

Distributed Services with OpenAFS

Franco Milicchio · Wolfgang A. Gehrke

Distributed
Services with
OpenAFS
for Enterprise and Education

With 67 Figures and 25 Tables

123

Franco Milicchio
Wolfgang A. Gehrke

University Roma Tre
Department of Computer Science and Automation
Via della Vasca Navale, 79
00146 Roma
Italy
milicchio@dia.uniroma3.it
wgehrke@dia.uniroma3.it

Library of Congress Control Number: 2007922929

ISBN-13 978-3-540-36633-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German Copyright Law of September 9, 1965, in its current version, and permission
for use must always be obtained from Springer. Violations are liable for prosecution under
the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typesetting by the Authors
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: KünkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 33/3100/YL - 5 4 3 2 1 0

To our families.

In memory of Giulio Balestreri.

Preface

This book provides a concise answer to how one should organize a robust
enterprise IT infrastructure based on open-source software with mainstream
hardware. It is a necessity for large organizations to build a central user au-
thentication service, global user information storage, and to offer common
access to personal files regardless of the location the user wishes to connect
from. All these issues have been addressed with the help of well-established
technologies such as the industry standard Kerberos for user authentication
and the OpenAFS distributed file system, originally conceived at CMU and
used at universities like MIT and Stanford and also at research institutions
like CERN among many others.

Our presentation offers support for system architects and administrators,
to decide and implement an enterprise IT infrastructure, and for advanced
UNIX users wishing to look beyond isolated workstations, to experience the
move from local to global administration and the resulting challenges. The
presentation is a step-by-step guide, accompanied with a detailed explanation
of the corresponding technical context that mirrors our own experience gained
during the setup of an AFS cell at our computer science and engineering
department. The main focus lies on the application of UNIX-based services,
with particular attention to the underlying OpenAFS file system: therefore
it can be seen as a companion to the excellent and currently only available
book “Managing AFS: The Andrew File System” by Richard Campbell, which
reflects the new state of today’s implementation.

All services have been implemented with two primary goals: provide secu-
rity and offer fault-tolerance. Our focus will be on the explanation of proce-
dures to avoid insecure services, as well as provide reliability and redundancy.
A key component in the realization is the OpenAFS file system, which pro-
vides a free and open-source solution, notable for its geographic scalability and
data-recovery features like data replication and automated backup. With the
advent of Gigabit Ethernet it can even be a low-cost NAS or SAN substitu-
tion. For implementing this architecture a solid operating system was needed,
and our choice fell on the open-source Debian GNU/Linux distribution. This

VIII Preface

distribution is renowned as a free-of-charge, stable, UNIX-like operating sys-
tem, equipped with an advanced package-management system for updating
software, and furthermore offering all necessary packages without additional
costs. Nevertheless the flexibility of OpenAFS permits a wide range of other
UNIX versions as an underlying platform, too.

This book confronts the problem of client support with open network stan-
dards in an environment using different operating systems such as Linux,
MacOS X, and Windows; offers a general approach consisting of the platform-
independent combination of Kerberos, LDAP, and OpenAFS; provides a so-
lution based on open-source server software on top of Debian GNU/Linux;
and finally goes operational with the focus on configuration of the single com-
ponents without the necessity of compilation. Because of the numerous coop-
erating technologies, not every aspect can be covered in detail. It has been
compiled to the best of knowledge of both authors and required the consulta-
tion of many sources from the Internet.

The following implementation makes use of symmetric and asymmetric
cryptography: you might have to examine the laws of your country in order
to verify which use of cryptography is legitimate. All mentioned registered
trademarks are the property of their respective owners.

Acknowledgments

We wish to thank our colleagues, in particular Prof. Alberto Paoluzzi, for
encouraging us during the work on this complex topic. Furthermore we are
deeply indebted to Prof. Jochen Pfalzgraf for establishing the initial contact
with the publisher. Mr. Hermann Engesser from Springer actively supported
our project and Ms. Dorothea Glaunsinger constantly kept in touch with us.
The first author wishes to thank Prof. Vadim Shapiro, who very generously
supported his studies while visiting the University of Wisconsin-Madison. The
second author wishes to express his gratitude to Prof. Frank Pfenning for the
invitation and hospitality during a stay as visiting scientist at the School of
Computer Science at Carnegie Mellon University in 1994, which was also his
first experience seeing AFS at work. Last but not least we have to acknowledge
the work of the innumerable people and many companies contributing to the
success of open-source software, in particular all developers of OpenAFS and
Debian.

Contents

1 The Beginning . 1
1.1 Outline . 1
1.2 Preparation . 2

Part I Core Services

2 Foundations . 11
2.1 Network Time Protocol . 11
2.2 Domain Name System . 15
2.3 Redundant Services . 23

2.3.1 Secondary NTP Server . 24
2.3.2 Secondary DNS Server . 25

2.4 Other DNS Uses . 28
2.4.1 Host Aliases . 28
2.4.2 Service Records . 29
2.4.3 Trivial Load Balancing . 30
2.4.4 Other DNS Records . 31

3 Kerberos V . 33
3.1 Kerberos Network Authentication Protocol 33
3.2 Master KDC . 36

3.2.1 Creating the Realm . 36
3.2.2 Realm Configuration . 38
3.2.3 Tuning Kerberos . 40

3.3 Slave KDC . 45
3.3.1 Host Principals . 45
3.3.2 The xinetd Daemon . 47
3.3.3 Kerberos Database Propagation . 48
3.3.4 Service Discovery . 51

3.4 Testing Kerberos . 51

X Contents

3.4.1 Preparing the Test Environment . 51
3.4.2 Pluggable Authentication Modules 53

4 LDAP . 57
4.1 Lightweight Directory Access Protocol . 57
4.2 Master LDAP . 58

4.2.1 Installing LDAP . 58
4.2.2 Removing the Administrator . 61
4.2.3 Building a Tree . 64
4.2.4 Kerberizing LDAP with GSSAPI . 65
4.2.5 Access Control Lists . 69

4.3 Replication . 71
4.4 Testing LDAP . 74

4.4.1 Creating LDAP Entries . 74
4.4.2 Name Service Switch. 77

5 OpenAFS . 81
5.1 The OpenAFS Distributed Filesystem . 81
5.2 The First OpenAFS Server . 85

5.2.1 Preliminaries . 85
5.2.2 Installing OpenAFS . 87
5.2.3 Notes on the Cache . 89
5.2.4 Kerberizing OpenAFS . 91
5.2.5 Configuring the Database Server . 92
5.2.6 Configuring the File Server . 97
5.2.7 Volume Creation . 98
5.2.8 Structuring the Cell . 102

5.3 Additional Servers . 109
5.3.1 Secondary Database Servers . 110
5.3.2 Secondary File Servers . 113
5.3.3 Volume Management . 114

5.4 Replication and Backup . 116
5.4.1 Replicas . 116
5.4.2 Backup . 121

5.5 Testing OpenAFS . 141
5.5.1 Users and Groups . 141
5.5.2 User Volumes . 141
5.5.3 Backup Volumes . 143
5.5.4 LDAP Information . 144
5.5.5 PAM and OpenAFS . 145

Contents XI

6 Samba . 149
6.1 Samba and Server Message Block . 149
6.2 Understanding Samba . 151

6.2.1 A Windows Workgroup . 151
6.2.2 A Simple Windows Domain . 154

6.3 The Samba Domain . 160
6.3.1 LDAP Configuration . 161
6.3.2 Installing Samba . 162
6.3.3 Samba Users . 167
6.3.4 Samba and OpenAFS . 169
6.3.5 Testing Samba . 175
6.3.6 Backup Domain Controller . 177

Part II Pushing the Core Services

7 Further Services . 185
7.1 DHCP . 185
7.2 Emergency System . 188

7.2.1 TFTP . 189
7.2.2 NFS . 190

7.3 Certificate Authority . 193
7.3.1 Installing OpenSSL . 196
7.3.2 Creating a CA . 198
7.3.3 Managing Certificates . 201
7.3.4 Revoking Certificates . 206

8 Web Server . 209
8.1 The World Wide Web . 209
8.2 Apache . 210

8.2.1 Installing Apache . 211
8.2.2 Secure HTTP . 215

8.3 MySQL . 220
8.4 Adding PHP . 225
8.5 Apache with Kerberos and AFS . 227

8.5.1 Web Server Principal . 228
8.5.2 Personal Web Pages . 231

8.6 WebDAV . 232
8.7 Redundant Web Server . 235

9 Electronic Mail . 237
9.1 The Electronic Mail System. 237
9.2 Mail Transport with Postfix . 239

9.2.1 Installing Postfix . 240
9.2.2 Testing Postfix . 242

XII Contents

9.2.3 Secure Delivery . 244
9.2.4 Testing TLS with Postfix . 245
9.2.5 Authenticated Mail Relay . 246
9.2.6 Local Delivery with Procmail . 250

9.3 Reading Mail with Courier . 254
9.3.1 Installing Courier . 254
9.3.2 Configuring Courier . 255
9.3.3 Testing Courier . 259

9.4 Redundant Mail System . 260

10 Newsgroups . 263
10.1 The Usenet . 263
10.2 INN . 264

10.2.1 Configuring INN . 265
10.2.2 Testing INN . 267

10.3 Posting with Authentication . 269
10.3.1 Authentication with FreeRADIUS 269
10.3.2 Secure INN . 271

11 PostgreSQL Database . 275
11.1 Database Software . 275
11.2 PosgreSQL Installation . 276

11.2.1 Configuring PostgreSQL. 276
11.2.2 PostgreSQL with Kerberos . 277
11.2.3 Testing Kerberos Authentication . 278
11.2.4 Securing PostgreSQL . 279

11.3 PostgreSQL Users . 280
11.3.1 User Privileges . 281
11.3.2 Access from Web Scripts . 283

12 Further Web Applications . 287
12.1 Web Application . 287
12.2 Mailman Mailing List Manager . 288

12.2.1 Installing Mailman . 288
12.2.2 Postfix Configuration . 289
12.2.3 Mailman Configuration. 290
12.2.4 Apache Configuration . 291
12.2.5 Starting Mailman . 293

12.3 Horde Groupware . 295
12.3.1 Installing Horde . 296
12.3.2 Configuring Horde . 297
12.3.3 Additional Packages . 299

12.4 ILIAS e-Learning System . 304
12.5 Calendaring . 307

Contents XIII

Part III Applications

13 Client Systems . 311
13.1 Server-side Configuration . 311
13.2 Ubuntu Linux . 312
13.3 Apple MacOS X . 318
13.4 Microsoft Windows XP. 327

14 Clustering . 335
14.1 Introduction . 335
14.2 Secure Shell . 336
14.3 MPI and PVM . 339

14.3.1 Message Passing Interface . 339
14.3.2 Parallel Virtual Machine . 341

14.4 MOSIX Cluster Management . 344
14.4.1 Patching the Kernel . 344
14.4.2 Configuring MOSIX . 346
14.4.3 Testing MOSIX . 348

15 Laboratories . 351
15.1 Foreword . 351
15.2 Multiboot Clients . 351

15.2.1 Machine-specific Boot . 352
15.2.2 Customized GRUB . 353

15.3 PC Cloning . 355
15.3.1 Customizing RIP Linux . 355
15.3.2 Partition Images . 358

15.4 Kiosks . 359
15.4.1 Configuring a Kiosk . 359
15.4.2 Stand-alone Kiosks . 360

16 Collaborative Software . 363
16.1 Foreword . 363
16.2 Instant Messaging . 363

16.2.1 Using Backports . 365
16.2.2 Installing Jabber . 365
16.2.3 Securing Jabber . 367

16.3 Collaborative Development . 371
16.3.1 Anonymous Users . 371
16.3.2 Concurrent Versions System . 373
16.3.3 Subversion . 375

17 Where To Go From Here . 377

XIV Contents

A Technical Summary . 379

References . 385

Web Resources . 387

Index . 393

List of Tables

2.1 NTP stratum specification . 14
2.2 Official root name servers list from www.root-servers.org 18

3.1 Kerberos administrative access control list values 39
3.2 PAM control parameters . 54

4.1 LDAP access control list levels . 70

5.1 The AFS-NFS comparison chart (from Transarc Corp.) 82
5.2 The OpenAFS access control list attributes 100
5.3 The OpenAFS @sys names (excerpt) . 106

6.1 Variable substitution in the Samba configuration file (excerpt) . 155
6.2 Samba account flags . 169

8.1 Apache SSL options (excerpt) . 219

10.1 The “Big 7” newsgroup hierarchies . 263

12.1 Horde Projects . 295

A.1 Kerberos administrative ACL (MIT) . 379
A.2 Kerberos kadmin password policies (MIT) 379
A.3 LDAP access control list levels . 380
A.4 The OpenAFS access control list attributes 380
A.5 The OpenAFS @sys names (excerpt) . 380
A.6 New OpenAFS extensions (excerpt) . 381
A.7 OpenAFS 1.4.2 characteristics (excerpt) . 381
A.8 Brief OpenAFS terminology . 382
A.9 AFS and Kerberos/OpenAFS . 382
A.10 Variable substitution in the Samba configuration file (excerpt) . 382
A.11 Samba account flags . 383

XVI List of Tables

A.12 Apache SSL options (excerpt) . 383

1

The Beginning

The beginning of knowledge is the discovery of
something we do not understand.
Frank Herbert

1.1 Outline

This book explores the distribution of fundamental network services in the
UNIX world based on a client-server model. Historically the Network Infor-
mation System, NIS, together with the Network File System, NFS, both devel-
oped by Sun Microsystems, have been employed frequently for this purpose.
Here we will present a different approach, mainly characterized by the appli-
cation of OpenAFS, which to some degree resembles the former Distributed
Computing Environment, DCE, a software system developed in the 1990s by a
consortium of software and hardware companies, including Apollo Computer
(later part of the Hewlett-Packard Company), Digital Equipment Corporation
(bought by Compaq which subsequently merged with Hewlett-Packard, too),
and the International Business Machines Corporation.

This book is divided into three parts, providing a live description of services
running on UNIX servers. The first part of the book describes the fundamental
architecture of our software environment, from the basic services such as DNS
and NTP, to the core consisting of Kerberos V, OpenLDAP, OpenAFS, and
Samba as a gateway to the Windows world.

The second part includes additional services such as DHCP, TFTP, a Cer-
tificate Authority, and an emergency operating system which clients could
boot directly from the network in case of system failures. On the top of the
backbone services, the book will provide an overview of web and message
services such as email, news, and mailing lists.

The third part is dedicated to the description of various application sce-
narios, including a basic cluster setup, a laboratory installation and additional
collaborative services such as an instant messaging system and source version
control services.

One comment should be added here about the realization of this book. All
the services have been actually implemented on real machines connected to
a network, and the output has been recorded live through the script UNIX

2 1 The Beginning

command, which creates a complete typescript of a terminal session. Occa-
sionally the other command screendump got used to record the screenshot of
a given terminal.

Conventions

This book requires a basic knowledge of the functioning of a UNIX system and
an essential networking background. Our exemplary domain will be named
example.edu, referring to our hypothetical institution named “Example Or-
ganization”.

In the following occur many screenshots where the UNIX shell prompt
will appear: the convention used in this book is to indicate with a dollar
sign “$” a user prompt, and a root shell prompt with the pound “#”. This
convention is often adopted by the shell commands themselves. Command
outputs may exceed the limits imposed by typographic margins, so to indicate
that a particular line continues on the following, we will use the backslash “\”
character. Not all the output will be reproduced in cases where considered
not necessary.

Each chapter ends with a practical part suggesting exercises. These are
just hints to reflect further the material presented, with the last one generally
significantly more difficult.

1.2 Preparation

This section shows a really minimal Debian GNU/Linux installation, a rather
server oriented distribution, started in 1993 by Ian Murdock, at the time a
student at the Purdue University1. Its primary objective is to provide a free
and open source operating system based on the UNIX tools released by the
GNU Project, started by Richard Stallman in 1983.

Linux itself is essentially a kernel, and a complete UNIX-like operating
system is obtainable in the form of distributions provided by independent
vendors, either commercial as RedHat and Novell (former SuSE Linux), or
by organizations developing the distribution free of charge such as the Debian
GNU/Linux distribution. A notable non-commercial distribution is Slackware,
started by Patrick Volkerding, which was one of the first distribution and to-
day the oldest. We have been choosing the Debian GNU/Linux distribution
because of its known stability and long-term support of packages, making it
a suitable option for servers; moreover, it provides many integrated packages
with an advanced management system that installs all dependent packages
when needed. Several distributions have been choosing this software main-
taining system, notably Ubuntu, an offspring of Debian and sponsored by
1 The name “Debian” comes from the initials of Ian, and his girlfriend, and now

wife, Debra.

1.2 Preparation 3

Canonical Ltd. founded by Mark Shuttleworth with the objective of promot-
ing the free software.

A minimal CD-ROM ISO image for a Debian system requires about 200
MB of free disk space, and provides a bootable CD-ROM image. The Debian
installer guides the user through the setup process with a command-line based
wizard, allowing an easy partitioning of hard drives with the choice of several
file system types. A working network is vital during the installation of a De-
bian system, since all the needed packages will be downloaded from remote
repositories: any ISP provides top-level network access to DNS services, and
there are DNS services free of charge, too.

The installation process creates besides the administrative root user an-
other one which we call admin. It is sufficient to configure the mail transport
agent exim for local delivery only, redirecting mail for root to this second
user admin. Anyway, the exim settings are not critical since they are going to
be disabled in the following.

Debian Basics

We want to secure the freshly installed system as much as possible from the
very beginning. Since by default Debian activates some services and opens
some ports, we will manually correct this before we go on. To perform the
following operation we need to gain root access. In general it is not desirable
to run unnecessary processes on a server: they clearly consume resources, but
more critically, open ports on a networked machine which might might provide
an entry point of a possible break in, posing a security threat.

Before starting to close inessential services on our new host, we perform
a basic update of the Debian system. The main tool used to handle package
installation and removal is apt-get. The program provides an easy to use
interface to manage the package repository, the database of all known software
to the Debian system. It is common practice to synchronize the package list
with the remote software sources, done via the update subcommand:

apt-get update

Once the local package list is in sync with the remote repositories, with
the upgrade subcommand it is possible to update all outdated packages to
their new version:

apt-get upgrade

The upgrade process should perform flawlessly, resolving all conflicts with
different package versions and dependencies. The dist-upgrade subcommand
is a shortcut to perform an upgrade, and handle package dependency conflicts
automatically, giving higher priority to the most critical software if needed:

4 1 The Beginning

apt-get dist-upgrade

As a detailed example for the installation of a package, let us install a useful
command called less. The less command is a screen pager program for files,
with displaying and searching capability. First we search the name of the
package with the help of the apt-cache tool, retrieving all the packages with
a “less” string in its name or description, using the search subcommand:

apt-cache search less
3ddesktop - "Three-dimensional" desktop switcher
aircrack - wireless WEP cracker
...

smstools - SMS Server Tools for GSM modems
util-vserver - tools for Virtual private servers and context switching

The tool is shipped with the homonymous package, which can be inspected
by the same tool with the show subcommand followed by the package name:

apt-cache show less
Package: less
Priority: standard
Section: text
Installed-Size: 256
Maintainer: Thomas Schoepf <schoepf@debian.org>
Architecture: i386
Version: 382-1
Depends: libc6 (>= 2.3.2.ds1-4), libncurses5 (>= 5.4-1), debianutils (>= 1.8)
Filename: pool/main/l/less/less_382-1_i386.deb
Size: 101816
MD5sum: 49c50edc45a6ba8faf231873fbfef6e0
Description: Pager program similar to more
Less is a program similar to more(1), but which allows backward
movement in the file as well as forward movement. Also, less does not
have to read the entire input file before starting, so with large input
files it starts up faster than text editors like vi(1). Less uses
termcap (or terminfo on some systems), so it can run on a variety of
terminals. There is even limited support for hardcopy terminals.
.
Homepage: http://www.greenwoodsoftware.com/less/

A package information includes the list of all prerequisite packages, the
current available version, and a brief description. Installing the less package
can be done via the apt-get tool with the install subcommand followed by
the package name:

apt-get install less
Reading Package Lists...
Building Dependency Tree...
The following NEW packages will be installed:

less
0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 102kB of archives.
After unpacking 262kB of additional disk space will be used.
Get:1 http://mirror.switch.ch stable/main less 382-1 [102kB]
Fetched 102kB in 0s (204kB/s)
Selecting previously deselected package less.
(Reading database ... 13098 files and directories currently installed.)

1.2 Preparation 5

Unpacking less (from .../archives/less_382-1_i386.deb) ...
Setting up less (382-1) ...

In case the apt-get command also installs any required package, eventu-
ally prompting for the user approval.

The default way of enabling and disabling services at boot time is the
Debian tool update-rc.d, which handles the startup script links in the rc
directories on a per run-level basis. Apart from the bare bones command line
tool, we find a graphical utility more practical. For this we install the rcconf
tool with the standard apt-get tool, feeding it with the install subcommand
followed by the package name:

apt-get install rcconf

Using this text-based graphical interface, we can start removing all the
unnecessary services such as exim4, inetd, and ppp - a mail daemon, a super-
server2, and a point-to-point dial-up service, respectively. For the moment
just atd, cron, klogd, makedev, and sysklogd are needed: a user-available
job scheduler, a system-level command scheduler, the Linux kernel log handler,
the device creating tool, and the system events logger. Any running services
are not stopped by the rcconf interface, and need to be stopped manually,
for instance the exim4 and inetd server:

/etc/init.d/exim4 stop
Stopping MTA: exim4.

/etc/init.d/inetd stop
Stopping internet superserver: inetd.

Afterwards the rcconf tool shows all the boot-time services, similar to the
following output:

----------]] rcconf - Debian Runlevel Configuration tool [[-----------
| |
| [] anacron ^ |
| [*] atd # |
[*] cron	
[] exim4	
[] gpm	
[*] klogd	
[*] makedev	
[] inetd	
[] ppp	
[] ssh	
[*] sysklogd v	
<Ok> <Cancel>	

2 We will introduce and explain such a service in the Kerberos chapter.

6 1 The Beginning

Stopping services results in a decrease in the running process list, viewable
with the standard UNIX command ps:

ps auxg
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 1496 512 ? S 10:51 0:00 init [2]
root 2 0.0 0.0 0 0 ? S 10:51 0:00 [keventd]
root 3 0.0 0.0 0 0 ? SN 10:51 0:00 [ksoftirqd_CPU0]
root 4 0.0 0.0 0 0 ? S 10:51 0:00 [kswapd]
root 5 0.0 0.0 0 0 ? S 10:51 0:00 [bdflush]
root 6 0.0 0.0 0 0 ? S 10:51 0:00 [kupdated]
root 99 0.0 0.0 0 0 ? S 10:51 0:00 [kjournald]
root 457 0.0 0.0 0 0 ? S 10:51 0:00 [khubd]
root 1083 0.0 0.1 1544 616 ? Ss 10:52 0:00 /sbin/syslogd
root 1086 0.0 0.2 2208 1380 ? Ss 10:52 0:00 /sbin/klogd
daemon 1128 0.0 0.1 1672 636 ? Ss 10:52 0:00 /usr/sbin/atd
root 1131 0.0 0.1 1748 724 ? Ss 10:52 0:00 /usr/sbin/cron
root 1138 0.0 0.0 1484 476 tty2 Ss+ 10:52 0:00 /sbin/getty 38400 tty2
root 1139 0.0 0.0 1484 476 tty3 Ss+ 10:52 0:00 /sbin/getty 38400 tty3
root 2293 0.0 0.0 1484 476 tty4 Ss+ 10:58 0:00 /sbin/getty 38400 tty4
root 2294 0.0 0.0 1484 476 tty5 Ss+ 10:58 0:00 /sbin/getty 38400 tty5
root 2295 0.0 0.0 1484 476 tty6 Ss+ 10:58 0:00 /sbin/getty 38400 tty6
root 2301 0.0 0.3 3000 1684 tty1 Ss 10:58 0:00 -bash
root 2468 0.0 0.1 2480 864 tty1 R+ 12:26 0:00 ps auxg

The ps tool shows the process list on our system, while the netstat
command prints on the console all the network connections, statistics, and
routing information, and with the -a option it displays both listening and
non-listening sockets:

netstat -a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 3 [] DGRAM 939 /dev/log
unix 2 [] DGRAM 970

For a more extended check of connections, we want to use the lsof and
nmap security tools, installable with the usual apt-get command:

apt-get install lsof nmap

The nmap program is a network security scanner and exploration tool,
allowing many options for displaying various information about open ports
and their status, running services and operating system version. For instance,
we can use nmap to check all the open ports on the local machine both TCP
and UDP with the -sT and -sU switches, respectively:

nmap -sT -sU localhost

1.2 Preparation 7

On UNIX systems all network connections are usually handled by files
(e.g. sockets or pipes), and the lsof command is a practical tool to inspect
all the open files in a system. It can be fed with the -i switch to show all the
Internet connections, followed by the IP version number, i.e. 4 for IPv4 and
6 for the new IPv6 protocol:

lsof -i4

Nothing should be shown open and that is the clean state we want to start
out with.

Practice

Exercise 1. Test different file systems of your choice like ext2, ext3, and
xfs. Use varying disk sizes too, for operations as creating the file system,
checking it for inconsistencies, or producing and deleting big files. You should
experience significant differences in speed.

Exercise 2. Reflect the choice of the Debian distribution in your case. Could
the Ubuntu Server LTS (Long Term Support) version be an alternative? Damn
Small Linux, KNOPPIX, or some Ubuntu LiveCD can give you a first impres-
sion of a Debian based distribution.

Exercise 3. To prepare for the next steps, review some available technical
overview of AFS, DCE/DFS, and Microsoft’s DFS. What do they have in
common, and where do they differ?

Exercise 4. Examine whether you require further server hardening. Possible
options may include a firewall for better service protection, SELinux for a
stronger privilege separation between different services, the OpenBSD oper-
ating system as a safer choice for critical core services. All of these require
significant technical skill.

Part I

Core Services

2

Foundations

Time is the most valuable thing a man can spend.
Theophrastus

2.1 Network Time Protocol

It is well known that time is an extremely important resource. In network
environments time is fundamental for security reasons, just think about the
log files which contain the exact time an event happened. This adjective “ex-
act” can not be eliminated. All clients and servers should have their timers
synchronized through a standard protocol called Network Time Protocol, or
with the acronym NTP.

NTP was designed by Dave Mills using the UDP port 123 and is one
of the oldest protocols still in use on TCP/IP networks. This protocol used
the algorithm invented by Keith Marzullo for his Ph.D. and it is specifically
designed to use a selected pool of sources estimating the correct time from
these potentially perturbed references. Note that this protocol uses timings in
the Coordinated Universal Time, or UTC1 and at its last version, NTPv4, the
protocol can reach an accuracy of 200 microseconds over local networks and
10 milliseconds over the Internet. For more informations refer to the publicly
available specification in the RFC 1305, which describes NTPv3, as the fourth
version is under formalization.

NTP Client

The first operation before becoming a server is to install the NTP client
shipped in the package ntpdate on the chosen host. Our environment will
have a host named ntp.example.edu acting as the local time server, so after
installing and configuring Debian as we have seen in the previous chapter,
proceed installing the NTP client:

1 The UTC timing replaced the old Greenwich Mean Time, GMT, on January 1st
1972.

12 2 Foundations

apt-get install ntpdate

The package contains a command with the same name which accepts as
an input a server name or an IP address. One main external and publicly
available time reference is the ntp.org pool of time servers, and as the first
operation we choose to synchronize the local clock with theirs:

ntpdate pool.ntp.org
13 Apr 10:42:05 ntpdate[1992]: adjust time server 209.223.236.234 offset 0.022175 sec

The output shows the correct adjusted time and offset, and the IP address
of the selected network resource. The ntpdate command uses the values con-
tained in its default configuration file, located in /etc/default/, having the
same name as the command. In this file we can specify a list of blank-separated
network time servers and additional options. The option -u tells the command
to use an unprivileged port, useful in some firewalled environments that filter
privileged port communications, i.e. from 1 to 1023. The configuration file for
our client looks like the following:

NTPSERVERS="pool.ntp.org"
NTPOPTIONS="-u"

For a list of public time servers refer to the Network Time Protocol Project,
and to the Network Time Protocol Public Services Project.

NTP Server

Reliable time synchronization requires a local server providing the source for
all hosts in the network. Contemporaneously our time server also synchronizes
itself to an external source so that clocks can be considered accurate.

The Debian package that contains a time server is called ntp-server, so
install it with the standard apt-get tool:

apt-get install ntp-server

Debian starts the server immediately and adds the service to the default
ones activated at boot time. Its configuration file is located in /etc/ with the
file name ntp.conf, but before editing it we need to stop the server:

/etc/init.d/ntp-server stop
Stopping NTP server: ntpd.

The configuration for our server needs small adjustments in order to work.
Primarily, we have to specify the external source for the time synchronization
with the server directive. We point the service to the pool.ntp.org servers:
the server specification lines are not limited to only one, so you may add as
many time pools as you assume necessary.

2.1 Network Time Protocol 13

By default Debian enables the local host to have privileged access to the
server, while other machines can interrogate the service but with fewer rights,
specified in the restrict lines. All the other directives specify files necessary
for the NTP server to work and Debian defaults are as follows:

driftfile /var/lib/ntp/ntp.drift
statsdir /var/log/ntpstats/

statistics loopstats peerstats clockstats
filegen loopstats file loopstats type day enable
filegen peerstats file peerstats type day enable
filegen clockstats file clockstats type day enable

server pool.ntp.org

restrict default kod notrap nomodify nopeer noquery

restrict 127.0.0.1 nomodify

Now that the NTP server configuration file has been modified, we can start
the service:

/etc/init.d/ntp-server start
Starting NTP server: ntpd.

The NTP server configuration provided by Debian as default uses the
syslog facility to track every change, so its log is to be found in the syslog
file located in the /var/log/ directory. This is a typical NTP server output
log:

13 Apr 11:03:42 ntp ntpd[27842]: ntpd 4.2.0a@1:4.2.0a Fri Aug 26 10:30:12 UTC 2005 (1)
13 Apr 11:03:42 ntp ntpd[27842]: signal_no_reset: signal 13 had flags 4000000
13 Apr 11:03:42 ntp ntpd[27842]: precision = 1.000 usec
13 Apr 11:03:42 ntp ntpd[27842]: Listening on interface wildcard, 0.0.0.0#123
13 Apr 11:03:42 ntp ntpd[27842]: Listening on interface lo, 127.0.0.1#123
13 Apr 11:03:42 ntp ntpd[27842]: Listening on interface eth0, 192.168.127.80#123
13 Apr 11:03:42 ntp ntpd[27842]: kernel time sync status 0040

The restrict lines may be modified to tighten access to the server, for
example denying other hosts the ability to configure the time server, one may
add a line that specifies the nomodify parameter to the local network:

restrict 192.168.127.0 mask 255.255.255.0 nomodify

NTP Test

To test the NTP server, we need a host with the ntpdate client command.
The following two calls show a a communication failure and a successful time
synchronization:

14 2 Foundations

ntpdate ntp.example.edu
13 Apr 11:00:39 ntpdate[7799]: no server suitable for synchronization found

ntpdate ntp.example.edu
13 Apr 11:06:29 ntpdate[7800]: adjust time server 192.168.127.80 offset -0.276980 sec

Before the NTP server gets usable by clients, one might have to wait some
minutes until it reaches an acceptable precision. On the server side we can
notice that NTP opens its UDP port, using the nmap tool with the -sU switch
for UDP port testing:

nmap -sU localhost

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-04-13 11:02 CEST
Interesting ports on localhost.localdomain (127.0.0.1):
(The 1477 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
123/udp open|filtered ntp

Nmap finished: 1 IP address (1 host up) scanned in 1.433 seconds

In order to make a UDP scan you must be logged in as root. Later on
we will add a secondary NTP server to increase the reliability of the time
synchronization service, but first some more theory.

NTP Stratum

The NTP servers network is divided into categories called strata. Each stratum
establishes accuracy and stability for the synchronization process and clock as
defined by the standard ANSI/T1.101-1998 “Synchronization Interface Stan-
dards for Digital Networks”, see Table 2.1 for reference.

Table 2.1. NTP stratum specification

Stratum Accuracy First Frame Slip

0
1 1 · 10−11 72 days
2 1 · 10−8 7 days
3 4.6 · 10−6 6 minutes
4 32 · 10−8 not specified

The Stratum-0 devices are actual time devices, such as GPS, Radio and
Loran-C clocks, attached via an RS-232 serial port or with an IRIG-B2 de-
vice to a computer. Each host attached to a Stratum-0 device is a Stratum-1
server, and these are taken as the reference clocks for the following levels of
accuracy. The Stratum-2 servers are connected to a number of higher-level
servers that guarantee the necessary precision, established by the NTP al-
gorithm, and discard any Stratum-1 host whose clock seems inaccurate with
2 Inter-Range Instrumentation Group.

2.2 Domain Name System 15

a certain probability. This layer of servers peer with each other to provide
the Stratum-3 hosts the best accuracy, robustness, and stability. The subse-
quent strata provide the same functionality as Stratum-2 servers, with lower
accuracy as we can see from the specification in Table 2.1.

At its start the ntpd daemon is assigned a high stratum, meaning that its
accuracy is yet to arrive at an acceptable level, and so the client gives up its
synchronization attempt. This fact can be seen adding the -d switch to show
all the ntpdate output for debugging:

ntpdate -d
27 Apr 13:01:58 ntpdate[1155]: ntpdate 4.2.0a@1:4.2.0a Mon Mar 14 12:39:28 UTC 2005 (1)
transmit(192.168.127.80)
receive(192.168.127.80)
transmit(192.168.127.80)
receive(192.168.127.80)
transmit(192.168.127.80)
receive(192.168.127.80)
transmit(192.168.127.80)
receive(192.168.127.80)
transmit(192.168.127.80)
192.168.127.80: Server dropped: strata too high
server 192.168.127.80, port 123
stratum 16, precision -20, leap 11, trust 000
...

27 Apr 13:01:58 ntpdate[1155]: no server suitable for synchronization found

Within minutes the drift between our NTP service and the servers with
higher stratum becomes lower, and so it gains hierarchy levels until reaching
a Stratum-3 or even Stratum-2:

ntpdate -d
27 Apr 13:13:51 ntpdate[7417]: ntpdate 4.2.0a@1:4.2.0a Mon Mar 14 12:39:28 UTC 2005 (1)
transmit(192.168.127.80)
receive(192.168.127.80)
transmit(192.168.127.80)
receive(192.168.127.80)
transmit(192.168.127.80)
receive(192.168.127.80)
transmit(192.168.127.80)
receive(192.168.127.80)
transmit(192.168.127.80)
server 192.168.127.80, port 123
stratum 2, precision -19, leap 00, trust 000
...

27 Apr 13:13:51 ntpdate[7417]: adjust time server 192.168.127.80 offset 0.025501 sec

2.2 Domain Name System

The whole Internet is based on the IP protocol which uses a unique number
assigned to every network card. Numbers are fast to be analyzed by machines,
and thus routing packets is one of the fastest operations on a network. Humans
are not machines though, and names are more familiar and easy to remember

16 2 Foundations

Fig. 2.1. Network Time Protocol stratum hierarchy

than numbers: the IP address 209.173.53.180 is hard to remember to des-
ignate the Internet Engineering Task Force, while the name www.ietf.org is
far easier. The original protocol was designed by Paul Mockapetris in 1983,
and became standard with RFC 882 and 883, obsoleted in 1987 with RFC
1034 and 1035, for the name resolution protocol on TCP/IP networks.

The standard protocol that converts names into IP addresses and vice versa
is called Domain Name System or DNS. The protocol uses both TCP and UDP
on port 53 to resolve a DNS query, from a name to a numeric address, and a
reverse DNS query, from an IP address to a name. The protocol divides the
name space into zones, for instance our fictitious organization seems to have
bought the domain example.edu, and belongs to the .edu zone. These zones
form a tree as we can see in Figure 2.2, and the name resolution relies on the
delegation of queries to the authoritative name server. This means that when
asking for the IP address of www.example.edu we have to traverse in reverse
order the tree, asking who is the authoritative server for the .edu zone to
the Root Name Servers, then asking to the .edu name server for the example
zone, and finally ask the example.edu DNS server the address of the host
called www. This is how it works in theory. On every client there is a cache for
DNS queries, so that it is not necessary to ask every time all servers starting
from the root.

The root zone is the one that holds every other one, in particular those
called Top Level Domain zones. These zones are divided into categories:

Infrastructure This category contains the arpa domains, used for infras-
tructure purposes, and inherits its name from the ancestor of Internet,

2.2 Domain Name System 17

Fig. 2.2. Domain Name System zones with the exmple.edu network

ARPANET Advanced Research Projects Agency Network, built by the
United States Department of Defense;

Country The Country Code Top Level Domains, ccTLD, are two-letters long
character strings as us for the United States of America, it for Italy, and
de for Germany, Deutschland in the German language;

Generic The Generic Top Level Domains, gTLD, are strings constituted by
three or more characters, indicating a class of organizations independently
of their nationality3 as com for commercial and edu for educational orga-
nizations;

Sponsored The Sponsored Top Level Domains, sTLD, are proposed by inde-
pendent agencies and are subject to their rules and approvals as museum
for mueseums and travel for travel agencies.

The authoritative name servers for the root zones are known a priori in a
system and are named with progressive letters. Currently there are 13 root
servers belonging to the root-servers.org organization. All the root servers
with their maintainers are shown in Table 2.2.

DNS Server

Debian includes one of the most used DNS daemons on the net: bind. Its
story is long, and goes back to the historical 4.3BSD release, in fact, the name
bind still retains his BSD ancestry being the acronym of “Berkeley Internet
Name Domain”, nowadays supported by the Internet Systems Consortium.
The version included in Debian is the ninth release of this historical service,
3 For historic reasons the military mil and governmental gov gTLDs are reserved

for the United States of America. The edu college-level organization is operated
by the US and was originally meant to be used world-wide.

18 2 Foundations

Table 2.2. Official root name servers list from www.root-servers.org

Letter IP Address Maintainer

A 198.41.0.4 VeriSign—Dulles, VA (USA)
B 192.228.79.201 ISI—Marina Del Rey, CA (USA)
C 192.33.4.12 Cogent Communications—Herndon, VA (USA)
D 128.8.10.90 University of Maryland—College Park, MD (USA)
E 192.203.230.10 NASA—Mountain View, CA (USA)
F 192.5.5.241 ISC, Inc.—Palo Alto, CA (USA)
G 192.112.36.4 US DoD NIC—Vienna, VA (USA)
H 128.63.2.53 US Army—Aberdeen MD (USA)
I 192.36.148.17 Autonomica-NORDUnet—Chicago, IL (USA)
J 192.58.128.30 VeriSign—Dulles, VA (USA)
K 193.0.14.129 RIPE-NCC—London (UK)
L 198.32.64.12 ICANN—Los Angeles, CA (USA)
M 202.12.27.33 WIDE Project—Tokyo (JP)

distributed by the package bind9. Our choice is to install it together with the
corresponding client to query our DNS:

apt-get install bind9 bind9-host

As in the majority of Debian’s packages, the system starts bind9 and adds
it to the boot services, so before proceeding stop the daemon.

All the configuration files for bind are located in the directory /etc/bind/.
The main file is called named.conf, and contains by default the zone databases
used by the system, as we can see from its content:

include "/etc/bind/named.conf.options";

zone "." {
type hint;
file "/etc/bind/db.root";

};
zone "localhost" {

type master;
file "/etc/bind/db.local";

};
zone "127.in-addr.arpa" {

type master;
file "/etc/bind/db.127";

};
zone "0.in-addr.arpa" {

type master;
file "/etc/bind/db.0";

};
zone "255.in-addr.arpa" {

type master;
file "/etc/bind/db.255";

};
include "/etc/bind/named.conf.local";

We can notice that some zones are configured by default, for instance the
root zone servers are known by default and are present with their database

2.2 Domain Name System 19

and their specific type hint. The file contains two inclusions, one direc-
tive for the daemon options, and the other for the local configuration. The
named.conf.local is the file that is meant to be modified to handle our zone
example.edu.

As we have already mentioned, the DNS resolves direct and reverse queries,
so our configuration will contain a database of name-address entries, as well as
the reverse address-name. Remember that DNS queries are made bottom-to-
the-top, resolving a name like www.example.edu asking first to the root, then
to the edu top level domain servers and so on. This aspect is reflected in the
named.conf.local configuration file, where the reverse address mapping has
inverted IP maps: the subnet 192.168.127.0 is described with 127.168.192
followed by the standard arpa:

zone "example.edu" {
type master;
notify no;
file "/etc/bind/example.edu.zone";

};
zone "127.168.192.in-addr.arpa" {

type master;
notify no;
file "/etc/bind/example.edu.zone.reverse";

};

The syntax is self-explaining: we are building an authoritative DNS for
the example.edu zone, that is type master, which does not notify any other
DNS server. The zone file databases are located in our example in the same
directory as bind’s configuration, but this is not a requirement.

Direct Database

First we start by creating our direct-query name database. Our DNS host has
a name, dns.example.edu, and an administrator with e-mail address admin.
The first item in our zone file is the zone configuration with its zone name
origin set to null, and the cached record time to live in seconds, respectively
$ORIGIN and $TTL. After this preamble, we have to begin our authority with
the SOA, Start Of Authority. The SOA line contains in order the following
parameters:

Zone The managed zone name, taking care of the $ORIGIN parameter if dif-
ferent from null, just a dot;

TTL The optional per-zone time to live parameter, the default $TTL applies
if not specified;

Class The record class which the server handles, always4 set to the standard
Internet class IN;

4 Besides the standard IN class, bind still handles historical Hesiod HS and Chaos
CH classes, both coming from the MIT.

20 2 Foundations

Server The Primary Master DNS server that respond authoritatively for the
domain in case of a Dynamic DNS, or any valid DNS server, usually using
the Fully Qualified Domain Name FQDN, that is the host name completed
with the domain name, and it must end with a dot;

Mail The email address of the zone manager, substituting the @ with a dot,
and it should end with a dot.

The SOA record has five mandatory parameters which are specified by paren-
theses, meant to define server-side parameters, these are in order:

1. Serial number of the database, updated each time an entry is modified:
an unsigned 32-bits integer, although the common practice is to specify
the date in the standard UNIX format YYYYmmDDss for year, month,
day, sequence number for multiple updates in a single day;

2. The refresh time in seconds when a slave needs to update its database
from the master DNS;

3. The retry delay time in case a slave fails to contact its master during an
update process;

4. The expiration time in seconds when the zone database is considered
obsolete and hence no longer authoritative: this affects slave DNS servers
that do not resolve any other query until contacting the master again;

5. Negative cached entry time to live in seconds, with maximum value of
10800 or three hours—refer to RFC 2308 as this parameter has been
redefined.

The start of authority stanza looks like the following, including the default
origin and time to live values:

$ORIGIN .
$TTL 900
example.edu IN SOA dns.example.edu admin.example.edu. (

2006041301
900
300
864000
1800)

Attention: this stanza is the most critical of all in the bind configuration,
and must be written with extreme care. It is mandatory that the opening
parenthesis in this stanza is located on the same line of the SOA string. To
ease time value specifications bind supports short time-frame strings, using
for instance 3h instead of 10800, and 15M for 900. For more informations refer
to the daemon configuration manual.

The first entry in the zone file is the resource record item specifying the
name server itself. This service is identified by a NS string followed by the
name server host name. Actually, the NS entry is the second resource record
in the configuration file, since the first one was the SOA entry.

All the entries that bind names to IP addresses are expressed with address
records: lines containing the host name string followed by the record key A, and

2.2 Domain Name System 21

the IP address. Since we do not want to specify FQDNs, we use the $ORIGIN
directive again in this section to add the example.edu, then our direct zone
mapping file could be like the following:

$ORIGIN .
$TTL 900
example.edu IN SOA dns.example.edu admin.example.edu. (

2006041301
900
300
864000
1800)

NS dns.

$ORIGIN example.edu.

localhost A 127.0.0.1
dns A 192.168.127.154
ntp A 192.168.127.80

Observe the dot at the end of NS and $ORIGIN entries. Right now we have
specified just two host names, our name server itself and the time server.

Reverse Database

The other task of a name server is to map IP addresses back to names, reading
the entries from the reverse database we have decided in the bind configura-
tion file.

This database is symmetric to the direct one, having its preamble and
SOA resource record. The IP addresses to host names maps are described by
pointer records, PTR entries, similar to the address A ones, with the exception
that the host names are followed by a dot. Our example.edu.zone.reverse
looks like this:

$ORIGIN .
$TTL 900
127.168.192.in-addr.arpa IN SOA dns.example.edu admin.example.edu. (

2006041301
900
300
864000
1800)

NS dns.

$ORIGIN 127.168.192.in-addr.arpa.

154 PTR dns.example.edu.
80 PTR ntp.example.edu.

As shown the $ORIGIN matches the SOA entry and ends with a dot. A
minimal configuration for our bind-based DNS server is now complete and we
may proceed in testing it.

22 2 Foundations

DNS Security

The named daemon started from /etc/init.d/bind9 is controlled by the
command rndc, which can also be used for remote control. The default instal-
lation of Debian is backward compatible with the previous version of bind so
that old configuration files can be reused.

Without further configuration named and rndc, being on the same host,
look in the file /etc/bind/rndc.key for a shared secret. The command
rndc-confgen can be used to create a different configuration in the file
/etc/bind/rndc.conf. In that case one has to use controls and key state-
ments in named.conf.

Testing the DNS

During the server setup we have already installed a DNS client that allows us
to make queries to our name server, direct and reverse interrogations. We test
the DNS locally using the server itself to be sure that the daemon is working
correctly. To enable our client to query the right DNS, we first have to edit
the /etc/resolv.conf file that specifies the name servers, and optionally the
default search domain, such that we can ask for ntp instead of the FQDN
ntp.example.edu:

search example.edu
nameserver 127.0.0.1

The command that queries a DNS server is host, and we make use of the
-v switch that enables verbose outputs. First we query our DNS for the host
name dns with the host command:

host -v dns
Trying "dns.example.edu"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18708
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1

;; QUESTION SECTION:
;dns.example.edu. IN A

;; ANSWER SECTION:
dns.example.edu. 900 IN A 192.168.127.154

;; AUTHORITY SECTION:
example.edu. 900 IN NS dns.

;; ADDITIONAL SECTION:
localhost. 604800 IN A 127.0.0.1

Received 88 bytes from 127.0.0.1#53 in 2 ms

Since the first direct query worked, we can try to ask the daemon for the
only other IP address known to the DNS, our ntp host:

2.3 Redundant Services 23

host -v ntp
Trying "ntp.example.edu"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 35957
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 1, ADDITIONAL: 1

;; QUESTION SECTION:
;ntp.example.edu. IN A

;; ANSWER SECTION:
ntp.example.edu. 900 IN A 192.168.127.80

;; AUTHORITY SECTION:
example.edu. 900 IN NS dns.

;; ADDITIONAL SECTION:
localhost. 604800 IN A 127.0.0.1

Received 88 bytes from 127.0.0.1#53 in 2 ms

The last test is of course a reverse interrogation, this time we explicitly
query the DNS by specifying its IP address as the last parameter of the host
command:

host -v 192.168.127.154 192.168.127.154
Trying "154.127.168.192.in-addr.arpa"
Using domain server:
Name: 192.168.127.154
Address: 192.168.127.154#53
Aliases:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61984
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1

;; QUESTION SECTION:
;154.127.168.192.in-addr.arpa. IN PTR

;; ANSWER SECTION:
154.127.168.192.in-addr.arpa. 900 IN PTR dns.example.edu.

;; AUTHORITY SECTION:
127.168.192.in-addr.arpa. 900 IN NS dns.

;; ADDITIONAL SECTION:
localhost. 604800 IN A 127.0.0.1

Received 107 bytes from 192.168.127.154#53 in 2 ms

2.3 Redundant Services

Our goal is to provide reliable and redundant network services, and this task
involves the creation of more servers doing the same job, so that upon any
machine failure we can promptly and fully automatically provide a backup.

In the previous sections we have built two services, a time and a name
server. Adding secondary DNS and NTP machines is fundamental for our
entire network, so we decide to create two NTP machines and two DNS servers.
These machines can be called ntp1 and ntp2 for the time servers, and dns1

24 2 Foundations

and dns2 for the name service hosts. This habit of naming progressively is
just a choice led by taste, and will become common in our growing network,
since we want provide backups for all the critical services. Having changed the
name of our primary DNS affects the master configuration files, by adding the
corresponding names and reverse mappings in the zone files:

dns1 A 192.168.127.154
dns2 A 192.168.127.230
ntp1 A 192.168.127.80
ntp2 A 192.168.127.93

80 PTR ntp1.example.edu.
93 PTR ntp2.example.edu.
154 PTR dns1.example.edu.
230 PRT dns2.example.edu.

This imposes a change to the SOA entries on both files: a start of authority
record must contain the primary name server, so the dns1 host. The direct
and reverse zone files have a start of authority record like the following:

example.edu IN SOA dns1.example.edu admin.example.edu. (
2006041302
900
300
864000
1800)

127.168.192.in-addr.arpa IN SOA dns1.example.edu admin.example.edu. (
2006041302
900
300
864000
1800)

Having modified the primary DNS we can proceed in installing the sec-
ondary machines.

2.3.1 Secondary NTP Server

The instructions for a new network time server are exactly the same as for
the primary. We know that NTP servers work with a pool of peering hosts,
each of them synchronizing their clocks with the neighbors. In order to create
a redundant time service, it is sufficient to follow the same steps described to
build the primary NTP server, obtaining the same successful results:

ntpdate -d ntp2.example.edu
27 Apr 12:22:32 ntpdate[7417]: ntpdate 4.2.0a@1:4.2.0a Fri Aug 26 10:30:13 UTC 2005 (1)
transmit(192.168.127.93)
receive(192.168.127.93)
transmit(192.168.127.93)
receive(192.168.127.93)
transmit(192.168.127.93)
receive(192.168.127.93)
transmit(192.168.127.93)
receive(192.168.127.93)

2.3 Redundant Services 25

transmit(192.168.127.93)
server 192.168.127.93, port 123
stratum 2, precision -19, leap 00, trust 000
refid [192.168.127.230], delay 0.02574, dispersion 0.00000
transmitted 4, in filter 4
reference time: c7fb1870.23af20ea Thu, Apr 27 2006 12:16:16.139
originate timestamp: c7fb19e8.8a49b1fa Thu, Apr 27 2006 12:22:32.540
transmit timestamp: c7fb19e8.83bd8be7 Thu, Apr 27 2006 12:22:32.514
filter delay: 0.02591 0.02574 0.02574 0.02574

0.00000 0.00000 0.00000 0.00000
filter offset: 0.025563 0.025501 0.025501 0.025501

0.000000 0.000000 0.000000 0.000000
delay 0.02574, dispersion 0.00000
offset 0.025501

27 Apr 12:22:32 ntpdate[7417]: adjust time server 192.168.127.93 offset 0.025501 sec

You might have to wait again several minutes before your server is pro-
moted to an acceptable stratum.

2.3.2 Secondary DNS Server

A secondary DNS server is subordinated to the master DNS, and fetches all
the changes such that a consistent database is maintained across the network.

Master Configuration

The installation of a secondary DNS must be planned in advance on the
master by allowing it to notify all its slave servers. This is easily config-
urable by editing the notify directive in the local zone configuration file
named.conf.local:

zone "example.edu" {
type master;
notify yes;
file "/etc/bind/example.edu.zone";

};
zone "127.168.192.in-addr.arpa" {

type master;
notify yes;
file "/etc/bind/example.edu.zone.reverse";

};

The notification happens when the serial entry in the start of authority
stanza is modified, and the changes are propagated automatically to the slave
servers as specified by the NS records.

The direct zone description file does not only contain the new entries that
match IP addresses to names, but also includes the new NS resource record
for the secondary DNS:

example.edu IN SOA dns1.example.edu admin.example.edu. (
2006041303
900
300

26 2 Foundations

864000
1800)

NS dns1.
NS dns2.

$ORIGIN example.edu.

localhost A 127.0.0.1
dns1 A 192.168.127.154
dns2 A 192.168.127.230
ntp1 A 192.168.127.80
ntp2 A 192.168.127.93

The reverse zone file also reflects all needed changes so that it matches the
direct database:

127.168.192.in-addr.arpa IN SOA dns1.example.edu admin.example.edu. (
2006041303
900
300
864000
1800)

NS dns1.
NS dns2.

$ORIGIN 127.168.192.in-addr.arpa.

80 PTR ntp1.example.edu.
93 PTR ntp2.example.edu.
154 PTR dns1.example.edu.
230 PRT dns2.example.edu.

You notice two changes in these files. First of all, the serial number has
changed, since we have modified the databases; second consideration, we re-
spect a “good practice” for the A and PTR resources, having the direct zone
in alphabetical order—except for the localhost entry which is the first—and
ordering by numerical IP addresses the reverse: our choice is not to follow the
strict lexical order here since for instance the IP addreses .1, .15, .102, and
.203 would be ordered as .1, .102, .15, and .203.

Slave Configuration

On the slave machine we proceed exactly as we did for the master host. After
installing the packages, we start configuring the slave database location by
editing the named.conf.options file located in /etc/bind/. This file, previ-
ously unedited, contains the default location for the zone files in case these
strings do not qualify as an absolute path:

options {
directory "/var/cache/bind";
auth-nxdomain no;

};

2.3 Redundant Services 27

The auth-nxdomain is set to no in order to conform to RFC 1035, by not
answering as an authoritative DNS if the server is not configured to be one.
The default location is set to /var/cache/bind/, and it is a good idea not to
interfere with the system /etc/ directory.

The local zone configuration file named.conf.local on the slave is similar
to the master, with the obvious exception of the type. Another modification
is the specification of the master DNS servers where it fetches informations
from, defined with the masters directive:

zone "example.edu" {
type slave;
file "example.edu.zone";
masters {192.168.127.154; };

};
zone "127.168.192.in-addr.arpa" {

type slave;
file "example.edu.zone.reverse";
masters {192.168.127.154; };

};

Observe that we specified a relative path for our zone databases. At this
point we are ready to restart both DNS servers so that all the changes can take
effect, as a matter of fact bind does not read dynamically its configuration
files. On the secondary DNS, we can see that the /etc/bind/ directory does
not contain any database:

ls /etc/bind
db.0 db.255 db.local named.conf named.conf.options zones.rfc1918
db.127 db.empty db.root named.conf.local rndc.key

But in /var/cache/bind/ we see that all the databases have been created
by the notification process:

ls /var/cache/bind/
example.edu.zone example.edu.zone.reverse

The last step of this procedure is the test of the secondary DNS server,
achieved simply by querying localhost, being logged in on it, for a direct
and reverse address interrogation:

host dns1.example.edu localhost
Using domain server:
Name: localhost
Address: 127.0.0.1#53
Aliases:

dns1.example.edu has address 192.168.127.154

host 192.168.127.230 localhost
Using domain server:
Name: localhost
Address: 127.0.0.1#53
Aliases:

230.127.168.192.in-addr.arpa domain name pointer dns2.example.edu.

28 2 Foundations

If the test ends successfully we are ready to make our secondary DNS
server present in all resolv.conf files across the network:

search example.edu
nameserver 192.168.127.154
nameserver 192.168.127.230

Stealth DNS

Master and slave DNS servers are displayed publicly since we have used
the standard NS resource records. We may want to have redundant services
which are not known outside our network but only to the internal clients.
These hidden DNS servers are known as stealth DNS, and are defined by an
also-notify line in the zone configuration file of the master:

zone "example.edu" {
type master;
file "example.edu.zone";
also-notify {192.168.127.200; };

};

Stealth servers are configured and work exactly as normal slaves, with
the exception of not being included in the NS list. Publicly nobody can know
about the DNS server 192.168.127.200, but for our internal purposes these
are perfectly legal backups for name services.

2.4 Other DNS Uses

The DNS service may provide more than a simple database for IP addresses
and host names. Domain name systems are used to serve aliases for hosts,
provide service discovery and a trivial load balancing. The following sections
will briefly describe the use and configuration for these.

2.4.1 Host Aliases

A domain name system can provide an alias record for any canonical name,
that is the “real” name of a machine, meaning that the specified name cannot
be an alias or an IP address.

This record is known as the canonical name record, declared with the same
syntax of an address A record, by the statement CNAME. For example, if we
want our main NTP server ntp1 to be known also as time.example.edu, all
we have to add is a CNAME line like the following:

ntp1 A 192.168.127.80
ntp2 A 192.168.127.93
time CNAME ntp1

2.4 Other DNS Uses 29

Aliases inherit all the properties of the original host they refer to, and
a query shows that the specified name is an alias, followed by the real IP
address:

host time.example.edu
time.example.edu is an alias for ntp1.example.edu.
ntp1.example.edu has address 192.168.127.80

2.4.2 Service Records

Networks provide several services, such as web, email, instant messaging, and
authentication servers, and for large institutions it may be difficult to discover
what services are available without asking the network administration. The
DNS protocol provides a way of specifying available services along with other
informations with SRV records, service records. These entries are completely
optional in a network and it is up to the client to make use or not of such a
facility.

