Multiple axes on a single plot are occasionally frowned upon, because they can easily
be abused to manipulate the message of a graph. Look at figure 7.2. The middle panel
shows both data sets drawn in a single coordinate system. We can see that both curves
grow, but also that one grows more strongly than the other.

 In the other two panels, we show exactly the same data, but how different is the
appearance! In the panel on the top, it seems as if both curves are almost identical,
while in the panel at the bottom, one seems to be growing much more strongly than
the other one. (Look closely—the seemingly strongly growing curve is the one that
changed least in the middle panel.)

 These dramatically different appearances have been achieved solely by manipulat-
ing the plot ranges for each curve individually. Being able to select different plot
ranges for the same data on a single plot is what makes dual axes plots open to the kind
of abuse you see in figure 7.2.

 Also note how in the figure no indication is given which curve is plotted on which
axis, making it impossible to determine the actual meaning of the graph!

 I think dual axes plots have their use, in particular when we want to compare two
quantities side by side that are entirely different in nature and are measured in differ-
ent units. (In this case, we couldn’t even plot them “to scale” in a single coordinate

Listing 7.2 The commands used to generate figure 7.1

114 CHAPTER 7 All about axes

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10
 3.5

 4

 4.5

 5

 5.5

 6

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10
 3.5

 4

 4.5

 5

 5.5

 6

Figure 7.2 The malicious effect of
not-to-scale graphs. The data in all
three panels is the same, but the
scales have been changed for both
curves independently. The scale for
the solid curve is always on the
left, the scale for the dashed curve
is on the right. Only in the middle
panel are both curves drawn to the
same scale.

115Selecting plot ranges

system.) Yet, in all such graphs, care must be taken that the selected plot range is cho-
sen suitably for the data at hand. I’ll have more to say about the effect of scales and plot
ranges in chapter 14.

7.2 Selecting plot ranges
We’ve already encountered plot ranges in chapter 2, but only in a limited form as an
inline specification to the plot command, looking something like this:

plot [-10:10][-2:2] sin(x)

The first pair of numbers in brackets sets the desired x range, while the second
(optional) pair of numbers in brackets fixes the y range.

 This is enough—most of the time. However, using this syntax, only the plot ranges
of the primary coordinate system can be fixed, which is insufficient if we want to use
multiple axes on the same plot. Also, the inline syntax doesn’t work well when attempt-
ing to change the plot range with the mouse.

 The inline syntax is a shorthand for the family of _range commands. (Here and in
the following, the underscore is intended as a placeholder for any one of the prefixes
from table 7.1.) To adjust plot ranges for the primary and the secondary systems inde-
pendently, we need to issue separate set _range commands using different prefixes.
Listing 7.3 shows how this is being done.

 The explicit set _range commands expect a pair of numbers enclosed in square
brackets, similar to the syntax for inline range specifications. Besides providing explicit
lower and upper boundaries, we can leave one or both of the numbers blank, in which
case the corresponding value won’t be changed. Alternatively, we can supply a star (*),
which indicates to gnuplot to turn on the autoscale feature for that particular value.

 If autoscaling is active, gnuplot chooses the plot range so that all of the data (or
function) is visible and then extends the plot range to the next full tic mark position.
Turning on autoscaling for the independent variable (that is, for the x axis) isn’t mean-
ingful unless a data file is being plotted, in which case the plot range is extended to the
next full tic mark that includes all data points from the input file. 2

 Listing 7.3 shows some examples of the _range commands in action.

set xrange [-1:5] # Explicit min and max
set xrange [:10] # Leave min unaffected, set max explicitly
set yrange [3:*] # Set min explicitly, use autoscaling for max
set yrange [:sqrt(2)] # Numeric expressions are legal
set yrange [1:0] # Inverted axes are possible

2 There is also a way to read out the values chosen by the autoscale feature and use them for further computa-
tion. Check the standard gnuplot reference documentation on set _range writeback and set autoscale
for more details.

Listing 7.3 Examples for the syntax permissible when setting plot ranges

116 CHAPTER 7 All about axes

7.3 Tic marks
Tic marks are the subdivision markers placed onto the axes of a plot to indicate the
scale of the graph. Only if tic marks are present can a viewer infer quantitative informa-
tion from a graph. Suitably chosen tic marks are therefore of critical importance to any
well-constructed graph. Fortunately, gnuplot handles tic marks really well on its own
and we rarely need to customize tic mark generation and labeling. But for the few
cases when we do have special requests, here’s how to do it.

 Gnuplot distinguishes between major and minor tic marks. The difference is that
major tic marks also carry a textual label (normally a number), while minor tic marks
don’t. By default, only major tic marks are used, except for logarithmic axes, where
both major and minor tic marks are drawn by default.

7.3.1 Major tic marks

We can control the appearance of major tic marks using the set xtics family of
options. (The usual prefixes for different axes apply.) The command has the follow-
ing synopsis:

set _tics [axis | border]
 [[no]mirror]
 [in | out]
 [scale [default | {flt:major} [,{flt:minor}]]]

 [[no]rotate [by {flt:ang}]]
 [offset {pos:offset} | nooffset]
 [font "{str:name} [,{int:size}]"]
 [textcolor | tc {clr:color}]

 [add]
 [autofreq
 | {flt:incr}
 | {flt:start}, {flt:incr} [,{flt:end}]
 | (["{str:label}"] {flt:pos} [0 | 1]
 [, ["{str:label}"] ...])]

By default, gnuplot draws tic marks on the border of the plot, and mirrors the primary
system on the opposite side. Alternatively, tic marks can be drawn along the zero axis
(for instance, set xtics axis will draw tic marks along the line of the plot where y
equals 0). If the zero axis isn’t within the plot range, the tic marks will always be drawn
along the border.

 Mirroring of tic marks can be turned off. You probably want to do this when using
different coordinate systems for the primary and secondary axes.

 Usually, tic marks are drawn on the inside of the border (extending into the plot
region), but they can be drawn toward the outside using the out option. This is useful
in particular when the tic marks would interfere with the data.

 The scale parameter controls the size of both major and minor tic marks. If no size
for the minor tic marks is given explicitly, it’s set to half the size of the major marks.
The size is given relative to the default size of 1.0 for major tic marks.

117Tic marks

 The text labels associated with major tic marks can be rotated and shifted using
rotate and offset. If rotate is used without an explicit angle (in degrees), the labels
will be turned by 90 degrees to the left. The position of the labels can be adjusted using
offset. The relative shift can be specified in one of the five usual coordinate systems
(see section 6.2). Text font and color can be selected in the usual fashion.

 Finally, we can control where tic marks will be drawn. If we choose autofreq, gnu-
plot will automatically generate tic marks based on the plot range. Alternatively, we can
provide an increment. Tic marks will be drawn at integer multiples of the increment.
Or we can specify a start point, an increment, and (optionally) an endpoint.

 Some examples will clarify:

pi = 3.1415
set xtics pi # Draws tic marks at pi, 1*pi, 2*pi, ...
set xtics 1, pi # Draws tic marks at 1, 1+pi, 1+2pi, ...
set xtics 0,0.1,1 # Draws tic marks at 0, 0.1, 0.2, ... 0.9, 1 only

We can also provide a list of explicit labels and locations at which to draw tic marks.
The list must be enclosed in regular parentheses, with list entries separated by com-
mas. Each entry in the list consists of the text label for the tic mark (possibly empty),
its location, and a third, optional parameter that indicates whether the tic mark
should be drawn as a major or minor tic mark: 0 for major and 1 for minor.

 Using the add keyword, we can apply additional tic marks, without clobbering pre-
vious settings. This can be very useful for adding tic marks for special values to other-
wise autogenerated tics, like so:

set xtics autofreq
set xtics add ("pi" 3.1415)

These commands draw an additional tic mark at 3.1415, in addition to the automati-
cally generated ones. Had we omitted the add keyword in the previous example, the
second line would have clobbered the first, and the only tic mark would have been the
one explicitly set at 3.1415.

7.3.2 Minor tic marks

Minor tic marks aren’t labeled, and are typically drawn smaller than the major tic
marks. By default, minor tic marks are disabled for linear axes and enabled for loga-
rithmic axes.

 Minor tic marks can be switched on using the m_tics family of options, where the
underscore is again used as a placeholder for any of the usual prefixes:

set m_tics [{int:intervals}]

The optional parameter counts the number of subintervals between major tics marks;
the number of minor tic marks generated is one less than this number.

 Minor tic marks are only drawn when there are regularly spaced major tic marks. If
all major tics are individually placed, m_tics will have no effect. Minor tic marks can
still be created manually, using set _tics.

118 CHAPTER 7 All about axes

7.3.3 Formatting the tic labels

We can change the formating used for the labels placed at the major tic marks, using
set format:

set format [x|y|xy|x2|y2] ["{str:format}"]

The format can be chosen for each axis individually. Omitting the axis specifier will
apply the format command to all axes at the same time. (Beware: this is a common
mistake leading to often mysterious error messages!)

 The format string is similar to the format string familiar from the printf() family
of functions from the standard C library. In addition, gnuplot uses extra format (or
conversion) specifiers, which are listed in table 7.2. These conversion specifiers only
apply to numeric arguments; for date/time values, check section 7.5.

 If the % character is encountered in the format string, it’s interpreted as the
beginning of a conversion specifier. It must be followed by one of the characters
from table 7.1. A numeric value may be inserted between the % and the following
character, which will be interpreted as a desired width. For instance, set format
"%.3f" will restrict floating-point values to at most three decimal places. (Check the
documentation for the standard C library’s family of printf() functions for all pos-
sible format modifiers.)

Table 7.2 Conversion specifiers understood by the gprintf(...) function and used to format
numeric values for the set format command. See table 7.3 and table 7.4 for conversion specifiers for
date and time values.

Conversion specifier Description

%f Floating point notation

%e or %E Exponential notation, using 'e' or 'E' (respectively) to indicate exponent

%g or %G Uses the shorter of %f and %e (or %E)

%x or %X Hexadecimal representation

%o (lowercase only) Octal representation

%t Mantissa to base 10

%l Mantissa to base of current logscale

%s Mantissa to base of current logscale; scientific power (restricts power to multiple
of 3)

%T Power to base 10

%L Power to base of current logscale

%S Scientific power (restrict power to multiple of 3)

%c Character replacement for scientific power, such as 'k' (kilo) for 1000, and so on

%P Multiple of !

119Tic marks

Table 7.3 Alphabetically sorted conversion specifiers for date/time information for the set format and set
timefmt commands. See table 7.2 to format numeric values. See table 7.4 for a list sorted by topic.

Conversion
specifier

Available for ...

Values Descriptioninput:
set

timefmt

output:
set

format

%a # Sun, Mon, ... Abbreviated day of week

%A # Sunday, Monday, ... Full day of week

%b # #
(also %h)

Jan, Feb, ... Abbreviated name of month (3 characters)

%B # # January, February, ... Full name of month

%d # # 01–31 Day of month (always two digits on output)

%D # e.g. “03/25/08” Shorthand for “%m/%d/%y” (US date format)

%H # # 00–24 Hour—24-hour clock (always two digits on output)

%I # 00–12 Hour—12-hour clock (always two digits)

%j # # 001–366 Day of year (always three digits on output)

%k # # 0–24 Hour—24-hour clock (one or two digits on output)

%l # 0–12 Hour—12-hour clock (one or two digits)

%m # # 01–12 Month (always two digits on output)

%M # # 00–60 Minute (always two digits on output)

%p # “am”, “pm” a.m./p.m. indicator

%r # e.g. “10:55:48 pm” Shorthand for “%I:%M:%S %p” (US time format)

%R # e.g. “22:12” Shorthand for “%H:%M” (24-hour clock time format
without seconds)

%s # 0–... Unix epoch seconds (input only!)

%S # # 00–60 Seconds (always two digits on output)

%T # e.g. “22:12:48” Shorthand for “%H:%M:%S” (24-hour clock with
seconds)

%U # 00–53 Week of the year (weeks starting on Sunday;
always two digits)

%w # 00–06 Day of the week (0=Sunday; always two digits)

%W # 00–53 Week of the year (weeks starting on Monday;
always two digits)

%y # # 00–99 Year (two-digit; always two digits on output)

%Y # # 0000–9999 Year (four-digit; always two digits on output)

120 CHAPTER 7 All about axes

Table 7.4 Conversion specifiers for date/time information for the set format and set timefmt commands,
sorted by topic. See table 7.2 to format numeric values. See table 7.3 for a list sorted alphabetically by
conversion specifier.

Conversion
specifier

Available for ...

Values Descriptioninput:
set

timefmt

output:
set

format

%s # 0–... Unix epoch seconds (input only)

%S # # 00–60 Seconds (always two digits on output)

%M # # 00–60 Minute (always two digits on output)

%k # # 0–24 Hour—24-hour clock (one or two digits on output)

%H # # 00–24 Hour—24-hour clock (always two digits on output)

%l # 0–12 Hour—12-hour clock (one or two digits)

%I # 00–12 Hour—12-hour clock (always two digits)

%p # “am”, “pm” a.m./p.m. indicator

%j # # 001–366 Day of year (always three digits on output)

%d # # 01–31 Day of month (always two digits on output)

%m # # 01–12 Month (always two digits on output)

%b # #
(also %h)

Jan, Feb, ... Abbreviated name of month (3 characters)

%B # # January, February, ... Full name of month

%y # # 00–99 Year (two-digit; always two digits on output)

%Y # # 0000–9999 Year (four-digit; always four digits on output)

%w # 00–06 Day of the week (0=Sunday; always two digits)

%a # Sun, Mon, ... Abbreviated day of week

%A # Sunday, Monday, ... Full day of week

%W # 00–53 Week of the year (weeks starting on Monday;
always two digits)

%U # 00–53 Week of the year (weeks starting on Sunday;
always two digits)

%R # e.g. “22:12” Shorthand for “%H:%M” (24-hour clock time for-
mat without seconds)

%T # e.g. “22:12:48” Shorthand for “%H:%M:%S” (24-hour clock with
seconds)

%r # e.g. “10:55:48 pm” Shorthand for “%I:%M:%S %p” (US time format)

%D # e.g. “03/25/08” Shorthand for “%m/%d/%y” (US date format)

121Tic marks

 The format string can also contain arbitrary characters, which are placed verbatim
onto the plot. This makes it possible, for instance, to print the units (such as kg or cm)
together with the numerical values.

 Finally, providing an empty string as format specifier to set format is a way to sup-
press the generation of tic labels, although the tic marks will be drawn.

 Let’s look at an interesting example (listing 7.4 and figure 7.3).

set terminal wxt enhanced

set xtics pi
set format x "%.0P{/Symbol p}"

plot [-3*pi:3*pi][-1:1] cos(x)

Let’s step through this example:

1 Make sure enhanced text mode is enabled. (You may choose a different termi-
nal, such as x11 if the wxt terminal doesn’t work for you, as long as it supports
enhanced mode.)

2 Turn on major tic marks at all multiples of !.
3 Choose formatting as a full multiple of !, suppressing any digits to the right of

the decimal sign. Also, append the Greek letter for ! (namely {/Symbol p}) to
the numeric value.

4 Plot. Note the choice of plot range in multiples of !.

Listing 7.4 The commands used to generate figure 7.3

-1

-0.5

 0

 0.5

 1

-3π -2π -1π 0π 1π 2π 3π

cos(x)

Figure 7.3 The graph generated using the commands in listing 7.4. Note the tic marks
at multiples of ! and the Greek letters used for the tic labels.

122 CHAPTER 7 All about axes

It’s important to understand that the format specifier %P will interpret a value as mul-
tiple of !, but by itself does not ensure that tic marks will only be drawn at integer mul-
tiples of !. Instead, we must explicitly choose the locations where tic marks will be
drawn using set xtics, then use set format x "%P" to format the labels at those posi-
tions accordingly. (Try it both ways to fully understand the difference.)

 There are some conversion specifiers in table 7.2 that give us access to the power
and mantissa individually. They’re intended for situations where you want to build
up the combination of power and mantissa yourself; for instance (not using
enhanced mode)

set format y "%.1t^%T"

leads to tic labels of the form 1.5^2. If we use enhanced text mode for the terminal,
we might want to use a format specification like

set format y "%.1t 10^%T"

In enhanced text mode, the caret character will be interpreted as superscript indica-
tor, so that the tic labels will be plotted properly, with the powers as superscripts to 10.

7.3.4 Reading tic labels from file

Finally, we can read the tic labels from the input file, using the xticlabels() and
yticlabels() functions (or xtic() and ytic() for short) as part of the using direc-
tive to the plot command.

 Let’s look at the data file in listing 7.5. We see that the x values are both present in
numeric form (column 1) and as strings. Of course, it would be nice to use the strings
for the tic labels. Here’s how we do that:

plot "months" u 1:2:xtic(3) w linesp

The xtic() function takes as argument the number of a column that will be used for
the tic labels. Equivalent functions exist for the other coordinate axes (ytic(),
x2tic(), and so forth). Labels for the y axis are specified after labels for the x axis.

Month Data Month Name
1 3 Jan
2 4 Feb
3 2 Mar
4 5 Apr
5 8 May
6 7 Jun
7 4 Jul
8 5 Aug
9 3 Sep
10 2 Oct
11 4 Nov
12 2 Dec

Listing 7.5 A data file containing a time series—see listing 7.7 and figure 7.4

123A worked example

When employing any of the _tic() functions, tic marks and labels will only be drawn
at the locations explicitly read from the data file—in other words, autogeneration of tic
marks is turned off.

 In section 7.5.1, we’ll see yet another way to plot a file like the one in listing 7.5.

7.3.5 Grid and zero axes

In addition (or as alternative) to tic marks along the border of the graph, we can over-
lay a scale grid on the data. Grid lines are drawn at the position of major and, option-
ally, minor tic marks.

set grid [[no]_tics] [[no]m_tics]
 [layerdefault | front | back]
 [polar [{flt:angle}]]
 [[linetype | lt {idx:majortype}]
 [linewidth | lw {flt:majorwidth}]
 | [linestyle | ls {idx:majorstyle}]]
 [, [linetype | lt {idx:minortype}]
 [linewidth | lw {flt:minorwidth}]
 | [linestyle | ls {idx:minorstyle}]]

We can switch the grid on to be drawn at major or minor tic marks, for the primary or
secondary coordinate system. (The underscore again must be replaced by any one of
the prefixes from table 7.1.) Tic marks must be enabled—instructions to draw a grid
at nonexistent tic locations will be ignored. The grid is either drawn in front (set
grid front) or behind the data (set grid back). The lines to use for the grid can be
set separately for grid lines drawn at major and minor tic marks. If no style or type is
given, the style ls 0, which draws the least visible lines possible (often using a dotted
line), is assumed. The polar option is only relevant for plots using polar coordinates,
which we’ll discuss in chapter 10.

 Similar to grid lines, but less obtrusive, are zero axes. These are lines drawn across
the graph for all the points where one of the coordinates is equal to zero:

set _zeroaxis [[linetype | lt {idx:type}]
 [linewidth | lw {flt:width}]
 | [linestyle | ls {idx:style}]]

For example, set xzeroaxis switches on a horizontal line at y=0 (representing the x
axis). The default line type is ls 0, same as for the grid.

7.4 A worked example
You may have wondered how I generated the plot in figure 4.1 using two different y
axis scales, each covering only part of the plot. Now we have all the information at
hand to lift the secret (shown in listing 7.6).

 The plot shows the same data twice, but vertically shifted. I achieve this by adjusting
the plot ranges for the primary and secondary coordinate system. Note how the visible
range (from min to max) is the same for both systems, but how the two ranges are off-
set from each other.

124 CHAPTER 7 All about axes

 Now, the only thing missing are the tic marks. Here, I make sure to specify both a
start and an end value for tic mark generation—this way, I achieve the partial labeling
of each axis, only for the part of the plot that’s relevant to each curve. It’s all very sim-
ple, really...

set yrange [9:16]
set y2range [6:13]

set ytics 9,1,12 nomirror
set y2tics 10,1,13

7.5 Special case: time series
Whenever we want to study how some quantity changes over time, we are dealing with
a time series. Time series are incredibly common—from stock charts and opinion
polls to fever curves. Unfortunately, they pose special challenges, since the tic labels
we would like to use for the x axis (such as the names of months or weekdays) aren’t
strictly numeric.

 Worse, they aren’t even universal, but locale-dependent. If we want to plot time
series data, we therefore need to be able to parse arbitrary date/time formats from a
file, and we must have the ability to format timestamps in a suitable, locale-dependent
format.

 Gnuplot offers three different ways to deal with date/time information as part of
axes labels:

! The “classic” way, using set _data and set timefmt, which allows us to parse
and reformat arbitrary date/time information in the input file, and which I’ll
describe in detail in section 7.5.2.

! The “new” style, which reads fully formatted tic labels directly from the input
file using the _ticlabels() functions introduced in section 7.3.4.

! For the special cases when we don’t require arbitrary date/time labels, but
merely want to use the names of months or weekdays in a plot, gnuplot provides
the simplified set _mtics and set _dtics facilities (see section 7.5.1).

In the next section, we first discuss the simpler case of using month or weekday names
as tic labels. Afterwards, we’ll tackle the harder problem of dealing with arbitrary
date/time information, both for input and for output.

7.5.1 Turning numbers into names: months and weekdays

Gnuplot provides two simple commands to turn numbers into the names of months
or days of the week. They offer much less flexibility than the general time series com-
mands discussed in the next section, but are easy to use.

 Let’s look back at the data file in listing 7.5. We want to label the x axis with the
names of the month, but without using the explicit names in the third column. We can
do this using the set xmtics command, which maps numbers to names of months

Listing 7.6 The commands used to generate figure 4.1 in chapter 4

125Special case: time series

(with 1=“January”, ..., 12=“December”). Don’t confuse this command with the set
mxtics command introduced in section 7.3.2, which switches on minor tic marks!

 The sequence of commands in listing 7.7 was used to produce the plot in figure 7.4.
Note the dual x axis, with the primary axis showing the names of the month and the
secondary showing the index of the corresponding month.

set xtics nomirror # switch off mirrored tic marks on secondary axis
set xmtics # set primary tic mark formatting to Months
set x2tics 1,1 # switch on secondary tics, starting at 1, not 0
plot [][0:10] "months" u 1:2 w linesp

This example demonstrates a general problem when using multiple coordinate sys-
tems: the tic marks on the secondary set of axes aren’t properly synchronized with the
data read from file—they are merely tic marks distributed uniformly over the range
inherited from the primary axis of the plot. If we didn’t specify the starting value for
x2tics, gnuplot would distribute 12 units over the range from 0 to 12 (as opposed to
1 to 12), with the result that the primary and secondary tic marks wouldn’t even match
up with each other! This is true in general for tics on the secondary axes: the plot isn’t
scaled to them; they’re merely aliases for the data in the primary axes, and it’s the
user’s responsibility to make sure the range plotted on the secondary axes matches
the data properly.

 Besides the names of months, we also can use days of the week (such as “Mon”,
“Tue”, and so on) as tic labels. We enable them using set xdtics (with 0=“Sunday”, ...,

Listing 7.7 Commands used to plot the file in listing 7.5

 0

 2

 4

 6

 8

 10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

 1 2 3 4 5 6 7 8 9 10 11 12

Figure 7.4 The data from listing 7.5 plotted using the commands in listing 7.7

126 CHAPTER 7 All about axes

6=“Saturday”), similar to what we’ve seen for set xmtics. Both set xmtics and set
xdtics map overflows back into the legal range through a modulo operation (modulo
12 and modulo 7, respectively), as you would expect.

 Listing 7.9 shows an interesting application, where we adjust the x values on the fly
to align the days of the month with the days of the week. The original data file is shown
in listing 7.8.

Day in month Value
1 5.080 # First of the month - a WEDNESDAY!
2 5.310
3 5.561
4 5.574
5 6.008
6 5.540
7 5.419
8 5.519
9 5.715
...
31 5.945

set xtics nomirror
set xdtics
plot "days" u ($1+2):2 w linesp

Listing 7.8 Another time series example—see listing 7.9 and figure 7.5

Listing 7.9 The commands to plot the file in listing 7.8 to generate figure 7.5

 5

 5.5

 6

 6.5

 7

Wed Fri Sun Tue Thu Sat Mon Wed Fri Sun Tue Thu Sat Mon Wed Fri

Figure 7.5 The data from listing 7.8 plotted using the commands in listing 7.9. Note
the days of the week as tic labels on the x axis.

127Special case: time series

We can restore normal (numerical) axes labeling through unset xmtics or unset
xdtics.

 The actual strings used for the tic labels are determined by the current locale. The
default is taken from the LANG environment variable, but can be changed using the fol-
lowing command:

set locale ["{str:locale}"]

The choice of available locales is system-dependent. On Unix systems, you can use the
shell command locale -a for a list of available locales, or check the directory /usr/
share/locale/. Note that some locales have country-specific variations (such as en_AU,
en_CA, en_GB, and en_US). In this case it may not be sufficient to set the general locale
(such as en), and a more specific locale must be chosen.

 Finally, similar commands exist for all other axes, using the usual prefixes per
table 7.1.
OLD VERSUS NEW STYLE

If the data file contains a column with suitable strings that can be used for tic labels,
the new style (see section 7.3.4) is very convenient. Nevertheless, the old style that we
introduced in this section still has its uses. Three points stand out:

! The old style can be used even when the data file doesn’t contain explicit
tic labels.

! The old style supports internationalization through the set locale option.
! The old style gives better results if data points are missing or irregularly spaced.

Remember that the new style plots tic marks only at the locations found in the
data file. So, if for example the entry for the month of May were missing from
the file in listing 7.5, no tic mark for May would be generated using the new
style. By contrast tic marks (and labels) for all 12 months are drawn when using
the old style.

7.5.2 General time series: the gory details

For more general time series, we face two problems: first we must be able to read arbi-
trary timestamps from the input file, and then format them again for output.

 First, we must enable time series mode (for the primary x axis) using

set xdata time

Issuing set xdata (without an argument) restores normal operation again. Equivalent
commands exist for all other axes, distinguished through the usual prefixes.

 In time series mode, input (parsing of timestamps from files) and output (for-
matting timestamps for inclusion in the plot) are controlled by the two commands
set timefmt for input and set format for output. Both accept a format string using
a syntax similar to the one found in the POSIX strftime() routine. (We already
encountered set format in section 7.3.3, but there we only talked about the format-
ting of plain numbers. To this, we now add the possibilities to format complex date/
time values.)

128 CHAPTER 7 All about axes

 Gnuplot assumes all data to be in universal time coordinates (UTC)—it has no facil-
ities to perform time zone changes, adjust for daylight savings, or apply similar trans-
formations. If they are required, they must be applied externally, before attempting to
plot the data.3
INPUT

Time/date information is parsed in a way reminiscent of the scanf() family of func-
tions, and shares its familiar challenges.

 The expected input format is indicated through a format string to set timefmt.
The format string may contain several conversion specifiers, all of which begin with the
% character, followed by a letter that indicates how an input value should be inter-
preted. Check tables 7.3 and 7.4 for a list of all possible conversion specifiers and their
meanings.

 The input format string may contain other characters besides format specifiers, but
input strings must match the format exactly (with some exceptions regarding
whitespace we’ll discuss shortly):

set timefmt "%Y-%m-%d" # will match 2000-01-01, but also 2000-1-1
set timefmt "%d%b%y" # will match 1JAN05, 01Jan05, 1jan05

If there are no characters separating different fields from one another, gnuplot con-
sumes a fixed number of characters per field (left-to-right), and the fields must be left-
zero-padded as necessary:

set timefmt "%Y%m%d" # will parse 20020101 as Jan 01st,
but will parse 2002101 as Oct 01st,
and will fail to parse 200211

Special rules apply when the date format to be parsed contains whitespace. First of all,
gnuplot will interpret whitespace-separated data as occupying several columns. A
timefmt format containing whitespace in turn will consume several columns. A blank
space (not an escaped tab: \t) embedded in a formatting string matches zero or more
blanks (not tabs) in the input file. So, "%H %M" matches 1220, 12"20, and 12"""20.
(The " symbol indicates a whitespace character.)

 An example will help. The following input file

2005-01-01 8:41 3
2005-01-01 9:17 4
2005-01-01 22:46 2
2005-01-02 03:05 5

will be correctly parsed and plotted by the following commands:

set timefmt "%Y-%m-%d %H:%M"
plot "data" u 1:3 w linesp

3 According to the gnuplot documentation, timestamps are internally represented as seconds since midnight,
January 01, 2000 (UTC). Of course, users should not rely on this particular internal representation, but
insight into this piece of the implementation helps to understand the way some values default when generat-
ing tic marks from dates. For instance, when reading only month and day (using set timefmt "%d %m" for
example) but plotting month, day, and year (using set format x "%D" or similar), you’ll find that the year
defaults to 2000.

129Special case: time series

Note that the column used for the y values is the third, since the time format consumes
two columns. Also, the format string contains a single whitespace, but in the data file
several blanks separate the date from the time. The file won’t parse correctly if the
spaces between date and time are replaced by tabs.

 Finally, gnuplot won’t parse strings enclosed in quotes (see section 4.2.1). There-
fore, it’s not possible to parse a file that contains date/time information as strings with
embedded whitespace:

"2005-01-01 8:41" 3 # will NOT parse
"2005-01-01 9:17" 4

Gnuplot seems to be tolerant with regard to the locale when it comes to parsing %b
and %B fields (abbreviated and full name of months), and appears to parse them on a
best-effort basis.
OUTPUT

Compared to parsing time/date information, it’s much easier to format it into
human-readable tic labels. Simply specify the desired output format using set format
_ "..." (where the underscore again is a placeholder for any of the possible prefixes
from table 7.1).

 Only one word of caution: do not omit the specification of the axis to which this for-
mat should be applied. Leaving the axis open will apply the same format to all axes.
This can lead to mysterious error messages. For instance, if the data for the y axis
exceeds the legal range of values for the defined format, this will lead to a Bad format
character message. (Gnuplot won’t generate a plot in these cases, making it difficult
to find the location of the error.)4

 The format string can contain arbitrary text besides the formatting characters.
Here’s a useful snippet to stack the time on top of the date (note the embedded new-
line):

set format x "%T\n%D" # Time stacked on top of date

But other text is also possible, such as formatting characters:

set format x "%Y-%m-%D %H:%M" # Date, followed by time

and even plain text:

set format x "It happened on %A" # Full day of week

In particular when used together with string functions, there is almost no limit to the
appearance of tic labels for plots displaying time series.
WORKING IN TIME SERIES MODE

Keep in mind that when working in time series mode (after issuing the set xdata
time command), all x coordinates will be interpreted according to the current setting
of the set timefmt format option (equivalently for all other axes).

4 If the output formatting routine gets wedged, it may even be necessary to exit gnuplot and restart to reach
consistent behavior.

130 CHAPTER 7 All about axes

 In particular, this means that plotting ranges must be specified as quoted strings, in
the format given by timefmt (the input time format): plot ["01Jan00":"15Jan00"]
"data" u 1:2". Similar concerns hold for the coordinates supplied to set arrow or set
label.

 Finally, don’t forget that the currently selected locale (as inherited from the envi-
ronment when gnuplot was started, or set using set locale) will affect the tic labels
(names of months and of days in week).

7.6 Summary
In this chapter, we talked about all the ways we can control the appearance of the axes
on a plot. It’s been a long chapter, but axes—or rather, the tic marks and labels placed
on them—are important: they enable the viewer to gain quantitative insight from the
data displayed in the plot.

 Before moving on, let’s summarize the most important points:

! Most of the time, gnuplot’s default behavior is just fine. It will place reasonably
spaced tic marks along the axes and label them appropriately.

! We can put an explanatory label on each axis using the set xlabel and set
ylabel commands.

! Tic marks are usually autogenerated, but we can exert great control using the
set _tics family of commands. We can influence the range and frequency at
which tic marks are placed; we can even put individual tic marks onto the plot
explicitly.

! Using the same family of commands, we can also customize the appearance of
tic marks and tic labels.

! The visible range of a plot is controlled through the set _range family of
functions. Alternatively, plot ranges can be specified inline as part of the plot
command.

! Gnuplot supports multiple coordinate systems in a single graph. We can switch
them on through the set x2tics and set y2tics commands, but need to take
care not to generate a confusing graph or a graph that distorts the data inap-
propriately.

! There are several ways to format time and date information for use in tic labels.
Numbers can be formatted as names of months or weekdays through the simple
set _mtics and set _dtics commands. For more sophisticated labeling tasks,
we can use the set xdata time facility, together with the range of formatting
options available through the set format command.

This chapter concludes our overview of what I would call “basic” gnuplot. In the fol-
lowing chapters, we’ll look at some exciting but distinctly more advanced topics, such
as color in graphs, multidimensional plots, and other special-purpose features.

 We’ll also take an in-depth look at ways to script and program gnuplot, and learn
everything there is about exporting graphs to standard file formats.

Part 3

Advanced Gnuplot

In this part, we look at several more complicated topics in detail. First we dis-
cuss several more sophisticated plotting techniques that we have not encoun-
tered before; then we talk about ways to configure gnuplot’s terminals and use
its scripting capabilities.

 Chapter 8 introduces three-dimensional plots.
 Chapter 9 is about color plots and also discusses different ways color can be

used to convey information in a graph.
 Chapter 10 discusses some special techniques, such as graphs containing sev-

eral subplots, or polar and parametric plots. I also introduce gnuplot’s curve-
fitting capabilities.

 Chapter 11 describes in detail how to export graphs from gnuplot to file,
using gnuplot’s terminal capabilities.

 Chapter 12 explains how to script gnuplot and how to call it from other pro-
grams. We also discuss how to use gnuplot to create dynamic graphics for use on
a website.

133

Three-dimensional plots

In all the plots that we’ve seen so far, we plotted one variable (y) as a function of
another one (x). But what if we want to show how some quantity depends on two
independent variables? In other words, how can we best visualize a single “output”
variable as a function of two “input” variables?

 One approach we can take distinguishes the two input variables into the actual
independent variable (x) and one parameter. We can then generate a plot showing y
as a function of x, for different values of the parameter, as shown in figure 8.1.
There, we plot the function

f(x,a) = 0.5*(x**4)/4! + a*(x**2)/2 + x/2 + 2*a

as a function of x—but for three different values of the parameter a.
 Quite often, this method turns out to be sufficient, in particular when there’s a

natural distinction between the independent variable and the parameter. For
example, in a biology experiment, we may want to study how the size of a cell

This chapter covers
! Basics of three-dimensional plots
! Generating surface and contour plots
! Plotting data from a file

134 CHAPTER 8 Three-dimensional plots

culture changes over time, but for three different nutrient solutions. This leads natu-
rally to three different curves, one for each choice of nutrient.

 Whenever the second variable assumes only a few distinct values, we’re probably
better off treating it as a parameter, rather than as a second independent variable.
(Such quantities are referred to as categorical variables in the statistical literature. Fur-
ther examples include on/off, male/female/unknown, new account/established
account. The choice of nutrient solution is another example.)

 But sometimes we have a genuine need to plot a data set as a function of two equiv-
alent variables, neither of which can be declared a parameter. A typical case often
occurs whenever we try to show how a quantity is distributed across a spatial area: in
such a situation, neither direction is distinguished from the other. The only suitable
way to present such data is in a plot that treats both independent variables equivalently.

 It’s not possible to represent more than two dimensions in a (flat) graph directly,
so we have to resort to some form of visual trickery. There are three ways to do this: we
can use perspective to create the illusion of depth in our graph. Or we can draw a flat
graph, but indicate elevation through the use of contour lines—this is the method
familiar from topographic maps. Finally, we can use color to indicate the third dimen-
sion. We can even combine some of these techniques in the same graph.

 The gnuplot command to generate any one of these graphs is the splot com-
mand—a close relative of the plot command we’ve been working with so far. In this
chapter, we’ll learn everything there is to know about it and will also discuss some spe-
cial gnuplot options that are only relevant for plots generated using splot.

-10

-5

 0

 5

 10

 15

-6 -4 -2 0 2 4 6

f(x,1)
f(x,0)

f(x,-1)

Figure 8.1 Plotting f(x,a) = 0.5*(x**4)/4! + a*(x**2)/2 + x/2 + 2*a for
three different values of the parameter a

135Basics

 A word of caution. Graphs generated with the splot command can be visually very
appealing, and we’ll see some nice examples in the rest of this chapter and in
chapter 9. Nevertheless, my recommendation is to use them sparingly and to also
explore other ways of representing multivariate data (such as the one in figure 8.1).
Surface plots are often stunning, but (because of the additional need to find a suit-
able view point) getting them “right” is disproportionately more difficult. Reading
quantitative (as opposed to qualitative) information off of them is often tricky, if not
impossible. Finally, they are simply not suitable for noisy data sets. But they can be
effective for conveying the broad aspects of a multidimensional data set, in particular
to an audience that has a harder time making sense out of other ways of representing
such data (such as false-color plots: for those, see chapter 9).

8.1 Basics
As mentioned previously, the syntax of the splot (short for surface plot) command is
very similar to the syntax for the plot command. The differences are largely due to
the need to handle one additional dimension, which we’ll refer to as the z direction.

 Here’s an example of the splot command in action (also see figure 8.2—if your
plot doesn’t look anything like figure 8.2, keep on reading; I’ll tell you about the
options you need to adjust manually to get a satisfactory result shortly):

splot [-2:2][-2:2]

" exp(-(x**2 + y**2))*cos(x/4)*sin(y)*cos(2*(x**2+y**2))

We can see how the function must depend on two variables, called x and y. Corre-
sponding to the two variables, there are two brackets to limit the plot range. A third
bracket can be added to restrict the plot range in the new, “vertical” z direction.

 Most of the additional options we know from the plot command are available for
the splot command as well. We can plot data from a file as well (see section 8.4 later
in this chapter) and use many of the directives familiar from plot. The title option
is available to place a descriptive string into the key. The using directive now requires

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

y

Figure 8.2 Creating three-dimensional plots using the splot command:
splot [-2:2][-2:2] exp(-(x**2 + y**2))*cos(x/4)*sin(y)*cos(2*(x**2+y**2))

136 CHAPTER 8 Three-dimensional plots

three arguments to pick out the columns used for the x, y, and z directions, respec-
tively. Similarly, we have to add a third bracket if we want to restrict the z range: splot
[xmin:xmax][ymin:ymax][zmin:zmax] Although we don’t show an example
here, nothing prevents us from plotting several functions simultaneously using splot:
e.g. splot f(x,y), g(x,y).

 Finally, we can select the plotting style in the usual form through the with option.
Not all the styles we described in chapter 5 are available with splot. Only points,
lines, linespoints, and impulses can be used with splot. In particular, this means
that none of the styles drawing errorbars are available.

 Besides using, we can use index and every to plot only parts of a file. The smooth
directive (see chapter 3) isn’t available for splot, but we can apply data transforma-
tions as part of the using directive, as discussed in section 3.4. Furthermore, the
dgrid3d option provides a way to calculate and plot a smooth approximation to a
noisy data set when using splot (see section 8.4.3 later in this chapter).

 Global options can be used with splot in the same way as with plot. Both set
style function and set style data have the desired effect. In addition to the famil-
iar xrange and yrange options (see section 7.2), there’s now a zrange option to con-
trol the plot range globally.

 Arrows and labels (but no rectangles) can be placed onto a three-dimensional
graph without problems. Just remember to provide a third value to each coordinate
for the z value (for example, set label "text" at -2,-3,1).

 In contrast to plot, graphs generated with splot can have only a single coordinate
system. Therefore, all the options used to control the secondary coordinate system
(see section 7.1) have no meaning for graphs generated with splot. Also the axes
directive can’t be used with splot. We’ll study tic marks and axes in more detail later,
when we discuss ways to choose the viewpoint for a graph created with splot.

8.2 Options for surface and contour plots
In this section, we’ll study the options used to generate surface and contour plots.
(Density and false-color plots will be discussed in chapter 9, after we’ve had a chance
to talk about color and palettes.)

 To keep the discussion simple, we’ll focus on plotting functions for now. We’ll
come back to plotting data from a file toward the end of this chapter, in section 8.4.

8.2.1 Surface plots

There are three options specific to the appearance of a surface plot: isosamples,
hidden3d, and surface.

 The isosamples option controls the number of grid points at which a function will
be evaluated when using splot. (Keep in mind that this option is only relevant when
plotting functions—it has no effect when plotting data from a file. But see section 8.4.3
on dgrid3d for comparable functionality when plotting data.)

137Options for surface and contour plots

 The set isosamples command takes one or two integer values, which specify the
number of grid points in x and y direction, respectively. If only a single value is pro-
vided, it’s used for both directions:

set isosamples {int:xlines} [, {int:ylines}]

By default, functions are evaluated on a 10 x 10 grid, which is too coarse to give a
good, smooth appearance of the plotted curve. I find values of around 30 to be
ideal—using an even finer grid brings little additional smoothness, but leads to grid
lines overlapping each other unfavorably. Figure 8.3 shows the same function plotted
in figure 8.2, but now plotted with the default setting of set isosamples 10.

 In both the figures drawn with splot we’ve seen so far, the surface was opaque:
parts closer to the observer obscured parts of the surface further back. By default, this
effect is off, and only a transparent wire-mesh of the surface is drawn. To switch to an
opaque surface rendering, we use the set hidden3d option. Figure 8.4 demonstrates
what a plot looks like if no opaque surface is drawn.

 You’ll usually want to adjust both of these options explicitly, since their default set-
tings rarely lead to satisfying surface plots. In fact, I include the following lines in my
gnuplot startup file (see chapter 12):

set hidden3d
set isosamples 30

The hidden3d option can take a number of options arguments. The most important
of these are offset and trianglepattern.1

set hidden3d [offset {int:offset}] [trianglepattern {int:mask}]

1 There are a few further options to hidden3d, most of which deal with certain edge cases that may arise when
making a surface plot containing undefined points or points outside of the z range. Check the standard gnu-
plot reference documentation if this is relevant to you.

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

y

Figure 8.3 The isosamples option controls the number of nodes used to
draw the surface. Here, we use the default value of set isosamples 10,
whereas in figure 8.2 we used a much finer grid of set isosamples 30.

138 CHAPTER 8 Three-dimensional plots

The offset keyword can be used to control the color and line type that will be used
for the bottom side of the surface. As we know, gnuplot will cycle through all available
plot styles for each new data set. Through the integer argument to offset, we can
control how far the internal style counter should be advanced from the style used for
the top side of the surface. By default, gnuplot chooses the next available style. An
argument of zero (set hidden3d offset 0) will draw both sides of the surface in the
same style.

 Through the trianglepattern keyword, we can control which lines will be drawn
to connect neighboring grid points. The argument to trianglepattern is an integer,
which will be interpreted as a bitmask (see table 8.1).

 Any combination of bits can be selected. The default is 3, so that the surface is
made up out of rectangular surface elements. When using a value of 7, diagonal lines
are also drawn, so that the surface appears to be made out of triangles. Figure 8.5
compares different settings of this option.

 The third option affecting the appearance of the surface is set surface. By
default, the surface is shown, but it can be switched off entirely using the following
command:

unset surface

Table 8.1 The values used in the mask to the set hidden3d option

Bit position Value Description

0 1 Lines parallel to x axis

1 2 Lines parallel to y axis

2 4 Diagonal lines, from the
southwest to the northeast

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x
y

Figure 8.4 The same plot as in figure 8.2, but without the opaque
surface effect. Use set hidden3d to enable the drawing of an opaque,
nontransparent surface.

139Options for surface and contour plots

We switch the surface back on using set surface.
 For surface plots, this is of course not useful, but we’ll see later in this chapter and

in chapter 9 other graphs that are generated using splot, but in which a surface
doesn’t play a role.

8.2.2 Contour lines

We can add contour lines to a plot generated using splot. Contour lines can be a
great help when it comes to associating specific z values with surface plots. And, as
we’ll see toward the end of this section, they can be extremely useful by themselves.
(Mapmakers and hikers have known this for a long time!)

 One word of caution: when plotting data from a file (instead of functions), the fea-
tures discussed in this section require that the data be prepared in a “gridded” format:
either coming from a file using the grid (as opposed to the matrix) layout, or by using
dgrid3d to obtain an on-grid approximation to the actual data. (We’ll be talking more
about plotting data from files using splot in section 8.4.)

 We use the set contour option to enable contour lines:

set contour [base | surface | both]

By default, contour lines are only plotted on the bottom of the box surrounding the
surface plot. But contours can also be drawn on either the plot surface, or on both
(base and surface), through the use of the appropriate options to set contour (as in
figure 8.6).

isosamples 90
trianglepattern 1

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

y

isosamples 60
trianglepattern 2

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

y

isosamples 60
trianglepattern 4

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

y

isosamples 40
trianglepattern 7

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

y

Figure 8.5 Comparing different values of isosamples and hidden3d trianglepattern.
Except for the values of those two options, these graphs are identical to figure 8.2.

140 CHAPTER 8 Three-dimensional plots

If contours are active (through set contour), we can control two aspects of the con-
tours through the set cntrparam option: the smoothness of the contour lines, and
their spacing.

set cntrparam [linear | cubicspline | bspline]

set cntrparam [points {int:q}]
set cntrparam [order {int:q}]

set cntrparam levels [auto [{int:n}]
 | discrete {flt:z0} [, {flt:z1} [, ...]]
 | incremental
 {flt:start}, {flt:inc} [, {flt:end}]]

To draw contours, gnuplot determines a set of points (called nodes) at which the func-
tion (or data) has the same z value. Through the first set of keywords, we can choose
how these points will be connected: linear (the default) uses straight lines; cubic-
spline uses a smooth curve, which is guaranteed to pass exactly through the nodes;
and bspline uses a curve that’s guaranteed smooth, but isn’t guaranteed to pass
through the nodes exactly. For “crumply” surfaces, or low resolutions (that is, few grid
points), one of the spline options may give significantly better results than the default.

 We can specify two additional parameters that are relevant to the way splines are
drawn (they have no meaning for linear mode). The points option controls the
number of points for which the interpolation between any two neighboring nodes is
evaluated when drawing the contour. More points again mean smoother curves. With
order, we can set the order of the spline to be used (this option is only relevant for
bspline). The order must be an integer between 2 and 10. The greater the order, the

0.2
0.1
0.0

-0.1
-0.2
-0.3

-2.0
-1.5

-1.0
-0.5

0.0
0.5

1.0
1.5

2.0

x

-2.0
-1.5

-1.0
-0.5

0.0
0.5

1.0
1.5

2.0

y

Figure 8.6 Adding contour lines at the base and on the surface using set contour both and set
cntrparam levels incremental -0.3,0.1,0.8. The function is the same as in figure 8.2.

141Coordinate axes and view point

smoother the contour. Note that both points and order require separate calls to set
cntrparam—they can’t be combined with the type of curve (linear, cubicspline, or
bspline) in the same call.

 Using set cntrparam levels, we can control how many contour lines will be
drawn and for which values of z. The different ways we can do this are reminiscent of
the options used to place tic marks along the axes (see section 7.3.1). Gnuplot auto-
matically generates an entry in the key (see section 6.4) for each contour line. Calls to
set cntrparam levels must be made separately from selecting the type of curve and
can’t be combined into a single command.

 When using auto, approximately five uniformly spaced contour lines will be
drawn. We can pass an integer argument to auto to change the number of contour
lines that will be generated. All these settings are approximate, because gnuplot will
attempt to place contour lines at “round” numbers.

 Using discrete, we can control exactly where contour lines will be placed. The
discrete suboption takes a comma-separated list of z values as argument, at which
contours should be drawn. All z values for which contours should be shown must be
specified in a single call to set cntrparam levels discrete.

 Lastly, we can fix a starting z value and an increment (and optionally an end value)
through the incremental keyword.

 By default, contour lines change their line type (color or dash pattern) from one
consecutive z value to the next, and the line styles, together with the associated z val-
ues, are entered into the key of the graph. The clabel option gives us a certain
amount of control over the appearance of the key:

set clabel ["{str:format}"]

The optional format string, which can be passed to clabel, fixes the number format
that will be used to print the z values in the key. (See section 7.3.3 for the syntax of the
format string.) We can also remove all entries for the contour lines from the key
through unset clabel. In this case, all contour lines will be drawn with the same line
style, but none are entered into the key.

 Because contour lines allow us to associate a specific z value with a point on the
graph, they allow us to include quantitative information into a three-dimensional plot.
In fact, we don’t even need to make the plot three-dimensional anymore: a flat bird’s-
eye view showing only contour lines can be a practical representation (as in a topo-
graphic map). This brings us to our next topic: the view point.

8.3 Coordinate axes and view point
With three-dimensional plots, we face a new problem that doesn’t exist with regular,
two-dimensional plots: we can view them from different positions and under different
angles. We must therefore choose a view point. Closely related is the issue of coordi-
nate axes: we need to provide a clear frame of reference so that the viewer can under-
stand from which position the graph is seen. And finally, we have to provide a scale
and tic marks if we want to convey quantitative information. Let’s look at all of that.

142 CHAPTER 8 Three-dimensional plots

8.3.1 Borders

A regular (two-dimensional) plot has four borders that we can modify using the set
border option, as we’ve seen in chapter 6. For a surface plot, we can imagine the
entire surface embedded in a cube. Now, the set border option can be used to switch
each individual edge of this cube on or off.

 The set border command takes an integer argument, which is interpreted as a 12-
bit bitmask, each bit turning one of the edges on or off. Table 8.2 shows the bit posi-
tions for each edge of the surrounding cube.

 The default value is 31 when using splot, turning on the four sides of the base and
the leftmost vertical axis. (No matter what’s specified in the set border option, bor-
ders other than the base are only drawn if set surface is true.)

 Labels can be placed along the borders of the plot in the usual fashion using set
xlabel, set ylabel, and (only for splot) set zlabel. In all graphs in this chapter,
I’ve made sure to use explicit labels on both the x and the y axes.

 Tic marks are drawn independently of the borders—see chapter 7 for all the
options available to control the drawing and placement of tics. Just keep in mind that
the secondary coordinate system (x2tics and so on) isn’t available, but that instead
there’s an additional set of options to control the appearance of tic marks in z direc-
tion (ztics and so forth).

 By default, the surface is elevated a certain distance above the base plan of the sur-
rounding box. We can control this elevation through the xyplane option:

set xyplane [at {flt:zvalue} | {flt:frac}]

There are two ways we can use set xyplane to fix the position of the base relative to
the plot surface.

 We can simply specify an explicit z value at which the base plan should be drawn,
using the keyword at together with xyplane:

set xyplane at 0.1

Table 8.2 The values of the mask used in the set border option. The fat lines are the ones switched
on by the corresponding bit in the mask.

Bit
postion

Value Edge
Bit

postion
Value Edge

Bit
postion

Value Edge

0 1 4 16 8 256

1 2 5
32

9 512

2 4 6 64 10 1024

3 8 7 128 11 2048

143Coordinate axes and view point

This is the easiest way to fix the location of the base plane if we use an explicit plot
range in the vertical direction.

 If the z range is dynamically chosen, it doesn’t make sense to specify a fixed loca-
tion for the base plane; instead its position should be chosen as a fraction of the total
apparent height of the figure. This is precisely what set xyplane without the at key-
word does: it allows us to control the elevation of the plot surface above the base plane
as a fraction of the total z range.

 A few examples may help to clarify. The command

set xyplane 0

puts the base plane right at the low end of the z range. Choosing

set xyplane 0.5

elevates the plotted surface by half the total z range (or half the apparent height of
the plot) above the base plane. Using negative arguments to set xyplane lifts the
base plane so that it intersects with the plot surface. For example, the command

set xyplane -0.5

places the base plane at the middle of the z range.
 The following formula can be used to convert between the two models. It tells us

the z value at which the base plane will be drawn, given the fractional parameter f and
the z-range [zmin:zmax]:

z = zmin - f * (zmax - zmin)

8.3.2 View point

When creating surface plots using splot, we can control one aspect of the graph that
has no equivalent in two-dimensional plots as we’ve seen so far: the view point, that is,
the location (relative to the graph) from which the observer appears to be regarding
the plotted surface. We can set the view point in two ways: either programmatically
with the set view option, or interactively using the mouse.

 The more convenient way to adjust the viewing angle is of course using the mouse!
Grab the plotted surface (by left-clicking into the plot window) and drag it to its
desired position. This requires a reasonably fast computer (and works much better if
the surfaces are opaque—when hidden3d is true). When holding down the Control
key while dragging with the mouse, only the box surrounding the graph is shown: this
may facilitate this process on slow computers or for surfaces containing many points.

 Holding down the middle mouse button and moving the mouse zooms the graph:
moving the mouse left to right increases the size of the entire graph (and vice versa).
Moving the mouse upward stretches the graph in the z direction only; moving the
mouse downward shrinks the graph in z direction. Again, we can suppress rendering
of the actual plot surface when dragging by holding down the Control key while mov-
ing the mouse.

144 CHAPTER 8 Three-dimensional plots

 Finally, holding down the Shift button together with the middle mouse button
allows us to move the base plane of the plot (this is equivalent to set xyplane).

 The set view command gives us exactly the same capabilities, but in a noninterac-
tive fashion. The set view option takes up to four optional arguments:

set view [{flt:polar} [, {flt:azimuthal}
 [, {flt:scale} [, {flt:z_scale}]]]]
set view map

The first two arguments are the angles (in degrees) of the view point around the hori-
zontal and the vertical axes, respectively. (In spherical coordinates, these are the polar
and azimuthal angles.) The first angle is restricted to the range [0:180], while the sec-
ond angle is restricted to [0:360]. In figure 8.7, we demonstrate how a graph can
appear from different view points.

 The third and fourth parameter correspond to the zooming effect I’ve already
mentioned in the context of mouse interactions. Both default to 1.0: choosing
smaller scale factors results in a smaller graph on the canvas.

 Finally, set view map is a shorthand for set view 0, 0, 1, 1, which places the
observer right above the plotted surface, so that the observer perceives just the base

set view 60,65
set xyplane -0.25

-2

-1

 0

 1

 2

x

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

set view 77,77
set xyplane 0

-2
-1

 0
 1

 2
x

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

Figure 8.7 Different view points.
Compare to figure 8.2 where the same
function is shown with set view
45,50.

145Plotting data from a file using splot

plane of the plot as a regular, two-dimensional plot. This allows us to show graphs as a
contour plot, meaning without the three-dimensional plot surface (which is sup-
pressed through the unset surface command). Listing 8.1 summarizes the com-
mands necessary to go from a three-dimensional surface plot to a flat contour plot,
and figure 8.8 shows the result.

 To get good results when creating contour plots, you might want to increase the
number of grid points, using set isosamples 100 or higher. Alternatively, you can
experiment with the spline options on set cntrparam.

set view map # Choose birds-eye view
set size square # Choose equal units in both directions
unset surface # Switch off the surface...
set contour # ... but switch on contours lines
set cntrparam levels 10 # Increase the number of contour lines
set clabel "%.1f" # Choose format of contour labels in key
set isosamples 150 # Increase sampling frequency

The set view map command comes in particularly handy when we start discussing
false-color plots in chapter 9.

8.4 Plotting data from a file using splot
Everything we’ve done so far involved the plotting of functions only. Surely, gnuplot
can use data from a file to generate surface and contour plots? Of course it can!

 There are two supported data file formats that work with splot. For data files in
other formats, or for data that’s not on a grid, check the dgrid3d option described in
section 8.4.3.

Listing 8.1 Commands to switch to a contour view—see figure 8.8

0.3
0.2
0.1

-0.0
-0.1
-0.2
-0.3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

y

Figure 8.8 The function from figure 8.2
plotted in contour view. See listing 8.1.

146 CHAPTER 8 Three-dimensional plots

8.4.1 Grid format

If the data file is in grid format, each line must contain both x and y coordinates, as well
as the z value that is to be plotted. Data must be organized into data blocks, which are
separated from each other by a single blank line. Each block must contain all data
points for a single row of data points, parallel to the x axis (in other words, within
each data block, the x coordinate stays constant, but the y coordinate runs).
Listing 8.2 shows a short example file demonstrating this format. The corresponding
plot is in figure 8.9.

x y z
 0 -1 10
 0 0 10
 0 1 10

 1 -1 10
 1 0 5
 1 1 10

 2 -1 10
 2 0 1
 2 1 10

 3 -1 10
 3 0 0
 3 1 10

One very important restriction: all data blocks must contain the same number of data points.
If the number of data points isn’t the same in all data blocks, or if even a single data
point is missing or invalid, splot can’t draw a surface.

