Learn bfdoing: less theory, more results

FreeRADIUS

Manage your network resources with FreeRADIUS

Beginner’s Guide

Dirk van der Walt [] open source

eeeeeeeeeeeeeeeeeeeeeeeee
PUBLISHING

Manage your network resources with FreeRADIUS

Dirk van der Walt

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2011

Production Reference: 1260811

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-849514-08-8
www . packtpub.com

Cover Image by Asher Wishkerman (a.wishkermanempic.de)

Author
Dirk van der Walt

Reviewers

Ante Gulam

Atif Razzaq

Acquisition Editor
Chaitanya Apte

Development Editors

Kartikey Pandey

Alina Lewis

Technical Editor

Vanjeet D'souza

Copy Editor
Neha Shetty

Project Coordinator

Srimoyee Ghoshal

Proofreader
Chris Smith

Indexers

Hemangini Bari

Tejal Daruwale

Graphics
Nilesh Mohite

Production Coordinator
Adline Swetha Jesuthas

Cover Work

Adline Swetha Jesuthas

Dirk van der Walt is an open source software specialist from Pretoria, South Africa. He

is a firm believer in the potential of open source software. Being a Linux user for almost

ten years, it was love at first boot. From then on Dirk spent his available time sharing his
knowledge with others equally passionate about the freedom and affordability open source
software gives to the community.

In 2003, Dirk started coding with Perl as his language of choice and gave his full attention to
functional and aesthetic user interface design. He also compiled an online Gtk2-Perl study
guide to promote the advancement of Perl on the desktop.

As Rich Internet Applications (RIA) became more popular, Dirk added the Dojo toolkit and
CakePHP to his skills set to create an AJAX-style front-end to a FreeRADIUS MySQL database.
His latest work is YFi Hotspot Manager. Today YFi Hotspot Manager is used in many localities
around the globe. With many contributors to the project it proves just how well the open
source software model can work.

I'd like to thank the Lord Jesus for life and light, my wife Petra and daughter
Daniélle for all their support and understanding, my brother Karel for his
interest and help. | would also like to thank the people involved with the
FreeRADIUS project, from the coders to the commenters. Lastly I'd like to
thank Packt Publishing for supporting Open Source software the way they do.

Ante Gulam is a 26-year-old software and system engineer with more than seven years of
working experience in various segments of the IT industry. He has worked as a consultant
and system engineer on POSIX-compliant systems (Linux, BSD, SCO, and others), and lately
has focused mainly on security, design, and administration of Microsoft-based enterprise
solutions. Ante is currently working as a system engineer and software developer, primarily
on MS platforms (.NET) in Ri-ing d.o.0., a medium-sized software development company.

Being involved in security for several years Ante gained experience in the development

of various security tools based on many different technologies and has written articles and
co-edited Phearless Security Ezine actively for the last four years. Presently, he is working on
large networking projects and enterprise environments; adopting them for standards like
PCI-DSS enables him to stay in touch with security on the enterprise level.

I would like to thank my family, my friends, and my girlfriend for the their
patience. Also all the guys from the "gn00bz" team for all the hours full of
fun and knowledge while playing CTF for the past couple of years.

Atif Razzaq holds an MSc degree from Strathclyde University, Glasgow, UK in
Communication, Control, and Digital Signal Processing, and a BSc degree in Computer
Science from NUCES, Pakistan. After his MSc degree, he started his career as a software
engineer in the area of Mobile Application Development in J2ME in Tricastmedia, Glasgow,
UK. During this period he also published an article at Java.net titled Getting Started with
BlackBerry J2ME Development.

He is currently working as the Development Manager at Terminus Technologies who
specializes in telecom billing software development. His responsibilities include the
development of the billing system and its integration with other applications both
proprietary and open source (Asterisk, FreeSwitch, FreeRADIUS, and others). Prior to joining
Terminus Technologies, he worked on telecom billing at Comcerto, Bahrain. He has been
working on telecom billing and VolP/SIP Telephony for about three years.

In his free time, he writes his own blog on different ICT topics available at http://atif-
razzaq.blogspot .com. He can be contacted at atif.razagegooglemail . com.

It has been a great experience working on this project. I'd like to thank

the whole team working on this project: the author and all members from
Packt Publishing. I'd like to thank my family for giving up their share of time
which | gave to this project. Finally, I'd thank the Great Lord for everything
and then my parents who taught me and made me what | am.

You might want to visit www . Packt Pub . com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.comfor more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

I@ PACKT! 5"

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why Subscrihe?

¢ Fully searchable across every book published by Packt
¢ Copy and paste, print and bookmark content

¢ Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Tahle of Contents

Preface 1
Chapter 1: Introduction to AAA and RADIUS 7
Authentication, Authorization, and Accounting 7
Authentication 8
Authorization 9
Accounting 9
RADIUS 10
RADIUS protocol (RFC2865) 11
The data packet 12
AVPs 15
Vendor-Specific Attributes (VSAs) 16
Proxying and realms 17
RADIUS server 17
RADIUS client 17
RADIUS accounting (RFC2866) 18
Operation 18
Packet format 18
Acct-Status-Type (Type40) 19
Acct-Input-Octets (Type42) 20
Acct-Output-Octets (Type43) 20
Acct-Session-Id (Type4d4) 21
Acct-Session-Time (Type46) 21
Acct-Terminate-Cause (Type49) 21
Conclusion 21
RADIUS extensions 21
Dynamic Authorization extension (RFC5176) 21
RADIUS support for EAP (RFC3579) 22
FreeRADIUS 23
History 23

Strengths 23

Table of Contents

Weaknesses 24
The competition 24
Summary 25
Chapter 2: Installation 27
Before you start 27
Pre-built binary 28
Time for action — installing FreeRADIUS 29
Advantages 29
Extra packages 29
Available packages 30
CentOS 30
SUSE 30
Ubuntu 31
Special considerations 31
Remember the firewall 32
CentOS 32
SUSE 33
Building from source 34
Advantages of building packages 34
CentOS 34
Time for action — building CentOS RPMs 35
Installing rpm-build 36

The source RPM package 36

The package name 36
Updating an existing installation 37
SUSE 37
Time for action — SUSE: from tarball to RPMs 37
Adding an OpenSUSE repository 37
zypper or yast -i 39
Tweaks done by hand 40
Ubuntu 40
Time for action — Ubuntu: from tarball to debs 40
Installing dpkg-dev 42
Using build-dep 42
fakeroot 42
dpkg-buildpackage 42
Installing the debs 43

For those preferring the old school 43
Installed executables 43
Running as root or not 44
Dictionary access for client programs 44
Ensure proper start-up 45
Summary 46

Table of Contents

Chapter 3: Getting Started with FreeRADIUS 49
A simple setup 50
Time for action — configuring FreeRADIUS 50

Configuring FreeRADIUS 52
Clients 52
Sections 52
Client identification 53
Shared secret 53
Message-Authenticator 54
Nastype 54
Common errors 54
Users 54
Files module 54

PAP module 55
Users file 55
Radtest 57
Helping yourself 57
Installed documentation 58
Man pages 58
Time for action — discovering available man pages for FreeRADIUS 58
Configuration file comments 60
Online documentation 61
Online help 62
Golden rules 62
Inside radiusd 62
Configuration files 62
Important includes 63
Libraries and dictionaries 63
FreeRADIUS-specific AVPs 64
Running as ... 64
Listen section 64
Log files 65
radiusd 65
Who was logged in and when? 65
Who is logged in right now? 65
Summary 66

Chapter 4: Authentication 67

Authentication protocols 67
PAP 68
CHAP 69
MS-CHAP 70

FreeRADIUS—authorize before authenticate 71

Table of Contents

Time for action — authenticating a user with FreeRADIUS 71
Access-Request arrives 72
Authorization 72

Authorize set Auth-Type 73
Authorization in action 73
Authentication 74
Post-Auth 74
Finish 74
Conclusion 74

Storing passwords 75
Hash formats 75

Time for action — hashing our password 76
Crypt-Password 76
MD5-Password 77
SMD5-Password 78
SHA-Password 79
SSHA-Password 80
NT-Password or LM-Password 81
Hash formats and authentication protocols 81

Other authentication methods 82
One-time passwords 82
Certificates 82

Summary 82

Chapter 5: Sources of Usernames and Passwords 85

User stores 85

System users 86

Time for action — incorporating Linux system users in FreeRADIUS 87
Preparing rights 87

SUSE is different 87
CentOS 88
Activating system users 88
Authorize using the unix module 89
Authenticating using pap 89
Tips for including system users 90

MySQL as a user store 20

Time for action — incorporating a MySQL database in FreeRADIUS 91
Installing MySQL 91
Installing FreeRADIUS's MySQL package 92
Preparing the database 93
Configuring FreeRADIUS 94

Connection information 94

Table of Contents

Including the SQL configuration
Virtual server

Testing the MySQL user store
Advantages of SQL over flat files
Other uses for the SQL database
Duplicate users

The database schema
Groups
Using SQL Groups
Controlling the use of groups
Profiles

LDAP as a user store
Time for action — connecting FreeRADIUS to LDAP
Installing slapd
Configuring slapd
CentOS

SUSE
Ubuntu

Adding the radiusProfile schema
Populating the LDAP directory
Installing FreeRADIUS's LDAP package
Configuring the Idap module

Testing the LDAP user store

Binding as a user

Advanced use of LDAP
Ldap-Group and User-Profile AVP
Reading passwords from LDAP

Active Directory as a user store

Time for action — connecting FreeRADIUS to Active Directory
Installing Samba
Configuring Samba

Joining the domain
CentOS
SUSE
Ubuntu

FreeRADIUS and ntim_auth
PAP Authentication
MS-CHAP Authentication

Summary
Linux system users
SQL database
LDAP directory
Active Directory

94
94

95
95
96
96

96
97
97
99

100

101
101
101

102
102
103
103

105
106
109
110
110
111

112
113
114

116
116
116
117

118
119
119
119

119
120
121

122
122
123
123
123

Table of Contents

Chapter 6: Accounting 125
Requirements for this chapter 125
Basic accounting 125
Time for action — simulate accounting from an NAS 127

Files for simulation 127
Starting a session 128
Ending a session 129
Orphan sessions 130
Independence of accounting 131
NAS: important AVPs 131
Acct-Status-Type 131
Acct-Session-Id 131
AVPs indicating usage 132
NAS: included AVPs 132
FreeRADIUS: pre-accounting section 133
Realms 133
Setting Acct-Type 133
FreeRADIUS: accounting section 134
Minimising orphan sessions 134
radwho 134
radzap 134
Limiting a user's simultaneous sessions 135
Time for action — limiting a user's simultaneous sessions 135
Session section 137
Problems with orphan sessions 138
checkrad 138
Limiting the usage of a user 138
30 minutes per day in total 139
How FreeRADIUS can help 139
Time for action — limiting a user's usage 140
Activating a daily counter 140
Terminating the session at a specified time 141
rim_counter 142
Using rlim_sqlcounter 144
Resetting the counter 146
SQL module instance 146
Special variables inside the query 147
Empty account records 147
Counters that reset daily 147
Counting octets 148

Table of Contents

Housekeeping of accounting data 148
Web-based tools 149
Summary 149
Chapter 7: Authorization 151
Implementing restrictions 151
Authorization in FreeRADIUS 152
Introduction to unlang 152
Using conditional statements 153
Time for action — using the if statement in unlang 153
Obtaining a return code using the if statement 153
Checking if an attribute exists 156
Using logical expressions to authenticate a user 157
Attributes and variables 158
Attribute lists 158
Time for action — referencing attributes 159
Attributes in the if statement 159
Variables 161
Time for action — SQL statements as variables 162
Time for action — setting default values for variables 163
Time for action — using command substitution 165
Time for action — using regular expressions 166
Practical unlang 167
Limiting data usage 167
Time for action — using unlang to create a data counter 167
Defining custom attributes 167
32-bit limitation 168
Using the perl module 169
reset_time.pl 170
check_usage.pl 172
Installing the perl module on CentOS 173
Updating the dictionary files 174
The recommended way of updating dictionaries 174
Preparing the users file 174
Preparing the SQL database 175
Adding unlang code to the virtual server 175
The SUSE and Ubuntu bug 176
Pre-loading Perl library 177
Testing the data counter 177
Clean-up 178
Summary 179

Table of Contents

Chapter 8: Virtual Servers 181
Why use virtual servers? 181
Defining and enabling virtual servers 182
Time for action — creating two virtual servers 183

Available sub-sections 184
Enabling and disabling virtual servers 185
Using enabled virtual servers 185
Time for action — using a virtual server 186
Including a virtual server 186
Handling Post-Auth-Type correctly 187
Taking care of Type attributes 187
Virtual server for happy hour 188
Time for action — incorporating the Hotspot Happy Hour policy 189
Enabling the Happy Hour virtual server 189
Adding the virtual server to a client 190
Defining clients in SQL 191
Consolidating an existing setup using a virtual server 191
Time for action — creating a virtual server for the Computer 191
Science faculty 191
Consolidation implementation 192

A named files section 192

A virtual server for the Computer Science faculty 193
Incorporating the new virtual server 194
What about users stored in SQL? 194
When IP addresses and ports clash 194
Local listen and client sections 195
IPv6 195
Listen section -> type directive 195
Pre-defined virtual servers 196
Summary 196

Chapter 9: Modules 199
Installed, available, and missing modules 200
Time for action — discovering available modules 200

Locating installed modules 200
Naming convention 201
Adding alternative paths 202

Available modules 202

Missing modules 202

Including and configuring a module 203
Time for action — incorporating expiration and linelog modules 203
Configuring a module 205

Table of Contents

Using modules 206
Sections that can contain modules 207
Using one module with different configurations 207
Order of modules and return codes 210
Time for action - investigating the order of modules 210
Access-Request 211
Return codes 211
Some interesting modules 212
Summary 212
Chapter 10: EAP 215
EAP basics 215
EAP components 216
Authenticator 216
Supplicant 217
Backend authentication server 217
EAP conversation 218
EAPOL-Start 218
EAPOL-Packet 219
Practical EAP 220
Time for action — testing EAP on FreeRADIUS with JRadius 220
Simulator 220
Preparing FreeRADIUS 220
Configuring JRadius Simulator 221
Configuring the eap module 223
The user store 224

EAP on the client 225
EAP in production 225
Public Key Infrastructure in brief 226
Creating a PKI 226
Time for action — creating a RADIUS PKI for you organization 226
Why use a PKI? 227
Adding a CA to the client 227
Configuring the inner-tunnel virtual server 228
Time for action - testing authentication on the inner-tunnel 228
virtual server 228
The difference between inner and outer identities 229
Naming conventions for the outer identity 232
Disabling unused EAP methods 232
Time for action - disabling unused EAP methods 232
Message-Authenticator 233
Summary 234

Table of Contents

Chapter 11: Dictionaries 235
Why do we need dictionaries? 235
Parsing requests 236
Generating responses 236
How to include dictionaries 237
Time for action — including new dictionaries 237
How FreeRADIUS includes dictionary files 238
Including your own dictionary files 239
Including dictionary files already installed 239
Adding private attributes 239
Updating an existing dictionary 239
Time for action — updating the MikroTik dictionary 240
Finding the latest supported attributes 241
Location of updated dictionary files 241
Order of inclusions 241
Attribute names 241
Upgrading FreeRADIUS 242
Format of dictionary files 242
Notes inside the comments 242
Vendor definitions 242
Attributes and values 243
Name field 243
Number field 243
Type field 244
Optional vendor field 244
Value definitions 245
Accessing dictionary files 245
Summary 246
Chapter 12: Roaming and Proxying 247
Roaming—an overview 247
Agreement between an ISP and a Telco 248
Agreement between two organizations 248
Realms 250
Time for action — investigating the default realms in FreeRADIUS 250
Suffix module 251
NULL realm 251
Enabling an instance of the realm module 252
Defining the NULL realm 252
Time for action — activating the NULL realm 252
Stripped-User-Name and realm 253
LOCAL realm 254
Actions for a realm 254
Defining a proper realm 254

Table of Contents

Time for action — defining the realm 254
Rejecting usernames without a realm 256
Time for action — rejecting requests without a realm 256
DEFAULT realm 257

In closing 258
Proxying 258
Time for action — configuring proxying between two 258
organizations 258
Proxying authentication requests 262
Flow chart of an authentication proxy request 263

EAP and dynamic VLANs 265
Removing and replacing reply attributes 266
Time for action — filtering reply attributes returned by a 266
home server 266
Status of the home servers 267
Time for action — using the preferred way for status checking 268
Proxying accounting requests 269
Time for action — simulating proxied accounting 269
Flow of an accounting proxy request 270
Updating accounting records after a server outage 270
Summary 271
Chapter 13: Troubleshooting 273
Basic principles 274
FreeRADIUS does not start up 274
Who's using my port? 275
Checking the configuration 276
Finding a missing module or library 276
Fixing a broken external component 277
FreeRADIUS refuses to start 277
FreeRADIUS runs despite the display of an error message 278
FreeRADIUS only reports a problem when answering a request 278
Using the startup script 279
FreeRADIUS is slow 279
Time for action — performing baseline speed testing 279
Tuning the performance of FreeRADIUS 280
Main server 280
LDAP Module 281

SQL Module 281
Redundancy and load-balancing 282
Things beyond our control 283
FreeRADIUS dies 283

Table of Contents

Client-related problems 284
Testing UDP connectivity to a RADIUS server 284
The control-socket virtual server 285

Time for action — using the control-socket and raddebug for 285

troubleshooting 285

CentOS 286
SUSE 286
Ubuntu 286
Using raddebug 287
Remember the log output 288
Spotting a mismatched shared secret 288
Options for raddebug 289
Raddebug auto termination 289
If there's no output from raddebug 289

Authenticating users 290
Editing the users file 290
Using raddebug 291
When passwords change 291

Password length 291
EAP problems 291
The CA certificate 292
Identify where a problem is located 292

Problems with proxying 292

Online resources 293

Using the mailing list 294

Summary 294

Appendix: Pop Quiz Answers 297

Chapter 1 297
Pop quiz — RADIUS knowledge 297

Chapter 2 298
Pop quiz — installation 298

Chapter 3 298
Pop quiz — clients.conf 298

Chapter 4 298
Pop quiz — authentication 298

Chapter 5 299
Pop quiz — user stores 299

Chapter 6 300
Pop quiz — accounting 300

Chapter 7 300
Pop quiz — authorization 300

Table of Contents

Chapter 8

Pop quiz — virtual servers
Chapter 9

Pop quiz — modules
Chapter 10

Pop quiz — EAP
Chapter 11

Pop quiz — dictionaries
Chapter 12

Pop quiz — roaming and proxying
Chapter 13

Pop quiz — troubleshooting

Index

301
301
301
301
302
302
302
302
303
303
303
303

305

FreeRADIUS Beginner's Guide contains plenty of practical exercises that will help you with
everything from basic installation to the more advanced configurations like LDAP and Active
Directory integration. This book will help you understand authentication, authorization,

and accounting in FreeRADIUS using the most popular Linux distributions of today. Larger
deployments with realms and fail-over configuration are also covered along with tips. A quiz
at the end of each chapter validates your understanding.

The book can be divided into three sections:

1. Introduction and installation (Chapter 1 to Chapter 3)
2. AAA functions of FreeRADIUS (Chapter 4 to Chapter 7)
3. Advanced topics (Chapter 8 to Chapter 13)

Let's see what each chapter deals with:

Chapter 1, Introduction to AAA and RADIUS, introduces FreeRADIUS and the RADIUS
protocol. It highlights some key RADIUS concepts, which help the user avoid common
misunderstandings.

Chapter 2, Installation, describes how to build and install FreeRADIUS from source on
popular Linux distributions. It also covers installing the FreeRADIUS packages included
with popular Linux distributions. Ubuntu, SUSE, and CentOS will be used to ensure a
wide coverage.

Chapter 3, Getting Started with FreeRADIUS, gives a brief introduction on the various
components of FreeRADIUS. It also discusses the process of handling a basic authentication
request.

Preface

Chapter 4, Authentication, teaches authentication methods and how they work. Extensible
Authentication Protocol (EAP) is covered later in a dedicated chapter.

Chapter 5, Sources of Usernames and Passwords, covers various places where username/
password combinations can be stored. It shows which modules are involved and how to
configure FreeRADIUS to utilize these stores.

Chapter 6, Accounting, discusses the need for accounting and the options available to
record accounting data. It also discusses implementing a policy that includes limiting
sessions and/or time and/or data.

Chapter 7, Authorization, discusses various aspects of authorization including the use of
unlang.

Chapter 8, Virtual Servers, discusses various aspects of virtual servers and where they can
potentially be used.

Chapter 9, Modules, discusses the various modules used by FreeRADIUS and how to
configure multiple instances of a certain module.

Chapter 10, EAP, a dedicated chapter on EAP, is a one stop for EAP (802.11x and WiFi).

Chapter 11, Dictionaries, introduces dictionaries, which are used to map the names seen
and used by an administrator, to the numbers used by the RADIUS protocol.

Chapter 12, Roaming and Proxying, deals with the RADIUS protocol, which allows the
proxying of authorization and accounting requests. This makes roaming possible. This
chapter covers various aspects of proxying in FreeRADIUS.

Chapter 13, Troubleshooting, works through many common problems, giving examples
of what to look for, and how to fix the issue.

You need to be familiar with Linux and have a solid understanding of TCP/IP. No previous
knowledge of RADIUS or FreeRADIUS is required.

To get the most out of the practical exercises you will need a clean install of Ubuntu, SUSE
or CentOS

If you are an Internet Service Provider (ISPs) or a network manager who needs to track and
control network usage, then this is the book for you.

[2]

Preface

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Time for action - heading

1. Action1
2. Action?2
3. Action3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?

This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

These are short multiple choice questions intended to help you test your own understanding.

These set practical challenges and give you ideas for experimenting with what you
have learned.

Code words in text are shown as follows: "The r1m sglcounter module allows defining
various counters (time or data based) to keep track of a user's usage."

A block of code is set as follows:

if (control:Auth-Type == 'PAP')
update reply ({

)

Reply-Message := ~/bin/echo We are using %{control:Auth-Type}"

}

[31]

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

if (control:Auth-Type == 'PAP') {
update reply {
Reply-Message := ~/bin/echo We are using %{control:Auth-Type}"

}

Any command-line input or output is written as follows:

INSERT INTO radcheck (username, attribute, op, value) VALUES ('bob',
'Cleartext-Password', ':=', 'passbob');

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www . packtpub.com or e-mail suggeste@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

[4]

Preface

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book

M You can download the example code files for all Packt books you have purchased
Q from your account at http: //www.PacktPub. com. If you purchased this
book elsewhere, you can visit http: //www.PacktPub. com/support and
register to have the files e-mailed directly to you.

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you

find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

[51]

It is my pleasure to present you a beginner's guide to FreeRADIUS. This book
will help you to deploy a solid, stable, and scalable RADIUS server in your
environment.

This chapter is used as an introduction to RADIUS and FreeRADIUS. We will be
covering a fair amount of theory and recommend you pay special attention to
it. This will supply you with a good foundation on the workings of the RADIUS
protocol and will be of much help in subsequent chapters.

In this chapter we shall:

¢ See what AAA is, and why we need it

¢ Learn where RADIUS started and why it is so relevant today

¢ See why FreeRADIUS really shines as a RADIUS server

¢ Understand the relationship between AAA, RADIUS, and FreeRADIUS

Let's get started.

Authentication, Authorization, and Accounting

Users gain access to data networks and network resources through various devices. This
happens through a wide range of hardware. Ethernet switches, Wi-Fi access points, and
VPN servers all offer network access.

Introduction to AAA and RADIUS

When these devices are used to control access to a network, for example a Wi-Fi access
point with WPA2 Enterprise security implemented or an Ethernet switch with 802.1x (EAP)
port-based authentication enabled, they are referred to as a Network Access Server (NAS).

All these devices need to exercise some form of control to ensure proper security and usage.
This requirement is commonly described as Authentication, Authorization, and Accounting
(AAA). AAA is also sometimes referred to as the Triple A Framework. AAA is a high-level
architecture model, which can be used for specific implementations.

AAA is specified through various RFCs. Generic AAA Architecture is specified in RFC 2903.
There are also RFCs that cover different AAA aspects.

Authentication is usually the first step taken in order to gain access to a network and the
services it offers. This is a process to confirm whether the credentials which Alice provided
are valid. The most common way to provide credentials is by a username and password.
Other ways such as one-time tokens, certificates, PIN numbers, or even biometric scanning
can also be used.

After successful authentication a session is initialized. This session lasts until the connection
to the network is terminated.

Who is Alice?

Alice and Bob are placeholder names. In fact there is a whole character set, each
representing a specific role. We will use the following placeholder names:

Alice: A user who wants access to our network
= Bob: Another user who wants access to our network
Isaac: The Internet Service Provider (ISP)/our network

You can read more about them on Wikepedia: http://en.wikipedia.
org/wiki/Alice_and Bob.

The following image illustrates an authentication process by using the common activity
of drawing money from an ATM as an example. This in essence lets you gain access to the
bank's network (although it is limited in the extreme).

Chapter 1

Bank of
Isaac

Hello, I'm Alice and | want some money
Mot so fast missy! what's your PIN code?
PIN = 10810

‘Welcome to the Bank of Isaac

A

Authorization is a means by which Isaac controls the usage of the resources. After Alice has
authenticated herself, Isaac can impose certain restrictions or grant certain privileges. Isaac
can, for instance, check from which device Alice accesses the network and based on this
make a decision. He can limit the number of open sessions that Alice can have, give her a
pre-determined IP Address, only allow certain traffic through, or even enforce Quality of
Service (QoS) based on an SLA.

Authorization usually involves logic. If Alice is part of the student group then no Internet
access is allowed during working hours. If Bob accessed the network through a captive portal
then a bandwidth limit is imposed to prevent him from hogging the Internet connection.

Logic can be based on numerous things. Authorization decisions for instance can be based on
group membership or the NAS through which you connect or even the time of day when you
access our resources.

If we take the previous ATM example we can see that if Alice does not have an overdraft
facility she will be limited on the amount of money she can withdraw.

I 'want 31000

Sorry, you only have 5200 available in your
account and you do not have an overdraft
facility.

| want $100
| 3

Sure, here is the $100

Accounting is a means of measuring the usage of resources. After Isaac has established who
Alice is and imposed proper control on the established session, he can also measure her
usage. Accounting is the ongoing process of measuring usage.

Introduction to AAA and RADIUS

This allows Isaac to track how much time or resources Alice spends during an established
session. Obtaining accounting data allows Isaac to bill Alice for the usage of his resources.
Accounting data is not only useful to recover costs but it allows for capacity planning, trend
analysis, and activity monitoring.

When Alice wants to check her usage and availability of money the ATM offers this
functionality. The Bank of Isaac can also monitor her account and discover if she is usually
broke before the end of the month. They can then offer her an overdraft facility.

How much meney did | draw the past
week?

_ Bank of

Monday: 530
Wednesday: $100
Friday: $200

Available balance: 5400

RADIUS is a protocol which is used to provide AAA on TCP/IP networks. The next section will
continue with more on the RADIUS protocol.

RADIUS is an acronym for Remote Access Dial In User Service. RADIUS was part of an AAA
solution delivered by Livingston Enterprises to Merit Network in 1991. Merit Network is

a non-profit Internet provider, which required a creative way to manage dial-in access to
various Points-Of-Presence (POPs) across it's network.

The solution supplied by Livingston Enterprises had a central user store used for
authentication. This could be used by numerous RAS (dial-in) servers. Authorization and
accounting could also be done whereby AAA was satisfied. Another key aspect of the
Livingston solution included proxying to allow scaling.

The RADIUS protocol was then subsequently published in 1997 as RFCs, some changes
applied, and today we have RFC2865, which covers the RADIUS protocol, and RFC2866,
which covers RADIUS accounting. There are also additional RFCs which cover enhancements
on certain RADIUS aspects. Having RFCs to work from allows any person or vendor to
implement the RADIUS protocol on their equipment or software. This resulted in widespread
adoption of the RADIUS protocol to handle AAA on TCP/IP networks. You will find the word
RADIUS is used loosely to either mean the RADIUS protocol or the entire RADIUS client/
server system. The meaning should be clear from the context in which it is used.

[101

Chapter 1

Supporting the RADIUS protocol and standards became the de facto requirement for NAS
vendors. RADIUS is used in a wide variety of places, from cellular network providers having
millions of users to a small WISP start-up providing the local neighborhood with Internet
connectivity to enterprise networks that implement Network Access Control (NAC) using
802.1x to ring fence their network. RADIUS is found in all these places and more!

ISPs and network administrators should be familiar with RADIUS since it is used by various
devices that control access to TCP/IP networks. Here are a couple of examples:

A firewall with VPN service can use RADIUS.

Wi-Fi access points with WPA-2-Enterprise encryption involve RADIUS.

When Alice connects through an existing Telco's infrastructure using DSL; the Telco's
equipment will use RADIUS to contact Isaac's RADIUS servers in order to determine
if she can gain Internet access through DSL (proxying).

The next section will summarize the RADIUS protocol as specified in RFC2865.

RADIUS protocol (RFGC2869)

This section explores the RADIUS protocol on a technical level as published in RFC2865.
RADIUS accounting is excluded. This is published as RFC2866 and explored in its own section.

The RADIUS protocol is a client/server protocol, which makes use of UDP to communicate.
Using UDP instead of TCP indicates that communication is not strict on state. A typical flow
of data between the client and server consists of a single request from the client followed by
a single reply from the server. This makes RADIUS a very lightweight protocol and helps with
its efficiency across slow network links.

Before successful communication between the client and server can be established, each has
to define a shared secret. This is used to authenticate clients.

An NAS acts as a RADIUS client. So when you read about a RADIUS client
A it means an NAS.

NAS RADIUS
(RADIUS Client) Server

Shared Secret

nl

Introduction to AAA and RADIUS

RADIUS packets have a specified format defined in the RFC. Two key components inside a
RADIUS packet are:

¢ The code, which indicates the packet type
¢ Attributes, which carry the essential data used by RADIUS

Let's investigate the composition of a RADIUS datagram.

The data packet

Knowing the format of a RADIUS packet will greatly assist in understanding the RADIUS
protocol. Let us look more closely at the RADIUS packet. We will look at a simple
authentication request. A client sends an Access-Request packet to the server. The server
answers with an Access-Accept packet to indicate success.

The RADIUS packets shown here are only the payload of a UDP packet. A discussion of the
UDP and IP protocols is beyond the scope of this book.

The screenshots were obtained by capturing the network traffic between the
RADIUS client and RADIUS server.

We used a program called Wireshark to capture and look at the content of the

- data packets. Wireshark is an open source tool that should be part of any serious
% network guru's arsenal. It can be found here:
A

http://www.wireshark.org

The screenshots here are the result of a simple Authentication request send to a
RADIUS server. The obtaining of this data is commonly known as packet sniffing
among IT geeks.

121

Chapter 1

The following screenshot shows the Access-Request packet send from the RADIUS client:

Frame 1 (99 bytes on wire, 99 bytes captured)
Ethernet II, Src: 00:00:00 080:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00:
Internet Protocol, Src: 127.0.8.1 (127.0.8.1), Dst: 127.0.0.1 (127.0.8.1)
User Datagram Protocol, Src Port: 33475 (33475), Dst Port: radius (1812)
Radius Protocol
Code: Access-Request (1
Packet identifier: exlé (22)
Length: 57
Authenticator: F7BCF35897153560CE87874BO56AABS1
- Attribute Value Pairs
- AVP: 1=7 t=User-Name(l): alice
User-Name: alice
— AVP: 1=18 t=User-Password(2): Encrypted
User-Password: k#(7 \312\278%228%025%322\226%\ 036240334275
- AVP: 1=6 t=NAS-IP-Address(4): 127.0.8.1
NAS-IP-Address: 127.0.0.1 (127.0.0.1)
- AVP: 1=6 t=NAS-Port(5): ©
NAS-Port: @

I+ 0+ o+ o+

The following screenshot shows the RADIUS server responding to this request with an
Access-Accept packet:

+ o+ + o+

Frame 2 (62 bytes on wire, 62 bytes captured)
Ethernet II, Src: 00:00:00 00:00:80 (P0:00:00:00:00:00), Dst: 00:00:00 08O:
Internet Protocol, Src: 127.0.0.1 (127.8.0.1), Dst: 127.0.0.1 (127.8.8.1)
User Datagram Protocol, Src Port: radius (1812), Dst Port: 33475 (33475)
Radius Protocol

Code: Access-Accept (2)

Packet identifier: ox16 (22)

Length: 20

Authenticator: 71723CD1F8EDC25B4279788B3116D0CH

[This is a response to a request in frame 1]

[Time from request: @.880199800 seconds]

Let's discuss the packets.

1131

Introduction to AAA and RADIUS

Each packet is identified by a code. This field is one octet in size. The value of this code
determines certain characteristics and requirements of the packet. The following table can
be used as a reference to list some of the current defined codes for RADIUS packets:

RADIUS code (decimal) Packet type Sent by

1 Access-Request NAS

2 Access-Accept RADIUS server
3 Access-Reject RADIUS server
4 Accounting-Request NAS

5 Accounting-Response RADIUS server
11 Access-Challenge RADIUS server
12 Status-Server (Experimental)

13 Status-Client (Experimental)

255 Reserved

Knowing these codes is beneficial when working with RADIUS.

The second octet of each packet contains a unique identifier. It is generated by the client

and used as an aid to match requests and replies. RADIUS packets are transported using
connectionless UDP. This requires RADIUS to implement its own algorithm to submit retry
requests from the client. When a client resends a request to the server the packet's identifier
will remain unchanged. The server will respond to requests by matching the identifier in the
response packet.

Length

This is the third and fourth octets in the datagram. It indicates up to where the useful
data inside the packet is located. Octets outside the boundary indicated by this field are
considered to be padding and silently ignored.

The manner in which this field, which consists of 16 octets, is formed differs depending
on whether the packet is a request from the client or a response from the server. It also
depends on the packet type, for example Access-Request or Accounting-Request. If it is a
request, the field is referred to as a Request Authenticator. If it is a response, the field is
referred to as a Response Authenticator.

(1]

Chapter 1

The value of a Request Authenticator is a random number not to be repeated again. The
value of a Response Authenticator is the MD5 hash of various fields in the reply packet along
with the shared secret between the client and server.

If the request includes the User-Password attribute, then the value of this attribute will be
encrypted. This encrypted value is typically generated by creating an MD5 hash from the
shared secret combined with the authenticator and then XOR-ing the result with the user's
password. This is why the shared secret has to be the same on the client and the server in
order to decrypt the user's password.

The rest of the RADIUS packet will contain zero or more attributes, which are referred to as
Attribute Value Pairs (AVP). The end of these AVPs is indicated by the packet's length field,
as mentioned before.

RADIUS packets are transported through UDP. The code field identifies the type of RADIUS
packet. Attributes are used to supply specific information used for authentication, authorization,
and accounting. To authenticate a user for instance, the User-Name and User-Password AVPs
will be included along with some other attributes inside the Access-Request packet.

AVPs are the workhorse of the RADIUS protocol. AVPs can be categorized as either check or
reply attributes. Check attributes are sent from the client to the server. Reply attributes are
sent from the server to the client.

Attributes serve as carriers of information between the client and server. They are used by
the client to supply information about itself as well as the user connecting through it. They
are also used when the server responds to the client. The client can then use this response
to control the user's connection based on the AVPs received in the server's response.

The following sections will describe the format of an AVP.

Type

The first octet of the AVP is the type field. The numeric value of this octet is associated with
an attribute name so that we humans can also understand. Assignment of these attribute
names to numbers is controlled by IANA (http://www.iana.org/). The attribute

names are usually descriptive enough to deduce their function, for example User-Name(1),
User-Password(2), or NAS-IP-Address(4).

151

Introduction to AAA and RADIUS

RADIUS also allows extending the protocol; attribute Type 26 (called Vendor-Specific) allows
for this. The value of the Vendor-Specific attribute can in turn contain Vendor Specific
Attributes (VSAs) which are managed by a vendor.

Length

The length field consists of the second octet in the AVP. This is used in the same manner as
in the RADIUS packet itself to indicate the length of the AVP. This method allows one to have
AVPs with different size values since the length field will mark the AVP's end.

The value of an AVP can differ in size. The value field can be zero or more octets. The value
field can contain one of the following data types: text, string, address, integer, or time.

Text and string can be up to 253 octets in size. Address, integer, and time are four
octets long.

If we take the 'NAS-IP-Address' AVP in the Request packet we see the length is six. That is
one octet for the type, one octet for the length, and four octets for the IP address, six octets
in total.

The next section will discuss Vendor-Specific Attributes, which are an extension to the
standard AVPs.

Vendor-Specific Attributes (VSAS)

VSAs allows vendors to define their own attributes. The format of the attribute definitions
is basically the same as for normal AVPs with the addition of a vendor field. VSAs are sent
as the value of AVP Type 26. This means that VSAs are an extension of AVPs and carried
inside AVPs.

This makes RADIUS very flexible and allows a vendor to create extensions to customize their
RADIUS implementation. CoovaChilli for instance has a VSA attribute called 'ChilliSpot-Max-
Total-Octets'. When the CoovaChilli client receives this attribute in a reply from the RADIUS
server it uses this value to restrict data through the captive portal.

The NAS will silently ignore any VSAs that are not meant for it. Some vendors publish
their VSAs, but this is not required. Others simply list them on a website or document.
This can then be consulted to determine the capabilities of the RADIUS implementation
of their equipment.

1161

Chapter 1

Proxying and realms

The RADIUS protocol allows for scaling. Proxying allows one RADIUS server to act as a client
to another RADIUS server. This can eventually form a chain.

A discussion on proxying also includes realms. Realms are names used to group users and
form part of the username. A username is separated from the realm name with a specified
delimiter character. The realm name can be prefixed or postfixed to the username. Today's
popular standard uses domain names as a postfix and delimits it with the @ character, for
example aliceefreeradius.org. Thisis, however, just a convention. The realm can be any
name and the delimiter can be any character. Windows users typically use a prefix notation
specifying the domain first with a \ character as delimiter, for example my domain\alice.

When the RADIUS server receives a request with a username containing a realm it can
decide whether to process the request or to forward the request to another RADIUS server
designated to handle requests for the specified realm. This would require that the second
RADIUS server should have the forwarding RADIUS server defined as a client and that they
also have a shared secret in common.

The RADIUS protocol is client/server based. The RADIUS server will listen on UDP port 1812
and 1813. Port 1812 is used for authentication. This will involve Access-Request, Access-
Accept, Access-Reject, and Access-Challenge packets. Port 1813 is used for accounting. This
will involve Accounting-Request and Accounting-Response packets.

A client and the server require a shared secret in order to encrypt and decrypt certain fields
in the RADIUS packet.

RADIUS clients are usually equipment which supplies access to a TCP/IP data network. The
client acts as a broker between the RADIUS server and a user or device that wants to gain
network access.

The proxying functionality of RADIUS also allows one RADIUS server to be the client of
another RADIUS sever, which eventually can form a chain.

The feedback from the RADIUS server not only determines if a user is allowed on the
network (authentication), but can also direct the client to impose certain restrictions on the
user (authorization). Examples of restrictions are a time limit on the session or limiting the
connection speed.

[l

Introduction to AAA and RADIUS

The responsibility to impose the recommended adjustments to the user's session lies with
the client though. Due to the stateless nature of the RADIUS protocol there is no way for
the RADIUS server to know if the client is imposing the recommended restrictions. In order
for the client to communicate successfully with the RADIUS server there should be a shared
secret between the two. This is used to encrypt certain attributes.

Accounting is defined in a separate RFC. The next section will summarize RADIUS accounting
as specified in RFC2866.

RADIUS accounting (RFC2866)

This section explores the accounting functionality of the RADIUS protocol. Accounting is a
means of tracking usage of resources and typically used for billing.

The RADIUS accounting server runs on port 1813. When a user's session begins the NAS
sends an Accounting-Request packet to the RADIUS server. This packet must contain certain
AVPs. It is the first packet sent after successful authentication. The server will confirm
reception by sending a matching Accounting-Response packet.

Throughout the session the NAS can send optional update reports on the time and data
usage of a particular user. When the user's session ends the NAS informs the server about it.
This puts closure to the accounting details recorded during the user's session.

The RADIUS client's functionality makes provision for instances when the server is down.
The NAS will then, depending how it is configured, retry or contact another RADIUS server.

When a RADIUS server functions as a forwarding proxy to another RADIUS server, it will
serve as a relay for the accounting data. It may also record the accounting data locally before
forwarding it.

Accounting involves RADIUS code 4 (Accounting-Request) and code 5 (Accounting-Response)
packets. Accounting packets like authentication packets use the same RADIUS protocol.

One unique feature of accounting packets is that the User-Password attribute is not sent

in the request.

[181

Chapter 1

See the following output from Wireshark that shows a typical accounting transaction. It
starts with an Accounting-Request from the client:

I+ o+ o+t

Frame 7 (186 bytes on wire, 186 bytes captured)
Ethernet II, Src: IntelCor 80:9b:0f (00:13:e8:80:9b:0f), Dst: CadmusCo |
Internet Protocol, Src: 192.168.1.103 (192.168.1.103), Dst: 192.168.1.1
User Datagram Protocol, Src Port: 44284 (44284), Dst Port: radius-acct
Radius Protocol

Code: Accounting-Request (4)

Packet identifier: ox44 (68)

Length: 144

Authenticator: D57C354DA8B7FBECEES3005B39096B54

[The response to this request is in frame 8

™

+ o+t

— Attribute Value Pairs

AVP: 1=19 t=Acct-Session-Id(44): 4D2ZBBBAC-80008898

AVP: 1=6 t=Acct-Status-Type(48): Start(l)

AVP: 1=6 t=Acct-Authentic(45): RADIUS(1

AVP: 1=7 t=User-Name(l): alice

AVP: 1=6 t=NAS-Port(5): @

AVP: 1=31 t=Called-Station-Id(38): 00-82-6F-AA-AA-AA:My Wireless
AVP: 1=19 t=Calling-Station-Id(31): 00-1C-B3-AA-AA-AA

AVP: 1=6 t=NAS-Port-Type(61): Wireless-862.11(19)

AVP: 1=24 t=Connect-Info(77): CONNECT 48Mbps 882.11b

The server then replies to the client with an Accounting-Response:

+ o+ o+ o+

Frame 8 (62 bytes on wire, 62 bytes captured)
Ethernet II, Src: CadmusCo 63:c2:83 (08:00:27:63:c2
Internet Protocol, Src: 192.168.1.106 (192.168.1.10d
User Datagram Protocol, Src Port: radius-acct (1813
Radius Protocol

Code: Accounting-Response (5)

Packet identifier: 8x44 (68)

Length: 20

Authenticator: A72D9494B5D5E987B9577C20AASD965A

[This is a response to a request in frame 7]

[Time from request: ©.081801080 seconds]

Accounting-Request packets are also required to include certain AVPs. Let us take a look at
important AVPs used in accounting.

Acct-Status-Type (Type40)

This packet indicates the status of the user or the NAS. An NAS may send interim updates on
the usage of a certain session. in order to do this the NAS sets the type to Interim-Update.
This allows us to follow usage trends in approximately real time.

1191

Introduction to AAA and RADIUS

The RADIUS server does not check up on an NAS. If an NAS has informed the RADIUS server
about a newly connected user (status type Start) and thereafter the NAS breaks down
completely, the records on the RADIUS server will still indicate that the user is connected

to the NAS when in fact the user is not. These records are referred to as rogue entries. To
reduce rogue entries, it is good practice for an NAS to send an Accounting-Off followed by an
Accounting-On packet just after boot-up and also an Accounting-Off packet before shutting
down. This action will cause RADIUS to close all open records for any user connected to the
particular NAS allowing a clean start.

Rogue entries are particularly problematic when you limit the number of sessions a user can
have. If the component limiting the sessions of a user makes use of data containing rogue
entries the calculations will not be accurate.

The following decimal to type table can be used as reference for the possible status values:

Decimal value Status type
Start

Stop
Interim-Update

1
2
3
7 Accounting-On
8 Accounting-Off
9-

14 Reserved for tunnel accounting

15 Reserved for failed

Although the Acct-Status-Type AVP is not compulsory it is almost always included.

Acct-Input-Octets (Typed2)

This indicates the octets received during the session and is used with Acct-Status-Type having
a value of Interim-Update or Stop.

Take note of the value's limitation. Four octets limit it to 4,29,49,67,296. Most modern
RADIUS implementations already cater for this.

Acct-Output-Octets (Typed3d)

This indicates the octets sent during the session and is used with Acct-Status-Type having a
value of Interim-Update or Stop.

Take note of the value's limitation. Four octets limit it to 4,29,49,67,296. Most modern
RADIUS implementations already cater for this.

[201

Chapter 1

Acct-Session-ld (Typedd)

Compulsory for all Accounting-Request packets, this is a unique value that is used to match
Start, Interim, and Stop records. All Start, Interim, and Stop records of a session should have
the same value for Acct-Session-Id.

Acct-Session-Time (Type46)

The name is self explanatory. The time in seconds indicating the session's duration and is
used with Acct-Status-Type having a value of Interim-Update or Stop.

Acct-Terminate-Cause (Type49)

This is accompanied by an Acct-Status-Type AVP with its value set to Stop. The value of this
AVP is decimal. It is used in the same manner as Acct-Status-Type where a specific decimal
value resolves to a termination cause.

Conclusion

This brings us to the end of RADIUS accounting. The next session will look at certain RFCs that
add functionality and enhancements to the RADIUS definitions of RFC2865 and RFC2866.

After the initial RFCs defining RADIUS in general and RADIUS accounting, various extensions
were proposed to expand RADIUS usage or improve some weaknesses.

There is also an improved RADIUS protocol called Diameter (A word play—twice as good as
RADIUS). The uptake of Diameter has been very slow though, and RADIUS still remains the
de facto standard for the foreseeable future. A major reason for this is probably the fact
that the many enhancements that Diameter was supposed to bring are already covered by
the various RADIUS extensions. There is, for instance, the RadSec protocol that transports
RADIUS over TCP and TLS. This makes RADIUS scale better in roaming environments.

Although there are more, we will only look at two important extensions likely to be used.

Dynamic Authorization extension (RFC5176)

This extension helps to create a feedback loop from the RADIUS server to the NAS. This in
effect swaps the roles of the client and server. The RADIUS server becomes a client to the NAS.

Dynamic authorization allows for the RADIUS server to inform the NAS about changes that
have to be made to a user's existing session on the NAS. There are two popular applications
of this extension.

21

Introduction to AAA and RADIUS

Disconnect-Message (DM)

Also known as a Packet of Disconnect (POD), this is used to disconnect an existing user's
session. The RADIUS server sends the disconnect request and the NAS has to reply whether
the disconnection was successful or not.

This message supplies data to change the authorization of an existing user's session. We

can now dynamically change the bandwidth limit per session for instance. This allows us to
increase the per session bandwidth when load on our Internet link decreases. When load on
our Internet link increases we can again decrease the per session bandwidth.

MikroTik RouterQOS includes this functionality on some of the services that use RADIUS.

The following table lists the codes and names of the RADIUS packets involved:

Radius code (decimal) Packet type Send by

40 Disconnect-Request RADIUS server
41 Disconnect-ACK NAS

42 Disconnect-NAK NAS

43 CoA-Request RADIUS server
44 CoA-ACK NAS

45 CoA-NAK NAS

RADIUS support for EAP (RFC3979)

EAP stands for Extensible Authentication Protocol. It is mostly used for security on Ethernet
switches and Wi-Fi access points.

EAP supports the use of an external authorization server. RADIUS can be such a server. EAP
will then use the RADIUS protocol to wrap the EAP data inside AVPs in order to authenticate
a connection.

This book has a dedicated chapter on EAP since it is such an important part of enterprise
Wi-Fi security.

In the next section will look at the FreeRADIUS project. FreeRADIUS is an implementation
of the RADIUS protocol and its various extensions including the two mentioned here.

[22]

Chapter 1

FreeRADIUS is an open source project supplying a very feature-rich implementation of the
RADIUS protocol with its various enhancements (http://www.freeradius.org). When
people refer to FreeRADIUS, they usually talk about the server software. This is the main
component of the software suite included in a FreeRADIUS download.

FreeRADIUS development started in 1999 after the future of the original Livingston RADIUS
server became uncertain. This allowed for the creation of a new RADIUS server that was
open source and could include active community involvement.

FreeRADIUS managed to gain a solid reputation and was able to compete with and even beat
most commercial equivalents. Their motto of "The world's most popular RADIUS Server" has
been unchallenged for some time now, making it a very valid statement.

FreeRADIUS has many strengths, which contributed to its popularity. Let us look at some
of them:

¢ Open source: This is not just free as in beer; you are free to adapt, change, expand,
and fix whatever is required. FreeRADIUS is released under the GNU General Public
License (GPL).

¢ Modular: FreeRADIUS comes with lots of modules included. You can also create
your own modules to be used by FreeRADIUS. Modules are included for LDAP
integration or SQL back-ends. There are also Perl and Python modules, which allow
you to unleash these two powerful scripting languages in FreeRADIUS.

¢ Used by the masses: Someone does not get fired for choosing FreeRADIUS. It is easy
to get references from ISPs and large companies who have very large user counts in
their FreeRADIUS deployments. FreeRADIUS conducted a survey to determine the
usage and deployment size of FreeRADIUS. The detailed results of this survey are
available on request from them.

¢ Active community: Because FreeRADIUS has such a large user base, chances are
someone else has experienced the same hurdles as you. FreeRADIUS has active
mailing lists with searchable archives.

¢ Available info: The information may not be in one locality, but it is available, and just
has to be found. There are lots of Wiki pages full of detail. There are also man pages
and configuration files, which are well written and easy to follow.

[231

Introduction to AAA and RADIUS

¢ Active development: FreeRADIUS follows the "release early, release often" motto.

New developments around the RADIUS protocol are most likely to be supported
first in FreeRADIUS. You can look forward to one or more new FreeRADIUS releases
annually.

Commercial support: The core developers of FreeRADIUS offer commercial support.
There are also various people knowledgeable in FreeRADIUS who should be able to

supply paid support. Network RADIUS SARL has a nice website with more details on

paid support: http://networkradius.com/.

Availability: FreeRADIUS is available for various operating systems. All of the popular
Linux distributions include it as part of their available packages. It is even available
for Windows! Under the downloads page of the FreeRADIUS website there are links
to binary packages for various operating systems

There is no such thing as a perfect piece of software; FreeRADIUS is no exception. Here are
some of its weaknesses:

L 4

Complexity: This is the only real weakness. FreeRADIUS offers an all-inclusive piece
of software with many configuration options. If you are not careful you can end up
with a broken system.

Vulnerabilities: A few vulnerabilities were reported in the past but they have been
fixed since then. You can read more about those vulnerabilities and what version
of FreeRADIUS contained them at the following: http://freeradius.org/
security.html.

The competition

When FreeRADIUS states that it is the most popular server, who it is competing with? There
are competing RADIUS servers but also competing technologies. The competing RADIUS
servers include Cisco's ACS, Microsoft's IAS, and Radiator. Competing AAA technologies
include Diameter (mentioned earlier), TACACS+ (which is proprietary to CISCO, although also
supported by other enterprise network equipment manufacturers), and LDAP (LDAP only
supports authentication).

[24]

Chapter 1

This chapter is the introduction and foundation on which we will build that. As a rehash on
important points discussed, be sure to know the following facts:

Name Stands for Short description
AAA Authentication, Authorization, The three components required for proper
and Accounting control of access and usage.
NAS Network Access Server A device controlling access to the network for
example, a VPN server. Acts as the RADIUS client.
AVP Attribute Value Pair A three-field component inside a RADIUS packet
used to contain a specified field and its data.
VSA Vendor-Specific Attributes An extension of the AVP managed by a specific
vendor.
¢ AAAis a security architecture model.
¢ RADIUS is a specific implementation of AAA.
¢ FreeRADIUS is a practical application of RADIUS.
¢ Thus we have AAA - RADIUS - FreeRADIUS.
¢ RADIUS is all about central control and is the de facto standard supported by

NAS vendors.

¢ RADIUS is a client/server protocol. It uses UDP and listens on port 1812 for
authentication and port 1813 for accounting requests.

RADIUS data packets have a code field, which specifies the type of RADIUS packet.

RADIUS data packets have zero or more AVPs, which contain the data used in
RADIUS.

¢ FreeRADIUS implements the RADIUS protocol along with its various extensions as
specified in RFCs.

¢ FreeRADIUS is a very popular, widely used, and very flexible RADIUS server.

This chapter was a FreeRADIUS starter. The main course begins with the next chapter where
we'll be installing FreeRADIUS and starting to use it.

1251

Introduction to AAA and RADIUS

1.

© N o U kW N

Explain the term NAS device.

What are the start and end points of a session?

Which protocol and ports does RADIUS use?

What do the RADIUS client and server require for successful communication?
What packet does the RADIUS client send when authenticating a user?

Who initiates a Disconnect Request packet and who receives it?

Name three components of an Attribute Value Pair (AVP).

Alice connects with username alice@freeradius.org to a network. What is the
name of the realm to which Alice belongs?

1261

There are two methods of installing FreeRADIUS on a Linux server. You can
simply install pre-built binary packages or alternatively build and install
FreeRADIUS from source code. This chapter will show you how to do both.

In this chapter we shall:

Install FreeRADIUS from pre-built binary packages

Build and install FreeRADIUS from source

* & o

Investigate which programs FreeRADIUS installs
¢ Ensure FreeRADIUS is running correctly

So let's get on with it...

There are a variety of Linux distributions to choose from. We will be covering three popular
distributions to include an audience as wide as possible and to avoid a distro war.

_ Adistro war usually starts between two equal passionate GNU/Linux
% supporters. The problem is when they support different GNU/Linux
=" distributions and believe their distribution is superior to all other available

distributions or operating systems.

Installation

Based on the package management system they use, a majority of Linux distributions

fall into one of two groups. One group uses Red Hat Package Manager (RPM) while the
second group uses dpkg Package Manager. We chose two RPM-based distributions, CentOS
and SUSE, which are popular in the enterprise. Instead of using Debian as a dpkg-based
distribution, we chose Ubuntu because of its huge popularity among beginners. Since
Ubuntu evolved out of Debian, the sections discussing Ubuntu should also apply on Debian
without major changes.

The steps in this chapter require one of the following to be installed:

Distribution Version
CentOS 5.5
SUSE SLES 11
Ubuntu 10.4

A typical server install with root access will be used as a base. Use this chapter as a guideline
if you do have a distribution with a version different from that specified.

Today's Linux distributions have lots of pre-build software, which can be installed with
ease. A single command can be used to install FreeRADIUS from a software repository.
This will resolve dependencies and install all the required packages in order to present
a working system.

. Software repositories are used by the package management system that runs
& on Linux. If you are new to package management systems, refer to this URL
— for further reading: http://en.wikipedia.org/wiki/Package
management system

The default installation of the three distributions will include repositories that contain the
FreeRADIUS packages. If this is not the situation, consult the package management system's
documentation in order to determine how to include the repositories that contain the
FreeRADIUS packages.

1281

Chapter 2

Time for action - installing FreeRADIUS

Pre-build FreeRADIUS packages can be installed by using the following command on each
distribution respectively:

¢ CentOS

#> yum install freeradius2 freeradius2-utils

¢ SUSE

#> zypper in freeradius-server freeradius-server-utils freeradius-
server-doc

¢ Ubuntu

$> sudo apt-get install freeradius

What just happened?

We installed the pre-build FreeRADIUS packages supplied for our Linux distribution to have
a basic working RADIUS server installation.

Advantages
Using the pre-build FreeRADIUS package has the following advantages:
¢ Resolving dependencies is automatically taken care of. This includes taking care
of future security updates, keeping track of all the optional packages that were

required to be installed with our package, and also ensuring the correct version of
a dependency package is installed.

The Linux distributor's QA testing ensures properly working software.
Updates are taken care of by the Linux distributor.
Distribution-specific tweaks are already implemented.

One compromise you make using pre-built binary packages is that you will not have the
latest version of FreeRADIUS on the machine.

FreeRADIUS is a feature-rich piece of software. Each distribution presents its FreeRADIUS
differently by spreading it across multiple packages.

1291

Installation

CentOS and Ubuntu include certain FreeRADIUS server modules as optional packages. This
keeps the basic server installation package lean. Installing optional server module packages
will also install required dependencies. This means, for instance, that when you install the
freeradius-mysqgl package, all the required MySQL libraries will also be installed as
dependencies.

SUSE divided their packages by functionality. You will find that the client and server each
have their own set of packages. SUSE also has utilities and documentation packages for
FreeRADIUS.

This section lists available pre-built FreeRADIUS packages per distribution. Names in bold
are recommended for a basic FreeRADIUS installation:

Cent0S
Package name Short description
freeradius2 Highly configurable RADIUS server
freeradius2-krb5 Kerberos 5 support for FreeRADIUS
freeradius2-ldap LDAP support for FreeRADIUS
freeradius2-mysql MySQL support for FreeRADIUS
freeradius2-perl Perl support for FreeRADIUS
freeradius2-postgresql PostgreSQL support for FreeRADIUS
freeradius2-python Python support for FreeRADIUS
freeradius2-unixODBC Unix ODBC support for FreeRADIUS
freeradius2-utils FreeRADIUS utilities
SUSE
Package name Short description
freeradius-client FreeRADIUS client software
freeradius-client-libs Shared library of FreeRADIUS client
freeradius-server Highly configurable RADIUS server
freeradius-server-dialupadmin Web management for FreeRADIUS
freeradius-server-doc FreeRADIUS documentation
freeradius-server-libs FreeRADIUS shared library
freeradius-server-utils FreeRADIUS clients

Chapter 2

Take note that the freeradius-client packages supplied by SUSE are

used by software developers to utilize RADIUS for AAA. Client programs like
' radtest are included in the freeradius-server-utils package.

Ubuntu
Package name Short description
freeradius FreeRADIUS server package
freeradius-dbg Contains detached debugging symbols for FreeRADIUS packages
libfreeradius2 FreeRADIUS shared library
freeradius-ldap LDAP module for FreeRADIUS server
freeradius-common FreeRADIUS common files, include dictionaries, and man pages
freeradius-iodbc iODBC module for FreeRADIUS server
freeradius-krb5 Kerberos module for FreeRADIUS server
freeradius-utils FreeRADIUS client utilities, including programs like radclient,
radtest, smbencrypt, radsniff, and radzap
freeradius-postgresq| PostgreSQL module for FreeRADIUS server
freeradius-mysq| MySQL module for FreeRADIUS server
freeradius-dialupadmin Web management add-on
libfreeradius-dev FreeRADIUS shared library development files

Special considerations

Older versions of Ubuntu did not compile SSL library support into the pre-built binary
packages. When installing FreeRADIUS on those versions, you need to build your own
if you require SSL support on the EAP extensions.

SUSE also offers the yast -i command to install software; but instead use zypper because
it has better decision making ability when installing packages and their dependencies.

The name of the FreeRADIUS package in CentOS is freeradius?2 instead of the expected
freeradius. This is because the FreeRADIUS version that came out with CentOS 5 originally
was 1.1.3. The changes in configuration files between the 1.x and 2.x releases of FreeRADIUS
were, however, of such magnitude that it required a change in name.

Not all FreeRADIUS modules have their respective matching package in Ubuntu or CentOS.
Modules without a matching package are simply included in the main FreeRADIUS package.

[311

Installation

Remember the firewall

CentOS and SUSE install an active firewall by default. Please ensure UDP ports 1812 and 1813
are open for the outside world.

There is a utility to configure the firewall on CentOS called system-config-
securitylevel-tui that should be run as root. This will start a cursors-based program.
Select the Customize option and press Enter. The Allow incoming | Other Ports list should
include 1812 :udp 1813 :udp. Select OK to return to the main screen and then select OK
again to commit the changes.

Confirm the ports are now open by checking the output of the following command:

#> /sbin/iptables -L -n | grep 181%

ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 state NEW
udp dpt:1812

ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 state NEW
udp dpt:1813

Although not recommended you can disable the firewall by using the following commands:

#> /etc/init.d/iptables save
#> /etc/init.d/iptables stop
#> /sbin/chkconfig iptables off

To confirm whether the firewall is disabled, issue the following command:

#> /sbin/iptables -L -n
Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

[321

Chapter 2

Configuring the firewall on SUSE can be a bit of a catch-22 situation since the default firewall
is so secure you cannot even SSH into the box! Log into the SLES server and start YasT.
Select Security and Users | Firewall. Select Allowed Services on the left. | suggest you add
Secure Shell Server to the External Zone. Click on the Advanced button and add 1812 1813
to the UDP Ports. Click OK. Click Next and Finish to commit these changes.

