

Getting	Started	with	tmux

Table	of	Contents

Getting	Started	with	tmux

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Errata

Piracy

Questions

1.	Jump	Right	In

Running	tmux

Sessions

Naming	the	session

The	window	string

Creating	another	window

The	prefix	key

Help	on	key	bindings

Searching	for	text

Detaching	and	attaching

Explaining	tmux	commands

Tab	completion

Aliases

Renaming	windows

Killing	windows

Summary

2.	Configuring	tmux

Using	the	set-option	command

Creating	a	tmux	configuration	file

Emacs	or	vi	mode

Enabling	mouse	modes

Changing	the	status	bar

Modifying	the	background	color	of	the	status	bar

Reloading	the	configuration

Changing	the	foreground	color	of	the	status	bar

Highlighting	the	active	window

Binding	keys

Viewing	current	bindings

Chaining	multiple	commands	to	a	single	key

Comments	in	the	configuration	file

Binding	a	new	prefix	key

Binding	keys	without	the	prefix	key

Unbinding	keys

Status	bar	revisited

Option	types

Handy	configuration	tips

Binding	the	double	tapping	of	the	prefix	key	to	last-window

Changing	the	escape	time

Lengthening	the	history	limit

Lengthening	the	display	time

Starting	the	base	index	at	1

Accessing	the	man	page

Show	options

Summary

3.	Sessions,	Windows,	and	Panes

Overviews

Sessions

Windows

Panes

Playing	around	with	sessions,	windows,	and	panes

Multiple	sessions

Multiple	panes

Working	with	more	panes

Zooming	panes

Resizing	panes

Switching	between	panes	by	number

Cycling	through	pane	layouts

Other	pane	operations

Summary

4.	Manipulating	Text

Explaining	the	Window	history

Explaining	the	different	tmux	modes

A	sample	workflow	with	Copy	mode	workflow

Entering	Copy	mode

Moving	the	cursor	around

Scrolling	through	the	Window	history

Jump	by	search	or	line

Leaving	Copy	mode

Copying	text	into	the	paste	buffer

Interacting	with	the	paste	buffer

Pasting	text	from	the	paste	buffer

Choosing	items	from	the	paste	buffer

Working	with	the	paste	buffer

Summary

5.	Diving	Deeper

Understanding	tmux	commands	and	Command	mode

Advanced	paste	buffer	usage

Saving	a	paste	buffer	to	a	file

Loading	a	paste	buffer	from	a	file

Setting	a	paste	buffer	directly

Capturing	pane	contents	in	a	paste	buffer

Deleting	copied	text	from	a	paste	buffer

Clearing	the	paste	buffer	history

An	advanced	session	and	window	usage

Jumping	from	one	window	in	a	session	to	another	window	in	another	session

Moving	windows

Linking	a	window	between	sessions

Breaking	panes

Joining	panes

Launching	with	defaults

Summary

6.	tmux	for	SSH,	Pair	Programming,	and	More

Using	tmux	over	SSH	for	long	lived	sessions

Benefits	of	using	Vagrant

Creating	a	virtual	machine	with	Vagrant

Walking	through	a	sample	workflow	with	tmux	over	SSH

Launching	tmux	on	SSH	connect	automatically

Using	tmux	for	pair	programming

Connecting	to	the	same	session	locally

Vagrant	Cloud	for	better	security	pair	programming

Using	grouped	sessions	for	pairing

Summary

7.	Using	Other	Tools	with	tmux

Using	tmux	with	the	OS	X	Pasteboard

tmux	configuration	from	the	maximum-awesome	project,	by	Square

Using	tmuxinator	to	make	session	management	easier

Installing	tmuxinator

Understanding	the	tmuxinator	configuration

Revisiting	the	commented	lines

Summarizing	tmuxinator

Using	wemux	to	ease	multiuser	experience

Explaining	the	wemux	modes

Explaining	other	wemux	additions	to	tmux

Listing	other	tools	to	be	used	with	tmux

Summary

A.	Appendix

Why	tmux?

The	configuration	reference

Key	binding	and	command	reference

Chapter	1	–	Jump	Right	In

Chapter	2	–	Configuring	tmux

Chapter	3	–	Sessions,	Windows,	and	Panes

Chapter	4	–	Manipulating	Text

Chapter	5	–	Diving	Deeper

Index

Getting	Started	with	tmux

Getting	Started	with	tmux
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	September	2014

Production	reference:	1170914

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-516-6

www.packtpub.com

http://www.packtpub.com

Credits
Author

Victor	Quinn,	J.D.

Reviewers

Anders	Damsgaard

Azat	Khuzhin

Jason	Lotito

Thomas	Ferris	Nicolaisen

Gustavo	Sampaio

Ian	Yang

(Bang	Yongbae)

Commissioning	Editor

Kartikey	Pandey

Acquisition	Editor

Harsha	Bharwani

Content	Development	Editor

Akshay	Nair

Technical	Editor

Aman	Preet	Singh

Copy	Editors

Roshni	Banerjee

Gladson	Monteiro

Stuti	Srivastava

Project	Coordinator

Swati	Kumari

Proofreaders

Ting	Baker

Ameesha	Green

Indexer

Tejal	Soni

Graphics

Abhinash	Sahu

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Author
Victor	Quinn,	J.D.,	is	a	technology	leader,	programmer,	and	systems	architect	whose	area
of	expertise	is	leading	teams	to	build	APIs	and	backend	systems.

Currently,	he	is	building	the	API	and	backend	system	for	SocialRadar,	which	is	a	startup
that	builds	mobile	apps	that	provide	real-time	information	on	people	around	you.

Prior	to	joining	SocialRadar,	Victor	led	a	rewriting	of	the	financial	processing	online
forms	and	APIs	for	NGP	VAN,	which	is	a	company	that	processed	billions	of	dollars	in
campaign	contributions	during	the	election	year	of	2012.	The	system	he	orchestrated	is	on
track	to	process	even	more	contributions	in	the	coming	election	years.	He	led	his	team	to
build	a	system	that	included	auto-filling	and	a	sign-on	system,	enabling	future
contributions	with	a	single	click.	All	of	these	features	were	rolled	up	in	a	JavaScript	single
page	app,	making	a	fully	functional	payment	processing	form	embeddable	into	even	a
static	web	page	with	a	single	tag.

He	has	spent	many	years	honing	his	skills	with	command-line	tools	such	as	tmux	in	order
to	be	maximally	efficient	in	his	work.	His	editor	of	choice	is	Emacs	and	he	uses	the
Dvorak	keyboard	layout.

He	has	Bachelor	of	Science	degrees	in	Physics	and	Computer	Science	from	the	University
of	Massachusetts	Amherst	and	a	Juris	Doctor	with	focus	on	Intellectual	Property	Law
from	Western	New	England	University.	He	is	an	Eagle	Scout	and	a	registered	patent	agent.

He	lives	in	the	Washington,	D.C.,	metro	area	with	his	wife	and	Great	Dane	and	enjoys
brewing	his	own	beer	and	riding	his	Harley.

Acknowledgments
Thank	you	my	amazing	wife,	Susan,	for	your	infinite	patience	and	support	through	four-
and-a-half	years	of	working	full-time	while	attending	law	school	and	then	more	years	of
working	startup	hours	while	undertaking	innumerable	side	projects,	including	this	book.
Your	unending	support	propels	me	and	allows	me	to	continually	work	toward	building	an
awesome	life	for	our	future.

Thank	you	my	parents,	without	whose	support	early	on,	I	would	not	have	become	the	man
I	am	today—ever	inquisitive,	constantly	pushing	the	boundaries	of	technology,	and	doing
things	most	others	do	not,	such	as	writing	books	like	this	one.	I	am	forever	grateful	to	you
both	for	my	excellent	start	in	life	and	your	loving	support	always!

About	the	Reviewers
Anders	Damsgaard	is	a	researcher	at	Aarhus	University	in	Denmark,	where	he	develops
applications	that	simulate	granular	and	glacier	mechanics.	He	believes	that	glaciers	are	a
key	component	in	the	climate	system	of	the	past,	present,	and	future,	and	a	deep
understanding	of	their	behavior	is	crucial	in	order	to	develop	credible	and	reliable
numerical	climate	models	for	the	warm	future	of	Earth.

In	order	to	overcome	the	large	computational	requirements	of	the	scientific	simulations,	he
has	turned	to	massively	parallel	modern	graphics-processing	units	in	large-scale	cluster
environments	and	has	developed	his	own	tools	using	primarily	CUDA	C	and	the	scientific
Python	stack	(Numpy,	Scipy,	and	Matplotlib).	The	design	and	daily	usage	of	high
performance	GNU/Linux	GPU	clusters	have	made	him	familiar	with	many	modern
POSIX-platform	developer	tools.

He	has	also	worked	with	computational	fluid	dynamics	and	land	surface	reconstruction
using	the	Structure-from-Motion	technique,	with	photos	taken	from	unmanned	aerial
vehicles.	He	is	an	advocate	of	free	software	and	digital	rights	and	runs	a	Tor	relay	from	his
home.

Azat	Khuzhin	is	currently	working	on	an	Internet	links	database	project,	crawling
websites	on	the	Internet,	and	building	index	that	currently	contains	more	than	100	billion
links.	He	likes	to	hack	projects	that	he	uses	every	day,	for	example,	Linux,	libevent,	and
others.	He	is	keen	on	investigating	complex	issues	such	as	when	one	has	to	go	to	the	final
software	bottom	layer	as	much	as	high	throughput	problems.

He	also	has	his	own	projects,	but	most	of	them	were	done	as	research	or	just	for	fun,	and
they	are	available	on	his	GitHub	profile.	He’s	the	type	of	guy	who	runs	strace	if	a	program
doesn’t	show	normal	errors	on	failure.

Thomas	Ferris	Nicolaisen	is	a	software	developer	who	blogs,	speaks,	and	podcasts	about
tooling	and	techniques	for	programmers.	He	continuously	keeps	a	check	on	what	the	great
command-line	utilities	on	all	platforms	are,	and	in	doing	so,	he	picked	up	tmux	some	years
ago.	Since	then,	he	has	been	using	and	enjoying	working	with	it	for	both	server	work	and
terminal	windows	on	the	desktop.

You	can	find	his	blog	at	www.tfnico.com	and	his	recent	podcast	project	on
www.gitminutes.com.

Gustavo	Sampaio	is	a	software	developer	with	different	kinds	of	specializations.	He	has
experience	with	a	lot	of	programming	languages	and	various	platforms	(Android,	iOS,
Windows,	Linux,	Web,	and	the	microcontroller	Arduino).

He	has	also	worked	with	digital	image	processing	and	computer	graphics,	including
advanced	rendering	techniques	(global	illumination,	shaders,	raytracing,	and	so	on),
natural	language	processing	(the	Naive	Bayes	classifier	and	POS	Tagger),	and	parallel
computing	using	the	OpenMPI	library.

He	is	currently	studying	Computer	Science	and	has	publications	in	his	fields.

http://www.tfnico.com
http://www.gitminutes.com

Ian	Yang	has	several	years	of	software	development	experience.	Playing	with	various
productivity	tools	is	one	of	the	things	he	loves.	He	is	also	a	keyboard	enthusiast	who
prefers	to	finish	the	job,	mostly	using	keyboard.	tmux	is	one	of	his	favorite	tools.

He	has	worked	remotely	for	several	years	as	a	web	developer.	He	is	currently	running	a
mobile	game	start-up	as	the	co-founder	and	CTO.

(Bang	Yongbae)	was	a	student	of	School	of	Computer	Science	and	Engineering	of	Seoul
National	University	in	the	Republic	of	Korea	until	last	year.	He	was	attracted	to	Ubuntu,
Vim,	and	tmux,	and	therefore,	he	is	always	working	with	them	now.	He	often	says	“black
background,	white	text”,	which	is	the	reverse	of	a	Korean	proverb.

He	graduated	recently	and	is	now	an	intern	at	a	small	start-up,	HyperConnect,	that
services	an	Android	voice	chat,	Azar.	His	part	is	making	a	web	tool	that	manages	their
service	with	Python,	HTML,	JavaScript,	WebRTC,	and	WebSocket.

He	will	apply	to	graduate	school	next	year	to	study	more	about	computer	science.	He	has
big	dreams,	as	he	is	young.	He	believes	that	the	computer	has	a	super	power	that	will	lead
the	future	world.	He	is	proud	of	his	major	and	always	puts	on	his	thinking	cap	on	how	to
use	it	effectively	to	make	the	world	better.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
tmux	is	rapidly	becoming	the	de	facto	standard	with	regards	to	terminal	multiplexers	with
its	breadth	of	features	and	ease	of	configuration.	It	is	one	of	the	fastest	growing	tools	in
the	developer’s	toolkit	due	to	its	power	in	maximizing	the	productivity	of	a	terminal
window.	Developers	spending	a	large	amount	of	time	in	the	terminal	will	benefit	greatly
from	learning	how	to	utilize	tmux	and	its	powerful	features.	By	taking	a	single	terminal
window	and	turning	it	into	multiple	windows,	each	with	their	own	state,	tmux	is	like	a
supercharger	for	your	console.

We	will	begin	with	a	simple	introduction	to	tmux	and	learn	some	ways	in	which	it	can
help	increase	productivity	in	your	daily	terminal	usage.	From	there,	we’ll	move	on	to
configuring	and	customizing	tmux	to	make	it	work,	look,	and	feel	the	way	that	best	suits
your	needs.	Along	the	way,	we	have	tutorials	and	screenshots	aplenty	so	that	you	can
follow	along	and	avoid	feeling	lost.	We’ll	also	explain	some	of	the	core	concepts	of	tmux,
including	the	way	it	uses	sessions,	windows,	and	panes	in	order	to	divide	content	and
running	programs.

After	learning	some	of	these	beginner	topics,	we	will	dive	into	some	advanced	tmux
concepts.	We’ll	touch	on	how	to	perform	text	manipulation	to	copy	and	paste	text	from
one	window	to	another	or	even	to	and	from	a	file.	We’ll	learn	how	to	use	tmux	for	fault-
tolerant	SSH	sessions	or	pair	programming,	and	we	will	finish	by	discussing	some	other
open	source	tools	that	can	be	used	alongside	tmux	in	order	to	help	make	it	even	more
powerful.

tmux	is	an	incredibly	capable	tool,	which	has	some	concepts	that	can	be	tricky	to	grasp.
This	book	will	help	demystify	some	of	these	tricky	bits	with	many	explanations	and	rich
examples	in	a	manner	that	cannot	be	found	in	the	tmux	man	page.

By	the	end	of	book,	you	will	have	a	much	richer	understanding	of	tmux	and	its	capabilities
and	all	the	tools	necessary	to	turbocharge	your	terminal	experience.	This	book	covers	the
following	topics:

Chapter	1,	Jump	Right	In,	will	have	us	really	hit	the	ground	running,	taking	us	through	a
typical	tmux	workflow,	explaining	everything	along	the	way.	This	allows	us	to	experience
how	tmux	can	be	useful	and	illustrating	how	it	can	be	integrated	into	your	daily	workflow.

Chapter	2,	Configuring	tmux,	will	teach	us	how	to	change	and	configure	almost	anything
about	tmux’s	behavior,	from	the	way	it	looks	and	feels	to	the	commands	it	executes	on	the
load.	You	can	even	configure	every	key	combination	to	which	tmux	responds.	In	this
chapter,	we	will	cover	the	various	ways	to	configure	tmux	and	customize	it	for	your
workflow.

Chapter	3,	Sessions,	Windows,	and	Panes,	will	help	us	learn	all	about	sessions,	windows,
and	panes.	These	are	the	fundamental	components	that	make	up	the	window	management
feature	of	tmux	and	this	chapter	will	help	us	understand	what	they	are	and	how	they	relate.
We	will	learn,	through	example,	many	ways	we	can	work	with	them	in	order	to
turbocharge	our	terminal	with	tmux.

Chapter	4,	Manipulating	Text,	helps	us	learn	about	the	powerful	tools	of	tmux	for	text
manipulation.	These	tools	take	the	form	of	Copy	mode	and	paste	buffers,	and	we	will
learn	more	about	them	and	how	to	use	them	for	very	powerful	text	manipulation	with
features	such	as	scrolling	through	text	that	has	scrolled	off	screen	and	copying	text	from
anywhere	in	the	window	history	and	pasting	it,	often	without	ever	needing	to	reach	for
your	mouse.

Chapter	5,	Diving	Deeper,	touches	on	some	more	nuanced	aspects	of	topics	we	have
covered	already.	These	topics	include	tmux	commands	and	its	Command	mode,	advanced
paste	buffer	usage,	and	some	advanced	usage	of	windows	and	panes.	We’ll	finish	it	off
with	learning	how	to	launch	a	tmux	session	with	some	default	windows.

Chapter	6,	tmux	for	SSH,	Pair	Programming,	and	More,	will	walk	us	through	a	couple	of
usage	patterns	that	can	prove	to	be	powerful.	It	will	help	us	learn	about	using	tmux	over
SSH	for	long-lived	sessions	for	pair	programming,	and	along	the	way,	we	will	use	Vagrant
for	some	predictability	and	security.

Chapter	7,	Using	Other	Tools	with	tmux,	will	allow	us	to	discuss	some	third-party	tools
that	can	run	along	with	tmux	and	add	more	powerful	features.	We’ll	learn	about
tmuxinator,	which	simplifies	the	tmux	launch	configuration	and	wemux,	which	brings	the
tmux	multiuser	experience	to	a	whole	new	level.	We’ll	learn	about	these	along	with	a	few
other	tricks	and	utilities.

Appendix	contains	three	sections,	namely	Why	tmux?,	The	configuration	reference,	and
Key	binding	and	command	reference.

What	you	need	for	this	book
A	computer	running	tmux	1.8+	(Unix,	Linux,	or	OS	X)	which	can	be	downloaded	from
the	following	link:

http://tmux.sourceforge.net

http://tmux.sourceforge.net

Who	this	book	is	for
The	book	is	intended	for	software	developers,	DevOps	engineers,	and	other	professionals
who	make	heavy	use	of	the	terminal	in	their	daily	workflow.	Some	familiarity	with	the
terminal	is	useful	but	no	prior	experience	with	tmux	or	other	terminal	multiplexers	(such
as	GNU	Screen)	is	required.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

When	we	are	describing	a	key	to	press,	it	will	appear	in	italics,	like	this:	“Please	press	the
letter	b	now”	Often	we	will	describe	a	key	combination,	which	means	pressing	multiple
keys	at	the	same	time,	it	will	appear	like	this:	Ctrl	+	b.	That	means	hold	down	the	Control
key	and	press	the	letter	b.	We	will	also	see	multiple	key	combinations,	to	be	pressed	in
series.	They	will	appear	separated	by	a	comma	and	will	appear	like	this:	Ctrl	+	b,	c.	That
means	hold	down	the	Ctrl	key	and	press	the	letter	b,	then	release	both	keys	and	press	the
letter	c.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Simply
run	the	tmux	command	show-options	with	a	flag	for	which	set	of	options	you	want	to
view.”

A	block	of	configuration	code	is	set	as	follows:

#	Set	the	status	bar	background	to	blue

set-option	-g	status-bg	blue

#	Set	the	status	bar	text	to	white

set-option	-g	status-fg	white

#	Set	the	active	window	background	in	the	status	bar

set-window-option	–g	window-status-current-bg	magenta

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

#	Set	the	active	window	background	in	the	status	bar

set-window-option	–g	window-status-current-bg	magenta

#	Rebind	the	prefix	key

set-option	-g	prefix	C-t

#	Add	a	key	binding	for	reloading	our	configuration

bind-key	C-r	source-file	~/.tmux.conf

Any	command-line	input	or	output	is	written	as	follows:

$	tmux	attach-session	–t	tutorial

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“You	will	see	Search	Up:
appear	in	the	lower	left-hand	corner.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	through	the	subject	of	your	message.

You	can	also	follow	or	tweet	the	author	directly	on	Twitter	as	@victorquinn.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/support,
selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the	details
of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the
errata	will	be	uploaded	to	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.

http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Jump	Right	In
Welcome!	In	this	book,	you	will	learn	about	tmux,	a	command-line	program	that	can	help
maximize	your	productivity.	It	will	do	this	by	allowing	you	to	control	many	virtual
windows	and	processes	from	a	single	window,	reducing	your	need	to	use	your	mouse	and
allowing	you	to	detach	and	restore	sessions	later	in	the	same	state	you	left	them.	For	more
on	why	tmux	rocks,	see	the	Why	tmux?	section	in	Appendix.

We	will	eventually	go	over	many	of	the	concepts	mentioned	in	this	chapter	in	greater
detail,	but	the	best	way	to	start	getting	familiar	with	everything	is	to	jump	right	in.

So,	in	this	chapter,	we’ll	do	just	that:	go	on	a	little	tour,	simulate	an	everyday	use	of	tmux,
and	point	out	some	key	concepts	along	the	way.	Fear	not,	if	everything	is	not	clear	after
the	chapter,	it	will	be	covered	later;	this	is	just	meant	to	be	the	first	exposure.

Tip
tmux	is	short	for	Terminal	Multiplexer.

Running	tmux
For	now,	let’s	jump	right	in	and	start	playing	with	it.	Open	up	your	favorite	terminal
application	and	let’s	get	started.	Just	run	the	following	command:

$	tmux

You’ll	probably	see	a	screen	flash,	and	it’ll	seem	like	not	much	else	has	happened;	it	looks
like	you’re	right	where	you	were	previously,	with	a	command	prompt.	The	word	tmux	is
gone,	but	not	much	else	appears	to	have	changed.

However,	you	should	notice	that	now	there	is	a	bar	along	the	bottom	of	your	terminal
window.	This	can	be	seen	in	the	following	screenshot	of	the	terminal	window:

Congratulations!	You’re	now	running	tmux.

That	bar	along	the	bottom	is	provided	by	tmux.	We	call	this	bar	the	status	line.	The	status
line	gives	you	information	about	the	session	and	window	you	are	currently	viewing,	which
other	windows	are	available	in	this	session,	and	more.

Some	of	what’s	on	that	line	may	look	like	gibberish	now,	but	we’ll	learn	more	about	what
things	mean	as	we	progress	through	this	book.	We’ll	also	learn	how	to	customize	the
status	bar	to	ensure	it	always	shows	the	most	useful	items	for	your	workflow.	These
customizations	include	things	that	are	a	part	of	tmux	(such	as	the	time,	date,	server	you	are
connected	to,	and	so	on)	or	things	that	are	in	third-party	libraries	(such	as	the	battery	level
of	your	laptop,	current	weather,	or	number	of	unread	mail	messages).

Sessions
By	running	tmux	with	no	arguments,	you	create	a	brand	new	session.	In	tmux,	the	base
unit	is	called	a	session.	A	session	can	have	one	or	more	windows.	A	window	can	be
broken	into	one	or	more	panes.	We’ll	revisit	this	topic	in	its	own	whole	chapter	(for	more
information,	refer	to	Chapter	3,	Sessions,	Windows,	and	Panes);	however,	as	a	sneak
preview,	what	we	have	here	on	the	current	screen	is	a	single	pane	taking	up	the	whole
window	in	a	single	session.	Imagine	that	it	could	be	split	into	two	or	more	different
terminals,	all	running	different	programs,	and	each	visible	split	of	the	terminal	is	a	pane.
More	on	this	will	be	covered	in	the	later	chapters.

Tip
What	is	a	session	in	tmux?

It	may	be	useful	to	think	of	a	tmux	session	as	a	login	on	your	computer.

You	can	log	on	to	your	computer,	which	initiates	a	new	session.	After	you	log	on	by
entering	your	username	and	password,	you	arrive	at	an	empty	desktop.	This	is	similar	to	a
fresh	tmux	session.	You	can	run	one	or	more	programs	in	this	session,	where	each
program	has	its	own	window	or	windows	and	each	window	has	its	own	state.

In	most	operating	systems,	there	is	a	way	for	you	to	log	out,	log	back	in,	and	arrive	back	at
the	same	session,	with	the	windows	just	as	you	left	them.	Often,	some	of	the	programs	that
you	had	opened	will	continue	to	run	in	the	background	when	you	log	out,	even	though
their	windows	are	no	longer	visible.

A	session	in	tmux	works	in	much	the	same	way.	So,	it	may	be	useful	to	think	of	tmux	as	a
mini	operating	system	that	manages	running	programs,	windows,	and	more,	all	within	a
session.

You	can	have	multiple	sessions	running	at	the	same	time.	This	is	convenient	if	you	want	to
have	a	session	for	each	task	you	might	be	working	on.	You	might	have	one	for	an
application	you	are	developing	by	yourself	and	another	that	you	could	use	for	pair
programming.	Alternatively,	you	might	have	one	to	develop	an	application	and	one	to
develop	another.	This	way	everything	can	be	neat	and	clean	and	separate.

Naming	the	session
Each	session	has	a	name	that	you	can	set	or	change.

Notice	the	[0]	at	the	very	left	of	the	status	bar?	This	is	the	name	of	the	session	in	brackets.
Here,	since	you	just	started	tmux	without	any	arguments,	it	was	given	the	name	0.
However,	this	is	not	a	very	useful	name,	so	let’s	change	it.

In	the	prompt,	just	run	the	following	command:

$	tmux	rename-session	tutorial

This	tells	tmux	that	you	want	to	rename	the	current	session	and	tutorial	is	the	name	you’d
like	it	to	have.	Of	course,	you	can	name	it	anything	you’d	like.	You	should	see	that	your
status	bar	has	now	been	updated,	so	now	instead	of	[0]	on	the	left-hand	side,	it	should	now
say	[tutorial].	Here’s	a	screenshot	of	my	screen:

Of	course,	it’s	nice	that	the	status	bar	now	has	a	pretty	name	we	defined	rather	than	0,	but
it	provides	many	more	utilities	than	this,	as	we’ll	see	in	a	bit!

It’s	worth	noting	that	here	we	were	giving	a	session	a	name,	but	this	same	command	can
also	be	used	to	rename	an	existing	session.

The	window	string
The	status	bar	has	a	string	that	represents	each	window	to	inform	us	about	the	things	that
are	currently	running.	The	following	steps	will	help	us	to	explore	this	a	bit	more:

1.	 Let’s	fire	up	a	text	editor	to	pretend	we’re	doing	some	coding:

$	nano	test

2.	 Now	type	some	stuff	in	there	to	simulate	working	very	hard	on	some	code:

First	notice	how	the	text	blob	in	our	status	bar	just	to	the	right	of	our	session	name
([tutorial])	has	changed.	It	used	to	be	0:~*	and	now	it’s	0:nano*.	Depending	on	the
version	of	tmux	and	your	chosen	shell,	yours	may	be	slightly	different	(for	example,
0:bash*).	Let’s	decode	this	string	a	bit.

This	little	string	encodes	a	lot	of	information,	some	of	which	is	provided	in	the	following
bullet	points:

The	zero	in	the	front	represents	the	number	of	the	window.	As	we’ll	shortly	see,	each
window	is	given	a	number	that	we	can	use	to	identify	and	switch	to	it.
The	colon	separates	the	window	number	from	the	name	of	the	program	running	in
that	window.
The	symbols	~	or	nano	in	the	previous	screenshot	are	loosely	names	of	the	running
program.	We	say	“loosely”	because	you’ll	notice	that	~	is	not	the	name	of	a	program,
but	was	the	directory	we	were	visiting.	tmux	is	pretty	slick	about	this;	it	knows	some
state	of	the	program	you’re	using	and	changes	the	default	name	of	the	window
accordingly.	Note	that	the	name	given	is	the	default;	it’s	possible	to	explicitly	set	one
for	the	window,	as	we’ll	see	later.
The	symbol	*	indicates	that	this	is	the	currently	viewed	window.	We	only	have	one	at
the	moment,	so	it’s	not	too	exciting;	however,	once	we	get	more	than	one,	it’ll	be
very	helpful.

Creating	another	window
OK!	Now	that	we	know	a	bit	about	a	part	of	the	status	line,	let’s	create	a	second	window
so	we	can	run	a	terminal	command.	Just	press	Ctrl	+	b,	then	c,	and	you	will	be	presented
with	a	new	window!

A	few	things	to	note	are	as	follows:

Now	there	is	a	new	window	with	the	label	1:~*.	It	is	given	the	number	1	because	the
last	one	was	0.	The	next	will	be	2,	then	3,	4,	and	so	on.
The	asterisk	that	denoted	the	currently	active	window	has	been	moved	to	1	since	it	is
now	the	active	one.
The	nano	application	is	still	running	in	window	0.
The	asterisk	on	window	0	has	been	replaced	by	a	hyphen	(-).	The	-	symbol	denotes
the	previously	opened	window.	This	is	very	helpful	when	you	have	a	bunch	of
windows.

Let’s	run	a	command	here	just	to	illustrate	how	it	works.	Run	the	following	commands:

$	echo	"test"	>	test

$	cat	test

The	output	of	these	commands	can	be	seen	in	the	following	screenshot:

This	is	just	some	stuff	so	we	can	help	identify	this	window.	Imagine	in	the	real	world
though	you	are	moving	a	file,	performing	operations	with	Git,	viewing	log	files,	running
top,	or	anything	else.

Let’s	jump	back	to	window	0	so	we	can	see	nano	still	running.	Simply	press	Ctrl	+	b	and	l
to	switch	back	to	the	previously	opened	window	(the	one	with	the	hyphen;	l	stands	for	the
last).	As	shown	in	the	following	screenshot,	you’ll	see	that	nano	is	alive,	and	well,	it	looks
exactly	as	we	left	it:

The	prefix	key
There	is	a	special	key	in	tmux	called	the	prefix	key	that	is	used	to	perform	most	of	the
keyboard	shortcuts.	We	have	even	used	it	already	quite	a	bit!	In	this	section,	we	will	learn
more	about	it	and	run	through	some	examples	of	its	usage.

You	will	notice	that	in	the	preceding	exercise,	we	pressed	Ctrl	+	b	before	creating	a
window,	then	Ctrl	+	b	again	before	switching	back,	and	Ctrl	+	b	before	a	number	to	jump
to	that	window.

When	using	tmux,	we’ll	be	pressing	this	key	a	lot.	It’s	even	got	a	name!	We	call	it	the
prefix	key.	Its	default	binding	in	tmux	is	Ctrl	+	b,	but	you	can	change	that	if	you	prefer
something	else	or	if	it	conflicts	with	a	key	in	a	program	you	often	use	within	tmux.	You
can	send	the	Ctrl	+	b	key	combination	through	to	the	program	by	pressing	Ctrl	+	b	twice
in	a	row;	however,	if	it’s	a	keyboard	command	you	use	often,	you’ll	most	likely	want	to
change	it.	This	key	is	used	before	almost	every	command	we’ll	use	in	tmux,	so	we’ll	be
seeing	it	a	lot.

From	here	on,	if	we	need	to	reference	the	prefix	key,	we’ll	do	it	like	<Prefix>.	This	way	if
you	rebind	it,	the	text	will	still	make	sense.	If	you	don’t	rebound	it	or	see	<Prefix>,	just
type	Ctrl	+	b.

Let’s	create	another	window	for	another	task.	Just	run	<Prefix>,	c	again.	Now	we’ve	got
three	windows:	0,	1,	and	2.	We’ve	got	one	running	nano	and	two	running	shells,	as	shown
in	the	following	screenshot:

Some	more	things	to	note	are	as	follows:

Now	we	have	window	2,	which	is	active.	See	the	asterisk?
Window	0	now	has	a	hyphen	because	it	was	the	last	window	we	viewed.
This	is	a	clear,	blank	shell	because	the	one	we	typed	stuff	into	is	over	in	Window	1.

Let’s	switch	back	to	window	1	to	see	our	test	commands	above	still	active.	The	last	time
we	switched	windows,	we	used	<Prefix>,	l	to	jump	to	the	last	window,	but	that	will	not
work	to	get	us	to	window	1	at	this	point	because	the	hyphen	is	on	window	0.	So,	going	to

the	last	selected	window	will	not	get	us	to	1.

Thankfully,	it	is	very	easy	to	switch	to	a	window	directly	by	its	number.	Just	press
<Prefix>,	then	the	window	number	to	jump	to	that	window.	So	<Prefix>,	1	will	jump	to
window	1	even	though	it	wasn’t	the	last	one	we	opened,	as	shown	in	the	following
screenshot:

Sure	enough,	now	window	1	is	active	and	everything	is	present,	just	as	we	left	it.	Now	we
typed	some	silly	commands	here,	but	it	could	just	as	well	have	been	an	active	running
process	here,	such	as	unit	tests,	code	linting,	or	top.	Any	such	process	would	run	in	the
background	in	tmux	without	an	issue.