Listing 8.2 A simple data file suitable for splot—see figure 8.9

 0

 0.5

 1

 1.5

 2

 2.5

 3

x

-1
-0.5

 0
 0.5

 1

y

 0

 2

 4

 6

 8

 10

z

Figure 8.9 The data from listing 8.2 plotted using splot "data" u 1:2:3 w linesp

147Plotting data from a file using splot

 This is a formal requirement, only: there’s no constraint that the data values (that is,
the x and y coordinates) form a regular grid. But the resulting plot may look strange
or may not be very useful if the underlying grid is too distorted.

 It’s actually instructive to see what gnuplot does with a “defective” file that doesn’t
follow this format. Figure 8.10 shows the results of the splot command for a file
that’s the same as in listing 8.2, except that the last line (the point at (3,1,10)) has
been omitted.

 The splot command connects all points in one data block consecutively, but
doesn’t connect data points separated (in the file) by a single blank line—this is
exactly what the plot command does when encountering single blank lines in a file.
But in addition, splot staggers the plots for successive data blocks (front to back) and
thus gives the illusion of optical depth. Finally, cross lines (parallel to the x axis) are
only drawn when the data in the input file fulfills the requirements of regular, gridded
data blocks, as discussed earlier.

 As mentioned in the introduction to this chapter, many of the directives familiar
from the plot command are available when plotting gridded data using splot. In par-
ticular, we can have different data sets in a single file, separated from each other by
double blank lines (as discussed in chapter 3). We can then select a specific such set
using index. The every directive can be used to pick out subsets of each data set.
Finally, the using directive can be used to choose the data columns for x, y, and z val-
ues and to apply data transformations in the usual fashion (see section 3.4).

 0

 0.5

 1

 1.5

 2

 2.5

 3

x

-1
-0.5

 0
 0.5

 1

y

 0

 2

 4

 6

 8

 10

z

Figure 8.10 The splot command requires all data points to be supplied on a regular grid, with
none missing. This figure shows what happens when the last point (at x=3, y=1) has been omitted
from the data file in listing 8.2. The splot command is the same as in figure 8.9.

148 CHAPTER 8 Three-dimensional plots

8.4.2 Matrix format

The matrix format is an alternative file format for data on a regular grid. It’s more com-
pact, because the coordinates of the grid points aren’t stored in the file; only the z val-
ues at the grid locations are kept. The data set from listing 8.2, stored in matrix
format, is shown in listing 8.3.

y1: x1 x2 x3 ...
y2: x1 x2 x3 ...
y3: ...
10 10 10 10
10 5 1 0
10 10 10 10

Each row corresponds to a single y value, each column to a single x value. We can plot
a file in matrix format by appending the matrix keyword after the filename in the
splot command:

splot "data2" matrix w linesp

If you execute this command, you’ll find that we’ve lost all information on the real x
and y coordinates—which makes sense, given that they aren’t encoded in the input
data at all in this format! This is a serious problem: without coordinates, it’s not possi-
ble to interpret a graph properly.

 If we plot data in matrix format, we therefore have to provide our own coordinates.
As it turns out, we can use the using directive for this purpose. In the context of the
splot ... matrix command, there are three pseudocolumns that can be used as part
of using. Pseudocolumns 1 and 2 refer to the integer index of each data point,
counted from zero, while pseudocolumn 3 refers to the actual z value. Put another
way, the value of pseudocolumn 1 is the number of the column in the data file, while
the value of pseudocolumn 2 is the line number.

 It’s now very easy to reconstruct the absolute coordinates of each data point in a
regular grid from the index of the position through a linear transformation. If x0
and y0 are the absolute coordinates of the first point in the file, and dx and dy are
the respective spacings between lattice points, then the absolute coordinates for any
point are

splot ... matrix using (x0+dx*$1):(y0+dy*$2):3

For the example file, the first point is located at (0, -1) in absolute coordinates, and
the spacing between consecutive points is 1 in either direction, so this expression
reduces to

splot "data2" matrix using 1:(-1+$2):3 w l

This command will give exactly the same plot as figure 8.9.

Listing 8.3 The data from listing 8.2 in the more compact matrix format

149Plotting data from a file using splot

 The usual splot directives apply to the matrix format as well: you can use index
and every. Data transformations can be applied to the z value as well, through
pseudocolumn 3.

 One final word of advice: when using the matrix format to store data, always, always
store the absolute coordinates of the first value and the lattice spacings in both direc-
tions as a comment in the file itself!

8.4.3 Smooth surfaces

Surface plots can be fun, but as we’ve seen, several things can go wrong, so that splot
either can’t be used at all, or leads to unsatisfactory results:

! Data is scattered (not on a regular grid), so that no regular surface can be
drawn.

! Data is sparse, so that the surface consists only of a few elements and is there-
fore not easy to recognize.

! Data is noisy, so that the surface appears overly bumpy.
! The data file isn’t in a suitable format.

Gnuplot provides a slick little facility that takes arbitrary input data and generates a
smooth interpolation onto a two-dimensional grid: the dgrid3d option.

 If dgrid3d is on, splot doesn’t plot the raw data. Instead, it reads the data and
then generates an approximation to this data for every point of a regular grid. The
number of grid points and some aspects of the interpolation algorithm can be con-
trolled through set dgrid3d.2

set dgrid3d [{int:nx} [, {int:ny} [, {int:q}]]]

set dgrid3d [{int:nx} [, {int:ny}]]
 [splines
 | qnorm [{int:q}]
 | gauss | cauchy | exp | box | hann
 [{flt:dx} [, {flt:dy}]]]

By default dgrid3d is disabled. When enabled, 3D data read from a file are always
treated as a scattered data set. A grid with dimensions derived from a bounding box of
the scattered data and size as specified by the nx and ny parameters is created for plot-
ting and contouring. The grid is equally spaced in x rows and in y columns; the z val-
ues are computed as weighted averages or spline interpolations of the scattered
points’ z values. In other words, a regularly spaced grid is created and a smooth
approximation to the raw data is evaluated for all grid points. Only this approxima-
tion is plotted, but not the raw data.

 The number of columns defaults to the number of rows, which defaults to 10.
 Several algorithms are available to calculate the approximation from the raw data.

Some of these algorithms can take additional parameters. These interpolations are

2 Only the first form of the set dgrid3d option is available in gnuplot version 4.2; the extended second form
is only available in version 4.3 and up.

150 CHAPTER 8 Three-dimensional plots

such that the closer the data point is to a grid point, the more effect it has on that
point.

 The splines algorithm calculates an interpolation based on thin plate splines. It
doesn’t take additional parameters.

 The qnorm algorithm calculates a weighted average of the input data at each grid
point. Each data point is weighted inversely by a measure of its distance from the grid
point raised to the q power. (For arbitrary q, the weights are calculated as the inverse of
dxq + dyq, where dx and dy are the components of the separation of the grid point from
each data point. If q takes on the value 4, 8, or 16, gnuplot uses the Euclidean distance
when calculating the weight: (dx2+dy2)q/2.) The power of the norm can be specified as
a single optional parameter (it defaults to 1). This algorithm is the default.

 Finally, several smoothing kernels are available to calculate weighted averages: z =
#i w(di) zi / #i w(di), where zi is the value of the ith data point and di is the distance
between the current grid point and the location of the ith data point. All kernels
assign higher weights to data points that are close to the current grid point and lower
weights to data points further away. Table 8.3 lists all available smoothing kernels.

 When using one of the five smoothing kernels from table 8.3, up to two additional
parameters can be specified: dx and dy. These are used to rescale the coordinate dif-
ferences when calculating the distance di = (((x-xi)/dx)2 + ((y-yi)/dy)2)1/2, where x and y
are the coordinates of the current grid point and xi and yi are the coordinates of the
ith data point. The value of dy defaults to the value of dx, which defaults to 1. The
parameters dx and dy make it possible to control the radius over which data points
contribute to a grid point in the units of the data itself.

 Figure 8.11 shows the data from listing 8.2 plotted when smoothed using dgrid3d
with the Gaussian kernel. (The Gaussian kernel is probably the most generally useful
and versatile kernel—unless you have specific reasons to use a different one, it’ll prob-
ably serve you well in a variety of situations.)

 The dgrid3d facility isn’t perfect. In particular, it can’t be turned on and off for
individual data sets—either all data sets are smoothed with it, or none. This makes it
impossible, for instance, to plot the raw data together with the smooth surface. But

Table 8.3 The smoothing kernels available with set dgrid3d for gnuplot
versions 4.3 and higher

Keyword Definition

gauss w(d) = exp(-d2)

cauchy w(d) = 1/(1+d2)

exp w(d) = exp(-d)

box w(d) = 1 if |d| < 1; w(d) = 0 otherwise

hann w(d) = 0.5 (1-cos(2 ! d)) if |d| < 1; w(d) = 0 otherwise

151Summary

overall, dgrid3d is a great tool to generate good-looking two-dimensional graphs from
otherwise unsuitable data.

8.5 Summary
In this chapter, we’ve started to explore ways to visualize data that depends on more
than one variable. Gnuplot’s primary tool for this purpose is the splot command,
which is an extension of the familiar plot command to three dimensions.

 The splot command can be used to plot surface graphs of functions or data
depending on two variables. Using the set contour facility and related options, it’s
possible to add contour lines to a graph, thus making it easier to extract quantitative
information from the plot.

 The splot command can plot either functions or data. Data can only be plotted if
it’s supplied on a regular grid and is formatted in a suitable format. But even if the
data isn’t on a grid or is too distorted by noise, the dgrid3d facility allows us to draw
smooth surfaces representing the data.

 But the splot command can do more: it can represent numeric values as color, add-
ing yet another dimension to our abilities to visualize data. And it’s to color, and gnu-
plot’s sophisticated support for smoothly varying color palettes, that we’ll turn in the
next chapter.

 0

 0.5

 1

 1.5

 2

 2.5

 3

x

-1
-0.5

 0
 0.5

 1

y

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

z

Figure 8.11 The same data as in figure 8.9 but plotted after turning
on smoothing using set dgrid3d 30,30 gauss 0.6,0.6

152

Color

We haven’t talked much about color yet in this book, so you might be wondering
whether gnuplot isn’t good at handling it. Quite the opposite! Gnuplot has some
clever features to handle palette-mapped color plots: plots in which colors are chosen
from a continuous spectrum or palette and used to express a numeric quantity.

 When we briefly discussed color before (in chapter 5), we were only interested
in specifying a single color at a time: one color for the first data set, a different color
for the second data set, and so forth. In this chapter, we take the opposite view:
color that varies smoothly, and therefore can be used to indicate continuous
changes within a single data set.

 But first we must set up the palette that we want to use for our plots. As we’ll see,
this isn’t an easy process, and the set palette command we use for this purpose is
complicated. In the first part of this chapter, we’ll discuss all aspects of defining a
palette using set palette in detail. If you’re in a rush, you might want to skip

This chapter covers
! Understanding color spaces
! Defining palettes
! Creating colored graphs with palettes
! Using color to represent data

153Defining palettes

ahead to section 9.3, where I describe some complete palettes that you can use in your
graphs right away, together with some recommendations for good palette design.

 I’ll then show you how to use palettes to add color to surface plots. In the final sec-
tion, we look at density or false-color plots: often the best way to visualize complicated
data in two dimensions.

9.1 Defining palettes
For the rest of this chapter, I’ll refer to a mapping that assigns a color to each value
within a plot range as a palette (color-map is an alternate expression you may find in
the literature). The first thing we must do is to set up the palette we want to use for
our plot. We do this using the set palette option, but before we can describe its
syntax, we must take a brief detour and describe how color can be specified in com-
puter graphics.

9.1.1 Color spaces: a refresher

The most common method to specify a color in computer graphics is through its RGB
(red-green-blue) values: a triple of numbers giving the relative intensities of the red,
green, and blue components that make up the desired color. In chapter 5, we encoun-
tered the compact #RRGGBB notation for RGB triples in hexadecimal representation,
which is widely used outside of gnuplot (for instance, in Cascading Style Sheets). By
convention, RGB values lie between 0 and 255.

 This method of describing a color has the advantage that it corresponds directly to
the way computer displays operate, but it’s not a particularly intuitive way for a human
to use. (Quickly, what does #CC6633 look like?)

 The HSV (hue-saturation-value) scheme is an alternative to the RGB color descrip-
tion and the most popular intuitive color model. Hue describes the actual shade of
the color (by convention, a hue value of zero corresponds to red, followed by yellow,
green, cyan, blue, magenta, and purple). The saturation measures the richness of the
color, from pale pastel shades to full saturation. Finally, the third element of the HSV
triple (value) describes the lightness of the color, from very dark to very bright. All
HSV values vary from 0 to 1.

 Both ways to describe color are equivalent: mathematical algorithms exist to con-
vert any RGB triple into an HSV triple and vice versa.1

 This little refresher out of the way, we can now move on to describe the set
palette command in detail.

1 You can find conversion routines between RGB and HSV color spaces in many texts on computer graphics
and on the web. The Wikipedia entry for “HSV Color Space” is a good starting point. The book Computer
Graphics: Principles and Practice by J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes (2nd ed., 1995) is a
classic reference (beware of typos and occasionally wrong or misleading diagrams).

154 CHAPTER 9 Color

9.1.2 The palette option

We use the set palette command to map ranges of numeric values to colors. The
command is relatively smart, doing a lot of the leg work for us: for instance, it’s suffi-
cient to specify only the start and end values and the start and end colors, and gnuplot
will construct a smooth color continuum for all intermediate data values automati-
cally. But if we want to, we can provide detailed descriptions of how the interpolation
should be done. Here is its synopsis:

set palette [model [RGB | HSV]]
[defined ({flt:v1} {clr:color1},

{flt:v2} {clr:color2}, ...)
| functions f1(gray), f2(gray), f3(gray)
| file "{str:filename}" [using ...]]

[positive | negative]
[maxcolors {int:n}]

The command can interpret both RGB and HSV triples: use the model keyword to indi-
cate which color space to use. The default model is RGB. Note that once a color space
has been chosen, this choice remains in effect until a different color space is explicitly
selected: this means that we don’t have to repeat the model ... in every call to set
palette (although it’s often convenient to do so).

 There are three different ways to define the mapping from the plot range into the
color spectrum. Using defined, we provide a list of colors together with their relative
positions along the spectrum, and gnuplot will smoothly interpolate between these
values. Alternatively, we can provide a set of three functions that transform the plot
range into color components using the functions keyword. Finally, we can read a list
of colors from a file with file.

 Let’s look at these possibilities in a bit more detail.
CREATING PALETTES BY INTERPOLATING BETWEEN INDIVIDUAL COLORS

By using set palette with the keyword defined, we can build up a palette from a list
of individual colors:

set palette model RGB defined (0 "red", 0.5 "yellow", 1 "green")

We see several things. First of all, we explicitly request the RGB color space. Then we
give a set of three values together with their colors.

 It’s important to understand that the values given to defined specify the relative
positions of the corresponding colors in the resulting spectrum: gnuplot will rescale
the spectrum to cover the plot range of the data set automatically, so the palette
defined previously will “just work,” regardless of whether the values we want to plot lie
in the interval [0:1] or not.

 On the other hand, the following command will generate quite a different palette:

set palette model RGB defined (0 "red", 0.1 "yellow", 1 "green")

In this case, the three colors aren’t equally spaced along the plot range, but the yellow
is much closer to the red end than to the green.

155Defining palettes

 You can use the test palette command to generate a picture of the palette we
just defined. Color figure 1 shows the resulting test images for the most recent palette
definitions.

 Colors can be specified in a defined gradient in one of three formats: by their
name enclosed in quotes (such as "red", "green", and so on), as a hex triple
("#FF0000", "#00FF00", and so on), or as a space-separated triple of floating-point
numbers between 0 and 1 (1 0 0, 0 1 0, and so on—this notation is most useful in con-
junction with the HSV color model). All three formats are equivalent, and all can be
used together in a single command.

 In other words, the following commands are equivalent (the alignment tries to
indicate corresponding entries):

set palette model RGB defined (0 "red", 1 "yellow", 2 "green")
set palette model RGB defined (0 "#FF0000",1 "#FFFF00",2 "#00FF00")
set palette model RGB defined (0 1 0 0, 1 1 1 0, 2 0 1 0)

Gnuplot defines a set of 78 predefined colors that can be referenced by name. Using
show palette colornames lists all names together with their RGB values. Color names
only make sense when using the RGB color model—gnuplot will warn you when you
attempt to use them together with the HSV model. (Internally, color names are always
replaced by their RGB triples, which may not be very meaningful when the HSV model
is in effect.)

 If you think that having three different color formats to choose from is confusing,
realize that they’re intended to be used with different color spaces. Color names and
hex strings are the normal way to specify colors in the RGB color space. On the other
hand, triples of floating-point values make perfect sense for the HSV model.
CREATING PALETTES WITH FUNCTIONS

Whereas set palette defined builds up a continuous palette from a discrete set of
colors, with set palette functions we can define a palette using functions that map
the normalized plot range into the color space. Functions work particularly well with
the HSV color model, because we can picture smooth curves in the HSV space reason-
ably well. If we say, “let’s increase the lightness steadily, while at the same time drasti-
cally reducing the saturation,” we have an idea what that looks like, and it’s easy to
express the desired behavior mathematically.

 When using the functions keyword, we must provide three functions, one for
each component of the chosen model (either RGB or HSV). The functions must map
the interval [0:1] to [0:1]. By convention, the “dummy” variable on these functions
isn’t called x, but gray. Here’s an example:

set palette model HSV functions gray,1,1

The functions here are exceedingly simple: the first function is simply the identity
(f(gray) = gray), and the second and third functions are constants (f(gray) = 1).
Don’t forget that the dummy variable must be called gray. Although this example uses
only simple functions, we can use arbitrarily complicated functions here, including
user-defined ones.

156 CHAPTER 9 Color

 The preceding example generates a rainbow: we iterate over the entire range of
hues, while keeping both saturation and lightness constant at maximum intensity.
We’ll see more examples of palettes using functions and the HSV space below in sec-
tion 9.3.
READING PALETTES FROM FILE

The last way to define a palette using set palette that I want to mention involves
reading a set of color points from a file specified with the file keyword. This method
is similar to set palette defined, except that the colors are read from a file, rather
than being given inline.

 The set palette file command requires three or four columns. If four columns
are given, the first one is interpreted as the location of the corresponding color in the
plot range. Columns can be selected with using and the values for the color compo-
nents read from the file must be in the interval [0:1]. Inline transformations can be
applied in the way familiar from the plot command, for instance, to rescale values to
fall into the required range. Here’s an example that reads in a file containing RGB val-
ues from 0 to 255 and rescales them to the unit interval in one go:

set palette model RGB file "palette.txt"
" using ($1/255):($2/255):($3/255)

And here’s the corresponding file, representing a rainbow (in RGB space):

255 0 0 # Red
255 255 0

0 255 0 # Green
0 255 255
0 0 255 # Blue

255 0 255

The set palette command has a few more options that you can read about in the
standard gnuplot reference documentation. I only want to mention two here: first off,
you can invert the order of the color spectrum by supplying the negative keyword to
set palette. There’s also a corresponding positive keyword to return to the original
behavior. Finally, we can limit the number of different colors in the palette through
the integer argument to the maxcolors option. This option can be useful when creat-
ing large plots for terminals that only allow for a finite number of colors (such as GIF
or X11). It has no effect on terminals that allow an infinite set of colors (such as wxt).
QUERYING AND TESTING PALETTES

We’ve already encountered the test palette command to generate a test image for
each palette. We can generate a test image for any terminal and direct it to a file by issu-
ing appropriate set terminal and set output commands, followed by test palette.

 Lastly, we can use show palette to obtain information about the current palette
settings:

show palette [palette {int:n} [float | int]
 | gradient | colornames]

157Creating colored graphs with palettes

As a convenience, we can export the RGB values of the smooth spectrum that gnuplot
generates for us—for instance, to use them in another application. The command
show palette palette (note the double use of the word palette) takes a mandatory
integer argument, which indicates the number of intermediate colors in the exported
palette. By default, the output is formatted for humans, but by giving either the int or
float keywords, we can obtain a listing that’s easier to parse from a program. This list
can be exported directly to a file by setting the set print option (see section 4.4.1) to
a suitable destination filename first.

 The command show palette gradient can be used to show the defined colors and
their locations if the palette has been set up using defined. We’ve already encoun-
tered the command show palette colornames, which lists all named colors known to
gnuplot.

 Now that we understand the mechanics of defining palettes, we can move on and
discuss how to create plots that use palettes!

9.2 Creating colored graphs with palettes
Now that we know how to set up a palette, let’s discuss how we use it. In the following
section (section 9.3), I’ll show you how to use it well.

9.2.1 The pm3d mode

Colored graphs are controlled through the option pm3d (for palette-mapped three-dimen-
sional). Actually, pm3d is both a style that can be used inline with splot or set style
and an option that can be manipulated with set pm3d. As an option, it has the follow-
ing set of suboptions:

set pm3d [at [b|s|t]]
[implicit | explicit]
[hidden3d {idx:linestyle} | nohidden3d]
[interpolate {int:xsteps},{int:ysteps}]
[corners2color

[mean|geomean|median|min|max|c1|c2|c3|c4]]
[scansautomatic

| scansforward | scansbackward | depthorder]

In pm3d mode, gnuplot constructs a surface from colored, nontransparent polygons.
Because the polygons are opaque, no explicit hidden-line removal is required—
instead, surface areas closer to the observer hide surface areas further away. The
resulting effect therefore depends on the order or direction in which the surface has
been drawn. Although gnuplot will usually choose a reasonable strategy for drawing
surfaces, it helps to keep this point in mind when working in pm3d mode. An example
of what a plot using pm3d looks like is shown in figure 9.1.

 A colored, opaque surface can be drawn at three positions: at the top of the plot-
ting box, on the plotted surface itself, or at the bottom. The position is specified
through the keyword at together with a combination of the letters b (bottom), s (sur-
face), and t (top). Each letter can appear twice (for example, set pm3d at bsb: this is
one instance where the way surfaces are drawn in pm3d mode is potentially relevant).

158 CHAPTER 9 Color

By default, the command set pm3d puts pm3d into implicit mode, meaning that all sur-
faces drawn with splot will be drawn using colored, nontransparent polygons. If we
want to combine colored surfaces together with transparent, wire-mesh surfaces in a
single graph, we need to choose the explicit mode using set pm3d explicit. In explicit
mode, we need to specify the pm3d as part of the splot command:

splot f(x,y) w l, g(x,y) w pm3d

will plot the function f(x,y) with a transparent wire-mesh, but the function g(x,y)
with a colored, opaque surface.

 A colored surface can be drawn together with a wire-mesh of the same surface
using set pm3d hidden3d. This command takes as an additional, mandatory argument
the index of a (previously defined) line style, which will be used for the wire-mesh.
When using this plot mode, don’t forget to switch off the regular surface and hidden-
line removal using unset surface; unset hidden3d.

 As an alternative to set dgrid3d (see section 8.4.3), pm3d has a similar interpolat-
ing capability, triggered by the keyword interpolate, which takes two mandatory
arguments, giving the number of interpolation steps in both x and y directions.

 The two remaining directives to the set pm3d command control the way the sur-
face is constructed: the corners2color keyword selects how the color of each polygon
is determined from the z coordinates of its four corners: as mean, median, and so on,
or by choosing the value from one of the corners directly. The scansforward, scans-
backward directives control the direction in which the surface is constructed. The
default is scansautomatic and usually doesn’t need to be changed.

9.2.2 The colorbox

The colorbox is the equivalent of the key (see section 6.4), but for colored plots. It
indicates the mapping between colors and numeric values.

 The colorbox is only visible in pm3d mode; that is, after a set pm3d command has
been issued. Its appearance is controlled through the set colorbox options:

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

x

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

y

-0.4
-0.3
-0.2
-0.1
 0
 0.1
 0.2
 0.3
 0.4

Figure 9.1 The familiar image from figure 8.2, this time plotted using pm3d

159Creating colored graphs with palettes

set colorbox [vertical | horizontal]
 [noborder | bdefault | border {idx:linestyle}]

[default | user [origin {pos:orig}]
[size {pos:size}]]

The colorbox can be oriented either horizontally or vertically (this is the default). It
usually is surrounded by a border, but this can also be customized.

 The standard size and position for the colorbox can be chosen using the default
keyword. Alternatively, the keyword user selects customized sizing and placing of the
colorbox, indicated through the appropriate optional arguments. For three-dimen-
sional plots, the only permitted coordinate system is the screen system (see
section 6.2), but for two-dimensional plots (including set view map plots), all coordi-
nate systems can be used.

 The colorbox can be suppressed using unset colorbox. Keep in mind that hiding
the colorbox doesn’t allow the viewer to extract any quantitative information from
your plot, since there’s no “obvious” mapping from colors to numbers and vice versa.
Don’t do it, unless you’re sure that the graph is meaningful even without the colorbox.

 You can think of the colorbox as just a little plot within a larger one, and so it
responds to all commands and options that manipulate plot ranges, axes, and tic
marks. For the colorbox, there’s only a single axis, running from low values (and the
corresponding colors) to high values (and colors). This axis is known as the cb (for
colorbox) axis. Table 9.1 lists all relevant options. None of these options change the way
colors are distributed in the palette; they merely change the way numeric values are
assigned to those colors.

Table 9.1 Colorbox options. They control the placement and formatting of tic marks along
the colorbox, and are therefore very similar to the corresponding commands for any of the
other axes.

Option name Description Section

cbrange Sets the range of numeric values covered by the colorbox, indepen-
dently of the range chosen for the range of z values.

7.2

logscale cb Distributes numeric values logarithmically across colors. 3.6

cblabel Assign a text label to the colorbox. (This label will be placed next to
the colorbox. If the label is invisible, use set cblabel offset,
because the default placement may put the label outside the can-
vas area.)

6.3.3

format cb Format string for the tic labels placed next to the colorbox. 7.3.3

cbtics Controls all aspects of tics for the colorbox (major tic marks). 7.3.1

mcbtics Minor tic marks for the colorbox. 7.3.2

grid cbtics Draws grid lines within the colorbox at the major colorbox tic
positions.

7.3.5

grid mcbtics Draws a grid within the colorbox at the minor colorbox tic positions. 7.3.5

160 CHAPTER 9 Color

The range of the colorbox can be chosen independently from the z range of the plot.
If the range of numeric values covered by the colorbox (as set with the set cbrange
option) is larger than the zrange, only a small fraction of the available colors will be
used in the plot. Conversely, if the cbrange is smaller than the zrange, those parts of
the plot that have z values outside the cbrange will be colored using the color corre-
sponding to the nearest end of the colorbox spectrum.

 Setting set logscale cb distributes tic marks (that is, numeric values) logarithmi-
cally across the color spectrum leading to a logarithmic color scale.

9.2.3 Other ways to use color

The pm3d mode is meant to generate colored surfaces in the way that I just described.
But because it’s so flexible, it can be used in further ways to create attractive graphs.
Here are a few ideas.

 We can let the apparent height of the surface and the local color of the surface
represent different quantities. So far in this chapter, we used color only to enhance
the height perception of the surface, but now we let height and color represent differ-
ent quantities. This is done through an additional parameter to the using directive to
the splot command:

set pm3d at s
splot "data" u 1:2:3:4 w pm3d

Here, the first and second column of the data file are taken as x and y coordinates,
while the value of the third column is used for the z coordinate (the height) of the
surface, and the color is assigned according to the fourth column.

 By adjusting the view point, we can achieve other interesting effects. For example,
we can plot a function depending only on one variable using splot, but viewing it from
the side to obtain the appearance of a two-dimensional plot. Why would we do that?
Because we can now color the curve depending on its local value! This may be inter-
esting when generating a control chart: if the curve is within the desired range, it’s
colored green, but as it approaches some threshold, its color changes smoothly to red.

 There’s a special style to do this: with lines palette (which also works with
points or linespoints). Listing 9.1 demonstrates how it’s done, and color figure 2
shows the result.

cbdata time Choose time series mode for the values in the colorbox. 7.5.2

cbdtics Use weekdays as tic labels for numeric values. 7.5.1

cbmtics Use months as tic labels for numeric values. 7.5.1

Table 9.1 Colorbox options. They control the placement and formatting of tic marks along
the colorbox, and are therefore very similar to the corresponding commands for any of the
other axes. (continued)

Option name Description Section

161Using color for data representation

set view 90,0 # View from the side
set isosamples 200,2 # Good resolution along x-axis,

few points along y-axis

unset ytics # Not needed
set xtics offset 0,-2 # Push tic marks down from default position

set border 4095 # Turn on all borders
set xyplane 0 # Center the plot within the bounding box

set palette defined (0 'red', 0.25 'red', 0.5 'green',
" 1.5 'green', 1.75 'red', 2 'red')

splot sin(x)**3 + 0.3*sin(5*x) w l palette

Most of the commands in listing 9.1 should be self-explanatory: first we select a view
point that allows us to view the surface from the side (that is, along the direction of
the y axis). Because of this, the y axis is no longer visible and we end up with a two-
dimensional graph spanned by the x and z axes. To get a smooth curve, we increase
the resolution along the x axis, but to improve performance, we reduce the resolution
along the y axis to its bare minimum. Because tic marks for the y axis aren’t needed,
they’re switched off (otherwise they interfere with the graph), and tic marks for the x
axis are shifted downward, which makes more sense given the selected view point.

 But there’s also an entirely different way to utilize the pm3d mode: we can do away
with the (apparent) elevation of the surface altogether and merely provide a birds-eye
view of the surface (by using set view map, introduced in section 8.3.2), but without
the contour lines that we described in the previous chapter. Instead, we use color
alone to indicate the z value of the data at each point in the plot range. This leads to
so-called false-color plots and is such a powerful technique that we’ll spend the rest of
this chapter talking about it.

9.3 Using color for data representation
In a false-color plot, color alone is used to express the magnitude of some quantity.
But how do you express a magnitude (that is, a number) as color? There’s no obvious
or even particularly “natural” way to represent numbers through colors. (Quick:
what’s larger, green or brown?)

 If all information is transmitted by colors alone, without any further visual hinting,
the quality of the encoding (colors-to-numbers) becomes critical: a badly chosen map-
ping won’t allow viewers to extract the necessary information from the image.

 In the absence of an obvious way to construct such a mapping, it’s natural to resort
to one of a number of ad-hoc solutions. This is really unfortunate, because—as we’ll
see—some of the most common encodings are a particular poor choice for virtually
any data set. Additionally, some of the features that lead to well-designed mappings
are rather counterintuitive and not likely to be found by chance.

 In the next section, I’d like to summarize some recommendations for good palette
design. In the section after that, I put these recommendations to use and describe a

Listing 9.1 Drawing a curve using smoothly changing colors (also see color figure 2)

162 CHAPTER 9 Color

number of ready-to-use gnuplot palettes for a variety of different tasks. In section 9.4,
we’ll look at two case studies and see (literally) how different palettes may hide or
highlight certain features of a dataset.

9.3.1 Thoughts on palette design

Not a lot of information is readily available on the design of color schemes for visual-
ization tasks, and very little of it is based on actual, empirical research. In this spirit,
the following list is certainly not the last word on the matter, but can serve as a good
base for further investigation:2

! Be clear about the purpose of the visualization task. Are you looking for a truthful
representation of the variation of values in the data, or are you more interested
in segmenting (categorizing) it into different strata? Are you particularly inter-
ested in the features within a certain, limited range of values? Do you want to
identify and highlight data points representing specific values (such as outliers)?

All these tasks are valid, but lend themselves to different palettes. To repre-
sent smooth variation, a palette with a continuous spectrum of colors works
best, but for segmentation tasks, a palette consisting of several discrete color
bands makes more sense. These attributes can be combined, for instance in a
palette varying smoothly in the center, but with solid colors once certain thresh-
olds are crossed.

! Understand the data you’re plotting. This is somewhat of a corollary to the pre-
ceding item. Does the data come from a continuous spectrum of values, or does
it consist of a set of discrete values? In either case, is there a natural ordering in
the values? (In particular for categorical quantities—such as gender: male,
female, unknown—this may not be the case!)

If the data is discrete, you want to make sure the color bands in your palette
include the values in your data set. If the data comes from a continuous spec-
trum, you may either want a continuous palette or a discrete one, depending on
the purpose of the visualization. Finally, if the data is ordered, you want a pal-
ette that has some form of visual ordering (such as a black-to-white grayscale).

! Make sure there are strong visual gradients in those regions of the data where significant
and relevant change occurs. This is one of the key elements in good palette
design. There are two issues here: first of all, there tend to be regions in the
data where change is more relevant to the task at hand than in others. What this
region is depends all on the data (and the task): are we interested in the
detailed behavior in the middle of the dataset, while caring less about the exact
behavior near the edges of the spectrum? Or do we mostly want to identify out-
liers, and are therefore less interested in the variation in the middle ground?
Either way, we want to make sure that the strongest visual change in the palette

2 This list was partially inspired by a paper entitled “Why Should Engineers and Scientists Be Worried About
Color?” by Lloyd A. Treinish and Bernice E. Rogowitz, and its companion papers, all of which can be found
on the web.

163Using color for data representation

coincides with those regions that we care about the most. The consequence of
this is that palettes which distribute change uniformly across the full range of
values will probably not give the most insight into the most relevant parts of our
data. (This implies that most palettes generated by some simple mathematical
formula, such as the standard rainbow, will be suboptimal.)

The second important insight here is that we need to pay particular atten-
tion to those features of a palette that are perceived as strong visual change. In
section 9.4.1, we’ll study a continuous palette from blue over white to red. The
strongest impression of visual change occurs where the palette is white, and the
same dataset can appear quite differently, depending on the relative location of
the white band within the palette. If there’s a region in the data that we want to
visualize in even greater detail, we want to concentrate many strong visual gradi-
ents in that region.

Specialized tasks call for more creativity in the creation of palettes. For exam-
ple, the data may pass through zero (or some other relevant threshold) in the
middle of the spectrum. We want to clearly indicate this threshold, but also
show the smooth variation on both sides of it. In such a situation, we may want
to have sharp transition (such as a hard red/blue changeover) in the spectrum
at the location of the threshold, while letting the colors change smoothly as we
go away from the threshold on either side.

To summarize: don’t distribute strong visual gradients uniformly over the
entire plot range if some regions of the plot range contain much less detail
than others. Good palettes will typically not be uniform, and every palette must
be tuned for both the current data set and the intended use.

! If there’s ordering in the data, try to find a palette that supports an intuitive sense of
ordering. Color transitions that express a sense of ordering are the grayscale
(black to white), the so-called heat scale (red to yellow to white), and the blue-to-
red palette. More sophisticated, but often particularly useful is the geo scale that
is familiar from topographic maps (from dark blue over light blue to green and
brown to white).

When using such palettes, make sure you go from “cold” colors to “hot” ones
(that is, associate blue with the low values in the plot range and red with the
high ones, not the other way around). Also, beware of palettes that seem to
wrap around, so that the colors seemingly come full circle with the highest and
the lowest values mapping to colors that resemble each other.

By the way, this item gives yet another reason why the “standard rainbow” is
so particularly unfortunate: it maps low values to a hot color (red), proceeds
with no sense of ordering via green to blue and then wraps around, mapping the
highest values to red again!

! Prefer pastel colors and subtle changes in luminance and saturation. This is probably
the most surprising of all recommendations. Intuitively, you’d expect that
bright, fully saturated colors would give the best visual contrast. But this isn’t

164 CHAPTER 9 Color

the case. Instead, pastel colors, which are “easier on the eyes,” make it easier to
detect details and structure in the data. I’ve had good success with colors that
were only 60 to 85 percent saturated. (We’ll give some examples later in
section 9.3.2.)

Similar considerations apply to changes in brightness (luminance). Quite
subtle changes (in the 60 to 100 percent range) are sufficient to bring about
clearly distinguishable changes in the palette.3

! Use changes in luminance for data with lots of fine detail; use changes in hue and satu-
ration for data with smooth, large-scale changes. This recommendation (which
isn’t at all obvious) is based on empirical research.4 It’s quite surprising, since
it suggests that different changes to a palette have different, but predictable
visual effects.

When experimenting with palettes in this way, keep in mind the previous rec-
ommendation: quite subtle changes in saturation and luminance are all that is
needed! On the other hand, if you crank either of them drastically from 0 to
100 percent, the effect will probably be lost.

Naively, it may seem like a good idea to create palettes in which all three
quantities (hue, saturation, brightness) vary concurrently, so as to give the max-
imum visual change across the spectrum. Based on the previous, it’s clear that
this doesn’t lead to the most suitable palettes: the eye is better than you’d
expect at detecting subtle changes. By choosing the most suitable kind of
change for any task, we can achieve much better results than with harsh
changes.

In section 9.4, I’ll discuss two case studies which demonstrate this point in
some detail.

! Never, ever, publish a false-color plot without showing the mapping of numbers to colors
explicitly. No matter how intuitive you think your chosen color scheme is, keep
in mind that there’s no universally accepted, generally understood mapping
from numbers to colors. Without a colorbox, there’s a good chance that your
graph can’t be understood by someone else.

What’s more, even if the ordering relation in your color scheme is clear (for
example, in a simple grayscale), the mapping of actual numbers to specific col-
ors is impossible to infer without an explicit key. Always provide one!

Now let’s put these thoughts into practice by constructing some sample palettes that
demonstrate some of these thoughts and ideas. In doing so, we’ll also learn how to put
gnuplot’s set palette feature to good use in a variety of different scenarios.

3 The paper “Escaping RGBland: Selecting Colors for Statistical Graphics” by Achim Zeileis, Kurt Hornik, and
Paul Murrell makes a similar point and provides additional references. It can be found on the web.

4 S. S. Stevens in Perception and Psychophysics, Volume 1, p5-8 (1966).

165Using color for data representation

9.3.2 Some sample palettes

In this section, I’ll introduce and discuss a handful of different palettes. My intention
here is twofold: on the one hand, I want to give you a fair number of worked examples
to demonstrate gnuplot’s set palette facility. On the other hand, I want to make
some of the principles introduced in the preceding section more concrete. Keep in
mind, though, that these palettes are intended only as starting points—you’ll have to
adjust them to fit your particular needs and data sets to get optimal results.

 We’ll start out with three simple and popular ad-hoc palettes, and then move on to
some more sophisticated examples based on the principles discussed earlier.

 The simplest palette is the linear grayscale (for all palettes in this section, refer to
color figure 3): 5

set palette model RGB defined (0 'black', 1 'white')

Just to demonstrate gnuplot’s ability to handle different color spaces, here’s the same
palette, but defined in HSV space, and using functions, rather than named colors:

set palette model HSV functions 1,0,gray

The three parameters after the functions keyword stand for hue, saturation, and
value (luminance), respectively. Saturation is set to zero, leading to an achromatic
spectrum—that is, a grayscale. Because saturation is zero, the value chosen for the first
(hue) parameter doesn’t matter.

 In the third (luminance) parameter, the brightness is increased in a linear man-
ner. It’s tempting to play with other functions that map the [0:1] interval to itself,
such as gray**2 or sqrt(gray) or even (1-cos(pi*gray))/2, to achieve a variety of
nonlinear grayscales, but I’ve found palettes based on simple mathematical functions
like these rarely improve the appearance of a graph by much, because they don’t give
us sufficient control to adapt the palette to the data set. In contrast, in section 9.4.2,
I’m going to show you what a hand-tuned grayscale palette can do.

 Another simple palette is the so-called heat scale:

set palette model RGB defined (0 'red', 1 'yellow', 2 'white')

Sometimes this palette is made to include black. (Yes, that’s a -1 in front of the black
in the command below. Keep in mind that the values assigned to each color when
using defined are merely interpreted as the relative location of the corresponding
color in the palette—the actual values don’t matter.)

set palette model RGB defined
" (-1 'black', 0 'red', 1 'yellow', 2 'white')

5 For the curious: these palettes were in fact created with gnuplot, using the following command sequence:
unset border; unset key; unset tics; unset xtics; unset ytics; set pm3d; unset cbtics; set
colorbox user origin 0.2, 0.05 size 0.6, 0.9; set palette ...; set terminal postscript eps
color size 1.25cm,10cm; set output '...'; splot [0:1][0:1][0:1] 2. The individual panels were
then combined into a single postscript file using the LaTeX array technique explained in chapter 11.

166 CHAPTER 9 Color

Both of these palettes are easy to define and express a sense of ordering. Unfortu-
nately, shades of yellow are particularly hard to distinguish. Also, these palettes
embody both drastic luminance and saturation changes (black has a luminance value
of zero and white has zero saturation). Overall, they’re probably a poor choice for
almost any situation.

 The final example of an ad-hoc palette is the standard rainbow. It’s most easily
defined using the HSV color model:

set palette model HSV functions gray,1,1

As discussed previously, the standard rainbow has a number of problems, the most
fundamental one relating to ordering: it maps the warm color red to the lowest values
and then progresses to the cold color blue, only to wrap around all the way to red
again. An improved rainbow changes the ordering to run from blue to red and
magenta, while truncating the wrap-around (you may want to plot the function f(x)
to see what’s going on):

f(x) = x < 5./6 ? 2./3 - 4./5*x : 1 - (x-5./6)
set palette model HSV functions f(gray),1,1

This is much better, but still has a number of problems. For instance, the green band
seems to occupy a disproportionately larger section of the spectrum, compared with
the cyan and yellow bands.

 Actually, in this form, the rainbow starts to approach the geo scale, which is my rec-
ommended palette when looking for an ordered, multiband palette. Here’s a palette
that works quite well:

set palette model RGB defined
" (0 '#3366ff', 1 '#99ffcc', 2 '#339900', 3 '#66ff33',
" 4 '#996633', 5 '#ff9900', 6 '#ffff33')

This is a hue-based palette: there are no drastic changes in saturation or lightness. It’s
therefore suitable for data sets with smooth, rather slow changes. In this palette, all
colors are pastels: no hue is used at full saturation. You may want to experiment with a
similar palette but replace all colors with their fully saturated equivalents. Which pal-
ette makes the data come out better? (We’ll see another application of this palette
below in section 9.4.1.)

 Let’s look at two examples of saturation-based palettes. The first is a continuous
blue/white/red palette:

set palette model RGB defined (-1 'blue', 0 'white', 1 'red')

Depending on the relative location of the white band, the data can appear amazingly
different. (Experiment with defined (-1 'blue', 0.5 'white', 1 'red'), and so on.)

 As an example of a palette clearly indicating a transition through some sharp
threshold value, we can use a “back-to-back” version of the red/blue palette:

set palette model RGB defined
" (-1 'white', 0 'blue', 0 'red', 1 'white')

167Using color for data representation

With this palette, there will be an unmistakable, but most of all sharp change in hue as
data passes through zero. This palette is suitable only for data that varies continuously
as it goes from positive to negative values: the continuous nature of the transition
guarantees that there will be a sharp red/blue boundary separating the two domains.
If the data jumps around discontinuously (so that strongly positive regions might be
adjacent to strongly negative regions with no area close to zero in between), this pal-
ette isn’t suitable, because in the resulting graph, we won’t be able to distinguish
between high and low values, as both of them map to the same color (white).

 Both of the preceding (red/blue) palettes are pure saturation palettes, with no
change in lightness. They’re therefore appropriate to visualize relatively large struc-
tures in a data set.

 By contrast, here’s a luminance-dominated palette, suitable to detect fine details in
data:

green = 1.0/3.0
blue = 2.0/3.0

set palette model HSV defined
" (0 blue 0.6 0.6, 1 blue 0.5 1, 2 green 0.5 1, 3 green 0.7 0.5)

This palette definition uses the third style of syntax inside the defined parentheses,
which is particularly useful together with the HSV color model. Each entry consists of
four numbers: the first being the relative location, and the following three represent-
ing the three components of the chosen color model—that is, hue, saturation, and
luminance in this example. To facilitate understanding, I’ve defined symbolic names
for 1/3 and 2/3, which are the hue values for green and blue, respectively.

 Although the primary change in this palette is in the luminance values, there’s
concomitant change in the saturation as well. I found that I had to reduce the satura-
tion toward the middle of the spectrum where the luminance reaches its maximum to
achieve a uniform appearance of all colors. If you look closely, you’ll also find that the
spectrum isn’t symmetric in its values, although I made a best effort to make it symmet-
ric in its appearance. The color blue, for instance, appears much “fuller” than green at
equal values of saturation, so I reduced its intensity relative to green. Feel free to
experiment further!

 All the previous palettes consisted of smooth color changes. Let’s take a quick look
at a palette consisting entirely of sharp bands of colors:

set palette model RGB defined
" (0 'green', 1 'green', 1 'yellow', 2 'yellow', 2 'red', 3 'red')

Such a “traffic-light” palette is suitable for segmentation tasks: when we only care
whether data points fall into the allowed (green), warning (yellow), or prohibited
(red) domain, but don’t actually want to follow how the data changes within each
band. (In color figure 2, we’ve seen a similar palette with distinct bands for categoriza-
tion purposes. There, however, we used smooth transitions between different colors,
but restricted the transitions to narrow bands by assigning color locations unevenly
across the palette.)

168 CHAPTER 9 Color

 Finally, a completely different example: a continuous grayscale, combined with col-
ored “tree-rings.” The grayscale indicates the smooth change of the data, while the
discrete tree-rings make it easier to assign specific numeric values to different spots on
the graph:

hue(x) = x < 1./8. || x > 7./8. ? 0 : (8*x-1)/6.0
sat(x) = x < 3.0/16.0 || x > 15.0/16.0 ? 0 : (1+cos(8*2*pi*x))/2
lum(x) = x < 1.0/16.0 ? 0 : (1+cos(8*2*pi*x))/2
stp(x,y) = x < y ? 0 : 1
w = 0.99
set palette model HSV functions
" hue(gray), stp(sat(gray), w), gray + (1-gray)*stp(lum(gray), w)

This example also serves to demonstrate to what extremes you can go when playing
with palettes!

 Here’s how it works: hue increases basically linearly, but has been shifted to make
room for the white band. Saturation is zero in most places (so that colors appear
achromatic gray), except at multiples of 1/8, where the cosine function has peaks.
The step function stp(x,y) cuts off those parts of the peaks that are less than y and
promotes the ones greater than y to one—this process narrows the peaks, with the
parameter w controlling the width of the color bands. Finally, luminance increases lin-
early, except for the locations of the color bands, where luminance is switched on
fully. Several edge cases have to be dealt with through the ternary ? operator; in par-
ticular, color bands right at the edges of the spectrum must be suppressed. The white
color band also requires some special handling.

 Having seen this, it’s sad to say that I’ve found this palette not to be all that useful—
unless the data is very smooth, the color bands are too thin and tend to disintegrate
into individual pixels on a grey background. But apart from its immediate use, I find
this palette interesting because it shows how different palette elements (smooth gradi-
ents and sharp bands, grayscale and color) can be combined in new and creative ways.

 To see all of what we just learned in practice, let’s study two case studies of custom
palette design for two different data sets. The next section is devoted to that.

9.3.3 Words of caution

When I was a first-year graduate student, I once did an experiment involving a red
laser and a green laser. I plotted the results (naturally enough) in red and green. (On
paper. With colored pens. Using special, expensive logarithmic plotting paper. This
story doesn’t predate gnuplot, but it does predate generally available color printers.)
When I showed the graph to one of my professors at the time, he took a look and
asked, “Which line is for the red laser?” I responded, somewhat snottily, “Well, the red
line is for the red laser and the green one for the green one, of course.” (Duh!) He
looked at me and said, “I’m color blind.” Oops.

 Color is a lot of fun and can add a new dimension to our graphs. But it has a num-
ber of serious disadvantages, and we need to consider carefully whether the advan-
tages outweigh the drawbacks:

168a

The following color figures are discussed in greater detail in chapter 9, “Color.”

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R,G,B profiles of the current color palette

red
green

blue

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R,G,B profiles of the current color palette

red
green

blue

Color figure 1 The result of the test palette command for the two palettes defined by set palette model
RGB defined (0 "red", 0.5 "yellow", 1 "green") (top) and set palette model RGB defined (0
"red", 0.1 "yellow", 1 "green") (bottom). The top of each graph shows the intensity levels of the red,
green, and blue color components; the bottom shows the spectrum of colors and their position in the spectrum.

168b

-10 -5 0 5 10

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0

 0.2

 0.4

 0.6

 0.8

 1

A B C D E F G H J K

Color figure 2 A control chart: as the
plotted value leaves the allowed
region, the color of the curve changes
smoothly from green to red. This
graph was drawn using pm3d and the
with lines palette style. See
listing 9.1.

Color figure 3 A collection of sample palettes. See section 9.3.2 for details. A: linear grayscale; B: heat scale; C:
standard rainbow; D: improved rainbow; E: geo scale; F: blue/white/red saturation scale; G: blue/red saturation
scale with sharp transition point; H: blue/green luminance scale; J: traffic light scale for segmentation tasks; K:
smooth grayscale with colored level indicators.

168c

Color figure 4 Color renderings of a function (see section 9.4.1). Compare these graphs to the black-and-white
image in figure 9.2. Note how the square symmetry comes out much more clearly in the blue/white/red graph on
the top, compared to the black-and-white image, and the additional level of detail discernible in the multi-colored
graph on the bottom.

168d

Color figure 5 Color renderings of a section of the Mandelbrot set: a hue-based palette on the top and a
luminance-based palette on the bottom. Note how more detail seems to be discernible in the image on the
bottom, despite the wider range of colors used in the image on the top. See listing 9.3 for definitions of the
palettes and figure 9.3 for a black-and-white version of this plot.

169Case studies

! Color doesn’t reproduce well! A graph containing two lines distinguished only
by their color will lose most of its values once photocopied. Similarly, offices
tend to have powerful, high-speed laser printers—but they (still) usually only
print black and white. There’s no guarantee that the printout somebody makes
of your article containing nicely colored graphs will come out the way it looks
on the screen.

! As my embarrassing anecdote demonstrates, about 10 percent of people are at
least partially color blind. Relying on color to convey critical (as opposed to
supporting) information makes your graphs inaccessible to a significant frac-
tion of viewers.

! Finally, it can be difficult to read quantitative information from color. Using well-
designed palettes can help, but in the end, colored graphs are great to indicate
the “lay of the land” of a data set—once we reach the level of detail that we
would like to study quantitative changes in data, we’re usually back to two-
dimensional xy-plots.

9.4 Case studies
To conclude this chapter on color, let’s look at two case studies and see how we can
apply what we just learned about palette design. In the first case study, we want to find
a palette to represent a smoothly varying, but wiggly function. In the second case
study, we’re looking for a color scheme suitable for the edge of the Mandelbrot set—
an object known to have structure on the finest of scales.

9.4.1 A smoothly varying function

Let’s consider a trigonometric function, such as the following:

f(x,y,n,m) = cos(n*x)*cos(m*y)+cos(m*x)*cos(n*y)

This function depends on the two variables x and y and two parameters. It changes in
a regular way, but (depending on the values for the parameters n and m) it wiggles a
lot. It’s very difficult to get a good picture of this function by taking slices (such as fix-
ing y at some value and then plotting it as a function of x), and in a surface plot, some
of the details are guaranteed to be hidden by other parts of the function. So a false-
color plot seems to be a good way forward.

 For the sake of discussion, let’s fix the parameters as follows: n=2 and m=5. (Feel
free to play around with other values of n and m. You can get particularly bizarre
behavior by adding multiple instances of this function, but choosing different values
for the parameters—for example, f(x,y,2,5) + f(x,y,7,3), and so on.)

 To do a false-color plot, we need to choose a palette. Let’s start with a simple gray-
scale. The commands are shown in listing 9.2 and the resulting graph in figure 9.2.

170 CHAPTER 9 Color

set pm3d # Turn on pm3d mode
set view map # Switch to birds-eye view...
set size square # ... and scale x- and y-axes equally
unset surface # No need for a surface in a false-color plot!
set isosamples 300 # But we want good resolution.

set palette model RGB defined (0 'black', 1 'white')

splot [-6:6][-6:6] f(x,y,2,5)

But this is wrong! The grayscale is a luminance-based palette—for smooth, large-struc-
ture data such as this, we should use a saturation- or hue-based palette. So let’s give it a
try with the blue/white/red palette. The result is shown in color figure 4. The differ-
ence from figure 9.2 is stunning!

 In particular, the square symmetry of the function is clearly visible now, whereas it
wasn’t at all obvious before. Also, it’s now clear that the function displays a checker-
board pattern, assuming predominantly positive or negative values in adjacent fields
of the checkerboard.

 More fun can be had by changing the position of the white band in the palette. But
wouldn’t it be nice to be able to see all the variation in this function in one graph,
rather than having to scan through it by moving the white band? This is where a multi-
hue palette such as the geo scale comes in.

 Give this a shot:

set palette defined
" (0 'magenta', 1 '#0066ff', 2 'cyan', 3 '#009900',
" 4 'green', 5 '#996633', 6 'orange', 7 'yellow', 8 'red')

This is a geo scale consisting of bright (fully saturated) colors. Now try this:

set palette defined
" (0 'magenta', 1 '#3366ff', 2 '#99ffcc', 3 '#339900',
" 4 '#66ff33', 5 '#996633', 6 '#ff9900', 7 '#ffff33', 8 'red')

Listing 9.2 A false-color plot, using linear grayscale—see figure 9.2

Figure 9.2 A grayscale rendering of a
smoothly varying function. Compare this
figure with color figure 4. The commands
for this plot are in listing 9.2.

171Case studies

This is very similar to the preceding palette, but the colors are less saturated. Compare
for yourself—in which one can you see more details? (The pastel version of the plot is
shown in color figure 4.) The only colors that aren’t pastels are the ones for the most
extreme values of the spectrum (magenta and red, in this example). I chose to leave
them fully saturated, because they’re only used in small, isolated spots of the overall
graph, and I wanted to make it easy to detect the distribution of extreme values. In
general, the colors are distributed rather uniformly over the entire spectrum, because
this matches up with the regularly varying function in this plot.

9.4.2 A complex figure

As an example of a graph that includes a lot of fine detail, I’ve chosen a section from
the edge of the Mandelbrot set. The Mandelbrot set is the set of all points in the com-
plex plane for which a certain simple iteration process stays bounded. What’s note-
worthy here is that the border between points inside the set and outside of it isn’t
smooth—in fact the border is “infinitely” complicated, showing details at all levels of
magnification.6 For points far from the Mandelbrot set, the iteration will diverge
quickly (after just a few steps). But as we approach the border, the iteration will take
many more steps before finally diverging. Once inside the set, the iteration doesn’t
diverge (that’s the definition of the Mandelbrot set, after all).

 The input to the data visualization project we want to study in this section is a file
containing the x and y coordinates of all points in a certain region of the complex
plane, together with the number of steps that were required before the iteration
diverged. The value 10,000 indicates that the iteration didn’t diverge and that the
point therefore lies on the inside of the Mandelbrot set. (The iteration is stopped if it
hasn’t diverged after 10,000 steps, so we know that there won’t be any value larger
than this threshold.)

 We want to use a color scale to indicate how long the iteration lasted before it
diverged. The interior of the Mandelbrot set is customarily drawn in black.

 Figure 9.3 shows a possible grayscale view of our data set (the corresponding pal-
ette can be found in listing 9.3). For the chosen section of the set, most of the detail
occurs at iteration counts around 225, which is why I placed the strongest visual gradi-
ents in that range. In contrast, the long interval between 1,500 and 10,000 iteration
steps is colored in a uniform white, because there are only few pixels in the image fall-
ing into this region (mostly the thin white boundaries that you can see around the
solid black regions, which belong to the interior or the Mandelbrot set). There’s no
reason to waste visual gradients on parameter ranges that occupy only a small and not
very relevant area of the plot.

 Grayscale is of course only the first step. In color figure 5, I show the same data set,
plotted with two different palettes, which are also listed in listing 9.3. One is hue-
based; the other is luminance-based. According to our guidelines, a luminance-based

6 This isn’t the place to give a detailed introduction to fractals and the Mandelbrot set. Plenty of information
is readily available on the Internet—the Wikipedia entry for the Mandelbrot set is a good place to start.

172 CHAPTER 9 Color

palette should be more suitable than a hue-based one for graphs containing a high
level of detail, such as this one, and I think this example bears this out—the level of
detail can be recognized more clearly when using the luminance-based palette. (This
isn’t to say that the hue-based version isn’t aesthetically more pleasing, which brings us
back to the first item of the list of recommendations: know your purpose. Are you pre-
paring graphs for illustration or analysis?)

 In the two color palettes, I’m employing a weird trick that I should explain. As you
can see in figure 9.3, the visual gradient is all bunched up at the low end of the color
scale. It would be helpful to expand just the low end of the color scale over the entire
colorbox. Unfortunately, we can’t simply use set cbrange [0:1000] to adjust the
scale—this would assign the z values 0 and 1,000 to the ends of the entire palette (thus
changing all the mappings from z values to colors), instead of slicing out a section
from the palette (while leaving the mappings unchanged).