A service record is constituted by six entries divided into two categories:
the service protocol, that precedes the SRV string, and the host specification.
The service protocol is a dot-separated string constituted by three items,
in order the service, the protocol, and the domain, where the first two
strings are preceded by an underscore, and the domain ends with a dot. In
our organization such an entry might look like the following:

_service._protocol.example.edu.

The service field specifies the service announced by the DNS as specified
by the RFC 2782 “Service Types”. The protocol string specifies the protocol
involved in the service specification, which is usually tcp or udp. All valid
protocol strings are available by the IANA Official Protocol Names Specifica-
tion, described in the RFC 952. The SRV string that follows this entry may
be preceded by the class string, which is usually of type IN.

The second half of the record is the host specification, a sequence of strings
in the following order:

1. The priority of the specified host, a number in the range 0-65535, with
the lowest number indicating a higher priority;

2. The weight of the service machine used to rank same-priority hosts, it has
the same syntax as the priority field;

3. The port used by the service. It is not a requirement that services do
actually match the usual port, for example a web server may be configured
to work on the 8080 port instead of the usual 80;

4. The host that provides the service.

The domain field appears in both the first and last part of the SRV record.
The reason for this is that we are specifying our services before we set the

30 2 Foundations

$ORIGIN to our domain name example.edu. These fields can be left blank in
case the current zone is already set.

As an example, we want to announce that an NTP service is available via
DNS. The service string for the network time protocol is ntp, using the udp
protocol. Our domain has two time servers, and we want a higher priority to
be given to ntp1, both of them communicating on the standard port 123. The
entry in our database could be like this:

_ntp._udp.example.edu. SRV 0 0 123 ntp1.example.edu.
_ntp._udp.example.edu. SRV 3 0 123 ntp2.example.edu.

There are dots at the end of the domain name, indicating that we are
describing these services before setting $ORIGIN to the example.edu. string.

A useful and widely used service record is the one regarding the mailing
system. This specification is about the incoming mail, and is specified by a
record similar to the NS one, called MX. This entry specifies the server that
handles all the incoming mail for our domain:

example.edu. MX 0 smtp.example.edu.

It specifies the domain name, the record type MX, the priority of the server,
similarly as we have already described, and the server name which handles
incoming emails. This field is mandatory if the network is to handle emails,
as we will see in a subsequent chapter.

Services Not Available

The absence of a SRV record does not mean that a service is not present in
a networked environment. This record though may declare explicitly that a
service is not available, with a similar syntax as the previous specification. The
difference between the two is that non-present services have priority, weight,
and port set to zero, and the host name set to null.

For instance our network provides NTP servers as we described above, and
we want to announce to anyone that we do not provide any Gopher5 server:

_gopher._tcp.example.edu. SRV 0 0 0 .

2.4.3 Trivial Load Balancing

When we described the use of A records, we did not specify any constraint,
except for the obvious fact that an IP address record must not specify a host
name. Since there are no restrictions about the uniqueness of IP addresses,
we safely may assign multiple IP addresses to a name.
5 Gopher was a distributed document search-and-retrieve protocol used on the In-

ternet, replaced nowadays by the world wide web.

2.4 Other DNS Uses 31

When requesting a name to IP address query, the DNS protocol may re-
spond with a list of addresses, and not a single one. Actually this fact is clear
when investigating the POSIX call gethostbyname() that does this request,
a standard UNIX function returning a list of IP addresses: it is up to the
client whether to use them or not, and in which order. For example a client
may ignore the list and use just the first returned entry, or use the following
items if the connection with the first one fails. Anyway, this behavior is totally
delegated to the client.

Multiple IP addresses are returned by the DNS in a randomly distributed
order, and this provides us with a trivial load balancing that works out of the
box. For example, if we use two IP addresses for a machine called tmp, our
DNS database entries contain lines like the following:

tmp A 192.168.127.145
tmp A 192.168.127.237

If we ask the DNS to resolve the name tmp several times, we see that the
returned order changes:

host tmp
tmp.example.edu has address 192.168.127.145
tmp.example.edu has address 192.168.127.237

host tmp
tmp.example.edu has address 192.168.127.237
tmp.example.edu has address 192.168.127.145

host tmp
tmp.example.edu has address 192.168.127.237
tmp.example.edu has address 192.168.127.145

host tmp
tmp.example.edu has address 192.168.127.145
tmp.example.edu has address 192.168.127.237

host tmp
tmp.example.edu has address 192.168.127.237
tmp.example.edu has address 192.168.127.145

We recommend to carefully plan the use of this feature, since DNS provides
only a randomization of IP addresses, without any knowledge of priorities or
machine loads. When deploying highly-loaded servers, you should think of
using a real load balancer.

2.4.4 Other DNS Records

There are several other DNS records which can be specified in a name server
configuration, but many of them are either purely informational or experi-
mental. We briefly describe some of these entries with their current or future
use for information purposes:

AAAA This record is the IPv6, the successor of IPv4, equivalent of the A record;

32 2 Foundations

HINFO A non functional, informational record, used to describe the computer
and the operating system of a particular host, it may follow the A record;

LOC Is a purely informational record describing latitude, longitude, altitude,
and dimensions of a host, it usually follows the host address record;

RP Indicates the person responsible for the DNS domain, the record is not
functional;

TXT Provides a textual information about some details regarding the domain,
it may be present multiple times and its use is purely informational;

WKS It is the experimental counterpart for the MX record, used to indicate any
well known service, like POP, HTTP, or IMAP, and its adoption is almost
zero on the Internet.

Practice

Exercise 5. Decide the organization of time servers in your environment. Of
course one can opt for some radio transmitted time signal: there exist special
hardware cards for this purpose.

Exercise 6. Invent a naming and numbering scheme for your computers,
defining IP ranges for servers and clients. Sometimes it is convenient to ref-
erence a group of hosts with a single combination of one IP address and one
netmask.

Exercise 7. Judge your needs for redundancy. How many time servers are
necessary and what is the best way to organize your DNS? Can SRV records
be helpful?

Exercise 8. Redundancy and security do not depend alone on your hosts.
Think about problems related to network hardware, power supply, and heat
production: each of those have a wide range of possible options to support
reliability.

3

Kerberos V

Identity would seem to be the garment with which one
covers the nakedness of the self.
James Arthur Baldwin

3.1 Kerberos Network Authentication Protocol

Trust is an important issue in security, and part of the problem is related to
authentication. This is not to be confused with authorization, and although
these two terms are always coupled, they have different meanings and pur-
poses. Authentication comes from the Greek αυθεντικóς meaning “genuine”,
“real”, and its purpose is to establish the identity of an individual or an-
other previously untrusted interlocutor. The authorization on the other hand
is the decision of allowing an individual a certain action: the authorization is
thus subordinated to authentication. Giving an every-day metaphor, traveling
abroad requires a passport and a visa; at the border we are asked for our pass-
port, that authenticates us since we trust the document, and the issued visa
authorizes us to enter the foreign country upon a successful passport check.

Kerberos is the answer to the authentication problem over networks. It was
developed at the MIT for the Project Athena to ensure a secure and reliable
identity check of individuals communicating over an insecure network, and
was named after the mythological Greek dog Cerberus, or Kerberos, guard of
the Hades, whose job was allowing only dead people to enter the underworld,
and ensure that none of them would leave the place. The current version
of Kerberos is the fifth, known as Kerberos V, usually with the Roman nu-
meral, described in the official document RFC 4120, and by the subsequent
IETF specifications RFC 3961, 3962, and 4121. The protocol is based on the
Needham-Schroeder algorithm, and its first public version, Kerberos IV, was
designed primarily by Steve Miller and Clifford Neuman at the MIT in the
late 1980s.

A comprehensive description of Kerberos is beyond the objectives of this
book, and in the following paragraphs we will explain from a systemic point
of view the processes in act with the authentication service simplifying the
actual protocol.

A client in need of a Kerberos-aware service first contacts a commonly
trusted server called Key Distribution Center or KDC, which holds secret

34 3 Kerberos V

keys of all users and services, collectively known as principals. On this request
the KDC sends to the client a package, encrypted with the client’s secret
key, made of two distinct parts: a freshly generated secret key and another
encrypted data destined for the service, as depicted in Fig. 3.1. The secret
key, called Session Key , is used for secure communication between the client
and the service; the encrypted data contains the same session key encrypted
with the service’s secret key.

Fig. 3.1. A client requesting a service obtains a session key from the KDC

Decrypting the package from the KDC, the client obtains the session key,
but is unable to decrypt the data for the service. At this point it forwards the
encrypted data to the service, together with a service acknowledge request
encrypted with the session key, as we can see in Fig. 3.2. Now the service can
decrypt the data from the KDC forwarded by the client obtaining the session
key. At this point it can decrypt the service acknowledge request and return
a confirmation message to the client encrypting it with the session key which
results in mutual authentication.

Fig. 3.2. A client uses the session key to contact the requested service

3.1 Kerberos Network Authentication Protocol 35

The encrypted data sent from the KDC to the client and intended for the
requested service is called ticket . The encoded service acknowledge request
is called authenticator . The secret key of a user is the password needed for
decrypting the message from the KDC whereas a service has usually stored
its secret key locally on the host where it is running.

In practice users do not have to type their passwords each time they request
a service, since Kerberos provides a helper service called Ticket Granting
Service. This service supply users a special ticket, the Ticket Granting Ticket,
or briefly TGT, allowing to request tickets for other services without further
passwords: having to provide the password just once is named Single Sign-On.
A common synonym of the ticket granting ticket is initial ticket, since it is
the first issued, and allows users to acquire new ones.

Fig. 3.3. A Kerberos Realm

Kerberos does not only authenticate users, but also machines and services,
all called principals, and stores their passwords securely on the KDC. The set
of all the machines, users and services that authenticate over Kerberos consti-
tute a single entity called realm as show in Fig.3.3. In order to allow a secure
authentication of non-interactive principals, like services and hosts, a system
administrator stores the secret key for these principals on the machine itself,
so that the system can verify the authenticity of the service. The keys are ex-
ported in a file called Kerberos Key Table or briefly keytab. Due to the nature
of its client-server architecture and with the mechanism of keytabs, Kerberos
does not rely on the locality of such principals: a user may authenticate to
the KDC from outside the local network, and require trusted services being
issued the corresponding ticket.

A concrete realization of the Kerberos protocol requires time-stamps and
life-spans for every issued ticket in order to cope with replay attacks. Further-
more network addresses, and the identity of users and services are included in

36 3 Kerberos V

the tickets. The latest implementations of Kerberos permit pre-authentication
where a first message from the client to the KDC is already encrypted with
the user’s secret key, and new types of symmetric cryptography beyond DES.

3.2 Master KDC

The plan is to install Kerberos in our network providing a reliable and redun-
dant secure authentication service, and the first step is to create the first Key
Distribution Center on a host called kdc1.example.edu. This machine will
also act as the Kerberos administration server, where for example users can
change their passwords.

For redundancy reasons, we create an alias to our primary KDC called krb.
The purpose for doing this is that in case of master server malfunctioning we
can quickly switch from the primary to the secondary KDC by simply changing
the CNAME alias. In this case the demons for Kerberos administration have to
be activated on the secondary KDC.

3.2.1 Creating the Realm

With the standard apt Debian tool we install the Kerberos administration
server package named krb5-admin-server, installing also its dependencies,
the KDC server and some client-side commands:

apt-get install krb5-admin-server krb5-user

As usual, Debian configures the package asking us some information:

Realm The Kerberos realm name, usually is the same as the DNS domain
name with uppercase letters: in our case this is EXAMPLE.EDU;

Kerberos IV We have to choose the level of compatibility with the old Ker-
beros IV, our choice is nopreauth: no pre-authentication is required; and
not full

KDCs The list of Kerberos KDC servers, that is only our kdc1.example.edu
host for the moment;

Administration The administrative server for our realm, since we have just
one machine, we have no other choice than using krb1, or better its alias
krb for reasons we have already described.

Unlike other services, after setting up the packages Debian does not start the
daemons since they require further configuration.

At this point we are ready to create the Kerberos principal database, an
encrypted database where all the principals are stored along with their secret
keys. A principal name is a string in the form name@REALM, with the name
indicating the principal type:

3.2 Master KDC 37

host/hostname Identifies a machine with its FQDN, our master KDC for
example has a principal called host/kdc1.example.edu@EXAMPLE.EDU;

service/hostname Identifies a service running on a machine (with its FQDN),
the service field is specific to the service, for example an LDAP daemon
requires a principal called ldap/hostname.example.edu@EXAMPLE.EDU;

username Identifies a user, a further subcategory is username/admin to indi-
cate administrative principals.

To create the principal database, Debian provides the krb5 newrealm shell
script that creates the database and populates it with the necessary entries
with the Kerberos tool kdb5 util, and sets up a basic access control list for
the KDC administration. After setting up the necessary configuration, the
script starts both the KDC and administrative daemons:

krb5_newrealm

This script should be run on the master KDC/admin server to initialize
a Kerberos realm. It asks you to type in a master key password.
This password gets used to generate a key that is stored in
/etc/krb5kdc/stash. You should try to remember this password, but it
is much more important that it be a strong password than that it be
remembered. However, if you lose the password and /etc/krb5kdc/stash,
you cannot decrypt your Kerberos database.

Loading random data

Initializing database ’/var/lib/krb5kdc/principal’ for realm ’EXAMPLE.EDU’,
master key name ’K/M@EXAMPLE.EDU’
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.

Enter KDC database master key:
Re-enter KDC database master key to verify:

Starting Kerberos KDC: krb5kdc krb524d.
Starting Kerberos Administration Servers: kadmind.

Now that your realm is set up you may wish to create an administrative
principal using the addprinc subcommand of the kadmin.local program.
Then, this principal can be added to /etc/krb5kdc/kadm5.acl so that
you can use the kadmin program on other computers. Kerberos admin
principals usually belong to a single user and end in /admin. For
example, if jruser is a Kerberos administrator, then in addition to
the normal jruser principal, a jruser/admin principal should be
created.

Don’t forget to set up DNS information so your clients can find your
KDC and admin servers. Doing so is documented in the administration
guide.

As we can see from the output, kdb5 util creates a principal called K/M
that is the Kerberos Master Key principal. The master key password, used to
encrypt the principal database, is stored not only in the K/M principal, but
also in a file located in the KDC configuration directory /etc/krb5kdc/:

ls -l
total 12
-rw-r--r-- 1 root root 340 2006-04-27 15:11 kadm5.acl

38 3 Kerberos V

-rw-r--r-- 1 root root 499 2006-04-27 15:02 kdc.conf
-rw------- 1 root root 30 2006-04-27 15:11 stash

The stash file contains the master key and is readable only by the root
user. The password is not stored anywhere in clear text, both stash and master
key principal are encrypted versions of the chosen password, so do not forget
it, since it might put the database content in jeopardy in case of master key
loss.

A port scan with nmap shows both UDP and TCP ports opened on a KDC
for the Kerberos service:

nmap -sU -sT localhost

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-04-27 15:13 CEST
Interesting ports on localhost.localdomain (127.0.0.1):
(The 3134 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
464/udp open kpasswd5
749/tcp open kerberos-adm
4444/udp open|filtered krb524

Nmap finished: 1 IP address (1 host up) scanned in 0.215 seconds

Our KDC and administrative server has the kpasswd5 password change
daemon running along with the kerberos-adm administration service. The
krb524 process is the Kerberos V to Kerberos IV translator service, used in
environments where both the new and the legacy authentication protocol are
used. As we will see in the chapter about AFS, this service is needed by our
distributed filesystem and has been the reason to set nopreauth.

3.2.2 Realm Configuration

We are now ready to start with the KDC configuration, modifying first the
default values provided by Debian to suite our organization’s needs. The basic
and most important operation is to create some administrative principals used
to modify remotely our Kerberos database. The file that maps principals to
their respective access privilege is kadm5.acl located in the /etc/krb5kdc/
directory. This file contains pairs of strings matching a principal to its ACL.
For a list of all possible values, consult your Kerberos manual as it may change
from one version to another; a sample list is reported in Table 3.1.

Our ACL specifications allows any operation to our system administrators,
allowing all principals ending in /admin every operation, and the same for our
first administrator, a principal that we choose to name sysadmin. The entries
in our kadm5.acl file look like the following:

*/admin *
sysadmin *

The first line is necessary for Kerberos to work properly, as some default
mandatory administrative principals present in a Kerberos database end with

3.2 Master KDC 39

Table 3.1. Kerberos administrative access control list values

Allow Deny Operation

a A Add principals or policies
d D Delete principals or policies
m M Modify principals or policies
c C Change passwords
i I Inquiry the database
l L List principals or policies
s S Set key for principals

* or x Allow all privileges

the /admin string. We will see some of these special principals in the following
paragraphs.

At this point we are ready to modify the Kerberos realm configuration
file created by the Debian installer, the /etc/krb5.conf file. Initially this
file contains additional realms, for instance the MIT realm ATHENA.MIT.EDU,
along with a pre-generated configuration for our EXAMPLE.EDU Kerberos V
realm:

[libdefaults]
default_realm = EXAMPLE.EDU
ccache_type = 4
forwardable = true
proxiable = true

[realms]
EXAMPLE.EDU = {

kdc = kdc1.example.edu
admin_server = krb.example.edu

}

[domain_realm]
.example.edu = EXAMPLE.EDU
example.edu = EXAMPLE.EDU

The [libdefaults] stanza specifies all the defaults for our Kerberos con-
figuration, like the default realm, the credential cache type1, and the ticket
properties. The [realms] section specifies a list of all known realms, with
their KDCs, domains, and administrative servers. The [domain realm] stanza
maps a DNS domain to a Kerberos realm as they are not requested to match.
There are several other stanzas that could be used, such as the application
specific stanza [appdefaults]: check with your Kerberos documentation for
your specific software to obtain further information about this application-
specific topic.

As we configured the realm, we are ready to create our first principals,
and primarily, our sysadmin administrator. Right now we have no principals
1 All the tickets for a principal are stored either in a file cache, as it is on almost

every UNIX system, or in an OS-specific API cache as in Apple MacOS X and
Microsoft Windows.

40 3 Kerberos V

except for the private Kerberos ones, and we would never be able to con-
nect to the administrative server remotely. Kerberos provides us a tool called
kadmin.local which can be run by root on the administrative KDC in order
to create the necessary entries in the database. The interface is shell-like with
all the possible commands displayed with a brief description by issuing help
or ?:

kadmin.local
Authenticating as principal root/admin@EXAMPLE.EDU with password.

kadmin.local: ?
Available kadmin.local requests:

add_principal, addprinc, ank
Add principal

delete_principal, delprinc
Delete principal

modify_principal, modprinc
Modify principal

change_password, cpw Change password
get_principal, getprinc Get principal
list_principals, listprincs, get_principals, getprincs

List principals
add_policy, addpol Add policy
modify_policy, modpol Modify policy
delete_policy, delpol Delete policy
get_policy, getpol Get policy
list_policies, listpols, get_policies, getpols

List policies
get_privs, getprivs Get privileges
ktadd, xst Add entry(s) to a keytab
ktremove, ktrem Remove entry(s) from a keytab
lock Lock database exclusively (use with extreme caution!)
unlock Release exclusive database lock
list_requests, lr, ? List available requests.
quit, exit, q Exit program.
kadmin.local:

As we can notice, the root user is mapped by kadmin.local to a special
principal root/admin@EXAMPLE.EDU with all the administrative rights: in the
kadm5.acl file we granted all privileges to */admin principals.

3.2.3 Tuning Kerberos

Before creating the sysadmin principal we have to understand some key fea-
tures of Kerberos. Each principal is an entry in the database, and gaining
tickets deeply relies on the system clock, this means that a high clock skew
between the ticket requester and the KDC results in a ticket denial. Our sug-
gestion is that all the KDCs are synchronized with our NTP service via the
ntpd daemon.

Another Kerberos aspect regards the issued tickets. A ticket is a piece
of encrypted data given to the requester after providing valid credentials,
and has some properties. The most important feature is that tickets have a
lifetime, which by default is 10 hours, and can be renewed up to 7 days. These
values affect the whole system, and should be carefully tweaked to suite your

3.2 Master KDC 41

organization needs, since after a ticket has expired the user is no longer trusted
by Kerberized services and is denied any operation.

By default, Kerberos has some principals which are there for Kerberos
internal usage, viewable by issuing the listprincs command:

kadmin.local: listprincs
K/M@EXAMPLE.EDU
kadmin/admin@EXAMPLE.EDU
kadmin/changepw@EXAMPLE.EDU
kadmin/history@EXAMPLE.EDU
krbtgt/EXAMPLE.EDU@EXAMPLE.EDU

We have already discussed the K/M principal as the database master key
holder, and all the kadmin/* principals are managerial entries like adminis-
tering the realm and changing password.

The last entry is the Ticket Granting Ticket Service: every Kerberos user
gets issued upon a successful authentication a ticket granting ticket. All sub-
sequent granted credentials are subject to the TGT default values and KDC
configuration. We can retrieve all the information about a principal by issuing
the getprinc command followed by the principal name:

kadmin.local: getprinc krbtgt/EXAMPLE.EDU
Principal: krbtgt/EXAMPLE.EDU@EXAMPLE.EDU
Expiration date: [never]
Last password change: [never]
Password expiration date: [none]
Maximum ticket life: 0 days 10:00:00
Maximum renewable life: 7 days 00:00:00
Last modified: Thu Apr 27 15:11:13 CEST 2006 (db_creation@EXAMPLE.EDU)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 3
Key: vno 1, Triple DES cbc mode with HMAC/sha1, no salt
Key: vno 1, DES cbc mode with CRC-32, no salt
Key: vno 1, DES cbc mode with RSA-MD5, no salt
Attributes: REQUIRES_PRE_AUTH
Policy: [none]

There is much information supplied by Kerberos, and most of it relate
with time. We can see that the principal database stores information about
the principal expiration date, password expiration and last change, the entry
modification date, the date when the principal succeeded to authenticate, and
the last time it failed along with a number of attempts. Of course the principal
has a lifetime and maximum renewable time-window.

Kerberos principals may have more than one key. A key is an encrypted
data with a checksum to guarantee its correctness, and so its authenticity. In
our realm our TGT service has three keys, each of these is encrypted with
an algorithm and supplied with a checksum. For instance the first one is
encrypted with the Triple Data Encryption Standard algorithm with Cipher
Block Chaining, also known as 3DES-CBC, whereas the second key uses a Sin-
gle DES; the checksum used by the first encrypted key is the Hashed Message

42 3 Kerberos V

Authentication Code using the Secure Hash Algorithm 1, or HMAC/SHA-1,
considered highly reliable, while the second key uses a simple 32-bit Cyclic Re-
dundancy Check, the CRC-32. The Key Version Number, indicated as VNO or
KVNO, is a integer number assigned to each key and is incremented each time
a modification happens to the key: typically starting with zero, the KVNO
is incremented upon a principal creation, so our TGT principal has a KVNO
equal to 1.

Our organization strongly depends on the default values we give to our
TGT principal, especially its lifetime and renewal allowance. To modify a
principal we have to call the modprinc instruction followed by the parameter
we want to modify and the principal name; if we issue a command in the
kadmin.local interface we can get a help about the optional and mandatory
parameters:

kadmin.local: modprinc
usage: modify_principal [options] principal

options are:
[-expire expdate] [-pwexpire pwexpdate] [-maxlife maxtixlife]
[-kvno kvno] [-policy policy] [-clearpolicy]
[-maxrenewlife maxrenewlife] [{+|-}attribute]

attributes are:
allow_postdated allow_forwardable allow_tgs_req allow_renewable
allow_proxiable allow_dup_skey allow_tix requires_preauth
requires_hwauth needchange allow_svr password_changing_service

On the one hand a user may require simple authentication for daily work,
on the other hand the user might start complex batch jobs that require more
than a single working day to complete. This is reflected by two values of
our TGT service: lifetime and renewal time frames. In our case we set them
respectively to 24 hours and 90 days: note that these values strongly depend
on your company needs, you may opt for a strict lifetime such as few hours
and a single working day for renewals, or you may need looser time frames
allowing users to run longer jobs. In our case, we modify the TGT default
values by issuing the modprinc command with the correct options:

kadmin.local: modprinc -maxlife "1 day" -maxrenewlife "90 day" krbtgt/EXAMPLE.EDU
Principal "krbtgt/EXAMPLE.EDU@EXAMPLE.EDU" modified.

Kerberos can use human-readable dates such as 90 hours, tomorrow, and
next year: refer to your Kerberos implementation documentation for such
usage. Any modification to a principal happens immediately, and a verification
shows that the changes have been successfully happened:

kadmin.local: getprinc krbtgt/EXAMPLE.EDU
Principal: krbtgt/EXAMPLE.EDU@EXAMPLE.EDU
Expiration date: [never]
Last password change: [never]
Password expiration date: [none]
Maximum ticket life: 1 day 00:00:00
Maximum renewable life: 90 days 00:00:00
Last modified: Thu Apr 27 15:38:29 CEST 2006 (root/admin@EXAMPLE.EDU)

3.2 Master KDC 43

Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 3
Key: vno 1, Triple DES cbc mode with HMAC/sha1, no salt
Key: vno 1, DES cbc mode with CRC-32, no salt
Key: vno 1, DES cbc mode with RSA-MD5, no salt
Attributes: REQUIRES_PRE_AUTH
Policy: [none]

Notice that a change of lifetime properties do not affect the encryption
keys, but the modification date has been updated along with the modifier
name. This is not sufficient yet, since any other principal will be created
based on the settings established in the kdc.conf file. Modify it to match the
values you chose for your system, in our case it would be like the following:

[kdcdefaults]
kdc_ports = 750,88

[realms]
EXAMPLE.EDU = {

database_name = /var/lib/krb5kdc/principal
admin_keytab = FILE:/etc/krb5kdc/kadm5.keytab
acl_file = /etc/krb5kdc/kadm5.acl
key_stash_file = /etc/krb5kdc/stash
kdc_ports = 750,88
max_life = 1d 0h 0m 0s
max_renewable_life = 90d 0h 0m 0s
master_key_type = des3-hmac-sha1
supported_enctypes = des3-hmac-sha1:normal des-cbc-crc:normal

des:normal des:v4 des:norealm des:onlyrealm
des:afs3

default_principal_flags = +preauth
}

All is needed now to have our Kerberos system working with our new
preferences, is to restart the servers. Notice that a change in the Kerberos
database takes effect immediately, while a change in the configuration requires
a daemon restart.

Our first task in our realm is to add our new system administrator, so that
we can use Kerberos remotely from any client. So let us proceed adding our
sysadmin principal:

kadmin.local: addprinc sysadmin
WARNING: no policy specified for sysadmin@EXAMPLE.EDU; defaulting to no policy
Enter password for principal "sysadmin@EXAMPLE.EDU":
Re-enter password for principal "sysadmin@EXAMPLE.EDU":
Principal "sysadmin@EXAMPLE.EDU" created.

We can ignore about the warning: since we didn’t specify any policy2

for the principal, Kerberos uses a default non-restrictive one. After success-
2 A Kerberos policy specifies restrictions to the principal password, such as lifetime,

minimum length, character classes—numbers, uppercase and lowercase letters,
and other characters—and the number of old passwords that the user cannot
re-use.

44 3 Kerberos V

ful creation, the principal shows our predefined ticket lifetime and renewable
allowance values:

Principal: sysadmin@EXAMPLE.EDU
Expiration date: [never]
Last password change: Thu Apr 27 15:53:25 CEST 2006
Password expiration date: [none]
Maximum ticket life: 1 day 00:00:00
Maximum renewable life: 90 days 00:00:00
Last modified: Thu Apr 27 15:53:25 CEST 2006 (root/admin@EXAMPLE.EDU)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 6
Key: vno 1, Triple DES cbc mode with HMAC/sha1, no salt
Key: vno 1, DES cbc mode with CRC-32, no salt
Key: vno 1, DES cbc mode with RSA-MD5, Version 4
Key: vno 1, DES cbc mode with RSA-MD5, Version 5 - No Realm
Key: vno 1, DES cbc mode with RSA-MD5, Version 5 - Realm Only
Key: vno 1, DES cbc mode with RSA-MD5, AFS version 3
Attributes: REQUIRES_PRE_AUTH
Policy: [none]

At this point, we can use Kerberos tools from any client with a valid
installation, right now our KDC is the only server which happens to be also a
Kerberos client. We can test our new KDC just by using the standard tools,
such as the kinit program to obtain a valid ticket for a given principal name,
so let us test it with our sysadmin:

kinit sysadmin
Password for sysadmin@EXAMPLE.EDU:

We are prompted for a password, and following a common behavior noth-
ing is shown on the screen, for two reasons: first, a UNIX command typically
does not bother the user upon a successful run but only in case of failure, and
second reason, showing the password length helps a malicious user to have a
starting point for a brute-force attack. To list all the tickets we have, we can
use the klist program:

klist
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: sysadmin@EXAMPLE.EDU

Valid starting Expires Service principal
04/27/06 15:56:29 04/28/06 01:56:26 krbtgt/EXAMPLE.EDU@EXAMPLE.EDU

Kerberos 4 ticket cache: /tmp/tkt0
klist: You have no tickets cached

As we can see from the output, we are authenticated as the principal
sysadmin with only one ticket, the TGT, with its own validity period. Since
kinit was called without any options it uses a hard coded life time of 10
hours. Discarding Kerberos credential is also possible, and we can do this
operation by calling the kdestroy tool, knowing that it deletes any ticket,
and that we are not prompted for any confirm:

3.3 Slave KDC 45

kdestroy

klist
klist: No credentials cache found (ticket cache FILE:/tmp/krb5cc_0)

Kerberos 4 ticket cache: /tmp/tkt0
klist: You have no tickets cached

We do not use the kadmin.local tool again, instead we work with the
standard remote kadmin interface. By default the tool tries to authenticate
the current UNIX user—here it would be root—so we have to specify the
principal to be used to administer the realm, provided that the ACLs permit
it to do so:

kadmin -p sysadmin
Authenticating as principal sysadmin with password.
Password for sysadmin@EXAMPLE.EDU:
kadmin:

3.3 Slave KDC

For redundancy reasons, we are going to create another KDC in our network
whose name is kdc2.example.edu. This new server acts as a slave of our
principal key distribution server and does not perform administrative tasks.
This choice of course is arbitrary, but we must remember that the Kerberos
database should be kept synchronized on all KDCs. We stress the fact that
Kerberos relies heavily on time-stamps, and as we already pointed out for
the master KDC, our recommendation is to make all key distribution centers
NTP-enabled hosts.

3.3.1 Host Principals

Each Kerberos-enabled service needs some principal to be created and even-
tually exported in a keytab file, a file where the keys are stored. Let us create
first the host principals for our KDCs. Each host principal has a name in the
form host/hostname, where the host name is its fully qualified domain name.
The fully qualified domain name must have a valid reverse DNS entry, so you
cannot use any CNAME entry, but only plain A ones.

On the master KDC, connect as a Kerberos administrator with the kdamin
tool and create the principal with the addprinc command. A machine cannot
enter any password, so we create a random one using the -randkey switch:

kadmin: addprinc -randkey host/kdc1.example.edu
WARNING: no policy specified for host/kdc1.example.edu@EXAMPLE.EDU; \
defaulting to no policy
Principal "host/kdc1.example.edu@EXAMPLE.EDU" created.

46 3 Kerberos V

Having created the principal, all we have to do is to export its keys
to a keytab file using the ktadd command, followed by the principal we
intend to export. By default Kerberos puts all the exported keys in the
/etc/krb5.keytab file, as we can see from the output:

kadmin: ktadd host/kdc1.example.edu
Entry for principal host/kdc1.example.edu with kvno 3, encryption type \
Triple DES cbc mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/kdc1.example.edu with kvno 3, encryption type \
DES cbc mode with CRC-32 added to keytab WRFILE:/etc/krb5.keytab.

We can analyze the contents of the keytab file using the standard klist
command, with the parameters -k to view the default keytab content, and -e
to show the encryption method:

klist -ke
Keytab name: FILE:/etc/krb5.keytab
KVNO Principal
---- --

3 host/kdc1.example.edu@EXAMPLE.EDU (Triple DES cbc mode with HMAC/sha1)
3 host/kdc1.example.edu@EXAMPLE.EDU (DES cbc mode with CRC-32)

Now on the slave machine, after installing and configuring the system, we
can install the krb5-user package, so that we can use the standard Kerberos
tools we’ve used until now. Debian asks some information about the realm,
administrative servers and KDCs: right now we have only one server, and the
answers are obvious. After the installation process, all we need to modify is the
[domain realm] section to match DNS and realm. If Kerberos is configured,
you can test it before proceeding by getting the initial ticket for a principal,
in our case, the sysadmin one.

The secondary key distribution center needs a host principal and its rel-
ative keys to be exported into the default keytab file. This procedure can
be achieved in the same way we acted for the master, so with the kadmin
program, create and export the host/kdc2.example.edu principal with the
addprinc and ktadd commands:

kadmin: addprinc -randkey host/kdc2.example.edu
WARNING: no policy specified for host/kdc2.example.edu@EXAMPLE.EDU; \
defaulting to no policy
Principal "host/kdc2.example.edu@EXAMPLE.EDU" created.

kadmin: ktadd host/kdc2.example.edu
Entry for principal host/kdc2.example.edu with kvno 3, encryption type \
Triple DES cbc mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/kdc2.example.edu with kvno 3, encryption type \
DES cbc mode with CRC-32 added to keytab WRFILE:/etc/krb5.keytab.

At this point we are ready to install the KDC services on the slave machine,
contained in the krb5-kdc package. As usual, Debian configures the software,
asking questions like our chosen Kerberos IV compatibility, which we set as
on the master to nopreauth.

3.3 Slave KDC 47

3.3.2 The xinetd Daemon

Kerberos provides a way of propagating its database from the master to the
slave KDCs with a daemon. Our choice is to use an on-demand service, started
by a “super-server” that takes care of every aspect.

This meta-service is called Extended Internet Daemon, or xinetd, pro-
vided by the homonymous Debian package. This service replaces the old inetd
shipped first with 4.3BSD in 1986, providing extended facilities such as ac-
cess control lists, TCP wrapping, broad logging services, and mechanisms to
protect the system against port scanners. Basically the xinetd server listens
to ports specified by its configuration, and start the service when needed.

After installing the xinetd package, Debian starts the server but before
proceeding we have to stop it:

apt-get install xinetd

/etc/init.d/xinetd stop
Stopping internet superserver: xinetd.

The default configuration file is xinetd.conf, which basically includes
all the files located in the /etc/xinetd.d/ directory. The /etc/xinetd.d/
location contains all the xinetd-allowed services stored in individual files:

cat /etc/xinetd.conf
defaults
{
}
includedir /etc/xinetd.d

ls -l
total 16
-rw-r--r-- 1 root root 798 2005-03-10 12:28 chargen
-rw-r--r-- 1 root root 660 2005-03-10 12:28 daytime
-rw-r--r-- 1 root root 580 2005-03-10 12:28 echo
-rw-r--r-- 1 root root 726 2005-03-10 12:28 time

The xinetd service listens to the ports specified by the /etc/services
file, which contains all the standard IANA service names and their relative
TCP or UDP ports:

tcpmux 1/tcp # TCP port service multiplexer
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
qotd 17/tcp quote
msp 18/tcp # message send protocol
msp 18/udp
...

48 3 Kerberos V

We can see an example of a xinetd-enabled service in the following
daytime3 service specification:

service daytime
{

disable = yes
type = INTERNAL
id = daytime-stream
socket_type = stream
protocol = tcp
user = root
wait = no

}
service daytime
{

disable = yes
type = INTERNAL
id = daytime-dgram
socket_type = dgram
protocol = udp
user = root
wait = yes

}

Notice as the service description provides some information, other than
the service name itself which identifies the relative port, such as the TCP and
UDP versions, and the user that runs the service, commonly root.

3.3.3 Kerberos Database Propagation

Kerberos, as we already said, provides a service that propagates the database
from the master KDC to its slaves. Such a service is supplied by a daemon
called kpropd.

This simple service needs a configuration file that describes all the hosts
that are allowed to the propagation, specified in the kpropd.acl file, located
in the /etc/krb5kdc/ directory. This is a text file that contains one per line,
all the principals entailed in the database propagation, and in our case looks
like the following:

host/kdc1.example.edu@EXAMPLE.EDU
host/kdc2.example.edu@EXAMPLE.EDU

As we previewed in the previous section, the kpropd daemon is started on-
demand by our xinetd super-server, so we need to create a file for our service
in the /etc/xinetd.d/ directory, matching the service name as specified by
/etc/services:

3 The daytime protocol is defined by the RFC 867 on TCP/UDP ports 13, and it
is used for tests and measurements by returning the host date and time as an
ASCII string.

3.3 Slave KDC 49

krb_prop 754/tcp krb5_prop hprop # Kerberos slave propagation

The line tells us that we have to create a service file for the standard IANA
name krb prop:

service krb_prop
{

disable = no
socket_type = stream
protocol = tcp
user = root
wait = no
server = /usr/sbin/kpropd

}

Having prepared the krb prop file, we can start the xinetd service. The
TCP port 754 should be open, as we can see from the output of the nmap port
scanner:

nmap localhost

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-05-18 14:55 CEST
Interesting ports on localhost.localdomain (127.0.0.1):
(The 1659 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
754/tcp open krb_prop

Nmap finished: 1 IP address (1 host up) scanned in 0.213 seconds

The propagation process happens in two steps: a complete database dump
on the master, and its propagation to the slave KDCs. Dumping the database
can be done via the Kerberos tool kdb5 util, specifying the dump action and
the output file name:

kdb5_util dump /var/lib/krb5kdc/slave_datatrans

If the file has been successfully created, in the /var/lib/krb5kdc/ direc-
tory we can find files like the following:

ls -l /var/lib/krb5kdc/
total 32
-rw------- 1 root root 16384 2006-04-27 17:03 principal
-rw------- 1 root root 8192 2006-04-27 15:11 principal.kadm5
-rw------- 1 root root 0 2006-04-27 15:11 principal.kadm5.lock
-rw------- 1 root root 0 2006-04-27 17:03 principal.ok
-rw------- 1 root root 3534 2006-05-18 14:58 slave_datatrans
-rw------- 1 root root 1 2006-05-18 14:58 slave_datatrans.dump_ok

The permissions for these files, the Kerberos database itself and the
dumped file, are strictly related to the root user. Right now on the slave
we have no files:

50 3 Kerberos V

ls -l /var/lib/krb5kdc/
total 0

We are ready to propagate our newly-created dump file using the kprop
tool on the master. By default this program looks for a dump file in the
directory /var/lib/krb5kdc/ named slave datatrans:

kprop kdc2.example.edu
Database propagation to kdc2.example.edu: SUCCEEDED

On the slave we can see that the database has been successfully populated:

ls -l /var/lib/krb5kdc/
total 20
-rw------- 1 root root 3534 2006-05-18 15:04 from_master
-rw------- 1 root root 8192 2006-05-18 15:04 principal
-rw------- 1 root root 8192 2006-05-18 15:04 principal.kadm5
-rw------- 1 root root 0 2006-05-18 15:04 principal.kadm5.lock
-rw------- 1 root root 0 2006-05-18 15:04 principal.ok

Observe again the permission bits allowing reading and writing operations
only to the root user. The database propagation must be done regularly to
keep synchronized the master KDC with its slaves: how often this procedure
happens depends on how fast your environment changes—passwords, users,
and services—provided that all the KDCs have consistent databases. One sim-
ple solution could be to place a script in /etc/cron.hourly/ on the master.

The last step to make our slave KDC working is to create the stash file,
containing the secret key that decrypts the database. This is easily done using
the kdb5 util tool, supplying the same password we used on the master:

kdb5_util stash
kdb5_util: Cannot find/read stored master key while reading master key
kdb5_util: Warning: proceeding without master key
Enter KDC database master key:

This last step could have been avoided copying directly the stash file from
the master KDC to the slave with a secure method of our choice. The slave
KDC is now ready to get started:

/etc/init.d/krb5-kdc start
Starting Kerberos KDC: krb5kdc krb524d.

We can now add our new KDC to the Kerberos configuration file on each
Kerberos-enabled client. Right now we have a master KDC kdc1 and a slave
kdc2. We have already created an alias for our master key distribution center
called krb.example.edu, so we can use this alias in the configuration file in
order to have an easy way of handling failures:

3.4 Testing Kerberos 51

EXAMPLE.EDU = {
kdc = krb.example.edu
kdc = kdc2.example.edu
kdc = kdc1.example.edu
admin_server = krb.example.edu

}

The first KDC a Kerberos client looks for is krb; if it fails, it would look
for the second entry kdc2 and so on. We can thus easily switch from the failed
master to the slave KDC just by changing the alias in the DNS database. In
this case we have to activate the /etc/init.d/krb5-admin-server service
on the slave since it became the master now, and re-establish the database
propagation: the ACL we have previously shown enables propagation from
both master and slave machines.

3.3.4 Service Discovery

Although not every service uses the DNS service discovery, it is a good prac-
tice to enter the necessary entries in the database to easily find KDCs, and
administrative servers.

The DNS database can handle a TXT entry that identifies the realm name,
and some SRV items to find all the servers. Our realm gets a stanza added in
the DNS like the following:

_kerberos.example.edu. TXT "EXAMPLE.EDU"
_kerberos._udp.example.edu. SRV 0 0 88 kdc1.example.edu
_kerberos._udp.example.edu. SRV 0 0 88 kdc2.example.edu
_kerberos-master._udp.example.edu. SRV 0 0 88 krb.example.edu
_kerberos-adm._tcp.example.edu. SRV 0 0 749 krb.example.edu
_kpasswd._udp.example.edu. SRV 0 0 464 krb.example.edu

3.4 Testing Kerberos

Our backbone system, constituted by Kerberos, LDAP, AFS, and Samba, will
be tested and implemented incrementally. To do so, we create a user and a
group on a computer, and step by step we replace all its information moving
them to the proper location. Our first user is called testuser, and belongs
to a group called testgroup. Here and in the following chapters, we show all
the changes from a local user to a global user in our distributed environment.

3.4.1 Preparing the Test Environment

Local users authenticate to the standard local UNIX password file. Our aim is
to remove this locality constraint and have Kerberos handle the authentication
process. The first step is to create the test user and group on a computer, in
our case, we use the master KDC to show the process. Our testing group

52 3 Kerberos V

is called testgroup, with GID 10000, so that we do not interfere with any
pre-existing UNIX group:

addgroup --gid 10000 testgroup
Adding group ‘testgroup’ (10000)...
Done.

Our testuser belongs to the GID 10000 as its primary group, and its UID
is 10000:

adduser --uid 10000 --ingroup testgroup testuser
Adding user ‘testuser’...
Adding new user ‘testuser’ (10000) with group ‘testgroup’.
Creating home directory ‘/home/testuser’.
Copying files from ‘/etc/skel’
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for testuser
Enter the new value, or press ENTER for the default

Full Name []: Test User
Room Number []: 001
Work Phone []: 555-123
Home Phone []: 1-123
Other []: none

Is the information correct? [y/N] y

We can see from the id command, and from all the standard configuration
files, that our user have been successfully created along with its information
and home directory:

id testuser
uid=10000(testuser) gid=10000(testgroup) groups=10000(testgroup)

grep testuser /etc/passwd
testuser:x:10000:10000:Test User,001,555-123,1-123,none:/home/testuser:/bin/bash

grep testuser /etc/shadow
testuser:1CoN658uK$6mKQ3PygWbmsnbB/PA8mF0:13321:0:99999:7:::

grep testgroup /etc/group
testgroup:x:10000:

Our objective now is to let this user authenticate against Kerberos, dis-
carding the existing UNIX authentication information. In order to do that,
we need to create the principal for our user, so with the kadmin command let
us create the testuser entry:

kadmin -p sysadmin
Authenticating as principal sysadmin with password.
Password for sysadmin@EXAMPLE.EDU:

kadmin: add_principal testuser
WARNING: no policy specified for testuser@EXAMPLE.EDU; defaulting to no policy
Enter password for principal "testuser@EXAMPLE.EDU":
Re-enter password for principal "testuser@EXAMPLE.EDU":
Principal "testuser@EXAMPLE.EDU" created.

3.4 Testing Kerberos 53

The successful creation of the new principal can be tested by getting a
ticket granting ticket using the kinit command.

3.4.2 Pluggable Authentication Modules

Debian Linux has a comfortable way of authenticating users called Pluggable
Authentication Modules or PAM. This software was developed by Sun Mi-
crosystems in the 1990s, and provides high-level APIs to build authentication
modules as dynamic libraries.

Each service which wants to authenticate a user via PAM, provides a
service name, and PAM looks in the directory /etc/pam.d/ for a file with the
specified name:

ls /etc/pam.d/
chfn common-password cvs other ssh
chsh common-session gdm passwd su
common-account cron gdm-autologin ppp sudo
common-auth cupsys login samba xscreensaver

If PAM succeeds in opening the correct file for a requested service, it starts
to execute the requested system calls to authenticate and open a working
session using the specified libraries. As an example, the login service uses
the following configuration:

auth requisite pam_securetty.so
auth requisite pam_nologin.so
auth required pam_env.so
@include common-auth

@include common-account
@include common-session

session optional pam_lastlog.so
session optional pam_motd.so
session optional pam_mail.so standard noenv

@include common-password

Lines starting with auth are used for authentication, so PAM would strictly
require a secure console for root with pam securetty.so, verify for non-root
users the absence of the file /etc/nologin, require a specific environment with
pam env.so, and finally include the settings from a common authentication
configuration file called common-auth. Upon a successful authentication, PAM
opens a working session if the application requests so, for example login
requires to open a working session on a console. The session configuration is
driven by the lines beginning with session, and in our example we have a
common session file and optional libraries that provide information about the
user’s last login using pam lastlog.so, optionally print a message of the day
by pam motd.so, inform about unread emails with pam mail.so. Here is a
summary of the different types of module management groups:

54 3 Kerberos V

account Possible restrictions not related to the authentication;
auth Authentication followed by granting of credentials;
password Modification of the authentication token;
session Actions before or after granting the service.

The type is followed by a control parameter. Afterwards there comes a
module name and optionally some arguments. The Table 3.2 gives an overview
of possible control parameters in the order of their strength.

Table 3.2. PAM control parameters

Control On Failure On Success

prerequisite Immediate failure Call next on stack
required Failure but call next on stack Call next on stack
sufficient Call next on stack Success if no previous failure
optional Failure if the only module Call next on stack

All the available modules are stored in the /lib/security/ directory, for
example we can have plenty of them used for many different purposes:

ls /lib/security/
pam_access.so pam_lastlog.so pam_rhosts_auth.so pam_unix_auth.so@
pam_debug.so pam_limits.so pam_rootok.so pam_unix_passwd.so@
pam_deny.so pam_listfile.so pam_securetty.so pam_unix_session.so@
pam_env.so pam_mail.so pam_shells.so pam_unix.so
pam_filter.so pam_mkhomedir.so pam_stress.so pam_userdb.so
pam_ftp.so pam_motd.so pam_tally.so pam_warn.so
pam_group.so pam_nologin.so pam_time.so pam_wheel.so
pam_issue.so pam_permit.so pam_unix_acct.so@

Since PAM is not a daemon, adding or removing a module, or modifying
the configuration, does not require any restart and all the changes are always
immediately active. The Kerberos module for PAM is called pam krb5.so and
is provided by the libpam-krb5 package, so let us install it:

apt-get install libpam-krb5

We want to enable login to use Kerberos as a valid authentication module.
As we have seen, this service includes the common-auth file, so we have to
modify it adding our Kerberos module as a means of authentication:

auth sufficient pam_unix.so
auth sufficient pam_krb5.so use_first_pass
auth required pam_deny.so

Let us analyze the authentication process. First the system authenticates
the username and the given password against the common UNIX files as
/etc/passwd and /etc/shadow, a successful authentication exits since we
have specified the module as sufficient, a failure makes PAM try the next

3.4 Testing Kerberos 55

available one. If pam unix.so fails, PAM tries to use the Kerberos module
pam krb5.so trying to use the password previously used for UNIX, specified
by the use first pass4 flag. In case it fails, the control passes over the last
module pam deny.so which always returns a failure to the calling service:
the user is not authenticated when reaching this point. The entire process is
visualized in Fig.3.4.

Fig. 3.4. Our authentication PAM stack

To test if the Kerberos login truly works, we have to remove all the pass-
words from the common UNIX password files. To delete the password we can
use the usermod command, with the switch -p which lets us modify directly
the encrypted password. If we specify ! for password we disable it, since the
string ! can never be an encrypted version of a password:

usermod -p ’!’ testuser

grep testuser /etc/passwd
testuser:x:10000:10000:Test User,001,555-123,1-123,none:/home/testuser:/bin/bash

grep testuser /etc/shadow
testuser:!:13321:0:99999:7:::

Now we are ready to test the login using a console:

Debian GNU/Linux 3.1 krb tty6

krb login: testuser
Password:
Last login: Tue Jun 20 17:58:57 2006 on tty6

4 The specified use first pass flag uses a previous username and password; the
try first pass does the same, but in case of failure it prompts the user for
another password.

56 3 Kerberos V

Linux krb 2.4.27-3-686 #1 Wed Feb 8 12:40:33 UTC 2006 i686 GNU/Linux

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
testuser@krb:~$

The user should have been successfully authenticated against Kerberos,
and specifically, it shows all the tickets it gained during this process:

testuser@krb:~$ klist
Ticket cache: FILE:/tmp/krb5cc_10000_w2557X
Default principal: testuser@EXAMPLE.EDU

Valid starting Expires Service principal
06/20/06 17:59:30 06/21/06 03:59:30 krbtgt/EXAMPLE.EDU@EXAMPLE.EDU
06/20/06 17:59:30 06/21/06 03:59:30 host/kdc1.example.edu@EXAMPLE.EDU

Kerberos 4 ticket cache: /tmp/tkt10000
klist: You have no tickets cached

We notice that the testuser principal has the initial ticket, and also
gained the host ticket: at this point we are sure that the machine is the one
intended to use. Host principals are exported by the system administrator
with root privileges, and are to ensure that this machine is a trusted host.

Practice

Exercise 9. Confront the Heimdal and MIT implementations of Kerberos.
Do you prefer one over the other? Do you need to support both of them?

Exercise 10. Plan your Kerberos realm. What are your default ticket life-
times? Do you have a password policy and how can it be enforced?

Exercise 11. Check available default modules for PAM located under the
/lib/security/ directory. Search also all packets containing the string
libpam. Remember that these can be combined with the help of the stacking
mechanism.

Exercise 12. Test cross-realm authentication as described for example in
the MIT Kerberos documentation. In both realms one has to create the fol-
lowing principal krbtgt/OTHER.REALM@EXAMPLE.EDU and also its counterpart
krbtgt/EXAMPLE.EDU@OTHER.REALM.

4

LDAP

It is a very sad thing that nowadays there is so little
useless information.
Oscar Wilde

4.1 Lightweight Directory Access Protocol

Information retrieval is a critical resource over distributed networks. A first
example for its importance is a telephone directory: it grew over time to a con-
siderable size and demanded a hierarchical organization so that information
could be found with a reasonable effort. DNS was the answer to IP address
and name lookup over a network, and directory services were the answer for
other objects such as user names, telephone numbers, postal addresses, and
so on.

One of the first directory services was the X.500 protocol publicized by
the International Telecommunication Union, the ITU-T1, used as a directory
service for the electronic messaging protocol X.400 published in 1984: at that
time email systems were almost everywhere implemented by in-house solu-
tions, and X.500 was the official directory protocol for X.400. Another famous
and still used directory service is NIS, the Network Information Service, devel-
oped by Sun Microsystems and formerly known as the Yellow Pages protocol.
Sun had to change the name due to a trademark issue over the telephonic
Yellow Pages owned by the British Telecom, but NIS commands still inherit
the old YP-related names as ypcat or yppasswd.

LDAP is another directory service, originally intended to be a gateway
for X.500-based networks, and it still inherits the tree-based structure. An
LDAP database is based on a tree, as we can see from Fig. 4.1. The root
of the LDAP tree defines what is called a base for information retrieval: this
structure may be compared to the DNS, which is also a tree-based informative
system as we have previously seen. Contrary to the strict information made
available by the DNS, each LDAP entity possesses some attributes. As for the
X.500 protocol, the attributes are defined by a schema, a description of all
available attributes, their possible values, their priority. As a result, LDAP
1 ITU-T was formerly known as the CCITT, the acronym for Comité Consultatif

International Téléphonique et Télégraphique.

58 4 LDAP

is a very flexible and customizable system capable of containing contents like
the standard UNIX user information, as we can see in Fig. 4.1.

ou=users,
dc=example,

dc=edu

ou=groups,
dc=example,

dc=edu

dc=example,
dc=edu

ou=users,
dc=example,

dc=edu

uid

userPassword

dn=testuser,
ou=users,
dc=example,
dc=edu

uid

userPassword

dn=another,
ou=users,
dc=example,
dc=edu

Fig. 4.1. LDAP tree with two Organizational Units and two Posix Account leaves

Our organization will have a base called dc=example,dc=edu, where dc
stands for Domain Component . We organize entries hierarchically, creating
some sub-trees called Organizational Units: for example our users belong
to the ou named ou=users,dc=example,dc=edu. Entries have their own at-
tributes and a key called Distinguished Name: a user for instance may be
referred to as uid=testuser,ou=users,dc=example,dc=edu.

LDAP provides some advantages over NIS. It is basically a tree, and its
hierarchy makes it possible to organize information in a more rational way,
whereas NIS is a flat repository. LDAP may also delegate sub-trees to other
servers, so it is a scalable solution from small to huge organizations. Of fur-
ther importance is the fact that LDAP is a Kerberized service, allowing an al-
ready authenticated user to interact with the service employing its credentials.
The first version of this protocol was developed by Tim Howes (University of
Michigan), Steve Kille (ISODE), and Wengyik Yeong (Performance Systems
International), circa 1993. The last LDAP protocol is LDAPv3 described in
RFC 4510 and is maintained by the IETF.

4.2 Master LDAP

Our organization will employ two LDAP servers, a master and a slave. First we
are going to install the master server on a machine called ldap1.example.edu,
the slave host is named ldap2.example.edu: as we did for the Kerberos sys-
tem, our choice is to have a CNAME alias in the DNS, called ldap, so that in
case of failure we can easily switch master and slave hosts.

4.2.1 Installing LDAP

Debian provides an LDAP server which is a free and open-source implementa-
tion of the protocol, the OpenLDAP server, distributed as the slapd package.

4.2 Master LDAP 59

As usual, when installing the package, the system tries to configure it, setting
the search base to the DNS zone, in our case example.edu is transformed
into the base dc=example,dc=edu. The system configures the LDAP server
asking for an administrative password, and stores all this information in the
database. Our suggestion is to support LDAPv2 only if you need it for legacy
applications. After configuring the server, Debian starts the daemon, which
incidentally is called slapd.

At this point, we need some administrative tools to query the database, so
install the ldaputils package. In order to search a particular entry in LDAP,
we may use a command called ldapsearch, which requires the specification of
the LDAP search base, the server we want to contact, and the authentication
method, respectively the -b, -h, and -x (for anonymous access) parameters:

ldapsearch -x -h localhost -LLL -b "dc=example,dc=edu"

dn: dc=example,dc=edu
objectClass: top
objectClass: dcObject
objectClass: organization
o: Example Organization
dc: example

dn: cn=admin,dc=example,dc=edu
objectClass: simpleSecurityObject
objectClass: organizationalRole
cn: admin
description: LDAP administrator

As we can see from the output of the query, Debian created a tree for our
LDAP database containing the root and the administrative user admin with
the password we have specified in the installation process, although we had
no choice about the name of this administrative entry.

The authentication we are using is called simple, allowing us to use even
clear-text passwords. A -L switch tells the tool to display the information
in the LDIFv12 format, duplicating the switch suppresses any comment sup-
plied by the protocol. The last parameter we may supply to the command is
the object to search: by leaving this option unspecified we query for all the
LDAP database content. Let us inspect the produced LDIF to understand its
meaning focusing on the first part of the output.

The entry beginning with dn is the unique key in the database, the dis-
tinguished name of the entry, in our case we are analyzing the root of our
tree dn: dc=example,dc=edu. Lines beginning with objectClass specify the
schemas used by the entry in the database. The root may thus have attributes
taken from the top, dcObject, and organization schemas. These schemas
define attributes and their values, for instance the o which specifies a textual
description of our organization.
2 LDIF stands for LDAP Data Interchange Format, a textual description of an

interaction with the database, e.g. expressing outputs, additions, deletions, and
modifications.

60 4 LDAP

LDAP provides also credential-based attribute actions, for instance user
passwords are not—by default—viewable to users except administrators and
the user itself. This fact can be easily tested by using a simple authentica-
tion, and specifying some credential by a distinguished name with -D and a
password with -w:

ldapsearch -x -h localhost -b "dc=example,dc=edu" -D "cn=admin,dc=example,dc=edu" \
-w ldappass -LLL
dn: dc=example,dc=edu
objectClass: top
objectClass: dcObject
objectClass: organization
o: Example Organization
dc: example

dn: cn=admin,dc=example,dc=edu
objectClass: simpleSecurityObject
objectClass: organizationalRole
cn: admin
description: LDAP administrator
userPassword:: e2NyeXB0fWZSQ29pRk5GbHRaVi4=

The provided password is the same as the one defined during installation.
Notice that the administrator has the right to view the hashed version of
any password, included itself, as we can see from its description with the key
cn=admin,dc=example,dc=edu where cn stands for Common Name.