Tip
This	is	one	of	the	most	powerful	features	of	tmux.

In	the	traditional	world,	to	have	a	long-running	process	in	a	terminal	window	and	get
some	stuff	done	in	a	terminal,	you	would	need	two	different	terminal	windows	open;	if
you	accidentally	close	one,	the	work	done	in	that	window	will	be	gone.

tmux	allows	you	to	keep	just	one	terminal	window	open,	and	this	window	can	have	a
multitude	of	different	windows	within	it,	closing	all	the	different	running	processes.
Closing	this	terminal	window	won’t	terminate	the	running	processes;	tmux	will	continue
humming	along	in	the	background	with	all	of	the	programs	running	behind	the	scenes.

Help	on	key	bindings
Now	a	keen	observer	may	notice	that	the	trick	of	entering	the	window	number	will	only
work	for	the	first	10	windows.	This	is	because	once	you	get	into	double	digits,	tmux	won’t
be	able	to	tell	when	you’re	done	entering	the	number.	If	this	trick	of	using	the	prefix	key
plus	the	number	only	works	for	the	first	10	windows	(windows	0	to	9),	how	will	we	select
a	window	beyond	10?

Thankfully,	tmux	gives	us	many	powerful	ways	to	move	between	windows.	One	of	my
favorites	is	the	choose	window	interface.

However,	oh	gee!	This	is	embarrassing.	Your	author	seems	to	have	entirely	forgotten	the
key	combination	to	access	the	choose	window	interface.	Don’t	fear	though;	tmux	has	a
nice	built-in	way	to	access	all	of	the	key	bindings.	So	let’s	use	it!

Press	<Prefix>,	?	to	see	your	screen	change	to	show	a	list	with	bind-key	to	the	left,	the	key
binding	in	the	middle,	and	the	command	it	runs	to	the	right.	You	can	use	your	arrow	keys
to	scroll	up	and	down,	but	there	are	a	lot	of	entries	there!

Thankfully,	there	is	a	quicker	way	to	get	to	the	item	you	want	without	scrolling	forever.

Press	Ctrl	+	s	and	you’ll	see	a	prompt	appear	that	says	Search	Down:,	where	you	can	type
a	string	and	it	will	search	the	help	document	for	that	string.

Note
Emacs	or	vi	mode

tmux	tries	hard	to	play	nicely	with	developer	defaults,	so	it	actually	includes	two	different
modes	for	many	key	combinations	tailored	for	the	two	most	popular	terminal	editors:
Emacs	and	vi.	These	are	referred	to	in	tmux	parlance	as	status-keys	and	mode-keys	that
can	be	either	Emacs	or	vi.

The	tmux	default	mode	is	Emacs	for	all	the	key	combinations,	but	it	can	be	changed	to	vi
via	configuration,	something	we’ll	cover	in	Chapter	2,	Configuring	tmux.	It	may	also	be
set	to	vi	automatically	based	on	the	global	$EDITOR	setting	in	your	shell.

If	you	are	used	to	Emacs,	Ctrl	+	s	should	feel	very	natural	since	it’s	the	command	Emacs
uses	to	search.

So,	if	you	try	Ctrl	+	s	and	it	has	no	effect,	your	keys	are	probably	in	the	vi	mode.	We’ll	try
to	provide	guidance	when	there	is	a	mode-specific	key	like	this	by	including	the	vi	mode’s
counterpart	in	parentheses	after	the	default	key.

For	example,	in	this	case,	the	command	would	look	like	Ctrl	+	s	(/)	since	the	default	is
Ctrl	+	s	and	/	is	the	command	in	the	vi	mode.

Type	in	choose-window	and	hit	Enter	to	search	down	and	find	the	choose-window	key
binding.	Oh	look!	There	it	is;	it’s	w:

However,	what	exactly	does	that	mean?

Well,	all	that	means	is	that	we	can	type	our	prefix	key	(<Prefix>),	followed	by	the	key	in
that	help	document	to	run	the	mentioned	command.	First,	let’s	get	out	of	these	help	docs.
To	get	out	of	these	or	any	screens	like	them,	generated	by	tmux,	simply	press	q	for	quit
and	you	should	be	back	in	the	shell	prompt	for	window	2.

If	you	ever	forget	any	key	bindings,	this	should	be	your	first	step.

Tip
A	nice	feature	of	this	key	binding	help	page	is	that	it	is	dynamically	updated	as	you
change	your	key	bindings.

Later,	when	we	get	to	Configuration,	you	may	want	to	change	bindings	or	bind	new
shortcuts.	They’ll	all	show	up	in	this	interface	with	the	configuration	you	provide	them
with.

Can’t	do	that	with	manpages!

Now,	to	open	the	choose	window	interface,	simply	type	<Prefix>,	w	since	w	was	the	key
shown	in	the	help	bound	to	choose-window	and	voilà:

Notice	how	it	nicely	lays	out	all	of	the	currently	open	windows	in	a	task-manager-like
interface.

It’s	interactive	too.	You	can	use	the	arrow	keys	to	move	up	and	down	to	highlight
whichever	window	you	like	and	then	just	hit	Enter	to	open	it.	Let’s	open	the	window	with
nano	running.	Move	up	to	highlight	window	0	and	hit	Enter.

You	may	notice	a	few	more	convenient	and	intuitive	ways	to	switch	between	the	currently
active	windows	when	browsing	through	the	key	bindings	help.	For	example,	<Prefix>,	p
will	switch	to	the	previous	window	and	<Prefix>,	n	will	switch	to	the	next	window.
Whether	refreshing	your	recollection	on	a	key	binding	you’ve	already	learnt	or	seeking	to
discover	a	new	one,	the	key	bindings	help	is	an	excellent	resource.

Searching	for	text
Now	we	only	have	three	windows	so	it’s	pretty	easy	to	remember	what’s	where,	but	what
if	we	had	30	or	300?	With	tmux,	that’s	totally	possible.	(Though,	this	is	not	terribly	likely
or	useful!	What	would	you	do	with	300	active	windows?)

One	other	convenient	way	to	switch	between	windows	is	to	use	the	find-window	feature.
This	will	prompt	us	for	some	text,	and	it	will	search	all	the	active	windows	and	open	the
window	that	has	the	text	in	it.

If	you’ve	been	following	along,	you	should	have	the	window	with	nano	currently	open
(window	0).	Remember	we	had	a	shell	in	window	1	where	we	had	typed	some	silly
commands?	Let’s	try	to	switch	to	that	one	using	the	find-window	feature.

Type	<Prefix>,	f	and	you’ll	see	a	find-window	prompt	as	shown	in	the	following
screenshot:

Here,	type	in	cat	test	and	hit	Enter.

You’ll	see	you’ve	switched	to	window	1	because	it	had	the	cat	test	command	in	it.

However,	what	if	you	search	for	some	text	that	is	ambiguous?	For	example,	if	you’ve
followed	along,	you	will	see	the	word	test	appear	multiple	times	on	both	windows	0	and
1.	So,	if	you	try	find-window	with	just	the	word	test,	it	couldn’t	magically	switch	right
away	because	it	wouldn’t	know	which	window	you	mean.

Thankfully,	tmux	is	smart	enough	to	handle	this.	It	will	give	you	a	prompt,	similar	to	the
choose-window	interface	shown	earlier,	but	with	only	the	windows	that	match	the	query
(in	our	case,	windows	0	and	1;	window	2	did	not	have	the	word	test	in	it).	It	also	includes
the	first	line	in	each	window	(for	context)	that	had	the	text.

Pick	window	0	to	open	it.

Detaching	and	attaching
Now	press	<Prefix>,	d.

Uh	oh!	Looks	like	tmux	is	gone!	The	familiar	status	bar	is	no	more	available.	The
<Prefix>	key	set	does	nothing	anymore.

You	may	think	we	the	authors	have	led	you	astray,	causing	you	to	lose	your	work.	What
will	you	do	without	that	detailed	document	you	were	writing	in	nano?

Fear	not	explorer,	we	are	simply	demonstrating	another	very	powerful	feature	of	tmux.
<Prefix>,	d	will	simply	detach	the	currently	active	session,	but	it	will	keep	running
happily	in	the	background!

Yes,	although	it	looks	like	it’s	gone,	our	session	is	alive	and	well.

How	can	we	get	back	to	it?	First,	let’s	view	the	active	sessions.	In	your	terminal,	run	the
following	command:

$	tmux	list-sessions

You	should	see	a	nice	list	that	has	your	session	name,	number	of	windows,	and	date	of
creation	and	dimensions.	If	you	had	more	than	one	session,	you’d	see	them	here	too.

To	re	attach	the	detached	session	to	your	session,	simply	run	the	following	command:

$	tmux	attach-session	–t	tutorial

This	tells	tmux	to	attach	a	session	and	the	session	to	attach	it	to	as	the	target	(hence	-t).	In
this	case,	we	want	to	attach	the	session	named	tutorial.	Sure	enough,	you	should	be	back
in	your	tmux	session,	with	the	now	familiar	status	bar	along	the	bottom	and	your	nano
masterpiece	back	in	view.

Note	that	this	is	the	most	verbose	version	of	this	command.	You	can	actually	omit	the
target	if	there	is	only	one	running	session,	as	is	in	our	scenario.	This	shortens	the
command	to	tmux	attach-session.	It	can	be	further	shortened	because	attach-session
has	a	shorter	alias,	attach.	So,	we	could	accomplish	the	same	thing	with	just	tmux
attach.

Throughout	this	text,	we	will	generally	use	the	more	verbose	version,	as	they	tend	to	be
more	descriptive,	and	leave	shorter	analogues	as	exercises	for	the	reader.

Explaining	tmux	commands
Now	you	may	notice	that	attach-session	sounds	like	a	pretty	long	command.	It’s	the
same	as	list-sessions,	and	there	are	many	others	in	the	lexicon	of	tmux	commands	that
seem	rather	verbose.

Tab	completion
There	is	less	complexity	to	the	long	commands	than	it	may	seem	because	most	of	them
can	be	tab-completed.	Try	going	to	your	command	prompt	and	typing	the	following:

$	tmux	list-se

Next,	hit	the	Tab	key.	You	should	see	it	fill	out	to	this:

$	tmux	list-sessions

So	thankfully,	due	to	tab	completion,	there	is	little	need	to	remember	these	long
commands.

Note	that	tab	completion	will	only	work	in	certain	shells	with	certain	configurations,	so	if
the	tab	completion	trick	doesn’t	work,	you	may	want	to	search	the	Web	and	find	a	way	to
enable	tab	completion	for	tmux.

Aliases
Most	of	the	commands	have	an	alias,	which	is	a	shorter	form	of	each	command	that	can	be
used.	For	example,	the	alias	of	list-sessions	is	ls.	The	alias	of	new-session	is	new.

You	can	see	them	all	readily	by	running	the	tmux	command	list-commands	(alias	lscm),
as	used	in	the	following	code	snippet:

$	tmux	list-commands

This	will	show	you	a	list	of	all	the	tmux	commands	along	with	their	aliases	in	parenthesis
after	the	full	name.

Throughout	this	text,	we	will	always	use	the	full	form	for	clarity,	but	you	could	just	as
easily	use	the	alias	(or	just	tab	complete	of	course).

One	thing	you’ll	most	likely	notice	is	that	only	the	last	few	lines	are	visible	in	your
terminal.	If	you	go	for	your	mouse	and	try	to	scroll	up,	that	won’t	work	either!	How	can
you	view	the	text	that	is	placed	above?	We	will	need	to	move	into	something	called	the
Copy	mode	that	has	its	own	chapter	later	in	this	text	(See	Chapter	4,	Manipulating	Text).

Renaming	windows
Let’s	say	you	want	to	give	a	more	descriptive	name	to	a	window.	If	you	had	three	different
windows,	each	with	the	nano	editor	open,	seeing	nano	for	each	window	wouldn’t	be	all
that	helpful.

Thankfully,	it’s	very	easy	to	rename	a	window.	Just	switch	to	the	window	you’d	like	to
rename.	Then	<Prefix>,	,	will	prompt	you	for	a	new	name.	Let’s	rename	the	nano	window
to	masterpiece	.

See	how	the	status	line	has	been	updated	and	now	shows	window	0	with	the	masterpiece
title	as	shown	in	the	following	screenshot.	Thankfully,	tmux	is	not	smart	enough	to	check
the	contents	of	your	window;	otherwise,	we’re	not	sure	whether	the	masterpiece	title
would	make	it	through.

Killing	windows
As	the	last	stop	on	our	virtual	tour,	let’s	kill	a	window	we	no	longer	need.	Switch	to
window	1	with	our	find-window	trick	by	entering	<Prefix>,	f,	cat	test,	Enter	or	of
course	we	could	use	the	less	exciting	<Prefix>,	l	command	to	move	to	the	last	opened
window.

Now	let’s	say	goodbye	to	this	window.	Press	<Prefix>,	&	to	kill	it.	You	will	receive	a
prompt	to	which	you	have	to	confirm	that	you	want	to	kill	it.

This	is	a	destructive	process,	unlike	detaching,	so	be	sure	anything	you	care	about	has
been	saved.

Once	you	confirm	it,	window	1	will	be	gone.	Poor	window	1!	You	will	see	that	now	there
are	only	window	0	and	window	2	left:

You	will	also	see	that	now	<Prefix>,	f,	cat	test,	Enter	no	longer	loads	window	1	but
rather	says	No	windows	matching:	cat	test.	So,	window	1	is	really	no	longer	with	us.

Whenever	we	create	a	new	window,	it	will	take	the	lowest	available	index,	which	in	this
case	will	be	1.	So	window	1	can	rise	again,	but	this	time	as	a	new	and	different	window
with	little	memory	of	its	past.	We	can	also	renumber	windows	as	we’ll	see	later,	so	if
window	1	being	missing	is	offensive	to	your	sense	of	aesthetics,	fear	not,	it	can	be
remedied!

Summary
In	this	chapter,	we	got	to	jump	right	in	and	get	a	whirlwind	tour	of	some	of	the	coolest
features	in	tmux.

Here	is	a	quick	summary	of	the	features	we	covered	in	this	chapter:

Starting	tmux
Naming	and	renaming	sessions
The	window	string	and	what	each	chunk	means
Creating	new	windows
The	prefix	key
Multiple	ways	to	switch	back	and	forth	between	windows
Accessing	the	help	documents	for	available	key	bindings
Detaching	and	attaching	sessions
Renaming	and	killing	windows

In	the	next	chapter,	we	will	look	into	configuration	and	many	of	the	ways	tmux	can	be
customized	to	fit	your	tastes	and	workflow.

For	a	reference	of	all	the	commands	learned	in	this	chapter	and	every	following	chapter,
you	can	refer	to	the	Key	binding	and	command	reference	section	in	Appendix.

Chapter	2.	Configuring	tmux
Now	that	we’ve	had	our	first	taste	of	tmux,	let’s	dig	into	our	first	topic	in	greater	detail.
tmux	is	a	very	powerful	program	and	thankfully	one	that	is	also	highly	configurable.	You
can	change	almost	anything	about	its	behavior,	from	the	way	it	looks	and	feels	to	the
commands	it	executes	on	load;	you	can	even	configure	every	key	combination	to	which
tmux	responds.

In	this	chapter,	we	will	cover	various	ways	to	configure	tmux	to	customize	and	optimize	it
for	your	workflow.	We	will	build	a	sample	configuration	that	can	be	used	to	make	tmux	a
bit	cleaner,	prettier,	and	more	useful.

We	will	be	unable	to	cover	every	minute	detail	or	configuration	option,	but	we	will	hit	the
most	common	ones	and	set	you	up	with	the	knowledge	and	toolset	to	be	able	to	tackle	any
configuration	you	desire.	In	this	chapter,	we	will	discuss	the	following:

Using	the	set-option	command
Creating	a	tmux	configuration	file
Emacs	or	vi	mode
Enabling	mouse	modes
Changing	the	status	bar

Modifying	the	background	color	of	the	status	bar
Reloading	the	configuration
Changing	the	foreground	color	of	the	status	bar
Highlighting	the	active	window

Binding	keys

Viewing	current	bindings
Chaining	multiple	commands	to	a	single	key
Comments	in	the	configuration	file
Rebinding	the	prefix	key

Binding	a	new	prefix	key
Binding	keys	without	the	prefix	key
Unbinding	keys
Revising	the	status	bar
Option	types
Handy	configuration	tips

By	the	end	of	this	chapter,	we	will	also	have	built	up	a	sample	configuration	file	that	you
can	use	as	a	starting	point	for	your	own	personalized	configuration.

Using	the	set-option	command
The	main	way	in	which	options	are	set	and	configured	within	tmux	is	through	the
appropriately	named	set-option	command.

This	command	can	be	called	on	its	own	to	set	an	option	temporarily.	However,	most	of	the
time,	we	will	use	it	to	set	options	within	a	tmux	configuration	file	so	each	time	we	launch
tmux,	the	options	are	set	the	way	we	would	like.

For	a	taste	of	using	the	set-option	command	to	set	an	option	temporarily,	open	a	terminal
window	and	launch	tmux;	alternatively,	if	you’ve	been	following	along	through	Chapter	1,
Jump	Right	In,	just	type	the	following	command	in	the	window:

$	tmux	set-option	status	off

Once	you	do	this,	the	status	bar	will	disappear!	This	setting	is	only	temporary,	so	if	you
leave	it	as	is,	end	the	session,	and	restart	tmux	or	create	a	new	session,	it	will	not	load	this
setting.	In	other	words,	a	status	bar	will	appear.

What	you	have	done	is	that	you’ve	told	tmux	to	set	the	option	status	to	a	value	of	off.
You	can	use	this	command	to	set	any	tmux	option	on	the	fly	in	this	manner.	Having	no
status	bar	can	be	a	bit	unsettling,	so	let’s	turn	it	back	on:

$	tmux	set-option	status	on

If	we	want	these	configuration	options	to	persist	through	tmux	restarts	and	sessions,	we
need	some	way	to	tell	tmux	what	their	values	should	be.	We	will	do	that	by	creating	a
tmux	configuration	file.

Creating	a	tmux	configuration	file
In	order	to	keep	the	settings	around	after	restarting	tmux,	we	will	create	a	configuration
file	that	will	include	all	the	information	about	what	options	we	want	to	set	and	to	what
values.

Like	many	other	Unix-based	utilities,	configuring	tmux	is	as	simple	as	creating	a	file	with
the	name	.tmux.conf	in	your	home	directory.

However,	unlike	many	other	configuration	files,	a	tmux	configuration	file	does	not	contain
some	kind	of	specific	configuration	language	for	the	program,	rather	it	consists	of	a	series
of	tmux	commands	that	are	run,	in	order,	when	tmux	starts	up.	Most	of	the	commands
we’ll	see	are	simple	set-option	commands	similar	to	the	commands	we	played	with	in
the	previous	examples.	Let’s	create	and	start	building	our	configuration	file:

$	cd	~

$	touch	.tmux.conf

Open	this	newly	created	file	in	your	favorite	text	editor	and	we’re	ready	to	rock!

Tip
Like	with	most	Unix-based	utilities,	this	file	in	your	personal	directory	contains	the
configuration	for	your	user	only.

It	is	also	possible	to	set	the	global	tmux	configuration	that	will	apply	to	all	the	users	in	the
system.	It	follows	the	same	format	as	that	of	a	personal	configuration	file	but	generally
lives	in	/etc/tmux.conf.

However,	since	it	is	likely	that	not	all	the	users	of	a	system	want	the	same	global
configuration,	it’s	probably	best	to	just	modify	your	own	personal	configuration.

Emacs	or	vi	mode
As	we	discovered	in	Chapter	1,	Jump	Right	In,	tmux	tries	to	help	developers	by	providing
two	sets	of	key	bindings,	one	each	for	the	two	most	widespread	text	editors.	If	you	swing
one	way	or	the	other,	this	is	likely	to	be	one	of	the	first	things	you’ll	want	to	change	to
make	tmux	feel	right	for	you.

The	default	for	tmux	is	to	use	the	Emacs	mode	keys,	so	if	you	are	an	Emacs	user,	you	may
be	all	set.	tmux	also	tries	to	help	out	and	might,	based	on	environment	variables,	switch	to
one	group	or	the	other	by	default.	To	check	which	mode	tmux	is	currently	in,	run	the
following	command:

$	tmux	show-options	-g	|	grep	key

You	should	get	an	output	that	looks	something	similar	to	the	following	command:

$	status-keys	emacs

If	you	are	in	the	mode	you’d	like	to	be	in,	you	can	do	nothing.	If	you	are	in	the	wrong
mode	though,	you	would	most	likely	want	to	add	the	following	couple	of	lines	to	your
.tmux.conf	file,	obviously	choosing	the	appropriate	editor:

set-option	-g	status-keys	emacs

set-option	-g	mode-keys	emacs

This	will	allow	you	to	use	the	shortcut	keys	you	are	most	familiar	with	in	many	of	the
modes	throughout	tmux.

Enabling	mouse	modes
First,	it’s	worthwhile	to	note	that	one	of	the	main	benefits	of	tmux	is	to	obviate	the	need	to
reach	for	your	mouse	as	often	as	you	otherwise	would.	So,	some	purists	would	balk	at	the
notion	of	enabling	mouse	modes	for	tmux.

That	said,	it	is	often	rather	convenient	to	use	the	mouse	to	scroll,	select	text,	resize	panes,
choose	an	option	from	a	list,	and	more.	And	yes,	tmux	allows	you	to	do	all	of	that	with	the
mouse.	These	features	are	disabled	by	default	so	to	enable	them,	we	need	to	add	the
following	lines	to	our	.tmux.conf	(either	Emacs	or	vi):

set-window-option	-g	mouse-mode	on

set-option	-g	mouse-select-window	on

set-option	-g	mouse-select-pane	on

set-option	-g	mouse-resize-pane	on

This	will	enable	mouse	functionality	in	all	of	the	ways	we	described.	We	haven’t	yet	dealt
with	panes,	but	when	we	touch	on	that	in	Chapter	3,	Sessions,	Windows,	and	Panes,	it	will
be	more	apparent	how	using	the	mouse	to	resize	them	will	be	incredibly	convenient.

Changing	the	status	bar
We	learned	a	bit	about	the	status	bar	in	the	last	chapter	when	we	discussed	changing	the
session	and	window	names.	This	status	bar	is	highly	customizable,	and	it’s	a	great	place	to
start	learning	about	configuring	tmux.	We	can	change	the	status	bar	colors,	what	appears
on	the	status	bar,	the	alignment,	and	much	more.

Modifying	the	background	color	of	the	status	bar
Let’s	add	an	item	to	our	configuration	to	change	the	color	of	the	status	bar.	As	we	saw	by
jumping	in,	the	default	color	of	the	status	bar	is	a	shade	of	green.	Note	that	there	happens
to	be	a	shade	of	green	in	our	configuration	as	well,	but	it	is	likely	a	different	color	on	your
terminal	unless	you	are	using	the	same	color	scheme	as	we	are.

Note
The	authors	are	using	a	color	scheme	called	Solarized.	It	is	a	color	scheme	that	includes
both	dark	and	light	variants	and	is	optimized	for	the	terminal	and	readability.	It	was
developed	by	Ethan	Schoonover	and	has	gained	quite	a	following	in	the	tech	community
for	its	precision,	symmetry,	and	because	it	makes	just	about	any	code	look	downright
pretty.	For	more	information,	visit	http://ethanschoonover.com/solarized.

The	color	scheme	of	our	current	terminal	is	as	shown	in	the	following	screenshot:

Eeek!	That’s	pretty	ugly	with	our	current	color	scheme.

Say,	we	want	it	to	be	a	nicer	blue	color.	Jump	into	your	favorite	text	editor	and	edit
~/.tmux.conf	to	have	the	following	line:

set-option	-g	status-bg	blue

This	line	specifies	that	we	want	the	status	bar	to	be	blue	rather	than	its	default,	which	on
our	system	happened	to	be	green.

Let’s	break	this	line	apart	and	explain	it	a	bit:

set-option:	We	want	to	set	an	option.	This	command	has	a	shorter	alias	set,	which
may	be	preferred.
-g:	This	means	this	option	should	be	applied	globally.	It	is	actually	possible	to	set
many	options	(such	as	the	status	bar’s	color)	on	a	per-window	basis	if	desired.
status-bg:	This	is	the	option	we	are	setting.	In	this	case,	we	are	setting	the	status’s
background	color.
blue:	This	is	the	value	we	are	using	on	which	variable.	We	want	a	blue	background.

http://ethanschoonover.com/solarized

The	allowed	color	values	are:

Named	colors,	such	as	black,	red,	green,	yellow,	blue,	magenta,	cyan,	or
white

colour0	to	colour255	(where	the	number	is	0	to	255	on	a	256-color	palette)
A	hex	value	such	as	#ff0000
default

Tip
Unlike	on	the	Web,	a	particular	color	code	doesn’t	necessarily	mean	the	same	thing	in
every	terminal.

Some	terminals	support	the	full	xterm	palette	of	256	colors,	some	only	support	16,	and
some	don’t	support	any	colors.	Most	have	their	own	flavor	of	colors	due	to	terminal	color
themes,	so	what	you	specify	as	blue	may	not	be	rendered	on	the	screen	as	blue	at	all.

For	example,	using	the	previously	mentioned	Solarized	color	theme,	specifying	the	color
of	#00ff00	(which	is	the	hex	code	for	pure	green)	will	actually	be	rendered	on	the	screen
with	a	hex	value	of	#859900,	a	kind	of	pea	soup	green	optimized	to	match	the	Solarized
color	theme.

However,	most	of	the	time,	red	is	some	shade	of	red,	green	is	some	shade	of	green,	and	so
on;	therefore,	for	our	purposes,	we’ll	use	these	simple	primary	colors	and	assume	your
terminal	will	be	getting	it	somewhat	close.

Recall	how	we	said	previously	that	the	items	in	this	configuration	file	are	full-fledged
tmux	commands?	We	can	put	that	to	the	test	right	now.	Jump	to	your	terminal	window,	get
to	a	window	with	a	shell	(instead	of	your	editor),	and	run	the	following	command:

$	tmux	set-option	-g	status-bg	red

You	should	see	your	status	bar	change	to	red	immediately	(again,	depending	on	the	color
capabilities	of	your	shell	and	terminal	program).

Notice	that	all	we	did	was	take	the	same	text	we	put	in	our	configuration	file,	type	it	after
tmux,	and	we	were	good	to	go.

Recall	that	any	command	run	in	the	shell	like	this	is	only	temporary,	so	we	still	want	our
configuration	file;	however,	this	is	a	nice	way	to	quickly	test	that	a	given	command	is
going	to	work	as	we’d	like.

Reloading	the	configuration
Now	we	have	a	shiny	new	configuration	file	with	our	new	command	to	change	the	color
of	the	status	bar,	but	this	configuration	is	useless	until	we	reload	the	configuration	to	tell
tmux	to	load	with	the	commands	from	our	new	file.

After	you	save	your	configuration	file,	it’s	ready	for	action,	but	look,	your	status	bar	is	still
green!	How	do	we	tell	tmux	that	it	should	go	fetch	the	latest	configuration	and	reload	the
windows	to	use	that	configuration?	There	are	two	ways	to	tell	tmux	to	reload	the
configuration.

The	first	is	to	kill	all	the	sessions	entirely	and	start	tmux	fresh.	This	is	not	a	very	appealing
option	because	it	entails	closing	all	of	our	tmux	sessions,	which	in	turn	means	closing	all
the	currently	open	and	running	programs.	We	will	then	have	to	reinitiate	all	of	our	tmux
sessions	and	windows	and	restart	all	of	our	programs	to	get	back	to	where	we	were	before
just	to	reload	the	configuration.	It	works	but	is	a	rather	messy	solution	overall.	Generally,
it	is	rather	nice	that	tmux	loads	the	new	configuration	file	when	it	is	restarted	because	this
means	any	subsequent	tmux	initiation	will	use	our	latest	configuration,	which	makes
sense.	However,	it	forces	us	to	close	all	the	running	applications	to	load	it,	which	is	not
ideal.

The	second,	more	common	and	useful	option	is	to	use	the	tmux	source-file	command.
This	command	will	tell	tmux	to	go	fetch	the	latest	configuration	and	load	it	immediately.
In	this	case,	there	is	no	need	to	leave	tmux!

Get	to	a	command-line	prompt	within	tmux	(if	you	followed	along	Chapter	1,	Jump	Right
In,	you	will	know	that	you	can	just	hit	<Prefix>,	2	to	bring	up	the	command	prompt	we
left	there).	If	you	have	no	window	currently	open,	just	open	a	new	window	within	tmux
(<Prefix>,	c)	and	it’ll	start	with	a	command	prompt	by	default.	Now	type	the	following
command	in	the	prompt	and	hit	Enter:

$	tmux	source-file	~/.tmux.conf

Similar	to	the	following	screenshot,	you	should	see	the	status	bar	is	now	blue!

Changing	the	foreground	color	of	the	status	bar
Now	the	blue	status	bar	looks	nice!	However,	the	text	is	a	bit	difficult	to	read;	there’s	not
much	of	a	contrast	between	the	background	and	the	text.	Let’s	fix	that!

Open	the	.tmux.conf	file	again,	this	time	adding	the	second	line:

set-option	-g	status-bg	blue

set-option	-g	status-fg	white

Reload	the	configuration	with	the	source-file	command	using	the	method	we	discussed
previously.	Now,	as	can	be	seen	in	the	following	screenshot,	the	text	on	the	status	bar
should	be	much	more	readable!

Highlighting	the	active	window
Let’s	make	it	a	bit	easier	to	see	which	is	our	currently	active	window.	The	asterisk	works,
but	it	could	be	a	bit	easier	since	we	have	these	colors.

Open	up	the	.tmux.conf	file	again,	and	this	time	add	the	third	line:

set-option	-g	status-bg	blue

set-option	-g	status-fg	white

set-window-option	-g	window-status-current-bg	magenta

Here	we	see	our	first	window	option.	The	first	two	options	were	global.	This	means	that	in
all	windows	the	status	bar	will	always	have	a	blue	background.

This	new	line	is	saying	that,	for	each	window,	if	it	is	the	current	window,	set	its
background	to	magenta.	Reload	the	configuration	again	with	tmux	source-file
~/.tmux.conf	to	see	that	in	action,	as	shown	in	the	following	screenshot:

Change	to	the	other	window	and	watch	the	magenta	highlight	follow.

You	may	be	noticing	that	each	time,	we’re	typing	a	lot	to	reload	this	configuration,	going
through	the	whole	tmux	source-file	~/.tmux.conf	command.	Surely,	there	must	be	a
better	way!

The	bad	news	is	that	there	is	not	a	key	combination	out	of	the	box	in	tmux	to	reload	the
configuration.	The	good	news	is	that	we	can	bind	our	own	key	to	make	this	task	easier!

Binding	keys
Binding	keys	will	allow	you	to	change	the	keys	and	key	combinations	that	tmux	will
recognize	for	any	command.	This	also	allows	us	to	create	new	key	combinations	for
existing	commands	or	change	the	key	binding	for	any	existing	keys	used	by	tmux.	It	even
lets	you	assign	new	key	bindings	to	any	command	we	can	dream	about.

The	commands	to	which	we	can	bind	keys	can	even	prompt	for	user	input.	There	is	no
constraint	on	uniqueness,	so	we	could	bind	multiple	keys	to	issue	the	same	command	or
bind	no	keys	for	a	particular	command.

What	this	all	means	is	that	while	there	is	not	an	existing	key	combination	available	to
reload	the	tmux	source	file,	we	can	make	up	our	own	key	combination	and	assign	it	to	the
rather	lengthy	source-file	command	so	we	don’t	have	to	type	the	whole	thing	each	time
we	want	to	reload	the	configuration.

First,	let’s	find	a	good	key	combination	to	bind	for	this	command.

Viewing	current	bindings
Recall	from	the	first	chapter	that	we	were	able	to	see	all	of	the	current	key	bindings	by
issuing	<Prefix>,	?.	This	is	actually	the	keyboard	shortcut	for	the	list-keys	command.
This	shows	all	of	the	current	key	bindings	within	tmux	and	is	nicely	updated	whenever	we
reload	the	configuration.