 Instead, I use the set logscale cb command to distribute z values in a logarithmic
fashion across the spectrum. The last piece of the trick is that I use the logarithm of the
number of iterations for the location parameter when defining the palette. The loga-
rithm for the location parameter cancels against the log scale for the colorbox, so that
the color #ff6666 is indeed used (in the hue-based palette) to color points corre-
sponding to 20 iteration steps. (If the preceding discussion is too abstract, I suggest
you try it yourself in all different ways to see how these different options interact with
each other.)

Gray-scale palette
set palette model RGB defined
" (0 'white', 10 'white', 225 'black', 1500 'white',
" 9999 'white', 10000 'black')

Listing 9.3 Palettes for the Mandelbrot set example. See text for details.

Figure 9.3 A black-and-white
rendition of a section of the
Mandelbrot set. Note the strongly
uneven grayscale, visible in the
colorbox. See listing 9.3 for the
definition of the palette, and color
figure 5 for color renderings of the
same image.

173Summary

Hue-based palette
set logsc cb
set palette model RGB defined
" (log(15) 'white', log(20) '#ff6666', log(35) '#cc99cc',
" log(50) '#3366ff', log(100) '#99ffcc', log(133) '#339900',
" log(167) '#66ff33', log(200) '#996633', log(250) '#ff9900',
" log(300) '#ffff33', log(999) 'white', log(9999) 'white',
" log(10000) 'black')

Luminance-based palette
set logsc cb
blue = 2.0/3.0
green = 1.0/3.0
set palette model HSV defined
" (log(15) blue 0.7 0.6, log(50) blue 0.6 0.9,
" log(100) green 0.5 1, log(200) green 0.7 0.5,
" log(1000) green 0.9 0.4, log(5000) 0 0 1,
" log(9999) 0 0 1, log(10000) 0 1 0)

In fairness, this application isn’t really what gnuplot is intended to do. Nevertheless,
gnuplot has served us well, because of its nifty support for palettes, and by playing out
its core strengths: the ability to handle large data sets and its support for common data
formats.

9.5 Summary
This was a long chapter, touching on many different issues, not all of them strictly
related to gnuplot. So let’s summarize what we’ve learned. First, in regard to gnuplot’s
support for generating colored graphs:

! The pm3d mode is used to generate images using smooth color scales, by map-
ping numeric values to be plotted into a continuous spectrum.

! The set palette option can be used to define our own number-to-color map-
pings. The palette option has a rich syntax and can construct smooth spectra
based on just a few fixed values.

! The colorbox is the equivalent to the key for a colored image. Using set color-
box, we can manipulate different aspects of it.

We also discussed some recommendations for the use of color in graphics. Some of
the most important items are

! To achieve optimal results, it’s almost always necessary to generate a customized
palette, adapted to the current data set and the intended visualization task.

! Don’t just distribute visual gradients uniformly over the spectrum; instead place
them in the region of the most relevant change. Use sharp transitions in the
spectrum to indicate relevant thresholds in the data.

! Prefer pastel colors. It’s not necessary to make drastic changes in saturation and
luminance—the eye can detect gradual changes more easily.

174 CHAPTER 9 Color

! Prefer saturation-based or hue-based palettes for data with large-scale structures;
prefer luminance-based palettes for data containing a great level of fine detail.

! Don’t forget to include a colorbox with your graph, showing the mapping of
actual numbers to colors.

More than anything, though, the take-away from this chapter is that color can be a lot
of fun, and gnuplot (properly used) can make it even more so!

175

Advanced
plotting concepts

This is the last chapter in which we’re going to talk about gnuplot’s graphing fea-
tures. In the next two chapters, we’ll talk about different ways of exporting graphs
to files and about scripting gnuplot for batch mode, before turning our attention
to the things we can find out using graphs. But before we can leave gnuplot’s plot-
ting commands behind, we still have to finish off some topics that we haven’t men-
tioned so far.

 In the next section, I’ll introduce gnuplot’s multiplot feature, a way to com-
bine different plots in a single graph. In the remainder of this chapter, we’ll look at
ways of visualizing vector fields at other coordinate systems (besides the right-
angled, Cartesian system we’ve been using exclusively so far), and at parametric
representations. In the final section, I’m going to introduce gnuplot’s built-in
curve-fitting capabilities.

This chapter covers
! Combining graphs with multiplot mode
! Advanced math features in gnuplot
! Curve fitting

176 CHAPTER 10 Advanced plotting concepts

 Except for the first topic (on multiplot), the material in this chapter is rather spe-
cialized and involves more advanced math than the rest of this book. Make sure you
catch the multiplot features, but feel free to skip the rest if it’s not relevant to you
right now.

10.1 Multiplot
Using gnuplot’s multiplot feature, we can combine several plots into a single graph.
This can be useful for a number of different purposes:

! To make arrays of related graphs
! To create insets: graphs within a graph (for example, to show some details at

greater magnification)
! For special effects, such as multiple, clearly separate plots aligned on a common

axis

Multiplot mode is enabled like an option through a set multiplot command, and
remains active until an unset multiplot command has been issued. When multiplot
mode is active, the usual gnuplot> prompt changes and is replaced by a multiplot>
prompt. All plot (or splot or replot or test, but not test palette) commands
issued at this prompt are directed to the same graph, and we can control their relative
location by giving additional directives to the set multiplot command. Any other
option modified while in multiplot mode is applied to all subsequent plots. This is the
normal gnuplot behavior; multiplot mode doesn’t change that. Any option or decora-
tion we want to apply to only one of the plots in a multiplot combination has to be
explicitly set before and unset after the respective plot command. (This doesn’t apply
to decorations positioned with screen coordinates: since there’s only a single screen
coordinate system even for a multiplot graph, they’re global objects.)

 Different terminals may exhibit different behavior regarding the time when plots
become visible. Some show each plot right when the corresponding plot has been
issued; others may delay generation of the entire array of graphs until multiplot mode
is switched off again.

 There’s one very important limitation to multiplot mode: you can’t change the ter-
minal while in multiplot mode! This implies that we have to change the way we usually
use gnuplot: it’s not possible to build up a graph iteratively using an interactive
(screen) terminal, and then, finally, export it to a graphics file format, since this
would require a change of terminal before the last step. Instead, the file-based termi-
nal has to be selected first, with all other commands following. Personally, I write all
my commands to a command file (using a text editor) and then run it using load,
while using an interactive terminal. When I’m satisfied with the resulting graph, I
insert a terminal and output setting at the top of the command file, and run it one
final time to export the graph to file. Since multiplot mode is mostly a tool for gener-
ating final presentation graphics (as opposed to exploratory data analysis, which must
be interactive to be useful), this works quite well.

 There’s one additional gotcha to be aware of when using multiplot mode: if you want
to capture the commands for the plot using save, you must issue the save command

177Multiplot

before leaving multiplot mode. (Otherwise, only the commands for the last plot in the
multiplot set will be saved to file!) And remember to exit multiplot mode using unset
multiplot, not using Control-D (which will terminate gnuplot altogether).

 The multiplot feature can be used in two different ways. We can specify the layout
of a tabular array of graphs as part of the set multiplot command and let gnuplot
figure out sizing and positioning of all components in the overall graph automatically.
Or we can take control of all aspects of the layout ourselves and arrange the individual
graphs using set size and set origin. All of this will become much clearer once we
look at some examples.

 The set multiplot option has the following suboptions:

set multiplot [title "{str:title}"]
 [layout {int:rows},{int:cols}

[rowsfirst | columnsfirst]
[downwards | upwards]
[scale {flt:xfactor}[,{flt:yfactor}]]
[offset {flt:xoff}[,{flt:yoff}]]]

The title directive is the equivalent to the set title (see section 6.3.3) for regular
plots: it can be used to give an overall title to the entire assembly of graphs. (The set
title command can still be used to assign a title to each of the individual component
graphs.) All other directives (besides title) are only meaningful in combination with
the layout keyword, which is a convenience feature to create arrays of graphs easily.
In the following sections, we work through some examples of using both the layout
facility and explicit placing of component graphs.

10.1.1 Regular arrays of graphs with layout

The layout directive takes two mandatory integer arguments, which describe the
number of rows and columns in the resulting array of graphs. This array will be filled
with subsequent plot commands. We can control the order in which subsequent pan-
els will be filled through the rowsfirst, columnsfirst, downwards, and upwards key-
words (see figure 10.1). The default is rowsfirst downwards.

Figure 10.1 Choosing the layout direction in multiplot mode: rowsfirst downwards (left) and
columnsfirst upwards (right)

178 CHAPTER 10 Advanced plotting concepts

 Individual plots can be scaled and shifted from their (automatically assigned) size
and position using the scale and offset keywords. The arguments to scale are mul-
tiplicative scale factors for the x and y size of the individual plots (if only one is given,
it’s applied to both axes). Using the offset directive, we can shift all graphs by the
same amount; the arguments are interpreted as screen coordinates (see section 6.2),
so that offset 0.25, 0.1 shifts everything by a quarter of the overall width of the
graph to the right and by a tenth of the height up.

 One important limitation: set multiplot layout doesn’t nest—you can’t have a
small array of graphs as a panel in a larger array.

 The layout feature makes it really easy to generate multipanel graphs (as in
figure 10.2), as listing 10.1 shows.

t(x,n) = cos(n*acos(x)) # Define some function

set xrange [-1:1]
set yrange [-1:1]

set multiplot title "Chebyshev Polynomials" layout 3,2

plot t(x,1)
plot t(x,2)
plot t(x,3)
plot t(x,4)
plot t(x,5)
plot t(x,6)

unset multiplot # Don't forget!

Listing 10.1 Creating a regular array with multiplot layout (see figure 10.2)

Chebyshev Polynomials

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

t(x,1)

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

t(x,2)

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

t(x,3)

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

t(x,4)

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

t(x,5)

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

t(x,6)

Figure 10.2 A regular array of small plots created in multiplot mode. See listing 10.1.

179Multiplot

If we want to have more control over the way individual plots are assembled to form a
plot, we can’t use layout; instead we have to handle everything ourselves using set
size and set origin. Let’s look at an example, which lets us demonstrate some fine
points that come up when using multiplot mode.

10.1.2 Graphs within a graph

Sometimes it’s useful to place small graphs inside a larger one, for example to show a
detail of the overall graph at greater magnification, or to provide some form of ancil-
lary information (as in figure 10.3). This can’t be accomplished using layout, so we
have to roll our own.

 Listing 10.2 shows how it’s done.1 Let’s step through this example carefully and
point out some details and potential pitfalls.

1 This example is taken from the thermodynamics of phase transitions: if you heat a magnet beyond its critical
temperature, it loses all magnetization. In the graph, the thick curve shows the magnetization as a function of
temperature, while the three insets show the typical form of the free energy as a function of the magnetization
for three different temperatures: below, at, and above the critical value. Below the critical temperature, the
free energy develops two minima at nonzero values of the magnetization, indicating that a magnetized phase
is stable. Right at the critical temperature, these two minima coalesce, yielding a curve that’s flat at the origin.
Above the transition temperature, there’s only a single minimum at zero: the magnetization of the sample is
now zero.

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2

Figure 10.3 A larger graph with insets showing ancillary information. See listing 10.2.

180 CHAPTER 10 Advanced plotting concepts

f(x,a) = x<a ? sqrt(a-x) : 0 # Magnetization
g(x,b) = 0.25*x**4 + b*x**2 # Free Energy

set multiplot

set grid
plot [-3:2.5][-1:2] f(x,0) notitle w l lw 3
unset grid

unset tics
unset xtics
unset ytics
unset key
set tmargin 0; set bmargin 0; set rmargin 0; set lmargin 0

set size 0.2

set origin 0.175,0.425
clear
plot [-2.5:2.5][-1.5:2] g(x,-1)

set origin 0.4625,0.125
clear
plot [-2.5:2.5][-0.5:3] g(x,0)

set origin 0.675,0.425
clear
plot [-2.5:2.5][-0.5:3] g(x,1)

unset multiplot

1 We define a couple of functions—that’s not strictly necessary, but helps to keep
the following plot commands simple.

2 Switch multiplot mode on.
3 Turn on the background grid, plot the main curve, and then switch the back-

ground grid off again.
This is a standard technique when using multiplot mode: options we want to

have active in only some of the plots must be activated only for the actual plot
they’re supposed to affect.

4 Set some options that will be relevant for all of the small inset plots. Since the
insets are small, we do away with all decorations, such as tic marks and text
labels. We also set all margins to zero at this time.

5 Choose the size of the inset plots, as a fraction of the overall plot size.
6 For each of the insets, choose its location by specifying its origin in screen coor-

dinates.
7 By default, gnuplot doesn’t clear the area where a second plot will be placed.

We must do so explicitly using the clear command.
8 Generate the actual inset plot.
9 Repeat the last three steps for all of the insets.

10 Finally, switch multiplot mode off again.

Listing 10.2 Creating small graphics or insets within a larger graph—see figure 10.3

181Multiplot

This example demonstrates most of the steps that are typical when combining graphs
using multiplot: switching on options only for those plots that require them, clearing
the plot area (if necessary and desired), and finally sizing and placing all graphs indi-
vidually.

 Let’s look at a second example: rather than placing small plots within a larger one,
now we want to place several plots side by side.

10.1.3 Graphs aligned on a common axis

Occasionally, we want to show two or more graphs together, aligned on a common
axis, to facilitate comparison between curves in both graphs. Of course, we could put
all curves into a single plot (as we did in section 7.1), but sometimes doing so would
lead to an overly cluttered graph—for example, if we want to compare, not just two
curves, but two entire sets of curves.

 For example, let’s assume I want to compare the log-normal probability density
function and its cumulative distribution function for a whole set of parameters. I
could place all these curves into a single graph, but the graph would appear crowded
and it would be difficult to distinguish the curves properly from each other.

 Instead, let’s put them into two different graphs, aligned on a common axis, as
shown in figure 10.4. By now, we know how to create a multipanel plot using multiplot
mode (see listing 10.3). The only new details are those that are required to manage
the common axis.

lgn(x, s) = exp(-0.5*(log(x)/s)**2)/(x*s*sqrt(2*pi)) # Log-normal
clgn(x, s) = 0.5*(1+erf(log(x)/(s*sqrt(2)))) # Cumulative

set multiplot layout 2,1

set bmargin 0 # Switch OFF bottom margin of the top panel
set format x "" # ... and eliminate tic labels for the x-axis

set ytics 0.2,0.2 # Suppress the tic label for y=0 (start,step)

set key bottom
plot [0:2.5][0:1] clgn(x,0.5) t "s=0.5", clgn(x,1) t "s=1.0",
" clgn(x,5) t "s=5.0"

set bmargin # Restore the bottom margin
set tmargin 0 # ... but switch of the top one
set format x "%g" # Also restore the tic labels for the x-axis

set ytics 0,0.2,0.8 # Suppress tic label for y=1 (start,step,stop)

set key top

plot [0:2.5][0:1] lgn(x,0.5) t "s=0.5", lgn(x,1) t "s=1.0",
" lgn(x,5) t "s=5.0"

unset multiplot

Listing 10.3 Showing two plots side by side using multiplot mode—see figure 10.4

182 CHAPTER 10 Advanced plotting concepts

I want to point out just a few items. This example uses the set multiplot layout
option, since (after all) both plots are arranged in a regular fashion, but customizes
the appearance. In particular, note how the bottom margin of the top graph and the
top margin of the bottom graph have been eliminated to give the appearance of a sin-
gle, two-panel graph.

 The other interesting detail concerns the tic marks along the horizontal axis. For
the top panel, I wanted regular tic marks, but without the labels, while for the bottom
one I wanted both tic marks and labels. In addition, I was quite happy to let gnuplot
figure out where to place tic marks—I certainly didn’t want to specify them individu-
ally if I could avoid it. I suppressed tic mark labels (but not the tic marks themselves)
in the top panel by choosing set format x "" (see section 7.3.3), which tells gnuplot
to use an empty string as label. This is a good trick, and is worth remembering (it
comes in handy in other situations as well).

 There is also a bit of fine-tuning going on in regard to the y axis labels: to make sure
that they don’t clobber each other, I suppress the first label in the top graph and the
last label in the bottom graph (see section 7.3.1 for details of the set ytics option).

 Lastly, it’s easy to compare data for equal “categories” in both panels, since I made
sure to use the same line styles for comparable data in each plot.

 Plots generated using multiplot mode can be useful when we want to compare dif-
ferent data sets to one another, but placing them all into a single graph would lead to
a cluttered appearance. And as we’ve seen in figure 10.3, we can use multiplot mode
to show different aspects of a data set in a single plot. In the rest of this chapter, we’ll
look at some more mathematically advanced gnuplot features.

 0.2

 0.4

 0.6

 0.8

 1

s=0.5
s=1.0
s=5.0

 0

 0.2

 0.4

 0.6

 0.8

0 0.5 1 1.5 2 2.5

s=0.5
s=1.0
s=5.0

Figure 10.4 Showing two plots side by side using multiplot mode (see listing 10.3)

183Higher math and special occasions

10.2 Higher math and special occasions
In this section, I’ll discuss gnuplot’s support for some more advanced mathematical
constructs: parameterized curves, non-Cartesian coordinates (such as polar, cylindri-
cal, and spherical coordinates), and support for vectors.

 Since this isn’t a math book but a book on gnuplot, I will not explain these con-
cepts; I’ll just show you how gnuplot handles them. This section is best skipped, unless
you have a specific need for its contents. Rest assured: if you don’t know what I’m talk-
ing about, you aren’t going to need it.

10.2.1 Parametric plots

Parametric plots are only relevant when plotting functions with gnuplot: the concept
has no meaning when plotting data from files.

 So far, whenever we plotted a function, the function provided a y value (the depen-
dent variable) as a function of an x value (the independent variable): plot sqrt(x).
Alternatively, we can give two functions, one for the x and one for the y value, both
depending on a common parameter, which by convention is called t. For certain kinds
of curves, such a parameterization is simpler than the explicit form. The following
plot command will draw a circle (after adjusting the aspect ratio appropriately):

set parametric
plot [0:2*pi] cos(t), sin(t)

This parametric representation is significantly simpler than the equivalent explicit
form:

unset parametric
plot [-1:1] sqrt(1-x**2), -sqrt(1-x**2)

In general, the following two commands will give the same result:

unset parametric
plot f(x)

set parametric
plot t, f(t)

For parametric plots, there are now three relevant plot ranges: trange, xrange, and
yrange. The first controls the range of values assumed for the parameter (the dummy
variable) t, while the other two are used (as before) to control the range of points that
are visible in the plot. All three ranges can be adjusted either explicitly using set trange
or the familiar set xrange and set yrange commands (see section 7.2), or inline as part
of the plot command. If used inline, the setting for the trange precedes the other two.
This is demonstrated in listing 10.4. The resulting plot is shown in figure 10.5.

set parametric
set size square

r(t) = 1 - exp(-0.25*t/pi) # the radius as function of t

plot [0:25*pi][-1.1:1.1][-1.1:1.1] r(t)*cos(t), r(t)*sin(t)

Listing 10.4 Plotting in parametric mode (see figure 10.5)

184 CHAPTER 10 Advanced plotting concepts

For three-dimensional plots, we obviously need to provide a third function, with all
three functions depending on two variables, called u and v, and possessing corre-
sponding options set urange and set vrange.

10.2.2 Non-Cartesian coordinates

Not all coordinate systems are made out of straight lines at right angles to each other.
To plot points on a circle, for instance, it makes more sense to use polar coordinates,
or to use spherical or cylindrical coordinates for systems possessing those kinds of
symmetry. Gnuplot has built-in support for these three symmetries, through the set
polar and set mapping facilities. To generate plots using other coordinate systems, we
have to resort to inline data transformations or external filters.

 Polar mode is enabled using

set polar

which doesn’t take any further options. In polar mode, the independent variable is
interpreted as an angle and the dependent variable as a radius. In polar mode, the
independent (dummy) variable is denoted with t (not x), similar to the convention
used for parametric plots.

 The angle may be given either in radians (multiples of !—this is the default) or in
degrees. We can switch between both representations using

set angles [degrees | radians]

The current value of this option affects not only polar plots, but also how the argu-
ments of trigonometric functions are interpreted.

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Figure 10.5 A parametric plot. The
spiral starts at the origin and
approaches the unit circle as the
parameter t becomes large. See
listing 10.4.

185Higher math and special occasions

 Let’s look at an example (see listing 10.5 and figure 10.6). The process to generate
attractive plots in polar mode requires several steps, because some artifacts from regu-
lar plots must be removed explicitly. Here’s the list:

1 Switch to polar mode. Angles will be interpreted as radians (default setting).
2 Select a 1:1 aspect ratio for the diagram.
3 Switch off all parts of the usual decorations: the border, the tic mark labels, and

the tic marks themselves. Rather than turning tic marks off entirely, their length
is set to zero using the scale directive (this is discussed later in this section).

4 Turn on circular and radial grid lines using set grid polar. The optional argu-
ment specifies the angular spacing at which radial grid lines will be drawn.

5 Select a suitable spacing for the circular grid lines using set xtics.
6 Make room for the top and bottom labels by increasing the respective margins.
7 Put labels for the angles on the perimeter of the diagram. Place labels for the

radial distances at suitable positions. Using the Symbol font for the Greek letter
! requires a terminal in enhanced text mode (see section 11.2.3 for details on
enhanced mode).

8 Make sure the key doesn’t interfere with the graph by moving it outside the
actual plotting region.

9 Plot.

set polar
set size square

unset border
set format x ""; set format y ""
set xtics scale 0; set ytics scale 0

set grid polar pi/8.0
set xtics 0.25

set tmargin 1; set bmargin 1

set label "0{/Symbol p}" at 1,0 offset char 1,0
set label "+0.5{/Symbol p}" at 0,1 center offset char 0,0.5
set label "-0.5{/Symbol p}" at 0,-1 center offset char 0,-0.5
set label "+/-{/Symbol p}" at -1,0 offset char -5,0

set label "0.5" at 0.5*cos(0.84*pi),0.5*sin(0.84*pi) offset char .5,0
set label "1.0" at 1.0*cos(0.83*pi),1.0*sin(0.83*pi) offset char .5,0

set key outside left

plot [-2*pi/3:2*pi/3][-1:1][-1:1] "polar-data" u 1:2 t "Data" w l,
" 0.27*(2-cos(3*t)+0.75*cos(5*t)) t "Model"

The zero angle in this diagram is located on the right of the diagram, not at the top
(which is the more commonly used convention for polar plots like this). You can per-
form the required calculations yourself by subtracting !/2 from function arguments or
making the corresponding inline data transformation when plotting data from a file.

Listing 10.5 Creating a plot in polar mode—see figure 10.6

186 CHAPTER 10 Advanced plotting concepts

While the spacing of the radial lines in the polar grid is controlled through the argu-
ment to set grid polar, the concentric circular grid lines are controlled through set
xtics. Specifically, circular grid lines are drawn where major tic marks would be drawn
on the x axis—this is also why we mustn’t switch off these tic marks entirely using unset
xtics, but instead merely reduce them to zero length as done in the example.

 If you study the commands in listing 10.5 carefully, you’ll notice that gnuplot
doesn’t actually have a polar coordinate system! The positions for the labels, for
instance, were given in the first coordinate system (see section 6.2), despite the fact
that this coordinate system isn’t actually visible in the graph, since borders and tic
marks have been suppressed. If desired, we can use explicit trigonometric expressions
to perform the necessary calculations on the fly, as has been done when placing the
radial labels.

 In the example, three plot ranges are used as part of the plot command. The first
corresponds to the trange and controls the range of angles for which the function is
evaluated. The second and third ranges are the xrange and yrange respectively, which
control (as usual) the visible part of the plot.

 There’s also the set rrange option, which can be used to cut off parts of the data
that exceed a desired plot range in the radial dimension. Note that the lower bound-
ary on rrange must be zero, for example set rrange [0:0.5]. It’s not possible to select
just an intermediate slice of r values (such as 0.25 to 0.75). Similarly, gnuplot will nei-
ther warn you if you attempt to plot data containing negative values for the radial
variable, nor suppress such data points: instead it’ll plot them shifted by ! in the angu-
lar coordinate. You’ve been warned!

0π

+0.5π

-0.5π

+/-π

0.5

1.0

Data
Model

Figure 10.6 A graph in polar mode. See listing 10.5.

187Higher math and special occasions

 Polar mode only makes sense for graphs generated using plot—the equivalent for
graphs created with splot is the set mapping option:

set mapping [cartesian | cylindrical | spherical]

I’ll demonstrate it here only by showing the data set world.dat (which you can find in
the demo folder of your gnuplot installation) twice: once plotted using plot as a pro-
jection into the plane, and once plotted with set mapping spherical (see figure 10.7).
Check the standard gnuplot reference documentation for further details.

Figure 10.7 Using a spherical coordinate system together with splot. On top, the data set has been
plotted as a regular two-dimensional plot using plot; below it’s been plotted (together with a grid)
using set mapping spherical and splot.

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

-200 -150 -100 -50 0 50 100 150 200

188 CHAPTER 10 Advanced plotting concepts

10.2.3 Vector fields

Vector-valued quantities have both a magnitude and a direction, in contrast to scalars,
which only have a magnitude. Simply put, vectors are arrows, while scalars are num-
bers. Think of a climber in a mountainscape: the local height is a scalar, but the direc-
tion that the climber would tumble down (if he let go) is a vector.

 Gnuplot has a with vectors style, which can be used to plot vector-valued quanti-
ties. This style is available for both the plot and the splot commands.

 We must supply additional information when plotting vectors to indicate the direc-
tion. For two-dimensional plots using plot, gnuplot requires four columns: the first
two give the position of the start of each arrow, while the last two give the offset (rela-
tive to the start) of the arrow’s end. In other words, the columns must represent x, y,
dx, and dy, and gnuplot will show the data as arrows from (x, y) to (x+dx, y+dy). All
quantities are interpreted as coordinates in the diagram’s coordinates.

 Figure 10.8 shows an example. The data can be interpreted as the force on a test
charge in the presence of three other charges (indicated by dots). By default, gnuplot
draws the arrowhead as a fixed fraction of the length of each arrow, so that short arrows
have smaller heads. This is shown in the top panel. By contrast, we can supply our own
arrow style directives as part of the plot command, in which case all arrowheads are
drawn with the same size. An example is shown at the bottom of figure 10.8. (You might
want to check section 6.3.2 for details on arrow style parameters.)

 Similar considerations apply to vectors in three dimensions, only that now we need
to supply six columns in total. In three dimensions (when using splot), the with
vectors style can be used in creative ways to visualize three-dimensional objects. In
particular, together with the mousing capabilities of interactive terminals (see
section 8.3.2), this can be quite useful—a lot of visualization power that’s usually only
achieved with much more complicated programs.

 A quick example will help to clarify. Listing 10.6 shows a data file. The top part of
the data file gives the coordinates of a pyramid-shaped body. The bottom part of the
file shows the edges of the pyramid. The labels A, B, C, and D of the corners help to
identify the edges of the body.

End Points
-1 -1 0 # A
-1 1 0 # B
1 0 0 # C
0 0 1.75 # D

Edges
-1 -1 0 -1 1 0 # A -> B
-1 -1 0 1 0 0 # A -> C
-1 -1 0 0 0 1.75 # A -> D
-1 1 0 1 0 0 # B -> C
-1 1 0 0 0 1.75 # B -> D
1 0 0 0 0 1.75 # C -> D

Listing 10.6 A data file with coordinates for a simple pyramid—see figure 10.9

189Higher math and special occasions

When attempting to plot this data, we need to remember that the with vectors style
requires the starting points and the relative offsets of the end points, not the coordi-
nates of the start and end points directly. The commands in listing 10.7 use inline data
transformations to convert the coordinates into offsets on the fly. (If you need a
reminder how to use the index keyword to pick out different parts from a file, you
might want to review section 3.1.1.) The resulting graph is shown in figure 10.9. Try it
yourself, and then “grab” the figure with the mouse to rotate. Have fun!

-4

-2

 0

 2

 4

-4 -2 0 2 4

-4

-2

 0

 2

 4

-4 -2 0 2 4

Figure 10.8 Plotting a vector field
using with vectors. The top panel
shows the gnuplot default, in which the
size of the arrowhead is a fixed fraction
of the overall length of the arrow. The
bottom panel shows the same data
plotted using plot "vectors.dat"
with vectors head size 0.15,25.

190 CHAPTER 10 Advanced plotting concepts

unset border
unset tics
unset key
set view 75,35
splot "pyramid.dat" index 0 with points pointtype 7 pointsize 3,
" "" i 1 u 1:2:3:($4-$1):($5-$2):($6-$3) with vectors nohead

To close out this chapter on more advanced plotting concepts, we’ll look at gnuplot’s
curve-fitting support. That will be the topic of the next section.

10.3 Curve fitting
Gnuplot includes a facility to perform nonlinear least-square fits. This subject, involving
a fair amount of data manipulation and descriptive statistics, is actually a little outside
gnuplot’s primary area of applicability (which is to generate plots of data).

 Gnuplot’s fitting functionality consists of

! Two commands: fit and update
! Two options: set fit logfile and set fit errorvariables; and one environ-

ment variable FIT_LOG
! Eight gnuplot variables

Before describing how to use the fit command and the associated options, let me
explain the context and some specific terms.2

10.3.1 Background

Assume that we have a set of N data points: (xi, yi) and a function f(x; a1, ..., am) of
known functional form. Note that the function doesn’t just depend on the independent
variable x, but also on m parameters a1 through am. Fitting this function to the data
means finding those values for (a1, ..., am) that optimize a certain merit function—a
function measuring how well the data is represented by the function. The most

Listing 10.7 The commands used to generate figure 10.9 from the data in listing 10.6

2 An easily accessible, but certainly not sufficient reference for nonlinear least-squares fits is chapter 15 of
Numerical Recipes (2nd ed., 1992) by W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.

Figure 10.9 The body whose coordinates
were given in listing 10.6. Try this yourself,
then “grab” this figure with the mouse and
try to rotate it!

191Curve fitting

common merit function is the sum of the squares of the deviations, which is tradition-
ally referred to as $2 (or chi-square):

$2 = # i
N (yi - f(xi; a1, ..., am)) 2

We can assign a weight to each term in this sum, such that data points that are known
more accurately contribute more strongly to the final sum. We write the weight for the
ith term as 1/!i, where !i is a measure for the uncertainty (such as the standard devia-
tion) of that term. The result is the weighted least-squares merit function (also denoted
chi-square):

 $2 = # i
N (yi - f(xi; a1, ..., am))2/% i

2

The optimal choice of parameters (in a least-squares sense) will minimize this value.3

 If the function f(x; a1, ..., am) is linear in the independent variable—that is, if

 f (x; a, b) = a x + b

then the optimal values of the parameters a and b can be calculated directly from the
data (linear regression). If the function is not linear in x, but linear in the parameters—
for example, f(x;a,b) = a sin(x) + b cos(x) —a similarly simple relation holds. But if the
function is not linear in the parameters—for example, f(x; a, b) = sin(a x)/sqrt(x+b)—
there’s generally no solution to the minimization problem in closed form.

 In this case, the merit function must be minimized using an iterative algorithm, in
which different values for the parameters are tried repeatedly until the merit function
reaches its optimal value. The standard numerical algorithm for this task, which takes
into account the specific analytic form of the merit function as a sum of squares, is
known as the Marquardt-Levenberg method. This is what gnuplot’s fit command uses.

 In the next section, we describe this command in some detail, and then move on
to demonstrate it by way of a worked example.

10.3.2 Using the fit command

The syntax of the fit command is superficially similar to the plot command:

fit [{ranges}]
{function} "{str:datafile}"

[index {int:start}[:{int:end}][:{int:step}]]
[every {int:step}[::{int:start}[::{int:end}]]]
[using {columnspec}]
via [{var1}, {var2}, ... | "{str:parameterfile}"]

The requirements for the format of the data file are the same as for the plot com-
mand. The index, every, using directives are available for fit as well, and so are on-
the-fly transformations through the using option. Plot ranges can be specified inline,
using the syntax familar from the plot command.

3 Although the sum of least-squares is by far the most commonly used merit function, it’s not the only possible
choice. It can be justified on statistical grounds when the noise in the data has certain properties. It has the
technical advantage of being simple and analytic everywhere. On the minus side, it tends to overemphasize
outliers.

192 CHAPTER 10 Advanced plotting concepts

 When used with fit, the using directive can specify one to three columns: if only a
single column is given, it’s assumed to be the y value. Two columns are interpreted as
(x, y) pairs. A third column is interpreted as the standard deviation for the correspond-
ing value and is used to form a weighted-least squares merit function (if the value in the
third column is !, then each term in the sum of squares is multiplied by 1/! 2).

 The function must depend on the dummy variable explicitly, but otherwise can be
any valid gnuplot expression. Usually, it’ll be a user-defined function. The names of
the parameters with respect to which the fit will be performed are specified using the
via directive. There are two variants: the names of the parameters can be given explic-
itly as part of the fit command, or can be read from a file.

 Since nonlinear least-squares require an iterative algorithm, good starting values
for all parameters must be selected. With badly chosen starting values, the procedure
may require many steps to converge, or diverge altogether.

 Values can be assigned to parameters before they’re used—any parameter that
hasn’t been defined is set equal to zero. Alternatively, the parameter file may contain
starting values for all parameters, using the following syntax:

varname = value
varname = value # FIXED

The comment on the second line forces gnuplot to keep this value fixed during the
iteration; that is, the corresponding variable won’t be adjusted when attempting to
optimize the merit function.

 At each step in the iteration, the fit command prints out the current values of
the fitting parameters, as well as some information about the progress of the itera-
tion. When the algorithm has converged, gnuplot prints out the final values for all
fitting parameters, as well some additional information that can be used to interpret
the results and evaluate the goodness of the fit and the reliability of the parameter
estimates.

 At the end of the iteration, the variables are assigned their final values and there-
fore can be used directly in subsequent plots. Let me give you a quick demonstration of
the basic usage right now, and let’s look at a more involved example in section 10.3.3.

 The basic workflow when using the fit command consists of three steps: define a
function, then use it as argument to fit, and finally plot the function together with
the data set using plot.

f(x) = sin(a*x + b)
fit f(x) "data" u 1:2:(0.25) via a,b

Many lines of gnuplot output suppressed...

plot "data" u 1:2 w linesp, f(x) # Plot data together with
"best-fit" function

After the fit command has completed, all the parameters (here: a and b), contain
their proper values, so that the function can be plotted without further modification.
This is what we do in the final step, where we plot the function (using the fitted values

193Curve fitting

for a and b) together with the data. Also note that we’ve used a constant value (0.25)
for the amplitude of the noise.

 Finally, if the list of parameters (and their starting values) has been read from a
file, then the resulting values can be written out to a file using the update command.
This command takes the name of the parameter file as mandatory first argument. If
no second argument is given, the input file is renamed by appending .old and the
resulting values are written to a file with the original name. Alternatively, if a second
filename is supplied, the resulting values are written to this file, while the original file
is left untouched.
CONTROL VARIABLES AND OUTPUT VARIABLES

We can control several aspects of the fitting operation through a number of control
variables. These are regular gnuplot variables, and we can influence the behavior of
the fit command by assigning numeric values to these variables.

! FIT_LIMIT: The main convergence criterion. If the relative change in the sum
of squared residuals between successive iteration steps is less than this value, the
iteration stops. Defaults to 10 -5.

! FIT_MAXITER: Maximum number of iteration steps taken. If set to zero, the
algorithm only stops on convergence. Defaults to 0.

! FIT_START_LAMBDA and FIT_LAMBDA_FACTOR: The Marquardt-Levenberg algo-
rithm always attempts to take the largest possible step that will reduce chi-
square. A numerical factor (usually called & or “lambda”) controls the size of
the step taken and is itself modified by the algorithm as the iteration proceeds.
FIT_START_LAMBDA is the initial value of lambda at the start of each iteration
step; FIT_LAMBDA_FACTOR is the factor by which lambda itself is varied when
searching for the optimal step size. Controlling these variables can help to
achieve convergence in difficult situations.

After the iteration has converged (or has been interrupted), gnuplot sets several vari-
ables that can be read out to obtain the results of the fitting procedure:

! FIT_CONVERGED: A flag that equals 1 if the iteration converged, 0 if it was inter-
rupted or exceeded the allowed number of steps.

! FIT_NDF: The number of degrees of freedom for this fit. It equals the number
of data points, less the number of adjustable parameters and is usually denoted
"(“nu”): "= N - m.

! FIT_WSSR: Weighted sum of squares residual, evaluated at the point that the
iteration converged to: $2 = # i

N (yi - f(xi ; a1, ..., am))2/! i
2.

! FIT_STDFIT: sqrt($2/').

Also keep in mind that the simplest and most effective way to influence the behavior
of the fitting routines is to provide better starting values for the fit parameters. A rea-
sonable selection of starting values will usually obviate the need to fiddle with the con-
trol parameters entirely.

194 CHAPTER 10 Advanced plotting concepts

OPTIONS AND ENVIRONMENT VARIABLES

Gnuplot writes information about each iteration step of the fitting process to the
screen and simultaneously to a file called fit.log. This file is always appended to, so as
not to overwrite previous results. The name of this log file can be changed through
the option set fit logfile, which takes the desired filename as argument. Leaving
the filename empty reverts back to the default convention.

 A different default name for the log file can be set using the environment variable
FIT_LOG, which is evaluated when gnuplot first starts up.

 Finally, if we activated the option set fit errorvariables, then for each fitted
parameter, the uncertainty in this parameter will be written to a new variable. This
new variable will be named like the parameter, but with the extension _err appended
(for example, the error of the fitted parameter a will be contained in a variable called
a_err). This option is disabled using set fit noerrorvariables.

 You can find more information regarding the fit command and some of its fea-
tures not discussed here in the standard gnuplot reference documention.
PRACTICAL ADVICE

Nonlinear least-squares fitting is a pretty complex topic, with many subtle issues. If you
want to get serious about it, you’ll want to consult a good numerical analysis text, and
a good statistics text as well. Here are just a few items of practical advice to get you
started. You may also want to take a look at the gnuplot reference documention for
further discussion and additional features.

 Since the fitting algorithm is an iterative process, it’s not guaranteed to converge.
If the iteration doesn’t converge, or converges to an obviously wrong solution, try to
initialize the fitting parameters with better starting values. Unless the variables have
been initialized explicitly, they’ll be equal to zero, which is often a particularly bad
starting value. In special situations, you may also want to try hand-tuning the iteration
process itself by fiddling with values of FIT_START_LAMBDA and FIT_LAMBDA_FACTOR.

 All fitting parameters should be of roughly equal scale. If some of the parameters
differ wildly (by many orders of magnitude) from one another, the fitting function
should be modified to take these factors into account explicitly. (Say, we want to fit
f(x; a, b) = a cos(b x) and we know that a is close to 1,000, while b is close to 1; we
could either divide the data by 1,000, or write the function as f(x; a, b) = 1000 a cos(b x)
instead.)

 The iteration problem becomes mathematically badly conditioned if the fitting
function contains several parameters that have similar effects on the behavior of the
function. A blatant example is f(x; a,b) = a exp(x+b), which despite its appearance has
only one adjustable parameter, since a exp(x+b) = (a exp(b)) exp(x) = c exp(x). For
more complicated models, this kind of cross-correlation may be hard to detect
ahead of time.

 The number of data points, less the number of adjustable parameters (that is,
N - m), is known as the number of degrees of freedom of the fit, usually denoted "(“nu”).
The final value of $2 (the sum of the squares of the residuals) should be of the same
order of magnitude as the number of degrees of freedom for a reasonably good fit.

195Curve fitting

If you find that the final $2 is significantly larger than ", although the fit “looks”
good, you may have overestimated the uncertainty in the data points (the !i).

10.3.3 Worked example

Assume we have a data set like the one in figure 10.10. From other information about
the source of the data (for instance the experimental setup), we have reason to
believe that the data can be described by a harmonic oscillation:

 f(x; a, b, c, d) = a cos(b x + c) + d

Although we have a fair number of data points (namely 51), the data covers only little
more than one period of the oscillation, making it impossible to determine the fre-
quency via correlogram analysis, for instance. Furthermore, no transformation of the
fitting function suggests itself (inverting trigonometric functions is rarely useful). So a
nonlinear fit seems like a reasonable approach, and indeed a fit:

fit a*cos(b*x+c)+d "data" u 1:2 via a,b,c,d

converges rapidly. The final output is shown in listing 10.8.

After 5 iterations the fit converged.
final sum of squares of residuals : 0.838001
rel. change during last iteration : -9.32605e-06

Listing 10.8 The final output of the fit command for the data set shown in figure 10.10

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 2 4 6 8 10

Data
Fit

Figure 10.10 A noisy data set and a best fit curve. See listing 10.8 for the output of
the fit command.

196 CHAPTER 10 Advanced plotting concepts

degrees of freedom (FIT_NDF) : 47
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.133528
variance of residuals (reduced chisquare) = WSSR/ndf : 0.0178298

Final set of parameters Asymptotic Standard Error
======================= ==========================

a = 1.08898 +/- 0.02733 (2.509%)
b = 0.894293 +/- 0.008294 (0.9274%)
c = 0.384983 +/- 0.0473 (12.29%)
d = -0.0368921 +/- 0.01961 (53.16%)

Although the fit appears quite good, the final $2 is way too small, suggesting that we
overestimated the noise in the data. In fact, since we didn’t specify a third column to
the fit command, gnuplot silently assumed the uncertainty in the data to have an
amplitude equal to +/-1 in each data point. Looking at the data (which varies only
between -1 and +1 overall) clearly shows this to be wrong.

 However, we only have this one data set. If we want to obtain at least an estimate for
the amplitude of the noise, we’ll have to extract it from the data. To do so, we look at
the residuals between the data and the best-fit solution (see figure 10.11):

plot "data" u 1:($2 - (a*cos(b*$1+c)+d)) w linesp

Immediately we see that there doesn’t seem to be a systematic drift in the residuals,
giving further confidence in our model. From the graph, we can estimate the ampli-
tude of the noise to be about 0.15. Using this to improve our fit, we try

fit a*cos(b*x+c)+d "data" u 1:2:(0.15) via a,b,c,d

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 2 4 6 8 10

Residual

Figure 10.11 The residual between the data and the best fit. For the most part, the
residual is bounded in the interval [-0.15:0.15]. See figure 10.10 and listing 10.8.

197Curve fitting

giving no change in the estimated values of the fitting parameters, but now resulting
in a $2 of 37.2445.

 We can find a “probability” that this model correctly describes the data by evaluat-
ing the $2 distribution for this value of $2 and the number of degrees of freedom. This
distribution is tabulated, but we can use gnuplot’s built-in igamma function to give us
the result:4

print 1.0 - igamma(0.5*47, 0.5*37.2445)

which equals P = 0.845, suggesting a good fit.
 Since the estimate for the constant offset d is small, we may wonder whether the

offset might be exactly zero. So we eliminate d from the fitting function and run fit
again:

fit a*cos(b*x+c) "data" u 1:2:(0.15) via a,b,c

Now, the final $2 equals 40.0481, giving rise to a value of P = 0.786. Still pretty good,
but a little less so. What this tells us is that from the data alone, we can’t conclusively
deduce whether the offset vanishes, or is small but non-zero.

10.3.4 Should you do it?

Let me make a bold statement: whenever you find yourself reaching for a nonlinear
fit, you’re probably up to no good. Hold it—I said probably! Let me explain.

 There are three reasons why you may find yourself wanting to perform a nonlin-
ear fit:

! To estimate parameter values for an established model
! To find an analytical approximation to a data set
! To select a model from among a set of possible choices

Parameter estimation is a valid application of nonlinear fits, although easily overused.
Before reaching for the fitting routine, we should at least have contemplated the fol-
lowing approaches:

! Do closed form solutions exist? Sometimes they do, even if the equations look
forbidding. For example, imagine a data set xi , 0 < i < N that we believe to be
normally distributed, according to exp(-(xi - m)2). Naively, we may attempt a
nonlinear fit here, but in reality, the value of m that will give the best fit is simply
the mean of all the values: m = (1/N)#i xi.

! Can we transform the equation in such a way that it becomes linear? For exam-
ple, let’s assume that we suspect our data to follow a power-law with unknown
exponent. Rather than fitting f(x;a,n) = a xn, we can take logarithms on both
sides, or (equivalently) plot the data on a double-log plot. If the power-law rela-
tion holds, the data will fall on a straight line and we can obtain the exponent
from the slope of this line. (We showed an example in figure 1.4.)

4 Check for instance Numerical Recipes, section 15.1 for more details on this.

198 CHAPTER 10 Advanced plotting concepts

! Even if no such a transformation is possible, can we identify and isolate the
dominant behavior and perform a transformation to a linear form on that? For
example, if we have a model such as y = a cos(b x))/xn, and want to determine
the optimal value of the parameter n, we’re probably much better off taking
absolute values and plotting the results on a double-log plot, rather than start-
ing out with a nonlinear fit (which, by the way, will have to be done for all three
parameters a, b, and n, although we’re only interested in one).

Also, keep in mind that your mathematical model may describe the dominant behav-
ior over some region of the data set well, but may nevertheless be incorrect elsewhere.
The fitting process, by contrast, attempts to minimize the $2 merit function globally. If
the model isn’t applicable over some part of the data set, the values obtained from the
fit may be less accurate than if the fit had been constrained to only that part of the
original data which can be described accurately by the model. You should therefore
be careful to perform fits only on those parts of the data set for which the model is
good. But how do you decide? This depends on how your data was generated and
what you know about the approximations that went into the derivation of your model,
among other things. Proceed with caution!

 The second reason for attempting nonlinear fits (replacing a noisy data set with a
simple analytic expression) looks innocuous enough, but can easily lead to pure evil.
Two problems are likely to arise. First of all, it won’t be long before it’ll be conve-
niently forgotten that the simple analytical model that was assumed for the fitting pro-
cedure has no theoretical justification, and all kinds of unwarranted conclusions will
be drawn from it (don’t think it won’t happen to you!). The second problem is that
the fit loses information that can’t be restored anymore. Say we think a third-order
polynomial (f(x) = a x3 + b x2 + c x + d) is sufficient to represent the data well enough.
But maybe we should really have used a higher-order polynomial. Or maybe an expan-
sion in trigonometric functions. Or something else entirely.

 When your goal is to make a noisy data set manageable by finding an analytic for-
mula to describe it, I have three recommendations for you:

! If you want to evaluate the function at arbitrary points, you really are talking
about a (much simpler) interpolation problem. You can use local two- or three-
point interpolation formulas if the data is smooth, or something like a spline if
it’s noisy.

! If you want to represent the data, try an expansion in basis functions (orthogo-
nal polynomials or trigonometric functions). This has a couple of advantages.
The expansion coefficients can be found through explicit (noniterative)
expressions, avoiding all problems of nonconvergence of an iteration. And fur-
thermore, the expansion is a systematic process that can be pushed to any
desired degree of accuracy by calculating higher and higher terms. At the same
time, it gives you a built-in criterion for the goodness of the approximation: if
the coefficients of subsequent terms are sufficiently small, the expansion can be
truncated safely.

199Summary

! Only if the data is close to linear (that is, it doesn’t look like the data in
figure 10.10) should you attempt a fit to a low-order polynomial. I’d caution
strongly against representing more complicated looking data sets with intricate
mathematical functions.

Finally, attempting to select one model from a set of candidates based purely on a
nonlinear fit is simply exceptionally hard, and rarely all that conclusive. In particular,
never blindly believe the numeric “goodness of fit” values calculated from the final
residuals and the $2 distribution. Instead, plot the residuals and look for systematic
deviations from zero: if there are any, that’s a strong sign that your model is incom-
plete or just plain wrong. This is another reason why a transformation to a linear
model (if one exists) is so powerful: deviations from linearity are much easier to spot
than deviations from more complicated curves. If the transformed data falls on a
straight line, that provides strong proof for the validity of the model implied by the
transformation!

 So, in summary: if you find yourself reaching for nonlinear fits, there are almost
certainly better ways to achieve your purpose. They may require more work, but the
added confidence in the results should be well worth the effort. As a final rule of
thumb, I’d say this: don’t do a nonlinear fit unless you’ve completed one of the alter-
native approaches. Once this has been done, a nonlinear fit can be a convenient way
to speed up the process or to polish the values.

 But only then.

10.4 Summary
In this chapter we looked at a variety of advanced techniques for specialized situa-
tions. It may well be that you’ll never need any of them—but if you do, you’ll be glad
they’re there!

 First, we discussed gnuplot’s multiplot mode, which allows us to combine several
plots into a single graph. Typical applications are regular arrays of small graphs,
placed next to each other for easy comparison, or insets of smaller graphs in a larger
one to highlight details or special features.

 Then we moved on to a number of topics of somewhat higher mathematical
sophistication, such as parametric plots, non-Cartesian coordinates, and plots of vec-
tor fields.

 In the final section, we discussed gnuplot’s built-in facility to perform nonlinear
fits in some detail, and I tried to give some recommendations on how to use it most
appropriately.

 In the next chapter, we’ll learn all there is to know about gnuplot’s ways of generat-
ing output: its terminal facility.

200

Terminals in depth

Gnuplot supports more than 70 terminals: devices for which it can produce output.
This may seem daunting, but the reality is that most of them are obsolete today—
the number of terminals that are relevant is (thankfully) much smaller.

 We can divide the currently used terminals broadly into three groups: terminals
that produce output in a standard graphics file format (bitmaps: GIF, JPG, PNG; scal-
able vector graphics: SVG), terminals that produce output primarily for print (Post-
Script and PDF), and terminals for interactive use.

 Terminal handling used to be a bit messy, but a lot of effort has been made to
streamline the user interface in recent releases (version 4.2 and higher). Today,
most terminals follow similar conventions and share a common set of options.

 In this chapter, I’ll first review the steps required to export plots to graphics file
formats and make some additional suggestions on how this process can be
improved (we touched on this briefly in chapter 2). I’ll then describe the most
commonly found terminal features by themselves. In the sections dealing with indi-
vidual terminals, we can then concentrate on features specific to each terminal.

This chapter covers
! Exporting graphics using terminals
! Generating standard graphics file formats
! Generating print-quality output
! Customizing interactive terminals

201Exporting graphs to file

11.1 Exporting graphs to file
The set terminal command controls the type of the currently active output device,
including all its options. As we’ve already seen in chapter 2, this necessitates a multi-
step process to export a graph to a file:

1 Preserve the current (interactive) terminal setting, using set terminal push.
2 Switch to the desired export terminal type, including all necessary options.
3 Set the output filename using set output.
4 Generate the plot using plot or replot.
5 Restore the previous (interactive) terminal with set terminal pop.
6 Direct output back to the interactive terminal using set output without a

filename.

The pseudoterminals terminal push and terminal pop are very helpful in this con-
text, because they preserve not only the type, but all selected settings for the interac-
tive terminal.

 We can greatly improve the efficiency of this process by combining all of these
steps into a command script, such as the one in listing 2.3. In listing 11.1 I show you a
slightly improved version, which not only exports the plot to a graphics file, but also
saves the commands to a gnuplot command file at the same time.

save "$0.gp" # Save commands to file
set t push # Store current terminal settings
set t png $1 # Set terminal type to PNG, taking additional

options from second argument
set o "$0.png" # Set output file name
replot # Generate plot
set o # Restore output to interactive terminal
set t pop # Restore interactive terminal settings

We’d invoke this script using call, for example like this (export.gp is the filename of
the script in listing 11.1):

call 'export.gp' 'myplot'

The script will append the appropriate file extensions (.gp or .png) to the base name
supplied in the call command. As a bonus feature, this script can take an additional
(second) argument, which is passed straight to the set terminal command. In this
way, it’s still possible to pass additional options to the export terminal, like so:

call 'export.gp' 'myplot' 'size 160,100'

This will result in a PNG image, which is much smaller than the default.
 It should be clear from this example that this call macro trick is extremely versa-

tile. For example, you might find it convenient to read the desired terminal type (such
as PNG, PDF, or SVG) as an argument, rather than hard-coding in the script itself. You
might want to supply default values for common terminal options. In section 12.2.4,
we’ll see further possibilities.

Listing 11.1 An improved export script

202 CHAPTER 11 Terminals in depth

11.2 Common terminal options
Some settings exist for all terminals (although there may be small variations in syn-
tax), and we summarize them here so that we don’t have to repeat this information for
each individual terminal.

11.2.1 Size

Remember when we talked about the set size command back in chapter 6? There,
we made the distinction between the size of the canvas and the size of the plot on the
canvas, and explained how to adjust the size of the plot using set size. Now it’s time
to talk about ways to set the size of the canvas.

 Almost all terminals have a size option, which can be used to fix the size of the
resulting canvas. (Some interactive terminals are exceptions to this rule, since for
those terminals the size of the plot window is determined by the platform-dependent
windowing system, and not under the control of gnuplot.) The size can be given in
pixels (for bitmap terminals) or in inches or centimeters (for printable output, such
as PostScript and PDF).

11.2.2 Fonts

Fonts aren’t handled by gnuplot itself—instead, gnuplot relies on the capabilities of
the output devices and their driver libraries. What gnuplot can do with fonts, there-
fore, depends not so much on gnuplot itself, but on the font-handling capabilities of
the installed system libraries (and, of course, on the selection of installed fonts).

 Most terminals allow you to declare a default font, usually using the font keyword.
This font will be used for all text labels, unless explicitly overridden using the special
commands available in enhanced mode (see the next section). The default font is also
relevant, because the average size of its characters is used to define the character
coordinate system, and because it is used to set the size of the graph’s margins (see
section 6.6.2). For variable-width fonts, gnuplot makes a best-effort attempt to deter-
mine the average character size, either by using the nominal font size in printer points
(PostScript) or by sampling the size of a test string (libgd-based bitmap terminals).

 Several terminals can use PostScript Type 1 or TrueType fonts, if the underlying
libraries support them. Check the following sections on individual terminals for details.

11.2.3 Enhanced text mode

All contemporary terminals support enhanced text mode, which allows additional for-
matting options: mainly support for sub- and superscripts, and for font changes. (If a
font name can’t be resolved, gnuplot selects a standard font instead.) Changing the
font makes it possible to use symbols in graph labels that aren’t part of regular fonts:
for example, the standard PostScript Symbol font includes Greek letters and many
special math characters (see figures B.1 and B.2 in appendix B for a list of available
symbols). Enhanced text mode is off for all terminals by default; we must explicitly
enable it when choosing a terminal using the enhanced keyword.

203Common terminal options

 In enhanced text mode, certain characters are used as control characters and
influence the way text is formatted. Table 11.1 lists all special characters.

Table 11.1 Control characters for enhanced text mode

Control character Example Result Description

{} Grouping and scoping.

^ x^2

Superscript.

_ A_{ij}

Subscript.

@ x@^s_i

Alignment of sub- and superscripts.

x@_i^{-3/2}y

Put the shorter one first...

x@^{-3/2}_iy

... rather than last.

~ ~B/ Overlay the two following characters or
groups.

~x{.6-}

Overlay a - character on previous character,
raised by 0.6 times the current character
size.a

{/ } {/Times Hello} Change font.

{/Symbol } {/Symbol abc}

Use Symbol font.

{/= } {/=20 A}

Select an absolute font size (size in printer
points).

{/* } {/*0.5 A} Change font size relative to enclosing font.

{/Symbol=24 G}

Font family and size selections can be
combined.

& [&{abc}] Space, corresponding to the length of the
enclosed argument.

\NNN \101 Select a symbol, using its octal code.

\ Escape special characters within single
quoted strings.b

\\ Escape special characters within double
quoted strings.b

a. Overlay operator doesn’t nest inside PostScript terminals.
b. Not available for PostScript terminals.

204 CHAPTER 11 Terminals in depth

Curly braces ({...}) are used both to group several characters together and to limit
the effect of a font declaration to the contents of the braces only. They can be left off
for single-character sub- and superscripts.

 Let’s look at some examples of enhanced mode (see listing 11.2 and figure 11.1).
Most of the commands should be clear; I only want to point out a few details.
Enhanced mode can be used anywhere that gnuplot expects a string: in the example,
we use it in the labels, for the x tics, and for the entries in the graph’s key. The scope
of a font selection can be limited using curly braces. We use this several times, for
example in expressions such as {/Symbol f}(x), which prints the first character using
the Symbol font, but the last three using the regular font.

 A word of warning: enhanced mode works best for simple applications, such as
sub- and superscripts, and simple font changes (mostly to get access to Greek letters
and a few other special characters). But complicated, nested expressions may not
always work out the way you expected them to, in particular when using one of the
PostScript terminals (see the footnotes in table 11.1).