The slapd daemon, that handles LDAP, has a major configuration file
called slapd.conf, located in the /etc/ldap/ directory, and looks like the
following:

include /etc/ldap/schema/core.schema
include /etc/ldap/schema/cosine.schema
include /etc/ldap/schema/nis.schema
include /etc/ldap/schema/inetorgperson.schema

schemacheck on

pidfile /var/run/slapd/slapd.pid
argsfile /var/run/slapd.args
loglevel 0

modulepath /usr/lib/ldap
moduleload back_bdb

backend bdb
checkpoint 512 30
database bdb

suffix "dc=example,dc=edu"

directory "/var/lib/ldap"

index objectClass eq

lastmod on

access to attrs=userPassword
by dn="cn=admin,dc=example,dc=edu" write
by anonymous auth

4.2 Master LDAP 61

by self write
by * none

access to dn.base="" by * read

access to *
by dn="cn=admin,dc=example,dc=edu" write
by * read

The configuration file specifies which schemas LDAP should use via the
include directive and whether it has to validate them with schemacheck.
LDAP has a default suffix and storage backend. The access directives spec-
ify the ACLs for each attribute, for example userPassword cannot be even
viewed by anyone except by the user itself and the administrator. Since this
file may contain administrative credentials, its permission bits are strictly
root-related:

-rw------- 1 root root 3637 2006-05-30 10:51 slapd.conf

The entry "cn=admin,dc=example,dc=edu" has administrative rights be-
cause of the ACL defined above.

4.2.2 Removing the Administrator

We have already seen that Debian in its installation process created a tree and
an administrator, but in our organization all the credentials are stored exclu-
sively in the Kerberos database. Moreover, having passwords inside the LDAP
database may be a security weakness, and our objective is to create secure
services: LDAP will be used in our network to store less critical information,
such as phone numbers, names, surnames, and mail addresses.

Before fully employing Kerberos, we have to remove the administrator from
our LDAP tree, so as an intermediate step before proceeding, we have to stop
the service and modify its configuration defining a new system administrator
by rootdn with an explicit password in the rootpw parameter:

include /etc/ldap/schema/core.schema
include /etc/ldap/schema/cosine.schema
include /etc/ldap/schema/nis.schema
include /etc/ldap/schema/inetorgperson.schema

schemacheck on

pidfile /var/run/slapd/slapd.pid
argsfile /var/run/slapd.args
loglevel 0

modulepath /usr/lib/ldap
moduleload back_bdb

backend bdb
checkpoint 512 30
database bdb

62 4 LDAP

suffix "dc=example,dc=edu"

rootdn "cn=sysadmin,dc=example,dc=edu"
rootpw ldappass

directory "/var/lib/ldap"

index objectClass eq

lastmod on

access to attrs=userPassword
by anonymous auth
by self write
by * none

access to dn.base="" by * read

access to *
by * read

We chose to use the same name as the administrative Kerberos principal
sysadmin but the choice is purely random: any valid common name can be
used for this task. We have also altered the ACLs since the rootdn gets
implicitly full access. Having modified the configuration, we have to restart
the daemon in order to have the changes take effect:

/etc/init.d/slapd start
Starting OpenLDAP: (db4.2_recover not found), slapd.

We can test now our new system administrator by first searching all entries
without any credential, and then re-issuing the same command authenticating
ourselves as cn=sysadmin,dc=example,dc=edu. Note that the administrative
password is sent in clear-text via the command line. The last command should
show us the userPassword attribute:

ldapsearch -x -h localhost -LLL -b "dc=example,dc=edu"
dn: dc=example,dc=edu
objectClass: top
objectClass: dcObject
objectClass: organization
o: Example Organization
dc: example

dn: cn=admin,dc=example,dc=edu
objectClass: simpleSecurityObject
objectClass: organizationalRole
cn: admin
description: LDAP administrator

ldapsearch -x -h localhost -b "dc=example,dc=edu" -D "cn=sysadmin,dc=example,dc=edu" \
-w ldappass -LLL
dn: dc=example,dc=edu
objectClass: top
objectClass: dcObject
objectClass: organization
o: Example Organization
dc: example

4.2 Master LDAP 63

dn: cn=admin,dc=example,dc=edu
objectClass: simpleSecurityObject
objectClass: organizationalRole
cn: admin
description: LDAP administrator
userPassword:: e2NyeXB0fWZSQ29pRk5GbHRaVi4=

Now it is sure that the syadmin has full administrative privileges and it is
not stored in the LDAP database. We are cleared to remove the old adminis-
trator using our credentials by calling the ldapdelete command, specifying
the entry we want to erase. A successful deletion does not provide any out-
put, as all common UNIX tools, but searching the database we can see as the
distinguished name cn=admin,dc=example,dc=edu is no longer there:

ldapdelete -x -h localhost -D "cn=sysadmin,dc=example,dc=edu" -w ldappass \
"cn=admin,dc=example,dc=edu"

ldapsearch -x -h localhost -b "dc=example,dc=edu" -D "cn=sysadmin,dc=example,dc=edu" \
-w ldappass -LLL
dn: dc=example,dc=edu
objectClass: top
objectClass: dcObject
objectClass: organization
o: Example Organization
dc: example

Client-side Configuration

All the LDAP client-side tools were used until now specifying each time the
root of our LDAP tree with the -b switch. To ease our interaction with the
server, we can set the default search base by modifying the ldap.conf file
in /etc/ldap/. This file contains directives that specify how client-side tools,
like the ldapsearch command, behave by default. In our example, we set a
default base and the default LDAP server:

BASE dc=example, dc=edu
URI ldap://ldap.example.edu

The URI directive, Uniform Resource Identifier3, specifies the host to be
contacted and the relative protocol to be used. We are familiar with URIs
although we are not aware of this: for instance http://www.ietf.org/ is a
URI specifying that the protocol to use is HTTP, and that the server to contact
is www.ietf.org, asking for the root path, the final /. The URI specification
is suggested instead of using the deprecated HOST directive.

To test the default values, just query the LDAP server:

3 URIs recognized by the IANA vary from emails to instant messaging, and specif-
ically the LDAP protocol URIs are drafted in RFC 2255 and 4516.

64 4 LDAP

ldapsearch -x -h localhost -LLL
dn: dc=example,dc=edu
objectClass: top
objectClass: dcObject
objectClass: organization
o: Example Organization
dc: example

4.2.3 Building a Tree

Right now we have a tree constituted by just the root entry, and organizing
an efficient tree depends on the future use. Our organization will principally
employ LDAP to retrieve user information, groups of users, and mail aliases;
but a directory service could store more than these.

Our decision is to create three sub-trees below the root: one for the users,
one for groups, and one for mail aliases. Adding new organizational units
is a simple task involving an input LDIF textual file that specifies at least
the mandatory attributes for each entry. An organizational unit, for example
ou=users, has three mandatory entries: the distinguished name as the key in
the database, the schema and the unit’s name. In our case, we create a text
file that creates three items, and looks like the following:

dn: ou=users,dc=example,dc=edu
objectClass: organizationalUnit
ou: users

dn: ou=groups,dc=example,dc=edu
objectClass: organizationalUnit
ou: groups

dn: ou=aliases,dc=example,dc=edu
objectClass: organizationalUnit
ou: aliases

Observe that the dn begins with the ou entry matching the organization
unit name specified in the attribute field ou. To add entries into the LDAP
database we use the ldapadd tool, authenticating as sysadmin: only a sys-
tem administrator can add new entries, since nothing else is specified in the
slapd.conf ACLs section:

ldapadd -x -D "cn=sysadmin,dc=example,dc=edu" -w ldappass -f create.ldif
adding new entry "ou=users,dc=example,dc=edu"

adding new entry "ou=groups,dc=example,dc=edu"

adding new entry "ou=aliases,dc=example,dc=edu"

This tool informs us of errors and also of successful operations as we can
see from the produced output. Querying the server shows the newly-created
organizational units along with the root:

4.2 Master LDAP 65

ldapsearch -x -LLL
dn: dc=example,dc=edu
objectClass: top
objectClass: dcObject
objectClass: organization
o: Example Organization
dc: example

dn: ou=users,dc=example,dc=edu
objectClass: organizationalUnit
ou: users

dn: ou=groups,dc=example,dc=edu
objectClass: organizationalUnit
ou: groups

dn: ou=aliases,dc=example,dc=edu
objectClass: organizationalUnit
ou: aliases

4.2.4 Kerberizing LDAP with GSSAPI

As we already previewed, one of the advantages of LDAP is its seamless in-
tegration in a Kerberos-based network. The OpenLDAP server can interact
with various authentication methods based on an Application Programming
Interface called GSSAPI, the Generic Security Services Application Program
Interface.

The GSSAPI layer is a library allowing an abstraction level over secu-
rity services: by itself GSSAPI does not provide any security facility. Ven-
dors provide libraries that implement some generic functions that a stan-
dard GSSAPI should provide. For example instead of querying directly the
Kerberos infrastructure via Kerberos native calls (as using functions like
krb5 init context() or krb5 auth con init()), employing GSSAPI a soft-
ware may request the system to obtain credentials without caring about the
involved protocol (for example using the gss acquire cred() call). The GSS-
API layer takes care of implementing the required calls, interacting on the
network with the correct protocol and returning to the requester approval or
denial. There are many security standards implemented by a GSSAPI library,
as drafted by RFC 1508 for GSSAPIv1, and later RFC 2078 and 2743 for
the second version. The Kerberos implementations (MIT or Heimdal) usually
provide GSSAPI abstraction layers as described in RFC 1964.

GSSAPI often works coupled with SASL, the Simple Authentication and
Security Layer, drafted in the RFC 4422 and the obsolete RFC 2222. This
proposed IETF protocol provides a framework for various authentication pro-
tocols, among them we can mention:

• ANONYMOUS for anonymous and unauthenticated guests;
• CRAM-MD5 for challenge-response authentication with MD5 hash;
• EXTERNAL to be used in implicit authentication contexts (like IPsec);
• GSSAPI using a GSS-based Kerberos V authentication;

66 4 LDAP

Fig. 4.2. The GSSAPI layer as gateway between SASL and Kerberos

• PLAIN for insecure clear-text passwords;
• OTP for one-time passwords.

LDAP uses SASL calls in order to authenticate a user by a trusted method, in
our case, the MIT Kerberos via the GSSAPI abstraction layer as in Fig. 4.2,
distributed as the libsasl2-gssapi-mit package, so install it before proceed-
ing.

The GSSAPI layer needs a service key in order to authenticate the LDAP
service, exported in a keytab file, as we have previously done for host authen-
tication. The service principal must be in the form ldap/FQDN, and exported
to a keytab file, our choice is to export the principal keys to the ldap.keytab
file into /etc/ldap/:

kadmin -p sysadmin
Authenticating as principal sysadmin with password.
Password for sysadmin@EXAMPLE.EDU:

kadmin: addprinc -randkey ldap/dns.example.edu
WARNING: no policy specified for ldap/ldap.example.edu@EXAMPLE.EDU; \
defaulting to no policy
Principal "ldap/ldap1.example.edu@EXAMPLE.EDU" created.

kadmin: ktadd -k /etc/ldap/ldap.keytab ldap/ldap1.example.edu
Entry for principal ldap/ldap1.example.edu with kvno 3, encryption type \
Triple DES cbc mode with HMAC/sha1 added to keytab WRFILE:/etc/ldap/ldap.keytab.
Entry for principal ldap/ldap1.example.edu with kvno 3, encryption type \
DES cbc mode with CRC-32 added to keytab WRFILE:/etc/ldap/ldap.keytab.

The Debian distribution usually makes use of files located in the directory
/etc/default/ in order to export default environment variables for various
services. The LDAP server follows this behavior, and the keytab file should
be listed in the slapd file with the KRB5 KTNAME environment variable:

SLAPD_CONF=
SLAPD_USER=
SLAPD_GROUP=
SLAPD_PIDFILE=
TRY_BDB_RECOVERY=yes
SLURPD_START=auto
SLAPD_OPTIONS=""
SLURPD_OPTIONS=""

4.2 Master LDAP 67

KRB5_KTNAME="/etc/ldap/ldap.keytab"
export KRB5_KTNAME

To enable the LDAP-Kerberos link, we have to understand how GSSAPI
works for our system. An authenticated user with a valid Kerberos ticket gets
redirected to the GSSAPI mechanism by the SASL layer, with a distinguished
name constituted by four parameters:

1. The principal name in the form uid=principalname;
2. The realm name cn=realmname;
3. A common name to the GSSAPI mechanism cn=gssapi;
4. The final call to the authentication cn=auth.

Thus, our principal called sysadmin is identified with a distinguished name
uid=sysadmin,cn=example.edu,cn=gssapi,cn=auth. The key for making
the whole Kerberized system work, is to map a GSSAPI-provided entry to
an item for the LDAP database.

The map between GSSAPI and LDAP must be written explicitly in the
slapd.conf file using regular expressions. We have to add the sasl-regexp
stanza that translates every string to an entry in the users sub-tree in the
database. After specifying the regular expression rule, SASL requires the
FQDN for the host and the realm (sasl-host and sasl-realm):

sasl-regexp
uid=(.*),cn=example.edu,cn=gssapi,cn=auth
uid=$1,ou=users,dc=example,dc=edu

sasl-host ldap1.example.edu
sasl-realm EXAMPLE.EDU

The parentheses indicate a named pattern constituted by any number of
characters (the dot followed by an asterisk): any string matching the rule is
converted to an entry in the users sub-tree via the $1 parameter.

As last step to fully Kerberize our LDAP server let us remove the hard-
wired administrative password from our configuration file, but leave the
sysadmin user to administer the service. Hence it is sufficient to comment
the provided password:

rootdn "uid=sysadmin,ou=users,dc=example,dc=edu"
rootpw ldappass

Now the password is not specified anywhere in the LDAP configuration
and sysadmin is not even in the database: the rootdn statement allows our
Kerberos principal sysadmin to be a full administrator by means of the SASL
regular expression matching.

We should now modify the client applications, such as ldapsearch, to
make use of the SASL layer, specifying the authentication mechanism in the
ldap.conf file as follows:

68 4 LDAP

BASE dc=example,dc=edu
URI ldap://ldap.example.edu
SASL_MECH GSSAPI

Restarting the LDAP server slapd activates these changes which depend
on the presence of the previously installed libsasl2-gssapi-mit for MIT
Kerberos.

Testing the SASL Layer

After these changes a simple unauthenticated query should work as before:

ldapsearch -x -LLL
dn: dc=example,dc=edu
objectClass: top
objectClass: dcObject
objectClass: organization
o: Example Organization
dc: example

dn: ou=users,dc=example,dc=edu
objectClass: organizationalUnit
ou: users

dn: ou=groups,dc=example,dc=edu
objectClass: organizationalUnit
ou: groups

dn: ou=aliases,dc=example,dc=edu
objectClass: organizationalUnit
ou: aliases

On the other hand, administrative privileges should be granted to the
sysadmin user. If we try to query the LDAP server without specifying the
simple authentication switch -x, the system tries to use our current Kerberos
credential for the root user, resulting in a failure:

ldapsearch -LLL
SASL/GSSAPI authentication started
ldap_sasl_interactive_bind_s: Local error (-2)

additional info: SASL(-1): generic failure: GSSAPI Error: Miscellaneous failure \
(No credentials cache found)

In order to make use of our Kerberized server, we need a valid Kerberos
credential. Let us obtain the initial ticket for the principal sysadmin:

klist
klist: No credentials cache found (ticket cache FILE:/tmp/krb5cc_0)

Kerberos 4 ticket cache: /tmp/tkt0
klist: You have no tickets cached

kinit sysadmin
Password for sysadmin@EXAMPLE.EDU:

klist

4.2 Master LDAP 69

Ticket cache: FILE:/tmp/krb5cc_0
Default principal: sysadmin@EXAMPLE.EDU

Valid starting Expires Service principal
05/30/06 12:49:12 05/30/06 22:49:01 krbtgt/EXAMPLE.EDU@EXAMPLE.EDU

Kerberos 4 ticket cache: /tmp/tkt0
klist: You have no tickets cached

Having a valid credential and starting a query, the SASL layer translates
the principal name to a distinguished name as specified in the regular ex-
pression. Intentionally we have hard-wired the sysadmin distinguished name
as the LDAP administrator: SASL uses the GSSAPI library provided by the
MIT Kerberos to verify the identity, and then LDAP authorizes the user as
we can see from the following successful output:

ldapsearch -LLL
SASL/GSSAPI authentication started
SASL username: sysadmin@EXAMPLE.EDU
SASL SSF: 56
SASL installing layers
dn: dc=example,dc=edu
objectClass: top
objectClass: dcObject
objectClass: organization
o: Example Organization
dc: example

dn: ou=users,dc=example,dc=edu
objectClass: organizationalUnit
ou: users

dn: ou=groups,dc=example,dc=edu
objectClass: organizationalUnit
ou: groups

dn: ou=aliases,dc=example,dc=edu
objectClass: organizationalUnit
ou: aliases

The command ldapwhoami can help to verify if the translation process
actually works.

4.2.5 Access Control Lists

LDAP has a broad selection of access control lists, expressed via the access
to directive. The format for specifying access control lists is access to ITEM
followed by the statements by ENTITY PRIVILEGE, as we can see from the
example as in the configuration file after installation:

access to attrs=userPassword
by dn="cn=admin,dc=example,dc=edu" write
by anonymous auth
by self write
by * none

70 4 LDAP

The ITEM specifies the object of the ACL, the item that is subject to the
later defined rules of access. It can be one of the following:

* The wildcard * specifies any item in the tree;
attrs= A comma-sparated list of attributes specified by the keyword attrs

as in the example above (although OpenLDAP should accept also the
keyword attr);

dn= A distinguished name defined by a pattern or a regular expression.

The field ENTITY specifies the subject of the ACL, the entity entitled to a
certain privileged access to the ITEM, specified by one of the following:

* The wildcard * specifies any entity;
self Specifies that the entry is accessible to an authenticated entity with

that distinguished name;
users All authenticated users;
anonymous Any user, even non authenticated ones;
dn= Specifies a distinguished name, matching a string or a regular expression.

There are other entities that can be deloyed in the specification of an access
control, such as IP matching, security access, and DNS domain. Consult your
documentation for more information about such particular entity specifica-
tions.

The last parameter is the privilege granted to the preceding entity. The
main levels of access are summarized in Table 4.1 from the lowest to the
highest. A higher privilege implies any lower one.

Table 4.1. LDAP access control list levels

Level Privilege Coding Explanation

none =0 No access at all
auth =x Permits authentication attempt

compare =cx Permits comparison
search =scx Permits search filter application
read =rscx Permits search result inspection
write =wrscx Permits modification or deletion

The actual implementation of the ACLs in OpenLDAP is utterly complex:
making the simplest error can be extremely dangerous, so test thoroughly the
privileges before deploying a new configuration.

Let us specify some examples that may be used in real situations. As the
first example, let us note that passwords are sensible data, and should not
be even displayed for obvious security reasons. In our system, LDAP would
not even contain such sensible information. Since we are interested in not
displaying or modifying such a field, the assigned ACL could look like the
following:

4.3 Replication 71

access to attrs=userPassword
by * none

Maybe the entire LDAP database should just be readable by any user,
either internal or external, since it stores public and non-critical information
in the LDAP tree. Such a choice allows clients to retrieve email addresses, web
home pages, and any other detail usable by external clients (such as QUAL-
COMM Eudora, Apple Mail, Microsoft Outlook or Mozilla Thunderbird):

access to * by * read

As last example we show how users can modify their home shell attribute
which occurs in the schema posixAccount. This resembles some functionality
of NIS. Of course every user should just be able to change the own (self)
shell setting:

access to attrs=loginShell
by self write
by * read

4.3 Replication

Reliable services are mainly based on replication and distribution. At this
point we have created a secure LDAP master server and in the following we
are going to create, on another machine, a secondary server that replicates the
service provided by the master. This machine is called ldap2.example.edu.

The OpenLDAP server provides two different methods for replicating the
service. One is a master-slave replication. The other is a kind of automated
mirror.

The master-slave replication is achieved via an additional process called
slurpd, which basically synchronizes all the database entries with the slave
servers. Every change of the database happens on the master. Afterwards it
gets propagated automatically to the slaves.

We choose the second option: the mirroring service. A mirror LDAP server
does not involve any further process and acts as a client querying the LDAP
master server, updating its database locally. This operation is called sync
replication. It is clear that a sync replication depends on the access privileges
assigned to each item in the LDAP tree: since the slave queries the master,
any non-readable information is not replicated on the slave. Our choice of
not storing any critical data in LDAP is a key in our system. The replication
receives in clear-text the database, allowing us to avoid encrypted channels
such as SSL or TSL. Notice that this is true only because we have a fully
Kerberized system, without password information in LDAP. In other cases, we
recommend using SSL or TLS if deploying a service that stores and replicates
sensible data in the database.

72 4 LDAP

The choice of sync replication simplifies the following presentation. We
preferred to leave SSL and TLS for the following parts in this book. Further-
more it is assumed that users do not make use of their userPassword in the
principal LDAP service. Instead, there are situations were it is convenient to
have another form of authentication available.

Slave Settings

On the slave machine, we have to install the slapd daemon and the LDAP
client-side tools, the same way we previously did on the master, using the same
settings especially the LDAP base setting. As we have seen before, Debian
creates a stub tree with an administrator, hence we act as before removing
the administrator by creating a new hard-wired entry in the slapd.conf file:

rootdn "cn=replica,dc=example,dc=edu"
rootpw ldappass

Our choice is to use a distinguished name that can be useful in the fu-
ture, mimicking what we did on the master by using sysadmin to delete the
unwanted entries in the database. In this case the replica user is used to
synchronize the slave LDAP server with the master. The specific name is
arbitrary.

After restarting the slave daemon, we can delete the administrator created
during installation with the standard ldapdelete tool:

ldapdelete -x -h localhost -D "cn=replica,dc=example,dc=edu" -w ldappass \
"cn=admin,dc=example,dc=edu"

ldapsearch -x -h localhost -LLL
dn: dc=example,dc=edu
objectClass: top
objectClass: dcObject
objectClass: organization
o: Example Organization
dc: example

The rootpw item, containing the administrative password, can now be
safely removed. In order to avoid any security issue about passwords, we set
the field to an invalid hashed version of a password, a procedure we have
already seen for user passwords:

rootdn "cn=replica,dc=example,dc=edu"
rootpw {CRYPT}*

Sync Settings

In the sync replication case, all other slave LDAP servers are mere clients, re-
trieving all the information from the master and modifying the local database.
The settings about the replication process is stored in the slapd.conf file on
the slave itself, in a stanza called syncrepl.

4.3 Replication 73

This part of the configuration file specifies a unique replication ID, the
server where the slave should read the information from, and what and how
often the process should be started. A minimal example of such a stanza is as
follows, occurring at the very end of the configuration file:

syncrepl rid=123
provider=ldap://ldap.example.edu:389
type=refreshOnly
interval=00:00:05:00
searchbase="dc=example,dc=edu"
filter="(objectClass=*)"
scope=sub
updatedn="cn=replica,dc=example,dc=edu"
bindmethod=simple

Let us analyze the configuration in order to explain each part. The sync
replication with rid 123 (Replica ID) reads the database from the provider
every 5 minutes, as we can see from the interval field. The replica type is
refreshOnly, so that no replication request should persist on the provider
slapd server; the other possible option is refreshAndPersist which causes
the synchronization search to be continuous. The contents that is to be repli-
cated is given by the filter, the searchbase and scope: the slave queries
the master for information based on a search inquiry, in our case we search
for the entire LDAP tree. The last parameters define the distinguished name
allowed to modify the replica: we use our replica administrator with a simple
authentication meaning password based.

Restarting the slave LDAP server, almost instantly starts the replication
process, as we can see by starting a query on the slave machine:

ldapsearch -x -h localhost -LLL
dn: dc=example,dc=edu
objectClass: top
objectClass: dcObject
objectClass: organization
o: Example Organization
dc: example

dn: ou=users,dc=example,dc=edu
objectClass: organizationalUnit
ou: users

dn: ou=groups,dc=example,dc=edu
objectClass: organizationalUnit
ou: groups

dn: ou=aliases,dc=example,dc=edu
objectClass: organizationalUnit
ou: aliases

As the output shows clearly, the tree has been replicated by creating on
the slave the three organizational units we have previously generated on the
master machine.

The replica distinguished name is not allowed to make any further opera-
tion on the slave since we configured for this entity an invalid hashed password

74 4 LDAP

in the slapd.conf. The following examples show how any attempt to modify
the slave by testing some passwords results in a failure:

ldapdelete -x -h localhost "ou=aliases,dc=example,dc=edu"
Delete Result: Strong(er) authentication required (8)
Additional info: modifications require authentication

ldapdelete -x -h localhost -D "cn=replica,dc=example,dc=edu" \
"ou=aliases,dc=example,dc=edu"
ldap_bind: Server is unwilling to perform (53)

additional info: unauthenticated bind (DN with no password) disallowed

ldapdelete -x -h localhost -D "cn=replica,dc=example,dc=edu" -w WrongPasword \
"ou=aliases,dc=example,dc=edu"
ldap_bind: Invalid credentials (49)

ldapdelete -x -h localhost -D "cn=replica,dc=example,dc=edu" -w ’*’ \
"ou=aliases,dc=example,dc=edu"
ldap_bind: Invalid credentials (49)

ldapdelete -x -h localhost -D "cn=replica,dc=example,dc=edu" -w ’{CRYPT}*’ \
"ou=aliases,dc=example,dc=edu"
ldap_bind: Invalid credentials (49)

4.4 Testing LDAP

In our network the LDAP servers contain non critical information that can
be displayed publicly. As we already said, LDAP database can be employed
to handle various types of details based on the description of such data. The
LDAP schemas are a kind of type for the content in the tree, and in the
following we are going to use LDAP as a means of UNIX information retrieval
for users and groups.

4.4.1 Creating LDAP Entries

Commonly UNIX handles users and group information in the standard
/etc/passwd and /etc/group files, and in the previous chapter we have al-
ready modified such files moving passwords from /etc/shadow to our KDCs.

For our testing purposes we are going to move all the remaining data
regarding our testuser into LDAP. Let us first recall the properties of such
a user, which has already the password moved into the Kerberos database:

id testuser
uid=10000(testuser) gid=10000(testgroup) groups=10000(testgroup)

cat /etc/passwd | grep testuser
testuser:x:10000:10000:Test User,001,555-123,1-123,none:/home/testuser:/bin/bash

cat /etc/group | grep testgroup
testgroup:x:10000:

4.4 Testing LDAP 75

Group Information

The first entry to be moved into LDAP is the UNIX group testgroup with
GID 10000, and then the entry in /etc/group has to be removed. We have
already added sub-trees in our LDAP database, creating three objects with
the standard ldapadd tool and an LDIF file. Our objective is to create now
the replacement of the testgroup with the same information contained in the
UNIX configuration file.

The distinguished name we are going to use in order to move the group into
LDAP branches from the already created ou=groups entity, which contains
all the groups in our network, and its common name matches the UNIX group
name. The object class for the group, that provide all the necessary informa-
tion, is the posixGroup, describing all the attributes of a POSIX group:

dn: cn=testgroup,ou=groups,dc=example,dc=edu
objectClass: top
objectClass: posixGroup
cn: testgroup
gidNumber: 10000

The GID is obviously identical with the gidNumber attribute, while the
group name coincides with the common name entry cn. In order to create
the needed item we have to possess a valid administrative credential, so after
gaining the initial ticket for our sysamdin, we can add the above information
described by that LDIF file:

ldapadd -f group.ldif
SASL/GSSAPI authentication started
SASL username: sysadmin@EXAMPLE.EDU
SASL SSF: 56
SASL installing layers
adding new entry "cn=testgroup,ou=groups,dc=example,dc=edu"

The database should have been successfully updated, and we can easily
check the result by querying the server:

ldapsearch -LLL
SASL/GSSAPI authentication started
SASL username: sysadmin@EXAMPLE.EDU
SASL SSF: 56
SASL installing layers
dn: dc=example,dc=edu
objectClass: top
objectClass: dcObject
objectClass: organization
o: Example Organization
dc: example

dn: ou=users,dc=example,dc=edu
objectClass: organizationalUnit
ou: users

dn: ou=groups,dc=example,dc=edu
objectClass: organizationalUnit

76 4 LDAP

ou: groups

dn: ou=aliases,dc=example,dc=edu
objectClass: organizationalUnit
ou: aliases

dn: cn=testgroup,ou=groups,dc=example,dc=edu
objectClass: top
objectClass: posixGroup
cn: testgroup
gidNumber: 10000

User Information

The creation of a posixAccount entry in the LDAP database allows us to
represent all the user information. Our testuser has UID 10000 and belongs
to the POSIX group testgroup with GID 10000.

In /etc/passwd, there is also a fifth field called GECOS, an acronym
for General Electric Comprehensive Operating Supervisor. This field contains
some generic information about users, such as the real name, room number,
telephone number, and it varies among UNIX systems. One of the advantage
for using LDAP is that this protocol standardizes the way such data is inter-
preted, allowing even a human-readable form as we see shortly. In the same
file, we have also the home directory specification and the default shell for our
user:

testuser:x:10000:10000:Test User,001,555-123,1-123,none:/home/testuser:/bin/bash

Symmetrically to the group information, we create an entry with object
classes posixAccount and shadowAccount, providing all the needed speci-
fications about UNIX details, such as GID, UID, home directory, and pre-
ferred shell. To include other useful details about users, we choose to add
the inetOrgPerson object class, so that we can add certificates, department
names, pictures and so on. The resulting LDIF file looks like the following:

dn: uid=testuser,ou=users,dc=example,dc=edu
objectClass: top
objectClass: posixAccount
objectClass: shadowAccount
objectClass: inetOrgPerson
cn: Test
sn: User
uid: testuser
uidNumber: 10000
gidNumber: 10000
homeDirectory: /home/testuser
loginShell: /bin/bash
gecos: Test User,001,555-123,1-123,none

The last step on the LDAP database is to add the above information as
we did for the group testgroup:

4.4 Testing LDAP 77

ldapadd -f user.ldif
SASL/GSSAPI authentication started
SASL username: sysadmin@EXAMPLE.EDU
SASL SSF: 56
SASL installing layers
adding new entry "uid=testuser,ou=users,dc=example,dc=edu"

At this point we are ready to remove the entries testgroup and testuser
from the UNIX files. First we have to remove the user, since we cannot remove
a non-empty group, and then we can safely remove the group, too, as follows:

deluser testuser
Removing user ‘testuser’...
done.

delgroup testgroup
Removing group ‘testgroup’...
done.

Note that if not explicitly requested, removing a user does not remove his
home directory. We observe that the group and user information in this case
are not resolved and remain just numerical because of the absence of the GID
and UID information:

ls -al /home/testuser/
total 20
drwxr-xr-x 2 10000 10000 4096 2006-06-22 11:39 ./
drwxrwsr-x 4 root staff 4096 2006-06-22 11:34 ../
-rw------- 1 10000 10000 37 2006-06-22 11:57 .bash_history
-rw-r--r-- 1 10000 10000 567 2006-06-22 11:34 .bash_profile
-rw-r--r-- 1 10000 10000 1834 2006-06-22 11:34 .bashrc

4.4.2 Name Service Switch

By default, user information are retrieved through the common UNIX files as
we have seen in the previous sections. In order to allow a centralized database
of users and groups, Sun Microsystems developed a software that may access
different sources of information called NSS, the Name Service Switch.

The NSS can be configured to retrieve information from the common UNIX
files or from outer sources as NIS, or as in our case, from LDAP. This soft-
ware has its main configuration file located in the /etc/ directory, and called
nsswitch.conf:

passwd: compat
group: compat
shadow: compat

hosts: files dns
networks: files

protocols: db files
services: db files

78 4 LDAP

ethers: db files
rpc: db files

netgroup: nis

The syntax for this file is straightforward. It is a list of pairs indicating
the key (the retrieved information) and the list of possible sources. In our
example above, NSS recovers user passwords, group and shadow passwords
from a compatibility source, that basically falls back into checking the common
UNIX files /etc/passwd, /etc/group, and /etc/shadow.

By default NSS does not allow any LDAP connection, provided by an
external library for NSS provided by the libnss-ldap package. We install the
package and Debian configures it as usual. We have to provide the installer
with all the obvious details about our network, such as our LDAP servers,
the search base and the LDAP protocol version. Usually the default values for
other queries are fine in Debian, but anyway we are going to configure NSS
manually.

The first setting we modify is the nsswitch.conf file, adding the LDAP
source to the list of possible system information services, leaving the compat-
ibility mode as the first choice, thus allowing root or admin to login immedi-
ately even on LDAP failure:

passwd: compat ldap
group: compat ldap
shadow: compat ldap

After the NSS configuration we have to modify the LDAP plugin settings,
contained in the /etc/libnss-ldap.conf file:

Your LDAP server.
host ldap.example.edu ldap2.example.edu ldap1.example.edu

The distinguished name of the search base.
base dc=example,dc=edu

The LDAP version to use (defaults to 3
if supported by client library)
ldap_version 3

Search timelimit
timelimit 30

Bind/connect timelimit
bind_timelimit 30

Idle timelimit; client will close connections
(nss_ldap only) if the server has not been contacted
for the number of seconds specified below.
idle_timelimit 60

RFC2307bis naming contexts
nss_base_passwd ou=users,dc=example,dc=edu
nss_base_shadow ou=users,dc=example,dc=edu
nss_base_group ou=groups,dc=example,dc=edu

4.4 Testing LDAP 79

As we can see, we added our LDAP hosts, with the CNAME alias for the
master ldap.example.edu, and our search base with the base directive. The
time limits introduced with the settings timelimit, bind timelimit, and
idle timelimit prevents polluting the system with useless open sockets when
querying the LDAP servers. The last three directives are the most important
ones, directing the system information previously contained in the standard
UNIX files to some sub-tree in the LDAP database.

For completeness we configure the LDAP client tools including SASL, too,
and should be able to access the user data from LDAP:

id testuser
uid=10000(testuser) gid=10000(testgroup) groups=10000(testgroup)

groups testuser
testuser : testgroup

Having modified the NSS configuration, it should be possible to login with
our testuser. At this point all the data regarding this user and its group are
present only in the LDAP database, with its password securely stored in Ker-
beros. Upon login, PAM allows to obtain the tickets, and NSS automatically
accesses the user information for this user:

Debian GNU/Linux 3.1 client tty6

client login: testuser
Password:
Last login: Thu Jun 22 12:02:45 2006 on tty6
Linux client 2.4.27-3-686 #1 Wed Feb 8 12:40:33 UTC 2006 i686 GNU/Linux

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

testuser@client:~$ klist
Ticket cache: FILE:/tmp/krb5cc_10000_gy3z06
Default principal: testuser@EXAMPLE.EDU

Valid starting Expires Service principal
06/22/06 12:03:22 06/22/06 22:03:22 host/client.example.edu@EXAMPLE.EDU
06/22/06 12:03:22 06/22/06 22:03:22 krbtgt/EXAMPLE.EDU@EXAMPLE.EDU

Kerberos 4 ticket cache: /tmp/tkt10000
klist: You have no tickets cached

testuser@client:~$ id
uid=10000(testuser) gid=10000(testgroup) groups=10000(testgroup)

testuser@client:~$ groups
testgroup

testuser@client:~$ ls -al
total 20
drwxr-xr-x 2 testuser testgroup 4096 2006-06-22 11:39 .
drwxrwsr-x 4 root staff 4096 2006-06-22 11:34 ..

80 4 LDAP

-rw------- 1 testuser testgroup 103 2006-06-22 12:03 .bash_history
-rw-r--r-- 1 testuser testgroup 567 2006-06-22 11:34 .bash_profile
-rw-r--r-- 1 testuser testgroup 1834 2006-06-22 11:34 .bashrc

Practice

Exercise 13. Check available schemas for LDAP in /etc/ldap/schema/: do
those suffice for you or do you have to search for others? What are sensible
ACL for your users, such that they can update some information about them?

Exercise 14. Test the replication based on the slurpd daemon. It is slightly
more complicated to setup as the easier sync replication, requiring some con-
figuration of the principal server, too.

Exercise 15. Consider to use LDAP as backend for DNS and Kerberos. To-
day this is principally possible. What are the advantages and what the disad-
vantages?

Exercise 16. Do you have a Windows-centered environment? The fundamen-
tal services so far as NTP, DNS, Kerberos, and LDAP are also available on
Windows servers: the integration with the UNIX world and in particular with
AFS is a real technical challenge if you prefer to have the principal adminis-
tration delegated to Windows.

5

OpenAFS

The future is here. It’s just not widely distributed yet.
William Gibson

5.1 The OpenAFS Distributed Filesystem

Data is probably the most expensive and valuable resource in a working envi-
ronment: losing a hard drive is not as important as losing the data stored on it.
Accessing documents reliably and securely is thus a main concern, especially
when the data should be available through a network.

In 1983 the Carnegie Mellon University, in partnership with IBM, started
the Andrew Project with the objective to provide the university with a dis-
tributed computing system that connected several affordable workstations
with some administrative and more expensive servers. The Andrew project
included centralized servers and tools, the Vast Integrated Computing Envi-
ronment or VICE and the Virtue Is Reached Through UNIX and Emacs or
VIRTUE, respectively, and consisted of four sub-projects:

AFS The Andrew File System, a highly scalable distributed file system based
on TCP/IP networking;

ATK The Andrew Toolkit, providing tools to create documents containing
various objects1 (e.g. text and graphics);

AMS The Andrew Messaging System supplying an email and messaging tools,
based on ATK;

AWM The Andrew Window Manager permitting to display remotely non
overlapping windows, then replaced by X11 from the MIT.

The AFS was made commercially available in 1989 by the Transarc Cor-
poration, a Carnegie Mellon University spin-off company, later acquired by
IBM in 1998. In the year 2000 IBM decided to make the source code of AFS
publicly available, announcing the OpenAFS open-source project.

OpenAFS is a distributed file system, based on the TCP/IP protocol (as
its ancestor AFS) and designed on the base of a client-server architecture.

1 ATK contained the EZ Word program, one of the first GUI-based editors made
available on Linux.

82 5 OpenAFS

Traditional networked file system as NFS or SMB basically share resources,
meaning that a user attempting to access a file should know where the file
physically resides. OpenAFS on the other hand is a distributed file system,
completely transparent to the user, with the capability of being location and
system independent: a file is natively accessible on a platform in the same
way the platform usually displays resources. A UNIX system will access files
as a directory in the file system, as well as a Windows client will obtain
the same file as a shared location. OpenAFS is highly scalable, allowing the
administration and maintenance of small to very large environments, provid-
ing replication and backup facilities, and ensures security via the Kerberos
authentication and encrypted networked communication. As an example of
the main characteristics of OpenAFS, we show in Table 5.1 the comparison
between NFS and AFS, as provided by the Transarc documentation. In the
following we will refer to AFS or OpenAFS as they were synonyms, since the
old Transarc-IBM implementation is deprecated.

Table 5.1. The AFS-NFS comparison chart (from Transarc Corp.)

Property AFS NFS

File Access Common name space Different file names
File Location Automatic Mount-points
Performance Client caching No local disk caching

Andrew Benchmark Average 210 sec. / client Average 280 sec. / client
Scaling Small to very large Small to mid-size

Excellent in wide-area Best in local-area
Security Kerberos Unencrypted user ID

ACLs No ACLs
Availability Data and AFS information No replication

Backup No downtime Via UNIX tools
Reconfiguration By volumes (groups of files) Per-file movement

No user impact or downtime Mount-points need update
System Management From any client With connection to server

The core feature of OpenAFS—as well as AFS—is the concept of volumes.
Groups of files and directories belong to a unit called volume, and reside on
a partition of a physical machine. AFS offers the possibility to move volumes
between file servers, machines running processes that handle volumes and
provide access to files and directories for clients. In order to retrieve files from
AFS file servers, clients contact a set of administrative servers. Such control
machines run daemons that locate the volume a file belongs to, the machine
where the volume physically resides, and check for user authorization on the
requested resource. All the needed information about volumes and permissions
are stored in databases, which is the reason such machines are called database
servers. The set of all servers forming a single administrative unit is called an
AFS cell.

5.1 The OpenAFS Distributed Filesystem 83

Fig. 5.1. The OpenAFS cell example.edu

AFS is a distributed file system, and uses a particular technology called
Ubik to maintain all the information among database servers consistent: this
distributed database is implemented via remote procedure calls, and guar-
antees that data among all administrative databases are synchronized. The
AFS servers are administered by a super-server called Basic Overseer Server,
or BOS. The BOS server, running on every server, monitors all the AFS pro-
cesses providing correctness of execution, and in case of failure it automatically
restarts malfunctioning processes.

AFS servers work with different processes that are managed by BOS. Ma-
chines that act as pure file servers run the following servers:

File Server a process that actually handles files and directories residing on a
given volume, giving access to them when a client has the proper autho-
rization;

Salvager Server restores, if possible, any corrupted data stored in the volumes
on the file server after a failure;

Volume Server administers all local volumes, creating, moving, replicating or
deleting them from the file server.

On database servers, the BOS server starts and monitors the following pro-
cesses, responsible of distributing and maintaining consistent information:

Backup Server administers all the backup operations on the database servers,
managing the backup database;

Volume Location tracks all the information about volumes and their location
on a file server, called the Volume Location Database or VLDB;

Protection Server manages all the entries in the protection database, contain-
ing information about user and group permissions.

The complete suite of servers is not limited to the above. There are some
other processes that can be employed, but their use and description are out

84 5 OpenAFS

Fig. 5.2. Users request a file without any further knowledge. The AFS client re-
trieves the actual volume the data resides on

Fig. 5.3. The client daemon, using the information granted by a database server,
retrieves data from the correct file server

of the scope of this book. Among these, we may mention the authentication
server provided by the kaserver process: this process was in use before Open-
AFS could interact with Kerberos V, and was based on an old Kerberos IV
implementation, nowadays declared deprecated.

On the client side, there is complete transparency. The AFS file space is a
common mount point in the file system, usually /afs/. Volumes are mounted
in the AFS file space and appear to a client as any other mount point, that
is, they are like any other directory. This makes it possible to move volumes
from a file server to another without any reconfiguration, the path leading to
a file remains the same, while the physical location of such a resource may
change. Moving volumes brings no downtime, except for the initial and the
final part of the operation, meaning that there is only a very low probability
for a client to encounter any unusual behavior during this process.

A client requesting access to a location in the AFS file space, contacts the
database servers providing its credentials, an AFS token2. If the user has suf-
ficient privileges to access the location, then it retrieves the physical location
of the resource, in other words, the file server machine and the partition. With
the clearance and the machine name information, the client can fulfill the re-
quest: all the process is entirely transparent to a human user, who actually
2 The equivalent of a Kerberos ticket: AFS was developed before Kerberos got

standardized, so it has its own version of an authentication credential.

5.2 The First OpenAFS Server 85

sees files and directories regardless of the location or actual implementation
of such objects.

5.2 The First OpenAFS Server

In this section we are going to install and configure the first OpenAFS server.
This machine will act as a database server, since without it a cell cannot
operate; moreover, we plan to use this host as the first file server, too.

Being a file server means that we have to give the AFS processes the access
to at least one dedicated partition on a disk. OpenAFS by default uses par-
titions names /vicepX, where X is one or two letters (e.g. /vicepa, /vicepb,
/vicepiv). The name is a legacy to the already introduced VICE environ-
ment from the Andrew project. Our recommendation is to use a performing
file system on the partitions, planned to be mounted as /vicepX. In our case
we use XFS from the Silicon Graphics IRIX operating system. We will show
in the course of this chapter the basic steps of creating an AFS cell file system.

We stress the fact that AFS relies on Kerberos as its authentication
method: this means that our first server, called afs1.example.edu, needs
to be synchronized with our NTP servers. Another obvious implication of us-
ing Kerberos, is that the machine should become a Kerberos client, as we have
previously explained.

5.2.1 Preliminaries

Before proceeding with the installation of OpenAFS, we create the needed
kernel module for the OpenAFS client. This operation is necessary in order
to extend the normal Linux kernel and make it aware of the special treatment
of the file space below /afs/. The availability of a client permits to test the
system as the procedure advances. The first step is to check the currently
installed kernel version:

uname -a
Linux afs1 2.4.27-3-686 #1 Wed Feb 8 12:40:33 UTC 2006 i686 GNU/Linux

In order to create the proper kernel module, we need to install the kernel
headers related to the installed kernel: a version mismatch puts the entire
process in danger3. Let us proceed installing the kernel-headers package
relative to our system:

apt-get install kernel-headers-2.4.27-3-686

3 The Linux kernel does not provide any guarantee on the API and its stability, as
can be read in a document “Stable API Nonsense”.

86 5 OpenAFS

Debian provides the OpenAFS kernel module in its source code version,
this means that after installing the openafs-modules-source package, we
need to compile and create a suitable package for our Debian system:

apt-get install openafs-modules-source

With the installation of the source code Debian also sets up the needed
compilers and libraries, so that no further packages shall be installed in order
to compile the kernel module. The installer does not attempt to uncompress
the source code, located in /usr/src/, so let us proceed uncompressing the
archive:

ls -ls /usr/src/
total 35040

4 drwxr-xr-x 5 root root 4096 2006-06-06 10:55 kernel-headers-2.4.27-3
4 drwxr-xr-x 4 root root 4096 2006-06-06 10:55 kernel-headers-2.4.27-3-686
4 drwxrwxr-x 3 root src 4096 2005-05-13 20:43 modules

4496 -rw-r--r-- 1 root root 4590818 2005-05-13 20:43 openafs.tar.gz

tar zxf openafs.tar.gz

ls modules/
openafs/

It is a good habit to create a symbolic link to the current kernel header
directory with the name linux, since this directory is used as the default
directory for many sources that might need to be recompiled:

ln -s kernel-headers-2.4.27-3-686 linux

Now we are ready to start the kernel module configuration. Debian pro-
vides a standard tool that compiles kernel modules distributed in source code
called make-kpkg. This tool compiles, links and creates a Debian package that
can be installed via the Debian package tool dpkg:

make-kpkg modules_image

The package should have been successfully created, as we shall see in-
specting the /usr/src/ directory on the AFS server machine. To install the
package, use the dpkg tool providing the -i switch and the package name:

ls /usr/src/
kernel-headers-2.4.27-3/
kernel-headers-2.4.27-3-686/
linux@
modules/
openafs-modules-2.4.27-3-686_1.3.81-3sarge1+2.4.27-10sarge2_i386.deb
openafs.tar.gz

dpkg -i openafs-modules-2.4.27-3-686_1.3.81-3sarge1+2.4.27-10sarge2_i386.deb

The last step, before proceeding to install the OpenAFS servers, is to
check the newly created module. To load a module, we could use the standard

5.2 The First OpenAFS Server 87

modprobe tool from the command line interface. Our choice is to use the
Debian program modconf, which is an interface to the standard tools. The
OpenAFS module can be found under the fs (file systems) category:

---------------------------]] Select fs modules [[------------------------------
| The modules that are currently installed on your system have |
| a "+" character to the right of their name. Modules that aren’t |
| installed have a "-" to the right of their name. In some modules, |
| you can read a page about possible options of a module and then |
| you can enable or disable it. To do so, use the up and down arrow |
| keys to move the cursor to the line for the module, and then press ENTER. |
| |
| Exit Finished. Return to previous menu. |
| |
| openafs.mp - .mp |
| openafs - (No description available) # |
| |
| |
| <Ok> <Cancel> |

As we can see, we have two new modules, one is openafs.mp which is
designed for SMP machines, and the other one for single processor machines.
After installing the module, we are warned that it “taints the kernel”, meaning
that the software, we have just loaded, has not been distributed under the GPL
license. We can check, if the module has been loaded successfully, with the
lsmod tool, and then we can remove it from the memory with rmmod:

lsmod
Module Size Used by Tainted: P
openafs 478720 0 (unused)
printer 7968 0 (unused)
usb-uhci 23344 0 (unused)
usbcore 62924 1 [printer usb-uhci]
i810_audio 24444 0 (unused)
ac97_codec 13300 0 [i810_audio]
soundcore 3940 2 [i810_audio]
ide-scsi 10032 0
scsi_mod 95140 1 [ide-scsi]
3c59x 27152 1
agpgart 46244 0 (unused)
ide-cd 31328 0
cdrom 29828 0 [ide-cd]
rtc 6440 0 (autoclean)
ext3 81068 1 (autoclean)
jbd 42468 1 (autoclean) [ext3]
ide-detect 288 0 (autoclean) (unused)
piix 9096 1 (autoclean)
ide-disk 16864 2 (autoclean)
ide-core 108632 2 (autoclean) [ide-scsi ide-cd ide-detect piix ide-disk]
unix 14960 8 (autoclean)

rmmod openafs

5.2.2 Installing OpenAFS

The first step in order to create our OpenAFS cell is to install the needed
packages. We need to install the database server tools, as well as the OpenAFS-

88 5 OpenAFS

Kerberos tools, since we rely on the already established Kerberos realm as a
mean for authentication:

apt-get install openafs-krb5 openafs-dbserver

Due to its dependencies, the package openafs-dbserver installs also all
the needed programs to create an AFS file server. As usual Debian tries to
configure the installed package. The first question is about the cell name: it
is convenient to name our OpenAFS cell with the same name given to the
DNS zone, so example.edu. Debian also asks about the database servers the
machine should join, and in this case we have no running database server
except the afs1.example.edu host. Debian asks also the amount of space
to be used as cache, the default value of 50 megabytes is a possible choice,
although you may want to use different sizes according to the free disk space
on your system.

The AFS file space root can be created automatically using what is called
a dynamic root, which is one of the questions posed by the Debian installer.
Our choice is to discard this option and to decide on other mounted cells by
ourselves.

Debian provides a useful script for creating a new AFS cell, symmetri-
cally to the one we used for the Kerberos realm. This script, contrary to the
Kerberos one that issued only one command, hides many steps that are essen-
tial to the understanding of the AFS infrastructure. We create all the needed
volumes and entries in the databases by hand, explaining the role of each
operation. At this point, we choose not to run the AFS client at boot time
and finally stop the activated BOS server.

The last step for now is to create a partition that is used by AFS as global
file space. These partitions as we already introduced, have a name in the form
of /vicepX, so our first partition would be /vicepa, the second /vicepb and
so on. Our choice is to use a partition formatted with the XFS file system,
which works very well, especially for big disks:

cat /etc/fstab
proc /proc proc defaults 0 0
/dev/hda5 / xfs noatime 0 1
/dev/hda4 none swap sw 0 0
/dev/hdc /media/cdrom0 iso9660 ro,user,noauto 0 0
/dev/fd0 /media/floppy0 auto rw,user,noauto 0 0
/dev/hda6 /vicepa xfs noatime 0 1

mkfs.xfs -f /dev/hda6
meta-data=/dev/hda6 isize=256 agcount=8, agsize=50202 blks

= sectsz=512
data = bsize=4096 blocks=401616, imaxpct=25

= sunit=0 swidth=0 blks, unwritten=1
naming =version 2 bsize=4096
log =internal log bsize=4096 blocks=2560, version=1

= sectsz=512 sunit=0 blks
realtime =none extsz=65536 blocks=0, rtextents=0

mkdir /vicepa

5.2 The First OpenAFS Server 89

mount /vicepa

The installation process creates two files located in the /etc/openafs/
directory: ThisCell and CellServDB. The first configuration file contains the
AFS cell name the machine belongs to, an this should be example.edu. The
second file contains the list of all the known AFS cells with their database
servers. The CellServDB has a predefined format, and at this point it should
contain our cell name and the only database server we have:

cat /etc/openafs/ThisCell
example.edu

head -6 /etc/openafs/CellServDB
>example.edu #Example Organization
192.168.127.154 #afs1.example.edu
>grand.central.org #GCO Public CellServDB 27 Jan 2005
18.7.14.88 #grand-opening.mit.edu
128.2.191.224 #penn.central.org
130.237.48.87 #andrew.e.kth.se

The /etc/openafs/server/ directory should also contain a copy of these
files, with entries only for our cell, but these files are configured afterwards.

5.2.3 Notes on the Cache

You may encounter problems using an AFS client on a system that uses a
journaled file systems like XFS. The AFS cache is usually allowed to exist
only on an ext2 file system, although in the meantime also ext3 is permitted.
Since an in-memory cache is not recommended for production-level systems,
our choice is to create a local on-file file system that gets mounted as any other
file system through the loop device, just like an ISO CD-ROM image. The
/etc/openafs/cacheinfo file contains the information about the location of
the cache:

/afs:/var/cache/openafs:100000

The AFS cache is then located in /var/cache/openafs/, with an upper
bound of 100 megabytes4. In the following procedure, we substitute the direc-
tory with an on-file file system.

Let us start by removing all the contents of /var/cache/openafs/, and
then using the standard UNIX tool dd, we create a file from the /dev/zero
device with the same size as the programmed AFS cache. Our choice is to
make a file named afscachefile in the /var/cache/ directory, and then to
create an ext2 file system in it with the standard mkfs.ext2 program:

4 OpenAFS expresses all sizes in kilobytes when not specified otherwise.

90 5 OpenAFS

dd if=/dev/zero bs=10240 count=10240 of=afscachefile
10240+0 records in
10240+0 records out
104857600 bytes transferred in 0.250042 seconds (419359837 bytes/sec)

mkfs.ext2 afscachefile
mke2fs 1.37 (21-Mar-2005)
afscachefile is not a block special device.
Proceed anyway? (y,n) y
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
25688 inodes, 102400 blocks
5120 blocks (5.00%) reserved for the super user
First data block=1
13 block groups
8192 blocks per group, 8192 fragments per group
1976 inodes per group
Superblock backups stored on blocks:

8193, 24577, 40961, 57345, 73729

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 33 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

The mkfs.ext2 command complains about the given device file since it
is not a block device (e.g. a hard disk): we can safely ignore the warning.
After the creation, we can mount it in the directory where the old cache was
located:

mount -o loop afscachefile openafs/

The new file system behaves as any other present on this machine, we can
create files in it and check that the created item still exists after we unmount
and remount the on-file file system:

cd openafs/

echo "abcd" > hello

ls -l
total 13
-rw-r--r-- 1 root root 5 Jun 16 19:37 hello
drwx------ 2 root root 12288 Jun 16 19:31 lost+found

cd ..

umount openafs/

mount -o loop afscachefile openafs/

ls openafs/
hello lost+found/

cat openafs/hello
abcd

5.2 The First OpenAFS Server 91

Notice that the file system has a lost+found/ directory as other file sys-
tems might have. The last step in order to use this file system is to add it to
the /etc/fstab such that it is mounted at boot time:

/var/cache/afscachefile /var/cache/openafs ext2 defaults,loop 0 0

5.2.4 Kerberizing OpenAFS

The Andrew Project started before Kerberos became a standard, and its au-
thentication server, the kaserver, was designed mimicking Kerberos IV. Our
organization employes the new Kerberos V authentication protocol, which in-
teracts with OpenAFS by translating Kerberos tickets into the AFS equivalent
“tokens” with the help of a previously installed package.

The OpenAFS servers need, as any other Kerberized service, a principal
in the Kerberos database, named afs/cellname. In our case we create the
principal afs/example.edu:

kadmin: add_principal -randkey afs/example.edu
WARNING: no policy specified for afs/example.edu@EXAMPLE.EDU; defaulting to no policy
Principal "afs/example.edu@EXAMPLE.EDU" created.

Next we import the keys belonging to our AFS principal in the server’s
own database. In order to do so, we must export the DES key in a keytab
file, specifying the des-cbc-crc:afs3 encryption type, which at the time of
writing is still the only supported type:

kadmin: ktadd -k afs.keytab -e des-cbc-crc:afs3 afs/example.edu
Entry for principal afs/example.edu with kvno 3, encryption type \
DES cbc mode with CRC-32 added to keytab WRFILE:afs.keytab.

It is fundamental to observe the correct KVNO, since it is used to import
the principal’s secret key. We can check the validity of the exported key by
issuing a klist command to view the contents of the keytab file:

klist -ke afs.keytab
Keytab name: FILE:afs.keytab
KVNO Principal
---- --

3 afs/example.edu@EXAMPLE.EDU (DES cbc mode with CRC-32)

At this point we can import the secret key into the AFS security system
through the asetkey command, provided by the Kerberos-OpenAFS tools.
We have to feed the tool with the add subcommand, followed by the KVNO,
the keytab file containing the key and the principal:

asetkey add 3 afs.keytab afs/example.edu

92 5 OpenAFS

The import process should end successfully, and we can then check the
imported key issuing the list subcommand:

asetkey list
kvno 3: key is: 0b6157dc3e575eea
All done.