Confirm the ports are now open by checking the output of the following command:

#> iptables -L -n | grep 181
ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp dpt:1812
ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp dpt:1813

Although not recommended you can disable the firewall in the following way:

1. Use YaST and select Security and Users | Firewall.

2. Select Start-Up on the left. Select Disable Firewall Automatic Starting on the right.
Also select Stop Firewall Now and press the Enter key to stop the currently running
firewall.

3. Click Next and Finish to commit these changes.

Confirm the firewall is now disabled by checking the output of the following command:
#> iptables -L -n

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

Building software from source used to be synonymous with configure, make, make
install. We will be using the distribution's package manager to build new software
packages from source.

The following section is optional if you have already installed FreeRADIUS from pre-built
binary packages.

Installation

Building from source

Sometimes there is a need to install the latest available version of software or to include
support for a specific module not included with the pre-built binaries. This requires building
the software from source. Most open source packages are distributed as compressed TAR
files. TAR can actually refer to the program used to create the TAR file (the name is short for
tape archive) or the file format of the resultant file. A TAR file is also typically compressed
to reduce the size. The file name will indicate the compression format. A filename ending
with .tgz or .tar.gz used gzip. A filename ending with . tbz, .tb2,0or .tar.bz2

used bzip2. To build the software we extract this file and then execute the commands
configure, make, and make install inside the extracted directory.

There is, however, a preferred way by utilizing the Linux distribution's package management
system when building the software. Not all TAR files facilitate doing this with ease, but
FreeRADIUS is such a mature project that allows building packages from source on any

of the three Linux distributions.

Advantages of building packages

The following are some of the advantages of building packages from source:

Easy to install, upgrade, remove, or distribute software
Easy to check which version of software is installed

Ability to see which files are installed and see which distribution-specific changes
were made

Now that you are convinced that building packages is the way to go, we will do it for each of
our distributions.

Creating a build environment
4 It is good practice not to use production machines for development. This
includes building software from source. Create a virtual machine on which you
can build the packages. After testing simply copy and install the new packages on
a production machine.

CentOS is a Red Hat-style distribution. It is the community version of the enterprise version
of Red Hat Enterprise Linux (RHEL). CentOS is not directly sponsored by Red Hat like the
Fedora project. Although Red Hat's branding and logos are removed from CentQOS, it is
essentially the same as RHEL since the same source code is used to produce the distribution.

[3a1

Chapter 2

CentOS uses the RPM Package Manager to manage software. The software packages that are
installed are known as RPMs.

Time for action - huilding Cent0S RPMs

This section takes the recommendations and instructions from the following FreeRADIUS
Wiki page to create the latest RPMs on CentOS:

http://wiki.freeradius.org/Red Hat FAQ#How to build an SRPM

You have to be the root user to execute most of these commands. Once that is done, follow
these steps:

1.

Install the rpm-build package. This creates the directory structure required for
package building:
#> yum install rpm-build

Allow write and execute rights for normal users on this directory structure:

#> find /usr/src/redhat -type d | xargs chmod a+wx

The latest version of FreeRADIUS will be available for Fedora. We will use this
version to build the RPMs on CentOS. Download the source RPM from the
following URL:

http://koji.fedoraproject.org/koji/packageinfo?packageID=298

The source RPM package's name ends with . src.rpm.

Install this source package. Use the following command as an example. Your source
package's name will be different:

#> rpm -ihv --nomd5 freeradius-2.1.10-1.fcl6.src.rpm

Issue the following command to determine the required dependencies. These
dependencies have to be installed before the packages can be built:

#> rpmbuild -ba /usr/src/redhat/SPECS/freeradius.spec

Use yum to install each of these dependencies. On my system it turned out to be the
following:

#> yum install autoconf gdbm-devel libtool libtool-1ltdl-devel
openssl-devel pam-devel zlib-devel net-snmp-devel net-snmp-utils

readline-devel libpcap-devel openldap-devel krb5-devel python-
devel mysqgl-devel postgresgl-devel unixODBC-devel

Installation

7. Install a complier:

#> yum install gcc

8. Run rpmbuild again. Do this as a normal user and tee the output to a file for later
investigation. This will start the build process, which takes some time to complete:

#> rpmbuild -ba /usr/src/redhat/SPECS/freeradius.spec | tee /tmp/
freeradius build out.txt

9. When it completes successfully there will be an indication that the RPMs are
written. Lines like the following name the freshly built RPMs:

Wrote: /usr/src/redhat/RPMS/i386/freeradius-debuginfo-2.1.10-1.
i386.rpm

10. Install the newly build RPMs. Again use this as a pattern since your package names,
especially the minor version number, may be different. The following command will
result in a basic FreeRADIUS installation:

#> yum --nogpgcheck install /usr/src/redhat/RPMS/i386/
freeradius-2.1.10-1.i386.rpm /usr/src/redhat/RPMS/i386/freeradius-
utils-2.1.10-1.i386.rpm

If you get a message informing you No package <path and package name>
available, confirm that you specified the correct version.

What just happened?

We just created and installed RPMs for the latest version of FreeRADIUS on CentOS.
Here's a breakdown of important points.

The rpm-build package contains scripts and executable programs used to build RPM
packages. It includes the rpmbuild program, which we will use to create the RPMs.

The source RPM package

We use Fedora's source RPM package as recommended on the FreeRADIUS wiki page.
This results in a more stable and better working set of packages, which already contain
distribution-specific tweaks and modifications.

The package name

Note that the package name is freeradius instead of freeradius2. This is because all
the FreeRADIUS packages in Fedora are already on version 2.x.

Chapter 2

There is not an issue of updating legacy FreeRADIUS version 1.x packages in Fedora as
with CentOS.

Updating an existing installation

If you already have FreeRADIUS installed it may contain modules that you need to include
when updating.

¢ Determine the FreeRADIUS version and packages currently installed by using the
following command:

#> yum list freeradius*

¢ When you have already installed freeradius2 as pre-built binary packages, yum
will complain when trying to install the new freeradius packages because of the
clash in names. You can remove the freeradius?2 packages by using the following
command:

#> yum erase freeradius*

¢ The above assumes that you haven't made any configuration changes to the
installation that you would like to preserve.

SUSE also makes use of the RPM Package Manager for software management just like Red
Hat distributions. Although both use RPM as the foundation for software management, SLES
uses zypper to manage package repositories where CentOS uses yum.

SLES is a hardcore enterprise distribution. Use the pre-built binary packages if possible,
but if you feel brave and would like to get your hands dirty, this section is for you.

Time for action — SUSE: from tarhall to RPMs

Building RPMs for FreeRADIUS on SLES takes a little more effort compared to CentOS
or Ubuntu.

To build FreeRADIUS from source requires various development libraries. The standard SLES
repositories do not include them all, even when using the SDK DVDs that are part of SLES.
We therefore need to add the OpenSUSE repository. This will satisfy all the development
library requirements.

[311

Installation

1.

5.

Locate your nearest OpenSUSE mirror from the following URL:

http://mirrors.opensuse.org/
Start YAST as the root user.
Select Software | Software Repositories and then select Add to add a repository.

Add the OpenSUSE mirror that you chose at the start. The URL for my nearest
OpenSUSE 11.3 is the following:

ftp://opensuse.mirror.ac.za/opensuse/distribution/11.3/repo/
oss/suse/

You might be asked to accept the importing of a GnuPG key for the new repository.
Select Import to continue.

This sets the stage for building the FreeRADIUS RPMs. Now, follow these steps:

1.

2.

Download the latest version of FreeRADIUS in tar.bz2 format from its website
(http://freeradius.org/download.html).

SLES includes a directory structure that is used specifically to build RPMs. This
is located under /usr/src/packages. Copy the original bz2 source file to the
SOURCES directory. Replace x and y with the downloaded version's numbers:

#> cp freeradius-server-2.x.y.tar.bz2 /usr/src/packages/SOURCES/

Extract the SUSE RPM . spec file from the TAR file again replacing x and y with the
correct version numbers:

#> cd /usr/src/packages/SOURCES/

#> tar -xvjf freeradius-server-2.x.y.tar.bz2 freeradius-
server-2.x.y/suse/freeradius.spec

Copy the following file to the /usr/src/packages/SPECS directory:

#> cp freeradius-server-2.x.y/suse/freeradius.spec ../SPECS/

Edit the following line in the spec file, changing ${£fillup and insserv -s
freeradius START RADIUSD } to ${fillup and insserv freeradius }.

Run the following command to determine dependencies:

#> rpmbuild -ba /usr/src/packages/SPECS/freeradius.spec

This will list the required development packages to install in order for the
FreeRADIUS RPMs to be built. The list may be different on your system; on mine
it is the following (use zypper to install them):

Chapter 2

10.

11.

12.
13.

#> zypper in db-devel e2fsprogs-devel gcc-c++ gdbm-devel gettext-
devel glibc-devel ncurses-devel openldap2-devel openssl-devel pam-
devel postgresgl-devel python-devel unixODBC-devel zlib-devel
apache2-devel cyrus-sasl-devel krb5-devel libaprl-devel
libmysqglclient-devel

Run the rpmbuild command again. If all the required dependencies are met, the
building of the RPMs will commence. Tee the output to a file for later investigation:

#> rpmbuild -ba /usr/src/packages/SPECS/freeradius.spec | tee /
tmp/build out.txt

When the build process is complete the RPMs will be located under the /usr/src/
packages/RPMS/<architectures/ directory.

Install the new FreeRADIUS packages using the following command where x and y
are the specific version of FreeRADIUS:

#> cd /usr/scr/packages/RPMS/<architecture>/

#> zypper in freeradius-server-2.x.y-0.i586.rpm freeradius-server-
libs-2.x.y-0.i586.rpm freeradius-server-utils-2.x.y-0.1i586.rpm

Take note that FreeRADIUS will run as the user radiusd by default. This user is
created during the FreeRADIUS installation. Give this user ownership of the certs
directory. Failing to do this will leave you with a broken FreeRADIUS installation.

#> chown -R radiusd. /etc/raddb/certs

Confirm that radiusd starts correctly by executing radiusd -X in a terminal.

Ctrl + C will stop the running FreeRADIUS. You can now start FreeRADIUS using the
start-up script from the terminal:

#> /etc/init.d/freeradius start

What just happened?

We completed the build and installation of FreeRADIUS RPMs on SLES. Although not as
elegant as CentOS it was still done without many problems.

Use zypper to install the required dependencies. Using yast -1 to install the required
gettext-devel package will result in an error. zypper knows that the gettext-tools
package will satisfy this dependency.

Using yast -1 to install the dependencies also results in unwanted updates from the
OpenSUSE repository. You have been warned.

Installation

Tweaks done by hand

There were some tweaks that we had to perform manually in order to get the latest
FreeRADIUS packed and installed on SLES:

Add the OpenSUSE repository as a source of development packages
Install various development packages from OpenSUSE

Edit the freeradius. spec file to remove legacy macros

* 6 o o

Change the ownership of the directory that contains the certificates

Ubuntu is based on Debian Linux and uses the dpkg Package Manager to manage software
packages known as debs.

The apt program is used to manage repositories for dpkg in the same way zypper and yum
are used with RPM.

Time for action - Ubuntu: from tarhall to dehs

The following steps will show you how to install debs:

1. |Install the dpkg-dev package. This package provides the development tools
(including dpkg-source) required to unpack, build, and upload Debian source
packages.

$> sudo apt-get install dpkg-dev
If this package does not install, check the list of sources used by the apt program.
The repository sources are defined in the /etc/apt/sources.list file and
updated with the sudo apt-get update command.

2. Install all the required development libraries for the freeradius package:
$> sudo apt-get build-dep freeradius
If you get a message that says: Unable to find a source package for freeradius, it is
probably because the source repositories (deb-src) are not included in the /etc/
apt/sources.list file.

3. Ensure the fakeroot program is installed:

$> sudo apt-get install fakeroot

[401

Chapter 2

4. Ensure that the ss1-cert package is installed. Failing to install this package will
cause trouble with the compiled EAP modules when FreeRADIUS starts up:

$> sudo apt-get install ssl-cert

5. Download the latest version of FreeRADIUS from its website. Use the wget program
and replace x and y with actual version numbers:

$> wget ftp://ftp.freeradius.org/pub/freeradius/freeradius-server-
2.x.y.tar.gz

6. Extract the FreeRADIUS source TAR file. Replace x and y with the downloaded
version's numbers:

$> tar -xzvf freeradius-server-2.x.y.tar.gz

7. Change to the extracted directory, again replacing x and y with the actual
downloaded version's numbers:

$> cd freeradius-server-2.x.y

8. Make this current directory a fakeroot environment and build the package using
the control file already included in the debian subdirectory. The build process will
take a while and depends on the computing power of the machine on which it is
executed. You can monitor the output of this command for fatal errors, although it
should just work:

$> fakeroot dpkg-buildpackage -b -uc

9. This will create all the required debs and place them outside the freeradius-
server-2-x.y directory.

10. Install the new debs by issuing the following commands (remember to substitute
your version and architecture):

$> cd ../

$> sudo dpkg -i freeradius 2.x.y+git i386.deb freeradius-
common 2.x.y+git_all.deb freeradius-utils 2.x.y+git_i386.deb
libfreeradius2 2.x.y+git i386.deb

What just happened?

We just created and installed debs for the latest version of FreeRADIUS on Ubuntu. Here's a
breakdown of important points.

[al

Installation

The dpkg-dev package installs all the tools required for building debs. This includes the
autoconfig and make tools and also a compiler. It also includes the dpkg-buildpackage
program, which we will use to create the debs.

apt-get is followed by a command to instruct it what to do. When we are installing
packages we use the install command. The build-dep command is used to install
all the dependencies of the specified source package.

We are not using the source package that comes with Ubuntu, but rather use the latest
source tarball from FreeRADIUS. This means that it is not a foolproof method especially if the
latest source includes development libraries not used by the original Ubuntu source package.
You will, however, be informed of that during the build process and can subsequently install
those required libraries.

fakeroot

This command allows us to build debs as a normal user and is the recommended way.
Fakeroot is followed by a command. The command which fakeroot calls will think it
is run by a root user having root privileges for file manipulation. In our case we issue the
dpkg-buildpackage command.

dpkg-huildpackage

This command is run inside the FreeRADIUS source folder. It will make use of the specified
information inside the debian folder to compile the source and subsequently create the
various FreeRADIUS packages. The -b option is for binary-only build and the -uc option is
to skip the signing with a gpg key.

When compiling FreeRADIUS on some installations of Ubuntu 10.4 you
may run into the following error:

undefined reference to 'lt_preloaded_symbols'

4 It happened on one of my machines, but the others compiled fine. Quick
% Googling led me to this reported bug:

https://bugs.launchpad.net/ubuntu/+source/
freeradius/+bug/421005

Somehow it seems to be still present even in 10.4. YMMV but take note of
the 1ibltdl-related problem.

[42]

Chapter 2

We only install the debs required for a basic installation. When we require extra modules
they can simply be installed as a package. Required dependencies can be installed by using

the apt command.

For those preferring the old school

Although we encourage the building of packages there is nothing that stops you from using
the configure, make, make install pattern. If you run . /configure --help, a list

of options will be shown that you can use to tweak the build of FreeRADIUS. You can for
instance specify the location of certain directories (--bindir=/usr/bin), enable or disable
certain features (- -enable-developer), or include certain packages (- -with-openssl).

FreeRADIUS has various executable files installed. When moving between distributions there

are small differences to consider.

One such difference is the location of the configuration files. Another difference is the name
of the FreeRADIUS server executable. In Ubuntu (and Debian) it is called freeradius. In
CentOS and SLES it is called radiusd. The following table lists the important executables
that are installed along with a brief description of their function:

Name

Description

/usr/sbin/raddebug

/usr/sbin/radiusd
/usr/sbin/freeradius
/usr/sbin/radmin

/usr/bin/radclient

/usr/bin/radconf2xml
/usr/bin/radcrypt
/usr/bin/radeapclient

/usr/bin/radlast

/usr/bin/radsqglrelay

Shell script wrapper around radmin for debug output
without having to run radiusd in debug mode.

The RADIUS server.

Administration utility that connects to a running radiusd
daemon.

Utility program used to send various RADIUS packets to a
RADIUS server and to show the reply.

Displays the current server configuration formatted in XML.
Encrypts or checks a password in DES or MD5 format.
Sends EAP packets to a RADIUS server.

Front-end to the system's last command showing output from
the accounting log file.

Used to manage accounting detail recorded in a SQL log file.
This file is created by the r1m_sgl log module.

[431

Installation

Name Description

/usr/bin/radtest Sends Access-Request (code 1) packets to a RADIUS server and
shows the reply. Front-end to radclient.

/usr/bin/radwho Shows active sessions from the radutmp file

/usr/bin/radzap Shell script wrapper used to remove rogue entries in the
session database (file or SQL).

/usr/bin/smbencrypt Gives nt password hash for a plaintext password required by
MS-CHAP.

Not all the listed commands will run by default. Commands like radwho and
radlast depend on the existence of log files, which are used as input for these

%@‘ commands. Commands like radmin and raddebug require a special set up on
the server before they can be run. Don't be discouraged if not all the commands
are working on a new installation.

FreeRADIUS should be running with as few privileges as possible in a production
environment. A normal installation creates a dedicated user and group for this purpose.

On CentOS and SLES the user and group are called radiusd. On Ubuntu the user and group
are called freerad. Only on special configurations will root privileges be required.

Dictionary access for client programs

On some installations (SLES) the FreeRADIUS client programs could not read the dictionary
file. This only happens when you run the client programs as a normal user. Access to the
dictionary file is required for the client programs to resolve the various RADIUS AVPs

to numbers.

When this problem exists you will get a message like the following:

#> radclient: dict init: Couldn't open dictionary "/etc/raddb/
dictionary": Permission denied

Fix this problem by running the following commands as the root user:

#> chmod o+xr /etc/raddb
#> chmod o+r /etc/raddb/dictionary

After this a normal user should be able to run the FreeRADIUS client programs without any
rights issues.

[a4]

Chapter 2

Executing radiusd -X (or freeradius -X on Ubuntu) as root will start the FreeRADIUS
server in debug mode and indicate if there are any problems.

To stop the server simply type Ctrl + C. This will stop the program.

% If you get an error message about port 1812 already in use, FreeRADIUS is
s already running. You can stop it through the startup script and try again.

We also need to make sure FreeRADIUS will start up with the rest of the services after a
reboot. Unfortunately each distribution works differently here. The following tables can
be used as a guideline for commands to manage FreeRADIUS startup.

Each of these scripts must be called with one of the listed arguments:

Start-up script

CentOS #> /etc/init.d/radiusd start|stop|restart
SLES #> /etc/init.d/freeradius
start|stop|restart

Ubuntu #> /etc/init.d/freeradius
start|stop|restart

Activate and de-activate
CentOS #> /sbin/chkconfig radiusd on

#> /sbin/chkconfig radiusd off
SLES #> /sbin/chkconfig -a freeradius

#> /sbin/chkconfig -d freeradius

Ubuntu $> sudo update-rc.d freeradius defaults

$> sudo update-rc.d -f freeradius remove

Ensure FreeRADIUS running

CentOS #> pidof radiusd
SLES #> pidof radiusd
Ubuntu #> pidof freeradius

An alternative command can be used to check if FreeRADIUS is running:

#> ps aux | grep radius

451

Installation

The following command shows which interface and UDP ports FreeRADIUS is using:

#> netstat -unap | grep radius

This chapter was all about installing FreeRADIUS on your machine. Specifically, we covered:

L 4

Installing pre-built binary packages. This is the quickest and surest way to have a
working FreeRADIUS server.

Building and installing FreeRADIUS from source code. This is a bit more involved,
but allows you to run the latest release. This also allows you to boast about your
ability to build packages from source code for your Linux distribution.

FreeRADIUS installs various executables and contains various modules. Some of
these modules are packed separately depending on the Linux distribution that
you use. When you require the use of a separately packed module it first has to
be installed along with its dependencies.

You should also install client utility programs along with the FreeRADIUS server.
This allows you to effectively test and troubleshoot.

Running client utility programs as a normal user may result in file rights issues
when trying to access the dictionary file. This can be fixed by tweaking the rights.

We also discussed how to ensure automatic start-up after reboots and running FreeRADIUS
in debug mode to troubleshoot.

Now that FreeRADIUS is installed and running on our machine we can start using it. Getting
started with FreeRADIUS is the topic of the next chapter.

1461

Chapter 2

1.

Isaac is confused. He installed FreeRADIUS on Ubuntu in much the same way he
used to install on CentOS but the radiusd binary is missing, why is this?

After you install the pre-built binary packages for FreeRADIUS, you reboot the
server. You would like to run radiusd in debug mode but radiusd complains
something about address already in use. What is wrong?

You would like FreeRADIUS to connect to a MySQL database on CentOS. What
pre-built FreeRADIUS package is required for this?

A friend of you is asking for help. He wants to build FreeRADIUS on SLES 11 but
when he tries to install the required build libraries it can not find all the required
libraries. What can the problem be?

[a11

After FreeRADIUS has been installed it needs to be configured for our
requirements. This chapter will help you to get familiar with FreeRADIUS. It
assumes that you already know the basics of the RADIUS protocol as discussed
in Chapter 1.

In this chapter we shall:

Perform a basic configuration of FreeRADIUS and test it
Discover ways of getting help

Learn the recommended way to configure and test FreeRADIUS

* 6 o o

See how everything fits together with FreeRADIUS

So let's get on with it.

Before you start

This chapter assumes that you have a clean installation of FreeRADIUS.
= You will need root access to edit FreeRADIUS configuration files for the

basic configuration and testing.

Getting Started with FreeRADIUS

We start this chapter by creating a simple setup of FreeRADIUS with the following:

¢ The localhost defined as an NAS device (RADIUS client)

¢ Alice defined as a test user

After we have defined the client and the test user, we will use the radtest program to fill
the role of a RADIUS client and test the authentication of Alice.

Time for action - configuring FreeRADIUS

FreeRADIUS is set up by modifying configuration files. The location of these files depends on
how FreeRADIUS was installed:

¢ If you have installed the standard FreeRADIUS packages that are provided with the
distribution, it will be under /etc/raddb on CentOS and SLES. On Ubuntu it will be
under /etc/freeradius.

¢ If you have built and installed FreeRADIUS from source using the distribution's
package management system it will also be under /etc/raddb on CentOS and SLEs.
On Ubuntu it will be under /etc/freeradius.

¢ If you have compiled and installed FreeRADIUS using configure, make, make
install it will be under /usr/local/etc/raddb.

The following instructions assume that the FreeRADIUS configuration directory is your
current working directory:

1. Ensure that you are root in order to be able to edit the configuration files.

2. FreeRADIUS includes a default client called Localhost. This client can be used by
RADIUS client programs on the localhost to help with troubleshooting and testing.
Confirm that the following entry exists in the clients.conf file:

client localhost ({
ipaddr = 127.0.0.1
secret = testingl23
require message authenticator = no
nastype = other

Chapter 3

Define Alice as a FreeRADIUS test user. Add the following lines at the top of the
users file. Make sure the second and third lines are indented by a single tab
character:

"alice" Cleartext-Password := "passme"
Framed-IP-Address = 192.168.1.65,
Reply-Message = "Hello, %{User-Name}"

Start the FreeRADIUS server in debug mode. Make sure that there is no other
instance running by shutting it down through the startup script. We assume
Ubuntu in this case.

$> sudo su

#> /etc/init.d/freeradius stop

#> freeradius -X

You can also use the more brutal method of kill -9 $ (pidof freeradius) or
killall freeradius on Ubuntuandkill -9 $ (pidof radius) orkillall
radiusd on CentOS and SLES if the startup script does not stop FreeRADIUS.

Ensure FreeRADIUS has started correctly by confirming that the last line on your
screen says the following:

Ready to process requests.

If this did not happen, read through the output of the FreeRADIUS server started in
debug mode to see what problem was identified and a possible location thereof.

Authenticate Alice using the following command:
$> radtest alice passme 127.0.0.1 100 testingl23

The debug output of FreeRADIUS will show how the Access-Request packet
arrives and how the FreeRADIUS server responds to this request.

Radtest will also show the response of the FreeRADIUS server:

Sending Access-Request of id 17 to 127.0.0.1 port 1812
User-Name = "alice"
User-Password = "passme"
NAS-IP-Address = 127.0.1.1
NAS-Port = 100
rad_recv: Access-Accept packet from host 127.0.0.1 port 1812,
id=147, length=40
Framed-IP-Address = 192.168.1.65
Reply-Message = "Hello, alice"

[51]

Getting Started with FreeRADIUS

What just happened?

We have created a test user on the FreeRADIUS server. We have also used the radtest
command as a client to the FreeRADIUS server to test authentication.

Let's elaborate on some interesting and important points.

Configuration of the FreeRADIUS server is logically divided into different files. These files
are modified to configure a certain function, component, or module of FreeRADIUS. There
is, however, a main configuration file that sources the various sub-files. This file is called
radiusd.conf.

The default configuration is suitable for most installations. Very few changes are required
to make FreeRADIUS useful in your environment.

Although there are many files inside the FreeRADIUS server configuration directory, only
a few require further changes. The clients. conf file is used to define clients to the
FreeRADIUS server.

Before an NAS can use the FreeRADIUS server it has to be defined as a client on the
FreeRADIUS server. Let's look at some points about client definitions.

Sections

A client is defined by a client section. FreeRADIUS uses sections to group and define
various things. A section starts with a keyword indicating the section name. This is followed
by enclosing brackets. Inside the enclosing brackets are various settings specific to that
section. Sections can also be nested.

Sometimes the section's keyword is followed by a single word to differentiate between
sections of the same type. This allows us to have different client entries in clients.conf.
Each client has a short name to distinguish it from the others.

521

Chapter 3

The clients.conf file is not the only file where c1ient sections can be defined although
it is the usual and most logical place. The following image shows nested client definitions
inside a server section:

nested sections
server wifi {)

listen { keyword _
ipaddr =*))
port = 2812 name (depend on context)
type = auth '
} enclosing brackets
client ap_canteen_1 :) 1
ipaddr=192.168.1.200 :
secret = testingl23 : —1 T |
} client ap_canteen_2 {

client ap_canteen_2 { ’
ipaddr=192.168.1.201 _’,:
secret = testingl22 : }
} ;
} |

‘ client section

virtual server section

The FreeRADIUS server identifies a client by its IP Address. If an unknown client sends a
request to the server, the request will be silently ignored.

The client and server also require to have a shared secret, which will be used to encrypt and
decrypt certain AVPs. The value of the User-Password AVP is encrypted using this shared
secret. When the shared secret differs between the client and server, FreeRADIUS server will
detect it and warn you when running in debug mode:

Failed to authenticate the user.
WARNING: Unprintable characters in the password. Double-check the
shared secret on the server and the NAS!

Getting Started with FreeRADIUS

Message-Authenticator

When defining a client you can enforce the presence of the Message-Authenticator AVP
in all the requests. Since we will be using the radtest program, which does not include it,
we disable it for localhost by setting require message authenticator to no.

Nastype

The nastype is set to other. The value of nastype will determine how the checkrad Perl
script will behave. Checkrad is used to determine if a user is already using resources on an
NAS. Since 1ocalhost does not have this function or need we will define it as other.

If the server is down or the packets from radtest cannot reach the server because of a
firewall between them, radtest will try three times and then give up with the following
message:

radclient: no response from server for ID 133 socket 3

If you run radtest as a normal user it may complain about not having access to the
FreeRADIUS dictionary file. This is required for normal operations. The way to solve this is
either to change the permissions on the reported file or to run radtest as root.

Users are defined in the users file under the FreeRADIUS configuration directory. The
content of the users file is used for both Authorization and Authentication purposes. This
file is not the only source of users but is a simple and effective way to begin. Let's look at
some key points about users.

The £iles module (r1m_files) reads the contents of the users file to determine if the
user specified in the Access-Request exists and is authorized to use the NAS. It also
determines what attributes should be returned to the client.

The £iles module may set the Auth-Type. This will determine the authentication
method to be used. If a user is defined with a Cleartext-Password check item it will
set Auth-Type = PAP.

The files module also supplies other modules with a value of "known good password"
if one is defined. In our example it supplied the pap module (r1m_pap) with the value
specified in the Cleartext-Password check AVP.

[541

Chapter 3

The pap module (r1m_pap) was used for authentication. If the Auth-Type is set to PAP it
will look for a "known good password" and compare this with the User-pPassword AVP's
value. If it is the same, the module will pass the authentication request.

The request may still fail because of other modules in the FreeRADIUS authentication chain.

Users file

The users file does not contain any sections like clients.conf. This is because it is
specific to the £iles module and not directly related to the configuration of the FreeRADIUS
server itself.

To add an entry in the users file you define a username followed by zero or more
comma-separated check items. This is followed by zero or more tab-indented lines
with comma-separated reply items.

We assume you are using the default setup without any changes to the sites-
enabled/default virtual server. If you have, for instance, activated the
. unix module under the authorize section and Alice is also defined as a
% system user, the system user with its password will be the preferred user instead
s of the one defined in the users file. The result will be that an Access-
Reject packet is returned in response to the Access-Request if the
passwords differ between Alice the system user and Alice the user defined in the
users file.

The following entry requires that the Access-Request packet contains an AVP for NAS -
IP-Address withavalueof 127.0.0.1.

"alice" Cleartext-Password := "passme", NAS-IP-Address == '127.0.0.1'

The radtest program will set the value of NAS-IP-Address by default to
@'@‘\ the IP of the hostname specified in the /etc/hosts file. Later in this chapter
’ you will see how to change this value.

Some AVPs have a special meaning and are used internally by FreeRADIUS. Although the

incoming Access-Request does not contain an AVP called Cleartext-Password, the
files module uses it internally to adjust the value of Auth-Type and to create a known
good password, which can be used by the pap module for authentication.

[551

Getting Started with FreeRADIUS

Another example of a special AVP is when you want to reject or accept a user based on the
username, no matter what their password may be. The previous line will change to one of
the following.

"alice" Cleartext-Password := "passme", Auth-Type := Reject
"alice" Cleartext-Password := "passme", Auth-Type := Accept

Although Auth-Type appears to be a standard AVP check item, it is internal to FreeRADIUS
and used to control the way in which the authentication will be done.

Reply items

Reply items are preceded with a line containing a username and zero or more check items.
Reply items are indented with a single tab. Multiple items can fit on a single line separated
by commas. They can also span over multiple lines, but have to be separated by commas.

You may have noticed that we use different operators when assigning values to AVPs. There
are various operators available, which determine the logical outcome of a check or reply
action. Operators will be discussed in more detail in the chapter on Authorization. For

now you can remember that all reply items contain = and check items that need to match
incoming AVPs are == while others are : =.

The users file allows for substitution. The special sequence of ${<AvP>} will replace the
AVP with its actual value. In our setup we return a message to the user by substituting the
User-Name AVP with its value (% {User-Name}).

DEFAULT user

The users file has a special user called DEFAULT. This user can be defined multiple times
with different checks and replies. This user matches any username.

Because of this you should always put DEFAULT entries at the end of the users file. You
should also take note of the special reply value called Fall-Through. If Fall-Through is
not defined it takes on the value of no.

If an entry matches and Fall-Through is set to no (default if not specified), the search
process stops. This means that the default value of no will cause the £iles module to return
on the first match of a specified requirement inside the users file.

When Fall-Through is set to yes, searching the users file for further matches continues
after a match has been discovered. We will now discuss two commonly used internal check
AVPs: Login-Time and Simultaneous-Use.

[561

Chapter 3

Login-Time

Login-Time is a very powerful internal check AVP. It allows flexible authorization and its
value is used by the logintime (rlm logintime) module to determine if a person is
allowed to authenticate to the FreeRADIUS server or not. This value is also used to calculate
the Session-Timeout reply value. Session-Timeout is subsequently used by the NAS to
limit access time.

The following line will grant Alice access only between 08:00 and 18:00 each day.

"alice" Cleartext-Password := "passme", Login-Time := 'A10800-1800"'

The logintime module will calculate the reply value of Session-Timeout if Alice has
logged in within the permitted timeslots to inform the NAS how long she is allowed to stay
connected. If Alice tries to access the network when she is not permitted, the request will
be rejected.

Simultaneous-Use is another internal AVP used to specify the number of concurrent
logins a user is allowed to have.

"alice" Cleartext-Password := "passme", Simultaneous-Use := '1'

The simultaneous-Use check is used by the session section, which is part of the
FreeRADIUS configuration. The session section makes use of either flat files (r1m radutmp)
or SQL data (r1m_sql) to determine if a user is already logged into an NAS.

In our example we used the Framed-IP-Address as a return AVP. This attribute can,
however, be used in both a request and a reply. If the NAS sends this along with the access
request, it is a request to the RADIUS server that this IP address is preferred for the given
client. The RADIUS server can then decide if it will allow the use of the requested IP address
or suggest a different one to the NAS by including this AVP with the Access-Accept packet.

Details of the radtest command will not be discussed here because the next section will
show you how to find it yourself.

Helping yourself

Open source projects are sometimes criticized because they lack documentation and
support. FreeRADIUS has done a great job in supplying proper documentation and ways
to get help.

[571

Getting Started with FreeRADIUS

Installed documentation

There is plenty of documentation, which installs with FreeRADIUS. It is in the form of man
pages, comments inside configuration files, various README files, and also rfc files.

You may not always be sure which man pages are available as part of the FreeRADIUS
installation. The following section will show you how you can find this out.

Time for action - discovering availahle man pages for

The following commands can be used as a guideline to first determine which FreeRADIUS
packages are installed and subsequently determine which files are contained in the package.

dpkg systems
To list all the installed FreeRADIUS packages:

$> dpkg -1 | grep radius

Use each of the listed packages as the package argument to the dpkg -L command. Let's
take the freeradius-common package for instance:

$> dpkg -L freeradius-common

From the previous output we see that there are many man pages installed under the
/usr/share/man directory.

rpm systems
To list all the installed FreeRADIUS packages:

$> rpm -ga | grep radius
Take each of the listed packages and use it as the argument to rpm -g1 as shown:
$> rpm -qgl <package name>

From the previous output we can locate the man pages installed with FreeRADIUS under
the /usr/share/man directory.

radtest revisited
To get more details on radtest the following command will display its man page:

$> man radclient

Chapter 3

The Synopsis section contains two handy options:

¢ ppphint: Adding a value greater than one will cause radtest to add the
Framed-Protocol = PPP AVP to the Access-Request packet.

¢ nasname: Adding a hostname or IP address will cause radtest to add the NAS-1P-
Address = <IP Address> to the Access-Request packet.

The following command adds the Framed-Protocol = PPP and NAS-IP-ADDRESS =
10.20.30.1 attributes to the Access-Request packet.

$> radtest alice passme 127.0.0.1 100 testingl23 1 10.20.30.1

Now that you know where the man pages are located, let's explore the radclient
command's man page.

Radclient is the real thing since the radtest man page mentions that it is simply a
front-end to radclient. Let's see what radclient is all about:

$> man 1 radclient

From the man page we can see that radclient gives us much more power as compared to
radtest. The following command can be used as an equivalent to the radtest command
used at the start of this chapter:

$> echo "User-Name=alice,User-Password=passme" | radclient 127.0.0.1 auth
testingl23

The response from radclient returns a code number and does not clearly indicate a pass
or fail for an Access-Request. This is where you need to know the RADIUS packet codes as
discussed in Chapter 1.

Here is the response of an Access-Accept packet (Code 2):

Received response ID 32, code 2, length = 40
Framed-IP-Address = 192.168.1.65
Reply-Message = "Hello, alice"

Here is the response of an Access-Reject packet:
Received response ID 59, code 3, length = 34

Reply-Message = "Hello, alice"

Radclient also offers us the opportunity to send accounting, status, and disconnect
packets. We will use these features in subsequent chapters.

[591

Getting Started with FreeRADIUS

What just happened?

You have just learned how to find and use the man pages, which are part of the FreeRADIUS
installation on your server.

Have a go hero - adding more AUPS to the auth request

Try some of these tasks as a further challenge:

¢ The number of AVPs received by FreeRADIUS is fewer when we use radclient
instead of radtest. See if you can add those missing ones to the standard input for
the radclient.

¢ Radtest also offers the option to read AVPs from a file. Create a file with the
required AVPs and use it with radclient. Use the Packet - Type attribute in the
file to specify the packet type inside the file.

¢ If you use the Packet -Type inside a file remember the following important points:
o Specify the packet type as auto on the command line.

o The Packet -Type value is the numeric of the RADIUS packet code. This
means that an Access-Request packet will have a value of 1.

o You also need to specify an AVP for the destination port. Failing to do so
will cause it not to be sent. Access-Request requires the following entry.
Packet-Dst-Port=1812.

The following can be used as an example to work from:

User-Name = alice
User-Password = passme
NAS-IP-Address = 127.0.0.1
NAS-Port = 100
Packet-Type = 1
Packet-Dst-Port = 1812

Man pages are not the only source of information in the FreeRADIUS installation. The
FreeRADIUS configuration files have many comments. This makes the configuration
much easier.

Configuration file comments

The configuration files are filled with guidelines, tips, and pointers to more information.
All this is contained in comments inside the configuration files.

Chapter 3

Pop yuiz - clients.conf

As an exercise read through the clients. conf file and answer the following questions on
the comments inside the file.

1.
2.

7.

How do we distinguish between various client sections?
True or false: Using a netmask other than 32 is recommended.

If a client connects with an IP Address that you cannot determine beforehand,
what will be the recommended way to handle this?

You have an old legacy NAS that will contact the FreeRADIUS server. What required
attribute may be missing in the Access-Request packet and how will you
compensate for this?

Does FreeRADIUS support clients using the IPv6 protocol?

True or false: The shared secret does not need to be more than 8 characters
because only the first 8 characters are used.

What may happen if the nastype is identified incorrectly?

As you can see there is valuable information inside the comments of a configuration file.
This information should be considered when you set up FreeRADIUS.

Online documentation

There are many sources of information on FreeRADIUS available on the Internet. Some of
this information is outdated or simply not correct. FreeRADIUS develops at a fast pace.
Using outdated documentation can cause unexpected results leading to a lot of frustration.

The following is a list of recommended URLs to visit:

URL

Description

http://freeradius.org/ This is the homepage of the FreeRADIUS project and

contains links to documentation sources. This should be
your first stop.

http://wiki.freeradius.org/ Although thereis also a link to the Wiki on the FreeRADIUS

homepage, it is listed here to emphasize its importance.

http://deployingradius.com/ Contains practical documentation.

http://google.com Google is your friend!

611

Getting Started with FreeRADIUS

If you have tried all the available documentation and still have problems you can make use of
the FreeRADIUS mailing lists. This is a very effective way to get help, but you have to abide by
a few basic rules for the benefit of everyone.

The FreeRADIUS home page has a Mailing Lists link, which you can follow for further
instructions.

Once you have obtained the new knowledge it's time to apply it. The following section looks
at recommended practices when configuring FreeRADIUS.

These golden rules are not my own, but the recommendations from the online
documentation listed above. For best results follow them!

Do as little as possible—the default configuration should work as is.

Do not edit the default configuration files unless you understand what they do.

When you make changes, keep them small and make backups.

* 6 o o

Confirm that the changes work as intended by running FreeRADIUS in debug mode
and carefully observing the output during various scenarios.

This section gives a general overview on the workings of the FreeRADIUS server program
called radiusd.

We've already said that the behavior of radiusd is determined by configuration files. The
main configuration file for the FreeRADIUS server is radiusd. conf, which resides in the
configuration directory. The location and name of the configuration directory depends on
the Linux distribution and the manner in which FreeRADIUS was compiled and installed.

The radiusd. conf file consists of general items and various sections. Contents of other
files and directories are included by using the special keyword $ INCLUDE inside the
radiusd. conf file.

[621

Chapter 3

Importantincludes

The following table lists important inclusions and their descriptions:

Include

Description

$INCLUDE proxy .conf

SINCLUDE clients.conf

$INCLUDE ${confdir}/modules/

#SINCLUDE sqgl.conf

SINCLUDE eap.conf
SINCLUDE policy.conf

SINCLUDE sites-enabled/

Used to define realms for which requests will be proxied.
This turns the FreeRADIUS server into a client that
forwards requests for certain users to other RADIUS
servers.

Used to define various clients (NAS) with their IP address
and shared secrets.

Configuration settings specific to a module are inside
this directory. We configure a module by changing the
corresponding file in this directory. The 1dap module
(rlm_1ldap) for instance will have a corresponding
1dap file that configures the 1dap module.

The configuration of the sgl module (r1lm_sgl) bends
the rules a little bit by not sitting under the modules
directory. The # at the start means it is excluded by
default.

EAP can be quite complex. For this reason it is logically
separated and inside a dedicated file

Policies are virtual modules, which can be used in the
same way as modules

FreeRADIUS uses virtual servers in the same way Apache
uses them. A virtual server is created in the sites-
available directory and activated by linking it to

the sites-enabled directory. By default two virtual
servers are active upon installation, namely default
and inner-tunnel. Default is for general usage and
inner-tunnel for EAP requests.

Libraries and dictionaries

FreeRADIUS has many modules. Module file names are in the form of r1m <module names.

A module is a form of a library. All modules are libraries, but not all libraries are modules.
These modules are located under a library directory, which is specified as 1ibdir in
radiusd.conf. Multiple locations can be listed by separating them with a colon character,

for example:

libdir = /usr/lib/freeradius:/usr/local/my freeradius

Getting Started with FreeRADIUS

FreeRADIUS needs to resolve AVP names to numbers. This requirement is not only for AVPs,
but also for VSAs. For this FreeRADIUS uses dictionary files. Dictionary files are text files
which describe AVPs and VSAs.

There is a master dictionary file, which is used by both radiusd and client programs
like radtest and radclient. This file is located under the configuration directory
and called dictionary. This file has a $INCLUDE statement pointing to a directory,
that contains many dictionary files. Files inside this dictionary directory are of the form
dictionary.<vendor names.

FreeRADIUS has its own special dictionary called dictionary. freeradius.internal.
The AVPs in this dictionary are used internally by FreeRADIUS during operation. Internal
AVPs that we have used up to now include Cleartext-Password, Auth-TypeX, and
Login-Time. The usage of dictionaries and internal AVPs will be discussed in more detail
throughout the book.

FreeRADIUS runs on non-privileged ports (N>1023), which means you do not have to be root
torunit.

The FreeRADIUS authors highly recommend that you run FreeRADIUS with as few
permissions possible. The only reason for you to run FreeRADIUS as a root user is when you
need access to files that only root can access. This is for instance when you want to use the
system users on the Linux server as a user store (rlm_unix and rlm pam) instead of the
users file used by the £i1es module. There are, however, ways around this by changing
permissions on those files.

The radiusd. conf file has two directives that are set to specify the name of the user and
group under which FreeRADIUS will run. They are user and group. If you comment these
values out, FreeRADIUS will run as the user who started it.

Listen section

FreeRADIUS listens on all the available interfaces by default. You can, however, change this
by specifying that it should only listen on a particular NIC or even a VPN tied to TUN/TAP
interface. Alternatively you can specify that it should only listen on a specified IP address.
There are various possibilities that allow you to tie interface and IP address combinations
to virtual servers or request types. This feature in itself makes the FreeRADIUS server
incredibly versatile.

1641

Chapter 3

If you have a multihomed server there is usually one interface that runs a very
~\l strict firewall. If clients connect through this interface, make sure that they are
Q allowed through the firewall.

If you are running FreeRADIUS on a VPN interface, confirm that the VPN is
already up and running during start-up before FreeRADIUS is started.

Log files

Production environments do not allow FreeRADIUS to run in debug mode all the time.
When we run FreeRADIUS as a normal daemon it writes certain data to log files.

Inspecting these log files at regular intervals is very important to detect potential problems
in your environment. Let's have a look at them.

The usual location for the radiusd log file is /var/log/radius/radius.log. You
can also specify what should be logged to this file in the radiusd. conf file. There is a
dedicated 1og section to fine tune the logging.

The command last in Linux gives a history of who has logged into the machine as well as
the duration of the session. This is done by reading the file /var/logwtmp.

FreeRADIUS has a similar feature where the radlast command will read the /var/log/
radius/radwtmp file to show all the users that were logged in through an NAS using
FreeRADIUS. For this to work unix must be listed in the accounting section of the virtual
server (enabled by default).

Who is logged in right now?

The who command lists all the users that are logged in at a specific time. This is done by
reading the /var/run/utmp file.

FreeRADIUS has a similar feature where the command radwho will read the /var/log/
radius/sradutmp file to show the users with active sessions right now. The sradutmp file
is not present by default and has to be activated by uncommenting the sradutmp line in the
accounting section of the virtual server (disabled by default).

Getting Started with FreeRADIUS

You may think that radwho should read a file called /var/
log/radius/radutmp. This file does exists, but it contains
% sensitive information. You can read about the difference
o between the two on this Wiki page:

http://wiki.freeradius.org/R1lm_radutmp

Knowing these log file locations and commands to extract important information will give
you the edge in times of trouble.

This chapter gave us initial hands-on experience of FreeRADIUS. We have also learned more
on documentation and the workings of the FreeRADIUS server called radiusd.

Specifically, we have covered:

¢ Configuring FreeRADIUS: FreeRADIUS has a primary configuration file called
radiusd.conf. Various other configuration files get sourced through the primary
configuration file using the $INCLUDE keyword.

¢ NAS devices: An NAS device is a RADIUS client and shares a secret with the RADIUS
server. NAS devices are defined in the clients.conf file. The localhost is by
default defined as a client. This enables us to do various tests with RADIUS client
programs like radclient and radtest.

¢ Defining users: The users file is a quick and simple way to define users and is used
by the £iles module. Users defined in the users file have check and reply AVPs.
Some of these AVPs have special meaning to FreeRADIUS and influence the behavior
of the authentication and authorization outcomes.

¢ Finding documentation: FreeRADIUS has local and online documentation. On our own
machine we can use man pages and also read comments inside configuration files for
guidance. There is also documentation available on the Internet specifically on the
FreeRADIUS home page. There are also mailing lists to which we can post questions.

¢ When we configure: There are a few rules to stick by when changing the
configuration. Backup, make small changes, run in debug mode, and test.

We have also looked at various components and aspects of the radiusd program.
This includes configuration files that are sourced, modules, dictionaries, AVPs specific
to FreeRADIUS, log files, and running it with minimum rights.

Now that we know the basics of FreeRADIUS, we're ready to zoom in on
authentication—which is the topic of the next chapter.

This chapter zooms in on authentication. Authorization and accounting will
follow later in the book.

Authentication is a process where we establish if someone is who he or she
claims to be. The most common way is by a unique username and password.

In this chapter we shall:

Discuss PAP, CHAP, and MS-CHAP authentication protocols
See when and how authentication is done in FreeRADIUS

Explore ways to store passwords

* 6 o o

Look at other authentication methods

So let's get on with it...

This section will give you background on three common authentication protocols. These
protocols involve the supply of a username and password.

The radtest program uses the Password Authentication Protocol (PAP) by default when
testing authentication. PAP is not the only authentication protocol but probably the most
generic and widely used. Authentication protocols you should know about are PAP, CHAP,
and MS-CHAP. Each of these protocols involves a username and password. The Extensible
Authentication Protocol (EAP) protocol has its own dedicated chapter later in this book and
will introduce us to more authentication protocols.

Authentication

An authentication protocol is typically used on the data 1ink layer that connects
the client with the NAS. The network layer will only be established after the
authentication is successful. The NAS acts as a broker to forward the requests

from the user to the RADIUS server.

The data link layer and network layer are layers inside the Open
% Systems Interconnect model (OSI model). The discussion of this model is almost
guaranteed to be found in any book on networking:

http://en.wikipedia.org/wiki/OSI model

PAP was one of the first protocols used to facilitate the supply of a username and password
when making point-to-point connections. With PAP the NAS takes the PAP ID and password
and sends them in an Access-Request packet as the User-Name and User-Password.
PAP is simpler compared to CHAP and MS-CHAP because the NAS simply hands the RADIUS
server a username and password, which are then checked. This username and password
come directly from the user through the NAS to the server in a single action.

Although PAP transmits passwords in clear text, using it should not always be frowned upon.
This password is only in clear text between the user and the NAS. The user's password will
be encrypted when the NAS forwards the request to the RADIUS server.

If PAP is used inside a secure tunnel it is as secure as the tunnel. This is similar to when
your credit card details are tunnelled inside an HTTPS connection and delivered to a secure
web server.

HTTPS stands for Hypertext Transfer Protocol Secure and is a web standard that
+ uses Secure Socket Layer/Transport Layer Security (SSL/TLS) to create a secure
channel over an insecure network. Once this secure channel is established, we
’ can transfer sensitive data, like credit card details, through it. HTTPS is used daily
to secure many millions of transactions over the Internet.

See the following schematic of a typical captive portal configuration.

https:// [\ /l RADIUS I\

o O Username: alice NAS User-Name = alice RADIUS
Password: passme User-Password = x00xx 1L} 300000000 Server

- VI N

Captive Portal

Chapter 4

The following table shows the RADIUS AVPs involved in a PAP request:

AVP Typical value
User-Name alice
User-Password \xbe\xd1}r\xc8vc/\x93*\x8f\xa0$\xadgz

As you can see the value of User-Password is encrypted between the NAS and the RADIUS
server. Transporting the user's password from the user to the NAS may be a security risk if it
can be captured by a third party.

CHAP stands for Challenge-Handshake Authentication Protocol and was designed as an
improvement to PAP. It prevents you from transmitting a cleartext password.

CHAP was created in the days when dial-up modems were popular and the concern about
PAP's cleartext passwords was high.

After a link is established to the NAS, the NAS generates a random challenge and sends it to
the user. The user then responds to this challenge by returning a one-way hash calculated

on an identifier (sent along with the challenge), the challenge, and the user's password. The
user's response is then used by the NAS to create an Access-Request packet, which is sent
to the RADIUS server. Depending on the reply from the RADIUS server, the NAS will return
CHAP Success Or CHAP Failure to the user.

The NAS can also request at random intervals that the authentication process be repeated by
sending a new challenge to the user. This is another reason why it is considered more secure
than PAP.

One major drawback of CHAP is that although the password is transmitted encrypted, the
password source has to be in clear text for FreeRADIUS to perform password verification.

The FreeRADIUS FAQ discuss the dangers of transmitting a cleartext password compared to
storing all the passwords in clear text on the server.

The following table shows the RADIUS AVPs involved in a CHAP request:

AVP Typical value
User-Name alice
CHAP-Password 4A2578ED8C1A747AFEDS86EBO96F024ADFF8

Authentication

MS-CHAP is a challenge-handshake authentication protocol created by Microsoft. There are
two versions, MS-CHAP version 1 and MS-CHAP version 2.

The challenge sent by the NAS is identical in format to the standard CHAP challenge packet.
This includes an identifier and arbitrary challenge. The response from the user is also
identical in format to the standard CHAP response packet. The only difference is the format
of the value field. The value field is sub-formatted to contain MS-CHAP-specific fields.
One of the fields (NT-Response) contains the username and password in a very specific
encrypted format. The reply from the user will be used by the NAS to create an Access-
Request packet, which is sent to the RADIUS server. Depending on the reply from the
RADIUS server, the NAS will return Success Packet or Failure Packet to the user.

The RADIUS server is not involved with the sending out of the challenge. If you
sniff the RADIUS traffic between an NAS and a RADIUS server you can confirm

that there is only an Access-Request followed by an Access-Accept or
’ Access-Reject. The sending out of a challenge to the user and receiving a

response from her or him is between the NAS and the user.

MS-CHAP also has some enhancements that are not part of CHAP, like the user's ability to
change his or her password or inclusion of more descriptive error messages.

The protocol is tightly integrated with the LAN Manager and NT Password hashes. FreeRADIUS
will convert a user's cleartext password to an LM-Password and an NT-Password in order
to determine if the password hash that came out of the MS-CHAP request is correct. Although
there are known weaknesses with MS-CHAP, it remains widely used and very popular.

K Never say never. If your current requirement for the RADIUS deployment does
~ not include the use of MS-CHAP, rather cater for the possibility that one day you
Q may use it. The most popular EAP protocol makes use of MS-CHAP. EAP is crucial
in Wi-Fi authentication.

Because MS-CHAP is vendor specific, VSAs instead of AVPs are part of the Access-Request
between the NAS and RADIUS server. This is used together with the User-Name AVP.

VSA Typical value

MS-CHAP-Challenge CF702D195889B225

MS-CHAP-Response :00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:e6
:3e:d6:be:b8:90:b4:88:84:bc:b3:71:c0:ce:b8:d3:1d:1a:06:35:3
2:¢5:f1:85

701

Chapter 4

Now that we know more about the authentication protocols, let's see how FreeRADIUS
handles them.

It's time to see how FreeRADIUS handles incoming Access-Request packets.

Time for action — authenticating a user with FreeRADIUS

We continue with our exercise from the previous chapter where we authenticate a user
defined in the users file. Instead of looking at the feedback of the radtest command, we
will now look at the output of the FreeRADIUS server running in debug mode.

1. Ensure you are root in order to edit the users file.

2. Define Alice as a FreeRADIUS test user. Add the following lines at the top of the
users file. Make sure the second line is indented by a single tab character.

"alice" Cleartext-Password :

= "passme"
Reply-Message = "Hello, %{User-Name}"

3. Start the FreeRADIUS server in debug mode. Ensure there is not already an instance
running by shutting it down through the start-up script. We assume Ubuntu in this
instance.

$> sudo su
#> /etc/init.d/freeradius stop

#> freeradius -X

4. Authenticate Alice using the following command:
$> radtest alice passme 127.0.0.1 100 testingl23

5. The debug output of FreeRADIUS will show how the Access-Request packet
arrives and how the FreeRADIUS server responds to this request.

What just happened?
You have sent an Access-Request packet to FreeRADIUS. You have received an Access-

Accept packet back. Nothing exciting really, but it is quite interesting to observe the debug
output of FreeRADIUS. This shows what is involved to return an Access-Accept packet.

ni

Authentication

If you want to make use of the terminal where FreeRADIUS runs in debug mode,
M while keeping it alive you can use Ctr/+Z to suspend the current job (radiusd
Q -X) then execute the bg command to run it in the background. The terminal
should now be available to you. To run FreeRADIUS again in the foreground
simply execute the £g command.

Let's explore the debug output.

Access-Request arrives

When the packet arrives at the FreeRADIUS server it is indicated by the following part:

rad _recv: Access-Request packet from host 127.0.0.1 port 48698, id=73,

length=57
User-Name = "alice"
User-Password = "passme"

NAS-IP-Address = 127.0.1.1
NAS-Port = 100

We see that the incoming request contains four AVPs.

Although the AVP User-Password is shown here in clear text, it was not transmitted to the
server in clear text. FreeRADIUS uses the shared secret to encrypt and decrypt the value of
the User-Password AVP.

After the request is received, the authorize section takes care of the request:

Executing section authorize from file /etc/freeradius/sites-enabled/
default

+- entering group authorize {...}

++ [preprocess] returns ok

++ [chap] returns noop

++ [mschap] returns noop

++ [digest] returns noop

[suffix] No '@' in User-Name = "alice", looking up realm NULL
[suffix] No such realm "NULL"

++ [suffix] returns noop

[eap] No EAP-Message, not doing EAP

++ [eap] returns noop

[files] users: Matched entry alice at line 137
[files] expand: Hello, %{User-Name} -> Hello, alice
++[files] returns ok

++ [expiration] returns noop

121

Chapter 4

++ [logintime] returns noop
++ [pap] returns updated
Found Auth-Type = PAP

The authorize section is defined inside a virtual server. Let's first look at some points about
virtual servers in FreeRADIUS:

& Virtual servers are defined under the sites-available directory, which resides
under the configuration directory of FreeRADIUS.

Each virtual server is represented by a single text file.

Virtual servers are activated by creating a soft link from the file in the
sites-available directory to afile in the sites-enabled directory with
the same name.

This method is similar to that used by the Apache web server.
The virtual server named default handles all the typical requests.

Virtual servers are basically like having several RADIUS servers. One virtual server
can even forward a request to another virtual server. This makes a FreeRADIUS
installation extremely versatile and powerful.

¢ Each virtual server, including default, has various sections. A virtual server can
contain the following sections nested inside the virtual server definition: 1isten,
client, authorize, authenticate, post-auth, pre-proxy, post-proxy,

preacct, accounting, and session.

¢ The Access-Request is first handled by the authorize section.

Authorize set Auth-Type

When the request is handled by the authorize section, various FreeRADIUS modules
look at the AVPs contained in the Access-Request. These modules try to determine the
mechanism and module to be used for authenticating the user. In our example authorize
sets the Auth-Type to PAP.

If the Access-Request contained MS-CHAP attributes instead of the User-Password for
instance, the mschap module would have detected this and set Auth-Type = MS-CHAP.

The authorize section may decide to reject a request outright based on a decision on
the presence or the value of a specified AVP. This will result in an Access-Reject packet
returned to the client. There would then be no need for authentication.

7131

Authentication

Authentication

After the value of Auth-Type is set, the request is passed to the authenticate section:

Executing group from file /etc/freeradius/sites-enabled/default
+- entering group PAP {...}
[pap] login attempt with password "passme"
[pap] Using clear text password "passme"
[pap] User authenticated successfully
++ [pap] returns ok

Here we see that the pap subsection in the authenticate section is taking care of this
request and returns ok.

The post-auth section is done after authentication. You may use it to execute something:

Executing section post-auth from file /etc/freeradius/sites-enabled/
default

+- entering group post-auth {...}
++ [exec] returns noop

Finish
The result is now sent back to the client:

Sending Access-Accept of id 73 to 127.0.0.1 port 48698
Reply-Message = "Hello, alice"
Finished request 3.

Conclusion
Remember the following points when looking at the debug output:
¢ Main sections like authorize, authenticate, and post -auth start with
a # Executing.
These sections also indicate in which virtual server they reside.

The authorize section sets the value of Auth-Type. This in turns determines
which module inside the authenticate section will be used.

¢ The debug output of FreeRADIUS modules can be divided in two types.
They are debug messages and return values.

¢ Debug messages are preceded by the module name, for example
[files] users: Matched entryalice at 1line 137.

nl

Chapter 4

& Return values are preceded by ++ [module name] for example ++ [files]
returns ok.

Have a go hero - using other authentication protocols

Since version 2.1.10 of FreeRADIUS the radtest client program allows you to specify an
authentication protocol to use.

If your FreeRADIUS installation is newer than 2.1.10 you can use the -t option to specify
chap and mschap and do the authenticate request again. Note how the debug feedback
from FreeRADIUS is now different when using the other authentication protocols.

The next section will look at different formats in which we can store a user's password.

Username and password combinations have to be stored somewhere. The following list
mentions some of the popular places:

Text files: You should be familiar with this method by now.

SQL databases: FreeRADIUS includes modules to interact with SQL databases.
MySQL is very popular and widely used with FreeRADIUS.

¢ Directories: Microsoft's Active Directory or Novell's e-Directory are typical
enterprise-size directories. OpenLDAP is a popular open source alternative.

The users file and the SQL database that can be used by FreeRADIUS store the username
and password as AVPs. When the value of this AVP is in clear text, it can be dangerous if the
wrong person gets hold of it. Let's see how this risk can be minimized.

To reduce this risk, we can store the passwords in a hashed format. A hashed format of a
password is like a digital fingerprint of that password's text value. There are many different
ways to calculate this hash, for example MD5 or SHAL. The end result of a hash should be a
one-way fixed-length encrypted string that uniquely represents the password. It should be
impossible to retrieve the original password out of the hash.

1751

Authentication

To make the hash even more secure and more immune to dictionary attacks we can add a

salt to the function that generates the hash. A salt is randomly generated bits to be used in
combination with the password as input to the one way hash function. With FreeRADIUS we
store the salt along with the hash. It is therefore essential to have a random salt with each hash
to make a rainbow table attack difficult. The pap module, which is used for PAP authentication,
can use passwords stored in the following hash formats to authenticate users:

Hash format AVP name
Unix-style crypted password Crypt-Password
MD5 hashed password MD5 - Password
MD5 hashed password with a salt SMD5 -Password
SHA1 hashed password SHA-Password
SHA1 hashed password with a salt SSHA-Password
Windows NT hashed password NT-Password
Windows Lan Manager (LM) password LM-Password

Both MD5 and SSH1 hash functions can be used with a salt to make it more secure.

Time for action — hashing our password

We will replace the Cleartext-Password AVP in the users file with a more secure
hashed password AVP in this section.

There seems to be a general confusion on how the hashed password should be created
and presented. We will help you clarify this issue in order to produce working hashes for
each format.