This	is	a	very	helpful	resource	if	you	forget	key	bindings,	but	it’s	also	useful	as	a	heads-up
view	of	which	keys	are	already	currently	used	for	bindings.	Any	keys	not	listed	here	are
not	currently	bound	to	anything	in	tmux,	so	they	are	fair	game	for	new	uses.	Here’s	a
screenshot	on	the	current	bindings:

Unfortunately,	an	easy	and	memorable	choice,	r	is	taken	by	refresh-client.	We	could
override	this;	it	is	not	often	used,	but	let	us	find	one	that’s	not	used.

Thankfully,	by	looking	through	the	list	of	key	bindings,	it	appears	that	Ctrl	+	r	is	not
currently	bound	to	any	tmux	command.	So	it’s	fair	game.	All	the	keys	that	start	with	C-	in
the	key	binding	screen	mean	that	you	need	to	press	the	Ctrl	key.	So,	C-r	is	used	in	the
same	way	as	Ctrl	+	r.

This	will	be	rather	convenient	as	the	default	prefix	key	also	uses	the	Ctrl	key.	So	assuming
the	current	default	prefix	key	of	Ctrl	+	b,	we	will	be	able	to	hold	down	Ctrl	and	tap	B	then
R	to	reload	the	configuration.

Tip
Rebinding	Ctrl	to	Caps	Lock

One	of	my	favorite	programming	productivity	tips	of	all	time	is	to	rebind	Caps	Lock	to
Ctrl	on	a	system-wide	scale.	This	is	easily	done	on	most	computers	at	the	operating
system	level	and	even	on	some	more	capable	keyboards.

The	majority	of	computer	users	seldom	use	Caps	Lock,	yet	its	place	on	the	home	row
makes	it	a	convenient	key	to	press.	Since	Ctrl	is	used	often	by	command-line
programmers	and	its	place	on	the	keyboard	is	rather	difficult	to	press,	swapping	the	two
can	be	very	helpful.	By	swapping	them,	in	the	unlikely	event	that	you	ever	do	need	to	use
Caps	Lock,	it	is	still	accessible	by	the	old	Ctrl	key	on	your	keyboard.

The	author	is	a	huge	fan	of	Emacs	that	makes	heavy	use	of	the	Ctrl	key,	and	tmux	is
another	program	that	does	as	well.

This	is	by	no	means	a	requirement,	but	if	you	find	yourself	using	the	Ctrl	key	regularly,
consider	making	use	of	this	trick!

On	a	Mac,	it	is	very	easy	and	requires	no	additional	software.	It’s	a	bit	trickier	on	some
other	systems,	but	possible	everywhere.

For	detailed	tutorials	visit	http://vq.io/rebindcaps.

So	let’s	add	a	key	binding	for	Ctrl	+	r	to	reload	our	configuration.	Reopen	your
.tmux.conf	file	and	add	the	fourth	line:

set-option	-g	status-bg	blue

set-option	-g	status-fg	white

set-window-option	-g	window-status-current-bg	magenta

bind-key	C-r	source-file	~/.tmux.conf

Notice	that	the	format	of	this	new	bind-key	row	is	very	similar	to	what	we	saw	in	the	key
bindings	list.	Interestingly,	each	row	in	the	key	bindings	is	a	verbatim	key	binding	so	we
can	copy	and	paste	it	into	our	.tmux.conf	file,	and	it	will	just	work.	This	is	very
convenient!

Let’s	break	this	bind-key	line	apart	and	explain	it	a	bit:

bind-key:	We	want	to	bind	a	key.
C-r:	The	key	combination	we	want	to	bind	is	Ctrl	+	r.
source-file	~/.tmux.conf:	Upon	pressing	that	key	combination,	we	want	to	run
the	source-file	command	and	provide	it	with	the	path	to	our	source	file	as	an
argument.
It	is	worth	noting	that,	similar	to	the	way	we	put	commands	in	the	tmux	configuration
file	and	they	would	be	if	run	from	the	command	line	after	the	tmux	keyword,	the
bind-key	syntax	also	drops	the	tmux	but	otherwise	is	a	valid	tmux	command.

http://vq.io/rebindcaps

Now	we	will	need	to	reload	our	configuration	once	in	the	old	way	before	we	can	use	our
keyboard	combination:

$	tmux	source-file	~/.tmux.conf

That’s	it!	From	here	on,	we	can	press	<Prefix>,	then	Ctrl	+	r,	and	the	configuration	will	be
reloaded.

Sure	enough,	if	we	look	at	our	current	key	bindings	as	we	did	before	with	the	<Prefix>,	?
key	combination,	we’ll	find	that	our	new	binding	to	reload	the	source	file,	which	is	bound
to	C-r,	will	be	right	at	the	top	of	the	screen:

Chaining	multiple	commands	to	a	single	key
You	may	notice	that,	while	we	can	inspect	the	key	bindings	to	see	that	the	configuration
was	reloaded,	we	otherwise	will	get	no	visual	indication	that	things	have	been	updated	and
the	configuration	reloaded.	This	is	because	the	source-file	command	outputs	nothing
when	it	does	its	job.

There	isn’t	much	we	can	do	to	change	this	behavior	directly.	Thankfully	though	tmux	does
give	us	a	way	to	chain	together	multiple	commands	to	a	single	key	binding.

This	will	allow	us	to	chain	two	commands,	in	this	case,	the	source-file	command	we
currently	have	and	a	command	to	display	some	text	to	give	us	some	feedback	that	the	file
has	been	reloaded.

Reopening	our	trusty	configuration	file,	change	the	last	line	as	follows:

set-option	-g	status-bg	blue

set-option	-g	status-fg	white

set-window-option	-g	window-status-current-bg	magenta

bind-key	C-r	source-file	~/.tmux.conf;	display	"reloaded!"

Now	Ctrl	+	r	will	run	both	the	source-file	command	and	the	display	command	to	let	us
know	that	it	has	done	its	job!	This	could	be	used	to	chain	any	multiple	commands	you
desire.	Save	the	file,	exit	your	editor	(or	switch	to	another	window	leaving	your	editor
running!),	and	reload	your	configuration	with	<Prefix>,	Ctrl	+	r	and	you	should	see	the
text	reloaded!	flash	in	the	status	bar	momentarily.

Comments	in	the	configuration	file
OK,	so	now	our	configuration	is	up	to	four	lines,	and	it’s	getting	a	bit	unwieldy	without
any	comments	or	anything	for	guidance.	Thankfully,	we	can	add	arbitrary	comments	to
our	.tmux.conf	file	with	ease.	Just	start	the	line	with	a	hashtag	(#).

So	let’s	jazz	up	our	.tmux.conf	file	with	some	nice	comments	to	explain	what	we’re
doing:

#	Set	the	status	bar	background	to	blue

set-option	-g	status-bg	blue

#	Set	the	status	bar	text	to	white

set-option	-g	status-fg	white

#	Set	the	active	window	background	in	the	status	bar

set-window-option	-g	window-status-current-bg	magenta

#	Add	a	key	binding	for	reloading	our	configuration

bind-key	C-r	source-file	~/.tmux.conf

Note
Notice	how	we	also	added	some	spaces	between	some	logical	groupings	here	as	well.
Thankfully,	the	tmux	configuration	ignores	whitespace	so	we	can	space	them	apart
however	we’d	like.

Binding	a	new	prefix	key
We	can	also	rebind	the	prefix	key	to	make	it	something	more	convenient	or	set	it	up	in	a
way	that	it	doesn’t	get	into	a	conflict	with	other	programs.

Some	of	you	might	be	from	a	background	where	you	use	GNU	screen,	another	terminal
multiplexer	that	uses	Ctrl	+	a	as	its	prefix	key.	So	instead	of	learning	the	tmux	key,	you
might	want	to	simply	rebind	Ctrl	+	a	as	your	tmux	prefix	key.

Alternatively,	you	might	be	a	frequent	user	of	Emacs,	nano,	or	another	program	that
makes	extensive	use	of	Ctrl	+	b	to	move	the	point	back	one	character.	In	that	case,	Ctrl	+
b	is	not	a	convenient	key	to	have	rebound	globally.

Users	in	this	category	may	choose	to	rebind	the	prefix	to	something	less	used	or	less
important	in	Emacs	or	other	programs,	such	as	Ctrl	+	t.	This	also	conveniently	helps	to
provide	guidance	on	the	key	(t	for	tmux!).

Whatever	your	motives,	it	is	possible	to	rebind	the	prefix	key.	So,	as	an	exercise,	let’s
rebind	it	to	Ctrl	+	t.	If	this	makes	you	uncomfortable,	feel	free	to	ignore	it	in	your	own
configuration.	However,	rebinding	the	prefix	key	is	a	bit	different	than	rebinding	any	other
key.	You	might	think	that	the	following	in	your	.tmux.conf	file	would	work,	but	that	is
not	the	case:

bind-key	C-t	prefix

Recall	that	all	of	the	key	bindings	within	tmux	first	require	the	prefix	key	to	work.	So	this
code	snippet,	in	plain	English,	is	essentially	saying,	“After	you	have	pressed	the	prefix
key,	press	Ctrl	and	t	as	the	prefix	key.”	It	is	not	saying,	“Here	is	the	new	prefix	key,	please
use	it.”

So	in	order	to	set	the	prefix	key,	add	the	following	lines	to	our	ever-growing	.tmux.conf:

#	Set	the	status	bar	background	to	blue

set-option	-g	status-bg	blue

#	Set	the	status	bar	text	to	white

set-option	-g	status-fg	white

#	Set	the	active	window	background	in	the	status	bar

set-window-option	–g	window-status-current-bg	magenta

#	Rebind	the	prefix	key

set-option	-g	prefix	C-t

#	Add	a	key	binding	for	reloading	our	configuration

bind-key	C-r	source-file	~/.tmux.conf

This	will	actually	change	the	prefix	key.	Assuming	you	still	have	the	default	prefix	key	of
Ctrl	+	b,	try	reloading	your	configuration	using	Ctrl	+	b,	Ctrl	+	r,	using	Ctrl	+	b	as	the
prefix	key	for	the	last	time	to	load	our	configuration.	If	you	have	already	changed	your
prefix	key,	you	might	need	to	use	a	different	key	combination.

Now	press	Ctrl	+	b,	?.	See	how	this	time	it	just	outputted	a	question	mark	rather	than	load

the	key	binding	help	page,	like	it	used	to.	This	is	because	Ctrl	+	b	has	been	returned	to	the
underlying	program,	which,	depending	on	the	program,	usually	means	“move	back	one
character”	and	then	?	means	“type	a	question	mark.”

Now	the	prefix	key	is	Ctrl	+	t,	so	try	it.	Do	Ctrl	+	b,	?	and	you	should	see	the	key	binding
help	we	saw	before.

Tip
Rebinding	the	prefix	key	is	a	rather	common	operation,	and	this	is	the	reason	why
throughout	this	book	we	have	been	using	<Prefix>	to	denote	it	and	not	the	actual	key
combination.

Most	other	keyboard	combinations	are	usually	left	alone	but	many	people	have	their
reasons	to	favor	another	prefix	key.

Binding	keys	without	the	prefix	key
It	is	generally	unadvisable	to	bind	keys	without	the	prefix	key	since	this	renders	any	key
inoperable	for	all	the	programs	running	within	tmux,	but	it	is	technically	possible.	It
becomes	inoperable	because	tmux	will	snag	it	and	do	the	things	tmux	wants	without
passing	that	keystroke	on	to	the	program	running	within	tmux.	There	are	workarounds,
such	as	binding	<Prefix>,	{key}	to	send	the	key	through	to	the	underlying	program.

Say	you	wanted	to	bind	the	function	keys	F1,	F2,	F3,	and	so	on	to	select	windows	1,	2,	3,
and	so	on,	respectively.	This	would	be	possible	by	putting	the	following	snippet	into	your
.tmux.conf	file:

bind-key	–n	F1	select-window	–t	:1

bind-key	–n	F2	select-window	–t	:2

bind-key	–n	F3	select-window	–t	:3…and	so	on

Notice	the	-n	option?	This	allows	you	to	press	the	bound	key	without	first	pressing	the
prefix	key.	So	you	could	simply	press	F1	with	no	prefix	and	immediately	switch	to
window	1!

This	sounds	like	a	really	cool	trick	(and	it	generally	is!),	until	you	find	even	a	single
program	that	you	want	to	run	within	tmux	that	expects	the	key	F1.	Then,	since	you’ve
captured	F1	globally	for	tmux,	it’s	not	possible	to	use	that	keystroke	within	that	or	any
other	program	because	tmux	captures	it,	uses	it	for	the	purpose	you’ve	specified,	and
never	passes	it	along	to	the	program.	Again,	you	can	use	a	trick	such	as	binding	<Prefix>,
F1	to	send	F1	through	to	the	underlying	windows;	however,	for	most	users,	it’s	probably
not	a	great	practice	to	get	in	the	habit	of	globally	overriding	keys.

So,	the	most	likely	outcome	here	is	that	you	can	create	some	cool	global	shortcuts	for
something	like	that	so	they	work	for	a	while	until	you	find	an	exception.	You	will	then
unbind	them	and	end	up	having	to	convince	your	muscle	memory	to	forget	what	it
learned.

Unbinding	keys
Now	let’s	say	there	is	a	key	binding	that	you	want	to	remove	for	some	reason.	This	is	very
easy;	just	add	an	unbind	directive	to	your	.tmux.conf	file.

Say	we	wanted	to	unbind	0	from	its	default	action	of	selecting	window	0	for	some	reason.
To	do	this,	simply	add	the	following	code	snippet	to	your	configuration:

unbind	0

Note	that	there	is	no	need	to	explicitly	unbind	a	key	before	binding	it	to	something	else;
every	key	can	only	have	one	binding.	So,	we	find	it	rather	rare	to	use	this	bit	of	utility,	but
it’s	nice	to	know	it’s	there	when	you	need	it.

Status	bar	revisited
Last	time	we	touched	the	status	bar,	we	altered	its	colors,	but	we	did	not	do	anything	to
change	its	content.	tmux	allows	us	to	change	a	lot	of	different	aspects	of	the	content	of	the
status	bar.	We	won’t	have	an	in-depth	look	at	every	possible	configuration,	but	will
explain	the	concept	and	show	one	example.

So,	the	status	bar	has	three	chunks	basically:

status-left:	This	represents	the	stuff	on	the	status	bar	on	the	left-hand	side,	including
the	current	session
List	of	open	windows:	This	appears	in	the	middle	by	default
status-right:	This	represents	the	stuff	on	the	status	bar	on	the	right-hand	side,
including	the	current	date

Recall	our	status	bar,	which	appears	as	shown	in	the	following	screenshot:

By	default,	status-left	shows	the	name	of	the	current	session	in	brackets.	We	named	our
session	tutorial,	so	status-left	for	us	is	[tutorial].

We	can	change	these.	They	are	just	simple	strings	with	some	magic	character	pairs	that
tmux	fills	in	based	on	what	they	mean.	For	example,	one	of	the	magic	character	pairs	is
#S,	which	tmux	will	replace	with	the	name	of	the	current	session.	So	the	actual	value	of
status-left	according	to	tmux	is	[#S].

tmux	takes	this	magic	character	pair	and	replaces	it	with	the	name	of	the	current	session,
and	that’s	how	we	end	up	with	[tutorial].

The	status-right	string	is	similarly	made	up	of	these	character	pairs	and	can	easily	be
replaced.

The	following	is	a	table	with	a	list	of	all	the	possible	character	replacements.	This	comes
verbatim	out	of	the	tmux	man	page:

Character	pair Replaced	with

#(shell-command) First	line	of	the	command’s	output

#[attributes] Color	or	attribute	change

#H Hostname	of	the	localhost

#F Current	window	flag

#I Current	window	index

#P Current	pane	index

#S Session	name

#T Current	window	title

#W Current	window	name

## A	literal	hash	(#)

So	let’s	say	we	wanted	to	change	the	value	of	status-left	so	it	looks	similar	to
{username@host}	where	the	username	and	host	are	filled	in	automatically;	we	can	easily
do	that.	Simply	add	the	following	lines	to.tmux.conf	and	reload	the	configuration	(note
that	we	also	widened	the	status	because	the	default	is	10	and	it	was	getting	cut	off):

set-option	-g	status-left-length	25

set-option	-g	status-left	"{#(whoami)@#H}"

This	will	fill	in	the	status	bar	with	{victor@minerva.local}	for	me	because	it	executes
the	whoami	command,	puts	the	output	of	that	command	into	the	string	before	@,	and	fills	in
the	hostname	after	it.

Option	types
Thus	far,	all	of	the	options	we	have	set	had	the	-g	flag.	This	means	that	the	option	applies
globally.	However,	there	are	three	types	of	options:	server	options,	session	options,	and
window	options.

There	are	also	multiple	flags	that	indicate	how	a	given	option	should	affect	or	be	affected.
This	sounds	complex,	but	it’s	rather	simple.

A	server	option	will	apply	to	any	client	that	connects	to	tmux.	Under	the	hood,	when	you
type	and	run	the	tmux	command	the	first	time,	tmux	creates	a	server;	then,	it	creates	your
client	and	connects	to	the	server	it	started.	This	is	the	magic	that	allows	you	to	detach	your
session,	reattach	it	later,	and	have	everything	running	as	you	left	it	because	the	tmux
server	keeps	chugging	in	the	background.	So	an	option	specified	with	the	-s	flag	will
apply	to	the	server,	meaning	it	will	affect	any	clients	that	attach	to	it.

A	session	option	will	apply	to	the	current	session.	This	means	that	two	clients	could
connect	to	the	same	server	and	each	could	have	slightly	different	session	options.	This	is
in	contrast	with	the	server	option,	where	every	client	has	that	same	option	whether	they
want	it	or	not.	Session	options	do	not	have	a	flag;	they	are	set	by	leaving	off	the	flag,	as
they	are	the	default.

Then,	there	are	window	options,	which	apply	only	to	one	window.	To	set	a	window
option,	specify	it	with	the	-w	flag.

When	it	comes	to	configuring	options,	they	cascade	down.	So	there	are	global	options
specified	with	-g	that	will	serve	as	the	master	set.	Then,	any	option	further	down	the	chain
will	inherit	from	the	global	settings	or	may	override	the	global	setting	with	its	own.

There	are	a	couple	of	other	interesting	flags.	The	-g	flag	as	we’ve	mentioned	is	the	global
flag,	which	means	the	option	applies	globally.	Most	of	the	time,	when	people	set	settings
in	tmux,	they	just	use	the	-g	flag	because	they	have	no	need	for	more	complex	flags	or
settings.

The	-a	flag	means	that	the	option	expects	a	string	to	append	the	supplied	value	with	the
existing	setting.	So,	for	example,	if	the	existing	setting	for	an	option	is	banana,	then	a
client	trying	to	connect	will	append	their	own	option	with	set-option	–a	"	split",
rather	than	override	that	option	entirely.	This	will	make	the	option	banana	split.	This	is
often	useful	to	append	custom	items	to	things	such	as	status-left	and	status-right	without
clobbering	the	global	setting.

The	-u	flag	will	unset	an	option,	meaning	that	the	session	will	inherit	the	option	from	the
set	of	global	options.

These	option	types	and	flags	can	be	a	bit	confusing,	but	they	provide	a	lot	of	power.
Again,	most	people	set	options	with	the	-g	flag	and	call	it	a	day.

Handy	configuration	tips
What	follows	are	a	handful	of	configuration	tips	we	have	picked	up	throughout	the	years
that	are	a	bit	useful	and	not	necessarily	obvious	even	after	understanding	the	mechanics	of
how	to	configure	tmux.	These	tips	include	the	following:

Binding	the	double	tapping	of	the	prefix	key	to	last-window
Changing	the	escape	time
Lengthening	the	history	limit
Lengthening	the	display	time
Starting	the	base	index	at	1

Binding	the	double	tapping	of	the	prefix	key	to	last-
window
This	is	one	of	our	favorite	tricks.	More	often	than	not,	once	you	switch	to	a	window	and
see	some	information,	you	want	to	switch	back	to	the	one	you	came	from.

As	the	title	here	implies,	this	can	be	made	very	easy	by	creating	a	key	binding	for	the
prefix	key	that	performs	the	last-window	command.	This	way	you	can	double	tap	the
prefix	key	to	jump	back	and	forth	between	two	windows.	Once	as	the	prefix	and	once	to
run	the	last-window	command.

To	do	this,	simply	add	a	bind-key	entry	to	your	.tmux.conf	file	and	bind	the	same	key
combination	as	your	prefix	key	to	the	last-window	command.	For	example,	if	you
followed	the	preceding	steps	and	set	the	prefix	key	to	Ctrl	+	t,	the	following	line	in	your
.tmux.conf	file	is	appropriate:

#	Double	tapping	the	prefix	jumps	to	last	window

bind-key	C-t	last-window

Now	moving	on	to	the	last	window	is	as	easy	as	holding	down	Ctrl	and	tapping	t	twice.

Changing	the	escape	time
I	have	heard	from	some	vim	users	that	tmux	adds	a	short,	almost	imperceptible	delay
between	the	commands	that	can	cause	funny	behavior	when	running	vim	inside	tmux.

In	tmux	terms,	this	delay	is	called	escape-time.	By	default,	it’s	set	to	500	ms.	To	fix
things	with	vim,	set	the	escape-time	to	0	by	adding	the	following	line	to	your
configuration	file:

set-option	-s	escape-time	0

Note	that	this	option	obviously	exists	for	a	reason,	so	tread	carefully	when	doing	this	as
you	may	come	across	unexpected	behavior.	However,	we’ve	heard	from	a	lot	of	vi	users
that	make	this	change	and	they	never	look	back.	Also	note,	as	discussed	previously,	this
has	the	-s	flag	so	it	is	a	session-specific	option,	which	means	that	if	someone	else
connects	to	the	same	server,	they	could	have	a	different	value	for	escape-time.

Lengthening	the	history	limit
tmux	only	has	a	limited	amount	of	scrollback	history.	The	scrollback	history	is	the	number
of	lines	it	retains	in	memory	that	have	scrolled	off	the	screen	and	which	are	accessible	in
Copy	mode	(see	Chapter	4,	Manipulating	Text).

However,	the	default	history-limit	for	tmux	is	2,000,	which	can	be	pretty	low	for	many
use	cases.	In	order	to	crank	it	up,	add	the	following	line	to	your	configuration	file:

set-option	-g	history-limit	10000

Note	that	by	increasing	this	history	limit,	you	are	also	increasing	the	memory	footprint	of
tmux.	So	some	tweaking	may	be	necessary	if	it’s	set	too	high,	particularly	if	you	tend	to
have	a	lot	of	open	windows	and	panes.

Lengthening	the	display	time
Some	commands	will	cause	tmux	to	display	a	message	to	you,	replacing	the	status	bar
with	the	text	it	displays	for	you.	The	time	a	message	is	displayed	is	called	display-time.

Out	of	the	box,	the	value	of	display-time	for	tmux	is	rather	low.	Try	doing	a	search	for
text	in	another	window	with	some	text	that	you	know	doesn’t	exist.	For	example,	try
<Prefix>,	f,	then	type	any	search	string	that	you	know	doesn’t	exist	in	any	other	window,
for	example,	potato.

You	will	see	the	text	No	windows	matching:	potato	appear	in	place	of	the	status	bar	and
then	disappear	in	the	blink	of	an	eye:

It	will	go	in	a	flash	because	it	only	stays	on	the	screen	for	the	duration	of	the	current
display-time,	which	is	only	750	ms	by	default.	It’s	probably	a	good	idea	to	crank	the
value	of	display-time	up	a	bit	so	messages	stay	visible	a	bit	longer,	at	least	until	you	are
more	comfortable	with	tmux.	To	do	so,	add	the	following	line	to	your	configuration	file,
changing	the	duration	to	2	seconds:

set-option	-g	display-time	2000

For	a	2-second	duration,	we	set	display-time	to	2000	because	the	display	time	is	set	in
milliseconds.

Now	is	also	a	good	time	to	note	the	show-messages	command,	which	will	bring	up	all	the
messages.	It	is	accessible	under	the	key	combination	<Prefix>,	~	and	will	show	a	nice	list
of	all	the	messages	that	have	been	displayed:

This	is	very	useful	if	you	know	a	message	was	there	but	were	not	able	to	see	it	before	it
timed	out	and	disappeared.

Starting	the	base	index	at	1
You	probably	noticed	that,	by	default,	tmux	starts	indexing	the	windows	(and	panes)	with
0.	The	first	window	created	is	given	the	number	0,	the	second	is	given	1,	the	third	2,	and
so	on.

This	is	not	only	a	little	confusing,	but	also	makes	the	keyboard	shortcuts	for	accessing
windows	a	bit	odd.	To	access	the	window	furthest	to	the	left,	type	<Prefix>,	0,	where	0	is
the	rightmost	number	key	on	the	keyboard	and	then	the	second	from	the	left	<Prefix>,	1,
which	is	the	leftmost	number	key	on	the	keyboard,	and	so	on.

This	is	easily	avoided	by	changing	what’s	called	the	base-index	value.	This	base-index
value	determines	the	starting	place	so	we	can	ensure	it	starts	with	1	rather	than	0.	Note
that	we	haven’t	discussed	panes	yet,	but	we	will,	and	it	also	makes	sense	to	set	pane-
base-index	to	1	as	well.	So	just	trust	us.	Do	it	for	now;	we’ll	explain	why	later.	Add	the
following	to	your	configuration:

#	Set	the	base-index	to	1	rather	than	0

set-option	-g	base-index	1

set-window-option	-g	pane-base-index	1

Note	that	if	you	already	have	a	window	0,	it	won’t	go	away.	However,	subsequent	sessions
will	start	without	window	0,	and	if	you	remove	window	0	from	this	session	and	create	a
new	one,	tmux	will	skip	window	0.

Accessing	the	man	page
For	obvious	reasons,	we	usually	do	not	like	to	suggest	going	to	the	man	page	in	this	text	as
we	try	to	explain	most	things	in	far	greater	detail	than	they	do.	However,	when	it	comes	to
referring	to	an	exhaustive	list	of	options	that	can	be	configured	in	the	.tmux.conf	file,
nothing	really	beats	the	man	page.

To	access,	you	can	type	the	following	command:

man	tmux

Tip
You	can	also	access	the	man	page	on	the	Web	at	one	of	many	resources	that	mirror	the
man	pages	online.	The	following	is	an	example:

http://man.cx/tmux

If	you	scroll	down	about	halfway,	there	is	a	heading	called	Options.	This	contains	the	full
list	of	options	that	could	be	set	in	our	configuration	file	and	a	description	of	each	one.
Now	that	we	understand	how	a	bunch	of	them	work,	it	should	be	much	more	manageable
to	view	this	man	page	and	tinker	with	things!

http://man.cx/tmux

Show	options
If	you	find	options	in	the	man	page,	it	may	be	useful	to	see	what	their	current	values	are.
Thankfully,	this	is	easy!

Simply	run	the	tmux	show-options	command	with	a	flag	for	the	set	of	options	you	want
to	view	to	look	at	the	global	options:

tmux	show-options	-g

For	window	options:

tmux	show-options	-w

For	server	options:

tmux	show-options	-s

You	will	see	all	the	options	printed	out	on	the	screen.	This	is	nice	to	get	a	baseline	or	see
the	kinds	of	values	that	would	be	accepted.

Summary
So	let’s	put	it	all	together.	Refer	to	the	Appendix	to	see	the	final	product,	the	.tmux.conf
file	we	have	built	throughout	this	chapter.

Throughout	this	chapter,	we	learned	a	lot	about	configuring	tmux.	Starting	with	a	blank
.tmux.conf	configuration	file,	we	built	up	a	much	larger	configuration	changing	many
aspects	of	our	tmux	experience.

We	altered	the	look	and	feel	by	modifying	the	status	bar,	and	we	learned	how	to	bind	keys,
including	the	prefix	key.	We	showed	you	how	to	bind	multiple	commands	to	a	single	key
binding	and	how	to	unbind	keys.	We	learned	how	to	keep	the	file	manageable	and	well
documented	by	adding	comments,	and	how	to	bind	keys	without	needing	the	prefix	key.
We	learned	about	the	different	types	of	options	that	can	be	set	in	the	configuration	file	and
some	handy	configuration	tips	that	probably	wouldn’t	be	readily	obvious	to	most	readers.

By	the	end	of	the	chapter,	we	have	built	up	a	very	rich	sample	configuration	file,	which
can	be	a	great	starting	point	for	your	own	personal	customization.	We	learned	a	bit	about
how	to	browse	the	man	page	for	an	extensive	list	of	the	available	options.

We	hope	you	treat	this	.tmux.conf	file	as	a	living	document	and	update	it	with	other	neat
things	you	may	find	and	remove	or	change	any	bits	that	exist	in	it	now.	Personalize	it	to
suit	your	needs;	after	all	that’s	what	it’s	for!

Now	that	we’ve	learned	all	about	configuration,	in	the	next	chapter,	we	will	move	on	to
discuss	one	of	the	major	fundamentals	of	tmux:	the	concept	of	sessions,	windows,	and
panes.

Chapter	3.	Sessions,	Windows,	and	Panes
In	the	previous	chapters,	we	discussed	sessions,	windows,	and	panes;	now	we	are	going	to
dive	deeper	to	understand	the	differences	between	them	and	how	they	can	help	in
maximizing	your	productivity.

In	this	chapter,	we	will	cover	the	following	topics:

What	sessions,	windows,	and	panes	are,	and	how	they	relate	to	each	other
How	to	create	multiple	sessions	and	switch	between	them
How	to	create	multiple	panes
Zooming	panes
Splitting	and	resizing	panes
Switching	between	panes
Cycling	through	pane	configurations

Overviews
First,	let	us	have	quick	overviews	of	sessions,	windows,	and	panes	before	we	get	into	how
they	fit	together.	We	have	mentioned	them	lightly	in	different	contexts	now,	but	they	are
crucial	to	understanding	tmux	and	are	worthy	of	more	exploration.

Sessions
We	got	a	nice	taste	of	sessions	back	in	Chapter	1,	Jump	Right	In,	when	we	named	our
session	tutorial	and	detached	and	reattached	our	session.

Sessions	are	essentially	the	base	unit	in	tmux.	It	can	have	one	or	more	windows,	and	a
window	can	be	broken	into	one	or	more	panes.

It	may	be	useful	to	think	of	a	tmux	session	like	the	login	process	on	your	computer.
Whether	you	have	a	computer	that	is	running	Windows,	Linux,	OS	X,	or	Unix,	they	all
support	multiple	simultaneous	logins	in	some	form.

When	you	log	on	to	your	computer,	it	initiates	a	new	session.	You	type	in	your	username
and	password	and	then	hit	Enter.	You	will	then	arrive	at	a	nice,	empty	desktop.	This	is	a
session	on	your	desktop	computer.	On	this	desktop	session,	you	can	run	one	or	more
programs,	where	each	program	has	its	own	window	or	windows	and	each	window	its	own
state.

Likewise,	tmux	parallels	this	concept.	When	you	initiate	a	new	tmux	session,	you	start
with	a	nice	and	empty	status	bar.	This	is	your	session	on	tmux.	In	this	session,	you	can
create	multiple	windows,	run	a	program	in	each	window,	and	each	window	has	its	own
state	(this	is	a	slight	simplification,	as	we	will	soon	see).	When	you	switch	from	one
window	to	the	other,	the	state	is	maintained.	That	is,	the	things	which	you	typed	or
entered,	before	switching	from	one	window	to	another,	are	still	there	when	you	switch
back	to	that	window.

In	most	operating	systems,	there	is	a	way	for	you	to	log	out	and	log	back	in	to	arrive	at	the
same	session,	with	the	windows	and	the	state	just	as	you	left	them.	Often,	some	of	the
programs	you	had	opened	will	continue	to	run	in	the	background	and	even	receive	updates
when	you	log	out,	even	though	their	windows	are	no	longer	visible.	With	most	operating
systems,	there	is	some	concept	of	a	window	manager,	so	there	is	often	much	more	running
in	the	background	than	you	can	see	at	any	given	time.	For	instance,	on	an	iPhone,
Android,	or	other	smartphone,	only	one	program	actively	fills	the	screen,	but	others	hum
along	in	the	background	receiving	mail	messages,	listening	for	incoming	calls,	playing
music,	and	doing	other	background	tasks.