At the end of this process, we have created in /etc/openafs/server/ a
file named KeyFile that contains the secret key for our AFS service principal:

ls -ld /etc/openafs/server
drwxr-xr-x 2 root root 4096 2006-06-08 11:57 /etc/openafs/server/

ls -ld /etc/openafs/server-local/
drwx------ 2 root root 4096 2006-06-08 12:11 /etc/openafs/server-local/

ls -l /etc/openafs/server
total 12
-rw-r--r-- 1 root root 13 2006-06-06 12:14 CellServDB
-rw------- 1 root root 100 2006-06-06 12:14 KeyFile
-rw-r--r-- 1 root root 12 2006-06-06 11:50 ThisCell

Note that the permission bits for all the critical files and directories should
be set as shown above: in case of discrepancies the BOS server complains. It is
safe on Debian to remove the CellServDB and ThisCell files from the server
configuration directory /etc/openafs/server/ since these files are created
during the first BOS server start.

5.2.5 Configuring the Database Server

Having initialized the secret key in our OpenAFS installation we can proceed
starting the Basic Overseer Server, the BOS server. Even though everything
is ready for an authenticated activation, our database server is going to run
in the first instance as an unauthenticated daemon, since we have no adminis-
trative user: this procedure is similar to the use of kadmin.local in the KDC
creation.

As we have already introduced, BOS is the main daemon, responsible of
starting, stopping, and managing all the processes in an AFS cell. Let us start
the daemon by issuing the bosserver command with the -noauth switch, and
then check for its state in memory:

/usr/sbin/bosserver -noauth

ps auxg | grep bos
root 1716 0.3 0.5 3872 2804 ? S 11:39 0:00 /usr/sbin/bosserver -noauth

The first operation we have to perform is assigning a cell name, by issuing
a setcellname to the bos command, which interacts with the BOS server:

5.2 The First OpenAFS Server 93

bos setcellname -server afs1.example.edu -name example.edu -noauth

Every database server knows all its peers, and as we said in the introduc-
tion, all the information is distributed via the Ubik technology so that a cell
may function with only one of the database servers being up and running.
Debian adds the local host name to the list of database servers, viewable by
issuing the listhosts command:

bos listhosts -server afs1.example.edu -noauth
Cell name is example.edu

Host 1 is afs1

OpenAFS requires the fully qualified domain name in the server list, so
we need to add the correct host name and then remove the short one, using
the addhost and removehost subcommands of the BOS interface tool:

bos addhost -server afs1.example.edu -host af1.example.edu -noauth

bos listhosts -server dns.example.edu -noauth
Cell name is example.edu

Host 1 is afs1
Host 2 is asf1.example.edu

bos removehost -server afs1.example.edu -host afs1 -noauth

bos listhosts -server afs1.example.edu -noauth
Cell name is example.edu

Host 1 is afs1.example.edu

From now on, in all the AFS commands we will omit the switches (e.g.
-server and -cell) since they are not mandatory, as long as we specify the
parameters in the same order in which they appear in the command syntax.
Every program in the OpenAFS suite presents a help subcommand which
gives hints about all the available commands, and eventually displays their
parameters and explanation:

bos help
bos: Commands are:
addhost add host to cell dbase
addkey add keys to key dbase (kvno 999 is bcrypt)
adduser add users to super-user list
apropos search by help text
blockscanner block scanner daemon from making migration requests
create create a new server instance
delete delete a server instance
exec execute shell command on server
getdate get dates for programs
getlog examine log file
getrestart get restart times
help get help on commands
install install program
listhosts get cell host list
listkeys list keys
listusers list super-users
prune prune server files
removehost remove host from cell dbase

94 5 OpenAFS

removekey remove keys from key dbase
removeuser remove users from super-user list
restart restart processes
salvage salvage partition or volumes
setauth set authentication required flag
setcellname set cell name
setrestart set restart times
shutdown shutdown all processes
start start running a server
startup start all processes
status show server instance status
stop halt a server instance
unblockscanner allow scanner daemon to make migration requests again
uninstall uninstall program

bos help addhost
bos addhost: add host to cell dbase
Usage: bos addhost -server <machine name> -host <host name>+ [-clone] \
[-cell <cell name>] [-noauth] [-localauth] [-help]
Where: -clone vote doesn’t count

-noauth don’t authenticate
-localauth create tickets from KeyFile

In the addhost procedure we have performed before, the -server and
-host switches could have been omitted, provided that the command line
specifies the parameters in the right order.

The BOS server is ready now to be configured in order to handle the
needed database servers. Each server is controlled through a server instance,
that is the name of the AFS process to manage (e.g. a backup server, a file
server, a volume location server):

bos help create
bos create: create a new server instance
Usage: bos create -server <machine name> -instance <server process name> \
-type <server type> -cmd <command lines>+ [-notifier <Notifier program>] \
[-cell <cell name>] [-noauth] [-localauth] [-help]
Where: -noauth don’t authenticate

-localauth create tickets from KeyFile

The instance specification needs also a type, that define the process class
handled by the BOS server. These values range in a predefined set of types,
such as a simple type (any process except those used in a file server), a
cron (used to schedule operations) or a fs type used only when BOS should
manage a file server. As a side note, all the processes with the exception of
the salvager should not be run directly on the command line, since BOS has
been created in order to start and stop them properly.

The first instance we create in the BOS process database is the backup
server, handled by the buserver command. The command line has to specify
the host where the server should run, in our case then afs1, the only database
server we have. We need also to specify the instance, which is equal to the
command name that BOS runs, and the complete path of the executable:

bos create afs1 buserver simple /usr/lib/openafs/buserver -noauth

5.2 The First OpenAFS Server 95

The instance type we have specified above is simple: we have already
specified that simple is suitable for all processes except for scheduled com-
mands and file server daemons. The switch -noauth is necessary until the
AFS infrastructure is provided with a Kerberized administrator.

The second instance is the protection database server, run by the ptserver
process. This process is responsible of handling users and groups, providing
authorization over AFS objects, and is started by the simple typed instance
specified as follows:

bos create afs1 ptserver simple /usr/lib/openafs/ptserver -noauth

The last database server we run on our machine is the volume location
process, which tracks all the information about the physical location of objects
in all file servers. The vlserver instance is created symmetrically to all the
previous ones:

bos create afs1 vlserver simple /usr/lib/openafs/vlserver -noauth

The BOS server knows at any time the state of all the processes in its
database, and may provide useful information such as the command line, the
last startup time, and the status of the daemon:

bos status afs1 -long -noauth
Instance buserver, (type is simple) currently running normally.

Process last started at Thu Jun 8 11:52:34 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/buserver’

Instance ptserver, (type is simple) currently running normally.
Process last started at Thu Jun 8 11:53:01 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/ptserver’

Instance vlserver, (type is simple) currently running normally.
Process last started at Thu Jun 8 11:53:34 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/vlserver’

Administrative Users

In order to administer the AFS cell we need some superusers. Remember that
the sysadmin was planned to administer the main servers in the network,
from Kerberos to AFS, so all we need now is to add a new administrative user
to the BOS super-users database:

bos adduser afs1 sysadmin -noauth

bos listuser afs1 -noauth
SUsers are: sysadmin

Having created a user that can administer BOS, we need to populate the
protection database with the needed items. This database, handled by the
ptserver instance, contains all the users and groups known to AFS, and by

96 5 OpenAFS

default the set of known users is constituted by a single item. In order to
query the protection server, we use the pts interface program:

pts listentries -users -noauth
Name ID Owner Creator
anonymous 32766 -204 -204

We may also want to view all the known groups in the protection database.
Contrary to the list of users, constituted just by anonymous, the list of default
groups is longer:

pts listentries -groups -noauth
Name ID Owner Creator
system:administrators -204 -204 -204
system:backup -205 -204 -204
system:anyuser -101 -204 -204
system:authuser -102 -204 -204
system:ptsviewers -203 -204 -204

The default groups are self-explaining: system:administrators contain
the AFS administrators, system:anyuser stands for any user (authenticated
or not) and system:authuser is a placeholder for all authenticated users. The
system:ptsviewers contains all the users entitled to query the protection
database, but they are not allowed to modify any of its items. The group
system:backup allows the backup process to read volumes, as we shall see in
the proper section.

Now the sysadmin user has to be created in the protection database, and
added to the list of administrative users. Using the pts tool we first create
the entry in the database with an AFS ID of our choice, and then add the
user to the proper group:

pts createuser sysadmin -id 1 -noauth
User sysadmin has id 1

pts adduser sysadmin system:administrators -noauth

The process should end successfully, and the results may be viewed by
querying the protection database about the members of the administrative
system:administrators group, and the groups the sysadmin user belongs
to:

pts membership system:administrators -noauth
Members of system:administrators (id: -204) are:

sysadmin

pts membership sysadmin -noauth
Groups sysadmin (id: 1) is a member of:

system:administrators

We are now prepared to shutdown the BOS server, running until now
unauthenticated. Having created an administrative user, from now on we use

5.2 The First OpenAFS Server 97

either that user or the local authentication that makes use of the secret key
we previously stored in the KeyFile, imported from the Kerberos database.
Let us proceed stopping the service, and immediately restarting it:

bos shutdown afs1 -noauth

pkill bosserver

/etc/init.d/openafs-fileserver start
Starting AFS Server: bosserver.

We have now the rights to use authenticated commands through the
-localauth switch. We can also test the system in order to prove that a
non-authenticated command as we used up to this moment is rejected:

bos status afs1 -long -localauth
Instance buserver, (type is simple) currently running normally.

Process last started at Thu Jun 8 12:11:32 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/buserver’

Instance ptserver, (type is simple) currently running normally.
Process last started at Thu Jun 8 12:11:32 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/ptserver’

Instance vlserver, (type is simple) currently running normally.
Process last started at Thu Jun 8 12:11:32 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/vlserver’

bos stop afs1 vlserver -noauth
bos: failed to change stop instance ’vlserver’ (you are not authorized for this operation)

At the end of the configuration process, we start the OpenAFS client that
allows us to use the sysadmin user, previously created and potentially from
any AFS client machine.

5.2.6 Configuring the File Server

The first database server also acts like a file server, as we previewed before. In
the future this can be changed but it simplifies the procedure for the moment.
We have created a partition to be used by the file serving processes, the
/vicepa partition, formatted with the XFS file system.

As any other AFS process, the file server daemons are manged by the
BOS server, started with the instance fs and type fs. As we have previously
explained, a file server needs three processes to be run on the machine: the file
server itself, the volume server and the salvager. Let us create the needed
instance providing the bos command the full path of all the daemons:

bos create afs1 fs fs -cmd /usr/lib/openafs/fileserver \
-cmd /usr/lib/openafs/volserver -cmd /usr/lib/openafs/salvager -localauth

The BOS server now handles both database processes and file serving
daemons, as we can see by querying its status with the bos command:

98 5 OpenAFS

bos status afs1 -long -localauth
Instance buserver, (type is simple) currently running normally.

Process last started at Thu Jun 8 12:19:16 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/buserver’

Instance ptserver, (type is simple) currently running normally.
Process last started at Thu Jun 8 12:19:16 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/ptserver’

Instance vlserver, (type is simple) currently running normally.
Process last started at Thu Jun 8 12:19:16 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/vlserver’

Instance fs, (type is fs) currently running normally.
Auxiliary status is: file server running.
Process last started at Thu Jun 8 12:22:42 2006 (2 proc starts)
Command 1 is ’/usr/lib/openafs/fileserver’
Command 2 is ’/usr/lib/openafs/volserver’
Command 3 is ’/usr/lib/openafs/salvager’

5.2.7 Volume Creation

We have previously explained that volumes are at the core of the AFS file
system. They are the logical equivalent of local partitions in the network: a
space where files and directories are stored with the appearance of a directory.

The AFS file space needs at least two volumes in order to manage a cell:
the AFS root volume and the cell root volume. The first contains all the other
volumes, and may be used to mount external AFS cells as we will see in the
proceeding. The cell root volume contains all the files and volumes belonging
to our AFS cell, and like any other volume, it is mounted and appears as a
normal directory.

In order to create volumes we need to provide the vos command all the
information about the physical location of such a space. The first volume is
root.afs, automatically mounted as the root of all our AFS space in /afs/.
The needed data include the host, the partition, the volume name and an
eventual disk quota5:

vos create afs1 vicepa root.afs -localauth
Volume 536870912 created on partition /vicepa of afs1

A volume, as we see from the vos output, has an ID, a unique number in
the cell, and is created on a particular partition on a specified host, provided
that the host runs the file server processes. Without any further option this
command defines a default quota of 5000 KB.

Using Kerberized AFS

Now we are ready to start the OpenAFS client in order to use a fully Kerber-
ized system. Until this moment our AFS file space is constituted by the root
5 The upper bound of disk space to be used, but not immediately allocated.

5.2 The First OpenAFS Server 99

volume, with no cell volume: starting the client normally does obviously result
in a failure. Debian provides a force-start command to the OpenAFS client
script that allows us to start the daemon regardless of the cell root volume:

/etc/init.d/openafs-client force-start
Warning: loading /lib/modules/2.4.27-3-686/fs/openafs.o will taint the kernel: no license

See http://www.tux.org/lkml/#export-tainted for information about tainted modules
Module openafs loaded, with warnings
Starting AFS services: afsd: All AFS daemons started.
afsd.

As usual the Linux kernel tools complain about the non-GPL license of
the OpenAFS module, and we can safely ignore the legal warning. Having the
client up and running, we can now use the sysadmin user in order to create
our AFS cell. We may recall that AFS was created before the Kerberos stan-
dardization, so it has its own version of a Kerberos ticket, called token. The
Kerberos-OpenAFS interaction package provides the aklog tool that converts
a Kerberos ticket into an AFS token, as we can see by converting the initial
ticket for sysadmin into an AFS token:

kinit sysadmin
Password for sysadmin@EXAMPLE.EDU:

aklog

As usual no output gets printed on the console. The AFS equivalent of the
klist command is tokens, which displays all the AFS tokens provided to the
current user:

tokens

Tokens held by the Cache Manager:

User’s (AFS ID 1) tokens for afs@example.edu [Expires Jun 8 22:44]
--End of list--

As a sidenote we mention that older cells might still use the old kaserver
for authentication having kas as the client side command. authenticated in
several cells at the same time. In that case one needs the previous klog com-
mand for authentication.

We can test the access to the AFS file space in /afs/, possessing the
administrative AFS token:

ls -al /afs
total 6
drwxrwxrwx 2 root root 2048 2006-06-08 12:42 .
drwxr-xr-x 23 root root 4096 2006-06-08 10:36 ..

The equivalent of kdestroy to AFS tokens is the unlog command, which
discards all the AFS tokens. Discarding the token for sysadmin disallows us
to access the AFS file space:

100 5 OpenAFS

unlog

ls /afs/
ls: /afs/: Permission denied

Creating the Cell Root

The AFS file space is constituted of volumes mounted as directories and ac-
cessible based on a set of access control lists. OpenAFS, like its predecessor
AFS, permits to specify ACLs with a directory-based granularity: since vol-
umes are mounted as directories, this property holds also for volumes. The
set of ACLs are described in Table 5.2.

Table 5.2. The OpenAFS access control list attributes

Permission Meaning

l List contents (lookup)
i Create new files or directories (insert)
d Delete files or directories
a Change ACL attributes of directories (administer)
r Read contents of files
w Modify contents of files (write)
k Lock files for reading

read Equivalent to rl

write Equivalent to rlidwk (no administrative rights)
all Equivalent to rlidwka

none Remove all ACL permissions

The most important access control property is the list bit l: without this
bit set it is impossible to access any directory or list its attributes, any other
permission is subsidiary to the list attribute.

The AFS tool that allows us to view and change the properties of directo-
ries and volumes in the AFS file space is fs, which directly interacts with the
file server. To list all the associated access control lists, we feed the program
the listacl command, followed by the directory under analysis:

fs listacl /afs
Access list for /afs is
Normal rights:

system:administrators rlidwka

We got the token for the user sysadmin before this operation. By default,
as we can see, the AFS file space is accessible only by system administrators.
This choice is of no use since in a real environment we should give access to
this space to users, granting their writing and reading privileges with care. It

5.2 The First OpenAFS Server 101

is recommended to allow any user to read from the AFS root, using the fs
tool and setting the proper ACL to /afs/ by issuing the setacl command6:

fs setacl /afs system:anyuser rl

fs listacl /afs
Access list for /afs is
Normal rights:

system:administrators rlidwka
system:anyuser rl

A rather restrictive setting is to allow read just to the system:authuser
group permitting only locally authenticated users. Having created the AFS
root volume, we next need to make the cell root volume called root.cell:

vos create afs1 vicepa root.cell
Volume 536870918 created on partition /vicepa of afs1

The same vos tool allows us to analyze all the volumes present on a par-
ticular host, in our case just the afs1 machine, using the listvol command:

vos listvol afs1
Total number of volumes on server afs1 partition /vicepa: 2
root.afs 536870915 RW 2 K On-line
root.cell 536870918 RW 2 K On-line

Total volumes onLine 2 ; Total volumes offLine 0 ; Total busy 0

We have previewed some properties associated to volumes, and one of this
attribute is the disk quota. By default the disk quota assigned to a volume is
5 megabytes, as we can see from the output of the listquota command of
the fs tool:

fs listquota /afs
Volume Name Quota Used %Used Partition
root.afs 5000 2 0% 0%

The AFS root and the cell root are supposed to be containers for other
volumes, and thus such a small disk quota is understandably sufficient. The
last step in starting our cell is to mount the root volume under the AFS
file space. Usually the cell root is mounted under a meaningful name, which
generally coincides with the cell name, in our case, with example.edu. The
command to be fed to fs in order to mount a volume is mkmount, specifying
the mount name—which appears as a directory—and the volume:

fs mkmount /afs/example.edu root.cell

6 Although not recommended in practical uses, permissions may be also specified
in their negative form with the -negative switch, describing explicitly an access
denial.

102 5 OpenAFS

The mounted volume needs a proper ACL as we have seen for the AFS
root volume:

fs listacl /afs/example.edu/
Access list for /afs/example.edu/ is
Normal rights:

system:administrators rlidwka

fs setacl /afs/example.edu system:anyuser read

fs listacl /afs/example.edu
Access list for /afs/example.edu is
Normal rights:

system:administrators rlidwka
system:anyuser rl

In order to view the volume associated with a mount point, the lsmount
command can be fed to fs, along with the directory we intend to analyze:

fs lsmount /afs/example.edu
’/afs/example.edu’ is a mount point for volume ’#root.cell’

A side-note to volumes and mount points: contrary to a normal UNIX
mount operation, in the AFS file space a mount point directory should not
exist beforehand. An AFS cell is then usually seen as a directory named as
the cell itself, in our case /afs/example.edu/; in the following of this chapter
we will explain how to mount also foreign AFS cells.

In order to enable the client permanently on our system, we have to edit
the client configuration file /etc/openafs/afs.conf.client changing the
AFS CLIENT value to true:

AFS_CLIENT=true
AFS_AFSDB=true
AFS_CRYPT=true
AFS_DYNROOT=false
AFS_FAKESTAT=true

We notice in the configuration file that by default Debian allows an en-
crypted AFS communication, which may be confirmed by the getcrypt com-
mand of fs:

fs getcrypt
Security level is currently crypt (data security).

This encryption means that file data is encrypted on transmission between
file server and client cache.

5.2.8 Structuring the Cell

The AFS file space is similar to any other part of the file system, except
for the fact that files and directories are physically spread among different file
servers—a fact that users ignore since they experience just a set of directories.

5.2 The First OpenAFS Server 103

Like any file system, we need to give the cell a structure that suites the
need of our organization. A typical company provides users with a personal
space, and may distribute software for various platforms. In the following we
are going to create an organization that allows us to supply such services.
The organization of an AFS cell is an important task and should not be
underestimated.

Commonly volumes in a cell are given a meaningful name. We have al-
ready seen that the AFS root and the cell root volumes are labeled root.X:
our choice for the container volumes for users and software is to create vol-
umes named cell.users and cell.software. The name given to volumes,
in the current OpenAFS implementation provided by Debian, cannot exceed
22 characters.

User Space

The cell.users volume we are about to create shall act as another container
volume. Inside this space we mount our users’ home directories, provided by
user-specific volumes as we shall see later on. Creating volumes on a user basis
gives the administrator the possibility to move home directories from a file
server to another without changing the mount point, allowing load and space
balancing between all server machines in the AFS space.

Let us start creating the container volume on the /vicepa partition of
afs1, the only server in our AFS cell:

vos create afs1 a cell.users
Volume 536870921 created on partition /vicepa of afs1

The above command shows another shortcut provided by the OpenAFS
tools, other than avoiding the switches: partition names are by default in the
format /vicepX, so all is needed by the fs tool is the X part, in our case, we
specified just a instead of vicepa. After creating the volume, we mount it
with a meaningful name. We create a mount point called users:

cd /afs/example.edu

fs mkmount users cell.users

A volume does not directly inherit the ACL property from its parent, as
we already showed for the root.cell volume which did not assume the ACL
applied to root.afs. We need then to modify the properties of the newly
mounted volume with the fs tool:

fs listacl users
Access list for users is
Normal rights:

system:administrators rlidwka

fs setacl users system:anyuser read

104 5 OpenAFS

fs listacl users
Access list for users is
Normal rights:

system:administrators rlidwka
system:anyuser rl

Giving access to anyone for the users space is of no harm since user volumes
are mounted with a more strict policy, as we will see. Since we are acting on
a UNIX system we may want to check the standard permission bits for the
new volume:

ls -l /afs/example.edu/
total 2
drwxrwxrwx 2 root root 2048 2006-06-15 11:07 users/

Although it seems, that this is a completely open space, we are located
below /afs/ and consequently the AFS ACLs determine the real permissions.

Software Space

The AFS file space provides a commodity to distribute software among various
platforms, with a transparent per-platform facility we are going to introduce.
Let us first create the container volume cell.software, and mount it in our
AFS file space:

vos create afs1 a cell.software
Volume 536870924 created on partition /vicepa of afs1

fs mkmount software cell.software

ls -l
total 4
drwxrwxrwx 2 root root 2048 2006-06-15 11:16 software/
drwxrwxrwx 2 root root 2048 2006-06-15 11:07 users/

In a real situation distributing software may rise legal problems due to
licenses and copyrights. Let us suppose we want to give access to free and
also commercial software our organization is legally entitled to use, limiting
the access to all individuals belonging to our company: as we already pre-
viewed, AFS has a special group called system:authuser that contains all
the authenticated users. Such a group is a perfect candidate for setting the
accessibility to our software distribution center:

fs setacl software system:anyuser l

fs setacl software system:authuser read

fs listacl software
Access list for software is
Normal rights:

system:administrators rlidwka
system:authuser rl
system:anyuser l

5.2 The First OpenAFS Server 105

With these settings, authenticated users are allowed to read and list all the
distributed software, while non authenticated visitors are allowed just to list
the contents. System administrators are granted any operation on the volume.

Recalling the fact that the software volume is a container, we show how
to distribute transparently software for various platforms. Let us suppose we
want to give access to the Debian Linux CD-ROM ISO images: then we create
a volume with a significant name with a sufficient disk quota to allow the dis-
tribution of the ISO images (in this example we use two different platforms):

vos create afs1 a software.debian -maxquota 200000
Volume 536870927 created on partition /vicepa of afs1

fs mkmount debian software.debian

fs listquota debian
Volume Name Quota Used %Used Partition
software.debian 200000 2 0% 0%

We have given the volume the name software.debian with a disk quota
of 200 megabytes, and mounted it as /afs/example.edu/software/debian/:
it is possible to change the disk quota later with the fs command setquota.
As previously explained, volumes do not inherit the properties belonging to
the parent, so we have to change the ACL for the new volume:

fs listacl debian
Access list for debian is
Normal rights:

system:administrators rlidwka

fs setacl debian system:anyuser l

fs setacl debian system:authuser rlk

fs listacl debian
Access list for debian is
Normal rights:

system:administrators rlidwka
system:authuser rlk
system:anyuser l

Note as we added the lock k property to authorized users, since some
software run directly from the AFS file space may require the ability to lock
files for reading.

The AFS file space provides a particular symbolic link name that a client
translates into the current system name: this link is called @sys, and Table 5.3
we show the most recurring system names7. Usually such names are in the
form hardware OS, where hardware describes the architecture (e.g. i386 for
Intel 386 and compatibles, ppc for IBM PowerPC), and OS is the operating
system and its version.

In order to get the system name of the current client we have to query the
system using the fs command sysname:
7 A complete list of system names may be found in the OpenAFS documentation.

106 5 OpenAFS

Table 5.3. The OpenAFS @sys names (excerpt)

@sys Architecture

alpha dux40 Digital UNIX 4 on an Alpha
alpha dux50 Digital UNIX 5 on an Alpha
i386 linux24 Linux Kernel 2.4 on Intel and compatible
i386 linux26 Linux Kernel 2.6 on Intel and compatible
i386 nt40 Microsoft Windows NT and later on Intel and compatible
ppc darwin70 Apple MacOS X 10.3 on a PowerPC Macintosh
ppc darwin80 Apple MacOS X 10.4 on a PowerPC Macintosh
ppc darwin90 Apple MacOS X 10.5 on a PowerPC Macintosh
rs aix52 IBM AIX 5.2 on a pSeries
rs aix53 IBM AIX 5.3 on a pSeries
sgi 65 SGI Irix 6.5 on a MPIS
x86 darwin80 Apple MacOS X 10.4 on an Intel Macintosh
x86 darwin90 Apple MacOS X 10.5 on an Intel Macintosh

fs sysname
Current sysname is ’i386_linux24’

In this case we are using a Linux Kernel version 2.4 on an Intel 386 CPU or
compatible processors (notably the 486, the Pentium series, AMD K6 and K7
processors). Our purely didactic objective is to store the Debian ISO images
so that a user may easily find the source of the currently running system. Let
us start by creating a directory named platform that contains a list of @sys
subdirectories:

mkdir platforms

cd platforms

mkdir i386_linux26
mkdir i386_linux24
mkdir ppc_darwin_70
mkdir ppc_darwin_80
mkdir i386_nt40

Note that a directory, unlike volumes, do actually inherit the ACLs of the
parent directory:

fs la /afs/example.edu/software/debian
Access list for /afs/example.edu/software/debian is
Normal rights:

system:administrators rlidwka
system:authuser rlk
system:anyuser l

fs la /afs/example.edu/software/debian/platforms
Access list for /afs/example.edu/software/debian/platforms is
Normal rights:

system:administrators rlidwka
system:authuser rlk
system:anyuser l

5.2 The First OpenAFS Server 107

We can now create a symbolic link named ISO pointing to the special @sys
name like the following example:

ln -s platforms/@sys ISO

ls -l
total 3
lrwxr-xr-x 1 daemon root 14 2006-06-15 11:40 ISO -> platforms/@sys/
drwxr-xr-x 7 daemon root 2048 2006-06-15 11:38 platforms/

Thus a client accessing the ISO subdirectory is transparently redirected to
that subdirectory of platforms corresponding the the operating system and
architecture:

ls -l ISO/
total 111225
-rw-r--r-- 1 daemon root 113893376 2006-06-15 11:50 debian-31r2-i386-netinst.iso
-rw-r--r-- 1 daemon root 43 2006-06-15 11:51 README

cat ISO/README
This is platform i368 for Linux Kernel 2.4

The translation from a @sys link into a name is done on the client-side. Let
us suppose a client accesses to the AFS file space using Microsoft Windows,
with a user entering a directory that is actually a symbolic link to @sys: the
client recognizes the link, and translates it to the proper string, in this case
to i386 nt40.

As a live example of this powerful facility we show a per-platform instal-
lation of the Condor High Throughput Computing software developed by the
University of Wisconsin-Madison. The software is organized in the AFS cell
as follows:

ls -l
total 56
lrwxr-xr-x 1 daemon root 28 Feb 25 2005 THIS_PC@ -> platforms/@sys/THIS_PC
-rw-r--r-- 1 daemon root 3138 Feb 28 2005 README
lrwxr-xr-x 1 daemon root 18 Feb 23 2005 bin@ -> platforms/@sys/bin/
drwxr-xr-x 3 daemon root 2048 Nov 22 2005 etc/
drwxr-xr-x 4 daemon root 2048 Jan 27 2005 examples/
drwxr-xr-x 11 daemon root 2048 Nov 22 2005 hosts/
drwxr-xr-x 2 daemon root 2048 Jan 27 2005 include/
lrwxr-xr-x 1 daemon root 18 Feb 23 2005 lib@ -> platforms/@sys/lib/
drwxr-xr-x 3 daemon root 2048 Jan 27 2005 man/
drwxr-xr-x 2 daemon root 8192 Feb 11 2005 manual/
drwxr-xr-x 7 daemon root 2048 Feb 25 2005 platforms/
lrwxr-xr-x 1 daemon root 19 Feb 23 2005 sbin@ -> platforms/@sys/sbin/

ls platforms/
i386_linux24/ i386_linux26/ i386_nt40/ ppc_darwin_70/ rs_aix52/

The core directories (bin, sbin, and sbin) point at the homonymous sub-
directory inside platform/@sys, as well as THIS PC points to a file. Inside each
subdirectory present in platforms we have installed the necessary files:

108 5 OpenAFS

ls platforms/i386_linux24
THIS_PC bin/ lib/ sbin/

ls platforms/i386_linux26
THIS_PC bin/ lib/ sbin/

ls platforms/i386_nt40/
CondorJavaInfo.class* condor_hold.exe* condor_shadow.dbg*
CondorJavaWrapper.class* condor_kbdd_dll.dll* condor_shadow.exe*
Msvcrt.dll* condor_mail.exe* condor_startd.dbg*
THIS_PC condor_master.dbg* condor_startd.exe*
bin@ condor_master.exe* condor_starter.dbg*
condor.exe* condor_negotiator.dbg* condor_starter.exe*
condor_advertise.exe* condor_negotiator.exe* condor_stats.exe*
condor_birdwatcher.exe* condor_off.exe* condor_status.exe*
condor_cod.exe* condor_on.exe* condor_store_cred.exe*
condor_cod_request.exe* condor_preen.exe* condor_submit.exe*
condor_collector.dbg* condor_prio.exe* condor_submit_dag.exe*
condor_collector.exe* condor_q.exe* condor_userlog.exe*
condor_config_val.exe* condor_qedit.exe* condor_userprio.exe*
condor_dagman.exe* condor_reconfig.exe* condor_vacate.exe*
condor_eventd.dbg* condor_release.exe* condor_version.exe*
condor_eventd.exe* condor_reschedule.exe* condor_wait.exe*
condor_fetchlog.exe* condor_restart.exe* lib@
condor_findhost.exe* condor_rm.exe* msvcirt.dll*
condor_gridmanager.exe* condor_schedd.dbg* pdh.dll*
condor_history.exe* condor_schedd.exe* sbin@

ls platforms/ppc_darwin_70/
THIS_PC bin/ lib/ sbin/

ls platforms/rs_aix52/
THIS_PC bin/ lib/ sbin/

Different clients accessing files and directories in the Condor distribution
experience different behaviors, as we can see from the following example show-
ing the content of THIS PC from different platforms:

uname -a
AIX aixserver 2 5 0053447A4C00

cat THIS_PC
This platform is:
IBM pSeries Processor, IBM AIX 5.2

uname -a
Linux dns 2.4.27-3-686 #1 Tue Dec 5 21:03:54 UTC 2006 i686 GNU/Linux

cat THIS_PC
This platform is:
i386 Processor, Linux Kernel 2.4.x

Foreign AFS Cells

It is possible to mount foreign AFS cells in our file space so that we may gain
access to some resources that are not available via web or too expensive to send
via email. We choose to mount the grand.central.org cell, a community
resource for AFS users. We may recall that the main volume for a cell is
called root.cell, since the root.afs volume is the AFS file space container.

5.3 Additional Servers 109

With the usual fs tool, specifying the cell, the volume and the mount point
name, we can access the grand.central.org AFS cell:

fs mkmount grand.central.org root.cell -cell grand.central.org

ls -l
total 4
drwxrwxrwx 2 root root 2048 2006-06-15 11:16 example.edu/
drwxrwxrwx 2 root root 2048 2006-05-07 01:21 grand.central.org/

The fs command whichcell shows the AFS cell a given file or directory
belongs to, and since the mounted cell gives access to unauthenticated users
(at least in the root of the cell), we can show its contents:

fs whichcell grand.central.org
File grand.central.org lives in cell ’grand.central.org’

ls -l grand.central.org
total 18
drwxrwxrwx 3 root root 2048 2004-06-17 23:27 archive/
drwxrwxrwx 2 root root 2048 2006-05-07 00:33 cvs/
drwxrwxrwx 3 root root 2048 2003-03-21 18:08 doc/
drwxrwxrwx 7 root root 2048 2006-05-07 05:58 local/
drwxrwxrwx 2 root root 2048 2005-06-17 08:00 project/
drwxrwxrwx 4 root root 2048 2006-05-07 01:29 service/
drwxrwxrwx 2 root root 2048 2006-05-30 00:24 software/
drwxrwxrwx 2 root root 2048 2003-11-20 23:34 user/
drwxrwxrwx 4 root root 2048 2006-05-07 02:43 www/

A user does not notice that the directory /afs/grand.central.org/ is
actually a volume that is geographically distant from the terminal in use:
a complete transparency, that is one of the major features of the AFS file
system. Note that it is a good option to mount any external cell right now,
since in the following sections we will add features that prohibit any direct
modification to our main AFS file space volume8.

5.3 Additional Servers

For redundancy reasons it is a good practice to have more than one database
server in an AFS cell, so that even software upgrades on hosts may be per-
formed without any downtime as long as one database server is up and run-
ning. The actual implementation of the Ubik makes 3 or 5 database servers
the best choice for the moment and the first server should have the lowest IP
address.

The new database host, called afs2, is a pure database server, since we
do not ask BOS to manage any file server instance: no /vicepX partition are
needed. Additionally, we install a pure file serving machine called fs01 which
runs only the file server instance and no database services.
8 Actually mounting foreign cells is not exactly prohibited, but the procedure be-

comes more complicated: in the following we also show how to overcome such
difficulties.

110 5 OpenAFS

5.3.1 Secondary Database Servers

The new afs2 host acts as a database server for our AFS cell: all is needed
is to perform an installation similar to the one we have already performed to
start the AFS cell. Remember that all AFS machines are Kerberos clients and
that time synchronization is of primary importance to avoid malfunctioning
due to a high clock skew. We briefly show the installation process for didactic
purposes, using a different kernel version.

The new machine is to run a 2.6 kernel series, as we can see from the uname
output, and the first step is to install the kernel headers matching the current
version:

uname -a
Linux afs2 2.6.8-3-686 #1 Thu Feb 9 07:39:48 UTC 2006 i686 GNU/Linux

apt-get install kernel-headers-2.6.8-3-686

As we did for the first server, we have to install the OpenAFS kernel
module source, unpack it and finally produce the Debian package with the
make-kpkg tool:

make-kpkg clean

make-kpkg configure

make-kpkg modules_image

Note that the compilation process on a Linux kernel series 2.4 and 2.6
show different outputs. It is a good practice to install the kernel module and
test it with modconf or modprobe before proceeding with the installation of
the OpenAFS database server package openafs-dbserver, and the Kerberos-
OpenAFS interaction package openafs-krb5.

Kerberized AFS Server

The installation of the openafs-dbserver package configures the services: the
same rules for the first server apply also to the secondary machine, with the
exception of the database server list which includes the new afs2 host. As
usual, we need to stop the OpenAFS daemon before proceeding.

After removing the CellServDB and ThisCell files from the OpenAFS
server configuration directory, we need to transfer the keytab file we have
created on the primary machine with a secure method (e.g. SSH, USB pen-
drive). Note that exporting the principals key to a new keytab file on the
secondary database server results in a KVNO mismatch, potentially harming
the following steps. As we already did on the afs1 machine, we need to add
the secret key with the asetkey tool:

5.3 Additional Servers 111

klist -ke afs.keytab
Keytab name: FILE:afs.keytab
KVNO Principal
---- --

3 afs/example.edu@EXAMPLE.EDU (DES cbc mode with CRC-32)

asetkey add 3 afs.keytab afs/example.edu

asetkey list
kvno 3: key is: 0b6157dc3e575eea
All done.

Having successfully created the KeyFile containing the afs/example.edu
service principal key, we can safely start both the OpenAFS server and client:

/etc/init.d/openafs-fileserver start
Starting AFS Server: bosserver.

/etc/init.d/openafs-client start
Starting AFS services: afsd: All AFS daemons started.
afsd.

Our current AFS cell permits free access to the cell root to any unauthen-
ticated user:

klist
klist: No credentials cache found (ticket cache FILE:/tmp/krb5cc_0)

Kerberos 4 ticket cache: /tmp/tkt0
klist: You have no tickets cached

tokens

Tokens held by the Cache Manager:

--End of list--

ls /afs
example.edu/ grand.central.org/

Anyway, when accessing the software distribution directory we have pre-
viously created, a non authenticated user experiences a permission denial:

cat ISO/README
cat: ISO/README: Permission denied

Configuring the Database Server

Now we are ready to configure a new pure database server in our cell, but
before proceeding we need to set the cell name and add the sysadmin user
to the administrative entries in the BOS database with a local authentication
(i.e. using the KeyFile as an authentication means):

112 5 OpenAFS

bos setcellname
afs2.example.edu example.edu -localauth

bos adduser afs2.example.edu sysadmin -localauth

The last step, before fully employing the Kerberos principal to administer
the cell, is to add the current FQDN of afs2 to the list of known database
servers:

bos listhosts afs2.example.edu
Cell name is example.edu

Host 1 is afs2

bos addhost afs2 afs1.example.edu -localauth
bos addhost afs2 afs2.example.edu -localauth

bos removehost afs2.example.edu afs2 -localauth

bos listhosts afs2 -localauth
Cell name is example.edu

Host 1 is afs1.example.edu
Host 2 is afs2.example.edu

As we have seen previously, we removed the entry for the machine that
was added by BOS itself. It is possible now to run all the commands with the
sysadmin user, obtaining the initial ticket and then translating it to an AFS
token:

kinit sysadmin
Password for sysadmin@EXAMPLE.EDU:

aklog

The known hosts for afs2 has been already set, so we need to add the new
database server to the list on afs1. This operation can be done using the bos
command on the secondary database machine, provided that we have a valid
token as an administrative user:

bos listhosts afs1.example.edu
Cell name is example.edu

Host 1 is afs1.example.edu

bos addhost afs1.example.edu afs2.example.edu

bos listhosts afs1.example.edu
Cell name is example.edu

Host 1 is afs1.example.edu
Host 2 is afs2.example.edu

As the database list of both servers are synchronized, we can restart the
server and client-side services, and then add the necessary backup, protection
and volume location instances to the BOS server running on afs2:

5.3 Additional Servers 113

bos create afs2 buserver simple /usr/lib/openafs/buserver

bos create afs2 ptserver simple /usr/lib/openafs/ptserver

bos create afs2 vlserver simple /usr/lib/openafs/vlserver

bos status afs2 -long
Instance buserver, (type is simple) currently running normally.

Process last started at Thu Jun 15 12:50:22 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/buserver’

Instance ptserver, (type is simple) currently running normally.
Process last started at Thu Jun 15 12:52:48 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/ptserver’

Instance vlserver, (type is simple) currently running normally.
Process last started at Thu Jun 15 12:52:55 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/vlserver’

The database entries on afs2 are automatically synchronized with the
items present on the first machine, and no further human intervention is
needed to keep the AFS databases synchronized. We may notice that we could
proceed creating a file server instance on the secondary machine—supplying
a valid /vicepX partition—in case we wanted afs2 to be also a file server.
Clients can benefit from more database server hosts from the moment that
these are configured in their CellServDB files.

5.3.2 Secondary File Servers

Large installations may need a great quantity of disk space, and this fact is
reflected for AFS by the number of file servers in a cell. Adding numerous file
servers allows the administrators to distribute resources—volumes in the AFS
terminology—across the network, and thanks to the volume location process,
the distribution is not limited to a local connection9.

In the following we are going to create a pure file server called fs01,
following the same steps we have seen before. Pure file servers are meant to
add disk space to an AFS cell, so they are usually machines with a large
amount of hard drive space, and possibly various /vicepX partitions. We
assume that the fs01 machine has already been configured to be a Kerberos
client, with mounted /vicepX partitions.

Configuring the File Server

Instead of installing the openafs-dbserver which installs the database and
the file server tools, we install the openafs-fileserver package along with
the usual Kerberos-OpenAFS tools. As usual Debian configures the package
and finally asks whether or not to start the OpenAFS client. It is safe to start
the client at this point since all the database servers are up and running, while
9 An AFS cell does not require a LAN locality, servers may be on different networks

and continents, as long as the database servers are accessible.

114 5 OpenAFS

the BOS server is automatically started by the Debian installer without any
inquiry.

Let us proceed then stopping the BOS server and using the asetkey tool
to import the secret key from the keytab file which we transfer on the file
server with a safe medium. After removing the server configuration files, we
can start BOS and configure it by setting the cell name and the database
servers with the local authentication:

bos setcellname
fs01.example.edu example.edu -localauth

bos addhost fs01 afs1.example.edu -localauth

bos addhost fs01 afs2.example.edu -localauth

bos removehost fs01 fs01 -localauth

After this preliminary configuration we can add the sysadmin user to the
privileged users list and then restart the file server in order to make changes
take effect:

bos adduser fs01.example.edu sysadmin -localauth

bos listusers fs01 -localauth
SUsers are: sysadmin

/etc/init.d/openafs-fileserver start
Starting AFS Server: bosserver.

We are now ready to fully employ the Kerberized server by getting the
initial ticket for sysadmin and converting it to the corresponding AFS token.
The BOS server on the new machine does not handle any instance, as we can
see from its status:

bos status fs01 -long

The new file server needs to be completed by adding the new fs instance
with type fs to the BOS instance list:

bos create fs01 fs fs -cmd /usr/lib/openafs/fileserver \
-cmd /usr/lib/openafs/volserver -cmd /usr/lib/openafs/salvager

bos status fs01 -long
Instance fs, (type is fs) currently running normally.

Auxiliary status is: file server running.
Process last started at Thu Jun 15 15:26:04 2006 (2 proc starts)
Command 1 is ’/usr/lib/openafs/fileserver’
Command 2 is ’/usr/lib/openafs/volserver’
Command 3 is ’/usr/lib/openafs/salvager’

5.3.3 Volume Management

The ability to move volumes among AFS file servers is one of the major
features of this architecture. This characteristic has a great impact on large

5.3 Additional Servers 115

installations where file servers may be sensibly placed and administered in
order to create a load balancing and concentrate disk space where it is needed.

OpenAFS can easily move volumes without creating downtime during this
process: a lock is retained on the first and very last instants of the operation.
Let us move one of the volumes previously created on afs1 to the new file
server fs01. The list of volumes present on afs1 is as follows:

vos listvol afs1
Total number of volumes on server afs1 partition /vicepa: 5
cell.software 536870924 RW 3 K On-line
cell.users 536870921 RW 2 K On-line
root.afs 536870915 RW 4 K On-line
root.cell 536870918 RW 4 K On-line
software.debian 536870927 RW 111241 K On-line

Total volumes onLine 5 ; Total volumes offLine 0 ; Total busy 0

The vos tool can move volumes among file servers with the move command,
feeding it with the volume ID or its name, the originating server and partition,
and the destination server and partition, as we can see in the following example
that moves the software.debian volume:

vos move -id software.debian -fromserver afs1 -frompartition vicepa \
-toserver fs01 -topartition vicepa
Volume 536870927 moved from afs1 /vicepa to fs01 /vicepa

The same rule of shortcutting commands is applied also to vos services,
removing the switch -id, and avoid the prefix vicep from partition names
(e.g. a would be assumed to be vicepa).

The moving process is displayed on both target and origin file servers,
showing a busy volume on both sides:

vos listvol afs1
Total number of volumes on server afs1 partition /vicepa: 6
cell.software 536870924 RW 3 K On-line
cell.users 536870921 RW 2 K On-line
root.afs 536870915 RW 4 K On-line
root.cell 536870918 RW 4 K On-line
software.debian 536870927 RW 111241 K On-line
**** Volume 536870930 is busy ****

Total volumes onLine 5 ; Total volumes offLine 0 ; Total busy 1

vos listvol fs01
Total number of volumes on server fs01 partition /vicepa: 1
**** Volume 536870927 is busy ****

Total volumes onLine 0 ; Total volumes offLine 0 ; Total busy 1

We can notice that the volume ID of the busy volume on the source file
server differs from the ID of the volume we are actually moving, while on the
target side the same ID appears correctly: a volume clone is created so that
users can continue to read ad write while the operation is in progress. The

116 5 OpenAFS

volumes at the end of the process retain the original ID and the clone is finally
removed:

vos listvol afs1
Total number of volumes on server afs1 partition /vicepa: 4
cell.software 536870924 RW 3 K On-line
cell.users 536870921 RW 2 K On-line
root.afs 536870915 RW 4 K On-line
root.cell 536870918 RW 4 K On-line

Total volumes onLine 4 ; Total volumes offLine 0 ; Total busy 0

vos listvol fs01
Total number of volumes on server fs01 partition /vicepa: 1
software.debian 536870927 RW 111241 K On-line

Total volumes onLine 1 ; Total volumes offLine 0 ; Total busy 0

5.4 Replication and Backup

OpenAFS provides the ability to replicate volumes on file servers, although
replicas are limited to just one read and write enabled volume, with several
read-only replicas. Replicating volumes, and automatically synchronizing the
read-only replicas can be a straightforward backup facility.

Replication is one of the many possible implementation for backups, one
of the most important tasks to ensure a fairly low probability of data loss. In
the following sections we will first illustrate the replication process, and next
we will provide a view over some backup procedures that employ current AFS
capabilities.

5.4.1 Replicas

Replicating volumes inside a cell provides an easy way of creating backups of
critical data. Clients accessing the AFS file space choose to read data from
read-only volumes as long as it is possible, avoiding possible connection fail-
ures. The first volume to be replicated is the main cell volume root.cell.
Before proceeding in replica creation, we create a new mount point for our
cell volume forcing it to be write-enabled adding the -rw switch:

fs mkmount /afs/.example.edu root.cell -rw

The choice of the mount point name is not arbitrary: on UNIX systems
files whose name begin with a dot are considered hidden:

ls -a /afs
./ ../ .example.edu/ example.edu/ grand.central.org/

Volume names also differ when querying the file server about the two
different mount points:

5.4 Replication and Backup 117

fs lsmount /afs/example.edu
’/afs/example.edu’ is a mount point for volume ’#root.cell’

fs lsmount /afs/.example.edu
’/afs/.example.edu’ is a mount point for volume ’%root.cell’

Here # indicate a regular mount point and % indicate a read/write mount
point followed by the name of the volume.

Creating Replicas

The replicas of a volume are called in the correct AFS terminology replication
sites, and we are allowed to have up to 11 RO replicas for one RW volume
which might have a backup volume introduced later. The vos program is
used to create replication sites with the addsite command, specifying the
file server and the partition where the replica should be created, along with
the volume ID of the chosen volume. Let us create a replica for the root.afs
volume on both our file servers, afs1 and fs01:

vos addsite -server afs1 -partition a -id root.afs
Added replication site afs1 /vicepa for volume root.afs

vos addsite -server fs01 -partition a -id root.afs
Added replication site fs01 /vicepa for volume root.afs

The same procedure can be applied to the cell root volume, root.cell,
on both file servers:

vos addsite -server afs1 -partition a -id root.cell
Added replication site afs1 /vicepa for volume root.cell

vos addsite -server fs01 -partition a -id root.cell
Added replication site fs01 /vicepa for volume root.cell

Thus we have created two replication sites for each root volume, but no
change has been made to the read-write volume:

vos volinfo root.afs
root.afs 536870915 RW 4 K On-line

afs1.example.edu /vicepa
RWrite 536870915 ROnly 0 Backup 0
MaxQuota 5000 K
Creation Thu Jun 8 12:42:45 2006
Copy Thu Jun 8 12:42:45 2006
Backup Never
Last Update Thu Jun 15 11:59:46 2006
50 accesses in the past day (i.e., vnode references)

RWrite: 536870915
number of sites -> 3

server afs1.example.edu partition /vicepa RW Site
server afs1.example.edu partition /vicepa RO Site -- Not released
server fs01.example.edu partition /vicepa RO Site -- Not released

vos volinfo root.cell

118 5 OpenAFS

root.cell 536870918 RW 4 K On-line
afs1.example.edu /vicepa
RWrite 536870918 ROnly 0 Backup 0
MaxQuota 5000 K
Creation Thu Jun 8 13:00:59 2006
Copy Thu Jun 8 13:00:59 2006
Backup Never
Last Update Thu Jun 15 11:16:49 2006
21 accesses in the past day (i.e., vnode references)

RWrite: 536870918
number of sites -> 3

server afs1.example.edu partition /vicepa RW Site
server afs1.example.edu partition /vicepa RO Site -- Not released
server fs01.example.edu partition /vicepa RO Site -- Not released

In order to allow changes take effect we need to release the root.cell and
root.afs volumes, an operation performed by the vos tool with the release
command followed by the volume ID:

vos release root.afs
Released volume root.afs successfully

vos release root.cell
Released volume root.cell successfully

Working with Replicas

Once that replication sites have been created, the read-only volume cannot
be modified easily and all the changes take effect only upon a volume release,
in other words, all the changes must be made to the read-write volume and
successively released.

In this case, the example.edu mount point has become a read-only lo-
cation, and no changes are ever made available to users until the volume
associated to .example.edu gets released. We can test that effectively the
/afs/example.edu/ location is non-modifiable even by the system adminis-
trator sysadmin:

tokens

Tokens held by the Cache Manager:

User’s (AFS ID 1) tokens for afs@example.edu [Expires Jun 16 02:29]
--End of list--

cd /afs/example.edu/

touch aaa
touch: cannot touch ‘aaa’: Read-only file system

The property does not affect volumes with no replication sites. For in-
stance, the cell.users volume we have previously created is write-enabled:

5.4 Replication and Backup 119

cd /afs/example.edu/users

mkdir aaa

ls -l
total 2
drwxr-xr-x 2 daemon root 2048 2006-06-15 16:35 aaa/

rmdir aaa

A read-only volume as replication site is modified only upon a volume
release command, as we have previously explained. Let us show how this be-
havior affects users and administrators by creating a new volume for network
services called cell.services:

vos create afs1 a cell.services
Volume 536870931 created on partition /vicepa of afs1

The new volume should now be mounted in a proper location, we de-
cide to have a directory named /afs/example.edu/services/ that contains
service data, for instance web pages. Trying to mount the volume directly
as /afs/example.edu/services/ results in a failure, since the location is a
read-only site with replicas. Mounting the volume in the write-enabled loca-
tion .example.edu results in success:

fs mkmount example.edu/services cell.services
fs: You can not change a backup or readonly volume

fs mkmount .example.edu/services cell.services

The volume we have modified is the write-enabled version of root.cell
which is commonly accessed by users. In fact, when inspecting both locations
we notice that the read-only volume still has no knowledge about the newly
mounted service volume:

ls example.edu/
software/ users/

ls .example.edu/
services/ software/ users/

After releasing the root.cell volume we can notice that the two sites
have been synchronized, and changes are made visible to clients:

vos release root.cell
Released volume root.cell successfully

ls example.edu/
services/ software/ users/

ls .example.edu/
services/ software/ users/

120 5 OpenAFS

Modifying the AFS File Space

In the past we have advised to mount all the foreign cells before proceeding. As
we introduced the replication sites for the root.afs volume, which contains
the AFS file space, no modifications are allowed anymore: currently there is
no read-write volume mounted for the /afs/ space. It is possible to mount
other cells even when a replication site for the root volume has been created,
although the procedure is a bit tricky.

Suppose we want to mount the AFS cell of the School of Computer Science
from the Carnegie Mellon University, whose cell name is cs.cmu.edu:

cd /afs

fs mkmount cs.cmu.edu root.cell -cell cs.cmu.edu
fs: You can not change a backup or readonly volume

In order to mount the foreign cell we need a read-write mount point. The
operation is simple: mount the AFS root volume in a temporary mount point
as a write-enabled location which contains then a modifiable version of our
AFS file space. Let us proceed then mounting the AFS file space into that
auxiliary location under the write-enabled location .example.edu, using the
forcing switch -rw:

cd .example.edu/

fs mkmount temp root.afs -rw

We see now that the temp directory contains the AFS file space as in
/afs/, with the exception that in this location we are cleared to modify the
mounted volume:

cd temp

ls
example.edu/ grand.central.org/

fs mkmount cs.cmu.edu root.cell -cell cs.cmu.edu

The fs command should end successfully mounting the external AFS cell:

ls /afs/.example.edu/temp/
cs.cmu.edu/ example.edu/ grand.central.org/

ls /afs/.example.edu/temp/cs.cmu.edu/
academic/ hp700_ux100/ misc/ rt_mach/ sun4_413/ system/
alpha_dux40/ hp700_ux90/ mmax_mach/ service/ sun4_53/ unix@
alpha_osf1/ i386_fc3/ next_mach@ sgi_53/ sun4_54/ user/
alpha_osf20/ i386_linux1/ org/ sgi_62/ sun4_55/ usr@
alpha_osf32/ i386_mach/ os/ sun3_40/ sun4c_40@ vax_22/
amd64_fc3/ ibmrt_mach@ pmax_mach/ sun3_41/ sun4c_41/ vax_mach/
archive/ links_mach/ pmax_ul43a/ sun3_mach/ sun4c_411/ Web/
common/ local@ project/ sun4_40/ sun4m_412@
data/ luna88k_mach/ publications/ sun4_40c/ sun4_mach/

5.4 Replication and Backup 121

help/ mach/ root@ sun4_41/ sun4x_57/
host/ mac_sys7/ rs_aix32/ sun4_411/ sunos/

At this point we can safely remove the temporary mount point:

fs rmmount temp

The current version of our AFS cell is not affected by any change: in fact,
since we added a replication site, the /afs/ location is read-only and becomes
synchronized with the read-write volume only upon release:

ls /afs
example.edu/ grand.central.org/

vos release root.afs
Released volume root.afs successfully

After releasing the root.afs volume our AFS file space reflects the changes
previously made to the temporary mount point, correctly showing cs.cmu.edu
mounted in the cell root:

ls /afs
cs.cmu.edu/ example.edu/ grand.central.org/

5.4.2 Backup

A good network architecture should involve fault-tolerance techniques, along
with a careful disaster recovery facility. Backups must be carefully planned
in order to lower as much as possible the probability of data loss in case of
hardware failures. We have already said that an AFS database server runs
an instance called buserver, which is specifically designed to keep track of
total and incremental backups. In the following we will describe the principal
backup commands used in an AFS file space. We stress the fact that such
commands require privileged access to the AFS volumes, so we will assume
that all the described operations are run by the sysadmin user possessing a
valid AFS token.

Volume Dump

The easiest method of backing up data from the AFS file space is to dump
the contents of a volume on a file. The vos tool, instructed with the dump
command, can perform a complete binary dump of a volume:

vos help dump
vos dump: dump a volume
Usage: vos dump -id <volume name or ID> [-time <dump from time>] [-file <dump file>] \
[-server <server>] [-partition <partition>] [-clone] [-cell <cell name>] [-noauth] \
[-localauth] [-verbose] [-encrypt] [-help]

122 5 OpenAFS

Where: -clone dump a clone of the volume
-noauth don’t authenticate
-localauth use server tickets
-verbose verbose
-encrypt encrypt commands

Let us dump the software.debian volume on a file in the local file system.
The dump operation exclusively locks a volume, denying any modification to
the contents while the process is running: for this reason a careful schedule
plan should be made in advance. The dump may require several minutes to
operate when employed as a full dump as in the following example:

vos dump -id software.debian -file /tmp/software-debian.dump
Dumped volume software.debian in file /tmp/software-debian.dump

Note that server and partition can be omitted in the command line, since
volumes are univocally located by the volume location server. The vos dump
operation allows also a -clone switch that avoids the exclusive volume lock:

vos dump -id software.debian -file /tmp/software-debian.clone-dump -clone
Dumped volume software.debian in file /tmp/software-debian.clone-dump

Although necessary, complete dumps are not always the best choice for
backing up data. The AFS tools allow also incremental dumps of a volume,
provided a time specification through the -time switch of the dump command.
The date specification is given in the format mm/dd/yyyy hh:MM, where the
date is mandatory and time is optional (a date equal to 0 indicates a full
dump).

In case of failure a volume can be restored from a dump with the restore
command issued to the vos program:

vos help restore
vos restore: restore a volume
Usage: vos restore -server <machine name> -partition <partition name> \
-name <name of volume to be restored> [-file <dump file>] [-id <volume ID>] \
[-overwrite <abort | full | incremental>] [-offline] [-readonly] \
[-creation <dump | keep | new>] [-lastupdate <dump | keep | new>] \
[-cell <cell name>] [-noauth] [-localauth] [-verbose] [-encrypt] [-help]
Where: -offline leave restored volume offline

-readonly make restored volume read-only
-noauth don’t authenticate
-localauth use server tickets
-verbose verbose
-encrypt encrypt commands

In order to restore a volume, we must specify the file server and partition
where the dump should be restored, as well as the target volume ID. In the
following example we restore from a dump file the volume software.debian
on the partition /vicepa of afs1:

5.4 Replication and Backup 123

vos restore afs1 a software.debian -file /tmp/software-debian.dump
Restoring volume software.debian Id 536870935 on server afs1.example.edu \
partition /vicepa .. done
Restored volume software.debian on afs1 /vicepa

Note that a restore actually restores both data and permissions as they
were before dumping the contents of a volume. Symmetrically to an incre-
mental dump, restoring a volume may be an incremental process, specified
with the -overwrite option which allows different behaviors in case we are
overwriting an existing volume: an abortion (-overwrite a) of the process, a
full restore (-overwrite f) or an incremental one (-overwrite i). Although
appealing, we would recommend to avoid the use of dump files for backups,
since AFS provides a more sophisticated method.