A valuable URL to assist us with the hashes is the OpenLDAP FAQ:

http://www.openldap.org/fag/data/cache/419.html

There are a few sections that show how to create different types of password hashes.
We can adapt this for our own use in FreeRADIUS.

Crynt-Password

Crypt password hashes have their origins in Unix computing. Stronger hashing methods are
preferred over crypt, although crypt is still widely used.

1761

Chapter 4

1.

2.

The following Perl one-liner will produce a crypt password for passme with the salt
value of 'salt":

#> perl -e 'print (crypt("passme","salt")."\n");'

Use this output and change Alice's check entry in the users file from: "alice"
Cleartext-Password := "passme" to: "alice" Crypt-Password := "sa85/
iGj2UWIA™

Restart the FreeRADIUS server in debug mode.
Run the authentication request against it again.

Ensure that pap now uses the crypt password by looking for the following line
in the FreeRADIUS debug feedback:

[pap] Using CRYPT password "sa85/iGj2UW1A"

The MD5 hash is often used to check the integrity of a file. When downloading a Linux ISO
image you are also typically supplied with the MD5 sum of the file. You can then confirm the
integrity of the file by using the mdssum command.

We can also generate an MD5 hash from a password. We will use Perl to generate and
encode the MD5 hash in the correct format that is required by the pap module. The creation
of this password hash involves external Perl modules, which you may have to install first
before the script can be used. The following steps will show you how:

1.

Create a Perl script with the following contents; we'll name it 4088 04 md5.p1:

#! /usr/bin/perl -w

use strict;

use Digest::MD5;

use MIME: :Base64;

unless (SARGV[0]) {
print "Please supply a password to create a MD5 hash from.\n";
exit;

}

my $ctx = Digest::MD5->new;

Sctx->add (SARGV[0]) ;

print encode baseé64 (Sctx->digest,'')."\n";

Make the 4088 04 md5.pl file executable:
chmod 755 4088 04 md5.pl

Get the MD5 password for passme:
./4088 04 md5.pl passme

¥1]]

Authentication

4.

Use this output and update Alice's entry in the user's file to:

"alice" MD5-Password := "ugGBYPwm4MwukpuOBx8FLQ=="

Restart the FreeRADIUS server in debug mode.
Run the authentication request against it again.

Ensure that pap now uses the MD5 password by looking for the following line
in the FreeRADIUS debug feedback:

[pap] Using MD5 encryption.

This is an MD5 password with salt. The creation of this password hash involves external Perl
modules, which you may have to install first before the script can be used.

1.

Create a Perl script with the following contents; we'll name it 4088 04 smd5.pl:

#! /usr/bin/perl -w
use strict;
use Digest::MD5;
use MIME: :Baseé64;
unless ((SARGV[0]) && (SARGV[1])) {
print "Please supply a password and salt to create a salted MD5
hash from.\n";
exit;
}
my Sctx = Digest::MD5->new;
Sctx->add (SARGV[0]) ;
my S$salt = SARGVI[1];
Sctx->add ($salt) ;
print encode base64 ($Sctx->digest . $salt ,'')."\n";

Make the 4088 04 smds.pl file executable:
chmod 755 4088 04 smd5.pl

Get the SMD5 value for passme using a salt value of 'salt":
./4088 04 smd5.pl passme salt

Remember that you should use a random value for the salt. We only used salt here
for the demonstration.

Use this output and update Alice's entry in the user's file to:
"alice" SMD5-Password := "Vr6uPTrGykg4yKig67v5kHNhbHQ="

Restart the FreeRADIUS server in debug mode.
Run the authentication request against it again.

7181

Chapter 4

7.

Ensure that pap now uses the SMD5 password by looking for the following line in

the FreeRADIUS debug feedback.
[pap] Using SMD5 encryption.

SHA stands for Secure Hash Algorithm. SHA1 is most commonly used from the SHA series
of cryptographic hash functions. It was designed by the National Security Agency (NSA) and
published as their government standard. SHA-1 produces a 160-bit hash value. There was
SHA-0 that had been withdrawn by the NSA shortly after publication and was superseded
by SHA-1. There is also the SHA-2 series that features significant changes from SHA-1. SHA-
2 includes the SHA-224, SHA-256, SHA-384, SHA-512 cryptographic functions. A new hash
standard called SHA-3 is currently under development.

The creation of this password hash involves external Perl module, which you may have to
install first before the script can be used.

1.

Create a Perl script with the following contents; we'll name it 4088 04 shal.pl:

#! /usr/bin/perl -w

use strict;

use Digest::SHA1;

use MIME: :Baseé64;

unless (SARGV[0]) {
print "Please supply a password to create a SHA1l hash from.\n";
exit;

}

my Sctx = Digest::SHAl->new;
Sctx->add ($SARGV[0]) ;
print encode base64 ($Sctx->digest,'')."\n";

Make the 4088 04 shal.pl file executable:
chmod 755 4088_04_shal.pl

Get the SHA value for passme:
./4088 04 shal.pl passme

Use this output and update Alice's entry in the user's file to:
"alice" SHA-Password := "/waczsxHgPnlJIkpJENLNV5JpSk="

Restart the FreeRADIUS server in debug mode.

Run the authentication request again against it.

17191

Authentication

7.

Ensure that pap now uses the SHA password by looking for the following line in the
FreeRADIUS debug feedback:

[pap] Using SHA encryption.

This is an SHA password with salt. The creation of this password hash involves external Perl
modules, which you may have to install first before the script can be used.

1. Create a Perl script with the following contents; we'll name it 4088 04 sshal.pl:

#! /usr/bin/perl -w

use strict;

use Digest::SHAIL;

use MIME: :Base64;

unless ((SARGV[0]) && (SARGV[1])) {

print "Please supply a password and salt to create a salted SHAl
hash from.\n";

exit;

}

my $ctx = Digest::SHAl->new;

Sctx->add (SARGV[0]) ;

my $salt = $SARGVI[1];

Sctx->add($salt) ;

print encode baseé64 (Sctx->digest . $salt ,'')."\n";
Make the 4088 04 sshal.pl file executable:

chmod 755 4088 04 sshal.pl

Get the SSHA value for passme using a salt value of 'salt":
./4088 04 sshal.pl passme salt

Remember that you should use a random value for the salt. We only used salt
here for the demonstration.

Use this output and update Alice's entry in the user's file to:
"alice" SSHA-Password := "bXUygZ+GToKwJysZyzghIEwfotJzYWxO"

Restart the FreeRADIUS server in debug mode.
Run the authentication request against it again.

Ensure that pap now uses the SSHA password by looking for the following line in the
FreeRADIUS debug feedback:

[pap] Using SSHA encryption.

Chapter 4

NT-Password or LM-Password

The LM-Password AVP is used to store the LM hash of a user's password. The NT-
Password AVP is used to store the NTLM hash of a user's password. The LM hash is the
password hash that was used by Microsoft LAN Manager prior to Windows NT. The NTLM
hash was introduced with Windows NT.

Due to their known flaws it is now recommended not to use them anymore. The flaws
include vulnerability to pre-computed attacks because they do not use a salt. The password
is also split up. This allows for fewer possibilities per chunk of the password, making it easier
to guess.

Despite the flaws the LM hash and NTLM hash are still widely used because of the many
legacy third-party CIFS implementations. Although not enabled, Windows Server 2008 still
includes support for the LM hash.

To create an NT-Password or LM-Password hash we use the smbencrypt program,
which is installed with FreeRADIUS. Because the NT-Password hash is more secure than
the LM-Password hash we will use it here.

1. Getthe NT-Password for passme by using the following command:
smbencrypt passme
2. Use this output and update Alice's entry in the user's file to:

"alice" NT-Password := "CED46D3B902D60F779ED78BFD90EDOOA"

3. Restart the FreeRADIUS server in debug mode.
4. Run the authentication request against it again.

5. Ensure that pap now uses the NT password by looking for the following line in
the FreeRADIUS debug feedback:

[pap] NT-Hash of passme = ced46d3b902d60£779ed78bfd90ed00a

What just happened?

We have created and tested different hash formats for storing a user's password inside the
users file.

Hash formats and authentication protocols

Hashing a password imposes limitations on the available authentication protocols that can
use this password. As you have seen, PAP can be used with all of them. CHAP requires that
the password be stored in clear text. MS-CHAP can only use clear text or NT-Password.

811

Authentication

There is a nice authentication protocol and password encryption lookup grid at

the following URL:
> http://deployingradius.com/documents/protocols/

compatibility.html

There are two other authentication methods that are worth mentioning here. They are
one-time passwords and certificates.

FreeRADIUS includes a module called r1m_otp that can be used to handle OTP (one-time
password) tokens. This module should be used in conjunction with additional programs.
Unfortunately the company that contributed the code for the additional programs, Tri-D
Systems, does not exist anymore. However, the code was forked and is now available from
Google Code (http://code.google.com/p/otpd/).

If you want to implement your own one-time password functionality you can use a module
like r1m perl or rlm python to handle the logic behind a one-time password. The NAS
may still send User-Name and User-Password attributes to FreeRADIUS, but the way the
User-Password is managed will be unique in order to handle a one-time password.

Certificates do not involve the presentation of a username and password combination. EAP
can use this as a sub-method. Certificates will be discussed in more detail in the EAP chapter.

This chapter looked at authentication in FreeRADIUS. Specifically, we have covered:

¢ Authentication protocols: There are three popular authentication protocols, namely,
PAP, CHAP, and MS-CHAP. PAP is the least secure in certain situations but also the
most versatile.

¢ How FreeRADIUS handles Access-Requests: When an Access-Request reaches
the FreeRADIUS server the authorize section defined in the virtual server
determines which authentication method will be used. The value of Auth-Type
indicates which authentication section will be used.

1821

Chapter 4

¢ Password storing: Passwords do not need to be stored in clear text and it is better
to store them in a hashed format. There are, however, limitations to the kind of
authentication protocols that can be used when the passwords are stored as a hash.

Now that we've learned more about authentication, especially about the storing of
usernames and passwords in the users file, we're ready to connect to alternative sources
of usernames and passwords—which is the topic of the next chapter.

1. You plan to implement EAP-TTLS-PAP for security on your Wi-Fi network. One of
your fellow workers says PAP is a huge security risk. Is this true?

2. After you have decided to change all the cleartext passwords in the users file to
SHA1 encrypted values, some dial-up users are complaining that they can no longer
authenticate to the RAS server. What can be the problem?

3. Users are connecting to FreeRADIUS using PAP and MS-CHAP authentication
protocols. State what password hash can you use to encrypt the user's password
and name the program used to create it.

In the chapters up to now user details were kept in the users file. The contents
of this file were then used by FreeRADIUS to validate credentials during the
authentication process. FreeRADIUS will most likely be part of an enterprise
setup with existing users already created somewhere else. This chapter will look
at ways to utilize existing user stores.

In this chapter we shall:

Look at user store options

Use Linux system users as a user store for FreeRADIUS
Use MySQL as a user store for FreeRADIUS

Use LDAP as a user store for FreeRADIUS

* 6 6 o o

Use Microsoft Active Directory as a user store for FreeRADIUS

So let's get on with it...

A user store is a place where user details are kept. It is ideal to have a single user store with
different systems making use of this single source. The need in the enterprise for such a store
resulted in the directory. Novell's eDirectory, Microsoft's Active Directory, and OpenLDAP are
all examples of directories.

Sources of Usernames and Passwords

In the WWW space popular web environments like Google and Facebook allow third parties
to use their user stores through web services. This enables external web applications to use
them for authentication.

FreeRADIUS allows us to incorporate external user stores. This reduces the administrative
overheads involved with managing users and passwords. The following schematic shows
different possibilities when configuring FreeRADIUS:

SQL Modules p

Ms-CHAP Module
and ntim_auth
program

Free RADIUS Microsoft

Active Directory

Novell
LDAP Module | eDirectory

There are two ways in which FreeRADIUS can utilize user stores for authentication:

¢ By reading the contents of the store with the help of a FreeRADIUS module. The
contents can then be used by other FreeRADIUS modules. The pap module for
example uses information provided by the sql module for password verification.

¢ Interacting with the store by sending a user's credentials to a FreeRADIUS module
or program to authenticate the user. The 1dap module does this with Novell
eDirectory. The mschap module uses the nt1m auth program to interact with
Microsoft Active Directory.

The rest of this chapter will be hands-on, to see how different user stores can be
incorporated into FreeRADIUS.

System users

System users located on the server where FreeRADIUS is running can be used as a user store.

System users are traditionally associated with the /etc/password, /etc/shadow, and
/etc/group files.

Chapter 5

Linux machines can also use other means like NIS and LDAP, which allow a more central
location of system users. This section, however, will focus on using system users defined
locally on the server.

Time for action - incorporating Linux system users in

The FreeRADIUS documentation recommends that it runs as a non-privileged user. When we
include the system users as a user store, this non-privileged user will need access to the /
etc/shadow, file. Each of the three distributions has different default configurations with
regards to the permissions and ownership of the /etc/shadow file.

Ubuntu has the correct rights for the /etc/shadow file by default. In Ubuntu the /etc/
shadow file is owned by the group called shadow which has read rights to the file. When
FreeRADIUS installs, it adds a user and group called freerad. The user freerad is added to
the shadow group, which allows freerad read access to /etc/shadow.

You can confirm this on Ubuntu by using the following commands. To check the ownership
of the /etc/shadow file:

$> 1ls -1 /etc/shadow
-rw-r----- 1 root shadow 743 2012-06-06 18:32 /etc/shadow

Confirm to which groups the freerad user belongs by using the following command:

$> getent group | grep freerad
shadow:x:42: freerad
freerad:x:112:

ssl-cert:x:113:freerad

The SUSE README file distributed with FreeRADIUS recommends that you change the
value of user and group in the radiusd. conf file to the following:

user = root

group = root

Although the /etc/shadow file in SUSE is owned by the shadow group, adding the
non-privileged user under which FreeRADIUS runs to the shadow group does not yield
the expected results. The README is there for a reason.

1811

Sources of Usernames and Passwords

When user and group's values change

After you have changed the value of user and group in radiusd. conf,
the following message will appear when restarting the server:

Ql we do not own /var/run/radiusd/radiusd.sock

Q The problem lies with the ownership of the radiusd directory, since

the radiusd. sock file does not even exist. Fix it by changing the
/var/run/radiusd directory's ownership to that of the user specified
in the radiusd. conf file. On SUSE the following command will fix the
problem:chown root. /var/run/radius

Cent0S

CentOS does not have a group called shadow and the /etc/shadow file is owned by user
and group root. To allow the group that runs the FreeRADIUS server (radiusd) to read
the /etc/shadow file, we will change the group ownership of /etc/shadow to radius.
We then give read access on the shadow file to the group that owns it, by using the following
commands:

chgrp radiusd /etc/shadow
chmod g+r /etc/shadow

This brings us to the end of environment preparation; now we can activate system users.

Activating system users

To include the system users as a user store in FreeRADIUS is a short and sweet process.
Follow these steps:

1. Editthe sites-enabled/default file and uncomment unix under the
authorize section.

2. Restart FreeRADIUS in debug mode.

3. Perform an authentication test using an existing system user on the Linux
server. We assume bob is a system user, and his password is passbob.

radtest bob passbob 127.0.0.1 100 testingl23

4. Observe the debug output to see if the test was successful.

Chapter 5

What just happened?

We have included the unix module in the authorize section of the default virtual
server. This enables FreeRADIUS to check an incoming Access-Request against the
system users defined on the server.

Let's investigate the debug output of FreeRADIUS to see how an Access-Accept could
be returned.

Authorize using the unix module

In the debug output of FreeRADIUS the following line indicates that the unix module
found a user called bob and updated some internal values in FreeRADIUS:

++ [unix] returns updated

You can compare this with the output when alice who is defined in the users file
authenticates:

++ [unix] returns notfound

The unix module returned a known good password (in Crypt format), which can be used
by the pap module to authenticate the user.

If the unix module returns not found even when the user is defined, confirm
that the rights on the /etc/shadow file are correct. If it still fails, change

the user and group lines in the radius. conf file to user root, restart
FreeRADIUS, and try again.

Also remember that Linux/Unix is case sensitive. This applies to usernames and
passwords!

Authenticating using pap

The authenticate section of the debug output indicates that pap does the authentication
with the known good password given by the unix module.

Executing group from file /etc/freeradius/sites-enabled/default
+- entering group PAP {..}
[pap] login attempt with password "passbob"

[pap] Using CRYPT password "6SI3ZfzEr$MOujsOhTAXT7LP5KzzYhHAFL4/
iJtfEdX310eGJILbDDc.SQsTnl8yuOgB948DDvdKBScb7Mp8Myro5FeekgLw. "

[pap] User authenticated successfully

++ [pap] returns ok

Sources of Usernames and Passwords

Tips for including system users

There are a few important points to remember when including the system users as a
user store:

¢ Only the PAP authentication protocol can be used. CHAP and MS-CHAP will not
work.

¢ Linux systems use the /etc/shadow file to store the passwords. This file is not
accessible to non-privileged users. When you run FreeRADIUS as a user other than
root (as recommended) ensure this user can access the shadow file.

¢ SUSE is different and requires that FreeRADIUS be run as user and group root.
This is specified in the radiusd. conf file.

¢ If you create system users that will exclusively be used by FreeRADIUS, it is good
practice to change their default home directory and shell to be the same as the user
nobody for security reasons.

Older Linux/Unix systems may use only the /etc/passwd file and not
implement the shadow password database mechanism. The user passwords will
then be stored with the user's details in the /et c/passwd file.

. On those systems the second field of the /etc/passwd file will contain an
D encrypted password instead of an x.
Q In the /etc/shadow file's second field the following special characters may be
found:
¢ NPor ! ornull (No password)
¢ LKor * (Account is locked)

& ! (Password expired) -

In the next section we will connect to a MySQL database using FreeRADIUS.

MySQL as a user store

FreeRADIUS can connect to an SQL database to retrieve a user's details. The FreeRADIUS SQL
modules work in pairs. A generic SQL module makes use of a specific database module to
interact with the database. This allows easy support for different databases.

Just as the files module uses the users file to retrieve information for authorization and
authentication, so does the generic SQL module use the specific database module to retrieve
the same type of information from a database.

MySQL is a very popular open source database. Despite speculation about its future under
Oracle, it still remains a trustworthy database on which millions of people depend.

Chapter 5

MySQL is easy to configure and most people are familiar with it. FreeRADIUS deployments
with MySQL outnumber FreeRADIUS deployments with any other database. We are following
this trend and will show you how to include a MySQL database as a user store.

Time for action - incorporating a MySQL datahase in FreeRADIUS

We assume that MySQL is not yet installed on the system where you have FreeRADIUS
deployed. We will first install and then configure MySQL in order for it to be usable to
FreeRADIUS.

Installing MySQL

Ensure that MySQL server is installed on your Linux machine. The following table can be used
as a guideline to install MySQL on each of the three distributions discussed in this book:

Distribution Command to install MySQL server

CentOS yum install mysql-server

SUSE zypper install mysql

Ubuntu sudo apt-get install mysqgl-server

MySQL server has a user called root, which by default does not have any

password on the local machine. You are strongly encouraged to supply a
password for this user.

Take note of the following points on each distribution:

¢ CentOS:
o Themysqgl-client package may already be installed.

o After MySQL server installs it needs to be started for the first time.
Use the command /etc/init.d/mysqgld start. The feedback
message has instructions on how to add a password for the root
user.

o Ensure the MySQL server starts up after a reboot by using /sbin/
chkconfigmysqgld on.
¢ SUSE:

o After MySQL server installs it needs to be started for the first time.
Use the rcmysgl start command. The feedback message has
instructions on how to add a password for the root user.

911

Sources of Usernames and Passwords

o Ensure the MySQL server starts up after a reboot by using the
/sbin/chkconfig -a mysgl command.

¢ Ubuntu:

o Themysqgl-server package is a meta-package, which will install
the latest version of the MySQL server (MySQL 5.1 on Ubuntu
10.4).

o Themysqgl-server package uses the debconf utility for user
input. You will be asked to supply a password for the root user on
the MySQL server during installation.

o If you need to supply or change the root MySQL user's password
later, then you can do so using the dpkg-reconfigure mysql -
server-5.1 command.

o Ubuntu uses Upstart to start and stop MySQL. You can use the
sudo service mysql start command to start and sudo service
mysqgl stop command to stop the MySQL server. The startup
configuration file for MySQL is in /etc/init/mysql.conf.

We can now continue to install the MySQL modules for FreeRADIUS (if required) and to
prepare a database for FreeRADIUS to use.

Installing FreeRADIUS's MySQL package

CentOS and Ubuntu have separate FreeRADIUS packages that contain the specific sql
module for MySQL (r1m sqgl mysqgl). Use the following table as a guideline to install them:

Distribution Command to install FreeRADIUS's MySQL package
CentOS yum install freeradius2-mysql
Or

yum --nogpgcheck install freeradius-
mysqgl-2.1.10-1.i386.rpm

(if built from source)

Ubuntu sudo apt-get install freeradius-mysql
Or
sudo dpkg -i freeradius-mysql 2.x.y+git i386.
deb

(if built from source)

1921

Chapter 5

%j%‘\ FreeRADIUS from source and then expect that the older package referenced by

Remember that you have to install FreeRADIUS's MySQL package, which is part
of the FreeRADIUS build already installed. You cannot build and install the latest

the package manager will install. For this reason we distinguish between the two
in the previous table.

SUSE already includes the r1m sgl mysqgl module as part of the freeradius-server
package.

FreeRADIUS supplies all the required files to prepare a database for its use.

The FreeRADIUS configuration directory contains a subdirectory called sql. Under the sql
subdirectory are subdirectories for the various databases that FreeRADIUS supports. If
there is only a directory for MySQL, it is because the FreeRADIUS packages supporting other
databases are not installed.

1.

2.

To create the database named radius, issue the following command:

mysqgladmin -u root -p create radius

To create an admin user with the correct permissions for the radius database
use the admin. sql file as a template and run it against the radius database.
You are encouraged to change the default values. Use the following command:

mysql -u root -p < /etc/raddb/sql/mysql/admin.sql

Create the schema for the database using the schema. sql file, by using the
following command:

mysql -u root -p radius < /etc/raddb/sql/mysql/schema.sql

Add Bob to the database as a test user.
mysqgl -u root -p radius

INSERT INTO radcheck (username, attribute, op, wvalue) VALUES
('bob', 'Cleartext-Password', ':=', 'passbob');

INSERT INTO radreply (username, attribute, op, wvalue) VALUES
('bob', 'Reply-Message', '=', 'Hello Bob!');

Sources of Usernames and Passwords

If you are new to MySQL, there is a handy command called mysglshow that
you can use to get quick information. To get a list of the databases you can use:
mysglshow —u root

You can then subsequently drill further down a database, table, and column
in a table by adding arguments to the mysglshow command (for example.

mysglshow —u root radius radcheck). Use this command to confirm the
creation of the radius database with its tables.

The SQL module breaks the FreeRADIUS tradition where a module's configuration is situated
under the modules subdirectory under the FreeRADIUS configuration directory.

The sql . conf file located in the FreeRADIUS configuration directory contains all the
configuration options to connect to a database. If you have used the default values, you do
not have to change anything in this file. You are, however, encouraged to go through the
contents of this file in order to better understand the various directives that can be specified.
This will also help to double-check and confirm the values used in the previous steps.

Including the SQL configuration

To let FreeRADIUS include the SQL module upon startup, uncomment the following line in
radiusd.conf:

#SINCLUDE sqgl.conf

Virtual server

As stated previously, each virtual server contains main sections. To use the SQL module
as a user store, uncomment the sql line in the authorize section in sites-enabled/
default.

If you still have the unix section uncommented from the previous exercise,

disable it again. Failing to do so will cause FreeRADIUS to authenticate bob using
’ the system user's detail.

[9a1

Chapter 5

Testing the MySQL user store

Everything is configured and ready for us to test. Follow these steps to test the user store:

1. Restart FreeRADIUS in debug mode. Scan the debug output and check for
rlm_sgl feedback. This indicates that the SQL module is included.

2. Authenticate as bob using the radtest program:
radtest bob passbob 127.0.0.1 100 testingl23

3. Observe the output from the FreeRADIUS server to see how the request is handled
by rlm sql.

What just happened?

We have configured and added a MySQL database to serve as a user store for FreeRADIUS.
Let's look at some interesting points.

As stated at the beginning of this chapter, FreeRADIUS has two ways to use data stores. With
the MySQL database, it reads the user's information from the database. This data can then
be used by authentication modules like the pap module for password verification.

FreeRADIUS does not authenticate against the database, but rather uses the database as a
store to keep user data. The database serves as a replacement or substitute for the users file.

If it seems that the user's details do not originate from the MySQL database,
confirm if you have disabled the unix module in the authorize section and
’ observe the debug output for more information to locate the problem.

Advantages of SQL over flat files

Storing a user's details inside an SQL database has various advantages compared to storing
them inside a flat file. The following are some of the advantages:

¢ Scalable: The database can be located on another server and is not required to be
on the FreeRADIUS server.

¢ User friendly: There is a lot of web-based software available to manage the data in
the database.

¢ Flexible: Users and attributes can be added or removed on the fly without the need
to restart FreeRADIUS.

¢ Manageable: A user can be assigned to one or more groups in order to manage
common attributes. The use of profiles is also possible.

Sources of Usernames and Passwords

¢ Secure: Sensitive information can be hashed and encrypted using built-in functions
that are usually part of the SQL database engine.

Other uses for the SQL datahase

The SQL database is not only used to store user details in FreeRADIUS. Additional
functions include:

¢ Accounting: We can write a user's accounting details to the database instead of
flat files.

¢ Usage control: The r1m_sglcounter module allows defining various counters
(time or data based) to keep track of a user's usage.

¢ NAS devices: NAS devices defined by default in the clients. conf file can
alternatively be stored in a database table.

¢ IP pool management: Adding extra tables to the database allows us to manage
the IP leases with the help of the database.

Accounting and usage control are covered in a dedicated chapter later in the book.

FreeRADIUS allows for different user stores to co-exist, but what happens when the same
user is defined in different user stores?

This depends on the order in which the modules are listed in the authorize section. The
last module's user details will be used by the authenticate section.

Unfortunately this rule does not work with all the modules. The unix module always sends
its details of the duplicate user to the authenticate section no matter what the order is
inside the authorize section.

With the default order a user defined in the SQL database will 'win' over one defined in the
users file.

If you instead want the user defined in the users file to 'win' over a duplicate in the SQL
database, the £iles module should be listed after the sq1 module.

The database schema

The SQL database contains the same type of details as the users file that is used by the
files module. Just as with the users file we have check and reply items. These items
are stored in the radcheck and radreply tables respectively.

Chapter 5

The SQL database also allows us to define check and reply attributes for groups. These are
stored in the radgroupcheck and radgroupreply tables respectively.

A user can now be assigned to zero or more of the defined groups. Groups are assigned
through the radusergroup table. An entry into this table specifies a priority of a certain
group to a user. This allows certain item values in groups with higher priorities (smaller
values) to override item values in groups with lower priorities (larger values).

With this in mind, let's look at some practical examples.

This section covers more advanced aspects of the SQL database. We will cover the following
through practical exercises:

¢ Group assignment
¢ Using the Fall-Through internal AVP

¢ Using the User-Profile internal AVP for profile assignment

Using SOL Groups

In this exercise we will add bob to the students group. The students group has a check
attribute to test if Access-Request contains the Framed-Protocol AVP with a value of
pPP. If the AVP is present and correct, we return a reply AVP:

1. Loginto the radius MySQL database and issue the following SQL commands to
create the required entries:

delete from radcheck;
delete from radreply;
delete from radgroupreply;
delete from radgroupcheck;
delete from radusergroup;

INSERT INTO radcheck (username, attribute, value,op) VALUES
('"bob', 'Cleartext-Password', 'passbob',':=');

INSERT INTO radreply (username, attribute, value,op) VALUES
('bob', 'Reply-Message', 'Hello Bob!','=');

INSERT INTO radgroupreply (groupname, attribute, value,op) VALUES
('students', 'Reply-Message', 'Hello PPP protocol!',':=');

INSERT INTO radgroupreply (groupname, attribute, value,op) VALUES
('"students', 'Session-Timeout', '900',':=");

1971

Sources of Usernames and Passwords

INSERT INTO radgroupcheck (groupname, attribute, value,op) VALUES
('students', 'Framed-Protocol', 'PPP','==');

INSERT INTO radusergroup (username, groupname, priority) VALUES
('bob', 'students', 10);

Authenticate as bob using the radtest program but add a 1 at the end. This will
cause the Access-Request packet to include the AVP of Framed-Protocol =
PPP:

radtest bob passbob 127.0.0.1 100 testingl23 1

You should get an Access-Accept packet with a Reply-Message of Reply-
Message = "Hello PPP protocol!™".

Authenticate again as bob, but this time exclude the 1. You should still get an
Access-Accept packet with a Reply-Message of Reply-Message = "Hello
Bob!".

You may have expected the request to be rejected when the Framed-Protocol AVP is
missing or of a different value. Radgroupcheck works differently from radcheck, in the
following way:

*

When a check attribute is defined in radcheck, and it does not match, or is
missing, the request fails and an Access-Reject is returned.

When a check attribute is defined in radgroupcheck and it does not match, or
is missing, the request passes, but the reply attributes in radgroupreply is not
returned.

This behavior makes it possible for one user to belong to many groups and depending on
which radgroupcheck attributes pass, that group's reply attributes will be returned with
the reply.

As a reminder on the values of the op field, you can stick to the following rules

until we get to the chapter on Authorization.
i

Reply items contain = and check items that need to match incoming AVPs use ==
while others use : =. If you want a reply item to override an existing one, use : =.

Radgroupcheck items are logically ANDed. The first one to fail will cause the group not to
return any reply attributes.

Chapter 5

Controlling the use of groups

By default the SQL module checks if there are groups assigned to a user if the user is present
in the radcheck table. This behavior can be controlled in two ways:

1. To turn this off globally, set the value of the read groups directive to no in the
sql.conf file.

2. To activate the checking for assigned groups again for an individual user, specify
Fall-Through = Yes in the radreply table.

Try this by first setting read_groups to no. Restart FreeRADIUS and authenticate as Bob.
Even after adding the 1 to the radtest command you should still get "Hello Bob!".

Add the following SQL query:

INSERT INTO radreply (username, attribute, value,op)
VALUES ('bob', 'Fall-Through', 'Yes',K6 '="');

This will cause the SQL module to check for groups assigned to Bob. When you add the 1
at the end of the radtest command you should now get "Hello PPP protocol!".

The preceding scenarios happen with normal authentication when a user is defined with
a password in the radcheck table and all the checks pass.

When things go wrong, for instance if the password is not correct, or there are checks
defined in radcheck that do not pass, or the user is not even listed in the radcheck table,
the SQL module will then check for groups assigned to the user.

Remember the following two points when a user is not in the radcheck table or when
required AVPs specified in radcheck do not match. These points are not affected by the value
of read groups in the sql. conf file. This means it happens whether you like it or not.

¢ The SQL module checks if there are groups assigned to a user when it cannot find
the user in the radcheck table.

¢ The SQL module checks if there are groups assigned to a user when the radcheck
items defined for the user did not match.

Reply-Message AVP

When you specify a Reply-Message AVP in the radgroupreply it

will be returned even when a user supplies the wrong password but when a
% radgroupcheck 'sub test' passes. The Reply-Message AVP is special

since it is the only AVP that can accompany the Access-Reject packet in

RADIUS. Other AVPs specified in the groupreply will not be returned with the

Access-Reject packet even when a radgroupcheck 'sub test' passes.

Sources of Usernames and Passwords

Profiles

Profiles can be created in SQL and then be assigned to a user in two ways:

L 4

By specifying a default profile for all users in the sql /mysqgl/dialup.conf file
through the default user profile directive

By specifying a profile explicitly for a user in the form of the User-pProfile check
attribute

A profile is a user that is a member of at least one group. This user does not require any
entries in the radcheck and radreply tables. Let's modify the database so that bob will
make use of a profile:

1.

Log into the RADIUS MySQL database and issue the following SQL commands to
create the required entries:

delete from radcheck;

delete from radreply;

delete from radgroupreply;

delete from radgroupcheck;

delete from radusergroup;

INSERT INTO radcheck (username, attribute, value,op) VALUES

('bob', 'Cleartext-Password',6 'passbob',':=");
INSERT INTO radcheck (username, attribute, value,op) VALUES
('bob', 'User-Profile', 'student profile',':=');

INSERT INTO radgroupreply (groupname, attribute, wvalue,op)
VALUES ('students', 'Reply-Message', 'Hello Student!',6 '=');

INSERT INTO radusergroup (username, groupname, priority) VALUES
('student_profile', 'students',6 10);

Re-activate the reading of the groups by changing the read groups back to the
default of yes in sgql.conf.

Restart FreeRADIUS in debug mode.

Authenticate as bob using the radtest program:
radtest bob passbob 127.0.0.1 100 testingl23

A reply message intended for the user student profile should be returned.

The value of the User-Profile AVP is that of a user who is a member of at least one
group. In our example the profile user is called student profile and itis a member
of the students group.

The radgroupcheck and radgroupreply attributes assigned to the students will then be
applied to any user who has check attribute User-Profile := student profile. The
user student profile is used here as a profile rather than a normal user.

[100]

Chapter 5

This section touched on important points on the use of the SQL modules in FreeRADIUS. In
the next section we will use an LDAP directory as a user store.

LDAP as a user store

Directories are designed for fast reading. They are stricter compared to databases
when it comes to the data types they can contain. Directories are organized according
to a hierarchical structure. Directories can store user details, which can be queried and
authenticated against. Directories are also designed to replicate easily. This makes
directories the ideal user store.

LDAP is a protocol for accessing a directory over a TCP/IP network. It can be used to

store public e-mail addresses, authenticate users, manage digital certificates, and supply
information about the nodes or devices on a network. Novell's eDirectory and Microsoft
Active Directory both contain an LDAP server component. An alternative to this is the open
source OpenLDAP project. OpenLDAP is a very mature project with reliable LDAP software
used in many places and by many projects. The server component is called s1apd. This
section will use a very basic s1apd server to demonstrate the use of LDAP as a user store in
FreeRADIUS.

LDAP is a loose term and can be used for the protocol to access a directory or
R the directory itself, depending on the context. This is similar to RADIUS.

Time for action — connecting FreeRADIUS to LDAP

The following sections will show you how to connect FreeRADIUS to LDAP.

Ensure slapd is installed on your Linux server. The following table can be used as a guideline
to install s1lapd on each of the three distributions discussed in this book:

Distribution Command to install slapd LDAP server

CentOS yum install openldap-servers openldap-
clients

SUSE zypper install openldap2 openldap2-
client

Ubuntu sudo apt-get install slapd ldap-utils

After slapd is installed we need to configure it.

1011

Sources of Usernames and Passwords

To get s1lapd up and running we will use a bare minimum slapd. conf file. This is only for
demonstration purposes; do not use it in a production environment.

The proper configuration of slapd is beyond the scope of this book. This
i chapter will only help to configure a very basic s1apd LDAP server.

Follow these steps to configure slapd on CentOS:

1. Make a backup of the original slapd. conf file:
cp /etc/openldap/slapd.conf /etc/openldap/slapd.conf.orig

2. Edit the contents of slapd.conf so that it contains the following:

include /etc/openldap/schema/core. schema

include /etc/openldap/schema/cosine.schema
include /etc/openldap/schema/inetorgperson. schema
include /etc/openldap/schema/nis.schema

pidfile /var/run/openldap/slapd.pid

argsfile /var/run/openldap/slapd.args

database bdb

suffix "dc=my-domain,dc=com"checkpoint 1024 5

cachesize 10000

rootdn "cn=Manager, dc=my-domain, dc=com"
rootpw secret

directory /var/lib/ldap

3. Start slapd by using the following command:
/etc/init.d/1ldap start

4. Ensure slapd is running by observing the output of this command:

ps aux | grep slapd

5. Ensure slapd starts up after a reboot by using the following command:

/sbin/chkconfig ldap on

11021

Chapter 5

Follow these steps to configure slapd on SUSE:

1. Make a backup of the original slapd. conf file:
cp /etc/openldap/slapd.conf /etc/openldap/slapd.conf.orig
2. Edit the contents of slapd.conf to contain the following:
include /etc/openldap/schema/core. schema
include /etc/openldap/schema/cosine.schema
include /etc/openldap/schema/inetorgperson. schema
include /etc/openldap/schema/nis.schema
pidfile /var/run/slapd/slapd.pid
argsfile /var/run/slapd/slapd.args
database bdb
suffix "de=my-domain,dc=com"
checkpoint 1024 5
cachesize 10000
rootdn "cn=Manager, dc=my-domain, dc=com"
rootpw secret
directory /var/lib/ldap
3. Start slapd by using the following command:
/etc/init.d/1ldap start
4. Ensure slapd is running by observing the output of the following command:
ps aux | grep slapd
5. Ensure s1lapd starts up after a reboot by using the following command:
/sbin/chkconfig -a ldap
Ubuntu

version 2.3 and higher of s1apd have introduced a new way to handle configuration. The
old way that used a configuration file (s1apd. conf) is now replaced with an alternative that
allows you to adjust and configure the server while it is running. These settings then become
part of the server without requiring a restart.

Ubuntu took the plunge and was one of the first distributions to adopt this new way of
configuring s1apd. Fortunately we can still use the simpler slapd. conf file. To keep things
uniform across the three distributions we will revert Ubuntu's s1apd configuration back to
using slapd.conf.

[1031

Sources of Usernames and Passwords

1.

2.

6.

To revert back to slapd. conf, edit the /etc/default/slapd file and change
the SLAPD CONF= entry to SLAPD CONF=/etc/ldap/slapd.conf.

Create afile called slapd.conf in the /etc/1dap directory with the
following contents:

include /etc/ldap/schema/core.schema
include /etc/ldap/schema/cosine.schema
include /etc/ldap/schema/inetorgperson. schema
include /etc/ldap/schema/nis.schema
pidfile /var/run/slapd/slapd.pid
argsfile /var/run/slapd/slapd.args
modulepath /usr/lib/ldap

moduleload back bdb.la

database bdb

suffix "dc=my-domain, dc=com"

checkpoint 1024 5

cachesize 10000

rootdn "cn=Manager, dc=my-domain, dc=com"
rootpw secret

directory /var/lib/ldap

Ensure this file is owned by the openldap user and group:

sudo chown openldap. /etc/ldap/slapd.conf

Start slapd by using the following command:
sudo /etc/init.d/slapd start

Ensure slapd is running by observing the output of the following command:

ps aux | grep slapd

Ensure slapd starts up after a reboot with the following command:

sudo update-rc.d slapd enable

Let's look at a few of the important configuration items in s1lapd.conf:

*

The include lines are used to source schema definitions. (We will cover schemas
in the next section.)

We also specify a pidfile. This file contains the process ID of slapd.
argsfile specifies the file containing the arguments of slapd.

database specifies which backend we will use for s1lapd. We use the Berkeley
DB (bdb). There are also others available but we will use the most common one.

(1041

Chapter 5

¢ The cachesize and checkpoint entries are applied to the database. cachesize
specifies the size of the in-memory cache (we specified 1000 entries, which is the
default). checkpoint specifies two values. The 1024 is a kilobyte value and 5 is
a minute value. Whichever comes first will cause the database to flush its cache
buffers and write to disk.

& suffix specifies a common root that all entries in the database will contain.
Queries with a DN ending in "dc=my-domain,dc=com" will be passed to this
backend.

¢ rootdn and rootpw is like an administrator user with its password. This user will
not be subjected to any access control or restrictions specified in the configuration.

We should now have a basic s1apd server configured and running. The rest of this section
will be common across the distributions.

Object classes used in LDAP must be defined in order for LDAP to know the structure and
attributes that an object class can contain. The object classes mentioned in LDAP are not
related to those used with Object Oriented Programming (OOP). Each entry inside the LDAP
directory should belong to at least one object class. The object class of an entry will dictate
what attributes the entry should have and also those attributes that the entry can have. One
entry can belong to many object classes.

Object classes are defined in . schema text files and located under the schema directory.
They are in a way similar to the dictionary files used by FreeRADIUS. You can also define
and include your own object classes.

Schema files also need to be included in the slapd. conf file in order for s1apd to know
about them. Consult the sample s1apd. conf file to locate the schema directory on your
distribution.

FreeRADIUS includes a schema file for the radiusProfile object class. This has to be
included in the slapd. conf file and s1apd has to be restarted. When you include this file,
take care over two important points:

& The location of this file is different on each distribution.

¢ Thefile is named openldap.schema but there is already a schema file called
openldap.schema in OpenLDAP. Rename the openldap. schema file of
FreeRADIUS to freeradius . schema when you copy it to the s1apd schema
directory.

[1051

Sources of Usernames and Passwords

The following table can be used to locate the openldap. schema file on each distribution:

Distribution Location of openldap.schema

CentOS /usr/share/doc/freeradius-<version>/examples/
openldap.schema

SUSE /usr/share/doc/packages/freeradius-server-doc/
examples/openldap.schema

Ubuntu /usr/share/doc/freeradius/examples/openldap.schema

Let's take Ubuntu as an example:

1. Copy the openldap. schema file as freeradius.schema to /etc/ldap:
sudo cp /usr/share/doc/freeradius/examples/openldap.schema /
etc/ldap/schema/freeradius.schema

2. Editthe slapd. conf file to include the freeradius. schama file:

include /etc/ldap/schema/freeradius.schema

3. Restart slapd by using the following command:
sudo /etc/init.d/slapd restart

Including the freeradius. schema file in slapd. conf allows us to also store RADIUS
attributes in the LDAP directory. These attributes can then be used by FreeRADIUS.

In is not compulsory for an LDAP directory to have the radiusProfile

schema extension. It allows for powerful configurations especially in the
’ authorization section of FreeRADIUS.

LDAP has a standard format called LDAP Data Interchange Format (LDIF) that is used to add
or modify the directory's data. Wikipedia describes LDIF as the following:

http://en.wikipedia.org/wiki/LDAP Data Interchange Format

LDIF is a standard plain text data interchange format for representing LDAP
directory content and update requests. LDIF conveys directory content as a set

of records, one record for each object (or entry). It represents update requests,
such as Add, Modify, Delete, and Rename, as a set of records, one record for each
update request.

[1061]

Chapter 5

We will use this LDIF format to create the following structure with some users:

MY Domain Inc

radius
ot

The graphic shows a tree structure with the following:

¢ The root of the tree is the organization called My Domain Inc. It belongs to the
dcObject and organization object classes.

¢ Attached to the root of the tree is an organizational unit called radius that contains
three sub-organizational units: users, profiles, and admins. An organizational unit
is like a folder; it belongs to the organizationalunit object class.

¢ The users organizational unit contains three users: student1, student2, and
student3. These users belong to the person and radiusProfile object classes.

¢ The profile organizational unit contains two user templates: students and
teachers. These templates also belong to the person and radiusProfile
object classes but will act as a group to which a user under the users organizational
unit can belong.

¢ The admins organizational unit contains a user that FreeRADIUS will use to bind
with to the LDAP directory. The rights of this user can be fine-tuned for maximum
security. This user does not require to belong to the radiusProfile object class.

Here are the contents of the LDIF file:

dn: dc=my-domain,dc=com

dc: my-domain

description: Tutorial for FreeRADIUS
objectClass: dcObject

objectClass: organization

o: My Domain Inc

dn: ou=radius,dc=my-domain,dc=com
objectclass: organizationalunit

ou: radius

dn: ou=profiles,ou=radius,dc=my-domain,dc=com
objectclass: organizationalunit

ou: profiles

11071

Sources of Usernames and Passwords

dn: ou=users,ou=radius,dc=my-domain,dc=com
objectclass: organizationalunit
ou: users

dn: ou=admins,ou=radius,dc=my-domain,dc=com
objectclass: organizationalunit
ou: admins

dn: cn=students,ou=profiles,ou=radius,dc=my-domain,dc=com
objectclass: radiusProfile

objectClass: person

cn: students

sn: students

radiusSessionTimeout: 900

radiusReplyItem: ChilliSpot-Bandwidth-Max-Up = "393216"
radiusReplyItem: ChilliSpot-Bandwidth-Max-Down = "393216"
radiusCheckItem: ChilliSpot-Version == "1.0"

radiusReplyMessage: "Good day student"

dn: cn=teachers,ou=profiles, ou=radius,dc=my-domain,dc=com
objectclass: radiusProfile

objectClass: person

cn: teachers

sn: teachers

radiusSessionTimeout: 3600

radiusReplyItem: ChilliSpot-Bandwidth-Max-Up = "1048576"
radiusReplyItem: ChilliSpot-Bandwidth-Max-Down = "1048576"
radiusCheckItem: ChilliSpot-Version == "2.0"

radiusReplyMessage: "Good day teacher"

dn: cn=studentl, ou=users,ou=radius,dc=my-domain, dc=com
objectclass: radiusProfile

objectClass: person

cn: studentl

sn: studentl

userPassword: studentl

description: Test user with cleartext password studentl
radiusGroupName: students

dn: cn=student2,ou=users,ou=radius,dc=my-domain, dc=com
objectclass: radiusProfile

objectClass: person

cn: student2

sn: student2

userPassword: {CRYPT}saCsgSTOrezXE

description: Test user with CRYPT password student2
radiusGroupName: students

radiusGroupName: teachers

[108]

Chapter 5

dn: cn=student3,ou=users,ou=radius,dc=my-domain, dc=com
objectclass: radiusProfile

objectClass: person

cn: student3

sn: student3

userPassword: {SHA}Mr5L7b06hT1Q0pu75y+dhdVg/6E=
description: Test user with SHA password student3
radiusGroupName: students

radiusGroupName: disabled

dn: cn=binduser,ou=admins, ou=radius,dc=my-domain, dc=com
objectclass: person

sn: freeradius

cn: binduser

userPassword: binduser

Do the following in order to populate the directory:
1. Create afilecalled 4088 05 1dap.1dif with the LDIF text above as its

contents. The best location for this file will probably be your home directory.

2. Add it to the LDAP directory by using the following command:

ldapadd -x -D 'cn=Manager,dc=my-domain,dc=com' -w secret -f
4088 05 ldap.ldif

All the preparation work for the LDAP server is now complete. The next steps will prepare
FreeRADIUS to use this directory as a user store.

Installing FreeRADIUS's LDAP package

CentOS and Ubuntu have separate FreeRADIUS packages that contain the 1dap module
(rlm 1ldap). Use the following table as a guideline to install them.

Distribution Command to install FreeRADIUS's LDAP package
CentOS yum install freeradius2-ldap

yum --nogpgcheck install freeradius-
ldap-2.1.10-1.i386.rpm

(if built from source)
Ubuntu sudo apt-get install freeradius-ldap

sudo dpkg -i freeradius-ldap 2.x.y+git i386.deb

(if built from source)

(1091

Sources of Usernames and Passwords

SUSE already includes the r1m_1dap module as part of the freeradius-server package.

To configure the 1dap module you have to edit the 1dap configuration file under the
modules directory. Change the following directives:

Directive Value

server 127.0.0.1

identity cn=binduser,ou=admins,ou=radius,dc=my-domain,dc=com
password binduser

basedn ou=users,ou=radius,dc=my-domain,dc=com

filter (cn=%{%{Stripped-User-Name}:-%{User-Name}})

The values must be in quotes, for example:

server = "127.0.0.1"

Do not change the rest of the file, the default values will work correctly.

Testing the LDAP user store

The moment of truth is very close, we just need to include LDAP in the authorize and
authenticate sections of the virtual server and test it:

1. Editthe sites-enabled/default file in the FreeRADIUS configuration
directory. Under the authorize section, uncomment 1dap.

2. Underthe authenticate section uncomment:
Auth-Type LDAP ({

ldap
}
3. Restart FreeRADIUS in debug mode.

4. Tryto authenticate as student1 using the radtest program:
radtest studentl studentl 127.0.0.1 100 testingl23

5. Observe the debug output of the FreeRADIUS server.
Although it took some preparation we finally utilized the LDAP user store in FreeRADIUS.

(1101

Chapter 5

What just happened?

The 1dap module of FreeRADIUS has been connected to slapd to authorize and
authenticate student1.

Let's take a look at some interesting points while revisiting the debug output of the
FreeRADIUS server.

The configuration of the 1dap module caused the following to happen:

*

LDAP was included in the authorize section of the virtual server. This caused
the 1dap module to bind to s1apd using the identity we specified in the 1dap
configuration file.

slapd was queried to check if student1 exists. This query was formulated by using
the basedn value and the £ilter value specified in the 1dap configuration file.

The query was successful. This caused the 1dap module to:
o Add the Ldap-UserDn internal attribute in the check items list
o SetAuth-Type = LDAP
o Returnok
When FreeRADIUS entered the authenticate section, it used LDAP to perform

the authentication. Authentication is done by trying to bind with the Ldap-UserDn
attribute and the password supplied in the Access-Request.

If the bind was successful it returns an Access-Accept packet.

If the bind was not successful it returns an Access-Reject packet.

To summarize the process: The authorize section searches for the user, finds

it, adds Ldap-UserDn check attribute, and changes Auth-Type = LDAP. The
i

authenticate section binds to the LDAP server with Ldap-UserDn and
password supplied in the Access-Request packet.

The above process seems simple but it can break easily if you do not stick to the basics. A
golden rule in FreeRADIUS configuration is to change as little possible.

[l

Sources of Usernames and Passwords

. Beware of old documentation! Do not use old or unreliable sources to configure
% FreeRADIUS and LDAP. If a document instructs you to change or add the Non-
Protocol Integer Translations toadictionary file, you are on
dangerous ground!

As with the system user store only the PAP authentication protocol will work. CHAP and
MS-CHAP will not work.

The 1dap module's configuration causes it to bind as the user to verify credentials. To bind
as a user will be sufficient for a typical authenticate scenario and should work with most
LDAP servers.

There is, however, more we can do, especially when the LDAP server has the
radiusProfile schema extension. If a user belongs to the radiusProfile object class
we can specify AVP check or reply attributes for a specified user inside the LDAP directory.
This is similar to storing it in the users file or in an SQL database.

Also if the LDAP server stores the userPassword attribute in cleartext we can even use
the LDAP server in much the same way as the users file or the SQL database. This does not
necessarily require that the user belong to the radiusProfile object and is configurable
to specify which LDAP attribute should be mapped to the userPassword AVP.

Have a go hero - explore advanced use of LDAP

During the preparation of slapd, we included the schema file for the radiusProfile
object class. This extended the server's schema. The radiusProfile object class allows for
the inclusion of check and reply AVPs in LDAP objects.

This is unfortunately not straightforward. The names of RADIUS AVPs do not match the
names of LDAP attributes. To map the one to the other, FreeRADIUS uses the 1dap.
attrmap file. In this file you can see RADIUS AVPs with their corresponding LDAP attribute
name. Let's look at a line from the file:

checkItem Auth-Type radiusAuthType

This specifies that the RADIUS Auth-Type AVP (used as a check item) maps to the LDAP
radiusAuthType attribute.

[n2]

Chapter 5

Not all RADIUS AVPs are listed in this file. The file, however, also lists the special
radiusProfile attributes radiusCheckItemand radiusReplyItem. These two LDAP
attributes allow you to specify any other RADIUS AVP not specified in the attribute map. In
our LDIF file we used these attributes to specify some AVPs. Here's how we specified the
ChilliSpot-Version AVP with a value of 2.0:

radiusCheckItem: ChilliSpot-Version == "2.0"

Ldap-Group and User-Profile AUP

The Ldap-Group internal AVP is used to specify a group check. We will specify it in the
users file although it can also be specified in other modules.

The User-Profile internal AVP can contain a DN instead of a normal text string for its
value. When this happens it causes the 1dap module to query the LDAP directory for the

DN during authorization. The radiusCheckItems and radiusReplyItems of the query's
return will be used to create the user's profile.

Ldap-Group and User-Profile are usually paired together. First an LDAP search is
done to check if a user is part of an Ldap-Group. If true, the specified User-Profile is
assigned. If not true, the specified User-Profile is not assigned.

Let's make use of it:

1. Editthe users file and add the following to the bottom:

DEFAULT Ldap-Group == disabled, Auth-Type := Reject
Reply-Message = "Account disabled"
DEFAULT Ldap-Group == teachers, User-Profile := "cn=teachers,ou

=profiles,ou=radius,dc=my-domain,dc=com"
Fall-Through = no

DEFAULT Ldap-Group == students, User-Profile := "cn=students, ou
=profiles,ou=radius,dc=my-domain,dc=com"

Fall-Through = no

2. Edit the 1dap module's configuration file and change the following part from:

groupname attribute = cn

groupmembership filter = " (| (&(objectClass=Gro.....
groupmembership attribute = radiusGroupName

to:

groupname_attribute = radiusGroupName

groupmembership filter = " (cn=%{%{Stripped-User-Name}:-%{User-
Name}}) "
groupmembership attribute = radiusGroupName

131

Sources of Usernames and Passwords

3.

Restart FreeRADIUS in debug mode and authenticate student1, student?2, and
student3 observing the feedback each time.

Let's look at some important points:

L 4

When you add the DEFAULT entries to the users file, add the one that sets Auth-
Type := Reject at the top.

More privileged groups should follow next, ending with the least privileged groups.

This arrangement makes it possible to assign student2 (Martin Prince) to the
teachers as well as the students group.

When Ldap-Group is specified it causes the £ile module to use the 1dap
module to determine if a user is part of the group by checking the LDAP user's
radiusGroupName attribute.

If the user is part of the Ldap-Group, the User-Profile will be assigned to the
user. A User-Profile specified as a DN causes the 1dap module to search for the
DN during authorization:

[ldap] performing search in cn=teachers,ou=profiles,ou=radius,d
c=my-domain,dc=com, with filter (objectclass=radiusprofile)

The return values of the search are then used to build the user's profile with check
and reply AVPs.

The next part will look at ways to retrieve passwords from an LDAP directory.

The 1dap module can be configured to read a user's password directly from the LDAP server
and then pass this value on to other modules in the authentication section as a 'known good
password'. This enables us to bypass the process where the 1dap module tries to bind with
the Ldap-UserDn attribute to verify credentials.

To do this we need to do the following:

1.

Edit the 1dap module's configuration file and add the auto_header = yes
directive. This will allow the pap module to figure out the password's hash if
present.

Edit the 1dap module's configuration file and uncomment the following line:

#password attribute = userPassword

This specifies which LDAP attribute contains the user's password.

Edit the 1dap module's configuration file and ensure the following is set:
set_auth type = no

This prevents the 1dap module from setting Auth-Type := LDAP.

[1al

Chapter 5

Add the following line to the 1dap.attrmap file:

checkItem Cleartext-Password userPassword

This will return the userPassword LDAP attribute as Cleartext-Password AVP.

Restart FreeRADIUS in debug mode and try to authenticate with studenti,
student2, and student3, observing the feedback of the different password
hashes each time.

If the radtest program you use supports the -t switch (FreeRADIUS version 2.1.10
and higher) you can also test the results of CHAP and MS-CHAP authentication on
the different password hashes. CHAP and MS-CHAP should only work on student1
and not on student?2 and student3.

Reading the password from LDAP instead of binding to authenticate has some advantages:

L 4

If the password is stored as cleartext in LDAP, it allows us to also use the CHAP and
MS-CHAP authentication protocols.

It is faster because binding as a user to LDAP is not required.

If the user on the LDAP server's userPassword is encrypted but the
sambaLmPassword and sambaNtPassword attributes are present and have the
same value, we should be able to use MS-CHAP. This is found in a typical Samba
server with slapd as the backend.

There are, however, things to watch out for. Some of them are:

L 4

Security; use a secure LDAP connection when transmitting the passwords over the
network, especially cleartext passwords.

Not all LDAP servers support the reading of the userPassword attribute since it is
a security risk. If you do decide to go this route, fine-tune the security on the LDAP
server to make it very strict in order to avoid that horrible surprise when a hacker
steals all your passwords. Beware also of the use of web management software that
may be vulnerable to LDAP injections.

You will typically use the bind as a user method to Novell's eDirectory and Microsoft's Active
Directory. The userPassword attribute will be read if you can get a cleartext password from
LDAP and would like to use the CHAP and MSCHAP protocols.

> Novell's eDirectory includes the Universal Password (UP) feature that allows

FreeRADIUS to extract a user's cleartext password from the directory. This,

however, requires some specific configuration tweaks on the eDirectory.

(1151

Sources of Usernames and Passwords

This section on LDAP has covered a lot. There are some topics not discussed here but the
comments in the 1dap configuration file and the Wiki pages should be more than sufficient
to help.

The next section will help you to use Active Directory as a user store in FreeRADIUS.

Although Microsoft Active Directory includes an LDAP server, using LDAP excludes
MS-CHAP authentication. The use of Active Directory as a user store enables the use
of PAP and MS-CHAP authentication.

Configuring FreeRADIUS to use Active Directory as a user store consists of two main
activities:

¢ Configure a Samba server and join it to an Active Directory domain.

¢ Configure FreeRADIUS to call the nt1m_auth binary to authenticate a user.

Samba is the standard Windows interoperability suite of programs for Linux and UNIX.
It is a very mature project, which is in active development (http://www.samba.org/).

In this exercise we will join a Samba server to an Active Directory domain. This Samba server
will appear as another Windows server to the Active Directory. The Samba server contains

a component called Winbind that solves the unified logon problem (http://www.samba.
org/samba/docs/man/Samba-HOWTO-Collection/winbind.html).

We will make use of Winbind to allow users defined in the Active Directory to authenticate
on the Linux server.

Time for action - connecting FreeRADIUS to Active Directory

The following sections will demonstrate how to connect FreeRADIUS to Microsoft Active
Directory.

Ensure Samba and Winbind are installed on your Linux server. The following table can be
used as a guideline for installing Samba and Winbind on each of the three distributions
discussed in this book:

(1161

Chapter 5

Distribution Command to install Samba server

CentOS yum install samba

SUSE zypper install samba samba-winbind
Ubuntu sudo apt-get install samba winbind

After Samba and Winbind are installed we need to configure them.

This section should be used as a guideline. It assumes a working Active Directory domain
called £r. com, which we will join. The following table lists some detail of the setup:

Setting/item Comment

Active Directory Domain Name: fr.com
Domain Controller: dc.fr.com
Domain Controller IP: 192.168.1.250

DNS server for domain: 192.168.1.250

Linux /etc/resolv.conf file This file is used to define the DNS servers on Linux. It is
important to use the Active Directory as nameserver and
also specify the domain and search components.

nameserver 192.168.1.250

domain fr.com

search fr.com

Samba and Winbind are configured through the /etc/samba/smb. conf file. The following
can be used as an example:

[globall
workgroup = FR
realm = FR.COM
preferred master = no
server string = Ubuntu FreeRADIUS Test Machine
security = ADS
encrypt passwords = yes
log level = 3
log file = /var/log/samba/%m

max log size = 50
printcap name = cups
printing = cups

winbind enum users = Yes
winbind enum groups = Yes

1111

Sources of Usernames and Passwords

winbind use default domain = Yes
winbind nested groups = Yes
winbind separator = +

idmap uid = 600-20000

idmap gid = 600-20000

template shell = /bin/bash

Restart the smbd, nmbd, and winbind services after you have completed the changes to
smb.conf. Also ensure that these services will start up after a reboot. You can use services
like slapd and FreeRADIUS, which were discussed already, as a pattern to make sure the
start-up scripts are activated.

To join the Samba server to the Active Directory domain, follow these steps:

1.

2.

You need the domain administrator's password to join the domain:

net ads join -U Administrator

Confirm whether domain users are now available to the Samba server.
The following command should list them:

wbinfo -u

Test authentication to the domain with the wbinfo command test. Billy is
a domain user with password passbilly:

wbinfo -a billy%passbilly

FreeRADIUS will use the nt1m_auth binary to test authentication against
the domain. Authenticate bil1ly by using the following command:

ntlm auth --request-lm-key --domain=FR.COM --username=billy
--password=passbilly

Sometimes joining the Active Directory can be troublesome. Here are a few things to check:

*

Is the time the same on both systems? Kerberos does not like large time differences.
Try to fix this by either synchronizing the system times to an external NTP server, or
using net time set on the Linux machine.

Is the DNS working correct and can both systems ping each other by hostname
and FQDN?

Some available tutorials included configuration for Kerberos but on my servers it
just worked without any extra configuration. YMMV.

Ensure the smbd, nmbd, and winbind services are running, especially after a
reboot. This will require you to confirm that the start-up scripts are activated.

(1181

Chapter 5

As a final activity we need to set the permissions for the user who runs the FreeRADIUS
server. Unfortunately the way to do this is different on each distribution. Let's look at
each one.