Likewise,	with	tmux,	you	can	initiate	a	session,	open	some	windows,	do	some	work,
detach	that	session,	and	everything	keeps	running	in	the	background	as	you	had	left	it.	We
saw	this	back	in	Chapter	1,	Jump	Right	In.	You	switched	from	an	editor	to	another
window,	typed	something,	went	back	to	the	editor,	and	it	was	still	humming	along	just	as
you	had	left	it.	You	also	detached	a	running	session	and	reattached	it	later,	and	everything
was	still	as	you	had	left	it.	This	is	the	power	of	sessions.

So,	a	session	in	tmux	is	like	a	little	mini	operating	system	that	manages	running	programs,
windows,	and	more,	all	within	one	or	more	sessions.

Thus	far,	we	have	only	seen	examples	of	having	a	single	session	open,	but	it’s	quite
possible	to	have	multiple	sessions	open	simultaneously	and	easily	switch	between	them.
We	will	run	through	an	example	of	this	later	in	this	chapter.

It	is	often	easy	and	convenient	to	group	tasks	logically	by	sessions.	Sessions	can	also	be
given	names,	as	we	saw	when	we	named	our	session	tutorial	back	in	Chapter	1,	Jump
Right	In.	This	way,	you	could	logically	group	things	into	sessions	having,	for	example,
one	session	for	one	project	and	another	for	a	different	one.

Windows
Windows	are	the	next	building	block.	Each	window	is	what	fills	up	the	terminal
application.	Think	of	it	like	a	viewport	or	tab	in	your	web	browser.

By	definition,	only	one	window	can	be	active	and	viewable	at	a	given	point	in	time	in
tmux.	We	created	multiple	windows	in	Chapter	1,	Jump	Right	In,	and	showed	you	how	to
switch	back	and	forth	between	them.

Each	window	gets	an	entry	in	the	status	line,	much	like	each	browser	tab	has	a	tab	visible
in	your	web	browser.

By	default,	windows	get	their	names	from	the	programs	that	are	running	within	them,	but
it’s	also	possible	to	specify	a	name	for	each	window.

Each	window	can	be	broken	down	into	one	or	more	panes.

Panes
It	seems	as	though	we	haven’t	seen	any	panes	yet,	but	we	have.	By	default,	each	window
starts	with	a	single	pane	that	takes	up	the	whole	window.

Thus	far,	we	have	only	seen	windows	with	a	single	pane,	so	it	seems	as	though	we	have
only	seen	windows;	however,	in	reality,	we	have	seen	windows,	each	with	a	single	pane
that	took	up	the	whole	window.

Things	get	really	neat	when	we	take	all	of	these	window	panes	and	split	them	into	smaller
panes,	each	visible	simultaneously.	Say,	you	want	unit	tests	and	code	linting	running	in
two	different	panes,	both	visible	at	the	same	time	so	when	your	files	are	saved,	they	will
not	only	run,	but	will	also	be	visible—a	perfect	task	for	two	panes!

We	can	take	a	pane	and	divide	it	into	two	or	more	smaller	panes,	each	running	different
programs.	These	panes	can	be	resized,	and	they	can	be	zoomed	to	temporarily	take	up	the
entire	window.	These	panes	can	be	converted	into	a	new	window	or	even	attached	to	other
windows.	This	power	and	flexibility	that	panes	provide	is	something	most	other	programs
do	not.

A	window	and	a	pane	are	perfect	analogies	to	their	real-world	counterparts.	Check	out	the
different	physical,	real-world	windows,	and	you	will	find	that	many	of	them	are	nicely
divided	into	multiple	panes.

Note
One	nice	benefit	of	panes	in	tmux	over	panes	in	the	real	world	is	that	they	are	easy	to
create,	destroy,	and	resize	based	on	your	needs.	You	cannot	do	that	with	panes	on	most
physical	windows.

Playing	around	with	sessions,	windows,
and	panes
So	now	that	we	have	a	high-level	understanding,	let’s	take	a	little	tour	of	sessions,
windows,	and	panes.	Let’s	start	totally	fresh	with	a	new	terminal	window	and	no	existing
tmux	sessions.	Start	by	creating	a	session	named	work:

$	tmux	new-session	-s	work

You’ll	see	a	new	session	started	with	the	name	work.	This	session,	currently,	has	a	single
window	with	a	single	pane.

Let’s	create	another	window.	Recall	that	this	is	done	by	pressing	<Prefix>,	c	(c	for	create).
Now	you	have	one	session,	two	windows,	and	two	panes.	Each	window	has	a	single	pane,
as	shown	in	the	following	screenshot:

Multiple	sessions
Now	let’s	see	what	it’s	like	working	with	more	than	one	session.	Let’s	first	detach	the
current	session.	Recall	that	in	order	to	do	so,	we’ll	press	<Prefix>,	d	(d	for	detach).

Now	that	the	work	session	is	detached,	we	are	back	at	a	command	line,	and	your	screen
should	be	similar	to	the	next	screenshot.	Instead	of	reattaching	the	work	session,	let’s
create	a	new	session	and	call	this	session	play:

$	tmux	new-session	-s	play

Now	it	looks	like	we	have	an	entirely	different	session.	We	have	a	different	status	bar	with
the	session	name	[play]	in	the	bottom-left	corner	rather	than	[work].

Now	to	switch	back	to	the	work	session,	we	could	detach	the	play	session,	arrive	back	at	a
tmux-less	terminal	and	then	reattach	the	session,	this	time	with	the	work	session	as	the
target;	however,	there	is	actually	an	easier	way.

Simply	press	<Prefix>,	s	(select	the	session	interactively);	this	will	bring	up	a	dialog
where	we	can	take	our	pick	about	which	session	to	attach.	So,	we	didn’t	even	need	to
leave	the	session	we	were	in	to	switch	to	the	other	one.	Use	the	arrow	keys	to	highlight	the
session	you	want,	or	just	tap	the	number	associated	with	that	session	to	switch.

Try	switching	to	the	other	session,	then	back	again,	but	wait,	there	is	an	even	easier	way.
Simply	use	<Prefix>,)	(next	session)	and	<Prefix>,	((previous	session)	to	cycle	around
between	the	sessions.	You’ll	see	it’s	very	easy	to	switch	between	sessions.	We’ll	skip
switching	between	multiple	windows	since	you	already	know	how	to	do	that	from	the	first
chapter;	let’s	move	right	on	to	multiple	panes.

Multiple	panes
Now	let’s	break	this	window	into	two	panes.	Type	<Prefix>,	%	(split	the	window
vertically)	and	see	how	the	window	is	now	divided	down	the	middle	by	vertical	bars;	we
now	have	another	command	prompt.	This	is	the	second	pane,	as	can	be	seen	in	the
following	screenshot:

Now	we	have	two	sessions,	three	windows,	and	four	panes.	One	session,	one	window,	and
one	pane	make	up	the	play	session	(which	is	no	longer	visible	but	humming	along	in	the
background),	while	one	session,	two	windows,	and	three	panes	make	up	the	work	session
we	saw	in	the	previous	screenshot.

Let’s	play	around	with	panes	a	bit.	First,	try	typing	in	some	text.	You’ll	see	the	cursor	is	in
the	right	pane.	To	get	it	to	the	left	pane,	simply	press	<Prefix>,	o	(o	for	other).	Now	your
cursor	is	in	the	other	pane.	Type	some	stuff	to	verify	which	pane	the	cursor	is	in.

There	is	actually	a	better	way	to	tell	which	pane	has	the	cursor	than	typing	in	random
stuff.	It	may	be	tough	to	tell	from	the	previous	screenshot;	however,	when	a	window	is
split	into	two	vertically,	the	top	half	of	the	vertical	bars	that	split	the	two	windows	will	be
colored	when	the	cursor	is	in	the	left	pane,	and	the	bottom	half	will	be	colored	when	the
cursor	is	in	the	right	pane.	In	the	previous	screenshot,	the	bottom	half	is	colored	in	green
to	indicate	that	the	cursor	is	in	the	right	pane.	When	there	are	more	than	two	panes,	tmux
tries	different	schemes	to	let	us	know	which	pane	is	active,	as	we	soon	shall	see.

You	can	also	use	<Prefix>	and	the	right	arrow	key,	<Prefix>	and	the	left	arrow	key,
<Prefix>	and	the	down	arrow	key,	or	<Prefix>	and	the	up	arrow	key	to	move	the	cursor	to
the	pane	to	the	right,	left,	down,	or	up,	which	is	a	bit	easier	to	remember	and	also	more
useful	when	we	have	a	more	complex	pane	structure.

Working	with	more	panes
Now	<Prefix>,	%	(split	the	pane	vertically)	is	not	the	only	way	to	create	panes.	This
simply	splits	the	current	pane	into	two	smaller	ones	by	splitting	it	vertically.	If	you
actually	do	it	again,	it’ll	split	the	current	pane	in	half	again	with	another	vertical	line,	as
shown	in	the	following	screenshot:

This	is	rather	silly	and	scrunched	though.	First,	let’s	kill	that	pane	and	then	try	to	split	it
vertically.	To	kill	the	new	pane	we	created,	we	can	either	terminate	the	running	program	in
that	pane,	in	this	case,	typing	exit	and	pressing	Enter	as	this	will	end	the	shell	process.
Alternatively,	we	can	press	<Prefix>,	x	(kill	pane)	to	be	prompted	whether	to	kill	that	pane
or	not.

Note
Note	that	killing	a	pane	with	a	running	process	will	terminate	that	process	immediately
without	gracefully	ending	it,	so	you	will	lose	any	existing	data	in	that	pane.	Be	careful!

Confirm	with	y,	and	you’re	back	to	two	panes.	Note	that	when	a	pane	is	removed,	things
are	automatically	resized	appropriately.	Let’s	try	to	split	the	left	pane	horizontally.	In	order
to	do	this,	type	<Prefix>,	“	(split	the	pane	horizontally),	as	shown	in	the	following
screenshot:

Now	notice	how	the	active	pane	is	rimmed	by	green.	This	is	the	way	tmux	highlights	the
current	pane	with	more	splits,	as	we	alluded	to	previously.

Now	we’ve	got	a	nice	horizontal	split	in	that	left	pane.	Let’s	split	that	pane	vertically	just
to	show	how	pane-crazy	we	can	get.	Press	<Prefix>,	%	(split	the	pane	vertically)	to	split	it
vertically	one	more	time,	as	shown	in	the	following	screenshot:

Zooming	panes
OK!	Now	the	panes	are	tiny	and	silly,	but	we	can	help	them,	temporarily	at	least,	by
zooming	the	current	pane	to	fill	up	the	entire	window.

Type	<Prefix>,	z	(zoom	the	pane),	and	you’ll	see	the	pane	zoom	to	take	up	the	entire
window.	If	you	look	at	the	status	bar	for	the	current	window,	you	will	see	a	Z	added	after
the	asterisk	(*)	to	indicate	that	the	window	is	currently	filled	with	a	zoomed	pane.

When	you	are	done	operating	on	this	zoomed	pane,	the	same	command	<Prefix>,	z	will
zoom	it	out	back	to	its	normal	place	in	the	window.

Resizing	panes
OK,	now	things	are	a	bit	silly	here	with	all	these	panes.	Let’s	try	to	resize	them	a	little	so
things	are	a	bit	more	manageable.	First	though,	let’s	type	some	random	text	in	each	pane
so	we	can	tell	them	apart.

Have	a	look	at	the	following	screenshot	where	we	have	written	Apple,	Banana,	Cherry,
and	Date.	You	can	do	so	by	typing	in	one	window,	then	using	the	<Prefix>	key	followed
by	the	arrow	keys	to	move	on	to	the	next	one	until	all	panes	have	some	unique	text,	as
shown	in	the	following	screenshot:

Let’s	try	resizing	the	panes	by	some	decent	increments.	Get	the	cursor	over	to	the	Date
window,	either	using	<Prefix>,	arrow	keys	or	<Prefix>,	o.

Now	to	resize	it,	let’s	try	<Prefix>,	Meta	and	the	right	arrow	key.	You	should	see	the
rightmost	pane	get	a	bit	smaller.	Try	it	again	and	it	gets	even	smaller.	Try	<Prefix>,	Meta
and	the	left	arrow	key,	and	you	should	see	the	rightmost	pane	get	a	bit	larger.

Note
If	you	look	at	your	keyboard	and	see	no	Meta	key,	you	are	not	missing	anything;	it	does
not	exist	on	most	keyboards.

Meta	is	a	key	often	used	in	terminal	programs	that	historically	had	a	place	on	the
keyboard,	but	no	longer.

Both	iTerm	and	the	stock	terminal	program	on	Mac	have	the	choice	to	use	the	Option	key
as	Meta.	Other	operating	systems	often	have	some	way	of	using	the	Alt	key	as	Meta.

Though	this	may	seem	confusing,	we	use	Meta	in	this	book	because	that	is	the	way	it	is
referred	to	historically,	and	more	importantly,	because	this	is	the	key	referred	to	in	the
tmux	documentation.

Thankfully,	you	don’t	actually	have	to	type	the	prefix	key	every	time	you	want	to	resize	it
a	little	bit;	as	soon	as	you	start	resizing,	you	can	just	type	the	command	to	increase	or
decrease	over	and	over	without	the	prefix	key.	So	start	by	using	<Prefix>,	Meta	and	the
right	arrow	key,	then	you	should	be	able	to	change	the	panes	by	holding	down	the	Meta

key	and	by	pressing	the	left	arrow	key,	the	right	arrow	key,	or	the	left	arrow	key.	You	will
see	the	panes	expand	and	contract	without	having	to	stop	and	type	the	prefix	key	each
time.

This	is	one	way	to	change	the	size	of	a	pane.	This	is	actually	changing	it	in	steps	of	five
cells	at	a	time	(each	cell	being	basically	the	space	of	one	mono-spaced	character).

It’s	also	possible	to	be	a	bit	fine-grained	with	it,	changing	the	size	in	steps	of	one	cell	at	a
time.	Simply	press	<Prefix>,	Ctrl	and	the	arrow	key.	However,	this	will	move	in	much
smaller	increments	and	will	also	conflict	with	the	command	to	switch	between	spaces	on
OS	X.

If	you	have	followed	along	with	Chapter	2,	Configuring	tmux,	and	turned	on	the	mode-
mouse	option	along	with	the	mouse-select-pane	and	mouse-resize-pane	options,	you
can	also	use	your	mouse	to	select	the	active	pane.	You	can	do	this	by	just	clicking	on	the
active	pane	and	resizing	the	panes	by	clicking	and	dragging	them	on	to	the	active	pane.
While	this	has	the	downside	of	reaching	for	your	mouse,	it	can	be	the	easiest	way	to
rapidly	arrive	at	a	desired	pane	configuration.

Switching	between	panes	by	number
Now	that	we	have	so	many	panes,	switching	between	them	can	get	a	bit	unwieldy.	The
arrow	keys	are	pretty	nice	but	can	still	be	a	tad	annoying.	Thankfully,	there	is	an	easier
way.	Press	<Prefix>,	q	and	you	will	see	a	number	appear	in	each	pane	and	then	disappear
shortly	thereafter.

The	currently	active	pane	will	be	of	a	different	color	than	the	other	panes.	This	will	also
show	the	dimensions	of	each	pane.

Just	as	each	window	was	assigned	a	unique	number,	so	also	each	pane	is	assigned	with	a
unique	number	in	every	window.	If	you	press	<Prefix>,	q	again	and,	before	the	numbers
disappear,	type	the	number	that	appears	in	that	pane,	you’ll	automatically	switch	to	it.

By	default,	the	duration	for	these	numbers	to	remain	on	the	screen	is	1	second,	but	you	can
change	that	by	adding	the	following	option	to	your	.tmux.conf	file:

set-option	-g	display-panes-time	3000

This	will	extend	the	time	that	the	pane	numbers	are	displayed	on	screen	to	3000	ms	or	3
seconds,	allowing	you	more	time	to	select	a	pane	by	its	index.

So,	to	jump	to	the	pane	with	the	word	Apple	typed	in	it,	simply	press	<Prefix>,	q,	and	1.	It
does	not	matter	which	pane	you	were	in	previously	since	this	pane	is	given	an	index	of	1;
using	that	key	combo	will	jump	to	that	pane.

Cycling	through	pane	layouts
tmux	provides	us	with	a	few	different	ways	to	change	the	pane	layout	automatically	so
you	don’t	have	to	meticulously	split	and	resize	in	odd	ways	to	get	to	your	desired	result.

The	most	versatile	of	the	bunch	is	a	key	binding	that	will	essentially	cycle	through	to	a
different	preset	pane	layout	each	time	you	press	a	key	combination.	This	key	combination
is	<Prefix>,	Space	bar	(cycle	through	pane	layouts).

Try	it	out;	press	<Prefix>,	Space	bar,	and	you	will	see	your	panes	move	around.	The
content	stays	in	them,	so	any	programs	in	them	would	keep	running	fine,	but	they	get
rearranged	and	resized	in	different	ways	each	time	you	use	that	key	combination.

If	you	look	at	the	status	bar,	you	will	see	the	name	of	the	layout.	There	are	five	different
preset	layouts	that	you	can	cycle	through;	these	are	even-horizontal,	even-vertical,
main-horizontal,	main-vertical,	and	tiled.

Until	you	know	what	you	like	for	a	given	use	case,	cycling	through	them	is	a	pretty	good
way	to	see	what	the	possibilities	are.

Once	you	are	comfortable	enough	with	these	layouts,	you	can	switch	to	them	directly,
without	cycling	through	all	of	them,	by	pressing	<Prefix>,	then	Meta	and	the	index	of	the
preset	layout	in	the	previous	list.	So,	for	example,	you	can	use	<Prefix>,	Meta	+	1	to
switch	to	the	even-horizontal	view,	<Prefix>,	Meta	+	2	to	switch	to	the	even-vertical	view,
and	so	on.

Other	pane	operations
There	are	far	too	many	pane	operations,	so	we’ll	not	be	able	to	cover	all	of	them
exhaustively	in	this	book;	for	most	that	we’ll	not	discuss,	we	implore	you	to	dig	into	the
tmux	man	page:

$	man	tmux

Alternatively,	you	can	refer	to	them	on	the	Web	at	http://man.cx/tmux.

Now	that	you	understand	panes,	the	man	page	should	be	very	manageable	and
understandable	on	the	topic	of	panes.

You	can	do	things	like	breaking	one	pane	out	into	its	own	window;	rotating	the	panes;
swapping	one	pane	with	another;	moving	a	pane	to	another	window;	and	arranging	all	the
panes	horizontally,	vertically,	tiled,	and	much	more.

There	are	many	more	commands	to	resize	panes,	many	of	which	don’t	even	have
keyboard	shortcuts	because	they’re	not	used	all	that	much.	Of	course,	you	could	add	your
own,	and	if	you	read	Chapter	2,	Configuring	tmux,	you	should	have	all	the	tools	in	your
toolbox	to	do	so.

http://man.cx/tmux

Summary
In	this	chapter,	we	learned	a	lot	about	sessions,	windows,	and	panes	in	tmux.	We	learned
how	each	of	these	fit	into	the	tmux	hierarchy,	and	we	played	around	with	them	to	solidify
some	of	the	concepts.	We	created	multiple	sessions,	split	windows	into	multiple	panes,
moved	them	around,	and	learned	different	ways	to	switch	the	cursor	from	one	pane	to
another.

In	the	next	chapter,	we	will	move	on	to	text	manipulation	and	learn	about	how	we	can
scroll	back	through	the	window	history,	how	we	can	copy	text	from	the	window	history
into	a	paste	buffer,	and	how	we	can	paste	that	content.

Chapter	4.	Manipulating	Text
There	are	two	important	components	of	tmux	that	we	are	yet	to	discuss	in	more	detail,
namely,	Copy	mode	and	paste	buffers.

Copy	mode	is	a	mode	in	tmux	that	we	can	switch	to;	it	allows	us	to	select	the	text	that
already	appears	on	the	screen	and	copy	it.	Also,	it	allows	us	to	move	our	cursor	anywhere
on	the	screen,	even	to	places	that	have	moved	off	the	screen.

When	an	item	is	copied	from	Copy	mode,	it	ends	up	in	the	paste	buffer.	As	its	name
implies,	this	is	a	buffer	that	exists	to	hold	anything	that	is	copied	so	it	can	be	pasted	later.

Here	is	a	quick	summary	of	the	features	we	will	cover	in	this	chapter:

Window	history	and	how	tmux	handles	text	that	has	moved	off	screen
Explaining	the	two	tmux	modes

Scrolling	up	through	the	Window	history
Jumping	by	search	or	line
Copying	text	into	the	paste	buffer

Interacting	with	the	paste	buffer

Pasting	the	last	copied	item
Viewing	the	whole	paste	buffer	stack
Choosing	an	item	to	paste	interactively

By	the	end	of	this	chapter,	we	will	know	all	about	working	with	text	from	within	tmux.

Explaining	the	Window	history
One	thing	you	may	have	noticed	in	the	previous	chapters	is	that	commands	with	too	much
text	output	appear	to	get	cut	off.	You	can	see	the	tail	end,	but	the	rest	seems	to	go	above
the	window.	If	you	try	scrolling	up,	it	will	not	work.	What	is	going	on	here?

The	start	of	a	command	is	not	lost	forever.	It	still	exists;	it	has	simply	scrolled	off	the
screen.

In	order	to	work	its	magic	and	keep	everything	in	a	single	terminal	window,	tmux	has	to
hide	all	of	the	text	that	won’t	fit	in	the	currently	viewed	pane.	It	keeps	all	of	this	text
stored	in	something	called	Window	history.

Think	of	it	like	pages	in	a	physical	book.	A	book	contains	far	more	text	than	you	can	see
at	any	given	point	in	time,	but	to	make	it	manageable,	all	of	that	text	is	on	pages	that
aren’t	visible	at	the	same	time.	The	one	page	that	is	visible	is	the	one	you	have	opened.

Similarly,	tmux	maintains	all	of	the	text	that	didn’t	fit	on	the	pane	you	are	currently
viewing	and	tucks	it	away	in	the	Window	history.

Now,	of	course,	tmux	doesn’t	need	to	stack	its	pages	in	a	way	that	one	is	on	top	of	the
other,	like	with	a	traditional	book.	So,	they’re	more	laid	out,	one	above	the	next,	for	as
long	as	the	history	is	configured.

The	following	illustration	helps	visualize	it:

The	diagram	illustrates	the	entire	Window	history,	most	of	which	is	not	visible,	followed
by	the	contents	of	the	current	pane.	Notice	how	the	contents	of	the	current	pane	are	within
the	Window	history.	The	Window	history	does	not	only	contain	contents	that	have	gone
off	the	screen,	it	also	contains	everything	in	the	current	pane.

By	default,	the	Window	history	keeps	2000	lines,	but	as	we	saw	in	Chapter	2,	Configuring
tmux,	we	can	increase	or	decrease	this	history	to	suit	our	needs	as	follows:

#	Store	more	history	in	the	buffer	than	default

set-option	–g	history-limit	10000

A	larger	history	retains	more	of	the	state	but	also	causes	tmux	to	use	more	memory.

It	is	also	possible	to	clear	this	history	on	demand	with	the	tmux	command,	clear-
history.	You	can	run	it	by	typing	the	following	in	a	terminal:

$	tmux	clear-history

Now	it’s	nice	that	tmux	stores	all	of	that	history	for	us,	but	it’s	useless	unless	we	can	do
anything	with	it.	Thankfully,	we	can	access	it	with	Copy	mode.

Explaining	the	different	tmux	modes
tmux	actually	has	a	few	different	modes	that	can	be	used	when	interacting	with	it,	such	as
Default	mode	and	Copy	mode.	If	you’re	a	vi	user,	these	modes	are	very	similar	to	vi’s
insert	and	normal	modes:

Default	mode:	This	is	what	we’ve	seen	thus	far	while	interacting	with	tmux,	which	is
mostly	just	giving	us	an	interface	atop	the	programs	in	the	underlying	window.	This
is	similar	to	vi’s	insert	mode.	You	are	in	Default	mode	by	default,	and	if	you	go	into
any	other	mode	and	then	exit	it,	you’ll	end	up	back	in	Default	mode.
Copy	mode:	This	allows	us	to	access	the	Window	history	and	copy/paste	contents
from	that	history.	It	is	similar	to	vi’s	normal	mode	in	that	it	allows	you	to	move
around	without	tinkering	with	the	underlying	programs,	just	like	vi’s	normal	mode
allows	you	to	move	around	without	altering	the	underlying	document.	It	can	be
accessed	by	<Prefix>,	[.
Command	mode:	This	mode	is	used	to	enter	arbitrary	tmux	commands.	It	is	similar
to	the	vi	mode	of	the	same	name	and	can	be	accessed	by	<Prefix>,	:.
Clock	mode:	This	mode	shows	the	current	time	and	is	more	of	a	novelty/utility	than
an	actual	mode,	like	the	rest.	It	can	be	accessed	by	<Prefix>,	t.
Control	mode:	This	mode	allows	third-party	applications	to	interact	with	tmux
through	a	text-only	protocol.

In	addition,	this	is	where	we	start	to	get	to	the	text	manipulation	goodies	within	tmux.
When	we	drop	into	Copy	mode,	we	can	scroll	back	to	look	back	through	the	Window
history,	and	we	can	also	access	some	cool	text	manipulation	tools.

Let’s	walk	through	a	sample	workflow	with	Copy	mode.

A	sample	workflow	with	Copy	mode	workflow
If	you	have	followed	us	from	the	beginning	of	the	chapter,	you	should	have	a	tmux	session
started.	Let’s	first	rerun	the	long-running	command	we	used	previously	to	list	the	available
key	bindings:

$	tmux	list-keys

Just	as	we	saw	the	last	time	we	ran	this	command,	only	the	last	few	lines	are	made	visible
in	our	current	pane.	However,	now	we	are	armed	with	a	bit	of	knowledge	about	the
Window	history	and	can	likely	surmise	that	the	remaining	lines	are	there	but	have	scrolled
off	the	screen.	How	can	we	scroll	up	and	see	what	that	text	was?	Copy	mode!

Entering	Copy	mode
Let’s	enter	Copy	mode	so	we	can	scroll	back	and	see	the	rest	of	it,	which	is	stored	in	our
Window	history.	Press	<Prefix>,	[to	switch	back	to	Copy	mode.

The	first	thing	you’ll	notice	is	a	new	interface	element	added	to	our	screen.	There	will	be	a
new	box	in	the	upper-right	corner	of	the	terminal	screen	that	shows	[0/76],	as	shown	in	the
following	screenshot:

This	shows	us	both	the	number	of	lines	in	the	history	(76)	and	the	current	line	our	cursor
is	currently	on	(0).

Note	that	these	lines	are	in	reverse	chronological	order,	so	0	stands	for	our	currently
viewed	pane,	1	is	a	line	above	it,	2	is	a	line	above	line	1,	and	76	is	way	up	at	the	top	of	our
Window	history.	This	helps	give	context	as	to	where	in	the	history	we	are	as	we	scroll	up
through	it.

Going	back	to	our	Window	history	diagram,	the	lines	can	be	thought	of	as	shown	in	the
following	diagram:

The	first	number	in	the	[0/76]	bit	will	show	you	the	index	of	the	lowest	visible	line	on	the
current	viewpoint.	This	can	be	a	bit	confusing	at	times	as	it	seems,	when	you	scroll	up,
that	the	first	number	doesn’t	start	going	up	until	you	scroll	your	cursor	past	the	current
pane;	however,	it	makes	a	bit	more	sense	when	you	scroll	down	and	bring	the	lines	into
the	current	view	one	by	one.

Moving	the	cursor	around
Now	that	you’re	in	Copy	mode,	you	can	move	the	cursor	up,	down,	left,	or	right,	one
character	at	a	time.	This	is,	rather	intuitively,	the	up	arrow,	down	arrow,	left	arrow,	or	right
arrow	keys	or	Ctrl	+	p,	Ctrl	+	n,	Ctrl	+	b,	Ctrl	+	f	(k,	j,	h,	l).	Try	moving	the	cursor	around
a	bit	in	Copy	mode.

Tip
Emacs	or	vi	style	key	bindings	for	Copy	mode

Actually,	there	are	two	main	ways	to	bind	keys	in	tmux	for	Copy	mode:	Emacs-style	key
bindings	or	vi-style	key	bindings.

This	is	configurable	using	the	mode-keys	option.	We	will	be	primarily	covering	the	default
(Emacs-style)	key	bindings	and	will	include	the	vi	key	binding	in	parenthesis	following	it.
However,	note	that	as	we	saw	in	Chapter	1,	Jump	Right	In,	tmux	is	smart	and	may	alter
the	defaults	based	on	your	environment	variables.	So,	while	Emacs	is	the	usual	default,
you	may,	without	any	configuration,	be	set	to	the	vi	mode	with	tmux	out	of	the	box,	based
on	another	configuration.

If	you	are	a	vi	user,	know	that	you	can	set	up	vi-style	mode	keys,	and	if	you	do,	then	the
keys	to	browse	Copy	mode	are	very	much	like	browsing	vi’s	normal	mode.

The	Emacs	key	bindings	for	Copy	mode	can	be	viewed	with	the	following	command:

tmux	list-keys	-t	emacs-copy

The	vi	key	bindings	for	Copy	mode	can	be	viewed	with	the	following	command:

tmux	list-keys	-t	vi-copy

Alternatively,	you	can	look	at	the	man	pages	under	mode-keys	for	more	details	on
configuring	and	which	key	does	what	(http://man.cx/tmux	or	man	tmux	from	a	terminal).

Now	let’s	scroll	up	and	see	what’s	left	behind.

http://man.cx/tmux

Scrolling	through	the	Window	history
To	scroll	up	a	page,	you	can	use	Page	Up	or	Meta	+	v	(Ctrl	+	b)	and	you’ll	see	that	each
time	you	press	it,	the	number	in	the	upper-right	corner	changes	from	[0/76]	to	match
wherever	you	currently	are.

You’ll	also	notice	that	you	will	soon	see	the	text	that	wasn’t	previously	visible.	That’s
right,	now	you’re	scrolling	up	into	the	Window	history!	Of	course,	you	can	also	use	Page
Down	or	Ctrl	+	v	(Ctrl	+	f)	to	navigate	to	a	page	back	down.

Note
You	may	find	that	Meta	+	v	won’t	work	to	scroll	up	in	tmux.	If	you	encounter	this,	it	is
likely	due	to	a	configuration	setting	on	your	terminal.

If	you	are	using	iTerm2	on	a	Mac,	you	have	the	ability	to	specify	how	the	terminal	sends
the	Option	key.	To	access	this,	visit	Preferences	|	Profiles	|	Keys	and	you	should	see	Left
option	(⌥)	key	acts	as:.	Set	this	to	+Esc	to	have	the	Option	key	work	like	Meta,	as
shown	in	the	following	screenshot:

If	you	are	using	Terminal	on	a	Mac,	you	have	the	ability	to	specify	how	the	terminal	sends
the	Option	key.	To	access	this,	visit	Preferences	|	Profiles,	pick	your	active	profile,	select
the	Keyboard	tab,	and	check	the	box	that	says	Use	Option	as	Meta	key.

For	other	operating	systems,	Alt	will	often	work	as	Meta	out	of	the	box.

You	can	also	jump	directly	to	the	top	of	the	Window	history	with	Meta	+	>	(g)	and	go
back	to	the	bottom	with	Meta	+	<	(G).

Jump	by	search	or	line
Often,	you	know	exactly	what	you’re	searching	for	when	you	go	back	through	the	history.
When	this	is	true,	you	can	jump	by	a	search	term	to	get	to	a	specific	line.

For	example,	in	Copy	mode,	press	Ctrl	+	r	(?).	You	will	see	Search	Up:	appear	in	the
lower-left	corner,	as	shown	in	the	following	screenshot:

Type	list-keys	and	then	press	Enter.	You’ll	see	you	jumped	directly	to	the	last	use	of	the
term,	list-keys,	within	the	Window	history.	Try	it	again	and	you’ll	jump	back	to	the	time
we	first	entered	it.

If	you	don’t	have	an	exact	search	term,	you	can	still	jump	directly	to	a	line	number.
Simply	press	g	(:)	and	you’ll	be	prompted	for	the	line	to	jump	to.	This	is	helpful	when	you
don’t	know	exactly	what	you	may	be	searching	for	but	would	like	to	jump	back	several
pages.