 As part of the documentation that comes with the gnuplot distribution, you’ll
also find a document titled ps_guide.ps, which contains more information on
enhanced mode.

set terminal ... enhanced # Don't forget to turn on enhanced mode!
set label 1
" "{/Symbol f}(x) = e^{-x^2/2} / {/Symbol \326 2 p}" at 1.2,0.25
set label 2

Listing 11.2 Enhanced text mode example—see figure 11.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-π/2 0 π/2

φ(x) = e-x2/2 / √ 2 π

Φ(x) = ∫ −∞
x φ(t) dt

φ(x)
Φ(x)

Figure 11.1 Enhanced text mode. See listing 11.2.

205Common terminal options

" "{/Symbol F}(x) = {/Symbol \362 @_{-\245}}^x &{i} {/Symbol f}(t) dt"
" at 1.2,0.8

set key top left

unset xtics # Switch off default xtics
set xtics ("{/Symbol p}/2" pi/2, "0" 0, "-{/Symbol p}/2" -pi/2)

plot [-3:3] exp(-0.5*x**2)/sqrt(2*pi) t "{/Symbol f}(x)",
" norm(x) t "{/Symbol F}(x)"

11.2.4 Miscellaneous appearance options

Several of the terminals have options that can be used to influence the way graph ele-
ments are drawn.

 Using rounded, line ends and joins of two lines are rounded off; using butt forces
rectangular line ends and sharp angles where lines join. Both butt and rounded only
make sense for line widths greater than one.

 The solid keyword can be used to force all lines to be drawn solid. The opposite is
dashed. These options are occasionally useful when switching between color and
monochrome terminals. For example, interactive terminals (these days) are usually
color terminals, so all lines are drawn with solid line styles and distinguished by their
colors. When exporting a graph to a monochrome PostScript terminal, for instance,
the colors are translated into different dash styles. Often, this is just what we want. But
sometimes it leads to poor results, for example if our graph includes boxes filled with
dash patterns (as in figure 5.7)—the boxes are distinguished by their different fill pat-
terns, and we don’t want the fill patterns themselves to be drawn with dashed lines.
Using the solid option forces all lines to be drawn with solid lines, as desired.

 Several terminals offer the possibility of scaling line widths globally using the
linewidth option. Its argument is a floating-point number, which is used to scale all
line widths used in the graphs. The dashlength option is similar: it can be used to
control the length of dashes (for dashed line styles) globally.

11.2.5 Flushing output channels

Finally, a word of warning: don’t assume that the gnuplot plot or replot commands
will automatically flush their output buffers to file! This isn’t a problem with bitmap
terminals, but can lead to frustrating problems with file formats that can contain more
than one graph in a single file (among them PostScript, PDF, and SVG). I’ve also
encountered this sort of problem with terminals that generate output which requires
postprocessing (for instance, by LaTeX).

 In short, when the plot or replot command returns, the output files may still be
incomplete and not yet ready to be used as input to other programs.

 There’s a simple remedy, though: the next set terminal or set output command
is guaranteed to flush any open output buffers. Therefore, when generating (for
example) PostScript files, issue a set output after each plot or replot command.
Note that quitting gnuplot does not necessarily flush open files! (But set output
always seems to work.)

206 CHAPTER 11 Terminals in depth

11.3 Standard graphics file formats
Gnuplot can generate images in the most popular image file formats. In this section,
we‘ll look first at bitmap formats (GIF, JPG, PNG), and then at the vector-oriented SVG
format.

11.3.1 Bitmaps

All bitmap formats (GIF, JPG, PNG) are generated using Tom Boutell’s libgd library,
and therefore the options available depend on the capabilities of your local libgd ver-
sion. You may also want to check the libgd documentation for further details (http://
www.libgd.org).

 All three terminal options take a common set of options, available for all formats, as
well as options specific to the capabilities of each file format. The common options are

set terminal XXX [size {int:x},{int:y}] [[no]crop]
[tiny | small | medium | large | giant]
[font [{str:name} [{int:size}]]

| ["{str:path} [, {int:size}]"]]
[[no]enhanced]
[rounded | butt]
[{color0} {color1} {color2} ...]

Here, XXX stands for gif, jpeg, or png.
 The size of the resulting image (in pixels) is controlled by the size directive,

defaulting to 640 x 400 pixels. Unless set size has been set, gnuplot will size the
actual plot (including margins, tic marks, and other decorations) to fill this image.
Using the crop option, any white background margins around the image can be
cropped to the smallest possible image size. A cropped image isn’t scaled up to the
specified size after cropping, resulting in an image of smaller size (in pixels) than
requested by size. We’ll see an example in listing 11.4 later in this chapter.

 The GD library provides five basic named fonts (tiny: 5 x 8 pixels; small: 6 x 12 pix-
els; medium: 7 x 13 pixels [boldface]; large: 8 x 16 pixels; and giant: 9 x 15 pixels).
These fonts can neither be scaled nor rotated around arbitrary angles.

 Much better-looking results can be obtained if the GD library has been built with
support for TrueType fonts. (Look for the option +GD_TTF in the output of show
version long.) In this case, both TrueType (.ttf) and Adobe Type 1 (.pfa) fonts can
be used.

 The font directive takes either the name of a font file (without the extension),
optionally followed by the desired font size, or full path name to the font file enclosed
in quotes, possibly followed by the desired size after a comma (see listing 11.3). In the
latter case, the filename must include the extension, while in the former case, it must
not. In either case, the font specification is case sensitive. The set terminal command
will print an error message if the desired font couldn’t be found.

set t png font FreeSans 11
set t png font "/usr/share/fonts/truetype/FreeSans.ttf, 11"

Listing 11.3 Two equivalent ways to specify the fonts to be used by the PNG terminal

207Standard graphics file formats

If no explicit path to the font file is supplied, standard locations as well as the list of
directories given by the GDFONTPATH environment variable are searched. (Note that
gnuplot’s fontpath option applies only to PostScript terminals and has no affect for
bitmap images.) If no font is specified, gnuplot checks the GNUPLOT_DEFAULT_GDFONT
environment variable for a font name or font file. The font size defaults to 12 point.

 In any case, the selection of available fonts (and their installation location)
depends on your local system, so it’s difficult to make recommendations that are guar-
anteed to work everywhere. I’ve achieved good results with the TrueType font Free-
Sans (at 11pt), which is a rather tight and compact sans serif font. It’s part of the
freefont project (http://www.gnu.org/software/freefont/) and should therefore be
available to anyone. To use it, I use the following command:

set terminal png font "FreeSans,11"

Finally, a color map for the image can be given explicitly. The first color (color0) will
be used for the background, the second color for the border, the third for the axes
(when using set zeroaxis, for instance). All remaining colors are used for consecu-
tive line types. The format for the color specification is different from the format used
elsewhere by gnuplot. The required format here consists of a color specification as a
hex string, preceded by the letter x, for example xFF0000 for red, and so on.
GIF

Since the expiration of the Unisys patent, libgd does generate GIF images. The
options for the gif terminal are the common options given previously. In addition, it
supports a transparent option, which makes the first (background) color transpar-
ent. Default is notransparent.

set terminal gif ...
 [[no]transparent] [animate [delay {int:time}]]

Animated GIFs can be created using animate. Subsequent plots sent to a terminal set
up with set terminal gif animate are used as successive images in the animation. By
default, the delay between images is 1/100 of a second. This delay can be changed
using the delay option, which expects an integer argument, giving the desired delay
in units of 1/100 of a second. The next set output or set terminal command termi-
nates the animation sequence.
PNG

The PNG terminal supports the common options, as well as some options specific to
the PNG image format:

set terminal png ...
[[no]transparent] [[no]interlace]
[[no]truecolor]

The transparent option is the same as for GIF (PNG alpha-channel support for partial
transparency isn’t supported by the gnuplot interface). The PNG image format sup-
ports interlacing, so that a partially received image is visible, albeit at reduced quality.
Interlacing of the created image can be enabled using interlace; it’s off by default.

208 CHAPTER 11 Terminals in depth

 Finally, PNG images can draw their colors either from a fixed-size palette or sup-
port true-color images with eight bits per red, green, and blue channel. By default,
truecolor is disabled.
JPG

The JPG terminal supports all the common options, as well as the interlace option
we just discussed in the context of the PNG terminal:

set terminal jpeg ...
[[no]interlace]

EXAMPLE: CREATING THUMBNAILS

As a hands-on demonstration of some of the options we just introduced, let’s assume
that we want to generate thumbnail versions of our plots. They should be tiny, but
still show the most dominant features of the plot. This is actually an interesting exam-
ple, because it demonstrates some of the difficulties when generating output for spe-
cific purposes.

 Let’s assume we export the full plot to a PNG file of the standard size (640 x 400
pixels) and would like a thumbnail of size 64 x 40. If we scale text down correspond-
ingly, the characters will be too small to read (in particular on the web, given the lim-
ited resolution of computer monitors). So we’ll leave all textual information (tic
marks and so forth) off.

 Furthermore, we want to export a cropped image, since at 64 x 40 pixels, we don’t
have any room to waste on empty margins. But if we set the terminal to set terminal
png size 64,40 crop, the final image file will end up being 24 x 13 pixels only—
remember that the image size isn’t scaled up when using crop.

 We therefore have to add the margins onto the image size we specify in the set
terminal command, to end up with an image of the desired size. The sequence of
commands in listing 11.4 will do the trick.

unset xtics # Switching off all textual information...
unset ytics
unset key
set terminal png size 104,67 crop
set output "thumb.png"
replot

The resulting image file is 64 x 40 pixels, exactly as desired.1

11.3.2 SVG

The SVG terminal generates images in scalable vector graphics format:

set terminal svg [size {int:x},{int:y} [fixed | dynamic]]
[font "{str:name} [, {int:size}]"]

Listing 11.4 Creating thumbnails: all non-essentials removed

1 The same effect can be achieved by setting all margins to a small number, such as 0.1, and specifying the
terminal without the crop feature. Note that you can’t set the margin width to zero, because this will make
the output routine fail. (This bug has been fixed in gnuplot version 4.3.)

209Print-quality output

[fontfile "{str:filename}"]
[[no]enhanced]
[rounded|butt] [linewidth {flt:factor}]

By default, gnuplot creates an image of 600 x 480 pixels with fixed size. Choosing the
dynamic keyword leads to an image that can be dynamically resized by the application
used to view the SVG file.

 A font name and size (in points) can be specified (the defaults are Arial, 12pt).
Note that the size specification must be part of the string argument giving the name of
the font. Fonts aren’t embedded into the SVG file, so the SVG viewer may replace a dif-
ferent font when rendering the image. It’s also possible to embed a link to a font file
in the SVG file, using the fontfile option. Gnuplot will search for this file in the
directories pointed to by the GNUPLOT_FONTPATH environment variable.

 The linewidth directive takes a floating-point argument: the width of all lines in
the graph will be increased by the corresponding factor.

11.4 Print-quality output
Gnuplot has excellent support for generating print-quality graphs. Most of them are
built on top of gnuplot’s powerful PostScript terminal, which I am going to describe
next. After that, we’ll take a look at the rather symbiotic relationship between gnu-
plot and LaTeX: how to include PostScript graphs generated with gnuplot into a
LaTeX document, and vice versa—how to include text typeset using LaTeX into a
gnuplot graph.

11.4.1 PostScript

Gnuplot’s PostScript terminal is very powerful, with many options that can be config-
ured individually:

set terminal postscript [landscape | portrait | eps]
[color | mono] [blacktext | colortext]
[simplex | duplex | defaultplex]
[size {flt:x}[in|cm], {flt:y}[in|cm]]
[[font] "{str:name}" [{int:size}]]
[[no]enhanced]
[solid | dashed]
[linewidth | lw {flt:factor}]
[dashlength | dl {flt:factor}]
[rounded | butt]

set terminal postscript [fontfile [add|delete] "{str:filename}"
| nofontfiles]

The landscape and portrait options chose the orientation of the plot on the page.
The default is landscape. If the image will be used inside some other document (for
example, to illustrate a text document), instead of being sent directly to a printer by
itself, we usually want to generate Encapsulated PostScript using the eps option.

 The resulting graph may either use color (color) or be black and white (mono or
monochrome—this is the default). We can force text to be black (blacktext), even in a
graph using color. The opposite is colortext. By default, the PostScript terminal uses

210 CHAPTER 11 Terminals in depth

different dash patterns to distinguish between line types. When generating colored
PostScript output, we may therefore want to use the solid option as well: the appear-
ance of the graph will be clearer when all lines are drawn as solid and distinguished by
their color alone.

 Plots can be printed on only one side of the paper (simplex) or on both sides
(duplex). Choosing defaultplex uses whatever the printer is set to. If the printer isn’t
capable of printing double-sided, this option is ignored. Of course, the duplex option
only makes sense if there’s more than one graph in the file.

 The size of a PostScript image can be specified in either inches or centimeters (in
or cm). The default size for raw PostScript is 10 x 7 inches; the default for EPS is 5 x 3.5
inches. The correct dimension of the bounding box for the chosen size is calculated
correctly and written to the PostScript file.

 We can specify a font by giving its name (such as Helvetica, Times, or Palatino) as a
string argument. We can include the desired size of the font (in points) after the font
name:

set terminal postscript "Helvetica" 12

This is now the default font. If enhanced text mode is enabled, we can select a differ-
ent font for individual text elements, such as labels or key entries (see section 11.2.3).

 For all fonts that we use in a PostScript plot, only the font name is embedded in
the file, and the font isn’t resolved until the document is rendered (printed or
viewed). Font information must be available at that time. There are two ways we can
guarantee a portable PostScript document. We can restrict ourselves to one of the 35
basic PostScript fonts, which are supported directly by all PostScript-capable devices.
Alternatively, we can embed the font information necessary to render the font in the
PostScript file itself, via the PostScript terminal’s fontfile functionality.

 The argument to fontfile is the name of a font file (not a font name), possibly
including path information. Only a single file can be specified per invocation of set
terminal postscript fontfile, but the command can be used repeatedly to add sev-
eral font files to the PostScript document.

 Gnuplot attempts to find the file in the directories listed on the gnuplot font path.
The font path may either be set using the set fontpath command or via the
GNUPLOT_FONTPATH environment variable. If neither is set, gnuplot looks for the file in
the platform-dependent default locations. If the file is found, gnuplot will report both
the name of the font contained in the file, as well as the file’s absolute location:

set fontpath '/usr/share/fonts'
set terminal postscript fontfile 'Type1/l047013t.pfa'

Font file 'Type1/l047013t.pfa' contains the font 'LuxiMono'.
Location:

/usr/share/fonts/Type1/l047013t.pfa

We need to specify the reported name of the font when we want to use it. For instance,
assuming enhanced text mode is enabled, we can now say

set label "{/LuxiMono This is my text!}" at 0,0

211Print-quality output

We can use either PostScript Type 1 fonts or TrueType fonts. Gnuplot can handle
ASCII-encoded Type 1 fonts (file extension .pfa) directly, but for binary-encoded
Type 1 fonts (.pfb) or TrueType fonts (.ttf), gnuplot requires external helper pro-
grams. Check the standard gnuplot reference documentation or the special docu-
mentation on PostScript that’s part of the standard gnuplot distribution if this is of
relevance to you.

 The PostScript terminal includes a PostScript prologue at the beginning of each
PostScript file it generates. It expects to find a file containing the prologue in a stan-
dard location, or alternatively, in the directories specified by the environment variable
GNUPLOT_PS_DIR. By pointing this variable to a directory containing your own version
of the prologue file, it’s possible to customize the resulting PostScript files. (The com-
mand show version long will display the current search path for prologue files.)

 There’s more information regarding gnuplot’s PostScript capabilities in the gnu-
plot standard reference documentation and the psdoc directory in the gnuplot docu-
mentation tree.

11.4.2 Using PostScript plots with LaTeX

One very common use of PostScript graphs is to include them as illustrations in a
LaTeX document. In this section, I give a couple of cookbook-style recipes. First, I
describe how to include a regular PostScript file as an image in a LaTeX document.
Then we discuss gnuplot’s special epslatex terminal, which allows us to combine
PostScript graphics with LaTeX text in the same illustration, so that we can use the full
power of LaTeX for mathematical typesetting in gnuplot graphs.
INCLUDING AN EPS FILE IN A LATEX DOCUMENT

If we want to include a PostScript file in another document, it’s usually best to use an
EPS (Encapsulated PostScript) file, rather than “raw” PostScript. Encapsulated Post-
Script contains some additional information regarding the size and location of the
graph, which can be used by the embedding document to position the image properly.

 As an example, let’s assume we want to include the graph from figure 11.1 in a LaTeX
document. We’d have to export the graph to EPS, using the following commands:

... # plot commands
set terminal postscript eps enhanced
set output 'enhanced.eps'
replot

There are different ways to import this PostScript file into a LaTeX document. Here,
we use the graphicx package for this purpose. The LaTeX document is shown in list-
ing 11.5.

\documentclass{article}
\usepackage{graphicx}

\begin{document}

\section{The First Section}

Listing 11.5 A LaTeX document that imports enhanced.eps. See figure 11.2.

212 CHAPTER 11 Terminals in depth

Here is a very short paragraph. The plot will be included
after this paragraph.

\begin{figure}[h]
\begin{center}

\includegraphics[width=10cm]{enhanced}
\end{center}
\caption{A Postscript file, included in \LaTeX}

\end{figure}

And here is a second paragraph. The graph should have
been included before.

\section{The Second Section}

The second section really contains only a very short
text.
\end{document}

The graphicx package provides the \includegraphics command, which takes the
name of the graphics file to include as mandatory parameter. (The filename exten-
sion isn’t required and it’s recommended that you omit it.) The \includegraphics
command takes a number of optional parameters as key/value pairs, which allow us to
perform some useful operations on the image as it’s included: we can trim, scale, and
rotate it. Here, we adjust its size ever so slightly (from 5 inches down to 10 cm).1 The
final appearance of the document after processing it with LaTeX is shown in
figure 11.2.
USING THE EPSLATEX TERMINAL

In the previous example, we included a PostScript file containing enhanced mode
text in a LaTeX document. This seems inconvenient, to say the least: since LaTeX has
such powerful capabilities to format text (and mathematical expressions specifically),
we should find ways to use them to lay out our text, rather than dealing with the much
more limited possibilities available through the enhanced text mode.

 The epslatex terminal does exactly that: it splits a gnuplot graph into its graphical
and its textual components. The graph is stored as EPS file, while the text is saved to a
LaTeX file. We then include this LaTeX document, which in turn imports the Post-
Script file, into our LaTeX master file.

 An example will make this more clear. Let’s re-create the graph from figure 11.1,
this time using LaTeX formatting commands instead of enhanced text mode (see list-
ing 11.6—see listing 11.2 for a version of this graph using enhanced text mode).

set label 1
" '$\phi(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^2}$'
" at 1.2,0.25
set label 2 '$\Phi(x) = \int_{-\infty}^x \phi(t) dt$' at 1.2,0.8

set key top left Left # Interchange line sample and explanation

1 There are many more options—check your favorite LaTeX reference for details. A good place to start is Guide
To LaTeX (4th ed.) by H. Kopka and P. W. Daly, Addison-Wesley, 2004.

Listing 11.6 Combining gnuplot and LaTeX using the epslatex terminal

213Print-quality output

Figure 11.2 The final appearance of the LaTeX document shown in listing 11.5. Note the labels using enhanced
text mode in the included gnuplot graph.

214 CHAPTER 11 Terminals in depth

unset xtics
set xtics ('$-\pi/2$' -pi/2, '0' 0, '$\pi/2$' pi/2)

plot [-3:3] exp(-0.5*x**2) /sqrt(2*pi) t '$\phi(x)$',
" norm(x) t '$\Phi(x)$'

set terminal epslatex
set o "epslatex.tex" # Name of output LaTeX file with extension!
replot

The text for labels and tic marks that we’re adding to the graph now contains LaTeX
directives. In particular, note the $...$, which indicate math-mode in LaTeX, and
which are required for many of the special mathematical formatting commands.

 The epslatex terminal generates two files: the actual graph (as EPS file) and the
text (as LaTeX file). Gnuplot expects the full name (including extension) of the
LaTeX file as output device when using the epslatex terminal (see the second-to-last
line in listing 11.6).

\documentclass{article}
\usepackage{graphicx}

\begin{document}

\section{The First Section}

This is a different document. We will include a \LaTeX\ file
containing the graph below.

\begin{figure}[h]
\begin{center}

\input{epslatex}
\end{center}
\caption{A Postscript file included in \LaTeX, with \LaTeX\ labels}

\end{figure}

And here is a second paragraph. The graph should have
been included before.

\section{The Second Section}

The second section really contains only a very short
text.

\end{document}

The LaTeX master file is shown in listing 11.7. Note how similar the document is to
the one in listing 11.5. We again must explicitly require the graphicx package at the
beginning of the document. We then use \input (instead of \includegraphics—
that’s the only difference) to include the LaTeX file written by gnuplot. Again, it’s rec-
ommended to omit the extension—LaTeX will look for a file with .tex extension. The
appearance of the final document (after LaTeX processing) is shown in figure 11.3.

Listing 11.7 A LaTeX document that imports epslatex.eps. See figure 11.3.

215Print-quality output

Figure 11.3 The final appearance of the LaTeX document shown in listing 11.7. Note the true LaTeX labels
and tic marks on the graph. Also see figure 11.2.

216 CHAPTER 11 Terminals in depth

 Now that we’ve seen how the epslatex terminal is used, we can take a closer look
at its features. The complete set of options is here:

set terminal epslatex [standalone | input]
[header "{str:header}" | noheader]
[color | mono] [blacktext | colortext]
[size {flt:x}[in|cm], {flt:y}[in|cm]]
[[font] "{str:latexfont}" [{int:size}]]
[solid | dashed]
[linewidth | lw {flt:factor}]
[dashlength | dl {flt:factor}]
[rounded | butt]

With two exceptions (more on them later), this is a strict subset of the syntax for the
postscript terminal, but a few options that make no sense for epslatex (such as
duplex) aren’t available.

 Two options are new (compared to the postscript terminal). If we select stand-
alone, the generated LaTeX document is complete and can be compiled by itself. In
other words, it doesn’t have to be included into another LaTeX document for further
processing. This way, we can create standalone graphics with LaTeX-style annotations.

 In standalone mode, the name of the generated EPS file is modified by appending
-inc to the base name: the two files written by epslatex would be called (for example)
graph.tex and graph-inc.eps (so that the resulting graph, which combines both plot
and text, can simply be called graph.eps). The default value for this option is input,
which generates an incomplete LaTeX document for inclusion in a master file, as
shown earlier.

 The other new option is the header option. With it, an arbitrary set of LaTeX com-
mands can be added into the LaTeX file containing the text component of the plot.
We could use this, for instance like this:

set terminal epslatex header "\\bfseries"

to print all text within the plot as boldface.
 If the file gnuplot.cfg is found by LaTeX when processing a standalone file, it’s

included into the preamble of the document. It’s included before the argument to the
header option, so the latter can be used to override global settings from the gnu-
plot.cfg file.

 Finally, the font option changes its meaning for the epslatex terminal, compared
to the postscript terminal. Instead of the names of PostScript fonts, epslatex obvi-
ously expects names for LaTeX fonts. The font description consists of three parts: the
font name, the font series, and the font shape. All three parts are optional, but the
commas are mandatory. Two quick examples:

set terminal epslatex "cmr,b,it" # ComputerModern, Bold, Italic
set terminal epslatex ",,sc" # Surrounding font, with Small Caps

The size of the font can be given after the font description: set terminal epslatex
"cmr" 14. Check your favorite LaTeX reference for more details.

217Print-quality output

FURTHER TRICKS WITH LATEX AND GNUPLOT

Here’s a great trick I learned from Toshihiko Kawano’s excellent gnuplot page.1 Imag-
ine you have several PostScript plots that you want to combine into a single graph, so
that individual plots become tiles in an array of graphs. If these are individual gnuplot
plots, you could use multiplot, but what if some of the graphs are only available as
PostScript files, or multiplot mode is unavailable or impractical for some reason?

 The tabular effect can be achieved easily using the LaTeX tabular environment:

1 Make sure all the individual image files are properly trimmed EPS files.
2 Create a LaTeX document similar to the one in listing 11.8.
3 Process this document using LaTeX.
4 Use the dvips utility with the -E flag to turn the resulting DVI file into Encapsu-

lated PostScript.

 Done!

\documentclass{article}
\usepackage{graphicx}

\begin{document}

\pagestyle{empty} % Suppress page numbering

\begin{tabular}{cc}
\includegraphics{img1} & \includegraphics{img2} \\
\includegraphics{img3} & \includegraphics{img4}

\end{tabular}

\end{document}

This is just one example of combining gnuplot PostScript output with LaTeX. Further
applications are possible. Just keep in mind that you must explicitly require the color
package in your LaTeX files if you want to process colored PostScript graphics.

 Also, don’t forget that classic LaTeX can’t generate PDF files directly (use dvipdf
to translate DVI files to PDF). And vice versa, pdflatex can’t process PostScript graph-
ics files. Such files must usually be converted to PDF format before pdflatex is run.

 Finally, let me remind you once more of the need to flush gnuplot output buffers
explicitly when using the PostScript or epslatex terminals (see section 11.2.5).

11.4.3 PDF

Compared to its PostScript capabilities, gnuplot acquired support for PDF rather
recently. The pdf terminal was added in gnuplot release 4.0. It relies on the pdflib
library, which is a commercially developed product.

 The current development version of gnuplot (version 4.3) contains a new PDF ter-
minal pdfcairo based on the Cairo graphics library, which promises to be the best way
to generate PDF output from within gnuplot. Check the standard gnuplot reference
documentation or the gnuplot web site for updates.

1 http://t16web.lanl.gov/Kawano/gnuplot/index-e.html

Listing 11.8 Bundling several PostScript images into an array using LaTeX

218 CHAPTER 11 Terminals in depth

11.5 Interactive terminals
In contrast to the large range of options available for file-based terminals, interactive
terminals are rather straightforward.

 Gnuplot can have multiple plot windows open at any given time (on all platforms
except Microsoft Windows), although only one of the windows will receive plot com-
mands at any time. We can create a new plot window by specifying the terminal ID
(which is just an integer expression) when choosing the terminal. To distinguish
between multiple plot windows, we can give them a title, which will (depending on the
window manager) be displayed in the window’s header bar. (This is the title of the
window only and has nothing to do with the title that can be placed on the plot using
set title.) To switch between open windows, use set terminal together with the ter-
minal ID to select the active terminal. The keyword close in a set terminal com-
mand will close the identified window. (Depending on the window manager, the
window may persist until it has received mouse or keyboard focus for the first time
after the set terminal ... close command has been issued.)

 Plot windows are automatically raised and receive input focus when a new plot is
drawn. This behavior can be disabled using the noraise option, so that keyboard
focus stays with the command window even when a plot is issued. (I highly recom-
mend this—it makes interactive work go surprisingly more smoothly. Unfortunately,
for some of the terminals, the window won’t be redrawn until it receives an event from
the windowing system, making this option much less useful.)

 When the persist option has been enabled, plot windows will stay up even when
gnuplot is exited (or prevent gnuplot from terminating completely until all plot win-
dows have been closed explicitly).

 Three commands can be used to manipulate interactive terminals directly: raise,
lower, and clear. The first two take an optional window identifier as optional argu-
ment. The clear command (which always acts on the most currently active terminal)
is useful even for noninteractive terminals: it clears the plot area (and forces a form-
feed or page break for noninteractive terminals). We’ve already encountered it in
conjunction with multiplot mode (in section 10.1.2).

11.5.1 wxt

The wxt terminal is a relatively recent addition to gnuplot. It’s based on the
wxWidgets widget set and uses the Cairo and Pango libraries for graphics and text rep-
resentation. Because wxWidgets and the other libraries are cross-platform, the wxt ter-
minal promises the availability of a single interactive terminal for all three of the
current operating systems.1

1 The operational word here is promise. At the time of this writing, the wxt terminal doesn’t work for Mac OS
X. A project to make wxt available on the Mac is underway, but the problem proves hard and progress is slow.

The wxt terminal does work for Windows, but you may have to search for prebuilt binaries with support for
it (as of mid 2008, the “official” binaries distributed on the gnuplot home page are built without it). For exam-
ple, the Windows port of the Octave project includes a version of gnuplot with support for wxt. You can down-
load it from the Octave Forge web site, accessible through the Octave project’s home page.

219Interactive terminals

 The wxt terminal is still classified as experimental by the gnuplot developer team,
but it’s arguably the best interactive terminal currently available (at least for the
Linux/Unix platform). It creates very high-quality graphics (using anti-aliasing to
avoid jagged edges on sloped lines, for instance) and provides some useful interactive
menus. I recommend it highly!

set terminal wxt [{int:winid}] [title "{str:title}"]
[[no]enhanced]
[font "{str:name} [,{int:size}]"]
[[no]persist] [[no]raise] [[no]ctrl]

set terminal wxt {int:winid} close

The only option requiring explanation at this point is the ctrl option. Usually, a plot
window can be closed using the q key and focus be directed back to the command win-
dow using the spacebar when the plot window is active. Setting the ctrl option binds
these functions to the key combinations ctrl-q and ctrl-space, respectively, allow-
ing other commands to be bound to the single keystrokes.

11.5.2 x11

The x11 terminal is gnuplot’s classic Unix terminal for interactive use:

set terminal x11 [{int:winid}] [title "{str:title}"]
 [[no]enhanced]

[font "{str:fontspec}"]
[[no]persist] [[no]raise] [[no]ctrlq]
[solid | dashed]

set terminal x11 [{int:winid}] close

See section 11.5.1 on the wxt terminal for the meaning of the ctrlq (or ctrl) option.
 If gnuplot is used with the x11 terminal, it’ll honor several standard X11 options

and resources (such as geometry) given on the command line when gnuplot is first
started. Check the standard gnuplot reference documentation if this is relevant to you.

11.5.3 aqua

The aqua terminal is a native Mac OS X terminal for gnuplot. It relies on Aqua-
Term.app:

set terminal aqua [{int:winid}] [title "{str:title}"]
 [size {int:x} {int:y}]

[[no]enhanced]
[font "{str:name} [,{int:size}]"]
[solid | dashed] [dl {flt:dashlength}]

It supports the standard options for interactive terminals.

11.5.4 windows

The windows terminal for use on Microsoft Windows platforms doesn’t allow multiple
plot windows to be open at the same time:

220 CHAPTER 11 Terminals in depth

set terminal windows [color | monochrome]
[[no]enhanced]
[font "{str:name} [,{int:size}]"]

11.6 Other terminals
As mentioned in the introduction to this chapter, gnuplot supports a lot of termi-
nals—many more than I discussed in this chapter. While most of them are no longer
relevant, there are some that may be of use in specialized situations.

 There are many more terminals that generate commands suitable for LaTeX pro-
cessing than I described here. If you’re interested, you might want to check out the
standard gnuplot reference documentation for eepic, latex, pslatex, pstricks,
texdraw, and tpic.

 Besides LaTeX, gnuplot supports some other graphical command languages.
Check out the fig, tgif, and gpic (for PIC processing) terminals.

 Finally, a true classic: the dumb terminal (see figure 11.4). This is a terminal for
character-oriented output devices. It uses characters to draw an ASCII-art rendition of
the plot—useful when you want to run gnuplot remotely over a telnet connection.
(Don’t laugh—I’ve done that.)

 For all of these terminals, see the standard gnuplot reference documentation.

Figure 11.4 The dumb terminal

221Summary

11.7 Summary
In this chapter, we studied all the different devices and file formats for which gnuplot
can generate output. Although gnuplot supports some 70 different formats, only a few
are really relevant today, and those can be grouped into three major groups:

! Standard graphic file formats: bitmap and SVG
! PostScript for print-quality output
! Interactive terminals for Linux/Unix, Windows, and Mac OS X

Most of the time, the defaults for terminal options are well chosen and don’t require
much customization. An exception is the enhanced text mode, which enables all
kinds of additional formatting options for textual labels on the plot. Depending on
the font selection on your local computer, you may also want to customize the default
font for terminals, in particular for the bitmap terminals (GIF, PNG, JPG).

 Finally, for those who are familiar with LaTeX, the epslatex terminal makes it pos-
sible to use LaTeX’s text (and in particular, math) formatting capabilities together
with gnuplot’s plotting facilities to achieve particularly high-quality PostScript plots
for publications or other printable documents.

222

Macros, scripting,
and batch operations

In the preceding 11 chapters, we’ve studied almost every command or option that
can be used from within gnuplot. But up to this point, our discussions always
assumed that we’d be running gnuplot interactively: actually entering commands
at the gnuplot prompt, viewing the plot on the screen, and then entering more
commands.

 But sometimes that’s not what we want. For instance, we may have a large num-
ber of data sets and just want to convert all of them to plots using the same plot
command. Or we may have a cron job running nightly to scan web server logs and
want it to also generate some plots showing the number of hits per hour. Or we
might want to use gnuplot as a graphing engine from within some other program,
possibly even a web script.

This chapter covers
! Understanding strings and string macros
! Calling other programs from gnuplot
! Calling gnuplot from other programs
! Configuring your workspace
! Gnuplot for the web

223Strings and string macros

 In all these situations, we want to run gnuplot in the background, without human
intervention. In this chapter, we study ways to do this, and also look at other things we
can do with gnuplot that aren’t primarily interactive: macros, configuration, and the
ability to interact with other programs.

12.1 Strings and string macros
The string-handling capabilities that gnuplot acquired in release 4.2 make it possible
to construct command lines programmatically in a number of ways.

 First of all, anywhere a command expects a string, a string expression can be substi-
tuted as well. For instance, this will work just fine:

file = "data.txt" # Assign string "data.txt" to variable
desc = "My Data" # Assign description to a variable

plot file title desc # Equivalent to:
plot "data.txt" title "My Data"

Functions that return a string can also be used. Here, we use a function to provide the
file extension for us:

f(x) = x . '.txt'
plot f('data') # Plots the contents of "data.txt"

The example is whimsical, of course, but it’s easy to come up with more useful applica-
tions. The string functions (see chapter 4) will often be helpful in this context.

 When we want to replace a part of a command line where gnuplot doesn’t expect a
string, we can’t use a string variable (or string expression) directly. Instead, we must
resort to a string macro. String macros let us insert the contents of string variables at
arbitrary positions within a gnuplot command. Here’s an example:

set macro # Turn macro expansion ON

cols = "using 1:3" # Assign a string variable
style = "with lines 3" # Assign another one

plot "data" @cols @style # Equivalent to:
plot "data" using 1:3 w lines 3

The symbol @ in front of a variable name indicates that the value of the variable
should be interpolated into the command line at the current location. The command
line is evaluated after all string macros have been expanded.

 Be aware that gnuplot must have been compiled with macro expansion enabled
(you can test this by running show version long—look for +MACROS), and macro pro-
cessing must have been explicitly switched on using set macro within your gnuplot
session. (It’s off by default.)

 We can play all kinds of games with string macros. In the previous example, we
used it simply to avoid having to repeat the column specification. Obviously, we could
do the same thing to define mnemonic names for custom styles. We can even define
entirely new commands:

224 CHAPTER 12 Macros, scripting, and batch operations

redblue =
" "set pm3d; set palette defined(0 'blue', 1 'white', 2 'red')"

Now it suffices to say

set macro

@redblue
splot cos(x)*sin(y)

Macros aren’t evaluated within quotes (either single or double), but we can usually
achieve the desired effect through simple string manipulations. This example shows
both situations:

set macro

tool = "(made with gnuplot)" # String variable

set title "My plot @tool" # Macro expansion does not work...
set title "My plot " . tool # but string concatenation is fine!

Only string variables are evaluated when prefixed with an @, but more general string
expressions aren’t. The return value from a string function must therefore always be
assigned to a variable before it can be evaluated. Using such a two-step process, we can
write string functions that are able to process arguments. For example, here we define
a function that takes a filename and then prepares a command line consisting of all
commands necessary to export a plot to the indicated file as PNG:

export(file) =
" sprintf("set t push;set t png;set o '%s';replot;set o;set t pop",
" file);

We’d use it like this:

set macro

cmd = export('out.png') # setup
@cmd # evaluate

You might want to compare this version with the version we gave in section 2.2 earlier.
 Macro expansion can provide convenience by allowing us to define and then reuse

certain repetitive expressions. We may even want to predefine certain macros so that
they’re available whenever we start a gnuplot session. That’s a topic we’ll pick up again
in section 12.5.

12.2 Calling other programs from gnuplot
Gnuplot can’t do everything by itself; therefore it’s sometimes helpful to execute an
external program from within gnuplot. There are several ways to do this: we can
spawn a subshell to execute commands in; we can evaluate an external command, cap-
turing its output so that we can use it in the current the gnuplot session; and, finally,
we can establish a direct interprocess-communication (IPC) channel between gnuplot
and external programs using pipes (if available).

225Calling other programs from gnuplot

 A word of warning: since all the material in this section is about interacting with
the system outside of gnuplot, this material is necessarily somewhat platform depen-
dent. In particular, section 12.2.3 only applies to Unix-based computers (including
Linux and Mac OS X).

12.2.1 Executing a command in a subshell

We can simply execute a command in a subshell through the system command:

system "ls" # Shows directory contents
system "lpr -P laser plot.ps" # Sends file 'plot.ps'

to printer 'laser'

Output of the subprocess is always directed to the interactive terminal.
 Whereas the system command executes an external program in a subshell, the

shell command suspends the current gnuplot session and starts an interactive shell.
Quitting the shell (typically by typing exit or Control-D) resumes the gnuplot ses-
sion. The shell command is somewhat of a legacy from days before windowing sys-
tems—today, we’re more likely to pop up a shell in another terminal window, rather
than suspending the process in the current window. But the command is there if we
need it.

12.2.2 Capturing the output of a subprocess

Besides the system command, there is also a system("...") function. The latter takes
a command as argument, executes it as a subprocess, and returns its output as a string
(in contrast to the system command, which always directs any output from the sub-
process to the interactive terminal). For example, if we wanted to capture the current
date and time information in astring variable, we can use the system() function and
the Unix date utility:

now = system("date") # Capture timestamp in variable 'now'
set label now at 0,0 # Use variable for a label

The system("...") function is very versatile and can be used in some creative ways.
 Let’s assume that we have a bunch of log files with really opaque filenames, such as

rL0Y20zC+Fzt72VPzMSk2A.vv-markim.log. The filenames themselves aren’t helpful,
but each file contains a header line with the calendar date of the day the log was
taken, for example # 2007-11-01. We can now use the Unix grep facility to find the
file containing the desired date:

file = system("grep -l '2007-11-01' *")

The -l (list) option forces grep to return only the name of any matching file, and the
star operator (*) instructs the Unix shell to look in all files in the current directory for
matches. We can take this a step further, because we can use the system() function
wherever gnuplot expects a string. Therefore, we can use it in place of the filename as
part of the plot command directly, like so:

plot system("grep -l '2007-11-01' *") u 1:2 w lp

226 CHAPTER 12 Macros, scripting, and batch operations

This example should give you an idea of the kinds of things you can do with the
system() function.

 There’s another (older) way to execute a subprocess and capture its output that’s
occasionally still useful—namely, to execute a command via back ticks.

 Back ticks or back quotes (decimal ASCII code 96—typically bound to the leftmost
key in the top row on the keyboard) may be familiar from Perl and some Unix shells.
The command in back quotes is executed, and its output replaces the back-quoted
text (including the back quotes). Back quote substitution can be used anywhere,
except inside of single-quoted strings.

 In general, the system() function is more versatile than back ticks, and the pre-
ferred way to capture output from a subprocess. But back ticks have the advantage
that they can occur inside of double-quoted strings, whereas the output from the
system() function would have to be concatenated explicitly to the string. In other
words, the following two commands are equivalent:

set label 1 "Today: `date`" at 0,0
set label 2 "Today: " . system("date") at 0,1

For simple string substitutions such as these, back ticks can be a convenient short-
hand. For more complicated operations, the system() function is the better choice.

12.2.3 Input/output redirection (Unix only)

The following functionality is only available on platforms supporting the popen() sys-
tem call (all Unix and Unix-derived operating systems, but not Windows).

 All gnuplot commands expecting a filename as argument can also take the name
of a process, preceded by either < (for input) or | (for output). For example, instead
of reading from a file, we can read from a process:

plot "< a.out"

Here, a.out is some command that writes data that we want to plot to standard output.
 Equivalently, we can send output to a process via a pipe, instead of a file, for exam-

ple to send a plot directly to a printer:

set terminal postscript
set output "| lpr -P laser"

The first version (input) is occasionally useful to apply an external filter to the data:
for example, to sort the data before it is plotted:

plot "< sort data.txt"

But be aware that each invocation of a command spawns a separate subprocess. A
command like plot "< a.out" u 1:2, "< a.out" u 1:3 will run the a.out process
twice. So if you want to grab multiple columns, it probably makes more sense to dump
the results into a file first.

227Calling other programs from gnuplot

12.2.4 Example: watermarking plots

To conclude this section, let’s look at an example that demonstrates some of the
things we can do with the techniques we just learned.

 Let’s revisit the export macros that we first introduced in section 2.2 and extended
in section 11.1. Now I’m going to show you a version that automatically includes a
watermark at the bottom of each page, with the filename, the current username, and a
timestamp (Unix only—sorry).

 Listing 12.1 shows one possible implementation. Let’s step through it:

1 First of all, save the current commands (before adding the timestamp) to file, so
that the plot can be re-created later.

2 Generate the watermark and save it to a string variable called watermark. To
create the watermark, we call the Unix commands whoami and date in back
ticks. Their return values will be interpolated into the string.

3 Place the watermark on the plot. I give it the huge label ID 9999, so as not to
clobber any existing labels.

4 The watermark is placed into the bottom-left corner, using a very small font
(6pt). Note the screen coordinates (see section 6.2), which we can use to indi-
cate an absolute position for the label, independent of the plot range.

5 I increase the bottom margin to 3 character heights. The default in the absence
of an xlabel (see section 6.3.3) is 2.

6 Now follow the same commands to change the terminal, plot to it, and restore
it. This is familiar from section 2.2.

7 Finally, I restore the session by removing the watermark label and restoring the
bottom margin to automatic sizing.

If we place these commands into a file called export.gp, then we could call it like this:

call "export.gp" "graph"

The resulting plot would be placed into a file called graph.png.
 One caveat: if the size of the bottom margin has been changed from its default

value, either explicitly through a set bmargin command or implicitly through a set
xlabel command, this macro may lead to strange results, because this script can’t
detect such changes. Instead, it specifically requests a fixed margin size, clobbering
any previous settings. Not the biggest problem in the world—just be aware!

save "$0.gp" # save the current commands to file w/o watermark

watermark = "File $0.png - Generated by `whoami` at `date`";
set label 9999 watermark at screen 0.02,0.02 font "FreeSans, 6"

set bmargin 3 # increase bottom margin to make room for watermark

set t push # save the current terminal settings
set t png font "FreeSans, 11" # change terminal to PNG,

choosing a decent font

Listing 12.1 Script to export a plot to a PNG file with a watermark

228 CHAPTER 12 Macros, scripting, and batch operations

set o "$0.png" # set the output filename to the first option
replot # repeat the most recent plot command
set o # restore output to interactive mode
set t pop # restore the terminal

watermark = '' # revert to previous state...
unset label 9999
unset bmargin

Executing a subprocess from within a gnuplot session can be a convenient technique
to get access to functionality that gnuplot itself doesn’t offer. But now we’re turning to
the opposite task: calling gnuplot from a separate application, to provide graphing
capabilities that the parent application itself doesn’t possess.

12.3 Calling gnuplot from other programs
Up to this point, we’ve always assumed that we were running gnuplot interactively, with
a human user entering commands at the gnuplot prompt. But sometimes it makes
sense to run gnuplot as a background process to execute some well-defined, possibly
repetitive task.

 There are two ways that this can be done. We can run gnuplot unattended as a
batch job, for example if we want to generate plots automatically for a large number
of data files. Or we may want to use gnuplot’s plotting capabilities to give graphics
functionality to some other program. In this case, gnuplot serves as a graphing back-
end or graphing engine and is controlled by some master program.

 Given the way gnuplot is implemented, the latter is always a variation of the batch
mode mentioned earlier. Therefore, this is what we need to understand first.

12.3.1 Batch operations

Running gnuplot in batch mode is straightforward: any files listed after the gnuplot
command itself are expected to contain gnuplot commands. They’re executed in the
order specified, as if they had been loaded using load. (In the following, commands
following a shell> are meant to have been entered at a shell prompt. Commands with-
out a prefix are entered at the gnuplot prompt.)

 The following three commands are all equivalent:

! Using command-line arguments:
shell> gnuplot plot1.gp plot2.gp plot3.gp

! Reading from standard input:
shell> cat plot1.gp plot2.gp plot3.gp | gnuplot

! From within a gnuplot session:
load "plot1.gp"
load "plot2.gp"
load "plot3.gp"

Gnuplot doesn’t start an interactive session when invoked with command-line argu-
ments: it just processes all commands (including any plot commands) and termi-
nates. This implies that plots sent to an interactive terminal will usually not be visible, or
rather, they’re visible for a tiny moment as gnuplot opens the terminal window, draws

229Calling gnuplot from other programs

the graph, and immediately closes the plot window again and exits. It’s a common mis-
take to forget to set appropriate (file-based) terminal and output options in gnuplot
batch files!

 We can force an interactive session by using the special filename - (hyphen) on the
command line, for example after running a setup script. Upon terminating the inter-
active session, the commands in the teardown script will be executed:

shell> gnuplot setup.gp - teardown.gp

Batch files usually contain some options (such as set title, and so on), selection of
terminal and output file, and a plot command. It’s good form to end them with the
reset command, which returns all options to their default values. (The only options
not affected by reset are set output and set terminal, as well as set loadpath and
set fontpath. See section 12.5 in this chapter for the latter two options.)

 Another helpful technique when writing batch files (and even more so when call-
ing gnuplot from other programs, as we’ll see in a moment) is the use of the special
filename - as part of the plot command (see 4.5.4). Remember: the command plot
"-" tells gnuplot to read data from the current source; that is, from the same input
device from which the most recent command was read. So if the command was read
from a batch file, plot "-" will expect to find the data in the batch file, like so:

Batch file bat1.gp
set t png
set o "out.png"
plot "-" u 1:2 w linesp
1 2
2 5
3 6
4 3
10 0

and we’d invoke it like this:

shell> gnuplot bat1.gp

Alternatively, if gnuplot read the commands from standard input, it expects to read
the data from standard input as well:

shell> cat bat2.gp data.txt | gnuplot

Here, the file bat2.gp contains only commands; all the data is in file data.txt.
 This latter technique shows how to use gnuplot from another program: pipe the

commands to gnuplot, followed by the data to plot. Let’s look at a few examples in the
next section.

12.3.2 Invoking gnuplot from other programs

The methods in the preceding section work well if the data we want to plot already
exists as files somewhere. But what if the data comes out of a calculation performed by
a computer program or is contained in a database that needs to be queried? Do we
have to write it to file and then invoke gnuplot on it?

230 CHAPTER 12 Macros, scripting, and batch operations

 The answer is no—if we’re on a Unix or Unix-like system that allows pipes. In this
case, we can pipe the data straight from the program that calculated or retrieved it
directly into gnuplot. Listing 12.2 shows a simple way to do so in Perl; listing 12.3
shows a slightly more complicated one using Python. The main differences between
these examples concern the way Perl and Python handle subprocesses and have little
to do with gnuplot itself.

open PROC, "| /usr/bin/gnuplot "
|| die "Could not start gnuplot: $!";

print PROC "set xlabel 'Time'; set ylabel 'Amplitude';";

print PROC "set o 'graph.png';";
print PROC "set t png;";

print PROC "plot '-' u 1:2 t 'data' w l\n";

for($x = 0.0; $x <= 10.0; $x += 0.1) {
$y = exp(-$x/5)*sin($x);
print PROC "$x $y\n";

}
print PROC "e\n";

close PROC;

Perl allows us to open a subprocess as a file handle—in the same way we’d open a
file—provided the first character in the filename is a pipe symbol (|). We can then
write anything to this file handle using print. In the first line of listing 12.2, we open
gnuplot as a subprocess and assign it to the file handle PROC. We then proceed to write
some gnuplot options to this file handle, including the essential terminal information
and output filename, followed by the plot command. The plot command is told to
read from the special file dash (-), which means that it expects the data to follow
inline. The data stream is terminated by the single letter e, and then the file handle is
closed, which terminates the gnuplot subprocess. If we forget to close the file handle
explicitly, Perl won’t terminate while gnuplot is still running!

import os
import math

gp = os.popen('/usr/bin/gnuplot', 'w')

gp.write("set output 'graph.png'; set terminal png;")
gp.write("plot '-' u 1:2 w lines, '-' u 1:2 w lines\n")

x = -5.0
while(x <= 5.0):

gp.write("%f %f\n" % (x, math.sin(x)))
x += 0.5

gp.write("e\n")

Listing 12.2 Calling gnuplot from a Perl program using a file handle

Listing 12.3 Calling gnuplot from Python—note how we send two data sets to plot

231Calling gnuplot from other programs

x = -5.0;
while(x <= 5.0):

gp.write("%f %f\n" % (x, math.cos(x)))
x += 0.5

gp.write("e\n")

gp.close()

In Python, we can use the popen() function in the os module to obtain a file-like
object that represents the gnuplot subprocess. Make sure to open this object in write
mode, by passing a 'w' as second argument to popen(). (Alternatively, we could’ve
used the subprocess module, which is new in Python 2.4.)

 In contrast to listing 12.2, in listing 12.3 we plot two data sets. Each must be termi-
nated with an e on a line by itself.

 Using gnuplot in such a way from another program works quite well, but can
appear a bit fickle at first because we need to re-create exactly those conditions that
are usually fulfilled by input coming from the interactive command-line environment.
Diagnosing glitches in this area isn’t helped by error messages, which are intended for
interactive use. Here’s a checklist of trouble spots to look for when things don’t work
out at first:

! Commands must be separated from one another by explicit semicolons or new-
lines. A common mistake is to write code like this (also see listing 12.2):
print PROC "set key"; # WRONG - missing newline or semicolon!
print PROC "set border";

The two set commands appear to be broken down onto two separate lines, but
gnuplot will see them as one consecutive string. This will work:
print PROC "set key\n"; # RIGHT - explicit newline
print PROC "set border";

Instead of the newline, a semicolon could’ve been used as well.
! The line containing the plot command must be terminated by an explicit new-

line. Gnuplot doesn’t parse the command line, and consequentially doesn’t
start waiting for data until it has encountered a newline.

! You must use an explicit using directive when using the special filename - to tell
gnuplot how to parse the incoming data stream.

! For each occurrence of - in the plot command, there must be a separate data
stream. Gnuplot will continue to interpret incoming characters as data until it
has encountered a corresponding number of end-of-file characters.

! Don’t forget to separate data lines from one another using newlines as well.

One final comment: when generating many graphs from the same program, it is usu-
ally a good idea to start gnuplot only once and use it for all of the graphs, rather than
starting a separate gnuplot process for each of them. This doesn’t matter much when
preparing two or three graphs, but when the number of graphs is large, the time sav-
ings are significant. Just make sure to reset all relevant options (and specifically the
output filename) between invocations of the plot command.

232 CHAPTER 12 Macros, scripting, and batch operations

12.3.3 Example: creating a font table

Scripting can be used together with gnuplot for other purposes besides plotting data.
In listing 12.4, a Perl script builds up a lengthy command line, consisting of labels that
demonstrate every character in a character set, using two different fonts. (The result-
ing graphs can be found in figure B.1 and figure B.2 in appendix B.) This command
line is then piped to gnuplot, which generates the desired PostScript output. Note
that it’s not necessary to call gnuplot as a subprocess: we could’ve dumped the com-
mand line to a file and then called gnuplot on it in batch mode: gnuplot cmd.gp.

 In this example, gnuplot is used strictly as a PostScript generator: none of its data-
handling and graphing capabilities are utilized. This technique of building up a
lengthy and possibly complicated command line programmatically is a good trick,
which is well worth remembering.

$k = 32; # + 128;
for $i (0..3) {

for $j (0..23) {
($x, $y) = (2*$i, 23-$j);
$cmd .= sprintf("set label '%o' at %f,%f right;", $k, $x, $y);
$cmd .= sprintf("set label '{\\%o}' at %f,%f;", $k, $x+0.3, $y);
$cmd .= sprintf("set label '{/Symbol \\%o}' at %f,%f;",

$k, $x+0.8, $y);
$k++;

}
}

$cmd .= "unset border; unset xtics; unset ytics; unset key;";
$cmd .= "set t po eps enh font 'Helvetica' 20 size 4.9in,4.5in;";
$cmd .= "set o 'font-table1.eps';";
$cmd .= "plot [-.2:6.8][0:23] -1\n";

open PROC, "| /usr/bin/gnuplot" or die "Could not start gnuplot: $!";
print PROC $cmd;
close PROC;

12.4 Slideshows with pause and reread
As we’ve seen, when gnuplot reads its commands from a batch file, it usually doesn’t
enter into an interactive session, immediately closing any interactive terminal windows
after completing a plot. But using the pause command, we can force interactive termi-
nals to persist until either a fixed length of time has gone by or a user event (such as a
mouse click) has occurred. The pause command takes the number of seconds to wait
(-1 will wait until a carriage return is encountered) and an optional string argument,
which will be printed to the command window:

pause {int:seconds} ["{str:message}"]

Another command that’s frequently useful in this context is reread. The reread com-
mand instructs gnuplot to begin executing the current batch file from the beginning,
basically resulting in an infinite loop. (We’ll see in a minute how to stop it.)

Listing 12.4 A Perl script that uses gnuplot as PostScript generator

233Slideshows with pause and reread

 Why is this useful? Imagine you have a program that performs some long-running
calculation. Every 30 seconds, the program appends its results to an output file and
you want to watch the data in this file as it accumulates. Using pause and reread, this
is now easy. We write a batch file along the following lines:

plot "data" u 1:2 w l
pause 30
reread

Now all we have to do is to load this file, and gnuplot will refresh the plot periodically.
 There’s a second form of the pause command that waits until a specific user event

has occurred:

pause mouse [{eventmask}] ["{str:message}"]

The event mask can contain any combination of the following keywords, separated by
commas: keypress, button1, button2, button3, and any. If pause was terminated
through a keyboard event, the ASCII value of the selected key will be stored in the
gnuplot variable MOUSE_KEY and the corresponding character in the variable
MOUSE_CHAR. If a mouse event occurred, the mouse coordinates will be stored in the
variables MOUSE_X, MOUSE_Y or MOUSE_X2, MOUSE_Y2, respectively, and available for fur-
ther processing.

 The pause command is also useful when using gnuplot as the graphing engine for
some other program: it forces output to be generated for the interactive terminal.
Listing 12.5 shows one possible application. The Perl script in the example uses gnu-
plot as a graphing backend. After each graph is drawn, gnuplot waits, using pause
mouse keypress, until a keyboard event has occurred in the active plot window, at
which point the program redraws the graph with different parameters.

open PROC, "| /usr/bin/gnuplot" or die "Could not start process: $!";

print PROC "set o; set t wxt; set o;\n";
print PROC "set bmargin 3;\n";
print PROC "set label 'Press key (not Space!) to continue' ",

"at screen 0.02,0.02 tc rgb 'red'\n";

for $a (1..20) {
print STDERR "$a\n";
print PROC "plot '-' u 1:2 w linesp;\n";
for $x (-10..10) {

print PROC "$x ", sin($a*$x), "\n";
}
print PROC "e\n";
print PROC "pause mouse keypress\n";

}
close PROC;

There are some additional commands that are useful in this context. I'll only mention
the if command which allows conditional execution. The if command together with

Listing 12.5 Using gnuplot from Perl while capturing user input with pause mouse

234 CHAPTER 12 Macros, scripting, and batch operations

a counter can be used to terminate an otherwise infinite reread loop. Check the stan-
dard gnuplot reference documentation for further details.

12.5 Configuring your workspace
On startup, gnuplot reads a number of environment variables if they’re defined.
They’re described in table 12.1.

 Gnuplot also attempts to read a startup file, called .gnuplot on Unix (and Mac OS)
and GNUPLOT.INI on Windows. Gnuplot searches for this file first in the current
directory, then in the home directory (as defined by the corresponding environment
variable). Once a file has been located, searching doesn’t continue. The file is exe-
cuted (using load) before any other files or commands are read from the command
line, standard input, or an interactive terminal. In general, settings in the initializa-
tion file override environment variables.

Table 12.1 The environment variables that gnuplot reads on startup. Unless otherwise specified, the
variables have the same name on all platforms.