Backup Volumes

The AFS services provide a specific backup solution similar to the replication
sites we have previously introduced: a particular volume type called backup
volume. This particular kind of volumes are employed for full backups, which
can be scheduled by the BOS server.

Backup volumes are created as usual via the vos program with the backup
command, feeding it with the volume ID or name, as we can see from the
command help output:

vos help backup
vos backup: make backup of a volume
Usage: vos backup -id <volume name or ID> [-cell <cell name>] [-noauth] [-localauth] \
[-verbose] [-encrypt] [-help]
Where: -noauth don’t authenticate

-localauth use server tickets
-verbose verbose
-encrypt encrypt commands

The command creates a new volume with the .backup suffix. This partic-
ular type of volumes, contrary to a replication site, are bound to be created
on the same file server where the original volume is stored, as we can see by
listing the available volumes after creating the backup for both the AFS and
the cell root volumes:

vos backup root.afs
Created backup volume for root.afs

vos backup root.cell
Created backup volume for root.cell

vos listvol afs1
Total number of volumes on server afs1 partition /vicepa: 10
cell.services 536870931 RW 2 K On-line
cell.software 536870924 RW 3 K On-line
cell.users 536870921 RW 2 K On-line
root.afs 536870915 RW 6 K On-line
root.afs.backup 536870917 BK 6 K On-line
root.afs.readonly 536870916 RO 6 K On-line

124 5 OpenAFS

root.cell 536870918 RW 5 K On-line
root.cell.backup 536870920 BK 5 K On-line
root.cell.readonly 536870919 RO 5 K On-line
software.debian 536870935 RW 111241 K On-line

Total volumes onLine 10 ; Total volumes offLine 0 ; Total busy 0

It is possible to create backup volumes specifying a common prefix for the
volume ID, using the backupsys command of vos. The command allows us
also to apply negative prefixes and show the proceeding of a backup operation
without actually performing it:

vos help backupsys
vos backupsys: en masse backups
Usage: vos backupsys [-prefix <common prefix on volume(s)>+] [-server <machine name>] \
[-partition <partition name>] [-exclude] [-xprefix <negative prefix on volume(s)>+] \
[-dryrun] [-cell <cell name>] [-noauth] [-localauth] [-verbose] [-encrypt] [-help]
Where: -exclude exclude common prefix volumes

-dryrun no action
-noauth don’t authenticate
-localauth use server tickets
-verbose verbose
-encrypt encrypt commands

As an example we could create backups for all the volumes whose names
begin with cell, by using the -prefix switch followed by the prefixed string:

vos backupsys -prefix cell
done
Total volumes backed up: 3; failed to backup: 0

vos listvol afs1
Total number of volumes on server afs1 partition /vicepa: 13
cell.services 536870931 RW 2 K On-line
cell.services.backup 536870933 BK 2 K On-line
cell.software 536870924 RW 3 K On-line
cell.software.backup 536870926 BK 3 K On-line
cell.users 536870921 RW 2 K On-line
cell.users.backup 536870923 BK 2 K On-line
root.afs 536870915 RW 6 K On-line
root.afs.backup 536870917 BK 6 K On-line
root.afs.readonly 536870916 RO 6 K On-line
root.cell 536870918 RW 5 K On-line
root.cell.backup 536870920 BK 5 K On-line
root.cell.readonly 536870919 RO 5 K On-line
software.debian 536870935 RW 111241 K On-line

Total volumes onLine 13 ; Total volumes offLine 0 ; Total busy 0

The -dryrun switch is useful in case we want to inspect the volumes
that would be affected by the process without actually running a backup
operation:

vos backupsys -prefix cell -dryrun
cell.users
cell.software
cell.services

done
Total volumes backed up: 0; failed to backup: 0

5.4 Replication and Backup 125

Backing up volumes is a critical operation and should be done regularly and
automatically. The BOS server provides a special instance type for scheduled
jobs called cron, as the common UNIX daemon. As usual BOS runs and
monitors all the processes it is demanded to handle, allowing an AFS server
to securely handle a crucial task as backups. Usually these are scheduled at
night in order to avoid interferences with business time. The name given to
the cron instance is customary, although as any other choice in a working
environment, should be chosen with certain criteria.

As an example, we create an instance called backuproot on the afs1
database server, with type cron, that creates backup volumes at 1am, target-
ing the root volumes (i.e. root.afs and root.cell):

bos create -server afs1 -instance backuproot -type cron -cmd "/usr/bin/vos backupsys \
-prefix root -localauth" "01:00"

Note that a local authentication via the KeyFile is needed by the issued
vos command: a backup accesses privileged information in the AFS file space
an thus it must be run with administrative privileges. The cron instance
is shown correctly when querying the BOS status, displaying also the next
scheduled run:

bos status -long afs1
Instance buserver, (type is simple) currently running normally.

Process last started at Tue Jun 20 10:01:56 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/buserver’

Instance ptserver, (type is simple) currently running normally.
Process last started at Tue Jun 20 10:01:56 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/ptserver’

Instance vlserver, (type is simple) currently running normally.
Process last started at Tue Jun 20 10:01:56 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/vlserver’

Instance fs, (type is fs) currently running normally.
Auxiliary status is: file server running.
Process last started at Tue Jun 20 10:01:56 2006 (2 proc starts)
Command 1 is ’/usr/lib/openafs/fileserver’
Command 2 is ’/usr/lib/openafs/volserver’
Command 3 is ’/usr/lib/openafs/salvager’

Instance backuproot, (type is cron) currently running normally.
Auxiliary status is: run next at Wed Jun 21 01:00:00 2006.
Command 1 is ’/usr/bin/vos backupsys -prefix root -localauth’
Command 2 is ’01:00’

It is possible to schedule several cron-driven operations, for instance cre-
ating backups for all the volumes whose names start with cell at 3am:

bos create -server afs1 -instance backupcell -type cron -cmd "/usr/bin/vos backupsys \
-prefix cell -localauth" "03:00"

bos status -long afs1
Instance buserver, (type is simple) currently running normally.

Process last started at Tue Jun 20 10:01:56 2006 (1 proc starts)

126 5 OpenAFS

Command 1 is ’/usr/lib/openafs/buserver’

Instance ptserver, (type is simple) currently running normally.
Process last started at Tue Jun 20 10:01:56 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/ptserver’

Instance vlserver, (type is simple) currently running normally.
Process last started at Tue Jun 20 10:01:56 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/vlserver’

Instance fs, (type is fs) currently running normally.
Auxiliary status is: file server running.
Process last started at Tue Jun 20 10:01:56 2006 (2 proc starts)
Command 1 is ’/usr/lib/openafs/fileserver’
Command 2 is ’/usr/lib/openafs/volserver’
Command 3 is ’/usr/lib/openafs/salvager’

Instance backuproot, (type is cron) currently running normally.
Auxiliary status is: run next at Wed Jun 21 01:00:00 2006.
Command 1 is ’/usr/bin/vos backupsys -prefix root -localauth’
Command 2 is ’01:00’

Instance backupcell, (type is cron) currently running normally.
Auxiliary status is: run next at Wed Jun 21 03:00:00 2006.
Command 1 is ’/usr/bin/vos backupsys -prefix cell -localauth’
Command 2 is ’03:00’

Backup batch jobs are usually executed when the AFS file space is less
unused, since such operations lock the volumes for a very short time.

The Backup Tape Coordinator

The backup volumes are created in order to support a powerful backup man-
ager. Similarly to a dump, our objective is to save this particular type of
volumes in case of data loss. The privileged legacy medium, but still in use in
many companies, are magnetic tapes.

In our environment, in order to show how to implement a backup system,
we choose to save the backup volumes on the secondary database server afs2,
but it would be sufficient to be a normal client of the cell. Let us first create the
location where the backup system reads its configuration settings. By default
this location is named backup under the /var/lib/openafs/ directory:

ls -l /var/lib/openafs/
total 12
drwxr-xr-x 2 root root 4096 2006-06-20 12:05 backup/
drwx------ 2 root root 4096 2005-05-14 21:49 cores/
drwx------ 2 root root 4096 2006-06-15 12:52 db/

At this point we have to decide the backup medium. Usually the process
would start a tape device by opening the special file under /dev/, dumping
the contents to the magnetic tape. This process is entirely driven by the butc
tool, the backup tape coordinator. The program allows us also to use different
device files, including a mounted partition, which is our preferred medium to
show the backup process. The butc configuration highly relies on the device
file name we intend to use, and we choose to use a device called /dev/backup

5.4 Replication and Backup 127

which is a symbolic link to a file that the tool creates upon completing the
operation. The /butc/ directory is a local mount point with enough free disk
space:

ls -l /dev/backup
lrwxrwxrwx 1 root root 18 2006-06-20 12:17 /dev/backup -> /butc/afsbackup

In the /var/lib/openafs/backup/ subdirectory we have to create the
configuration file for the backup tape coordinator named tapeconfig. This
configuration file specifies the size of the backup, a number followed by K, M, G,
or T—or their respective lowercase versions—indicating kilobytes, megabytes,
gigabytes or terabytes, respectively. The second parameter is the End-Of-File
marker which specifies the separating sign between different volumes, and it is
established by the manufacturer: if using a file as a backup medium then the
value should be set to 0, although disregarded by butc in this case10. Following
the mark, we need to specify the device and the port offset associated with
the backup tape, which is a unique integer number among tape coordinators
in the cell. In our example, we choose to use /dev/backup with 100 gigabytes
of size:

100G 0 /dev/backup 0

The device name specified in tapeconfig decides the device configuration
file. Each backup medium must be properly configured in the same directory
as tapeconfig with a file whose name is in the format CFG device, in our case
then CFG backup. This file contains a list of options for the device operation, as
whether or not it is a file, or if the process should ask for human intervention:

AUTOQUERY NO
FILE YES
NAME_CHECK NO

The AUTOQUERY parameter specifies whether the system should prompt a
human user about inserting the first tape, and the NAME CHECK specifies if
the tape name should be checked before processing the backup. The FILE
parameter is obviously describing whether the backup is done on a file or on
a real device. Both the tape coordinator and device are set up and we can
safely start the butc tool on the afs2 server:

butc -localauth
Auto query is disabled
Will dump to a file
Dump tape name check is disabled
Starting Tape Coordinator: Port offset 0 Debug level 0
Token expires: NEVER

The command is idle until we send a backup start command.
10 The EOF specification follows the same rule as the backup size, with the default

size set to bytes.

128 5 OpenAFS

Backup Sets

The backup tape coordinator along with the backup program can be employed
to run scheduled operations, configuring these with the backup AFS tool.
Contrary to all other programs we have used until this point, the backup
can be either run from the command line as fs and vos, or it can be used
interactively like the kadmin tool:

backup
backup> help
Commands are:
adddump add dump schedule
addhost add host to config
addvolentry add a new volume entry
addvolset create a new volume set
apropos search by help text
dbverify check ubik database integrity
deldump delete dump schedule
deletedump delete dumps from the database
delhost delete host to config
delvolentry delete a volume set sub-entry
delvolset delete a volume set
diskrestore restore partition
dump start dump
dumpinfo provide information about a dump in the database
help get help on commands
interactive enter interactive mode
jobs list running jobs
kill kill running job
labeltape label a tape
listdumps list dump schedules
listhosts list config hosts
listvolsets list volume sets
quit leave the program
readlabel read the label on tape
restoredb restore backup database
savedb save backup database
scantape dump information recovery from tape
setexp set/clear dump expiration dates
status get tape coordinator status
volinfo query the backup database
volrestore restore volume
volsetrestore restore a set of volumes
backup>

The backup server is not aware of the backup host running butc, so we
first need to add the afs2 machine to the backup tape hosts with the addhost
command followed by the tape port offset. The status of the butc process
running on afs2 should be idle, viewable via status:

backup> addhost afs2.example.edu 0
Adding host afs2.example.edu offset 0 to tape list...done

backup> status
Tape coordinator is idle

The backup system may handle several backup configurations, called vol-
ume sets, each of them with a meaningful name (e.g. users, homes, web). In
our example we specify a unique volume set for all the backup volumes called

5.4 Replication and Backup 129

backups. Adding a volume set is possible through the addvolset command
of backup:

backup> addvolset -name backups

Now the volume set must be configured assigning all the volume IDs,
partitions and hosts that should be added to the backup operation when
processing the backups volume set. All the parameters may be expressed with
regular expressions fed to the addvolentry command. The example shows
how to add all the volumes, on every server, regardless of the partition, whose
names end with .backup:

backup> addvolentry -name backups -server .* -partition .* -volumes .*\.backup

Note that since the dot is a special character in regular expressions, we
had to protect it with a backslash. The list of volume sets can be viewed with
the listvolset command:

backup> listvolsets
Volume set backups:

Entry 1: server .*, partition .*, volumes: .*\.backup

The backup dumping system is similar to a directory specification. A dump
name beginning with a slash, for instance /full, indicate a full backup dump.
Subsequent “sub-dumps” can be specified adding the name as if it were a
subdirectory, as in /full/w1. The last specification indicates an incremental
backup named w1, done with respect to the full back /full: a backup named
/full/w1/w2 stands for an incremental backup with respect to w1, which is
actually an incremental backup with respect to the parent /full.

This specification makes it possible to design a complete backup hier-
archy, where each dump is added through the adddump command, and the
name specifies whether it is a full or an incremental backup. The following
commands add five backup dumps, the first being full, while all the others are
incremental backups with respect to the first:

backup> adddump -dump /full
backup: Created new dump schedule /full

backup> adddump -dump /full/w1
backup: Created new dump schedule /full/w1

backup> adddump -dump /full/w2
backup: Created new dump schedule /full/w2

backup> adddump -dump /full/w3
backup: Created new dump schedule /full/w3

backup> adddump -dump /full/w4
backup: Created new dump schedule /full/w4

130 5 OpenAFS

The names given to dumps are completely customary, although meaningful
names may help. In this example, we are implying to make weekly backups
incrementally from the first full dump. It is also possible to create incremental
backups that rely on the preceding one. Since we have already created the w1
dump, we have to add the following three weekly operations:

backup> adddump -dump /full/w1/w2
backup: Created new dump schedule /full/w1/w2

backup> adddump -dump /full/w1/w2/w3
backup: Created new dump schedule /full/w1/w2/w3

backup> adddump -dump /full/w1/w2/w3/w4
backup: Created new dump schedule /full/w1/w2/w3/w4

The listdumps command shows the complete hierarchy we have previously
specified:

backup> listdumps
/full

/w1
/w2

/w3
/w4

/w2
/w3
/w4

Dumping Backups

After specifying the backup hierarchy we are ready to create the backup dumps
using the dump command, followed by the volume set and the backup level,
which is obviously /full since it is the first backup process we ever started:

backup> dump backups /full
Starting dump of volume set ’backups’ (dump level ’/full’)
Total number of volumes : 5
Preparing to dump the following volumes:

cell.services.backup (536870933)
cell.software.backup (536870926)
cell.users.backup (536870923)
root.cell.backup (536870920)
root.afs.backup (536870917)

backup> Starting dump
backup: Task 1: Dump (backups.full)
Job 1: Dump (backups.full) finished. 5 volumes dumped

On the afs2 host we can notice that the backup device, in this case the
/butc/afsbackup file as declared in the configuration, has been used success-
fully:

ls -l /butc/afsbackup
-rwxr-xr-x 1 root root 360448 2006-06-20 13:02 afsbackup*

5.4 Replication and Backup 131

As expected, the backup tape coordinator butc, once idle, now shows that
the dump process has been successfully performed:

butc -localauth
Auto query is disabled
Will dump to a file
Dump tape name check is disabled
Starting Tape Coordinator: Port offset 0 Debug level 0
Token expires: NEVER

Dump backups.full (DumpID 1150801336)
Updating database
Updating database - done
backups.full (DumpId 1150801336): Finished. 5 volumes dumped

It is then straightforward to implement incremental backups, since all is
needed is the hierarchy specification fed to the backup dump command (e.g.
/full/w1/w2).

The butc program we have run interactively is configured to use the device
/dev/backup. If this file were a real tape device we could avoid the follow-
ing consideration: every time a backup is performed, butc opens the device
and writes onto it. This detail is of primary importance when using on-file
dumps, since the /butc/afsbackup file gets overwritten each time a dump is
performed. It is then essential to rename the backup dump file at each run:

ls -l /butc/full*
-rwxr-xr-x 1 root root 360448 2006-06-20 13:02 full-2006-06-20*

Actually it is not strictly necessary to restart butc every time, but the file
should be renamed according to some scheme. As another backup operation
we can save the backup database contents to the /dev/backup device with
the savedb command:

> savedb
backup> Job 1: SaveDb finished

Note that all the commands in backup are started as background jobs,
and in the last example the butc output shows that the database has been
correctly dumped:

butc -localauth
Auto query is disabled
Will dump to a file
Dump tape name check is disabled
Starting Tape Coordinator: Port offset 0 Debug level 0
Token expires: NEVER

SaveDb
SaveDb: Finished

132 5 OpenAFS

Again, the afsbackup file has been created and should be promptly re-
named in order to avoid data loss. The backup process takes place each time a
backup volume has been created, and backup refuses to run if no modifications
have been made since the last backup volume creation:

butc -localauth
Auto query is disabled
Will dump to a file
Dump tape name check is disabled
Starting Tape Coordinator: Port offset 0 Debug level 0
Token expires: NEVER

Dump backups.w1 (DumpID 1150806686)
Volume cell.services.backup (536870933) not dumped - has not been re-cloned since last dump
Volume cell.software.backup (536870926) not dumped - has not been re-cloned since last dump
Volume cell.users.backup (536870923) not dumped - has not been re-cloned since last dump
Volume root.cell.backup (536870920) not dumped - has not been re-cloned since last dump
Volume root.afs.backup (536870917) not dumped - has not been re-cloned since last dump
Volume cell.services.backup (536870933) not dumped - has not been re-cloned since last dump

Dump of volume cell.services.backup (536870933) failed

Please select action to be taken for this volume
r - retry, try dumping this volume again
o - omit, this volume from this dump
a - abort, the entire dump

The process of creating backup volumes, starting butc and then issuing
a backup dump has been shown interactively for didactic purposes. In real
environments a careful and fully-automated backup plan is vital and should
be carefully scheduled.

Restoring Backups

Volume restoration is symmetrical to volume creation, performed by backup
with the volrestore command. In order to illustrate this feature, we perform
an incremental backup with respect to the full backup we have previously
created, and then restore one of the volumes. Let us first show the backup
output along with butc:

backup> dump backups /full/w1
Starting dump of volume set ’backups’ (dump level ’/full/w1’)
Found parent: dump backups.full (DumpID 1150801336)
Total number of volumes : 6
Preparing to dump the following volumes:

cell.services.backup (536870933)
software.debian.backup (536870936)
cell.software.backup (536870926)
cell.users.backup (536870923)
root.cell.backup (536870920)
root.afs.backup (536870917)

backup> Starting dump
backup: Task 1: Dump (backups.w1)
Job 1: Dump (backups.w1) finished. 6 volumes dumped

butc

5.4 Replication and Backup 133

Auto query is disabled
Will dump to a file
Dump tape name check is disabled
Starting Tape Coordinator: Port offset 0 Debug level 0
Token expires: Tue Jun 20 22:35:00 2006

Dump backups.w1 (DumpID 1150807202)
Updating database
Updating database - done
backups.w1 (DumpId 1150807202): Finished. 1 volumes dumped, 5 unchanged

The volrestore command replaces a given volume with the backup stored
during the last backup operation, restoring the volume on a particular parti-
tion of a given file server:

backup> volrestore -server afs1 -partition a -volume software.debian
backup> Starting restore

Incremental restore being processed on port 0
Job 1: Incremental Restore finished

Restoring the same volume twice, even on a different file server results in
a failure as the output of butc testifies:

backup> volrestore -server fs01 -partition a -volume software.debian
backup> Starting restore

Incremental restore being processed on port 0
Job 1: Incremental Restore finished

butc -localauth
Auto query is disabled
Will dump to a file
Dump tape name check is disabled
Starting Tape Coordinator: Port offset 0 Debug level 0
Token expires: NEVER

Restore
Restoring volume software.debian Id 536870935 on server fs01.example.edu partition \
/vicepa .. done

Failed to get info about server’s -1851667263 address(es) from vlserver (err=0)
Restore: Finished

Analyzing the situation on both file servers, we find an inconsistency be-
tween the volumes and the situation as reported by afs1, having on this host
an orphan backup volume software.debian.backup:

vos listvol afs1
Total number of volumes on server afs1 partition /vicepa: 13
cell.services 536870931 RW 2 K On-line
cell.services.backup 536870933 BK 2 K On-line
cell.software 536870924 RW 3 K On-line
cell.software.backup 536870926 BK 3 K On-line
cell.users 536870921 RW 2 K On-line

134 5 OpenAFS

cell.users.backup 536870923 BK 2 K On-line
root.afs 536870915 RW 6 K On-line
root.afs.backup 536870917 BK 6 K On-line
root.afs.readonly 536870916 RO 6 K On-line
root.cell 536870918 RW 5 K On-line
root.cell.backup 536870920 BK 5 K On-line
root.cell.readonly 536870919 RO 5 K On-line
software.debian.backup 536870936 BK 111241 K On-line

Total volumes onLine 13 ; Total volumes offLine 0 ; Total busy 0

vos listvol fs01
Total number of volumes on server fs01 partition /vicepa: 4
root.afs.readonly 536870916 RO 6 K On-line
root.cell.readonly 536870919 RO 5 K On-line
software.debian 536870935 RW 111241 K On-line
software.debian.backup 536870936 BK 111241 K On-line

Total volumes onLine 4 ; Total volumes offLine 0 ; Total busy 0

The server partition has not been synchronized with the volume location
database (VLDB). By issuing a syncserv command to vos we can force afs1
to synchronize its status with the VLDB, and thus correcting the inconsisten-
cies:

vos syncserv afs1 a
Server afs1 partition /vicepa synchronized with VLDB

vos listvol afs1
Total number of volumes on server afs1 partition /vicepa: 12
cell.services 536870931 RW 2 K On-line
cell.services.backup 536870933 BK 2 K On-line
cell.software 536870924 RW 3 K On-line
cell.software.backup 536870926 BK 3 K On-line
cell.users 536870921 RW 2 K On-line
cell.users.backup 536870923 BK 2 K On-line
root.afs 536870915 RW 6 K On-line
root.afs.backup 536870917 BK 6 K On-line
root.afs.readonly 536870916 RO 6 K On-line
root.cell 536870918 RW 5 K On-line
root.cell.backup 536870920 BK 5 K On-line
root.cell.readonly 536870919 RO 5 K On-line

Total volumes onLine 12 ; Total volumes offLine 0 ; Total busy 0

vos listvol fs01
Total number of volumes on server fs01 partition /vicepa: 4
root.afs.readonly 536870916 RO 6 K On-line
root.cell.readonly 536870919 RO 5 K On-line
software.debian 536870935 RW 111241 K On-line
software.debian.backup 536870936 BK 111241 K On-line

Total volumes onLine 4 ; Total volumes offLine 0 ; Total busy 0

Copy and Rename as Backup

The volume copy facility is a newly added feature present on OpenAFS and
not on legacy systems still running the Transarc or IBM AFS implementation.
The vos tool can be used with the copy command to create copies of a given
volume on different file servers, and the rename command may be employed

5.4 Replication and Backup 135

to restore it in case of data loss. For the example let us start by listing all the
volumes known to the VLDB on all servers by issuing the listvldb command
to vos:

vos listvldb
VLDB entries for all servers

cell.services
RWrite: 536870931 Backup: 536870933
number of sites -> 1

server afs1.example.edu partition /vicepa RW Site

cell.software
RWrite: 536870924 Backup: 536870926
number of sites -> 1

server afs1.example.edu partition /vicepa RW Site

cell.users
RWrite: 536870921 Backup: 536870923
number of sites -> 1

server afs1.example.edu partition /vicepa RW Site

root.afs
RWrite: 536870915 ROnly: 536870916 Backup: 536870917
number of sites -> 3

server afs1.example.edu partition /vicepa RW Site
server afs1.example.edu partition /vicepa RO Site
server fs01.example.edu partition /vicepa RO Site

root.cell
RWrite: 536870918 ROnly: 536870919 Backup: 536870920
number of sites -> 3

server afs1.example.edu partition /vicepa RW Site
server afs1.example.edu partition /vicepa RO Site
server fs01.example.edu partition /vicepa RO Site

software.debian
RWrite: 536870935
number of sites -> 1

server fs01.example.edu partition /vicepa RW Site

Total entries: 6

The software.debian volume is copied from the fs01 file server to afs1
with vos copy. This command has a syntax similar to move, with the speci-
fication of the origin host and partition and the destination ones. The switch
-offline is used in this case to render the copy inaccessible to clients:

vos copy -id software.debian -fromserver fs01 -frompartition a \
-toname software.debian.copy -toserver afs1 -topartition a -offline
Volume 536870935 copied from fs01 /vicepa to software.debian.copy on afs1 /vicepa

The volumes on both file servers reflect the new situation, showing the
new offline software.debian.copy volume:

vos listvol afs1
Total number of volumes on server afs1 partition /vicepa: 13
cell.services 536870931 RW 2 K On-line
cell.services.backup 536870933 BK 2 K On-line
cell.software 536870924 RW 3 K On-line

136 5 OpenAFS

cell.software.backup 536870926 BK 3 K On-line
cell.users 536870921 RW 2 K On-line
cell.users.backup 536870923 BK 2 K On-line
root.afs 536870915 RW 6 K On-line
root.afs.backup 536870917 BK 6 K On-line
root.afs.readonly 536870916 RO 6 K On-line
root.cell 536870918 RW 5 K On-line
root.cell.backup 536870920 BK 5 K On-line
root.cell.readonly 536870919 RO 5 K On-line
software.debian.copy 536870940 RW 111241 K Off-line

Total volumes onLine 12 ; Total volumes offLine 1 ; Total busy 0

vos listvol fs01
Total number of volumes on server fs01 partition /vicepa: 3
root.afs.readonly 536870916 RO 6 K On-line
root.cell.readonly 536870919 RO 5 K On-line
software.debian 536870935 RW 111241 K On-line

Total volumes onLine 3 ; Total volumes offLine 0 ; Total busy 0

Since the copied volume is offline, we can simulate a file server crash by
suddenly removing the network cable, a fact that results in an access error
when a client tries to read data from fs01 which stored the mounted online
volume:

ping fs01
PING fs01.example.edu (192.168.127.145) 56(84) bytes of data.
From afs1.example.edu (192.168.127.154) icmp_seq=1 Destination Host Unreachable
From afs1.example.edu (192.168.127.154) icmp_seq=2 Destination Host Unreachable
From afs1.example.edu (192.168.127.154) icmp_seq=3 Destination Host Unreachable

--- fs01.example.edu ping statistics ---
5 packets transmitted, 0 received, +3 errors, 100% packet loss, time 4026ms, pipe 3

ls /afs/example.edu/software/debian
ls: debian: Connection timed out

Note that a file server error affects only the volumes physically stored on
that particular host, while other parts of the AFS cell are not influenced by
the connection loss. Although the cell is up and running the VLDB still retains
an invalid information about the software.debian volume, locating it on the
failed server:

vos listvldb -server fs01
VLDB entries for server fs01

root.afs
RWrite: 536870915 ROnly: 536870916 Backup: 536870917
number of sites -> 3

server afs1.example.edu partition /vicepa RW Site
server afs1.example.edu partition /vicepa RO Site
server fs01.example.edu partition /vicepa RO Site

root.cell
RWrite: 536870918 ROnly: 536870919 Backup: 536870920
number of sites -> 3

server afs1.example.edu partition /vicepa RW Site
server afs1.example.edu partition /vicepa RO Site
server fs01.example.edu partition /vicepa RO Site

5.4 Replication and Backup 137

software.debian
RWrite: 536870935
number of sites -> 1

server fs01.example.edu partition /vicepa RW Site

Total entries: 3

To avoid any further errors and connection problems, first we remove all
the references to fs01 with the remove command of the vos tool, which
removes all the information about a particular volume, partition or host in
the VLDB:

vos delentry -server fs01 -partition a
Deleting VLDB entries for server fs01 partition /vicepa

Total VLDB entries deleted: 3; failed to delete: 0

The VLDB should be synchronized with the state of a currently work-
ing server in this case afs1. The synchronization process is done via vos
syncvldb, a command symmetric to syncserv, correcting the invalid refer-
ences to fs01:

vos syncvldb -server afs1
VLDB synchronized with state of server afs1

vos listvldb
VLDB entries for all servers

cell.services
RWrite: 536870931 Backup: 536870933
number of sites -> 1

server afs1.example.edu partition /vicepa RW Site

cell.software
RWrite: 536870924 Backup: 536870926
number of sites -> 1

server afs1.example.edu partition /vicepa RW Site

cell.users
RWrite: 536870921 Backup: 536870923
number of sites -> 1

server afs1.example.edu partition /vicepa RW Site

root.afs
RWrite: 536870915 ROnly: 536870916 Backup: 536870917
number of sites -> 2

server afs1.example.edu partition /vicepa RW Site
server afs1.example.edu partition /vicepa RO Site

root.cell
RWrite: 536870918 ROnly: 536870919 Backup: 536870920
number of sites -> 2

server afs1.example.edu partition /vicepa RW Site
server afs1.example.edu partition /vicepa RO Site

software.debian.copy
RWrite: 536870940
number of sites -> 1

server afs1.example.edu partition /vicepa RW Site

138 5 OpenAFS

Total entries: 6

In order to restore the failed volume, all we need is to bring online the
copy, and rename it to software.debian with the rename command fed to
the vos tool:

vos online afs1 a software.debian.copy

vos listvol afs1
Total number of volumes on server afs1 partition /vicepa: 13
cell.services 536870931 RW 2 K On-line
cell.services.backup 536870933 BK 2 K On-line
cell.software 536870924 RW 3 K On-line
cell.software.backup 536870926 BK 3 K On-line
cell.users 536870921 RW 2 K On-line
cell.users.backup 536870923 BK 2 K On-line
root.afs 536870915 RW 6 K On-line
root.afs.backup 536870917 BK 6 K On-line
root.afs.readonly 536870916 RO 6 K On-line
root.cell 536870918 RW 5 K On-line
root.cell.backup 536870920 BK 5 K On-line
root.cell.readonly 536870919 RO 5 K On-line
software.debian.copy 536870940 RW 111241 K On-line

Total volumes onLine 13 ; Total volumes offLine 0 ; Total busy 0

vos rename software.debian.copy software.debian
Renamed volume software.debian.copy to software.debian

After the volume is restored to the original name, the mount point asso-
ciated with it is repaired and all its contents are again accessible to clients:

cd debian/

ls
ISO@ platforms/

ls platforms/
i386_linux24/ i386_linux26/ i386_nt40/ ppc_darwin_70/ ppc_darwin_80/

Note that clients may require time to synchronize their caches to the new
volume configuration. When the file server is capable again of communicating
with the database servers, its internal volume database retains knowledge of
software.debian, which has been actually replaced. A vos remove command
is not applicable in this situation since the VLDB correctly locates the volume
on afs1. The AFS vos tool provides a command named zap that removes a
volume from a file server regardless of any information on the VLDB. In order
to restore a valid situation on the file server we need to zap the volume on
fs01 using its numerical ID, thus avoiding any volume name conflicts:

vos zap fs01 a -id 536870935
Volume 536870935 deleted

5.4 Replication and Backup 139

Read-Only Volumes as Backups

Another new feature added to OpenAFS, and again not back-compatible with
Transarc or IBM versions of the AFS file system, is the ability to convert read-
only volumes to write-enabled ones. Again for didactic and testing purposes
we focus on the software.debian volume, which is correctly mounted as the
following output shows:

cd /afs/example.edu/software/

fs lsmount debian
’debian’ is a mount point for volume ’#software.debian’

We are now going to explicitly mount the volume in a write-enabled state
and create replication sites, and release the read-write volume so that all
changes are synchronized with its replicas. Let us first create a write-enabled
mount point:

fs rmmount debian

fs mkmount debian software.debian -rw

fs lsmount debian
’debian’ is a mount point for volume ’%software.debian’

Next a replication site is created on the afs1 host, and then synchronized
with the write-enabled volume:

vos addsite afs1 a software.debian
Added replication site afs1 /vicepa for volume software.debian

vos release software.debian
Released volume software.debian successfully

vos listvol afs1
Total number of volumes on server afs1 partition /vicepa: 13
cell.services 536870931 RW 2 K On-line
cell.services.backup 536870933 BK 2 K On-line
cell.software 536870924 RW 3 K On-line
cell.software.backup 536870926 BK 3 K On-line
cell.users 536870921 RW 2 K On-line
cell.users.backup 536870923 BK 2 K On-line
root.afs 536870915 RW 6 K On-line
root.afs.backup 536870917 BK 6 K On-line
root.afs.readonly 536870916 RO 6 K On-line
root.cell 536870918 RW 5 K On-line
root.cell.backup 536870920 BK 5 K On-line
root.cell.readonly 536870919 RO 5 K On-line
software.debian.readonly 536870942 RO 111241 K On-line

Total volumes onLine 13 ; Total volumes offLine 0 ; Total busy 0

vos listvol fs01
Total number of volumes on server fs01 partition /vicepa: 1
software.debian 536870940 RW 111241 K On-line

Total volumes onLine 1 ; Total volumes offLine 0 ; Total busy 0

140 5 OpenAFS

We notice the presence of a software.debian.readonly volume on afs1.
As we have previously shown, we simulate a file server loss by detaching the
network cable of fs01 which contains the software.debian volume. The
/afs/example.edu/software/debian mount point is no longer available:

touch /afs/example.edu/software/debian/ddd
touch: cannot touch ‘/afs/example.edu/software/debian/ddd’: Connection timed out

The vos tool can be used with the convertROtoRW command that actu-
ally converts a replica to a fully operable write-enabled volume, asking for
confirmation first:

vos convertROtoRW afs1 a software.debian.readonly
VLDB indicates that a RW volume exists already on fs01.example.edu in partition /vicepa.
Overwrite this VLDB entry? [y|n] (n)
y

At this point, the new volume may require a salvage command in case
some data has been modified creating inconsistencies between the read-only
and the write-enabled volumes. The command can be easily issued by the bos
tool, and the results can be seen in the following output:

bos salvage afs1 a software.debian
Starting salvage.
bos: salvage completed

vos listvol afs1
Total number of volumes on server afs1 partition /vicepa: 13
cell.services 536870931 RW 2 K On-line
cell.services.backup 536870933 BK 2 K On-line
cell.software 536870924 RW 3 K On-line
cell.software.backup 536870926 BK 3 K On-line
cell.users 536870921 RW 2 K On-line
cell.users.backup 536870923 BK 2 K On-line
root.afs 536870915 RW 6 K On-line
root.afs.backup 536870917 BK 6 K On-line
root.afs.readonly 536870916 RO 6 K On-line
root.cell 536870918 RW 5 K On-line
root.cell.backup 536870920 BK 5 K On-line
root.cell.readonly 536870919 RO 5 K On-line
software.debian 536870940 RW 111241 K On-line

Total volumes onLine 13 ; Total volumes offLine 0 ; Total busy 0

Again, clients may require some time to cope with the new configuration.
When the file server is brought online it needs a small adjustment removing
the software.debian volume:

vos remove -server fs01 -partition vicepa -id software.debian
WARNING: Volume 536870940 does not exist in VLDB on server and partition
Volume 536870940 on partition /vicepa server fs01.example.edu deleted

5.5 Testing OpenAFS 141

5.5 Testing OpenAFS

In the previous chapters we moved the password of the testuser entry into
the Kerberos database, and all the information (e.g. shell, home directory,
real name) in the LDAP tree. OpenAFS gets now employed to remove the
testuser home directory, creating a volume and placing it in the AFS file
space.

5.5.1 Users and Groups

The testuser has access to a private location in the AFS file space, which
contains its home directory. In order to allow specified users and groups,
including testuser, to access AFS volumes, we need to create the proper
entries in the protection database. The testuser item is created via pts
createuser matching the name with the user name in the LDAP tree:

pts createuser testuser -id 10000
User testuser has id 10000

Note as we chose the protection database user ID duplicating the UNIX
UID, but this is a completely customary choice. Next we need to create
the proper group and assign testuser to the testgroup, whose ID is again
matched with the UNIX GID:

pts creategroup testgroup -id -10000
group testgroup has id -10000

pts adduser testuser testgroup

pts membership testuser
Groups testuser (id: 10000) is a member of:

testgroup

pts membership testgroup
Members of testgroup (id: -10000) are:

testuser

5.5.2 User Volumes

The private home space becomes an AFS volume mounted in the previously
created container volume cell.users, with a proper disk quota depending on
the needs of the user. In this example we grant 1 gigabyte of disk quota on the
fs01 file server. The user volumes are named with a particular format that
would help an automated backup operation, our choice is user.username, in
this case it would be user.testuser:

vos create fs01 a user.testuser -maxquota 1000000
Volume 536870946 created on partition /vicepa of fs01

cd /afs/example.edu/users

142 5 OpenAFS

fs mkmount testuser user.testuser

ls -l
total 2
drwxrwxrwx 2 root root 2048 2006-06-22 12:17 testuser/

Note that we were allowed to mount the volume directly in the AFS space
belonging to cell.users, since this container volume has no read-only coun-
terpart. In case it had one, we should have mounted the user.testuser vol-
ume in the read-write enabled one and then release the container.

Home Structure

The volume user.testuser as we know inherits the standard ACLs for the
system administrators. Obviously we shall grant all the privileges to the vol-
ume owner, testuser, who is entitled to use the disk space at its will:

fs setacl -dir testuser -acl testuser all

fs listacl testuser
Access list for testuser is
Normal rights:

system:administrators rlidwka
testuser rlidwka

Note that usually any user is be allowed to list the contents, a property
that is useful for some services you may want to implement in the AFS file
space:

fs setacl -dir testuser -acl system:anyuser l

fs listacl testuser
Access list for testuser is
Normal rights:

system:administrators rlidwka
system:anyuser l
testuser rlidwka

A user space usually comprehends some directories that are used by ser-
vices and other users. A common practice is to provide users with three di-
rectories: a private one, a completely public space (which is going to be used
by a future web service for personal home pages), and another one accessible
by cell users as for the software.debian volume. It is better to change the
ownership of the home directory to the proper values, since OpenAFS relies
on a UNIX architecture and just the access control lists might not be sufficient
privileges:

fs listacl local/
Access list for local/ is
Normal rights:

system:administrators rlidwka
system:authuser rl
testuser rlidwka

5.5 Testing OpenAFS 143

fs listacl private/
Access list for private/ is
Normal rights:

system:administrators rlidwka
testuser rlidwka

fs listacl public/
Access list for public/ is
Normal rights:

system:administrators rlidwka
system:anyuser rl
testuser rlidwka

chown -R testuser:testgroup testuser/

5.5.3 Backup Volumes

A usual practice is to provide users backup volumes in order to lessen the
probability of data loss. The preferred method of providing a backup facility
is through the employment of backup volumes, since it allows system admin-
istrators to schedule massive dumps for all the user volumes, or part of it. Let
us create the backup volume for the new testuser:

vos backup user.testuser
Created backup volume for user.testuser

vos listvol fs01
Total number of volumes on server fs01 partition /vicepa: 2
user.testuser 536870946 RW 8 K On-line
user.testuser.backup 536870948 BK 8 K On-line

Total volumes onLine 2 ; Total volumes offLine 0 ; Total busy 0

The BOS server should now be instructed to handle a cron type instance
that we call backupuser, which starts a backup dump for all the volumes
whose names begin with user at 5am:

bos create afs1 backupuser cron -cmd "/usr/bin/vos backupsys -prefix user -localauth" \
"05:00"

bos status -long afs1
Instance buserver, (type is simple) currently running normally.

Process last started at Thu Jun 22 11:12:10 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/buserver’

Instance ptserver, (type is simple) currently running normally.
Process last started at Thu Jun 22 11:12:10 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/ptserver’

Instance vlserver, (type is simple) currently running normally.
Process last started at Thu Jun 22 11:12:10 2006 (1 proc starts)
Command 1 is ’/usr/lib/openafs/vlserver’

Instance fs, (type is fs) currently running normally.
Auxiliary status is: file server running.
Process last started at Thu Jun 22 11:12:10 2006 (2 proc starts)
Command 1 is ’/usr/lib/openafs/fileserver’

144 5 OpenAFS

Command 2 is ’/usr/lib/openafs/volserver’
Command 3 is ’/usr/lib/openafs/salvager’

Instance backuproot, (type is cron) currently running normally.
Auxiliary status is: run next at Fri Jun 23 01:00:00 2006.
Command 1 is ’/usr/bin/vos backupsys -prefix root -localauth’
Command 2 is ’01:00’

Instance backupcell, (type is cron) currently running normally.
Auxiliary status is: run next at Fri Jun 23 03:00:00 2006.
Command 1 is ’/usr/bin/vos backupsys -prefix cell -localauth’
Command 2 is ’03:00’

Instance backupuser, (type is cron) currently running normally.
Auxiliary status is: run next at Fri Jun 23 05:00:00 2006.
Command 1 is ’/usr/bin/vos backupsys -prefix user -localauth’
Command 2 is ’05:00’

Mounting Backup Volumes

It is a useful policy to make backup volumes available to users. Each time a
backupsys operation is performed, all the .backup volumes are updated. By
making these volumes available to users we allow them to have an easy access
to an old version of their own home directory:

cd testuser/

fs mkmount .backup user.testuser.backup

The new mount point gives users the ability to retrieve deleted files, up to
the last executed backup operation:

ls -al
total 12
drwxrwxrwx 5 testuser testgroup 2048 2006-06-22 12:46 ./
drwxrwxrwx 2 root root 2048 2006-06-22 12:17 ../
drwxrwxrwx 5 testuser testgroup 2048 2006-06-22 12:32 .backup/
drwxr-xr-x 2 testuser testgroup 2048 2006-06-22 12:27 local/
drwxr-xr-x 2 testuser testgroup 2048 2006-06-22 12:27 private/
drwxr-xr-x 2 testuser testgroup 2048 2006-06-22 12:27 public/

ls -al .backup/
total 10
drwxrwxrwx 5 testuser testgroup 2048 2006-06-22 12:32 ./
drwxrwxrwx 5 testuser testgroup 2048 2006-06-22 12:46 ../
drwxr-xr-x 2 testuser testgroup 2048 2006-06-22 12:27 local/
drwxr-xr-x 2 testuser testgroup 2048 2006-06-22 12:27 private/
drwxr-xr-x 2 testuser testgroup 2048 2006-06-22 12:27 public/

5.5.4 LDAP Information

Users in our organization rely on AFS for their home directories. The LDAP
database should now be updated by removing the reference to the local
/home/testuser/ directory. Then the testuser entry should be modified
by changing its homeDirectory attribute with the following LDIF file, and
by issuing an ldapmodify command:

5.5 Testing OpenAFS 145

cat diff.ldif
dn: uid=testuser,ou=users,dc=example,dc=edu
homeDirectory: /afs/example.edu/users/testuser

ldapmodify -f diff.ldif
SASL/GSSAPI authentication started
SASL username: sysadmin@EXAMPLE.EDU
SASL SSF: 56
SASL installing layers
modifying entry "uid=testuser,ou=users,dc=example,dc=edu"

Note that we have been authenticated successfully as sysadmin via SASL
using the GSSAPI library for MIT Kerberos V. The command exited success-
fully, and the updated attribute can be searched as usual:

ldapsearch -LLL "uid=testuser" homeDirectory
SASL/GSSAPI authentication started
SASL username: sysadmin@EXAMPLE.EDU
SASL SSF: 56
SASL installing layers
dn: uid=testuser,ou=users,dc=example,dc=edu
homeDirectory: /afs/example.edu/users/testuser

5.5.5 PAM and OpenAFS

The incremental tests of our infrastructure led to move all the information to
a distributed system of databases, as we have done in the preceding chapters.
User information was moved from the legacy UNIX files to LDAP and pass-
words to the Kerberos database. In order to relocate passwords and let users
login in the system, we introduced PAM and the Kerberos authentication
module.

Our testuser is allowed to login, but testuser is not allowed to access the
home directory on AFS: there are Kerberos tickets, but no AFS tokens. Users
may be forced to use the aklog tool upon login in textual mode, but in a fully-
fledged system the process should be automated. The PAM authentication
modules provide a way of achieving the goal of obtaining an AFS token upon
login, installing the libpam-openafs-session package. This package provides
a session module that basically runs aklog upon login, and should be made
available in the common-session PAM configuration file:

cat common-session
session required pam_unix.so
session optional pam_openafs_session.so

The above modification is sufficient to allow testuser, as any other user
in our organization, to login via a Kerberos password, and obtaining from the
initial ticket a valid AFS token that allows a full access to the home directory.
The output of a typical login session is as follows:

146 5 OpenAFS

Debian GNU/Linux 3.1 client tty6

client login: testuser
Password:
Last login: Thu Jun 22 13:05:11 2006 on tty6
Linux client 2.4.27-3-686 #1 Wed Feb 8 12:40:33 UTC 2006 i686 GNU/Linux

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

testuser@client:~$ tokens

Tokens held by the Cache Manager:

User’s (AFS ID 10000) tokens for afs@example.edu [Expires Jun 22 23:05]
--End of list--

testuser@client:~$ klist
Ticket cache: FILE:/tmp/krb5cc_10000_MLnruP
Default principal: testuser@EXAMPLE.EDU

Valid starting Expires Service principal
06/22/06 13:05:28 06/22/06 23:05:28 host/client.example.edu@EXAMPLE.EDU
06/22/06 13:05:28 06/22/06 23:05:28 krbtgt/EXAMPLE.EDU@EXAMPLE.EDU
06/22/06 13:05:28 06/22/06 23:05:28 afs/example.edu@EXAMPLE.EDU

Kerberos 4 ticket cache: /tmp/tkt10000
klist: You have no tickets cached

Note as the pam openafs session.so provides the user with a token for
the AFS service.

Practice

Exercise 17. Plan an AFS cell for your needs. Will you make it available
world-wide, how are your default permissions, and which platforms do you
want to support? It is recommended to change the secret of the afs/CELLNAME
principal regularly and to update all database and file servers accordingly.

Exercise 18. What can be a good backup strategy for you, are tapes or
disks sufficient? Which is the method of your choice taking new OpenAFS
commands into account? Where do you mount backup or some other previous
state volumes?

Exercise 19. PTS groups do not have to be reflected in LDAP, nevertheless
some LDAP groups might be convenient to restrict access via PAM. What
about project organization? Those need project space and maybe two PTS
groups, an administrative one managing another member group.

Exercise 20. Sun Microsystems released a version of its operating system as
open source called OpenSolaris. The Nexenta operating system has the goal

5.5 Testing OpenAFS 147

to combine the OpenSoaris kernel with the package mechanism known from
Debian and Ubuntu. Try a Nexenta host as a file server machine compiled
with the namei option, having the /vicepX partitions on the new ZFS file
system.

6

Samba

Opening Windows to a wider world.
The Samba Team

6.1 Samba and Server Message Block

Back in time when networking was expensive, and equipment was owned by
few institutions, IBM commissioned the Sytek Inc. to develop a solution for
small networks. The resulting protocol, released with the PC-Network plat-
form in 1983, was called NetBIOS, the Network Basic Input Output System,
and soon became the de-facto standard working over IPX/SPX used by Novell
for their Netware OS, as well as over the TCP protocol. The NetBIOS protocol
provided name and service resolution in IP addresses, although these names
are not to be confused with the host names. This resolution of names, limited
to 16 bytes, allows clients to communicate between each other establishing a
session.

On the top of NetBIOS, IBM developed the SMB protocol, the acronym
of Server Message Block, mainly used in the DOS operating system, and
later renamed by Microsoft in 1986 as CIFS, or Common Internet File Sys-
tem, adding features like symbolic links and the ability of working without
NetBIOS: besides the efforts to avoid NetBIOS, its support is still critical
in Windows-based networks. This protocol involves frequent broadcasts of a
client’s presence on the network, a fact usually avoidable employing a WINS
server, Windows Internet Naming Service.

Originally Microsoft implemented a client to client infrastructure based
on SMB called Workgroup, where each host could be considered independent,
allowing other computers to access resources that the host voluntarily shared.
Later the concept of Domain was introduced, a logical group of connected
computers, sharing a common centralized security database.

A domain is administered by a set of controllers, a Primary Domain Con-
troller , or PDC, and possibly several Backup Domain Controllers. These
servers contain the administrative information about computers, users, and
groups, and may be compared with the previous servers we have implemented,
with LDAP and Kerberos. In fact, the new version of Windows Domains re-
leased by Microsoft with Windows 2000, called Active Directory , or AD, re-

150 6 Samba

Fig. 6.1. A Windows Workgroup as a loose group of peers

moves the primary and backup domain controller distinction, and actually
uses LDAP for information retrieval and Kerberos V for authentication. The
Samba software is the open-source implementation of a Windows Domain
controller, and can act both as a PDC and BDC. Although Samba can fully
cooperate with a real Active Directory domain, it cannot perform as a pri-
mary server in this case. The future version Samba 4 should implement all
the requirements (LDAP and Kerberos) to emulate a complete AD domain.

Fig. 6.2. A Windows Domain administered by a PDC and an eventual BDC

The path we will follow in this chapter differs slightly from the previous
ones. We first install Samba emulating the old Windows Workgroup for shar-
ing a directory, then we implement a local PDC. Once accustomed with the
terminology used in Windows networks, we create an LDAP based Samba
PDC and BDC. Since Windows networking information may get quite com-
plicated, we avoid to use our previously installed LDAP servers: we create a
brand new LDAP master for out PDC and a slave when implementing the
BDC.

6.2 Understanding Samba 151

6.2 Understanding Samba

In the following sections we are going to install and configure Samba by first
creating a simple share within a legacy Windows Workgroup, and then we fo-
cus on creating a Primary Domain Controller, where all the security informa-
tion gets stored on the equivalent of UNIX files like /etc/passwd, /etc/group,
and /etc/shadow.

Our Samba domain name will be WIN.EXAMPLE.EDU, and the workgroup
name, coincides with it: this choice was made in order to avoid interferences
with the DNS name or the LDAP root. The host running Samba is called
smb1.example.edu, and should be properly available through the DNS ser-
vice.

6.2.1 A Windows Workgroup

The Samba server is provided by Debian with the samba package, installable
via the standard apt-get tool:

apt-get install samba

As usual Debian configures the Samba server. The workgroup name is
WIN.EXAMPLE.EDU as said before, and in our installation we do not make use
of any WINS servers. The Samba server we are installing runs as a daemon and
not on demand as we did for the kpropd process. The installer asks if we would
like to populate the Samba security database with the UNIX users present on
our system: our choice is to avoid this automated process since we create our
users by hand for didactic purposes. Finally Debian starts the Samba daemon,
and we need to stop it before proceeding with the configuration.

Simple File Sharing

As previously introduced, Windows Workgroups actually share resources but
do not share any other security information. Our choice is to provide a simple
read-only shared directory located on the Samba server in /home/shared/.
This directory contains a simple text file which is accessible to any guest
user, meaning that on the server side, the location should retain the following
permission bits:

ls -ld shared
drwxr-xr-x 2 root staff 4096 2006-06-22 17:05 shared/

In this location we then create a file in order to test the access from a
Windows client. The Samba configuration file is located in /etc/samba/ and
is named smb.conf. The file has been created by the Debian installer so it is
safe to remove or rename it since we are going to modify it completely. The
syntax is similar to the the legacy Windows configuration files WIN.INI and

152 6 Samba

SYSTEM.INI, with stanzas in the form [SECTION], with semicolon and pound
(; and #, the legacy sign and the usual UNIX character) indicating comments.

The mandatory section for both workgroup and domain is called [global]
and contains all the primary information about the Samba server. Our con-
figuration sets the current workgroup name to WIN.EXAMPLE.EDU, the host
NetBIOS name to SMB1, and the Samba security level to share. The resulting
configuration file looks like the following:

[global]
workgroup = WIN.EXAMPLE.EDU
netbios name = SMB1
server string = Samba Sharing Server
security = share

[share]
path = /home/shared
comment = Our Samba Share
read only = yes
guest ok = yes

We have already introduced the meaning of the workgroup name (or Do-
main name) comparing it to the Kerberos realm, and the NetBIOS name to
a DNS host name, while the directive server string is a comment that will
appear on clients.

The security field, which identifies how the Samba server behaves on the
network, accepts the following settings:

ads Samba joins an existing Windows Active Directory Domain;
domain Samba joins an existing Windows Domain;
server Legacy security mode, currently deprecated;
share Samba joins a Windows Workgroup with host sharing resources;
user Samba acts as a Domain Controller of a Windows Domain.

Since our primary objective is to share a directory, we choose the share se-
curity level, actually instructing Samba to act as a normal Windows machine.
The shared resources are described by the following stanzas in the configura-
tion file. In our example, we have prepared a shared resource named share, as
indicated by the stanza [share]. It is mandatory in our file sharing example
to set the path of the resource, and we allow guests to access directories and
read files, as the guest ok setting imply. We can test the configuration file
with the testparm tool:

testparm
Load smb config files from /etc/samba/smb.conf
Processing section "[share]"
Loaded services file OK.
Server role: ROLE_STANDALONE
Press enter to see a dump of your service definitions

Global parameters
[global]

workgroup = WIN.EXAMPLE.EDU
netbios name = SMB1

6.2 Understanding Samba 153

server string = Samba Sharing Server
security = SHARE

[share]
comment = Our Samba Share
path = /home/share
guest ok = Yes

The program loads the smb.conf file and analyzes it for syntactical errors.
Moreover, it determines the role of our Samba server in the network, in this
case a simple stand-alone host. It is safe to start the server which runs both
the NetBIOS and SMB daemons:

/etc/init.d/samba start
Starting Samba daemons: nmbd smbd.

In order to try the new service, we install the smbclient package, allowing
us to query the Samba server directly. The smbclient tool can be used to
contact the server and query all the running services on the machine with the
-L switch:

smbclient -L localhost
Password:
Domain=[WIN.EXAMPLE.EDU] OS=[Unix] Server=[Samba 3.0.14a-Debian]

Sharename Type Comment
--------- ---- -------
share Disk Our Samba Share
IPC$ IPC IPC Service (Samba Sharing Server)
ADMIN$ IPC IPC Service (Samba Sharing Server)

Domain=[WIN.EXAMPLE.EDU] OS=[Unix] Server=[Samba 3.0.14a-Debian]

Server Comment
--------- -------
SMB1 Samba Sharing Server

Workgroup Master
--------- -------
WIN.EXAMPLE.EDU

The password is not specified by the system, so leaving it blank (i.e. hitting
return without entering any string) should work properly. As we can see from
the output, we are running a Debian-based Samba server with NetBIOS name
SMB1 and a custom shared resource, whose type is Disk, named share. The
shared directory and its contents appears on a Windows client after joining the
WIN.EXAMPLE.EDU workgroup and viewing all the workgroup computers under
My Network Places. Samba creates the /etc/samba/smbpasswd file which con-
tains all Samba passwords for Windows users, the analogous of /etc/shadow.
Our file sharing server has a guest account enabled, which is identified on the
Samba side by a nobody user, with an invalid password:

cat /etc/samba/smbpasswd
nobody:65534:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX:\
[DU]:LCT-00000000:

154 6 Samba

6.2.2 A Simple Windows Domain

A Domain, as we previewed, is a group of computers sharing security informa-
tion about machines, groups, and users. Samba may act as a Primary Domain
Controller, as we will see in the following of this section, and the Samba server
may be compared to both LDAP and Kerberos services we have previously
configured. Windows clients then login using the Domain security accounts,
and have their profile—the equivalent of the home directory in UNIX, con-
taining personal files and settings—created on the server (actually profiles are
cached by default on the client).

In the following we are going to create a Domain called WIN.EXAMPLE.EDU,
assuming we have installed a brand new Samba server as previously seen. In
case we have the intention of removing completely the previous installation,
we may issue the following command:

apt-get remove --purge samba samba-common

The --purge indicates the Debian tool to completely remove the package
including all configuration files. So let us reinstall the samba package and
configure it as required by Debian, and finally stop the service.