Leaving	Copy	mode
To	drop	out	of	Copy	mode	and	go	back	to	Default	mode,	simply	tap	Esc	or	q	and	you’ll
leave	Copy	mode.

There	are	many	more	keys	to	navigate	to	Copy	mode,	but	it	would	be	onerous	to	describe
each	one	of	them.	However,	we’ve	seen	most,	and	the	rest	is	available	on	the	tmux	man
page:

$	man	tmux

Alternatively,	you	can	find	it	with	the	tmux	command	list-keys	-t	emacs-copy	or
list-keys	-t	vi-copy,	based	on	your	chosen	key	bindings.

You	can	view	more	keys	to	navigate	to	Copy	mode	online	at	http://man.cx/tmux.

http://man.cx/tmux

Copying	text	into	the	paste	buffer
Now	that	we’ve	gotten	a	taste	of	navigating	around	in	Copy	mode,	let’s	put	it	to	use.

Copy	mode	doesn’t	exist	just	to	have	a	Window	history	that	you	can	scroll	through,	but
also	to	have	a	way	to	copy	text	from	the	past	and	reuse	it.

Enter	Copy	mode	by	pressing	<Prefix>,	[and	scroll	around	until	you	find	some	text	that	is
of	interest.	Once	you	find	something	you’d	like	to	copy,	make	sure	the	cursor	is	at	the	start
of	where	you’d	like	to	copy	and	press	Ctrl	+	Space	bar	(Space	bar).	This	sets	the	start
point	of	the	selection.

Now	move	the	cursor	around	using	the	same	keys	as	provided	earlier,	and	you’ll	see	the
selection	is	highlighted	and	grows	as	you	move	away	from	the	start	of	the	selection.	The
area	you	select	will	have	a	different	background	color	as	the	area	is	highlighted.	See	the
following	screenshot,	which	is	an	example	of	this:

When	you	are	satisfied	with	your	selection,	simply	press	Meta	+	w	(Enter)	to	copy	the	text
and	you	will	leave	Copy	mode	immediately	and	will	be	scrolled	back	to	where	you	were.
The	text	you	selected	will	be	copied	and	added	to	your	paste	buffer	(more	on	this	soon).

A	few	things	to	note	are	as	follows:

This	is	set	up	to	model	Emacs	(or	vi)	almost	identically	in	terms	of	key	commands	to
navigate,	copy,	and	so	on.	Things	should	feel	rather	familiar	to	you	if	you	use	Emacs
or	vi.	If	you	aren’t	familiar	with	either,	things	may	seem	a	bit	foreign	and	will	take
some	time	getting	used	to.
Note	the	copy	operation	is	always	nondestructive	in	tmux.	You	have	copied	the	text
out	of	the	Window	history	but	have	not	altered	the	Window	history	at	all.	So,	you	can
go	back	and	copy	the	same	text	again	and	again	without	disturbing	the	history.
If	you	have	tried	copying	text	from	multiple	lines,	you	might	have	noticed	the
selection-wrapped	lines.	You	can	toggle	it	as	a	rectangle	by	pressing	R	(v)	at	any	time
in	Copy	mode	before	or	after	you	start	the	selection.	This	is	shown	in	the	following
screenshot:

You	can	also	grab	all	of	the	text	to	the	right	of	your	cursor	or	to	the	end	of	a	single
line	of	text,	much	like	the	kill	line	in	Emacs,	with	the	Ctrl	+	k	keyboard	command.
Again,	tmux’s	Copy	mode	is	nondestructive,	so	this	won’t	actually	kill	the	line	as	it
would	in	Emacs	but	will	copy	it	to	the	paste	buffer.

Interacting	with	the	paste	buffer
The	paste	buffer	is	a	holding	bucket	for	all	of	the	text	you	will	copy,	which	you	will	then
be	able	to	access	later	to	paste	onto	any	pane.

It	is	actually	a	stack,	so	each	item	copied	from	Copy	mode	is	added	at	the	top	of	the	stack,
and	every	new	item	is	added	at	the	top	with	every	other	item	moved	down	by	one.	Each
item	in	the	paste	buffer	is	assigned	a	number	based	on	the	order	in	which	it	went	into	the
stack.

Pasting	text	from	the	paste	buffer
Now	that	you’ve	grabbed	some	text,	you	want	to	pull	it	from	the	paste	buffer	to	get	it
back.

In	any	program	that	runs	within	tmux,	move	your	cursor	to	the	point	where	you	want	the
text	to	be	pasted	and	press	<Prefix>,].

For	example,	let’s	fire	up	nano:

$	nano

Once	we	do	this,	paste	what	we	last	copied	with	<Prefix>,].

Sure	enough,	our	text	appears!	Notice	the	nice	symmetry,	where	you	use	<Prefix>,	[to
enter	Copy	mode,	and	<Prefix>,]	to	paste	the	text.

Now	<Prefix>,]	is	nice	to	paste	the	most	recently	copied	bit	of	text,	but	what	about	more
complex	situations	such	as	copying	two	items	and	then	pasting	two	items?	Don’t	worry,
tmux	has	it	covered!

Choosing	items	from	the	paste	buffer
The	paste	buffer	is	not	just	a	single	blob	of	text	holding	the	last	thing	you	copied;	it	is
actually	a	stack	of	all	the	previously	copied	items.	You	can	access	this	and	paste	from	it	in
any	order.

To	access	this	list,	simply	press	<Prefix>,	=.	This	will	bring	up	an	interactive	list	of	the
last	things	you	previously	copied,	as	shown	in	the	following	screenshot,	and	you	can
simply	highlight	one	and	hit	Enter	to	paste	it:

By	default,	each	time	you	copy	it,	it	will	be	added	to	the	paste	buffer	stack.	Interestingly
though,	by	default,	when	you	pull	an	item	out	of	the	paste	buffer,	it	will	not	pop	the	latest
copied	item	out	of	the	cache.

The	command	<Prefix>,]	just	quickly	grabs	and	pastes	from	the	top	of	the	stack	in	(0).

Working	with	the	paste	buffer
There	are	also	a	handful	of	other	useful	things	we	can	do	when	working	with	the	paste
buffer.

You	can	optionally	set	a	limit	for	the	number	of	items	to	store	in	this	stack	by	setting	the
buffer-limit	option	to	a	number	in	your	tmux	configuration.	This	can	be	useful	if	you
only	want,	say,	the	last	five	items	you	copied	in	a	paste	buffer	for	security	reasons.

You	can	also	list	paste	buffers	non-interactively	by	pressing	<Prefix>,	:	(list-buffers)	and
Enter,	which	will	display	all	the	buffers	in	a	list	that	you	can	scroll	through.	Notice	how
each	buffer	has	an	index,	which	is	a	number,	followed	by	the	size	of	that	buffer.	Press	q
(Esc)	to	dismiss	this	list.

This	buffer	index	can	be	used	in	a	few	different	operations.	It	can	be	used	to	delete	a
buffer,	to	copy	a	buffer	to	another	session,	to	load	a	buffer	at	a	particular	index,	to	set	the
contents	in	a	particular	buffer,	to	write	a	buffer	to	a	file,	and	much	more.	It	is	a	bit	outside
the	scope	of	this	book	to	cover	all	the	things	that	can	be	done	with	buffers,	but	we	will
revisit	a	few	very	useful	tasks	in	Chapter	5,	Diving	Deeper.

As	in	prior	chapters,	there	is	a	full	key	binding	and	command	reference	in	the	appendix
with	all	of	the	keys	and	commands	we	learned	in	this	chapter	handy,	all	in	one	place.

Summary
In	this	chapter,	we	learned	a	lot	about	manipulating	text,	starting	from	understanding	the
Window	history	to	learning	about	the	two	different	modes	in	tmux	to	scroll	up	through	the
Window	history.	We	then	moved	on	to	jumping	by	search	or	line,	copying	text	into	a	paste
buffer,	using	Copy	mode	to	copy	text.	We	finished	by	discussing	how	to	paste	items	from
the	paste	buffer	to	the	underlying	window,	how	to	view	the	whole	paste	buffer	stack,	and
how	to	limit	the	number	of	items	stored	in	the	paste	buffer.

In	the	next	chapter,	we	will	get	to	some	more	advanced	usage	topics,	including	a	deeper
understanding	of	the	paste	buffer,	a	bit	more	on	sessions	and	windows,	and	an	opportunity
to	get	a	taste	of	launching	tmux	with	defaults.

Chapter	5.	Diving	Deeper
Now	that	we	have	learned	about	text	manipulation	with	Copy	mode	and	paste	buffers,	we
have	discussed	most	of	the	basics	of	working	with	tmux.	Let’s	dive	deeper	into	some	more
advanced	usage	topics	that	could	be	helpful	in	your	daily	workflow.

We	have	gotten	a	taste	of	these	items	already,	but	this	time	around,	we	will	explore	them
in	more	depth.	In	this	chapter,	we	will	cover	the	following	topics:

Understanding	tmux	commands	and	Command	mode
Advanced	paste	buffer	usage
Jumping	from	one	window	in	a	session	to	a	window	in	another	session
Moving	windows
Linking	a	window	between	sessions
Breaking	panes
Joining	panes
Launching	a	session	with	default	windows

Understanding	tmux	commands	and
Command	mode
You	may	have	noticed	that	in	prior	chapters,	we	accessed	some	of	our	commands	using
different	methods.	For	example,	we	showed	you	how	to	list	the	current	key	bindings.	This
can	be	done:

By	using	the	key	combination	<Prefix>,	?.
By	typing	the	command	directly	into	a	shell,	prefacing	the	command	with	the	tmux
keyword,	for	example,	tmux	list-keys.
By	entering	Command	mode	via	<Prefix>,	:	and	typing	the	command	list-keys	and
then	hitting	Enter.

Note
Command	mode	in	tmux	is	a	lot	like	the	mode	of	the	same	name	in	vi	or	the	mode
that	we	get	by	pressing	Meta	+	x	in	Emacs.	We	touched	on	Command	mode	briefly	in
Chapter	4,	Manipulating	Text.	Once	you	enter	Command	mode	in	tmux,	you	will
have	a	prompt	starting	with	a	colon	(:),	and	anything	you	type	is	entered	into	that
prompt.	Hitting	Enter	runs	the	tmux	command	you	typed,	like	with	vi.

What	is	going	on	here	and	why	do	all	these	three	methods	accomplish	the	same	thing?

Under	the	hood,	each	tmux	command	is	its	own	small	program,	much	like	the	small
classic	programs	underpinning	any	Linux,	Unix,	or	OS	X	operating	system	such	as	ls,	cd,
mkdir,	rm,	and	so	on.	You	can	actually	view	them	all	in	the	tmux	source	code	online	at
http://sourceforge.net/p/tmux/tmux-code/ci/master/tree/.

Each	of	the	commands	is	a	small	program,	written	in	C	and	starting	with	the	prefix	cmd-.

When	we	type	a	key	combination	or	run	tmux	command-name	or	<Prefix>,	:	command-
name,	we	are	instructing	tmux	to	execute	the	code	defined	in	that	C	file.

From	here	on,	if	we	refer	to	a	tmux	command,	keep	in	mind	that	it	can	be	run	using	any	of
the	three	previously	discussed	methods.

http://sourceforge.net/p/tmux/tmux-code/ci/master/tree/

Advanced	paste	buffer	usage
We	just	covered	paste	buffers	in	the	last	chapter,	but	there	is	more	than	we	were	able	to
cover	there.	So	let’s	cover	some	of	the	more	advanced	usage	first	while	it’s	fresh	in	our
memory.	We’ll	touch	on	the	following	advanced	paste	buffer	topics:

Saving	a	paste	buffer	to	a	file
Loading	a	paste	buffer	from	a	file
Setting	a	paste	buffer	directly
Capturing	pane	contents	to	a	paste	buffer
Deleting	copied	text	from	a	paste	buffer
Clearing	the	paste	buffer	history

Saving	a	paste	buffer	to	a	file
Assume	you’ve	just	copied	a	lot	of	excellent	text	to	the	paste	buffer	and	now	you	want	to
save	it	to	a	file.

Of	course,	you	could	open	a	text	editor,	paste	the	contents	of	the	buffer,	and	save	a	new
file;	however,	tmux	provides	us	with	a	handy	way	to	save	a	paste	buffer	directly	to	a	file
without	all	that	fuss.

So	jump	back	into	your	tmux	session	or	start	a	new	one	and	let’s	go!

1.	 First,	find	some	text	to	copy.	It	could	be	any	file	with	some	text	in	it.	For	example,
we	have	a	sample	file	with	some	text	that	we	print	out	via	cat	filename.	You	can
use	any	file	on	your	computer.

2.	 Recall	that	we	can	enter	Copy	mode	by	pressing	<Prefix>,	[.
3.	 Then,	we	can	press	Ctrl	+	Spacebar	to	start	copying	the	text.
4.	 Move	on	to	highlight	the	text.
5.	 Then,	press	Ctrl	+	w	to	copy	it.

Alright,	so	now	we	have	some	text	in	the	paste	buffer	at	index	0.	We	can	check	this	out
with	<Prefix>,	=.

We	have	628	bytes	there	in	that	paste	buffer.	Hit	q	to	dismiss	that	dialog.	Now	we	can	run
the	tmux	command	save-buffer	-b	0	[path];	here,	[path]	is	the	location	where	we
will	save	it	and	-b	0	indicates	that	we	want	to	save	the	text	from	the	paste	buffer	with
index	0,	in	this	case,	the	text	we	just	copied.	After	you	run	this	command,	we’ll	have	a
new	file	with	the	contents	of	that	buffer.

So,	for	instance,	<Prefix>,	:	save-buffer	-b	0	~/sonnet16.poem	will	save	the	contents
of	our	paste	buffer	to	a	file.	This	can	be	extremely	useful	in	many	contexts.	For	instance,
let’s	say	you	are	using	the	tail	utility	to	follow	a	log	file	in	real	time.	If	a	useful	snippet
appears	on	the	screen,	jumping	into	Copy	mode,	copying	it	to	a	paste	buffer,	and	then
saving	it	to	a	file	is	a	convenient	way	to	copy	the	relevant	text	to	a	file.	Alternatively,
imagine	you	are	reading	a	man	file	and	want	to	snag	a	useful	snippet	to	a	file	for	later	use.
In	this	case,	copying	the	snippet	first	and	then	writing	that	paste	buffer	directly	to	a	file
will	store	it	for	later	use	with	expedience.

Loading	a	paste	buffer	from	a	file
We	can	also	achieve	the	reverse,	that	is,	loading	the	contents	of	a	file	into	a	paste	buffer.
To	do	this,	simply	run	the	tmux	command	load-buffer	[path],	and	the	contents	of	that
file	will	be	loaded	into	a	paste	buffer.

This	is	very	useful	if	you	have	text	in	a	file	that	you	want	to	paste	into	any	program
running	within	tmux;	you	can	do	this	without	having	to	navigate	to	and	open	that	file	in	an
editor,	select	all	of	the	text	in	the	file	with	the	cursor,	and	then	copy	it	in	order	to	be	able
to	paste	it.

This	can	be	incredibly	useful,	for	example,	as	a	way	to	utilize	the	core	functionality	of
tmux	to	have	a	very	powerful	code	snippet	manager.

Say	there	are	a	bunch	of	different	common	boilerplate	things	you	write	in	your	code,	such
as	a	for	loop,	a	function	definition,	or	a	class	declaration.	You	could	create	a	simple	file
for	each	snippet	of	boilerplate,	load	it	directly	into	a	paste	buffer,	and	then	paste	it	from
within	tmux.	If	you	had	a	folder	in	your	home	directory	called	~/snippets	and	had
boilerplate	for	a	for	loop	with	the	name	~/snippets/forloop,	you	could	load	it	with	the
tmux	command	load-buffer	~/snippets/forloop	and	then	simply	paste	it	into	the
current	buffer	with	<Prefix>,].	Over	time,	as	you	build	up	snippets	for	a	lot	of	boilerplate
code,	you	can	save	a	lot	of	keystrokes.

By	default,	if	no	index	is	specified,	the	file’s	contents	will	be	loaded	into	index	0,	just	as	if
you	had	copied	it	normally	via	<Prefix>,	[(with	each	other	paste	buffer	moving	up	one
index);	however,	it’s	also	possible	to	specify	a	buffer	index	to	load	it	into.

Note	that	if	a	buffer	index	is	specified,	it	must	be	an	already	existing	buffer	index,	and	it
will	overwrite	the	contents	of	that	paste	buffer	with	the	index	you	will	provide.	So,	for
example,	specifying	buffer	0	with	the	tmux	command	load-buffer	-b	0
~/snippets/forloop	will	not	end	up	in	index	0,	pushing	all	the	buffers	up	by	one;	rather,
it	will	entirely	displace	whatever	was	previously	available	in	index	0.

Setting	a	paste	buffer	directly
It	is	also	possible	to	set	a	buffer	directly	with	tmux.	This	may	be	useful	if	you	would	like
to	paste	the	same	text	multiple	times.	There	is	no	need	to	type	the	whole	text	out	first	and
then	copy	it	before	being	able	to	paste	it;	you	can	set	the	contents	of	a	buffer	directly.

For	example,	say	we	would	like	to	put	a	sentence	into	a	buffer	directly.	We	can	do	this	by
issuing	the	tmux	command	set-buffer,	optionally	giving	it	an	index	and	providing	text	to
put	into	that	buffer.	The	following	steps	will	guide	you	in	setting	a	paste	buffer	directly:

1.	 Try	<Prefix>,	:,	set-buffer	"The	quick	brown	fox	jumped	over	the	lazy	dog".
2.	 Since	we	did	not	specify	a	buffer	index,	it	will	be	pushed	to	the	top	of	the	stack,	in

buffer	index	0,	with	the	rest	of	the	buffers	moving	down	one	index.	We	can	view	the
contents	of	this	buffer	with	the	tmux	command	show-buffer.	Sure	enough,	you’ll	see
that	the	content	is	the	sentence	we	just	set.

3.	 Now	paste	it	onto	the	screen	using	<Prefix>,].

Capturing	pane	contents	in	a	paste	buffer
With	tmux,	we	can	even	capture	an	entire	pane	in	a	paste	buffer.	Use	the	tmux	command
capture-pane	without	any	arguments	to	capture	the	contents	of	the	current	pane	in	a
buffer.	The	output	is	shown	in	the	following	screenshot:

Then,	view	the	contents	of	that	buffer	with	the	tmux	command	show-buffer.

Note	a	few	things:

It	will	capture	the	contents	of	the	current	pane,	but	none	of	the	tmux	chrome.	In	other
words,	it	won’t	include	the	tmux	status	bar	or	the	[0/0]	stuff	in	the	upper-right	corner
that	may	have	been	present	when	you	captured	the	pane.
The	capture-pane	command	will	not	always	deal	with	the	encoding	of	special
characters,	if	you	have	any,	present	in	the	pane	when	captured,	such	as	the	ones
you’ll	see	in	our	previous	screenshot.	For	example,	see	how	the	arrows	and	tilde	for
my	command	line	came	out	as	\356\202\260.
It	will	capture	the	exact	viewable	portion	of	the	pane	so	it	knows	how	small	or	large
your	window	is,	and	it	will	output	exactly	what’s	viewable	in	that	pane	at	the	current
point	in	time	only.	(Note	that	it	is	possible	to	capture	more	than	the	pane	that	is
visible,	or	less,	by	providing	a	start	line	index,	end	line	index,	or	both	to	the
capture-pane	command.)

This	command	is	very	useful	if	you	have	a	lot	you’d	like	to	copy	and	don’t	want	the	hassle
of	having	to	enter	Copy	mode	and	select	the	whole	pane.

Deleting	copied	text	from	a	paste	buffer
Imagine	you	have	copied	some	sensitive	information	using	the	methods	we	discussed.	For
most	cases,	it	is	very	nice	that	tmux	keeps	it	all	around	in	the	paste	buffer	stack,	but	what
if	you	want	or	need	to	get	rid	of	one	or	more	items	from	that	stack?

For	example,	say	you	used	Copy	mode	of	tmux	to	copy	a	password	or	a	social	security
number;	you	probably	don’t	want	it	sticking	around	forever	in	the	paste	buffer	for
someone	to	come	along	later	and	paste	it.	Thankfully,	tmux	provides	us	with	the	following
ways	to	delete	the	text	from	the	buffer	stack:

By	default,	the	keyboard	command	<Prefix>,	-	will	delete	the	last	copied	item	from
the	paste	buffer.	This	is	the	most	convenient	way	to	remove	something	you	just
copied/pasted.	This	has	the	side	effect	of	bumping	the	index	down	of	every	other
item	in	the	paste	buffer,	like	popping	the	top	item	off	a	stack.
The	tmux	command	delete-buffer	will	allow	you	to	target	a	specific	buffer	and
delete	it.	For	example,	delete-buffer	-b	2	will	delete	the	buffer	at	index	2.

Clearing	the	paste	buffer	history
Similar	to	removing	sensitive	information	from	the	paste	buffer,	you	may	desire	to	remove
sensitive	information	from	the	tmux	Window	history,	both	on	the	screen	and	information
that	has	scrolled	off	the	screen.

Note
This	is	particularly	helpful	if	you	use	something	like	pass,	a	command-line	password
storage	mechanism	that	will	display	your	passwords	on	the	screen	when	you	retrieve
them.

For	more	information,	visit:

http://www.zx2c4.com/projects/password-store/

Once	a	password	or	some	other	sensitive	information	is	displayed	on	the	screen,	it	will
seemingly	remain	in	your	Window	history	forever.	This	means	that	someone	nefarious
accessing	your	existing	session	may	be	able	to	just	scroll	back	up	through	your	history	in
Copy	mode	and	see	those	passwords.

Running	the	Unix	command	clear	within	a	pane	will	reset	the	viewport,	but	it	does	so
simply	by	scrolling	the	other	text	up	and	out	of	the	pane.	If	you	move	into	Copy	mode
with	<Prefix>,	[,	the	contents	of	that	window	would	still	be	visible	once	you	scroll	up.

Surely,	there	must	be	some	way	to	purge	that	Window	history	to	help	prevent	this.	There
sure	is;	it	is	the	tmux	command	clear-history.	Optionally,	you	can	provide	a	target	pane,
and	it	will	clear	the	history	for	that	pane.	For	instance,	clear-history	-t	1	will	clear	the
history	for	pane	1	even	if	that	is	not	your	currently	active	pane.

Tip
While	clearing	the	history,	it	will	clear	everything	that	was	in	the	Window	history	that
scrolled	out	of	that	pane,	but	it	will	retain	everything	that	is	currently	visible	in	that	pane.
To	clear	the	history	and	everything	in	that	pane,	it	is	best	to	run	the	Unix	command	clear
first	to	push	it	off	the	screen,	then	the	tmux	command	clear-history	to	flush	everything.

Note	that	if	there	is	extremely	sensitive	information	that	needs	to	be	cleared,	it	may	be
best	to	restart	tmux	after	you	clear	the	Window	history.	This	sensitive	information,	while
expunged	from	the	Window	history	and	therefore	not	available	in	Copy	mode,	could	still
potentially	be	sniffed	by	a	very	capable	hacker.	Its	bits	may	linger	and	be	salvageable	from
a	tmux	memory	dump,	so	restarting	tmux	is	the	only	way	to	be	entirely	sure	that	it	is	gone
from	the	memory	as	well.	While	this	is	a	case	that	is	quite	on	the	fringe,	it	bears
mentioning.

http://www.zx2c4.com/projects/password-store/

An	advanced	session	and	window	usage
Back	when	we	discussed	sessions,	we	walked	through	how	to	switch	from	one	session	to
another.	What	we	didn’t	cover	were	some	more	advanced	things	such	as	switching	from
one	window	in	one	session	directly	to	another	specific	window	in	another	session,	moving
windows	between	sessions	and	sharing	windows	between	sessions.

Jumping	from	one	window	in	a	session	to	another
window	in	another	session
A	couple	of	chapters	back,	we	discussed	switching	between	multiple	sessions	using
<Prefix>,	s	to	bring	up	the	list	of	sessions	and	select	any	of	them.

OK!	So	let’s	get	set	up	a	bit.	We’ll	need	two	active	sessions	with	a	couple	of	windows
each.	If	you	followed	along	the	previous	section,	we	should	already	have	one	active
session;	let’s	create	another	session	using	the	tmux	command,	new-session	-s
"Another".

Now	let’s	create	another	window	using	<Prefix>,	c	and	run	some	command	in	it,	for
instance,	top:

$	top

The	output	of	this	command	is	shown	in	the	following	screenshot:

Let’s	switch	back	to	our	other	session	with	<Prefix>,	s	and	then	highlight	and	select	the
other	session	we	want,	as	shown	here:

Jump	onto	the	other	session	(Advanced,	as	shown	in	the	preceding	screenshot).	Now	if
we	do	the	same	thing	again,	using	<Prefix>,	s	and	switch	back	to	the	Another	session,	we
will	arrive	back	in	Another,	in	window	2	that	is	running	top.	This	is	because	tmux	will
take	us	back	to	the	last	window	we	were	viewing	in	an	active	session.

However,	what	if	we	wanted	to	move	directly	from	one	session	to	a	specific	window	in
another?	Surely,	we	should	not	have	to	switch	to	the	session	and	then	select	the	window.
Well,	we	can	directly	choose	a	window	within	a	session,	and	tmux	actually	makes	this	a
breeze.

Bring	up	the	choose-tree	interface	again	with	<Prefix>,	s.	Notice	the	plus	symbols	to	the
left	of	the	session	names?	They’re	there	because	that	session	can	be	expanded	to	show	the
windows	running	in	those	sessions.	Simply	highlight	the	session	you	want	to	drill	into	and
tap	the	Space	bar	or	right	arrow	key	to	unfold	that	session	and	see	a	list	of	the	windows	in
that	session.	Notice	how	it	resembles	a	file	tree,	as	shown	in	the	following	screenshot.
This	is	why	this	command	has	the	name	that	it	does.

Recall	from	our	first	chapter	what	some	of	the	magic	characters	on	the	window	mean?	The
characters	are	as	follows:

The	character	*	indicates	the	currently	active	window
The	character	-	indicates	the	previously	active	window

In	the	preceding	screenshot,	you	can	see	that	window	2	running	top	was	our	currently
active	window.	If	we	just	selected	the	session	by	choosing	(1),	we	would	be	plopped	back
into	that	session	with	the	window	running	top.	However,	if	we	want	to	go	directly	to	the
other	window,	we	can	do	this	by	highlighting	it,	refer	to	the	previous	screenshot,	and
hitting	Enter.

Moving	windows
So	we’ve	got	top	running	in	the	session	named	Another.	Imagine	that	we	want	to	move
that	window	to	our	session	named	Advanced.	First,	switch	to	the	window	with	top
running.	Now	run	the	tmux	command	move-window.	It	is	conveniently	bound	to	the
keyboard	shortcut	<Prefix>,	.	so	you	can	type	that	and	then	provide	the	name	of	the
destination	session	which,	in	our	case,	is	Advanced.

Note	how	that	window	is	gone;	now	our	Another	session	has	only	one	window.	The
window	with	top	was	moved	to	the	Advanced	session,	but	we	are	still	in	the	Another
session.	tmux	opened	the	other	window	to	keep	us	in	the	current	session.

Now	pull	up	the	session	list	again	using	<Prefix>,	s	and	then	expand	Advanced.	In	the
following	screenshot,	we	can	see	how	it	now	has	three	windows,	the	last	of	which	is	the
window	that	we	just	moved	by	running	top:

Note	that	this	same	command	can	also	be	used	to	move	a	window	to	a	different	index
within	the	same	session.	We	can	specify	the	numerical	index	we’d	like	the	window	moved
to	within	this	session	rather	than	providing	a	session	name.	For	instance,	to	move	a
window	to	index	5,	we	could	run	the	same	move-window	command	via	<Prefix>,	.	and
then	enter	5;	by	doing	this,	the	status	bar	will	be	updated	to	reflect	this	window’s	new
index.

When	being	moved	from	one	session	to	another,	the	window	will,	by	default,	be	placed	at
the	lowest	available	base	index.	So,	if	you	have	set	the	base	index	to	1	and	have	windows
in	index	1	and	3,	the	moved	window	will	land	in	this	session	with	index	2.

To	specify	both	the	session	and	window	index	as	the	home	for	the	window,	specify	both,
separating	them	with	a	colon.	For	example,	to	move	this	window	to	the	Another	session
in	window	index	7,	you	could	use	the	move-window	command	with	the	argument
Another:7	where	the	session	comes	before	the	colon	and	the	window	index	after.

This	is	also	useful	to	move	a	window	to	a	session	with	a	numeric	name,	such	as	the	default
session	name	0.	By	default,	if	you	specify	a	number	alone	to	the	move-window	command,
tmux	will	assume	you	meant	the	window	index	0	and	not	the	session	named	0.	To	specify
this,	you	will	use	the	command	move-window	0:	to	explicitly	specify	the	session	named	0.

Linking	a	window	between	sessions
Now	moving	the	window	between	sessions	is	quite	useful,	but	what	if	we	want	to	use	the
same	program	in	multiple	sessions	and	not	have	multiple	instances	of	it	running?

The	top	command	is	a	great	example.	We	could	start	another	window	now	in	our	Another
session	which	no	longer	has	top	because	we	moved	it	to	Advanced,	but	then	we	will	have
two	copies	of	top	running;	this	will	mean	that	we	will	be	using	double	the	amount	of	CPU
and	memory.	There	is	nothing	particularly	interesting	about	top	that	will	require	us	to
have	two	instances	of	it	running	so	doing	so	will	be	a	waste	of	resources.

Therefore,	let’s	not	run	two	copies	of	top	but	instead	link	one	window	to	both	the	sessions
so	it	is	accessible	from	either	session.

First,	let’s	open	the	window	with	top	running.	Now	run	the	tmux	command	link-window
-t	Another.	This	tells	tmux	to	link	the	window	to	the	Another	session	as	well.

You	can	use	the	same	session:window	syntax	we	saw	previously	for	the	move-window
command	to	specify	not	only	a	destination	session,	but	also	a	destination	window	index.
For	example,	link-window	-t	Another:5	will	link	this	window	to	the	Another	session	in
window	index	5.

The	window	is	now	accessible	from	both	the	sessions.	In	the	following	screenshot,	it	is
window	3	on	the	Advanced	session	and	window	2	on	the	Another	session:

You	can	also	link	a	window	without	first	switching	to	it	by	specifying	it	as	the	source	to
the	link-window	command	with	the	flag	-s.	For	example,	link-window	-s	Advanced:3
-t	Another:2	will	link	the	window	to	the	Advanced	session,	window	index	3	to	the
Another	session,	window	index	2	without	requiring	us	to	switch	to	the	Advanced	index	3
first	as	we	did	in	the	previous	example.

So	we	are	saving	some	resources	by	linking	a	window	between	sessions	rather	than
creating	a	new	one.	This	is	useful	for	any	command	that	does	not	require	multiple
instances	to	be	effective	that	you	may	want	accessible	from	multiple	sessions.	Aside	from
top,	email	clients	such	as	alpine	or	mutt	fall	into	this	category,	as	do	things	such	as
irssi	or	a	command-line	music	player.	I	will	often	run	a	window	in	the	Org	mode	for
Emacs	linked	like	this	so	the	list	of	to-dos	is	shared	across	sessions.

Note
Note	that	if	you	do	this,	killing	a	pane	or	window	in	one	place	will	kill	it	at	both	the
places.

To	later	remove	a	window	from	one	session	but	not	the	other,	you	will	need	to	unlink	the
window	rather	than	kill	it	by	using	the	tmux	command,	unlink-window.

Breaking	panes
The	act	of	taking	a	pane	within	a	window	and	moving	it	to	its	own	window	is	called
breaking	that	pane.	It	can	be	accomplished	with	the	tmux	command	break-pane	or	the
keys	<Prefix>,	!.

By	default,	the	break-pane	command	will	operate	on	the	currently	selected	pane;
however,	any	arbitrary	pane	can	be	specified	using	the	same	syntax	we	saw	in	the	previous
example	to	select	a	window	within	a	session,	specifically	separating	the	session	and
window	name	by	a	colon.	However,	of	course,	a	pane	also	has	an	index,	which	can	be
added	after	the	window	separated	by	a	period.	This	all	sounds	complex,	but	it	is	actually
rather	intuitive.