Name (Unix and Mac OS X)
Description

$ Name (Windows, if different)

GNUTERM The name of the terminal to be used. (Compare the set
terminal command.)

GNUHELP The path to the online help file gnuplot.gih.

GNUPLOT_LIB Additional directories to be searched for data and com-
mand files. (Compare the loadpath variable.)a

GDFONTPATH and
GNUPLOT_DEFAULT_GDFONT

Search path used by terminals based on the GD library
(PNG, GIF, and JPG) to locate font files, and a default font
to be used with these terminals, respectively.

GNUPLOT_FONTPATH Search path used by the PostScript terminal to locate font
files. (Compare gnuplot’s fontpath variable.)a

GNUPLOT_PS_DIR Used by the PostScript terminal to locate custom prologue
files.

FIT_SCRIPT and FIT_LOG Name of a file to execute when gnuplot’s fit (discussed in
section 10.3) command is interrupted, and the name of the
log file maintained by fit, respectively.

HOME
$ GNUPLOT and USERPROFILE

The directory to search for a .gnuplot initialization script if
none is found in the current directory.

PAGER
$ n/a

The name of pager program to use.

SHELL
$ COMSPEC

The name of the shell to spawn in response to the gnuplot
shell command.

a. Path entries are separated from one another using a colon (:) on Unix, and a semicolon (;) on Windows.

235Configuring your workspace

 The initialization file can be used to customize your gnuplot environment.
Listing 12.6 shows what an initialization file might look like.

 Most of the entries should be clear. Two features we haven’t yet seen are the set
loadpath and set fontpath options. Both can be used to specify additional search
paths that will be examined by gnuplot whenever appropriate. The loadpath will be
searched for command files (read by load and call) and for data files (as read by
plot and splot). The fontpath is used by the PostScript terminal to locate additional
font files. Note that the bitmap terminals which are based on the GD library do not
examine fontpath. Use the GDFONTPATH environment variable for these terminals!

 Path entries on both loadpath and fontpath are separated from each other using
a platform-dependent separator: the colon (:) on Unix and Mac OS, and the semico-
lon (;) on Windows.

 Many of the entries in listing 12.6 either add some basic functionality not provided
out of the box by gnuplot (such as a function for the logarithm to an arbitrary base:
logb(x, base)) or set up my personal preferences where I find the default settings
unsatisfactory (for example, set isosamples 30 and set hidden3d). An interesting
application is the selection of a better default font for bitmap terminals: the terminals
remember their font attribute, so that the call set terminal png implies my preferred
font selection as well.

 The entries regarding arrow styles are intended as examples of the kinds of things
you might want to explore if you have a recurring need: I define two custom arrow
styles that I can now simply refer to when placing an arrow on the graph. To facilitate
this, I invent symbolic names for the styles, so that I can now refer to them by their
descriptive names, rather than having to memorize which style had index 1 and which
index 2. Instead, I can simply (and clearly) say (as is short for arrowstyle):

set arrow from 0,0 to 2,0.5 as @scale

I need to use gnuplot’s new macro functionality here, because gnuplot won’t accept a
variable (containing an integer value) as argument to arrowstyle. But the detour
through the string expressions that’s evaluated when encountered works quite well.

 The last entries define custom keyboard and mouse bindings. That’s a new topic
(we mentioned it briefly before in section 4.5.3), and we’ll devote the entire next sec-
tion to it.

Path to my personal library of gnuplot snippets
set loadpath "/home/janert/lib/gnuplot"

Turn on macro expansion
set macro

Define some useful constants and functions
e = 2.7182818284590452354
euler = 0.5772156649015328606

log2(x) = log(x)/log(2.0)

Listing 12.6 A personalized .gnuplot initialization file

236 CHAPTER 12 Macros, scripting, and batch operations

logb(x, base) = log(x)/log(base)

Adjust sample quality
set samples 300

set isosamples 30
set hidden3d

Set a default font for GD based terminals
set terminal png font FreeSans 11
set terminal gif font FreeSans 11
set terminal jpeg font FreeSans 11

Select my preferred interactive terminal
set terminal wxt

Custom arrow styles
scale = '1' # Symbolic names for styles!
diamond = '2'

set style arrow 1 heads size screen 0.0075, 90
set style arrow 2 head size screen 0.02, 15, 165 filled

Palettes
falsecolor = "set pm3d; set view map; set size square;
" unset surface; set isosamples 100"
gray = "set palette model RGB defined (0 'black', 1 'white')"
bluered =
" "set palette model RGB defined (0 'blue', 1 'white', 2 'red')"

Mouse and Key Bindings

1) Toggle logarithmic axes
is_log_x = 0;
is_log_y = 0;

bind 'y' "if(is_log_y) is_log_y=0; unset logsc y; replot;
" else is_log_y=1; set logsc y; replot";
bind 'x' "if(is_log_x) is_log_x=0; unset logsc x; replot;
" else is_log_x=1; set logsc x; replot";

2) Place arrows using the mouse
bind ">" "call 'arrow1.plt'";

12.5.1 Creating custom hot key bindings

The bind command is used to bind gnuplot commands to specific keystrokes. These
commands will be executed if the corresponding keyboard event takes place while
the plot window has keyboard focus. They don’t apply when the command window
has focus.

bind
bind!
bind [allwindows] "{str:keys}" "{str:command}"

The bind command has several formats. If it’s used without any arguments, it reports
all currently effective key bindings. Appending an exclamation point to the command
name restores the default key bindings.

237Configuring your workspace

 Custom bindings can be registered by passing two arguments to the bind com-
mand: the first is the key (possibly in combination with one or several of the control
keys); the second is the command to be executed. Quotes aren’t strictly necessary if
either the key or the command consists of a single token. It’s possible to bind com-
mands to special keys—see listing 12.7 for the symbolic names of some function keys
you might want to know, and the standard gnuplot reference documentation for the
bind command for the complete list. If the optional allwindows option has been
given, the binding applies to all plot windows, active or not.

Control keys:
ctrl
alt

On main key block:
"Tab" "Escape" "Return"

On arrow-block:
"Home" "End" "PageUp" "PageDown"
"Left" "Up" "Down" "Right"

Function keys:
"F1" ... "F12"

Here are two quick examples. The first binds the replot command to the R key (that
is, the Shift-r combination), the second places an arrow and a label on the plot in
response to the key combination Control-a (that is, a lowercase a):

bind R "replot"
bind "ctrl-a" "set arrow from 0,0 to 1,1;
" set label 'northeast' at 1,1; replot"

When mousing is active (using set mouse), clicking into a plot window will set several
variables in your current gnuplot session (see table 12.2). These variables can be
accessed in the commands bound to keys using bind.

Listing 12.7 Symbolic names of some of the function keys available

Table 12.2 These variables are set whenever a mouse or keyboard event occurs when a plot window is
active, provided that mousing has been enabled using set mouse.

Variable name Description

MOUSE_X x coordinate at the time of the mouse event (measured in first coordi-
nate system)

MOUSE_Y y coordinate (in first coordinate system)

MOUSE_X2 x coordinate (measured in second coordinate system)

MOUSE_Y2 y coordinate (in second coordinate system)

MOUSE_BUTTON ID of the mouse button clicked (1, 2, or 3)

MOUSE_SHIFT Nonzero if the Shift key was pressed when the event occurred

238 CHAPTER 12 Macros, scripting, and batch operations

The last two entries in listing 12.6 should give you some idea of how the bind com-
mand can be used to create additional interactive functionality within gnuplot.

 The first of these shows a way to toggle some setting using bind—in this case, tog-
gling the logarithmic scaling for either the x or the y axis. Since we can’t read out the
value of a gnuplot option (such as set logscale) programmatically, we have to intro-
duce a variable (is_log_x in this example) to keep track of the current value of the
toggle switch. The actual switching between the states is performed through the if
statement. The action is bound to a key, so that pressing the key while a plot window
has keyboard focus will trigger the action.

 This works well; the only problem occurs if we interchange toggling using the hot
key and using the set logsc command. Since the latter won’t update the is_log_x
variable, the two methods can get out of step. Hitting the hot key twice will bring
everything back in sync.

 The second example is more involved and demonstrates how we can combine the
bind command, mouse variables, and external command scripts to create our own
gnuplot “commands.”

 I want to be able to place arrows using only the mouse. Gnuplot doesn’t provide
built-in support for this. What can I do?

 First I use the bind command so that pressing the selected hot key (which is >,
because it looks like an arrow) will load and execute a first command file, which is
called arrow1.plt. The contents of this file is shown in listing 12.8. You can see that this
file, when loaded, will wait for mouse input (using pause mouse), prompting the user
appropriately. If the user clicks the left mouse button, it saves the coordinates of the
mouse pointer at the time of the click and loads a second external command file,
called arrow2.plt, which is shown in listing 12.9. When the second file is executed, it
waits for the user to select the endpoint coordinates of the arrow, again using the
mouse, and creates the arrow using the newly entered endpoint and the saved start
point coordinates from the previous step. If the user doesn’t click the left mouse but-
ton at either step, the command sequence terminates.

 Although both these examples are quite useful by themselves, my main intention
here is to give you some pointers for your own development of custom key bindings,
commands, and macros. Have lots of fun!

MOUSE_CTRL Nonzero if the Control key was pressed when the event occurred

MOUSE_ALT Nonzero if the Alt (Meta) key was pressed when the event occurred

MOUSE_KEY ASCII code of the key that was pressed

MOUSE_CHAR The character value of the key that was pressed

MOUSE_KEY_WINDOW ID of the plot window that received the event

Table 12.2 These variables are set whenever a mouse or keyboard event occurs when a plot window is
active, provided that mousing has been enabled using set mouse. (continued)

Variable name Description

239Gnuplot for the web

pause mouse any "\n Start point (Button-1) ? "
if(MOUSE_BUTTON == 1) my_x = MOUSE_X; my_y = MOUSE_Y;
" print "From ", my_x,my_y; call 'arrow2.plt';
" else print "Never mind...";

pause mouse any " End point (Button-1) ? "
if(MOUSE_BUTTON == 1) print "To ", MOUSE_X,MOUSE_Y;
" set arrow from my_x,my_y to MOUSE_X,MOUSE_Y;
" replot;
" else print "Never mind...";

12.6 Gnuplot for the web
As a final application of gnuplot scripting, let’s see how we can use gnuplot to draw
dynamic graphics for inclusion in web pages. (This section assumes basic familiarity
with CGI programming and HTTP.)

 The simple (but not necessarily wrong) approach would be to let gnuplot generate
whatever graphics are required and write them to file. A web page can then include a
tag linking to this file. If there’s any chance that the same graph will be requested sev-
eral times, this would probably be the right way to go about it. In contrast, if the graph
will never be needed again, we now have the problem of having to clean up the graph-
ics files that get generated every time a user visits our site. Can’t we make do without
ever writing anything to disk?

 We can, and I’ll show you two different ways to do so, depending on your cir-
cumstances.

12.6.1 Using Gnuplot as a CGI script

The first version I’d like to show you is a variation of the batch processing we encoun-
tered in section 12.3.1. The principle is simple: what if the gnuplot batch file were
called as a CGI script?

 Listing 12.10 shows a simple web page, including an tag. Look closely at the
src attribute of this tag: the attribute doesn’t point to an image file, but to a command
script that will generate the required graph on the fly.

<html>
<head></head>

<body>

<h1>Our Page</h1>

</body>
</html>

Listing 12.8 The contents of the file arrow1.plt—see listing 12.6

Listing 12.9 The contents of the file arrow2.plt—see listing 12.6

Listing 12.10 The web page (HTML file) that references a dynamically generated image

240 CHAPTER 12 Macros, scripting, and batch operations

Listing 12.11 shows the contents of the command file graph.cgi, which is nothing
more than a gnuplot batch file. It couldn’t be any simpler.

#!/usr/bin/gnuplot

set t png
set o

set print '-'
print "Content-Type: image/png\n"

plot "data.txt" u 1:2 w linesp

Let’s step through the command file:

1 In the first line, we tell the system which command interpreter to use for this
file—in our case, it happens to be gnuplot.

2 We set the terminal type (PNG) and then direct output to standard output.
According to the CGI spec, the web server will return the output of the CGI
script to the requesting client (typically, a web browser).

3 Set the output channel for text to standard output as well, using the special file-
name dash (-) (see section 4.4.1).

4 Print the header line containing the MIME type of the following message body,
as required by the HTTP spec. Note the single newline terminating the header
line: gnuplot’s print command will add another one, so that the header is sep-
arated from the body of the response by a line containing only a newline—
again, as required by the HTTP spec. (We are cheating here a little bit: accord-
ing to the HTTP spec, line breaks should be indicated using the CR-LF character
combination. Nevertheless, this script will work for most modern web servers
and browsers.)

5 Finally, the plot command, showing the contents of some data file in the
desired way.

This method (though cheeky) works well if we don’t need to parse any input data sent
from the client. I can imagine a situation where we know exactly what data to display;
we just want to make sure that the most recent version of the data is used.

 Two points to remember:

! Make sure the command file has the executable bit set.
! Depending on your local web server configuration, this script must be placed

into a special directory (such as cgi-bin) or must have a certain extension (such
as .cgi). Check with your local system administrator.

Next, let’s look at the more general case.

Listing 12.11 A gnuplot batch file that can be used as a CGI script

241Summary

12.6.2 Using gnuplot as a subprocess to a CGI script

While the previous example was an application of the batch processing model of
section 12.3.1, in this section we apply the subprocess approach of section 12.3.2 to
the web.

 We can reuse the HTML file from listing 12.10, but use a different CGI file (see list-
ing 12.12). The CGI file is straightforward—we use the standard CGI Perl module,
which gives us access to any input parameters that may have been specified as part of
the URL. Then we call gnuplot as a subprocess, using the PROC file handle to access it.
In contrast to listing 12.2, we direct gnuplot’s output to standard output (set o), so
that the web server will send it along to the client. Everything else should be familiar
from the examples we’ve seen before.

#!/usr/bin/perl

use CGI;

$q = new CGI;

Possibly do something interesting with input parameters...
....

print $q->header('image/png');

open PROC, "| /usr/bin/gnuplot" or die "Cannot start gnuplot: $!";

print PROC "set t png; set o;";
print PROC "plot '-' u 1:2 w linesp\n";

for($x=0; $x<=10; $x+=0.1) {
$y = $x*sin($x);
print PROC "$x $y\n";

}
print PROC "e\n";

close PROC;

12.7 Summary
This long chapter concludes our introduction to gnuplot proper. Although gnuplot
doesn’t provide a full-blown programming environment, it plays well with programs
written in other languages, and can be customized and extended in various ways.

 Specifically, we’ve discussed the following features:

! Gnuplot’s new macro facility allows gnuplot to evaluate string expressions. This
makes it possible to parameterize even those parts of a command where a string
variable can’t be used. To use it, macro evaluation has to be turned on explicitly
using set macro, and string expressions to be evaluated as macros must be pre-
fixed using the @ character.

! The defaults for many options can be changed through startup customization.
Gnuplot reads a set of environment variables at startup and also processes the

Listing 12.12 Using gnuplot as a subprocess from a Perl CGI script

242 CHAPTER 12 Macros, scripting, and batch operations

contents of a startup file (if found), which can be used to set up personal
preferences, adjust to the local installation environment, and to introduce use-
ful extensions to the basic gnuplot functionality.

! There are different ways to call other programs from within gnuplot. They dif-
fer mostly in how output from these auxiliary programs is handled: the system
command directs output to the command window, while back ticks return the
output of the subprocess as a string. On platforms supporting it, interprocess
communications via pipes is available.

! Although we think of gnuplot primarily as an interactive plotting environment,
it’s possible to run it entirely in the background as a batch job. Gnuplot reads
files containing gnuplot either from the command line or from standard input.

! Since gnuplot can read commands and (inline) data from standard input, it
can be used in command-line pipelines. When called from other programs, IPC
via pipes is a convenient way to use gnuplot as graphing engine for programs
written in other programming languages.

! Limited functionality exists to customize how users interact with generated
interactive graphics. We can bind commands to specific keys and capture cer-
tain kinds of mouse input.

! Gnuplot can be used to serve up dynamically generated images from a web
server. If we don’t need to process individual, dynamic user input, it’s sufficient
to use an appropriate gnuplot batch file as server-side script. Using a wrapper in
a general-purpose programming language, which employs gnuplot as graphing
engine, gives us much greater flexibility.

Now that we know how to use gnuplot, I want to spend some time discussing what can
be done with it. This is what the next (and last) part of this book is about: applications
of graphical analysis. Stay tuned.

Part 4

Graphical Analysis
with Gnuplot

We can now take gnuplot for granted and discuss how it can be used to
solve problems using graphical methods.

 Chapter 13 discusses different kinds of plots and their uses. It also explains
how to produce them with gnuplot.

 Chapter 14 turns its attention away from the tools and towards the problems
we are trying to solve. It explains how to understand data with graphs, emphasiz-
ing practices such as iteration and transformation, as well as various housekeep-
ing tasks.

 Chapter 15 is a reminder that the purpose of any analysis is to arrive at a set
of correct conclusions.

245

Fundamental
graphical methods

In this chapter and the next, I want to shift my attention: I’ll now largely take gnu-
plot for granted, and concentrate on applying it to problems. Nevertheless, when-
ever appropriate, I’ll take the opportunity to show you how a certain effect can be
achieved with gnuplot. In this chapter I want to talk more generally about different
graphical methods and the kinds of problems they’re applicable to. In the next
chapter, I’m going to take a number of different problems and walk you through
the different steps that the analysis may take. If you will, this chapter introduces la
technique, while the next chapter explains la méthode (with a nod to Jacques Pépin).

 When faced with a new data set, there are two questions that usually dominate.
The first one is, how does one quantity depend on some other quantity—how does

This chapter covers
! Investigating relationships
! Representing counting statistics
! Visualizing ranked data
! Exploring multivariate data

246 CHAPTER 13 Fundamental graphical methods

y vary with x? The second question (for data sets that include some form of statistical
noise) asks, how is some quantity distributed—what’s the character of its randomness?
We’ll look at graphical methods suitable for either question in the next two sections. In
the last two sections of this chapter, I’ll discuss two particularly challenging problems:
ranked data, and methods applicable to large, unstructured, multivariate data sets.

13.1 Relationships
For many data sets, we’re interested in the question of whether one quantity depends
on another, and if so, how: does y grow as x grows, or does it fall, or does y not depend
on x to begin with?

13.1.1 Scatter plots

A scatter plot is the first step in finding the answer. In a scatter plot, we just show uncon-
nected symbols, located at the position given by x and y. It’s an easy way to get a feel-
ing for an otherwise unknown data set.
AN EXAMPLE: CAR DATA

Listing 13.1 shows the first few lines from a sample data set, containing 26 attributes
for 205 different car models that were imported into the US in 1985.1 The 14th col-
umn gives the curb-weight in pounds, and the last (26th) column the price (in 1985
dollars). We can use a scatter plot as in figure 13.1 to see how weight varies as a func-
tion of price.

 In this case, the input file isn’t whitespace separated, but comma separated.
Instead of transforming the input file to space separated, it’s more convenient to use
gnuplot’s set datafile separator option to plot this data file:

set datafile separator ","
plot "imports-85.data" u 26:14

1,158,audi,gas,turbo,four,sedan,fwd,front,105.80,192.70,71.40,55.90,...
0,?,audi,gas,turbo,two,hatchback,4wd,front,99.50,178.20,67.90,52.00,...
2,192,bmw,gas,std,two,sedan,rwd,front,101.20,176.80,64.80,54.30,2395...
0,192,bmw,gas,std,four,sedan,rwd,front,101.20,176.80,64.80,54.30,239...
0,188,bmw,gas,std,two,sedan,rwd,front,101.20,176.80,64.80,54.30,2710...
...

We can clearly see that weight goes up as the price increases, which is reasonable. We
should also note that there are many more low-price/low-weight cars than heavy, pre-
mium vehicles. For budget cars, weight seems to increase in step (linearly) with price
for a while, but for higher-priced vehicles, the gain in weight levels off. This observa-
tion may have a simple explanation: the price of mass market vehicles is largely

1 This example comes from the “Automobile” data set, available from the UCI Machine Learning Repository:
Asuncion, A. and Newman, D.J. (2007). UCI Machine Learning Repository [http://www.ics.uci.edu/
~mlearn/MLRepository.html]. Irvine, CA: University of California, School of Information and Computer
Science.

Listing 13.1 A few lines from the Automobile data set (truncated)—see figure 13.1

247Relationships

determined by the cost of materials, so that a car that’s twice as big (as measured by its
overall mass) is also twice as expensive, whereas the price of luxury cars is determined
by higher quality (fancier materials such as leather seats, and additional options such
as more electronics), rather than by sheer bulk.

 It’s tempting to try to find a mathematical model to describe this behavior, but the
truth of the matter is that there’s not enough data here to come to an unambiguous
conclusion. Various functions of the form a (x-b)1/n + c or even a log(x-b) + c fit the data
about equally well, but the data alone doesn’t allow us to determine which one would
be the “correct” model.
USING SCATTER PLOTS

This example demonstrates what to look for when examining a scatter plot. The first
question usually concerns the nature of the relationship between x and y. Does y fall
as x grows or vice versa? Do the points fall approximately onto a straight line or not? Is
there an oscillatory component? Whatever it is, take note of it.

 The second question concerns the strength of the relationship, or, put another
way, the amount of noise in the data. Do the data points jump around unpredictably
as you go from one x value to the next? Are there outliers that seem to behave differ-
ently than the majority of the points? Detecting outliers is important: gone unnoticed,
they’ll mess up most statistical quantities (such as the mean) you may want to calculate
later. And sometimes outliers indicate an interesting effect—maybe some subgroup of
points follows different rules than the majority. Outliers in scatter plots should never
go uninvestigated.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
ur

b
W

ei
gh

t (
in

 p
ou

nd
s)

Cost (in 1985 dollars)

Figure 13.1 Curb weight versus price for 205 different cars. See listing 13.1.

248 CHAPTER 13 Fundamental graphical methods

 A third aspect to look out for in a scatter plot is the distribution of points in either
dimension. Are points distributed rather uniformly, or do they cluster in a few loca-
tions? If so, do we understand the reason for the clustering, or is this something we
need to investigate further? There may be a lot of information even in a humble scat-
ter plot!
A MORE COMPLICATED EXAMPLE: THE 1970 DRAFT LOTTERY

Be warned that correlations aren’t always trivial to detect. Figure 13.2 shows a famous
data set, which I’ll explain in a minute. But first, what do you think: is there a correla-
tion between x and y?

Here’s the story behind the data: during the Vietnam war, men in the US were drafted
into the armed forces based on their birth dates. Each possible birth date was assigned
a draft number from 1 to 366, and men were drafted in order of their draft numbers. To
ensure fairness, draft numbers were assigned to birth dates using a lottery process. Yet,
allegations quickly arose that the lottery was biased, such that men born later in the
year had a higher chance of being drafted early.

 Figure 13.2 shows the draft numbers (as they’d been assigned by the lottery pro-
cess) as a function of the birth dates. If the lottery had been fair, there should be no
detectable pattern in the data.

 Figure 13.3 shows the same data, but this time together with two interpolation
curves, drawn using plot ... smooth. The curves clearly slope downward, indicat-
ing that there’s a trend in the data: the later in the year the birth date falls, the
lower (on average) the draft number. It was later found that the procedure used in
the lottery process to mix entries was insufficient to achieve true randomness. In

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350
Figure 13.2 Is there any correlation
between x and y in this data?

249Relationships

later draft lotteries, this process was improved and the lottery produced truly ran-
dom results.2

 Using an interpolating line as in figure 13.3 can be a useful tool to discover other-
wise invisible behavior when the input data is very noisy. It’s often useful when the
“stiffness” of the interpolating line can be varied continuously: If the line is very soft,
it’ll follow all the bumps in the data; if it’s too stiff, if may flatten out relevant features
in the data set. Iteration, visual inspection, and judgment are critical. In the figure,
I’ve used gnuplot’s smooth acsplines weighted spline feature, with two different
weights: 10-4 for the wobbly line and 10-15 for the straight line (plot "data" using
1:2:(1e-4) smooth acsplines). The smaller the weight, the less each individual data
point influences the local shape of the curve. Therefore, as the weight goes to zero,
the approximation becomes increasingly global, just showing the overall trend. For
more information on using locally smooth approximations to detect features and
trends in data, you might want to check out the Lowess (or Loess) family of algorithms.
Cleveland’s books mentioned in appendix C are a good starting point.
A NOTE ON SPLINES

Splines are a way to provide a smooth approximation to a set of points. The points are
called knots.3

2 The 1970 draft lottery is a famous example in statistical analysis and has been analyzed in many places, for
example in the introductory textbook Introduction to the Practice of Statistics by D. S. Moore and G. P. McCabe.
The description of the lottery process can be found in The Statistical Exorcist by M. Hollander and F. Proschan
and is well worth reading. The raw data can be found in StatLib’s Data and Story Library at http://
lib.stat.cmu.edu/DASL/Stories/DraftLottery.html.

3 I’d like to thank Lucas Hart for helpful correspondence regarding this topic.

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350

Figure 13.3 The 1970 draft lottery.
Birth date (as day after Jan 01st) on
the horizontal axis, draft number on
the vertical axis. The lines are
weighted spline approximations, with
different weights. The data is the
same as in figure 13.2.

250 CHAPTER 13 Fundamental graphical methods

 Splines are constructed from piece-wise polynomial functions, which are joined
together in a smooth fashion. In the case of interpolating splines, the resulting curve is
forced to pass exactly through all knots; in the case of smoothing or approximating
splines, the resulting curve will in general not pass through the individual knots.
Because in the latter case the curve doesn’t have to pass through any points exactly, it
can be less wiggly.

 Both interpolating and approximating splines must fulfill the same smoothness
conditions, but in addition, the approximating spline must strike a balance between
the following two conditions:

! Passing close to the knots
! Not being too wiggly

These conditions are expressed in the following functional, which is minimized by the
approximating spline s(x):

 J[s] = ((s))2 dx + #i
N wi (s(xi) - yi)2

where (xi, yi) are the coordinates of the knots, the wi are the weights attached to each
knot, and the prime indicates a derivative with respect to x. In this functional, the first
term is large if s(x) is wiggly, and the second term is large if s(x) doesn’t pass close to
the knot points. (The form of the first term comes from a physical analogy: if the
spline were made out of a real material, such as a thin strip of wood or metal, the first
term would be related to the total bending energy of the strip.)

 The balance between these two terms is controlled through the weight parameters
wi: if the wi are small, the first term dominates, and the resulting spline approaches a
straight line (which happens to coincide with the least-squares linear regression line
for the set of knots). If the weights are large, the second term dominates and the
spline approaches the interpolating spline (which passes exactly through all knots).

 Another way to think about the weights is to write wi = 1/di
2 , where di is a measure

for the uncertainty in the data of point i (such as the standard deviation in this point).
We’d expect that the spline will pass through the interval [yi-di, yi+di] at xi. The higher
our confidence in one point, the smaller we can choose this interval, and therefore
the larger the weight wi will be. By choosing di = 0 for one of the points, we can even
force the curve to pass through this point exactly, although we can let the spline float
more freely for the other points. Although we may choose different weights for each
point, we can also use the same weight for all points, if we know all points to the same
accuracy. This is what was done for all examples in this book.

 One important remark: the way J[s] is written in our example, the size of the sec-
ond term depends on the number of knots—if you double the number of knots, the
size of the second term will be (approximately) twice as large. By contrast, the first
term does not depend on the number of knots. If the number of knots grows, the sec-
ond term will therefore become larger relative to the first one, and the resulting
spline will be more wiggly.

 To maintain the original balance between wigglyness and closeness of approxima-
tion, the weights must be increased accordingly for data sets containing a larger

251Relationships

number of points. Equivalently, you might want to take the number of points into
account explicitly by writing wi = ui/N, where ui is the actual weight and N is the num-
ber of knots. With this choice for wi, the balance between both terms will be main-
tained regardless of the number of knots in the data set. 4

SCATTER PLOTS WITH LABELS: CAR DATA, AGAIN

We can add an additional dimension to a scatter plot by using gnuplot’s with labels
style. Let’s come back to the car data from listing 13.1. The data set contains many
more attributes than just weight and price. Column 4, for instance, gives the type of
fuel used: gas or diesel. We want to include this information in our graph. Maybe die-
sel-powered vehicles tend to be heavier at a given price point?

 We could split the data set apart (using external text-editing tools) into one set
containing all diesel engines and one containing all others, and then plot these two
data sets using different plot symbols. For a presentation graph, that’s exactly what we
should be doing, but while we’re still experimenting, that’s awfully inconvenient.
Instead, we’ll use the information in the column itself as part of the graph.

 We could simply use the value of the fourth column as plotting symbol: plot
"imports-85.data" u 26:14:4 w labels, but there are too many records in the data set
so that the strings would start overlapping each other badly. So instead, we just make
the diesel cars stand out more (see figure 13.4), using gnuplot’s string functions:

plot "imports-85.data" u 26:14,
" "" u 26:14:(stringcolumn(4) ne 'gas' ? 'D' : '') w labels

4 More information on splines can be found in chapter 1 of Handbook on Splines for the User by E. V. Shikin and
A. I. Plis (CRC Press, 1995).

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
ur

b
W

ei
gh

t (
in

 p
ou

nd
s)

Cost (in 1985 dollars)

D

D

D

D

D

D

D

D

D
D

D

D

DD

D

DD D

D

D

Figure 13.4 Curb weight of cars as a function of their price. Cars with diesel engines are
indicated with the letter D. Note the distribution of diesel engines relative to gas-powered cars.

252 CHAPTER 13 Fundamental graphical methods

The stringcolumn(4) function returns the value of column 4 as a string, which is then
compared to the standard fuel (namely “gas”). Only if the fuel isn’t regular gasoline, a
text label ("D" for diesel) is placed onto the graph in addition to the usual plot symbol.

 And, yes, overall diesel-powered vehicles seem to be slightly on the heavy side. We
should also take note that diesel is most prevalent in the mid-price sector: there are a
few cheap diesels, but none of the true luxury cars use it.

13.1.2 Logarithmic scales

Logarithmic scales are one of the most versatile tools in the graphical analyst’s tool-
box. I introduced them already in section 3.6.1 and discussed how they work. Now
let’s put them into action.

 Logarithmic scales serve three purposes when plotting:

! They rein in large variations in the data.
! They turn multiplicative deviations into additive ones.
! They reveal exponential and power-law behavior.

To understand the meaning of the first two items, let’s study the daily traffic pattern at
a web site. Figure 13.5 shows the number of hits per day over approximately three
months. There’s tremendous variation in the data, with alternating periods of high
and low traffic. During periods of high traffic, daily hit counts may reach close to half
a million hits, but then fall to very little traffic shortly thereafter. On the scale of the
graph, the periods of low traffic seem barely different from zero, with little fluctuation.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 10 20 30 40 50 60 70 80 90

Figure 13.5 Traffic patterns at some web site. Daily hit count versus day of the year.
Note the extreme variation in traffic over time.

253Relationships

In figure 13.6 we see the same data, but now on a semi-logarithmic scale. The logarith-
mic scale helps to dampen the extreme variation of the original data set (two orders of
magnitude), so that we can now see the structure both during the high- and the low-
traffic season. That’s the first effect of logarithmic plots: they help to make data span-
ning extreme ranges visible, by suppressing high-value outliers and enhancing low-
value background.

 Furthermore, we can see that the relative size of the day-to-day fluctuations is about
equal during both phases. The absolute size of the fluctuations is quite different, but
their size as a percentage of the average value is roughly the same (very approxi-
mately, during low season, traffic varies between 2,000 and 20,000 hits a day, a factor
of 10; whereas during high season it varies between 30,000 and 300,000 hits a day,
again a factor of 10). That’s the second effect of logarithmic plots: they turn multipli-
cative variations into additive ones.

 Figure 13.7 tries to demonstrate the last point in a different way. The bottom panel
shows the web traffic on consecutive days (like figure 13.5), displaying great seasonal
variance, but the top panel shows the ratio of the difference in traffic on consecutive
days divided by the actual value—(current day - previous day)/current day—which does
not exhibit a seasonal pattern: further proof that the daily fluctuation, viewed as a per-
centage of the overall traffic, is constant throughout.

 Finally, let’s look at a curious example that brings together two benefits of logarith-
mic plots: the ability to display and compare data of very different magnitude, and the
ability to turn power-law behavior into straight lines.

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80 90

Figure 13.6 The same data as in figure 13.5, but on a semi-logarithmic scale. Note
how the high-traffic outliers have been suppressed and the low-traffic background has
been enhanced. In this presentation, data spanning two orders of magnitude can be
compared easily.

254 CHAPTER 13 Fundamental graphical methods

Mammals come in all shapes and sizes, from tiny rodents (the smallest known land
mammal is the Pygmy Shrew, which weighs only a few grams, but some bats found in
Thailand are apparently smaller still) to the largest of whales (weighing several hun-
dreds of tons). It’s a curious empirical fact that there seem to be fixed relationships
between different metabolic quantities—basically, the larger an animal is, the slower
its bodily functions progress. Figure 13.8 shows an example: the duration (in seconds)
of a single resting heartbeat, as a function of the typical body mass. The regularity of
the data is remarkable—spanning eight orders of magnitude for the mass of the animal.
What’s even more amazing is how well the data is represented by the simple function
T ~ m1/4. This law isn’t limited to the examples shown in the graph: if you added fur-
ther animals to the list, they’d also fall close to the straight line (I didn’t just pick the
best ones).

 The existence of such scaling relations in biological systems has been known for a
long time and seems to hold generally. For example, it turns out that the typical life-
time of a mammal also obeys a quarter-power scaling law relation against the body
mass, leading to the surprising conclusion that the total number of heartbeats in the
life of a single organism is fixed—no matter what the typical resting heart rate is. (In
case you care, the number comes out to about 1.5 billion heartbeats during a typical
lifetime.)

 Recently these observations have been explained in terms of the geometrical con-
straints that must exist in the vascular networks (the veins and arteries), which supply

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40 50 60 70 80 90

0k
50k

100k
150k
200k
250k
300k
350k
400k
450k

 0 10 20 30 40 50 60 70 80 90

Figure 13.7 Bottom panel: hits per day over time (as in figure 13.5); top panel:
change in traffic between consecutive days, divided by the total traffic. Note how the
relative change (top panel) doesn’t exhibit any seasonal pattern, indicating that the
relative size of the variation is constant.

255Relationships

nutrients to all parts of the organism.5 As it turns out, you can derive the quarter-
power scaling laws starting from only three simple assumptions, namely that the sup-
port network must be a space-filling fractal, reaching all parts of the organism; that
the terminal capillaries where nutrients are actually exchanged are the same size in all
animals; and finally that organisms have evolved in such a way that the energy
required for the transport of nutrients through their bodies is minimized. I think it’s
amazing how such a powerful result can be derived from such simple assumptions,
but on the other hand, we shouldn’t be surprised: generally applicable laws (such as
the quarter-power scaling in this example) must stem from very fundamental assump-
tions disregarding any specifics.

 Let’s come back to figure 13.8. The double-logarithmic scales make it possible to
follow the data over eight orders of magnitude. (Had we used linear scales, all animals
except for the whale would be squished against the left side of the graph—literally
crushed by the whale.) So again, logarithmic scales can help to deal with data span-
ning a wide range of values. In addition, the double-logarithmic plot turns the power
law relationship T ~ m1/4 into a straight line and makes it possible to read off the expo-
nent from the slope of the line. I explained how this works in detail in section 3.6.1
and won’t repeat it here.

5 The original reference is the paper “A General Model for the Origin of Allometric Scaling Laws in Biology”
by G. B. West, J. H. Brown, B. J. Enquist in the journal Science (Volume 276, page 122 (1997)). Additional ref-
erences can be found on the web.

 0.1

 1

 0.01 0.1 1 10 100 1000 10000 100000 1e+06

P
ul

se
 D

ur
at

io
n

[s
ec

]

Weight [kg]

Human

Cat

Dog

Hamster

Chicken

Monkey

Horse

CowPig

Rabbit

Elephant

LargeWhale

Figure 13.8 Allometric scaling: the duration of a average resting heartbeat as a
function of the typical body mass for several mammals. Note how the data points seem
to fall on a straight line with slope 1/4.

256 CHAPTER 13 Fundamental graphical methods

 Finally, figure 13.8 is a nice example for the power of gnuplot’s with labels plot
style. The graph was generated using

plot "mammals" u 2:3 w points, "" u 2:(1.1*$3):1 w labels

The first part of the command draws the symbols (with points); the second adds the
labels. All the labels are shifted a bit upward so as not to obscure the symbols them-
selves. In this example, the vertical offset is multiplicative, because of the logarithmic
scale of the graph (remember: logarithms turn multiplicative offsets into linear ones).

13.2 Counting statistics
Besides detecting relationships between quantities, we may want to understand how
data points that are somehow random are distributed. Are data points spread out evenly
or are they clustered in a few spots? Are distributions symmetric or are they skewed?
How much weight is contained in the tails of a distribution, compared to its center?

 Let’s say we have a file containing a set of measurements—these can be anything:
interarrival times for requests at a web server, completion times of database queries,
weights of potatoes, heights of people—whatever. What can we say about them?

13.2.1 Jitter plots and histograms

One easy way to get a visualization of a collection of random points is to generate a jit-
ter plot, which is really a one-dimensional scatter plot, but with a twist (as in the bottom
part of figure 13.9).

 This graph was created by shifting each data point vertically by a random amount.
(The rand(0) function returns a random number in the range [0:1].) If we’d just plot-
ted the data in a true, one-dimensional fashion, too many of the points would’ve over-
lapped, making it difficult to detect clustering. Such jittering by a random amount is a
good trick to remember whenever creating scatter plots of larger data sets!

plot "random-points" u 1:(0.25*rand(0)-.35)

We can see that the distribution of points is skewed. It’s strictly bounded by zero on the
left, with points clustering around one, and as we move to the right, points become
increasingly sparse. But it’s hard to say something more definite by just looking at the
jitter plot. For instance, is there a second cluster of points between three and four?
This does seem possible, but it’s hard to tell for sure using this representation.

 The next step when investigating the properties of a distribution usually involves
drawing a histogram. To create a histogram, we assign data points to buckets or bins
and count how many events fall into each bin. It’s easiest to make all bins have equal
width, but with proper normalization per bin, we can make a histogram containing
bins of differing widths. This is sometimes useful out in the tails of a distribution
where the number of events per bin is small.

 Gnuplot doesn’t have an explicit histogramming function, but we can use the
smooth frequency functionality (see section 3.2) to good effect. Recall: smooth fre-
quency sorts the x values by size, and then plots the sum of y values per x value. That’s
what we need to build a histogram.

257Counting statistics

 In the following code, I introduce a function bin(x,s) of two parameters. The first
parameter is the x value we’d like to bin, and the second parameter is the bin width.
Note that the bins obtained in this way are flush left—you can use the binc(x,s)
function for bins centered at the bin value.

 The smooth frequency feature forms the sum of all y values falling into each bin. If
all we care about is the overall shape of the histogram, we may supply any constant,
such as (1), but if we want to obtain a normalized histogram (one including a total
surface area equal to unity), we need to take into account the number of points in the
sample and the bin width. You can convince yourself easily that the proper y value for
a normalized histogram is

 1/(bin-width * number-of-points-in-sample)

We can use the with boxes style to draw a histogram (see figure 13.9), but we want to
fix the width of the boxes in the graph to coincide with the bin width. (By default, the
boxes expand to touch their neighbors, which leads to a faulty graphical representa-
tion if some of the internal bins are empty.) The bin width is 0.1 and there are 300
points in the sample. (We have to count them ourselves—unfortunately, gnuplot cur-
rently doesn’t have the ability to report the number of records in a data file.)

bin(x,s) = s*int(x/s)
binc(x,s) = s*(int(x/s)+0.5)

set boxwidth 0.1
plot "random-points"
" u (bin(1,0.1)):(1./(0.1*300)) smooth frequency with boxes

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

smooth frequency
smooth cumulative

Figure 13.9 Three ways to represent a distribution of random points: jitter plot
(bottom), histogram (with boxes), and cumulative distribution function (dashed line)

258 CHAPTER 13 Fundamental graphical methods

Before leaving this section, I should mention another graphical device you may
encounter in the literature, the so-called box-and-whiskers plot or box plot for short. Basi-
cally, a box-plot is similar to the with candlesticks style (see section 5.2.3), with the
box representing the upper and lower quartiles (see section 13.2.4 if you aren’t famil-
iar with percentiles). The “whiskers” extending from the central box are a measure of
the outliers and may represent, for example, the 10 and 90 percent percentiles.

 I must say that I never use box plots for the purpose of representing a single distri-
bution of points. They give you all the hassles of a graph, but don’t add much informa-
tion that couldn’t be expressed by the sheer percentile numbers alone. Furthermore,
if I’m looking for a graphical representation, a histogram or even a jitter plot tells me
so much more than a box plot. This comment doesn’t apply to situations where I want
to compare a large number of distributions, such as the time series plots, where box
plots can be very useful.

13.2.2 Kernel density estimates

The apparent simplicity of the histogramming method hides some pitfalls. The first
concerns the width of the bins: make them too narrow and the resulting histogram
will be bumpy; make them too wide and you lose relevant features. There’s also ambi-
guity in regard to the placement of the bins: is the first bin centered at zero (or any
other value) or flush left there? The overall appearance of the histogram can depend
quite sensitively on these details!

 A better method to generate distribution curves from individual data points goes
under the name kernel density estimation. Rather than counting how many data points
fall into each bin, we place a strongly peaked, but smooth function (a kernel) centered
at the location of each data point. We then sum the contributions from all these
curves and plot the result. Mathematically, the kernel estimate f(x) for a data set con-
sisting of N points xi is

 f(x) = (1/N)#i
N (1/h) K((x-xi)/h)

Here, K(x) is any smooth, peaked, normalized function, and h is the bandwidth: a mea-
sure of the width of the kernel function. A popular example is the Gaussian kernel:

 K(x) = (2 !) -1/2 exp(-x2/2)

The current development version of gnuplot (version 4.3) contains code to generate
such curves, using the smooth kdensity functionality. It works in much the same way
as the smooth frequency feature we saw earlier:

plot "random-points" u 1:(1./300.):(0.05) smooth kdensity

The first column specifies the location; the second gives the weight each point should
have. For a normalized histogram, this should be the inverse of the number of data
points—since the kernel functions are normalized themselves, you don’t have to
worry about the bandwidth at this point as you did for histograms using smooth
frequency. The third parameter is optional and fixes the bandwidth of the kernels. If
it’s omitted (or negative), gnuplot calculates a default bandwidth, which would be

259Counting statistics

optimal if the data were normally distributed. This default bandwidth tends to be
quite conservative (that means, rather broad).

 Figure 13.10 shows several curves drawn using kdensity for the same data set
we’ve already seen in figure 13.9, for a variety of bandwidth parameters. Studying this
graph carefully, we may conclude that there’s indeed a second cluster of points,
located near 3.5. Note how the choice of bandwidth can hide or reveal features in the
distribution of points.

13.2.3 Cumulative distribution functions

Histograms and density estimates have the advantage of being intuitive: they show us
directly the probability for a certain value to occur. But they have some disadvantages
when it comes to making quantitative statements. For example, based on the histo-
gram in figure 13.9, it’s hard to determine how much “weight” is in the tail of the dis-
tribution: how likely are values larger than 4 to occur? How about values larger than
6? We can guess that the probability will be small, but it’s hard to be more precise. To
answer such questions, we need to know the area under the histogram within certain
bounds. In other words, we want to look at the cumulative distribution function (or sim-
ply distribution function for short).

 The value of the cumulative distribution function at position x gives us the frac-
tion of events that have occurred with xi less than x. In figure 13.9, I already showed
the distribution function together with the histogram. To repeat: the value of the

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 2 4 6 8 10

default
Bandwidth 0.3
Bandwidth 0.1

Figure 13.10 An alternative to histograms: kernel density estimates using
smooth kdensity. Curves for three different bandwidths are shown. A
bandwidth of 0.3 seems to give the best trade-off between smoothing action and
retention of details. Note how it brings out the secondary cluster near x=3.5.

260 CHAPTER 13 Fundamental graphical methods

cumulative distribution function at position x is equal to the area under the (normal-
ized) histogram from its left border to the position x.

 Cumulative distribution functions are part of the current development version of
gnuplot (version 4.3), and are accessible using smooth cumulative. The smooth cumu-
lative feature is similar to smooth frequency: first, all points are sorted in order of
ascending x value, then the sum of all y values to the left of the current position is plot-
ted as smoothed value. To obtain a normalized distribution function, we must supply
1/number-of-points as y value. In contrast to histograms or density estimates, distribu-
tion functions don’t depend on a width parameter.

plot "random-points" u 1:(1./300.) smooth cumulative

Cumulative distribution functions can be a little unintuitive at first, but they’re well
worth becoming familiar with. They make it easy to answer questions such as those
raised at the beginning of this section. From figure 13.9 we can immediately see that
there’s a 3 percent chance of finding a point at x > 6 and about a 15 percent chance
for x > 4. We can also find more proof for the second cluster of points between 3 and
4: at this point, the distribution function seems to make a jump, indicating an accu-
mulation of points in this interval.

 The cumulative distribution function is sufficiently useful that you may want to
dump it into a file, in order to study it in its own right. Listing 13.2 shows how to do
that and also demonstrates a good graphical method to check whether the points in a
data set are normally (Gaussian) distributed. If they are, the resulting plot will be a
straight line. Moreover, we can read off the width of the Gaussian from the slope of
the line and the location of the Gaussian from the intersection of the line with the y
axis. (Here’s how it works: if the data points were normally distributed, then the
cumulative distribution function would be the Gaussian one, so that y = *((x-µ)/!),
where *() stands for the Gaussian distribution function, µ is the mean and ! is the
standard deviation. Now operate on both sides with the inverse of the distribution
function: * -1(y) = (x-µ)/!. Rearranging terms, we end up with ! * -1(y) + µ = x. A simi-
lar argument also holds for non-Gaussian distributions functions, although few of
them have a closed form for the inverse of their distribution functions, and µ and !
need to be taken as the appropriate location and scale parameters for the distribution
under consideration.)

plot "data" u 1:(1./100.) s cumul # Distribution function of
original data

set table "cdf" # Re-direct output to file 'cdf'
replot # ... write to file
unset table # ... and switch file output off again.

plot "cdf" u (invnorm($2)):1 w l # Should be straight line
if data is Gaussian

Listing 13.2 Testing whether a cumulative distribution function is normal

261Counting statistics

13.2.4 Consider using median and percentiles

When faced with a random distribution of points or events, it’s natural to look for
some form of summary statistics that’ll give a good estimate for the location of the dis-
tribution and its spread. The best-known measures of location and spread are the mean
and the standard deviation:

µ = (1/N)#i
N xi

! = [(1/N)#i
N (xi - µ)2]1/2

One major reason for their popularity is the relative ease with which they can be calcu-
lated. Both can be found by iterating over the data set, updating the sum #i

N xi and
the sum of squares #i

N xi
2 (it’s not hard to show that the standard deviation can be

found from the sum and the sum of squares: !2 = (1/N) (#i
N xi

2) - µ2). In particular, it’s
never necessary to manipulate the entire data set at once; elements need only be
accessed one by one and in any order.

 The problem is that mean and standard deviation may not be good estimators of
location and spread. If the distribution of points is asymmetrically skewed, the mean
won’t be a good measure of the location, and if the distribution has so-called fat tails
(so that relatively many events occur far away from the center), the standard deviation
won’t be of much value. If the distribution is bi- or multimodal (has more than one
peak), both of these measures are basically meaningless.

 I therefore strongly recommend that you become familiar with the median and
percentile statistics. To find the median, sort all values in ascending order: the median
is the element exactly in the middle, so that half of all points are below the median
and the other half above it. (This rule holds if the overall number of points is odd. If
it’s even, take the average of the two points closest to the middle.) Percentiles work in
a similar fashion: the 10 percent percentile is the value below which 10 percent of points
fall, and so on. The lower and upper quartiles are the values below which 25 and 75
percent of points fall, respectively.

 The median is a much more reliable estimator of the true center of the distribution
in the presence of asymmetry than the mean. For the same reason, the quartiles are a
better measure of the spread than the standard deviation. The latter are also much less
sensitive to the occasional “crazy” outlier (in contrast to the standard deviation).

 The problem with median and percentiles is that they’re computationally expen-
sive: the entire data set must be read and sorted. In particular, this requirement makes
it impossible to process a data set point by point—instead, the entire file must be
slurped and processed at once.

 Many actual distributions that one encounters in the wild aren’t well represented
by mean and standard deviation. Skewed and multimodal distributions are the rule
rather than the exception. Heavy-tail phenomena occur frequently and their effects
tend to be important; outliers, both real and accidental, are widespread and need to
be dealt with. Any one of these effects renders mean and variance nearly useless, but
the median and quartiles will tend to hold up in these situations. Use them!

262 CHAPTER 13 Fundamental graphical methods

13.3 Ranked data
Imagine I give you a list of the countries in the European Union, together with their
land area (in square kilometers) and population numbers. How would you represent
this information? How would you represent it graphically?

 The particular challenge here is that the independent variable has no intrinsic ordering.
What does this mean?

 Given the name of a country, the value of the area measure is fixed; hence the
name is the independent variable and the area is the dependent variable. We’re used
to plotting the independent variable along the x axis and observing the behavior of
the dependent variable with it. But in this case, there’s no natural ordering of the
independent variable. Sure, we can order the states alphabetically by their names, but
this ordering is entirely arbitrary and bears no relationship on the data. (We wouldn’t
expect the size of a state to change if we gave it a different name, would we?) Also, the
ordering would change if we were to translate the names to a different language. But
the information that we want to display depends on the areas, and shouldn’t be
affected by the spelling of the country names in any way.

 For data like this, the only ordering that’s intrinsic to the data itself is in the val-
ues of the dependent variable. Therefore, a graphical representation of this data
should be ordered by the dependent variable, not the independent one. Such plots
are often called dot plots, but I tend to think of them as rank-order plots. Figure 13.11
shows an example.

Malta
Luxembourg

Cyprus
Slovenia
Belgium

Netherlands
Denmark

Estonia
Slovakia

Latvia
Lithuania

Ireland
CzechRepublic

Austria
Portugal
Hungary
Bulgaria
Greece

Romania
UnitedKingdom

Italy
Poland
Finland

Germany
Sweden

Spain
France

 0 100 200 300 400 500 600 700
Area [1000 sq km]

Figure 13.11 A rank-order plot. Because there’s no natural ordering in the
independent variable (in this case, the country names), we sort the data by the
dependent variable to emphasize the structure in the data.

263Ranked data

If the input file is sorted by the appropriate quantity, we can generate such plots easily
using gnuplot’s facility for reading tic labels from the input file. Given an input file
containing the names and areas in two columns,6 such as this:

France 643427
Spain 504782
Sweden 449964
Germany 357021
Finland 338145
...

the entire plot can be generated using the following command:

plot [][26:1] "data" using 2:0:ytic(1)

The ytic(1) function selects the values in column 1 as tic labels for the y axis (see sec-
tion 7.3.4), and the pseudocolumn 0, which evaluates to the line number in the input
file, is used as the corresponding vertical coordinate (see section 3.4.2). The inverted
y range places the first line in the file at the top of the graph instead of the bottom.

 This is the basic idea. We could’ve plotted the state names along the x axis instead,
but then we’d need to rotate the labels, to make sure they don’t overlap. Unfortu-
nately, rotating the labels by 90 degrees (so that they run vertically) makes them hard
to read. A good trick is to rotate them by some angle so that they run diagonally (we’ll
see an example in figure 13.13). But the initial layout, with the names running down
the y axis, is the easiest to read.

 What if we want to show and compare multiple data sets, such as the land area and
the population? The best strategy is to declare a primary data set, which determines
the ordering for all others. In figure 13.12, we can see an example. The points of the
secondary data set (the population in millions) have been connected by lines to make
them stand out more. Additionally, the x axis has been scaled logarithmically, which is
often useful with dot-plots of this sort. We can see that overall the population count
follows the area, but there are some notable outliers: the northern Scandinavian
countries Sweden and Finland are thinly populated, whereas the so-called Benelux
countries (Belgium, Netherlands, and Luxembourg) have an exceptionally high pop-
ulation density.

 Dot- or rank-order plots are useful whenever the dependent variable has no natu-
ral ordering. On the other hand, if the dependent variable can be ordered, even if
it’s nonnumeric (such as the categories Strong Dislike, Dislike, Neutral, Like, Strong Like),
we should use the information in our graphs and order data points by the indepen-
dent variable.

6 All data in this section comes from the CIA World Factbook, because I was unable to find this data in a suitable
format on the European Union’s official web site.

264 CHAPTER 13 Fundamental graphical methods

13.4 Multivariate data
Sometimes we don’t even know what to look at, much less what to look for. This prob-
lem typically arises for large, somewhat disparate sets of data. For example, later in
this section we’ll look at a data set containing measurements for more than 200 indi-
vidual samples of glass. For each bit of glass, nine different quantities have been mea-
sured. In such a situation, it’s not at all clear where to begin. What quantity should we
plot as a function of which other? Which one will tell us the most about the data in the
sample? Our first task is therefore to find which quantities are the most relevant. We
can then study how the other quantities vary with them. It would also be nice to be
able to break the original data set up into a handful of groups, so that the records
within each group are somehow similar. But first we’d have to find the criteria by
which the data could be classified!

 In this section, we study two different graphical methods that have been suggested
for problems of this kind: parallel coordinate plots and star plots.

13.4.1 Parallel coordinate plots

The purpose of a parallel coordinate plot is to visualize all measurements for a large
number of records simultaneously. The price we pay is a highly unintuitive and not very
pretty graph. A parallel coordinate plot is strictly a tool for graphic discovery, not for
presentation or communication.

Malta
Luxembourg

Cyprus
Slovenia
Belgium

Netherlands
Denmark

Estonia
Slovakia

Latvia
Lithuania

Ireland
CzechRepublic

Austria
Portugal
Hungary
Bulgaria
Greece

Romania
UnitedKingdom

Italy
Poland
Finland

Germany
Sweden

Spain
France

 0.1 1 10 100 1000

 0.1 1 10 100 1000

Area [1000 sq km]

Population [Millions]

Area
Population

Figure 13.12 A rank-order plot displaying a primary and a secondary data set for
comparison. The country names are sorted according to the primary data set (the
area); the points in the secondary data are connected by lines to make them easier to
distinguish. Note the logarithmic scale for the horizontal axes.

265Multivariate data

 Let’s imagine we have a data set of n records, where each record consists of k mea-
surements of different quantities. Each record is therefore a point in a k-dimensional
space: each measured quantity spans a separate dimension. To construct a scatter plot,
we’d have to pick two (or at most three) of these dimensions as axes of the plot. In a
parallel coordinate plot, we instead assign a fixed location along the x axis to each of
the measured quantities. For each record, the value of this quantity is taken as the y
coordinate at the corresponding x location. All points from a single record are then
connected with straight lines.

 An example will make this more clear. Let’s look at a data set of more than 200
individual samples of glass taken from crime scenes.7 For each glass sample, nine
quantities were measured: the refractive index and the content of substances such as
sodium, silicon, iron, and so on. Each of these quantities is assigned a position along
the x axis, and the reported value is used as y coordinate. Figure 13.13 shows the
resulting plot after only a single record has been plotted; figure 13.14 shows it after all
records have been added, with the original record highlighted.

 We can now examine this plot for possible structure in the data set. We look for
clusters or gaps along one of the marked x values. Those can be used to classify data
sets into groups. We can also look for outliers and for correlations among data sets:
positively correlated quantities show up as parallel (or nearly parallel) lines, whereas
negative correlation is indicated by lines crossing each other.

7 This example comes from the “Glass Identification” data set, available from the UCI Machine Learning
Repository: Asuncion, A. and Newman, D.J. (2007). UCI Machine Learning Repository [http://
www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, School of Information
and Computer Science.

 0

 0.2

 0.4

 0.6

 0.8

 1
Refr

ac
tiv

e I
dx

Sod
ium

Mag
ne

siu
m

Alum
inu

m

Silic
on

Pota
ss

ium

Calc
ium

Bar
ium

Iro
n

Record 78

Figure 13.13 A single record in a parallel coordinates plot

266 CHAPTER 13 Fundamental graphical methods

The data set in figure 13.14, for instance, exhibits clustering along the third axis (mea-
suring magnesium content). Taking this as a hint, I separate the records into two sets:
one with high magnesium content and one with low magnesium content. In
figure 13.15, I show only the records with high magnesium content, which allows us to
identify additional characteristics. For example, the records shown in figure 13.15 can
be partitioned again based on the potassium content. It also appears as if records with
high potassium content have a low calcium concentration. On the other hand, iron
exhibits no clustering whatsoever. In this way, we can proceed and detect those criteria
(such as high or low magnesium content) that can be used to classify records.