The directory is /var/cache/samba/winbindd privileged. Give group ownership to
the radiusd group by using the following command:

chgrp radiusd /var/cache/samba/winbindd privileged

The directory is /var/1lib/samba/winbindd privileged. Give group ownership to the
radiusd group by using the following command:

chgrp radiusd /var/lib/samba/winbindd privileged

The directory is /var/run/samba/winbindd privileged. This directory is owned by a
group called winbind priv. Make the freerad user a member of this group by using the
following command:

sudo adduser freerad winbindd priv

This completes the first main activity. Now we can configure FreeRADIUS.

Remember that this section was a textbook example. In the real world it may not
. always be that simple to join a domain. This is because not all Active Directories
Q are configured the same and not all networks look the same. The Samba website
A contains a lot of documentation to help when things do not work as intended.
It is essential that you are able to use the nt1m_auth command to test
authentication before continuing further.

FreeRADIUS can use the nt1m_auth binary in two ways:

& For PAP authentication, include an exec section that calls the nt1m_auth binary.

& For MS-CHAP authentication, modify the MS-CHAP module's configuration file to
specify nt1m_auth for authentication.

(19l

Sources of Usernames and Passwords

PAP Authentication

FreeRADIUS includes a text file called nt1m_auth under the modules directory. This file
contains an exec section called nt1m_auth:

exec ntlm auth {

wait = yes

program = "/path/to/ntlm auth --request-nt-key --domain=MYDOMAIN
--username=%{mschap:User-Name} --password=%{User-Password}"

}

The name of the exec section can be anything, but naming it nt1m_auth helps to identify
the program that will be called by the exec module. Modify the program directive to reflect
your set up:

"/usr/bin/ntlm auth --request-nt-key --domain=FR.COM
--username=%{mschap:User-Name} --password=%{User-Password}"

To configure FreeRADIUS to utilize the Active Directory user store with PAP, do the following:

1. Editthe sites-enabled/default file and add this section beneath the
authorize - pap line:
if (!control:Auth-Type) ({
update control ({
Auth-Type = "ntlm auth"

}

This entry uses unlang which is covered extensively in the chapter on authorization.
The expression indicates that if none of the above modules have already set the
value of Auth-Type, it should be set tont1m_auth.

2. Wealso need to add an Auth-Type, called NTLM AUTH to the authenticate section
of the sites-enabled/default file:
Auth-Type NTLM AUTH {
ntlm auth

}

This creates an Auth-Type called NTLM AUTH which uses the nt1m_auth exec
section to perform the authentication.

The value of Auth-Type is not case sensitive, which allows us to follow the
convention to have it in uppercase although the unlang entry in the authorize
section is lowercase.

1201

Chapter 5

Restart FreeRADIUS in debug mode and try to authenticate with an Active
Directory user.

The feedback will indicate how the Auth-Type is set and the nt1lm_auth exec
section is called to do the authentication:

++? 1f (!control:Auth-Type)

? Evaluating ! (control:Auth-Type) -> TRUE

++? 1f (!control:Auth-Type) -> TRUE

++- entering if (!control:Auth-Type) {...}

+++ [control] returns noop

++- 1f (!control:Auth-Type) returns noop

Found Auth-Type = NTLM_ AUTH

Executing group from file /etc/raddb/sites-enabled/default
+- entering group NTLM AUTH {...}

[ntlm auth] expand: --username=%{mschap:User-Name} ->
--username=billy

[ntlm auth] expand: --password=%{User-Password} ->
--password=passbilly

Exec-Program output: NT STATUS OK: Success (0x0)
Exec-Program-Wait: plaintext: NT STATUS OK: Success (0x0)
Exec-Program: returned: 0

++[ntlm auth] returns ok

MS-CHAP Authentication

During MS-CHAP authentication the mschap module extracts an NT-Password hash
supplied by the user. To verify that it is correct the module can do one of three things:

L 4

Take a user's Cleartext -Password and make an NT-Password hash from it,
then compare this with the one from MS-CHAP.

If the user's password is already stored as an NT-Password AVP, compare this
to the one from MS-CHAP.

Configure the nt1m_auth directive of the mschap module. This will use the
ntlm_auth binary to authenticate against the Active Directory domain.

The first two methods have already been discussed in previous chapters. Configuring the
ntlm_auth directive is easy. Just follow these steps:

1.

Edit the modules/mschap file and uncomment the following line:

ntlm auth = "/path/to/ntlm auth --request-nt-key
--username=%{mschap:User-Name} --challenge=%{mschap:Challen
ge:-00} -nt-response=%{mschap:NT-Response:-00}"

[1211

Sources of Usernames and Passwords

2.

3.

Replace /path/to/ntlm_auth with the actual path tont1m_auth on your server
(/usr/bin/ntlm_auth).

This will tell the mschap module to use nt1m_auth instead of the other two
methods for credential verification.

If there are still users elsewhere whom you want to authenticate using the
mschap module, you must ensure that they have the check attribute Mms-
CHAP-Use-NTLM-Auth : = No. The entry for alice will now look like this:

"alice" Cleartext-Password := "passme", MS-CHAP-Use-NTLM-Auth
:= No

MS-CHAP-Use-NTLM-Auth is an internal AVP used to control the behavior of the
mschap module.

Restart FreeRADIUS in debug mode.

Try to authenticate with an Active Directory user using the MS-CHAP protocol.

Version 2.1.10 and upward of FreeRADIUS allows you to specify MS-CHAP
authentication with radtest (-t mschap). Should the running FreeRADIUS

% server be an earlier version, do a latest install elsewhere and use the newer

radtest to authenticate remotely. Another alternative is to use the JRadius
Simulator program (http://coova.org/JRadius/Simulator).

Summary

This chapter is large and has covered a lot of matter. With a typical deployment you would
probably use one or two user stores. As a summary let's revisit important points on each
user store discussed here.

Linux system users

The unix module (r1m unix) needs access to the /etc/shadow file to be able to read
the user's encrypted password. This encrypted password is used by the pap module

to authenticate the user. CHAP and MS-CHAP authentication will not work; only PAP
authentication works with system users.

11221

Chapter 5

SOL datahase

FreeRADIUS supports various SQL databases. It does this through a combination of a generic
SQL module and a database-specific SQL module. The database is used purely as a data store
and keeps the same type of data as the users file. A user can belong to one or more groups.
This eases management. The User-Profile attribute of a user allows us to assign a profile
to a user. Profiles are more flexible than adding a user to a group.

LDAP directory

LDAP can be used in two ways:

¢ The first method is to use 'bind as user' for authentication. This way is supported
by all LDAP servers but limits us to PAP authentication.

¢ The second method is by reading attributes like the userPassword attribute
and allowing other modules to use it as a 'known good password'. If the required
attributes are readable and in the correct format it allows the use of other
authentication protocols like CHAP and MS-CHAP. Unfortunately this is a security
risk and also not supported by all LDAP servers.

Active Directory

Active Directory integration depends on the Winbind component of Samba. When
Winbind runs correctly it enables us to use the nt1m_auth binary to authenticate against
the domain. The nt1m_auth binary is used by the exec module (r1m_exec) for PAP
authentication and by the mschap module (r1m_mschap) for MS-CHAP authentication.

All the chapters up to now have covered the various aspects of authentication and a bit on
authorization. In the next chapter we will learn all about accounting.

1. You have inherited a FreeRADIUS server with an existing MySQL user store. The
previous owner did not make use of the radgroucheck and radgroupreply
tables. You want to use them and do a test run but it seems that nothing has
changed. What could the problem be?

2. Onan Ubuntu server you would rather run PostgreSQL instead of MySQL. You try to
see if there are any sample database structures available for PostgresSQL but only
mysql is listed under the /etc/freeradius/sqgl directory. Why is this?

3. Your manager asks if it is possible for you to use a database instead of text files to
authenticate against. Is his question technically correct?

11231

Sources of Usernames and Passwords

4.

You have a slapd server, which stores the userpPassword attribute in cleartext.
How can you make it more secure while keeping the cleartext passwords?

Someone has told you that you need to enable Universal Password on Novell
eDirectory before you can use Novell eDirectory as a user store. Can this be true?

You have configured the FreeRADIUS server to use nt1m_auth for both PAP and
MS-CHAP. PAP works fine, but MS-CHAP fails with a message about 'Ensure
permissions on /var/run/samba/winbindd privileged are set
correctly'. How can we fix this?

You have just completed the section in this chapter on how to include Active
Directory as a user store. It works like a charm. During the night there is a major
power failure; now after a restart nothing works. Where should you start to
troubleshoot?

[124]

The previous chapters have covered much ground on authentication as well as
some aspects of authorization. This chapter is all about accounting.

In this chapter we shall:

See how basic accounting works in FreeRADIUS
See how to limit a user's sessions

Discover ways to limit a user's usage

* 6 o o

Look at the housekeeping of accounting data

So let's get on with it...

You need a working FreeRADIUS server to do the practical exercises on; a clean installation
is preferred.

Accounting refers to tracking of the consumption of NAS resources by users. Accounting does
not only include cost recovery in the form of billing. It can also be used for capacity planning,
to generate trend graphs, and to know more about the resource usage at a given point in
time. In this chapter, we will see how accounting is done in FreeRADIUS.

Accounting

FreeRADIUS is a AAA server. AAA in RADIUS can be grouped into two components. One
component consists of authorization and authentication, which uses UDP port 1812. The
second component is accounting and uses UDP port 1813. These two components function
independently of each other. The different 1isten sections in the radiusd. conf file
confirm this. The following is the 1isten section for accounting:

This second "listen" section is for listening on the accounting
port, too.

#
listen {
ipaddr = *

ipvéaddr =

port = 0

type = acct
interface = etho
clients = per socket clients
}

This 1isten section causes FreeRADIUS to listen for accounting requests. For more
information about 1isten sections in general, refer to the comments inside radiusd.
conf.

Notice port = 0 in the 1isten code. When port is specified as 0, FreeRADIUS will read the
value of the port from the /etc/services file. You can, however, override this value during
start-up by passing the -p <port numbers> argument, which will force the FreeRADIUS
server to only listen on the specified port.

The /etc/services fileis used to map port numbers and protocols to
service names.

radius 1812/tcp

radius 1812 /udp
radius-acct 1813 /tcp radacct # Radius
&~ Accounting

radius-acct 1813 /udp radacct

The /etc/services filerefersto port 1645 and 1646 as old-radius
and old-radacct respectively. These ports are still used sometimes by other
L RADIUS servers.

The extract above indicates that FreeRADIUS is by default able to handle accounting
requests. Let's see how accounting is done.

11261

Chapter 6

Time for action — simulate accounting from an NAS

In Chapter 3, Getting Started with FreeRADIUS we covered the radclient command.
This section creates three files that can be used with radclient in order to simulate the
accounting packets an NAS typically sends to a RADIUS server.

The AVPs inside the three files are similar to the AVPs sent from the hostapd program.

. hostapdis a daemon used for controlling authentication on Wi-Fi networks.
& It can be configured to do accounting along with authentication and is typically
/e installed with OpenWRT on Atheros-based Wi-Fi access points. You can also

use it to turn a Wi-Fi NIC into an access point on Linux.

When a user's session starts, the NAS will inform the RADIUS server. During the session the
NAS may send updates on the session to the RADIUS server and then when the session ends
the NAS will also inform the RADIUS server.

Inside these accounting packets is the Acct -Status-Type AVP, which will reflect the
session status of Start, Interim-Update, and Stop. This corresponds to the three files
we will create. The following file, named 4088 06 _acct_start.txt, will create a session:

Packet-Type=4

Packet-Dst-Port=1813

Acct-Session-Id = "4D2BB8AC-00000098"
Acct-Status-Type = Start
Acct-Authentic = RADIUS

User-Name = "alice"

NAS-Port = 0

Called-Station-Id = "00-02-6F-AA-AA-AA:My Wireless"
Calling-Station-Id = "00-1C-B3-AA-AA-AA"
NAS-Port-Type = Wireless-802.11

Connect-Info = "CONNECT 48Mbps 802.11b"

The following file, named 4088 06 acct interim-update.txt, will update the session:

Packet-Type=4

Packet-Dst-Port=1813

Acct-Session-Id = "4D2BB8AC-00000098"
Acct-Status-Type = Interim-Update
Acct-Authentic = RADIUS

User-Name = "alice"

1211

Accounting

NAS-Port = 0

Called-Station-Id = "00-02-6F-AA-AA-AA:My Wireless"
Calling-Station-Id = "00-1C-B3-AA-AA-AA"
NAS-Port-Type = Wireless-802.11

Connect-Info = "CONNECT 48Mbps 802.11b"
Acct-Session-Time = 11

Acct-Input-Packets = 15

Acct-Output-Packets = 3

Acct-Input-Octets = 1407

Acct-Output-Octets = 467

And finally, the following file, named 4088 06 acct stop.txt, will end the session:

Packet-Type=4

Packet-Dst-Port=1813

Acct-Session-Id = "4D2BB8AC-00000098"
Acct-Status-Type = Stop
Acct-Authentic = RADIUS

User-Name = "alice"

NAS-Port = 0

Called-Station-Id = "00-02-6F-AA-AA-AA:My Wireless"
Calling-Station-Id = "00-1C-B3-AA-AA-AA"
NAS-Port-Type = Wireless-802.11

Connect-Info = "CONNECT 48Mbps 802.11b"

Acct-Session-Time = 30
Acct-Input-Packets = 25
Acct-Output-Packets = 7
Acct-Input-Octets = 3407
Acct-Output-Octets = 867
Acct-Terminate-Cause = User-Request

By using these three files with the radclient program we can now explore various aspects
of FreeRADIUS accounting.

When an NAS receives an Access-Accept packet from the RADIUS server, the NAS tries
to match the Identifier field with that of a pending Access-Request. If a match is
found, and the NAS is configured for accounting, the NAS will send a Code 4 RADIUS packet
(Accounting-Request) to the RADIUS server. This marks the start of the session. Let's
imitate this action from the NAS by using radclient:

1. Start FreeRADIUS in debug mode.

11281

Chapter 6

Use the radclient command and the 4088 06 acct start.
txt file to send an Accounting-Request to FreeRADIUS:

$>radclient 127.0.0.1 auto testingl23 -f 4088 06 acct start.txt

Observe the output of both FreeRADIUS and the radclient command.
Here is the feedback from radclient indicating the request was
successful by returning Code 5 (Accounting-Response):

Received response ID 66, code 5, length = 20

Confirm there is an active session for alice by issuing the radwho command.
You have to be the root user to be able to issue this command.

Depending on how FreeRADIUS was compiled and the distribution you are using, the
radwho command may return an error. If this is the case follow the next section to
fix it:

Despite being root you get the following error:

radwho: Error reading /var/log/radius/sradutmp: No such file or
directory

The sradutmp file does not exist because the sradutmp module is disabled
inside the accounting section of the sites-enabled/default virtual
server. Activate sradutmp by uncommenting the following line:

#sradutmp

Restart FreeRADIUS in debug mode again. Issue the radclient and radwho
commands as before. You should now see something like the following:

#radwho
Login Name What TTY When From Location
alice alice shell SO Sun 16:34 127.0.0.1

The active session of alice is now reflected through radwho. Next we will end this active
session with a stop request.

1.

When a user logs out or when their session times out, the NAS will send a stop request to
the RADIUS server in order for the accounting details to reflect the events that happened on
the NAS. Follow these steps to end a request:

Ensure the FreeRADIUS server is still running in debug mode.

11291

Accounting

2. Usethe radclient command and the 4088 06 acct_stop.txt file to
send a request to FreeRADIUS:

$>radclient 127.0.0.1 auto testingl23 -f 4088 06 acct stop.txt

3. Confirm the session is closed by checking the output from radwho:

radwho
Login Name What TTY When From Location
Orphan sessions

Sometimes it may happen that an NAS hangs. When the NAS is reset later, the accounting
information on FreeRADIUS still reflects the old state. You can use the radzap command to
close any open accounting records on FreeRADIUS. Let's see radzap in action:

1. Usetheradclient command and the 4088 06 acct start.txt file to
start a session on FreeRADIUS:

$>radclient 127.0.0.1 auto testingl23 -f 4088 06 acct start.txt

2. Confirm the open session with the radwho command:

radwho
Login Name What TTY When From Location
alice alice shell SO Sun 16:58 127.0.0.1

3. Now you can zap all active sessions from 127.0.0.1 by using the following command:
radzap -N 127.0.0.1 127.0.0.1 testingl23

Radwho will show that there are no active sessions now.

If you look at the feedback of the FreeRADIUS server when radzap is issued you will see that
it sends the following request:

rad recv: Accounting-Request packet from host 127.0.0.1 port 43629,
id=195, length=38

Acct-Status-Type = Accounting-Off

NAS-IP-Address = 127.0.0.1

Acct-Delay-Time = 0
This brings us to the end of the practical exercises on basic accounting. A detailed discussion
will follow next.

[130]

Chapter 6

What just happened?

We sent accounting requests to the FreeRADIUS server using the radclient command in

a way similar to how an NAS will do. We have also simulated a scenario where an NAS hung,
leaving the accounting data on FreeRADIUS out of synchronization with the state of the NAS.
Let's look at some interesting points while referring to the exercise we have just completed.

Independence of accounting

Accounting in FreeRADIUS is independent from authorization and authentication. It uses
a separate port and consists of Accounting-Request packets sent by the client to the
server. The server responds with Account ing-Response packets to acknowledge the
requests.

Accounting data is used to measure usage on a network. An NAS can report on the time a
user is connected to the network as well as the data usage of the user.

Accounting records do not reflect details like websites a user has visited during a session.
They only indicate time and data usage.

NAS: important AUPs

Although the AVPs sent by an NAS vary, some AVPs are important and should be present in
the Accounting-Request.

Acct-Status-Type

This attribute indicates whether this Accounting-Request marks the beginning of the
user service (Start) or the end (Stop). Each option is represented by a specific number.
When a session starts it will be specified as 1 (Start). When the session's data is updated it
will be specified as 3 (Interim-Update) and when the session ends it will be specified as 2
(Stop). Acct-Status-Type can also contain values like Accounting-0On (represented by
7) and Accounting-Off (represented by 8) to close all open sessions for an NAS. The value
of Acct-Status-Type determines the way FreeRADIUS will manipulate a user's accounting
data.

Acct-Session-ld

Acct-Session-Idis used to uniquely identify a user's session. This is used in combination
with Acct-Status-Type to record the status of a user's session. While the value of Acct -
Status-Type changes to reflect the status (Start, Interim-Update, or Stop) of the
session, the value of Acct-Session-1Id remains the same throughout the session.

11311

Accounting

AVPs indicating usage

The following table shows the AVPs inside the Accounting-Request packet, which reflect
the usage of a user:

AVP Description
Acct-Session-Time The duration of the session

Acct-Input-Octets Bytes send from the user to the NAS

Acct-Output-Octets Bytessend from the NAS out to the user

These three AVPs indicate the time and data usage of a user. They are only present in packets
with Acct-Status-Type = Interim-Update or Acct-Status-Type = Stop. Packets
with Acct-Status-Type = Start cannot contain them.

The AVPs that will be included with an Accounting-Request depend on the value of
Acct-Status-Type. When a session is started there is no need to send AVPs that indicate
time and data usage. These AVPs are included only on subsequent requests.

The stop request will typically indicate the termination cause:

Acct-Terminate-Cause = User-Request

The AVPs that are included also depend on the NAS. Sometimes an NAS does not include
required AVPs (Hostapd) and sometimes it swaps the input and output around (Chillispot).
You are never sure what an NAS will bring to the server. Because of this it is always best to
first test and see which AVPs are included and if the client may need extra configuration for
the accounting to work as intended.

Sometimes there will be an AVP present called Acct-Delay-Time. The value
. of this AVP can be used by the RADIUS server to adjust the start and stop times
& when recording a session's detail. It is usually present when an NAS has difficulty
L sending the Account ing-Request to the RADIUS server and it has to resend
the request. If the value of Acct-Delay-Time is large you should investigate
why this is so.

11321

Chapter 6

When FreeRADIUS receives an Accounting-Request it is first passed to the preacct
section. This section is defined in the virtual server's file. Like most of the FreeRADIUS
configuration the default works just fine but if you would like to manipulate AVP values for a
user, this is the place to do so. The comments inside the preacct section indicate what can
be done in this section.

One interesting module is the preprocess module (rlm preprocess). This module
brings back sanity to a request's AVPs when it is needed. In our example it added the NAS-
IP-Address AVP because it was missing. This AVP is required to be in the Accounting-
Request as per RFC 2866.

Either NAS-IP-Address or NAS-Identifier MUST be present in a RADIUS
Accounting-Request.

The acct_unique entry makes sure each request has a semi-unique identifier by
determining a value for Acct-Unique-Session-1ID.

The preacct section is also very important when you are forwarding accounting requests
to another RADIUS server. The suf£ix module (instance of the realm module) is used to
identify and trigger the routing of such traffic. There are also IPASS and ntdomain listed,
but commented out, which are both instances of the realm module. suffix, IPASS, and
ntdomain are each looking for a unique pattern inside the User-Name AVP to determine
the realm of the request. The forwarding of traffic to other RADIUS servers will be covered in
depth in Chapter 12, Roaming and Proxying.

Setting Acct-Type

You can also use the £iles module in the preacct section. This module will be used

to set the Acct-Type internal AVP. The Acct -Type AVP is used to separate accounting
traffic inside the accounting section by forcing it to be handled by different instances of a
module. This is the same principle as where the Auth-Type internal AVP can be set in the
authorize section in order to specify which authentication method in the authenticate
section to use. You can read more about the use of this feature on the following URL:

http://freeradius.org/radiusd/doc/Acct-Type

[1331

Accounting

FreeRADIUS: accounting section

After the Accounting-Request has been handled by the preacct section it will be passed
over to the accounting section. This is also defined in the virtual server's file. This is the
section where we have activated the sradutmp module. The accounting section does

the actual logging of accounting data. There are various ways to do this. By default it will be
logged as text files using the detail module. We can, however, also specify that it should
rather be logged to an SQL database using the sgl module. This section can also be used to
record the usage of a user (the daily module). The usage can then be used to determine
the authorization outcome.

You are encouraged to read through the comments in the accounting section to see what the
included modules do.

When an NAS hangs it is unable to send any requests to a RADIUS server. Upon restarting
the NAS should send Acct-Status-Type = Accounting-0n. Upon normal shut-down it
should send Acct-Status-Type = Accounting-0f£. This makes accounting records more
robust and reliable. The radzap command simulates a normal shutdown of an NAS and is
used to close orphan sessions.

Depending on how FreeRADIUS was compiled, the radwho command may expect the
presence of a sradutmp file in the FreeRADIUS log directory. We have to enable sradutmp
in the accounting section in order for this file to be present. This is because of sensitive
information inside the radutmp file and was covered in Chapter 3, Getting Started with
FreeRADIUS.

The radzap command like radwho may also require the presence of a sradutmp file in the
FreeRADIUS log directory. It has various switches, but not all of them may work. Use radzap
with care when zapping an NAS that is still working, for example, using radzap with the
-N <NAS IP Address> switch. This could result in the NAS requesting FreeRADIUS to update
sessions that are already closed. This is especially true when you use sgl for accounting.

With this we conclude the section on basic accounting. The next section will look at a way to
limit a user's sessions.

(1341

Chapter 6

Isaac is a Wireless Internet Service Provider (WISP) and his income depends on having

as many users as possible because he charges a monthly subscription. Alice is his client.

She gives her credentials to Bob who lives next door and so they both connect at the same
time. Isaac needs to put an end to this or else he will have to close his WISP and code HTML
for food!

Alice
Username: alice
Password: passme

Bob

Username: alice
Password: passme

Time for action - limiting a user's simultaneous sessions

The default virtual server defined in the sites-enabled/default file hasa session
section:

Session database, used for checking Simultaneous-Use.
Either the radutmp or rlm sgl module can handle this.
The rlm sql module is *much* faster

session {

radutmp

#

See "Simultaneous Use Checking Queries" in sqgl.conf
sql

}

We want a fast system, so we'll use the recommended sqgl. To use SQL as a session database
we also need to use sql for accounting.

1. Ensure you have a working SQL database configuration as described in Chapter 5.

2. Editthe sites-enabled/default file, and make the following changes. We will
not use SQL as a user store, so comment out sql in the authorize section.

[1351]

Accounting

3. Uncomment sql in the accounting section. This will result in accounting
requests written into the SQL database.

4. Uncomment sql in the session section and also comment radutmp
out in the session section. This enables sql and disables radutmp.

5. We also need to specify the SQL query that will be executed. This is in the
sqgl/mysqgl/dialup.conf file. Uncomment the following part:
#simul count query = "SELECT COUNT (*) \
#FROM ${acct tablel} \
${SQL-User-Name}' \
#AND acctstoptime IS NULL"

#WHERE username = '

6. Modify the users file so that alice is limited to one session:

"alice" Cleartext-Password := "passme",Simultaneous-Use := 1

7. Restart FreeRADIUS. Make sure that FreeRADIUS connects well to the
MySQL database.

8. Initialize a session for alice using radclient and 4088 06 acct_start.txt:
$>radclient 127.0.0.1 auto testingl23 -f 4088 06 acct start.txt

9. Confirm that there is an open session for alice:

radwho
Login Name What TTY When From Location
alice alice shell SO Sun 22:25 127.0.0.1

10. Try to authenticate as alice using radtest. You should now receive an
Access-Reject packet because the session limit has been reached:
$>radtest alice passme 127.0.0.1 100 testingl23
Sending Access-Request of id 177 to 127.0.0.1 port 1812
User-Name = "alice"

User-Password = "passme"
NAS-IP-Address = 127.0.0.2
NAS-Port = 100

rad recv: Access-Reject packet from host 127.0.0.1 port 1812,
id=177, length=68

Reply-Message = "\r\nYou are already logged in - access denied\r\
n\nll
11. Terminate all active sessions by using the radzap command:
radzap -N 127.0.0.1 127.0.0.1 testingl23
Received response ID 175, code 5, length = 20

[1361

Chapter 6

12. Try to authenticate now as alice. You should receive an Access-Accept packet:
$>radtest alice passme 127.0.0.1 100 testingl23
Sending Access-Request of id 83 to 127.0.0.1 port 1812
User-Name = "alice"
User-Password = "passme"
NAS-IP-Address = 127.0.0.2
NAS-Port = 100

rad recv: Access-Accept packet from host 127.0.0.1 port 1812,
id=83, length=34

Reply-Message = "Hello, alice"

What just happened?

We have just managed to save Isaac from coding HTML for food. Alice and Bob will also not
be able to use the Internet simultaneously any more.

_ Alice
Username: alice
Password: passme

Bob

Usemame: bob
Password: passhob

Let's look at some technical aspects.

The session section in FreeRADIUS is defined separately from the authorize and
authenticate sections. Despite this it is functionally part of authorization. FreeRADIUS
checks if a user is authorized to have multiple sessions and then compares the user's limit
with the current number of active sessions. The outcome of this check then influences the
return to an Access-Request.

11311

Accounting

The session section makes use of a session database to determine the active sessions a
user has. One of the two available session databases has to be used. Radutmp is slower than
sgl. When you use sqgl it is required that sql is also included for accounting. Likewise when
you use radutmp for a session database, you also have to include radutmp for accounting.

If you do not use simultaneous usage checking, keep the session section empty by
commenting out both radutmp and sql. This will make FreeRADIUS perform faster. Another
thing to consider is when you do use a method to check Simultaneous-Use, try to use
only one method and disable the other.

Prohlems with orphan sessions

When you are limiting a user's sessions, orphan sessions can now potentially prevent a
user from gaining access to the network. If the state on the NAS does not correspond with
the state recorded on the FreeRADIUS server, FreeRADIUS may think the user is still logged
in while the NAS knows better. Keep this in mind especially if the NAS does not feature

the sending of Acct-Status-Type = Accounting-Off and Acct-Status-Type =
Accounting-0n when it shuts down and starts up.

The session section features the calling of a program called checkrad. This is a Perl script
which, depending on the value of the nastype directive of a client, may contact the NAS
directly to determine if a user is already connected, and how may times.

If a client's nastype = other, checkrad will do nothing as you can see from this debug
output:

checkrad: No NAS type, or type "other" not checking

The tests on my setup, however, also gave the same message even when nastype contains
other values. YMMV, but take note as this was also reported on the FreeRADIUS mailing list.

Remember also that the execution of the checkrad script can potentially be a bottleneck,
slowing down authentication times. If you would like to disable it, simply define the
nastype = other foraclient.

After we have saved the WISP from bankruptcy it's time to further limit a user's daily usage.

As stated at the start of this chapter, we can use accounting data for capacity planning. The
rest of this chapter will cover a scenario where we limit the daily usage of a user based on
existing accounting data for the specified user.

11381

Chapter 6

Isaac's WISP is flying again and he has been approached by the local pizzeria to provide
Internet access for their customers. Each customer will get 30 minutes free Internet with
every pizza they purchase. This free Internet must be valid for one day only and should
expire at 22:00 hrs the same day when the pizza was bought. Isaac uses a combination of
Coova Chilli and Mikrotik captive portals for his WISP.

Each customer get 30 minutes free Internet per pizza
per day

During the introduction to the RADIUS protocol we mentioned that a RADIUS server cannot
impose limitations on a user. Although a RADIUS server will return AVPs to indicate certain
limitations, it is the responsibility of the NAS to impose them.

Common limitations are data or time-based. The Session-Timeout return AVP is time-
based and understood by many NAS devices. If we only want to allow a user's session to last
30 minutes, simply return Session-Timeout = 1800 in the Access-Accept packet. If the
NAS supports Session-Timeout it will terminate the user's session after 30 minutes.

a The best place to see which AVPs an NAS supports is to search on the particular
A vendor or project's website.

This scenario works fine except for one problem. The user can simply log in again after the
time-out and get another 30 minutes!

There is, however, a way to handle this problem. FreeRADIUS offers counter modules.
In this section we will first perform a basic counter set up using the counter module
(rlm_counter) to keep track of time usage across sessions. We will then substitute the
counter module with the sglcounter module (rlm sqglcounter).

[1391

Accounting

Time for action - limiting a user's usage

The following sections will demonstrate how to limit Internet usage.

The counter module has the following counter defined by default:

counter daily {

}

filename = ${db _dir}/db.daily

key = User-Name

count-attribute = Acct-Session-Time
reset = daily

counter-name = Daily-Session-Time

check-name = Max-Daily-Session

reply-name = Session-Timeout
allowed-servicetype = Framed-User
cache-size = 5000

Modify the counter as follows:

1.

Edit the sites-enabled/default file in the FreeRADIUS configuration
directory. Uncomment daily in both the authorize and accounting
sections. Also, uncomment daily in the instantiate section of the
radius.conf file to ensure proper instantiation of the counter.

The AVPs Max-Daily-Session and Daily-Session-Time are not listed
in any dictionary. Edit the dictionary file in the FreeRADIUS configuration
directory and add them:

#ATTRIBUTE My-Local-String 3000 string
#ATTRIBUTE My-Local-IPAddr 3001 ipaddr
#ATTRIBUTE My-Local-Integer 3002 integer
ATTRIBUTE Daily-Session-Time 3000 integer
ATTRIBUTE Max-Daily-Session 3001 integer

Change the entry for alice in the users file to reflect the following:

"alice" Cleartext-Password := "passme", Max-Daily-Session :=
1800

Reply-Message = "Hello, %{User-Name}"

Edit the modules/counter file in the FreeRADIUS configuration
directory and comment out the allowed-servicetype line:

#allowed-servicetype = Framed-User

(1101

Chapter 6

9.

The r1m_counter module will create a database file to keep track of the counters
for various users. This is located in the FreeRADIUS configuration directory. We
need to change the rights of this directory. We assume a normal installation

on each of the distributions.

On CentOS and SUSE:

#>chmod g+w /etc/raddb

On Ubuntu everything works fine and no change is required.

Restart the FreeRADIUS server in debug mode.

Authenticate as alice. You should receive Session-Timeout = 1800:
radtest alice passme 127.0.0.1 100 testingl23

Sending Access-Request of id 30 to 127.0.0.1 port 1812
User-Name = "alice"

User-Password = "passme"

NAS-IP-Address = 127.0.0.1

NAS-Port = 100

rad recv: Access-Accept packet from host 127.0.0.1 port 1812,
id=30, length=40

Reply-Message = "Hello, alice"

Session-Timeout = 1800

Send an accounting start request using radclient and the 4088 06
acct_start.txt file we created earlier in this chapter. Wait 30 seconds
or more. Send the accounting stop request using the radclient and

the 4088 06 _acct_ stopt.txt file. This will record the usage.

Authenticate again as alice. This time Session-Timeout should now be
1770 or less instead of 1800 (1800 — 30).

This exercise showed how the counter module can be used to keep track of time usage
across sessions. Depending on the existing usage it will return a specified AVP. If the existing
usage has reached a trigger point, authentication will fail.

Terminating the session at a specified time

The second requirement is that Internet access should be only valid until 22:00 of the
day when a pizza was bought. For this we will use the WISPr-Session-Terminate-
Time return AVP. WISPr-Session-Terminate-Time is supported by both Coova Chilli
and Mikrotik. This AVP's value can specify the precise time (to the second) when a user's
connection should be terminated.

(a1l

Accounting

Creating Internet vouchers

Although this part is beyond the scope of the book, | would recommend using an
M SQL database for this. The software that creates Internet vouchers should then
Q determine the value of WISPr-Session-Terminate-Time based on the
day of the pizza sale.

You might be tempted to use Login-Time instead of WISPr-Session-
Terminate-Time but Login-Time will allow a voucher to be used any day.

For this proof of concept we'll simply add a reply attribute to alice in the users file. We
imagine that today is Tuesday, January 10, 2012 and the time-zone is UTC/GMT+2 hours.

1. Change the entry of alice in the users file to reflect the following:

"alice" Cleartext-Password := "passme", Max-Daily-Session :=
1800
Reply-Message = "Hello, %{User-Name}",
WISPr-Session-Terminate-Time = "2012-01-10T22:00:00+02:00"

2. Restart the FreeRADIUS server.

3. Authenticate as alice. The return AVPs should include session-
Timeout and WISPr-Session-Terminate-Time:

rad recv: Access-Accept packet from host 127.0.0.1 port 1812,
id=19, length=73

Reply-Message = "Hello, alice"
WISPr-Session-Terminate-Time = "2012-01-10T22:00:00+02:00"
Session-Timeout = 1770

4. Ensure the timezone on the Coova Chilli and Mikrotik captive portals is
correct. If it is not correct you can expect wrong termination times.

What just happened?

This exercise has proved how we are able to limit the total daily time a client can be on the
Internet to 30 minutes. We have also ensured they will not be connected anymore after
22:00 on the day when they have bought a pizza. Let's look at what makes the counter
module tick, or is it count?

rim_counter

The counter module allows you to define various counters. The included counter is time-
based and called daily because it resets daily. The counter module creates its own database
for each counter that is defined. Let's look at the sample daily counter's definition:

counter daily f{

[142]

Chapter 6

filename =
key = User-Name

count-attribute =
reset = daily
counter-name =
check-name =
reply-name = Session-Timeout
allowed-servicetype =
cache-size = 5000

}

${db _dir}/db.daily

Acct-Session-Time

Daily-Session-Time
Max-Daily-Session

Framed-User

Each counter section contains various directives, which define the behavior of the counter.
There are four directives that form the nucleus of the counter:

Directive Value

Comment

check-name Max-Daily-Session

count-attribute Acct-Session-Time
reply-name Session-Timeout

reset daily

Internal check AVP for a user to indicate the
allowance; for example:

Max-Daily-Session :=1800

Remember this AVP is usually an internal AVP,
which you define explicitly inside the dictionary
file and should be a value between 3000 and
4000.

The AVP in the accounting packet of which to keep
count.

Session-Timeout =Max-Daily-Session
minus Acct-Session-Time

The timespan to consider. Values can be daily,
weekly, monthly, or never.

In short the countexr module will calculate the total usage of the count -
attribute within the specified reset period; it will then subtract this value
from check-name. If it is less than zero it will return a failure; if it is greater
than zero it will return the value of reply-name.

You can read more about the other directives and their usage inside the counter file's

comments.

We have removed the allowed-servicetype directive since it limits the counter to be
only effective when Access-Request contains Service-Type = Framed-User.

(1431

Accounting

To activate a defined counter it must be specified in both the accounting section and the
authorize section. It should also be specified in the instantiate section of the radius.
conf file. This will ensure proper start up of the counter.

You will note that the daily counter is listed after all the modules that can supply the user's
information in the authorize section. This will give those modules the opportunity to set
the check-name before daily is executed. In our situation this was done by the files
module when it set the value of Max-Daily-Sessionto 1800.

The accounting section keeps track of usage and lets the counter module log usage
into a specified database. During authorization, the counter will then consult the specified
database to determine the value of the reply-name AVP. If the usage exceeds the check-
name AVP an Access-Reject is returned.

Rather than having a database for each defined counter, it will be much more effective

if all counters can use one database. In the next section we will use sqlcounter. The
sglcounter module uses the sql accounting database to determine the counter values
no matter how many counters are defined.

Have a go hero - using a single datahase for various counters

We shall now look at running multiple counters from a single database.

When we configured FreeRADIUS to limit a user's sessions we included sql in the
accounting section. We assume you still have sql included in the accounting section of
the default virtual server.

In this exercise we build on the previous ones where we used the sql module for
accounting. We make use of MySQL as a database. FreeRADIUS also supports PostgreSQL,
Microsoft SQL Server, and Oracle Database as alternatives to MySQL. This sglcounter
module should work just as well with the alternatives.

We will substitute the daily counter with an equivalent sgqlcounter:

1. The sglcounter includes a few predefined counters in the sgl /mysql/counter.
conf file, which is located in the FreeRADIUS configuration directory. Open the file
and confirm that a counter called dailycounter is defined.

2. Change the sql directive of dailycounter from this:

query = "SELECT SUM(acctsessiontime - \
GREATEST ((%b - UNIX TIMESTAMP (acctstarttime)), 0)) \
FROM radacct WHERE username = '%{%k}' AND \

UNIX TIMESTAMP (acctstarttime) + acctsessiontime > '%b'"

[114]

Chapter 6

10.

11.

to this:

query = "SELECT IFNULL (SUM(acctsessiontime - \
GREATEST (($b - UNIX TIMESTAMP (acctstarttime)), 0)),0) \
FROM radacct WHERE username = '${%k}' AND \
UNIX TIMESTAMP (acctstarttime) + acctsessiontime > '%b'"

Edit the sites-enabled/default file in the FreeRADIUS configuration directory.
Remove daily in both the authorize and accounting sections by commenting
it out.

Add dailycounter just below the commented out daily in the authorize
section.

Confirm sql is included in the accounting section.
Clean the radacct table in the MySQL database:
mysq -u root -p radius

delete from radacct;

Restart FreeRADIUS in debug mode.

Authenticate as alice. You should receive Session-Timeout = 1800:
$>radtest alice passme 127.0.0.1 100 testingl23
Sending Access-Request of id 181 to 127.0.0.1 port 1812
User-Name = "alice"
User-Password = "passme"
NAS-IP-Address = 127.0.0.1
NAS-Port = 100

rad recv: Access-Accept packet from host 127.0.0.1 port 1812,
id=181, length=73

Reply-Message = "Hello, alice"
WISPr-Session-Terminate-Time = "2012-01-10T22:00:00+02:00"
Session-Timeout = 1800

Send an accounting start request using radclient and the 4088 06 _acct__
start.txt file we created earlier in this chapter. Follow it up with an interim-
update using the 4088 06 _acct interim-update.txt file (with sql accounting
you do not have to wait between the two).

Authenticate again as Alice. The value of Session-Timeout should now be
something like 1789 (1800-11).

Send an accounting stop request using radclient and the 4088 06 acct stop.
txt file we created earlier in this chapter.

(1451

Accounting

12. Authenticate again as alice. This time the value of Session-Timeout should be
something like 1770 (1800-30).

Now to deplete the user's available time:
1. Editthe 4088 06 acct stop.txt file and change the value of Acct-Session-
Time to 2000.

2. Send an accounting start and accounting stop request using the radclient with
4088 06_acct_start.txtand 4088 06 acct_ stop.txt respectively.

3. Authenticate again as alice. This time the authentication should fail because the
available time is depleted:

rad recv: Access-Reject packet from host 127.0.0.1 port 1812,
id=143, length=84

Reply-Message = "Hello, alice"
Reply-Message = "Your maximum monthly usage time has been
reached"

4. The Reply-Message can be misleading since it speaks about a monthly usage
instead of daily; nevertheless the request has been rejected.

We managed to substitute the counter module with the sglconter module. Let's look at
some important points to keep in mind.

Resetting the counter

The reset directive has five possibilities to choose from. These possibilities are hourly,
daily, weekly, monthly, and never. These values are calendar based. This means that
the monthly reset will occur on the first of the month. We also have the opportunity to
define our own reset value in the form of num [hdwm] where each letter represents a
reset option. If we then specify reset = 6h, the counter will reset every six hours, starting
at 00:00.

SOL module instance

We can declare various instances of the sql module. By default the first instance is called
sgl. We can, however, create additional ones, each connecting to a different database or
even a different server. With sglmod-inst = sql we indicated to sglcounter to use the
default sq1 module instance. If we have used an additional sql instance to do accounting,
that sgql module instance could be specified as the value of sglmod-inst.

(1461

Chapter 6

You will note that the query has listed a special one-character variable ($k) to represent the
attribute of the key. This means that if key = User-Name then we will be substituting the
%k with User-Name. There is also $b, which is substituted with the beginning of the reset
period and %e, which is substituted with the end of the reset period. These one-character
variables are unique to the sglcounter module and are in addition to those already in
existence. Variables will be covered in depth in the next chapter.

We had to modify the SQL query for the counter to handle NULL values. If you do not specify
this, the query will return NULL when there are no accounting records in the SQL database
for the user who tries to authenticate. This in turn will result in no Session-Timeout reply
attribute being returned.

s . . .
‘Q Remember to include IFNULL with the other predefined counters and also

when you define your own counters. If you forget this, it will bite you!

A daily counter resets at midnight. What happens when Alice connects 20 minutes before
midnight? Alice will get the remaining 20 minutes of today and will also be limited to 30
minutes into the next day. To prevent the session to last longer than 30 minutes at any
time, make use of the Login-Time internal AVP to ensure the user's session expires before
midnight:

"alice" Cleartext-Password := "passme", Max-Daily-Session :=
1800,Login-Time := 'Al10001-2359'

Without the Login-Time AVP we will get something like the following reply back when we
authenticate after 23:30:

Session-Timeout = 3417
With the Login-Time AVP the user will get something like the following:
Session-Timeout = 1440

The fact that the Session-Timeout value is more than 30 minutes can be confusing,
but the person is simply getting what is remaining of the 30 minutes for today plus the 30
minutes of tomorrow in one go.

(1411

Accounting

Counting octets

You might be tempted to create a counter for octets with a query like this:

query = "SELECT IFNULL (SUM(acctinputoctets - GREATEST((%b -
UNIX TIMESTAMP (acctstarttime)), 0)),0)+ IFNULL(SUM(acctoutputoctets
-GREATEST ((b - UNIX TIMESTAMP (acctstarttime)), 0)),0) FROM

radacct WHERE username='%{%k}' AND UNIX TIMESTAMP (acctstarttime) +
acctsessiontime > '%b'"

Don't do it! | repeat do not do it! The check-name and reply-name directive's AVPs have
to be time-based. It may work as intended when the reset directive is defined as never, but
one day you will change it to daily or monthly and get burned.

The reason things break is because (as shown in the previous section) the counter returns a
remainder for today plus the Max-Daily-Session for tomorrow if the seconds remaining
for today is less than Max-Daily-Session defined for a user. So it assumes these AVPs are
time-based AVPs.

Using other AVPs in the counter's definition will not change the sglcounter module's
behavior. It assumes these AVPs are time-based.

We will discuss alternative ways to control a user's data based on accumulated usage later
in the book.

If you would like to know about the intimate details of this limitation,
& you can read more on this on the following mailing list:
L

A http://www.mail-archive.com/freeradius-userse
lists.freeradius.org/msg49267.html

Now that the accounting part of FreeRADIUS is configured, it's time to see what we should
routinely do to ensure the accounting data is well maintained.

The most common problem with accounting data is when the NAS and the FreeRADIUS
server's data do not correspond.

You can then use radzap to close orphan sessions as we have done at the start of the
chapter.

(181

Chapter 6

If you use MySQL for accounting there are various web-based tools to manage the
accounting data. phpMyAdmin is very popular. There are also complete software packages
(open source or commercial) focused on giving a central management dashboard for user
management, billing, vouchers, and other such applications.

Should you have opted for PostgreSQL instead of MySQL, you just have to try out
i phpPgAdmin. This serves as a great help to beginners.

In large deployments it is good practice to archive older accounting records from the MySQL
database in order to keep the size of the database manageable.

You may also want to index certain columns that are common to regular queries.

This brings us to the end of the chapter on accounting. Let's go over the important points
that we have learned.

We have learned a lot in this chapter about accounting in FreeRADIUS. Specifically, we have
covered:

¢ Basic accounting: We have learned that accounting is separate from authentication
and authorization and runs on port 1813. It consists of the client sending
Accounting-Request packets and the server replying with Accounting-
Response packets. The Acct-Status-Type AVP inside an Accounting-Request
can have a value of Start, Stop, Interim-Update, Accounting-Off or
Accounting-0On.

¢ Rogue accounting data: These are also known as orphan sessions and happen when
the FreeRADIUS server's accounting data does not reflect the activities on the NAS.
The radzap command helps us to control these data.

¢ Simultaneous sessions: There can be a limit to the simultaneous sessions of a user.
A session section in FreeRADIUS specifies the session database that should be
referenced. The session database obtains session data from the accounting section.
To limit simultaneous sessions we use the internal Simultaneous-Use AVP as a
check for a user.

¢ Counters: FreeRADIUS has counters to keep track of the total usage of a user. This
can be used to limit the total time a user has network access. The rlm counter
module uses its own private database for each counter that is defined. The r1m
sglcounter module piggybacks onto the sgl accounting database, which is more
effective.

(1491

Accounting

We have also discussed ways to access and manage the MySQL database's accounting data
and common problems associated with accounting.

The next chapter is going to crack open authorization's shell to show you just how much
power FreeRADIUS can give you.

Pon yuiz -accounting

1.

A Telco is forwarding RADIUS authentication requests to your RADIUS server.
Everything works well. They are now also able to forward accounting requests to
your RADIUS server, but somehow not one request reaches your RADIUS server.
Where will be a good place to troubleshoot?

You have configured simultaneous session limits and it works like a charm. During
the night a fierce rainstorm has knocked out one of the Wi-Fi towers. Now some
people are complaining they cannot connect although they have signal from another
nearby tower. What could be wrong?

You generate vouchers with a specific value for WisPr-Session-Terminate-
Time. Some of your captive portals seem to ignore this reply AVP although the
vendor does support this AVP. What could be wrong?

Using the sglcounter module you have created a counter to limit the daily
data for a user. Somehow this counter is just acting weird. You change the reset
directive to never and it becomes stable. Are you losing your mind?

[1501

Authorization is a process where information in a request is evaluated. This
information may be used to validate against information about the user that
was obtained from file, database, or LDAP directory. Authorization happens
before authentication and does not involve the checking of a password. We
can use various logic and comparisons to determine if a user is authorized to
connect to a network. We can also determine things like how long they can use
a network or the quality of service to offer them. These are all components of
authorization and discussed in this chapter.

In this chapter we shall:

See how restrictions are applied to users
See how FreeRADIUS performs authorization

Explore the unlang processing language in FreeRADIUS

* 6 o o

Use unlang to create a data reset counter

So, let's get on with it...

Authorization, in essence, is about restrictions. Based on certain checks a user may be
restricted. Restrictions can be applied in one of two places:

¢ At the RADIUS server
¢ Atthe NAS

Authorization

Restrictions are determined during the authentication process when an Access-Request
packet is sent to the RADIUS server. Account ing-Request packets do not and cannot
determine restrictions.

When a restriction is applied at the RADIUS server, the server returns an Access-Reject
packet, which should include a Reply-Message AVP specifying the reason for rejection.

When a restriction is applied at the NAS, the RADIUS server returns an Access-Accept
packet that includes AVPs that should be applied by the NAS. This means that you have to
ensure that the NAS receives the correct AVPs to implement the restriction and that it also
supports these AVPs in the first place.

Authorization in FreeRADIUS

This section can be seen as an overview of subjects we have covered up to now and as a
refresher before moving on to more hands-on exercises with authorization.

¢ Requests are sent from an NAS (the client) to FreeRADIUS (the server).

¢ These requests are handled by virtual servers, which are defined in the FreeRADIUS
configuration. The default virtual server is called default.

¢ The manner in which incoming requests are handled depends on the configuration
of the various sections inside a virtual server file.

¢ The request itself is handled by the various sections in a logical order. The
authorize section always handles Access-Request packets before the
authenticate section does. The preacct section likewise always handles
Accounting-Request packets before the account ing section does.

¢ Although the section order cannot be changed, we have much flexibility inside the
section to manipulate the request.

The next part will be a basic introduction to ways to process a request. With the use of
comparisons and logic we can control the flow of a request and manipulate attributes.

The unlang language available in FreeRADIUS takes flexibility in authorization to new
heights. Unlang is not a full blown programming language, but rather a processing language.
The purpose of unlang is to implement policies and not to replace complex scripts like

those created with Perl or Python. Unlang sticks to a basic syntax that includes conditional
statements and manipulation of variables. The unlang code does not get compiled but is
interpreted by the FreeRADIUS server. The interpretation happens when the server reads the
configuration files, which typically happens during start-up. The use of unlang is restricted to
specified sections inside the configuration files and cannot be used inside the modules.

[1521

Chapter 7

A key feature of unlang is the ability to use conditional statements to control the process
which handles the request.

FreeRADIUS installs a man page for unlang, which you can consult:
/S $>man unlang

We will demonstrate the use of various conditional statements in order to show how a
request can be processed.

Using conditional statements

Conditional statements are simple, yet so powerful that they remain a building block in any
piece of software. Unlang features two ways to implement conditional checks:

¢ The if statement. This includes the else and elsif options as part
of the statement.

¢ The switch statement.

This section will look at various uses of the i f statement.

Time for action - using the if statement in uniang

The if statement itself is not very complex. It has the following format:

if (condition) {

}

The condition part can become complex due to its many possibilities.

We will now look at the return code of a module and use this code to compare against the
specified condition. Each module in FreeRADIUS is required to return a code after it is called.
The value of this code can subsequently be used as a conditional check in the if statement.

[1531

Authorization

This exercise uses the if condition to reject an Access-Request if the useris not in the
users file.

1. Editthe sites-available/default virtual server under the FreeRADIUS
configuration directory and add the following lines below the £iles entry
inside the authorize section:

if (noop) {

reject

}

2. Restart FreeRADIUS in debug mode and try to authenticate with a username and
password not present in the users file. We assume ali is not defined anywhere:

radtest ali passme 127.0.0.1 100 testingl23

You should get an Access-Reject packet back.

What just happened?

We have added a conditional check below the £iles module under the authorize section.
To activate this change FreeRADIUS had to be restarted. This will cause the radius server to
read and interpret the unlang code. The unlang code is then tested by sending an Access-
Request packet to the server.

We'll first look at the if condition and then at the action taken when the if condition is
met.

If you look at the debug output from FreeRADIUS, you will see how each module returns a
code. Here is a list of available return codes and what they mean:

Module return code Description
notfound Information was not found
noop The module did nothing
ok The module succeeded
updated The module updated the request
For example, it set the Auth-Type internal AVP
fail The module failed
reject The module rejected the request
userlock The user was locked out

(1541

Chapter 7

Module return code Description
invalid The configuration was invalid
handled The module handled the request itself

We can use unlang's if statement to test for a specified return code from a module. To do
this we have to give unlang a hint that it must test for a module return code. We do this
by specifying the return code to test for as an unquoted string in the condition of the i £
statement.

If the condition is an unquoted string and one of the module return codes listed

in the preceding table, unlang will compare this string with the return code of
’ the most recent module.

You may think that we should rather have tested for not found instead of noop. The files
module returns noop instead of not found when a user is not in the users file. Remember
to test or find out what value a module returns in certain situations before creating the
conditional test. If you fail to do this, the results may be different from what you expect.

We can take various actions when the if condition is met. Unlang uses keywords to process
a request. The i f statement is such a keyword. There is also the update keyword, which is

used when manipulating attributes and is discussed later in this chapter. Then there is also a
list of keywords that can be used inside the i f statement. We used the reject keyword to
immediately reject the request if the user is not in the users file. The following table

lists the keywords that can be used inside the i f statement and the effect they have on

the request.

Keywords Description
noop Do nothing.
ok Instructs the server that the request was processed properly.

This keyword can be used to over-ride earlier failures, if the local
administrator determines that the failures are not catastrophic.

fail Causes the request to be treated as if a failure had occurred.

reject Causes the request to be rejected immediately.

Note that although the names are the same as the return codes of a module, there is a
difference between module return codes and these keywords. These keywords are part
of unlang and used inside the if statement. If there is no keyword defined inside the if
statement, it will return, by default, noop.

[1551]

Authorization

Along with these keywords we can also specify the name of any FreeRADIUS module. The
module name is treated as a keyword. if statements can also be nested.

Have a go hero — other tests using conditional statements

Conditional statements offer us a variety of testing capabilities. These can be used during
authorization, for instance, to check if an NAS has supplied a required attribute with the
Access-Request. We can even combine tests using logical operators to create complex
conditions that have to be met before authorizing a user. This section will cover two more
conditional tests, which can be used as building blocks to create a flexible authorization

policy.

These exercises assume an untouched sites-available/default file and can be done
independently. We also assume the users file contains a user called alice with a password
of passme (this is the same user defined and used in all the previous chapters).

Checking if an attribute exists

We can check if a specified AVP exists. If we specify the name of an attribute as an unquoted
string in the condition, unlang will check if this AVP is present in the request.

1. Editthe sites-available/default virtual server under the FreeRADIUS
configuration directory and add the following below the £iles entry inside the
authorize section:
if (Framed-Protocol) {

reject

}

2. Restart FreeRADIUS in debug mode and try to authenticate as alice but alsoadd a 1
to the end of the radtest command. This will include the Framed-Protocol AVP
in the request:

radtest alice passme 127.0.0.1 100 testingl23 1

You should get an Access-Reject packet back.

We can see from the debug output how the if statement is evaluated. Compare the output
when the Framed-Protocol is included in the request to when it is missing.

Although we use the Framed-Protocol attribute for convenience during
the proof of concept here, in the real world, the Framed-Protocol AVP can
% be present in both the Access-Accept and Access-Reply packets. It
g indicates the framing to be used for framed access. The most common value is
Point to Point Protocol (PPP).

[1561

Chapter 7

The following is the output if the Framed-Protocol is present:

++? if (Framed-Protocol)

? Evaluating (Framed-Protocol) -> TRUE
++? if (Framed-Protocol) -> TRUE

++- entering if (Framed-Protocol) {...}
+++ [reject] returns reject

++- 1if (Framed-Protocol) returns reject

The following is the output if the Framed-Protocol is missing:

++? 1f (Framed-Protocol)
? Evaluating (Framed-Protocol) -> FALSE

++? if (Framed-Protocol) -> FALSE

Remember that this conditional test only checks if the AVP is present inside the request.
It does not check for a specific value of the AVP. We will test for certain values later in the

chapter.

Up to now we have two types of unquoted strings:

¢ noop was interpreted by unlang as the return code of the last module.

¢ Framed-Protocol was interpreted by unlang as an attribute.

What happens if the unquoted string is neither? The answer is as follows:

¢ A word equals true.

¢ A number of zero equals false, other numbers equal true.

If you want to check if an attribute does not exist, just add an exclamation mark
%j%‘\ (') in front of the attribute. The exclamation mark in unlang is a logical NOT and

tests if a condition does not exist.

Using logical expressions to authenticate a user

Unlang also supports logical AND (&&) and logical OR (| |) in the condition statement. In this
exercise we will reject a user who is not in the users file or when the Framed-Protocol

AVP is present in the request.

1. Editthe sites-available/default virtual server under the FreeRADIUS

configuration directory and add the following lines below the £iles entry inside the

authorize section:

if ((noop) | | (Framed-Protocol)) {
reject
}

1571

Authorization

2. Restart FreeRADIUS in debug mode and try to authenticate as alice but also add
a 1 to the end of the radtest command. This will include the Framed-Protocol
AVP in the request:

radtest alice passme 127.0.0.1 100 testingl23 1

You should get an Acces-Reject packet back.

3. Try to authenticate with a username and password not present in the users file.
You should also get an Access-Reject packet back.

4. Finally try to authenticate with a username and password not present in the users
file and also add a 1 to the end of the radtest command. You should also get an
Access-Reject packet back.

The debug feedback from the FreeRADIUS server will indicate how the i f condition was
evaluated during the request.

Authorization in RADIUS depends heavily on attributes. We can use the AVPs inside an
Access-Request to verify if it meets our requirements during authorization. We can also
return AVPs inside the Access-Reply to instruct the NAS that a user is only authorized to
do certain things.

Since the RADIUS protocol is all about attributes, unlang mostly uses attributes as variables.
There are also some exceptions where variables are not attributes. This will also be covered
in this section.

Attribute lists

FreeRADIUS manages attributes by storing them inside lists. A list is like a namespace, which
allows an attribute with the same name to exist in different places independently. Unlang
can be used to manipulate or add attributes inside these different lists:

¢ Thereis a request list, which contains all the AVPs from the request, for example
User-Name.

¢ Thereis a reply list, which contains all the AVPs that will eventually be inside the
reply, for example Reply-Message.

¢ We have also worked with the control list in the previous chapters where we
referred to attributes inside this list as internal attributes, for example Auth-Type.

¢ Torefer to an attribute inside a specific list, we use the name of the list and a colon
followed by the attribute name, for example request : Framed-Protocol.

¢ If the name of the list is omitted it refers to the request list. This is why we could
get away with not specifying a list name in the previous exercises.

[158]

Chapter 7

¢ The following attribute lists are available for use: request, reply, control,
proxy-request, proxy-reply, outer.request, outer.reply, outer.
control, outer.proxy-request, and outer.proxy-reply.

¢ Attributes are added or modified through the use of the update keyword. The
update keyword used together with the name of the list that has to be modified
creates an update section in which attributes can be modified or added.

After this introduction to attributes and attribute lists it is time to use them in a
practical exercise.

Time for action - referencing attrihutes

In this section we shall make use of attributes.

Attributes in the if Statement

Unlang can be used in various sections inside a virtual server definition. Previously we have
used it in the authorize section. You should not use unlang inside the authenticate
section as per instruction of the FreeRADIUS authors. We will use unlang in the post-auth
section to determine if Auth-Type = PAP was used and give feedback if it was indeed used
to authenticate a user.

1. Editthe sites-available/default virtual server under the FreeRADIUS
configuration directory and add the following inside the post -auth section,
at the top of the section:

if (control:Auth-Type == 'PAP')
update reply {
Reply-Message := "We are using %{control:Auth-Type}
authentication"

}
}

2. Restart FreeRADIUS in debug mode and try to authenticate as alice.
The Reply-Message specified should be included inside the reply.

[1591]

Authorization

What just happened?

We have used unlang to test the value of the Auth-Type AVP inside the control attribute
list. If it was equal to PAP we modified the Reply-Message AVP inside the reply attribute
list. Although the if statement consists of a mere five lines, there are important things to
discuss. We will discuss the following:

¢ Ways to reference attributes in a condition

¢ Comparison operators

¢ Changing and adding attributes in an attribute list

Referencing attributes in a condition
When referencing an attribute there is an alternative syntax to what we have used in the
condition. It is as follows:

if ("${control:Auth-Type}" == 'PAP') {

Although both can be used, the first is preferred for easy reading. The alternative syntax is
normally used inside strings. The attribute's value will then be inserted to become part of
the string. This is called string expansion. We have used string expansion to create the value
of Reply-Message.

o

Reply-Message := "We are using %{control:Auth-Type} authentication"

If we omit the reference to the attribute list (control :), unlang will use
request : Auth-Type. If this attribute is not inside the attribute list, unlang returns false.

There are quite a few comparison operators that can be used in the condition test. The data
type of the AVP will determine which operators are available for use.

Operator Data type Sample

== Strings and numbers (control:Auth-Type == 'PAP')

= (reply:Idle-Timeout != 60)

< Numbers (reply:Idle-Timeout <= 60)

<=

>

>=

= Strings to regular (request :User-Name =~ /" .*\.co\.
I~ expressions za/i)

[160]

Chapter 7

Unlang can be used to modify AVPs. To modify the value of an AVP we need to use the
update keyword in unlang. The synopsis for the update statement is as follows:

update <list> {
attribute <operators> value

}

The update statement can only contain attributes. The value of the operator is very
important because it will determine how existing attributes in the list with that name will be
treated. We will discuss three commonly used operators here. Note that other operators do
exist. Refer to the unlang man page for more information on them.