For	example,	to	select	pane	2	in	window	1	in	the	session	Advanced	and	break	it	into	its
own	window,	we	could	use	the	command	break-pane	-s	Advanced:1.2.

Note
Remember	that	you	can	see	the	current	pane	indexes	flash	on	the	screen	briefly	with	the
key	binding	<Prefix>,	q.

When	you	break	a	pane,	tmux	automatically	switches	the	window	to	select	the	window
that	now	contains	that	pane.

Joining	panes
In	addition	to	linking	windows	between	one	session	and	another,	you	can	also	do
something	called	joining	panes.	The	name	can	seem	a	bit	misleading	at	first,	but
essentially,	this	is	used	to	take	a	pane	in	one	window	and	move	it	to	another	window.

It	can	be	used	to	move	one	pane	in	a	multipaned	window	to	another	window,	but	it	can
also	be	used	to	take	a	window,	which	has	only	one	pane,	and	join	it	with	another	(now	its
name	is	probably	a	bit	less	misleading).	This	is	very	useful	if	you	have	two	windows
running	different	things	but	decide	you’d	prefer	them	as	two	panes	of	the	same	window.

For	example,	let’s	say	we	have	a	pane	running	in	one	window	and	we	want	to	join	it	with
another	window.	In	the	simplest	case,	we	could	switch	to	the	pane	we	want	to	join	and	run
the	command	join-pane	-t	:1	where	:1	indicates	that	we	want	the	window	in	index	1	in
the	current	session.	After	running	this	command,	the	window	index	1	in	the	current
session	will	have	the	contents	of	any	panes	it	had	before	in	addition	to	the	new	pane	we
just	joined	to	it.

Using	the	same	elaborate	session:window.pane	syntax	we	saw	previously,	we	can
specify	a	source	pane	and	target	destination	to	get	really	slick	about	it.	Say	we	want	to
take	the	pane	in	the	session	Advanced,	window	2,	pane	1,	and	move	it	to	the	session
Another,	window	1,	and	not	specify	a	pane	number	so	it	defaults	to	the	lowest	available
index.	We	can	do	this	with	the	command	join-pane	-s	Advanced:2.1	Another:1

As	you	can	now	see,	joining	panes	is	an	incredibly	powerful	tool	in	your	tmux	arsenal	that
will	allow	you	to	combine	multiple	panes	into	one.	Now	you	have	learned	how	to	break	a
pane	off	into	its	own	window,	how	to	combine	it	with	other	panes,	how	to	move	windows
and	link	them	between	sessions,	and	more.

Launching	with	defaults
Imagine	you	integrate	tmux	into	your	workflow	such	that	you	get	very	used	to	certain
things	being	in	certain	places,	perhaps	a	shell	at	the	root	of	your	code	repository	in
window	1,	Emacs	in	window	2,	top	in	window	3,	and	so	on.	Now	every	time	you	reboot
your	machine,	you	spend	some	time	to	set	up	everything	again,	start	a	new	session,	create
three	windows,	launch	the	programs	in	each	window,	and	so	on;	there	must	be	a	better
way.	Of	course	there	is!

tmux	gives	us	some	ways	to	configure	things	with	nice	defaults	out	of	the	box.	We’ll	also
see	another	way	to	do	this	later	in	Chapter	7,	Using	Other	Tools	with	tmux,	with	a	third-
party	utility.

So	let’s	take	the	previous	example	and	run	through	it.	There	are	ways	to	make	some	of	this
happen	within	your	.tmux.conf,	file	but	it’s	generally	more	powerful	to	do	it	externally
via	a	separate	bash	script.	So	hop	into	your	favorite	editor	and	start	editing	a	new	file
named	.tmux.defaults.	You	can	name	this	file	anything,	so	if	you	have	multiple	sessions
you	may	want	to	name	it	based	on	the	session	name.

Now	let’s	specify	our	configuration.	In	this	file,	copy	the	following	code:

new	-n	term	zsh

neww	-n	emacs	emacs

neww	-n	htop	htop

Of	course,	your	commands	may	be	slightly	different	based	on	your	system	configuration
and	what	you	would	like	to	run	by	default.

Now,	to	run	with	this	configuration	file,	start	tmux	as	follows:

$	tmux	source-file	~/.tmux.defaults

That’s	it!	You’ll	see	yourself	get	started	in	a	new	session	with	three	windows:	the	first
running	a	terminal,	the	second	in	Emacs,	and	the	third	in	top.

Again,	you	can	create	multiple	configurations	like	this	by	simply	creating	multiple	files,
one	for	each	session	you’d	like	to	automate.

Note
For	more	details	on	launching	tmux	with	defaults,	check	out	the	tmux	manual	section	on
session	initialization:	https://wiki.archlinux.org/index.php/Tmux#Session_initialization

It	is	possible	to	create	more	complex	session	initializations	than	our	previous	example,	but
complex	configurations	are	often	tasks	better	suited	to	third-party	tools,	as	we	will	see	in
Chapter	7,	Using	Other	Tools	with	tmux.

https://wiki.archlinux.org/index.php/Tmux#Session_initialization

Summary
In	this	chapter,	we	revisited	a	handful	of	tmux	topics,	going	into	far	more	depth	than	we
were	able	to	in	earlier	chapters.	At	this	point,	you	should	have	a	great	grasp	and	depth	of
information	on	paste	buffers,	sessions,	windows,	panes,	and	all	of	the	other	topics	we
covered	in	great	depth	here.

In	the	next	chapter,	we	will	not	learn	more	about	the	mechanics	of	tmux	itself,	but	rather	a
bunch	of	tricks	and	tips	for	its	use	that	can	help	maximize	your	productivity.

Chapter	6.	tmux	for	SSH,	Pair
Programming,	and	More
By	now,	we	have	gone	over	nearly	everything	about	the	mechanics	of	tmux.	Putting
together	everything	from	the	previous	chapters,	we	now	know	about	configuration,
sessions,	windows	and	panes,	text	manipulation,	and	a	smorgasbord	of	advanced	usage	in
topics	such	as	the	paste	buffer,	moving	windows,	panes,	and	even	launching	sessions	with
some	defaults.	So	at	this	point,	we	can	use,	configure,	and	customize	tmux	in	many
awesome	ways.

Now,	we	will	not	explore	new	concepts	in	the	mechanics	of	using	tmux,	but	new	ways	to
utilize	the	things	we	have	already	learned	in	order	to	simplify	everyday	workflows.	In	this
chapter,	we	will	cover	the	following	topics:

Using	tmux	over	SSH	for	long	lived	sessions

Setting	up	a	virtual	machine	with	Vagrant
Workflow	with	tmux	over	SSH
Launching	tmux	over	SSH	on	connect

Using	tmux	for	pair	programming

Connection	to	the	same	session
Using	Vagrant	Cloud	for	pair	programming
Using	grouped	sessions	for	pairing

Using	tmux	over	SSH	for	long	lived
sessions
How	many	times	have	you	been	connected	to	a	remote	server	over	SSH	just	to	have	some
network	blip	terminate	your	session,	putting	you	back	at	square	one	when	you	reconnect?

With	tmux,	you	can	connect	to	a	remote	server,	start	a	tmux	session,	and	set	up	windows
and	panes	the	way	you’d	like	them.	Then,	if	you	get	disconnected	from	the	remote	server
for	any	reason—be	it	a	network	blip,	the	SSH	session	timing	out,	disconnecting	from	a
VPN,	or	simply	closing	your	laptop	to	go	home	for	the	day—you	can	SSH	into	that
machine	later	and	reconnect	to	your	tmux	session	which	has	continued	running,	preserving
your	state	as	you	left	it.

This	is	my	favorite	use	of	tmux	and	one	that	saves	the	most	time	in	my	daily	workflow.
Not	only	because	it	is	useful	to	deal	with	network	connectivity	issues	gracefully,	but	also
since	most	remote	servers	running	Linux	are	rarely	terminated;	this	means	that	once	you
start	a	tmux	session,	it	can	persist	for	weeks	or	months.

Practically	speaking,	this	means	that	every	day	when	you	connect	to	some	remote	server,
you	could	be	saving	time	setting	everything	up	by	using	tmux.	You	won’t	have	to	change
to	the	directory	you	usually	want	open	in	one	window,	you	won’t	have	to	connect	tail	to	a
logfile	in	another	window,	and	you	won’t	have	to	open	a	file	for	editing	in	your	favorite
text	editor	in	another.	They’ll	already	be	there,	just	the	way	you	left	them	before—thanks
to	tmux.

Let’s	walk	through	a	hands-on	example	of	this	in	action.	For	this,	either	connect	to	a
remote	server	over	SSH,	or	we	have	short	instructions	on	using	Vagrant	to	create	a	virtual
machine	locally	to	which	you	can	connect.

Benefits	of	using	Vagrant
Vagrant	is	an	incredibly	easy	way	to	use	virtualization	to	get	a	machine	up	and	running
locally.	We	suggest	using	it	here	for	consistency.

The	instructions	we	give	should	work	when	connected	to	just	about	any	Linux	server,	but
since	there	are	so	many	different	Linux	distributions,	versions,	and	more,	there	are	bound
to	be	slight	inconsistencies.

By	using	Vagrant,	we	can	ensure	that	the	environment	we	authors	have	locally	matches	the
instructions	we	provide	which	will	match	the	environment	you	readers	have	locally	if	you
also	use	Vagrant	to	set	up	your	environment.

Having	Vagrant	set	up	will	also	prove	helpful	later	in	this	chapter	when	we	discuss	using
tmux	for	pair	programming,	which	could	open	security	vulnerabilities	without	a
sandboxed	instance	like	this.

If	you	would	still	like	to	skip	Vagrant	and	just	connect	to	a	local	machine,	simply	skip	the
next	section	and	you	should	be	able	to	continue	with	your	remote	box	instead.	Again,	be
forewarned	that	without	Vagrant,	some	of	these	commands	may	not	work	exactly	as
specified	and	may	need	tweaking	based	on	your	Linux	distro.

Creating	a	virtual	machine	with	Vagrant
Ok,	so	we	are	going	to	create	a	virtual	machine	with	Vagrant	and	we	will	then	connect	to	it
via	SSH	to	illustrate	some	of	the	topics	we	will	discuss	relating	to	SSH.	This	will	help
give	some	consistency	to	the	instructions	and	allow	you,	even	if	you	have	no	access	to	a
Linux	server,	to	follow	along.

First,	install	Vagrant.	Instructions	are	available	on	the	Vagrant	website	at:

http://docs.vagrantup.com/v2/installation/index.html

Next,	navigate	to	a	directory	in	which	you’d	like	the	Vagrantfile	to	live.	A	Vagrantfile
specifies	what	should	be	installed	when	this	machine	is	brought	to	life	and	its	file	can	go
basically	anywhere.

So	jump	into	your	terminal	and	navigate	to	and/or	create	a	directory	for	this	file	to	call
home.	Now	let’s	create	a	Vagrantfile.	In	a	terminal,	in	your	directory	of	choice,	run	the
following	command:

$	vagrant	init	ubuntu/trusty64

This	will	create	a	file	in	that	directory	named	Vagrantfile.	If	you	inspect	that	file,	you
will	see	it’s	rather	simple	with	most	of	it	commented	out.	We	can	leave	most	of	the	content
in	the	file	alone,	but	one	bit	we	want	to	uncomment	is	the	highlighted	portion	of	the
following	snippet:

		#	Create	a	private	network,	which	allows	host-onlyaccess	to	the	machine

		#	using	a	specific	IP.

		#	config.vm.network	"private_network",	ip:	"192.168.33.10"

To	uncomment	it,	remove	the	#	at	the	start	of	that	line.	It	was	line	26	in	our	Vagrantfile.
This	one	change	will	ensure	that	we	can	connect	to	our	machine	locally	via	the	IP	address
192.168.33.10.

Next,	let’s	add	one	line,	directly	after	that	line	we	just	uncommented	so	that	bit	of	the	file
should	now	look	like	the	following	code	snippet:

		#	Create	a	private	network,	which	allows	host-only	access	to	the	machine

		#	using	a	specific	IP.config.vm.network	"private_network",	ip:	

"192.168.33.10"

		config.vm.hostname	=	"tmux.dev"

This	snippet	is	added	so	that	we	can	SSH	into	our	Vagrant	box	just	as	though	it	was	our
remote	server	in	the	cloud,	and	we	can	do	so	using	the	hostname	tmux.dev.

Note
This	hostname	trick	may	not	work	depending	on	your	version	of	Vagrant	and	your	OS.	If
later,	the	machine	seems	inaccessible	at	the	previous	hostname,	you	can	still	access	the
Vagrant	box	at	its	IP	address.

If	we	skip	this,	Vagrant	does	give	us	a	way	to	connect	to	the	box	over	SSH	without
needing	the	IP	address	(vagrant	ssh),	but	then	it	will	not	look/feel	like	a	remote	server

http://docs.vagrantup.com/v2/installation/index.html

which	is	the	intent	here.	So,	although	we’ll	be	creating	a	machine	locally,	pretend	it’s	the
cloud	server	you	connect	to	in	doing	your	job.	Let’s	start	our	virtual	machine.	Thanks	to
Vagrant,	this	is	as	easy	as	using	the	following	command:

$	vagrant	up

Now,	the	first	time	you	run	this,	it’ll	take	a	little	while.	How	long	it	takes	will	depend	on
the	speed	of	your	Internet	connection,	but	for	us	it	took	about	7	minutes.	It	takes	so	long
because	it	is	downloading	an	image	of	an	entire	virtual	machine	with	the	latest	version	of
Ubuntu.

Vagrant	will	give	you	some	helpful	output	about	what	it’s	doing	and	near	the	end	will	ask
for	your	password.	This	is	your	local	user	password	and	necessary	because	it	asks	for
permission	to	write	to	your	/etc/hosts	file	to	add	the	entry	to	the	name	we	provided	(in
our	case,	tmux.dev).

After	Vagrant	works	its	magic,	we	can	connect	to	it.	Make	sure	you	detach	your	current
tmux	session	if	you	have	one	active	and	run	the	following	command	line	from	a	shell	(not
within	tmux).	If	you	run	it	from	within	tmux,	you	will	end	up	with	nested	tmux	sessions,
which	will	be	rather	troublesome.	From	your	command	line,	run	the	following	command:

$	ssh	-i	~/.vagrant.d/insecure_private_key	vagrant@tmux.dev

Let’s	break	this	command	line	down	a	bit.

The	-i	~/.vagrant.d/insecure_private_key	part	of	the	command	specifies	that	we
connect	using	this	private	key.	This	is	the	default	created	by	Vagrant	for	this	box.	You	can
modify	it	to	use	your	own	personal	private	key	but	that’s	beyond	the	scope	here.

The	vagrant@tmux.dev	part	of	the	command	specifies	that	we	want	to	connect	to	the
hostname	we	created,	tmux.dev,	and	we	want	to	connect	as	the	vagrant	user;	the	default
user	Vagrant	creates	when	it	initializes	the	box.

When	you	run	this	command	you	should	be	connected	by	SSH	to	our	Vagrant	machine!

Walking	through	a	sample	workflow	with	tmux
over	SSH
Let’s	now	walk	through	our	workflow	with	tmux	over	SSH.	Thankfully,	Trusty	Tahr,	the
Ubuntu	version	we	installed	via	Vagrant,	comes	with	tmux	already	installed	so	we	are
ready	to	rock.

If	you	followed	along	and	created	a	Vagrant	box,	you	should	have	an	SSH	session
connected	to	that	machine.	If	you	skipped	the	last	session,	SSH	into	your	server	and
ensure	you	have	tmux	installed.	Now,	from	your	terminal	on	your	SSH	session	in	either
Vagrant	or	a	remote	server,	let’s	run	the	following	familiar	command	to	initiate	a	new
tmux	session:

$	tmux	new-session	-s	MyServer

This	command	will	launch	a	new	tmux	session	called	MyServer.

Now,	let’s	do	some	stuff.	Since	every	user	has	different	needs	and	different	workflows,	we
have	a	sample	workflow	we’ll	run	through;	as	we	run	through	the	workflow,	imagine
substituting	these	steps	for	those	which	apply	to	your	specific	use.	First,	create	a	new
window	using	the	keyboard	command	<Prefix>,	c.

Note
One	thing	you	may	notice	is	that	if	you	followed	along	earlier	with	Chapter	2,	Configuring
tmux,	or	if	you	created	your	own	prefix	key,	it	no	longer	works.	Why	is	this?

You	have	created	a	brand	new	machine	with	Vagrant	(or	connected	to	a	server).	This	is	not
your	local	machine.	tmux	pulls	its	configuration	from	the	file	~/.tmux.conf,	which	does
not	exist	on	this	other	machine!

You	can	copy	the	file	onto	this	machine	(using	the	command	$	scp	-i
~/.vagrant.d/insecure_private_key	~/.tmux.conf	vagrant@tmux.dev:~),	create	a
new	.tmux.conf	file	on	that	machine,	or	create	a	repository	on	GitHub	with	this	(and
possibly	other	dotfiles)	that	can	be	cloned	on	any	remote	machine	you	touch.

In	this	new	window,	open	a	file	for	editing	using	the	following	command:

$	nano	myfile

Now	create	another	window	using	<Prefix>,	c	and	let’s	run	top:

$	top

Open	one	more	window	by	pressing	<Prefix>	c	and	let’s	tail	a	logfile	this	time:

$	tail	-f	/var/log/boot.log

Note	that	this	is	a	rather	boring	logfile	to	tail	as	it	won’t	change	until	next	boot,	but
pretend	it’s	an	exciting	web	server	logfile	or	something.

Ok,	so	now	we’ve	got	four	windows	as	shown	in	the	following	screenshot,	each	running
different	things	on	this	remote	machine	using	tmux:

Now	close	your	terminal	window.	Yes,	I’m	serious,	trust	me—everything	will	keep
running!	Imagine	this	is	the	same	as	dropping	your	network	connection,	having	an	SSH
timeout,	or	going	home	for	the	day.	Open	a	brand	new	terminal	window.	Run	the
following	SSH	command	we	ran	before:

$	ssh	-i	~/.vagrant.d/insecure_private_key	vagrant@tmux.dev

Once	you’re	connected	via	SSH,	run	the	following	command:

$	tmux	attach-session	-t	MyServer

You	can	even	run	the	following	abbreviated	version	of	the	command	to	attach	the	session
that	you	had	running:

$	tmux	attach

Lo	and	behold,	there	is	everything	just	as	you	had	left	it!	It	will	persist	through	all	your
disconnections	for	as	long	as	that	server	stays	up.	Imagine	the	daily	time	saving	in	not
having	to	open	all	these	windows	every	morning	when	you	connect	to	the	server	or	any
time	you	get	disconnected!

Launching	tmux	on	SSH	connect	automatically
You	can	also	trigger	tmux	to	be	run	on	SSH	connect	automatically	so	you	don’t	have	to
connect	then	start	tmux.	Close	your	terminal	window	again	and	open	a	new	one.	In	this
new	window,	run	the	following	command:

$	ssh	-i	~/.vagrant.d/insecure_private_key	vagrant@tmux.dev		-t—'tmux	

attach-session	-t	"MyServer"'

This	tells	SSH	that	after	you	connect,	you	want	to	immediately	run	the	tmux	attach-
session	command	and	reattach	the	session	you	had	before.	Now	this	is	handy,	but	your
command	to	connect	to	your	server	is	getting	rather	long!	We	could	place	this	long
command	in	an	executable	shell	script	and	run	that	script	to	connect	to	your	remote	server.
Alternatively,	we	can	also	make	things	a	bit	easier	by	tucking	most	of	it	away	in	our	SSH
configuration.	Jump	into	your	favorite	editor	and	edit	the	~/.ssh/config	file.	This	file
probably	already	exists;	it	is	used	whenever	you	connect	to	a	server	using	SSH.	Add	the
following	lines	to	the	file:

Host	tmux

		HostName	tmux.dev

		User	vagrant

		IdentityFile	~/.vagrant.d/insecure_private_key

Now	you	can	connect	more	easily	with	the	following	simplified	command:

$	ssh	tmux	-t—'tmux	attach-session	-t	MyServer'

Note
Unfortunately,	there	is	not	a	great	way	to	tuck	away	the	tmux	command	into	the
~/.ssh/config	file.	There	is,	however,	a	way	to	do	it	on	the	server	by	tweaking	the
~/.ssh/authorized_keys	file.

We	leave	this	as	an	exercise	for	the	user	as	this	is	going	in-depth	into	the	concept	and
because	it’s	not	always	desirable	to	initiate	tmux	every	single	time	you	connect	to	a
remote	host.

It	could	also	create	issues	connecting	to	the	remote	host.	For	example,	imagine	you
specify	that	on	connecting	the	remote	session	should	always	run	tmux	attach-session	-
t	MyServer.	However,	what	happens	when	the	session	MyServer	doesn’t	already	exist?
You	could	be	locked	out	of	the	server!	So	tread	carefully	here	dear	reader.

Using	tmux	for	pair	programming
So	we	saw	how	to	create	sessions	and	how	you	can	attach	an	existing	session,	but	did	you
wonder	what	would	happen	if	more	than	one	terminal	attached	to	the	same	session?

The	ability	to	connect	multiple	terminals	to	the	same	session	ends	up	being	one	of	the
biggest	advantages	tmux	offers.	By	allowing	two	or	more	terminal	windows	to	connect	to
the	same	tmux	session,	tmux	becomes	an	extremely	powerful	collaboration	tool.	With
tmux,	two	or	more	people	can	see	and	even	interact	with	the	same	content	at	the	same
time!

Connecting	to	the	same	session	locally
Before	we	get	to	full	pair	programming,	let’s	try	just	connecting	to	the	same	session
locally	in	two	different	terminal	windows	and	see	what	happens.

If	you	followed	the	previous	instructions,	you	should	be	able	to	pull	up	your	tmux	session
by	opening	a	new	terminal	window	and	running:

$	ssh	tmux	-t—'tmux	attach-session	-t	MyServer'

That	will	connect	to	the	box	over	SSH	and	attach	your	tmux	session.	Now,	open	another
terminal	window	and	run	that	exact	same	command	again	in	this	new	window.	You	should
notice	that	it	is	connecting	and	the	session	is	looking	very	familiar.

Notice	what	happens	if	you	type	something	in	one	window;	it	appears	immediately	in	the
other	window!	Now	type	in	the	other	and	you’ll	see	the	same	happens	in	reverse.	What
you’re	seeing	is	the	magic	of	tmux	in	all	its	glory.	Each	character	entered	in	one	window
is	propagated	to	the	other	and	vice	versa.	You	could	even	open	up	a	third	and	you’d	see
the	same	behavior—typing	in	any	of	them	also	occurs	immediately	in	the	others.

Try	switching	from	one	window	to	another	within	tmux	with	the	keyboard	command
<Prefix>,	n.	See	how	it	changes	in	all	windows	simultaneously?	How	cool	is	that?	Now
you	should	be	starting	to	see	how	this	could	be	useful	for	pair	programming.	You	could
have	one	person	in	one	place	connected	to	a	machine	and	someone	else	far	away
connected	to	the	same	machine	and	one	person	would	see	the	other	coding	in	real	time	and
be	able	to	interact	as	well!

Now	try	resizing	one	of	the	windows.	Make	it	a	bit	wider	and	taller	than	the	other	window.
Notice	how	there	are	dots	along	the	edge	in	the	larger	window	as	shown	in	the	following
screenshot:

These	dots	are	used	as	padding	to	ensure	that	the	usable	window	size	is	the	same	for	both
viewers,	regardless	of	the	size	of	their	terminal	windows.	This	ensures	the	window	within
the	dots	will	always	be	the	size	of	the	minimum	height	or	width	across	all	windows.	This
ensures	consistency	in	terms	of	what	each	viewer	sees,	how	each	cursor	moves,	and	so	on.

Note
This	behavior	can	also	be	modified	slightly	with	a	setting	called	aggressive-resize.

What	we	described	in	this	section	is	the	default	behavior,	but	this	kind	of	resizing	with
dots	may	be	unnecessary	in	certain	circumstances—particularly	if	attached	clients	are	not
both	looking	at	the	same	window	at	the	same	time.

The	behavior	can	be	modified	to	only	pad	with	dots,	as	we	have	seen,	when	another	client
with	a	smaller	window	is	currently	looking	at	it.	This	helps	constrain	the	resizing	and
letterboxing	to	only	the	case	where	it	is	likely	useful.	To	enable	aggressive-resize,	put
the	following	snippet	in	your	.tmux.conf	file:

set-option	-w	aggressive-resize	on

Vagrant	Cloud	for	better	security	pair
programming
Now	you	may	have	seen	the	preceding	example	and	noticed	that	in	our	example	we	both
SSH’d	into	the	same	box	as	the	same	user.	Unless	you	want	to	give	your	password	or
worse	your	private	key	to	your	pair,	this	is	not	a	very	workable	solution.	Your	company
may	have	a	central	server	you	both	can	access	with	your	own	accounts,	in	which	case	this
may	not	be	an	issue	for	you.	Otherwise,	you	may	see	this	solution	as	a	massive	security
hole.	Even	if	you	do	have	a	shared	server	space,	whichever	of	the	pair	is	the	“host”	will
open	up	their	machine	for	shared	viewing,	which	could	be	dangerous.	If	the	other	in	the
pair	decided	to	copy	the	host’s	private	key	on	a	company	server,	there	could	be	trouble.

This	is	why	we	suggest	Vagrant	Cloud	for	better	security	when	pair	programming.	By
spinning	up	a	fresh	virtual	machine	in	the	cloud,	there	is	unlikely	to	be	sensitive
information	accessible.	You	can	share	it	at	will	with	someone,	trusted	or	not,	and	have	a
bit	more	piece	of	mind	about	security.

I	have	actually	done	this	and	used	the	pair	programming	for	the	coding	part	of	a	job
interview	on	more	than	one	occasion.	You	certainly	wouldn’t	want	to	do	that	with	an
internal	company	server!	If	you’d	prefer	not	to	deal	with	Vagrant,	simply	jump	to	the	next
section.

So	let’s	get	started.	The	following	steps	will	guide	you	in	using	Vagrant:

1.	 Go	to	https://vagrantcloud.com/	and	sign	up.	It’s	free	to	create	an	account.
2.	 Next,	go	back	to	a	terminal,	one	not	in	the	SSH	session	already	(you	can	open	a	new

one	or	detach	one	of	the	existing	tmux	sessions	with	the	keyboard	command
<Prefix>,	d),	and	enter	the	following	command:

$	vagrant	login

3.	 Provide	your	username	and	password	and	you’ll	be	logged	in.
4.	 Navigate	back	to	the	directory	where	you	created	your	Vagrantfile	and	run	the

command:

$	vagrant	share	--ssh

5.	 You	will	be	prompted	to	provide	a	password	to	encrypt	the	SSH	key.	Give	it
something	that	is	a	decent	password	but	which	you	can	share	with	the	person	you’re
pairing	with.

6.	 On	the	screen,	Vagrant	will	give	instructions	for	the	other	user	to	connect	and	issue
your	machine	a	random	name.	Your	current	screen	will	look	similar	to	the	following
screenshot:

https://vagrantcloud.com/

7.	 Now	open	another	terminal	window	(simulating	another	user	on	a	remote	machine)
and	run	the	command	it	suggested.	In	my	case,	the	command	used	was:

$	vagrant	connect	--ssh	greedy-lamb-6478

However,	the	machine	name	will	be	different	for	you	since	it’s	randomized.	After
entering	the	SSH	key	password,	you’ll	be	connected	via	SSH	to	the	server!	This
could	be	a	person	on	the	other	side	of	the	world.

8.	 Now	run	tmux	and	attach	the	session	of	interest:

$	tmux	attach-session	-t	MyServer

And	you’re	ready	to	rock.

Of	course,	the	other	person	connecting	will	also	have	to	sign	up	for	Vagrant	Cloud	in	order
to	connect.	This	is	an	incredibly	easy	way	to	come	up	with	a	relatively	safe	pair
programming	environment	so	two	(or	more)	people	can	collaborate	in	real	time	over	the
Web	without	fear	of	compromising	one	of	the	collaborator’s	environments.

If	the	worst	happens	and	one	of	the	pair	is	nefarious,	the	worst	they	can	do	is	make	a	mess
of	this	virtual	machine,	which	was	created	with	only	a	handful	of	commands.

Using	grouped	sessions	for	pairing
You	may	have	seen	the	previous	pairing	and	thought,	“Well	that’s	great	and	seeing	what
the	other	person	sees	in	real	time	is	cool,	but	what	if	you	want	each	person	to	be	able	to
have	different	windows?”

This	is	where	grouped	sessions	come	in.	You	can	have	one	person	create	a	session	and	the
next	to	join	create	a	new	session,	but	specify	the	grouped	session	as	well.	This	way,	each
person	has	their	own	control	over	the	windows	in	a	session,	but	anything	they	do	in	each
session	is	shared.	This	allows	one	person	to	be	in	one	window	and	the	other	in	another.

They	can	switch	to	each	other’s	sessions	at	will,	but	otherwise	don’t	need	every	command
and	keystroke	to	enact	on	both	windows.	To	create	a	grouped	session,	one	person	must
initiate	the	session	as	we	discussed	previously.	If	you	still	have	the	MyServer	session
running,	you	can	use	that.

In	a	new	terminal	window,	connect	to	the	same	server	but	instead	of	attaching	that	same
session	with	tmux,	run	the	following	command:

$	tmux	new-session	-t	MyServer	-s	MySession

This	instructs	tmux	to	create	a	new	session,	but	with	the	same	target.	This	initializes	a
grouped	session.	The	MyServer	session	is	the	grouped	session,	so	the	new	connector	can
view	it,	but	new	connector	can	also	switch	to	another	window	without	stealing	the	initial
user’s	view.

While	this	new	session	shares	the	same	target,	it	essentially	clones	the	original	session	and
creates	another	for	the	second	viewer.	They	are	linked;	so	as	one	user	opens	new	windows
or	changes	anything	in	one	session,	the	same	will	happen	in	the	other	session,	but	both
sessions	can	have	different	names	and	both	sessions	will	appear	in	the	list	of	sessions	as
two	different	sessions.	This	way,	if	the	second	viewer	kills	their	session	(with	the	tmux
command	kill-session	-t	{session	name}),	the	first	session	will	continue	running.

This	allows	the	second	user	that	connected	to	go	off	and	do	their	own	thing,	creating	more
windows,	using	a	different	program,	and	so	on,	but	without	stealing	the	spotlight	and
forcing	the	host	to	watch	their	every	move.

Now	in	each	of	our	examples,	we	only	showed	two	clients	connecting	to	the	same	session.
However,	that	could	just	as	easily	be	3,	13,	37,	359,	or	more.	While	there	is	no	stated	limit
to	the	number	of	clients	that	can	connect	to	a	session	simultaneously,	there	will	be	a
practical	limit	on	throughput	and	bandwidth	and	memory	at	some	point.	However,	tmux
does	not	enforce	a	set	limit.

Summary
We	learned	some	tricks	of	using	tmux	in	a	daily	workflow.	We	learned	how	it	can	be	used
to	help	created	long-lived	SSH	sessions	and	how	it	can	be	used	for	pair	programming	with
a	stop	along	the	way	to	learn	about	using	Vagrant	to	set	up	a	shareable	virtual	machine.

In	the	next	chapter,	our	last,	we	will	discuss	how	we	can	use	some	other	third-party	tools
with	tmux	to	make	it	even	more	powerful.

Chapter	7.	Using	Other	Tools	with	tmux
As	we	saw	in	the	past	chapter,	tmux	is	great	for	long	lived	SSH	sessions	and	for	pair
programming	with	its	own	core	functionality.	However,	as	much	as	tmux	is	a	fantastic
development	tool	on	its	own,	there	are	still	some	bits	of	functionality	that	it	lacks.	For
example,	as	we	saw	back	in	Chapter	5,	Diving	Deeper,	starting	a	tmux	session	with
defaults	is	a	bit	difficult.

Thankfully,	like	many	open	source	applications,	there	are	many	third-party	tools	that	have
sprung	up	to	help	fill	those	gaps.