 There are a few technical points that need to be discussed. The first concerns the
best data input format for this kind of plot. Listing 13.3 shows the first few lines of the
original data set. Each row contains one record; the individual measurements are sep-
arated by commas. The first entry in a line is the index of that record, followed by the
nine measurements. The last entry is a check digit, which we’ll ignore.

1,1.52101,13.64,4.49,1.10,71.78,0.06,8.75,0.00,0.00,1
2,1.51761,13.89,3.60,1.36,72.73,0.48,7.83,0.00,0.00,1
3,1.51618,13.53,3.55,1.54,72.99,0.39,7.78,0.00,0.00,1
4,1.51766,13.21,3.69,1.29,72.61,0.57,8.22,0.00,0.00,1
5,1.51742,13.27,3.62,1.24,73.08,0.55,8.07,0.00,0.00,1
...

Listing 13.3 The beginning of the Glass Identification data set

 0

 0.2

 0.4

 0.6

 0.8

 1
Refr

ac
tiv

e I
dx

Sod
ium

Mag
ne

siu
m

Alum
inu

m

Silic
on

Pota
ss

ium

Calc
ium

Bar
ium

Iro
n

Figure 13.14 All records in a parallel coordinates plot. The record from figure 13.13
is highlighted.

267Multivariate data

This format isn’t ideal for the kind of plot we have in mind. It would be much better if
all measurements for a single record would form a column instead of a row. I there-
fore transform the original data set using the short Perl program shown in listing 13.4
to a more suitable format. The first few rows of the transformed data set are shown in
listing 13.5.

 In the transformed data set, each record has been turned into a data block, with
individual data blocks separated from each other using two blank lines. This means
that we can now plot each data block individually using the plot ... index facility
(see section 3.1.1).

 The transformation script also rescales the original values to lie in the unit interval
[0:1]. Although not strictly necessary, this is usually a good idea to make different
measured quantities comparable. Finally, the appearance of a parallel coordinates
plot depends on the specific ordering of the dimensions along the x axis. You may
want to try out different permutations to see how this changes the image.

while(<>) {
chomp;
push @r, [split ","];

}

Listing 13.4 Perl script to transform listing 13.3 to the format in listing 13.5

 0

 0.2

 0.4

 0.6

 0.8

 1
Refr

ac
tiv

e I
dx

Sod
ium

Mag
ne

siu
m

Alum
inu

m

Silic
on

Pota
ss

ium

Calc
ium

Bar
ium

Iro
n

Mg > 0.67

Figure 13.15 A subset of records: only those records from figure 13.14 are shown in
which the magnesium concentration exceeds 0.67. Note the secondary structure in
this subset: there are two distinct clusters of data characterized by their
concentration of potassium and calcium.

268 CHAPTER 13 Fundamental graphical methods

for $i (1..scalar(@{ $r[0] })-1) { # For each column...
($min, $max) = (100000, 0); # ... find min and max
for $j (0..scalar @r-1) { # ... over all rows.

$min = $r[$j][$i] < $min ? $r[$j][$i] : $min;
$max = $r[$j][$i] > $max ? $r[$j][$i] : $max;

}
for $j (0..scalar @r-1) { # Rescale this column in all rows

$r[$j][$i] = ($r[$j][$i] - $min)/($max-$min);
}

}

for $r (@r) {
unless($r->[3] > 0.67) { next; } # Optional filter logic

for $i (1..scalar(@{ $r[0] })-1) {
print "$i\t", $r->[$i], "\n";

}
print "\n\n";

}

ColumnIndex RescaledValue
1 0.43
2 0.43
3 1
4 0.25
5 0.35
6 0.00
7 0.30
8 0
9 0
10 0

1 0.28
2 0.47
3 0.80
4 0.33
5 0.52
6 0.07
7 0.22
8 0
9 0
10 0

...

Finally, I’ve collected the most pertinent commands I used to create figure 13.13 in
listing 13.6. The most interesting aspect is the way x tic labels are handled. I use
explicit text labels rotated by 45 degrees. I also use the secondary x axis (at the top),
rather than the primary axis, because the textual labels align better along the top than
at the bottom. Additionally, the size of the top margin has been adjusted manually to
make room for the rotated text labels.

Listing 13.5 The transformed data set, ready for plotting

269Multivariate data

unset xtics
set tmargin 5
set x2tics rotate by 45 offset 0 mirror
" ('Refractive Idx' 1, 'Sodium' 2, 'Magnesium' 3, 'Aluminum' 4,
" 'Silicon' 5, 'Potassium' 6, 'Calcium' 7, 'Barium' 8, 'Iron' 9)
plot [1:9][0:1] "data" i 78 u 1:2 w linesp t 'Record 78'

13.4.2 Multivariate analysis

The study of problems involving the simultaneous consideration of several related sta-
tistical quantities is called multivariate analysis. The first, and often the most important,
goal of multivariate analysis is to find any kind of structure in the data, and thereby
simplify the problem. This leads to classification, clustering, or projection techniques,
some of them quite sophisticated.8

 Multivariate analysis is hard, and graphical methods quickly seem to reach their
limits. (I think parallel coordinate plots can’t be regarded as anything but a kludge,
but much weirder techniques have been suggested. The idea behind Chernoff-faces,
for example, is to encode each quantity as a facial feature in a stylized human face:
size of the mouth or distance between eyes, and so on. The observer then tries to find
the faces that are “most similar” or “least similar” to one another.) For much larger
data sets, one may resort to computationally intensive methods, which go under the
name of data mining or more specifically pattern recognition and machine learning.9 The
latter set of methods is a highly active area of research.

 I must say that I experience a certain degree of discomfort with the “random
search” character of some multivariate methods. The purpose of data analysis is to
gain insight into the problem domain that the data came from, but any brute-force
method that isn’t guided by intuition about the problem domain runs the risk of
being about the numbers only, not about the actual system that the data came from
originally.

 The analysis we did earlier on the glass data set (see listing 13.3) is a case in point:
we found that records can be classified according to their magnesium content—but
what does that tell us about the original problem? This isn’t at all clear at this point.
We’ll have to go back and understand more about the context in which this data was
collected.

 Multivariate classification methods, such as the parallel coordinates technique
introduced here, can be a useful starting point when faced with large and unsystem-
atic data sets, or any time we don’t have good intuition about the actual problem

Listing 13.6 Commands to generate figure 13.13 from the data in listing 13.5

8 Two short and accessible introductory texts are Multivariate Statistical Methods: A Primer by Bryan F.J. Manly
(Chapman & Hall, 3rd ed., 2004) and Introduction to Multivariate Analysis by Chris Chatfield and A. Collins
(Chapman & Hall, 1981).

9 Three introductory texts, in approximate order of increasing sophistication, are: Pattern Recognition and
Machine Learning by Christopher M. Bishop (Springer, 2007); Pattern Classification by Richard O. Duda, Peter
E. Hart, David G. Stork (Wiley-Interscience, 2nd ed., 2000); and The Elements of Statistical Learning by T. Hastie,
R. Tibshirani, J. H. Friedman (Springer, 2003).

270 CHAPTER 13 Fundamental graphical methods

domain. We can use these methods to develop strategies for more detailed analysis,
but we must make sure to tie the results back to the original problem. The purpose of
data analysis is insight into the problem domain, not insight into the data!

13.4.3 Star plots

Star plots are basically parallel coordinate plots in polar coordinates. Instead of show-
ing many records in a single plot, it’s more common to draw a single star plot for each
record and to compare the resulting images. They’re therefore more suited for
smaller data sets (fewer records). Figure 13.16 shows a star plot for some of the
records of the glass samples data set. The commands (involving both polar coordi-
nates and multiplot mode) are shown in listing 13.7.

 The advantage of star plots over parallel coordinate plots is that they give the
viewer more of a sense of a recognizable shape. In figure 13.16, for instance, we can
easily distinguish the three records of the top row as being similar to one another,
while the three records in the bottom row are clearly different from both the top row
and from each other.

set polar
set size square

unset border

set format x ""; set format y ""
set xtics scale 0; set ytics scale 0

set grid polar 2.0*pi/9.0
set xtics 0.25

unset key

set style data linesp

set multiplot layout 2,3

set label 1 '77' at graph 0,0.95
plot [0:2*pi][-1:1][-1:1] "stardata" i 77 u (2*pi*($1-1)/9.):2

set label 1 '78' at graph 0,0.95
plot [0:2*pi][-1:1][-1:1] "stardata" i 78 u (2*pi*($1-1)/9.):2

set label 1 '79' at graph 0,0.95
plot [0:2*pi][-1:1][-1:1] "stardata" i 79 u (2*pi*($1-1)/9.):2

set label 1 '105' at graph 0,0.95
plot [0:2*pi][-1:1][-1:1] "stardata" i 105 u (2*pi*($1-1)/9.):2

set label 1 '174' at graph 0,0.95
plot [0:2*pi][-1:1][-1:1] "stardata" i 174 u (2*pi*($1-1)/9.):2

set label 1 '184' at graph 0,0.95
plot [0:2*pi][-1:1][-1:1] "stardata" i 184 u (2*pi*($1-1)/9.):2

unset multiplot
reset

Listing 13.7 Commands for a star plot array—see figure 13.16

271Multivariate data

13.4.4 Historical perspective: computer-aided data analysis

In this chapter, we talked about some more modern techniques for data analysis:
using the median (instead of the mean), kernel density estimates (instead of histo-
grams), parallel coordinate plots (for multivariate data). All these techniques have
something in common that sets them apart from their “classical” counterparts: they
require a computer to be practical.

 I already commented on this when discussing the median (which requires sorting
the entire data set, compared to the mean, which only requires a running sum of
totals). Similar considerations apply to the kernel density estimate: a histogram only
requires counting the number of events in each bin, whereas the kernel method
requires an evaluation of the kernel function for each data point and for each sample
point at which the curve should be drawn. And the parallel-coordinate plot is
intended for data sets that are too large for manual techniques, anyway.

 But this is only the beginning. Once we fully embrace the computer as a readily
available and fully legitimate tool, what other methods for visual exploration become
possible? The short answer is: we don’t know yet. There are some new ideas that have
started to come out of research in computer-assisted data visualization, some good,
some certainly misguided. Time and experience will tell which is which.

 One possible direction for the development of new visualization techniques is the
ability to interact dynamically with a plot. For instance, a concept known as brushing
involves two different views on a single, multivariate data set. When selecting a subset
of points with the mouse in one view, the corresponding points in the other view are

77 78 79

105 174 184

Figure 13.16 Star plot of six individual records from listing 13.3. The records in the
top row are more or less similar to one another, but the records in the bottom row
belong in very different categories.

272 CHAPTER 13 Fundamental graphical methods

highlighted simultaneously. This technique can be used to investigate structure in
multivariate data sets. (I can also imagine applications to the parallel-coordinate plots
we discussed.)

 Gnuplot isn’t suitable for such applications, but some academic software systems
are freely available for experimentation. If you’re interested, you might want to check
out GGobi (www.ggobi.org) or Mondrian (www.rosuda.org/mondrian). The book
Graphics of Large Datasets by A. Unwin, M. Theus, and H. Hofmann (Springer, 2006)
also contains many useful pointers in this regard.

13.5 Summary
In this chapter, we started with the most fundamental questions we may pose to a data
set, and discussed ways to answer them using graphical methods:

! For questions about the functional relationships between two quantities, we’ll
usually use a scatter plot of some form. We also discussed how a smooth curve
approximation can help to detect structure in noisy data.

! For data sets of random points, we’re mostly interested in the distribution of
the points. Questions of this sort quickly take us into the territory of statistics,
and I introduced jitter plots, histograms and kernel density estimates, and
cumulative distribution functions.

! Data sets for which the independent variable has no natural sort order pose par-
ticular challenges. I suggested rank-order plots, in which we utilize the sort
order of the dependent variable as the best way to visualize such data sets.

! Finally, we looked at unstructured, multivariate data sets. Here, our ambition
was much more modest: rather than making definitive statements about the
data, we were satisfied merely to find some form of structure in the data, which
can help partition the data set into smaller and more uniform fragments.

In passing, I mentioned several mathematical concepts that are of particular useful-
ness during analysis. First we discussed logarithms, which are always helpful with data
spanning many orders of magnitude, and which can reveal exponential and power-law
behavior in data. Although I first discussed logarithms in connection with scatter
plots, they’re more generally useful, for example for rank-order plots. I also discussed
the problems that may arise from the uncritical use of classical summary statistics
(such as mean and standard deviation) and recommended instead statistics based on
the median and percentiles. And finally, I tried to put the purpose and challenges of
multivariate statistics into perspective.

 In the next chapter, we’ll get more specific and work through some particular
problems in much more detail. Stay tuned.

273

Techniques of
graphical analysis

In this chapter, I want to show you some more specialized techniques that are help-
ful when analyzing data graphically. We’ll look at a few examples in more detail, so
that I can explain the different steps and the rationale behind them.

 There are a few overarching ideas I want to convey here. First and foremost is the
importance of iteration: the need to plot data, learn something about it, and plot it
again in a different manner, until we’ve learned whatever was possible from it.

 Another theme in this chapter is the importance of transformations, either math-
ematical transformations that we apply to the data, or (and this is a topic we haven’t
touched on before in this book), visual transformations in which we change the
overall appearance of the plot to make features in the data stand out. It turns out

This chapter covers
! Iteration and transformation
! Changing appearance to improve perception
! Housekeeping
! Reminders for presentation graphics

274 CHAPTER 14 Techniques of graphical analysis

that our human perception of features in a graph can be helped or hindered by the
way that data is presented, and in changing the appearance of a plot, we attempt to
find the format that lets us recognize certain features most easily.

 This chapter is also a good place to talk about some other housekeeping activities
that help with the organization of our work. And I’ll close with a short checklist for
presentation graphics.

14.1 The core principle of graphical analysis
Here’s what I believe to be the core principle of graphical analysis:

 Plot exactly what you want to see!

That sounds trite, doesn’t it? But it isn’t, for a number of reasons.
 First off, it’s often not at all obvious what to look at from the outset. Very often, it’s

only when we look at data that we come up with new ideas about the data and there-
fore new ways that we want to plot it. When dealing with a truly new data set, I’ve
found that frequently I don’t know what to look for until I see it! Hence the impor-
tance of iteration, to bring out the relevant information in a data set.

 Secondly, initially data isn’t necessarily in the form that brings out its most impor-
tant features most clearly; therefore we might have to apply some transformation
before graphing it. Maybe we shouldn’t plot the data itself, but its logarithm instead.
Or maybe its standardized z-score. Or we don’t actually care about the data itself, but
the difference between two data sets, so that we should plot this difference instead.
And so on.

 Finally, we need to understand how our minds process visual information, and use
this information to present data in a way that makes it easiest for us to recognize fea-
tures in a data set that we care about. If we want to see the change in a data set, we
should choose the plot ranges in such a way that the graph only includes the values
over which change happens. If instead we want to understand the global behavior of
the same data set, we need to choose plot ranges wide enough to include the entire
data set. We’ll see more sophisticated examples later.

 I stress this simple principle, to plot what you want to see, because it’s so frequently
overlooked—maybe precisely because of its simplicity. But if you look at some of the
well-publicised examples of bad information graphics, you’ll find that often what
makes them bad is that they don’t show what you really want to see. Maybe the relevant
quantity is the difference between two signals, but the two individual signals are shown
separately instead. Or the relevant information is the relative change of some quantity
about a baseline, but the total value of the quantity is shown instead. Or only a specific
subset of all data points is relevant, but all points are shown instead. Based on what
I’ve seen, this seems to be the single most frequent fundamental problem with informa-
tion graphics—much more serious than the superficial problems with missing labels
or inappropriate line widths that so much of the debate concentrates on.

 I’d also like to stress that finding out what’s most relevant is often not easy. Take your
time. Think about it. Try it several times. It’s supposed to be hard. That’s why it’s fun!

275Iteration and transformation

 In this chapter, I’m not trying to show you “the one right way to do it,” because
all I’ve seen has taught me that no such thing exists. Instead, I want to suggest ways
to think about graphing data and how we can use graphs to relate to and under-
stand data.

14.2 Iteration and transformation
Let’s look at a few examples that require multiple plots, and typically some data trans-
formations as well. The first example is a study in iteration: we plot the same data set
several times. Each plot reveals some structure or behavior in the data, which we
remove in the next step to see whether there’s evidence of weaker (secondary) struc-
ture. After several iterations, we’ll have extracted all useful information and will be
left with an apparently random collection of points that doesn’t suggest any further
structure. In the second example, I’m going to discuss the importance of making data
sets from different sources comparable to one another by normalizing them. In the
last example, we’ll take a look at the dangers of truncating or censoring data and the
sometimes hidden ways these issues can occur when working with data.

14.2.1 A case study in iteration: car data

Our first example concerns a data set we already know from listing 13.1. Besides the
weight and the price, it contains many more attributes for each car, including values
for cars’ fuel consumption in miles per gallon (mpg), both for city traffic and for
highway driving. On a lark, I plotted both against the price (see figure 14.1).

 There are a lot of points in this plot, many of which overlap at least partially. Since
we want to compare the distribution of data points for inner-city and highway driving,
we need to be able to distinguish between points for either case most clearly. For these
reasons, I’ve chosen open and filled circles as symbols. There is empirical evidence1

that among geometric shapes, circles remain identifiable most clearly even when par-
tially overlapping, and that open and filled symbols provide greater contrast than sym-
bols of different shapes.

 This is certainly a minor point, but I’d like to emphasize how attention to even
such an apparent detail can make a difference in the visual usefulness of even a mod-
est scatter plot!

 Also keep in mind that this entire discussion is only relevant because of the black-
and-white restriction imposed by the printed book: in an interactive session using a
color terminal, we’d use highly contrasting colors (such as red and green) to help us
distinguish between the two data sets.

 Looking at figure 14.1, I was struck by the similarity in behavior between city and
highway uses, so I plotted one against the other to see more clearly how they behave
relative to each other. I found that the points seem to fall on a straight line. This is
shown in figure 14.2, where I’ve also added the linear function f(x) = x for comparison.

1 See The Elements of Graphing Data by William S. Cleveland, Hobart Press (1994) and references therein.

276 CHAPTER 14 Techniques of graphical analysis

This graph is quite interesting by itself. It tells us that the highway mileage grows in
step with the mileage for city use. The only difference is that we seem to get a few
more miles per gallon on the highway than in the city. (It’s not entirely clear yet how
many more miles.) I find this mildly surprising: I would’ve expected cars with overall
high consumption to turn into disproportional guzzlers on the highway. But they
don’t appear to.

 The functional form suggested by figure 14.2 is

 highway-mpg = city -mpg + const

To verify this, I looked at the residual between the data and the functional form; in
other words, I plotted the difference between the highway mileage and the city mile-
age as a function of the city mileage. If the preceding equation holds, I’d expect the
residuals to be scattered about the value of the (as yet unknown) constant, without a
significant trend. The result is shown in figure 14.3, where I’ve also added a weighted
spline to indicate the trend (if any), similar to the process we used in section 13.1.1.
Because in this plot many points coincide, I’ve added a small random component to
both x and y values, and chosen open circles (again), which remain most clearly visi-
ble even when partially overlapping. There’s no discernible overall trend, and we can
read off the difference in mileage between city and highway use: we get about 5.5
miles more to the gallon on the highway.

 This is admittedly not the most fascinating result in the world, but it’s interesting
how we arrived at it by purely graphical means. Also, observe how each step in this
(mini) analysis was based directly on the results of the preceding one.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
ile

ag
e

[m
pg

]

Price [1985 Dollars]

City
HighWay

Figure 14.1 Mileage (in miles per gallon) for city and highway use of 205 cars versus
their price (1985 data)

277Iteration and transformation

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 10 15 20 25 30 35 40 45 50

M
ile

ag
e,

 H
ig

hW
ay

 [m
pg

]

Mileage, City [mpg]

Figure 14.2 Highway mileage versus city mileage. Also shown is the function f(x) = x for
comparison. (See figure 14.1.)

-2

 0

 2

 4

 6

 8

 10

 12

 10 15 20 25 30 35 40 45 50

R
es

id
ua

l [
m

pg
]

Mileage, City [mpg]

Figure 14.3 The residual after subtracting the postulated functional form from the data
in figure 14.2. Note how there doesn’t seem to be a significant trend in the residuals,
suggesting that the functional form represents the data well.

278 CHAPTER 14 Techniques of graphical analysis

 There’s one additional interesting tidbit in this example. If you fit a straight line
through the points in figure 14.3, you’ll find that it displays a weak upward slope, sug-
gesting that high consumption vehicles do in fact need disproportionately more fuel
in the city. But if you compare it with the smooth trend line in the graph, it becomes
apparent that the upward slope is due mostly to the existence of a few outliers on the
very left of the graph. Excluding them, no overall trend can be detected.

14.2.2 Making data comparable: monitoring quantities
in a control chart

Imagine you’re in charge of a factory or some production plant. You’re responsible
for the smooth running of the operation, so you want to monitor the most relevant
metrics constantly.

 To keep things simple, let’s say there are just three parameters that really matter:
the overall productivity (units per hour), the completion time for each unit (in min-
utes), and the defect rate (the ratio of defective units to the total number of units pro-
duced). You might want to plot them together on a control chart, so that you can
immediately see if one of them starts running out of the allowed zone. But most of all,
you want to be able to compare them against each other: is one parameter consistently
performing better than the other ones? Is one of the parameters on a slippery slope,
getting worse and worse, relative to the other ones? And so forth.

 A naive way to achieve this effect is to just plot the three parameters in a single
chart. The result is shown in figure 14.4 and is probably not what you wanted!

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100 120 140 160

Productivity (Units per Hour)
Completion Time (Minutes)

Defect Rate (Defects per Thousand)

Figure 14.4 A control chart, showing three very different quantities simultaneously.
What’s wrong with this picture?

279Iteration and transformation

The problem is that the three parameters assume very different values: productivity is
typically around 10,000 units per hour, assembly time is on the order of an hour, and
the defect rate should be very, very small.

 So, what to do? One possible solution might be to use a logarithmic scale for the y
axis (see section13.1.2) and this is indeed a valid approach. But in our example, we
run into trouble with it, because the defect rate is in fact often zero (no defects
found), and logarithms are undefined at zero.

 What other ways do we have to make the three data streams comparable? We can
subtract an offset (for example, the value that they have first thing in the morning).
But that won’t do the trick, because it’s not just the overall magnitude that matters,
but also the range of values over which each parameter fluctuates. The productivity
ranges from as low as 7,000 units per hour to almost 10,000 units per hour. The assem-
bly time hovers around one hour, plus or minus thirty minutes, while the defect rate is
always smaller than 0.001 (one defect per thousand items).

 So after we’ve shifted the values to have a common starting point, we need to
divide by the range of possible values to make the three quantities really comparable.
The resulting graph is shown in figure 14.5.

 This example serves to make a more general point: before you can compare differ-
ent quantities, you have to make sure to make them comparable. A strong hint that
something is missing can come from a consideration of the units of the quantities
involved. Look at figure 14.4, for example. What units are plotted along the y axis?
The three quantities that are so innocuously graphed together are measured in three

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 20 40 60 80 100 120 140 160

Productivity (normalized)
Completion Time (normalized)

Defect Rate (normalized)

Figure 14.5 A control chart showing normalized metrics. The data is the same as
in figure 14.4.

280 CHAPTER 14 Techniques of graphical analysis

totally different systems of measurement, so that the absolute numbers plotted in the
figure have no meaning relative to each other.

 A general strategy to make data comparable is to perform a linear transformation
on it: first shift the curves to have a common starting point, then scale them to make
the fluctuations comparable:

 zi = (xi – m) / s

Here, m is the offset, and s is a measure of the spread.
 What to use for m and s is somewhat arbitrary and depends on the specifics of the

data. One reasonable possibility is to use the (long-term) mean for m and the standard
deviation for s. (With these choices for m and s, the quantity z is sometimes called the
standardized value or z-score by statisticians.)

 m = (1/N) #i xi

 s = sqrt((1/N) #!(xi
2) - m2)

But this isn’t the only possible choice. In other situations it might make sense to take
m as the minimum of all values, and to make s be the range between the maximum
and the minimum:

 zi = (xi - min(xi)) / (max(xi) - min(xi))

This transformation makes particular sense when there’s a well-defined minimum and
a similar maximum value. In our example, we know that the defect rate can never be
negative, so zero is an obvious choice for the lower limit, and we may know from expe-
rience that rarely are there more than 5 defects per 1,000 items, giving us a reasonable
maximum value. (Be aware that transforming a quantity by subtracting the mean will
lead to a variable that assumes both positive and negative values, while subtracting the
minimum value will lead to a strictly positive variable.)

14.2.3 Honor the data: truncation and responsiveness

Figure 14.6 shows the finishing times of the winners in a marathon event from when
the event was first conducted until 1990.2 In general, we see that the finishing times
have decreased over time—the top athletes are getting better every year. The changes
are particularly dramatic for the women’s results since they started competing in 1966.

 Also shown are the “best-fit” straight-line approximations to the data, and they
seem to represent the data quite well. The only issue is that according to those fits,
women should overtake men sometime in the early ’90s—and then continue to get
dramatically faster. Is this a reasonable conclusion?

 This example attempts to demonstrates two important points when working with
data. The first one is the need to be sensitive to the structure and quality of the data.
For the data in figure 14.6, fitting a straight line provides only a very coarse—and as
we’ll see, misleading—approximation of the real behavior.

2 This example was inspired by the book Graphic Discovery by Howard Wainer, Princeton University Press (2005).

281Iteration and transformation

You need to remember that by fitting a straight line, you’ve chosen one specific model
to represent the data. At this point, you’re no longer analyzing the data with the inten-
tion of revealing the information contained in it, but are making a very specific state-
ment about its surmised behavior. Before making such a strong statement, you should
have sufficient evidence for the applicability of the particular model selected. And
coming back to the current example, there certainly doesn’t seem to be any strong
theoretical reason why athletic performance should follow a straight line as a function
of time.

 To understand the structure of the data, we might instead attempt to represent the
data by some “soft” local approximations, such as weighted splines. Some experimen-
tation with the weights will tell us much about the structure of the data: does the over-
all shape of the approximation curve change drastically as we vary the weighting?
Which features are the most robust, and which disappear most quickly? Typically, sig-
nificant features tend to be rather robust under transformations, while less relevant
features are more transient.

 Figure 14.7 shows the same data as figure 14.6, but instead of a straight line, a soft
spline has been used to represent the data. This approximation suggests that women’s
performance starts to level off in the late ’80s, and the results from years after 1990
corroborate this observation. Note that the spline approximation is based only on
years up to and including 1990, but not on later data points.

 The second point I want to make is this: be very careful when truncating or reject-
ing data points—for whatever reason. But we didn’t actually reject any data points, you

 120

 140

 160

 180

 200

 1900 1920 1940 1960 1980 2000

Men

Women

Men
Women

Figure 14.6 Finishing times (in minutes) for the winner of a marathon competition
(up to the year 1990), together with the best straight-line fit. Will women overtake
men in the coming years?

282 CHAPTER 14 Techniques of graphical analysis

say? Yes, we did: we didn’t include any result past the year 1990 in our analysis. But
they hadn’t happened yet when the analysis was done, you say. Fair enough—but
reject them we did.

 Rejecting, truncating, and censoring of data takes many forms.

! Outlier removal—This is probably the most readily understood case. Often a data
set will contain a few isolated points that just seem “way off,” and you may want
to remove them, so as not to distort the overall result. Just be very careful. Try to
avoid automatic outlier removal, and never allow data points to be removed
silently. No point should be removed from a sample without a (visible) audit
trail. (There’s a story that the detection of the hole in the ozone layer was
delayed by several years, because on-board software on the survey satellite kept
silently rejecting the low ozone readings as outliers.3)

! Sampling bias—This is the most insidious form of data censoring, because often
you won’t even know that you’re doing it. A few examples: a survey conducted
over the phone will be biased, because it excludes everyone who doesn’t have a
phone, or doesn’t answer (or doesn’t answer at the time the survey is con-
ducted). A study of mutual funds available today will show unjustifiably high
returns on average, because it doesn’t include funds that have been closed or
merged away because of poor performance. Polling children for the number of
siblings will give a wrong number of children per household because it excludes
households without children. One of the best publicized cases of data censor-
ing is related to the space shuttle Challenger accident: by restricting analysis to
only those flights exhibiting damage to the O-rings (effectively removing cases
with no damage to the O-rings from the analysis), it appeared as if temperature
wasn’t a significant influence on the occurrence of defects.

! Edge effects—Another form of truncation occurs naturally at the edge of the plot
range. Data points very close to the edge should always be regarded with suspi-
cion, simply because we don’t know how the curve would continue if it were to
extend beyond the plot range. (In experimental setups, points near the edge
may also have higher uncertainty because we’re reaching some technical limit
of the apparatus: if there were no such limit, the data would extend further.)

In figure 14.6, the problem is such an edge effect. Figure 14.7 tells us how the story
ends: the performance of female runners has begun to level off in the late ’80s, just
when figure 14.6 was drawn.

 But in fact the story doesn’t end there. We’ve merely pushed out the edge by
another 15 years—how things progress from here is hard to predict. Has the time of
dramatic improvements come to an end or will it continue? Incidentally, there are sev-
eral places along the men’s curve that would have suggested a similar flattening of the
curve earlier in time. For example, cover the points to the right of 1950 (or 1977),

3 “Ozone Depletion, History and Politics” by Brien Sparling, available at http://www.nas.nasa.gov/About/Edu-
cation/Ozone/history.html.

283Iteration and transformation

and you’d be forgiven for guessing that performance had reached a stable plateau—
only to see a dramatic improvement within the next few years! (Similar observations
can be made for the records in other sports as well.4)

 What causes the apparently steady improvement in athletic performances in a vari-
ety of sports? One surprising answer might be simply that an increased number of
people are trying! The number of humans on Earth continues to grow, and therefore
the likelihood that one of them is a tremendous athlete also increases—even if the
overall performance of all of humanity doesn’t change. A study5 showed that a large
part of the year-over-year improvement in athletic performance can be attributed to
this effect alone.

 One last mystery, before leaving this example behind: what happened in the years
1910–1930? Why did the winning time suddenly drop significantly (to levels that
wouldn’t be attained for another 40 years), and then abruptly increase again after a few
years? We can’t tell, but it makes you wonder whether the length of the course wasn’t
too well established in those early years. Another indicator is the strong fluctuation of
data points from one year to the next for all years prior to 1930: maybe time wasn’t
taken very carefully then. But that’s speculation—we can’t tell from the data available.

4 See for example the delightful Teaching Statistics—A Bag of Tricks by Andrew Gelman and Deborah Nolan,
Oxford University Press (2002).

5 “A Statistician Reads the Sports Pages: One Modern Man or 15 Tarzans?” by S. M. Berry in Chance, Vol 15/2,
p. 49 (2002).

 120

 140

 160

 180

 200

 1900 1920 1940 1960 1980 2000

1990

Men
Women

Figure 14.7 The same data as in figure 14.6, together with a weighted-splines fit. The
fit is based only on points prior to 1990, but the actual finishing times for the following
years are also shown. The softer spline clearly reveals the leveling off of the women’s
results well before 1990.

284 CHAPTER 14 Techniques of graphical analysis

14.3 Changing the appearance to improve perception
Even if we’ve found the most appropriate combination of quantities to look at, the
amount of information we extract from a graph still depends on the way the data is
presented. The way we perceive a plot depends on our human, visual-psychological
perception of it. To get the most out of a graph, we should therefore format it to
improve the way it will be perceived.

 Whether we’re aware of it or not, in looking at a plot we always tend to engage in
comparisons. Is this line longer than that? Is this part of the curve steeper than that? Is
the area underneath this function larger than the area underneath that function?
And so on.

 To gain the maximum insight from a plot, we therefore want to find a representa-
tion of the data that facilitates such comparisons as much as possible. In this section, I
want to give you some ideas how this can be achieved.

14.3.1 Banking

The idea of banking (or banking to 45 degrees) goes back to W. S. Cleveland, who dem-
onstrated in a series of controlled experiments that our ability to compare angles is
greatest for angles that are close to 45 degrees.6 In other words, if we want to assess
and compare the slopes of lines on a graph, we’ll do best if the graph is sized in such a
way that most of the lines are roughly going diagonally across it.

 In a way, this is just a confirmation of something that you probably have been
doing intuitively already. Whenever you’ve found yourself adjusting the plot ranges of
a graph to get its aspect ratio right (as opposed to narrowing the plot ranges to “zoom
in” on some region), you’ve probably been “banking.” Figure 14.8 shows a silly exam-
ple of what I mean: both panels show the function f(x) = 1/x. In the top panel, the y
range is very large, so that the plot is dominated by vertical and horizontal line seg-
ments (keep in mind that the curve is built up from many straight line segments, con-
necting adjacent data points) leading to an unsatisfactory impression of the graph. In
the bottom panel, the y range has been constrained, so that more of the graph is occu-
pied with line segments close to 45 degrees. That’s a form of banking.

 Figure 14.9 shows a more interesting data set: the number of sun spots observed
annually, for the 300 years from 1700 to 1999. The number of sun spots observed var-
ies from year to year, following an irregular cycle of about 11 years.

 Because of the large number of cycles included in the graph, vertical (or almost
vertical) line segments dominate the graph, making it hard to recognize the structure
in the data. Figure 14.10 shows exactly the same data, but now the aspect ratio of the
plot has been changed so that the raising and falling edges of the curve are close to 45
degrees. We can now easily recognize an interesting feature in the data, namely, that
the number of sun spots during each cycle rises quickly, but tends to fall more slowly.

6 See The Elements of Graphing Data by William S. Cleveland, Hobart Press (1994) and references therein.

285Changing the appearance to improve perception

-1000

-800

-600

-400

-200

 0

 200

 400

 600

 800

 1000

-10 -5 0 5 10

-6

-4

-2

 0

 2

 4

 6

-10 -5 0 5 10

Figure 14.8 Banking: two plots of the function 1/x. In the bottom panel, the vertical plot range
has been constrained so that the average angle of line segments is approximately 45 degrees.

286 CHAPTER 14 Techniques of graphical analysis

(There’s the visual comparison, referred to earlier!) We wouldn’t have been able to
spot this from the representation of the data in figure 14.9.

 In figure 14.10, I adjusted the aspect ratio of the entire plot (using set size ratio
0.075), not just the plot range. Just extending the y range by the required amount to
compress the data in the vertical direction sufficiently would’ve led to a graph with an
inappropriate amount of unused, wasted space.

 Personally, I’m unhappy with the graph in figure 14.10. Through the banking pro-
cess, we’ve made some important structure in the data visible, yet we’ve lost a lot of
detail by shrinking the y axis down to almost nothing. In figure 14.11 I show a third
way to render the data: the continuous time series has been broken up, and subse-
quent centuries have been shifted horizontally and vertically to make it possible to
look at all of them at the same time. (Note that all the shifting can be done as part of
the plot command, without the need to chop up the data file: plot [1700:1800]
"data" u 1:2 w l, "" u ($1-100):($2+200) w l 1, "" u ($1-200):($2+400) w l 1, 200
w l 0, 400 w l 0.) I think this graph (a cut-and-stack plot) strikes a good balance

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1700 1750 1800 1850 1900 1950 2000

A
nn

ua
l S

un
sp

ot
 N

um
be

r

Figure 14.9 Annual sunspot numbers for the years 1700 through 2000. What can
you say about the shape of the curve in this representation?

 0
 100
 200

 1700 1750 1800 1850 1900 1950 2000

Figure 14.10 The same data as in figure 14.9, plotted at an aspect ratio which
banks lines to 45 degrees

287Changing the appearance to improve perception

between the desire to find the optimal aspect ratio for the plot and the desire to
choose the optimal plot range for the data.

 Banking is a valuable tool. In particular, I find it helpful because it draws our atten-
tion to the importance of the apparent slopes of lines on a graph. Nevertheless, it
must be used with judgment and discretion. Taken by itself, it can lead to graphs with
strongly skewed aspect ratios (such as figure 14.10), which can be inconvenient to
handle and which make comparisons between different parts of the graph (such as
the left and the right sides in figure 14.10) difficult.

14.3.2 Judging lengths and distances

Look at figure 14.12. It shows the inflows and outflows to and from a storage tank over
time. For the interval considered here, the inflows are always greater than the out-
flows, so that the tank tends to fill up over time, but that’s not our concern right now.
(Let’s say the tank is large enough.)

 Instead, let’s ask for the net inflow as a function of time—the inflow less the outflow
at each moment. Could you draw it? Does it look at all like the graph in figure 14.13?
In particular, did your graph contain the peak between 6 and 7 on the horizontal axis?
How about the relative height of the peak?

 This example shows how hard it is to estimate accurately the vertical distance
between two curves with large slopes. The eye has a tendency to concentrate on the
shortest distance between two curves, not on the vertical distance between them. The
shortest distance is measured along a straight line perpendicular to the curves. For

0

100

0

100

0

100

0 20 40 60 80 100

A
nn

ua
l S

un
sp

ot
 N

um
be

r

Year in Century

1700

1800

1900

Figure 14.11 A third representation of the sunspot data from figure 14.9: a cut-and-
stack plot

288 CHAPTER 14 Techniques of graphical analysis

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

F
lo

w
 R

at
e

Time

Outflow
Inflow

Figure 14.12 Inflow and outflow to and from a storage tank. What’s the net flow to the tank?

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12

N
et

 F
lo

w
 R

at
e

Time

Figure 14.13 Net flow to the storage tank. This is the difference between the inflow and
the outflow (see figure 14.12).

289Changing the appearance to improve perception

nearly horizontal curves, this is reasonably close to the vertical distance, but as the
slopes become more steep, the difference becomes significant. (Because we’re inter-
ested in the difference between the two flow rates at the same point in time, we’re
looking specifically for the vertical distance between the two curves.)

 Figure 14.14 demonstrates the same point. Looking at the plot, the conclusion
seems inevitable that the distance between the two curves varies, being largest close to
the maxima and minima of the two curves, and in general increasing from left to
right. Yet, in reality, the vertical distance between the two curves is exactly constant
over the entire plot range: the graph shows the same function twice, shifted vertically
by a constant amount.

14.3.3 Enhancing quantitative perception

Our ability to recognize differences between graphical elements depends not on the
absolute, but on the relative size of the differences. In other words, we have an easier
time determining which of two line segments is longer if they’re 1 and 2 inches long,
respectively, rather than if they’re 11 and 12 inches long—the absolute difference is
the same, but the relative difference is much smaller in the second case. (You may find
references to Weber’s Law or Steven’s Law in the literature.)

 We can leverage this observation to make it easier to detect differences in our
graphs, for example by using a reference grid. Rather than having to compare fea-
tures of the graph directly to each other, we can instead compare differences between

Figure 14.14 The same curve plotted twice, shifted by a small vertical amount. Note
how the distance between the two curves seems to vary depending on the local slope
of the curves.

290 CHAPTER 14 Techniques of graphical analysis

points on the graph and nearby grid lines. As long as the grid is sufficiently fine, those
differences will be smaller than the features themselves and their relative sizes there-
fore easier to estimate accurately.

 An example will clarify. In figure 14.15, we see two curves, one above the other.
Both seem to be similar to each other, exhibiting two local maxima (indicated by
arrows) for example, but shifted horizontally and vertically relative to each other. But
just by looking at this figure, though, it’s hard to decide just how similar the two
curves are.

 Figure 14.16 shows exactly the same data, but now a reference grid has been
added. We can use this grid to help us compare specific features of both curves. For
example, we can now easily see that the vertical distance between the two maxima is
approximately the same for both curves (about 2.5 vertical units), but that the inter-
mediate minimum is shallower for the bottom curve. The horizontal distance between
the maxima, on the other hand, is nearly equal between the top and bottom curves.
And so on.

 This is a somewhat different use for grid lines than the usual one, which is to make
it easier to read off specific numeric values from the plot of a curve. Here, we’re not
interested in actual numbers (which is why I quite intentionally left the tic labels off),
but only in the relative distances between points on the curve.

 There’s of course nothing special about grid lines here; they’re merely the most
convenient way to achieve our purpose. Alternatively, we could’ve placed some arrows
of equal length next to the maxima of both curves and used them as yardsticks for
comparisons.

Figure 14.15 How similar are the two curves to each other?

291Changing the appearance to improve perception

14.3.4 Plot ranges and the matter of zero

Plots should have meaningful plot ranges, showing those parts of the data that the
viewer is most likely going to be interested in at a reasonable resolution. It may not be
possible to convey all the meaning appropriately with a single choice of plot ranges, so
don’t be shy about showing two or more views of the same data set, for instance an
overview plot and a detailed close-up of only a small section of the entire data set.

 A long-standing, and largely unfruitful discussion concerns the question of
whether zero should be included in the range of a graph. The answer is simple: it all
depends.

 If you’re interested in the total value of a quantity, you probably want to include
zero in your range. If you care only about the variation relative to some baseline other
than zero, then don’t include zero.

 Figure 14.17 demonstrates what I mean. Both panels of the graph show the same
data. One tells us that the total variation is small, compared to the overall value. The
other panel tells us that there has been a steady increase from left to right. Both views
are valid, and each gives an answer to a different question.

 Plot ranges are a bit more of a concern when several graphs need to be compared
against each other. In such a situation, all graphs should have the same scale to facili-
tate comparison; in fact, using different scales for different graphs is a guaranteed
path to confusion (because the difference in scales will go unnoticed or be conve-
niently forgotten). And if one of the graphs legitimately includes zero, then all of
them will have to do the same.

Figure 14.16 The same curves as in figure 14.15. The reference grid helps to make
detailed comparisons between curves.

292 CHAPTER 14 Techniques of graphical analysis

14.3.5 A tough problem: the display of changing compositions

A hard problem without a single, good solution concerns the graphical representation
of how the breakdown of some aggregate number into its constituent parts changes
over time (or with some other control variable). Examples of this type are often found

 20

 20.2

 20.4

 20.6

 20.8

 21

 21.2

 21.4

 0 2 4 6 8 10

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

Figure 14.17 The effect of plot ranges. The data in both panels is the same, but the vertical plot range
is different. The top panel shows only the variation above a baseline; the bottom panel shows the global
structure of the data. Either plot is good, depending on what you want to see.

293Changing the appearance to improve perception

in “general interest” domains. Let’s consider the Earth’s population, for example. Its
overall magnitude changes over time, but its breakdown by continent is changing as
well. Or consider pre-election opinion polls: the way votes are distributed across dif-
ferent candidates continues to change over time. The second example is different
than the first, in that the total sum of all parts is fixed (namely, 100 percent), whereas
the earth’s overall population is changing together with the breakdown by continent.

 A popular way to represent such information is to draw a stacked graph: we order
the individual components in some way (more on this later), and then add the num-
bers for each subsequent component to all previous ones.

 Let’s look at an example. A company manufactures four different products,
labeled A, B, C, and D. Figure 14.18 shows the number of parts manufactured per day
in a stacked graph, meaning that the line labeled B gives the sum of produced parts of
type A and B. The topmost line shows the total number of units produced per day.

 A graph of this sort can be desirable if the composition changes dramatically over
time, because it can give an intuitive feeling for the size of the relative changes. But it’s
hard to extract quantitative information from stacked graphs if the variation is small
relative to the absolute values. Consider figure 14.18 again. For which of the four
products has production increased over time, and by how much? We can only answer
this question accurately for product A, because for all the other products, the chang-
ing baselines make comparisons difficult, if not impossible.

 So why not show the production numbers for the four product lines individually,
in a nonstacked representation? Figure 14.19 shows the whole dilemma: all the magni-
tudes are similar, and so the curves overlap, making the graph both unattractive and

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20

A
B
C
D

Figure 14.18 A stacked graph. Each line represents the sum of the current quantity
and all previous quantities.

294 CHAPTER 14 Techniques of graphical analysis

hard to read. Of course, this problem only gets worse as the number of components
increases.

 Figure 14.20 is yet another attempt to represent the same information: as an array
of individual graphs, one for each of the product lines. This graph makes the differ-
ences in the production numbers for the four components very clear: A fluctuates,
but grows strongly; B has gone up and down; C stays flat, while D has fallen continu-
ously. The price we pay is the smaller scale of each graph. Of course we could blow
each of the individual panels up to full size, but this seems like overkill for this infor-
mation. As usual, it’s a trade-off.

 As I said in the introduction to this section, I think there’s no single best approach
for problems of this kind. The main take-away from this example is that stacked
graphs (as in figure 14.18) easily hide trends in component parts of aggregate num-
bers, and we should consider alternative ways of visualizing this information. Individ-
ual graphs, either as a panel (like figure 14.20) or as a combined graph (figure 14.19)
are often a better idea, possibly augmented by an additional graph showing just the
total sum of all components. If aggregate numbers are required (for example, produc-
tion of A and B), it’s easy enough to read off the (approximate) numeric values from
the individual graphs and add them—easier than to perform the visual subtraction
required in figure 14.18 to get back to the individual quantities.

 Make sure to draw the individual graphs to the same scale, so that quantities from
different panels can be compared directly to each other.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20

A
B
C
D

Figure 14.19 The four components from figure 14.18, but now not shown stacked

295Changing the appearance to improve perception

Stacked graphs can be a good idea if we’re only interested in the intermediate sums
(which are pictured directly), but not in the constituent parts. To consider an exam-
ple from manufacturing again, we may want to show how many parts were machined
to within 5 percent of the specification, how many were within 10 percent, and how
many within 25 percent. In such a situation, it’s less likely that someone will ask for the
number of parts that were more than 10 but less than 25 percent out of spec. But even
in this example, there’s trouble: someone is guaranteed to ask for the number of parts
that were off by more than 25 percent (and therefore had to be rejected), which brings
us back to the beginning.

 This last example highlights another interesting question in regard to stacked
graphs: the sort order. In the last example, the problem itself determines the natural
sort order: smallest deviation first. But in the example in figures 14.18 through 14.20,
no such natural sort order is present. In such cases, it’s best to place the components
with the least amount of variation first, to preserve the stability of the baseline as
much as possible. The graph in figure 14.18 intentionally violates this recommenda-
tion—have you noticed how the rapid raise in component A toward the right side of
the graph compounds the difficulty in assessing the changes in the other three quanti-
ties (see the discussion in section 14.3.2)?

 This examples emphasizes that for some graphing problems no happy solution
exists, which would combine a maximum of clarity and precision with a minimum of
required space, while being intuitive and unambiguous at the same time. Don’t be
afraid to make trade-offs when necessary.

 10

 20

 30

 40

 50
A

 10

 20

 30

 40

 50
B

 10

 20

 30

 40

 50
C

 10

 20

 30

 40

 50
D

Figure 14.20 The four components shown in individual graphs. Note that all graphs
are drawn to the same scale, so that they can be compared to each other directly.

296 CHAPTER 14 Techniques of graphical analysis

14.4 Housekeeping
Besides actually looking at graphs, there’s a need for some other activities, which I
tend to think of as housekeeping. Many of them involve the handling and organiza-
tion of input and output files.

 Most of these ideas amount to no more than motherhood and apple pie, meaning
that you almost certainly know all of this already. But then again, as with motherhood
and apple pie, a second serving doesn’t hurt. Consider this dessert.

14.4.1 The lifecycle of a graph

It’s helpful to have a sense for the life expectancy of your graphs: short (seconds to
days, for interactive exploration and ongoing work), intermediate (days to weeks, for
intermediate results), and long (weeks to infinity, for final results and public con-
sumption).

 Treat graphs differently, based on their expected lives: for short-lived graphs, ease
of use is the predominant concern. Nothing should stop you from redrawing the
graph, changing the range or plotting style, or a transformation. Any amount of “pol-
ishing” is too much.

 For graphs in the intermediate bracket, polishing is still not required, but contex-
tual descriptions (title, units, key) become important: not necessarily to communicate
such details to others, but to serve as reminder to yourself, should you find yourself
coming back to your work after a few days or weeks of absence. (It’s amazing how
quickly even essential details can be forgotten.)

 For long-lived graphs, and those published or presented publicly, different rules
apply. Such graphs belong to “presentation graphics” proper, and I’ll have a bit more
to say about that topic in section 14.5.

14.4.2 Input data files

Data files should be reasonably self-contained and self-explanatory. Let me explain.
 When I was looking for data sets to use as examples for this book, I checked out

quite a few publicly accessible data set libraries on the web. On one of them, I found a
data set that, according to the description on the web site, contained annual sunspot
numbers for a certain specified range of years. I downloaded the corresponding file
together with several others data sets from the web site, and only then started to exam-
ine the contents of each file in detail.

 Each file consisted of only a single column, containing the dependent variable—
and nothing else! Looking at these files alone, it was no longer possible to determine
which one contained what, be it sunspot numbers or carbon-dioxide concentration in
the atmosphere, or some other data set. Since even the independent variable was
missing, I couldn’t even tell whether I was looking at monthly or yearly data, and in
any case, for what time frame.

 In other words, the sheer act of downloading a file turned it into instant garbage,
by irrevocably separating it from the information that gave it meaning!

297Housekeeping

 To avoid such embarrassments, it’s generally a good idea to keep the basic infor-
mation that’s necessary to understand the data contained in the data set as part of the
data file itself, typically as a block of comments near the beginning of the file. (I find it
more convenient to have this information at the top of the file than at the end.) The
information contained in such a header is more or less the same information that
we’d put onto a graph itself in the form of textual labels and descriptions.

 Most important is a description of the file format. It should at least include a
description of the content of all columns, together with the units used. It’s nice if it
also contains a brief overall “headline” description of the file. If there’s ancillary infor-
mation that would be required to recreate the data set, it should also be included:
things such as parameter settings for the experimental apparatus, or starting values
and the version number for the simulation program that was used to calculate the
data. If the data was downloaded from the web, I always make sure to keep a reference
to the source URL in the file itself.

 I also recommend you be rather generous when it comes to the inclusion of
“redundant” information. The sunspot data I mentioned earlier is an interesting
example. The lack of data for the independent variable (namely, the date) made it
more difficult to use and understand the contents of the file. Given the starting value
and the increment, it’s trivial to reproduce it, but it’s generally much more convenient
to have all this information available already.

 The ability to reproduce a data file if necessary is critical. Should you combine data
from several sources into a single data set, or manually edit a data set to remove
glitches, keep the originals. And stick a note in the combined file explaining its ori-
gins. More likely than not, you’ll have to come back and do it all over again at some
point. Remember: if you delete the originals, they’re gone forever.

 Unless there are extenuating circumstances (and even in most cases when there
are), prefer plain text files over binary formats. The advantages of plain text are just
too numerous: plain text is portable across all platforms (despite the annoying new-
line character issue), and can be manipulated using standard tools (editors, spread-
sheets, scripting languages). A corrupted text file can be repaired easily—not so for a
binary file. A text file is by construction more self-explanatory than a binary file will
ever be. And finally, text files compress nicely, and therefore don’t have to take up
much disk space.

 Some statistics packages keep their data sets in proprietary binary formats, and I’ve
found the constant need to invoke a special, proprietary program just to view the con-
tents of a file a major inconvenience, and the dependence on the operations provided
by the package for all data manipulation tasks an unwelcome hindrance to my work.

 If you have a legitimate need for a binary file format, at least use an existing stan-
dard, for which quality libraries are easily available. Ad-hoc binary formats are almost
certainly a bad idea.

 Something we don’t tend to think of often are clerical errors: typos, incorrectly
named files, data entered into the wrong column, wrongly recorded units—that sort

298 CHAPTER 14 Techniques of graphical analysis

of thing. They’re apparently more common than you might think: Cleveland and
Wainer7 give interesting examples of odd entries in well-known data sets and provide
convincing arguments that explain these entries as due to clerical errors, such as the
interchange of digits, or the inadvertent switching of columns for the data points in
question.

 I’m not sure whether the move to electronic data manipulation (from paper and
pencil) has made errors of this sort more or less likely. My hunch is that individual
errors (interchange of two digits, for example) have become much less likely, while
the probability for catastrophic errors (such as the mislabeling of entire files or col-
umns) has gone up. The good news is that such catastrophic errors are possibly found
much more quickly; the bad news is of course that computers are much more tolerant
of complete nonsense than most humans are.

 Finally: make sure critical data is backed up frequently. (I once accidentally
deleted data that had taken weeks to compute. Praise your system administrators!)

14.4.3 Output files

The most important advice (again) is to make plots reproducible. Don’t just export
to a printable format and move on. It’s almost guaranteed that you’ll want to redraw
the graph, with minor modifications, as more data becomes available or the under-
standing of it grows. Always save the plotting commands and options to a file before
moving on.

 Use an appropriate file format: PNG or GIF (possibly SVG) for the web; PostScript,
EPS, or PDF for print publications. I routinely create both PostScript and bitmap ver-
sions of all graphs at the same time, so that I’m all set for all possible applications.
This means that I end up with at least three files for each plot I make (commands, bit-
map, print). Adopting a naming convention (such as always using the same basename
for all three files) helps.

14.5 Reminders for presentation graphics
This book isn’t primarily about presentation graphics, but about graphical analysis.
There’s already plenty of advice on presentation graphics, and you’ll have no difficulty
finding it, but not much of it appears to be based on rigorous studies. Nevertheless,
the advice is often worded assertively, if not emotionally, and there’s an unfortunate
(and ultimately unhelpful) tendency toward the derision of work considered inade-
quate. Given the lack of rigorous evidence, tastes and personal opinions naturally play
a large role.

 I don’t intend to add to this debate. Instead, I’d like present a list of reminders
concerning details that are easily (and inadvertently) forgotten when preparing a
graph for publication. Most of them concern the inclusion of contextual information,
which can’t be inferred from the graph itself, but which is nevertheless important for

7 See section 6.4 in Visualizing Data by W. S. Cleveland, Hobart Press (1993) and the introduction to Graphic
Discovery by H. Wainer, Princeton University Press (2005) for details.

299Reminders for presentation graphics

understanding. By “publication” I mean any form of wider distribution of the graph:
anything leaving the immediate group of coworkers who were involved in its creation,
and in particular any use with a long expected lifetime.

 These aren’t commandments, but reminders. Use your own good judgment.

! Axes should be labeled. The labels should describe the quantity plotted and
should include the units of measurement. Don’t leave this information to a sep-
arate figure caption. Keep in mind that the graph may be separated from its
context, so that information contained only in the caption may be lost. The cap-
tion should be used to describe salient features of the graph, not to give vital
information about the plotted data itself.

! Choose meaningful, self-explanatory labels. If you must use abbreviations that
aren’t in common use, explain them, ideally on the graph itself, not in the cap-
tion (see previous item). (In a recent book on data graphing, I found a figure
of a histogram in which the buckets were labeled Married, Nvd, Dvd, Spd, and
Wdd. I marveled about the possible meaning of Nvd for quite a while. The
abbreviations were explained neither in the text nor in the figure caption.)

! If there’s more than one line in a graph, explain what each of the lines repre-
sent; either through a key, or using an explicit label referring to each line. If
using a key, make sure the key entries are meaningful.

! If there’s ancillary information, consider placing it onto the graph itself, rather
than supplying it only in the caption.

! When publishing a false-color plot, always include the associated color scale in
the graph. No matter how intuitive the chosen palette may appear to you,
remember that there’s no universal and unambiguous mapping from numbers
to colors and vice versa.

! Describe the meaning of errorbars. Do they show the calculated standard devia-
tion of the sample population? Do they represent interquartile ranges? Or do
they indicate the limits of resolution of your experimental apparatus? This
information can’t be inferred from the graph, but must be explained through
textual information.

! Use an appropriate measure of uncertainty. Don’t show standard deviations for
highly skewed or multimodal populations just because they’re easy to calculate.

! Don’t forget the basics. Choose meaningful plot ranges. Make sure that data
isn’t obscured by tics, keys, labels, or arrows.

! Don’t be shy about choosing a different font if the default font looks ugly. Given
the importance of textual information on a graph (labels, tic marks, keys),
make the necessary effort to ensure that all text is clearly readable, even after
the graph has been reproduced and possibly reduced in size a few times. (On
the other hand, making labels too big or too bold can easily ruin the overall
appearance of a plot. Experiment!)

300 CHAPTER 14 Techniques of graphical analysis

In general, sans-serif fonts (such as Helvetica) are preferred for standalone
pieces of text, whereas serif fonts (such as Times Roman) are considered more
suitable for body text. Since labels on a graph tend to be short, this suggests
using a good sans-serif font in plots. (I also find that sans-serif fonts enhance the
visual clarity of a graph, whereas serif fonts don’t, but others may disagree.
Judge for yourself.)