Operator Description

= Add the attribute to the list, if and only if an attribute of the same name is not
already present in that list.

1= Add the attribute to the list. If any attribute of the same name is already present
in that list, its value is replaced with the value of the current attribute.

+= Add the attribute to the tail of the list, even if attributes of the same name are
already present in the list.

Take care that the value you assign to an attribute is the correct type. When you assign a
string value to an attribute that should take an integer value, it will result in an error.

Variables cannot be declared in unlang like they are in other languages. With unlang

all attributes are variables but not all variables are attributes. Before an attribute can

be referenced as a variable inside an attribute list it has to be added to the list first. All
references to variables must be contained inside a double-quoted or back-quoted string.
References to variables inside this quoted string are in the form % {<variables>}. In the
previous section, we have referred to the Auth-Type variable, which is an attribute:

Reply-Message := "We are using %{control:Auth-Type} authentication"

In this section we will refer to variables that are not attributes.

11611

Authorization

Time for action - SQL statements as variables

One very powerful function of unlang is that it allows you to execute SQL queries through
the sqgl module. The query is actually a variable and the return value of this query is the
value of the variable. We will now modify the previous exercise to fetch the time from the
database and add this to the Reply-Message value.

To execute SQL queries you need to include and configure FreeRADIUS to use the
% sgl module. The sgl module also needs to be used in at least one section, for
instance, the authorize or the account ing section.

1. Editthe sites-available/default virtual server under the FreeRADIUS
configuration directory and add the following inside the post-auth section,
at the top of the section:

if (control:Auth-Type == 'PAP') {
update reply {
Reply-Message := "We are using %{control:Auth—Type}
authentication and the time in the database is now %{sql:SELECT
curtime () ;}"

}
}
2. Restart FreeRADIUS in debug mode and try to authenticate as alice.

The Reply-Message specified should be included inside the reply and should
return the time in the database.

What just happened?

We have used an SQL statement as a variable and returned the result of this statement as
the value of this variable.

Here is the debug output from the FreeRADIUS server indicating how the SQL satement was
executed:

++? if (control:Auth-Type == 'PAP')

? Evaluating (control:Auth-Type == 'PAP') -> TRUE
++? if (control:Auth-Type == 'PAP') -> TRUE

++- entering if (control:Auth-Type == 'PAP') {...}
sql_xlat

expand: %{User-Name} -> alice

11621

Chapter 7

sql set user escaped user --> 'alice'
expand: SELECT curtime(); -> SELECT curtime();
rlm sql (sqgl): Reserving sql socket id: 3
sql xlat finished
rlm sql (sqgl): Released sql socket id: 3

expand: We are using %{control:Auth-Type} authentication and the
time in the database is now %{sql:SELECT curtime();} -> We are using PAP
authentication and the time in the database is now 17:48:54

+++ [reply] returns noop
++- 1f (control:Auth-Type == 'PAP') returns noop

As you can see the SQL query is treated in much the same way as the attribute. The following
points about SQL statements as variables are handy to remember:

¢ The SQL query should return a single value. This value is the value assigned to the
SQL statement variable.

¢ The SQL query can refer to attributes inside the query itself. If we want to get the
total usage for the current user, we can use the following line:
"The total octets is: %{sqgl: SELECT IFNULL (SUM(AcctInputOctets
+ AcctOutputOctets),0) FROM radacct WHERE UserName='%{User—
Name}';}"

¢ A quoted or back-quoted string can have a combination of SQL queries and
attributes. These will be expanded to return a result.

¢ Ifthe sgl module is not used in FreeRADIUS, the result of the SQL query expansion
will be an empty string and the debug message will show an error:

WARNING: Unknown module "sgl" in string expansion "%{sgl:SELECT
curdate () ; }"

Expanded strings can be up to about 8000 characters long. This leaves enough
A room for pretty complex SQL statements.

Time for action - setting default values for variables

We are not always sure if a variable exists. Unlang features syntax for us to specify a default
value in case a variable does not exist. Again we will demonstrate this by modifying the
previous exercise. We will use radtest to first include Framed-Protocol = PPP in the
request and also to leave it out. If the Framed-Protocol AVP is not present, we will return
a default string.

11631

Authorization

1.

Edit the sites-available/default virtual server under the FreeRADIUS
configuration directory and add the following code inside the post-auth
section, at the top of the section:
if (control:Auth-Type == 'PAP') {

update reply {

Reply-Message := "Framed protocol is:
${%{request:Framed-Protocol}:-Not in request}"

}
}

2. Restart FreeRADIUS in debug mode and try to authenticate as alice.
First add a 1 to the end of the radtest command, then omit the 1.
3. Thevalue of Reply-Message with 1 added to radtest should be:
Reply-Message = "Framed protocol is: PPP"
4. The value of Reply-Message with 1 omitted from radtest should be:
Reply-Message = "Framed protocol is: Not in request"
What just happened?

We have used the ability of unlang to assign default values to variables.

The : - character sequence inside a variable reference is an indication for unlang that when
the first variable does not exist, it should try to use that what follows the : - character
sequence. Take note of the following important points:

If : - is followed by an unquoted string, it will return this string.

If : - is followed by a reference to another variable, you can create a chain to
eventually test for the existence of several variables, for example:

${%{request :Framed-Protocol}:-%{request: NAS-Name}:- Default
value}

This syntax is called conditional syntax and changes between versions of

FreeRADIUS. Some of the modules still use the older syntax, which will result in
warnings inside the debug messages. An example of this is in the 1dap module.
You can change the following line in the 1dap module's configuration file from:

filter = " (uid=%{Stripped-User-Name:-%{User-Name}})"
to:
filter = " (uid=%{%{Stripped-User-Name}:-%{User-Name}})"

11641

Chapter 7

Time for action - using command substitution

Up to now we have used double-quotes to contain a variable that will be referenced. Unlang
also features back-quoted strings, which allows for command substitution. The string inside
these back-quotes is evaluated similarly to double-quoted strings where string expansion can
take place.

Let's modify the previous exercise to show command substitution in action:

1. Editthe sites-available/default virtual server under the FreeRADIUS
configuration directory and add the following inside the post-auth section,
at the top of the section:
if (control:Auth-Type == 'PAP') {
update reply {
Reply-Message := ~/bin/echo We are using %{control:Auth-
Type}”
}
}
2. Restart FreeRADIUS in debug mode and try to authenticate as alice.
The feedback of the echo command will now be assigned to the Reply-Message
attribute.
What just happened?

We have used back-quotes to perform command substitution. The output of this command
has been assigned to an attribute.

Take note of the following points on command substitution in unlang:

*

* 6 o o

The command is executed in a sub-shell of the FreeRADIUS server. The content of
the string is passed and executed in this sub-shell.

The string is split up into command and argument(s). In our example the command
will be /bin/echo and the argument We are using PAP.

Use full paths when specifying executables.
Executables are run as the user that runs the FreeRADIUS server.
You can include other variables inside the command substitution string.

If the command fails to execute, it introduces problems. This depends on the exit
code of the executable that was called. Unlang tests the exit code of the executable
and if it is not zero it returns a reject. Reject, as listed at the start of the chapter,
causes the request to be rejected immediately.

11651

Authorization

¢ The exit code and the command output are two different things. The command
output will be assigned to the variable if the exit code is zero.

Only the first line in a multiple line output is returned and assigned.

Use command substitution with care as it impacts performance.

Time for action — using regular expressions

Unlang allows regular expression evaluations in condition checking. These usually are Posix
regular expressions. The operators =~ and ! ~ are associated with regular expressions. For a
simple proof of concept we will modify the previous exercise:

1. Editthe sites-available/default virtual server under the FreeRADIUS
configuration directory and add the following inside the post-auth section,
at the top of the section:

if (request:Framed-Protocol =~ /.*PP$/1i) {
update reply {
Reply-Message := "Regexp match for %{0}"

}
2. Restart FreeRADIUS in debug mode and try to authenticate as alice.
First add a 1 to the end of the radtest command, then omit the 1.

Take note how the regular expression match changes the value of
Reply-Message when you add the 1 to the radtest command.

What just happened?
We have shown the regular expression capabilities of unlang. Take note of the following
important points on regular expressions in unlang:

The operators =~ and ! ~ are used with regular expressions.

The regular expression is specified between two / characters.

Regular expressions allow you to refer to variables inside them, for example,
/"% {Framed-Protocol}s$/1i.

¢ You can add an optional i character at the end of the regular expression to make
the search case insensitive.

& If there was a match, the special variable ${0} holds the value of the variable that
was tested in the regular expression.

(1661

Chapter 7

This brings us to the end of the unlang introduction. You should now know most of the
building blocks that are used in unlang. The next section will make good use of these
building blocks to create a real-world application of unlang.

In the previous chapter, Chapter 6, Accounting, we covered the sgl counter module. This
module is useful to limit the time a user can spend daily, weekly, or monthly on the network,
however, sgl _counter has problems in limiting a user's data usage.

Limiting data usage

To limit a user's daily, weekly, or monthly data usage we have to take a different approach.
The ability of unlang to use SQL statements as variables opens up a lot of possibilities. We
will use the same scenario previously mentioned of Isaac who runs a WISP. Isaac nhow wants
to restrict the amount of data a person can use over a period of time. He makes use of
Mikrotik and Coova Chilli captive portals to control network access and has a FreeRADIUS
RADIUS server.

Time for action - using uniang to create a tata counter

We first have to ensure that certain things are in place in order for this exercise to be
successful. The following items should be completed first as preparation:

Define custom attributes in the dictionary.

Create Perl scripts that will be used by the FreeRADIUS per1 module.
Update Mikrotik and Chillispot dictionaries.

Prepare the users file.

Prepare the SQL database.

Add unlang code to the virtual server to serve as a data counter.

® 6 6 & 6 o o

Identify the LD PRELOAD bug, if present.

There is a lot of work involved in this exercise. Following a divide and conquer approach will
prevent us from being overwhelmed. Let's tackle it!

We have seen from the introduction to unlang that the primary use of variables is through
attributes. We need to define some attributes to use in the data counter.

11671

Authorization

Edit the dictionary file under the FreeRADIUS configuration directory and add the
following attribute definitions:

ATTRIBUTE FRBG-Reset-Type 3050 string
ATTRIBUTE FRBG-Total-Bytes 3051 string
ATTRIBUTE FRBG-Start-Time 3052 integer
ATTRIBUTE FRBG-Used-Bytes 3053 string
ATTRIBUTE FRBG-Avail-Bytes 3054 string

Each attribute starts with "FRBG". This is just to differentiate it from other attributes and
stands for FreeRADIUS Beginner's Guide.

The RADIUS protocol can only transmit attributes with numeric values of up to
s 255 over the wire. Attributes with values larger than 255 are used internally.

The following table lists each attribute and its meaning:

Attribute Meaning

FRBG-Reset-Type Specify when the counter should be reset. Values can be daily,
weekly, monthly, ornever

FRBG-Total-Bytes The amount of data a user can use in bytes, also known as a data cap.

FRBG-Start-Time The Unix timestamp specifying the start time of the counter.

FRBG-Used-Bytes The amount of data used from the start time up to now.

FRBG-Avail-Bytes The amount of data still available:

FRBG-Avail-Bytes = FRBG-Total-Bytes - FRBG-Used-
Bytes

If you were observant, you would have noticed that the attributes involving bytes are all
defined as type string instead of type integer. We use this as a workaround to the
32-bit limit of type integer. The following sub-section explains the 32-bit integer limitation
in more detail.

32-hit limitation

Integer values in RADIUS have a limit of 32-bits. This means that an attribute of type integer
cannot have a value of more than 4,294,967,295 (2% - 1). To overcome this limitation,
RADIUS uses a Gigaword attribute, which acts as a carry bit to the 32-bit attribute.
Accounting-Request packets for instance will contain Acct - Input-Octets and
Acct-Input-Gigawords to represent values larger than 4,294,967,295.

[168]

Chapter 7

Suppose we have a value of 8.5 GB. This can be defined using the Gigaword carry in the
following way:

¢ Theinteger value of 8.5 GB is 9,126,805,504 bytes (8.5 x 1024 x 1024 x 1024).
A byte is equal to an octet in network terms.

¢ To calculate the value of the Gigaword carry, we divide 9,126,805,504 by
4,294,967,296. The result is 2.125. (9126805504 / 4294967296 = 2.125). The value
of the Gigaword carry is then 2.

¢ To calculate the remainder, we multiply the Gigaword carry value by 4,294,967,296
and subtract this value from the original (9126805504 - (2 x 4294967296) =
536870912).

¢ This means that 8.5GB can be presented in an Accounting-Request packet as

follows: Acct-Input-Gigawords = 2,Acct-Input-Octets = 536870912.

This 32-bit integer limitation is only on the RADIUS protocol. The database schema already
caters for large integer numbers bigint (20).

FreeRADIUS deployments before the 2.x release will require modifications to
s incorporate support for Gigawords.

With the 32-bit integer limitation it becomes difficult to perform comparisons using unlang
when values are larger than 4,294,967,295. For this reason we set the attributes to type
string and use the perl module to perform comparisons for us. The perl module does not
have the 32-bit limitation. Defining the attribute type as string allows the following:

¢ To specify attribute values larger than 4,294,967,295.

¢ To allow Perl to convert the string value to a numeric value for calculations.
This overcomes the 32-bit limitation.

FreeRADIUS allows for optional naming of a section. This gives us the ability to define various
named sections for the perl module. Each named section can subsequently be used as a
module. The definition is as follows:

perl <name>

}

(1691

Authorization

We will create two named perl sections under the modules directory:

1. Inthe modules directory under the FreeRADIUS configuration directory,
create a file called reset _time with the following contents:

perl reset time (

module = ${confdir}/reset time.pl

}

2. Inthe modules directory under the FreeRADIUS configuration directory,
create a file called check_usage with the following contents:

perl check usage {

module = ${confdir}/check usage.pl

}

3. These two perl sections each refer to a Perl script, which will be called by the perl
module. Ensure these Perl scripts are in the FreeRADIUS configuration directory.

The scripts and their contents are listed in the following sections.

reset_time.nl
The reset time.pl scriptis used to do the following:
¢ Ifthe value of FRBG-Reset-Type is daily, weekly, or monthly, it will add the
FRBG-Start-Time AVP.
The value of FRBG-Start-Time is the Unix time when the counter started.

If FRBG-Start-Time AVP was added, the script's return code will have a value of
updated.

¢ Ifthe FRBG-Start-Time AVP was not added (FRBG-Reset-Type = never), the
script's return code will have a value of noop.

Here's the contents of reset time.pl:

#! /usr/bin/perl -w
use strict;
use POSIX;

use
This is very important !
use vars gw ($RAD_CHECK) ;

use constant RLM_MODULE OK=> 2;# /* the module is OK,
continue */

use constant RLM_MODULE_NOOP=> 7;

use constant RLM MODULE_UPDATED=> 8;# /* OK (pairs modified) */

(1701

Chapter 7

sub authorize ({
#Find out when the reset time should be
if (SRAD CHECK{'FRBG-Reset-Type'} =~ /monthly/i) {
SRAD CHECK{'FRBG-Start-Time'} = start of month ()
}
if (SRAD CHECK{'FRBG-Reset-Type'} =~ /weekly/1i) {
S$RAD CHECK{'FRBG-Start-Time'} = start of week()
}
if (SRAD CHECK{'FRBG-Reset-Type'} =~ /daily/i){
SRAD CHECK{'FRBG-Start-Time'} = start of day()
}
if (exists (SRAD CHECK{'FRBG-Start-Time'})) {
return RLM_MODULE_UPDATED;

lelse{
return RLM MODULE_ NOOP;

}

sub start of month {
#Get the current timestamp;
my Sreset on = 1; #you decide when the monthly CAP will reset
my Sunixtime;
my ($sec,$min, Shour, $Smday, $Smon, Syear, $Swday, Syday, $isdst)=1localtim
e (time) ;
if ($mday < Sreset _on) {
$unixtime = mktime (0, 0, 0, S$Sreset on, $mon-1, S$Syear, 0, 0);
#We use the previous month
}else{
Sunixtime = mktime (0, 0, 0, S$Sreset on, mon, Syear, 0, 0);
#We use this month

}

return Sunixtime;

sub start of week (
#Get the current timestamp;
my (S$Ssec,$min, Shour, $Smday, Smon, Syear, $Swday, $Syday, $isdst)=1localtim
e (time) ;
#icreate a new timestamp:
my Sunixtime = mktime (0, 0, 0, S$mday-$wday, S$mon, Syear, 0, 0);
return Sunixtime;

}

sub start of day {
#Get the current timestamp;

1l

Authorization

my ($sec,$min, Shour, $mday, Smon, Syear, Swday, Syday, $isdst)=1localtim
e(time) ;

#create a new timestamp:

my Sunixtime = mktime (0, 0, 0, $mday, S$mon, S$year, 0, 0);

return Sunixtime;

check_usage.pl
The check _usage.pl script is used to do the following:
¢ Add reply attributes to specify the available bytes for a user. This includes the
calculation of Gigaword values.
Specify the return code as updated if reply attributes were added.
Reject the request if the data usage exceeds the allotted portion by specifying the

return code as reject and adding a Reply-Message.

Here's the contents of check usage.pl:

#! usr/bin/perl -w
use strict;

use
This is very important!
use vars gw(%RAD CHECK %RAD REPLY) ;

use constant RLM MODULE OK=> 2;# /* the module is OK,
continue */

use constant RLM_MODULE UPDATED=> 8;# /* OK (pairs modified) */
use constant RLM_MODULE REJECT=> 0;# /* immediately reject the
request */

use constant RLM MODULE_ NOOP=> 7;

my $int max = 4294967296;
sub authorize {

#We will reply, depending on the usage
#If FRBG-Total-Bytes is larger than the 32-bit limit we have
to set a Gigaword attribute
if (exists ($RAD CHECK{'FRBG-Total-Bytes'}) && exists(SRAD
CHECK{ 'FRBG-Used-Bytes'})) {
$RAD CHECK{'FRBG-Avail-Bytes'} = SRAD CHECK{'FRBG-
Total-Bytes'} - S$RAD CHECK{'FRBG-Used-Bytes'};
lelse{
return RLM MODULE NOOP;

[1721

Chapter 7

if (SRAD CHECK{'FRBG-Avail-Bytes'} <= $RAD CHECK{'FRBG-Used-

Bytes'}) {
if (SRAD CHECK{'FRBG-Reset-Type'} ne 'never') {
SRAD REPLY{'Reply-Message'} = "Maximum $RAD
CHECK{ 'FRBG-Reset-Type'} usage exceeded";
lelse{
SRAD REPLY{'Reply-Message'} = "Maximum usage
exceeded";

}

return RLM_MODULE_ REJECT;
}
if (SRAD CHECK{'FRBG-Avail-Bytes'} >= $int max) {
#Mikrotik's reply attributes
S$RAD REPLY{'Mikrotik-Total-Limit'} = $RAD CHECK({'FRBG-
Avail-Bytes'} % $int max;
$RAD REPLY{'Mikrotik-Total-Limit-Gigawords'} =
int ($RAD CHECK{'FRBG-Avail-Bytes'} / $int max);
#Coova Chilli's reply attributes
S$RAD REPLY{'ChilliSpot-Max-Total-Octets'} = $RAD
CHECK{ 'FRBG-Avail-Bytes'} % $int max;
$RAD REPLY{'ChilliSpot-Max-Total-Gigawords'} =
int ($RAD CHECK{'FRBG-Avail-Bytes'} / $int max);
lelse{
SRAD REPLY{'Mikrotik-Total-Limit'} = $RAD CHECK({'FRBG-
Avail-Bytes'};
SRAD REPLY{'ChilliSpot-Max-Total-Octets'} = $RAD
CHECK{ 'FRBG-Avail-Bytes'};
}

return RLM MODULE UPDATED;

}

Since Isaac uses Mikrotik and Coova Chilli, we include their AVPs used for limiting total data.
Consult the documentation of your NAS to determine if it supports data limiting and which
AVPs should be used for that.

The FreeRADIUS perl module is packed separately in CentOS. Ensure that this package is
installed. SUSE and Ubuntu already include the per1l module with the standard installation
of FreeRADIUS although there is also, added as a bonus, one bug, which we will remove later.

(1131

Authorization

FreeRADIUS includes dictionary files for the various vendors. The attributes we wish to
return are part of later developments from these vendors and are not included inside the
dictionary files that come standard with FreeRADIUS. We have to include them by adding
them to the existing dictionary files. The dictionary files for vendors are usually under the
/usr/share/freeradius directory. If you installed FreeRADIUS using the configure,
make, make install pattern it will be under /usr/local/share/freeradius.

Find the location of the vendor dictionaries and add the following attributes to the
respective dictionaries:

¢ dictionary.chillispot

ATTRIBUTE ChilliSpot-Max-Input-Gigawords 21 integer
ATTRIBUTE ChilliSpot-Max-Output-Gigawords 22 integer
ATTRIBUTE ChilliSpot-Max-Total-Gigawords 23 integer

& dictionary.mikrotik

ATTRIBUTE Mikrotik-Total-Limit 17 integer
ATTRIBUTE Mikrotik-Total-Limit-Gigawords 18 integer

The changes that we have just made are to the attributes of a vendor (VSAs) and can be
transmitted inside the RADIUS packets over the wire. VSAs are different from the attributes
that we added earlier to the main dictionary file that are used internally by the FreeRADIUS
server.

Remember that using the latest version of Mikrotik and Coova Chilli will ensure these
attributes are supported. Also see if there are additional attributes introduced with the
latest versions that need to be included.

The recommended way of updating dictionaries

This exercise does not follow the recommended way of updating dictionary files. There is a
dedicated chapter on dictionaries later in the book, which covers the recommended way to
keep dictionaries up-to-date.

The way dictionaries are included during start-up is also covered in more detail in the chapter
on dictionaries. In short, the master dictionary file under the FreeRADIUS configuration
directory includes a file called /usr/share/freeradius/dictionary. This file in turn
includes the various .dictionary files located under /usr/share/freeradius/.

We will use the users file as a user store. In the real world you can use other sources such
as an SQL database or an LDAP directory.

1l

Chapter 7

Ensure the users file contains the following entry for alice:

"alice" Cleartext-Password := "passme", FRBG-Total-Bytes
:='9126805504 "', FRBG-Reset-Type := 'monthly'
Reply-Message = "Hello, %{User-Name}"

This will limit data use to 8.5 GB each month.

Preparing the SQL datahase

Although we define alice in the users file, we will use SQL for accounting. Follow these
steps to prepare the database:

1. Ensure you have a working SQL configuration as specified in Chapter 5, Sources
of Usernames and Passwords.

2. We will not use SQL as a user store. Confirm that sq1 is disabled (commented
out) inside the authorize section in the sites-enabled/default file
under the FreeRADIUS configuration directory.

3. For our data counter to be successful ensure sql is enabled (uncommented)
inside the accounting section in the sites-enabled/default
file under the FreeRADIUS configuration directory.

4. Use the mysql client program and clean-up any previous
accounting details that may still exist in the database:
$>mysgl -u root -p radius

delete from radacct;

5. Laterin this exercise we will simulate accounting using the radclient
program. Make sure you create the 4088 06 acct_start.txt and
4088 06 _acct_stop.txt files specified in Chapter 6, Accounting.

You may be concerned that the sql module also has the 32-bit integer limitation.
Fortunately this has all been taken care of in the newer versions of FreeRADIUS. FreeRADIUS
takes care of combining the Gigaword carry bit AVP with the octet AVP before updating the
SQL database. The SQL schema for MySQL also uses bigint (20) to store octet values,
which is more than enough to store large numbers.

Adding uniang code to the virtual server

All the preparation up to now was done in order for us to add the next piece of unlang

code to the virtual server definition. Add the following code just below the daily entry
inside the authorize section in the sites-enabled/default file under the FreeRADIUS
configuration directory.

(1151

Authorization

if ((control:FRBG-Total-Bytes)&& (control:FRBG-Reset-Type)) {
reset time
if (updated) # Reset Time was updated,
we can now use it in a query
update control {
#Get the total usage up to now:
FRBG-Used-Bytes := "%{sgl:SELECT
IFNULL (SUM (acctinputoctets - GREATEST ((%{control:FRBG-
Start—Time} - UNIX TIMESTAMP (acctstarttime)), 0))+
SUM (acctoutputoctets -GREATEST ((%${control:FRBG-Start-Time}
- UNIX TIMESTAMP (acctstarttime)), 0)),0) FROM radacct WHERE
username='%{request:User-Name}' AND UNIX TIMESTAMP (acctstarttime) +
acctsessiontime > '%{control:FRBG-Start-Time}'}"

}
}

elsef
#Asumes reset type = never
#Get the total usage of the user
update control {

FRBG-Used-Bytes := "%{Sql:SELECT IFNULL (SUM (ac
ctinputoctets) +SUM (acctoutputoctets),0) FROM radacct WHERE
username='%{request :User-Name}'}"

}
}

#Now we know how much they are allowed to use and the usage.
check usage

}

The data counter is now complete.

The SUSE and Ubuntu bug

There is a bug in SUSE and Ubuntu that results in an error if FreeRADIUS is using the perl
module. Time to squash it!

Restart the FreeRADIUS server in debug mode. Although it may sound strange, if all goes well
you should get an error message similar to the following:

/usr/sbin/radiusd: symbol lookup error: /usr/lib/perl5/5.10.0/i586-
linux-thread-multi/auto/Fentl/Fentl.so: undefined symbol: Perl Istack
sp_ptr

This is because there is a problem with the dynamic loading of required per1 modules.

(1761

Chapter 7

. Ifyou do not get an error, it may be because your installation of FreeRADIUS
& does not have this reported problem. If you have, for instance, compiled
S FreeRADIUS on your own with the configure, make, make install
pattern, this error should not be present.

Pre-loading Perl library

To overcome the dynamic loading problem we first have to set the LD PRELOAD
environment variable before starting the FreeRADIUS server. Unfortunately the location and
name of the library to specify for pre-loading is different on each distribution.

We have to specify the 1ibperl. so library. The following command will help us to locate
and determine precisely what this library is called on your distribution. If the results yield
more than one, they are usually various symbolic links to a single library.

$>find / -name "*libperl.so*"

Use the table below as a reference:

Distribution Location of libperl.so

SLES /usr/lib/perl5/5.10.0/1586-1linux-thread-multi/CORE/
libperl.so

Ubuntu /usr/lib/libperl.so

Understanding environment variables
Wikipedia defines environment variables as the following:

~Q http://en.wikipedia.org/wiki/Environment variable

Environment variables are a set of dynamic named values that can affect the way
running processes will behave on a computer. They can be said in some sense to
create the operating environment in which a process runs.

Testing the data counter

The moment of truth has arrived. It is time to test the data counter. If you use SUSE or
Ubuntu, remember the LD PRELOAD. CentOS does not have this problem.

1. Restart FreeRADIUS in debug mode; set the LD PRELOAD environment variable
if required. We assume Ubuntu here. Please change to suit your distribution:

#>LD PRELOAD=/usr/lib/libperl.so /usr/sbin/freeradius -X

[l

Authorization

2. Try to authenticate as alice using the radtest command:
$>radtest alice passme 127.0.0.1 100 testingl23

3. Youshould get the following AVPs in the reply from FreeRADIUS:
ChilliSpot-Max-Total-Gigawords = 2
ChilliSpot-Max-Total-Octets = 536870912
Mikrotik-Total-Limit-Gigawords = 2
Mikrotik-Total-Limit = 536870912
Reply-Message = "Hello, alice"

4. Simulate some accounting by using radtest in combination with the
4088 06_acct start.txtand 4088 06 acct_ stop.txt files:
$>radclient 127.0.0.1 auto testingl23 -f 4088 06 acct start.txt
$>radclient 127.0.0.1 auto testingl23 -f 4088 06 acct stop.txt

5. Try to authenticate again as alice using the radtest command. You should now
get different values back in the reply showing how the remaining data is depleted:
ChilliSpot-Max-Total-Gigawords = 2
ChilliSpot-Max-Total-Octets = 536866638
Mikrotik-Total-Limit-Gigawords = 2
Mikrotik-Total-Limit = 536866638

6. Repeat the accounting simulation and authentication testing cycle a couple
of times. Note how the available bytes are reduced with each cycle.

To complete this exercise in a proper way you can do the following as a challenge:

¢ Define a policy in the policy. conf file. The contents will be the unlang code that
we added to the default file. Replace that code with the newly created policy.

¢ Addthe LD PRELOAD environment variable to the FreeRADIUS start-up scripts on

SUSE and Ubuntu.

(1181

Chapter 7

Authorization can become the most complex part of FreeRADIUS. By making good use of
what unlang offers, we can overcome almost every imaginable problem.

In this chapter, we have covered:

& Applications of restrictions: Restrictions can be applied at the RADIUS server or at
the NAS device.

¢ Unlang: Unlang is a powerful processing language that allows us to manipulate the
way an incoming request is handled by FreeRADIUS. It features conditional checks
that can control the flow of a request. It also allows for interaction with certain
modules like the sg1 module to obtain results from an SQL database. Unlang
enables us to manipulate and add AVPs that will be returned with Access-Accept
packets. The use of unlang should be mastered by anyone who wants to create
flexible and versatile configurations in FreeRADIUS.

With this chapter on Authorization at an end, we have now completed the coverage of the
AAA framework. The rest of this book will focus on more advanced topics of RADIUS, as well
as subjects specific to FreeRADIUS.

(191

Authorization

1. You are implementing a restriction at the NAS by returning an AVP that is supposed
to enforce bandwidth throttling for a user. It somehow does not seem to work
correctly. What may be wrong?

2. Like any hardcore IT dude you'd like your FreeRADIUS server to be super fast.
Unfortunately you have to make use of external code to get the value for an
attribute. This can be done through Bash or Perl. Which option will yield the best
performance?

Where will you define attributes that will be used internally by unlang?

4. What is the attribute list called where the internal attributes are stored and how will
| reference the Auth-Type attribute inside this list?

5. You have inherited a FreeRADIUS deployment and while going through the
configuration files you come across the following piece of unlang code inside the
policy.conf file:
rewrite calling station id {

if (request:Calling-Station-Id =~ /([0-9a-£f]{2})[-:1?([0-9a-
£1{2}) [-:1?2([0-9a-£f1{2}) [-:1?([0-9a-£f]{2}) [-:1?([0-9a-£f]{2})
[-:1?2([0-9a-£f]1{2}) /1) {
update request

Calling-Station-Id := "%${1}-%{2}-%{3}-%{4}-%{5}-
{6}
}
}
else {
noop
}
}

What does this code do?

[1801]

A major new feature in the 2.x branch of FreeRADIUS was the introduction of
virtual servers. This concept is not new and was already used by web servers
when the 2.x branch came into being. FreeRADIUS, however, was the first to
introduce virtual servers to RADIUS. This chapter gives more insight into the
world of virtual servers in RADIUS.

In this chapter we shall:

See why you would use virtual servers
See how virtual servers are defined and enabled

Explore the 1isten and client sections

* & o o

Discover pre-defined virtual servers

So let's get on with it...

Why use virtual servers?

Virtual servers are the best thing since powdered milk! You may ask just why we make such
a statement. The reason is because of the flexibility they introduce. With a virtual server you
can create a tailor-made policy and wrap this inside a functional unit.

Virtual RADIUS servers are very different in concept and function from real virtual servers
like one that is virtualized with VMware or VirtualBox. Virtual servers in RADIUS makes easy
yet powerful configuration possible because they allow a clean separation of policies. This
was not possible in earlier versions of FreeRADIUS.

Virtual Servers

One of a virtual server's policies will, for instance, specify the use of an LDAP directory user
store while another virtual server will specify an SQL database. These two servers can then
be used independently from each other. The decision of which virtual server to use can be

specified in one of the following sections in the FreeRADIUS configuration:

L 4

listen: Depending on a specified IP address, port, and packet type combination,

a virtual server will be selected. Listen sections are usually found in the radius.
conf file. The 1isten section is a popular place to specify a virtual server.
FreeRADIUS allows multiple 1isten sections and each of these sections can be
used to group a certain IP address and UDP port combination together with a virtual
server. When used in this way, the server running FreeRADIUS will typically have
multiple IP addresses.

client: Depending on the IP address of a client, a virtual server will be selected.
Clients are defined in the clients. conf file.

home server pool, home server, or realm: Specify a virtual server that will be
used to send proxy requests through. Proxying is configured through the proxy.
conf file and is covered later in the book.

EAP tunnels: Specify a virtual server to be used by EAP's PEAP or TTLS inner-tunnel
methods. EAP is configured through the eap . conf file and is covered later in the
book.

A virtual server is specified through the virtual server = <virtual servers directive
inside these sections. Time to get our hands dirty.

A virtual server policy should not be confused with policies inside the policy.

% conf file. The policy of a virtual server refers to a virtual server's characteristics

whereas a policy in the policy. conf file is simply a piece of unlang code
wrapped and named for easy reference and usability.

FreeRADIUS has two virtual servers enabled by default. They are located under the
sites-enabled sub-directory of the FreeRADIUS configuration directory. They are:

*

default: The name pretty much says what the virtual server does. This virtual
server handles all the default requests that are not explicitly specified to be handled
by avirtual server directive. We have used this virtual server exclusively up to
now.

inner-tunnel: This virtual server is used for certain tunneled EAP requests like
TTLS and PEAP.

11821

Chapter 8

These two virtual servers allow FreeRADIUS to handle normal RADIUS authentication
requests (default) as well as EAP/TTLS and EAP/PEAP requests (inner-tunnel) out
of the box.

If you look at the eap . conf file located under the FreeRADIUS configuration directory you
can see the configuration of the two EAP methods specifying the inner-tunnel virtual
server. The following is an excerpt from the eap . conf file:

eap |
tels
(

virtual server = inner-tunnel

}

FreeRADIUS follows the same convention as Apache where virtual servers are defined
under a sites-available directory and activated by creating a symbolic linkto a sites-
enabled directory. The contents of these files are typically a single named server section
where the name corresponds to the file name.

Time for action - creating two virtual servers

In this exercise we will create two very simple virtual servers. The one will accept all
authentication requests while the other will reject all authentication requests.

1. Underthe sites-available directory inside the FreeRADIUS configuration
directory, create a file called always_accept with the following content:
server always_accept {

authorize {
update control {

Auth-Type := "Accept"

}

2. Underthe sites-available directory inside the FreeRADIUS configuration
directory, create a file called always reject with the following content:
server always_reject {

authorize
update control ({
Auth-Type := "Reject"

[1831]

Virtual Servers

}

3. Ensure you are in the FreeRADIUS configuration directory. Enable these
virtual servers by creating symbolic links from the sites-enabled
directory to the files just created in the sites-available directory:
1n -s ../sites-available/always_accept sites-enabled/always_
accept

1In -s ../sites-available/always_reject sites-enabled/always_
reject

. Asymbolic link is a special kind of file that contains a reference to another file.
% Whether you edit the symbolic link or the original file, in the end you edit the
S same file since the symbolic link simply points to the original file. Symbolic links
can span file systems and can even be used to reference directories.

What just happened?

We have defined and enabled two very simple virtual servers. One will always pass
authentication requests while the other will always reject authentication requests.

To create a virtual server we use a named server section:

server <virtual server name> {

}

Various sub-sections are then added inside this server section. If there is a server section
without a name, it is used as the default server section. This default server section will be
used when there is no virtual server directive defined in those sections where it could
be defined (the Listen, client, home server pool, ttls, and peap sections).

You may have observed that the sites-enabled/default file does not
even contain a server { ... } section. It is not an absolute requirement to

% wrap the default virtual server in an anonymous server { ... } section.
All the other virtual servers are required to be wrapped inside a named server
section though.

(1841

Chapter 8

The sub-sections that will be used by a virtual server depend on the request that is sent to
the virtual server. The following table lists common requests and sub-sections that will be
involved with the request.

Request Section
Access-Request authorize, authenticate, session, post-auth
Accounting-Request pre-acct, accounting

We can also use pre-proxy and post -proxy sub-sections. This is part of proxying and
covered later in the book. There are also two special sub-sections called 1isten and
client. They are called special since they can be global to FreeRADIUS or local to a virtual
server, depending on where they are defined. These two sub-sections are covered in this
chapter.

The two virtual servers we have created take care of the Access-Request in the
authorize section in full. Defining other sections is not required. Beware not to create
duplicates when you define virtual servers. There is no direct correlation between a filename
and the virtual server defined inside the file. We only use it as a convention to keep the
filename and the virtual server's name the same. FreeRADIUS does not care about the
filename or how many server sections are declared in a file. It will even load multiple server
definitions with the same name without an error. This can lead to unexpected results.

If you define extra 1isten sections also make sure they connect to the correct interface
and have the correct IP address, port, and type.

Remember that when a virtual server is enabled, all the modules used by that virtual server
will be loaded when FreeRADIUS starts. A virtual server can also introduce additional UDP
ports that FreeRADIUS will listen on for requests. If you are memory and security conscious it
is good practice to disable unused virtual servers.

Our servers are created, willing, and enabled. Let's take them for a test drive.

Creating and making a virtual server available does not put it in use yet. We have to explicitly
specify it as the value of the virtual server directive.

(1851

Virtual Servers

Time for action - using a virtual server

Follow these steps to make a virtual server available:

1. Editthe radiusd.conf file in the FreeRADIUS configuration directory and
add the following to the 1isten section that contains type = auth (there are
two listen sections, one has type = auth, the other has type = acct):

virtual server = always_accept.

2. Restart FreeRADIUS in debug mode.

3. Try to authenticate any user with any password. Your request should be
accepted every time.

4. Observe the debug output when FreeRADIUS accepts the request.

5. Edit the radiusd. conf file again, but this time change the
virtual server directive from virtual server = always
accept tovirtual server = always_reject.

6. Restart FreeRADIUS in debug mode.

7. Try to authenticate specifying any user with any password. Your request
should be rejected every time.

8. Observe the debug output when FreeRADIUS rejects the request.

9. On completion of this exercise comment the virtual server directive out
again. This will leave the FreeRADIUS server as it was before the exercise.

What just happened?

We have used the two virtual servers created during the first practical exercise of this
chapter to override the default virtual server. First all authentication requests were
accepted and then all authentication requests were rejected.

The use of a virtual server can be specified inside the 1isten or the client sections.

The 1isten sections are defined in the radius. conf file and the client sections are
contained inside the clinets. conf file. It is specified by adding the optional virtual
server directive inside either of these sections. When we specify a virtual server in a
listen section, it is more general since the 1isten section specifies details on how a client
connects to FreeRADIUS. This includes the type of requests FreeRADIUS will receive from
anyone as well as the IP address and port it listens on for these requests.

1861

Chapter 8

When we specify a virtual server in a client section it is specific. Unless the client
connects with a specified IP address and shared secret, the virtual server will not be used.

A client section defines a client and adds it into the configuration. You could repeat the
previous exercise by specifying the virtual server directive in the localhost client
definition in the same way we specified it in the 1isten section. This would then only apply
to requests from the localhost, for example, when radtest is executed from the same
machine on which the FreeRADIUS server runs.

Handling Post-Auth-Type correctly

If you look at the debug output when the authentication request is rejected, you will see the
following warning:

Using Post-Auth-Type Reject
WARNING: Unknown value specified for Post-Auth-Type. Cannot perform

requested action.

Delaying reject of request 0 for 1 seconds

This is because Post -Auth-Type has a value that is not handled in a post-auth section
of the virtual server. To fix this, update the always reject file to the following and the
warning will be gone:

server always reject {
authorize {
update control
Auth-Type := Reject
}

—_

}

post-auth {
Post-Auth-Type REJECT ({
noop
}

Taking care of Type attributes

Five of the sections that can be contained inside a virtual server have an accompanying
special attribute. When this special attribute is set, FreeRADIUS will look for a sub-section
inside the section to handle the value of this attribute. The sub-section is in the following
format:

<special attributes> <values> {

}

11871

Virtual Servers

If this special attribute is set to some value it will cause FreeRADIUS to look for a sub-section
with that value. Only this sub-section will be executed. Everything else inside the section will
be ignored. If the sub-section is not defined a warning will be raised as we experienced with
Post-Auth-Type = REJECT.

The following table lists these special attributes and the section to which they apply. It also
lists an application of their use. You will note that they all end with the word "Type".

Special attribute Apply to section Practical implementation

Post-Auth-Type post-auth Record failures to a separate database.

Auth-Type authenticate Use 1dap for authentication if the 1dap
module found the user inside the LDAP
directory.

Authz-Type authorize Use different LDAP servers based on the
check attribute of a user.

Acct-Type accounting Specify which accounting database should be
used based on the check attribute of a user.

Session-Type session Specify how session checking should be done
per user.

In our example we have never explicitly set Post -Auth-Type to REJECT; however, when
the value of Auth-Type is changed to Reject, rlm reject sets the value of Post-Auth-
Type = REJECT for us. This enables us to differentiate between access rejects and access
accepts and also to handle them differently.

You can also refer to the authenticate section inside the default virtual server. The
authenticate section makes use of the Auth-Type attribute, which is set by modules
inside the authorize section. The next exercise will be on the practical implementation of
virtual servers.

Isaac is supplying Wi-Fi hotspots to a small university. He has deployed a fair number of
access points. The president of the university has agreed for Isaac to accept unknown users'
authentication attempts on the access point in the canteen between 13:00 and 14:00. This
promotion is called Hotspot Happy Hour. Today is April Fools' day and Isaac was granted
permission to Rickroll everyone using the canteen's Access Point.

[1881]

Chapter 8

Never been Rickrolled? Consider yourself lucky. You can read more

%j%‘\ about Rickrolling on Wikipedia: http://en.wikipedia.org/
’ wiki/Rickrolling.

Time for action - incorporating the Hotspot Happy Hour policy

We will use a virtual server to incorporate the Hotspot Happy Hour policy. This will then be
added to the access point in the canteen's client definition. When we apply the virtual server
to a client definition it makes it easy to use the same virtual server with other clients also.

Follow these steps to enable the server:

1. Underthe sites-available directory inside the FreeRADIUS configuration
directory, create a file called happy hour with the following content:

server happy hour
authorize {

files

If user not present allow them free access

between 13:00 and 14:00

if (noop) {

update control ({

Login-Time := 'Al11300-1400'
Auth-Type := "Accept"

}
April Fools' Day prank - Rickroll everyone
update reply {
WISPr-Redirection-URL :=
"http://www.youtube.com/watch?v=0Hg5SJYRHAQ"

}
logintime
pap

}

authenticate {
Auth-Type PAP
pap

(1891

Virtual Servers

2.

Ensure you are in the FreeRADIUS configuration directory. Enable the happy hour

virtual server by creating a symbolic link to the sites-enabled directory:

1n -s ../sites-available/happy hour sites-enabled/happy hour

Adding the virtual server to a client

For this exercise we will imagine the 1ocalhost client is the access point in the canteen. We
will tie the happy hour virtual server to the localhost client:

1.

Edit the clients. conf file inside the FreeRADIUS configuration and add
a virtual server directive at the end of the 1localhost client section:

virtual server = happy hour

2. Restart FreeRADIUS in debug mode and use the radtest program to test
authentication. The reply attributes will change according to the time of day and
whether the user is known or unknown. However today everyone will be Rickrolled!

3. You may change the value of login time in the happy hour virtual server
to fall in the time that you test to simulate Hotspot Happy Hour.

4. On completion of this exercise comment the virtual server directive out
again. This will leave the FreeRADIUS server as it was before the exercise.

What just happened?

We have used the virtual server directive in the client section to force a client to
use a virtual server.

There is

not much to the virtual server we created. It uses basic unlang to meet our

requirements. If the file's flow does not make sense you are encouraged to revisit

Chapter

7, Authorization.

In the real world

You should never just run a promotion like this without restricting the
bandwidth of each connection. Most captive portals feature reply attributes
that are used for this. In Isaac's case he can choose between the generic
WISPr-Bandwidth-Max-Up and WISPr-Bandwidth-Max-Down or
attributes specific to Mikrotik (Mikrotik-Rate-Limit) and Coova Chilli
(Chillispot-Bandwidth-Max- [Up|Downl]).

[1901]

Chapter 8

The default virtual server will still be used by all the other clients. Only the access point

in the canteen will use the happy hour virtual server. This functionality makes it very easy
for initial test runs on new policies. The testing can be done on limited clients before putting
these policies into production.

Defining clients in SQL

If you would rather define clients in the nas table of the MySQL database instead of the
clients.conf file, you may notice that the nas table's schema in sql /mysgl/nas.sql
does not include an option to specify a virtual server by default.

The server column, which is commented out inside the nas table definition, is used
for this. If you want to make use of this server column to specify the virtual server,
uncomment the line when creating the table. Remember to also update the nas query
inthe sql/mysgl/dialup.conf file to include the server column:

nas_query = "SELECT id, nasname, shortname, type, secret, server FROM
${nas_table}"

Finally make sure the readclients = yes line is uncommented in the sql. conf file.

In this chapter's first exercise we tied a virtual server to a 1isten section. In this exercise
we tied the virtual server to a client section. The next exercise will explore client and
listen sections that are contained inside the virtual server definition.

Isaac has been approached by the dean of the Computer Science faculty. The faculty has
always had its own FreeRADIUS server but now it would rather do away with it and make
use of one central RADIUS server.

Time for action - creating a virtual server for the Gomputer

Science faculty

Isaac discovered that the Computer Science faculty practices security by obscurity. Its
RADIUS server uses port 2812 for authentication and 2813 for accounting. It has a users
file that contains the entire details of the users. The RADIUS clients only send authentication
requests to the RADIUS server. The following table lists important information:

Information item Detail
User store users file
Authentication port 2812

11911

Virtual Servers

Information item Detail

Accounting port (unused) 2813

Computer Science RADIUS 10.10.0.100
server IP Address

RADIUS client IP Address 10.10.0.200
(authentication only)

Consolidation implementation

From of the information Isaac gathered we can do the following:

¢ Create a named files section to take care of the users file
¢ Create a virtual server with local 1isten and client sections

¢ Incorporate this new virtual server

Let's tackle these!

Module-specific configurations are done through files located in the modules sub-directory
under the FreeRADIUS configuration directory. The default behavior of the £iles module
is specified inside the files file. By default the £i1les module sources the users file to
determine if a user is defined. The specific file to source is configurable and is specified by
the usersfile directive.

If we want to incorporate a second users file, we simply create an additional named files
section. The original £iles section is not named because it is typically the only one in the
configuration. All subsequent £iles sections have to be named.

¢ Under the modules directory inside the FreeRADIUS configuration directory, create
a file called £iles cs with the following content:
files files_csf{
usersfile = ${confdir}/users cs
acctusersfile = ${confdir}/acct users
preproxy usersfile = ${confdir}/preproxy users
compat = no

}

& Create a file called users_cs inside the FreeRADIUS configuration directory with
the following content:

"bob" Cleartext-Password := "passbob"
Reply-Message = "Hello, %{User-Name}"

11921

Chapter 8

A virtual server for the Computer Science facuity

The server section allows us to declare various 1isten and client sub-sections as local to
the server section. To contain the Computer Science faculty's configuration inside a single
server section we will make use of these sub-sections.

Create afile called faculty csinthe sites-available sub-directory under the
FreeRADIUS configuration directory with the following contents:

server faculty cs {

listen ({
ipaddr = *
port = 2812
type = auth

}

client cs_vpn {
ipaddr = 10.10.0.200
secret = bigone
require message authenticator = no
nastype = other

}

client cs_troubleshoot ({
ipaddr = 127.0.0.1
secret = bigone
require message authenticator = no
nastype = other

}

authorize {
files cs
pap

}

authenticate
Auth-Type PAP {

pap

}

Ensure you are in the FreeRADIUS configuration directory. Enable the faculty cs virtual
server by creating a symbolic link to the sites-enabled directory:

1n -s ../sites-available/faculty cs sites-enabled/faculty cs

[1931

Virtual Servers

Everything should now be ready for us to try out the new virtual server:

1. Restart FreeRADIUS in debug mode.
2. Try to authenticate as bob using the faculty cs
virtual server using the following command:
$> radtest bob passbob 127.0.0.1:2812 100 bigone
3. Confirm that alice who is defined in the users file and used by the default
virtual server is not authenticated on the faculty cs virtual server:
$> radtest alice passme 127.0.0.1:2812 100 bigone

What just happened?

We have just proved how easy it is to consolidate different RADIUS servers into one by using
virtual servers.

What ahout users stored in SQL?

A question you may ask is: Suppose we store our user data in an SQL database and the
Computer Science faculty's users were also stored in an SQL database, how would we
consolidate this? This can be done by defining multiple sql instances in the sql . conf file:

sql sqgl canteen ({

}

sql sql cs {

}
Then use the name you want in the virtual server instead of sgl. This is the same principle
we've applied with the £iles module.

We were fortunate because the Computer Science faculty is not using the default port

of 1812 for authentication. If it were also using port 1812 we would have to differentiate
requests to its virtual server by another means. The usual way will be by assigning a second
IP address to the FreeRADIUS server's network interface. Here are some general rules to
follow when multiple IP addresses are used for virtual server differentiation.

¢ Usethe ifconfig command to add a second IP Address to the network interface.
ifconfig eth0:0 10.10.0.100 netmask 255.255.255.0 up

11941

Chapter 8

¢ Update all other 1isten sections that specify 1isten = * to listen = <IP
Address>. You may have to add optional 1isten sections to include both 127.0.0.1
and the first IP address of the network interface to make the default setup work as
before.

Local listen and client sections

By specifying 1isten and client sections inside a virtual server definition we keep the
unity of a virtual server. Since client and 1isten sections are already part of the virtual
server this allows a virtual server configuration to be transferred with ease from one physical
server to another.

Because local 1isten and client sections are already inside a virtual server, we cannot use
the virtual server directive in them. The client definitions are pretty straightforward.
The 1isten section however has a type directive with some interesting options.

FreeRADIUS supports listening on an IPv6 address as an alternative to the IPv4 address.
Because this component of the FreeRADIUS server is newer compared to the more
established IPv4 code there may still be bug fixes and improvements coming out. You are
advised to use the latest available release when using IPv6. The package for version 2.1.8
of FreeRADIUS, for instance, that comes with Ubuntu 8.04 has a bug that prevents it from
listening on an IPv6 address.

As more and more admins use IPv6 addressing these initial teething problems will be solved.
Unfortunately we have a chicken and egg scenario in IPv6 now with many vendors, since
they are first waiting for a mass uptake of IPv6 before adapting the RADIUS client code to
support IPv6 addressing.

Listen section — type directive

Up to now we have used the auth and acct options for the type directive inside the
listen section. There are, however, also other options available for this directive. Some of
them are used in more advanced configurations, which will be covered later in this book. For
completeness we will tabulate them here:

Option Where used

proxy Proxy requests to other RADIUS servers

detail High-performance deployments or with requests that have to be send to
multiple databases

status To get stats from the FreeRADIUS server

coa To forward disconnect requests to other RADIUS servers

(1951

Virtual Servers

When you define a client there is no way to restrict the type of requests we can receive
from the client inside the c1ient definition. Restricting is done with the 1isten sections.
Listen sections define the type of request we will respond to. We have only specified
auth. If we wanted to also respond to accounting requests, we would have to add a second
listen section of type = acct.

The next part of this chapter looks at some pre-defined virtual servers. They each contain a
local 1isten section to fulfill a special requirement.

FreeRADIUS includes virtual servers under the sites-available sub-directory. Some can
be used as is, while others are templates to use for special requirements. The following are
some virtual servers:

¢ Dbuffered-sqgl: This virtual server is used to overcome speed limitations on large
SQL databases (type = detail).

¢ copy-acct-to-home-server: This virtual server can be used as a template for
recording one accounting request in two places (type = detail).

¢ coa: Atemplate for handling coa (Change of Authority) and pod (Packet of
Disconnect) requests (type = coa).

¢ decoupled-accounting: A template to decouple accounting. Works on the same
principles as the buf fered-sqgl virtual server (type = detail).

¢ status: Avirtual server to get status information from a FreeRADIUS server (type

= status).

As we mentioned at the start of this chapter, the strength of virtual servers is their flexibility.
Since virtual servers are so flexible, there are no fixed rules when creating and implementing
virtual servers. The best way is to experiment in order to get more experience. The motto of
Perl also applies here. There's more than one way to do it (TIMTOWTDI).

As an overview here are some key points on virtual servers:
¢ FreeRADIUS has two virtual servers enabled by default. They are called default
and inner-tunnel.

¢ Virtual servers are defined inside the sites-available directory and activated
by linking it to the sites-enabled directory.

¢ The use of a specific virtual server can be specified in the global 1isten and
client sections.

[1961]

Chapter 8

¢ Avirtual server can alternatively contain local 1isten and client sections.

¢ There are example virtual servers available in the sites-available directory,

which can be used as templates for special requirements.

The various sections inside virtual servers make use of modules. In the next chapter we will
take a more in-depth look at the use of modules.

1.

Your need to evaluate a new VPN server that supports RADIUS. This server should
use a separate SQL database to store user detail. How can you use a virtual server
on your current FreeRADIUS deployment to test this VPN server with minimum
impact to the other RADIUS clients?

Your FreeRADIUS deployment is using an SQL database to store accounting
records. The response, however, has been deteriorating over the last two years as
the database grew in size. What virtual server setup can you use to remedy the
response problem?

You have inherited a half working FreeRADIUS server. The previous owner tried to
implement a Perl module without success. When you run the server in debug mode
you see the following message:

ERROR: Failed parsing value "PERL" for attribute Auth-Type:
Unknown value PERL for attribute Auth-Type

Why is this showing and how can you fix this?

11971

The use of modules is a standard practice in well-designed programs. The Linux
kernel for instance makes use of modules. The kernel itself is very small with
basic functionality. This functionality is extended by loading kernel modules.
The kernel will, for instance, load a module for the display card or load a
module for the Wi-Fi network card. This allows for the exclusion of unnecessary
functionality, which in turn results in a faster and more secure system.

FreeRADIUS follows the same philosophy and can be extended with ease. This
allows you to run a fast and secure server; however, this server's functionality
can be extended easily through the use of modules.

The aim of this chapter is to give you a thorough understanding of modules as a core
component of the FreeRADIUS server. This will help you to populate the various sections
that can be contained inside a virtual server definition with more wisdom and better
understanding.

In this chapter we shall:

See how to include and configure modules
See which configuration sections can contain modules
Use one module with different configurations

Discuss the order and return codes of modules

* 6 6 o o

Look at some interesting modules

So let's get on with it...

Modules

In the previous chapters we were already exposed to various modules that helped with
Authorization, Authentication, and Accounting (AAA). As a refresher and introduction to this
chapter the following table lists some of them:

Module Function

files Makes use of the users file located in the FreeRADIUS configuration
directory to find a user's detail.

sql A module that is configured to make use of a database-specific sub-module
to find a user's details. Also used to store accounting records inside an SQL
database and to check for simultaneous connections.

logintime A module that looks for the presence of the Login-Time check attribute to
see if a user is authorized to access the network.

perl A module that causes FreeRADIUS to load the Perl interpreter plus a specified
Perl script into memory during start-up. This ensures super-fast execution.

pap Used when Auth-Type = PAP to authenticate a user.

Time for action - discovering availahle modules

The previous table shows only a few modules. There are many other modules that are used
but not listed. Since there are so many available modules it is good to know more about
them. In this exercise we will look at the following items:

¢ Locating installed modules

¢ Finding out more about available modules

¢ Installing missing modules

Locating installed modules

FreeRADIUS stores modules inside the same directory as its other libraries. It's time to see
where this directory is:

1. Openthe radiusd. conf file located inside the FreeRADIUS configuration directory
and find the 1ibdir directive. This will indicate where the modules are installed
within the file system.

2. Change to the directory specified and execute the following command to list all the
installed modules:

$> c¢d /usr/lib/freeradius

[200]

Chapter 9

$> 1ls -1 rlm *

A list of installed modules will appear. Most of them will have two entries. One is a
symbolic link to a specific version of the module.

What just happened?

We have determined the location specified in the FreeRADIUS configuration file where
FreeRADIUS stores the modules. We have also viewed a list of the modules that are
currently installed.

Finding text inside configuration files and modifying text

The following is a handy command for locating the line numbers where a phrase
appears:

grep -i "libdir" -n /etc/freeradius/radiusd.conf

If you would like to edit one of the lines returned from the previous command,
you could use the vi editor and add the +<1ine number> switch after you
have specified the filename:

vi /etc/freeradius/radiusd.conf +106

This will open /etc/freeradius/radius.conf with the cursor on line
106 ready to edit.

The naming convention for modules in FreeRADIUS is as follows:

rlm <module names>.so

Some modules like eap and sq1 make use of sub-modules. These sub-modules are
usually function-specific like the mds module for eap or the mysgl module for sql.
This functionality will then be reflected inside the name of the sub-module. This is why
we have rlm eap md5.soand rlm sqgl mysql.so.

The . so extension is a convention used on Unix and Linux systems to name
shared libraries (also referred to as shared objects). This is similar to the .d11
extension used in Windows environments to name DLLs. FreeRADIUS treats a
module as a shared library and loads it through the dynamic linker.

2011

Modules

If you have installed additional FreeRADIUS modules inside a directory different from the
default in the configuration file, you can add additional locations. This will indicate to the
dynamic linker to also search there for modules. Alternatively you can also make use of the
LD LIBRARY PATH environment variable.

Sometimes FreeRADIUS does not find a particular library (not module), which may be used
either by FreeRADIUS or a specific module of FreeRADIUS. You will then typically see an
"undefined symbol" message. If the path of this library is already specified in the 1ibdir
list and it still does not work, try using the LD _PRELOAD environment variable. We did this
earlier in the book as a work-around for the distribution-specific perl module bug.

We now know about the installed modules, but what about the world of modules out there?
Surely there must be more available?

Your FreeRADIUS deployment may not contain all the available FreeRADIUS modules.
There could be many more modules at your disposal. The best place to start a search
is the FreeRADIUS Wiki. The following page lists plenty of modules:

http://wiki.freeradius.org/List of modules

It gives a good overview of the available modules. Each listed module has a link to
documentation on that specific module. The amount of documentation depends on how
complex and popular a module is. There are a few links that lead to blank Wiki pages.

Most modules can be configured. Inclusion and configuration of modules will be covered
after the next section.

So have you noticed this uber-cool module, which is listed on the FreeRADIUS Wiki but
not installed on your FreeRADIUS server. Most of the time it will simply be a case of using
the package manager to find all the available FreeRADIUS packages and install the one
containing the missing module.

Depending on the distribution you are using, some modules are separately packed. If you
are using CentOS for instance and would like to use the per1 module, you have to install
the freeradius2-perl package. Another common module that can be missing is the
sql mysqgl module (rlm sqgl mysql.so), which is often packed separately.

12021

Chapter 9

Because FreeRADIUS is actively developed it contains some exciting modules that are
not ready yet for prime time. To include these modules you will typically compile and
install FreeRADIUS from the latest source, using the configure, make, make install
pattern with the --with-experimental -modules configuration option. Before
compiling the source code in this way, ensure that all the required development libraries
are already installed.

You can also write and compile your own modules by using the FreeRADIUS source code
from which the installation on your server originates. This is, however, beyond the scope
of this book but the FreeRADIUS Wiki has documentation available to get you started.
Distributors of custom modules usually also include instructions on how to compile and
install their modules.

We now know about the modules that are installed, those available, and those that might
be missing. In the next section we shall see how to include and configure a module.

Some modules can only be used for a specific function. The pap module is like that and used
solely for authentication. The sql module in contrast can be used for authorization, session
checking, as well as accounting. It all depends on what functionality the author of the
module has included.

The sgl module (r1lm_sgl.so) makes use of sub-modules. This creates an abstraction
layer. Depending on how the main sql module is configured, it will make use of a specific
sub-module to interact with a certain type of database. Sub-modules are available to
connect to MySQL (rml sqgl mysql.so), PostgreSQL (rlm sgl postgresgl.so),
Microsoft SQL Server (rlm _sqgl iodbc.so), and Oracle (rlm _sgl oracle.so) databases.

The sgl sub-modules in turn can also be configured to fine-tune their behavior.