In	this	last	chapter,	we	will	explore	some	of	the	best	tools	to	augment	tmux	and	make	the
tmux	experience	even	more	awesome.	We	will	touch	on	the	following	topics/tools:

Using	tmux	with	the	OS	X	Pasteboard
tmux	configuration	from	the	maximum-awesome	project,	by	Square
Using	tmuxinator	to	make	session	management	easier
Using	wemux	to	ease	the	multiuser	experience

Using	tmux	with	the	OS	X	Pasteboard
As	the	title	implies,	this	first	section	is	a	Mac	specific	one.	If	you’re	on	any	other
platform,	skip	it.

If	you’re	used	to	the	OS	X	Pasteboard	and	the	command	line,	you	may	be	familiar	with
the	pbcopy	and	pbpaste	tools.	These	are	two	small	command	line	utility	programs	that
ship	with	OS	X	that	allow	you	to	pipe	command	line	content	to	the	system-wide	clipboard
and	vice	versa.

A	sample	usage	would	be	to	run	a	command	like	the	following:

$	cat	Sonnet16.text	|	pbcopy

This	command	will	print	out	the	contents	of	the	Sonnet16.text	file	and	pipe	them	into	the
pbcopy	program,	which	will	then	make	the	contents	of	that	file	easy	to	be	pasted	in	OS	X
in	any	program	with	simply	⌘	+	v.

The	problem	is	that	if	you	try	this	trick	within	a	tmux	session,	it	won’t	work!	This	is
because	the	OS	X	Pasteboard	doesn’t	play	nicely.	A	short	way	to	explain	it	is	that	because
tmux	runs	its	server	as	a	daemon	(which	is	what	allows	you	to	detach	then	reattach	with	it
still	running),	OS	X	denies	permission	for	it	to	access	the	Pasteboard.	This	is	done	for
security	purposes,	so	other	programs	running	in	the	background	are	unable	to	access	the
Pasteboard.	However,	programs	we’d	like	to	have	access	to	the	Pasteboard,	such	as	tmux,
cannot	access	it	without	some	tricks.

Tip
For	the	more	information,	see	this	lengthy	description	in	README	for	a	utility	that	fixes
the	issue:	https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard#mac-os-x-
pasteboard-access-under-tmux-and-screen.

However,	since	we	do	want	tmux	to	have	access	to	the	OS	X	Pasteboard,	surely	there	must
be	some	way	around	this	security	restriction!	Thankfully,	some	smart	minds	have	come
before	us	and	solved	the	problem.

It’ll	take	two	steps.	First,	we’ll	install	the	small	utility	program.	Second,	we’ll	update	our
.tmux.conf	file	to	launch	every	new	window	using	this	utility.

Let’s	first	install	the	program.	If	you	are	a	developer,	you	may	already	have	Homebrew	or
MacPorts	installed.	(If	not,	we	recommend	that	you	install	Homebrew:	http://brew.sh)

Now,	use	the	following	command	to	install	this	utility	using	Homebrew:

$	brew	install	reattach-to-user-namespace

You	can	even	use	the	following	command	if	you	prefer	MacPorts:

$	port	install	tmux-pasteboard

Now,	add	the	following	lines	to	your	.tmux.conf	file:

#	Make	tmux	and	OS	X	Pasteboard	play	nicely

https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard#mac-os-x-pasteboard-access-under-tmux-and-screen
http://brew.sh

set-option	-g	default-command	"reattach-to-user-namespace	-l	zsh"

Here,	zsh	can	be	replaced	by	your	shell	of	choice,	so	it	could	be	bash,	or	fish,	or	any
other	shell	of	your	choice.	By	adding	these	lines	to	your	configuration,	you	are	basically
telling	tmux	that	any	new	window	it	launches	should	launch	with	that	command	rather
than	just	a	normal	new	shell.	This	new	command	is	a	shell	that	has	been	patched	to	play
nicely	with	the	OS	X	Pasteboard	so	pbcopy	and	pbpaste	work	as	intended.

You	may	notice	that	this	will	only	work	on	a	system	with	the	reattach-to-user-
namespace	utility	installed	and	will	cause	issues	on	Linux	or	another	Mac	that	did	not
have	that	installed.	This	can	be	remedied	by	using	the	following	formulation	instead:

if-shell	'test	-x	/usr/local/bin/reattach-to-user-namespace'	'set-option	-g	

default-command	"reattach-to-user-namespace	-l	zsh"'

This	will	run	only	on	systems	that	have	this	reattach-to-user-namespace	command.
The	if-shell	bit	is	a	very	useful	little	tmux	command	that	will	run	the	second	command
that	follows	it,	provided	the	first	command	that	follows	it	returns	success.	In	our	case,
using	the	test	-x	command	allows	us	to	check	and	see	whether	the	reattach-to-user-
namespace	file	exists.	If	it	does,	it	runs	the	tmux	set-option	to	use	the	fixed	item.	If	not,
it	runs	nothing,	so	it	will	not	break	on	systems	that	do	not	have	this	script.

tmux	configuration	from	the	maximum-
awesome	project,	by	Square
While	we’re	on	the	topic	of	configuration,	we	should	discuss	the	maximum-awesome
project,	and	the	configuration	files	for	Vim	and	tmux	from	the	folks	at	Square.	Square
specializes	in	payments	and	is	very	active	in	the	open	source	community.

They	have	put	a	ton	of	thought	and	effort	over	the	years	into	curating	what	they	consider
to	be	the	ideal	configuration	for	Vim	and	tmux	and	they	have	it	freely	available	on
GitHub:	https://github.com/square/maximum-awesome.

Be	forewarned,	their	configuration	is	rather	Vim	opinionated,	but	that	caveat	aside,	they
have	baked	up	a	truly	awesome	set	of	configurations.

Our	favorite	thing	about	these	configuration	files	is	that	they	provide	a	good	set	of	defaults
and	recently	added	support	for	a	.tmux.conf.local	file	intended	for	user	overrides	and
custom	commands.	They	are	both	great	drop-in	configuration	files	and	great	sources	of
inspiration	for	creating	your	own	configuration.

So	let’s	give	maximum-awesome	a	go.	Navigate	to	a	directory	where	you	can	clone	this
repository.	For	example,	we’ll	do	it	in	our	home	directory.	Enter	the	following	command
to	get	started:

$	cd

Then,	clone	the	repository	with	the	following	command:

$	git	clone	https://github.com/square/maximum-awesome.git

Next,	change	into	that	directory:

$	cd	maximum-awesome

Run	the	rake	command	to	install	the	project:

$	rake

Note
Here,	rake	is	short	for	the	Ruby	command	make	and	it	is	the	ruby	analogue	to	make.	If
you	do	not	have	it	installed,	it	can	be	installed	with	the	command	gem	install	rake.	If
you	do	not	have	gem	installed,	look	to	the	RubyGems	website	for	instructions:
https://rubygems.org/pages/download.

Now,	the	gems	should	be	installed!	Now	if	you	launch	tmux,	you’ll	be	in	maximum-
awesome’s	configuration.

Tip
Also,	be	forewarned	that	loading	maximum-awesome	can	wipe	out	your	locally
configured	.tmux.conf	file	(since	the	whole	point,	in	essence,	is	that	it	is	an	awesome
.tmux.conf	file).

https://github.com/square/maximum-awesome
https://rubygems.org/pages/download

So	be	sure	to	back	up	your	.tmux.conf	file	before	running	this	command.

Using	tmuxinator	to	make	session
management	easier
In	Chapter	5,	Diving	Deeper,	we	touched	a	bit	on	starting	tmux	with	some	default	session
configuration	in	the	Launch	with	defaults	section.

You	may	have	noticed	that	even	a	rather	simple	configuration	turned	out	to	be	a	bit
complex	and	tricky.	This	is	one	of	those	areas	of	core	tmux	that	leaves	a	little	to	be
desired.

Thankfully,	the	open	source	world	has	stepped	up	to	the	plate	and	created	an	excellent
utility	called	tmuxinator	to	make	this	kind	of	configuration	far	simpler.

Built	in	ruby,	tmuxinator	is	easy	to	install	and	provides	a	ton	of	useful	capability.	It	does
so	by	allowing	you	to	specify	in	a	simple	and	intuitive	YAML	syntax	how	you’d	like	your
window	laid	out,	any	programs	that	should	be	run	on	launch,	and	more.	tmuxinator	allows
you	to	create	hooks	that	run	before	any	window	configuration	is	run	and	makes	it	much,
much	easier	to	specify	a	set	of	default	windows	and	panes	than	in	core	tmux.

Let’s	run	through	the	workflow	of	installing	and	creating	a	sample	tmuxinator
configuration	file.

Installing	tmuxinator
Since	it	is	built	in	ruby,	it’s	available	as	a	ruby	gem	so	installation	is	a	breeze.	In	a
command	line,	simply	run:

$	gem	install	tmuxinator

Note
Depending	on	your	system	setup,	you	may	have	to	use	sudo	to	install	gems.	We’d	suggest
trying	without	sudo	first,	then	falling	back	to	it	if	the	installation	fails.

tmuxinator	helpfully	tells	us	during	install	that	it	includes	a	tmuxinator	doctor	command
that	can	be	used	to	check	your	local	system	configuration	and	ensure	all	is	well.	We
recommend	running	that	now	and	fixing	any	issues	it	finds:

$	tmuxinator	doctor

When	you	see	all	items	confirmed	as	Yes,	you	can	move	on.

Understanding	the	tmuxinator	configuration
First,	open	a	terminal	and	run	the	following	command	to	create	the	initial	tmuxinator
configuration	file:

$	tmuxinator	new	tutorial

The	tmuxinator	new	command	will	start	a	new	tmuxinator	configuration	file	and	we	gave
it	the	name	tutorial.	Feel	free	to	name	your	file	whatever	you’d	like	of	course.

You’ll	be	dropped	right	into	your	editor	of	choice	with	the	default	contents	of	a	tmuxinator
configuration	file	already	in	your	editor.	A	few	things	to	note	about	this	file:

It	is	located	in	~/.tmuxinator/<name>.yml	(in	our	case
~/tmuxinator/tutorial.yml).	This	is	where	tmuxinator	will	store	all	of	its
configuration	files.	This	is	nice	because	you	can	have	multiple	configuration	files	and
they	will	all	live	in	one	place	and	be	accessible	by	tmuxinator.
After	a	couple	lines,	there	are	a	bunch	of	comments.	These	comments	indicate
options	that	could	be	used	but	aren’t	by	default.	We	will	dig	into	these	in	a	bit.
At	the	bottom	of	the	file	is	the	YAML	that	actually	lays	out	the	windows,	panes,	and
so	on.	tmuxinator	includes	a	default	set	of	layouts.

tmuxinator	includes	its	own	kind	of	domain-specific	language	to	build	a	rich	configuration
of	windows,	panes,	and	the	default	programs	to	run	in	them.

For	example,	what	follows	is	a	sample	configuration	file.	We	have	added	useful	comments
starting	with	#	before	each	line	to	describe	what	the	following	line	is	doing:

#	sets	the	name	for	this	tmuxinator	config

name:	tutorial

#	sets	the	root	directory,	all	new	panes	will	start	with	a

#	terminal	opened	to	this	directory

root:	~/

#	this	is	the	start	of	the	specification	for	which	windows

windows:

		#	this	specifies	the	first	window	named	"editor"

		-	editor:

				#	the	"editor"	window	should	have	a	vertical	layout

				layout:	main-vertical

				#	this	specifies	that	the	"editor"	window	should	have	two

				#	panes

				panes:

						#	emacs	should	be	running	in	one	pane

						-	emacs

						#	top	should	be	running	in	the	other	pane

						-	top

		#	now	we	have	a	second	window	called	"server"	that	should	start

		#	running	the	command	"node	~/myapp.js"	on	opening

		-	server:	node	~/myapp.js

		#	there	should	be	a	third	window	called	"logs"	which	should

		#	start	with	the	tail	command	to	view	the	logs

		-	logs:	tail	-f	log/development.log

This	is	a	very	succinct	way	to	specify	some	very	complex	behavior	for	windows	and
panes!	Feel	free	to	make	any	tweaks	you	would	like	to	the	file	and	save	it.	Now	to	start	it,
simply	run:

$	tmuxinator	start	tutorial

Again,	tutorial	could	be	replaced	with	your	filename.	You’ll	see	tmux	is	launched,	but
not	only	did	it	launch,	but	it	also	opened	multiple	windows	and	it	has	the	name	you	gave	it
in	the	bottom	left	hand	corner!	If	you	open	a	new	window,	it	should	open	to	the	root	path
specified	in	your	configuration	file,	and	so	on.

So	how	does	this	black	magic	work	you	may	wonder?	Well	under	the	hood	it’s	a	bunch	of
ruby	scripts	that	start	tmux	and	set	it	all	up	for	you	using	the	configuration	YAML	to	guide
that	setup.

Revisiting	the	commented	lines
Going	back	to	the	configuration	file,	there	were	some	commented	lines	at	the	top	that	we
said	we’d	dig	into	later.	Well	here	we	are!	Let’s	dig	in.

In	the	following	code	snippet	we’ve	copied	the	comment	chunk	from	the	top	of	the	default
tmuxinator	configuration	file:

#	Optional	tmux	socket

#	socket_name:	foo

#	Runs	before	everything.	Use	it	to	start	daemons	etc.

#	pre:	sudo	/etc/rc.d/mysqld	start

#	Runs	in	each	window	and	pane	before	window/pane	specific	commands.	Useful	

for	setting	up	interpreter	versions.

#	pre_window:	rbenv	shell	2.0.0-p247

#	Pass	command	line	options	to	tmux.	Useful	for	specifying	a	different	

tmux.conf.

#	tmux_options:	-f	~/.tmux.mac.conf

#	Change	the	command	to	call	tmux.		This	can	be	used	by	

derivatives/wrappers	like	byobu.

#	tmux_command:	byobu

You	will	see	that	there	are	comments	to	help	explain	the	commands	but	let’s	go	into	a	bit
more	depth.

We	have	not	yet	discussed	sockets	much	as	we	get	into	rather	esoteric	territory,	but	the
first	line	allows	you	to	specify	a	socket	name.

By	default,	when	tmux	is	first	launched,	a	server	is	launched	on	the	machine	and	that
server	creates	a	socket	on	which	it	begins	listening.	Then	the	client	is	launched	and
connects	to	that	socket.	This	is	all	rather	seamless	under	normal	usage.

This	socket	persisting	is	what	allows	you	to	detach	the	tmux	session	and	reattach	it.	In
reality,	when	you	detach	you	are	terminating	the	client;	however,	the	tmux	server
continues	humming	along,	listening	on	that	socket	for	incoming	connections.	When	you
decide	to	reattach	to	a	session,	you	are	launching	a	client	and	connecting	to	that	socket.

This	socket	is	also	what	allows	multiple	people	to	connect	to	a	single	tmux	session	as	we
saw	in	Chapter	6,	tmux	for	SSH,	Pair	Programming,	and	More,	when	we	discussed	using
tmux	for	pair	programming.

So	far,	whenever	we	ran	a	tmux	command	to	connect,	we	seamlessly	connected	to	that
default	socket,	but	you	can	launch	tmux	and	specify	your	own	socket	path	or	name.	This
will	allow	us	to	run	more	than	one	independent	instance	of	tmux	on	the	same	machine.

So,	this	configuration	option	allows	us	to	specify	the	socket	name	when	we	launch	with
tmuxinator	start	<name>.

The	next	section	starting	with	the	pre	command	is	copied	in	the	following	code	snippet:

#	Runs	before	everything.	Use	it	to	start	daemons	etc.

#	pre:	sudo	/etc/rc.d/mysqld	start

This	section	allows	you	to	specify	any	commands	to	run	when	the	tmuxinator	session	is
started	as	its	name	implies.	This	is	great	to	start	any	background	tasks	that	do	not	have	a
UI	but	which	we	would	like	to	be	running	and	available	for	the	session.	This	is	convenient
because	it	prevents	us	from	having	to	open	a	new	pane	(or	panes),	launch	a	program,	then
leave	it	around	forever	but	just	ignore	it.	The	following	code	snippet	allows	us	to	specify
tmux	options	specific	to	this	tmuxinator	instance	that	may	not	appear	in	the	standard
.tmux.conf	file:

#	Runs	in	each	window	and	pane	before	window/pane	specific	commands.	Useful	

for	setting	up	interpreter	versions.

#	pre_window:	rbenv	shell	2.0.0-p247

This	command	allows	us	to	run	a	command	with	every	window	or	pane	that	we	create
rather	than	just	on	tmux	launch.	In	the	following	commands	we’re	passing	the
configuration	file:

#	Pass	command	line	options	to	tmux.	Useful	for	specifying	a	different	

tmux.conf.

#	tmux_options:	-f	~/.tmux.mac.conf

There	could	be	simpler	commands	such	as	changing	the	prefix	key	or	anything	else	we
saw	back	in	Chapter	2,	Configuring	tmux	or	more	powerful	as	in	the	example	where	they
are	loading	another	configuration	file	and	sucking	in	all	of	its	commands.	The	following
code	allows	us	to	change	the	command	used	to	call	tmux:

#	Change	the	command	to	call	tmux.		This	can	be	used	by	

derivatives/wrappers	like	byobu.

#	tmux_command:	byobu

This	code	snippet	mentions	byobu,	which	is	a	program	that	basically	sits	atop	tmux	(or
GNU	Screen)	and	adds	additional	functionality	to	them.	The	idea	behind	this	is	that	if	you
prefer	to	use	tmuxinator	to	call	some	command	other	than	tmux	that	wraps	tmux,	you	can
do	so	using	this	line.

Summarizing	tmuxinator
In	summary,	tmuxinator	is	an	extremely	powerful	program	that	adds	a	lot	of	useful
features	to	tmux	and	will	save	any	tmux	user	a	lot	of	time,	every	time	they	have	to
relaunch	tmux	and	get	all	set	up	with	their	environment.

Not	only	can	it	be	a	huge	timesaver,	but	can	also	be	incredibly	helpful	for	beginners	as	it
can	act	as	training	wheels	until	a	tmux	user	has	grown	accustomed	to	all	the	nuances	of
creating	windows	and	panes.	As	we	saw	in	Chapter	3,	Sessions,	Windows,	and	Panes,
creating	and	manipulating	panes	can	be	fairly	difficult.	Having	a	simple	tmuxinator
configuration	file	that	can	jumpstart	that	process	without	much	effort	can	be	incredibly
helpful.

Note
For	detailed	command	reference	for	tmuxinator,	visit	its	project	page	on	GitHub:

https://github.com/tmuxinator/tmuxinator

https://github.com/tmuxinator/tmuxinator

Using	wemux	to	ease	multiuser	experience
Another	fantastic	utility	built	by	the	community	is	wemux.	It	seeks	to	simplify	the
multiuser	experience	in	tmux.	As	we	saw	in	the	last	chapter,	setting	tmux	up	for	pair
programming	is	an	awesome	feature	of	tmux.	It	builds	upon	that	experience,	making	it
easier	to	configure	and	adds	some	very	useful	functionality.

Jump	on	over	to	the	wemux	GitHub	page	to	get	started	and	install	wemux:

https://github.com/zolrath/wemux

If	you	are	in	an	active	tmux	session,	detach	it	before	proceeding	with	<Prefix>,	d.

Now	let’s	jump	into	wemux.	From	your	terminal,	run	the	following	command:

$	wemux	start

Boom!	But	wait,	you	may	say	that	this	looks	exactly	like	tmux.	You	would	be	right,
wemux	is	a	wrapper	around	tmux	so	it	is	the	tmux	you	know	and	love	with	some	special
sauce	added	to	facilitate	some	of	the	multi-user	concepts.

From	your	command	line,	run	the	following	command:

$	wemux	users

The	output	of	this	command	can	be	seen	in	the	following	screenshot:

You	should	see	a	list	containing	one	user.	As	you	can	imagine,	if	you	had	other	users
connected,	they	would	appear	in	this	list.	Moreover,	if	there	were	another	user	in	that	list
and	we	wanted	to	boot	them	out	of	our	current	wemux	session,	you	could	run	the
following	command:

$	wemux	kick	username

This	will	boot	username	out	of	this	wemux	session.	We	can	also	configure	wemux	much
as	we	did	tmuxinator.	First,	we	need	to	detach	the	current	wemux	session	with	<Prefix>,	d
and	then	run	the	command:

$	wemux	config

https://github.com/zolrath/wemux

It	will	open	your	configured	editor	to	the	wemux	configuration	file.	You’ll	notice	that
most	of	it	is	commented	out	but	there	are	very	detailed	comments	that	describe	what	each
line	does.	Since	it	is	so	well	commented,	we	won’t	go	into	great	detail	about	each	item.

Explaining	the	wemux	modes
At	a	high	level	though,	some	of	the	coolest	things	about	wemux	are	its	modes.	It	has	three
modes:

Mirror	mode:	This	mode	allows	clients	to	attach	to	a	wemux	session	read-only.	This
is	great	if	you	want	to	share	your	session	but	have	no	ability	to	edit	anything	in	your
session.
Pair	mode:	This	mode	allows	clients	to	attach	and	for	all	clients	to	share	the	same
view	and	even	the	same	cursor.	This	is	great	for	many	pair	programming	setups
where	either	user	should	be	able	to	touch	the	code	and	you	want	both	users	seeing	the
same	view.
Rogue	mode:	This	mode	allows	multiple	clients	to	attach	and	each	be	connected	to
the	same	tmux	session,	but	both	be	able	to	have	separate	cursors	and	even	open
different	windows.	This	is	ideal	when	multiple	people	have	to	share	a	tmux	session,
but	don’t	both	need	to	be	looking	at	the	same	thing.

Explaining	other	wemux	additions	to	tmux
In	addition	to	the	modes,	the	user	list,	and	the	ability	to	kick	users	that	wemux	adds	over
tmux	core,	wemux	also	includes	a	user	list	you	can	add	to	your	tmux	status	bar.	It	will
display	messages	when	users	connect,	and	you	can	use	wemux	to	connect	to	a	remote
server.

When	you	configure	wemux,	you	are	configuring	the	behavior	of	the	server.	Then	clients
can	connect	in	one	of	the	three	modes,	assuming,	of	course,	you	have	enabled	that	mode
on	the	server.

So,	if	you	have	configured	your	server	in	mirror	mode	only,	a	client	will	be	able	to
connect	via	mirror	mode	(using	wemux	mirror)	but	will	not	be	able	to	connect	in	rogue
mode	(using	wemux	rogue).

Using	wemux	is	a	fantastic	way	to	streamline	and	tame	the	tmux	multi-user	experience.

Listing	other	tools	to	be	used	with	tmux
Pairing	down	the	preceding	list	of	other	tools	to	be	used	with	tmux	was	incredibly
difficult.	We	tried	to	discuss	the	most	popular	of	each	flavor	but	there	are	countless	others.

One	of	the	greatest	strengths	of	tmux	is	the	incredibly	vibrant	developer	community,
which	has	resulted	in	many	great	tools	that	work	with	tmux	to	enhance	and	extend	the
tmux	experience.

For	instance,	the	excellent	Teamocil	(http://teamocil.com/)	is	somewhat	similar	to
tmuxinator	in	that	they	are	both	tmux	configuration	helpers	that	use	YAML-based
configuration	files	and	ruby	to	configure	tmux.	We	would	have	loved	to	discuss	both,	but
since	they	are	similar	in	many	ways,	it	seemed	like	it	could	confuse	our	readers.	We	urge
you	to	take	a	look	at	it	if	you	have	interest,	as	there	are	benefits	of	using	one	over	the	other
and	vice	versa.	A	lot	of	it	comes	down	to	personal	preference	and	taste.

Along	with	Teamocil,	there	are	countless	others,	including	vim-slime,	tmuxp,	tmuxifier,
and	many	other	excellent	projects	that	extend	tmux	and	add	additional	functionalities	that
can	be	incredibly	useful	in	certain	contexts.	In	the	time	between	when	this	book	was	being
written	and	when	it	is	read	there	are	likely	others	that	have	popped	up	and	grown.

Perhaps	you	have	noticed	something	about	tmux	that	could	use	some	optimizing	and,
equipped	with	the	knowledge	from	this	book,	can	start	your	own	open	source	project
extending	tmux	and	furthering	the	community.

http://teamocil.com/

Summary
In	this	chapter,	we	learned	about	a	handful	of	very	useful	third-party	tools	that	can	be	used
to	extend	the	power	and	functionality	of	tmux.	From	turbocharging	our	configuration	with
maximum-awesome	to	a	simpler	and	cleaner	session	management	with	tmuxinator	and
better	pair	programming	with	wemux,	we	had	a	nice	taste	of	some	really	awesome	utilities
that	improve	upon	and	enhance	the	core	features	of	tmux.

You	may	notice	that	while	you	learned	a	lot	of	different	things	throughout	this	book,	when
you	sit	down	in	front	of	your	screen	with	an	empty	terminal	window,	your	fingers	may	not
know	what	to	press	to	make	things	happen.	For	instance,	you	may	remember	that	there	is	a
way	to	split	the	current	window	into	two	panes	horizontally,	but	may	not	remember	the
keystroke.	This	is	expected!	Unless	you	are	a	prodigy,	one	run	through	these	concepts	and
keys	will	not	solidify	things	entirely.

One	learning	trick	that	is	very	helpful	is	to	choose	three	items	to	integrate	into	your
workflow	each	week.	Write	the	key	combinations	and	descriptions	of	those	items	on	an
index	card,	place	it	by	your	computer,	and	try	to	integrate	them	into	your	workflow.	By	the
end	of	the	week,	you	will	probably	be	able	to	drop	the	index	card	for	those	items	and	start
anew.

Of	course,	there	will	be	commands	you	forget	or	need	to	look	up.	For	this,	we	have	placed
a	comprehensive	list	of	all	new	commands	learned	in	each	chapter	at	the	end	of	the	book.
This	way,	you	can	immediately	jump	to	the	commands	themselves	without	having	to	sift
through	all	of	the	explanations	we	provided	the	first	time	you	went	through	the	text.

While	we	tried	our	best	to	give	an	overview	of	everything	you	would	need	to	use	tmux,
there	were	inevitably	some	things	we	were	unable	to	cover	in	this	book.	For	everything
else,	the	tmux	man	page	we	have	mentioned	many	times	throughout	this	book	is	the
ultimate,	exhaustive	resource	for	the	available	tmux	commands	and	key	combinations.

So,	we	come	to	the	end	of	our	journey.	We	hope	you	have	enjoyed	learning	about	tmux
with	this	book.

Appendix	A.	Appendix
The	appendix	will	cover	the	following	three	topics:

Why	tmux?
The	configuration	reference
Key	binding	and	command	reference

Why	tmux?
Many	developers	spend	much	of	their	day	in	a	terminal.	Whether	using	it	for	coding;	SSH
sessions	to	remote	servers;	browsing	the	filesystem;	local	tasks	such	as	checking,
compiling,	or	linting	code,	running	unit	tests;	or	even	for	mail	or	Internet	Relay	Chat
(IRC),	the	terminal	is	one	of	the	most	widely	used	weapons	in	the	developer’s	arsenal.

tmux	is	a	command-line	application	that	runs	within	your	terminal	and	turbocharges	it.	Its
powerful	features	allow	for	the	simplification	of	many	everyday	tasks,	as	illustrated
throughout	this	book.	However,	the	main	reason	most	people	use	a	program	like	tmux	is
that	it	allows	you	to	take	a	single	terminal	window	and	turn	it	into	many	virtual	windows,
each	having	their	own	state.	It	is	one	in	a	class	of	applications	called	terminal
multiplexers	(tmux	is	just	a	shortening	of	this	term).	It	has	some	brethren,	but	the	most
prominent	is	GNU	Screen.

Remember	browsing	in	web	browsers	without	tabs?	If	you	answered	no,	you	weren’t
missing	much,	and	enjoy	your	youth!	However,	if	you	answered	yes,	it	might	take	you	a
second	to	remember	how	much	less	convenient	it	was.	Sure,	there	was	nothing	you	can	do
with	multiple	tabs	that	you	couldn’t	with	no	tabs	and	many	browser	windows,	but	it	was
still	a	very	helpful	boost	to	productivity	to	be	able	to	group	them	together.	Having	many
browser	windows	got	very	confusing.	The	advent	of	tabs	allowed	you	to	separate	your
browsing	experience	logically.	Before	tabs	you	would	have	had	one	browser	window	for
reference	documents,	another	for	shopping,	and	so	on.

Likewise,	a	terminal	multiplexer	such	as	tmux	allows	you	to	do	the	same,	logically
grouping	multiple	windows	into	a	single	terminal	window,	like	tabs	in	a	browser.	Just	as
each	browser	tab	contains	its	own	state,	so	does	each	tmux	window.

However,	unlike	browser	tabs,	which	mostly	just	add	organization,	tmux	actually	adds	a
rich	set	of	additional	functionality	to	the	terminal.	Not	only	does	tmux	allow	for	dividing	a
window	into	panes	so	that	multiple	different	bits	of	content	can	be	on	the	screen	at	the
same	time,	but	tmux	also	adds	Copy	mode	and	other	constructs	that	allow	heavy	terminal
users	to	do	more	without	leaving	tmux	or	even	having	to	reach	for	their	mouse	as	often.
We	touch	on	many	of	these	benefits	throughout	this	book,	so	it’s	unnecessary	to	repeat
them	here.

Why	use	a	terminal	multiplexer	over	a	standard	terminal	app	with	native	tabs	(for
example,	OS	X	Terminal,	iTerm,	Gnome	Terminal,	and	so	on)?	There	are	many	reasons,
but	the	following	are	a	few:

The	addition	of	Copy	mode	allows	for	copying	and	pasting	between	terminal
windows	without	reaching	for	your	mouse.	This	is	not	something	that	can	be	easily
achieved	with	a	standard	tabbed	terminal	application.
The	addition	of	the	saved	state	means	that	you	can	close	a	terminal	window	that	is
running	tmux,	and	your	entire	session	state	will	be	saved	and	can	be	reattached	later
(assuming	your	terminal	program	allows	the	tmux	server	to	continue	running	in	the
background;	not	all	do).	Any	programs	that	were	running	continue	running	in	the

background.	This	is	not	the	case	with	tabs	in	iTerm,	OS	X	Terminal,	or	any	Linux
terminal.	Closing	one	of	these	will	drop	your	state	for	that	window.
There	is	much	more	power	and	flexibility	to	using	tmux	to	split	a	window	into	panes
and	rearranging	those	panes	than	in	using	any	tabbed	terminal	interface.	Most
modern	terminal	applications	will	now	support	simply	a	vertical	or	horizontal	split,
and	that’s	about	it.	With	tmux,	the	possibilities	are	(nearly)	endless	in	terms	of	the
number	of	splits,	layouts,	and	so	on.
All	of	the	tmux	keyboard	shortcuts	for	changing	the	size	and	layout	of	these	splits
translate	into	less	dependence	on	your	mouse,	which	is	something	most	normal
tabbed	terminal	applications	cannot	offer.
Not	only	are	there	more	shortcuts	with	tmux	for	tweaking	the	size	of	this	or	that,	but
tmux	also	offers	a	much	broader	range	of	customizability	in	terms	of	keyboard
shortcuts	for	every	operation	it	can	handle.	Literally,	every	single	tmux	shortcut	can
be	changed	or	rewired	with	a	simple	configuration	file,	as	shown	in	Chapter	2,
Configuring	tmux.	Some	terminal	applications	might	offer	some	customization,	but
none	are	quite	as	powerful	as	tmux	in	this	regard.
The	addition	of	capabilities	in	pair	programming,	setup	configuration,	and	third-party
utilities,	as	we	discuss	throughout	this	book,	is	unachievable	with	a	standard	terminal
application.

Of	course,	the	list	goes	on,	as	you	have	seen	or	will	see	throughout	this	book,	but	these	are
some	of	the	highlights	as	to	why	a	terminal	multiplexer	is	preferred	over	a	regular	terminal
app	with	tabs.