! Don’t use bit-mapped graphics formats (PNG, GIF, JPG) in print publications.
Use vector formats such as PostScript, EPS, PDF, or SVG instead.

! Proofread graphs. Common spots of errors include typos in textual labels,
switched data sets or interchanged labels, and omitted qualifiers (milli-, kilo-,
and so on) for units.

14.6 Summary
In this chapter, we worked through some case studies in more detail and emphasized
some more specialized techniques that are helpful when analyzing data through
graphs.

 I stressed the need to normalize data from different sources to make it compara-
ble, and to be particularly careful when truncating or censoring data sets. It’s impor-
tant to understand the structure of the data before postulating specific mathematical
models, to avoid drawing conclusions that are unsupported by the evidence.

 I discussed some specific techniques that can be used to allow us to recognize fea-
tures in the data, such as banking of curves to 45 degrees, or the use of a reference
grid to help make detailed comparisons between different parts of a plot.

 Two unifying themes of the chapter are the importance of iteration and the need
to change the overall appearance of the graph to facilitate human perception of the
displayed data. Rarely do we know at the outset what it is we want to see: the questions
arise—and are answered—as we continue to work with the data.

301

Coda: Understanding
data with graphs

But in the end, the most impor-
tant thing is to draw the right
conclusions from the available
evidence.

 During World War II, a pro-
gram was launched to explore
the possibility of equipping
fighter planes with additional
armor as protection against
ground-based anti-aircraft fire.1

To determine where on the air-
plane to place the armor,
fighter planes returning from
combat missions were investi-
gated for bullet holes. In
figure 15.1, the areas where bul-
let holes were found are shown
shaded; areas without bullet
holes are left white.

 Given this evidence, where
would you put additional
armor?

1 The inspiration to this story stems from the book Graphic Discovery by Howard Wainer, Princeton University
Press (2005).

Figure 15.1 Schematic outline of a fighter airplane. Areas
where bullet holes were found on machines returning from
combat missions are shaded. Where would you recommend
additional armor to be placed?

302 CHAPTER 15 Coda: Understanding data with graphs

 The not-so-obvious obvious answer is to add the armor in those areas where no bul-
let holes were found. Why? Because airplanes are subject to hits everywhere, but if the
hits strike in the white areas in figure 15.1, the airplane doesn’t come back from its mis-
sion. (Statisticians speak of survivorship bias.) Therefore, those are the most vital areas
of the machine and should receive the best possible protection.

 So, let this be our final lesson. Evidence, be it graphical or otherwise, is just that:
mere data. But actual insight arises only through the correct interpretation of those facts.

303

appendix A:
Obtaining, building,

and installing gnuplot

The easiest way to install gnuplot on your local computer is to download and install
a precompiled package. If you’re running Linux, there’s a good chance gnuplot is
already installed; if not, you’ll have no difficulty finding an RPM or Debian package
on the net. There are Fink packages for Mac OS X, and precompiled binaries for
Windows as well. In section A.2 we consider some of these options in more detail.

 If you’d like to be totally up to date and have access to the newest features, or if
you want to start hacking on gnuplot yourself, you’ll have to build from source. Sec-
tion A.3 in this appendix is will help you get started.

A.1 Release and development versions
Gnuplot versions are generally labeled by a three-part version number, indicating
major, minor, and bug-fix releases. Bug fix releases are prepared as needed
(roughly twice a year). Minor releases introduce new features, but preserve back-
ward compatibility for existing gnuplot command scripts. Major releases may break
backward compatibility. The development version of a minor release is indicated by
an odd version number, which is incremented to the next even number on promo-
tion to a “released” version.

 Gnuplot is a mature project—for the 4.x.x major release series, minor releases
are a few years apart, and the core developer team is very conscientious about not
introducing instability into released versions. On the other hand, new and exciting
features continue to be added to gnuplot all the time, so there are good reasons for
learning how to build gnuplot from source.

304 APPENDIX A

A.2 Installing a prebuilt package
Installing a prebuilt package is usually straightforward and mostly dependent on your
choice of package manager.

A.2.1 Linux

Usually, the easiest way to install new software on a Linux box is to use the standard
administration tool that comes with your local Linux distribution.

 On RPM-based distributions, you can also download an RPM file explicitly and then
install it (as root) using

rpm -i gnuplot-XXX.rpm

where you should replace gnuplot-XXX.rpm with the exact name of your downloaded
package file.

 On Debian-based systems, you can simply execute

apt-get install gnuplot

but be warned that gnuplot for Debian-based systems is usually built without the GNU
readline library (due to strict interpretations of the differences in the GNU and the
gnuplot licenses), so that you might want to build gnuplot from source instead.

A.2.2 Mac OS X

At the time of this writing, a version of gnuplot packaged as DMG (or Mac Installer)
file is not generally available. The most convenient way to install gnuplot on a Mac OS
X computer is via fink. Fink is a package manager based on apt-get, and you can use it
to install gnuplot with the command

sudo fink install gnuplot

If you have a development environment installed, you can also use MacPorts. Mac-
Ports does not install prebuilt packages; instead, it builds a gnuplot binary from
scratch, resolving and downloading required libraries as needed. If you have MacPorts
installed and configured, the following command will build and install gnuplot on
your computer:

sudo port install gnuplot

Both commands will prompt you for the root password, which you should enter. Once
gnuplot has been successfully installed using either method, you can run it by issuing
the command gnuplot in the Terminal window.

A.2.3 Windows

The easiest way to install gnuplot on Windows is to use the precompiled package
available from the download section of the gnuplot website at www.gnuplot.info. At
the time of this writing, the most recent version available was gnuplot 4.2.5. Simply

305APPENDIX A

download the file gp425win32.zip and unpack it into a directory of your choice. (The
file gp425win32x11.zip is for people who use Cygwin on Windows.)

 Inside the zip file, you will find four folders (bin, contrib, demo, and docs), as well
as some files containing the gnuplot license, a list of the most recent updates, and sev-
eral files with installation instructions. The most important one of these is
README.Windows, which contains Windows-specific instructions.

 No further installation is required. To run gnuplot, simply execute (double-click)
the prebuilt binary wgnuplot.exe in the bin folder. A new window will pop up, con-
taining the familiar gnuplot command prompt. The window has some additional
menus, which provide shortcuts to many of the gnuplot commands.

 The bin directory contains some additional gnuplot executables, which are
intended to emulate Unix “pipes”. You can use TrueType fonts with bitmap or Post-
Script terminals, provided you specify the path to the local font directory (typically
C:\WINDOWS\FONTS when you call set terminal. Refer to the README.Windows file
for additional details.

A.3 Building from source
If you want to build gnuplot from source, you have two choices: either you can down-
load and build an officially released version of gnuplot, or—if you want to be truly on
the cutting edge—you can download and build the latest development version.

 Released versions of gnuplot can be downloaded as source tarballs from the gnu-
plot home page at www.gnuplot.info. There, you can also find precompiled binaries
for several non-Unix platforms.

A.3.1 Obtaining the development version from CVS

The development version of the gnuplot source tree is kept in CVS at www.source-
forge.net. To get a copy of the development version from the repository, follow
these steps:

1 Create a directory on your local drive and change into it. You can name it any
way you like.

2 Login to the CVS repository:
cvs
" -d:pserver:anonymous@gnuplot.cvs.sourceforge.net:/cvsroot/gnuplot
" login

Simply hit Enter when prompted for a password. (This step is only necessary the
first time around.)

3 Check out the source tree:
cvs
" -d:pserver:anonymous@gnuplot.cvs.sourceforge.net:/cvsroot/gnuplot
" checkout gnuplot

You may want to set the environment variable CVSROOT to

:pserver:anonymous@gnuplot.cvs.sourceforge.net:/cvsroot/gnuplot

306 APPENDIX A

(How you do this depends on the shell you’re using). If CVSROOT is set, you don’t need
to repeat the cvs-directory as part of the CVS command-line using the -d option.

 The checkout command creates a directory called gnuplot in the current direc-
tory. We’ll examine its contents next.

A.3.2 Layout of the source tree

Whether you downloaded and unpacked a tarball of a released version or checked out
the current development version from CVS, you should now have a directory called
gnuplot (or similar) on your local drive. Inside this directory you’ll find (listing only
the most important files and directories):

config/ Files required by the automake/autoconf utility, which is used to configure
the build process to the local environment.

demo/ A large set of gnuplot demos and the data files required by them.

docs/ Source files for the gnuplot reference documentation. Documentation for
gnuplot is maintained in a markup language that’s specific to gnuplot. Help files in
common formats (HTML, TeX, GNU Info, and so on) are built from the master file
(called gnuplot.doc), as is the gnuplot online help feature. An explanation of the
markup format can be found in the README file in the docs/ directory.

lisp/ Emacs-Lisp files, that allow Emacs to be used as a front end for gnuplot.

src/ The actual source tree.

Copyright The gnuplot copyright and license.

INSTALL Gnuplot build and installation instructions. Very detailed.

INSTALL.gnu Documentation for the GNU autoconf/configure utility.

NEWS Overview of new features, changes, and fixes in the current version of
gnuplot.

README The overall gnuplot Readme file (slightly out of date).

README.1ST A short file with updates on issues with external libraries that are used
by gnuplot (notes on conflicting licensing models, and so forth).

A.3.3 Building and installing

Specific build instructions are platform dependent. Because of the great variability of
Unix platforms, the instructions for building on Unix are the most complex.
UNIX

Building gnuplot from source on Unix requires that the standard Unix development
tools are installed. Besides a C compiler and make, this also includes the autoconf/
automake utility, which is used during the configuration step to probe many aspects of
the local build environment and to create a localized Makefile. Building is then a
rather painless process using make.

307APPENDIX A

Configure
When building from source, it’s necessary to set up your build script first. To do so,
change into the gnuplot directory and execute ./prepare to create a configure script.
(This step is only required when building the development version of gnuplot; the
release versions already include a usable configure script.)

 In either case, run ./configure in the gnuplot directory to create a Makefile.
 The configure script takes a large number of command-line options, which are

described in detail in the INSTALL file. Here, I mention just the ones that you’ll most
likely want to tinker with. For the majority of options, the defaults are just fine.

 --prefix=PREFIX This controls where the gnuplot executable, library, and docu-
mentation files will be installed. The default is /usr/local. If you don't have root per-
mission on your box, or if you’d like to maintain a local version of the development
version, you might want to provide a different path here.

 There are many more options that control the installation location of executable,
library, and documentation files independently. Check the INSTALL file for details.

 --with-readline Gnuplot comes with its own minimal version of a readline library
(which provides command-line editing capabilities, command completion, and a his-
tory feature). You can select this version using --with-readline or using --with-
readline=builtin (this is the default). If instead you’d like to use the more powerful
GNU readline library, use --with-readline=gnu, or --with-readline=DIR, where DIR
is the path to a (nonstandard) directory containing the GNU readline library. Note that
the GNU readline library is released under a different license than the rest of gnuplot.

 --with-gd=DIR Gnuplot uses Tom Boutell’s GD library for common bitmap termi-
nals (PNG, GIF, JPG). This option can be used to provide a path to the directory con-
taining the library.

 --with-pdf=DIR As of release 4.2, gnuplot uses the PDFlib Lite library
(www.pdflib.de). Check the file README.1ST for more details.

 As of version 4.3, gnuplot ships with a new terminal pdfcairo, which generates
PDF output and is based on the Cairo graphics library, making this option obsolete.

 --with-wx-config=DIR This is required if you want to build gnuplot with support
for the wxt terminal, using the wxWidgets set. The value of this option must be the
name of a directory containing a utility called wx-config, which is part of the wxWidgets
distribution.

 --with-cwdrc This indicates whether gnuplot should check the current working
directory for a .gnuplot file on startup. Usually disabled for security reasons.

The configuration step produces a long list of output, describing the local environ-
ment that will be used during the build process. It’s worth skimming this output: if the
configuration utility doesn’t seem to find libraries that you know are available, you
might have to change some of the defaults using additional command-line options
described in the INSTALL file.

308 APPENDIX A

 Also be aware that you’ll need the devel packages for many of the required librar-
ies, if you want to build gnuplot from source, not just the release packages. In particular
the devel packages required for the wxt, cairo, and pango libraries might not be
installed on your local system by default.
Build and install
If the configuration step has completed successfully, building gnuplot is very simple:
just execute make from within the gnuplot directory. Compilation (on a reasonably
current system) takes only a few minutes.

 If the compilation was successful, execute make install to install the gnuplot
binary, its documentation, and any required auxiliary files into the specified locations.
You may want to follow this by make distclean to remove many of the temporary files
left over from the build process.
WINDOWS

To build gnuplot for Windows, you must have a development environment installed.
Assuming that you have Visual C++, you can compile gnuplot by stepping into the src
directory and executing

nmake -f ..\config\makefile.nt

If you’re using a different compiler (such as the Windows or Cygwin port of gcc), the
process is similar, but you’ll need to use a different Makefile. Check the INSTALL file
for more details.
MAC OS X

There are two ways to build gnuplot for Mac OS X: either via a manual process similar
to the one used for Unix/Linux, or using Fink. Here, I’ll give some pointers for the
first case only (not using Fink).

 You’ll need to have a development environment installed (typically Xcode from
Apple’s Developer Tools collection, although having merely compiler and linker will
do).

 You’ll also need either AquaTerm or X11 installed. (Gnuplot will compile without
them, but the only interactive terminal you will be able to use will be the dumb termi-
nal. File terminals, on the other hand, will work.)

 X11 is a standard installation option for Mac OS X, unless you’re running Leop-
ard or newer, on which it’s already preinstalled by default. AquaTerm can be down-
loaded either as source code or as precompiled binary from SourceForge (available
at http://aquaterm.sourceforge.net).

 Once either one of these is installed and is detected during the configure step, the
build process is the same as for all other Unix platforms.

 There are reports that recent versions1 of OS X ship with a broken version of the
GNU readline library. These problems won’t be detected during the configure step,
but will lead to compile-time errors later. There are two workarounds: you can use
gnuplot’s own (minimalistic) version of the readline library: ./configure --with-
readline=builtin; or you can replace Apple's version of the library with the GNU ver-
sion before building.

1 As of June 2008.

309

appendix B:
Gnuplot reference

B.1 Command reference
Commands are grouped by topic and sorted alphabetically within each section.

B.1.1 Running gnuplot

exit Terminate gnuplot session.
exit

help Access the online help.
help [{enum:topic}]

Full documentation: section 4.5.1.

history List the command history.
history [quiet] [{int:max}] ["{str:filename}" [append]] # show
history ?"{str:cmd}" # search
history !"{str:cmd}" # execute

Full documentation: section 4.5.2.

print Evaluate one or more expressions and print result as text.
print {expression} [, {expression}, ...]

Comments
! By default, output is sent to standard error.
! Output can be redirected using set print.

Full documentation: section 4.4.
See also set print.

quit Terminate gnuplot session.
quit

310 APPENDIX B

B.1.2 File system

cd Change current directory.
cd "{str:path}"

pwd Print the current working directory to screen.
pwd

B.1.3 Saving and loading commands

call Load commands from a file and execute them.
call "{str:filename}" [{val}, ...]

Comments
! Up to ten optional parameters can be specified to call. Their values are available

inside the called script in the variables $0 through $9.
! Inside the script, the variable $# holds the number of parameters passed to call.
! call must be the last command on a multi-command line.

Full documentation: section 2.2 and section 12.2.4.

load Load commands from file and execute them.
load "{str:filename}"

Comments
! load must be the last command on a multi-command line.

Full documentation: section 2.2.

save Save details of the current session to file.
save "{str:filename}"
save [functions | variables | set | terminal] "{str:filename}"

Comments
! functions writes only user-defined functions to file.
! variables writes only user-defined variables to file.
! set writes only the values of all currently defined options to file. The values of the

terminal and output options are written out as comments.
! terminal writes only the current terminal setting and output file name to file

(uncommented).
! Without any of the optional constraints, all user-defined functions and variables, the

current values of all options, and the last plot command are written to file. The val-
ues of the terminal and output options are written out as comments.

! The special filename hyphen (-)redirects to standard output.
Full documentation: section 2.2.

B.1.4 Plotting

plot Plot function or data (two-dimensional plot).
plot [{ranges}]

[{function} | "{str:filename}"]
[index {int:start}[:{int:end}][:{int:step}]]
[every {int:step}[::{int:start}[::{int:end}]]]
[using {columnspec}]

311APPENDIX B

[axes [x1y1 | x1y2 | x2y1 | x2y2]]
[title ["{str:explanation}" | {int:col}]

| notitle]
[smooth [unique | frequency | bezier | sbezier

| csplines | acsplines]]
[with {stylespec}]

[, ...]

Comments
! Ranges are given as pairs in brackets: [min:max]. Leaving an entry empty leaves the

corresponding limit unchanged; supplying a * turns on autoscaling for that limit.
Up to two ranges can be supplied: one to limit the x range, and one to constrain

the y range.
In parametric mode, up to three ranges can be supplied. The first measures the

range of the parameter; the following two are as before.
! A function can be supplied, depending on a dummy variable called x in regular

mode, or t in parametric mode. (The name can be changed using set dummy.)
! A text file containing data to plot can be specified.

Supplying an empty filename reuses the most recently named file in the same
plot command.

The special filename hyphen (-) indicates that data should be read from the
same device that the command was read from (usually standard input—the termi-
nal in interactive mode).

! index selects which data set(s) in the input file should be plotted. Data sets are sepa-
rated from each other by double blank lines in the data file. Data sets are counted
starting at zero.

! every controls how lines in multiline records should be read.
! using selects which columns should be used for x and y values, and possibly other

values as well (style-dependent). Column numbers start at 1.
The pseudocolumn with column number 0 contains the line number (starting at

zero) in the current data set, resetting to zero when encountering a double blank
line. The pseudocolumn with column number -2 contains the index of the current
data set, which is incremented whenever a double blank line is found.

If a column number is enclosed in parentheses, the expression within the paren-
theses is evaluated and the result is used as if it were the column value. Within such
an expression, the value of each column can be accessed by prefixing the column
number with a dollar sign ($).

! axes indicates which set of axes the current data file or function should be plotted
against.

! title takes a string that will be placed as explanation into the graph’s key. Supply-
ing an empty string or the notitle keyword suppresses the key entry.

! If the set key autotitle columnhead option has been enabled, title takes an integer
argument that will be interpreted as a column number. The first noncomment line
in the column indicated will be used as explanation in the graph’s key.

! smooth applies a smoothing algorithm:
– unique sorts points by x value and replaces multiple data points having the same

x value with the average of the y values.

312 APPENDIX B

– frequency sorts points by x value and replaces multiple data points having the
same x value with the sum of the y values.

– bezier calculates the Bézier curve through all data points.
– sbezier applies the unique transformation and then calculates the B?zier curve

for the result.
– csplines applies the unique transformation, then calculates a natural cubic

spline interpolation, passing exactly through all data points.
– acsplines applies the unique transformation, then calculates a weighted cubic

spline approximation. The weights must be supplied through an additional col-
umn.

As of version 4.3, gnuplot contains two additional smoothing algorithms, cumula-
tive and kdensity, which calculate the cumulative distribution function and the
Gaussian kernel density estimate (a form of smooth histogram) for the data set.

! A number of inline styles can be specified following with; see chapter 5 for details.
Full documentation: chapter 2 and chapter 3 for basic usage; chapter 5 for style infor-
mation.

replot Repeat the last plot or splot command.
replot
See also the standard gnuplot reference documentation for additional options.

splot Plot function or data (three-dimensional plot).
splot [{ranges}]

[{function} | "{str:filename}"]
[index {int:start}[:{int:end}][:{int:step}]]
[every {int:step}[::{int:start}[::{int:end}]]]
[using {columnspec}]
[title "{str:explanation}" | notitle]
[with {stylespec}]

[, ...]

Comments
! The syntax is similar to the plot command, except where the additional dimension

needs to be accommodated (additional range and column specs).
! Some options available for the plot command aren’t available for splot: smooth and

axes.
Full documentation: chapter 8 and chapter 9.

B.1.5 !!Managing options

set Set an option.
set ...

Full documentation: section 4.1.

show Display information about the current session.
show ...
show plot
show [variables [all] | functions]
show [all | version] [long]

313APPENDIX B

Comments
! Can be used with any option to see the current value of that option.
! show plot displays the most recent plot command.
! variables and functions display only user-defined variables and functions.
! variables all displays user-defined and gnuplot internal variables.
! show version and show version long display information about the version of gnu-

plot installed and its compile-time options.
Full documentation: section 4.1.

reset Reset all options to their system defaults.
reset

Comments
! Leaves the following plot-related options unchanged: terminal and output.
! Leaves the following configuration-related options unchanged: fontpath and load-

path.
Full documentation: section 4.1.

unset Disables an individual option or resets it to its default state.
unset ...
Full documentation: section 4.1.

B.1.6 Subprocesses

shell Spawns an interactive shell.
shell

Comments
! Exit the shell to return to the gnuplot session.

Full documentation: section 12.2.

system Executes a shell command and displays its output on the screen.
system "{str:shellcmd}"
Full documentation: section 12.2.

(back ticks) A shell command enclosed in back ticks is executed and its output evaluated as an expression
and returned.
`{str:shellcmd}`

Full documentation: section 12.2.

B.1.7 Terminal handling

clear Clears the current output device.
clear

Comments
! Clears the current output device as set by set output.
! Particularly useful when using multiplot mode to generate images with insets.

See also set multiplot.

314 APPENDIX B

lower Lowers a plot window.
lower {int:winid}

Comments
! Lowers the named plot window, or the currently active one if no window ID has

been supplied.

raise Raises a plot window.
raise {int:winid}

Comments
! Raises the named plot window, or the currently active one if no window ID has been

supplied.

test Generates a test image, demonstrating the capabilities of the currently chosen terminal.
test
test palette

Comments
! test generates a standard test image, demonstrating line styles and point types,

using the currently chosen settings of set terminal and set output.
! test palette generates a test image of the currently active pm3d color mapping,

using the currently chosen settings of set terminal and set output.
! Both set terminal and set output must have been set to appropriate values prior to

executing the test command.
Full documentation: section 5.1.2 for test and section 9.1.2 for test palette.

B.1.8 Curve fitting

fit Performs a numerical, nonlinear least-squares fit.
fit [{ranges}]

{function} "{str:datafile}"
[index {int:start}[:{int:end}][:{int:step}]]
[every {int:step}[::{int:start}[::{int:end}]]]
[using {columnspec}]
via [{var1}, {var2}, ... | "{str:parameterfile}"]

Comments
! Most of the syntax is similar to the syntax for the plot command and many of the

data selection and transformation directives available for plot are also available for
fit.

! Both the function to fit and a file with the data must be supplied. The function must
depend on the dummy variable explicitly.

! The parameters named in the via clause are varied to obtain the best fit result.
Full documentation: section 10.3.
See also set dummy.

update Writes the current values of the best-fit parameters to the named file.
update "{str:filename}"

Comments
! This command is only useful in conjunction with the fit command.
! The format of the output file is such that it can be used as input file in the via direc-

tive of the fit command.

315APPENDIX B

Full documentation: section 10.3.
See also the standard gnuplot reference documentation for further options.

B.1.9 Miscellaneous

bind Change or display hot key bindings.
bind
bind!
bind [allwindows] "{str:keys}" "{str:command}"

Comments
! bind without any arguments displays all currently defined key bindings.
! bind! restores default key bindings.
! bind with two arguments defines a new key binding. The first argument must be the

key (possibly in combination with control keys); the second argument must be the
name of the command to invoke.

! The allwindows keyword makes the hot key active for all windows, active or not.
Full documentation: section 12.5.1.
See also set mouse and the standard gnuplot reference documentation for additional
details.

if Conditional execution of commands.
if ({condition}) {command}

[; else if ({condition}) {command}]
[; else {command}]

Comments
! The condition will be evaluated. If it’s nonzero, the commands following it will be

executed; otherwise the secondary condition (if present) is evaluated, and so on.
! Can be used with a counter to stop an infinite reread loop.

See also sections 12.4 and 12.5 and the standard gnuplot reference documentation for
more details.

pause Prints a message to the screen, then waits until a timer expires or a user event occurs.
pause {int:seconds} ["{str:message}"]
pause mouse [{eventmask}] ["{str:message}"]

Comments
! pause -1 will wait until the return key is hit; pause 0 won’t wait at all.
! The eventmask must be a comma-separated combination of keypress, button1,

button2, button3, and any. The character code (in case of a keyboard event) or the
mouse coordinates (in case of a mouse event) are made available through the vari-
ables MOUSE_KEY, MOUSE_CHAR MOUSE_X, MOUSE_Y, MOUSE_X2, and MOUSE_Y2.

Full documentation: section 12.4.

reread If used within a file containing gnuplot commands, forces gnuplot to read the file again from the
beginning.
reread

Comments
! The reread command will continue rereading the current command file in an infi-

nite loop, until explicitly terminated using if.

316 APPENDIX B

! Can be used to generate animated slideshows.
! The reread command has no effect if used at the interactive gnuplot prompt.

Full documentation: section 12.4.

B.2 Function reference
For nonelementary functions with ambiguous notations, I’ve given a pointer to the
defining relationship in Handbook of Mathematical Functions by M. Abramowitz and I.
Stegun (Dover Publications, 1965), quoted as A&S. (The full content of the book can
be found on the web, for instance at http://www.nr.com/aands/ and http://www.con-
vertit.com.)

B.2.1 Square root, exponential function, logarithms

All functions can handle complex arguments.

B.2.2 Trigonometric functions

Depending on the value of the set angles option, angles are either interpreted in radi-
ans or in degrees.

 All functions can handle complex arguments, except where indicated.

B.2.3 Hyperbolic functions

All functions can handle complex arguments.

Function Description

sqrt(x) Square root function

exp(x) Exponential function

log(x) Natural logarithm (base e)

log10(x) Common logarithm (base 10)

Function Description

sin(x), cos(x), tan(x) Trigonometric functions.

asin(x), acos(x), atan(x) Inverse trigonometric functions.

atan2(y, x) Evaluates to atan(y/x), but uses the signs of both argu-
ments to determine the resulting quadrant. Arguments must
not be complex.

Function Description

sinh(x), cosh(x), tanh(x) Hyperbolic functions

asinh(x), acosh(x), atanh(x) Inverse hyperbolic functions

317APPENDIX B

B.2.4 Bessel functions

Arguments to Bessel functions are given in radians and must not be complex.
(A&S 9.1.1)

B.2.5 Error integral and related functions

All functions accept complex arguments, ignoring the imaginary part.

B.2.6 Gamma function and related functions

All functions accept complex arguments, ignoring the imaginary part.

Function Description

besj0(x) Bessel function of the first kind of order 0

besy0(x) Bessel function of the second kind of order 0

besj1(x) Bessel function of the first kind of order 1

besy1(x) Bessel function of the second kind of order 1

Function Description

erf(x) Error function (A&S 7.1.1)

erfc(x) Complementary error function (A&S 7.1.2):
erfc(x) = 1 - erf(x)

inverf(x) Inverse error function

invnorm(x) Inverse normal distribution function

norm(x) Normal (Gaussian) distribution function (A&S 26.2.2):
norm(x) = 0.5*(1+erf(x/sqrt(2)))

Function Description

gamma(x) Gamma function (A&S 6.1.1)

ibeta(p, q, x) Incomplete beta function (A&S 6.6.1)

igamma(a, x) Incomplete gamma function (A&S 6.5.1)

lgamma(x) Natural logarithm of gamma function:
lgamma(x) = log(gamma(x))

318 APPENDIX B

B.2.7 Miscellaneous mathematical functions

All functions accept complex arguments, ignoring the imaginary part (except for
abs()).

B.2.8 Functions for complex arguments!

B.2.9 String functions!!

Function

abs(x) Absolute value for real or complex x.

ceil(x) Smallest integer not less than x (as floating-point value).

floor(x) Largest integer not greater than x (as floating-point value).

int(x) Integer part of x, truncated to zero.

lambertw(x) Lambert-W Function (the inverse of f(w) = w exp(w)). Argument must
not be complex.

rand(x) Random number generator (see table 3.1).

sgn(x) Sign function (-1 if x < 0; 0 if x = 0; 1 if x > 0).

Function

abs(x) Absolute value of x: sqrt(real(x)**2 + imag(x)**2)

arg(x) Phase angle of x: atan(imag(x)/real(x))

imag(x) Imaginary part of x

real(x) Real part of x

Function Description

exists("x") Takes a variable name as string and returns 1 if a variable with
that name has been defined, 0 otherwise.

strlen("str") Takes a string and returns the number of characters in the string.

substr("str", i, j) Takes a string and two integers and returns the substring indi-
cated by the two arguments. Equivalent to str[i:j]. The argu-
ment i is the position of the first character in the substring, the
argument j is the position of the last character in the substring.
Character positions start at 1.

strstrt("str", "key") Takes two strings. Returns the index of the first character of the
string key in the string str, or zero if not found. Character posi-
tions start at 1.

Continued on next page

319APPENDIX B

B.2.10 Column manipulation functions

The following functions are only useful as part of a using directive.!

B.2.11 Time column handling functions!

words("str") Takes a string. Strips leading and trailing whitespace, then breaks
the string into tokens on whitespace. Returns the number of
tokens found. Newlines and tabs are interpreted as whitespace
only if the string was double-quoted.

word("str", n) Takes a string and an integer. Strips leading and trailing
whitespace, then breaks the string into tokens on whitespace.
Returns the nth token found. (Tokens are counted starting at 1,
not at zero.) Newlines and tabs are interpreted as whitespace
only if the string was double-quoted.

sprintf("format", ...) Returns a formatted string. Equivalent to the sprintf() func-
tion in the C standard library.

gprintf("format", ...) Returns a formatted string. Similar to sprintf(), but uses
gnuplot’s format specifiers. Compare section 7.3.3 on set
format for details.

system("command") Takes a shell command as string and executes it in a subshell.
Returns the output of the shell command. (More detail in
chapter 12.)

Function Description

column(x) Takes the number of a column as integer and returns the cur-
rent value of that column as a number.

stringcolumn(x) Takes the number of a column as integer and returns the cur-
rent value of that column as a string.

valid(x) Takes the number of a column as integer and returns 1 if the
current value of that column is valid.

Function Description

timecolumn(x) Takes the number of a column as integer and parses the column value according
to set timefmt. It returns the result as a numeric value, which can be sup-
plied to the time handling functions (such as tm_sec(x), and so forth) for
interpretation. The function requires that set _data time not be enabled for
the columns in question. This function can only be used as part of a using
directive.

Continued on next page

Function Description

320 APPENDIX B

B.3 Operator reference
Operators are grouped by the number of operands they take: unary, binary, and
ternary.

B.3.1 Unary operators

In order of decreasing precedence.!

B.3.2 Binary operators

In order of decreasing precedence.

tm_sec(x),
tm_min(x),
tm_hour(x),
tm_mday(x),
tm_mon(x),
tm_year(x),
tm_wday(x),
tm_yday(x)

These functions take the value returned from timecolumn(x) and extract
individual elements of date/time information from it. The functions return sec-
onds, minutes, hours, day of month (1...31), month (0...11), year (including the
century part), day of week, day of year, respectively.

Operator Example Argument type Description

! !a int logical NOT

~ ~a int one’s complement

! a! int factorial

- -a any numerical unary minus

+ +a any numerical unary plus

Operator Example Argument Type Description

** a**b any numerical exponentiation

* a*b any numerical multiplication

/ a/b any numerical division

% a%b int modulo

+ a+b any numerical addition

- a-b any numerical subtraction

< a<b any numerical less than

<= a<=b any numerical less than or equal to

> a>b any numerical greater than

Continued on next page

Function Description

321APPENDIX B

The logical operators && and || short-circuit, meaning that the second argument is
only evaluated if the truth of the entire expression isn’t determined after evaluating
the first argument.

B.3.3 Ternary operator

The ternary operator
a ? b : c

evaluates its first argument (which must evaluate to an integer). If true (nonzero), the
second argument is evaluated and returned; otherwise, the third argument is evalu-
ated and returned.

B.4 Option reference
Options are grouped by topic and sorted alphabetically within each section.

B.4.1 Configuration

datafile Controls how certain aspects of a data file will be interpreted when read by gnuplot.
set datafile commentschar ["{str:chars}"]
set datafile separator ["{str:char}" | whitespace]
set datafile missing ["{str:str}"]

Comments
! whitespace is the default. In this mode, columns may be separated from each other

by any number of space or tab characters.
! If not using whitespace, only a single character can be declared as separator at any

given time.
! Separator characters aren’t interpreted as separators within quoted strings.

Full documentation: section 4.2.

>= a>=b any numerical greater than or equal to

== a==b any numerical numerical equality

!= a!=b any numerical numerical inequality

& a&b int bitwise AND

^ a^b int bitwise XOR

| a|b int bitwise OR

&& a&&b int logical AND

|| a||b int logical OR

. a.b string string concatenation

eq a eq b string string equality

ne a ne b string string inequality

Operator Example Argument Type Description

322 APPENDIX B

decimalsign Changes the character to be used as decimal sign.
set decimalsign ["{str:char}" | locale ["{str:locale}"]]

Comments
! If an explicit string is given, it’ll be used as decimal sign.
! If a locale is specified, the locale-dependent decimal sign will be used.

See also the standard gnuplot reference documentation.
Example:
set decimalsign ","
set decimalsign locale

encoding Selects the character encoding.
set encoding [default | iso_8859_1 | iso_8859_2 | iso_8859_15

| koi8r | koi8u | cp437 | cp850 | cp852 | cp1250]

Comments
! iso_8859_1 is equivalent to the PostScript encoding ISO-Latin-1 and is commonly

used for Western European languages.
! iso_8859_2 is used for Central and Eastern European languages.
! iso_8859_15 is similar to iso_8859_1, but includes the euro symbol.
! koi8r (Russian) and koi8u (Ukrainian) are Cyrillic encodings.
! The other encodings are used by MS-DOS, OS/2, and MS Windows.

See also the standard gnuplot reference documentation.

fit Defines the filename to which the fit command writes its output. Also controls whether the fit
command will populate certain variables in the current gnuplot session.
set fit [logfile "{str:filename}"] [[no]errorvariables]

Full documentation: section 10.3.
See also the fit command.

fontpath The path searched by PostScript terminals for font files.
set fontpath ["{str:path}"]

Comments
! This option is only relevant to PostScript terminals.
! The path value must be suitable for the local platform (for example, with respect to

the choice of path separator character).
! Bitmap terminals based on the libgd library don’t use this option. They inspect the

GDFONTPATH environment variable instead.
Full documentation: section 11.4.
See also section 12.5 on environment variables.

historysize Sets the number of commands retained in the command history buffer.
set historysize {int:size}

Comments
! Only available when gnuplot was built with support for the GNU readline library.

Full documentation: section 4.5.2.

323APPENDIX B

loadpath General gnuplot search path, used to locate command and data files.
set loadpath ["{str:path}"]

Comments
! The directories in the loadpath are searched after the current working directory.
! The path value must be suitable for the local platform (for example, with respect to

the choice of path separator character).
! If the environment variable GNUPLOT_LIB is set, its contents is appended to loadpath.

See also section 12.5.

macros Enables macro expansion.
set macros

Comments
! Only available when gnuplot was built with support for macro substitution.

See also section 12.1.

mouse Enables mouse actions.
See also the standard gnuplot reference documentation.

B.4.2 Math

angles Selects whether angles are interpreted as radians (default) or degrees.
set angles [radians | degrees]

Comments
! This option affects how the arguments of trigonometric functions are interpreted.
! This option is relevant in polar mode (set polar) or when using cylindrical or

spherical coordinates (set mapping).
! This option has no effect on Bessel or hyperbolic functions.
! Inverse hyperbolic functions of complex arguments require set angles radians.

See also set polar, and set mapping.

dummy Sets the name of the dummy variable in plot commands.
set dummy {varname1} [, {varname2}]

Comments
! By default, the name of the dummy variable for the plot command is x (or t in

parametric or polar mode).
! By default, the name of the dummy variables for the splot command are x and y (or

u and v in parametric mode).

mapping Chooses the coordinate system for the splot command.
set mapping [cartesian | cylindrical | spherical]

See also section 10.2.2.

parametric Switches to parametric mode.
set parametric

Full documentation: section 10.2.1.

324 APPENDIX B

polar Switches to polar mode.
set polar

Comments
! Not supported for splot.

Full documentation: section 10.2.2.
See also set mapping.

samples The number of points at which a function is evaluated for a plot.
set samples {int:samples1} [, {int:samples2}]

Comments
! Defaults to set samples 100.
! The second parameter is only relevant for splot.

Full documentation: section 3.5.
See also set isosamples.

zero Threshold for small values.
set zero {expression}

Comments
! Gnuplot won’t plot a point if its imaginary part is greater in magnitude than the

zero threshold.
! Defaults to 1.0e-8.
! set zero 0 is legal.

See also the standard gnuplot reference documentation.

B.4.3 Appearance

border Controls whether a border is drawn around the plot region.
set border [{int:mask}] [front | back]

[[linewidth | lw {int:width}]
[linetype | lt {idx:type}]
| [linestyle | ls {idx:style}]]

Comments
! The mask parameter is used to turn individual sides of the border on or off. For two-

dimensional plots, the mask values are 1=bottom, 2=left, 4=top, 8=right. For three-
dimensional plots, see table 8.2.

Full documentation: section 6.6.2 and section 8.3.1.
See also set margin.

clip Suppresses data points near the edge of the graph and lines connecting data points outside the
graph area.
set clip points
set clip [one | two]

Comments
! set clip points suppresses individual data points which would touch or overlap the

graph’s border. Only relevant for styles using individual plot symbols, such as with
points or with linespoints.

! The effect of set clip points depends on the current symbol size.

325APPENDIX B

! If set clip one is active, line segments are drawn if at least one of their endpoints
falls into the visible plot range.

! If set clip two is active, line segments are drawn even if neither of their endpoints
falls into the visible plot range.

Full documentation: section 3.5.
See also set offsets.

logscale Switches on log-scaling for the selected axes.
set logscale [{enum:axes}] [{flt:base}]

Comments
! The axes parameter must be any one of the following indicators: x, y, x2, y2, z, or cb.

If omitted, all axes are assumed.
! The base defaults to 10.

Full documentation: section 3.6.

margin Sets the empty margins around the graph.
set bmargin [{int:margin}] # bottom margin
set lmargin [{int:margin}] # left margin
set tmargin [{int:margin}] # top margin
set rmargin [{int:margin}] # right margin

show margin # show current settings

Comments
! The units are character widths and heights using the default font for the current

terminal.
! A negative value instructs gnuplot to revert to the computed default value.

Full documentation: section 6.6.2.
See also set border.

multiplot Turns on multiplot mode.
set multiplot [title "{str:title}"]

[layout {int:rows},{int:cols}
[rowsfirst | columnsfirst]
[downwards | upwards]
[scale {flt:xfactor}[,{flt:yfactor}]]
[offset {flt:xoff}[,{flt:yoff}]]]

Comments
! layout creates a regular grid of plots. rowsfirst, columnsfirst, downwards, and

upwards control the order in which the grid is filled.
! scale and offset apply size scaling and translation from the default position.
! If layout isn’t used, set origin and set size must be set explicitly for each sub-

graph.
Full documentation: section 10.1.
See also set origin, set size, and the clear command.

326 APPENDIX B

offsets Offsets puts an empty boundary around the data inside an autoscaled graph. In other words, the
autoscaled plot ranges are extended to make room for the offsets in addition to the data.
set offsets [{flt:left} [, {flt:right}

[, {flt:top} [, {flt:bottom}]]]]

Comments
! Left and right offsets are given in x axis units, top and bottom offsets in y axis units.

See also the standard gnuplot reference documentation.

origin Fixes the origin of the graph on the canvas.
set origin {flt:x}, {flt:y}

Comments
! Coordinates must be given in the screen coordinate system.

Full documentation: section 6.6.1.
See also set size.

size Fixes the size of the graph on the canvas.
set size [[no]square | ratio {flt:r} | noratio]

[{flt:x} [,{flt:y}]]

Comments
! set size x,y scales the graph relative to the canvas.
! For positive values of r, set size ratio r generates a graph with an aspect ratio equal

to r. (The aspect ratio is the ratio of the y axis length to the x axis length.)
! For negative values of r, set size ratio r generates plots in which the ratio of the y

and x axis units equals the absolute value of r.
! square is equivalent to ratio 1.

Full documentation: section 6.6.1.
See also set origin.

B.4.4 Decorations

arrow Place an arrow on the graph.
set arrow [{idx:tag}] [from {pos:from}][[to|rto] {pos:to}]

[[arrowstyle | as {idx:style}]
| [[nohead | head | backhead | heads]

| [size {flt:length} [,{flt:angle}]
[,{flt:backangle}]]

[filled | empty | nofilled]
[front | back]
[[linetype | lt {idx:type}]

[linewidth | lw {int:width}]
| [linestyle | ls {idx:style}]]

]
]

Full documentation: section 6.3.2.

327APPENDIX B

key Configure the key (or legend) of the graph.
set key [on|off] [default]

[[at {pos:position}]
| [inside | lmargin | rmargin | tmargin | bmargin]]

[left | right | center] [top | bottom | center]

[vertical | horizontal] [Left | Right]
[[no]reverse] [[no]invert]

[[no]autotitle [columnheader]] [[no]enhanced]
[samplen {flt:len}] [spacing {flt:factor}]

[title "{str:text}"]
[width {int:chars}] [height {int:chars}]
[[no]box [[linetype | lt {idx:type}]

[linewidth | lw {int:width}]
| [linestyle | ls {idx:style}]]]

Comments
! left, right, top, bottom, and center can be used in any combination as shorthand

to indicate the desired position of the key.
! vertical and horizontal control the arrangement of line samples in the key.
! Left and Right control the alignment of the textual explanations within the key.
! reverse places the explanation to the right of the line sample.
! inverse reverses the vertical stacking of all items in the key.
! autotitle columnheader takes the explanations from the first noncomment line in

the data file.
Full documentation: section 6.4.

label Places a text label on the graph.
set label [{idx:tag}] ["{str:text}"] [at {pos:location}]

[left | center | right]
[rotate [by {int:degrees}] | norotate]
[font "{str:name}[,{int:size}]"]
[[no]enhanced] [front | back]
[textcolor | tc [{clr:colorspec}

| lt {idx:type}
| ls {idx:style}]]

[point lt|pt {idx:pointtype}
 | ps {idx:pointsize} | nopoint]

[offset {pos:off}]

Comments
! left, center, and right control the text alignment.
! point places a symbol at the position named in the label.

Full documentation: section 6.3.3.

object Places a graphics object on the graph.
set object [{idx:tag}] rectangle [from {pos:from} [to|rto] {pos:to}

| center|at {pos:ctr}
size {pos:extent}]

[default]
[front | back | behind]
[fillcolor | fc {clr:color}]
[fillstyle | fs {idx:style}]
[linewidth | lw {flt:width}]

328 APPENDIX B

Comments
! Rectangles can be defined by specifying to corners diagonally across from each

other using to (absolute coordinates of both corners) or rto (relative coordinates
of second corner).

! Alternatively, the center of the rectangle can be fixed using at, followed by the
width and height.

! behind draws the rectangle behind all other graph elements (so that the rectangle
becomes the graph’s background).

Full documentation: section 6.3.4.

timestamp Places a timestamp using the current time and date into the left margin of the graph.
set timestamp ["{str:format}"]

[top | bottom] [[no]rotate]
[offset {pos:offset}]
[font "{str:name}[,{int:size}]"]

Comments
! The format string uses the same syntax as the set timefmt option. The default is "%a

%b %d %H:%M:%S %Y".
! rotate rotates the label by 90 degrees.

See also set timefmt.

title Places a textual title centered at the top of the plot.
set title ["{str:text}"]

[font "{str:name}[,{int:size}]"][[no]enhanced]
[textcolor | tc [{clr:colorspec}

| lt {idx:type}
| ls {idx:style}]]

[offset {pos:off}]

Full documentation: section 6.3.3.

B.4.5 Style

A color specification begins with the keyword rgbcolor (or rgb for short), followed by a
string, which can either be the name of a color known to gnuplot, or a hex string, pre-
ceded by a # character, giving the RGB components of the desired color.
rgbcolor "{str:colorname}"
rgbcolor "{#RRGGBB}"

Use show palette colornames for a list of available color names.
See the standard gnuplot reference documentation for additional ways to specify color.

set style Controls global style aspects.
set style data {enum:style}
set style function {enum:style}
set style increment [default | userstyles]

Comments
! set style data sets the default style for data read from a file.
! set style function sets the default style for plotting functions.
! set style increment controls how gnuplot chooses line types or line styles when

plotting several data sets or functions with the same plot command. default cycles
through the predefined line types available for the current terminal; userstyles

329APPENDIX B

prefers user-defined custom line styles if available, falling back to predefined line
types if no line style with the required index is available.

Full documentation: section 5.1.3 and section 5.3.

set style arrow Creates custom arrow styles.
set style arrow {idx:index} default

set style arrow {idx:index} [nohead | head | backhead | heads]
[size {flt:length} [,{flt:angle}]

[,{flt:backangle}]]
[filled | empty | nofilled]
[front | back]
[[linetype | lt {idx:type}]

[linewidth | lw {int:width}]
| [linestyle | ls {idx:style}]]

Comments
! Creates a custom arrow style for the desired index. Styles defined in this way can

then simply be called as part of a set arrow command.
Full documentation: section 6.3.2.
See also set arrow.

set style fill Sets aspects of the global fill style.
set style fill [empty | solid [{flt:density}] | pattern [{idx:n}]]

[border [{idx:linetype}] | noborder]

Comments
! There’s only a single fill style, which applies globally.
! The fill style applies to box styles and to the filledcurves style.
! solid takes a density parameter between 0 (empty) and 1 (solid).
! pattern takes an integer parameter referring to one of the patterns available for the

current terminal.
Full documentation: section 5.2.2.
See also the test command.

set style histogram Enables the interpretation of input data for histograms.
set style histogram [clustered [gap {flt:gap}]

| errorbars [gap {flt:gap}]
[linewidth | lw {int:width}]]

| rowstacked | columnstacked

Comments
! clustered plots each row in the input file as a separate histogram (histogram boxes

are placed side by side).
! The gap parameter controls the spacing between distinct histograms, as a multiple

of the width of an individual histogram box.
! errorbars is similar to clustered, but adds an errorbar on top of each box in the

histogram.
! rowstacked builds a stacked histogram from each row in the input file (histogram

boxes are stacked on top of each other).
! columnstacked builds a stacked histogram from each column in the input file (histo-

gram boxes are stacked on top of each other).
Full documentation: section 5.2.2.

330 APPENDIX B

set style line Creates custom line styles.
set style line {int:index} default

set style line {int:index} [[linetype | lt] {idx:linetype}]
[[linewidth | lw] {flt:linewidth}]
[[pointtype | pt] {idx:pointtype}]
[[pointsize | ps] {flt:pointsize}]
[[linecolor | lc] {clr:colorspec}]

Comments
! Creates a custom line style for the desired index.

Full documentation: section 5.3.

set style rectangle Sets aspects of the global style for rectangle objects.
set style rectangle [front | back | behind]

[fillcolor | fc {clr:color}]
[fillstyle | fs {idx:style}]
[linewidth | lw {flt:width}]

Full documentation: section 6.3.4.
See also: set object.

OPTIONS

bars Controls the size of the tic mark at the end of errorbars.
set bars [small | large | fullwidth | {flt:mult}]

Comments
! The parameter is a multiplier, relative to the default length.
! small is equivalent to 0.0; large is equivalent to 1.0.

Full documentation: section 5.2.3.

boxwidth Controls the width of boxes for box styles.
set boxwidth [{flt:size}] [absolute | relative]

Comments
! The parameter can be an absolute box width in x axis units using the absolute key-

word.
! The parameter can be a multiplier relative to the default box width using the rela-

tive keyword. The default width is the width that makes each box touch adjacent
boxes.

Full documentation: section 5.2.2.

pointsize Controls the size of plotting symbols.
set pointsize {flt:mult}

Comments
! The parameter is a multiplier, relative to the default point size.

Full documentation: section 5.2.1.

331APPENDIX B

B.4.6 Axes

Several options related to axes exist in different
forms, applicable to the different axes that may
exist in a plot. The respective axis is referenced
as part of the option name. For the options
described in this section, the specific axis indica-
tor has been replaced by an underscore (_).
When calling such an option, the underscore
must be replaced with one of the values from the
following table.

A screen location can be specified in five different coordinate systems. Each part of a
coordinate specification can be prefixed individually with a keyword identifying the
coordinate system it refers to. (See section 6.2 for more detail.)!

autoscale Enables automatic selection of plot ranges for axes.
See also set _range and the standard gnuplot reference documentation.

format Sets the number format to be used for tic labels.
set format [x | y | x2 | y2 | xy | z | cb] ["{str:format}"]

Comments
! Omitting the axis specifier will apply the formatting to all axes.
! The format string uses printf()-like conversion specifiers. See table 7.2.
! Additional conversion specifiers are available for date/time information. See

table 7.3 and table 7.4.
! An empty format string leads to a tic mark without a tic label.
! This option also determines the output format when using the set table option.

Full documentation: section 7.3.3 and section 7.5.2.
See also set table.

Identifier Description

first The primary coordinate system (bottom and left).

second The secondary coordinate system (top and right). Not available for three-dimen-
sional plots.

graph The graph area proper. The bottom-left corner of the graph has coordinate (0,0); its
top-right corner has coordinate (1,1).

screen The entire screen area. The bottom-left corner of the graph has coordinate (0,0); its
top-right corner has coordinate (1,1).

character Positions in character widths and heights from the origin (0,0) of the screen area.
Coordinates depend on the font size of the default font for the current terminal.

Prefix Applicable axis

x Primary x axis

y Primary y axis

x2 Secondary x axis

y2 Secondary y axis

z z axis

cb colorbox

332 APPENDIX B

grid Draws a reference grid at the tic mark positions across the plot area.
set grid [[no]_tics] [[no]m_tics]

[layerdefault | front | back]
[polar [{flt:angle}]]
[[linetype | lt {idx:majortype}]

[linewidth | lw {flt:majorwidth}]
| [linestyle | ls {idx:majorstyle}]]

[, [linetype | lt {idx:minortype}]
[linewidth | lw {flt:minorwidth}]
| [linestyle | ls {idx:minorstyle}]]

Comments
! Grid lines can be enabled/disabled for major and minor tic marks individually,

using no_tics (major) and nom_tics (minor).
! The grid can be drawn in front of (front) or behind (back) the data.
! layerdefault is only relevant for three-dimensional plots and may interfere with set

hidden3d. Check the standard gnuplot reference documentation for details.
! polar draws a circular grid suitable for polar coordinates.

Full documentation: section 7.3.5.
See also set polar.

_label Places a label on the axis.
set _label ["{str:text}"] [offset {pos:offset}]

[font "{str:name}[,{int:size}]"]
[textcolor | tc [{clr:color}

| lt {idx:type}
| ls {idx:style}]]

[[no]enhanced]
[rotate by {int:degrees}]

Comments
! This option is a special case of the more general set label command with specific

defaults.
Full documentation: section 6.3.3.
See also set label.

m_tics Controls the placement of minor tic marks.
set m_tics [{int:intervals} | default]

Comments
! Minor tic marks are never labeled.
! By default, minor tic marks are drawn for logarithmic axes, but not for linear axes.
! The optional parameter counts the number of subintervals between major tics; the

number of minor tic marks generated is one less than this number.
! To place minor tic marks at specific locations, use set _tics.
! Don’t confuse with _mtics, which is used in time series mode.

Full documentation: section 7.3.2.
See also set _tics.

333APPENDIX B

_range Sets the plot range.
set _range [{flt:min}:{flt:max}] # Including the [..] brackets!

Comments
! Omitting the value for either minimum or maximum limit leaves the corresponding

setting unchanged.
! The colon (:) must be supplied, even if one of the limits is omitted.
! Using a star (*) turns on autoscaling for that limit.
! In addition to the usual axes prefixes, there are additional variants of this option:

trange, urange, vrange for parametric mode; and rrange for polar mode.
Full documentation: section 7.2.
See also set autoscale and the standard gnuplot reference documentation for addi-
tional options.

_tics Controls placement and appearance of tic marks and tic labels.
set _tics [axis | border]

[[no]mirror]
[in | out]
[scale [default | {flt:major} [,{flt:minor}]]]

[[no]rotate [by {flt:ang}]]
[offset {pos:offset} | nooffset]
[font "{str:name} [,{int:size}]"]
[textcolor | tc {clr:color}]

[add]
[autofreq

| {flt:incr}
| {flt:start}, {flt:incr} [,{flt:end}]
| (["{str:label}"] {flt:pos} [0 | 1]

[, ["{str:label}"] ...])]

Comments
! Only major tic marks are labeled.
! By default, tic marks are drawn on the border, but can also be placed on the axis

(the location where one of the coordinates is zero).
! By default, tic marks are mirrored on the opposing border.
! By default, tic marks are drawn to extend into the graph area from the border, but

can also made to extend outward.
! scale takes one or two numeric arguments, which are interpreted as multiplicative

factors to adjust the size of tic marks relative to their default size. If no value for the
scale of the minor tic marks is given, minor tic marks are drawn half as long as
major tic marks.

! Tic labels can be rotated or shifted from their default positions.
! Using the add keyword, all subsequent tic mark requests are added to the already

existing ones. When omitting add, the current tic mark request will clobber previous
settings.

! Tic marks can be autogenerated using autofreq.
! If only a single numeric argument is given, it’s interpreted as an increment for tic

mark placement, starting at zero.
! If two or more numeric arguments are given, they’re interpreted as starting value

and increment, treating the optional third argument as end value.

334 APPENDIX B

! Individual tic marks can be placed by giving their label, followed by their location in
regular parentheses: ("0.5" 0.5). To set several tic marks this way, separate them
by commas inside the parentheses: ("0.5" 0.5, "1.0" 1.0). An optional third
parameter can be given to indicate whether the tic mark is supposed to be drawn as
major (0) or minor (1).

! set tics (without axis prefix) applies settings to all axes.
Full documentation: section 7.3.1.

ticscale Deprecated—use set tics scale instead.

zeroaxis Draws axes on the graph itself.
set _zeroaxis [[linetype | lt {idx:type}]

[linewidth | lw {flt:width}]
| [linestyle | ls {idx:style}]]

Comments
! Axes are drawn at locations where at least one of the coordinates has value zero.

Full documentation: section 7.3.5.

DATE/TIME

locale Determines the language and formatting of tic labels when using set _dtics or set _mtics.
set locale ["{str:locale}"]

Comments
! The argument must be a locale designation available on the current platform. (On

Unix, the command locale -a lists all available locales.)
! This option is only used when using either the set _dtics or the set _mtics option

to generate textual tic labels for the names of weekdays or months (respectively).
Full documentation: section 7.5.1.
See also set _dtics and set _mtics.

timefmt Determines the way date/time information in a data file will be parsed.
set timefmt "{str:format}"

Comments
! This option has no effect unless time series mode has been enabled using set _data

time.
! This option determines how entries in an input file will be read; it doesn’t influence

output formatting.
! The format string uses scanf()-like conversion specifiers. See table 7.3 and table 7.4

for available conversions.
Full documentation: section 7.5.2.

_data Switches time series mode on or off.
set _data [time]

Comments
! If used with the keyword time, time series mode is enabled for that axis. Values in

the data file will be parsed according to the format specified by set timefmt. (Out-
put is controlled by set format.)

! If used without the time keyword, reverts back to normal processing.
Full documentation: section 7.5.2.
See also set timefmt and set format.

335APPENDIX B

_dtics Interprets numeric input values as days of the week and uses weekday names as tic labels.
set _dtics

Comments
! Input value 0=Sunday, ..., 6=Saturday.
! Overflows are converted modulo 7.
! Weekday names are locale dependent, according to the value of set locale.

Full documentation: section 7.5.1.
See also set locale and set _mtics.

_mtics Interprets numeric input values as months of the year and uses month names as tic labels.
set _mtics

Comments
! Input value 1=January, ..., 12=December.
! Overflows are converted modulo 12.
! Month names are locale dependent, according to the value of set locale.

Full documentation: section 7.5.1.
See also set locale and set _dtics.

B.4.7 Three-dimensional plots

dgrid3d Constructs a smooth surface approximation to an arbitrary set of points.
set dgrid3d [{int:nx} [, {int:ny} [, {int:q}]]]

Comments
! The first two parameters control the number of node points for the approximation

surface.
! The third parameter controls the order of the approximation.
! Additional smoothing kernels are available in gnuplot version 4.3 and later.