The domain name is described in the smb.conf file in the workgroup field,
and the NetBIOS name we are going to use for the PDC is SMBPDC: in the
following sections we are going to create a Backup Domain Controller for
redundancy reasons. The security level for the Samba server is user since our
machine behaves as a PDC on the network, and we allow users to login in the
domain with the domain logons setting. A primary domain controller is the
domain master server on the network, and there should be only one: Samba
allows also an auto setting for an automatic master election. All these settings
concur with the [global] stanza:

[global]
workgroup = WIN.EXAMPLE.EDU
netbios name = SMBPDC
server string = Samba Domain Master
security = user
add machine script = /usr/sbin/useradd -s /bin/false -d /tmp ’%u’
domain logons = yes
domain master = yes
enable privileges = yes

[netlogon]
path = /home/%U
comment = Samba Domain Login Service
valid users = %S
read only = no

[profiles]
path = /home/%U
comment = User Profile Service
valid users = %S
guest ok = no
read only = no
writable = yes

6.2 Understanding Samba 155

browsable = no

[homes]
path = /home/%U
comment = User Home Directory
valid users = %S
guest ok = no
read only = no
writable = yes
browsable = no

Let us inspect the configuration file analyzing its contents. The last setting
in the [global] stanza allows us to set privileges to groups and users, forcing
Samba to honor the granted rights: this setting is the analogous of adding an
AFS user to the system:administrators group when dealing with domain
administrators, as we shall see shortly. The directive add machine script
tells Samba how to add a host joining the domain: Samba relies on UNIX users
and needs accounts for hosts in /etc/passwd. The script used by our configu-
ration adds a new user with no login capability—the shell is the /bin/false
program—and with a username equal to the client machine name. Without
adding the UNIX entity Samba will deny domain logins.

The special stanza [netlogon] is the mandatory share when enabling
users to perform domain logins. Users may be issued a special login script—
the analogous of a .profile or .bashrc in the UNIX world—and such a
script must be a relative path to the netlogon service, which in this case
is translated into a subdirectory of /home/. The special variables %U and %S
indicate the session user name and the requested service, respectively. The
most used variables are shown in Table 6.1, but for a more comprehensive list
of variables consult the manual page of smb.conf shipped with your Samba
distribution. An eventual user login script is then referred to a relative path

Table 6.1. Variable substitution in the Samba configuration file (excerpt)

Variable Substitution

%D Domain or workgroup name for the current user
%h Internet host name of the Samba server
%L NetBIOS Samba server name
%m NetBIOS client name
%M Internet host name of the client
%S Current requested service name
%U Session username as indicated by the client

inside the directory /home/%U, for instance our testuser has a login script file
inside /home/testuser/. Domain logins are restricted by the valid users
directive to valid service names, and such a share is write-enabled.

The Windows-counterparts of home directories are the user profiles, con-
figured in the [profiles] stanza. The current setting locate user profiles in
their home directory, since the path field is replaced by variable substitution.

156 6 Samba

It is fairly understandable to set profiles as write-enabled and disallow guest
users for security reasons. A Windows user profile contains its registry infor-
mation, application settings, and special folders as My Documents, Desktop,
and Start Menu.

Last, the [homes] section indicates the current user home directory. The
home directory is mounted as a new shared hard drive letter (e.g. Z:), and the
same write policy has been applied to this share. We can use the testparm
tool to check the settings:

testparm
Load smb config files from /etc/samba/smb.conf
Processing section "[netlogon]"
Processing section "[profiles]"
Processing section "[homes]"
Loaded services file OK.
Server role: ROLE_DOMAIN_PDC
Press enter to see a dump of your service definitions

Global parameters
[global]

workgroup = WIN.EXAMPLE.EDU
netbios name = SMBPDC
server string = Samba Domain Master
enable privileges = Yes
add machine script = /usr/sbin/useradd -s /bin/false -d /tmp ’%u’
domain logons = Yes
domain master = Yes

[netlogon]
comment = Samba Domain Login Service
path = /home/%U
valid users = %S
read only = No

[profiles]
comment = User Profile Service
path = /home/%U
valid users = %S
read only = No
browseable = No

[homes]
comment = User Home Directory
path = /home/%U
valid users = %S
read only = No

The output correctly shows that the host will be a PDC on the network for
our WIN.EXAMPLE.EDU domain, and its NetBIOS name will be SMBPDC. Now
the Samba server can be started.

User Mapping

Unfortunately Samba needs the root user to be in its security database, a
fact that we will avoid later with the help of the admin group which has been
created together with the admin user. The first operation is to provide the
Samba server with the root password, adding this new user to the security

6.2 Understanding Samba 157

list. This is achieved with the smbpasswd tool, which changes Samba user
passwords providing the -a switch to add new entries:

smbpasswd -a root
New SMB password:
Retype new SMB password:
Added user root.

The Samba server may be configured and queried via the net tool. This
program is fed with commands intended to interact with a Windows domain
using rpc, an AD domain using ads, and a legacy support using rap (e.g. the
OS/2 system and earlier Samba versions). Our objective is to grant the admin
user all administrative rights so that we can remove root. To query the list
of Samba rights, we issue the following command with the help of the only
administrative user, root:

net rpc rights list -U root
Password:

SeMachineAccountPrivilege Add machines to domain
SePrintOperatorPrivilege Manage printers

SeAddUsersPrivilege Add users and groups to the domain
SeRemoteShutdownPrivilege Force shutdown from a remote system

SeDiskOperatorPrivilege Manage disk shares

Currently we have no privileges assigned to any account, as we can see in
the following output:

net rpc rights list accounts -U root
Password:
BUILTIN\Print Operators
No privileges assigned

BUILTIN\Account Operators
No privileges assigned

BUILTIN\Backup Operators
No privileges assigned

BUILTIN\Server Operators
No privileges assigned

WIN.EXAMPLE.EDU\root
No privileges assigned

BUILTIN\Administrators
No privileges assigned

Everyone
No privileges assigned

Windows domains have predefined user and groups, similar to the AFS
predefined ones: one of these groups is for instance the Domain Admins, the
equivalent of our system:administrators in the AFS space. Any user belong-
ing to this group of our domain gets granted all the rights, with the following
net command:

158 6 Samba

net rpc rights grant "WIN.EXAMPLE.EDU\Domain Admins" SeMachineAccountPrivilege \
SePrintOperatorPrivilege SeAddUsersPrivilege SeRemoteShutdownPrivilege \
SeDiskOperatorPrivilege -U root
Password:
Successfully granted rights.

net rpc rights list accounts -U root
Password:
BUILTIN\Print Operators
No privileges assigned

BUILTIN\Account Operators
No privileges assigned

BUILTIN\Backup Operators
No privileges assigned

BUILTIN\Server Operators
No privileges assigned

WIN.EXAMPLE.EDU\root
No privileges assigned

WIN.EXAMPLE.EDU\Domain Admins
SeMachineAccountPrivilege
SePrintOperatorPrivilege
SeAddUsersPrivilege
SeRemoteShutdownPrivilege
SeDiskOperatorPrivilege

BUILTIN\Administrators
No privileges assigned

Everyone
No privileges assigned

The operation ended successfully as we see in the output shown above.
What we need now, is to map the UNIX group called admin to Domain Admins,
so that any UNIX user in the group could administer the Windows domain.
The mapping operation is done with the groupmap command of the net tool:

net groupmap modify ntgroup="Domain Admins" unixgroup="admin"
Updated mapping entry for Domain Admins

net groupmap list
System Operators (S-1-5-32-549) -> -1
Domain Admins (S-1-5-21-3266971356-1389114676-386038377-512) -> admin
Replicators (S-1-5-32-552) -> -1
Guests (S-1-5-32-546) -> -1
Domain Guests (S-1-5-21-3266971356-1389114676-386038377-514) -> -1
Domain Users (S-1-5-21-3266971356-1389114676-386038377-513) -> -1
Domain Admins (S-1-5-21-3314377433-826363095-127981249-512) -> -1
Power Users (S-1-5-32-547) -> -1
Print Operators (S-1-5-32-550) -> -1
Administrators (S-1-5-32-544) -> -1
Domain Users (S-1-5-21-3314377433-826363095-127981249-513) -> -1
Account Operators (S-1-5-32-548) -> -1
Backup Operators (S-1-5-32-551) -> -1
Domain Guests (S-1-5-21-3314377433-826363095-127981249-514) -> -1
Users (S-1-5-32-545) -> -1

6.2 Understanding Samba 159

The meaning of the strings between parentheses will be explained later in
this chapter. Additionally to the admin group we had an homonymous user
belonging to this group. We finish the user configuration by adding the admin
user to the Samba security list, and then safely remove the root user:

smbpasswd -a admin
New SMB password:
Retype new SMB password:
Added user admin.

smbpasswd -x root
Deleted user root.

We stress the fact that the admin UNIX user belongs to the admin group
previously mapped to the Domain Admins: this allows admin to administer
the domain avoiding the use of root.

Domain Join

Microsoft Windows XP can join our domain provided that the version of
XP is not the “Home Edition”, and that the Administrator modifies a
value in the Windows registry. The field that needs to be modified is called
RequireSignOrSeal in the net logon subsection:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netlogon\Parameters]
requiresignorseal=dword:00000000

Setting the parameter to 0, instead of the default value 1, enables Win-
dows XP Professional to join other types of domains besides Active Directory.
Joining a domain is a procedure that a Windows system administrator can

Fig. 6.3. The Windows XP login dialog box

160 6 Samba

perform through the control panel, specifying the domain name, in our case
WIN.EXAMPLE.EDU. The system prompts for an administrative login: a system
may join a domain if a domain administrator allows this operation. Our do-
main administrator is the admin user, and after successfully logging into the
domain and rebooting the system, we are prompted with the login dialog box
as in Fig. 6.3.

The only known domain user is admin, the domain administrator itself.
Logging into the system creates the proper profile both on the client and on
the server. On the server side we observe that the profile has been successfully
created according to the [profiles] section of smb.conf, in the user’s home
directory, with the default directory name profile:

cd /home/admin/

ls
profile/

ls profile/
Application Data/ Favorites/ NTUSER.DAT* PrintHood/ Start Menu/
Cookies/ My Documents/ NTUSER.DAT.LOG* Recent/ Templates/
Desktop/ NetHood/ ntuser.ini SendTo/

The [homes] share allows users to browse in their home directory on the
Samba server, which is mounted on the client as a shared network drive. As
a machine joins the domain, the add machine script command is executed,
and a new UNIX user for the machine is created.

6.3 The Samba Domain

Our objective is to create a reliable Windows Domain, providing users a Pri-
mary Domain Controller as well as a Backup controller. In a real situation
with several users storing passwords in files as /etc/passwd, /etc/shadow or
/etc/samba/smbpasswd this may lead to a bottleneck, since each login pro-
cess involves opening files and reading entries. This process can be speeded up
with a scalable solution involving LDAP servers for lookup, as we have seen
already.

In order to present clearly the process of creating a Windows domain
employing LDAP, and furthermore making use of the AFS file space, we choose
to install a new LDAP server to be used exclusively by Samba processes. A file-
based solution is straightforward to implement, but it rises security concerns
when deploying a backup server: password-related files should be synchronized
between the master and the slave Samba servers with a secure method. LDAP
provides a secure way to synchronize databases, and it is scalable from few
users to big organizations.

6.3 The Samba Domain 161

6.3.1 LDAP Configuration

An LDAP-based architecture is a scalable solution for information retrieval,
allowing administrators to create a network of servers mirroring the database
for reliability reasons. Samba can make use of LDAP to store user information
and critical data such as passwords, and it is the recommended architectural
choice for production systems.

This section outlines the installation process of an LDAP server suitable
for Samba, revealing the important differences with the operations introduced
in the LDAP chapter. For a deeper discussion about configuration issues refer
to the appropriate chapter.

The LDAP server we are about to install serves as a back-end for the
Samba server, anyway Debian configures the slapd package asking for the
DNS domain name. Debian uses this field to build the LDAP root’s distin-
guished name: answering win.example.edu then causes the system to gener-
ate the root as dc=win,dc=example,dc=edu.

So now we have to create an LDAP server as we did before, installing the
slapd package and configuring it: take as a reference the previous chapter
with the following differences. Debian asks for the DNS domain to use, used
to generate the root of the database. Therefore we use win.example.edu
such that we have the root as said before. Stop LDAP after the installation.
We apply the same procedure for the removal of the administrative entry
by adding a hard coded administrator called ldapadmin in the slapd.conf
configuration file:

rootdn "cn=ldapadmin,dc=win,dc=example,dc=edu"
rootpw ldapadmin

Note that the administrative password does not have to be in clear text,
even though the file has restrictive permissions: rootpw line can contain en-
coded passwords as {CRYPT}password, {MD5}password, or {SHA}password,
and can be generated with the help of the slappasswd command.

It is useful to install and configure the client-side tools so that after restart-
ing the LDAP server, we can safely remove the entry admin—created by the
Debian installer—using the ldapadmin distinguished name:

ldapdelete -x -D "cn=ldapadmin,dc=win,dc=example,dc=edu" -w ldapadmin \
"cn=admin,dc=win,dc=example,dc=edu"

Samba Schema

In order to have slapd handle coherently all the attributes needed by
Samba, we need to add the appropriate schema to the server configura-
tion. The package shipping the configuration files is called samba-doc, and
in /usr/share/doc/samba-doc/examples/LDAP/ we find a compressed ver-
sion of the schema file. Hence all we need is to decompress the archive in the
proper location, that is /etc/ldap/schema/:

162 6 Samba

cd /etc/ldap/schema/

cp /usr/share/doc/samba-doc/examples/LDAP/samba.schema.gz

gunzip samba.schema.gz

From now on there is a samba.schema file in the default schema location,
and we can add it to the known LDAP schemas in slapd.conf:

include /etc/ldap/schema/samba.schema

The last step before proceeding to install Samba is to allow users to mod-
ify their passwords. This operation cannot be accomplished by just allowing
changes to the userPassword attribute, since Samba stores the Domain pass-
word and the legacy LanManager1 one. The access control for these fields
needs to be like the following:

access to attrs=userPassword,sambaNTPassword,sambaLMPassword
by anonymous auth
by self write
by * none

The slapd.conf contains now the administrative password, and it should
be readable by root only. After restarting slapd we may proceed installing
Samba. It is assumed that this is going to be a fresh Samaba installation.

6.3.2 Installing Samba

It is a good option to install the samba server package along with the client
tool smbclient. Additionally, we need to install the Samba-LDAP interaction
tools, provided by Debian with the package named smbldap-tools. As usual
the installer configures the services and starts the daemons, so we need to
stop the Samba service before proceeding:

apt-get install samba smbclient smbldap-tools

/etc/init.d/samba stop
Stopping Samba daemons: nmbd smbd.

The [global] section of smb.conf undergoes a major change: the most
important one is about the password back-end used by the service. Samba
stores all the needed information in the LDAP tree, so we need to instruct the
daemon about the server it is supposed to use through the passdb backend
directive. This option is in the form method:URI, where the method can be
for instance tdbsam or smbpasswd for a file-based solution, or ldapsam for an
1 This is the old authentication method NTLMv1 derived from the first SMB im-

plementation by IBM, called LanManager, using DES.

6.3 The Samba Domain 163

LDAP server; the URI specification is optional, and in our case it just specifies
the local host 127.0.0.1.

Additionally we need to configure the LDAP suffix, the sub-trees devoted
to the storage of Samba information, and the administrator distinguished
name: this is needed since the service shall deeply interact with the LDAP
daemon at an administrative level (e.g. in case a user changes its password).
The Samba configuration file can look like the following:

[global]
workgroup = WIN.EXAMPLE.EDU
netbios name = SMBPDC
server string = Samba Domain Master
security = user
ldap passwd sync = yes
passdb backend = ldapsam:ldap://127.0.0.1/
ldap admin dn = cn=ldapadmin,dc=win,dc=example,dc=edu
ldap suffix = dc=win,dc=example,dc=edu
ldap group suffix = ou=Groups
ldap user suffix = ou=Users
ldap machine suffix = ou=Machines
add machine script = /usr/sbin/smbldap-useradd -w ’%u’
domain logons = yes
domain master = yes
enable privileges = yes

[netlogon]
path = /home/%U
comment = Samba Domain Login Service
valid users = %S
read only = no
browsable = no

[profiles]
path = /home/%U
comment = User Profile Service
valid users = %U
guest ok = no
read only = no
writable = yes
browsable = no

[homes]
path = /home/%U
comment = User Home Directory
valid users = %U
guest ok = no
read only = no
writable = yes
browsable = no

We notice that the automatic machine adding script was modified in order
to use the Samba-LDAP interaction tools. The LDAP administrator password
shall now be added to the known passwords, observing how the LDAP con-
figuration is already in use by the Samba tools:

smbpasswd -w ldapadmin
Setting stored password for "cn=ldapadmin,dc=win,dc=example,dc=edu" in secrets.tdb

164 6 Samba

Domain Configuration

Windows domains are associated with a distinct identification string called
Security Identifier, or SID, which is generated by the domain controller and
uniquely determines the entries in the domain. The SID along with some ID
determine an entry in the domain (e.g. a group or a user): UNIX users will
be mapped to a Windows ID based on the domain SID.

There are known IDs in a domain symmetrically to UNIX UIDs, for in-
stance an identifier SID-512 is the default domain administrators group, and
SID-513 is the domain users group. Based on this mapping, we are able to use
UNIX accounts on Windows clients through our Samba domain controller.

In order to retrieve the SID of our domain we need to use the net program
with the getlocalsid command:

net getlocalsid
SID for domain SMBPDC is: S-1-5-21-785093230-3453868100-3778353011

The SID S-1-5-21-785093230-3453868100-3778353011-512 then iden-
tifies our domain administrators group. Once read the SID, we may proceed
configuring the LDAP interaction tools in /etc/smbldap-tools/. In this lo-
cation we need to create the smbldap bind.conf and smbldap.conf files,
shipped by Debian with the tools themselves:

cd /etc/smbldap-tools/

cp /usr/share/doc/smbldap-tools/examples/smbldap_bind.conf .

cp /usr/share/doc/smbldap-tools/examples/smbldap.conf.gz .

gunzip smbldap.conf.gz

ls -l
total 12
-rw------- 1 root root 428 2006-07-06 12:22 smbldap_bind.conf
-rw-r--r-- 1 root root 6504 2006-07-06 12:22 smbldap.conf

The permission bits are critical since the smbldap bind.conf file contains
the necessary LDAP binding information, in other words, the administrative
user and password used by Samba to store and modify the LDAP database:

slaveDN="cn=ldapadmin,dc=win,dc=example,dc=edu"
slavePw="ldapadmin"
masterDN="cn=ldapadmin,dc=win,dc=example,dc=edu"
masterPw="ldapadmin"

Note that we have only one LDAP server for our domain, so slave and
master point to the same host, that is localhost. The other configuration file
called smbldap.conf directs the tools to create correct LDAP entries suitable
for Samba. This configuration file matches the entries in smb.conf, requiring
for instance that users are stored in the Users organization unit; moreover, it

6.3 The Samba Domain 165

specifies the default UNIX properties and the encryption algorithm used by
Samba to store the password in the LDAP database:

SID="S-1-5-21-785093230-3453868100-3778353011"

slaveLDAP="127.0.0.1"
slavePort="389"

masterLDAP="127.0.0.1"
masterPort="389"

ldapTLS="0"
verify="require"
cafile="/etc/smbldap-tools/ca.pem"
clientcert="/etc/smbldap-tools/smbldap-tools.pem"
clientkey="/etc/smbldap-tools/smbldap-tools.key"

suffix="dc=win,dc=example,dc=edu"
usersdn="ou=Users,${suffix}"
computersdn="ou=Machines,${suffix}"
groupsdn="ou=Groups,${suffix}"
idmapdn="ou=Idmap,${suffix}"

sambaUnixIdPooldn="sambaDomainName=WIN.EXAMPLE.EDU,${suffix}"
scope="sub"
hash_encrypt="SSHA"
crypt_salt_format="%s"

userLoginShell="/bin/bash"
userHome="/home/%U"
userGecos="Samba User"
defaultUserGid="513"
defaultComputerGid="515"
skeletonDir="/etc/skel"
defaultMaxPasswordAge="99"

userSmbHome="\\%L\homes"
userProfile="\\%L\profiles\profile"
userHomeDrive="Z:"

userScript="%U.cmd"
mailDomain="example.edu"

with_smbpasswd="0"
smbpasswd="/usr/bin/smbpasswd"
with_slappasswd="0"
slappasswd="/usr/sbin/slappasswd"

The userSmbHome and userProfile are the Windows user home direc-
tory and profile, respectively, described by a Windows UNC following the
Universal Naming Convention. In UNIX systems the separator is the slash
character / while on Windows the backslash \ is used. The convention defines
then resources as \\server\name: the server name %L will be substituted with
SMBPDC, while homes and profiles will point to the path indicated by the
smb.conf shares [homes] and [profiles]: the user profile will be then lo-
cated under the profile folder inside the user’s home directory. We are now
ready to populate the LDAP tree with all the needed organizational units
using the smbldap-populate tool:

166 6 Samba

smbldap-populate
Using workgroup name from sambaUnixIdPooldn (smbldap.conf): sambaDomainName=WIN.EXAMPLE.EDU
Using builtin directory structure
entry dc=win,dc=example,dc=edu already exist.
adding new entry: ou=Users,dc=win,dc=example,dc=edu
adding new entry: ou=Groups,dc=win,dc=example,dc=edu
adding new entry: ou=Machines,dc=win,dc=example,dc=edu
adding new entry: ou=Idmap,dc=win,dc=example,dc=edu
adding new entry: sambaDomainName=WIN.EXAMPLE.EDU,dc=win,dc=example,dc=edu
adding new entry: uid=Administrator,ou=Users,dc=win,dc=example,dc=edu
adding new entry: uid=nobody,ou=Users,dc=win,dc=example,dc=edu
adding new entry: cn=Domain Admins,ou=Groups,dc=win,dc=example,dc=edu
adding new entry: cn=Domain Users,ou=Groups,dc=win,dc=example,dc=edu
adding new entry: cn=Domain Guests,ou=Groups,dc=win,dc=example,dc=edu
adding new entry: cn=Domain Computers,ou=Groups,dc=win,dc=example,dc=edu
adding new entry: cn=Administrators,ou=Groups,dc=win,dc=example,dc=edu
adding new entry: cn=Print Operators,ou=Groups,dc=win,dc=example,dc=edu
adding new entry: cn=Backup Operators,ou=Groups,dc=win,dc=example,dc=edu
adding new entry: cn=Replicators,ou=Groups,dc=win,dc=example,dc=edu

The LDAP interaction tools, as we can see from the above output, read
the configuration file and use the sambaUnixIdPooldn option to identify the
domain name, pointing to the sambaDomainName distinguished name. The
entry contains also the needed data to map UNIX UIDs and GIDs to Windows
users and groups.

The default domain administrator is called Administrator, whose pass-
word should be immediately set with the smbldap-passwd program:

smbldap-passwd Administrator
Changing password for Administrator
New password :
Retype new password :

We can now query the LDAP server to retrieve all the domain administra-
tors, so all the entries belonging to the Domain Admins group with identifier
SID-512. Apart from querying the service directly, we can use the Samba-
LDAP smbldap-groupshow tool:

smbldap-groupshow "Domain Admins"
dn: cn=Domain Admins,ou=Groups,dc=win,dc=example,dc=edu
objectClass: posixGroup,sambaGroupMapping
gidNumber: 512
cn: Domain Admins
memberUid: Administrator
description: Netbios Domain Administrators
sambaSID: S-1-5-21-785093230-3453868100-3778353011-512
sambaGroupType: 2
displayName: Domain Admins

It is interesting noticing that the entry is mapped to a UNIX group with
the same name and GID 512. Samba needs then to retrieve the UNIX infor-
mation from the LDAP database in order to function properly: we need to
install and configure the name service switch to use LDAP, as we have seen
in the chapter regarding the LDAP service. It is critical to match user, group,
and machine passwords to the appropriate LDAP entries as we can see from
the following libnss-ldap.conf configuration file:

6.3 The Samba Domain 167

host 127.0.0.1
base dc=win,dc=example,dc=edu
ldap_version 3

nss_base_passwd ou=Users,dc=win,dc=example,dc=edu
nss_base_passwd ou=Machines,dc=win,dc=example,dc=edu

nss_base_shadow ou=Users,dc=win,dc=example,dc=edu
nss_base_shadow ou=Machines,dc=win,dc=example,dc=edu

nss_base_group ou=Groups,dc=win,dc=example,dc=edu

In fact, we already observed that users as well as client machines have
entries in a domain, and also a specific password. The changes take effect
immediately, and we can test our configuration by querying the UNIX groups
the Administrator user belongs to:

groups Administrator
Administrator : Domain Admins

At this point, we can start the Samba service and progress to configure the
administrative privileges. As we have previewed in the previous section, the
domain administrator should be granted all privileges, or better, all domain
administrators should be able to perform managerial actions. We can then
issue a net rights grant command specifying the domain administrators as
in the following command:

net rpc rights grant "WIN.EXAMPLE.EDU\Domain Admins" SeMachineAccountPrivilege \
SePrintOperatorPrivilege SeAddUsersPrivilege SeRemoteShutdownPrivilege \
SeDiskOperatorPrivilege -U Administrator
Password:
Successfully granted rights.

net rpc rights list "WIN.EXAMPLE.EDU\Domain Admins" -U Administrator
Password:
SeMachineAccountPrivilege
SePrintOperatorPrivilege
SeAddUsersPrivilege
SeRemoteShutdownPrivilege
SeDiskOperatorPrivilege

6.3.3 Samba Users

As we introduced earlier, the sambaDomainName item in the LDAP database
identifies the domain, and thus contains apart from the name itself, also the
domain SID:

ldapsearch -x -LLL "sambaDomainName=WIN.EXAMPLE.EDU"
dn: sambaDomainName=WIN.EXAMPLE.EDU,dc=win,dc=example,dc=edu
sambaAlgorithmicRidBase: 1000
gidNumber: 1000
objectClass: sambaDomain
objectClass: sambaUnixIdPool
sambaSID: S-1-5-21-785093230-3453868100-3778353011
sambaDomainName: WIN.EXAMPLE.EDU
uidNumber: 1001

168 6 Samba

The sambaAlgorithmicRidBase attribute specifies the base to calculate
the mapping between Windows IDs and UNIX GIDs or UIDs. Our choice is to
select our UIDs, since our prospective users will be AFS users and have their
own UID and GID. We can now add the testuser entry to the domain users
through the smbldap-useradd tool, specifying the add switch -a (creating
both UNIX and Samba entries), its UID 10000 and of course the user name.
The -c option specifies the GECOS field, and will appear on the top of the
Start menu in a Windows client. Watch the -m option that directs the tool to
create the user’s home directory, if none exists. We shall remember that until
this point, our Samba server does not interact with the pre-existing OpenAFS,
LDAP or Kerberos services, and thus testuser is just a local user. We will
modify this behavior shortly by making the PDC an OpenAFS client and
enable it to read and write from our AFS file space.

Let us proceed creating the testuser entry, changing its password and
analyzing the item created by the tools in the LDAP database:

smbldap-useradd -a -m -c "Samba Testuser" -u 10000 testuser

smbldap-passwd testuser
Changing password for testuser
New password :
Retype new password :

ldapsearch -x -LLL "uid=testuser"
dn: uid=testuser,ou=Users,dc=win,dc=example,dc=edu
objectClass: top
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
objectClass: sambaSamAccount
cn: Samba Testuser
sn: testuser
uid: testuser
uidNumber: 10000
gidNumber: 513
homeDirectory: /home/testuser
loginShell: /bin/bash
gecos: Samba Testuser
description: Samba Testuser
sambaLogonTime: 0
sambaLogoffTime: 2147483647
sambaKickoffTime: 2147483647
sambaPwdCanChange: 0
displayName: Samba Testuser
sambaSID: S-1-5-21-785093230-3453868100-3778353011-21000
sambaPrimaryGroupSID: S-1-5-21-785093230-3453868100-3778353011-513
sambaLogonScript: testuser.cmd
sambaProfilePath: \\SMBPDC\profiles\profile
sambaHomePath: \\SMBPDC\homes
sambaHomeDrive: Z:
sambaAcctFlags: [U]
sambaPwdLastSet: 1152269496
sambaPwdMustChange: 1160823096

Let us analyze the attributes above. Any user created by Samba tools
belongs to Domain Users primary group with GID 513, as we can see from
both the UNIX gidNumber and the Windows sambaPrimaryGroupSID. Users

6.3 The Samba Domain 169

upon a successful login will have their [homes] shared resource mounted as
the Z: drive, with their profiles stored under the profile directory located
in the [profiles] share: this UNC gets then translated to the UNIX path
/home/testuser/profile. The sambaAcctFlags contains the account flags
identifying the Windows properties, in this case U specifies a normal user ac-
count. The available flags are described in Table 6.2. Like Kerberos passwords,

Table 6.2. Samba account flags

Flag Description

D Disabled account
H Account requires a home directory
I Inter-domain account trust
L The account has been locked
M A Microsoft Network Service (MSN) account
N No password is required
S Server trust account
T A temporarily duplicated account
U Normal user account
W Workstation trust account
X Password does not expire

Samba may have policies and expiration dates: it is important to match these
properties between the domain and the realm, since users may be confused
by different time-schedules for passwords.

As a side-note, a direct UID choice, when creating a user, will not modify
the sambaDomainName entry, which contains the next-available UID if we let
Samba choose UIDs and Windows IDs:

ldapsearch -x -LLL "sambaDomainName=WIN.EXAMPLE.EDU"
dn: sambaDomainName=WIN.EXAMPLE.EDU,dc=win,dc=example,dc=edu
sambaAlgorithmicRidBase: 1000
gidNumber: 1000
objectClass: sambaDomain
objectClass: sambaUnixIdPool
sambaSID: S-1-5-21-785093230-3453868100-3778353011
sambaDomainName: WIN.EXAMPLE.EDU
uidNumber: 1001

We are ready to test the WIN.EXAMPLE.EDU domain based on LDAP by
letting a Windows client join. Note that Windows XP Professional needs a
small modification in the registry as we have seen in the previous section.
After joining the domain using the domain Administrator user, we can login
as testuser as we can see in Fig. 6.4.

6.3.4 Samba and OpenAFS

Samba is neither a Kerberized service nor AFS-aware. In the following we are
going to introduce a workaround for this issue, allowing the domain controller

170 6 Samba

Fig. 6.4. The Windows XP desktop upon login

a dedicated access to the AFS file space, and thus enabling users to access
their personal files transparently.

To achieve this we have to transform the machine running Samba into a
fully-functioning Kerberos and OpenAFS client as we have seen in previous
chapters. Note that we are not going to use the previous LDAP service since
we chose to create a new one for the domain controller for didactic reasons.
Creating a Samba LDAP database enables also UNIX users, as we have seen
from the attributes needed by the domain controller. It is a simple task to
create a single LDAP tree suitable for both Windows and UNIX clients but
with security concerns.

Kerberos Serivce

Samba is not Kerberos-aware, as we have already introduced, but this fact
does not necessarily mean that we cannot use OpenAFS. We have explained
before that a keytab file contains the secret keys for a principal, and thus it is
completely equivalent to a password: through a keytab access we can obtain
a Kerberos ticket.

We have then to create a principal for our Samba service and to export
its secret keys to a keytab file, so let us start creating the principal windows
with a random password and export its keys to a keytab file:

6.3 The Samba Domain 171

kadmin: add_principal -randkey windows
WARNING: no policy specified for windows@EXAMPLE.EDU; defaulting to no policy
Principal "windows@EXAMPLE.EDU" created.

kadmin: ktadd -k /etc/samba/windows.keytab windows
Entry for principal windows with kvno 3, encryption type \
Triple DES cbc mode with HMAC/sha1 added to keytab WRFILE:/etc/samba/windows.keytab.
Entry for principal windows with kvno 3, encryption type \
DES cbc mode with CRC-32 added to keytab WRFILE:/etc/samba/windows.keytab.

The keytab file is accessible only by root for security reasons, and will
contain one or more secret keys, viewable with the klist tool:

cd /etc/samba/

ls -l
total 16
-rw-r--r-- 1 root root 8 2005-07-13 01:10 gdbcommands
-rw-r--r-- 1 root root 912 2006-07-07 15:39 smb.conf
-rw------- 1 root root 116 2006-07-07 15:54 windows.keytab

klist -ke windows.keytab
Keytab name: FILE:windows.keytab
KVNO Principal
---- --

3 windows@EXAMPLE.EDU (Triple DES cbc mode with HMAC/sha1)
3 windows@EXAMPLE.EDU (DES cbc mode with CRC-32)

Service OpenAFS User

Samba should have access to the AFS file space of each user in our envi-
ronment, even though the daemon has no knowledge of OpenAFS and its
security system. Having a keytab file allows us to gain a Kerberos ticket for
the windows@EXAMPLE.EDU principal: it should then be possible to convert
the ticket into an AFS token. We need to create an entry in the protection
database with the same name as the Kerberos principal, with an ID that will
not conflict with any predefined domain IDs (e.g. 512 or 513):

pts createuser windows -id 500
User windows has id 500

pts listentries
Name ID Owner Creator
anonymous 32766 -204 -204
sysadmin 1 -204 32766
testuser 10000 -204 1
windows 500 -204 1

Usually low IDs are reserved to system resources, for instance the root
user has UID 0, and daemon has UID 1: the same rule generally applies to
Windows domains, so we chose 500 as ID so that windows will not be identified
with Domain Admins or any other default entity.

Now we need to resolve the ID to a valid UNIX user. We have the choice
to employ a new LDAP entry—letting the name service switch resolve the nu-
meric ID—or statically enter a new user in /etc/passwd. Our choice is to cre-
ate a new user in the common UNIX files, with no password and /bin/false

172 6 Samba

as shell—so disallowing any login possibility—and carefully mapping the UID
to 500 and its GID to Domain Users:

adduser --system --home /tmp --shell /bin/false --uid 500 --gid 513 \
--disabled-password --disabled-login windows

adduser: Warning: The home dir you specified already exists.
Adding system user ‘windows’...
Adding new user ‘windows’ (500) with group ‘Domain Users’.
Home directory ‘/tmp’ already exists.

The Process Authenticating Group

Any user in a UNIX system has a UID and GID that identifies it in a unique
way. The authentication data needed by AFS to identify users is usually stored
in a Process Authentication Group, or PAG, encoded with the help of two
UNIX groups. We can now gain the initial ticket for the windows principal
using kinit and the keytab file:

kinit -k -t /etc/samba/windows.keytab windows

klist
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: windows@EXAMPLE.EDU

Valid starting Expires Service principal
07/07/06 16:13:11 07/08/06 02:13:11 krbtgt/EXAMPLE.EDU@EXAMPLE.EDU

Kerberos 4 ticket cache: /tmp/tkt0
klist: You have no tickets cached

Note that kinit did not prompt for a password during the authentication
process. With the aklog command we can then convert the Kerberos ticket
to an AFS token:

aklog -setpag

tokens

Tokens held by the Cache Manager:

User’s (AFS ID 500) tokens for afs@example.edu [Expires Jul 8 02:13]
--End of list--

The -setpag switch forces the system to create a PAG for the current
login session held by root: it normally possesses no PAGs since root is not
an AFS user. The authentication groups will show up in common UNIX tools
output:

groups
root id: cannot find name for group ID 34232
34232 id: cannot find name for group ID 40379
40379

6.3 The Samba Domain 173

The root user belongs to the GID 0, resolved correctly to the root group
through /etc/group. The two other groups represent the AFS credentials,
shown as GID 34232 and 40379. This approach to credential encoding makes
it possible for all the processes that will be spawned from the session holding
a PAG, to retain the credentials of parent processes. In the following we will
modify the Samba script to get the initial ticket and set the PAG before start-
ing the daemon: all the daemons started in the session will be authenticated
as the parent process.

Starting Samba with PAG

Debian usually ships services with default settings located in /etc/default/,
usually named as the service itself. These files are commonly employed to set
environment variables before the startup script is executed.

The /etc/default/samba contains by default the predefined running
mode for the service (i.e. as a daemon). Here we add three new environ-
ment variables containing the shell commands to execute in order to obtain
the initial ticket for windows and then set the PAG for the running service,
so that Samba and other processes spawned through the script will inherit
the authentication credentials. The third command is used to eliminate the
Kerberos ticket when the PAG is defined, since it does no serve any more:

RUN_MODE="daemons"

PRE_COMMAND1="/usr/bin/kinit -l 1day -k -t /etc/samba/windows.keytab windows"
PRE_COMMAND2="/usr/bin/aklog -setpag"
POST_COMMAND="/usr/bin/kdestroy"

Unfortunately kinit has a default hardcoded lifetime for Kerberos tickets,
for this reason we had to add the -l switch to specify the actual ticket validity
period of one day.

The last step is to modify the Samba script using the environment variables
set in the /etc/default/samba file. Samba is started by the samba script
located in /etc/init.d/, and by default it will be like the following:

#!/bin/sh
#
Start/stops the Samba daemons (nmbd and smbd).
#
#

Defaults
RUN_MODE="daemons"

Reads config file (will override defaults above)
[-r /etc/default/samba] && . /etc/default/samba

NMBDPID=/var/run/samba/nmbd.pid
SMBDPID=/var/run/samba/smbd.pid

clear conflicting settings from the environment
unset TMPDIR

174 6 Samba

See if the daemons are there
test -x /usr/sbin/nmbd -a -x /usr/sbin/smbd || exit 0

case "$1" in
start)

echo -n "Starting Samba daemons:"

echo -n " nmbd"
start-stop-daemon --start --quiet --exec /usr/sbin/nmbd -- -D

if ["$RUN_MODE" != "inetd"]; then
echo -n " smbd"
start-stop-daemon --start --quiet --exec /usr/sbin/smbd -- -D

fi

echo "."
;;

stop)
echo -n "Stopping Samba daemons: "

start-stop-daemon --stop --quiet --pidfile $NMBDPID
Wait a little and remove stale PID file
sleep 1
if [-f $NMBDPID] && ! ps h ‘cat $NMBDPID‘ > /dev/null
then

Stale PID file (nmbd was succesfully stopped),
remove it (should be removed by nmbd itself IMHO.)
rm -f $NMBDPID

fi
echo -n "nmbd"

if ["$RUN_MODE" != "inetd"]; then
start-stop-daemon --stop --quiet --pidfile $SMBDPID
Wait a little and remove stale PID file
sleep 1
if [-f $SMBDPID] && ! ps h ‘cat $SMBDPID‘ > /dev/null
then

Stale PID file (nmbd was succesfully stopped),
remove it (should be removed by smbd itself IMHO.)
rm -f $SMBDPID

fi
echo -n " smbd"

fi

echo "."

;;
reload)

echo -n "Reloading /etc/samba/smb.conf (smbd only)"
start-stop-daemon --stop --signal HUP --pidfile $SMBDPID

echo "."
;;

restart|force-reload)
$0 stop
sleep 1
$0 start
;;

*)
echo "Usage: /etc/init.d/samba {start|stop|reload|restart|force-reload}"
exit 1
;;

esac

exit 0

6.3 The Samba Domain 175

We need to modify the start) stanza, requiring the execution of kinit
and aklog obtaining the PAGs, calling the environment variables previously
introduced:

start)
$PRE_COMMAND1 ; $PRE_COMMAND2
echo -n "Starting Samba daemons:"

echo -n " nmbd"
start-stop-daemon --start --quiet --exec /usr/sbin/nmbd -- -D

if ["$RUN_MODE" != "inetd"]; then
echo -n " smbd"
start-stop-daemon --start --quiet --exec /usr/sbin/smbd -- -D

fi

echo "."
$POST_COMMAND
;;

The system upon starting the service runs the commands contained in
the PRE COMMAND1 and PRE COMMAND2 variables, and thus obtains the initial
ticket and sets the PAGs for the current session. Then it spawns the needed
processes with start-stop-daemon which inherit the credentials. The last
command destroys the obtained Kerberos tickets, affecting only the current
session and not the children processes or the AFS tokens.

Note that services run through a keytab with a PAG cannot access the
AFS file space after the token expiration. It is then necessary to periodically
restart the Samba daemons through a simple scheduled job (e.g. a cron job),
usually done at nighttime when no user should be using the service.

6.3.5 Testing Samba

Our testuser is already in the protection database for OpenAFS, in the
Kerberos, and in the LDAP databases. Our objective is to allow the user to
login also on Windows clients that joined our domain.

Samba will be authenticated to the AFS file space as windows with UID
500, so all the locations where Samba should have access to must be writable
to this user. In other words, the profile directory should belong to windows:

cd /afs/example.edu/users/testuser/

ls -ld profile/
drwxr-xr-x 2 windows Domain Users 2048 2006-07-07 16:27 profile/

fs listacl profile
Access list for profile is
Normal rights:

system:administrators rlidwka
windows rlidwka
testuser rlidwka

Note that the profile directory belongs also to the Domain Users group.
We need now to modify the LDAP entry on the Samba machine for testuser,

176 6 Samba

reflecting the home directory in the AFS file space, as well as the new profile
location in the Samba configuration files. The new LDAP configuration for
testuser on the Samba host will be like the following:

dn: uid=testuser,ou=Users,dc=win,dc=example,dc=edu
objectClass: top
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
objectClass: sambaSamAccount
cn: AFS Testuser
sn: testuser
uid: testuser
loginShell: /bin/bash
gecos: AFS Testuser
description: AFS Testuser
sambaLogonTime: 0
sambaLogoffTime: 2147483647
sambaKickoffTime: 2147483647
vsambaPwdCanChange: 0
displayName: AFS Testuser
sambaSID: S-1-5-21-785093230-3453868100-3778353011-21000
sambaPrimaryGroupSID: S-1-5-21-785093230-3453868100-3778353011-513
sambaLogonScript: testuser.cmd
sambaHomeDrive: Z:
sambaAcctFlags: [U]
sambaPwdLastSet: 1152277354
sambaPwdMustChange: 1160830954
uidNumber: 10000
gidNumber: 513
homeDirectory: /afs/example.edu/users/testuser
sambaProfilePath: \\\%L\profiles\profile
sambaHomePath: \\\%L\homes

The testuser’s common name, surname, description and GECOS fields
have been updated to display the new configuration. In order to automatically
create entries akin to testuser we need also to modify the smbldap.conf
Samba-LDAP interaction tool configuration file. Also the Samba configuration
must finally match the new profile and home directory paths under AFS,
additionally forcing the daemon to use the windows user with the force user
directive:

[global]
workgroup = WIN.EXAMPLE.EDU
netbios name = SMBPDC
server string = Samba Domain Master
security = user
ldap passwd sync = yes
passdb backend = ldapsam:ldap://127.0.0.1/
ldap admin dn = cn=ldapadmin,dc=win,dc=example,dc=edu
ldap suffix = dc=win,dc=example,dc=edu
ldap group suffix = ou=Groups
ldap user suffix = ou=Users
ldap machine suffix = ou=Machines
ldap idmap suffix = ou=Idmap
add machine script = /usr/sbin/smbldap-useradd -w ’%u’
domain logons = yes
domain master = yes
enable privileges = yes

6.3 The Samba Domain 177

[netlogon]
path = /afs/example.edu/users/%U
comment = Samba Domain Login Service
valid users = %S
read only = no
browsable = no

[profiles]
path = /afs/example.edu/users/%U
comment = User Profile Service
valid users = %U
guest ok = no
read only = no
writable = yes
browsable = no
profile acls = yes
inherit permissions = yes
inherit owner = yes
force user = windows

[homes]
path = /afs/example.edu/users/%U
comment = User Home Directory
valid users = %U
guest ok = no
read only = no
writable = yes
browsable = no
inherit permissions = yes
inherit owner = yes
force user = windows

Restarting the service is sufficient to make all the changes take effect, and
logging on a Windows client as testuser we see the home directory contents
as in Fig. 6.5.

6.3.6 Backup Domain Controller

A backup domain controller basically is a copy of the primary one, and so it
should be a Kerberos and an AFS client as the PDC. This section will out-
line the main differences between a primary and a backup domain controller
installation process. The name of this host should be smb2.example.edu.

After installing and configuring a local LDAP server, and removing the
entries in the database as we did for the PDC, we need to install Samba and
the Samba-LDAP interaction tools. The backup domain controller configura-
tion is slightly different from the previous settings: one obvious change is the
NetBIOS name, and the other is the domain master field set to no. We also
decided to change the server string to match the new layout:

[global]
workgroup = WIN.EXAMPLE.EDU
netbios name = SMBBDC
server string = Samba Domain Slave
security = user
ldap passwd sync = yes
passdb backend = ldapsam:ldap://127.0.0.1/
ldap admin dn = cn=ldapadmin,dc=win,dc=example,dc=edu

178 6 Samba

Fig. 6.5. The AFS home directory accessed through Samba

ldap suffix = dc=win,dc=example,dc=edu
ldap group suffix = ou=Groups
ldap user suffix = ou=Users
ldap machine suffix = ou=Machines
ldap idmap suffix = ou=Idmap
add machine script = /usr/sbin/smbldap-useradd -w ’%u’
domain logons = yes
domain master = no
enable privileges = yes

[netlogon]
path = /afs/example.edu/users/%U
comment = Samba Domain Login Service
valid users = %S
read only = no
browsable = no

[profiles]
path = /afs/example.edu/users/%U
comment = User Profile Service
valid users = %U
guest ok = no
read only = no
writable = yes
browseable = no
profile acls = yes
inherit permissions = yes
inherit owner = yes
force user = windows

[homes]
path = /afs/example.edu/users/%U
comment = User Home Directory

6.3 The Samba Domain 179

valid users = %U
guest ok = no
read only = no
writable = yes
browseable = no
inherit permissions = yes
inherit owner = yes
force user = windows

Our BDC queries its local LDAP service as specified in the passdb
backend field. The testparm tools correctly shows that our new server acts
as a backup controller. After storing the LDAP administrator password with
smbpasswd as on the PDC, we need to configure the Samba-LDAP tools in
smbladp.conf:

SID="S-1-5-21-785093230-3453868100-3778353011"

slaveLDAP="127.0.0.1"
slavePort="389"

masterLDAP="127.0.0.1"
masterPort="389"

ldapTLS="0"
verify="require"
cafile="/etc/smbldap-tools/ca.pem"
clientcert="/etc/smbldap-tools/smbldap-tools.pem"
clientkey="/etc/smbldap-tools/smbldap-tools.key"

suffix="dc=win,dc=example,dc=edu"
usersdn="ou=Users,${suffix}"
computersdn="ou=Machines,${suffix}"
groupsdn="ou=Groups,${suffix}"
idmapdn="ou=Idmap,${suffix}"

sambaUnixIdPooldn="sambaDomainName=WIN.EXAMPLE.EDU,${suffix}"
scope="sub"
hash_encrypt="SSHA"
crypt_salt_format="%s"

userLoginShell="/bin/bash"
userHome="/afs/example.edu/users/%U"
userGecos="Samba User"
defaultUserGid="513"
defaultComputerGid="515"
skeletonDir="/etc/skel"
defaultMaxPasswordAge="99"

userSmbHome="\\%L\homes"
userProfile="\\%L\profiles\profile"
userHomeDrive="Z:"

userScript="%U.cmd"
mailDomain="example.edu"

with_smbpasswd="0"
smbpasswd="/usr/bin/smbpasswd"
with_slappasswd="0"
slappasswd="/usr/sbin/slappasswd"

Note that the SID must correspond to the domain SID on the primary
controller. The LDAP binding settings are stored in the smbldap bind.conf

180 6 Samba

file which is a copy of the master configuration, accessible only by root.
The LDAP database on the backup controller needs to be populated with the
entries matching the primary database, an operation that cannot be performed
with a sync replica since we need to propagate critical information as user
passwords. On the master server we can dump the entire database to an
LDIF file and copy the file to the slave with a secure method:

ldapsearch -x -LLL -D "cn=ldapadmin,dc=win,dc=example,dc=edu" -w ldapadmin > all.ldif

Once copied the LDIF on the BDC, we need to manually remove the root
of the LDAP tree from the file before adding all its contents. Once deleted
the root entry, we can import the database with ldapadd, authenticating us
as administrators:

ldapadd -x -D "cn=ldapadmin,dc=win,dc=example,dc=edu" -w ldapadmin -f all.ldif
adding new entry "sambaDomainName=WIN.EXAMPLE.EDU,dc=win,dc=example,dc=edu"

adding new entry "ou=Users,dc=win,dc=example,dc=edu"
adding new entry "ou=Groups,dc=win,dc=example,dc=edu"
adding new entry "ou=Machines,dc=win,dc=example,dc=edu"
adding new entry "ou=Idmap,dc=win,dc=example,dc=edu"
adding new entry "uid=Administrator,ou=Users,dc=win,dc=example,dc=edu"
adding new entry "uid=nobody,ou=Users,dc=win,dc=example,dc=edu"
adding new entry "cn=Domain Admins,ou=Groups,dc=win,dc=example,dc=edu"
adding new entry "cn=Domain Users,ou=Groups,dc=win,dc=example,dc=edu"
adding new entry "cn=Domain Guests,ou=Groups,dc=win,dc=example,dc=edu"
adding new entry "cn=Domain Computers,ou=Groups,dc=win,dc=example,dc=edu"
adding new entry "cn=Administrators,ou=Groups,dc=win,dc=example,dc=edu"
adding new entry "cn=Print Operators,ou=Groups,dc=win,dc=example,dc=edu"
adding new entry "cn=Backup Operators,ou=Groups,dc=win,dc=example,dc=edu"
adding new entry "cn=Replicators,ou=Groups,dc=win,dc=example,dc=edu"
adding new entry "uid=testuser,ou=Users,dc=win,dc=example,dc=edu"
adding new entry "uid=client1$,ou=Machines,dc=win,dc=example,dc=edu"

If the import operation exits successfully, we are able to query the server
for all the domain administrators with the smbldap-groupshow tool:

smbldap-groupshow "Domain Admins"
dn: cn=Domain Admins,ou=Groups,dc=win,dc=example,dc=edu
objectClass: posixGroup,sambaGroupMapping
gidNumber: 512
cn: Domain Admins
memberUid: Administrator
description: Netbios Domain Administrators
sambaSID: S-1-5-21-785093230-3453868100-3778353011-512
sambaGroupType: 2
displayName: Domain Admins

The last steps mimic the primary domain controller, installing and prop-
erly configuring the name service switch and allowing the Samba service to
access the AFS file space: we need to copy the keytab file and modify the
startup script as we have explained earlier. After starting the Samba service,
we can test the backup domain controller by detaching the PDC from the
network and logging in with a Windows client. We show in Fig. 6.6 that we

6.3 The Samba Domain 181

can successfully perform a domain login, transparently using the backup con-
troller, while SMBPDC is not available. For didactic purposes we left PDC and

Fig. 6.6. Users perform login on the BDC while the PDC is offline

BDC with a local LDAP service. Of course this is not a solution for produc-
tion. Since a secure replication in this case can be only achieved by using TLS,
to be introduced in the next chapter, we leave this part as an exercise.

Notes on Samba Use

The Samba access to AFS space is determined by the single user windows: we
prefer to allow write access to this user only in a dedicated part of the user
volumes, reflected in the previously showed ACLs. Also, an entirely separated
volume could be mounted as profile, since the final distinction between users
is handled by the Samba daemon. Therefore a user can only access the own
profile but not the one of others.

Practice

Exercise 21. Establish a secure synchronization between the two LDAP
servers on the PDC and the BDC: unfortunately the smbldap-tools only
support plain text authentication. Hence you should disable ldap:// and en-
able ldaps:// with the help of a key and certificate for both of these two
servers.

182 6 Samba

Exercise 22. In the described setup there exist two locations for the user
password: one is Kerberos, the other the LDAP servers of PDC and BDC.
Write a script which changes both of them, the UNIX expect tool is often
used for such problems.

Exercise 23. Reflect the possibility to unite both LDAP repositories. What
are the advantages and disadvantages? A unified LDAP storage needs Ker-
beros, TLS support, and fine tuned ACLs.

Exercise 24. Verify if the proposed solution integrates with an already es-
tablished Active Directory domain. It is possible to synchronize passwords
from from both world, establishing also a cross-realm trust, since AD relies
on the Kerberos protocol.

Part II

Pushing the Core Services

7

Further Services

Always render more and better service than is expected
of you, no matter what your task may be.
Augustine “Og” Mandino

7.1 DHCP

The assignment of IP addresses on a network is critical, especially in an envi-
ronment that allows guests to use network services. Originally the BOOTP,
the Bootstrap Protocol enabled systems to obtain automatically an IP address
from a pool of available ones, allowing also systems to load an operating sys-
tem permitting disk-less workstations. Another application in the past was
the operation of “X terminals”, which were devices understanding only the X
Display Manager Control Protocol. The BOOTP protocol was subsequently
obsoleted by the DHCP protocol, which still retains in some implementation
a backward compatibility with its ancestor.

DHCP stands for Dynamic Host Configuration Protocol, and provides a
machine with the necessary information to function on a network: an IP ad-
dress and the associated network mask, the default gateway address, and DNS
servers. A DHCP server will lease a unique IP address to a client, for a fixed
amount of time called lease time, provided that an address is still available
from the pool.

The latest DHCP server provided by Debian, with support also for the
legacy BOOTP protocol, is shipped with the dhcp3-server package, and as
usual Debian configures and starts the service upon a successful installation.
For this software, Debian also warns that the server must be configured man-
ually. The configuration file dhcpd.conf located in /etc/dhcp3/ contains all
the needed leasing time information and a logging verbosity option. We must
manually specify that the DHCP server is the authoritative one in the net-
work1, with the authoritative parameter. The subnet stanza provides all
the needed information about the IP addresses that the service should handle,
offering the configuration parameters required by a client in order to set its
network configuration:
1 By default the DHCP server runs as non-authoritative, preventing users to start

accidently a valid DHCP server, disturbing the network configuration.

186 7 Further Services

DHCP Discover

DHCP Offer

IP Address Lease Request

Lease Parameters

Client
DHCP
Server

Fig. 7.1. A DHCP service protocol communication outline

ddns-update-style none;
default-lease-time 600;
max-lease-time 7200;
authoritative;
log-facility local7;

subnet 192.168.127.0 netmask 255.255.255.0 {
range 192.168.127.20 192.168.127.200;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.127.255;
option routers 192.168.127.1;
option domain-name "example.edu";
option domain-name-servers 192.168.127.2, 192.168.127.3;

}

In our example we restricted the lease time to 10 minutes, allowing a
maximum timeframe of 2 hours: after a lease expires the IP address request
will be renegotiated. Besides all network parameters, we chose to limit the
IP addresses in the pool with the range parameter, allowing only addresses
20–200 to be available for lease. Finally in our network we do not make use of
dynamic DNS updates. This short configuration suffices to successfully start
the server:

/etc/init.d/dhcp3-server start
Starting DHCP server: dhcpd3.

To test the availability of our server, we connect a Windows machine to
the network with the automatic network configuration. Using the command
line interface we can inspect the network parameters with the ipconfig tool:

C:\Documents and Settings\Standard>ipconfig /all

Windows IP Configuration

Host Name : acer-prozwpnghe
Primary Dns Suffix :
Node Type : Unknown
IP Routing Enabled. : No

7.1 DHCP 187

WINS Proxy Enabled. : No

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . : example.edu
Description : Realtek RTL8139/810x
Physical Address. : 00-00-E2-92-CE-7F
Dhcp Enabled. : Yes
Autoconfiguration Enabled : Yes
IP Address. : 192.168.127.20
Subnet Mask : 255.255.255.0
Default Gateway : 192.168.127.1
DHCP Server : 192.168.127.7
DNS Servers : 192.168.127.2

192.168.127.3
Lease Obtained. : Thursday, July 13, 2006 1:52:18 PM
Lease Expires : Thursday, July 13, 2006 2:02:18 PM

As we can see from the above output, the Windows client has been suc-
cessfully configured with the DHCP-supplied parameters. On the server side
upon a successful DHCP negotiation, the daemon updates the lease data in
the dhcpd.leases file under the /var/lib/dhcp3/ location:

cat dhcpd.leases
lease 192.168.127.20 {

starts 2 2006/07/13 13:52:18;
ends 2 2006/07/13 14:02:18;
tstp 2 2006/07/13 14:02:18;
binding state free;
hardware ethernet 00:00:e2:92:ce:7f;
uid "\001\000\000\342\222\316\177";

}

Static Hosts

In certain situations it is desirable that a static IP address gets assigned to
a specific host. It is possible to provide a fixed IP address to machines based
on their MAC address. The MAC address, or Media Access Control address,
is a unique identifier assigned to any network card, constituted by 6 bytes
and regulated by the IEEE MAC address specification, now called MAC-48.
Although MAC addresses are physically set on network cards, they can be
changed by malicious users: using a per-MAC address setting increases the
security level of the service, but it cannot provide resistance to hacking.

In order to allow a particular host to gain a specific IP address we can
add a host stanza, specifying the IP address or a DNS name assigned to the
machine, and supplying the network card’s MAC address as in the following
example:

host notebook {
hardware ethernet 00:00:e2:92:ce:7f;
fixed-address notebook.example.edu;

}

The above configuration obviously needs a forward and reverse DNS host
mapping.

188 7 Further Services

DHCP Redundancy

DHCP is an important service when clients depend on a dynamic configura-
tion, allowing a great flexibility in host settings and network management: a
redundant DHCP server should then be properly configured.

The Debian-provided DHCP server can handle failover situations, speci-
fying the pool of IP addresses managed by the primary and the secondary
servers, configuring them with a failover peer option that points to the re-
spective partner. A much simpler approach is to configure two DHCP servers
to offer exactly the same static IPs, while dynamic addresses can be divided
between them in non overlapping ranges.