Time for action - incorporating expiration and linelog modules

Isaac suspects that some of the students at the university have tried to gain Wi-Fi access
illegally. He would like to log all the failed authentication attempts to a dedicated log file.
While he is at it, he would also like to add an expiry date to each student to prevent them
from gaining access to the network after the end of the semester. To implement this, he
makes use of the expiration and 1inelog modules in FreeRADIUS. Let's see how it's
done:

1. Edit the 1inelog file inside the modules sub-directory under the FreeRADIUS
configuration directory. Change the following line:

Access-Request = "Requested access: %{User-Name}"

[2031

Modules

to:

Access-Request "Request access:

= ${User-Name} $%{User-
Password} from %{NAS-IP-Address} %{r

eply:Reply-Message}"

Edit the sites-enabled/default file under the FreeRADIUS configuration
directory. Change the following part in the post -auth section from:
Post-Auth-Type REJECT ({

log failed authentications in SQL, too.

sqgl

attr filter.access reject

}

to:

Post-Auth-Type REJECT {
log failed authentications in SQL, too.
sqgl
linelog

attr filter.access reject

}

Ensure that the sites-enabled/default file under the FreeRADIUS
configuration directory has the expiration module listed under the
authorize section (it is included by default).

Edit the expiration file inside the modules sub-directory under the
FreeRADIUS configuration directory. Change the following line:

reply-message = "Password Has Expired\r\n"

to:

#reply-message = "Password Has Expired\r\n"
reply-message = "Dude, you are like sooooo expired\r\n"

Edit the users file in the FreeRADIUS configuration directory and ensure the
following entry is present for alice:

"alice" Cleartext-Password := "passme", Expiration := "4 May
2010"

Restart FreeRADIUS in debug mode and try to authenticate as alice:

$> radtest alice passme 127.0.0.1 100 testingl23

The request should be rejected because of the value of the Expiration
check attribute.

12041

Chapter 9

8. This failure should also be recorded inside the /var/log/freeradius/logread
file (the name and location may be different depending on your installation).

What just happened?

We have configured and made use of the expiration and 1inelog modules.

The convention to configure a module is by editing a configuration file under the modules
sub-directory inside the FreeRADIUS configuration directory. These files are named the same
as the module and contain a single section for the module. The first instance is unnamed. It
is similar to an anonymous subroutine in programming languages.

expiration {
reply-message = "Dude, your account is like in soocooco expired\r\n"

}

Subsequent use of the same module with different settings can be done by creating a
named section for the module in its separate file. The following is the content of the exp
professors file in the modules sub-directory:

expiration exp professors {
reply-message = "Dear professor $%${User-Name}, kindly contact
helpdesk about your expired account\r\n"

}

This is much the same as having an object and various instances of the one object. Each
instance can have different properties and is independent of the others. Each of these
module instances can then be used any number of times in any of the virtual servers that
were defined. This leaves us with a pool of module instances and a pool of virtual servers,
which we can mix and match to create very flexible configurations.

The original configuration file of a module contains a lot of comments that come in handy
when configuring a module.

Naming convention

name. For sql you could use sql_primary and sql secondary. In our
example we maintained the exp prefix. This helps to know what type of named
module is involved when it is included in a section.

é‘Q When you create named sections it is wise to include the module's name in the

[2051]

Modules

Not all modules follow the convention where the configuration resides in a file under the
modules sub-directory. The radiusd. conf file has a modules section that lists all the
modules to include. You will note that the sgl and eap modules listed there break this
rule. The configuration files of these two modules lie directly under the FreeRADIUS
configuration directory.

The convention of one module instance per configuration file is also not always followed.
The realm configuration file under the modules directory for instance declares a few realm
instances. It is up to you whether you want to keep all instances in one configuration file, or
keep them separate so that each can have its own file.

After you have configured a module it can be used. How and where a module is used vary
greatly between modules. To find out how the expiration module should be used we
consult the documentation that is installed with FreeRADIUS.

The r1lm_expiration documentation specifies the following:

Module to expire user accounts.

This module can be used to expire user accounts. Expired users receive
an Access-Reject on every authentication attempt. Expiration is based
on the Expiration attribute which should be present in the check item
list for the user we wish to perform expiration checks.

Expiration attribute format:

You can use Expiration := "23 Sep 2004" and the user will

no longer be able to connect at 00:00 (midnight) on September 23rd,
2004. If you want a certain time (other than midnight) you can do
use Expiration := "23 Sep 2004 12:00".

The nas will receive a Session-Timeout attribute calculated to kick
the user off when the Expiration time occurs.

Example entry (users files):

userl Expiration := "23 Sep 2004"

Not all modules have instructions on how to use them included as a separate
%j@‘\ document. Sometimes the module's configuration file will also cover the usage
g instructions. Alternatively consult the FreeRADIUS Wiki or use Google.

Modules can also be used in two or more pairs. The unlang language offers functionality
to configure redundancy, load balancing, or a combination of both through the use of the
redundant, load-balance, and redundant - load-balance keywords. This is typically
used with the sql and 1dap modules and configured in the authorize section.

[2061]

Chapter 9

Remember if you use the 1dap module in this way and you also use it with the bind-as
functionality to authenticate a user, the Auth-Type will be set to LDAP. The Auth-Type
LDAP declaration under the authenticate section should then also be configured, for
example:

Auth-Type LDAP ({
#ldap
redundant-load-balance {
ldap_this
ldap that

Sections that can contain modules

Modules can only be specified in designated sections. To include a module in a section

you add the module name inside the section. If you want to use a named instance of the
module simply include this named value instead of the module name. If we consider the
use of the professor's instance of the expiration module, it will simply be listed as exp
professors instead of expiration.

Modules can be included in all the usual sections of a virtual server. These are the
authorize, authenticate, session, preacct, accounting, post-auth, pre-proxy,
and post-proxy sections. Modules can also be included in the instantiate and eap
sections. instantiate is a special section in the radiusd. conf file that ensures a module
is loaded even before it is called by sections inside the virtual servers. Before you include a
module in a section, be sure that the module was written to be used in the specified section.

We know now which sections can contain modules. Let's see a practical implementation on
different instances of the expiration module.

Using one module with different configurations

FreeRADIUS allows you to use one module with various configurations. As stated earlier this
is similar to an object with different instances if you are familiar with programming lingo.

Have a go hero - creating multiple instances of a module

Isaac is in trouble. It completely slipped his mind that the professors' accounts also expire,
and he does not want to speak student lingo to the professors in the reply-message. Time to
fix this:

2071

Modules

1. Editthe expiration file inside the modules sub-directory under the FreeRADIUS
configuration directory. Change the following lines:

#reply-message = "Password Has Expired\r\n"
reply-message = "Dude, you are like sooocoo expired\r\n"
to:

reply-message = "Password Has Expired\r\n"
#ireply-message = "Dude, you are like sooooo expired\r\n"

2. Create afile called exp_students in the modules sub-directory under the
FreeRADIUS configuration directory with the following contents:
expiration exp students {

reply-message = "Dude, you are like sooocoo expired\r\n"
}

3. Create afile called exp_professors inside the modules sub-directory under the
FreeRADIUS configuration directory with the following contents:

expiration exp professors {

reply-message = "Dear professor %{User-Name}, kindly
contact helpdesk concerning your expired account\r\n"

}

4. Editthe sites-available/default file under the FreeRADIUS configuration
directory and modify the expiration part inside the authorize section to the
following:
if (control:Group == "students")
exp students

}

elsif (control:Group == "professors")
exp professors

}

else(
expiration

}

5. Ensure the users file has the following entries to test with:

"alice" Cleartext-Password := "passme", Group := "students",
Expiration := "4 May 2010"

"bob" Cleartext-Password := "passbob", Group := "professors",
Expiration := "4 May 2010"

[208]

Chapter 9

6. Restart FreeRADIUS in debug mode and try to authenticate as both alice and bob to
see the difference in reply messages:

$> radtest alice passme 127.0.0.1 100 testingl23
$> radtest bob passbob 127.0.0.1 100 testingl23

What just happened?

We have managed to adapt the lingo within the reply message according to the group a
user belongs to. Although the exercise was very simple the principles can be applied to any
module.

¢ The first instance of a module does not need to be named and using it is simply a
case of referring to the module inside a section. Examples like 1dap, chap, files,
and sgl come to mind.

¢ If you want to use the same module with a different configuration you have
to declare a named section for the module, which contains the alternative
configuration. To use this inside a section you have to refer to the name of the
named section. We used exp_students and exp professors, which are named
sections created for the expiration module.

This functionality in FreeRADIUS allows you to use the sgql module to connect to different
databases or the 1dap module to use different directories or the £iles module to use
different users files.

files{

authorize {
files
files_students
files_professors

files files_students{

rim_files.so

files files_professors{

[2091]

Modules

Take note of the structure of conditional statements

The structure of a conditional statement is very important. The if, elsif, and
else keywords should each be on a new line. If you fail to do this you will end
up with unexpected results.

Wrong:

if (condition)

M lelse{
Q 1
Correct:

if (condition)

}

else(

Order of modules and return codes

You cannot just plonk down a module inside a section and hope it will do the work
it is supposed to do. The order in which modules are listed inside a section is of the
utmost importance.

Time for action - investigating the order of modules

This exercise requires you to take note of the order of modules listed in the various sections
inside a virtual server.

1. Openthe sites-enabled/default file under the FreeRADIUS configuration
directory.

2. Read through it and take note of the order in which modules are used inside
the various sections. Some of the comments will mention why a module is
located at a certain place inside a section.

The following notes regarding the default file should make things clearer.

[210]

Chapter 9

Access-Request

When an Access-Request packet comes in to the FreeRADIUS server it is first handled by
the authorize section of the virtual server. It may then be handled by the authenticate
and session sections and is finally passed to the post-auth section.

The first module listed in the authorize section is preprocess. It is first for a reason.
Here's a general flow of the authorize section:

¢ The preprocess module does a sanity check and changes weird attributes to
more standard ones.

¢ Modules like chap and mschap test if the request is CHAP or MS-CHAP and will
change the value of Auth-Type accordingly.

Modules like sql, 1dap, and £iles try to locate the user from their user stores.

Modules like expiration and logintime will determine if there are any
restrictions imposed on the user. This is based on the information gathered by the
sqgl, 1dap, and files modules.

¢ The pap module is listed last because it checks if none of the above modules set the
value of Auth-Type, if so it will set this to PAP so the authenticate section can
use the pap module for authentication.

As you can see from the listed items the position of a module inside a section has to be
logical. If we place the expiration and logintime modules before the sql, 1dap, and
files modules they will not have any available data on the user to do their checks.

You can follow Accounting-Requests in the same way. An Accounting-Request is first
handled by the preacct and then by the accounting section.

Each module has to return a code. The various codes available to return were discussed in
Chapter 7, Authorization. The return code can greatly influence the flow of a request. If a
module, for instance, returns reject inside the authorize section, the request will not
be handled by the authenticate and session sections, but will be passed straight to the
post-auth section. With the use of unlang you can also use logic to test for certain return
codes and respond in a specified way if the condition was met.

With this we covered all the important points on the use of modules. The next section covers
some interesting modules that are available in FreeRADIUS.

[21]

Modules

Under the modules sub-directory are many files. Some are special named sections for
modules we already know, but others are totally new. Unfortunately not all installations of
FreeRADIUS include the same number by default, but it is good to know what is available.
The following table lists some modules:

Filename Module Function

detail detail Logs activity in detail inside files specific to the NAS
and calendar day. Disable this if speed is a concern.
The filesdetail.logand detail.example.
com contains alternative configurations.

mac2ip passwd Maps a MAC address to an IP address.

mac2vlan passwd Maps a MAC address to a VLAN name.

dynamic- dynamic-clients Used when the client of the FreeRADIUS server has an
clients IP address that changes.

otp otp Used to implement one-time passwords

echo exec A template that makes use of the exec module to call

the echo external program.

perl perl A template used with the example.pl file inside the
FreeRADIUS configuration directory.

jradius jradius A module that allows you to hook up with Java code.
The JRadius project, which is part of the Coova suite,
makes use of this module.

Although the table does not contain an exhaustive list, it gives a foretaste of what is available
to you. You are encouraged to explore your own installation in order to determine what is
included. All that remains now is a brief overview of the chapter and the quiz.

sSummary

Let's list some key points to remember on modules:

Modules help to extend the functionality of FreeRADIUS.
One module can run different instances through the use of named sections.

Modules are configured through text files under the modules sub-directory in the
FreeRADIUS configuration directory.

The order of modules inside a section is very important.

A module has return codes that influence the flow of a request.

[212]

Chapter 9

¢ We can use unlang to test for a specific return code from a module.

¢ Some modules may be missing because they are packed separately and have to be

installed separately before they can be used.

The next chapter covers EAP. Understanding EAP is essential if you want to implement 802.1x
security on the LAN or WPA2 Enterprise security on Wi-Fi networks.

1.

You have inherited a FreeRADIUS server from someone who left the company.
Although the files module is listed in the authorize section of the default virtual
server, editing the users file seems to have no effect. Where will be a good place to
troubleshoot?

You would like to split the current users file in two. One should contain all the
students and one should contain all the professors. Can this be done? How would
you do it?

You are running a CentOS server and want to include a Perl script along with the
perl module. After you have made the configuration changes to include the perl
module and have restarted FreeRADIUS it complains that it can not find the perl
module. Why would this be?

The FreeRADIUS server you manage has to connect to a new department's
LDAP server. You have created a named 1dap section and called it 1dap _new
department. Why would we rather call it 1dap_new_department instead of
new_department?

[2131

L

EAP stands for Extensible Authentication Protocol and is used by 802.1x and
WPA2-Enterprise as an authentication framework. 802.1x and WPA2-Enterprise
are industry standards used for end-point security. 802.1x uses EAP over the
LAN and WPA2-Enterprise uses EAP over the Wi-Fi network.

A basic understanding of EAP includes knowing how the supplicant,
authenticator, and backend authentication server interact. This chapter
covers all of these but will focus primarily on using FreeRADIUS as the backend
authentication server.

In this chapter we shall:

¢ Learn the basics of EAP
¢ Explore different EAP methods available in FreeRADIUS

¢ Discover special considerations when using EAP in production

So let's get on with it...

EAP is used to authenticate a user before he or she is allowed access onto the network.

Since EAP is a framework with extensibility in mind, it uses one of many available methods
to authenticate a user. This section gives a very basic idea of how EAP works. The gory details
of EAP are described in RFC 3748. We will first look at EAP's three core components and
continue to see what a typical EAP conversation over the LAN looks like.

EAP

EAP components

The following diagram shows the various components of the EAP framework:

Backend authentication

server Authenticator
Access Point/
TCP/IP NAS

PPP EAP
EAPOL
EAPOW

Supplicant(peer)

Mobile device/
Laptop/
PC

There are three main components involved in the EAP framework.

Authenticator

The authenticator is the gate keeper. It controls who has access to the network and who is

blocked. Here are a few examples of authenticators:

A managed switch that supports 802.1x on the LAN.

An access point that incorporates WPA2-Enterprise Wi-Fi security.

A remote access server that supports PPP EAP. Open Source remote access servers
available today include OpenVPN, Poptop (PPTP), strongSwan, and Openswan.

The authenticator is the facilitator that will forward and translate the conversation between
the supplicant and the backend authentication server. This has the following advantages:

A central server is used for authentication.

EAP becomes an extensible protocol that allows new authentication methods to
be introduced into the backend or the supplicant without changing the functionality

on the authenticator.

The authenticator does not decide whom to allow or refuse access onto the network
but only follows instructions from the backend authentication server. The authenticator
uses TCP/IP to communicate with the RADIUS server and EAP to communicate with the

supplicant.

(2161

Chapter 10

The supplicant is a piece of software used by the client machine for authentication. Upon
successful authentication the authenticator grants the client access to the network. EAP

is merely a framework that supports many authentication methods. A supplicant likewise
supports various authentication methods and will use one. Unfortunately the default
supplicant on some operating systems may not include support for a particular required EAP
method. This is solved by installing a third-party supplicant that includes support for the
required EAP method.

The type of network on which the supplicant is used will determine how the supplicant
encapsulates the EAP packets in order to communicate with the authenticator. On a LAN it
will be encapsulated inside the EAPOL (EAP Over LAN) protocol. On a Wi-Fi network it will
be encapsulated inside the EAPOW (EAP Over Wireless) protocol. EAP works on the data
link layer (layer2) and does not depend on or use any of the TCP/IP protocols. TCP/IP is the
most popular protocol today. However, the use of TCP/IP on the client machine is not a
requirement after successful authentication.

Backend authentication server

Although the authenticator controls access to the network, it is the backend authentication
server that decides who will be granted or refused access onto the network. This server will
typically be a RADIUS server, although the EAP standard does not limit it to only RADIUS. This
chapter will show you how to use FreeRADIUS for such a backend authentication server.

Now that we are more familiar with the components of the EAP protocol, it is time to look at
a typical authentication request from a client on a LAN.

[2111

EAP

EAP conversation

The following figure indicates the conversation between the three EAP components before
a user is authenticated on a LAN with 802.1x activated. The EAP method that is depicted
here is EAP-MD5. Since this method is not very secure it is not recommended in production
environments.

Backend authentication server Authenticator Supplicant(peer)

I ——

| EAPOL-Start(poke the authenticator)
<]

| EAPOL-Packet->EAP-Request->IDentity
(who are you?)

e >
I

RADIUS->Access-Request->EAP-Message EAPOL-Packet- > EAP-Response- > |dentity
(I am alice) ! (I am alice)
< <]
RADIUS->Access-Challenge->EAP-Message! EAPOL-Packet->EAP-Request->MD5-Challenge
(Here is aMD5 challenge for you) I (Here is a Md5 challenge for you)
e > | =

RADIUS->Access-Request->EAP-Message | EAPOL-Packet->EAP-Response->MD5-Challenge

(Here is aMD5 response for you | (Here is a Md5 Response for you)

< ! < !
I

RADIUS->Access-Accept->EAP-Message | EAPOL-Packet- >EAP-Sucess

(Success) (Success)
I

e = e =

Authentication with the EAP protocol is different from a typical authentication process where
the client takes the first step by identifying itself. With EAP the authenticator asks the client
to identify itself as the first step.

EAPOL-Start

The EAPOL-Start message is not used that often since the authenticator usually
knows when a potential user connects to the switch. The supplicant can, however,
let the authenticator know of its presence by sending an EAPOL-Start packet.

Once the authenticator knows that a new client has connected, it will start by asking
the client to identify itself by sending an EAPOL-Packet to the client.

[218]

Chapter 10

EAPOL-Packet

An EAPOL-Packet contains a Code field, which can be one of four codes, namely:
Name Value
EAP-Request 1

EAP-Response
EAP-Success

EAP-Failure

H wN

An EAP-Request should be answered with an EAP-Response. If you compare this to
RADIUS it is similar to the Code field where we have Access-Request (1) or Access-
Challenge (11), and so on.

EAP-Request and EAP-Response packets also contain a Type field. The following table
lists some of the types:

Name Value
Identity 1
Notification 2
Nak 3
MD5-Challenge 4

The first three types have a special use. The remaining types indicate the authentication
method that is used. Let us see the EAPOL- Packet flow:

1. You can see in the preceding figure that the Backend authentication server is
not involved in the sending of the EAPOL-Packet->EAP-Request->ldentity to the
Supplicant. This is done by the Authenticator.

2. When the Authenticator receives a response from the Supplicant it will forward
this response to the Backend authentication server. The Authenticator does this
by converting the EAPOL-Packet->EAP-Response->ldentity to a RADIUS Access-
Request packet containing an EAP-Message AVP.

3. The RADIUS server responds to the Access-Request by sending an Access-
Challenge packet containing an EAP-Message AVP. This EAP-Message AVP
contains data for sending an MD5 challenge to the Supplicant.

4. The Authenticator uses the contents of the EAP-Message AVP to create an
EAPOL-Packet->EAP-Request->MD5-Challenge and sends this to the Supplicant.

[219]

EAP

5. The Supplicant uses this challenge to send a response back containing the encrypted
password of the user inside an EAPOL-Packet->EAP-Response->MD5->Challenge
packet.

6. This packet is again converted to a RADIUS Access-Request packet containing the
EAP-Message AVP and sent to the Backend authentication server.

7. If this password was supplied correctly the RADIUS server will respond with an
Access-Accept packet containing an EAP-Message AVP to the Authenticator.

8. The Authenticator will now open the port on the switch for other traffic to start
flowing.

9. The Authenticator will also send an EAPOL-Packet->EAP-Success packet to the
Supplicant to notify it about the success.

One important point to remember is that the responses from the client to the Backend
authentication server, after the initial packets, are only relayed to it by the Authenticator.
The Authenticator simply reformats the packet from EAP to RADIUS and routes it to the
Backend authentication server.

This brings us to the end of our crash course on EAP. The next section will transform this
objective knowledge into a subjective experience.

In this section we will test various EAP methods on a FreeRADIUS installation. To do this
we make use of JRadius Simulator. This program is part of the JRadius framework and
one of the many projects available from Coova. JRadius Simulator is used to simulate an
NAS by sending EAP requests to FreeRADIUS. This eliminates the need for a dedicated NAS
(authenticator) and client (supplicant) to test EAP methods.

Time for action - testing EAP on FreeRADIUS with JRadius

Simulator

We will first prepare the FreeRADIUS environment for JRadius Simulator and then configure
JRadius Simulator in order to test EAP authentication.

The most important thing to do before FreeRADIUS can handle EAP is nothing. It is when
you do nothing that EAP will work at its best. The FreeRADIUS authors made sure that the
default configuration supports EAP without any tweaking.

12201

Chapter 10

We just need to be sure that there is a valid user in the users file and that the NAS that
sends the EAP request is registered in the clients. conf file.

1.

4.

Edit the users file located under the FreeRADIUS configuration directory and make
sure there is an entry for alice:

"alice" Cleartext-Password := "passme"

The JRadius Simulator needs to run from a machine that has a GUI and Java. Record
the IP address of this machine. This machine will act as an NAS (client) to the
FreeRADIUS server and has to be defined in the clients. conf file located under
the FreeRADIUS configuration directory. Here we assume it is 192.168.1.101. Please
change to suit your environment. Add this machine as a client:
client jradius ({

ipaddr = 192.168.1.101

require message authenticator = no

secret= testingl23
nastype = other

}

Ensure the inner-tunnel virtual server is enabled by confirming that it is listed in
the sites-enabled sub-directory under the FreeRADIUS configuration directory. It
is enabled by default but if it is not listed refer to Chapter 8, Virtual Servers on how
to enable it.

Restart FreeRADIUS in debug mode to activate the latest changes.

As you can see the preparation did not include any EAP-specific settings because everything
should just work by default.

As stated before, you need to have a Java runtime on the machine on which you will

run JRadius Simulator. JRadius Simulator is a GUI application and also needs a window
environment in which to run. If you run Linux it will need a desktop environment like
Gnome, KDE, or XFCE. You can download the JRadius Simulator software, unzip, and run it.
Alternatively, you can launch it out of the browser if your system has Java Web Start. The
following step-by-step procedure was done in Ubuntu:

1.

Go to the following URL:
http://coova.org/Download

Click on the JRadius Minimal (client) link to start the download.

When the download is complete, open a terminal and navigate to the location
where the ZIP file downloaded.

[221]

EAP

4.

5.

Unzip the file:

$> unzip jradius-

Change directory to the unzipped jradius folder and run the following command:

$>

client-1.1.4-release.zip

sh simulator.sh

The following screenshot shows the output from the previous command:

JRadiusSimulator X~ X<

File Help

RADIUS | Attributes |"Keys | Log |

Transport

RADIUS Server:
Shared Secret:
Auth Port:

Acct Port:

Send Timeout (sed):
Send Retries:

upp

v

1,812

1.813

10

0

1
1

Auth Only
PAP

Requester Threads:
Requests per Thread:

Simulation Type:

Authentication Protocol:
Verify Standard:
Options:

None

[] Generate Unigue Acct-Session-Id

[] Don't Stop Simulation On AccessReject
[l Don't Send The Received Class Attribute
[]Log RADIUS to Log tab

[]Flood (don't wait for reply)

6. Supply values for RADIUS server and Shared Secret. Click on the Log RADIUS to Log
tab checkbox to activate logging.
7. Select the Attributes tab and add the attributes shown in the screenshot with their

values. You may have to change some values to suit your environment. Also ensure
they are all selected in the AccessReq column:

Attribute Name AccessReqgTunnelReq AcctStart |AcctUpd... | AcctStop Attribute Value
User-Mame v] [[L] alice
IUser-Password V] L]]] [] passme
MAS-Port v L] [] [] L] 100
MAS-IP-Address V| [] [] [] [] 192.168.1.101

[2221

Chapter 10

8. You can now start testing by clicking on the RADIUS tab and then on the Start
button. You will be able to see the feedback in the Log tab.

9. Go through the various Authentication Protocol options and test each one.
All of them except EAP-TLS should pass the authentication request.

What just happened?

We have used the JRadius Simulator program to test various authentication protocols
on FreeRADIUS. We have particularly tested the following EAP methods: EAP-MDS5, EAP-
MSCHAPv2, EAP-TLS, PEAP/MSCHAP, and EAP-TTLS/PAP.

For the command-line junkies there is an alternative to JRadius Simulator called
eapol_test, which is a utility program included with the wpa_supplicant

code. You can read more about eapol test at this location:
e -

http://hostap.epitest.fi/wpa_supplicant/devel/testing
tools.html

The eap module in FreeRADIUS is a module much like all the other modules. The location of
the configuration file for the eap module, however, is different. It is configured in a separate
file called eap. conf located directly under the FreeRADIUS configuration directory instead
of inside the modules sub-directory.

The eap module includes a few EAP methods by default. These methods are shown as
sub-sections inside the eap section. The eap section cannot be empty. It has to include
at least one method. If the eap section is empty the server will return an error because
it would not know what authentication type to use in the communication channel. The
sub-section for a method contains directives that configure the specific EAP method. The
following table lists them along with a short comment:

EAP Method Comment

md5 Method not recommended because of weak security. No configuration
required. Not widely supported.

leap Developed by Cisco, proven to have weaknesses. Neither recommended nor
widely supported.

gtc This method can only be used inside a tunneled method like TTLS and PEAP. Will

send a plain-text password to the RADIUS server. Can be useful if supported by a
supplicant that does not support TTLS/PAP.

12231

EAP

EAP Method Comment

tls Can be used on its own where a client will be required to supply a client
certificate for authentication. This allows for mutual identification. This
method also serves as a base for the encryption element of the TTLS and PEAP
methods. Very secure but deployments are difficult because of client certificate
management.

ttls Creates a secure tunnel to transport a second authentication method
inside. Typically used with PAP when the user store in FreeRADIUS can only
handle cleartext passwords. Very popular and supported by default on most
supplicants. Unfortunately not supported on Microsoft products. Very secure.
Uses a second virtual server for the inner tunneled request.

peap Creates a secure tunnel similar to TTLS. Popular inner methods are MSCHAPv2
and GTC. Uses a second virtual server for the inner tunneled request.
Unfortunately the GTC inner method is not supported by Microsoft products.
Very secure and very popular.

mschapv2 Use the MSCHAP protocol for authentication. This has no secure tunnel
although it is secure.

The choice of which EAP method your clients will use is primarily determined by two things:

¢ The methods supported by the user store
¢ The methods supported by the clients

The user store

In Chapter 5, Sources of Usernames and Passwords we saw that some sources of usernames
and passwords will not support authentication methods that involve encryption. If you, for
instance, connect to an LDAP server and have to bind as a user in order to determine if the
supplied password is correct, you are limited to the authentication protocols that can be
used. When you store passwords locally you may severely limit available EAP methods when
storing the passwords in encrypted form.

You can use the following URLs to check what encrypted format is supported by which
EAP method:

http://deployingradius.com/documents/protocols/compatibility.html
http://deployingradius.com/documents/protocols/oracles.html

As mentioned in the links above, if the password encryption is wrong, there is no way to use
an EAP method that requires a password to be stored or accessed in clear text.

If you connect to Novell's eDirectory LDAP server FreeRADIUS can use Universal Password
to get a user's password in clear text from the server. See the comments inside the 1dap
module's configuration file for more on this.

[224]

Chapter 10

The choice of which EAP method to use would be so much simpler if Microsoft included
EAP-TTLS/PAP support by default or even the PEAP/GTC from their PEAP partners at Cisco.
Unfortunately this is the real world and we have to face reality. Lots of FreeRADIUS EAP
deployments cannot support MSCHAP authentication because the user store is typically an
LDAP server that one has to bind to for authentication. This is the case with many Eduroam
deployments.

To get EAP-TTLS/PAP supported on a machine running Windows you can either install
another operating system that supports this standard by default or simply install a
supplicant that adds support for it to Windows. Many hardware vendors now supply a
dedicated supplicant with their Wi-Fi hardware. This typically includes support for extra
EAP methods. Alternatively, you can load a program called SecureW2. SecureW?2 started
out as a GPL-licensed program that added EAP-TTLS/PAP support. Over time the features
as well as licensing changed. You now have to buy a license to use the latest version. There
are, however, still some of the older GPL based releases floating around on the Internet,
especially from universities that are part of Eduroam. Google is your friend who will find it
for you.

Older versions of SecureW2 had pre-configuration problems on 64-bit Windows
_ systems. Another problem that may occur on Windows 7 and Windows Vista
& machines is that the SecureW2 TTLS option is not available as an authentication
I method. To fix this, run the services.msc program and start the Wired
Autoconfig service. You should also make this permanent by editing the
Properties and changing Startup type to Automatic.

As for most of the other operating systems like Apple's iOS, Android, Blackberry OS, Symbian,
and the various flavors of Linux, their supplicants usually support a method that allows for
FreeRADIUS to use LDAP and bind as someone to the server for authentication.

You should by now be more comfortable with the use of EAP in FreeRADIUS. The next section
takes a look at some production-specific tweaks that you can apply to the EAP configuration
and implementation.

EAP works out of the box on a default FreeRADIUS installation. There are, however, some
points to either take note of or change to suit your environment. In this section we will cover
the following points:

¢ Theimportance of a proper Public Key Infrastructure (PKI)

¢ Configuring the inner-tunnel virtual server

12251

EAP

¢ Issues with inner and outer tunnel identities
¢ Disabling unused EAP methods

Public Key Infrastructure is used primarily for two things:

¢ To verify the identity of someone

e To exchange secure data over an unsecure connection

To ensure that someone is who they claim to be, we make use of a Certificate Authority
(CA). A CA will issue and sign digital certificates. We can make use of a trusted third party
(TTP) to issue and sign digital certificates or we can be our own CA. These certificates are
bound to an identity and should only be used by that identity.

When we transact with the identity, we can verify its validity by checking with the CA if

the identity is indeed who it claims to be. This is very important when it comes to WPA2-
Enterprise security because anyone can set up an access point and advertise a specific SSID.
To verify the validity of an access point we need to have a PKI in place and use it.

When FreeRADIUS starts up for the first time it sets up a PKI by using sample configurations.
These certificates are fine to use during testing but once you want to move to a production
environment you should create a new set that reflects your organization's values in the
certificates.

Time for action - creating a RADIUS PKI for you organization

The aim of this book is not to replace existing documentation. There is an excellent README
file inside the certs sub-directory under the FreeRADIUS configuration directory. Follow the
instructions to create a new set of certificates for your organization.

If you have a secondary FreeRADIUS server you can use the server. cnf file; make a
backup of the configuration for the primary FreeRADIUS server and modify it to create
a certificate for the secondary RADIUS server. Be careful not to override the primary
FreeRADIUS server's files.

What just happened?

We created a PKI specific for our organization. The CA should be used by the EAP supplicant
to confirm the validity of the RADIUS server.

12261

Chapter 10

Why use a PKI?

Every client that uses EAP-TTLS or PEAP must add the newly created CA certificate to the list
of available CAs in the supplicant. If you fail to do this, you are creating a huge security risk.
The following diagram should speak for itself:

Company’s deployment T Wi - Fi AP

| RADIUS |——{SSID:AP1

Hacker’s deployment ? Wi - Fi AP

| RADIUS | SSID:AP1

No certificate checking allows
conecting to rogue Access Points
with some SSID’s

Client

If the client is not checking the validity of the certificate coming from the RADIUS server,
anyone can create a rogue setup and reap some passwords from your organization's users.

The README file also advises against using certificates created by root CAs because this can
potentially allow a hacker to also obtain a certificate from the same root CA and use this on
his deployment while your users think they are in safe hands.

Now that the PKl is production-ready the t1s, ttls, and peap methods can use the newly
created certificates. Both the tt1s and peap methods require that the t1s method is
configured correctly because they use it as the foundation for their encryption functionality.

Some supplicants allow us to select from the operating system's list of trusted CAs when we
configure EAP-TLS, EAP-TTLS, or PEAP. Unfortunately it is sometimes quite a battle to add
our newly created CA to that list. The following table lists some operating systems and notes
concerning the inclusion of a new CA in the supplicant:

Operating system Comment on CA in supplicant

Android As of version 2.2 there are mixed reports on the success of adding
new CAs. On my phone | could add the CA, select it, but the supplicant
refused to acknowledge the validity of the RADIUS server's certificate.

Apple Apple made adding a new Wi-Fi profile really easy with the
.mobileconfig file. This file contains a complete Wi-Fi profile
including the CA and is added by simply downloading the file using the
Safari web browser.

[2211

EAP

Operating system Comment on CA in supplicant

Blackberry On older models you need to add a CA using a Windows application that
connects to the phone. Newer models allow you to add the CA using the
browser.

Linux The NetworkManager applet used in most distributions allows you

the option to manually select a CA certificate.

Windows Windows has various places where Root CAs can be added. Some apply
a CA only to a user, other places apply the CA to the whole machine.
Adding a new CA certificate is very easy. Adding it to the correct location
can be more difficult. Windows 7 requires you to import the certificate
using the run as administrator option on some machines.

Because the operating system market is a fast moving-market with upgrades, improvements,
and new players happening in a short time span, it is the best to consult a good search
engine in the quest for CA nirvana.

Inside the configuration of the tt1s and peap methods in the eap . conf file is a directive
called virtual server. This will be discussed next.

Configuring the inner-tunnel virtual server

If you look at the eap . conf file under the FreeRADIUS configuration directory, the tt1s and
peap methods both contain a virtual server directive. This directive points to a virtual
server that will handle the authentication requests of the inner EAP tunnel. The inner-
tunnel virtual server is used for this by default. This virtual server is independent of the
default virtual server. Remember this when you include a module like sql or 1dap in the
default virtual server. You also have to add it to the inner-tunnel virtual server in order
for EAP-TTLS and PEAP to use the same user store.

Having a virtual server to handle the inner-tunnel authentication adds flexibility to
FreeRADIUS. This allows us to have two different user stores or even to include unlang logic
in the inner-tunnel virtual server that is completely independent from the default
virtual server.

Time for action - testing authentication on the inner-tunnel

virtual server

The inner-tunnel virtual server has a 1isten section by default that listens on IP address
127.0.0.1 and port 18120 for authentication requests. This can be used to test how the
virtual server will react to authentication requests.

12281

Chapter 10

1. Confirm that the inner-tunnel virtual server is enabled (listed under the sites-
enabled directory) and that it contains the following 1isten section. This should
be included by default.
listen ({

ipaddr = 127.0.0.1
port = 18120
type = auth

}
2. Restart FreeRADIUS in debug mode.

3. Test the authentication on the inner-tunnel virtual server by using the following
command:
radtest alice passme 127.0.0.1:18120 100 testingl23

4. Youshould see that the inner-tunnel virtual server is used by looking at the
feedback in the debug output:

server inner-tunnel ({
+- entering group authorize {...}
++ [chap] returns noop

What just happened?

We have made use of the 1isten section defined inside the inner-tunnel virtual server
to test how the virtual server reacts to authentication requests.

The difference hetween inner and outer identities

Tunneled EAP methods like EAP-TTLS and PEAP contain two identities, as follows:

¢ Oneis called the outer identity and is visible to the outside world. This means
that when the RADIUS packets are sniffed you can see this value.

¢ The other is called the inner identity and cannot be traced when sniffing the
RADIUS packets that flow between the authenticator and the RADIUS server.

These identities are specified as the value of a User-Name AVP. The outer identity is
important in making proxying decisions, which means the realm part of the User-Name
AVP has to be correct in order for the request to reach the correct destination.

12291

EAP

The virtual server functionality available in FreeRADIUS allows us to handle outer and inner
identities through two different virtual servers. By default, the outer identity will be handled
by the default virtual server and the inner identity by the inner-tunnel virtual server.
This allows us to create and manage two totally independent policies for the inner and
outer identities.

Have a go hero - using JRadius Simulator to test with two identities

In this exercise we will use JRadius Simulator to use two different identities in order to
differentiate between the inner identity and the outer identity:

1. JRadius Simulator has a column on the Attributes tab that allows you to
specify attributes for the tunnel (TunnelReq). Update the Attributes to
display the following:

JRadiusSimulator

File Help

[RADIUS | Attributes | Keys | Log |

Attribute MName AccessReqTunnelReq| AcctStart |AcctUpd...| AcctStop Attribute Walue
User-Mame [] v] [] [] [] alice
User-Password L] v L] L] L] passme
MNAS-IP-Address v] [] [] [] [] 192,168.1.101
NAS-Port v] []] []] oo
User-Mame v] L] [] L] L] bob@fake-realm.com

2. Select the RADIUS tab and EAP-TTLS/PAP as Authentication Protocol. Then click on
Start to perform an authentication test.

3. Observe the debug output from FreeRADIUS and see the following among the
feedback:

Sending Access-Accept of id 197 to 192.168.1.101 port 47083
MS-MPPE-Recv-Key = 0x825059e7df2f0dc.....

MS-MPPE-Send-Key = 0x89258e9£9267997ec59ald5a5.....
EAP-Message = 0x03070004

Message-Authenticator = 0x00000000000......

User-Name = "bob@fake-realm.com"

The RFC standard states that the value of the User-Name AVP specified in the Access-
Accept packet should be used by the NAS in accounting packets sent to the RADIUS server.

The default of FreeRADIUS is to return the outer identity as the User-Name AVP's value. This
leaves us with a potential problem when we want to perform accurate accounting since the
user can specify anything as a value for the outer identity as we have just seen.

[2301]

Chapter 10

We can use unlang to correct this:

1. Editthe sites-enabled/inner-tunnel file located under the FreeRADIUS
configuration directory and add the following portion at the top of the post-auth
section:

if (outer.request:User-Name != "%{request:User-Name}") {
update reply {
User-Name := "%{request:User-Name}"

}
}
2. Editthe eap.conf file located under the FreeRADIUS configuration directory and
change the following directive under the tt1s and peap methods from:

use_ tunneled reply = no
to:

use_ tunneled reply = yes

3. Restart FreeRADIUS in debug mode and test the EAP-TTLS/PAP authentication again
using JRadius Simulator. The debug feedback should now return alice instead of
bob@fake-realm.com as the return value for the User-Name AVP:

Sending Access-Accept of id 239 to 192.168.1.101 port 55543

User-Name = "alice"

What just happened?

We have managed to improve the truthfulness of our accounting data by returning the inner
identity instead of the outer identity as the value of the User-Name AVP in the Access-
Accept reply from FreeRADIUS.

Unlang offers us the opportunity to get hold of the attributes in the outer request from
the virtual server used for the inner request. We use the outer. prefix to get to the outer
request's attribute lists. We can then compare the attribute values in the outer request to
those of the inner request.

If we want the reply attributes of the inner-tunnel virtual server to bleed through to the
default virtual server, we have to instruct the eap method to do so. We do this by setting the
use_ tunneled reply directive to yes.

Be sure to check that the NAS that receives the Access-Accept with the inner

identity does support the User-Name reply AVP. There have been reports about bad
implementations of the RFC. A workaround to this problem may be to compare the inner
identity to the outer identity and reject the request if they are not the same. This, however,
will require extra user education.

2311

EAP

Naming conventions for the outer identity

A good practice is to educate the users to supply their e-mail address as the outer identity.
This can, however, be a potential security risk. When your organization becomes part of a
hierarchical network of RADIUS servers like Eduroam these requests will pass through third-
party servers that can misuse the outer identities. A more generic identity might then be
better. So instead of alice@frbg.comyou would rather use edurocamefrbg. com. There is
no fixed rule but take note.

If you are part of a hierarchical network of RADIUS servers only RADIUS proxy
requests for EAP-TTLS and PEAP can totally hide user identities and passwords
from the third-party RADIUS servers doing the proxying.

If your FreeRADIUS server answers to proxy requests and you are very paranoid about
security consider changing the value of the User-Name AVP in the Access-Accept
message returned to third-party RADIUS servers to something generic.

To continue on that paranoid note the next section will show you how to disable unused
EAP methods.

The default installation of FreeRADIUS includes support for many EAP methods. When you
decide which EAP methods your organization will support the others can be disabled.

Time for action - disabling unused EAP methods

Our organization decided to support the two tunneled EAP methods (PEAP and EAP-TTLS).
We will disable the other methods and set the default EAP method to be PEAP:

1. Edit the eap. conf file located under the FreeRADIUS configuration directory.
Disable the following methods by commenting them out completely: mds, 1eap,
gtc, and mschapv?2.

2. Changethe default eap_type directive from:

default eap type = md5
to:
default eap type = peap
3. Restart FreeRADIUS in debug mode and check that the disabled EAP methods are

not available any more. Here is the debug output from FreeRADIUS when we tried
EAP-MDS5. It confirms that EAP Type 4 (MD5) is not supported anymore:

+- entering group authenticate {...}

12321

Chapter 10

[eap] Request found, released from the list
[eap] EAP NAK

[eap] NAK asked for unsupported type 4
[eap] No common EAP types found.

[eap] Failed in EAP select

++ [eap] returns invalid

Failed to authenticate the user.

What just happened?

We have changed the default EAP method that FreeRADIUS will ask for after identification.
We have also disabled unused EAP methods. In the eap . conf file we did not comment
out the t1s method because it is used by both the tt1s and peap methods to create a
secure tunnel.

Disabling unsupported EAP methods and setting the default EAP method to the most
common one in use will reduce the network traffic between the authenticator and the
RADIUS server. This in turn should lead to better performance. The use of less secure EAP
methods can also be stopped by disabling them.

Message-Authenticator

As a final bit on security we will consider enforcing the presence of a Message-
Authenticator AVP with every request from an NAS. Each client definition in the
clients.conf file under the FreeRADIUS configuration directory has a require
message_ authenticator directive. If you set this to yes it will reject requests from the
specified device that does not include the Message-Authenticator AVP or if the value of
Message-Authenticator is not correct.

The value of the Message-Authenticator is created by generating an HMAC-MD5
checksum on the RADIUS packet. This attribute is intended to thwart attempts by an
attacker to set up a "rogue" NAS, and perform online dictionary attacks against the RADIUS
server. It does not afford protection against "offline" attacks where the attacker intercepts
packets containing (for example) CHAP challenge and response, and performs a dictionary
attack against those packets offline. When the server receives a request, it calculates the
value of the supposed value of the Message-Authenticator and compares it with the
one received. If the value does not match, it silently discards the request. This is only done
on authentication requests. The Message-Authenticator AVP is not included with
accounting packets.

Unfortunately, if you store the NAS details inside an SQL database instead of the clients.
conf file, the SQL table (nas) does not provide for setting this directive.

[2331]

EAP

This brings us to the end of our discussion on EAP in FreeRADIUS. Time now to look at some
key points to remember.

The following are some of the key points we touched upon in this chapter:

L 4

EAP is a framework with extensibility as a core feature. This allows new EAP
methods to be introduced without any changes to the authenticator.

EAP allows us to proxy requests through third-party RADIUS servers without
exposing a person's username and password when we use EAP-TTLS or PEAP.

Tunneled EAP methods have two identities, which can be compared with
one another.

The use and distribution of a dedicated self-signed CA is recommended for
maximum security. Educate the users to install and specify the use of the self-signed
CA in the supplicant configuration.

The value of the User-Name AVP returned in an Access-Accept will be used by
the authenticator when sending accounting details to the RADIUS server.

The JRadius Simulator program comes in very handy when testing various
EAP methods.

1.

You have just installed FreeRADIUS and after initial tests using your captive portal
as client you want to test EAP by configuring an access point (AP) as a client. Your
co-worker sends you some URLs he used to get EAP working on FreeRADIUS. What
should you do next?

The captive portal allows users from both the users file and the corporate LDAP
server but the EAP-TTLS/PAP configured supplicant only allows access to users in
the users file. What is wrong?

The LDAP configuration you specified binds as a user to verify the username and
password. Can you use PEAP/MSCHAPv2 with this?

A friend of yours has an LDAP server that is part of Novell's e-Directory. He says
they are using it happily with FreeRADIUS to authenticate supplicants using PEAP/
MSCHAHV2. Is this a lie?

What will be the simplest, most effective way to get a Wi-Fi profile including the
CA on the iPhone and iPad users devices?

12341

11

At the start of the book we looked at the RADIUS protocol and discovered that
each RADIUS packet used by the RADIUS protocol consists of Attribute Value
Pairs (AVPs) to convey information. Each AVP inside a RADIUS packet contains
a type, length, and value field. The type field consists of an integer number
representing a specific attribute. FreeRADIUS uses dictionaries to map these
type numbers to attribute names.

This chapter explains how to manage the dictionaries. In this chapter we shall:

¢ See why we need dictionaries
¢ Update pre-defined dictionaries according to best practices

¢ Discuss the format of a dictionary file

So let's get on with it...

Computers work best with numbers while humans work best with names. We created DNS
in order to remember host names instead of IP addresses. Dictionaries are used in the
same manner so we can remember AVP names instead of type numbers. Dictionaries are
consulted when FreeRADIUS parses requests or generates responses.

Dictionaries

However, dictionaries differ from DNS as the RADIUS client has no knowledge of these
'friendly' names used by FreeRADIUS. The AVP names are never exchanged between a
RADIUS client and a RADIUS server. The AVP names are used solely by the server. The
radclient and radtest programs are special clients that use the same dictionaries as the
server because they are part of the FreeRADIUS suite of programs. The dictionaries are solely
for the local administrator's convenience and vary depending on the version of FreeRADIUS.
The JRadius Simulator in contrast has its own set of dictionaries that is independent from the
dictionaries used by FreeRADIUS.

When FreeRADIUS receives an Access-Request packet, the packet includes the type
numbers mapped to User-Name (1) and User-Password (2). The packet does not
contain a string User-Name or User-Password. Most RADIUS clients seldom need to
display the string that represents the type number because the clients are not directly used
by humans. This means that they don't need dictionaries. In the case of humans being
involved with the use of a RADIUS client (radclient or JRadius Simulator), the client will
require some dictionaries in order to display meaningful results.

A user's information, on the other hand, is stored in human-readable format on the server.
See the following entry for Alice stored in the users file:

"alice" Cleartext-Password := "passme"
Mikrotik-Total-Limit =10240

In order for the modules involved with authentication and authorization to use the human-
readable data, they must consult dictionaries to map the human-readable value to a type
number. This allows us to store AVPs as names that we understand instead of type numbers
that computers understand. The Cleartext-Password AVP for instance is mapped to
number 1100, User-Name to number 1, and User-Password to number 2.

Generating responses

During the process in which FreeRADIUS determines the AVPs to return with the Access-
Reply, it will again consult dictionaries to map the reply attribute names to type numbers
before encapsulating the data in a RADIUS packet. This also allows us to store reply
attributes in human-understandable format instead of the type number that is used inside a
RADIUS packet.

We see now that dictionaries are there for our benefit. In the next section, we will see how
FreeRADIUS knows which dictionaries to use.

[2361]

Chapter 11

How to include dictionaries

Isaac has a couple of MikroTik RouterBOARDs on which he wants to limit the total bytes
(send and received) to 10 MB per session. A friend told him to simply add the Mikrotik-
Total-Limit AVP in the reply. Let's follow Isaac on his journey to implement this.

. Weassumea clean installation of FreeRADIUS in this chapter.
% A RouterBOARD is the name of the hardware manufactured by MikroTik. There
e are various RouterBOARD models available. This hardware is powered by the
RouterQS software from MikroTik.

Time for action - including new dictionaries

The following steps will demonstrate how to include new directories:

1. Edit the users file located under the FreeRADIUS configuration directory and make
sure the following entry for alice exists:

"alice" Cleartext-Password := "passme"
Mikrotik-Total-Limit = 10240

2. Restart FreeRADIUS in debug mode. The restart should be unsuccessful and the
following error message will display:
/etc/raddb/users[11] : Parse error (reply) for entry alice: Invalid
octet string "10240" for attribute name "Mikrotik-Total-Limit"
Errors reading /etc/raddb/users

3. The error does not explicitly says the AVP is not in any of the dictionaries but if you
do a quick grep for this AVP in the /usr/share/freeradius directory, it will
come back empty indicating we do have a problem:

grep -1lr 'Mikrotik-Total-Limit' /usr/share/freeradius/*

What just happened?

We have discovered that the Mikrotik-Total-Limit AVP is not included with the pre-
defined dictionaries that come with FreeRADIUS. Before we attempt to fix our broken server
there are a few important points which can be discussed here.

2311

Dictionaries

How FreeRADIUS includes dictionary files

FreeRADIUS installs many pre-defined dictionary files by default. These dictionary files

are stored in the /usr/share/freeradius directory (if you installed from source code
using the configure; make; make install pattern they will be stored in /usr/local/
share/freeradius). Dictionary files are named according to a convention. The names
are in the form dictionary.<identifiers. The identifier can be classified into three
categories, as follows:

¢ Vendor/technology name: for example dictionary.mikrotik or dictionary.
wimax

RFC number: for example dictionary.rfc2865

FreeRADIUS's internal dictionaries: for example dictionary. freeradius.
internal

If a dictionary file is installed it does NOT automatically imply that this dictionary file will
be used by FreeRADIUS. FreeRADIUS has to be configured to include that specific dictionary
file. We do this in the following way:

1. Inthe FreeRADIUS configuration directory is a file called dictionary. The content of
this file is not very exiting since it contains a single line, which is uncommented:

SINCLUDE /usr/share/freeradius/dictionary

2. Thefile (/usr/share/freeradius/dictionary) thatis sourced is more exciting
because this file contains a list of various dictionary files to use:

For a complete list of the standard attributes and values,
see:

H*+ H FHF

http://www.iana.org/assignments/radius-types
#

SINCLUDE dictionary.rfc2865

SINCLUDE dictionary.rfc2866

The comments inside the two dictionary files warn us not to change any of the pre-
defined dictionary files as it will cause problems when FreeRADIUS is updated. The
next section will show us what to do according to the best practice.

. The best practice is there for a reason. Editing files located in the /usr/
& share/freeradius directory can be tricky and dangerous. Add attributes
S and dictionaries by only editing the dictionary file located under the
FreeRADIUS configuration directory.

2381

Chapter 11

Including your own dictionary files

There are three scenarios where you would change the default dictionary configuration
in FreeRADIUS.

Including dictionary files already installed

Sometimes a dictionary file is installed under the /usr/share/freeradius directory but
not listed in the /usr/share/freeradius/dictionary file. This dictionary should then
be specifically included in the dictionary file under the FreeRADIUS configuration directory.
Remember to include the absolute path:

$INCLUDE /usr/share/freeradius/dictionary.chillispot

Test for installed AVPs that are not included

directory and find the attribute present, check if the dictionary file containing
the attribute is indeed listed in /usr/share/freeradius/dictionary.
When it is not, you have to include it in this way.

.\‘Q If you grep for the required attribute in the /usr/share/freeradius

Adding private attrihutes

These private attributes are used internally by FreeRADIUS. In Chapter 7, Authorization we
used such attributes. They are typically used with more complex unlang implementations
and are defined in the dictionary file under the FreeRADIUS configuration directory:

ATTRIBUTE FRBG-Reset-Type 3050 string
ATTRIBUTE FRBG-Total-Bytes 3051 string

It is advisable to use a unique prefix for these types of attributes in order to avoid
duplicate names. They have numbers between 3000 and 4000 and will never be placed
in a RADIUS packet.

Updating an existing dictionary

The IT world is a fast-changing one and it happens that new players enter the scene or
existing ones make changes to their software. If changes are made by vendors we need to
update the existing dictionary files. The recommended way is not to touch the pre-defined
dictionary files but rather to include an updated dictionary in such a way as to override the
pre-defined one's information when FreeRADIUS starts up.

In the next exercise we will update the existing MikroTik dictionary to include support for the
Mikrotik-Total-Limit AVP.

[2391]

Dictionaries

Time for action — updating the MikroTik dictionary

Isaac e-mailed his friend informing him about the broken configuration. His friend then
replied and instructed Isaac to visit the following URL, which shows the latest RADIUS
attributes that MikroTik supports:

http://wiki.mikrotik.com/wiki/Manual :RADIUS Client

Although the content of the web page was a bit confusing initially, Isaac managed to do the
following in order to fix everything on his FreeRADIUS server:

1. Copythe pre-defined dictionary.mikrotik file to a folder inside the
FreeRADIUS configuration directory:

mkdir /etc/raddb/dictionary.local

cp /usr/share/freeradius/dictionary.mikrotik /etc/raddb/
dictionary.local

2. Update /etc/raddb/dictionary.local/dictionary.mikrotik toinclude
the following according to the web page from MikroTik:

#Add New Mikrotik Attributes

ATTRIBUTE Mikrotik-Wireless-PSK 16 string
ATTRIBUTE Mikrotik-Total-Limit 17 integer
ATTRIBUTE Mikrotik-Total-Limit-Gigawords 18 integer
ATTRIBUTE Mikrotik-Address-List 19 string
ATTRIBUTE Mikrotik-Wireless-MPKEY 20 string
ATTRIBUTE Mikrotik-Wireless-Comment 21 string

3. Edit the dictionary file inside the FreeRADIUS configuration directory to include this
updated dictionary:

$INCLUDE /usr/share/freeradius/dictionary

#

Place additional attributes or S$INCLUDEs here.

They will over-ride the definitions in

the pre-defined dictionaries

SINCLUDE /etc/raddb/dictionary.local/dictionary.mikrotik

[2401

Chapter 11

4. Restart FreeRADIUS in debug mode and test the authentication for alice. The
following should be returned:
rad_recv: Access-Accept packet from host 127.0.0.1 port 1812,
id=10, length=32
Mikrotik-Total-Limit = 10240

What just happened?

We have updated the MikroTik dictionary to include the latest attributes. The pre-defined
dictionary file was not deleted but an updated dictionary file was included in such a way
as to override the pre-defined dictionary. Although it was not difficult, there are, however,
some important points to remember.

To locate the latest RADIUS attributes that a vendor supports is often the most difficult part
when updating dictionaries. Good places to start looking are inside release notes of firmware
updates or the vendor's website. Do not always take the advice or instructions proposed by
the vendor on how to update the dictionaries since this can introduce new problems. It is
better to use the instructions proposed by FreeRADIUS.

Location of updated dictionary files

The location of the updated dictionary files is up to you. In this exercise we stored it in a
sub-directory inside the FreeRADIUS configuration directory. This helps us to keep all the
configuration items in one place.

Order of inclusions

The order in which dictionary files are listed is very important. To ensure the updated
dictionary file's content overrides the pre-defined ones we list it in such a way that it is
sourced after the original one.

Attribute names

At the start of the chapter we mentioned that dictionaries are there to benefit us. The
spelling of an entry in the dictionary is not crucial because it is simply used for a mapping.
For this reason we changed the attribute names listed on the MikroTik web page to fit in
with the RADIUS convention. We did not specify MIKROTIK TOTAL LIMIT but rather used
Mikrotik-Total-Limit. Sticking to a convention also helps us when specifying AVPs for a
user.

Now that we know when and how to change the default dictionary configuration it is time to
look more closely at the format of a dictionary file.

[241]

Dictionaries

Newer versions of FreeRADIUS may also contain modifications and updates to existing
dictionary files. It is advisable to create a backup of the directory containing the dictionary
files before upgrading FreeRADIUS from which to restore them in the event that the upgrade
process causes havoc amongst the existing dictionary files.

Upgrades may also change the permissions on certain directories and files that were
adjusted after the initial installation. Make sure after the upgrade that the FreeRADIUS
server starts up without errors to confirm everything went according to plan.

There are two types of AVPs. The standard RADIUS attributes are called Attribute Value Pairs
(AVPs) while those from a vendor are called Vendor-Specific Attributes (VSA). Although there
are two types of AVPs we usually do not differentiate between the two and simply call them
both AVPs. VSAs use RADIUS attribute type 26 (Vendor-Specific). The value of this AVP

is used to wrap the vendor-specific attributes in turn. View the contents of the updated
dictionary.mikrotik file to understand the content of a dictionary file. The following
discussion will be based on it.

Lines starting with # are treated as comments. Sometimes the comments contain valuable
information that should be heeded to in order to avoid a broken system:

-*- text -*-
http://www.mikrotik.com
#
http://www.mikrotik.com/documentation//manual 2.9/dictionary
#
Do NOT follow their instructions and replace
the dictionary in /etc/raddb with the one that they
supply. It is NOT necessary.
#
On top of that, the sample dictionary file they provide
DOES NOT WORK. Do NOT use it.
Vendor definitions
A dictionary defining VSAs takes on the following format:
VENDOR Mikrotik 14988
BEGIN-VENDOR Mikrotik

[242]

Chapter 11

END-VENDOR Mikrotik

A vendor definition must include the vendor's number at the start. Vendor numbers are
assigned by IANA. You can get the existing assignments from the following URL:

http://www.iana.org/assignments/enterprise-numbers

Sandwiched between BEGIN-VENDOR and END-VENDOR are ATTRIBUTE and VALUE
definitions.

We will only cover basic attribute and value definitions in this chapter. However, FreeRADIUS
includes a dictionary man page that contains more details:

man dictionary

Attribute definitions take on the following format:

ATTRIBUTE <name> <numbers> <type> [vendor|options]

Although the name field can be any non-space text it is best to follow the existing
convention, which comes from the RFCs. This is what we've done with the new MikroTik
attribute definitions. The name usually indicates the function of the number it maps to, for
example Mikrotik-Total-Limit is used to limit the total bytes during a session.

The numbers are usually incremental and determined by a vendor or a standards
organization like IANA. Each number has a special meaning to either the client or the server.
This is why we have to get the latest numbers and their meanings from MikroTik. The only
numbers you are allowed to assign yourself are those in the range between 3000 and 4000
as mentioned in the main dictionary file:

If you want to add entries to the dictionary file,
which are NOT going to be placed in a RADIUS packet,
add them here. The numbers you pick should be between
3000 and 4000.

H H H HF H H*

[2431

Dictionaries

Type field

The type field can be one of a few pre-defined types. The following table lists these types
with a short description:

Type Description

date 32-bit integer value representing the seconds since 00:00:00 GMT, Jan. 1, 1970
(Unix epoch)

integer 32-bit integer value (values from 0 to 4,294,967,295)

text 1-253 octets containing UTF-8 encoded characters

string 1-253 octets containing binary data

ipaddr 4 octets in network byte order

ifid 8 octets in network byte order

ipvéaddr 16 octets in network byte order

ipveprefix 18 octets in network byte order

ether 6 octets of 'hh:hh:hh:hh:hh:hh' where 'h' is a hex digit, upper or lowercase

abinary Ascend's binary filter format

octets raw octets, printed and input as hex strings, for example 0x123456789abcdef

What would life be without exceptions! The dictionary.wimax file specifies a few non-
standard data types. There is, for instance, a signed integer type called signed. This is
different from the integer data type which is unsigned. The WiMAX VSAs also have a non-
standard format, which is discussed in the comments of the dictionary.wimax file.

As an alternative to the exercise where we updated the MikroTik dictionary by sourcing a
complete new file, we could simply have added the following to the dictionary file located
under the FreeRADIUS configuration directory:

#Add New Mikrotik Attributes

ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

Mikrotik-Wireless-PSK 16 string Mikrotik
Mikrotik-Total-Limit 17 integer Mikrotik
Mikrotik-Total-Limit-Gigawords 18 integer Mikrotik
Mikrotik-Address-List 19 string Mikrotik
Mikrotik-Wireless-MPKEY 20 string Mikrotik
Mikrotik-Wireless-Comment 21 string Mikrotik

The method to use for updating a dictionary is up to you. | prefer keeping all the attribute
definitions of a vendor in a single updated dictionary file.

[241]

Chapter 11

Values are defined to give human-readable options for attributes of type integer. This
helps us to remember names instead of numbers. In the dictionary.mikrotik file
the following values are defined:

MikroTik Values

VALUE Mikrotik-Wireless-Enc-Algo No-encryption
VALUE Mikrotik-Wireless-Enc-Algo 40-bit-WEP
VALUE Mikrotik-Wireless-Enc-Algo 104-bit-WEP 2

This means for the Mikrotik-Wireless-Enc-Algo attribute we can specify any one of
these three values instead of using the integer equivalent. If we, for instance, also want to
enforce no encryption on Alice we can modify the users file to the following:

"alice" Cleartext-Password := "passme"
Mikrotik-Total-Limit =10240, Mikrotik-Wireless-Enc-Algo = No-
encryption

Value definitions are a great aid, which makes reading of attribute assignments much easier.
Value definitions only apply to attributes of type integer.