Full documentation: section 8.4.3.

hidden3d Enables hidden-line removal for surface plotting (surfaces will appear opaque).
set hidden3d [offset {int:offset}] [trianglepattern {int:mask}]

Comments
! offset takes an integer argument, which specifies how far the internal style counter

will be advanced to determine the line style that will be used for the back side of the
drawn surface. An offset of 0 means that both front and back will be drawn using
the same style.

! trianglepattern takes an integer as argument, which will be interpreted as a bit-
mask and controls which lines of each surface element will be drawn (0: lines paral-
lel to x axis; 2: lines parallel to y axis; 4: diagonal lines).

Full documentation: section 8.2.1.

isosamples Controls the number of points at which a function of two variables will be evaluated to gener-
ate a surface plot.
set isosamples {int:xlines} [, {int:ylines}]

Comments
! This option is irrelevant when plotting data from a file.

Full documentation: section 8.2.1.

336 APPENDIX B

surface Enables surface plots.
set surface

Comments
! unset surface can be used to suppress the plotting of an actual surface, for instance

to generate pure contour plots.
Full documentation: section 8.2.1.

view Controls the view point for three-dimensional plots.
set view [{flt:polar} [, {flt:azimuthal}

[, {flt:scale} [, {flt:z_scale}]]]]
set view map

Comments
! Angles are measured in degrees.
! polar is the polar angle and is restricted to [0:180].
! azimuthal is the azimuthal angle and is restricted to [0:360].
! scale is a multiplicative scaling factor for the size of the overall plot, relative to the

default size.
! z_scale is a multiplicative scaling factor for the apparent “height” of the plot, rela-

tive to the default height.
! map is shorthand for set view 0, 0, 1, 1 and places the view point straight above the

plotted surface.
Full documentation: section 8.3.2.

xyplane Controls the elevation of the plotting surface above the base plane of the surrounding box.
set xyplane [at {flt:zvalue} | {flt:frac}]

Comments
! set xyplane at draws the base plane at the z value named as argument.
! set xyplane (without at) controls the elevation of the plot surface above the base

plane as a fraction of the total z range. The argument is interpreted as a fraction of
the overall z range of the plot.

! This option used to be known as set ticslevel.
Full documentation: section 8.3.1.

CONTOUR PLOTS

clabel Defines the format for the numeric explanation placed in the key for each contour line.
set clabel ["{str:format}"]

Comments
! Only relevant when drawing contour lines using splot.
! The format string uses printf()-like conversion specifiers.

Full documentation: section 8.2.2.
See also set contour and set format.

cntrparam Controls aspects of contour lines.
set cntrparam [linear | cubicspline | bspline]

set cntrparam [points {int:q}]
set cntrparam [order {int:q}]

set cntrparam levels [auto [{int:n}]

337APPENDIX B

| discrete {flt:z0} [, {flt:z1} [, ...]]
| incremental

{flt:start}, {flt:inc} [, {flt:end}]]

Comments
! linear, cubicspline, bspline select the interpolation algorithm for lines drawn

between adjacent points.
! points controls the number of interpolation points for each spline segment. Only

relevant for cubicspline and bspline. Cannot be combined with any other option
in a single set cntrparam call.

! order determines the order of the bspline approximation. Only relevant for
bspline. Cannot be combined with any other option in a single set cntrparam call.

! levels auto determines z levels at which contour lines will be drawn automatically.
The integer parameter can be used to express the preferred number of levels, but
gnuplot will adjust this number so as to draw contour lines at “round” values of z.

! discrete draws contour lines only at the explicitly named values of z.
! incremental draws contour lines at z values beginning at the first numeric parame-

ter, incrementing by the second numeric parameter. A third parameter can be used
to limit the range of z values for which contour lines will be drawn.

Full documentation: section 8.2.2.

contour Enables drawing of contour lines and determines where they are drawn.
set contour [base | surface | both]

Comments
! base draws contour lines on the base of the drawing box.
! surface draws contour lines on the surface itself.
! both draws contour lines both on the base and on the surface.

Full documentation: section 8.2.2.

COLOR PLOTS (PM3D MODE)

colorbox Controls the appearance of the colorbox in pm3d plots.
set colorbox [vertical | horizontal]

[noborder | bdefault | border {idx:linestyle}]
[default | user [origin {pos:orig}]

[size {pos:size}]]

Comments
! The colorbox can be drawn horizontally or vertically.
! The colorbox can be positioned automatically (default) or explicitly by the user

(user). For three-dimensional plots, the only allowed coordinate system is the
screen system, but for two-dimensional plots (including set view map plots), all coor-
dinate systems can be used.

Full documentation: section 9.2.2.

palette Defines a mapping between values in the z range and colors.
set palette [model [RGB | HSV]]

[defined ({flt:v1} {clr:color1},
{flt:v2} {clr:color2}, ...)

| functions f1(gray), f2(gray), f3(gray)
| file "{str:filename}" [using ...]]

[positive | negative]

338 APPENDIX B

[maxcolors {int:n}]

show palette [palette {int:n} [float | int]
| gradient | colornames]

Comments
! defined maps a list of colors to their relative positions along the z range.
! functions evaluates three functions, which must map [0:1] to [0:1], for the three

components of the selected color space. The dummy variable must be called gray.
! file reads colors and their positions from the named file. A using directive can be

supplied.
! show palette palette with an integer argument n prints a list of n colors to the out-

put device as set by set print.
! show palette gradient displays the relative locations and colors supplied to defined,

if the palette has been set up this way.
! show palette colornames prints all symbolic color names known to gnuplot.

Full documentation: section 9.1.2.
See also the standard gnuplot reference documentation for additional options.

pm3d Enables palette-mapped mode (colored surfaces).
set pm3d [at [b|s|t]]

[implicit | explicit]
[hidden3d {idx:linestyle} | nohidden3d]
[interpolate {int:xsteps},{int:ysteps}]
[corners2color

[mean|geomean|median|min|max|c1|c2|c3|c4]]
[scansautomatic

| scansforward | scansbackward | depthorder]

Comments
! at determines where a colored surface should be drawn (bottom, surface, top).
! By default, pm3d operates in implicit mode, so that all surfaces drawn with splot will

be drawn using colored, nontransparent polygons. If only some surfaces should be
colored, use set pm3d explicit and use with pm3d as part of the splot command.

Full documentation: section 9.2.

B.4.8 Output

output Redirects output to a file or device.
set output ["{str:filename}"]

Comments
! Empty filename directs output to standard output. This value must be set for inter-

active terminals.
See also the standard gnuplot reference documentation.

print Redirects textual output and output from the print command to a file or device.
set print ["{str:filename}"] [append]

Comments
! Empty filename directs output to standard error.
! The special filename - (hyphen) directs output to standard output.
! The append keyword causes output to be appended if the file already exists.

Full documentation: section 4.4.1.

339APPENDIX B

table Generates a textual representation of the data points, rather than a graph.
set table ["{str:filename}"]

Comments
! If no filename is given, output is sent to the current value of set output.
! The current setting of set format is used to format the output.

Full documentation: section 4.4.2.

terminal Selects the output format for graphical output.
See separate section on terminal handling in this appendix (section B.4.9).

termoption Change suboptions on the current terminal device.
set termoption [no]enhanced
set termoption font "{str:name} [, {int:size}]"

Comments
! set termoption can be used to change a single option for the current terminal, with-

out requiring a full set terminal command.
! Only a single option can be changed with each invocation of set termoption.
! Currently, only the font and the enhanced mode options can be changed using set

termoption.
See section on terminal handling in this appendix (section B.4.9).

B.4.9 Terminals
ENHANCED TEXT MODE

Enhanced text mode allows for advanced formatting options, such as sub- and super-
script, as well as font changes. In enhanced text mode, several characters assume a
special meaning.!

Control
character

Example Result Description

{} Grouping and scoping.

^ x^2 Superscript.

_ A_{ij} Subscript.

@ x@^s_i Alignment of sub- and superscripts.

x@_i^{-3/2}y Put the shorter one first...

x@^{-3/2}_iy ... rather than last.

~ ~B/ Overlay the two following characters or groups.

~x{.6-} Overlays - on previous character, raised by 0.6
times the current character size.a

a. Overlay operator doesn’t nest inside PostScript terminals.
Continued on next page

340 APPENDIX B

SYMBOL FONT
Enhanced text mode allows font changes within a textual label. Of particular interest
is the standard PostScript Symbol font, because it contains many characters frequently
used in mathematical contexts.

 Figures B.1 and B.2 show the following (using the default encoding for the Post-
Script terminal):

! Each character’s ASCII code in octal representation (suitable for use with
enhanced mode)

! The corresponding character using a standard text font (Helvetica)
! The corresponding character using the Symbol font

{/ } {/Times Hello} Change font.

{/Symbol } {/Symbol abc} Use Symbol font.

{/= } {/=20 A} Select an absolute font size (size in printer
points).

{/* } {/*0.5 A} Change font size relative to enclosing font.

{/Symbol=24 G} Font family and size selections can be com-
bined.

& [&{abc}] Space, corresponding to the length of the
enclosed argument.

\NNN \101 Select a symbol, using its octal code.

\ Escape special characters within single quoted
strings.b

\\ Escape special characters within double
quoted strings.b

b. Not available for PostScript terminals.

Control
character

Example Result Description

341APPENDIX B

40
41 ! !
42 " ∀
43 # #
44 $ ∃
45 % %
46 & &
47 ’ ∋
50 ((
51))
52 * ∗
53 + +
54 , ,
55 - −
56 . .
57 / /
60 0 0
61 1 1
62 2 2
63 3 3
64 4 4
65 5 5
66 6 6
67 7 7

70 8 8
71 9 9
72 : :
73 ; ;
74 < <
75 = =
76 > >
77 ? ?

100 @ ≅
101 A Α
102 B Β
103 C Χ
104 D ∆
105 E Ε
106 F Φ
107 G Γ
110 H Η
111 I Ι
112 J ϑ
113 K Κ
114 L Λ
115 M Μ
116 N Ν
117 O Ο

120 P Π
121 Q Θ
122 R Ρ
123 S Σ
124 T Τ
125 U Υ
126 V ς
127 W Ω
130 X Ξ
131 Y Ψ
132 Z Ζ
133 [[
134 \ ∴
135]]
136 ^ ⊥
137 _ _
140 ‘ 
141 a α
142 b β
143 c χ
144 d δ
145 e ε
146 f φ
147 g γ

150 h η
151 i ι
152 j ϕ
153 k κ
154 l λ
155 m µ
156 n ν
157 o ο
160 p π
161 q θ
162 r ρ
163 s σ
164 t τ
165 u υ
166 v ϖ
167 w ω
170 x ξ
171 y ψ
172 z ζ
173 { {
174 | |
175 } }
176 ~ ∼
177

Figure B.1 Character
codes, part 1. Columns are
ASCII code (octal),
Helvetica, Symbol Font.

240 €
241 ¡ ϒ
242 ¢ ′
243 £ ≤
244 ⁄ ⁄
245 ¥ ∞
246 ƒ ƒ
247 § ♣
250 ¤ ♦
251 ' ♥
252 “ ♠
253 « ↔
254 ‹ ←
255 › ↑
256 fi →
257 fl ↓
260 °
261 – ±
262 † ″
263 ‡ ≥
264 · ×
265 ∝
266 ¶ ∂
267 • •

270 ‚ ÷
271 „ ≠
272 ” ≡
273 » ≈
274 … …
275 ‰ 
276 
277 ¿ ↵
300 ℵ
301 ` ℑ
302 ´ ℜ
303 ˆ ℘
304 ˜ ⊗
305 ¯ ⊕
306 ˘ ∅
307 ˙ ∩
310 ¨ ∪
311 ⊃
312 ˚ ⊇
313 ¸ ⊄
314 ⊂
315 ˝ ⊆
316 ˛ ∈
317 ˇ ∉

320 — ∠
321 ∇
322 
323 
324 
325 ∏
326 √
327 ⋅
330 ¬
331 ∧
332 ∨
333 ⇔
334 ⇐
335 ⇑
336 ⇒
337 ⇓
340 ◊
341 Æ 〈
342 
343 ª 
344 
345 ∑
346 
347 

350 Ł 
351 Ø 
352 Œ 
353 º 
354 
355 
356 
357 
360
361 æ 〉
362 ∫
363 ⌠
364 
365 ı ⌡
366 
367 
370 ł 
371 ø 
372 œ 
373 ß 
374 
375 
376 
377

Figure B.2 Character
codes, part 2. Columns are
ASCII code (octal),
Helvetica, Symbol Font.

342 APPENDIX B

BITMAP TERMINALS

set terminal XXX Common options for all bitmap terminals based on the GD library.
set terminal XXX [size {int:x},{int:y}] [[no]crop]

[tiny | small | medium | large | giant]
[font [{str:name} [{int:size}]]

| ["{str:path} [, {int:size}]"]]
[[no]enhanced]
[rounded | butt]
[{color0} {color1} {color2} ...]

Comments
! size of the image in pixels.
! crop trims empty space around the graph, possibly resulting in an image smaller

than size.
! Built-in fonts: tiny: 5 x 8 pixels, small: 6 x 12 pixels, medium: 7 x 13 pixels (bold

face), large: 8 x 16 pixels, and giant: 9 x 15 pixels). These fonts can’t be scaled or
rotated.

! If libgd was built with support for TrueType fonts, either TrueType (.ttf) or Adobe
Type 1 (.pfa) fonts can be used. Specify either the font name (for example, Free-
Sans) or the full name to a font file (for example, "/usr/share/fonts/truetype/
FreeSans.ttf").

! A color map can be specified explicitly. The first color (color0) will be used for the
background, the second color for the border, the third for the axes (when using set
zeroaxis, for instance). All remaining colors are used for consecutive line types.
The format for the color specification consists of a hex string preceded by the letter
x, for example xFF0000 for red, and so on.

Full documentation: section 11.3.1.

set terminal gif GIF output.
set terminal gif ...

[[no]transparent] [animate [delay {int:time}]]

Full documentation: section 11.3.1.

set terminal png PNG output.
set terminal png ...

[[no]transparent] [[no]interlace]
[[no]truecolor]

Full documentation: section 11.3.1.

set terminal jpeg JPG output.
set terminal jpeg ...

[[no]interlace]

Full documentation: section 11.3.1.

POSTSCRIPT TERMINALS

set terminal postscript PostScript output.
set terminal postscript [landscape | portrait | eps]

[color | mono] [blacktext | colortext]
[simplex | duplex | defaultplex]
[size {flt:x}[in|cm], {flt:y}[in|cm]]

343APPENDIX B

[[font] "{str:name}" [{int:size}]]
[[no]enhanced]
[solid | dashed]
[linewidth | lw {flt:factor}]
[dashlength | dl {flt:factor}]
[rounded | butt]

set terminal postscript [fontfile [add|delete] "{str:filename}"
| nofontfiles]

Comments
! A single file can contain multiple graphs, except when creating Encapsulated Post-

Script (eps).
! Size given in either inches or centimeters. Defaults to 10 x 7 inches; 5 x 3.5 inches

for EPS.
! Examines the values of the fontfile option and the GNUPLOT_FONTPATH environment

variable to find font files.
! The name of a PostScript font can be specified to set the default font for the termi-

nal.
! fontfile takes the name of a font file and embeds the font information (not just

the font name) in the PostScript file.
Full documentation: section 11.4.1.
See also set fontpath.

set terminal epslatex PostScript graphics with LaTeX text and labels.
set terminal epslatex [standalone | input]

[header "{str:header}" | noheader]
[color | mono] [blacktext | colortext]
[size {flt:x}[in|cm], {flt:y}[in|cm]]
[[font] "{str:latexfont}" [{int:size}]]
[solid | dashed]
[linewidth | lw {flt:factor}]
[dashlength | dl {flt:factor}]
[rounded | butt]

Comments
! Generates two files: a PostScript file and a LaTeX file.
! The full name of the LaTeX file (including extension .tex) should be set via set

output. An Encapsulated PostScript file with the same base name but with the exten-
sion .eps will automatically be created, containing the graphics part of the plot.

! The argument to header will be placed verbatim in the header of the generated
LaTeX file.

Full documentation: section 11.4.2.
See also set terminal postscript.

INTERACTIVE TERMINALS

set terminal wxt Interactive terminal using the wxWidgets widget set.
set terminal wxt [{int:winid}] [title "{str:title}"]

[[no]enhanced]
[font "{str:name} [,{int:size}]"]
[[no]persist] [[no]raise] [[no]ctrl]

set terminal wxt {int:winid} close

Full documentation: section 11.5.

344 APPENDIX B

set terminal x11 Interactive terminal using the standard X11 libraries.
set terminal x11 [{int:winid}] [title "{str:title}"]

[[no]enhanced]
[font "{str:fontspec}"]
[[no]persist] [[no]raise] [[no]ctrlq]
[solid | dashed]

set terminal x11 [{int:winid}] close

Full documentation: section 11.5.

set terminal aqua Interactive terminal for Mac OS X.
set terminal aqua [{int:winid}] [title "{str:title}"]

[size {int:x} {int:y}]
[[no]enhanced]
[font "{str:name} [,{int:size}]"]
[solid | dashed] [dl {flt:dashlength}]

Full documentation: section 11.5.

set terminal windows Interactive terminal for MS Windows.
set terminal windows [color | monochrome]

[[no]enhanced]
[font "{str:name} [,{int:size}]"]

Full documentation: section 11.5.

MISC

set terminal svg SVG (scalable vector graphics) output.
set terminal svg [size {int:x},{int:y} [fixed | dynamic]]

[font "{str:name} [, {int:size}]"]
[fontfile "{str:filename}"]
[[no]enhanced]
[rounded|butt] [linewidth {flt:factor}]

Comments
! Creates a fixed-size image of 600 x 480 pixels by default.
! dynamic generates an image that can be resized by the viewer. fixed by default.
! fontfile will embed font information (not just the font name) in the output file.
! Examines the GNUPLOT_FONTPATH environment variable for font files.

Full documentation: section 11.3.2.

345

appendix C:
Resources

C.1 Web sites and mailing lists
The official web site for the gnuplot project is www.gnuplot.info. There you’ll find
the official documentation, including the extensive and helpful FAQ as well as links
(not always current) to other sites and related projects.

 Community support is available through the newsgroup comp.graph-
ics.apps.gnuplot and the mailing list gnuplot-info@lists.sourceforge.net. There’s
also a mailing list for gnuplot developers: gnuplot-beta@lists.sourceforge.net.

 Very helpful, with many examples of more advanced uses, is the “not-so-fre-
quently asked questions” list, maintained by Toshihiko Kawano at the Los Alamos
National Lab: http://t16web.lanl.gov/Kawano/gnuplot/index-e.html.

 And if you’re curious to see how far you can push gnuplot, I suggest you take a
look at Bastian Maerkisch’s brilliant “99 Bottles of Beer” implementation: http://
99-bottles-of-beer.net/language-gnuplot-1598.html.

C.2 Books
These are books on topics relevant to the material in this book that I’ve found help-
ful and interesting.

C.2.1 Graphics and graphical analysis

 The Elements of Graphing Data by William S. Cleveland. Hobart Press (1994).
Probably the definitive reference on graphical analysis (as opposed to presentation
graphics). Much of the material in chapter 13 and chapter 14 has been influenced
by Cleveland’s careful approach. There’s also a companion volume, Visualizing Data
(1993), by the same author.

 Creating More Effective Graphs by Naomi B. Robbins. Wiley (2005).
A catalog of graph types with commentary. This book is in part based on Cleve-
land’s work and makes many of the same points, but it may be much easier to find.

346 APPENDIX C

 Visual Revelations by Howard Wainer. Copernicus/Springer (1997); Graphic Discovery by How-
ard Wainer. Princeton University Press (2005).
Two collections of short essays on statistical graphics, written in an entertaining, semi-
popular style. Many good ideas and interesting case studies can be found here, but
also a lot of editorializing about various issues.

 The Visual Display of Quantitative Information by Edward R. Tufte. Graphics Press (2nd Ed,
2001); Envisioning Information by Edward R. Tufte. Graphics Press (1990); Visual
Explanations: Images and Quantities, Evidence and Narrative by Edward R. Tufte. Graphics
Press (1997).
A series of best-selling books with an emphasis on presentation graphics.

 Graphics of Large Data Sets by Antony Unwin, Martin Theus, Heike Hofmann. Springer (2006).
A research monograph, describing some of the current thinking regarding the visual-
ization of large data sets, both in the number of records and in the number of dimen-
sions: parallel-coordinate plots, tree-maps, dynamic graphics. Accessible, interesting.

 Information Dashboard Design by Stephen Few. O’Reilly, (2006).
Much interesting (and current) information on good ways to present information
visually, with an emphasis on business uses.

 Visualizing Data by Ben Fry. O’Reilly (2007).
This book describing the Processing environment—a Java tool that allows the user to
create graphs programatically—was written by the tool’s creator. Graphs may be com-
plex and involve animation or dynamic interaction.

C.2.2 Statistics

 An Introduction to Mathematical Statistics and Its Applications by Richard J. Larsen and Morris L.
Marx. Prentice Hall (4th ed, 2005)
An excellent introductory textbook. The authors manage to strike a very nice balance
between practical applications and mathematical depth. The emphasis of this book is
more on mathematical development, rather than on practical applications. The text
contains a large number of uncommonly interesting examples.

 The Statistical Sleuth by Fred L. Ramsey and Daniel W. Schafer. Duxbury (2002).
An undergraduate textbook which emphasizes practical application of statistical
methods to a variety of data analysis problems. Strongly emphasizes the distinction
between randomized and observational studies and contains a particularly careful dis-
cussions of the steps required to arrive at definitive (in a statistical sense) statements
about a set of data points.

 Statistics for Technology: A Course in Applied Statistics by Chris Chatfield. Chapman & Hall (1983).
A compact introduction to classical statistics for readers who are mostly interested in
applications. Despite the practical bend, this is no mere collection of cookie-cutter
recipes, but a thorough introduction to both the theory and the application of statis-
tics. Not a textbook, but a guide for a self-motivated audience.

 All of Statistics by Larry Wasserman. Springer (2004).
A post-graduate reference for people who already know statistics. Includes many mod-
ern topics. Beware that necessary context may be lost due to the extreme terseness of
the presentation.

347APPENDIX C

 Data Analysis: A Bayesian Tutorial by D. S. Silva with J. Skilling. Oxford University Press (2006).
An accessible introduction to the Bayesian view point of statistics.

 e-Handbook of Statistical Methods by NIST/SEMATECH: www.nist.gov/stat.handbook
A valuable online resource published by the National Institute for Standards and
Technology (NIST). Broad coverage of statistics from an engineering point of view,
including topics not usually covered in introductory treatments (such as time series
modeling and reliability estimation).

C.2.3 Mathematical methods and modeling

 How to Model It by Anthony M. Starfield, Karl A. Smith, and Andrew L. Bleloch. Burgess Pub-
lishing (1994).
The best introduction into the application of mathematics to real-world problems for
the general audience that I’m aware of. In each chapter, the authors present one
problem, and then proceed to devise various approximate answers to the question
posed by the problem, achieving better accuracy at each step. The range of topics and
methods is impressive. Out of print, but easily available used.

 Used Math by Clifford E. Swartz. American Association of Physics Teachers (1993).
If you need a refresher on college math, with a bend toward applications, this book is
a good choice. The selection of topics—and most of the examples—reveal the
author’s background in physics, but the material presented here is generally applica-
ble and useful.

 Industrial Mathematics by Charles R. MacCluer. Prentice-Hall (2000).
A catalogue of more advanced mathematical techniques helpful in data analysis and
model building. The choice of topics is excellent, but the presentation often seems a
bit aloof and too terse for the uninitiated. Very expensive.

 An Introduction to Mathematical Modeling by Edward A. Bender. Dover (1978, 2000).
Short and idiosyncratic. A variety of problems are investigated and mathematical mod-
els developed to help answer specific questions. Requires only basic math skills, the
emphasis being on the conceptual model building process.

 Problem Solving: A Statistician’s Guide by Chris Chatfield. Chapman & Hall (1995).
A thorough discussion of the data analytical thought process. Includes typically
neglected topics such as data gathering. The book consists of three parts: a general
exposition, a set of well-posed problems with discussion, and a sketchlike overview of
statistical techniques.

C.3 Other open source tools
If you’re dealing with data and graphics, here are some additional tools you might
find helpful. This list is by no means comprehensive. For a project to be listed here,
first of all I had to be aware of it. Then, the project had to be

! Free and open source
! Available for the Linux platform
! Active and mature
! Available as a standalone product and allowing interactive use (this require-

ment eliminates libraries and graphics command languages)

348 APPENDIX C

! Reasonably general purpose (this eliminates specialized tools for molecular
modeling, bio-informatics, high-energy physics, and so on)

! Comparable to or going beyond gnuplot in at least some respects

C.3.1 Math and statistics programming environments

R The R language and environment (www.r-project.org) are in many ways the de
facto standard for statistical computing and graphics using open source tools. R shares
with gnuplot an emphasis on iterative work in an interactive environment. It’s extensi-
ble, and many user-contributed packages are available from the R website and its mir-
rors. R is famous for its graphics capabilities. Its learning curve is rather steep.

 An alternative project, with an emphasis on time series analysis and financial appli-
cations, is gretl. Gretl uses gnuplot as graphics backend.

Octave Octave is a high-level programming language, primarily for “classic” numer-
ical applications (linear algebra, quadrature, differential equations, and so forth). It
provides an interactive command-line environment or can be used for batch process-
ing. Octave uses gnuplot for graphical output.

 Scilab is an alternative project, maintained by the INRIA national research institute
in France.

Maxima Maxima is a system for symbolic calculations, including integration and dif-
ferentiation, Taylor series expansion, differential equations, fractions, and vectors. It
includes support for high- and arbitrary-precision numerical calculations as well. It
uses gnuplot for graphical output.

 A relatively new project for symbolic computation, maintained by researchers at
the University of Washington, is SAGE.

C.3.2 Graphing tools

OpenDX Started by IBM in 1991 as “Visualization Data Explorer,” this project was
donated to the open source community in 1999. Giving off a distinctly early-1990s feel
(everything opens in a separate Motif window) and using somewhat unfamiliar and
crude GUI metaphors, this program isn’t easy to learn. But it offers many features not
often found otherwise, including support for surface, volume, and flow visualization,
as well as the ability to interact with graphs dynamically.

SciDAVis SciDAVis is a fork of the QtiPlot project. Both combine spreadsheet-like
functionality, including the ability to load, edit, and save data, with plotting and analy-
sis capabilities in a WYSIWYG environment. This, together with the availability of non-
graphical analysis functions (interpolation, Fourier transforms, numeric integration)
positions these projects as expressions of a design philosophy very different from gnu-
plot.

kst Although it can handle other types of plots as well, this program is particularly
suited for the real-time visualization and analysis of streaming data. It features an
impressive set of spectral analysis tools and rich support for color. Documentation
appears spotty.

349APPENDIX C

Grace Grace (Xmgr, xmgrace) has long been a mainstay of Unix-based plotting pro-
grams. It’s GUI-based and has numerical analysis capabilities (fitting, Fourier trans-
forms, numerical integration, joining and sorting), as well as a built-in scripting
language. In contrast to gnuplot, its central work unit is the individual graph, not the
data file. Grace doesn’t read data files natively, but “imports,” then stores, all data,
together with the commands that make up a plot, in its own native file format. This,
together with the way the user interface is designed, makes Grace appear to be more
of a graph-preparation program, rather than a tool for visual exploration.

350

index

Symbols

; (semicolon) 25
{} (curly braces) 40, 204
@ (at symbol) 223
** (exponentiation

operator) 38
(hashmark) 25

A

abbreviations feature 23
abbreviations, directives xxix
acsplines mode 36
adding

contour lines 139
tic marks 117

adjusting interpolation
curves 37

airplane 301
allometric scaling 254
analysis

data 10
exploratory data (EDA) 11
geographical 12
graphical 3, 9–10
image 11
multivariate 269
statistical 11

angles option 323
animate 207
Anscombe’s Quartet xxvi
appearance (plot) 106

aspect ratio 106
changing 284

key 104
options 324
size ratio 106

applications (strings) 57
aqua terminal 219
AquaTerm 308
armor 301
arrays

bundling PostScript images
into 217

creating with multiplot
layout 178

of graphs with layout 177
arrows 94

custom styles 96
customizing appearance 95
option 326
tricks 96

aspect ratio 106
autoscale option 94, 331
axes 110

double-logarithmic 9
example 123
formatting tic labels 118
grid 123
input 128
multiple 111
options 330
output 129
plotting with two coordinate

systems 112
reading tic labels 122
restoring numerical

labeling 127
selecting plot ranges 115

terminology 111
tic marks 116
time series 124, 127
uses for multiple 113
zero 123

axis labels 98

B

back ticks 226
backhead option 95
banking 284
bar-and-whiskers plot 80, 258
bars option 330
batch operations 228
bessel functions 317
bezier mode 35
bimodal data 5
binary operators 320
bind command 236, 315
bitmap terminal options 342
bitmaps 206
blank lines 31

double 31
single 31

borders 108
defined 92
option 324
three-dimensional plots 142

Boutell, Tom 206
box kernel 150
box plot 72, 258
box-and-whiskers plot 80, 258
boxes style 73
boxwidth option 330

351

building
from source 305
gnuplot 303
on Mac OS X 308
on Unix 306
on Windows 308

bundling PostScript images into
arrays 217

butt keyword 205

C

call command 25, 27, 310
calling

gnuplot 228
programs 224

candlesticks style 80
canvas 92
capturing subprocess

output 225
car data 246, 251, 275
case study

color 169
iteration 275

categorical variables 134
cauchy kernel 150
cb axis 159
cbdata time option 159
cbdtics option 159
cblabel option 159
cbmtics option 159
cbrange option 159
cbtics option 159
cd command 310
censoring data 282
CGI script 239, 241
changing

appearance 284
composition problems 292

charts (control) 11, 278
Chebyshev polynomial 178
CIA World Factbook 263
clabel option 336
clear command 218, 313
clip option 324
clr type indicator xxviii
clustered histogram style 76
cntrparam option 336
color 152

box 158
case studies 169
defining 155
interpolating between 154
palettes 153
plots option 337

spaces 153
specifying 87
uses for 160
using for data

representation 161
warnings 168

color blind 168
colorbox options 159, 337
color-map. See palettes
colorspec 87
column function 42
column manipulation

functions 319
columnsfirst keyword 177
command history 61
command-line-orientation 6, 13
commands

bind 236, 315
call 25, 27, 310
cd 310
clear 218, 313
curve fitting 314
executing in subshells 225
exit 309
file system 310
fit 191, 314
help 309
history 309
if 315
load 25, 310
loading 310
lower 218, 314
managing options 312
pause 232, 315
plot 6, 9, 16, 26, 102, 310
plotting 310
print 59, 309
pwd 310
quit 309
raise 218, 314
_range 115
recalling 17
replot 26, 312
reread 232, 315
reset 50, 313
running gnuplot 309
save 25, 310
saving 310
set 25, 50, 312
set logsc 44, 238
set multiplot 176
set mxtics 124
set palette 154
set palette file 156
set pm3d hidden3d 158

set size 202
set terminal 201
set xmtics 124
shell 313
show 50, 312
show palette 156
show palette gradient 157
splot 26, 134, 145, 312
subprocesses 313
system 313
terminal handling 313
test 69, 314
test palette 155–156
unset 50, 313
unset colorbox 159
unset multiplot 176
update 314

comment character 25, 52
comparing data 278
comparison operator 56
complex numbers 40

functions 318
components (graphs) 92
computer-aided data

analysis 271
concatenation operator 56
configure options 307, 321
configuring

gnuplot 307
workspace 234

conifg/ directory 306
contour lines 139
contour option 337
contour plots 336
control characters 203
control charts 11, 160

monitoring quantities 278
control variables 193
conversion routines 153
conversion specifiers 122
coordinate axes 141
coordinates

graphs 93
non-Cartesian 184

Copyright file 306
core plot styles 70
corners2color keyword 158
counting statistics 256
creating

animated GIFs 207
arrays with multiplot

layout 178
colored graphs with

palettes 157
custom hot key bindings 236

352

creating (continued)
font tables 232
palettes 154–155
plots in polar mode 185
three-dimensional plots 135
thumbnails 208

critical point 179
crop option 206
csplines mode 36
cumulative directive 243
cumulative distribution

functions 259
curb weight 246
curve fitting 190

background 190
commands 314

curves
scaling 280
shifting 280

custom line styles 86
customizing

arrows 95
styles 85

CVS, obtaining development
version from 305

D

dashed keyword 205
dashlength option 205
data

analysis 10
bimodal 5
censoring 282
comparing 278
exploratory analysis (EDA) 11
grid format 146
matrix format 148
minimal context 91
multimodel 261
multivariate 264
plotting 43

from files 20
using splot 145

ranked 262
reading interactively 63
rejecting 282
representation 161
smoothing noisy 35
transformations 41
truncating 282
understanding with

graphs 10, 301
data files 51

comments 52
examples 20, 33, 53–54

explanations 102
field separator 52
formats 51
input 296
missing values 52
number formats 51
options 51
plotting unsorted 32
strings 54
title strings 54
tricks 54

_data option 334
data sets 30

blank lines 31
examples 30–31
managing 30
multiple 30

datafile option 51–52, 321
date options 334
decimalsign option 322
decorations 94, 326
default keyword 159
default settings 104
defining colors 155
demo/ directory 306
design palettes 162
development versions 303
dgrid3d option 149, 335
diesel fuel 251
diffusion limited aggregation

(DLA) 6
dimensions 265
directives

abbreviations xxix
every 31
font 206
frequency 33, 35, 257
global style 70
index 31
inline style 68
layout 177
linewidth 209
scansautomatic 158
scansbackward 158
scansforward 158
size 206
smooth 32, 35
title 9, 177
unique 32, 35
using 24, 192
with 21

distances (judging) 287
DLA. See diffusion limited aggre-

gation
docs/ directory 306

dots style 72
double blank lines 31
double-logarithmic axes 9, 47,

255
downwards keyword 177
draft lottery 248
_dtics option 335
dumb terminal 220
dummy option 323
duplex plots 210
dynamic keyword 209

E

EDA. See exploratory data
analysis

edge effects 282
enabling

interlacing 207
multiplot mode 176
polar mode 184

encoding option 322
enhanced text mode 202

control characters 203
examples 204
options 339

enhancing quantitative
perception 289

enum type indicator xxviii
environment variables 194, 234
EPS file 211
epslatex terminals 212
error integral functions 317
errorbars 78
Euclidean distance 150
European Union 262
every directive 31
example data sets

airplane 301
allometric scaling 254
armor 301
car data 246, 251, 275
Chebyshev polynomial 178
curb weight 246
diesel fuel 251
diffusion limited aggregation

(DLA) 6
draft lottery 248
European Union 262
flow balance 287
fractal 6, 171
fuel consumption 275
glass data 265
ice cream 111
lottery 248

353

example data sets (continued)
mammals 254
Mandelbrot set 171
marathon 4, 280
miles per gallon (mpg) 275
price 246
spectrum 104
sunspots 284
web traffic 252

examples
axes 123
enhanced text mode 204
fit command 195
scatter plots 246, 248

executing commands in
subshells 225

exit command 309
exp kernel 150
explanations 102

data files 102
plot command 102

explicit mode 158
exploratory data analysis

(EDA) 11
exponential functions 316
export script 27
exporting 25, 201
expressions (math) 38

F

false-color plot 161
features

abbreviations 23
autoscale 94
multiplot 175
sensible defaults 23
smooth cumulative 260

field separators 52
fig terminal 220
file formats

EPS 210
GIF 207
JPG 208
PDF 217
PNG 207
PostScript 210
SVG 208

file system (commands) 310
files

data 51
data sets 30
examples of data 20
exporting graphs to 201
initialization 235

input data 296
loading 25
output 298
plotting data from 20
plotting unsorted data 32
reading palettes from 156
reading tic labels from 122
saving 25

filled plot styles 81
financebars style 80
fit command 191, 314

control variables 193
environmental variables 194
example 195
options 194
output variables 193
tips 194

fit option 322
flow balance 287
flt type indicator xxviii
flushing output channels 205
font

default 202
directive 206
PostScript 202, 210–211, 216
specifying 210
terminals 202
TrueType 202, 206–207, 211

font tables 232, 341
fontpath option 207, 322
forcing interactive sessions 229
format cb option 159
format option 331
formats

data files 51
grid 146
matrix 148

formatting tic labels 118
fractal 6, 171
freefont project 207
frequency directive 33, 35, 257
fsteps style 72
fuel consumption 275
functions

Bessel 317
built-in 38
column 42
column manipulation 319
complex arguments 318
creating palettes with 155
cumulative distribution 259
error integral 317
exponential 316
gamma 317
gprint() 122

hyperbolic 316
imag() 41
keyword 155
logarithmic 316
miscellaneous 318
plotting 43
rand() 38, 256
real() 41
scanf() 128
smooth frequency 256
smooth kdensity 258
strftime() 127
strings 56, 318
system() 225
time column handling 319
trigonometric 316
user-defined 39
valid() 43
xticlabels() 122
yticlabels() 122, 263

G

gamma functions 317
Gaussian kernel 150, 258
generating

logarithmic plots 44
textual output 59

GIF terminal 207
glass data 265
global plot styles 68, 70
GNU software, compared with

gnuplot 13
gnuplot 3, 13

benefits 14
building 303
calling 228
as CGI script 239
command history 61
compared with GNU

software 13
configuring 307
examples 4, 6
help 61
hot keys 62
installing 303
invoking 17, 229
limitations 15
mailing list 14, 345
mousing 62–63
new features 14
obtaining 303
tricks and warnings 44
web pages 239
web sites 305

354

gpic terminal 220
gprint() function 122
Grace graphing tool 349
graphical analysis 3, 9–10

benefits 12
limitations 12
resources 345

graphical analysis
techniques 273

banking 284
changing appearance 284
changing compositions

problems 292
comparing data 278
core principle 274
enhancing quantitative

perception 289
housekeeping 296
iteration 275
judging lengths/

distances 287
plot ranges 291
presentation graphics 298
responsiveness 280
transformation 275
truncation 280
zero in plot range 291

graphical methods 245
counting statistics 256
multivariate data 264
ranked data 262
relationships 246

graphics
file formats 206
presentation 11, 298

graphicx package (LaTeX) 212
graphing tools 348
graphs 92

aligned on common axis 181
arrays with layout 177
arrows 94
components 92
coordinates 93
creating with palettes 157
decorations 94
exporting 25
exporting to file 201
key 100
legend 100
lifecycle 296
objects 99
pm3d mode 157
polar mode 185
presentation 10
scatter plot 23
stacked 293

text labels 97
understanding data with 10,

301
within graphs 179

grid axes 123
grid cbtics option 159
grid format 146
grid mcbtics option 159
grid option 332

H

half-tone shading example 87
hann kernel 150
hardware requirements xxix
head option 95
header option 216
heat scale palette 165
help command 61, 309
hidden3d option 136, 335
histeps style 72
histograms 74, 256
history command 61, 309
history feature 17
historysize option 322
hot key bindings, creating

custom 236
hot keys 62
housekeeping 296

graph lifecycle 296
input data files 296
output files 298

hue-based palette 166
hue-saturation-value (HSV)

scheme 153, 165
hyperbolic functions 316

I

ice cream 111
idx type indicator xxviii
if command 315
imag() function 41
image analysis 11
implicit mode 158
impulses style 73
including EPS files in LaTeX

documents 211
index directive 31
indexing strings 56
initialization file 235
inline plot styles 68
input

axes 128
data files 296
redirection 226

insets 176
INSTALL file 306
INSTALL.gnu file 306
installing 308

gnuplot 303
on Linux 304
on Mac OS X 304
on Windows 304

int type indicator xxviii
interactive terminals 218

options 343
interlacing 207
interpolate keyword 158
interpolating between

colors 154
interpolation curves 37
invoking gnuplot 17, 229
isosamples option 136, 335
iteration 273, 275

case study 275
defined 10

J

jitter plots 256
JPG terminal 208
judging lengths/distances 287

K

kdensity directive 258
Kelley, Colin (software

developer) 13
kernel 258

density estimates 258
Gaussian 258
smoothing 150

key 22, 100
appearance 104
default settings 104
explanation 102
layout 101
option 327
placement 101
turning on/off 101

keyboard event 238
keywords

butt 205
columnsfirst 177
corners2color 158
dashed 205
default 159
downwards 177
dynamic 209
functions 155

355

keywords (continued)
interpolate 158
offset 138, 178
rounded 205
rowsfirst 177
scale 178
solid 205
title 22
trianglepattern 138
upwards 177

knots, splines 249
kst graphing tool 348

L

_label option 332
label option 327
labels (scatter plots) 251
landscape option 209
LaTeX

EPS file 211
PostScript plots 211
tricks 217

layout
directive 177
key 101
source tree 306

least squares fitting 191
legend. See key
lengths, judging 287
libgd library 206
linear grayscale palette 165
lines

blank 31
style 71, 86

linespoints style 71
linewidth directive 209
linewidth option 205
Linux, installing gnuplot 304
lisp/ directory 306
load command 25, 310
loading

commands 310
files 25

loadpath option 323
locale option 334
logarithmic functions 316
logarithmic plots 44, 252–256
logarithmic scales 8, 44,

252–256
log-log plots 8, 45, 255
log-normal distribution 181
logscale cb option 159
logscale option 325
lottery 248

lower command 218, 314
luminance-dominated

palettes 167

M

Mac OS X
building gnuplot 308
installing gnuplot 304
terminals 219

macros
option 323
string 223

magnet 179
mailing lists resources 345
mammals 254
managing

data sets 30
option commands 312
options 50

Mandelbrot set 171
mapping option 323
marathon 4, 280
margin 92, 108

option 325
Marquardt-Levenberg

method 191
math 38

built-in functions 38
complex numbers 40
expressions 38
functions 316
non-Cartesian

coordinates 184
options 323
parametric plots 183
user-defined functions/

variables 39
vector fields 188

mathematical methods and
modeling, resources 347

Maxima calculation system 348
mcbtics option 159
mean 4, 261
median 261
Microsoft Windows

terminal 219
miles per gallon (mpg) 275
minimal context for data 91
miscellaneous

commands 315
functions 318
options 344

missing values 52

modes
enhanced text 202
explicit 158
implicit 158
multiplot 176
palette-mapped color 14
parametric 183
pm3d 157
polar 184
smooth directive 35
time series 129

monitoring control chart
quantities 278

mouse event 238
mouse option 323
mousing 62–63
_mtics option 335
m_tics option 117, 332
multiple axes 111
multiplot feature 175

arrays 177
multiplot layout 178
multiplot mode 176
multiplot option 325
multivariate analysis 269
multivariate data 264

N

Napoleon’s march xxvi
NEWS file 306
nohead option 95
non-Cartesian coordinates 184
nonlinear fit 190, 197
noraise option 218
number formats 51
number of degrees of

freedom 194
numbers (complex) 40

O

object option 327
objects 99
obtaining

development version from
CVS 305

gnuplot 303
Octave Forge 218
Octave programming

language 348
offset keyword 138, 178
offsets option 326
open source resources 347
OpenDX graphing tool 348

356

operations (strings) 55
operators

binary 320
comparison 56
concatenation 56
ternary 321
unary 320

options
angles 323
appearance 324
arrow 326
autoscale 94, 331
axes 330
backhead 95
bars 330
bitmap terminals 342
border 324
boxwidth 330
cbdata time 159
cbdtics 159
cblabel 159
cbmtics 159
cbrange 159
cbtics 159
clabel 336
clip 324
cntrparam 336
color plots 337
colorbox 159, 337
configuration 321
configure 307
contour 337
contour plots 336
crop 206
dashlength 205
_data 334
data files 51
datafile 321
date 334
decimalsign 322
decorations 326
dgrid3d 149, 335
_dtics 335
dummy 323
encoding 322
enhanced text mode 339
fit 322
fit command 194
fontpath 207, 322
format 331
format cb 159
grid 332
grid cbtics 159
grid mcbtics 159
head 95

header 216
heads 95
hidden3d 136, 335
historysize 322
interactive terminals 343
isosamples 136, 335
key 327
_label 332
label 327
landscape 209
linewidth 205
loadpath 323
locale 334
logscale 325
logscale cb 159
macros 323
managing 50
mapping 323
margin 325
math 323
mcbtics 159
miscellaneous 344
mouse 323
_mtics 117, 335
m_tics 332
multiplot 325
nohead 95
noraise 218
object 327
offsets 326
origin 326
output 338
palette 154, 337
parametric 323
persist 218
pm3d 338
pointsize 330
polar 324
portrait 209
PostScript terminal 342
print 338
_range 333
samples 324
set clabel 141
set cntrparam 140
set contour 139
set fontpath 235
set loadpath 235
set mapping 187
set multiplot 177
set style 328
set style arrow 329
set style fill 329
set style histogram 329
set style line 329

set style rectangle 330
set table 60
set terminal aqua 344
set terminal epslatex 343
set terminal gif 342
set terminal jpeg 342
set terminal png 342
set terminal postscript 342
set terminal svg 344
set terminal windows 344
set terminal wxt 343
set terminal x11 344
set xtics 116
size 326
standalone 216
style 328
style function 50
surface 136, 336
surface plots 136
symbol font 340
table 339
terminal 202, 339
terminal appearance 205
terminals 339
termoption 339
three-dimensional plots 335
_tics 333
ticscale 334
time 334
timefmt 334
timestamp 328
title 328
transparent 207
view 336
xyplane 142, 336
zero 324
zeroaxis 334

origin option 326
O-ring xxvi
outlier removal 282
output

axes 129
capturing subprocess 225
channels 205
files 298
options 338
print-quality 209
redirection 226
variables 193

overview of gnuplot 4

P

palette option 154, 337
palette-mapped color mode 14

357

palette-mapped three-dimen-
sional. See pm3d mode

palettes 153
color spaces 153
creating 154
creating colored graphs 157
creating with functions 155
design 162
heat scale 165
hue-dominated 166
linear grayscale 165
luminance-dominated 167
palette option 154
querying 156
reading from files 156
sample 165
saturation-based 166
testing 156
warnings 168

parallel coordinate plots 264
parameter

estimation 197
scale 116

parametric option 323
parametric plots 183
pause command 232, 315
PDF terminal 217
percentiles 261
Perl, calling gnuplot from 230
persist option 218
phase transition 179
pipes 230
plot command 6, 9, 16, 26,

102, 310
plot styles

box 72
core 70
errorbars 78
filled 81
other 84
ranges 78
selecting 68

plots
appearance 106
borders 108
box 72, 258
box-and-whiskers 258
color 337
contour 336
creating in polar mode 185
duplex 210
generating logarithmic 44
jitter 256
logarithmic 44, 252
log-log 45, 255

margins 108
parallel coordinate 264
parametric 183
ranges 18, 291
scatter 246
selecting ranges 115
semi-log 45, 252
simplex 210
star 270
three-dimensional 133
watermarking 227

plotting
axes with two coordinate

systems 112
commands 310
data 43
data from files 20
data using splot 145
functions 43
in parametric mode 183
Unix password 58
unsorted data files 32
vector fields 188

pm3d mode 157
pm3d option 338
PNG terminal 207
points style 71
pointsize option 330
pointsize variable style 84
polar mode 184

creating plots 185
graphs 185

polar option 324
polishing 10
pop 27
portrait option 209
pos type indicator xxviii
PostScript

images 210
plots 211
terminals 209, 342

power law 7, 252, 254
presentation graphics 10–11,

298
price 246
print command 59, 309
print option 338
print-quality output 209
programs, calling 224
pseudocolumns 42
push 27
pwd command 310
Python, calling gnuplot

from 230

Q

qnorm algorithm 150
quantitative perception,

enhancing 289
querying palettes 156
quit command 309
quotes 55

R

R language and
environment 348

raise command 218, 314
rand() function 38, 256
_range commands 115
_range option 333
ranges (plots) 291
ranked data 262
reading

data interactively 63
palettes from files 156
tic labels 122

README file 306
README.1ST file 306
real() function 41
reality representation 11
recalling commands 17
redirection

input 226
output 226

rejecting data 282
relationships 246

logarithmic scales 252
scatter plots 246

release versions 303
replot command 26, 312
reread command 232, 315
reset command 50, 313
resources

books 345
graphics/graphical

analysis 345
mailing lists 345
mathematical methods and

modeling 347
open source 347
statistics 346
web sites 345

responsiveness 280
restoring numerical axes

labeling 127
rgbcolor 87
rounded keyword 205
rowsfirst keyword 177
running commands 309

358

S

sample palettes 165
samples option 324
sampling bias 282
saturation-based palettes 166
save command 25, 310
saving

commands 310
files 25

sbezier mode 35
scale keyword 178
scale parameter 116
scales, logarithmic 252
scaling curves 280
scaling law 7, 252, 254
scanf() function 128
scansautomatic directive 158
scansbackward directive 158
scansforward directive 158
scatter plots 246–247

example 248
graph 23
labels 251
splines 249

SciDAVis graphing tool 348
screen 92
scripts export 27
segmentation tasks 167
selecting

plot ranges 115
plot styles 68

semi-log plots 45
sensible defaults feature 23
set clabel option 141
set clip 43
set cntrparam option 140
set command 25, 50, 312
set contour option 139
set fontpath option 235
set format 118
set loadpath option 235
set logsc option 238
set mapping option 187
set multiplot option 177
set mxtics option 124
set palette option 154
set pm3d hidden3d option 158
set samples 43
set size option 202
set style arrow option 329
set style fill option 329
set style histogram option 329
set style line option 329
set style option 328

set style rectangle option 330
set table option 60
set teminal command 201
set terminal aqua option 344
set terminal epslatex option 343
set terminal gif option 342
set terminal jpeg option 342
set terminal png option 342
set terminal postscript

option 342
set terminal svg option 344
set terminal windows option 344
set terminal wxt option 343
set terminal x11 option 344
set xmtics command 124
set xtics options 116
settings, default key 104
shell command 313
shifting curves 280
show command 50, 312
show palette command 156
show palette gradient

command 157
simplex plots 210
single blank lines 31
size

directive 206
option 326
terminals 202

size ratio 106
slideshows 232
smooth directive 32, 35

cumulative feature 260
frequency function 256
kdensity function 258

smooth surfaces 149
smoothing

kernels 150
noisy data 35

software requirements xxix
solid keyword 205
source tree layouts 306
SourceForge web site 308
Space shuttle xxvi
specifying

color 87
fonts 210
size of PostScript images 210

spectrum 104
splines 150, 249
splot command 26, 134, 145, 312

dgrid3d option 149
grid format 146
matrix format 148
smooth surfaces 149

spread 280
src/ directory 306
stacked graph 293
stacked histogram style 76
standalone option 216
standard deviation 4, 79,

261, 280
star plots 270
statistical analysis 11
statistics

counting 256
resources 346

StatLib’s Data and Story Library
web site 249

steps style 72
str type indicator xxviii
strings 55, 223

applications 57
data files 54
examples 54, 57
functions 56, 318
indexing 56
macros 223
overview 55
quotes 55
variables 224

styles 21
custom arrow 96
custom line 86
customizing 85
function option 50
options 328

subprocesses
capturing output 225
CGI script 241
commands 313

sunspots 284
suppressing colorbox 159
surface option 136, 336
surface plots 136

See also splot command
SVG terminal 208
symbol font options 340
system command 313
system() function 225

T

table option 339
tabular environment 217
Taylor expansion 18
terminals 200

appearance options 205
aqua 219
capabilities 69

359

terminals (continued)
common options 202
dumb 220
enhanced text mode 202
epslatex 212
exporting graphs to files 201
fig 220
flushing output channels 205
font 202
gpic 220
graphics file formats 206
handling commands 313
interactive 218
JPG 208
LaTeX documents 211
Mac OS X 219
option 339
PDF 217
PNG 207
pop 201
PostScript 209
print-quality output 209
push 201
size 202
SVG 208
tgif 220
Unix 219
window 219
wxt 218
x11 219

terminology (axes) 111
termoption option 339
ternary operators 321
test command 69, 314
test palette command 155–156
testing palettes 156
text labels 97

axis labels 98
title 98

textual output
generating 59
print command 59
set table option 60

tgif terminal 220
thermodynamics of phase

transitions 179
three-dimensional plots 133

borders 142
contour plot options 136
coordinate axes 141
creating 135
grid format 146
matrix format 148
options 335
smooth surfaces 149

splot command 145
surface plot options 136
view point 141, 143

thumbnails, creating 208
tic labels, formatting 118
tic marks 116

adding 117
major 116
minor 117

_tics option 333
ticscale option 334
time column handling

functions 319
time options 334
time series 124, 127, 252
time series mode 129
time series styles 80
timefmt option 334
timestamp option 328
title directive 9, 177
title keyword 22
title label 98
title option 328
title strings 54
transformations 273, 275

data 41
transparent option 207
tree-rings palette 168
trianglepattern keyword 138
trigonometric functions 316
truncation 280

data 282
edge effects 282

turning key on/off 101
type indicators for user-supplied

parameters xxviii

U

UCI Machine Learning Reposi-
tory web site 246, 265

unary operators 320
understanding data with

graphs 10, 301
unique directive 32, 35
Unix

building gnuplot 306
input/output redirection 226
password plotting 58
terminals 219

unset colorbox command 159
unset command 50, 313
unset multiplot command 176
unsorted data files examples 33
update command 314

upwards keyword 177
user-defined

functions 39
variables 39

using directive 24, 192

V

valid() function 43
variables

categorical 134
control 193
environmental 194, 234
keyboard event 238
mouse event 238
output 193
string 224
user-defined 39

vector fields 188
plotting 188

versions, release/
development 303

view option 336
view point, three-dimensional

plots 143
visualization concepts 10

W

watermarking plots 227
web sites

freefont project 207
gnuplot 239, 305
libgd library 206
resources 345
SourceForge 308
StatLib’s Data and Story

Library 249
UCI Machine Learning

Repository 246, 265
web traffic 252
Williams, Thomas (software

developer) 13
Windows

building gnuplot 308
installing gnuplot 304

windows terminal 219
with boxes style 257
with directive 21
with labels style 84
workspace, configuring 234
wxt terminal 218

360

X

X11 308
x11 terminal 219
xticlabels() function 122
xyplane option 142, 336

Y

yticlabels() function 122, 263

Z

z value 280

zero axes 123
zero included in range 291
zero option 324
zeroaxis option 334
z-score 274

ISBN 13: 978-1-933988-39-9
ISBN 10: 1-933988-39-8

9 7 8 1 9 3 3 9 8 8 3 9 9

99435

G nuplot is an open source graphics program that helps you
analyze, interpret, and present numerical data. Available
for Unix, Mac, and Windows, it is well maintained, very

Gnuplot in Action is a comprehensive tutorial written for all
gnuplot users: data analysts, computer professionals, scientists,
researchers, and others. It shows how to apply gnuplot to data
analysis problems. It gets into tricky and poorly documented
areas. You’ll quickly move from basic charts to advanced graph-
ics, mastering powerful techniques like multi-dimensional
and false-color plots. You’ll also learn scripting techniques for
unattended batch jobs or how to use gnuplot to generate web
graphics on demand.

! is book does not require programming skills, nor previous
knowledge of gnuplot.

What’s Inside
Generate simple and complex graphics
Graphic methods to understand data
Scripting and advanced visualization

Philipp K. Janert has been a
gnuplot power user for over 15 years, in business and academic
environments. He holds a Ph.D. in theoretical physics.

For online access to the author and a free ebook for owners
of this book, go to manning.com / GnuplotinAction

$34.99 / Can $43.99 [INCLUDING eBOOK]

Gnuplot IN ACTION Philipp K. Janert

O PEN S O URCE/DATA VISUALIZATI O N

FOREWORDS BY COLIN D. KELLEY AND THOMAS WILLIAMS

“Knee-deep in data? ! is is your
 guidebook to exploring it with
 gnuplot.”
 —Austin King
 Senior Web Developer, Mozilla

“Sparkles with insight about
 visualization, image perception,
 and data exploration.”
 —Richard B. Kreckel, Hacker and
 Physicist, GiNaC.de

“Incredibly useful for begin-
 ners—indispensible for
 advanced users.”
 —Mark Pruett, Systems Architect
 Dominion

“Bridges the gap between
 gnuplot’s reference manual
 and real-world problems.”
 —Mitchell Johnson
 So" ware Developer, Border Stylo

“A Swiss Army knife for
 plotting data.”
 —Nishanth Sastry, Computer

 Cambridge/IBM

M A N N I N G

SEE INSERT