Now	that	you	are	most	likely	sold	on	using	a	terminal	multiplexer	rather	than	just	tabs	in	a
terminal	program,	why	choose	tmux	over	its	main	competitor,	GNU	Screen	(Screen
hereafter)?	There	are	many	reasons,	but	the	following	are	a	few:

The	tmux	Command	mode	was	written	in	order	to	allow	other	utilities	to	control
tmux.	This	is	the	reason	for	the	rich	developer	community	that	has	sprung	up	around
it.	Screen	is	more	difficult	and	complicated	to	control	remotely.
As	a	result,	the	third-party	tools	for	working	with	tmux	are	much	more	prevalent	and
powerful.
The	tmux	commands	are	simple	utilities,	taking	a	very	good	page	from	the	UNIX
playbook.	These	small	commands	can	be	run	via	key	combinations,	by	entering	the
command	after	the	tmux	utility,	or	via	tmux’s	Command	mode.	Screen	is	more	of	a
monolith	without	these	nicely	separated	commands.
tmux	is	newer	project,	often	learning	from	Screen’s	mistakes.	The	first	Screen	release
was	way	back	in	1987.	The	first	tmux	release	was	22	years	later	in	2009.
The	tmux	source	has	fewer	lines	of	code	while	offering	more	features.
Screen	has	been	a	mostly	abandoned	project	for	many	years.	In	fact,	there	was	not
even	a	single	minor	Screen	release	between	2008	and	April,	2014.	It	had	been
dormant	since	before	tmux	was	released	and	finally	had	a	minor	release	six	years
after	the	last	one.
tmux	has	a	clean	client-server	model	that	allows	tmux	to	keep	running	when	you
detach	a	tmux	session.	While	you	can	detach	from	Screen,	it	has	a	less	defined	client-

server	model.
Screen	has,	essentially,	one	set	of	key	bindings.	In	contrast,	tmux	tries	to	stay	more
friendly	to	developers	and	includes	both	vi	and	Emacs	key	bindings	for	most	of	its
commands.
The	pane	and	window	management	in	tmux	is	much	simpler	and	more	powerful.
With	tmux,	it	is	easy	to	split	a	window	into	many	different	panes,	move	them	around,
attach	them	to	different	windows,	move	windows,	attach	windows	to	different
sessions,	and	so	on.	Many	of	these	tasks	are	not	possible	in	Screen,	and	they	end	up
being	far	more	complex	than	they	are	with	tmux.
The	tmux	status	bar	configuration,	out	of	the	box,	is	quite	simple	and	defaults	to	what
most	people	would	like.	Screen,	on	the	other	hand,	does	not	include	a	status	bar	by
default,	and	the	way	to	specify	it	is	very	complex.	For	example,	this	is	an	actual	line
from	my	Screen	configuration	to	enable	a	tmux-style	status	bar:

hardstatus	string	'%{=	kG}[%{G}%H	%{g}[%{=kw}%?%-Lw%?%{r}(%

{W}%n*%f%t%?(%u)%?%{r})%{w}%?%+Lw%?%=	%{g}][%{B}%Y-%m-%d	%{W}%c	%{g}]'		

No;	this	is	not	a	joke.	This	is	the	actual	line	and	all	it	does	is	display	the	same	things	that
the	tmux	status	bar	supports	out	of	the	box.

There	are	more	benefits	of	tmux	over	Screen,	but	this	should	give	any	reader	a	good
indication	of	the	rationale	here.

Note
As	it	was	the	first	terminal	multiplexer	we	ever	used,	Screen	still	has	a	special	place	in	the
author’s	heart.	The	intent	here	is	certainly	not	to	bash	Screen,	which,	impressively,	is
celebrating	its	27th	year	at	the	time	of	writing	this.	Screen	is	still	quite	a	great	program
and	very	much	paved	the	way	for	tmux.	However,	you	purchased	this	book	because	you
wanted	to	learn	about	tmux	and	our	intent	was	to	enumerate	some	reasons	why	tmux	is	the
most	awesome	program	of	its	type.

The	configuration	reference
What	follows	is	the	configuration	file	that	we	built	over	the	course	of	Chapter	2,
Configuring	tmux:

#	Enable	mouse	mode	for	mouse	scrolling	(tmux	1.9a+)

set-window-option	–g	mouse-mode	on

#	Enable	mouse	for	selecting	the	window	by	clicking	on	the	title

#	in	the	status	bar

set-option	-g	mouse-select-window	on

#	Enable	mouse	for	selecting	the	pane	by	clicking	on	it

set-option	-g	mouse-select-pane	on

#	Enable	the	mouse	for	clicking	and	dragging	to	resize	panes

set-option	-g	mouse-resize-pane	on

#	Set	the	status	bar	background	to	blue

set-option	-g	status-bg	blue

#	Set	the	status	bar	text	to	white

set-option	-g	status-fg	white

#	Widen	the	status-left	a	bit	to	fit	more

set-option	-g	status-left-length	25

#	Change	status-left	to	be	{username@host}

set-option	-g	status-left	"{#(whoami)@#H}"

#	Set	the	active	window	background	in	the	status	bar

set-window-option	–g	window-status-current-bg	magenta

#	Rebind	the	prefix	key

set-option	-g	prefix	C-t

#	Add	a	key	binding	for	reloading	our	configuration

bind-key	C-r	source-file	~/.tmux.conf

#	Double	tapping	the	prefix	jumps	to	last	window

bind-key	C-t	last-window

#	Set	escape	time	to	not	break	vim

set-option	-s	escape-time	0

#	Set	the	base-index	to	1	rather	than	0

set-option	-g	base-index	1

set-window-option	-g	pane-base-index	1

#	Extend	the	display	time	to	2	seconds

set-option	–g	display-time	2000

#	Store	more	history	in	the	buffer	than	default

set-option	–g	history-limit	10000

Key	binding	and	command	reference
This	is	not	intended	as	an	exhaustive	reference	on	tmux	key	bindings	and	commands.	For
that,	view	the	tmux	manual	page	by	typing	the	following	in	your	terminal:

$	man	tmux

You	can	also	view	more	information	on	tmux	by	visiting	http://man.cx/tmux.

This	is,	instead,	a	chapter-by-chapter	reference	for	the	tmux	keys	and	commands
mentioned	in	each	chapter	along	with	a	small	description	of	what	they	do	in	the	order	in
which	they	are	mentioned.

This	makes	it	easy	to	review	and	recall	these	key	bindings	and	commands	in	the	same
order	that	they	were	covered	in	the	chapter	without	having	to	wade	through	all	of	the	text
of	that	chapter.

http://man.cx/tmux

Chapter	1	–	Jump	Right	In
In	this	chapter,	we	jumped	right	in	and	went	on	a	tour	of	many	of	the	features	of	tmux.	As
a	result,	the	following	list	of	commands	is	widely	varied:

Launch	tmux:	$	tmux
Rename	a	session:	$	tmux	rename-session	{session	name}
Create	a	new	window:	<Prefix>,	c
Switch	to	the	last	window:	<Prefix>,	l
Switch	to	a	window	by	its	index:	<Prefix>,	{index	of	window}
List	all	key	bindings:	<Prefix>,	?
Initiate	a	search	within	the	key	bindings	list:	Ctrl	+	s	(or	/	for	vi	users)
Close	any	dialog	opened	by	tmux,	such	as	the	key	bindings	list:	q
Open	the	choose	window	interface:	<Prefix>,	w
Switch	to	the	next	window	(by	the	window	index):	<Prefix>,	n
Switch	to	the	previous	window	(by	the	window	index):	<Prefix>,	p
Find	an	open	window	with	the	specified	search	text:	<Prefix>,	f
Detach	the	current	tmux	session:	<Prefix>,	d
List	all	active	sessions:	$	tmux	list-sessions
Start	tmux	and	attach	a	session	by	name:	$	tmux	attach-session	-t	{session-
name}

A	shorter	way	to	start	tmux	and	attach	a	session:	$	tmux	attach	-t	{session-
name}

An	even	shorter	way	to	start	tmux	and	attach	a	session	(only	works	when	there	is	a
single	active	session):	$	tmux	attach
List	all	active	sessions’	aliases:	$	tmux	ls
List	all	tmux	commands:	$	tmux	list-commands
List	all	tmux	commands’	aliases:	$	tmux	lscm
Rename	the	current	window:	<Prefix>,	,
Kill	the	current	window:	<Prefix>,	&

Chapter	2	–	Configuring	tmux
In	this	chapter,	we	dealt	a	lot	with	configuration.	Listed	here	are	the	key	bindings	and
commands	introduced	in	Chapter	2,	Configuring	tmux,	but	see	the	Configuration	reference
section	for	information	on	the	new	configuration	items	we	discussed:

Set	a	tmux	option:	$	tmux	set-option	{option	to	set}	{value}
Disable	the	status	bar:	$	tmux	set-option	status	off
Enable	the	status	bar:	$	tmux	set-option	status	on
See	whether	you	are	in	the	Emacs	or	vi	mode:	$	tmux	show-options	–g	|	grep
key

Reload	the	tmux	configuration:	$	tmux	source-file	~/.tmux.conf
Show	all	previously	displayed	messages:	<Prefix>,	~

Chapter	3	–	Sessions,	Windows,	and	Panes
In	Chapter	3,	Sessions,	Windows,	and	Panes,	we	learned	all	about	how	to	move	and
organize	your	content	within	a	terminal	window	using	the	three	core	building	blocks	of
tmux:	sessions,	windows,	and	panes.	As	a	result,	the	key	commands	we	learned
throughout	this	chapter	relate	to	manipulating	one	of	those	three	items.	The	key
commands	covered	in	this	chapter	are	as	follows:

Launch	tmux	with	a	named	session:	$	tmux	new-session	–s	{session	name}
Access	the	switch	session	interactive	dialog:	<Prefix>,	s
Switch	to	the	next	session:	<Prefix>,)
Switch	to	the	previous	session:	<Prefix>,	(
Split	a	pane	into	two	panes	(horizontally):	<Prefix>,	%
Switch	the	cursor	to	the	other	pane:	<Prefix>,	o
Move	the	cursor	to	the	pane	to	the	right,	left,	down,	or	up:	<Prefix>,	right	arrow;
<Prefix>,	left	arrow;	<Prefix>,	down	arrow;	<Prefix>,	up	arrow
Kill	the	current	pane:	<Prefix>,	x
Split	a	pane	into	two	panes	(vertically):	<Prefix>,	“
Resize	the	current	pane:	<Prefix>,	Alt	+	{arrow	key}
Resize	the	current	pane	in	1	cell	steps:	<Prefix>,	Ctrl	+	{arrow	key}
View	current	pane	indexes:	<Prefix>,	q
Switch	to	the	pane	by	index:	<Prefix>,	q,	{index	of	pane}
Cycle	through	pane	layouts:	<Prefix>,	Space
Switch	to	the	even-horizontal	pane	layout:	<Prefix>,	Meta	+	1
Switch	to	the	even-vertical	pane	layout:	<Prefix>,	Meta	+	2
Switch	to	the	main-horizontal	pane	layout:	<Prefix>,	Meta	+	3
Switch	to	the	main-vertical	pane	layout:	<Prefix>,	Meta	+	4
Switch	to	the	tile	pane	layout:	<Prefix>,	Meta	+	5

Chapter	4	–	Manipulating	Text
We	spent	this	chapter	learning	about	Copy	mode,	paste	buffers,	and	other	concepts	related
to	text	manipulation.

Clear	the	tmux	history:	$	tmux	clear-history
Enter	Copy	mode:	<Prefix>,	[
Enter	Command	mode:	<Prefix>,	:
Enter	Clock	mode:	<Prefix>,	t
View	the	Emacs	key	bindings	for	Copy	mode:	tmux	list-keys	-t	emacs-copy
View	the	vi	key	bindings	for	Copy	mode:	tmux	list-keys	-t	vi-copy

Note
Many	of	the	following	commands	are	valid	only	after	entering	Copy	mode.	We	will
start	these	commands	with	[CM]	to	indicate	that	Copy	mode	should	be	activated	first.

This	is	also	the	first	command	set	that	really	has	two	different	modes,	Emacs	and	vi
mode.	As	such,	each	command	actually	has	two	different	key	bindings,	depending	on
your	chosen	mode.	We	will	display	the	default	key	binding	(Emacs)	first,	and	then	we
will	display	the	alternative	(vi)	in	parentheses.

For	the	Emacs	key	bindings,	many	involve	the	key	Meta,	which	is	often	bound	to	the
Alt	/	Option	key	and	is	a	key	to	which	any	Emacs	user	should	be	accustomed.

We	discussed	how	to	set	the	mode	keys	as	Emacs	or	vi	back	in	Chapter	2,
Configuring	tmux.

[CM]	Scroll	up	by	page:	Page	Up	or	Meta	+	v	(Ctrl	+	b)
[CM]	Scroll	down	by	page:	Page	Down	or	Ctrl	+	v	(Ctrl	+	f)
[CM]	Move	the	cursor	up:	up	arrow	or	Ctrl	+	p	(k)
[CM]	Move	the	cursor	down:	down	arrow	or	Ctrl	+	n	(j)
[CM]	Move	the	cursor	left:	left	arrow	or	Ctrl	+	b	(h)
[CM]	Move	the	cursor	right:	right	arrow	or	Ctrl	+	f	(l)
[CM]	Jump	to	top	of	window	history:	Meta	+	>	(g)
[CM]	Jump	to	bottom	of	window	history:	Meta	+	<	(G)
[CM]	Search	up:	Ctrl	+	r	(?)
[CM]	Search	down:	Ctrl	+	s	(/)
[CM]	Jump	to	a	specific	line:	g	(:)
[CM]	Exit	Copy	mode:	q	(Esc)
[CM]	Start	the	selection	for	copying:	Ctrl	+	Space	bar	(Space	bar)
[CM]	Copy	the	selection	to	the	paste	buffer:	Meta	+	w	(Enter)
[CM]	Toggle	the	rectangular	selection:	R	(v)
Paste	the	text	from	the	paste	buffer:	<Prefix>,]
Open	the	interactive	paste	buffer	chooser:	<Prefix>,	=
List	all	buffers	for	viewing	only:	<Prefix>,	:,	list	+	buffers,	Enter

Chapter	5	–	Diving	Deeper
In	this	chapter,	we	went	a	bit	more	in	depth	on	a	smorgasbord	of	topics.	As	a	result,	our
keyboard	commands	and	configuration	items	for	this	chapter	are	quite	widely	varied	over
a	range	of	tmux	capabilities:

Enter	Command	mode:	<Prefix>,	:
Open	the	interactive	paste	buffer	chooser:	<Prefix>,	=
Save	the	paste	buffer	to	a	path:	save-buffer	–b	{buffer	index}	{file	path}
Load	the	paste	buffer	from	a	file:	load-buffer	{file-path}
Set	a	paste	buffer	directly:	set-buffer	"{text	to	set	in	buffer}"
Capture	contents	of	the	current	pane	to	the	paste	buffer:	capture-pane
View	the	contents	of	the	most	recently	copied	paste	buffer:	show-buffer
View	the	contents	of	a	paste	buffer	by	index:	show-buffer	–b	{index}
Delete	the	last	copied	item	from	the	paste	buffer:	<Prefix>,	-
Delete	items	from	the	paste	buffer	by	index:	delete-buffer	–b	{index}
Clear	the	tmux	history	for	the	current	pane:	clear-history
Clear	the	tmux	history	for	a	pane	by	index:	clear-history	–t	{index}
Move	the	window	from	one	session	to	another:	move-window	or	<Prefix>,	.
Link	a	window	between	two	sessions:	link-window	–t	{target	session}
Unlink	the	window	from	the	current	session:	unlink-window
Break	the	current	pane	from	the	current	window:	<Prefix>,	!
Break	a	pane	into	its	own	window:	break-pane	–s	{session}:{window}.{pane}
Join	the	current	pane	to	a	target	window:	join-pane	-t	{session}:{window}
Join	a	pane	to	a	target	window:	join-pane	-s	{session}:{window}.{pane}	-t
{session}:{window}

Index
A

active	window
highlighting	/	Highlighting	the	active	window

advanced	paste	buffer	usage
about	/	Advanced	paste	buffer	usage
paste	buffer,	saving	to	file	/	Saving	a	paste	buffer	to	a	file
paste	buffer,	loading	from	file	/	Loading	a	paste	buffer	from	a	file
paste	buffer,	setting	directly	/	Setting	a	paste	buffer	directly
pane	contents,	capturing	in	paste	buffer	/	Capturing	pane	contents	in	a	paste
buffer
copied	text,	deleting	from	paste	buffer	/	Deleting	copied	text	from	a	paste	buffer
paste	buffer	history,	clearing	/	Clearing	the	paste	buffer	history

advanced	session,	and	window	usage
window	/	An	advanced	session	and	window	usage
windows,	jumping	in	session	/	Jumping	from	one	window	in	a	session	to	another
window	in	another	session
windows,	moving	/	Moving	windows
window,	linking	between	sessions	/	Linking	a	window	between	sessions

aggressive-resize	setting	/	Connecting	to	the	same	session	locally
aliases	/	Aliases

B
background	color

modifying,	of	status	bar	/	Modifying	the	background	color	of	the	status	bar
binding	keys

about	/	Binding	keys
current	bindings,	viewing	/	Viewing	current	bindings
URL,	for	tutorials	/	Viewing	current	bindings
multiple	commands,	chaining	to	single	keys	/	Chaining	multiple	commands	to	a
single	key
comments,	in	configuration	file	/	Comments	in	the	configuration	file
prefix	key,	binding	/	Binding	a	new	prefix	key
without	prefix	keys	/	Binding	keys	without	the	prefix	key

break-pane	command	/	Breaking	panes

C
capture-pane	command	/	Capturing	pane	contents	in	a	paste	buffer
choose	window	interface	/	Help	on	key	bindings
clear-history	command	/	Clearing	the	paste	buffer	history
Clock	mode

about	/	Explaining	the	different	tmux	modes
Command	mode

about	/	Explaining	the	different	tmux	modes
command	mode

about	/	Understanding	tmux	commands	and	Command	mode
command	reference

about	/	Key	binding	and	command	reference
commented	lines,	tmuxinator	/	Revisiting	the	commented	lines
configuration	reference	/	The	configuration	reference
Control	mode	/	Explaining	the	different	tmux	modes
copied	text

deleting,	from	paste	buffer	/	Deleting	copied	text	from	a	paste	buffer
copy	mode

about	/	Explaining	the	different	tmux	modes
workflow	/	A	sample	workflow	with	Copy	mode	workflow
entering	/	Entering	Copy	mode
cursor,	moving	/	Moving	the	cursor	around
Emacs-style	key	bindings	/	Moving	the	cursor	around
Vi-style	key	bindings	/	Moving	the	cursor	around
jump	by	search	or	line	/	Jump	by	search	or	line
leaving	/	Leaving	Copy	mode
reference	/	Leaving	Copy	mode

Ctrl	to	Caps	Lock
rebinding	/	Viewing	current	bindings

D
Default	mode

about	/	Explaining	the	different	tmux	modes
default	windows

sessions,	launching	with	/	Launching	with	defaults
delete-buffer	command	/	Deleting	copied	text	from	a	paste	buffer

E
Emacs

about	/	Help	on	key	bindings
Emacs-style	key	bindings,	copy	mode	/	Moving	the	cursor	around
Emacs	mode	/	Emacs	or	vi	mode

F
file

paste	buffer,	saving	to	/	Saving	a	paste	buffer	to	a	file
paste	buffer,	loading	from	/	Loading	a	paste	buffer	from	a	file

foreground	color
modifying,	of	status	bar	/	Changing	the	foreground	color	of	the	status	bar

G
grouped	sessions

used,	for	pairing	/	Using	grouped	sessions	for	pairing

H
handy	configuration	tips

about	/	Handy	configuration	tips
double	tapping,	binding	of	prefix	key	to	last-window	/	Binding	the	double
tapping	of	the	prefix	key	to	last-window
escape	time,	modifying	/	Changing	the	escape	time
history	limit,	lengthening	/	Lengthening	the	history	limit
display	time,	lengthening	/	Lengthening	the	display	time
base	index,	starting	at	1	/	Starting	the	base	index	at	1

Homebrew
URL	/	Using	tmux	with	the	OS	X	Pasteboard

I
installation,	tmuxinator	/	Installing	tmuxinator
items

selecting,	from	paste	buffer	/	Choosing	items	from	the	paste	buffer

K
key	binding

about	/	Key	binding	and	command	reference
key	binding	help	page

about	/	Help	on	key	bindings
keys

unbinding	/	Unbinding	keys

L
link-window	command	/	Linking	a	window	between	sessions
load-buffer	[path]	command	/	Loading	a	paste	buffer	from	a	file

M
man	page

accessing	/	Accessing	the	man	page
reference,	for	example	/	Accessing	the	man	page

man	pages
reference	/	Moving	the	cursor	around

mirror	mode,	wemux	/	Explaining	the	wemux	modes
modes,	tmux

Default	mode	/	Explaining	the	different	tmux	modes
copy	mode	/	Explaining	the	different	tmux	modes
Command	mode	/	Explaining	the	different	tmux	modes
Clock	mode	/	Explaining	the	different	tmux	modes
Control	mode	/	Explaining	the	different	tmux	modes

modes,	wemux
mirror	/	Explaining	the	wemux	modes
pair	/	Explaining	the	wemux	modes
rogue	/	Explaining	the	wemux	modes

mouse	modes
enabling	/	Enabling	mouse	modes

multiple	panes
working	with	/	Multiple	panes,	Working	with	more	panes

multiple	sessions
working	with	/	Multiple	sessions

O
option	types

about	/	Option	types
OS	X	Pasteboard

tmux,	using	with	/	Using	tmux	with	the	OS	X	Pasteboard

P
pair	mode,	wemux	/	Explaining	the	wemux	modes
pair	programming,	tmux

about	/	Using	tmux	for	pair	programming
connecting	to	same	session,	locally	/	Connecting	to	the	same	session	locally
Vagrant	Cloud,	for	better	security	pair	programming	/	Vagrant	Cloud	for	better
security	pair	programming
grouped	sessions,	used	for	pairing	/	Using	grouped	sessions	for	pairing

pane	contents
capturing,	in	paste	buffer	/	Capturing	pane	contents	in	a	paste	buffer

pane	layouts
cycling	through	/	Cycling	through	pane	layouts

panes
overview	/	Panes
benefits	/	Panes
working	with	/	Playing	around	with	sessions,	windows,	and	panes
zooming	/	Zooming	panes
resizing	/	Resizing	panes
switching	between	/	Switching	between	panes	by	number
operations	/	Other	pane	operations
reference	/	Other	pane	operations
breaking	/	Breaking	panes
joining	/	Joining	panes

password	storage	mechanism
URL	/	Clearing	the	paste	buffer	history

paste	buffer
text,	copying	into	/	Copying	text	into	the	paste	buffer
interacting	with	/	Interacting	with	the	paste	buffer
text,	pasting	from	/	Pasting	text	from	the	paste	buffer
items,	selecting	from	/	Choosing	items	from	the	paste	buffer
working	with	/	Working	with	the	paste	buffer
saving,	to	file	/	Saving	a	paste	buffer	to	a	file
loading,	from	file	/	Loading	a	paste	buffer	from	a	file
setting,	directly	/	Setting	a	paste	buffer	directly
pane	contents,	capturing	in	/	Capturing	pane	contents	in	a	paste	buffer
copied	text,	deleting	from	/	Deleting	copied	text	from	a	paste	buffer

paste	buffer	history
clearing	/	Clearing	the	paste	buffer	history

pbcopy	tool	/	Using	tmux	with	the	OS	X	Pasteboard
pbpaste	tool	/	Using	tmux	with	the	OS	X	Pasteboard
prefix	key

binding	/	Binding	a	new	prefix	key
Prefix	key	/	The	prefix	key

R
rogue	mode,	wemux	/	Explaining	the	wemux	modes
RubyGems

URL	/	tmux	configuration	from	the	maximum-awesome	project,	by	Square

S
session

attaching	/	Detaching	and	attaching
detaching	/	Detaching	and	attaching

sessions
about	/	Sessions
naming	/	Naming	the	session
overview	/	Sessions
working	with	/	Playing	around	with	sessions,	windows,	and	panes
windows,	linking	between	/	Linking	a	window	between	sessions
launching,	with	default	windows	/	Launching	with	defaults

set-option	command
using	/	Using	the	set-option	command

show-buffer	command	/	Capturing	pane	contents	in	a	paste	buffer
show	options

about	/	Show	options
Solarized

about	/	Modifying	the	background	color	of	the	status	bar
URL	/	Modifying	the	background	color	of	the	status	bar

source-file	command	/	Binding	keys
SSH	connect

tmux,	launching	on	/	Launching	tmux	on	SSH	connect	automatically
status	bar

modifying	/	Changing	the	status	bar
background	color,	modifying	of	/	Modifying	the	background	color	of	the	status
bar
configuration,	reloading	/	Reloading	the	configuration
foreground	color,	modifying	of	/	Changing	the	foreground	color	of	the	status	bar
about	/	Status	bar	revisited
status-left	/	Status	bar	revisited
list	of	open	windows	/	Status	bar	revisited
status-right	/	Status	bar	revisited

status	line
about	/	Running	tmux

T
.tmux.conf.local	file	/	tmux	configuration	from	the	maximum-awesome	project,	by
Square
tab	completion	/	Tab	completion
Teamocil

URL	/	Listing	other	tools	to	be	used	with	tmux
about	/	Listing	other	tools	to	be	used	with	tmux

terminal	multiplexers
about	/	Why	tmux?

terminal	multiplexers,	over	standard	terminal	app
reasons	/	Why	tmux?

text
searching	for	/	Searching	for	text
copying,	into	paste	buffer	/	Copying	text	into	the	paste	buffer
pasting,	from	paste	buffer	/	Pasting	text	from	the	paste	buffer

tmux
running	/	Running	tmux
features	/	The	prefix	key
launching,	on	SSH	connect	/	Launching	tmux	on	SSH	connect	automatically
using,	with	OS	X	Pasteboard	/	Using	tmux	with	the	OS	X	Pasteboard
need	for	/	Why	tmux?
reference	/	Key	binding	and	command	reference

tmux,	over	GNU	Screen
reasons	/	Why	tmux?

tmux,	over	SSH
using,	for	long	lived	sessions	/	Using	tmux	over	SSH	for	long	lived	sessions
sample	workflow	/	Walking	through	a	sample	workflow	with	tmux	over	SSH

tmux	commands
about	/	Explaining	tmux	commands,	Understanding	tmux	commands	and
Command	mode
tab	completion	/	Tab	completion
aliases	/	Aliases

tmux	configuration
about	/	tmux	configuration	from	the	maximum-awesome	project,	by	Square
reference	/	tmux	configuration	from	the	maximum-awesome	project,	by	Square

tmux	configuration	file
creating	/	Creating	a	tmux	configuration	file

tmuxinator
used,	for	making	session	management	easier	/	Using	tmuxinator	to	make	session
management	easier
about	/	Using	tmuxinator	to	make	session	management	easier
installing	/	Installing	tmuxinator
commented	lines	/	Revisiting	the	commented	lines

summarizing	/	Summarizing	tmuxinator
reference	/	Summarizing	tmuxinator

tmuxinator	configuration
about	/	Understanding	the	tmuxinator	configuration

tmuxinator	new	command
about	/	Understanding	the	tmuxinator	configuration

tmux	manual	section,	session	initialization
reference	/	Launching	with	defaults

tmux	modes
about	/	Explaining	the	different	tmux	modes
Default	mode	/	Explaining	the	different	tmux	modes
copy	mode	/	Explaining	the	different	tmux	modes
Command	mode	/	Explaining	the	different	tmux	modes
Clock	mode	/	Explaining	the	different	tmux	modes
Control	mode	/	Explaining	the	different	tmux	modes

tmux	show-options	command	/	Show	options
tmux	source	code

reference	/	Understanding	tmux	commands	and	Command	mode

U
unlink-window	command	/	Linking	a	window	between	sessions

V
Vagrant

about	/	Benefits	of	using	Vagrant
benefits,	of	using	/	Benefits	of	using	Vagrant
virtual	machine,	creating	with	/	Creating	a	virtual	machine	with	Vagrant
URL,	for	installation	instructions	/	Creating	a	virtual	machine	with	Vagrant
reference	/	Vagrant	Cloud	for	better	security	pair	programming

Vagrantfile
creating	/	Creating	a	virtual	machine	with	Vagrant

Vi
about	/	Help	on	key	bindings

Vi	mode	/	Emacs	or	vi	mode
virtual	machine

creating,	with	Vagrant	/	Creating	a	virtual	machine	with	Vagrant
Vi	style	key	bindings,	copy	mode	/	Moving	the	cursor	around

W
wemux

about	/	Using	wemux	to	ease	multiuser	experience
reference	/	Using	wemux	to	ease	multiuser	experience
used,	for	easing	multiuser	experience	/	Using	wemux	to	ease	multiuser
experience
modes	/	Explaining	the	wemux	modes
user	list	/	Explaining	other	wemux	additions	to	tmux

window
creating	/	Creating	another	window

Window	history
about	/	Explaining	the	Window	history
scrolling	up	through	/	Scrolling	through	the	Window	history

windows
renaming	/	Renaming	windows
killing	/	Killing	windows
overview	/	Windows
working	with	/	Playing	around	with	sessions,	windows,	and	panes
moving	/	Moving	windows
linking,	between	sessions	/	Linking	a	window	between	sessions

window	string
about	/	The	window	string

	Getting Started with tmux
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Jump Right In
	Running tmux
	Sessions
	Naming the session
	The window string
	Creating another window
	The prefix key
	Help on key bindings
	Searching for text
	Detaching and attaching
	Explaining tmux commands
	Tab completion
	Aliases
	Renaming windows
	Killing windows
	Summary
	2. Configuring tmux
	Using the set-option command
	Creating a tmux configuration file
	Emacs or vi mode
	Enabling mouse modes
	Changing the status bar
	Modifying the background color of the status bar
	Reloading the configuration
	Changing the foreground color of the status bar
	Highlighting the active window
	Binding keys
	Viewing current bindings
	Chaining multiple commands to a single key
	Comments in the configuration file
	Binding a new prefix key
	Binding keys without the prefix key
	Unbinding keys
	Status bar revisited
	Option types
	Handy configuration tips
	Binding the double tapping of the prefix key to last-window
	Changing the escape time
	Lengthening the history limit
	Lengthening the display time
	Starting the base index at 1
	Accessing the man page
	Show options
	Summary
	3. Sessions, Windows, and Panes
	Overviews
	Sessions
	Windows
	Panes
	Playing around with sessions, windows, and panes
	Multiple sessions
	Multiple panes
	Working with more panes
	Zooming panes
	Resizing panes
	Switching between panes by number
	Cycling through pane layouts
	Other pane operations
	Summary
	4. Manipulating Text
	Explaining the Window history
	Explaining the different tmux modes
	A sample workflow with Copy mode workflow
	Entering Copy mode
	Moving the cursor around
	Scrolling through the Window history
	Jump by search or line
	Leaving Copy mode
	Copying text into the paste buffer
	Interacting with the paste buffer
	Pasting text from the paste buffer
	Choosing items from the paste buffer
	Working with the paste buffer
	Summary
	5. Diving Deeper
	Understanding tmux commands and Command mode
	Advanced paste buffer usage
	Saving a paste buffer to a file
	Loading a paste buffer from a file
	Setting a paste buffer directly
	Capturing pane contents in a paste buffer
	Deleting copied text from a paste buffer
	Clearing the paste buffer history
	An advanced session and window usage
	Jumping from one window in a session to another window in another session
	Moving windows
	Linking a window between sessions
	Breaking panes
	Joining panes
	Launching with defaults
	Summary
	6. tmux for SSH, Pair Programming, and More
	Using tmux over SSH for long lived sessions
	Benefits of using Vagrant
	Creating a virtual machine with Vagrant
	Walking through a sample workflow with tmux over SSH
	Launching tmux on SSH connect automatically
	Using tmux for pair programming
	Connecting to the same session locally
	Vagrant Cloud for better security pair programming
	Using grouped sessions for pairing
	Summary
	7. Using Other Tools with tmux
	Using tmux with the OS X Pasteboard
	tmux configuration from the maximum-awesome project, by Square
	Using tmuxinator to make session management easier
	Installing tmuxinator
	Understanding the tmuxinator configuration
	Revisiting the commented lines
	Summarizing tmuxinator
	Using wemux to ease multiuser experience
	Explaining the wemux modes
	Explaining other wemux additions to tmux
	Listing other tools to be used with tmux
	Summary
	A. Appendix
	Why tmux?
	The configuration reference
	Key binding and command reference
	Chapter 1 – Jump Right In
	Chapter 2 – Configuring tmux
	Chapter 3 – Sessions, Windows, and Panes
	Chapter 4 – Manipulating Text
	Chapter 5 – Diving Deeper
	Index