7.2 Emergency System

In case of a fatal disk crash it can be helpful to boot the failed system in some
emergency mode: it is possible to use live CDs to perform emergency repairs
or employ a network boot.

During the 90s the Intel Corporation developed a hardware solution to
allow new systems to be managed without any previously installed operating
system. The effort resulted in the Wired for Management platform, which
included two major features: the Wake-on-LAN facility and the PXE environ-
ment. PXE is the acronym of the Pre-Boot Execution Environment, providing
hosts with an operating system regardless of any storage devices such as hard
drives. The process of booting a system over the network is driven by the
internal system firmware as in Fig. 7.2, although almost every system nowa-
days provides a PXE-enabled firmware. The PXE boot requires the network

Fig. 7.2. The boot menu with the highlighted network boot option

to provide a valid IP address and an operating system image through a DHCP
negotiation, and finally the download of the system with a PXE-enabled FTP
transfer.

7.2 Emergency System 189

7.2.1 TFTP

The FTP protocol used in PXE-enabled environment is usually the Trivial
File Transfer Protocol or TFTP, a file transfer protocol defined in early 80s
running on the UDP port 69. The FTP protocol—using TCP port 21 and 20—
in comparison requires more memory, and offers the user more commands with
respect to the TFTP, which for instance cannot list contents of a directory.

In particular, to retrieve a PXE-enabled boot image from the network, we
need a PXE-enabled TFTP daemon, included in the atftpd package. Debian
as usual configures the package, asking whether we want to run the server as an
inetd-driven service: in our case we run the daemon as a full service and not
on-demand. By default Debian uses the /tftpboot/ root-based directory to
store all the TFTP files: it is customary to avoid root-based locations for trivial
protocols as TFTP, so our choice falls on another location, /var/lib/tftpd/.
As a security habit, we will inhibit write-access to all users except root:

ls -ld /var/lib/tftpd
drwxr-xr-x 2 root root 4096 2006-07-13 15:23 tftpd/

After configuring the package, Debian starts the server: the given per-
missions guarantee that files can at most be read and not written since the
daemon is running under the user nobody. To test the system, we create a
simple text file and later download it from a TFTP client:

cd /var/lib/tftpd/

echo ’This is the tftp root directory.’ > README

ls -l
total 4
-rw-r--r-- 1 root root 32 2006-07-13 15:25 README

On another available system, we install the atftp package, the correspond-
ing TFTP client, and test it by downloading the README file created earlier:

cd /tmp/

ls

atftp tftp.example.edu
tftp> ?
Available command are:
connect connect to tftp server
mode set file transfer mode (netascii/octet)
option set RFC1350 options
put upload a file to the host
get download a file from the host
mtftp set mtftp variables
mget download file from mtftp server
quit exit tftp
verbose toggle verbose mode
trace toggle trace mode
status print status information
timeout set the timeout before a retry

190 7 Further Services

help print help message
? print help message

tftp> get README

tftp> quit

ls
README

cat README
This is the tftp root directory.

In order to test a real network boot, we can download the RIP distribution,
namely Recovery Is Possible, a PXE-ready image of a Linux-based operating
system. This distribution in form of a zipped file expands into a tftpboot
directory, as the Debian default. All the contents should be placed into our
chosen TFTP root, /var/lib/tftpd: the pxelinux.0 file is our PXE-enabled
boot image.

DHCP Configuration

On the DHCP configuration side, we must allow network booting, done in
the main stanza adding the allow booting parameter, and providing the
filename boot image and the TFTP server-name parameters on a per-subnet
basis, or even for specific hosts:

allow booting;

host notebook {
hardware ethernet 00:00:e2:92:ce:7f;
fixed-address notebook.example.edu;
filename "pxelinux.0";
server-name "tftp.example.edu";

}

When a client connects to the DHCP server for a network boot, it will
receive the RIP Linux system image, as in Fig. 7.3

7.2.2 NFS

In 1984 Sun Microsystems developed a directory sharing protocol over net-
works called NFS, Network File System. Contrary to AFS, the NFS file system
provides shared resources, in other words, a NFS server “exports” directories,
and clients can mount the shared location knowing the directory name and the
NFS host address. NFS does not provide by default any encryption method,
all network communications are in clear text, and they are based on a remote
procedure call protocol RPC which needs an additional open port on the NFS
server.

Nevertheless, NFS is often directly compiled into Linux kernels, a handy
feature for machine cloning, or once again, for emergency systems. The ap-
plication of a network boot becomes evident when restoring a system after a

7.2 Emergency System 191

Fig. 7.3. The PXE RIP Linux boot loader

crash: in this case, we should be able to read a disk image created with tools
like dd, tar, or dump, and recreate a previously working situation. An Open-
AFS client requires bigger efforts compared to a simple NFS mount point,
which is a fast solution to directory sharing problems, and comes with the
RIP Linux distribution out of the box. Let us proceed installing the NFS
server, provided by the nfs-kernel-server package:

apt-get install nfs-kernel-server
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:

nfs-common portmap
The following NEW packages will be installed:

nfs-common nfs-kernel-server portmap
0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
Need to get 0B/172kB of archives.
After unpacking 618kB of additional disk space will be used.
Do you want to continue? [Y/n]
Selecting previously deselected package portmap.
(Reading database ... 27786 files and directories currently installed.)
Unpacking portmap (from .../archives/portmap_5-9_i386.deb) ...
Selecting previously deselected package nfs-common.
Unpacking nfs-common (from .../nfs-common_1%3a1.0.6-3.1_i386.deb) ...
Selecting previously deselected package nfs-kernel-server.
Unpacking nfs-kernel-server (from .../nfs-kernel-server_1%3a1.0.6-3.1_i386.deb) ...
Setting up portmap (5-9) ...
Starting portmap daemon: portmap.

Setting up nfs-common (1.0.6-3.1) ...
Starting NFS common utilities: statd.

Setting up nfs-kernel-server (1.0.6-3.1) ...
Not starting NFS kernel daemon: No exports.

As shown above Debian starts the portmap server, providing the necessary
RPC mapping required by NFS in order to work. Our objective is to export
two locations through the NFS protocol, subdirectories of /var/lib/nfs/, a
read-only and a write-enabled location:

192 7 Further Services

cd /var/lib/nfs/

ls -l
total 8
drwxr-xr-x 2 root root 4096 2006-07-13 16:18 readonly/
drwxrwxrwx 2 root root 4096 2006-07-13 16:18 readwrite/

Note that NFS is not a secure and encrypted way of exchanging data,
and is used here for recovery, where sensitive data is not transferred. The
chosen directories must finally be “exported” publicly in the /etc/exports
configuration file, specifying the allowed IP addresses and the access method:

/var/lib/nfs/readonly 192.168.127.0/255.255.255.0(ro,sync)
/var/lib/nfs/readwrite 192.168.127.0/255.255.255.0(rw,all_squash,sync)

The all squash option tells the NFS server to map all the remote users to
the anonymous user nobody on the server, while ro and rw obviously describe
a read-only and write-enabled access, respectively. The sync option is needed
by the kernel space daemon, as specified by the NFS documentation. It is
then possible to start the NFS daemon allowing clients to mount the exported
resources:

/etc/init.d/nfs-kernel-server start
Exporting directories for NFS kernel daemon...done.
Starting NFS kernel daemon: nfsd mountd.

Client Configuration

On the client side, with the running RIP distribution employing a BSD-like
initialization scripts system, we have to enable the DHCP ethernet configu-
ration by editing the file /etc/rc.d/rc.inet1.conf:

IPADDR[0]=""
NETMASK[0]=""
USE_DHCP[0]="yes"
DHCP_HOSTNAME[0]=""

After starting the rc.inet1 script, we must enable the portmap service
needed by NFS; some services are disabled by default, so we might have to
change their execution permission bits prior to starting them:

/etc/rc.d/rc.portmap start
Starting RPC portmapper: /sbin/rpc.portmap

At this point we are able to mount the two NFS exported directories,
and verify that we are able to write just in one of them. As we previewed,
NFS shares directories, without the location transparency allowed by Open-
AFS. It is necessary to manually specify the host and directory name—with
an optional read-write flag—in the mount command line as in the following
output:

7.3 Certificate Authority 193

cd /var/tmp/

mkdir ro

mkdir rw

mount 192.168.127.154:/var/lib/nfs/readonly ro
mount 192.168.127.154:/var/lib/nfs/readwrite rw

The two mounted NFS mount points will obey to the write-access rules
established in the server configuration:

cd ro/

touch aaa
touch: cannot touch ‘aaa’: Read-only file system

cd ../rw

mkdir ccc

echo hello > ccc/ddd

ls -l ccc/
total 4
-rw-r--r-- 1 65534 65534 6 2006-07-13 15:01 ddd

On the NFS server we can see that every file and directory created on the
client has been assigned to the nobody user belonging to the nogroup UNIX
group:

ls -l /var/lib/nfs/readwrite/
total 4
drwxr-xr-x 2 nobody nogroup 4096 2006-07-13 17:01 ccc/

7.3 Certificate Authority

Cryptography, the science studying secrecy in communication, is a key ele-
ment in a secure environment. Historically an early cryptographic medium
was the “scytale”, a cylindric rod with a wrapped strip where the message
was written: only the one possessing a rod with the same diameter could read
the message. This method is known from Ancient Greece, and there is also
references to cryptographic systems used by Julius Caesar during his battling
campaigns. Modern cryptography distinguishes between two major mecha-
nisms: symmetric and asymmetric cryptographic systems.

The symmetric key cryptosystem is the more intuitive method of sending
sensitive data between interlocutors. An individual wishing to send an en-
crypted message encodes the data with a secret key and sends this encrypted
message to the receiver over an insecure communication channel. The mes-
sage can then be decrypted only with the original secret key, which has to be
exchanged between the two parties in a supposedly secure way as in Fig. 7.4.

194 7 Further Services

Kerberos uses such a technique, and among the most famous algorithms em-
ploying a symmetric key encryption there are the old Data Encryption Stan-
dard DES, its variant Triple DES or 3DES, and the new Advanced Encryption
Standard, or AES, which is to replace DES.

Fig. 7.4. Symmetric key cryptography assumes a method for secure key exchange

Asymmetric cryptography was officially born in 1976 when Bailey Whit-
field Diffie and Martin Edward Hellman published a paper describing this
methodology, and later in 1977 Ron Rivest, Adi Shamir, and Leonard Adle-
man invented the renowned algorithm which took name from their initials,
RSA. Another algorithm derived from the idea of Diffie and Hellman is the
ElGamal encryption scheme, named after the inventor Taher ElGamal, who
also worked on a scheme for digital signatures. The key idea in asymmetric
cryptographic techniques is that any user possesses two different keys, a “pub-
lic” and an “private” key. A message encrypted with one of these could only
be decrypted by its counterpart, as pictured in Fig. 7.5.

Fig. 7.5. Asymmetric key cryptography encrypts data with one “public” key. De-
cryption is possible only with the “private” key

The names public and private become clear when we introduce two indi-
viduals trying to exchange data securely.

The sender encrypts the message using the receiver’s public key, transmit-
ting the message over the insecure communication channel. The only way to
decrypt the message is to possess the counterpart, the “private” key as pic-
tured in Fig. 7.6: in asymmetric systems the hypothesis about a confidential
key exchange may be dismissed. The mathematics behind these key pairs is
such that they get once generated together but afterwards it is considered to
be practically infeasible to calculate one from the other.

7.3 Certificate Authority 195

Fig. 7.6. The sender uses the receiver’s “public” key to encrypt the message: only
the receiver possessing the “private” key will be enabled to decrypt

Another application of public key cryptography is the digital signature to
confirm the authenticity of a transmission. For this, so called hash functions
are applied to an arbitrarily long message which produce a message digest of a
fixed length. Then the message is transferred together with its digest encoded
by the private key of the sender. The receiver can decode the digest with the
public key of the sender and confront the result with the digest of the actually
received message. Examples of hash functions are MD5 or the Secure Hash
Algorithm SHA. The Digital Signature Algorithm DSA, which is a variant of
the ElGamal signature scheme, became a standard for digital signatures.

One problem remains to be solved: how can users be sure about the public
key of one another? For this a Public Key Infrastructure PKI needs to be
implemented which relies on a trused third party as in the case of the Kerberos
KDC. This trusted entity is called Certificate Authority , or simply CA, which
has a well known public key. Hence it can digitally sign the public keys of
any user, resulting in a certificate , and users in turn are able to verify the
correctness of a public key with the help of this signature.

Among the most acknowledged certificate authorities we may mention
VeriSign and Thawte, offering digital certificate services, and the CAcert and
StartCom CA providing the same services, free of charge. A typical CA will
issue a digital certificate that contains all the information needed to attest the
identity of an individual, such as the name, organization, address, and obvi-
ously the user’s public key. Usually trusted certificate authorities for digital
certificates are hard-wired in a system, as for example in a Web browser like
Mozilla Camino pictured in Fig. 7.7.

We need to create our certificate authority CA in order to enable future
secure services employing the Secure Socket Layer, or SSL, and the Transport

196 7 Further Services

Fig. 7.7. The Mozilla Camino web browser trusted CA list with expiry dates

Layer Security, or TLS: these encryption facilities enable secure web or mail
servers, as we will see in the next chapters. Our organization will make use
of different key lengths for different purposes, using 1024, 2048 and 4096 bits
keys for users, hosts, and the CA itself, respectively. Note that laws regarding
lengths of encryption keys may significantly vary from one country to another,
so it is recommended to comply with the local laws upon CA deployment. Our
organization will make use of different key sizes for obvious didactic purposes.

In the following we employ the OpenSSL software for the generation of
public/private key pairs, of a self-signed certificate for an in-house certificate
authority, and of user or host certificates signed by that authority. For very
secure and reliable environments, it is highly recommended to buy certificates
from well-known and trusted commercial authorities. As for Kerberos the
keytab files encode a secret key of one principal, SSL or TLS need a file for
the host certificate and for the host’s private key, either in two separated files
or combined in a single one.

7.3.1 Installing OpenSSL

First of all we have to install the OpenSSL package along with some commonly
known certificate authorities, namely the openssl and ca-certificates
packages, the CA software and trusted certificate authorities as VeriSign and
Thawte:

apt-get install openssl ca-certificates

Configuring the CA

Debian provides a sample configuration file in /etc/ssl/, with the name
openssl.cnf, which we must edit to suite our needs. We have to store our

7.3 Certificate Authority 197

certificates and private keys in a secure location, accessible only by root,
so our choice is to place everything in /etc/ssl/private/, providing the
location with the following restrictive permissions bits:

drwx------ 2 root root 4096 2005-10-20 12:22 private/

In this directory we create the location where we will store all our sensible
files, called CA, possessing restrictive root-only access bits:

ls -al /etc/ssl/private
total 12
drwx------ 3 root root 4096 2006-07-18 10:45 ./
drwxr-xr-x 4 root root 4096 2006-07-18 10:45 ../
drwx------ 2 root root 4096 2006-07-18 10:45 CA/

The next step is to modify the OpenSSL configuration file, referring all the
directory and file locations to our CA sensitive data /etc/ssl/private/CA/.
The file is divided into different sections, such as CA default specifying the
predefined properties of issued certificates (e.g. file location, validity period
and checksum algorithm), and req distinguished name, detailing the prop-
erties for each field in a digital certificate (e.g. country code, city, organization
name, and certificate user name). The following configuration example will is-
sue a certificate for a fictional ZZ country, with a default validity period of
one year, signing each certificate with the SHA-1 hashing algorithm:

[CA_default]
dir = /etc/ssl/private/CA
certs = $dir/certificates
crl_dir = $dir/crl
database = $dir/index.txt
unique_subject = no
new_certs_dir = $dir/newcerts
certificate = $dir/cacert.pem
serial = $dir/serial
crl = $dir/crl.pem
private_key = $dir/cakey.pem
RANDFILE = $dir/randfile
x509_extensions = usr_cert
name_opt = ca_default
cert_opt = ca_default
default_days = 365
default_crl_days= 90
default_md = sha1
preserve = no
policy = policy_match

[policy_match]
countryName = match
stateOrProvinceName = match
localityName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req_distinguished_name]
countryName = Country Name (2 letter code)

198 7 Further Services

countryName_default = ZZ
countryName_min = 2
countryName_max = 2
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Province
localityName = Locality Name (eg, city)
localityName_default = City
0.organizationName = Organization Name (eg, company)
0.organizationName_default = Example Organization
organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Central Administration
commonName = Common Name (eg, YOUR full name)
commonName_max = 64
emailAddress = Email Address (optional)
emailAddress_max = 64

Note that the req distinguished name contains strings that are the de-
fault values for a digital certificate. The fields with the “crl” string refer to
the certificate revocation list, or CRL, which contains the serial numbers of
those certificates which should no longer be valid. Usually a service starts
without a revocation list, but adds its use at the moment of the release of a
first such list. This list has then to be propagated and hence it is considered
as one of the weak points of a PKI: there is an inherent delay before an inval-
idation becomes active. The above defaults produce a digital certificate with
the following subject:

C=ZZ, \
ST=Province, \
L=City, \
O=Example Organization, \
OU=Central Administration, \
CN=certificateName

As you can imagine such a subject structure is well suited for the storage
in a directory service like LDAP.

7.3.2 Creating a CA

We are ready to create the structure with respect to the configuration file,
producing the directories needed for the newly-issued certificates, private keys,
and revocation list:

cd /etc/ssl/private/CA

ls -l
total 16
drwx------ 2 root root 4096 2006-07-18 11:14 certificates/
drwx------ 2 root root 4096 2006-07-18 11:14 crl/
drwx------ 2 root root 4096 2006-07-18 11:14 newcerts/
drwx------ 2 root root 4096 2006-07-18 11:14 privatekeys/

Again the permission bits indicate that all these directories are accessible
only for the root user. Issuing new certificates requires the creation of a serial
number log file, containing the total count of issued certificates, or better, the

7.3 Certificate Authority 199

next certificate serial number: since we have not issued any certificate yet we
start with 1 as serial. Additionally, the OpenSSL requires an index file as in
the following:

echo "01" > serial

touch index.txt

We are ready to generate our certificate authority’s private key using the
openssl tool with the genrsa command, and for our CA we choose strong
encryption options, using a 4096 bit key, encrypted with the 256 bit Advanced
Encryption Standard symmetric algorithm, which protects the private assy-
metric key with a passphrase:

openssl genrsa -aes256 -out cakey.pem 4096
Generating RSA private key, 4096 bit long modulus
..++
........++
e is 65537 (0x10001)
Enter pass phrase for cakey.pem:
Verifying - Enter pass phrase for cakey.pem:

The RSA algorithm requires the generation of two random and large prime
numbers: the dots above symbolize a search and the plus signs some primality
test. The public and private key are calculated from these two numbers which
after completed generation will be discarded. The requested cakey.pem file,
which is a Base64 ASCII format, has been successfully created with restrictive
permission bits:

ls -l
total 24
-rw------- 1 root root 3326 2006-07-18 11:24 cakey.pem
drwx------ 2 root root 4096 2006-07-18 11:14 certificates/
drwx------ 2 root root 4096 2006-07-18 11:14 crl/
-rw------- 1 root root 0 2006-07-18 11:17 index.txt
drwx------ 2 root root 4096 2006-07-18 11:14 newcerts/
drwx------ 2 root root 4096 2006-07-18 11:14 privatekeys/
-rw------- 1 root root 3 2006-07-18 11:16 serial

The next step is then to create the self-signed certificate for our CA con-
taining its public key, using the private key to digitally sign the issued cer-
tificate, and storing the resulting certificate in a file, in our case cacert.pem.
Since a CA is usually of longer use we decide for 10 years as validity period:

openssl req -new -x509 -days 3560 -key cakey.pem -out cacert.pem

Enter pass phrase for cakey.pem:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

200 7 Further Services

Country Name (2 letter code) [ZZ]:
State or Province Name (full name) [Province]:
Locality Name (eg, city) [City]:
Organization Name (eg, company) [Example Organization]:
Organizational Unit Name (eg, section) [Central Administration]:
Common Name (eg, YOUR full name) []:Certificate Authority
Email Address (optional) []:ca@example.edu

The command above issued a new standard digital certificate with the
-x509 option2, with 3560 days of legitimate use to the “Certificate Authority”
user, whose email is ca@example.edu. Certificate files are just text files using
a Base64 ASCII encoding:

cat cacert.pem
-----BEGIN CERTIFICATE-----
MIIG+jCCBOKgAwIBAgIJAMmxFXM0iAbJMA0GCSqGSIb3DQEBBAUAMIGuMQswCQYD
VQQGEwJaWjERMA8GA1UECBMIUHJvdmluY2UxDTALBgNVBAcTBENpdHkxHTAbBgNV
...
pDv4s92n0jsl3eIODJtKZjR0IdOcW8w52rfdujwPzrjS8vxSg9/1fqq5/8/xHk8B
3WFOqvQDhSE7R8S6Em8=
-----END CERTIFICATE-----

The file name suffixes are defined by the PKI standard determining the
actual file format. Both, our private key and certificate end in .pem. Besides
these are other suffixes and we want to mention:

.der Binary file encoded with the DER standard, Distinguished Encoding
Rules, used by OpenLDAP servers;

.pem Text-based Base64 encoded format, used for most daemon configura-
tions;

.p12 Public Key Cryptography Standard 12 format, PKCS12, used for ex-
ample in Mozilla and formerly Netscape.

Also the private key for our certificate authority is a Base64 encoded text file
encrypted symmetrically with a passphrase as can be seen from its content:

cat cakey.pem
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-256-CBC,6AC2D519F9D4D933D6E598187FDA6408

F0tMkhnXT7M5IFng2OCjnXbxf+jde5VTcrWamDucWhyjireX5X4Mk5JfQH3ZOzIo
D8HRh0unjuxlYcZriUGdfO6q+ujqYssZ81bk8ae3b9gnTJ+A3UzTyqvDn9538ag7
...
h4xWBam8kxZxQ6y8eMyDpHluX99hYYV5MklR0fH5wVoj79Z5WdHukuTF1GjcQ2Kc
hGZVaW9+k3Xt13GW83/3Ku75+3Vu+O+yboTCXEqBvHkFKhWEJYhKKHKkH572D2Gm
-----END RSA PRIVATE KEY-----

The encoding is obviously suitable for computational purposes, but hardly
human-readable. The openssl tool can translate the Base64 encoding into a
textual form:

2 PKI and digital certificates are defined by the ITU-T X.509 standard.

7.3 Certificate Authority 201

openssl x509 -in cacert.pem -noout -text
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

c9:b1:15:73:34:88:06:c9
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZZ, ST=Province, L=City, O=Example Organization, OU=Central \

Administration, CN=Certificate Authority/emailAddress=ca@example.edu
Validity

Not Before: Jul 18 09:30:30 2006 GMT
Not After : Apr 16 09:30:30 2016 GMT

Subject: C=ZZ, ST=Province, L=City, O=Example Organization, OU=Central \
Administration, CN=Certificate Authority/emailAddress=ca@example.edu

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (4096 bit)

Modulus (4096 bit):
00:aa:e7:eb:90:3a:10:c1:0f:86:5a:42:a2:47:c5:
...
f7:76:1c:dc:dc:e6:d3:9d:2c:d5:70:8b:e4:f8:75:
cb:2a:ab

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Subject Key Identifier:
06:C0:F5:47:F2:DD:22:5B:FD:23:6B:31:9C:76:9B:B2:B7:3C:94:08

X509v3 Authority Key Identifier:
keyid:06:C0:F5:47:F2:DD:22:5B:FD:23:6B:31:9C:76:9B:B2:B7:3C:94:08
DirName:/C=ZZ/ST=Province/L=City/O=Example Organization/OU=\

Central Administration/CN=Certificate Authority/emailAddress=ca@example.edu
serial:C9:B1:15:73:34:88:06:C9

X509v3 Basic Constraints:
CA:TRUE

Signature Algorithm: md5WithRSAEncryption
89:aa:c9:d9:86:a2:6f:8e:80:ef:9e:9b:d8:39:91:92:57:73:
...
85:21:3b:47:c4:ba:12:6f

Notice that the certificate Issuer and the Subject coincide since this is a
self signed certificate. Their syntax resembles a distinguished name for LDAP.
Interestingly, certificates have apart from an expiry date also a latency period
for the Validity.

7.3.3 Managing Certificates

A certificate authority issues certificates for users, and in special cases, also
to non-human entities such as machines. An SSL-enabled service (e.g. a mail
or a web server) uses its private key and the public certificate to authenticate
the machine as we shall see in the following chapters. In the following we
will generate certificates for both hosts and users, storing secret keys and
certificates on files. Users may also take advantage of a PKI environment
keeping their data in specialized hardware such as security tokens or smart
cards.

202 7 Further Services

Machine Certificates

Let us create a certificate for a server, for example our ldap1.example.edu
server: we do not want to encrypt the private key since a machine, or better a
service, should be able to start without providing a passphrase. The first step
is to create the private key without any passphrase, omitting the encryption
switch as showed earlier:

openssl genrsa -out privatekeys/ldap1.pem 2048
Generating RSA private key, 2048 bit long modulus
...+++
....................+++
e is 65537 (0x10001)

Once the private key has been created, we can generate a certificate request
for the LDAP server. A certificate request is nothing but the public key itself
plus some information but without the CA digital signature, and is created
with the openssl req command:

openssl req -new -days 1000 -key privatekeys/ldap1.pem -out ldap1.req
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [ZZ]:
State or Province Name (full name) [Province]:
Locality Name (eg, city) [City]:
Organization Name (eg, company) [Example Organization]:
Organizational Unit Name (eg, section) [Central Administration]:
Common Name (eg, YOUR full name) []:ldap1.example.edu
Email Address (optional) []:

Please enter the following ’extra’ attributes
to be sent with your certificate request
A good password (min length 4) []:
An optional company name []:

For the service we request a validy of 1000 days. Note that in order to
employ a machine certificate in future SSL-enabled services, the public cer-
tificate, and so the request, must contain the fully qualified domain name
ldap1.example.edu. Once the request has been created, it can be signed
by the certificate authority validating its authenticity. The openssl ca com-
mand, conforming with the validity period, input and output files, signs the
request generating a valid public certificate:

openssl ca -days 1000 -in ldap1.req -out certificates/ldap1.pem
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for /etc/ssl/private/CA/cakey.pem:
Check that the request matches the signature
Signature ok
Certificate Details:

Serial Number: 1 (0x1)

7.3 Certificate Authority 203

Validity
Not Before: Jul 18 09:55:22 2006 GMT
Not After : Apr 13 09:55:22 2009 GMT

Subject:
countryName = ZZ
stateOrProvinceName = Province
localityName = City
organizationName = Example Organization
organizationalUnitName = Central Administration
commonName = ldap1.example.edu

X509v3 extensions:
X509v3 Basic Constraints:

CA:FALSE
Netscape Comment:

Example Organization (OpenSSL)
X509v3 Subject Key Identifier:

95:EC:4A:DD:66:DB:E0:9C:EE:FA:48:BD:99:D2:16:7C:B2:35:D3:21
X509v3 Authority Key Identifier:

keyid:06:C0:F5:47:F2:DD:22:5B:FD:23:6B:31:9C:76:9B:B2:B7:3C:94:08
DirName:/C=ZZ/ST=Province/L=City/O=Example Organization/OU=\

Central Administration/CN=Certificate Authority/emailAddress=ca@example.edu
serial:C9:B1:15:73:34:88:06:C9

Certificate is to be certified until Apr 13 09:55:22 2009 GMT (1000 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

As we can see, by default OpenSSL creates the certificate as we requested
on the command line, and another one with the serial number as we specified
in the configuration file. These two certificates are identical:

ls newcerts/
01.pem

ls certificates/
ldap1.pem

diff newcerts/01.pem certificates/ldap1.pem

At this point the file with the request may be erased. The entire procedure
creates some new files regarding the certificate attributes, and modifies our
old index.txt and serial files:

cat /etc/ssl/private/CA/serial
02

cat /etc/ssl/private/CA/serial.old
01

cat /etc/ssl/private/CA/index.txt
V 090413095522Z 01 unknown /C=ZZ/ST=Province/L=City/O=\
Example Organization/OU=Central Administration/CN=ldap1.example.edu

cat /etc/ssl/private/CA/index.txt.attr
unique_subject = yes

cat /etc/ssl/private/CA/index.txt.old

204 7 Further Services

The index.txt file, as we can see from the above output, contains the
issued certificates, with the validity flag V, the serial number 01, and the
issued distinguished name ldap1.example.edu; the index.txt.old is empty
since this is our first certificate.

User Certificates

Next we want our testuser to receive a certificate. Users may apply their
certificates and private keys to perform critical procedures, such as logging
into a system or digitally sign emails: for this reason we choose to encrypt the
private key using a symmetric algorithm, in this case AES. Hence the loss of
this private key is a smaller threat since any operation with the key would
still require a passphrase. Typically, the private keys of users are smaller than
those of services and our choice is to generate a 1024 bits long key. Let us
generate the user’s private key with the openssl genrsa tool, requiring an
encryption with the -aes256 switch:

openssl genrsa -aes256 -out privatekeys/testuser.pem 1024
Generating RSA private key, 1024 bit long modulus
......................++++++
........++++++
e is 65537 (0x10001)
Enter pass phrase for privatekeys/testuser.pem:
Verifying - Enter pass phrase for privatekeys/testuser.pem:

After the creation of the user’s private key, encrypted with a passphrase,
we issue the certificate request for the “Test User” individual whose email is
testuser@example.edu:

openssl req -new -key privatekeys/testuser.pem -out testuser.req
Enter pass phrase for privatekeys/testuser.pem:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [ZZ]:
State or Province Name (full name) [Province]:
Locality Name (eg, city) [City]:
Organization Name (eg, company) [Example Organization]:
Organizational Unit Name (eg, section) [Central Administration]:
Common Name (eg, YOUR full name) []:Test User
Email Address (optional) []:testuser@example.edu

Please enter the following ’extra’ attributes
to be sent with your certificate request
A good password (min length 4) []:
An optional company name []:

The user’s passphrase is needed to create the request, and finally we are
asked about another “extra” attribute: some password. This can be used by

7.3 Certificate Authority 205

large organization to protect a certificate request, and then send it to the au-
thority: since we want to handle all these steps by ourselves, we can safely leave
this password empty. Next, we issue the certificate by signing the request:

openssl ca -in testuser.req -out certificates/testuser.pem
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for /etc/ssl/private/CA/cakey.pem:
DEBUG[load_index]: unique_subject = "yes"
Check that the request matches the signature
Signature ok
Certificate Details:

Serial Number: 2 (0x2)
Validity

Not Before: Jul 18 10:30:01 2006 GMT
Not After : Jul 18 10:30:01 2007 GMT

Subject:
countryName = ZZ
stateOrProvinceName = Province
localityName = City
organizationName = Example Organization
organizationalUnitName = Central Administration
commonName = Test User
emailAddress = testuser@example.edu

X509v3 extensions:
X509v3 Basic Constraints:

CA:FALSE
Netscape Comment:

Example Organization (OpenSSL)
X509v3 Subject Key Identifier:

10:50:9E:C1:6B:F4:FB:1B:D2:D7:61:BF:9D:46:14:27:F7:F1:C3:FA
X509v3 Authority Key Identifier:

keyid:06:C0:F5:47:F2:DD:22:5B:FD:23:6B:31:9C:76:9B:B2:B7:3C:94:08
DirName:/C=ZZ/ST=Province/L=City/O=Example Organization/OU=\

Central Administration/CN=Certificate Authority/emailAddress=ca@example.edu
serial:C9:B1:15:73:34:88:06:C9

Certificate is to be certified until Jul 18 10:30:01 2007 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

At this point, we could erase the request file as we earlier did for the LDAP
server. For this certificate the default value of validity applied which is one
year.

Publishing Certificates

The whole point about user certificates is that users can use them to sign
an electronic mail or receive it in encrypted form. This requires users to store
their private keys securely: a system administration might use USB pen-drives,
electronic tokens, or smart cards to store this critical information. The public
key, as the name itself suggests, should then be made publicly available, a
goal easily achieved with our LDAP infrastructure.

OpenLDAP can handle certificates in the DER format, so the first thing
to do is to convert the certificate from the PEM standard to DER, using the
openssl tool:

206 7 Further Services

cd /etc/ssl/private/CA/certificates

openssl x509 -in testuser.pem -outform DER -out testuser.der

file testuser.der
testuser.der: data

As we can see from the output of the file command, the DER format is
not human readable. Next, we create an LDIF file that modifies our testuser
entry adding the userCertificate attribute in binary form from the file:

dn: uid=testuser,ou=users,dc=example,dc=edu
userCertificate;binary:<file:///etc/ssl/private/CA/certificates/testuser.der

Finally we can import the data, provided that we are authenticated as
sysadmin via Kerberos:

ldapmodify -f testuser.ldif
SASL/GSSAPI authentication started
SASL username: sysadmin@EXAMPLE.EDU
SASL SSF: 56
SASL installing layers
modifying entry "uid=testuser,ou=users,dc=example,dc=edu"

The public certificate is now publicly available in the LDAP database, and
thus it can be consulted e.g. to verify a digitally signed email:

ldapsearch -LLL "uid=testuser"
SASL/GSSAPI authentication started
SASL username: sysadmin@EXAMPLE.EDU
SASL SSF: 56
SASL installing layers
dn: uid=testuser,ou=users,dc=example,dc=edu
objectClass: top
objectClass: posixAccount
objectClass: shadowAccount
objectClass: inetOrgPerson
cn: Test
sn: User
uid: testuser
uidNumber: 10000
gidNumber: 10000
loginShell: /bin/bash
gecos: Test User,001,555-123,1-123,none
homeDirectory: /afs/example.edu/users/testuser
userCertificate;binary:: MIIFlDCCA3ygAwIBAgIBAjANBgkqhkiG9w0BAQUFADCBrjELMAkGA
1UEBhMCWloxETAPBgNVBAgTCFByb3ZpbmNlMQ0wCwYDVQQHEwRDaXR5MR0wGwYDVQQKExRFeGFtcG
...
LFI7OYI3Q==

Mozilla and former Netscape can refer to such certificate information pro-
vided by directory servers.

7.3.4 Revoking Certificates

For some reasons we may want to revoke a certificate, marking it as invalid.
Revoking certificates does not affect the index.txt or serial files, but gener-

7.3 Certificate Authority 207

ates a list of all revoked certificate numbers: the list should then be exported
publicly to ensure that all SSL-enabled services are aware of all invalid cer-
tificates.

The list of all available certificates is stored in the index.txt file, which
contains textual human readable data:

cat index.txt
V 090413095522Z 01 unknown /C=ZZ/ST=Province/L=City/O=\
Example Organization/OU=Central Administration/CN=ldap1.example.edu
V 070718103001Z 02 unknown /C=ZZ/ST=Province/L=City/O=\
Example Organization/OU=Central Administration/CN=Test User/emailAddress=\
testuser@example.edu

A certificate revocation is accomplished with the openssl tool with the
-revoke switch followed by the targeted certificate, an operation that can
be performed only by individuals who know the CA passphrase, since the
revocation list gets signed by the CA:

openssl ca -revoke certificates/testuser.pem
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for /etc/ssl/private/CA/cakey.pem:
Revoking Certificate 02.
Data Base Updated

After revoking a certificate for testuser, we immediately see the changes
in the index.txt file, with the certificate marked as R “revoked” instead of V
“valid”:

cat index.txt
V 090413095522Z 01 unknown /C=ZZ/ST=Province/L=City/O=\
Example Organization/OU=Central Administration/CN=ldap1.example.edu
R 070718103001Z 060718120839Z 02 unknown /C=ZZ/ST=Province/L=\
City/O=Example Organization/OU=Central Administration/CN=Test User/emailAddress=\
testuser@example.edu

After revoking a certificate, we must create a new revoked certificate list
by issuing the openssl command with the -gencrl switch:

openssl ca -gencrl -out crl/20060718.pem
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for /etc/ssl/private/CA/cakey.pem:

After revoking a certificate, the generated CRL has to be distributed to
the affected applications in order to disallow the usage of the invalidated
certificate. As a control check, we can verify that the serial number of the
revoked certificate matches the one we really intended to withdraw:

openssl crl -in 20060718.pem -noout -text
Certificate Revocation List (CRL):

Version 1 (0x0)
Signature Algorithm: md5WithRSAEncryption
Issuer: /C=ZZ/ST=Province/L=City/O=Example Organization/OU=Central \

Administration/CN=Certificate Authority/emailAddress=ca@example.edu

208 7 Further Services

Last Update: Jul 18 12:14:52 2006 GMT
Next Update: Oct 16 12:14:52 2006 GMT

Revoked Certificates:
Serial Number: 02

Revocation Date: Jul 18 12:08:39 2006 GMT
Signature Algorithm: md5WithRSAEncryption

46:50:87:6c:ed:02:9e:b9:a5:0c:e9:6a:4e:1b:80:4d:88:87:
...
19:42:4c:ab:db:a3:1a:f7

The serial number 2 was that one of our testuser. According to the
default settings this CRL is valid for 90 days and within this period a new list
has to be created. Attention, since some services referring to expired CRLs
might refuse to function.

Practice

Exercise 25. Compare a PGP, OpenPGP, or GnuPG based approach with
an S/MIME PKI for secure electronic mail. Remember that PKI data can be
stored or even generated on smart-cards. For example there exist small USB
based tokens.

Exercise 26. Confront CRLs for revoked certificates with the more recent
on-line certificate validation protocol OCSP. Some client software like Mozilla
Thunderbird support this protocol. For server daemons this still has to arrive.

Exercise 27. Test some backup procedure over the network with a tool of
your choice like partimage, dd, or backup. NFS can be used as one method to
store files, while SSH/SCP can be used as a safer alternative for transmission.

Exercise 28. Think of a more scalable solution for a PKI. Ubuntu and the
new upcoming release of Debian contain newpki packages. This becomes con-
venient when you have to handle larger amounts of certificates.

8

Web Server

The World Wide Web is the only thing I know of whose
shortened form takes three times longer to say than its
long form.
Douglas Adams

8.1 The World Wide Web

The history of networking may be traced back to the ARPANet research
project, Advanced Research Projects Agency Network, lead by the United
States Department of Defense, whose objective was to interconnect comput-
ers via a network. Since the establishment of ARPANet in mid-60s, the older
NCP protocol was replaced by the more modern TCP/IP network stack, and
in 1980 Timothy John Berners-Lee and Jedda Smith, at the time working
at the CERN1, created the ENQUIRE, a database project with editing fa-
cilities. Later in 1984 Berners-Lee was facing problems when presenting to
his colleagues, all of them physicists, details and results regarding their re-
search projects: he adopted the idea of hypertext documents to solve their
demonstration problems. The concept of “hypertexts”, documents containing
links to other objects, dates back to the beginning of the 20th century, with
Theodor Holm Nelson conceiving the “hypertext” word itself in 1965. In 1990
Berners-Lee, aided by Robert Cailliau, developed on a NeXT Cube machine
the first web tools, a server program and a browser with editing capabilities,
on the first web server host named info.cern.ch, while the web browser was
simply called WorldWideWeb—the original NeXT Cube machine is still exhib-
ited in the public CERN museum. Later in 1991 Berners-Lee posted on the
alt.hypertext newsgroup the official public project opening:

“The WWW project was started to allow high energy physicists to share
data, news, and documentation. We are very interested in spreading the web
to other areas, and having gateway servers for other data. Collaborators wel-
come!”—Berners-Lee on alt.hypertext (excerpt).

The WWW grew faster than anyone expected, rapidly replacing other
hypertext protocols such as Gopher, and increasing its popularity with the
birth of graphical web browsers also on platforms different from the NeXT.
The first graphical browser was the ViolaWWW on X-based UNIX platforms,
1 Conseil Européen pour la Recherche Nucléaire, located in Geneva, Switzerland.

210 8 Web Server

swiftly overtaken by the more famous Mosaic2 browser, pictured in Fig. 8.1,
which gave the start to the WWW boom of the 90s, and changing its name
in 1994 to the modern Netscape Navigator.

Fig. 8.1. The Mosaic WWW browser

This chapter explains the installation and configuration of a web server,
with additional services such as a database and a scripting language to allow
the server to manage dynamic web contents. The stack of services is usually
referred as “LAMP”, the acronym of Linux, Apache, MySQL and PHP, al-
though the latter character is sometimes referring to other languages such as
Perl or Python. Moreover, we will enable the web daemon to provide users
with WebDAV access and personal web space. The first parts of this chapter
abstract from our backbone infrastructure, and can be reproduced on any
stand-alone machine. Personal web pages, WebDAV, or deploying the web
server pages from the AFS file space, depend on the OpenAFS client as well
as Kerberos and OpenLDAP.

8.2 Apache

The first version of the Apache Web Server was developed at the birthplace of
the Mosaic Web Browser, the NCSA, by Robert McCool and others with the
original name of NCSA HTTPd. The HTTPd server introduced a first ver-
sion of dynamic web pages handling via Common Gateway Interfaces, or CGI,
2 Mosaic was originally developed by Marc Andreessen and Eric Bina of the NCSA,

the US National Center for Supercomputing Applications.

8.2 Apache 211

common programs that are run by the server in order to generate HTML code
based on some input, usually given by a user through web browser interac-
tions. The official Apache documentation states that the name changed from
HTTPd in honor of the Native American Apache tribe, but another common
interpretation was given in 1997 stating that the name refers to the fragile
development of HTTPd, dubbing the program as “a patchy server”.

The latest version of the Apache web server is the second, and it is the
most used HTTP server in the open source world, currently being developed
by the Apache Software Foundation. Apache is a modular server, supporting
modern standards such as DAV, SSL, various scripting languages, and allows
great flexibility with respect to authentication methods. Our first machine,
called www.example.edu will initially serve web pages created on the local file
system, but as we will see, the Apache server can be configured to access the
AFS file space as well.

8.2.1 Installing Apache

Debian includes Apache version 2 in its official package repository, but pro-
vides also the old Apache 1.3 for legacy applications. Our choice falls to
the latest version, distributed via the apache2 package, which automatically
includes the SSL support. All the available Apache modules are located in
the /usr/lib/apache2/modules/ directory, which for instance contains the
mod ssl.so SSL module:

ls /usr/lib/apache2/modules/
httpd.exp mod_cgi.so mod_include.so mod_speling.so
mod_actions.so mod_dav_fs.so mod_info.so mod_ssl.so
mod_asis.so mod_dav.so mod_ldap.so mod_suexec.so
mod_auth_anon.so mod_deflate.so mod_mem_cache.so mod_unique_id.so
mod_auth_dbm.so mod_disk_cache.so mod_mime_magic.so mod_userdir.so
mod_auth_digest.so mod_expires.so mod_proxy_connect.so mod_usertrack.so
mod_auth_ldap.so mod_ext_filter.so mod_proxy_ftp.so mod_vhost_alias.so
mod_cache.so mod_file_cache.so mod_proxy_http.so
mod_cern_meta.so mod_headers.so mod_proxy.so
mod_cgid.so mod_imap.so mod_rewrite.so

Configuring Apache

After stopping the service, we can proceed in configuring the Apache dae-
mon. All the configuration files are located in the /etc/apache2/ direc-
tory, containing the list of available and enabled modules in mods-available
and mods-enabled, plus the list of available and managed web sites in
sites-available and sites-enabled:

ls /etc/apache2/
apache2.conf httpd.conf mods-enabled/ sites-available/
conf.d/ magic ports.conf sites-enabled/
envvars mods-available/ README ssl/

212 8 Web Server

Both modules and sites can be enabled with Apache’s commands a2enmod
and a2ensite, and disabled by their counterparts commands a2dismod and
a2dissite. Debian provides a default configuration file for a site that can be
used as an initial setting, so let us copy the file with a name corresponding to
our domain:

cd /etc/apache2/sites-available/

cp default example.edu

A site configuration file is an XML-like text, and specifies at the be-
ginning the IP addresses to which the web server name www.example.edu
is resolved with the NameVirtualHost directive. The option allows three
different settings: the real IP address, the host name, or the * wildcard,
meaning to handle all connections. The latter is chosen since it does not
hard-wire any IP address to the WWW server. The configuration for the
server is described in the <VirtualHost> stanza, setting the web site root
location DocumentRoot (i.e. where Apache will search for site files), in our
case the /var/www/example.edu/ directory, the server administrator’s email
ServerAdmin and logging facilities (e.g. ErrorLog and LogLevel). Addition-
ally we define access regulations on a per-directory basis as in the following
example:

NameVirtualHost *
<VirtualHost *>

ServerAdmin www@example.edu

DocumentRoot /var/www/example.edu
<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>
<Directory /var/www/example.edu>

Options All MultiViews
AllowOverride All
Order allow,deny
Allow from all

</Directory>

ErrorLog /var/log/apache2/error.log
LogLevel warn
CustomLog /var/log/apache2/access.log combined

</VirtualHost>

The <Directory> stanzas will enable or disable options applied to loca-
tions that are contained in the header. The AllowOverride option allows
or disallows .htaccess files which may contain user restrictions to particu-
lar locations: in our example <Directory /> disallows all restrictions with
the AllowOverride None directive. Obviously the Options instruction will
consent further settings, such as FollowSymLinks which allows Apache to
make use of symbolic links within the location and its subdirectories, un-
less other restrictions are applied by following <Directory> sections. Once

8.2 Apache 213

the main settings are satisfied, Apache will obey to subsequent rules, in this
case to all the options regarding the /var/www/example.edu/ directory. In
this location we allow all options with Options All included content negoti-
ations with MultiViews3, allowing for instance multiple language sites. The
AllowOverride All directive applies only to subdirectories of the root loca-
tion, stating that allowance directives have higher priority than denial ones
with the Order option, although the default is deny in that case: since our
primary objective is to implement a public web server, we will not prevent
any host from accessing our site, as specified by the Allow from all option.

Once the options for our site are defined, we create the root location
/var/www/example.edu/ enabling all users to access its contents:

mkdir /var/www/example.edu

ls -l /var/www/
total 8
drwxr-xr-x 2 root root 4096 2006-07-18 14:29 apache2-default/
drwxr-xr-x 2 root root 4096 2006-07-18 14:41 example.edu/

It is possible to have the root directory in the AFS file space, but this
requires additional configurations that will be explained later, enabling per-
sonal web pages for our users. Now we disable the default site, provided by
Debian, and enable ours:

a2ensite example.edu
Site example.edu installed; run /etc/init.d/apache2 reload to enable.

a2dissite default
Site default disabled; run /etc/init.d/apache2 reload to fully disable.

The warning can be ignored since we stopped the server. To test our server,
we create an index.html file in /var/www/example.org/ directory, which is
one of the default files, Apache searches for a location:

<html>
<head><title>Example Organization</title></head>
<body>
This is the site for our Example Organization.
</body>
</html>

At this point we are ready to start Apache, and use a web browser to reach
the http://www.example.edu/ URL as in Fig. 8.2:

3 Apache may serve multiple contents based on language, object types, and other
options as defined by the HTTP protocol. For instance browsers may negotiate
about languages with an HTTP request as Accept-Language: en; q=1.0, eo;

q=0.5, accepting English with higher priority than Esperanto.

214 8 Web Server

/etc/init.d/apache2 start
Starting web server: Apache2.

Fig. 8.2. Browsing the Example Site

Site Information

More information about our web server can be provided for debugging pur-
poses over the network by means of a module called info. In the configuration
file we have to add a virtual location called for instance server-info, and
within the <Location> stanza we will forward all requests to the Apache info
service:

NameVirtualHost *
<VirtualHost *>

ServerAdmin www@example.edu

DocumentRoot /var/www/example.edu
<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>
<Directory /var/www/example.edu>

Options All MultiViews
AllowOverride All
Order allow,deny
Allow from all

</Directory>

<Location /server-info>

8.2 Apache 215

SetHandler server-info
</Location>

ErrorLog /var/log/apache2/error.log
LogLevel warn
CustomLog /var/log/apache2/access.log combined

</VirtualHost>

Once the module has been enabled with the a2enmod tool, we can restart
Apache to make changes take effect, as indicated by the tool’s output:

a2enmod info
Module info installed; run /etc/init.d/apache2 force-reload to enable.

/etc/init.d/apache2 force-reload
Forcing reload of web server: Apache2.

Browsing this specific URL coded in the configuration file, so connecting
to http://www.example.edu/server-info, results in a page which shows all
available information as in Fig. 8.3. However, in a production environment it
is recommended to disable the info module.

Fig. 8.3. The Apache info Module

8.2.2 Secure HTTP

Simple web browsing in a read-only fashion normally does not need to be
protected further, but this situation changes if we plan to deploy services

216 8 Web Server

requiring some sort of authentication or some other confidential information
gets transmitted. In this case the secure protocol HTTPS is used which works
like HTTP over an SSL encrypted channel.

Such an SSL-based communication involves both asymmetric and symmet-
ric key encryption methods. The asymmetric encryption is used to securely
authenticate the host with its publicly available certificate, and upon a suc-
cessful verification of the server identity, both client and server establish a
symmetrically-encrypted channel, where the secret key has been exchanged
with an asymmetric encoding. Nowadays the old SSL protocol is replaced
by the modern TLS, which enables clients to negotiate the strength of the
encryption algorithm.

SSL Certificate

For such a secured environment we need a certificate for our web server. First,
we generate a private key and a certificate request on the machine we are using
for our certificate authority. The certificate name must match the FQDN of
the server, otherwise SSL-enabled services may complain or even refuse to
work:

openssl genrsa -out privatekeys/wwwkey.pem 2048
Generating RSA private key, 2048 bit long modulus
...+++
..+++
e is 65537 (0x10001)

openssl req -new -days 1000 -key privatekeys/wwwkey.pem -out www.req
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [ZZ]:
State or Province Name (full name) [Province]:
Locality Name (eg, city) [City]:
Organization Name (eg, company) [Example Organization]:
Organizational Unit Name (eg, section) [Central Administration]:
Common Name (eg, YOUR full name) []:www.example.edu
Email Address (optional) []:

Please enter the following ’extra’ attributes
to be sent with your certificate request
A good password (min length 4) []:
An optional company name []:

Then we are able to generate the certificate itself, in other words we sign
the certificate request with the CA private key so that the authenticity of the
issued certificate may be verified by means of the CA public certificate:

openssl ca -days 1000 -in www.req -out certificates/wwwcert.pem
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for /etc/ssl/private/CA/cakey.pem:
Check that the request matches the signature

8.2 Apache 217

Signature ok
Certificate Details:

Serial Number: 3 (0x3)
Validity

Not Before: Jul 18 13:18:16 2006 GMT
Not After : Apr 13 13:18:16 2009 GMT

Subject:
countryName = ZZ
stateOrProvinceName = Province
localityName = City
organizationName = Example Organization
organizationalUnitName = Central Administration
commonName = www.example.edu

X509v3 extensions:
X509v3 Basic Constraints:

CA:FALSE
Netscape Comment:

Example Organization (OpenSSL)
X509v3 Subject Key Identifier:

5F:03:99:74:27:37:5B:AA:5D:A4:EC:1B:7A:5F:55:52:88:5D:3B:3D
X509v3 Authority Key Identifier:

keyid:06:C0:F5:47:F2:DD:22:5B:FD:23:6B:31:9C:76:9B:B2:B7:3C:94:08
DirName:/C=ZZ/ST=Province/L=City/O=Example Organization/\

OU=Central Administration/CN=Certificate Authority/emailAddress=ca@example.edu
serial:C9:B1:15:73:34:88:06:C9

Certificate is to be certified until Apr 13 13:18:16 2009 GMT (1000 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

Afterwards we have to copy the CA public certificate, the web server cer-
tificate, and its private key to the web server machine in /etc/apache2/ssl/:

ls -l /etc/apache2/ssl
total 16
-r--r--r-- 1 root root 2480 2006-07-18 15:22 cacert.pem
-r--r--r-- 1 root root 6441 2006-07-18 15:24 wwwcert.pem
-r-------- 1 root root 1679 2006-07-18 15:24 wwwkey.pem

The permission bits as shown for the private key file and for the certificates
are important for their protection: certificates are world-readable, while the
secret key for the web server may be read only by the root user.

Apache Configuration

The HTTP and HTTPS protocol work on different TCP ports, and it is useful
for didactic purposes to create a new site handled by Apache, working only on
the encrypted channel. In our example we start to distinguish the incoming
port:

NameVirtualHost *
<VirtualHost *:80>

ServerAdmin www@example.edu

DocumentRoot /var/www/example.edu

218 8 Web Server

<Directory />
Options FollowSymLinks
AllowOverride None

</Directory>
<Directory /var/www/example.edu>

Options All MultiViews
AllowOverride All
Order allow,deny
Allow from all

</Directory>

ErrorLog /var/log/apache2/error.log
LogLevel warn
CustomLog /var/log/apache2/access.log combined

</VirtualHost>

By default, the example.edu location will be served on the unencrypted
HTTP port 80 by our www.example.edu host. The new HTTPS port must be
then added to the ports.conf file, that tells Apache which ports it should
listen to: we have to enable the port 443 which corresponds to HTTPS:

Listen 80
Listen 443

At this point we can start from the insecure web server configuration file to
create the new SSL-enabled location. This new file contains the configuration
for our secured site, pointing at a different directory in the file system, in
our example to /var/www/example.edu ssl/. In addition to the new port
specification in the <VirtualHost> section, we must enable the SSL engine,
allowing high and medium security level for encryption, and permitting only
SSL version 3 and TLS communications with the SSLProtocol directive. It is
then mandatory to specify the SSL certificates for the server and the issuing
CA, along with the www.example.edu private key as in the following:

<VirtualHost *:443>
ServerAdmin www@example.edu

SSLEngine on
SSLCipherSuite HIGH:MEDIUM
SSLProtocol -all +SSLv3 +TLSv1
SSLCaCertificateFile /etc/apache2/ssl/cacert.pem
SSLCertificateFile /etc/apache2/ssl/wwwcert.pem
SSLCertificateKeyFile /etc/apache2/ssl/wwwkey.pem

DocumentRoot /var/www/example.edu_ssl
<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>
<Directory /var/www/example.edu_ssl>

Options All MultiViews
AllowOverride All
Order allow,deny
Allow from all

</Directory>

ErrorLog /var/log/apache2/error_ssl.log

8.2 Apache 219

LogLevel warn
CustomLog /var/log/apache2/access_ssl.log combined

</VirtualHost>

A brief list of SSL-related options are described in Table 8.1, but for a
complete index it is recommended to refer to the official Apache documenta-
tion. The first part of the global configuration is the same as in our previous
site like the ServerAdmin option, while the DocumentRoot is set to a different
directory, and for better debugging the logging information is sent to different
files than the logging archives of our principal unencrypted site. Now we can

Table 8.1. Apache SSL options (excerpt)

Option Meaning

SSLCACertificateFile The CA public certificate file
SSLCARevocationFile The optional revoked certificates list
SSLCertificateFile The web server public certificate file

SSLCertificateKeyFile The web server private key file
SSLCipherSuite Enforces encryption methods for SSL negotiations

SSLEngine Enable or disable SSL/TLS
SSLProtocol Configures allowed SSL protocols

SSLVerifyClient Require the verification of the client’s certificate

create /var/www/example.edu ssl/, the root directory for our secure site,
and put there a sample index file:

<html>
<head><title>Example Organization</title></head>
<body>
This is the site for our Example Organization with SSL.
</body>
</html>

Finally we have to enable the ssl module for our web server and restart
it in order to allow the daemon to listen on both ports:

a2enmod ssl
Module ssl installed; run /etc/init.d/apache2 force-reload to enable.

/etc/init.d/apache2 restart
Stopping web server: Apache2.
Starting web server: Apache2.

The nmap tool shows that the host is currently listening on the 80 and 443
TCP ports, and we can browse the new site https://www.example.edu/ as
in Fig. 8.4:

220 8 Web Server

Fig. 8.4. Browsing the Secure Example web site

nmap localhost

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-07-18 15:44 CEST
Interesting ports on localhost.localdomain (127.0.0.1):
(The 1660 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
80/tcp open http
443/tcp open https

Nmap finished: 1 IP address (1 host up) scanned in 0.510 seconds

At a first visit, a web browser might complain that the certificate from the
web server is not trusted, or known, since it is not signed by any of the well-
known certificate authorities. Certificates from our CA are not considered
as valid as those released by third-party companies trusted by default. A
good practice is to make our CA certificate publicly available, for example by
providing it on the web site itself: clients can download the certificate, if the
organization and the web site is believed to be authentic, and then import it
in their system, permanently trusting all certificates signed by that CA.

8.3 MySQL

MySQL is probably the most used database in the free software world, becom-
ing popular with the de facto standardization of the LAMP stack. MySQL
is a lightweight database developed and maintained by the MySQL AB, a
Swedish company established in the mid-90s. This multi-threaded and multi-

8.3 MySQL 221

user database is usually employed in dynamic web page generation, and is cur-
rently available free of charge to the public, and with commercial licenses, too.
Well known users of this product are the free online encyclopedia Wikipedia
and the WordPress personal blogging software; among the commercial users
we may mention the online travel agency Travelocity and the NASA with their
NASA Acquisition Internet Service (NAIS).