Before we come to the end of the chapter there is a final important point that still needs to
be mentioned. Although the files under /usr/share/freeradius are usually readable by
everyone, the main dictionary configuration file located under the FreeRADIUS configuration
directory may not always be. If you try to run radtest as a normal user and it refuses

to start, check the access rights on the FreeRADIUS configuration directory as well as the
dictionary file inside this directory.

To allow a normal user read access to files in a directory we set the execute permission of
the directory. We take SUSE as an example:

#> chmod o+x /etc/raddb

To enable a normal user read access to the dictionary file, add read rights to it:

#> chmod o+r /etc/raddb/dictionary

[2451

Dictionaries

Although dictionaries are not required for the RADIUS protocol they are a core part of
the FreeRADIUS server. The following is a list of important points to remember about
dictionaries:

Do not modify the pre-defined dictionary files that are installed by FreeRADIUS.

Check with an NAS vendor for any new supported RADIUS attributes in order to
update the dictionaries.

Updated dictionaries have to be sourced after the pre-defined dictionary files in
order to have the latest supported attributes.

Dictionaries are there for our benefit by mapping attribute names to AVP type
numbers.

Attributes of type integer can have value definitions that link a certain string to an
integer value.

Dictionary files located under /usr/share/freeradius are not automatically
used by FreeRADIUS but they have to be specifically listed in the /usr/share/
freeradius/dictionary file orin the dictionary file in the FreeRADIUS
configuration directory.

Pop yuiz - dictionaries

1.

Isaac phones you in a state of shock. He followed the instructions from a hardware
vendor to include their latest dictionary files with FreeRADIUS and now the
FreeRADIUS server refuses to start. What can be wrong?

You are taking over from someone who left the company and are now responsible
for managing and updating all the Linux servers. After you have updated the Linux
server, FreeRADIUS refuses to start. If you try to start it in debug mode the following
error is reported:

/etc/raddb/users[11] : Parse error (reply) for entry bob: Invalid

octet string "1" for attribute name "ChilliSpot-Max-Total-
Gigawords"

What may have caused this to happen?

You are working through the FreeRADIUS Beginner's Guide book and see that in
Chapter 7, Authorization the author uses a private attribute called FRBG-Reset -
Type of type string. This attribute can however only be one of four values (daily,
weekly, monthly, or never). Is there a better way to do this?

[2461

12

Roaming and Proxying

The RADIUS protocol was designed with expandability in mind. If your initial
RADIUS deployment only makes use of a local user store it is still possible

to join a larger network of RADIUS servers without major changes to the
configuration. The focus of this chapter is to help you integrate with other
RADIUS servers.

In this chapter we shall:

Discover the advantages and dangers of roaming
See what a realm is and how it works in FreeRADIUS

See how to proxy requests based on realms

* & o o

Explore ways to make a proxy setup more robust

So let's get on with it...

Roaming allows you to use the same credentials in various localities to gain Internet access.
There are two very common usages of roaming today. Let's see how they work.

Roaming and Proxying

Agreement hetween an ISP and a Telco

Consider the following diagram:

- - = = - = = = my-isp.com
| Telco Equipment | RADIUS
Server

alice@my-isp.com DSL
Concentrator
DSL |
Modem
| Telco RADIUS |
| Server |

Alice is a client of my-isp.com. My-isp.com does not have its own infrastructure.

my-isp.com, however, has an agreement with the local Telco. The Telco allows
clients from my-isp.com to connect to the Internet using the Telco's DSL
Concentrator equipment.

¢ The local Telco's DSL Concentrator will first forward authentication requests to
the Telco RADIUS Server.

¢ Because of the realm (@my-isp.com) these requests will be proxied to the
my-isp.com RADIUS Server.

¢ The local Telco RADIUS Server in effect becomes just another client to the
my-isp.com RADIUS Server.

Some of the advantages of this are:

¢ my-isp.com does not require its own infrastructure.

¢ my-isp.com can have multiple independent agreements with other infrastructure
providers, for example, mobile phone operators or WISPs.

The dangers include:

¢ my-isp.com relies on third parties to provide part of the service.

Agreement hetween two organizations

To demonstrate this we will use two diagrams. The first one is where alice@my-org.com
visits your-org.com:

[2481

Chapter 12

- - - - |

! your-org.com Equipment my-org.com
| 3 : RADIUS
| | Server
alice@my-org.com | WiFi AP

SSID org.com
Laptop '

I | your-org. com RADIUS
| Server |

¢ This type of roaming is used in Eduroam. Both organizations install Wi-Fi access
points with a common SSID (org.com in our case).

¢ When alice@my-org.com visits your-org.com she simply connects to the org.com
SSID. This SSID is the same at my-org.com and your-org.com.

¢ The Wi-Fi AP then forwards her authentication request to the your-org.com RADIUS
Server. This RADIUS server sees that alice@my-org.com is a user of my-org.com and
proxies the request to the my-org.com RADIUS Server.

¢ The your-org.com RADIUS Server in effect becomes just another client to the
my-org.com RADIUS Server.

The next diagram shows us what happens when bob@your-org.com visits my-org.com:

- - - - - . |

my-org.com Equipment your-org.com
| 4 : RADIUS
| | Server
bob@your-org.com WiFi AP
I SSID org.com

|

| my-org. com RADIUS
| Server |

¢ bob®@your-org.com is configured for connecting to the org.com SSID at your-org.
com. As soon as he visits my-org.com the org.com SSID is ready and waiting for
him to connect.

¢ The Wi-Fi AP forwards Bob's authentication request to the my-org.com RADIUS
Server. This RADIUS server sees that bob@your-org.com is a user from your-org.
com and proxies the request to the your-org.com RADIUS Server.

¢ The my-org.com RADIUS Server in effect becomes just another client to the
your-org.com RADIUS Server.

12491

Roaming and Proxying

The advantage of this is:
¢ Easy connectivity and an increase in productivity
Some of the dangers faced are:

¢ Vulnerable to misuse of network resources

& Potential security risks by allowing another organization to handle usernames
and/or credentials of users in your organization

Now that we have a better overview of roaming it is time to get our hands dirty and see how
proxying is done in FreeRADIUS in order to allow roaming. The rest of the chapter will be
divided into two sections. We start with realms and after realms we discuss proxying.

Realms are used as a way to group users. The most common way to group them is by using
the DNS name of an organization. This name is then separated from the user's name with
a special character referred to as a delimiter. Again the most common delimiter is the '@’
character although other characters can be used. The result is a username similar to an
e-mail address (alice@my-org.com). Although the username may look like an e-mail
address there is absolutely no requirement for it to be a valid e-mail address.

Other common conventions used for realm grouping includes user%realm, realm\user, or
realm/user. These are, however, less popular.

Time for action - investigating the default realms in FreeRADIUS

In the following exercises we will learn about various aspects of realms. We will start with a
clean installation of FreeRADIUS and change it subsequently to see how it handles various
realm configurations:

Q Ensure you have a default installation of a FreeRADIUS server.

1. Edit the users file located under the FreeRADIUS configuration directory and make
sure the following entry for alice exists:

"alice" Cleartext-Password := "passme"

[2501]

Chapter 12

2. Restart the FreeRADIUS server in debug mode and authenticate as alice. Observe
the output of the FreeRADIUS server. The following should be part of the output:
[suffix] No '@' in User-Name = "alice", looking up realm NULL
[suffix] No such realm "NULL"

++[suffix] returns noop

What just happened?

We have done a normal authentication against the users file—nothing new here. We will,
however, be focusing on a module inside the authorize section of the sites-enabled/
default virtual server. This module identifies itself as the suf fix module in the debug
messages.

The suf£ix module is an instance of the realm module (r1m_ realm). This module is
defined in the modules/realm file under the FreeRADIUS configuration directory:

'username@realm'

#

realm suffix {
format = suffix
delimiter = "@"

}

This module is instructed to check if the User-Name AVP is in the form username@realm.
There are also other instances of the realm module defined in the modules/realmfile:

¢ IPASS looks for a username of the form IPASS/username@realm.

¢ realmpercent looks for a username of the form username%realm.

¢ realmntdomain looks for a username of the form domain\user.

NULL realm

There are three realms that have special meaning in FreeRADIUS. They are NULL, LOCAL, and
DEFAULT. We can see from the debug output that the suf £fix module was actually looking
for information on the realm called NULL. Because it could not find any information on the
NULL realm it simply returned noop.

[suffix] No '@' in User-Name = "alice", looking up realm NULL
[suffix] No such realm "NULL"
++ [suffix] returns noop

[2511

Roaming and Proxying

The suffix module groups any username that does not contain a suffix into the NULL
realm. This means that any request without a realm will automatically be in the NULL realm.
Since alice did not contain an @realm, the suf £ix module tried to get information on the
NULL realm but could not get any and returned noop.

As we've seen, suffix is simply an instance of the realm module. This instance is used
during authorization (Access-Request) and also during preacct (Accounting-
Request). Only suffix is enabled by default but we can enable any of the other defined
instances, for example, IPASS. We can even declare our own named instance of the realm
module and subsequently use it. The defaults, however, work just fine in most environments.

In the next exercise, we will see where the suf fix module was looking for this realm called
NULL that does not exist.

Defining the NULL realm

Realms are defined inside the proxy . conf file located under the FreeRADIUS configuration
directory. Continuing with the previous exercise we will create our first realm.

Time for action - activating the NULL realm

Follow these steps to activate the NULL realm:

1. Edit the proxy.conf file under the FreeRADIUS configuration directory and change
the following part from:

#realm NULL {

authhost = radius.company.com:1600
accthost = radius.company.com:1601
secret = testingl23

#)

to:

realm NULL {

authhost = radius.company.com:1600
accthost = radius.company.com:1601
secret = testingl23

[2521

Chapter 12

2. Restart the FreeRADIUS server in debug mode and authenticate as alice. Observe
the output of the FreeRADIUS server. The following should be part of the output:

[suffix] No '@' in User-Name = "alice", looking up realm NULL
[suffix] Found realm "NULL"

[suffix] Adding Stripped-User-Name = "alice"

[suffix] Adding Realm = "NULL"

[suffix] Authentication realm is LOCAL.

++[suffix] returns ok

What just happened?

We have created the special realm NULL and observed the change in the debug output of
an authentication request.

The suffix module found the NULL realm inside the proxy . conf file. If it finds a realm,
two new attributes are added based on the value of User-Name, which is split into two
components:

¢ Stripped-User-Name: This is just the username without the @realm, for example
alice
¢ Realm: In the case of alice there is no realm and the suf fix module uses the

special realm NULL

The suffix module also decided what to do with the request and reported the
following way:

[suffix] Authentication realm is LOCAL.

The suffix module automatically sets the realm; we can, however, at any time during the
authorize phase decide to change it by simply using unlang and modifying the value of the
Proxy-To-Realm attribute in the control attribute list.

Here we test the value of the User-Name AVP and when it is a required value, it will
authenticate locally:

if (request:User-Name == 'my-org-test@your-org.com') {
update control {
Proxy-To-Realm := LOCAL

[2531]

Roaming and Proxying

This is a handy way to cancel or change a proxy request based on certain attributes.

LOCAL realm

The LOCAL realm as stated before is also one of the special realms. When we defined the
NULL realm we did not specify an authost, accthost, or secret. When none of these are
specified the special realm LOCAL will be used. The LOCAL realm is simply a way of saying
"no proxying, continue, thank you". There is a realm LOCAL defined inside the proxy . conf
file but it is more of a placeholder and it never is modified. Even when removing it from the
proxy .conf file, the LOCAL realm is still available to the suffix module.

When defining a realm you can specify what action should be taken. This is determined by
the use of directives inside the realm definition. There are three types of actions:

¢ Proxy this request to another RADIUS server or server pool, out on the Internet. This
will be covered later in the chapter where we will be using the pool directive.

¢ Forward this request to a local virtual server by using the virtual server
directive. This is similar to forwarding it to another RADIUS server. The request will
also be sent through the pre-proxy and post -proxy sections but, instead of
going to an external server it goes to a local virtual server.

¢ Do not proxy this request, use the local server. When the realm definition does not
contain any directives specifying external or virtual servers, the special realm LOCAL
will be used. We've done this with the NULL realm.

We will now investigate how FreeRADIUS reacts when we create a proper realm.

Time for action - defining the realm

The following steps demonstrate how to define a realm:

1. Add the following realm to the proxy . conf file located under the FreeRADIUS
configuration directory:

realm my-org.com {

}

2. Restart the FreeRADIUS server in debug mode and authenticate as aliceemy-org.
com. Observe the output of the FreeRADIUS server. The following should be part of
the output:

12541

Chapter 12

[suffix] Looking up realm "my-org.com" for User-Name = "alice@my-
org.com"

[suffix] Found realm "my-org.com"

[suffix] Adding Stripped-User-Name = "alice"
[suffix] Adding Realm = "my-org.com"
[suffix] Authentication realm is LOCAL.

++ [suffix] returns ok

3. Edit the my-org.comrealm to include the nostrip directive:

realm my-org.com {
nostrip

}

4. Restart the FreeRADIUS server in debug mode and authenticate as aliceemy-org.
com. Observe the output of the FreeRADIUS server. Authentication should fail and
the following should be part of the output:

[suffix] Looking up realm "my-org.com" for User-Name = "alice@my-
org.com"

[suffix] Found realm "my-org.com"
[suffix] Adding Realm = "my-org.com"
[suffix] Authentication realm is LOCAL.

++[suffix] returns ok

What just happened?

We have defined a real realm and investigated the results when the nostrip directive is
used in the realm definition.

The realm module (of which suffix is an instance) will look for a realm in the proxy.conf
file. If it is found and there is no nostrip option in the definition it will add the Stripped-
User-Name and Realm attributes. However, if there is a nostrip option in the realm's
definition it will only add the Realm attribute.

Modules that are involved with authentication (like the £i1les module) check to see if there
is a Stripped-User-Name attribute for a user. If one is found, they will use that value
instead of the User-Name attribute's value to look for a valid user.

When we used the nostrip option there was no Stripped-User-Name attribute added
and the User-Name was alice@my-org.com. This is why the authentication failed.

[2551]

Roaming and Proxying

Rejecting usernames without a realm

A typical requirement when there is roaming between two organizations is to prevent the
users from using their username without the realm name. Failing to do this may cause the
username alice to work at my-org. com, but not at your-org. com. Forcing the username
to be in the format alice@emy-org.com will ensure that it works at both organizations. The
next exercise shows you how to do this.

Time for action - rejecting requests without a realm

The following steps will demonstrate how to reject requests without a realm:

1. Edit the proxy.conf file under the FreeRADIUS configuration directory and ensure
that the my-org. com realm does not have the nostrip directive (it was included
in the previous exercise).

2. Editthe sites-enabled/default file and add the following unlang code just
after the suffix entry in the authorize section. This will reject any requests with
usernames without a realm:

if (request:Realm == NULL) {
update reply {
Reply-Message := "Username should be in format username@
domain"
}
reject

}

3. Restart the FreeRADIUS server in debug mode and try to authenticate as alice. The
authentication request should fail.

4. Authenticate as alicee@my-org.com. The request should pass.

What just happened?

We have managed to reject any authentication request where a username does not contain
arealm.

We had to put the unlang code after the suf fix module because it sets the Realm to NULL.
We then perform a simple check for the value of the Realm attribute inside the request
attribute list. If it is NULL we reject the authentication request with a relevant message.

[2561]

Chapter 12

DEFAULT realm

At the start of this exercise we said there were three special realms that the realms module
(for example suf fix) used:

L 4

-~
Q between them is for my-org. com to simply proxy unknown users to your -

The NULL realm, if defined, is used for any user that does not have a realm in the
username. The Stripped-User-Name attribute is set to the same value as the
User-Name attribute. The Realm attribute will be set to NULL.

The LOCAL realm is a realm that always exists and if control : Proxy-To-Realm
is specified as LOCAL, no proxying takes place. The LOCAL realm is also used when
a realm is defined without any external servers or virtual servers inside the realm
definition. Another use for the LOCAL realm is to cancel a proxy request and handle
the request locally.

The DEFAULT realm, if defined, is used for any request that contains an unknown
realm. The DEFAULT realm definition almost always includes the nostrip option in
order to help the upstream server to differentiate between realms. This will typically
be used when you are forwarding requests to an upstream server like the Eduroam
servers. In short it matches all undefined realms that are received. See the following
diagram for an explanation:

NULL(e.g. alice)

Incoming
Request my-org.com (e.g. alice@my-org.com) Upstream
— > | suffix RADIUS

DEFAULT Server
(e.g. alice@another-org.com; I

alice@his-org.com;
alice@her-org.com;)

From the diagram we see that users with an unknown realm are grouped into the
DEFAULT realm by the suffix module. From there, the request is usually forwarded
upstream. This principle is similar to the TCP/IP protocol's default gateway.

Beware of creating endless loops

A common mistake that people make when two organizations configure roaming

org.com. Then your-org.comin turn configures its servers to simply proxy
unknown users to my -org . com. This will obviously create an endless loop!
Take note of this and beware!

2571

Roaming and Proxying

This brings us to the end of the first section on realms. There are three key points to
remember about the work of the suf £ix module:

¢ Itidentifies a user's realm based on predefined realms in the proxy . conf file and
sets the control : Proxy-To-Realm value accordingly.

¢ Itaddsa request:Realm attribute if the user is part of a pre-defined realm. This
includes the special realms NULL and DEFAULT.

¢ If the pre-defined realm of a user does not include the nostrip option, the suffix
module will add the request : Stripped-User-Name attribute.

Beware of old documentation

You may come across documentation instructing you to define a realm
~ inside the realms file. It may also talk about options like notrealm
Q and hints that can be used in a realm definition. The realms file and
these options are not used any more. We now use the proxy.conf
file to define realms. Read the comments inside the proxy . conf file
to discover which options are currently allowed.

In the next section we will see how adding directives to a realm will cause it to
forward requests.

This section will also be hands-on like the previous section on realms. Our end goal is a
similar setup to the one shown in the Agreement between two organizations section at the
start of this chapter. This means that you will require two FreeRADIUS servers. We assume a
default installation on both.

Time for action - configuring proxying hetween two

We will start with the FreeRADIUS server for my-org. com:

1. Edit the users file located under the FreeRADIUS configuration directory and make
sure the following entry for alice exists:

"alice" Cleartext-Password := "passme"
Tunnel-Type = VLAN,

[2581]

Chapter 12

Tunnel-Medium-Type = IEEE-802,
Tunnel-Private-Group-ID = "100"

2. Edit the proxy . conf file located under the FreeRADIUS configuration directory and
add a home_server entry for your-org. com. We assume it has an IP address of
192.168.1.106.

home server hs 1 your-org.com {

type = auth+acct
ipaddr = 192.168.1.106
port = 1812

secret = testingl23

}

3. Alsoadd ahome server pool section to the proxy . conf file that contains the
home_server defined in the previous step:
home server pool pool your-org.com {
type = fail-over

home_server = hs_1 your-org.com

}

4. Use this pool to proxy requests for the your-org. com realm:
realm your-org.com {
pool = pool your-org.com

nostrip

}
5. Create a LOCAL realm for my-org. com:

realm my-org.com {

}

6. Editthe clients.conf file located under the FreeRADIUS configuration directory
to allow requests from the your-org. com RADIUS server. We assume it has an IP
address of 192.168.1.106:
client your-org.com {

ipaddr = 192.168.1.106
secret = testingl23

}
This completes the required configuration for the my-org. com RADIUS server.
The my-org.com RADIUS server will now do two things:

¢ Forward requests for the your-org. com realm to the your-org. com RADIUS
server

¢ Accept requests from the your-org.com RADIUS server

[2591]

Roaming and Proxying

We will now configure the your-org.com RADIUS server in a similar way:

1.

Edit the users file located under the FreeRADIUS configuration directory and make
sure the following entry for bob exists:

"bob" Cleartext-Password := "passbob"
Tunnel-Type = VLAN,
Tunnel-Medium-Type = IEEE-802,
Tunnel-Private-Group-ID = "55"

Edit the proxy. conf file located under the FreeRADIUS configuration directory
and add a home_server entry for my-org. com. We assume it has an IP address
of 192.168.1.105.

home server hs 1 my-org.com {

type = auth+acct
ipaddr = 192.168.1.105
port = 1812

secret = testingl23

}

Also add a home_server pool section to the proxy . conf file that contains the
home_server defined in the previous step:
home_server pool pool my-org.com {
type = fail-over
home_server = hs_ 1 my-org.com
}
Use this pool to proxy requests for the my-org. com realm:
realm my-org.com {
pool = pool my-org.com

nostrip

}
Create a LOCAL realm for your-org. com:
realm your-org.com {

}

Edit the clients. conf file located under the FreeRADIUS configuration directory
to allow requests from the my-org.com RADIUS server. We assume it has an IP
address of 192.168.1.105:

client my-org.com {
ipaddr = 192.168.1.105
secret = testingl23

[260]

Chapter 12

The your-org.com RADIUS server will now do two things:

¢ Forward requests for the my-org. com realm to the my-org. com RADIUS server

¢ Accept requests from the my-org. com RADIUS server

The stage is now set. Restart the two FreeRADIUS servers in debug mode and perform the
following tests while carefully observing the debug output on both FreeRADIUS servers.
We will use a table to list the tests to perform, servers on which to do it, and things that
will be tested.

User to authenticate Do on RADIUS server What is tested

alice my-org.com Local user without realm
aliceemy-org.com my-org.com Local user with realm
bobe@your-org.com my-org.com Remote user with realm
bob your-org.com Local user without realm
bobe@your-org.com your-org.com Local user with realm
aliceemy-org.com your-org.com Remote user with realm

If both the servers were configured correctly all the Access-Requests should pass. If it
does not work as intended, re-check the configuration and follow the debug output to try
to determine where the request got rejected.

What just happened?

We have configured two RADIUS servers, each with the following functionality:

¢ Each server has its own realm.
¢ Each server will forward incoming requests (authentication and accounting) for
users defined on the other server to that server.

The following section will be specifically looking at important points when proxying
authentication requests. The section thereafter will discuss important points on proxying
accounting requests.

12611

Roaming and Proxying

Proxying authentication requests

To give another RADIUS server proxy rights to our server, we simply add it as a client on
our server inside the clients. conf file. Users, as we have seen, are grouped together by
defining a realm. The new part in this section is the definition of a home server and a
home_server pool.

¢ Ahome server and ahome_server pool are used to define the external RADIUS
server(s) to which the various realms can send proxy requests.

¢ Arealmcontains a home sever pool.
¢ The home server pool inturn contains one or more home server entries.

The following schematic shows how the realm, home server pool, and home server
sections can be used as individual building blocks to create many arrangements.

realm

home_server_pool

home_server home_server realm home_server
(hs_1 your-org.com) (pool_your-org.com) (your-org.com)

Ahome_server section defines a single server that is used to proxy certain types of
requests to. In our sample setup we specified auth+acct. In essence it contains details

that FreeRADIUS will use to act as a client to the specified home server. It can also contain
optional directives that FreeRADIUS will use to determine fail-over and load balancing when
this home_ server is grouped in a home server pool.One home server can be included
in one or more home server pools or notincluded at all.

Ahome_server_ pool is used to group one or more home servers together. The selection
criteria of a home_server in a home server pool can either be done in fail-over mode
(default) or load-balancing mode. Be sure to add only home servers of the same type

(for example. auth+acct) to a pool to ensure they will all be able to handle the requests
forwarded to them.

Having these three building blocks gives tremendous flexibility and possibilities for different
arrangements with minimum effort. There exists a lot of detailed information including
sample configurations in the proxy . conf file under the FreeRADIUS configuration directory
to help you to create alternative configurations.

12621

Chapter 12

The comments inside the proxy . conf file also mention an alternative way to define home
servers for a specific realm by using the authost, accthost, and secret directives instead
of the home server pool directive. These directives are part of an older way to define
home servers and people are encouraged to use the newer way that offers more flexibility.

Flow chart of an authentication proxy reguest

The following diagram shows the difference in flow between a request that is proxied to
another server and a request that is processed locally.

| Access-Request | | I

| (proxy)e.g bob@your-org.com | | Access-Request |
no-pro:
| . uffix module | | (no-proxy) l |
authorize

| ‘_____J v | t » authorize

' pre-proxy I authenticate '

| authenticate | |

| pre-proxy |« | | post-auth |

| post-auth | | |
l my-org.com | | your-org.com |

If we look at the debug output on the my-org. com RADIUS server when bob@your-org.
com tries to authenticate, we can follow this flow. Let's discuss some highlights.

Suffix setting control: Proxy-To-Realm

During the authorize part, the suf £fix module identifies that bob@your-org. com belongs
to the your-org. comrealm and sets control : Proxy-To-Realmto your-org. com:
[suffix] Looking up realm "your-org.com" for User-Name = bob@your-org.com
[suffix] Found realm "your-org.com"

[suffix] Adding Realm = "your-org.com"

[suffix] Proxying request from user bob to realm your-org.com

[suffix] Preparing to proxy authentication request to realm "your-org.
com"

++[suffix] returns updated

You will see that the output only states it is Preparing to proxy authentication
request. This is because the proxying decision can still be changed or cancelled if other
modules in the authorize section change the value of control : Proxy-To-Realm.

12631

Roaming and Proxying

Pre-proxy section

Since control : Proxy-To-Realm was set to your-org. com, the request did not flow to
the authenticate section, but went to the pre-proxy section instead. This section is,
however, empty, which is why the following line is in the debug messages:

WARNING: Empty section. Using default return values.

The pre-proxy section can be used as a last location to cancel or change the proxy request
by modifying the control : Proxy-To-Realm AVP value. We see then how the request is
sent to the home server of your-org. com.

When a reply is returned from the home server of your-org. com we see how this reply is
then passed through the post -proxy section. This section will typically be used to remove
AVPs returned by the home server of your-org. com. Thereafter the request passes through
the post-auth section and the reply is returned to the original client.

rad recv: Access-Accept packet from host 192.168.1.106 port 1812, id=184,
length=40
Tunnel-Type:0 = VLAN
Tunnel-Medium-Type:0 = IEEE-802
Tunnel-Private-Group-Id:0 = "55"
Proxy-State = 0x3330
+- entering group post-proxy {..}
[eap] No pre-existing handler found
++[eap] returns noop
Found Auth-Type = Accept
Auth-Type = Accept, accepting the user
+- entering group post-auth {..}
++ [exec] returns noop
Sending Access-Accept of id 30 to 127.0.0.1 port 57020
Tunnel-Type:0 = VLAN
Tunnel-Medium-Type:0 = IEEE-802

Tunnel-Private-Group-Id:0 = "55"

12641

Chapter 12

EAP and dynamic VLANS

In the previous section we saw three attributes returned from the your-org.com home
server to the client of the my-org. com RADIUS server. These attributes are used for dynamic
VLAN assignment. Dynamic VLAN assignment is done in some enterprise networks that use
802.1x on the LAN or WPA-2 on their Wi-Fi network. This helps to put each client inside a
specified VLAN dynamically. The decision of which VLAN a user should belong to can be
based on many things like privileges (for example students and professors) or on the type of
device (for example VOIP phones).

Watch out for the value of Tunnel - Private-Group- Id. This attribute's
valueisa string and not an integer. A VLAN can have a name in addition to
% a number. Some equipment will only take a VLAN name while other equipment
’ requires the VLAN number. Be sure to check what your equipment needs before
assigning a value.

The VLAN numbers used by your-org. com will not necessarily have the same privileges

at or even be implemented by my-org. com. This is why in the next section we will modify
the attributes returned from the home server at your-org. com so that they meet the
requirements on the network at my-org. com. Before we modify the attributes, you can, as
an optional exercise, use the JRadius Simulator program discussed in Chapter 10, EAP to test
the proxying of EAP requests.

Test the proxying of EAP authentication between my-org. com and your-org. com by doing
the same set of tests that was listed in the table earlier. You will notice that the reply AVPs
will be missing when running tunneled EAP methods. To enable the return of reply AVPs in
these EAP methods, be sure to change the following directive in the peap and tt1s sections
inside the eap . conf file located under the FreeRADIUS configuration directory from use
tunneled reply =notouse tunneled reply =yes.

. The proxying of tunneled EAP methods never exposes the user details and
a passwords located inside the tunnel to the RADIUS servers that forward
A the request. This is more secure than other authentication protocols like
PAP.

12651

Roaming and Proxying

Removing and replacing reply attributes

Since you have no control over the AVPs that are returned from an external home server, it
is simply good practice to manage these attributes and their values after they are returned
to our server. In this exercise we will replace the dynamic VLAN detail returned from your-
org.com with the dynamic VLAN detail used at my-org. com on the my-org. com RADIUS
server.

Time for action - filtering reply attributes returned by a

The following actions have to be carried out on the my-org. com FreeRADIUS server:

1. Editthe sites-enabled/default file located under the FreeRADIUS
configuration directory and uncomment the attr filter.post-proxy line
under the post -proxy section:

Uncomment the following line if you want to filter

replies from remote proxies based on the rules defined
in the 'attrs' file.

attr filter.post-proxy

2. Edit the attrs file under the FreeRADIUS configuration directory and add the
following entry before the DEFAULT entry:

your-org.com
Reply-Message =* ANY,

Tunnel-Type := VLAN,
Tunnel-Medium-Type := IEEE-802,
Tunnel-Private-Group-Id := "100"

3. Restart the FreeRADIUS server in debug mode and test the authentication for
bob@your-org.com from the FreeRADIUS server at my-org. com.

4. The reply attributes will now always include the following, no matter what
AVPs are returned by the home server of your-org. com:
Tunnel-Type:0 = VLAN
Tunnel-Medium-Type:0 = IEEE-802
Tunnel-Private-Group-Id:0 = "100"

12661

Chapter 12

What just happened?

We have implemented a filter for the reply attributes from the home server of your-org.
com. To do this we made use of the r1m attr filter module. The module itself has
plenty of documentation including a man page (man rlm attr filter)andasample
attrs file. Various instances of this module are defined in the modules/attr filter file
located under the FreeRADIUS configuration directory.

Attribute entries are of the form <attributes> <operators> <values. Consult the man
page when you are selecting operators. Selecting the correct operator is crucial for the filter
to work as intended. We chose the : = operator, which will override the existing attribute if it
exists or add the attribute if it does not exist. Suppose we had used the == operator instead
of : =, then it would only return that particular attribute when the reply from the home
server contains that particular attribute with the specified value. We have also used the =*
ANY pattern for the Reply-Message AVP. This means that any value of Reply-Message
should simply be forwarded.

Before we move on to the proxying of accounting requests we will briefly look at fail-over
and load-balance configuration in a home server pool.

Status of the home servers

The creation of a home server pool allows us to specify a few home servers inside this
pool. We can declare two types of pools. One will be to handle high loads better; the other
will handle network outages better. With both of them, FreeRADIUS needs to keep track of
the health of the home servers inside the pool. To specify how FreeRADIUS will check the
health of a home server we use the status_check directive in a home server declaration.
Depending on the value of status_check there are other additional directives that will
influence (or fine tune) the way in which a health check is done.

The three possible values for status_check are:

¢ None: Although this is the default, it is the least preferred. Only use it as a last
resort.

¢ Status-Server: This requires that the home server support the receiving of Status-
Server packets. Confirm that the home server supports it before specifying it. This
is the preferred way of status checking.

¢ Request: FreeRADIUS will send Access-Request or Authentcation-Request
packets to the home server to check its status. Use this if the home server does not
support Status-Server packets.

Although we have only specified a single home server for my-org. comand your-org. com,
we can still add the status_check = status-server directive to specify the preferred
way of checking the health of a home server.

12671

Roaming and Proxying

Time for action — using the preferred way for status checking

The following steps will demonstrate how to perform status checking:

1. Update the home server definitions for my-org.com and your-org. com to
include the following directive:

status_check = status-server
2. To see how FreeRADIUS sends Status-Server packets to a dead server simply

shut down the FreeRADIUS server for your-org. com and keep on sending
authentication requests for bob@your-org. com to the my-org. com server:

Marking home server 192.168.1.106 port 1812 as zombie (it looks
like it is dead).

Sending Status-Server of id 97 to 192.168.1.106 port 1812
Message-Authenticator := 0x00...

NAS-Identifier := "Status Check. Are you alive?"

3. Start the FreeRADIUS server for your-org. com again in debug mode and see how
it answers to the Status-Server packets sent to it from the my-org. com server:

rad recv: Status-Server packet from host 192.168.1.105 port 1814,
id=160, length=68

Message-Authenticator = 0x7b2f0a58666d532b2...
NAS-Identifier = "Status Check. Are you alive?"
Sending Access-Accept of id 160 to 192.168.1.105 port 1814

4. After a specified number of responses to the Status-Server requests, the
FreeRADIUS server at my-org. com will mark the home server of your-org.comas
alive again:

Received response to status check 16 (3 in current sequence)

Marking home server 192.168.1.106 port 1812 alive

This brings us to the end of the status server discussion. This was just a general introduction
to gain more background. You are encouraged to read through the information in the
proxy . conf file to help you configure and fine-tune the settings for fail-over or load
balancing.

As a final word, remember that this fail-over and load balancing is used by the home
server pool during proxying. FreeRADIUS itself also offers fail-over and load-balancing
functionality through the use of unlang. The keywords redundant, load-balance, and
redundant - load-balance are used to create fail-over and load-balancing configurations
between different modules within FreeRADIUS.

[268]

Chapter 12

Proxying accounting requests
To see what happens when the FreeRADIUS server at my-org. com receives an accounting
request for bob@your-org.com we can use two of the files from Chapter 6, Accounting to
simulate accounting:
& 4088 06 acct start.txt: This file can be used to simulate the start of a session.
& 4088 06 _acct_ stop.txt: This file can be used to simulate the end of a session.

Modify these files and change User-Name = 'alice' to User-Name = 'bob@your-org.
com'.

Time for action - simulating proxied accounting

Do the following on the FreeRADIUS server for my-org. com:

1. Change the directory to where the files are that you will use for simulating
accounting for bob@your-org.com on the FreeRADIUS server of my-org. com.

2. Make sure FreeRADIUS runs in debug mode on the servers representing my-org .
com and your-org.com.

3. Issue the following command on the my-org. com server:
$> radclient 127.0.0.1 auto testingl23 -f 4088 06 acct start.txt

This is to simulate the start of a session.

4. Issue the following command on the my-org. com server to end the previous
session:

$> radclient 127.0.0.1 auto testingl23 -f 4088 06 acct stop.txt

5. Observe the debug output on both servers to see how the proxying of accounting
requests happened by default.

What just happened?

We have simulated a typical accounting request that is proxied from one RADIUS server to
the home server of another organization.

12691

Roaming and Proxying

Flow of an accounting proxy request

The following diagram shows the difference in flow between a request that is proxied to
another server compared to a request that is processed locally:

I Accounting-Request my-org.com | | your-org.com |
| (proxy)e.g bob@your-org.com |

| preacct suffix module | | |

| Accou nting—Requestl |
post-auth I 1 (no-proxy)

| A\ 4 | | |

| pre-proxy | | preacct |

' pre-proxy |« — accounting I

You will notice that the accounting is recorded on both servers by default. You can use
unlang to create an if condition that will prevent the recording of accounting data in the
forwarding server.

Undating accounting records after a seruer outage

A common question is how to handle requests to a home server that is down. When a
home server is down or responding too slowly, you will see something like the following
in the FreeRADIUS log file:

Tue Jul 5 19:13:16 2012 : Error: Rejecting request 2310 due to lack of
any response from home server your-org-1:1813

The principle that FreeRADIUS uses for this situation is to write a detailed log file on the local
server and then use a virtual server with a listener on that log file to forward the requests
when the home server is up again.

Before the 2.x release of FreeRADIUS this type of functionality was not part of the core and
was usually done with the help of a program called radrelay. Now this functionality is built
in. There are four sample virtual servers included under the sites-available folder under
the FreeRADIUS directory that show possible ways to implement the functionality of writing
to a detailed log and then creating a listener on those log files. The following list gives the
name of the virtual server file and a brief description of its function.

¢ Dbuffered-sql: De-couples the storage of long-term accounting data in SQL (slow)
from "live" information needed by the RADIUS server as it is running (fast). It is
used to speed things up.

12101

Chapter 12

copy-acct-to-home-server: Enables duplication of information across a
load-balanced or fail-over set of servers.

decoupled-accounting: Similar to the buf fered-sqgl configuration. Creates a
virtual server for writing the details to a file and another virtual server to listen on
this file.

robust-proxy-accounting: Only writes the details when proxy requests to the home
server fail. A listener for these failed requests will then attempt to forward them to
the designated home server.

Have a go hero - implementing robust-proxy-accounting functionality

Take the robust -proxy-accounting file as an example and modify your own setup to
make everything more reliable when network outages occur.

The creation of realms and setting up of proxying comes as a natural progression for any
FreeRADIUS deployment that has to integrate into a larger network of RADIUS servers. Let's
take a look at the important points from this chapter to remember:

L 4

Realms are defined in the proxy . conf file and used to determine if a request has
to be forwarded to an external home server.

LOCAL, NULL, and DEFAULT are special realms. LOCAL always exists and is used to
cancel proxying. NULL is used to group usernames without a realm and DEFAULT is
used to group usernames from unknown realms.

For an external home server to receive forwarded requests the server proxying the
request has to be defined as a client on the home server.

Realms defined with the nostrip option will cause the suf fix module not to
add the stripped-User-Name AVP to the request. The nostrip option is usually
chosen when forwarding requests to an external home server.

When we proxy requests to other RADIUS servers it is important to filter the reply
AVPs from those servers.

When we wish to forward accounting data we can make use of the integrated
radrelay functionality in FreeRADIUS to create a robust server that will be able to
handle network outages.

2nl

Roaming and Proxying

1.

You work for a company called my-org. com that has just negotiated an agreement
that will allow roaming between my-org. com and another company called your-

org.com. You use FreeRADIUS and your-org. com uses Radiator. Will you be able
to configure roaming despite having different RADIUS server software?

After you have configured and tested the roaming using EAP on the Wi-Fi network
with a common SSID of org.com, a user from your-org. com Vvisits my-org. com.
He would like to know the EAP method used at my-org. com and would also like
to load the CA of my-org. comin order to connect to the org.com SSID. Is this
required?

your-org.com has upgraded its network and is implementing dynamic VLANSs.
Since then, when users from my-org. com visit them they can't get Internet access.
What can be wrong?

A third company is joining the roaming agreement. After they have configured their
FreeRADIUS server you see many requests forwarded to your FreeRADIUS for other
realms also. What do you suspect they did on their side?

[2121

13

Troubleshooting

An efficient ICT Services department is almost invisible. Infrastructure just
works as expected and users are blissfully unaware of the system layers

that shield them from the underlying hardware. Even a little upheaval in the
usually frictionless connectivity can seriously disrupt business operations and
jeopardise business continuity.

It is the system administrator's responsibility to empower herself or himself
with the skills and knowledge to limit disruptions and unwarranted blame. This
final chapter should be used as a guide to diagnose and rectify things when
FreeRADIUS does not work according to expectations.

In this chapter, we shall determine the following:

Why FreeRADIUS would not start up
Why FreeRADIUS may be slow
Why FreeRADIUS would stop working

* & o o

Why FreeRADIUS would fail on a RADIUS client's requests
¢ Why a user would not authenticate

So let's get on with it...

Troubleshooting

Adhere to the principles established in Chapter 3, Getting Started with FreeRADIUS of the
book in order to avoid unintended consequences. The rules were as follows:

Do as little as possible—the default configuration should work as is.
Do not edit the default configuration files until you understand their purpose.

When you make changes, make a backup of the configuration beforehand and
change one item at a time.

¢ Confirm that the changes work as intended by running FreeRADIUS in debug mode
and carefully observing the output during various scenarios.

It is a good idea to create a backup of the FreeRADIUS configuration directory before you
change anything. When one is under pressure, one tends to violate the principles advocating
small changes or well understood configurations. Having a clean configuration to fall back on
again can be a sanity check. The flip side is also true. Not having a clean configuration to fall
back on means the one constant you should have relied on is now missing. You have been
warned. The rest of this chapter contains common problems that you may encounter along
with ways to trace and identify them.

Also make sure you have read through the FreeRADIUS FAQ at least once. It is called the FAQ
for obvious reasons. The FAQ is located at the following URL: http://wiki.freeradius.
org/FAQ.

So you are eager to start this program called radiusd. You have logged in as root, type
radiusd at the terminal prompt, hit Enter and you get the following:

radiusd: command not found
| know it sounds stupid, but make sure FreeRADIUS is actually installed, using this command:

#> locate radius

) Not all distributions include the 1ocate command by default. On
% SUSE you probably first have to install it by running the following
s command:

#> zypper in findutils-locate

[2:]

Chapter 13

After you have established that FreeRADIUS is present but not starting, try to identify the
server binary. On Ubuntu and Debian systems the binary is called freeradius and not
radiusd. If you have the correct binary, start FreeRADIUS with the -X option to show
debug messages that will help you identify problems. Some distributions, like CentOS, do
not include the /usr/sbin directory in the root user's path. You then have to enter the
absolute path together with the binary name in a shell in order for FreeRADIUS to start up.

The following list mentions common reasons why FreeRADIUS would not start up:

¢ Ports 1812 and 1813 are already in use.
¢ Thereis a problem with the configuration.
¢ A module or library is missing.
¢ FreeRADIUS connects to an external component that does not work as intended.
' =
Who's using my port?

The culprit is usually another instance of FreeRADIUS that was started by the startup script
during bootup. FreeRADIUS will then end with a message similar to the following one when
you try to start it up. This means another program is using the UDP port that FreeRADIUS
also would like to use:

Failed binding to authentication address * port 1812: Address already in
use

/etc/freeradius/radiusd.conf [240] : Error binding to port for 0.0.0.0
port 1812

The following command will show you all the UDP listeners on the machine:
#> netstat -uanp

Note that you have to be at the root to use the -p option of the netstat command. The -p
option will show the process name that is using the listed ports. On my Ubuntu machine the
following was returned:

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name

udp 0 0 0.0.0.0:68 0.0.0.0:*

605/dhclient3

udp 0 0 0.0.0.0:1812 0.0.0.0:%*

1554 /freeradius

udp 0 0 0.0.0.0:1813 0.0.0.0:%*

1554 /freeradius

udp 0 0 0.0.0.0:1814 0.0.0.0:%*

1554 /freeradius

[215]

Troubleshooting

You will notice FreeRADIUS also uses port 1814. This port does not listen for requests, but
rather sends requests out, for example, during proxying when FreeRADIUS acts as a client to
a realm's home server. To shut down the existing FreeRADIUS instance use the startup script
with its stop option or the ki11lall command. Here's how the two options are used on
CentOS:

#> /etc/init.d/radiusd stop
#> killall radiusd

If the output of the net stat command includes unwanted information,
it is handy to pipe this output through the grep command to search for a
certain phrase. The following command will only list the UDP ports used by the
i~ freeradius process:

#> netstat -uanp | grep freeradius

Checking the configuration

FreeRADIUS has a -C option that is used to check the configuration. Starting FreeRADIUS
with the -XC options will report if there was an obvious error in the configuration. This check
is not foolproof and it may happen that FreeRADIUS passes this check but then still fails to
start up. The debug message will, however, point to the problem most of the time.

FreeRADIUS uses the special keyword $ INCLUDE inside configuration files to include other
files but does not check to prevent recursive inclusion. This can result in FreeRADIUS
recursively reading a file to include it in the configuration and eventually giving up. If this
happens, the problem is usually with the last include line. Here is the output from a system
that contains a broken dictionary file:

including dictionary file /etc/freeradius/dictionary

Errors reading dictionary: dict init: /usr/share/freeradius/
dictionary[57]: Couldn't open dictionary "/usr/share/freeradius/
dictionary.compat": Too many open files

Finding a missing module is not always a matter of simply installing a FreeRADIUS package
that contains this missing module. As FreeRADIUS allows us to define various instances of
a module by giving a name to subsequent instances of the module, any name can appear

in a virtual server section to represent a module instance. We do not necessarily know the
function of this instance or the module that this instance is derived from.

12161

Chapter 13

To prevent this in future, it is good practice to give a hint of which module is used in the
instance name of the module that is used. The attr_ filter instances defined by default
serve as excellent examples, like attr filter.access reject.

If a missing module is not required, it can be commented out in the configuration file. The
debug output indicates which file, section, and also the line a missing module is listed on, for
example:

/etc/freeradius/sites-enabled/default[160]: Failed to find module "frbg".

/etc/freeradius/sites-enabled/default[62] : Errors parsing authorize
section.

If the missing module is required, check whether it is not included in additional FreeRADIUS
packages that are not installed yet. Finally, you can try to compile FreeRADIUS from source
by ensuring that all the required development libraries are included to create this module
during the compilation of FreeRADIUS. Older releases of Ubuntu for instance did not include
support for EAP-TTLS and this was the route you had to take in order to include EAP-TTLS
support with FreeRADIUS.

If you have compiled FreeRADIUS using the configure, make, make install pattern, you
may get the following error when trying to start FreeRADIUS:

radiusd: error while loading shared libraries:

libfreeradius-radius-2.1.10.s0: cannot open shared object file: No
such file or directory

This is because the operating system does not yet know about the existence and location of
the newly installed libraries. If you run the 1dconfig command it should be fixed.

Fixing a hroken external component

Some modules rely on external components to do part of their work. The way FreeRADIUS
reacts when there are problems with these external components differs between modules.
Let's discuss three possibilities:

FreeRADIUS refuses to start

The perl module calls an external Perl script. This script is loaded into memory during
startup along with the Perl runtime. However, if the external Perl script contains errors,
FreeRADIUS will not start. The location of the error inside the external Perl script will be
shown in the debug output.

FreeRADIUS does not test the execution of the Perl script during startup. The
Perl script is only executed when the per1 module is called to service a request.
’ During this execution the Perl script can also fail.

[2m1

Troubleshooting

FreeRADIUS runs despite the display of an error message

The sgl module will create a connection to the database during startup. If the database
server is down, FreeRADIUS will still start up but will report it in the log files or the debug
output. Here is a snippet from the log file that shows FreeRADIUS could not connect to the
MySQL database:

Tue May 17 19:21:02 2012 : Info: rlm sql mysql: Starting connect to MySQL
server for #0

Tue May 17 19:21:02 2012 : Error: rlm sqgl mysqgl: Couldn't connect socket
to MySQL server radius@localhost:radius

Tue May 17 19:21:02 2012 : Error: rlm sqgl mysqgl: Mysql error 'Can't
connect to local MySQL server through socket '/var/lib/mysql/mysql.sock’
(2) "'

Tue May 17 19:21:02 2012 : Error: rlm sqgl (sql): Failed to connect DB
handle #0

Be sure to check the log files of a production system regularly in order to identify potential
problems like these.

When FreeRADIUS connects to a database on an external server, ensure there is no firewall
blocking access from the FreeRADIUS server to the database server. Some databases like
MySQL also allow you to specify a host along with the username and password that a
database user can connect from. These problems can be difficult to trace since everything
seems OK while all the services are running. Unfortunately, one small component like the
closing of a required port on a firewall can render FreeRADIUS in a broken state.

FreeRADIUS only reports a problem when answering a request

The 1dap module does not check if the LDAP server is working fine during startup. Any
problems with this external component will only be discovered when the 1dap module is
called to service a request. The log file will then report on the failure as follows:

Tue May 17 22:59:36 2012 : Error: rlm ldap: cn=binduser,ou=admins,ou=rad
ijus,dc=my-domain,dc=com bind to 127.0.0.1:389 failed: Can't contact LDAP
server

Tue May 17 22:59:36 2012 : Error: rlm ldap: (re)connection attempt
failed

Also keep in mind that an external component can fail at any time. To minimize the impact
of such a failure, you can use the redundant functionality that FreeRADIUS includes as part
of unlang.

12181

Chapter 13

Using the startup script

After you have confirmed that FreeRADIUS can start from the terminal, also ensure that it
starts fine using the start up script. Runa tail -f on the FreeRADIUS log file while starting
the service up through the start up script.

#> tail -f /var/log/radius/radius.log

Finally make sure that FreeRADIUS will survive a reboot. Refer to Chapter 2, Installation to
see how to activate the start up script on each distribution.

If your deployment of FreeRADIUS does authentication and accounting for many users, you
have to make sure it performs as expected. You can start with a baseline speed test, which
can be used as a reference in future. To do speed testing, the JRadius Simulator is ideal and
easy to use.

Time for action — performing baseline speed testing

The following steps will demonstrate how to perform speed tests:

1. Install and configure JRadius Simulator using Chapter 10, EAP as a guideline.

2. Test the response time of FreeRADIUS by increasing the values of the Requester
Threads and Requests per Thread, observing at what value FreeRADIUS reaches
a saturation point.

Threads: 2 1 ms or less: 34
Sent: 400 10 ms or less: 280

Received: 400 100 ms or less: 86
Time: 1.33 sec 1000 ms or less: 0

Throughput: 301.66 req/sec 10000 ms or less: 0

Simulation Running... Done.

3. Test the duration of typical transactions that will be done on your FreeRADIUS server.
If you are, for instance, part of Eduroam, you can record the duration of the various
EAP methods that you support. You can also test the speed of accounting requests.

12191

Troubleshooting

What just happened?

You have performed a baseline speed test on FreeRADIUS by making use of the JRadius
Simulator program.

FreeRADIUS performs well in isolation. However, when FreeRADIUS utilizes external
components or servers to service requests, performance may degrade because of the
synchronous nature of requests. The next section will help you to maximize the performance
of the FreeRADIUS server itself as well as the external components like files, LDAP, and SQL
servers.

Tuning the performance of FreeRADIUS

The list of items in this section is taken from the following URL:

http://freeradius.org/radiusd/doc/tuning guide

The URL offers a handy checklist that you can use in order to increase the performance of
FreeRADIUS.

¢ Scalable authentication mechanisms like LDAP or SQL are better with large number
of users and/or big volume of requests.

¢ Enable noatime on all the FreeRADIUS log files or better yet on the FreeRADIUS log
directory. You can either mount a whole filesystem using the noatime mount option
in the /etc/fstab file or if you have an ext2-type filesystem you can add the A
attribute using the chattr command.

#> chattr -R +A /var/log/freeradius/
#> lsattr /var/log/freeradius/

¢ The noatime will disable the recording of the last time that the file was read, which
results in an increase in performance.

¢ Do not use the detail and radwtmp (files) modules. They will slow down your
accounting. The detail module can, however, be used in an alternative setup to
de-couple the SQL accounting, which in turn can speed things up.

¢ Use the users file to only set default profiles. Do not place any users there. Keep it
as small as possible. Always set default attributes in the users file and don't fill the
user entries in LDAP/SQL with default values. In general the LDAP/SQL user profiles
should only contain user attributes not catered for by default profiles.

¢ Tune the thread pool parameters to match your size requirements. Set max__
requests per server to zero to avoid server thread restarts.

[2801]

Chapter 13

Increase the timeout (10 seconds) and retries (5—7) in the Network Access Servers
(NAS) for accounting. That way you won't lose any accounting information. If you
use Mikrotik, it will definitely increase the timeout value since the default is only
100 microseconds.

Use well-tuned Fast Ethernet connections to minimize latency.

Ensure the operating system always has the latest patches installed.

There are also tips specific to some modules that can be used to make things faster.

LDAP Module

*

Tune the 1dap connections number in the modules/1ldap file under the
FreeRADIUS configuration directory to be larger than the average number of
simultaneous user authentication requests.

¢ On the LDAP server, try to maximize caching. In particular, always enable indexing
of the uid attribute (equality index) and the cn attribute (equality index — the cn
attribute is used to search for groups). Make the LDAP server entry/directory cache
memory sizes as large as possible. In general, try allocating as much memory as you
can afford to your LDAP server.

¢ Put default profiles in LDAP. User entries should only contain non standard values
in order to remain small and maximize the gains of caching the user default/regular
profiles.

SOL Module

¢ Tunethenum sgl socks inthe sql.conf file under the FreeRADIUS
configuration directory to be larger than the average number of simultaneous
authentication/accounting requests.

¢ Use the sgl module in the session section instead of the radutmp module.
It works much quicker.

¢ Create a multi-column index for the Username and AcctStopTime attributes
especially if you are using sql for double-login detection. In the MySQL shell
you can enter the following to do this:
mysql> use radius;
mysqgl> ALTER TABLE radacct ADD INDEX myIndex (username,
acctstoptime) ;

¢ Ifyou are using MySQL and you do a lot of accounting, try using InnoDB for the

radacct table instead of MyISAM. You can use the following command from the
MySQL shell to determine the current engine:

mysqgl> show table status from radius LIKE 'radacct';

2811

Troubleshooting

L 4

To change the MySQL table's engine issue the following command:
mysql> use radius;

mysqgl> alter table radacct ENGINE = InnoDB;

Add Acct-Unique-Session-Idinthe accounting stop query. Especially if you
have a lot of access servers or your NAS does not send very random Session-1Ids.
That way you will always have one candidate row to search for, instead of all the
rows that have the same Acct-Session-Id.

Use the EXPLAIN statement in MySQL to evaluate the SELECT statements used by
FreeRADIUS to help with the creation of indexes.

Now that our server is fine-tuned, we can make it even more reliable and faster by using the
redundant and load-balancing functionality built into unlang.

Redundancy and load-halancing

The following is a list of keywords that unlang offers to create redundancy, load-balancing,
or a combination of both:

L 4

redundant: A redundant section is specified inside the authorize or
accounting sections of a virtual server. This section can only contain a list of
modules. If a module in the list fails, the next module in the list will be tried until
one passes.

load-balance: A 1oad-balance section is also typically specified inside the
authorize or accounting sections of a virtual server. Like the redundant
section it can also only contain a list of modules. The modules, however, have to be
of the same type (for example: 1dap or sql) in order for the load balancing to work
fairly. To handle the request, a module in the list is chosen at random.

redundant-load-balance: There is a combination of redundant and load-
balance.

Most enterprises have more than one LDAP server. When you are using the 1dap
module, it just makes sense to have a more solid deployment by utilizing the redundant
and load-balancing functionality. The following snippet from the authorize section
should speak for itself:

redundant-load-balance {

ldapl # 50%, unless ldap2 is down, then 100%

ldap2 # 50%, unless ldapl is down, then 100%

12821

Chapter 13

The FreeRADIUS Wiki contains two pages that show more complex possibilities
for redundancy and load-balancing. The following are the links:
s http://wiki.freeradius.org/Fail-over

http://wiki.freeradius.org/Load balancing

Things heyond our control

Unfortunately, some RADIUS deployments include network portions that are not under

our control. The fact that the FreeRADIUS server is running at top speed with a super-fast
backend will make no difference if the connection between the client and the FreeRADIUS
server is unreliable or slow. Using networking troubleshooting commands like ping and
traceroute will be a good start in trying to determine if there is a latency problem with the
client sending requests to the server and the server responding to these requests in return.
If there is nothing you can do about the latency, you may look at increasing some timeouts in
the configuration of the server or the client.

Having a working and fast system is no guarantee that FreeRADIUS will never crash.
The next section discusses a way to let FreeRADIUS bounce back after it has died.

Wouldn't it be nice to have a dedicated process that constantly watches another process and
the moment it dies, simply restarts this dead process. The deamontools package contains
such a program called supervise. If you want to minimize downtime, the following

URL describes in detail how to incorporate a check on the radiusd process using the
supervise program:

http://freeradius.org/radiusd/doc/supervise-radiusd. txt

After you have discovered that FreeRADIUS has died unexpectedly, go through the various
system log files in order to try to determine what has caused this to happen.

Up till now, we have discussed problems that can prevent FreeRADIUS from starting and
performing, and also how to keep it running. The rest of the chapter will look at common
problems when clients interact with a running FreeRADIUS server.

[2831]

Troubleshooting

A user connects to a RADIUS client; the RADIUS client in turn connects to the RADIUS server.
If a client does not seem to be able to connect with the server check the following first:

¢ Does FreeRADIUS knows about this client? Check the FreeRADIUS log file for lines
like the following:
Wed May 18 17:53:57 2012 : Error: Ignoring request to

authentication address * port 1812 from unknown client
192.168.1.103 port 39881

¢ Isthe client allowed through the firewall running on the FreeRADIUS server? To
check the firewall rules use the following command (requires root access):

#> /sbin/iptables -L -n

If these initial checks have passed, run FreeRADIUS in debug mode in order to do proper
troubleshooting. The debug messages will show when a request is received and how it is
processed. These debug messages are verbose, containing lots of detail making it easy to
follow.

Unfortunately, when you run FreeRADIUS in a production environment it is not always
easy to first stop the FreeRADIUS server and then start it in debug mode in order to do
troubleshooting. The second problem you will experience is to identify requests from the
problem client, among all the other requests also going to FreeRADIUS. To help with both
these problems, we can make use of the control-socket virtual server in combination
with the raddebug program.

Another option is virtualization. Today most big enterprises are moving to a virtualized
environment. This makes troubleshooting and testing new configurations much easier. A
copy of the production virtual server can be used for tests or configuration changes. This
minimizes disruptions in the production environment.

Testing UDP connectivity to a RADIUS server

Most people are familiar with using telnet to test connectivity to a specified TCP port.
Unfortunately, we cannot use the telnet test on FreeRADIUS because it runs over UDP
instead of TCP.

Testing for UDP connectivity with programs such as netcat and nmap does not really give a
clear indication of whether one can connect to the UDP port or not. It is much more efficient
to use a RADIUS client program like radtest or radclient to test the UDP connection.
These client programs will also report on a wrong shared secret as follows:

rad recv: Access-Reject packet from host 192.168.1.42 port 1812, id=62,
length=34

12841

Chapter 13

rad verify: Received Access-Reject packet from home server
192.168.1.42 port 1812 with invalid signature! (Shared secret is
incorrect.)

The control-socket virtual server

FreeRADIUS features a control - socket virtual server that allows you to control a running
server. This virtual server is enabled by default on SUSE and CentOS but not on Ubuntu. The
comments inside the virtual server have the following to say:

HIGHLY experimental! It should NOT be used in production environments.

There is actually a second problem. The fact is this virtual server is so handy that you just
have to bend the rules on this one! This virtual server allows the following programs to
connect to the FreeRADIUS control socket:

¢ radmin: This is a FreeRADIUS Server administration tool that connects to the
control socket of a running server, and gives a command-line interface to it.

¢ raddebug: This is a shell script wrapper around radmin that automates the process
of obtaining debugging output from a running server. It does this without impacting
service availability, unlike using radiusd -X.

Both of these programs include their own man pages for a more detailed description on how
to use them.

There is a security warning attached when activating the control -socket

virtual server in read/write mode (required for raddebug and radmin). For
me the convenience of raddebug outweighs the added risk.

Time for action - using the control-socket and raddehbug for

trouhleshooting

As stated before, the control -socket virtual server is not enabled on Ubuntu and the
default install on SUSE and CentOS requires a few adjustments before we can use the control
socket with raddebug.

[2851]

Troubleshooting

Do the following on CentOS in order for raddebug to be useable:

1.

Confirm that the control-socket virtual server is enabled by checking if it is
listed under the sites-enabled directory:

#> ls /etc/raddb/sites-enabled

Edit the control -socket virtual server file and ensure mode is specified as
mode = rw at the bottom of the server section.

Ensure the radiusd user is part of the root group:

#> /usr/sbin/usermod -a -G root radiusd

Restart FreeRADIUS using the start-up script:

#> /etc/init.d/radiusd restart

Do the following on SUSE in order for raddebug to be useable:

1.

Confirm that the control -socket virtual server is enabled by checking if it is
listed under the sites-available directory:

#> 1ls /etc/raddb/sites-enabled

Edit the control -socket virtual server file and ensure mode is specified as
mode = rw at the bottom of the server section.

SUSE by default runs FreeRADIUS as root so there will be no requirement to add
the radiusd user to the root group to fix the permissions. If you are, however,
running FreeRADIUS as user radiusd instead of root, remember to add
radiusd to the root group.

Restart FreeRADIUS using the start up script.

#> /etc/init.d/freeradius restart

Do the following on Ubuntu in order for raddebug to be useable:

1.

Enable the control -socket virtual server:
$> sudo su
#> cd /etc/freeradius/sites-enabled

#> 1ln -s ../sites-available/control-socket ./

[2861]

Chapter 13

2. Edit the control-socket virtual server file and ensure mode is specified as
mode = rw at the bottom of the server section.
3. Ensure the freerad user is part of the root group:
#> usermod -a -G root freerad
4. Restart FreeRADIUS using the start up script.
#> /etc/init.d/freeradius restart
Using raddebug

The raddebug program is a real life-saver in production environments. Let's imagine we
have a production environment with an Access Point having an IP of 192.168.1.103 trying
to authenticate a user. We do not know that the shared secret is wrong but we will soon
find out!

1.

Ensure you are the root user on the FreeRADIUS server that has the
control-socket activated and configured as described previously.
Purists may frown on being root in order to use raddebug. This,
however, proved to give the least problems across all distributions.

From a terminal issue the following command:
#> raddebug -t 300 -i 192.168.1.103

(If you use CentOS you have to use the following command
before the raddebug command in order to prepare the $PATH
variable: export PATH=$PATH:/usr/sbin)

Send an EAP authentication request from the host with the IP
address of 192.168.1.103 but use a wrong shared secret.

Observe the output on the terminal running raddebug:

Received Access-Request packet from host 192.168.1.103 port 41450,
id=18, length=63

Cleaning up request 5 ID 18 with timestamp +253

Runatail -f on the FreeRADIUS log file to observe the output to the log file:

Thu May 19 21:20:47 2012 : Error: Received packet from
192.168.1.103 with invalid Message-Authenticator! (Shared
secret is incorrect.) Dropping packet without response.

12871

Troubleshooting

7. Fix the shared secret and do another EAP authentication request. The output
from raddebug should now show the transaction as it goes through:

Received Access-Request packet from host 192.168.1.103 port 34008,
id=22, length=63

NAS-IP-Address = 192.168.1.103

User-Name = "alice"

EAP-Message = 0x0200000a01616c696365

What just happened?

We have used the raddebug command to selectively watch the debug output for requests
from a client with the IP Address of 192.168.1.103.

Remember the log output

The raddebug command only reports the debug messages and not the error messages. The
error messages will still be logged to the FreeRADIUS log file. This is different compared to
when we start FreeRADIUS in debug mode. When we start FreeRADIUS in debug mode the
error messages as well as the debug messages are reported in the terminal. For this reason
we use the tail -f command on the log file to also see what is reported there.

Spotting a mismatched shared secret

It is easy to spot a mismatched shared secret when you look at the User-Password
attribute inside an Access-Request that uses PAP. The value of this AVP will contain all
weird characters instead of the password of the user. Here is a sample of one from the debug
output:

User-Password = " (*t\303v\230 \264\t;\211\221\343\024\3433"

However, in our exercise we used EAP and not PAP. With EAP you have to take a different
approach to detect a wrong shared secret. Recent implementations of RADIUS on the client
side include the Message-Authenticator AVP in the request. This AVP adds extra security
to the RADIUS protocol and is also a quick way for FreeRADIUS to confirm if the shared secret
is correct or not. If FreeRADIUS picks up from the value of Message-Authenticator that
the shared secret is wrong, it will simply report it and ignore the packet. This is what we have
experienced during the exercise.

Client implementations with a wrong shared secret that do not include the Message-
Authenticator AVP can be extremely difficult to detect on the server when they do not
use the PAP authentication protocol. A client definition inside the clients. conf file under
the FreeRADIUS configuration directory can make use of Message-Authenticator
compulsory with the following directive:

require message authenticator = yes

[2881]

Chapter 13

For more information on the Message-Authenticator AVP and other
e suggested improvements to the RADIUS protocol you can look at RFC 5080.

Always try to use a RADIUS client that includes the Message-Authenticator AVP. This
makes the RADIUS protocol more secure and also makes it easy to detect a wrong shared
secret. Also take note that although FreeRADIUS supports a shared secret of up to 31
characters not all the client devices can support a shared secret of that many characters.
These devices may not always inform you of this limitation leading to confusion when things
do not work correctly.

There are two convenient options available to the raddebug command as follows:

¢ -u name: This option lets you specify a username that will be used to filter requests
on. Only requests with User-Name == name will be displayed.

¢ -i ipv4-address: This option lets you specify the source IP Address of the client
to filter requests on. Only requests from Packet-Src-IP-Address == ipv4-
address will be displayed.

There is also a -c option available that allows you to create more complex conditions. The
conditions are created using unlang syntax.

Raddebug auto termination

The raddebug man page mentions that by default it will terminate after ten seconds.

This duration varies between systems and is usually much longer. In the exercise, we have
increased the duration to 300 seconds (5 minutes). The man page also mention that the -t
0 option will let it run forever. However, this did not work on any of my servers.

If there's no output from raddebug

If you do not get any output from raddebug make sure the user that runs the FreeRADIUS
server, for example, radiusd is a member of the root group and that you have restarted
the FreeRADIUS server after making it a member of the root group. When you run
FreeRADIUS as root, it will not be required.

[2891]

Troubleshooting

Some tips when defining clients

New clients defined in the clients. conf file are NOT loaded with the
SIGHUP signal. You have to restart FreeRADIUS before they become available.
N If you define the clients in an SQL table, the same applies. However, there is a
y virtual server called dynamic-clients that can be used as a reference to
support new clients without restarting FreeRADIUS.

If you decide to create a script that will automatically restart FreeRADIUS
whenever there are new clients configured, remember to do a configuration check
(-C) before you actually restart the server. Failing to do so can be problematic
when configuration errors that cause the server not to start up are introduced.

The next section will look at possible problems when users authenticate through the RADIUS
clients discussed in this section.

Various authentication protocols are supported by FreeRADIUS. They vary in complexity with
PAP being the simplest and EAP the most complex.

If a user store consists of the users file, remember that you have to send the running
FreeRADIUS process a SIGHUP signal before the latest changes to the users file to
become effective.

#> kill -1 “cat /var/run/radiusd.pid”

If you do not know what the SIGHUP signal is, it has a long history that is
explained on this Wikipedia page:

FreeRADIUS uses it in following (modern) way:

.\'Q http://en.wikipedia.org/wiki/SIGHUP

Daemon programs sometimes use SIGHUP as a signal to restart themselves,
the most common reason for this being to re-read a configuration file which has
been changed.

The FAQ page on the FreeRADIUS Wiki includes a basic script that you can use to automate
the committing of changes to the users file. Please note that the information on the

FAQ should be used as a guideline and may require additional tweaking depending on the
distribution. Also take heed not to simply send a SIGHUP (or restart) without checking the
configuration first. You are, however, also encouraged to rather use dynamic user stores like
LDAP and SQL.

[290]

Chapter 13

The raddebug command is your friend when it comes to tracing authentication problems
in a production environment. The -u option lets you view only debug information for a
specified user.

When passwords change

Most enterprises have a password policy that enforces regular changes of user passwords.
When FreeRADIUS utilizes these user stores, there is a potential of users locking their
accounts by using software that keeps on trying authenticating with an expired password.

A well-written supplicant will prompt the user to supply a password if the stored username
and password fail to authenticate a user. The iPad and the iPhone contain a shining example
of such a supplicant. Unfortunately, the Windows environment can contain a variety of
supplicants and they are not always written with this scenario in mind.

When you run raddebug with the -u option while asking the user to try to authenticate you
should be able to troubleshoot password problems fairly easy.

It is not always only the supplicant that misbehaves. Some Wi-Fi Access Points will ‘cache’
the credentials of clients that have previously authenticated successfully. If these clients
disconnect and connect again to the Access Point, the Access Point will simply forward the
previous credentials (which it successfully connected with) to the RADIUS server. If these
credentials have changed in between connections, you're in for a surprise, because the AP
does not ask the supplicant for the latest credentials but simply forwards a previous session's
to the RADIUS server.

A problem that may come up sooner or later is where a user with a very long password
authenticates fine on one RADIUS client but not on another. This problem is usually then
related to the RADIUS client that truncates the password. This is similar to the problem we
have explained with the shared secret where certain NAS clients have a limit on the shared
secret's length.

As stated at the start of this section, the EAP protocol is the most complex of the
authentication protocols. There are many places where things can go wrong but if you stick
to logical troubleshooting principles even the biggest problem should at least be identifiable.

2911

Troubleshooting

The CA certificate

Ensure that the CA certificate contains the Object Identifiers (OIDs) required by Microsoft.
If they are not included you are likely to experience problems with Microsoft clients.
There is a README included with FreeRADIUS that has extensive detail on generating and
using certificates in the correct manner. On SUSE and CentOS the README is located under
the /etc/raddb/certs directory. On Ubuntu it is located under /usr/share/doc/
freeradius/examples/certs.

If you use Internet Explorer to download and install a new Root CA on Windows 7, be sure to
launch Internet Explorer with the Run as administrator option in order to place the CA in the
correct store after it is downloaded. On some installs of Windows 7, this was the only way

to get the new CA to be listed with the existing CAs in the supplicant's CA selection control.
When we did not take this route, the certificate was imported but it did not show in the
supplicant's CA selection control.

If a user experiences problems connecting, try to determine if it is supplicant related or
account related. The situations can be described as follows:

¢ Ifitis supplicant related, another user will also experience problems connecting
using the same supplicant but with their own credentials.
¢ Ifitis account related, the same user will also experience problems connecting from

a different supplicant on a different device.

If you are using raddebug to help with the troubleshooting remember to either ensure
that the User-Name used in the outer identity is the same as the User-Name specified in
the inner tunnel and use this with the -u option or to create a custom condition than will
accommodate both by using the -c option.

The proxying process can be split into two components as follows:

¢ Determining the realm and home server of a user
¢ Forwarding the request to the home server of a user
When you are troubleshooting a proxy problem, ask yourself in which of the two

components the problem occurs. The forwarding of a request to a home server can be
simulated by using the radtest or radclient programs from the proxying server.

12921

Chapter 13

Many problems in practice are related to network problems. These problems are sometimes
hard to detect. Latency, for instance, can be fine when you test the speed during off-peak
hours, however, during peak hours the network will become so congested that problems
start to arise. Because there are so many variables in the equation, it may be good to
implement a proper monitoring system or include the components that are part of a

proxying setup in an existing monitoring solution.

The following table lists some handy URLs along with a short description of their content.
Most of these URLs are also listed elsewhere in the book but this table groups them together

in a single location.

URL

Description

http://freeradius.org

http://wiki.freeradius.org

http://wiki.freeradius.org/pages

http://freeradius.1045715.n5.nabble.com

http://freeradius.org/radiusd/doc/

http://deployingradius.com/

The FreeRADIUS project's home
page.

The Wiki for the FreeRADIUS
project, which is used as the main
source of documentation.

The Wiki is a living and growing
entity. This URL lists all the

wiki pages available for our
consumption.

User-friendly searchable front-end
to the FreeRADIUS mailing lists.

Miscellaneous documentation,
some of which is not included in the
Wiki.

Contains some handy information
on various things related to
FreeRADIUS. Some may be
out-dated by now.

The URLs listed should be the first to consult. Beware of older documentation or less
trustworthy sources of documentation since they can be either dated or outright wrong,

leading to much frustration.

12931

Troubleshooting

The primary way to get help on issues that you cannot solve yourself is by using the
FreeRADIUS mailing list (freeradius-userselists. freeradius.org). The mailing list
is searchable, which allows you to also search through previous discussions that have the
search phrases you supplied.

Stick to the rules stipulated on this URL:
http://freeradius.org/list/users.html

Don't be overly sensitive when someone gives you a blunt response to a posted question.
Remember that this support costs nothing and the people responding do so out of free will.
They do us a favor by helping us to solve our problem. Also post back if a suggestion has
either solved your issue or put you on the right track to solving it.

Good troubleshooting skills consist of a combination of disciplines that one learns to master
over time. When you experience problems with FreeRADIUS you should take a logical
approach to identify and fix the problem. This includes the following:

Don't panic.

Ask yourself what has changed recently.

Make a complete backup of the configuration before you make any changes.
Remember the log files.

Remember debug mode.

Remember the FAQ.

Introducing a deliberate error is sometimes helpful to see how something behaves
if it is broken and compare this to something that does not behave it should.

® 6 ¢ 6 6 o o

*

Google is your friend (GIYF).

Don't be afraid to post on the mailing list but stick to its rules.

12941

Chapter 13

1.

You are newly employed by a firm that uses a mixture of Ubuntu and Debian servers.
Coming from a SUSE environment you used to type in the following command to
confirm that FreeRADIUS is running:

ps -aux and not pa -aux

When you run this command on a the primary FreeRADIUS server it shows there is
no process called radiusd. Why is this?

Since last week, the LDAP server configured in the 1dap module has became
unstable. This server, however, is lightning fast compared to the other two LDAP
servers that are available. For this reason you never even bothered to use them.
What can you do to allow FreeRADIUS to first try the fast LDAP server and if it is
down try the other slower ones?

Bob runs a Windows XP machine with a special supplicant that supplies EAP-TTLS/
PAP functionality. He first connects through a WPA-enabled Wi-Fi AP and then
changes his password on the backend. This backend is also used by FreeRADIUS. Not
long after this his account is locked. What may have caused this to happen?

You have battled for two days trying to solve a proxying issue on FreeRADIUS. After
you have posted a cry for help on the mailing list explaining just what you think of
their piece of software, you get a response informing you are not welcome on the
mailing list any more. Why did this happen?

[2951]

The answers to the pop quizzes from each chapter are provided here for your reference. How
did you score?

Chanpter1

1.

A NAS device is a Network Access Server which controls access to the network and
its resources.

A session starts directly after successful authentication and ends when the
connection is terminated.

RADIUS uses UDP protocol. Port 1812 is used for authentication and port 1813 for
accounting.

A shared secret.
An Access-Request packet

A Disconnect-Request packet is initiated by the RADIUS server and received by
the RADIUS client.

The type, length, and value.

The name of the realm is freeradius.org.

Pop Quiz Answers

Chanter 2

Popn quiz - installation

1. The radiusd binary is renamed to freeradius on Ubuntu and Debian Linux.

2. This happens when there is already an instance of FreeRADIUS running. To fix this,
you should stop the current running one using the start-up script. The instance
which is running now was started through the start-up script.
freeradius2-mysql.

4. Ensure he uses zypper instead of yast -1 toinstall the required libraries.

Popn quiz - clients.conf

1. Each client section has a short descriptive name between the keyword indicating
the section's name, for example, client in this case and opening bracket.

2. Thisis not recommended since it has security implications.

3. There is avirtual server called dynamic-clients which can be used as a pattern
to handle clients with unknown IP addresses.

4. Message-Authenticator may be missing. Set the require message
authenticator directive to no to compensate for this.

5. Yes, the ipv6addr directive is used to specify the IPv6 address.

6. False, more characters will make it more secure. Also avoid recognizable words.

7. The simultaneous use checks done by FreeRADIUS may not be accurate, allowing a

user multiple sessions even when it's been limited.

Chapter 4

Pop quiz - authentication

1.

The use of PAP on its own can be a security risk, but when tunneled through TLS it is
very secure.

[298]

Appendix

These users are probably authenticating with CHAP. CHAP requires that the
passwords be stored in cleartext. Most RAS servers allow you to select the
authentication protocols which it supports. Configure the RAS server to use
only PAP.

You can encrypt the passwords by using the smbencrypt program and use the
value of NT hash for the NT-Password AVP.

Pop yuiz - user stores

1.

The value of the read_groups directive in sql . conf was probably set to no by the
previous administrator; changing it to yes will activate reading of the group tables
for all users.

The freeradius-postgresqgl package needs to be installed first. This package
contains the required set-up files as well as the PostgreSQL-specific FreeRADIUS
module.

No, you do not authenticate against an SQL database or text files, but rather use
them to store credentials. Password verification is then done by an authentication
module using the data stored in the text file or the SQL database. (If he's non-
technical just tell him no problem, can be done.)

Connect to the server through a secure connection and add access control to the
directory to restrict access to the userbPassword attribute.

No, this is not true! You can still use the 'bind as user' method, which limits you to
PAP authentication. The nspmPassword attribute, which is available when Universal
Password is enabled, allows MS-CHAP authentication since nspmPassword is
formatted in a way that allows FreeRADIUS to get a user's password in cleartext
(Remember that you have to connect to the LDAP server using SSL/TLS and the user
you bind with needs to have enough rights to read this attribute).

Ensure that the user or group under which FreeRADIUS runs has read access to
this directory.

Confirm that all the services have started up after the reboot, especially
smbd, nmbd, and winbind.

[299]

Pop Quiz Answers

Pop quiz - accounting

1. Take a look at the firewall rules of the router connected to your server as well as the
server itself. Ensure both UDP port 1812 and 1813 are open for the Telco's servers.

2. Those people were most likely connected to the Wi-Fi tower that is now down.
According to FreeRADIUS they still are connected and it limits the simultaneous
sessions for them. Use radzap to close their orphan sessions.

3. It can be that the time zone or time on the captive portal is not correct. You
are encouraged to use Network Time Protocol (NTP) to make sure the time is
synchronized between all the NAS devices and the FreeRADIUS server.

4. No, this is what happens with reset values other than never for data-based counters.

The sgqlcounter module should only be used for time-based counters.

Chanter 7

1.

It may be that the NAS does not support the AVP that is returned to throttle the
bandwidth. There may also be a mismatch of the AVP's units. The counter for
instance expects the value to be Kbit/s instead of bit/s.

Perl should be used instead of Bash for better speed. If you use the per1 module,
the Perl interpreter along with the Perl script will be loaded into memory when
FreeRADIUS starts up.

Additional attributes that are used internally by FreeRADIUS should be defined in
the dictionary file, which is located under the FreeRADIUS configuration directory.

The internal attribute list is known as the control list. To reference the Auth-Type
attribute you can use control : Auth-Type inside conditional statements and
%{control:Auth-Type} inside a double-quoted or back-quoted string.

This code defines a policy called rewrite calling station_ id. The policy code
searches for MAC addresses that contain delimiter characters of : or - and rewrites
them to be delimited with the - character.

Appendix

1.

Create a new virtual server in the sites-available directory. Configure and
specify a separate SQL database for this new virtual server. Link this virtual server to
the sites-enabled directory. Define the VPN server as a client in the clients.
conf file and use the virtual server directive to force the use of this new
virtual server for RADIUS requests.

The buffered-sqgl virtual server under the sites-available directory can be
used as a template to work around the slow SQL response.

This is because the authenticate section does not contain a Auth-Type PERL {. ..}
sub-section. Usually the Auth-Type will be set by a module or by unlang inside

the authorize section. The authenticate section then requires a sub-section for the
Auth-Type to handle its values.

1.

The £i1les module is configured by the files file in the modules sub-directory
under the FreeRADIUS configuration directory. Check if the usersfile directive
does not point to a file different from the default of users.

Yes, you can split the users file. You have to create two named files sections that
point to the separate files. These named sections can now be included inside the
authorize section of the virtual server. By doing this FreeRADIUS will make use of
different instances of the £iles module, each with its own configuration.

In CentOS the perl module is packed separately and has to be specifically installed
before it can be used.

When we refer to the named section of the 1dap module as 1dap new
department it gives an indication what type of named module is involved (1dap).
If we simply call it new department, there is no real indication as to the type of
module we refer to.

[3011

Pop Quiz Answers

Chapter 10

1.

Ignore the links; you may even go as far deleting them for sanity's sake. EAP works
as is on a new installation. The less you change on the EAP configuration the better.

The EAP-TTLS/PAP method makes use of the inner-tunnel virtual server instead
of the default virtual server when authenticating users. Make sure you also
specify the use of the 1dap module in the inner-tunnel virtual server. These
virtual servers are independent from each other.

No, when you bind as a user you need to send the user's cleartext password to
the LDAP server. When you use PEAP/MSCHAPv2 there is no way to get a cleartext
password out of the transaction.

No lies here! The Universal Password feature allows the 1dap module to get
passwords in cleartext from the LDAP server. There are a few rules to follow in
order to get this password. The connection to the LDAP server has to be a secure
connection with a special privileged user binding to it to run the queries. The
password_attribute also has to be specified in the 1dap configuration. See the
1dap configuration file for more details.

Use the iPhone Configuration Utility to create a .mobileconfig file. Distribute this
file from a web server.

Chapter 11

1.

Not all instructions from vendors on updating the dictionary files are correct. Advise
Isaac to revert to the backup of the working configuration (he did make a backup,
right?) and rather follow the comments inside the dictionary configuration files that
come with FreeRADIUS.

The previous administrator had probably made changes to the pre-defined
FreeRADIUS dictionaries and these dictionaries were replaced during the update of
FreeRADIUS. There is no real way to determine all the changes the previous person
may have made. It does, however, seem that the Chillispot dictionary was changed
because the complaint is about the Chillispot-Max-Input-Gigawords
attribute. A good start to solving this problem will be to contact the previous
administrator or to visit the CoovaChilli website and locate the latest supported
attributes and then update the dictionary according to best practices.

3021

Appendix

3.

Yes there is. We can change the type of FRBG-Reset-Type t0 integer instead of
string and create value definitions to specify the four values that this attribute is
allowed to have.

Chapter 12

1.

Yes, configuring roaming between RADIUS servers is not dependent on certain
RADIUS server software. If the server software sticks to the standards in the RFC it
should work easily.

No, you can inform the visitor from your-org. com that he should be able to simply
connect using the profile for the org. com SSID without making any changes. The
EAP requests to your-org. com will simply be proxied to the RADIUS server at
your-org.com.

The Dynamic VLAN assignment is most likely done through a RADIUS server that
returns specific AVPs to specify the VLAN a user should be in. The administrator of
the RADIUS server at your-org. com has probably neglected to assign a default
VLAN to visitors from my-org. com.

They most likely configured the special DEFAULT realm to forward requests from
unknown realms to the RADIUS server at my-org. com instead of creating a
dedicated realm for my-org. com.

Chapter 13

1.

On Debian and Ubuntu the FreeRADIUS server binary is called freeradius instead
of radiusd when you install the standard FreeRADIUS package.

You can create named instances of the 1dap module that will use the slower
servers. Then you can replace the 1dap entry in the authorize section with
a redundant section that lists the module using the fast LDAP server first and
thereafter 1dap module instances using the slower ones.

#1ldap

redundant {
ldap
ldap.slowl
ldap.slow2

Pop Quiz Answers

}

If you use the 'bind as' authentication method for LDAP you also need to change the
Auth-Type LDAP in the authenticate section to the following:
Auth-Type LDAP ({
redundant {
ldap
ldap.slowl
ldap.slow2

}

3. The supplicant on Bob's machine is probably designed badly. While his password
was changed on the backend, his supplicant kept on attempting to connect by
sending the previous password. The backend detected a potential intrusion and
locked the account. If the supplicant was well written it would have popped up a
dialog box for Bob to supply his credentials. If this is not the problem, it may be
that the access point to which Bob connects forwards credentials stored from a
previously successful session to the RADIUS server.

4. This happens when people do not follow proper netiquette as specified in RFC 1855
or when they do not stick to the rules of the mailing list specified in this URL:

http://freeradius.org/list/users.html

13041

Symbols

SINCLUDE keyword 276

32-bit integer limitation, RADIUS 168, 169

A

AAA 8,126

Access-Accept 231, 232
Access-Accept packet 128
Access-Reject packet 152
Access-Request packet 128, 152
accounting

about 9, 125, 126

example 10

session, ending 129, 130

session, starting 128, 129

simulating, from NAS 127, 128
accounting data

about 131

housekeeping 148

used, for capacity planning 139
accounting proxy request

flow chart 270
accounting records

about 131

updating, after server outage 270
Accounting-Request packet 131, 132, 152

accounting requests
proxying 269
Accounting-Response packet 131

Index

accounting section, FreeRADIUS 134
Acct-Input-Octets (Type4d2) 20, 132
Acct-Output-Octets (Typed3) 20, 132
Acct-Session-Id (Type44) 21, 131
Acct-Session-Time (Typed6) 21, 132
Acct-Status-Type (Type 40) 19, 127, 131
Acct-Terminate-Cause (Type49) 21
Active Directory 123
Active Directory user store

about 116

CentOS 119

domain, joining 118

FreeRADIUS, configuring to AD 116

MS-CHAP authentication 121

ntlm_auth binary 119

PAP authentication 120

Samba, configuring 117, 118

Samba, installing 116

SUSE 119

Ubuntu 119
attr_filter instances 277
attribute

existence, verifying 156, 157
attribute definitions, dictionary files

name field 243

number field 243

optional vendor field 244

type field 244
Attribute Value Pairs. See AVPs
authentication

about 8, 67,74

example 8

Authentication, Authorization, and Accounting.

See AAA
authentication methods
about 82
certificates 82
one-time password 82
authentication protocols
about 67
CHAP 69
MS-CHAP 70
PAP 68
authentication proxy request
flow chart 263, 264
authentication proxy request flow chart
about 263
post-proxy section 264
pre-proxy section 264
suffix setting control 263
authentication requests
dynamic VLANs 265
EAP 265
home_server_pool section 262, 263
home_server section 262
home servers, status 267
proxying 262
reply attributes, filtering 266, 267
status checking demonstration 268
authenticator
about 216
advantages 216
examples 216
authorization
about 9, 72, 126, 151, 152
authorize set Auth-Type 73
example 9
restrictions, implementing 151, 152
unlang language 152, 153
Auth-Type 73
available modules
discovering 200
AVP format
length 16
type 15
value 16
AVPs
about 15, 131, 242
data usage, reflecting for user 132

backend authentication server 217
build-dep command 42
using 42

C

CA
adding, to client 227, 228
CA certificate 292
capacity planning
accounting data, using for 139
CentOS
about 28, 34, 88
firewall, configuring 32
perl module, installing on 173
raddebug command, used for troubleshooting
286
Red Hat Package Manager (RPM), creating on
35, 36
Challenge-Handshake Authentication
Protocol (CHAP) 69
check-name directive 143
checkrad 138
check_usage.pl script
about 172
contents 172,173
Chillispot 132
ChilliSpot-Max-Total-Octets 16
client related issues, FreeRADIUS 284
clients
about 52
client identification 53
common errors 54
defining, tips 290
message-authenticator 54
nastype 54
sections 52
shared secret 53
clients.conf file 52
command substitution
using 165
conditional statements, unlang
about 153, 154
attributes, referencing 160
comparison operators 160
if statement 153

[306]

configuration, FreeRADIUS
verifying 276
consolidation, virtual server
implementing 192
IP addresses, clashing with ports 194
listen and client sections, specifying 195
named files section, creating 192
new virtual server, incorporating 194
user data, storing in SQL database 194
virtual server, for computer science faculty 193
control-socket virtual server
about 285
log output, remembering 288
mismatched shared secret, spotting 288, 289
used, for troubleshooting 285-288
Coova 220
Coova Chilli 16,139
count-attribute directive 143
counter
resetting 146
counter module 140, 142
crypt password 76
custom attributes
defining 167, 168
custom dictionary files
already installed files, including 239
attribute names 241
existing dictionary, updating 239
FreeRADIUS, updating 242
including 239
latest supported attributes, finding 241
MikroTik dictionary, updating 240, 241
order of inclusions 241
private attributes, adding 239
updated dictionary files. locating 241

D

daily counter
about 147
activating 140, 141
modifying 140, 141
database schema, MySQL user store
about 96
groups 97
groups usage, controlling 99
group usage, exploring 97

profiles 100
SQL groups, using 97, 98
data counter
creating, unlang used 167
testing 177,178
data packet, RADIUS
attributes 15
authenticator 14
code 14
identifier 14
length 14
data usage
limiting, for user 167
deamontools package 283
debs
installing 40, 41
DEFAULT realm
about 251, 257
investigating, in FreeRADIUS 250
default values
setting, for variables 163, 164
detail module 212, 280
dictionaries
about 235
including 237
need for 235
dictionary files
accessing 245
attributes 243
comments 242
format 242
updating 174
value definitions 245
values 243
vendor definitions 242
distro war 27
DNS name 250
dpkg-buildpackage command 42
dpkg-dev package
installing 42
dpkg systems 58
duplicate users, MySQL user store 96
Dynamic Authorization extension (RFC5176)
about 21
Change-of-Authorization Messages (CoA) 22
Disconnect-Messages (DM) 22

[307]

dynamic-clients module 212
dynamic VLANs 265

E

EAP
about 22,215
authenticator 215
backend authentication server 215
components 216
conversation 218
module, configuring 223, 224
inner identity 229
inner-tunnel virtual server, configuring 228
issues 291
outer identity 229
Public Key Infrastructure 226
Public Key Infrastructure, creating 226
supplicant 215
testing, on FreeRADIUS with JRadius Simulator
220
unused EAP methods, disabling 232
using, on client 225
EAP authentication
proxying, testing for 265
EAP components
about 216
authenticator 216
backend authentication server 217
supplicant 217
EAP conversation
about 218
EAPOL-Packet 219
EAPOL-Start 218
EAP Method
gtc 223
leap 223
md5 223
mschapv2 224
peap 224
tls 224
ttls 224
eap module
configuring 223
user store 224

EAPOL-Packet
about 219
code field 219
type field 219
workflow 219, 220
EAPOL-Start 218
EAP-TTLS 227
EAP-TTLS/PAP 225
echo command 165
echo module 212
eDirectory LDAP server
connecting, Universal Password used 224
Eduroam 225
enabled virtual servers
including 186, 187
Post-Auth-Type, handling 187
using 185, 186
environment variables 177
ethernet switches 7
existing setup
consolidating, virtual server used 191
expiration and linelog modules
using 203, 205
Extensible Authentication Protocol. See EAP
Extensible Authentication Protocol (EAP)
protocol 67
extensions, RADIUS
about 21
Dynamic Authorization extension (RFC5176) 21
EAP (RFC3579) 22
external component issues, FreeRADIUS 277,
278

F

fail keyword 155

fakeroot command 42

files module 200
FRBG-Avail-Bytes attribute 168
FRBG-Reset-Type attribute 168
FRBG-Start-Time attribute 168
FRBG-Total-Bytes attribute 168
FRBG-Used-Bytes attribute 168
freerad 44

[308]

FreeRADIUS

about 23,126

access-request arrives 72

accounting 125, 126

accounting section 134

attribute lists 158

authenticating, pap used 89
authentication 67

authentication methods 82
authentication protocols 67, 290, 291
authentication requests, proxying 262
authorization 71, 151, 152
authorizing, unix module used 89
CentOS 88

client related issues 284
configuration directory 50
configuration, verifying 276
configuring 50-52

custom dictionary files, including 239
database, preparing 93

default realms, investigating in 250
dictionaries 235

dictionaries, including 237
dictionary files, including 238
dictionary files, updating 174

EAP 215

existing install, updating 37

external components issues 277, 278
golden rules 62

history 23

installed documentation 58

installed executable files 43, 44
Linux system users, incorporating 87
listen section 64

log files 65

mailing lists 294

missing library, searching 276, 277
missing module, searching 276, 277
modules 199

MySQL package, installing 92

online documentation 61

online resources 293

open accounting records, closing 130, 131
passwords, storing 75

performance, tuning 280, 281

post-auth section 74

pre-accounting section 133

preparing, for testing EAP 220, 221

proxying 258

proxying issues 292

radiusd 65

realms 250

requests, parsing 236

responses, generating 236

rights, preparing 87

roaming 247

session section 137

setup 50

speed tests, performing 279, 280

starting up issues 274, 275

strengths 23, 24

SUSE README file 87

system users 86, 87

system users, activating 88, 89

troubleshooting 273

UDP port issues 275

user, authenticating 71

user authentication 290, 291

user stores 85

user store, using 86

virtual servers 181

weaknesses 24
freeradius2-krb5 package 30
freeradius2-ldap package 30
freeradius2-mysql package 30
freeradius2 package 30, 31
freeradius2-perl package 30
freeradius2-postgresql package 30
freeradius2-python package 30
freeradius2-unixODBC package 30
freeradius2-utils package 30
freeradius-client-libs package 30
freeradius-client package 30
FreeRADIUS client programs

dictionary access 44
freeradius-common package 31
FreeRADIUS configuration

clients 52

users 54

[309]

FreeRADIUS configuration, MySQL user store
about 94
connection information 94
SQL configuration, including 94
virtual server 94
freeradius-dbg package 31
freeradius-dialupadmin package 31
freeradius-iodbc package 31
freeradius-krb5 package 31
freeradius-ldap package 31
freeradius-mysql package 30, 31
freeradius package 31
FreeRADIUS packages
freeradius 31
freeradius2 30
freeradius2-krb5 30
freeradius2-ldap 30
freeradius2-mysql 30
freeradius2-perl 30
freeradius2-postgresqgl 30
freeradius2-python 30
freeradius2-unixODBC 30
freeradius2-utils 30
freeradius-client 30
freeradius-client-libs 30
freeradius-common 31
freeradius-dbg 31
freeradius-dialupadmin 31
freeradius-iodbc 31
freeradius-krb5 31
freeradius-ldap 31
freeradius-mysql 31
freeradius-postgresql 31
freeradius-server 30
freeradius-server-dialupadmin 30
freeradius-server-doc 30
freeradius-server-libs 30
freeradius-server-utils 30
freeradius-utils 31
libfreeradius2 31
libfreeradius-dev 31
freeradius-postgresql package 31
freeradius-server-dialupadmin package 30
freeradius-server-doc package 30
freeradius-server-libs package 30
freeradius-server package 30
freeradius-server-utils package 30, 31

freeradius-utils package 31
FreeRADIUS Wiki 202

G

Generic AAA Architecture 8
gettext-devel package 39
gettext-tools package 39
golden rules 62

grep command 276

H

happy hour virtual server
about 188
adding, to client 190, 191
clients, defining in SQL 191
enabling 189, 190

hash formats 76

home_server 262

home_server_pool 262, 263

hostapd 127

Hostapd 132

Hotspot Happy Hour policy
incorporating 189

HTTPS 68

IANA
URL 15

if statement
about 153
attributes 159

return code, obtaining with 153-155

user, authorizing with 154
important inclusions, radiusd

SINCLUDE ${confdir}/modules/ 63

SINCLUDE clients.conf 63
SINCLUDE eap.conf 63
SINCLUDE policy.conf 63
SINCLUDE proxy.conf 63
SINCLUDE sites-enabled/ 63
#SINCLUDE sgl.conf 63

inner and outer identities
differences 229

testing, JRadius Simulator used 230

[310]

inner identity 229
inner-tunnel virtual server 221
authentication, testing 228

configuring 228
installed documentation

available man pages, discovering 58

AVPs, adding to auth request 60
configuration file comments 60

installed executable files, FreeRADIUS

Jusr/bin/radclient 43
Jusr/bin/radconf2xml 43
Jusr/bin/radcrypt 43
/usr/bin/radeapclient 43
Jusr/bin/radlast 43
/usr/bin/radsglrelay 43
Jusr/bin/radtest 44
Jusr/bin/radwho 44
Jusr/bin/radzap 44
/usr/bin/smbencrypt 44
Jusr/sbin/freeradius 43
Jusr/sbin/raddebug 43
Jusr/sbin/radiusd 43
Jusr/sbin/radmin 43
installed modules
alternative paths, adding 202
locating 200, 201
naming convention 201
installing
dpkg-dev package 42
pre-build FreeRADIUS package 29
instance
enabling, of realm module 252
internet vouchers
creating 142
IPv6 address 195
Isaac 135
ISP, agreement with Telco
about 248
advantages 248
disadvantages 248
ISPs 11

J

jradius module 212
JRadius Simulator
about 220, 265, 279

configuring 221-223
used, for performing speed tests 279, 280

K

killall command 276

L

LDAP directory
about 123, 151
uses 123
Idap module 278, 281
LDAP user store
about 101
advantages 112
binding, as user 111
CentOS 102
FreeRADIUS, connecting to LDAP 101
FreeRADIUS LDAP package, installing 109
LDAP directory, populating 106-109
Ldap-Group internal AVP 113,114
Idap module, configuring 110
passwords, reading from 114, 115
radiusProfile schema, adding 105, 106
slapd, configuring 102
slapd, installing 101
SUSE 103
testing 110, 111
Ubuntu 104
User-Profile internal AVP 113, 114
Idconfig command 277
LD_PRELOAD environment 177
libfreeradius2 package 31
libfreeradius-dev package 31
limit Internet usage
demonstrating 140
linelog module 203
Linux distributions
dpkg package manager 28
pre-build binary 28
Red Hat Package Manager (RPM) 28
Linux system users
about 122
incorporating, in FreeRADIUS 87
listen section 126
load-balance section 282

[311]

LOCAL realm 251-257
locate command 274
logical expressions
user, authorizing with 157, 158
logintime module 200

M

mac2ip module 212
mac2vian module 212
mailing lists
using 294
man pages
discovering 58
dpkg systems 58
Radclient 59
radtest revisited 58
rpm systems 58
MD?5 hash 15
MD?5 password 77
Merit Network 10
Message-Authenticator 54, 233
Mikrotik 139
MikroTik attribute definitions 243
MikroTik dictionary
updating 240
MikroTik RouterOS 22
module return code
fail 154
handled 155
invalid 155
noop 154
notfound 154
ok 154
reject 154
updated 154
userlock 154
modules
about 199
access-request 211
Access-Request packet 211
available modules 202
available modules, discovering 200
configuring 203-206
detail 212
dynamic-clients 212
echo 212

expiration and linelog modules, using 203, 205
files 200
including 203
including, in section 207
installed modules, locating 200, 201
jradius 212
logintime 200
mac2ip 212
mac2vlan 212
missing modules 202, 203
multiple instances, creating 207-210
one module, using with different configurations
207
order of modules, investigating 210
otp 212
pap 200
perl 200, 212
return codes 211
sql 200
using 206
MS-CHAP 70
mysql-client package 91
MySQL user store
about 90
CentOS 91
database schema 96
distributions 91
duplicate users 96
FreeRADIUS, configuring 94
incorporating, in FreeRADIUS 91
installing 91
SQL database, advantages 95
SUSE 91
testing 95
Ubuntu 92

N

NAC 11
NAS
about 8, 68, 128
accounting, simulating from 127, 128
nastype 54
National Security Agency (NSA) 79
netcat 284
netstat command 275, 276
Network Access Control. See NAC

[312]

Network Access Server. See NAS
nmap 284
noop keyword 155
NT-Password or LM-Password 81
NULL realm

about 251, 257

activating 252, 253

defining 252, 253

(0

octets
counting 148
ok keyword 155
online documentation 61
online help 62
open accounting records
closing 130, 131
OpenSUSE repository
adding 37-39
OpenWRT 127
orphan sessions
about 130
issues 138
minimising 134
otp module 212
outer identity
about 229
naming conventions 232

P

package creation
advantages 34
package management system 28
PAP
about 68, 69
captive portal configuration 68, 69
pap module 200
password
hashing 76
password storage, FreeRADIUS
about 75
crypt passwords 76
hash formats 75, 76
MD5-Password 77
NT-Password or LM-Password 81

SHA-Password 79
SMD5-Password 78
SSHA-Password 80
PEAP/GTC 225
performance tuning, FreeRADIUS
about 280
LDAP module 281
main server 280, 281
SQL module 281, 282
perl module
about 169, 200, 212, 277
check_usage.pl script 172,173
nstalling, on CentOS 173
reset_time.pl script 170-172
using 170
phpMyAdmin 149
ping command 283
PKI
about 226
CA, adding to client 227, 228
creating 226
features 227
RADIUS PKI, creating 226
Points-Of-Presence (POPs) 10
Point to Point Protocol. See PPP
port 1813 17
port issues, FreeRADIUS 275
post-auth 74
Post-Auth-Type
handling 187
type attributes 187, 188
PostgreSQL 149
PPP 156

pre-accounting section, FreeRADIUS

about 133
Acct-Type, setting 133
realms 133

pre-build FreeRADIUS package
advantages 29
installing 29

pre-defined virtual servers
about 196
buffered-sql 196
coa 196
copy-acct-to-home-server 196
decoupled-accounting 196
status 196

[313]

pre-load Perl library 177 authenticator 14

proxied accounting requests code 14
simulating 269 identifier 14
proxy.conf file 253 key components 12
proxying length 14
configuring, between two organisations radiusd command 274
258-261 radiusd.conf 52
testing, for EAP authentication 265 radiusd.conf file 126
proxying issues, FreeRADIUS 292 RADIUS extensions 21
Public Key Infrastructure. See PKI RADIUS protocol
about 10
Q examples 11
history 10
Quality of Service (QoS) 9 proxying 17
realms 17
R RADIUS protocol (RFC2865) 11
Radclient 59 RADIUS server 17, 23

radmin command 285
RadSec protocol 21
radtest command 57, 156
radtest program 67
radtest revisited 58
radutmp module 281
radwho command 129, 130, 134
radzap command 130, 134
rcmysql start command 91
realm module

instance, enabling of 252

radclient command 127-131
raddebug command
about 284, 285
auto termination feature 289
options 289
used, for troubleshooting 285-288
using 287-291
RADIUS
32-bit integer limitation 168, 169
RADIUS accounting (RFC2866)
about 18

|
Acct-Input-Octets (Typed2) 20 reams
Acct-Output-Octets (Type43) 20 about 17, 250
cet-Dutput-ctets {Type actions 254

Acct-Session-Id (Type44) 21, 131
Acct-Session-Time (Typed6) 21
Acct-Status-Type (Type 40) 19, 131
Acct-Terminate-Cause (Type49) 21
operations 18
packet format 18, 19

RADIUS clients 17

radiusd 44
about 62
configuration files 62
dictionaries 63
important inclusions 63
internal AVPs 64

DEFAULT 251, 257

defining 254, 255

LOCAL 251-257

NULL 251- 257

suffix module 251
Red Hat Enterprise Linux (RHEL) 34
Red Hat Package Manager (RPM) 28

building, on SLES 37-39

creating, on CentOS 35, 36
redundant-load-balance section 282
redundant section 282
regular expressions

using 166

libraries 63 .
reject keyword 155
RADIUS data packet Remote Access Dial In User Service. See RADIUS
about 12,13

rotocol
attributes 15 P

[314]

reply attribute 231
reply-name directive 143
Request Authenticator 14
requests

rejecting, without realm 256
reset directive 143, 146
reset_time.pl script

about 170

contents 170-172
Response Authenticator 14
restrictions

about 151

implementing 152
return code

obtaining, if statement used 153-155
return codes, modules 211
RFC2865 10
RFC2866 10
RFC 2903 8
RFC 5080 289
RFCs 8
rim_expiration documentation 206
rim_sqglcounter

using 144-146
roaming

benefits 248-250

overview 247
robust-proxy-accounting functionality

implementing 271
rpmbuild command 39
rpm-build package 36
rpm systems 58

S

Secure Hash Algorithm 79
SecureW2 225
session

about 8

ending 129, 130

orphan session 130

starting 128, 129

terminating, at specified time 141, 142
session database

SQL, using as 135-137
session section

about 137

checkrad feature 138
SHA password 79
shared secret 11
SIGHUP signal 290
simultaneous sessions

limiting, for user 135-137
single database

used, for running multiple counters 144
SLA 9
SLES

about 37

Red Hat Package Manager (RPM), building on

37-39

SMD5 password 78
software

building, from source 34
software repositories 28
source

software, building from 34
source RPM package 36
speed tests

performing 279, 280
sQL

using, as session database 135-137
sql_counter module 167
sqlcounter module 144
SQL database

about 123

advantages 95

preparing 175

uses 96
sql module 162, 200, 278, 281, 282
SQL statements

using, as variables 162
SSHA password 80
SSL/TLS 68
start-up script

using 279
stop option 276
sudo apt-get update command 40
suffix module

about 251, 253

key points 258
supplicant 217
SUSE

about 28, 31, 37

bug 176

[315]

firewall, configuring 33 Ubuntu bug 176
raddebug command, used for troubleshooting UDP connectivity

286 testing, to RADIUS server 284
SUSE bug 176 UDP listeners
SUSE README file 87 displaying 275
switch statement 153 UDP port 1812 126
symbolic link 184 UDP port 1813 126
system-config-securitylevel-tui utility 32 unlang
system users about 152
about 86, 87 command substitution 165
activating 88 conditional statements 153, 154
stips 90 custom attributes, defining 167, 168
data counter, creating with 167
T default values, setting for variables 163, 164
feature 153
TACACS+ 24 keywords 155
tail command 288 load-balance section 282
tape archive. See TAR file redundant-load-balance section 282
TAR file 34 redundant section 282
Telco, agreement with ISP regular expressions 166
about 248 variables 161-163
advantages 248 unlang code
disadvantages 248 adding, to virtual server 175, 176
telnet 284 unlang, keywords
traceroute command 283 fail 155
Triple A Framework. See AAA noop 155
troubleshooting ok 155
about 274 reject 155
basic principles 274 unquoted string 155
FAQs, URL 274 unused EAP methods
type attributes disabling 232
about 187 update keyword 155, 161
Acct-Type 188 user
Auth-Type 188 User-Name AVP 229
Authz-Type 188 usernames
Post-Auth-Type 188 rejecting, without realm 256
Session-Type 188 users
type directive 195 about 54

authorizing, with if statement 154
U authorizing, with logical expressions 157, 158
data usage, limiting for 167

Ubuntu DEFAULT user 56
about 28, 40, 87 ;
e file module 54
dutg) : line 40,41 Framed-IP-Address 57
ebs, installing 40, Login-Time 57

raddebug command, used for troubleshooting

operators 56
286

[316]

PAP module 55
reply items 56
Simultaneous-Use 57
simultaneous sessions, limiting for 135-137
substitution 56
users file 55

users file
editing 290

user store
about 85
Active Directory 116
LDAP 101
MysQL 90
utilizing ways 86

Vv

variables 161-163
Vendor Specific Attributes. See VSAs
virtualization 284
virtual server
creating, for Computer Science faculty 191
existing setup, consolidating with 191
unlang code, adding to 175, 176
virtual_server directive 185
virtual servers
about 181
creating 183,184

default 182
defining 182
disabling 185
enabling 183, 185
features 181
inner-tunnel 182
sub-sections 184, 185
VLAN numbers 265
VPN servers 7
VSAs 16, 242

w

Wi-Fi access points 7
Wireless Internet Service Provider. See WISP
Wireshark
about 12
URL 12
WISP 135

Y

yast -i command 31, 39

4

zypper command 39

[317]

open source

community experience distilled

PUBLISHING

Thank you for buying
FreeRADIUS Beginner's Guide

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to continue
its focus on specialization. This book is part of the Packt Open Source brand, home to books published
on software built around Open Source licences, and offering information to anybody from advanced
developers to budding web designers. The Open Source brand also runs Packt's Open Source Royalty
Scheme, by which Packt gives a royalty to each Open Source project about whose software a book is
sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it
first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Cacti 0.8 Network Monitoring
ISBN: 978-1-847195-96-8 Paperback: 132 pages

Monitor your network with ease!

1. Install and setup Cacti to monitor your network and
assign permissions to this setup in no time at all

2. Create, edit, test, and host a graph template to
customize your output graph

CaCtl 0-8 3. Create new data input methods, SNMP, and Script
Network Monitoring XML data query

Monitor yo

4. Full of screenshots and step-by-step instructions to

PACKT monitor your network with Cacti

Zahhix 1.8 Network Monitoring
ISBN: 978-1-847197-68-9 Paperback: 428 pages

Monitor your network hardware, servers, and web
performance effectively and efficiently

1. Start with the very basics of Zabbix, an enterprise-
class open source network monitoring solution, and
move up to more advanced tasks later

Zabbix 1.8 2. Efficiently manage your hosts, users, and
Network Monitoring permissions

3. Getalerts and react to changes in monitored
parameters by sending out e-mails, SMSs, or even
execute commands on remote machines

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

AN L RSP
AN 1-, ! 2.4

N %
Ll -

A

Zenoss Core

Network and System Monitoring

PACKT

Zenoss Core Network and System Monitoring
ISBN: 978-1-847194-28-2 Paperback: 280 pages

A step-by-step guide to configuring, using, and adapting
this free Open Source network monitoring system - with a
Foreword by Mark R. Hinkle, VP of Community Zenoss Inc.

1. Discover, manage, and monitor IT resources
2. Build custom event processing and alerting rules

3. Configure Zenoss Core via an easy to use web
interface

Learning NAGIOS 3.0

PACKT

Learning Nagios 3.0
ISBN: 978-1-847195-18-0 Paperback: 316 pages

A detailed tutorial to setting up, configuring, and managing
this easy and effective system monitoring software

1. Secure and monitor your network system with
open-source Nagios version 3

2. Setup, configure, and manage the latest version of
Nagios

3. In-depth coverage for both beginners and advanced
users

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to AAA and RADIUS
	Authentication, Authorization, and Accounting
	Authentication
	Authorization
	Accounting

	RADIUS
	RADIUS protocol (RFC2865)
	The data packet
	AVPs
	Vendor-Specific Attributes (VSAs)
	Proxying and realms
	RADIUS server
	RADIUS client

	RADIUS accounting (RFC2866)
	Operation
	Packet format
	Acct-Status-Type (Type40)
	Acct-Input-Octets (Type42)
	Acct-Output-Octets (Type43)
	Acct-Session-Id (Type44)
	Acct-Session-Time (Type46)
	Acct-Terminate-Cause (Type49)
	Conclusion

	RADIUS extensions
	Dynamic Authorization extension (RFC5176)
	RADIUS support for EAP (RFC3579)

	FreeRADIUS
	History
	Strengths
	Weaknesses
	The competition

	Summary

	Chapter 2: Installation
	Before you start
	Pre-built binary
	Time for action – installing FreeRADIUS
	Advantages
	Extra packages
	Available packages
	CentOS
	SUSE
	Ubuntu

	Special considerations
	Remember the firewall
	CentOS
	SUSE

	Building from source
	Advantages of building packages
	CentOS

	Time for action – building CentOS RPMs
	Installing rpm-build
	The source RPM package
	The package name
	Updating an existing installation

	SUSE

	Time for action – SUSE: from tarball to RPMs
	Adding an OpenSUSE repository
	zypper or yast -i
	Tweaks done by hand

	Ubuntu

	Time for action – Ubuntu: from tarball to debs
	Installing dpkg-dev
	Using build-dep
	fakeroot
	dpkg-buildpackage
	Installing the debs

	For those preferring the old school

	Installed executables
	Running as root or not
	Dictionary access for client programs
	Ensure proper start-up
	Summary

	Chapter 3: Getting Started with FreeRADIUS
	A simple setup
	Time for action – configuring FreeRADIUS
	Configuring FreeRADIUS
	Clients
	Sections
	Client identification
	Shared secret
	Message-Authenticator
	Nastype
	Common errors

	Users
	Files module
	PAP module
	Users file

	Radtest

	Helping yourself
	Installed documentation
	Man pages

	Time for action – discovering available man pages for
	FreeRADIUS
	Configuration file comments
	Online documentation
	Online help

	Golden rules
	Inside radiusd
	Configuration files
	Important includes
	Libraries and dictionaries
	FreeRADIUS-specific AVPs
	Running as ...
	Listen section
	Log files
	radiusd
	Who was logged in and when?
	Who is logged in right now?

	Summary

	Chapter 4: Authentication
	Authentication protocols
	PAP
	CHAP
	MS-CHAP

	FreeRADIUS—authorize before authenticate
	Time for action – authenticating a user with FreeRADIUS
	Access-Request arrives
	Authorization
	Authorize set Auth-Type
	Authorization in action

	Authentication
	Post-Auth
	Finish
	Conclusion

	Storing passwords
	Hash formats

	Time for action – hashing our password
	Crypt-Password
	MD5-Password
	SMD5-Password
	SHA-Password
	SSHA-Password
	NT-Password or LM-Password
	Hash formats and authentication protocols

	Other authentication methods
	One-time passwords
	Certificates

	Summary

	Chapter 5: Sources of Usernames and Passwords
	User stores
	System users
	Time for action – incorporating Linux system users in
	FreeRADIUS
	Preparing rights
	SUSE is different
	CentOS
	Activating system users

	Authorize using the unix module
	Authenticating using pap
	Tips for including system users

	MySQL as a user store
	Time for action – incorporating a MySQL database in FreeRADIUS
	Installing MySQL
	Installing FreeRADIUS's MySQL package
	Preparing the database
	Configuring FreeRADIUS
	Connection information
	Including the SQL configuration
	Virtual server

	Testing the MySQL user store
	Advantages of SQL over flat files
	Other uses for the SQL database
	Duplicate users
	The database schema
	Groups
	Using SQL Groups
	Controlling the use of groups
	Profiles

	LDAP as a user store
	Time for action – connecting FreeRADIUS to LDAP
	Installing slapd
	Configuring slapd
	CentOS
	SUSE
	Ubuntu

	Adding the radiusProfile schema
	Populating the LDAP directory
	Installing FreeRADIUS's LDAP package
	Configuring the ldap module
	Testing the LDAP user store
	Binding as a user
	Advanced use of LDAP
	Ldap-Group and User-Profile AVP
	Reading passwords from LDAP

	Active Directory as a user store
	Time for action – connecting FreeRADIUS to Active Directory
	Installing Samba
	Configuring Samba
	Joining the domain
	CentOS
	SUSE
	Ubuntu

	FreeRADIUS and ntlm_auth
	PAP Authentication
	MS-CHAP Authentication

	Summary
	Linux system users
	SQL database
	LDAP directory
	Active Directory

	Chapter 6: Accounting
	Requirements for this chapter
	Basic accounting
	Time for action – simulate accounting from an NAS
	Files for simulation
	Starting a session
	Ending a session
	Orphan sessions
	Independence of accounting
	NAS: important AVPs
	Acct-Status-Type
	Acct-Session-Id
	AVPs indicating usage

	NAS: included AVPs
	FreeRADIUS: pre-accounting section
	Realms
	Setting Acct-Type

	FreeRADIUS: accounting section
	Minimising orphan sessions
	radwho
	radzap

	Limiting a user's simultaneous sessions
	Time for action – limiting a user's simultaneous sessions
	Session section
	Problems with orphan sessions
	checkrad

	Limiting the usage of a user
	30 minutes per day in total
	How FreeRADIUS can help

	Time for action – limiting a user's usage
	Activating a daily counter
	Terminating the session at a specified time
	rlm_counter
	Using rlm_sqlcounter
	Resetting the counter
	SQL module instance
	Special variables inside the query
	Empty account records
	Counters that reset daily
	Counting octets

	Housekeeping of accounting data
	Web-based tools

	Summary

	Chapter 7: Authorization
	Implementing restrictions
	Authorization in FreeRADIUS
	Introduction to unlang
	Using conditional statements

	Time for action – using the if statement in unlang
	Obtaining a return code using the if statement
	Checking if an attribute exists
	Using logical expressions to authenticate a user

	Attributes and variables
	Attribute lists

	Time for action – referencing attributes
	Attributes in the if statement
	Variables

	Time for action – SQL statements as variables
	Time for action – setting default values for variables
	Time for action – using command substitution
	Time for action – using regular expressions
	Practical unlang
	Limiting data usage

	Time for action – using unlang to create a data counter
	Defining custom attributes
	32-bit limitation

	Using the perl module
	reset_time.pl
	check_usage.pl
	Installing the perl module on CentOS

	Updating the dictionary files
	The recommended way of updating dictionaries

	Preparing the users file
	Preparing the SQL database
	Adding unlang code to the virtual server
	The SUSE and Ubuntu bug
	Pre-loading Perl library

	Testing the data counter
	Clean-up

	Summary

	Chapter 8: Virtual Servers
	Why use virtual servers?
	Defining and enabling virtual servers
	Time for action – creating two virtual servers
	Available sub-sections
	Enabling and disabling virtual servers

	Using enabled virtual servers
	Time for action – using a virtual server
	Including a virtual server
	Handling Post-Auth-Type correctly
	Taking care of Type attributes

	Virtual server for happy hour
	Time for action – incorporating the Hotspot Happy Hour policy
	Enabling the Happy Hour virtual server
	Adding the virtual server to a client
	Defining clients in SQL

	Consolidating an existing setup using a virtual server
	Time for action – creating a virtual server for the Computer
	Science faculty
	Consolidation implementation
	A named files section
	A virtual server for the Computer Science faculty
	Incorporating the new virtual server
	What about users stored in SQL?
	When IP addresses and ports clash
	Local listen and client sections
	IPv6
	Listen section → type directive

	Pre-defined virtual servers
	Summary

	Chapter 9: Modules
	Installed, available, and missing modules
	Time for action – discovering available modules
	Locating installed modules
	Naming convention
	Adding alternative paths

	Available modules
	Missing modules

	Including and configuring a module
	Time for action – incorporating expiration and linelog modules
	Configuring a module
	Using modules

	Sections that can contain modules

	Using one module with different configurations
	Order of modules and return codes
	Time for action – investigating the order of modules
	Access-Request
	Return codes

	Some interesting modules
	Summary

	Chapter 10: EAP
	EAP basics
	EAP components
	Authenticator
	Supplicant
	Backend authentication server

	EAP conversation
	EAPOL-Start
	EAPOL-Packet

	Practical EAP
	Time for action – testing EAP on FreeRADIUS with JRadius
	Simulator
	Preparing FreeRADIUS
	Configuring JRadius Simulator
	Configuring the eap module
	The user store
	EAP on the client

	EAP in production
	Public Key Infrastructure in brief
	Creating a PKI

	Time for action – creating a RADIUS PKI for you organization
	Why use a PKI?
	Adding a CA to the client

	Configuring the inner-tunnel virtual server

	Time for action – testing authentication on the inner-tunnel
	virtual server
	The difference between inner and outer identities
	Naming conventions for the outer identity

	Disabling unused EAP methods

	Time for action – disabling unused EAP methods
	Message-Authenticator

	Summary

	Chapter 11: Dictionaries
	Why do we need dictionaries?
	Parsing requests
	Generating responses

	How to include dictionaries
	Time for action – including new dictionaries
	How FreeRADIUS includes dictionary files
	Including your own dictionary files
	Including dictionary files already installed
	Adding private attributes
	Updating an existing dictionary

	Time for action – updating the MikroTik dictionary
	Finding the latest supported attributes
	Location of updated dictionary files
	Order of inclusions
	Attribute names
	Upgrading FreeRADIUS

	Format of dictionary files
	Notes inside the comments
	Vendor definitions
	Attributes and values
	Name field
	Number field
	Type field
	Optional vendor field
	Value definitions

	Accessing dictionary files

	Summary

	Chapter 12: Roaming and Proxying
	Roaming—an overview
	Agreement between an ISP and a Telco
	Agreement between two organizations

	Realms
	Time for action – investigating the default realms in FreeRADIUS
	Suffix module
	NULL realm
	Enabling an instance of the realm module

	Defining the NULL realm

	Time for action – activating the NULL realm
	Stripped-User-Name and realm
	LOCAL realm
	Actions for a realm

	Defining a proper realm

	Time for action – defining the realm
	Rejecting usernames without a realm

	Time for action – rejecting requests without a realm
	DEFAULT realm
	In closing

	Proxying
	Time for action – configuring proxying between two
	organizations
	Proxying authentication requests
	Flow chart of an authentication proxy request
	EAP and dynamic VLANs
	Removing and replacing reply attributes

	Time for action – filtering reply attributes returned by a
	home server
	Status of the home servers

	Time for action – using the preferred way for status checking
	Proxying accounting requests

	Time for action – simulating proxied accounting
	Flow of an accounting proxy request
	Updating accounting records after a server outage

	Summary

	Chapter 13: Troubleshooting
	Basic principles
	FreeRADIUS does not start up
	Who's using my port?
	Checking the configuration
	Finding a missing module or library
	Fixing a broken external component
	FreeRADIUS refuses to start
	FreeRADIUS runs despite the display of an error message
	FreeRADIUS only reports a problem when answering a request

	Using the startup script

	FreeRADIUS is slow
	Time for action – performing baseline speed testing
	Tuning the performance of FreeRADIUS
	Main server
	LDAP Module
	SQL Module

	Redundancy and load-balancing
	Things beyond our control

	FreeRADIUS dies
	Client-related problems
	Testing UDP connectivity to a RADIUS server
	The control-socket virtual server

	Time for action – using the control-socket and raddebug for
	troubleshooting
	CentOS
	SUSE
	Ubuntu
	Using raddebug
	Remember the log output
	Spotting a mismatched shared secret
	Options for raddebug
	Raddebug auto termination
	If there's no output from raddebug

	Authenticating users
	Editing the users file
	Using raddebug
	When passwords change
	Password length

	EAP problems
	The CA certificate
	Identify where a problem is located

	Problems with proxying
	Online resources
	Using the mailing list
	Summary

	Appendix: Pop Quiz Answers
	Chapter 1
	Pop quiz – RADIUS knowledge

	Chapter 2
	Pop quiz – installation

	Chapter 3
	Pop quiz – clients.conf

	Chapter 4
	Pop quiz – authentication

	Chapter 5
	Pop quiz – user stores

	Chapter 6
	Pop quiz – accounting

	Chapter 7
	Pop quiz – authorization

	Chapter 8
	Pop quiz – virtual servers

	Chapter 9
	Pop quiz – modules

	Chapter 10
	Pop quiz – EAP

	Chapter 11
	Pop quiz – dictionaries

	Chapter 12
	Pop quiz – roaming and proxying

	Chapter 13
	Pop quiz – troubleshooting

	Index