Currently Debian includes MySQL in their distribution, providing MySQL
4.1 along with the legacy 4.0 version. Our choice falls on the most up-to-date
version contained in the mysql-server-4.1 package. The default configura-
tion locally binds the database to the host, making the service available for
only localhost. By default MySQL under Debian has a user called root with
administrative rights inside the database without a password, which can be
employed in a first to create a new administrative entity. We can then proceed
connecting to the data base server with the client tool mysql, and create a
new administrator, protected with a password4:

mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5 to server version: 4.1.11-Debian_4sarge5-log

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql> connect mysql;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Connection id: 6
Current database: mysql

mysql> select Host,User from user;
+-----------+------------------+
| Host | User |
+-----------+------------------+
localhost	debian-sys-maint
localhost	root
www	root
+-----------+------------------+
3 rows in set (0.00 sec)

Note that the mysql tool has been started specifying the root user with the
-u option to gain administrative privileges; moreover, the users currently avail-
able to MySQL contain debian-sys-maint, which will be described shortly.
Using the grant command we create a user admin granting all administrative
privileges and binding its usage to the localhost machine:

mysql> grant all privileges on *.* to ’admin’@’localhost’ identified by ’mypasswd’ \
with grant option;
Query OK, 0 rows affected (0.01 sec)

The password, in this case mypasswd, is provided in clear-text on the com-
mand line, so it is advisable that nobody is looking at the screen while per-
4 A complete description of MySQL and the SQL language used to manipulate the

database is out of the scope of this book.

222 8 Web Server

forming this operation. We can now safely use this new administrative user
by quitting MySQL and reconnecting with the client:

mysql -u admin -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 4.1.11-Debian_4sarge5-log

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql> connect mysql;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Connection id: 8
Current database: mysql

mysql> select user,host from user;
+------------------+-----------+
| user | host |
+------------------+-----------+
admin	localhost
debian-sys-maint	localhost
root	localhost
root	www
+------------------+-----------+
4 rows in set (0.00 sec)

MySQL stores internally users and the encrypted version of their password,
and having added the new admin user we may remove the previous user root:

mysql> delete from user where user = ’root’;
Query OK, 2 rows affected (0.01 sec)

mysql> flush privileges;
Query OK, 0 rows affected (0.00 sec)

mysql> select user,host,password from user;
+------------------+-----------+------------------+
| user | host | password |
+------------------+-----------+------------------+
| debian-sys-maint | localhost | 35171d6b5e02839a |
| admin | localhost | 7d02d4862a143836 |
+------------------+-----------+------------------+
2 rows in set (0.00 sec)

In case of losing the admin password, Debian provides a superuser called
debian-sys-maint, with the password stored in a file located in /etc/mysql/
called debian.cnf:

Automatically generated for Debian scripts. DO NOT TOUCH!
[client]
host = localhost
user = debian-sys-maint
password = qkWyfZVJC7mYrINd
socket = /var/run/mysqld/mysqld.sock

The permission bits for this file allow only the root user:

8.3 MySQL 223

ls -l
total 16
-rw------- 1 root root 185 2006-07-18 16:04 debian.cnf
-rw-r--r-- 1 root root 610 2006-07-10 21:43 debian-log-rotate.conf
-rwxr-xr-x 1 root root 559 2006-07-10 21:43 debian-start*
-rw-r--r-- 1 root root 3315 2006-07-10 21:42 my.cnf

Non-administrative Users

As a practical security habit, administrative users should not be used for
daily work, and the same rule applies to MySQL users. We want to create a
non-administrative user allowing it to interact with MySQL on a personalized
database. Every web-based project will have a dedicated user with a dedi-
cated database, and to simplify maintenance, we choose to have their names
coincide. For the moment as an example, we add a database testdb and si-
multaneously create a new user testuser, granting all the privileges to that
new database:

mysql -u admin -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 12 to server version: 4.1.11-Debian_4sarge5-log

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql> connect mysql;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Connection id: 13
Current database: mysql

mysql> create database testdb;
Query OK, 1 row affected (0.00 sec)

mysql> grant all privileges on testdb.* to ’testuser’ identified by ’testpw’;
Query OK, 0 rows affected (0.00 sec)

The grant command as a side effect creates a new user, connecting in the
db table the new user and the database:

mysql> select user,host from user;
+------------------+-----------+
| user | host |
+------------------+-----------+
testuser	%
admin	localhost
debian-sys-maint	localhost
+------------------+-----------+
3 rows in set (0.00 sec)

mysql> select host,db,user from db;
+------+--------+----------+
| host | db | user |
+------+--------+----------+
| % | testdb | testuser |
+------+--------+----------+
1 row in set (0.01 sec)

224 8 Web Server

This new testuser is not to be confused with the corresponding user of
AFS or UNIX: they are completely distinct entities. As we can see from the
output above the database testdb can be managed by testuser regardless
of the host where the user connects from, if MySQL permits such connection.

Testing Users

We can finally test this new user connecting to the MySQL server with the
mysql client tool and verifying that testuser cannot perform any operation
on the MySQL private mysql administrative database:

mysql -u testuser -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 14 to server version: 4.1.11-Debian_4sarge5-log

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql> connect mysql;
ERROR 1044 (42000): Access denied for user ’testuser’@’%’ to database ’mysql’

Our normal user can connect to its own personal database testdb, which
at this point contains no tables:

mysql> connect testdb;
Connection id: 16
Current database: testdb

mysql> show tables;
Empty set (0.00 sec)

We granted all privileges to testuser in its sandbox, so we can test writing
permissions by creating a new table and inserting new values:

mysql> create table testtable (i int);
Query OK, 0 rows affected (0.00 sec)

mysql> select * from testtable;
Empty set (0.00 sec)

mysql> insert into testtable values (0);
Query OK, 1 row affected (0.00 sec)

mysql> insert into testtable values (1);
Query OK, 1 row affected (0.00 sec)

mysql> select * from testtable;
+------+
| i |
+------+
| 0 |
| 1 |
+------+
2 rows in set (0.00 sec)

mysql> quit
Bye

8.4 Adding PHP 225

8.4 Adding PHP

Since the introduction of CGIs in the historical web server HTTPd, simple
programs, that generated HTML pages dynamically provided with particular
input, stimulated, that dynamic scripting languages and tools have prospered.
One of the first processing languages used in GCIs, apart from plain C, was
Perl5, a programming language originally developed by Larry Wall in 1987.

The last letter in the LAMP acronym was originally referred to another
scripting language called PHP, a recursive abbreviation standing for PHP Hy-
pertext Preprocessor. In the beginning PHP, developed in C by Rasmus Lerdorf
in 1994, was intended as a replacement of Perl scripts, whose language parser
was later rewritten by Zeev Suraski and Andi Gutmans, who also changed
the name from the original “Personal Home Page Tools” to the contemporary
acronym. As a side-note, the LAMP stack is also known to be associated to
other languages, such as the Python object-oriented programming language
besides Perl.

The stable version of the Debian GNU/Linux distribution includes pack-
ages for the version 4 of the PHP scripting language, provided in form of
a module for Apache, and contained in the libapache2-mod-php4 package.
The Debian configuration script installs the necessary files and also enables
the Apache module:

ls mods-available/*php*
mods-available/php4.conf mods-available/php4.load

a2enmod php4
This module is already enabled!

After the installation of the package Apache is already configured to exe-
cute PHP scripts since a restart has been forced. To test the server interaction
with the PHP language, we create a very basic script called test.php calling
a PHP function that gives us PHP-related information:

<? phpinfo(); ?>

We place a copy of this file in our HTTP document root, and also in the
HTTPS location. Connecting to http://www.example.edu/test.php on the
unencrypted site, we will be shown a web page, generated by the phpinfo()
function, as in Fig. 8.5. The same script run from the encrypted site, shows a
similar page as the unencrypted version, showing also the server root directory
pointing to the SSL-based web service as in Fig. 8.6.
5 The original name was meant to be “Pearl”, but the name conflicted with the

PEARL programming language. The acronym “Practical Extraction and Report
Language” is a later non-official invention.

226 8 Web Server

Fig. 8.5. The PHP informative page

Fig. 8.6. The PHP informative page on the SSL-enabled site

8.5 Apache with Kerberos and AFS 227

Sample MySQL-PHP Interaction

As an example for the interaction between MySQL and PHP, we will install
and configure the web-based MySQL administration tools called phpMyAd-
min, distributed by Debian with the homonymous package. After installing
the contents of the package and properly configuring it, we need to restart
the web service in order to have changes take effect. The default configura-
tion file for the software is located in /etc/apache2/conf.d/ and is called
phpmyadmin.conf. In order to enable phpMyAdmin to function properly we
should allow all directives contained in .htaccess files for the locations where
the software is installed to:

<Directory /usr/share/phpmyadmin/>
AllowOverride All

</Directory>

<Directory /var/www/phpmyadmin/>
AllowOverride All

</Directory>

To make phpMyAdmin accessible on the web server, we need to create a
symbolic link in the HTTPS site. The MySQL administration package will nec-
essarily send loggin information over the network, and thus the SSL-encrypted
channel is critical to avoid sending passwords in clear-text:

cd /var/www/example.edu_ssl/

ln -s /usr/share/phpmyadmin

The /usr/share/phpmyadmin/ directory contains all the necessary scripts
to administer a MySQL installation and upon login we are presented a web
page as in Fig. 8.7.

PHP Exploits

Unfortunately PHP runs with Apache credentials, and this may lead to ma-
licious scripts that can affect the security of our web site, especially when
dealing—as we will shortly see—with personal web pages.

Securing PHP scripting is beyond the scope of this book, and should be
taken care of when deploying a PHP-based web infrastructure. Examples of
PHP-based solutions to this problem are suPHP and Safe mode. The same
problem occours for CGIs where Apache provides the suEXEC mechanism.
As for almost all problems, each solution has advantages and drawbacks which
should be carefully weighted by the organization.

8.5 Apache with Kerberos and AFS

As we already previewed, we want to enable our users to have personal web
space in their AFS home directories: this requires Apache to fully access,

228 8 Web Server

Fig. 8.7. The phpMyAdmin page for testuser

with read and occasionally write permissions, in a user AFS file space. Un-
fortunately Apache is not AFS-aware, so out of the box it cannot perform
any action on AFS volumes, but using the same procedure as we did on the
Samba server, it is possible to provide Apache with a valid token so that it
can easily access users home pages, and of course, enable the web site root to
reside on an AFS volume. In the following we assume the web server host to
be a full Kerberos, LDAP and AFS client, so that the system can resolve user
and group names to UIDs and GIDs, and retrieve home directory locations.

8.5.1 Web Server Principal

The procedure we are going to perform mirrors the one conducted on the
Samba server in order to allow user profiles in the AFS space: we will create a
Kerberos principal and modify the Apache startup script to provide the web
server with a valid AFS token. Let us proceed then creating the Kerberos
principal for our web server machine, remembering that host principals need
the FQDN in the name:

kadmin: add_principal -randkey host/www.example.edu
WARNING: no policy specified for host/www.example.edu@EXAMPLE.EDU; defaulting to no policy
Principal "host/www.example.edu@EXAMPLE.EDU" created.

kadmin: ktadd host/www.example.edu
Entry for principal host/www.example.edu with kvno 3, encryption type \
Triple DES cbc mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/www.example.edu with kvno 3, encryption type \
DES cbc mode with CRC-32 added to keytab WRFILE:/etc/krb5.keytab.

8.5 Apache with Kerberos and AFS 229

After exporting the host principal to the default keytab file, we create the
web service principal and export it to a keytab different from the default one.
The service principal name for web service has the prefix HTTP followed by
the host name, and it will be exported to a http.keytab file located in the
default Apache configuration directory /etc/apache2/:

kadmin: add_principal -randkey HTTP/www.example.edu
WARNING: no policy specified for HTTP/www.example.edu@EXAMPLE.EDU; defaulting to no policy
Principal "HTTP/www.example.edu@EXAMPLE.EDU" created.

kadmin: ktadd -k /etc/apache2/http.keytab HTTP/www.example.edu
Entry for principal HTTP/www.example.edu with kvno 3, encryption type \
Triple DES cbc mode with HMAC/sha1 added to keytab WRFILE:/etc/apache2/http.keytab.
Entry for principal HTTP/www.example.edu with kvno 3, encryption type \
DES cbc mode with CRC-32 added to keytab WRFILE:/etc/apache2/http.keytab.

In order to let Apache access to the AFS file space, we need to create the
equivalent of the windows user in our OpenAFS protection database. As we
could have more than one web server, and all of them should access the AFS
space with different keytabs, we choose to create a group that will contain all
the AFS-enabled web servers in our organization:

pts creategroup webservers -id -400
group webservers has id -400

pts listentries -groups
Name ID Owner Creator
system:administrators -204 -204 -204
system:backup -205 -204 -204
system:anyuser -101 -204 -204
system:authuser -102 -204 -204
system:ptsviewers -203 -204 -204
testgroup -10000 1 1
webservers -400 1 1

Remember to be extremely careful choosing the IDs, as you could en-
counter problems with existing users and groups. Next, we create the AFS
user and add it to the webservers group, noting as the principal name
HTTP/hostname corresponds to the PTS entry http.hostname:

pts createuser http.www.example.edu -id 501
User http.www.example.edu has id 501

pts adduser http.www.example.edu webservers

pts membership webservers
Members of webservers (id: -400) are:

http.www.example.edu

pts membership http.www.example.edu
Groups http.www.example.edu (id: 501) is a member of:

webservers

It is a good practice to test the keytab file gaining the initial ticket and
next convert it to an AFS token with the aklog command:

230 8 Web Server

kinit -k -t /etc/apache2/http.keytab HTTP/www.example.edu

aklog

klist
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: HTTP/www.example.edu@EXAMPLE.EDU

Valid starting Expires Service principal
07/20/06 11:27:00 07/20/06 21:26:59 krbtgt/EXAMPLE.EDU@EXAMPLE.EDU
07/20/06 11:27:06 07/20/06 21:26:59 afs/example.edu@EXAMPLE.EDU

Kerberos 4 ticket cache: /tmp/tkt0
klist: You have no tickets cached

tokens

Tokens held by the Cache Manager:

User’s (AFS ID 501) tokens for afs@example.edu [Expires Jul 20 21:26]
--End of list--

The final step to combine Apache with AFS is to modify the startup
script exactly the same way we did for Samba, since the web server is not
AFS aware. In /etc/default/ you can find the file apache2 containing the
initial environment variables used in the daemon starting shell script, so let
us modify it adding three variables with commands we need, symmetrically
to those used for Samba:

PRE_COMMAND1="/usr/bin/kinit -l 1day -k -t /etc/apache2/http.keytab HTTP/www.example.edu"
PRE_COMMAND2="/usr/bin/aklog -setpag"
POST_COMMAND="/usr/bin/kdestroy"

Finally the start section in the /etc/init.d/apache2 file has to be al-
tered as follows, calling the Kerberos and AFS commands through the envi-
ronment variables PRE COMMAND1 and PRE COMMAND2, before starting the web
server program:

start)
[-f /etc/apache2/httpd.conf] || touch /etc/apache2/httpd.conf
#ssl_scache shouldn’t be here if we’re just starting up.
[-f /var/run/apache2/ssl_scache] && rm -f /var/run/apache2/*ssl_scache*
echo -n "Starting web server: Apache2"
$PRE_COMMAND1 ; $PRE_COMMAND2
$APACHE2CTL startssl
$POST_COMMAND
echo "."

;;

In this way a PAG is set before starting the web server daemon and be-
fore leaving the script, the Kerberos authentication ticket is removed with
POST COMMAND, thus lessening any security concern about the Kerberos file-
based credential cache. As we can see from the kinit command line, this
combination provides a valid authentication for just one day: after this pe-
riod Apache needs to be restarted, for instance with a cron job. The Apache

8.5 Apache with Kerberos and AFS 231

daemon can now access the AFS file space provided that ACLs permit the
webservers group to perform operations on certain locations.

8.5.2 Personal Web Pages

Once Apache has been enabled to access the AFS space, it is straightforward
to provide users with their personal web space. Since usually home pages are
publicly visible, we choose to create a new directory html under the public
location dedicated to the web. Let us create the html directory providing it
with the necessary write access to the webservers PTS group since we foresee
DAV, too:

cd /afs/example.edu/users/testuser/public

mkdir html

fs setacl html webservers write

fs setacl html anonymous none

fs listacl html/
Access list for html/ is
Normal rights:

webservers rlidwk
system:administrators rlidwka
testuser rlidwka

In large environments we could dedicate a specific AFS volume to per-
sonal web spaces, such that it is convenient to backup all the volumes with
automated scheduled jobs. The example shows the setup for our testuser.
Since Apache enables users to control the access to their personal space with
.htaccess files6, we choose not to expose the user web location to the pub-
lic system:anyuser group: a user may wish to restrict the access to some
locations under its own personal space. Let us now create in AFS a sample
index.html file for our testuser:

<html>
<head><title>Test User</title></head>
<body>
This is the site of our testuser.
</body>
</html>

Note that we gave our web server group full write access to this location:
in the following we will enable the WebDAV an alternative way of accessing
the AFS file space. To instruct Apache to look also at our users personal web
pages, we must modify the configuration for our example.edu site adding
a new location. The UserDir directive tells the Apache server to read also
user home directories, as the http://www.example.edu/∼username/ URL.
6 The .htaccess mechanism is provided by Apache on a per-directory basis—as

AFS ACLs—and is enabled with the AllowOverride in the Apache configuration.

232 8 Web Server

Additionally we will specify access options for the home directories with the
standard <Directory> directive as in the following example:

NameVirtualHost *
<VirtualHost *:80>

ServerAdmin www@example.edu

DocumentRoot /var/www/example.edu
<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>
<Directory /var/www/example.edu>

Options All MultiViews
AllowOverride All
Order allow,deny
Allow from all

</Directory>

ErrorLog /var/log/apache2/error.log
LogLevel warn
CustomLog /var/log/apache2/access.log combined

<Directory /afs/example.edu/users>
Options All MultiViews
AllowOverride All
Order allow,deny
Allow from all

</Directory>
UserDir /afs/example.edu/users/*/public/html

</VirtualHost>

Then the http://www.example.edu/∼testuser/ URL will be translated
to the /afs/example.edu/users/testuser/public/html home directory lo-
cation with the help of the NSS contacting LDAP, and it obeys to restrictions
detailed in the <Directory> stanza.

8.6 WebDAV

Until this point the web space is a read-only world, allowing users to share doc-
uments, but denying any modification on them. The IETF worked to produce
a series of standard documentations on an extension to the HTTP protocol
enabling writing access to web pages, resulting in the WebDAV specification,
the acronym of Web-based Distributed Authoring and Versioning. This feature
is already available on commercial systems: the Apple iDisk and Microsoft’s
Web Folder are both based on the WebDAV extension. As a read-write entry
point, WebDAV is a viable replacement for users to access the AFS file space,
while the client cannot be employed or for mobile users.

Since the access to the AFS file space may expose personal documents to
the network traffic, it is highly recommended to make use of a secure com-
munication channel with the SSL-enabled web location. By default Apache
ships with the WebDAV extension, provided by two modules named dav and
dav fs:

8.6 WebDAV 233

Fig. 8.8. Browsing the testuser’s site

a2enmod dav_fs
Module dav_fs installed; run /etc/init.d/apache2 force-reload to enable.

a2enmod dav
Module dav installed; run /etc/init.d/apache2 force-reload to enable.

Furthermore, Apache needs to contact the Kerberos server for authen-
ticating all the connecting users, a functionality provided by the Debian
libapache2-mod-auth-kerb package: user passwords are transmitted in clear-
text, so the use of HTTPS is obligatory. By default Apache treats all files
starting with .ht in a special way since this prefix is used for access control:
an example of these files is the well known .htaccess. Since it can be useful
to modify these special files over WebDAV too, we choose to use a different file
name for access control. Therefore in our SSL-enabled site example.edu ssl,
we specify the .davacl for access control over a user home directory with the
AccessFileName directive:

<VirtualHost *:443>
ServerAdmin www@example.edu

SSLEngine on
SSLCipherSuite HIGH:MEDIUM
SSLProtocol -all +SSLv3 +TLSv1
SSLCaCertificateFile /etc/apache2/ssl/cacert.pem
SSLCertificateFile /etc/apache2/ssl/wwwcert.pem
SSLCertificateKeyFile /etc/apache2/ssl/wwwkey.pem

DocumentRoot /var/www/example.edu_ssl
<Directory />

Options FollowSymLinks

234 8 Web Server

AllowOverride None
</Directory>
<Directory /var/www/example.edu_ssl>

Options All MultiViews
AllowOverride All
Order allow,deny
Allow from all

</Directory>

ErrorLog /var/log/apache2/error_ssl.log
LogLevel warn
CustomLog /var/log/apache2/access_ssl.log combined

AccessFileName .davacl
<Files ~ "^\.ht">

Order allow,deny
Allow from all

</Files>
<Directory /afs/example.edu/users>

Options All MultiViews
AllowOverride All
Order allow,deny
Allow from all
Dav On
DavDepthInfinity On

</Directory>
UserDir /afs/example.edu/users/*/public/html

</VirtualHost>

On the users home directories stanza we added the necessary Dav On direc-
tive to enable WebDAV. With these simplified settings all control is delegated
to our users who have to take care of a suitable setting in their public/html
directory. On DAV access Apache is not running as root anymore: as a con-
sequence it cannot read the keytab file with the previous permission bits. For
this we will allow the group called www-data to read the keytab file, since
Apache is running as user www-data belonging to the homonymous group:

-rw-r----- 1 root www-data 144 2006-07-20 11:22 /etc/apache2/http.keytab

To set properly a WebDAV ACL may not be easy for users, so it is ad-
visable to provide a template with the appropriate configuration to all users
in the organization. WebDAV requires the specification of the authentication
method with the AuthType directive, in our case Kerberos, the Kerberos
realm and service names, KrbAuthRealms and KrbServiceName respectively,
along with the complete keytab file path. Since write-enabled access should
be restricted to the web space owner, we require a specific principal to be
authenticated in order to establish a DAV connection:

AuthType Kerberos
KrbMethodNegotiate off
AuthName "Please enter your EXAMPLE.EDU credentials."
KrbAuthRealms EXAMPLE.EDU
KrbServiceName HTTP
Krb5Keytab /etc/apache2/http.keytab
require user testuser@EXAMPLE.EDU

8.7 Redundant Web Server 235

The AuthName string will appear on the connecting client, while the
method negotiation setting is needed when connecting from Windows ma-
chines via WebDAV to avoid Windows related authentication attempts. The
access to the web space of our testuser over DAV is granted just to this very
user who has to authenticate against Kerberos. To enable this new service all
we need is to restart Apache:

/etc/init.d/apache2 start
Starting web server: Apache2.

At this point it is possible to test the connection using a DAV-enabled
web browser. Windows provides Internet Explorer, a DAV-aware browser that
can open WebDAV connections using the “Open as Web Folder” option with
results similar to those pictured in Fig. 8.9.

Fig. 8.9. Opening a “Web Folder”

8.7 Redundant Web Server

As all the services provided by our organization, the web server should be
redundant. As we have already seen, DNS provides the ability to assign mul-
tiple IP addresses to a single name, in this case www.example.edu, providing

236 8 Web Server

also a simple load balancing7 facility. For web server replication all is needed
is to install the same Apache modules and configure it exactly as the first
server. The only difference could exist in the site configuration files, where
the VirtualHost stanza might refer to a specific IP address.

If the example.edu and example.edu ssl sites have their web root in AFS
space then the configuration will not need any further modification: remember
that keytab and certificate files have to be copied as well. A simple Apache
configuration can be tuned in such a way that no modification is necessary. Be
aware that this proposed redundancy might not work with all web browsers:
it depends on the specific implementation if use is made of several IPs offered
for one name.

A last word should be spent on MySQL since it can save some state for
dynamic web pages. On the one hand database services cannot reside on AFS
since they need some byte-level locking which is unsupported by OpenAFS
yet. On the other hand redundancy for open-source databases as MySQL is
already available, but due to the lengthy procedure it might involve it does
not get further developed here.

Practice

Exercise 29. Try other WebDAV clients like the built-in client for MacOS
X or cadaver for Linux, verifying their support for SSL. Check whether they
additionally permit client a certificate-based authentication.

Exercise 30. Test some PHP code exploits against all the available alterna-
tives to secure PHP. Is the Python programming language a valid substitute
for your organization’s purposes?

Exercise 31. Is the creation of a dedicated volume for the user’s web space a
better option in your context? Experiment suitable quota settings and backup
options.

Exercise 32. Check for a failover solution for MySQL based on the provided
packages from Debian. The documentation contains a chapter about building
a cluster which needs two nodes and an additional management host. Special
SQL commands are provided to make use of such a cluster.

7 If you plan to have heavy load web sites you should consider installing a real load
balancing software.

9

Electronic Mail

The Americans have need of the telephone, but we do
not. We have plenty of messenger boys.
William Henry Preece

9.1 The Electronic Mail System

Electronic mail, or the more famous abbreviation email nowadays has become
a daily experience. The electronic mailing system is at the origin of networking
environments, dating back to the 60s, starting at the Massachusetts Institute
of Technology, and rapidly spreading on the ARPANet computer network,
the predecessor of modern Internet. The first implementation of an emailing
system is attributed to Raymond Tomlinson in 1971, where the @ sign was
used to indicate the machine where the user had an email box.

The emailing system is comparable to the current physical mail distribut-
ing organization. A user located on some machine writes a text using a mail
program (e.g. Apple Mail, Microsoft Outlook, Mozilla Thunderbird), speci-
fying the destination user: email addresses still retain the ARPANet @ sign
to separate the username from the following domain name. The client upon
a user command contacts its domain outgoing mail server and transfers the
email text along with the necessary delivery information: in the electronic
mail terminology, the client program is called the Mail User Agent, MUA,
while the outgoing mail server is called Mail Tranfer Agent or MTA.

Fig. 9.1. A client sending an email contacts its SMTP server

238 9 Electronic Mail

The MTA acts exactly as a mailing office in the real world: it temporarily
stores the email from the client, and delivers it to the destination post office
contacting the addressee’s MTA. Optionally the post office provides the service
of delivering mails directly into the user’s mailbox, which in the electronic mail
world is done by a program called Mail Delivery Agent or MDA.

Query MX field

smtp.example.edu

DNS Server
dns.qwertyz.com

SMTP Server
smtp.example.edu

From: foo@qwertyz.com

To: bar@example.edu

Hello!

SMTP Server
smtp.qwertyz.com

Fig. 9.2. The email is delivered to the addressee via the SMTP protocol. The
destination server is retrieved by a DNS query

The de facto standard communication protocol for MTAs in the Internet
world is SMTP, the Simple Mail Transfer Protocol, originally conceived as a
companion of the historical UUCP protocol, UNIX to UNIX Copy, used on
machines that were not permanently connected to a network. The SMTP as
the name itself suggests, is a simple protocol, based on a clear text communi-
cation between two servers, and strongly relying on the DNS service. When
a SMTP server receives an email to bar@example.edu, it contacts the DNS
server of the example.edu domain for the MX service record. If the query is ful-
filled, it will contact the DNS-provided destination SMTP server, and transfers
the email to the destination. Exactly as the standard mail, the SMTP pro-
vides additional services as priority mails and return receipts: unfortunately
these two features are not used in every emailing system.

The mail reading system currently uses two different protocols, the Post
Office Protocol or POP, and the newer IMAP, Internet Message Access Pro-
tocol, at their third and fourth versions, respectively. The POP protocol was
designed to access email texts with dial-up connections: the client would down-
load all the messages and finally disconnect from the server. Moreover, since
dial-up connections were slow and costly, the protocol was extremely simple,
and originally did not provide any encryption facility, sending usernames and
passwords in clear-text. The modern IMAP protocol, first implemented by
Mark Crispin in 1986, does not need to retrieve all the email text at once,
downloading only the informative context (i.e. the mail headers, containing
the addressee, sender, dates and additional contents such as the SMTP trans-
action log), fetching the whole email only upon request. Additional features of

9.2 Mail Transport with Postfix 239

IMAP with respect to POP, are on-server mailboxes and email flagging (e.g.
“read”, “unread”, “replied”, and “forwarded”).

Storage of emails, which as a matter of fact are simple text messages, have
been historically realized with a single file per mailbox. This format is referred
with the common mbox name. There are several drawbacks to the use of such
a storage format, the most relevant are the necessity of locking the whole
file when receiving new emails (usually appended to the mailbox file), and
another is the progressive slowness in retrieving a particular email as the file
size grows. An alternative to the mbox format is the more modern Maildir
format which stores emails in separate files. This per-email format overcomes
the limitations of mbox discarding the need for file locking when receiving new
emails.

This chapter describes the setup of an infrastructure for electronic mail
employing secure solutions, and which integrates well with our backbone based
on Kerberos, LDAP, and AFS. In comparison with the web server, which
has Apache as the favorite candidate, the setup of a mail system has many
possible solutions. For MTAs there are currently several SMTP servers, such
as Exim, Postfix, qmail, and the historical sendmail program, the first MTA
ever available to the public. Reading emails is also possible with different
servers, where we may mention IMAP/POP products as Courier, Cyrus, and
the implementation from the University of Washington.

9.2 Mail Transport with Postfix

Historically sendmail is the classical MTA, dating back to the ARPANet im-
plementation of mailing system named delivermail. In the 80s Eric Allman
wrote the sendmail program which replaced the legacy program in the BSD
UNIX distribution 4.1c released in 1983 including TCP/IP support.

The original sendmail program is still one of the most used SMTP dae-
mons on the Internet, but it is hard to understand the precise configuration
procedure and several security issues in the past do not make it the best option
in our case. Our choice falls on the MTA implementing the SMTP protocol
written by a team under Wietse Venema called postfix. The Postfix server
has several additional features that will be employed in the following, such as
an easy to use LDAP connection, the support for encrypted channels, and the
Maildir format for mailboxes.

DNS Entries

Before installing an SMTP server, we have to prepare the DNS service ac-
cording to the SMTP protocol, creating the special MX record that indicate
the domain MTA host:

240 9 Electronic Mail

example.edu. MX 0 smtp.example.edu.

The third field indicates the priority of each SMTP machine, with lower
numbers indicating higher preferences. A strong constraint to the way this
name is resolved is that it cannot be an alias, so it should not be a CNAME
entry: MX records must be simple A entries in the DNS zone description. As
for other service fields, it is possible to specify several MX records, so that if
one fails, the next one will be used. As a drawback to this simple replicated
service, all the load is given to the entry in the DNS database with the lowest
preference number, a circumstance avoided by reusing the same number, as
we will see later.

9.2.1 Installing Postfix

Debian provides us with the second version of the Postfix daemon, and in-
cludes an extension with SASL and TLS support, too. We choose to install
the extended postfix-tls package, since we intend to provide a secure au-
thentication to our users, avoiding sending clear-text authentication data
over the network. During installation Debian configures the daemon. We can
safely choose a typical Internet configuration, since afterwards we are go-
ing to modify the generated configuration. The Debian system configures the
package after a successful installation, and as the list of destinations Postfix
should accept mail for, one of the Debian questions to the user, we can in-
clude localhost besides our DNS domain. Before the actual configuration,
we install further additional packages to enhance the map support for the
various lookup tables. One commonly used extension is postfix-pcre allow-
ing for Perl-compliant regular expressions, and another important addition is
postfix-ldap package: we will allow our users to have email aliases, storing
the information inside the LDAP tree. After installing the packages we stop
the daemon in order to proceed with the configuration:

/etc/init.d/postfix stop
Stopping mail transport agent: Postfix.

Configuring Postfix

The configuration files for the Postfix daemon are stored in the /etc/postfix/
directory, and the main file is called main.cf. The default configuration file
provided by Debian can be left almost untouched, except for the domain-
specific values listed below:

biff = no
append_dot_mydomain = no
delay_warning_time = 4h

myhostname = smtp.example.edu

9.2 Mail Transport with Postfix 241

myorigin = /etc/mailname
mydestination = example.edu, localhost
mynetworks = 127.0.0.0/8

mailbox_size_limit = 0
alias_maps = hash:/etc/aliases,ldap:/etc/postfix/ldap.cf
alias_database = hash:/etc/aliases

The first block of values regards the old UNIX mail notification program
biff, which is not used on our systems, and sets general properties of mail
handling: append dot mydomain sets whether Postfix should append missing
domain name parts, while the delay warning time affects notification mes-
sages sent to the user if an email could not be delivered within a certain
amount of time. The second block of settings configures the local SMTP host
service, setting the host name, the destination domains and networks which
Postfix is allowed to receive emails from. The myorigin field indicate a text
file containing the domain name of our SMTP server, example.edu, in our
case. The third block permits unlimited mailbox size and provides settings for
the resolution of email aliases.

Email Aliases

Usernames are not always suitable mail addresses, since they rarely allow long
and meaningful strings indicating name and surname of users; moreover, users
may wish to receive emails to a particular address completely unrelated to
the real name. Having installed the LDAP extension, Postfix can consult the
LDAP database, and the classic UNIX file /etc/aliases, to resolve addresses
that are not actual users in our system.

The LDAP configuration file is placed in the same location as the main
one, and it is called ldap.cf, as specified in the alias maps line of main.cf.
It contains all the needed information to resolve email aliases, such as the
server name and port and the LDAP sub-tree where aliases are stored:

server_host = ldap.example.edu
server_port = 389
search_base = ou=aliases,dc=example,dc=edu
query_filter = (sn=%s)
result_attribute = mail
bind = no

Our aliases are to be stored in the ou=aliases subtree, with the ac-
tual user name placed in the attribute specified by the result attribute
field. As an example, our first alias is for the testuser, who wants to receive
emails as name.surname@example.edu instead of the classic and less mean-
ingful testuser@example.edu. The LDIF file to create such an alias, is as
follows:

dn: cn=name.surname,ou=aliases,dc=example,dc=edu
objectClass: pilotPerson
cn: name.surname

242 9 Electronic Mail

sn: name.surname
mail: testuser

Here the predefined object class pilotPerson is used, which just contains
sufficient elements cn, sn, and the actual email address entry in mail. Note
that an alias does not affect any login parameter. The testuser user name
and its password need always be used to authenticate in any case, whereas the
alias is just a fictional email address that can be used instead of the username.
To test that the alias works, we can use the postmap tool to query a specific
email address for the given specific Postfix configuration file:

postmap -q name.surname ldap:/etc/postfix/ldap.cf
testuser

9.2.2 Testing Postfix

To test our first instance of this mail delivery agent, we use the legacy
UNIX text-only client mail. By default, Postfix delivers all emails in the
/var/spool/mail/ storage directory, using the mbox format, with one file for
every user:

cd /var/spool/mail

ls -l
total 4
-rw-rw---- 1 admin mail 1001 2006-06-15 13:06 admin

Right now there is only one mailbox of the user which has been created
during the Debian installation besides root. This is the moment to start
Postfix and check all the open ports, as a good security practice:

/etc/init.d/postfix start
Starting mail transport agent: Postfix.

nmap localhost

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-07-20 16:49 CEST
Interesting ports on localhost.localdomain (127.0.0.1):
(The 1661 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
25/tcp open smtp

Nmap finished: 1 IP address (1 host up) scanned in 0.520 seconds

Let us use the mail tool by first specifying the user name and the subject
of the email we want to send with the -s option. The end of the message
is indicated by a single line with just a dot: as we have previewed, mail is
a legacy tool, and its user interface is very simple, but serves our testing
purposes. At this point mail asks for a carbon-copy email address which can
be left blank:

9.2 Mail Transport with Postfix 243

mail testuser -s test1
hello world!
.
Cc:

We can see in the spool that the mailbox file for testuser has been suc-
cessfully created, and inside we find the full body of our sent email:

ls -l
total 8
-rw-rw---- 1 admin mail 1001 2006-06-15 13:06 admin
-rw------- 1 testuser mail 427 2006-07-20 16:51 testuser

cat testuser
From root@example.edu Thu Jul 20 16:51:28 2006
Return-Path: <root@example.edu>
X-Original-To: testuser
Delivered-To: testuser@example.edu
Received: by smtp.example.edu (Postfix, from userid 0)

id AE57E2FEA8; Thu, 20 Jul 2006 16:51:28 +0200 (CEST)
To: testuser@example.edu
Subject: test1
Message-Id: <20060720145128.AE57E2FEA8@smtp.example.edu>
Date: Thu, 20 Jul 2006 16:51:28 +0200 (CEST)
From: root@example.edu (root)

hello world!

Next we test the testuser alias: we should be able to receive another
email using the previously defined name.surname@example.edu email alias:

mail name.surname@example.edu -s test2
hello alias!
.
Cc:

We can verify that the delivery worked by inspecting the user mailbox,
finding the second email at the bottom of the file:

cat testuser
From root@example.edu Thu Jul 20 16:51:28 2006
Return-Path: <root@example.edu>
X-Original-To: testuser
Delivered-To: testuser@example.edu
Received: by smtp.example.edu (Postfix, from userid 0)

id AE57E2FEA8; Thu, 20 Jul 2006 16:51:28 +0200 (CEST)
To: testuser@example.edu
Subject: test1
Message-Id: <20060720145128.AE57E2FEA8@smtp.example.edu>
Date: Thu, 20 Jul 2006 16:51:28 +0200 (CEST)
From: root@example.edu (root)

hello world!

From root@example.edu Thu Jul 20 16:54:49 2006
Return-Path: <root@example.edu>
X-Original-To: name.surname@example.edu
Delivered-To: testuser@example.edu
Received: by smtp.example.edu (Postfix, from userid 0)

id B885B2FEA9; Thu, 20 Jul 2006 16:54:49 +0200 (CEST)

244 9 Electronic Mail

To: name.surname@example.edu
Subject: test2
Message-Id: <20060720145449.B885B2FEA9@smtp.example.edu>
Date: Thu, 20 Jul 2006 16:54:49 +0200 (CEST)
From: root@example.edu (root)

hello alias!

9.2.3 Secure Delivery

As for the web server we want to permit secure connections when an ex-
ternal server prefers to deliver emails in this way for our domain. This is
done via Transport Layer Security or TLS. Unlike the Secure Socket Layer, or
SSL, where the communication gets encrypted immediately, TLS allows for
an initial negotiation of whether to use cryptography and the chosen encoding
algorithm. The first step is to produce a certificate for our server as we did for
Apache and store both the private key and public certificate, along with our
CA certificate, in a secure location available to Postfix. We choose to store all
these files in a new subdirectory of /etc/postfix/ called ssl/:

ls -l /etc/postfix/ssl
total 16
-r--r--r-- 1 root root 2480 2006-07-20 17:02 cacert.pem
-r--r--r-- 1 root root 6441 2006-07-20 17:02 smtpcert.pem
-r-------- 1 root root 1679 2006-07-20 17:02 smtpkey.pem

Note the permission bits which allow the private key to be readable by
root only. The next step is to enable TLS in the main Postfix configuration
file. Our main.cf has to be modified as follows:

biff = no
append_dot_mydomain = no
delay_warning_time = 4h

myhostname = stmp.example.edu
myorigin = /etc/mailname
mydestination = example.edu, localhost
mynetworks = 127.0.0.0/8

mailbox_size_limit = 0
alias_maps = hash:/etc/aliases,ldap:/etc/postfix/ldap.cf
alias_database = hash:/etc/aliases

smtpd_tls_cert_file = /etc/postfix/ssl/smtpcert.pem
smtpd_tls_key_file = /etc/postfix/ssl/smtpkey.pem
smtpd_tls_CAfile = /etc/postfix/ssl/cacert.pem
smtpd_use_tls = yes
smtpd_enforce_tls = no
smtpd_tls_loglevel = 1

smtp_tls_cert_file = /etc/postfix/ssl/smtpcert.pem
smtp_tls_key_file = /etc/postfix/ssl/smtpkey.pem
smtp_tls_CAfile = /etc/postfix/ssl/cacert.pem
smtp_use_tls = yes
smtp_enforce_tls = no
smtp_tls_loglevel = 1

9.2 Mail Transport with Postfix 245

As we can see, we added two more configuration sections, smtpd * and
smtp *. In this way we enable users to encrypt their transmission when send-
ing email, setting the smtpd * parameters to match the certificate files and
using TLS by default as indicated by smtpd use tls. These parameters af-
fect also transmissions incoming by other servers, as the SMTP is used as
a medium to transport emails from user clients to the addressee’s SMTP
server: for this reason we do not enforce an encrypted communication by set-
ting smtpd enforce tls to no, since the communication between MTAs may
be unencrypted due to legacy servers not supporting TLS. The analogous
smtp * parameters are used by Postfix when sending email to other external
servers, in other words when delivering emails sent by our users. Again, we
cannot enforce the use of TLS since other SMTP servers might not be able to
use it. In order to activate these new settings the daemon has to be restarted.

9.2.4 Testing TLS with Postfix

To test the TLS layer we need a client that can talk over an encrypted channel:
for this test we choose the Apple Mail program configuring it to use SSL as
shown in Fig. 9.3. For the test a mail to name.surname@example.edu has

Fig. 9.3. Apple Mail configuration panel for SMTP

been composed and correctly delivered as we can see from the contents of our
testuser’s mailbox file:

From name.surname@example.edu Thu Jul 20 17:25:10 2006
Return-Path: <name.surname@example.edu>
X-Original-To: name.surname@example.edu
Delivered-To: testuser@example.edu
Received: from [192.168.127.224] (unknown [192.168.127.224])

246 9 Electronic Mail

by smtp.example.edu (Postfix) with ESMTP id 35FF82FEA9
for <name.surname@example.edu>; Thu, 20 Jul 2006 17:24:12 +0200 (CEST)

Mime-Version: 1.0 (Apple Message framework v624)
To: name.surname@example.edu
Message-Id: <c2639e2b2f51c8a2ff1e878a9e5599a2@example.edu>
Content-Type: multipart/alternative; boundary=Apple-Mail-4--991818294
From: Test User <name.surname@example.edu>
Subject: Test TLS
Date: Thu, 20 Jul 2006 17:24:00 +0200
X-Mailer: Apple Mail (2.624)

--Apple-Mail-4--991818294
Content-Transfer-Encoding: 7bit
Content-Type: text/plain;

charset=US-ASCII;
format=flowed

Hello tls!
--Apple-Mail-4--991818294
Content-Transfer-Encoding: 7bit
Content-Type: text/enriched;

charset=US-ASCII

<bigger><bigger><x-tad-bigger>Hello tls!</x-tad-bigger></bigger></bigger>
--Apple-Mail-4--991818294--

It is also possible that the mail program warns about the certificate not
being known to the system, due to the fact that we produced our own author-
ity: to avoid the warning you can import the CA certificate permanently in
the system. The connection has been actually encrypted as we can see from
the logs in the /var/log/mail.log file:

Jul 20 17:24:11 smtp postfix/smtpd[2046]: connect from unknown[192.168.127.224]
Jul 20 17:24:11 smtp postfix/smtpd[2046]: setting up TLS connection from \
unknown[192.168.127.224]
Jul 20 17:24:12 smtp postfix/smtpd[2046]: TLS connection established from \
unknown[192.168.127.224]: TLSv1 with cipher RC4-SHA (128/128 bits)
Jul 20 17:24:12 smtp postfix/smtpd[2046]: 35FF82FEA9: client=unknown[192.168.127.224]
Jul 20 17:24:12 smtp postfix/cleanup[2048]: 35FF82FEA9: \
message-id=<c2639e2b2f51c8a2ff1e878a9e5599a2@example.edu>
Jul 20 17:24:12 smtp postfix/qmgr[2032]: 35FF82FEA9: \
from=<name.surname@example.edu>, size=892, nrcpt=1 (queue active)
Jul 20 17:25:10 smtp postfix/local[2049]: 35FF82FEA9: \
to=<testuser@example.edu>, orig_to=<name.surname@example.edu>, \
relay=local, delay=58, status=sent (delivered to mailbox)
Jul 20 17:25:10 smtp postfix/qmgr[2032]: 35FF82FEA9: removed
Jul 20 17:25:12 smtp postfix/smtpd[2046]: disconnect from unknown[192.168.127.224]

9.2.5 Authenticated Mail Relay

So far our server accepts mail to be delivered to our domain possibly en-
crypting the communication; furthermore it permits localhost to send mail
anywhere allowing for TLS if applicable. This configuration actually denies
any external user to send email through our service: we would like to extend
this mail relay to all our users, so that they can send emails from any location
and host they wish.

9.2 Mail Transport with Postfix 247

In the early days of the Internet such mail relay used to be open until
the advent of spam, unsolicited electronic mail, which took its name from a
notable sketch from the Monty Python. Hence we need to restrict this relaying
to just authenticated users, avoiding casual spammers to use our SMTP as an
open relay server. Postfix uses SASL, the Simple Authentication and Security
Layer, to authenticate clients, a software that we have seen in use with our
LDAP service. Here SASL gets combined with TLS to guarantee a secure data
transmission.

To fine tune mail relay settings we need to modify the corresponding
smtpd recipient restrictions parameter in the Postfix main configuration
file. Besides localhost and the destination being our domain, we will permit
all authenticated users to user the SMTP service. For these users we can safely
enforce the usage of TLS, since almost all email clients currently support the
TLS/SSL protocol:

biff = no
append_dot_mydomain = no
delay_warning_time = 4h
myhostname = stmp.example.edu
myorigin = /etc/mailname
mydestination = example.edu, localhost
mynetworks = 127.0.0.0/8
mailbox_size_limit = 0

alias_maps = hash:/etc/aliases,ldap:/etc/postfix/ldap.cf
alias_database = hash:/etc/aliases

smtpd_tls_cert_file = /etc/postfix/ssl/smtpcert.pem
smtpd_tls_key_file = /etc/postfix/ssl/smtpkey.pem
smtpd_tls_CAfile = /etc/postfix/ssl/cacert.pem
smtpd_use_tls = yes
smtpd_enforce_tls = no
smtpd_tls_loglevel = 1

smtp_tls_cert_file = /etc/postfix/ssl/smtpcert.pem
smtp_tls_key_file = /etc/postfix/ssl/smtpkey.pem
smtp_tls_CAfile = /etc/postfix/ssl/cacert.pem
smtp_use_tls = yes
smtp_enforce_tls = no
smtp_tls_loglevel = 1

smtpd_tls_auth_only = yes
smtpd_sasl_auth_enable = yes
smtpd_recipient_restrictions = permit_mynetworks \
permit_sasl_authenticated reject_unauth_destination
smtpd_sasl_application_name = smtp
smtpd_sasl_security_options = noanonymous
broken_sasl_auth_clients = yes

The smtpd sasl security options setting denies all anonymous authen-
tication methods, while the smtpd recipient restrictions allows all lo-
cal users (i.e. logged on the SMTP server itself) and SASL-authenticated
ones to utilize our MTA. The broken sasl auth clients setting permits
inter-operability with some obsolete SMTP authentication implementations
as found in older Microsoft products. It is critical to set the value for the

248 9 Electronic Mail

smtpd sasl application name parameter, since that is a key component for
the cooperation between SASL and Postfix.

SASL Configuration

Besides the SASL activation on the SMTP server side, the SASL authentica-
tion packages sasl2-bin must be installed, providing the saslauthd authen-
tication daemon. Our objective is to utilize SASL to authenticate users as
pictured in Fig. 9.4: users send their authentication parameters—user name
and password—to the SMTP via a secure TSL channel, and SASL will locally
redirect the authentication process to PAM. The PAM stack will finally use
the pam krb5.so module which authenticates securely over Kerberos. After

Fig. 9.4. Clients use TLS to authenticate over SASL which redirects the process to
Kerberos via PAM

installation Debian makes the daemon available as a service at boot time,
but contrary to many servers, it does not get started. Next we install the
libsasl2-modules that enable us to use different authentication methods,
among them we have the previously introduced PAM mechanism. After that
we modify the default SASL settings in /etc/default/saslauthd as follows:

START=yes
MECHANISMS="pam"

This setting enables PAM as the method for authentication. This means
that our SMTP server locally authenticates with the help of SASL that it-
self uses PAM for greater flexibility. All communications are local and are
not transmitted over the network. The last step is to enable the PAM mod-
ule corresponding to our SASL configuration. In /etc/pam.d/ we have to
create a configuration file for the authentication service we are going to
request from SASL. In other words, when asking SASL to authenticate,
our SMTP server asks for a service called smtp as we specified in the
smtpd sasl application name in our Postfix configuration file. This service
name matches with the proper PAM configuration file with the name smtp
that enables our Kerberos authentication:

9.2 Mail Transport with Postfix 249

auth required pam_krb5.so
account required pam_permit.so
password required pam_permit.so
session required pam_permit.so

SASL uses its plaintext method to contact the underlying PAM: hence the
transmission of the password over the network had to be protected by TLS.
The Kerberos PAM module is provided by the libpam-krb5 package, as we
have seen earlier in the Kerberos chapter. At this point we can safely start
the SASL authentication daemon:

/etc/init.d/saslauthd start
Starting SASL Authentication Daemon: saslauthd.

We finally try to authenticate our testuser for the service smtp, with a
password which is in clear-text using testsaslauthd tool:

testsaslauthd -u testuser -p password -s smtp
0: OK "Success."

The success indicates that the combination of SASL and PAM is working
correctly.

Configuring Postfix

According to the Debian defaults some components of Postfix are configured
to run in a chroot environment: this means that they cannot access anything
outside the directory where the chroot call placed them. On the one hand
this can provide more security, on the other hand it can become troublesome if
interaction with special device files, sockets, or libraries is needed. To keep the
entire configuration simple we drop the chroot jail for the smtpd component
to permit easy interaction with the saslauthd daemon. To share the session
information between multiple smtpd processes we use the tlsmgr credential
cache session manager. These configuration parameters are present in the
Postfix configuration directory inside the master.cf file:

==
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (100)
==
smtp inet n - n - - smtpd
tlsmgr fifo - - n 300 1 tlsmgr

These two lines are a good example of an externally available service and
an internal service. The first one operates publicly over an TCP/IP port,
does not need root permissions, and does not operate in a chroot-ed envi-
ronment. The second one, operated over a named pipe, is private, does not
need root permissions either, and does also not operate under chroot. The
other fields define a possible wakeup time in seconds and a maximum number

250 9 Electronic Mail

of simultaneous processes. At the end comes the command for the daemon
followed by possible arguments. An example of such an argument could be -o
smtpd enforce tls=yes to enforce encrypted operation of smtpd, like SMTP
over SSL on port 465.

To enable Postfix to use the SASL mechanism, we have to tell SASL that
the service we want to use for Postfix, that is smtp, uses a plain authentication
over PAM. This is done in the /etc/postfix/sasl/ directory with a file
having the same service name, so smtpd.conf:

pwcheck_method: saslauthd
mech_list: plain

The service is then configured to use the saslauthd daemon for authen-
tication, passing a plain-text password as its parameter, as indicated by the
mech list value. The last step is to add the postfix user, used by our dae-
mon, to the sasl group in order to interact with SASL. The authentication
daemon uses a socket file located in /var/run/saslauthd/ called mux, with
the following permissions:

srwxrwxrwx 1 root root 0 2006-07-25 14:24 mux=
-rw------- 1 root root 0 2006-07-25 14:24 mux.accept
-rw------- 1 root root 5 2006-07-25 14:24 saslauthd.pid

Finally add the postfix user to the sasl group using the Debian adduser
tool.

9.2.6 Local Delivery with Procmail

Right now the local delivery of email for our users is done in a single mbox
file storing all users mailboxes in the default directory, /var/spool/mail/,
as we have previously seen. This specific directory resides on the local file
system of the host smtp.example.edu. We want to overcome this single point
of failure and use AFS for mail spooling, storing users mailboxes in the AFS
file space. As outlined at the beginning, the Maildir format is suited for
AFS, since OpenAFS does not support byte-range file locking yet. Postfix
supports delivery to Maildir folders too, but there exist subtle problems with
atomic operations in the file system like link(), unlink(), and rename().
In order to deliver emails correctly we need procmail as the MDA, since its
implementation is compatible with AFS operation, and also supports both
mailbox formats.

Procmail, currently developed by Stephen van den Berg and Philip Guen-
ther, is a very flexible MDA that could be programmed to do some mail
preprocessing as spam and antivirus checks. We choose to deliver user emails
using Procmail to a subdirectory under the user’s home in AFS file space, as
we will shortly see. So le us start by installing the procmail package:

9.2 Mail Transport with Postfix 251

apt-get install procmail

In the following we are going to enable Procmail for AFS operation: we
need to install then all the necessary Kerberos and AFS client packages, con-
figuring them as we already did for other services.

Procmail and AFS

The procmail tool is not AFS-aware, so we have to create again a keytab file
and get AFS credentials at the activation of the program. We start creating a
group for our mail servers with an ID that is not used, as we did for the web
servers, using the pts tool:

pts creategroup mailservers -id -401
group mailservers has id -401

The next step is to create an AFS user for our mail servers, and add it to
our mailservers group:

pts createuser procmail -id 504
User procmail has id 504

pts adduser procmail mailservers

pts membership mailservers
Members of mailservers (id: -401) are:

procmail

Last, we have to create a Kerberos principal with kadmin and export the
entry in a keytab file, in our case /etc/postfix/smtp.keytab:

kadmin: add_principal -randkey procmail
WARNING: no policy specified for procmail@EXAMPLE.EDU; defaulting to no policy
Principal "procmail@EXAMPLE.EDU" created.

kadmin: ktadd -k /etc/postfix/smtp.keytab procmail
Entry for principal procmail with kvno 3, encryption type \
Triple DES cbc mode with HMAC/sha1 added to keytab WRFILE:/etc/postfix/smtp.keytab.
Entry for principal procmail with kvno 3, encryption type \
DES cbc mode with CRC-32 added to keytab WRFILE:/etc/postfix/smtp.keytab.

Configuring Procmail

The global Procmail configuration file is /etc/procmailrc, and it is divided
into section called “recipes”: each stanza processes emails identified by a par-
ticular regular expression starting with the * character. First, we wish all
email for root to be delivered to the local spool in /var/spool/mail/; all
other users should receive their mail in the email subdirectory of their home
directory in Maildir format:

252 9 Electronic Mail

:0 Wic
* !^Delivered-To: root@
| /usr/bin/kinit -k -t /etc/postfix/procmail.keytab procmail

:0 Wic
* !^Delivered-To: root@
| /usr/bin/aklog

:0 Wic
* !^Delivered-To: root@
| /usr/bin/kdestroy

:0
* !^Delivered-To: root@
$HOME/email/

DROPPRIVS=yes

:0:
* ^Delivered-To: root@
/var/spool/mail/$USER

The first three recipes are related to authentication: since the first part of
this file, until the line that drops all root privileges with DROPPRIVS=yes, is
executed with the rights of root1 it is possible to read the Procmail keytab
file. After obtaining Kerberos credentials and transforming them into the AFS
token for the user procmail these credentials are immediately deleted with
kdestroy: the AFS token remains unaffected. The fourth recipe forces mail
delivery for all users except root into a named Maildir subdirectory recogniz-
able by the trailing slash “/”. Afterwards all privileges are dropped. Observe
that the authentication related commands can not be combined into a longer
shell line, since a sub-shell gets invoked with the rights of the receiver.

Note that these rules are triggered by regular expressions: the ^ character
refers to the beginning of a line and the ! character negates a regular expres-
sion. Since these two cases are complementary and all mail gets delivered, no
user-defined .procmailrc gets invoked. For this delivery to work we have to
create a subdirectory email in every home directory, or create a dedicated
volume mounting it as email. The ACL of this directory should be set to
write for the mailservers group, enabling Procmail to write in the location.

Finally, Postfix has to be configured in such a way to deliver mail with
the help of Procmail: although Postfix supports Maildir too, only the use of
Procmail is considered to be AFS-safe. The link between Procmail and Postfix
is a single line in the Postfix main.cf file:

mailbox_command = /usr/bin/procmail -a "$EXTENSION"

As usual, the Postfix service must be restarted to enable the change.
1 Debian installs procmail with the setuid bit set and owner root.

9.2 Mail Transport with Postfix 253

Testing Procmail

In order to test Procmail, in the local email spool directory /var/spool/mail/
we truncate all the mailboxes to start our tests:

ls -l
total 0
-rw-rw---- 1 admin mail 0 2006-07-25 15:21 admin
-rw------- 1 testuser mail 0 2006-07-25 14:39 testuser

When sending an email to testuser@example.edu, Postfix runs the
procmail tool that delivers all the incoming emails to the correct location
in the AFS file space, thus leaving the testuser mailbox under the directory
/var/spool/mail/ intact:

mail -s test4 testuser@example.edu
ddd
.
Cc:

ls -l
total 0
-rw-rw---- 1 admin mail 0 2006-07-25 15:21 admin
-rw------- 1 testuser mail 0 2006-07-25 15:33 testuser

mail -s test5 name.surname@example.edu
eee
.
Cc:

ls -l
total 0
-rw-rw---- 1 admin mail 0 2006-07-25 15:21 admin
-rw------- 1 testuser mail 0 2006-07-25 15:33 testuser

Nothing happened in the local spool since mail got delivered to the email
subdirectory in our user’s home in the Maildir format:

cd /afs/example.edu/users/testuser/email

ls
cur/ new/ tmp/

find .
.
./new
./new/1153834883.4435_0.smtp
./new/1153834903.4445_0.smtp
./cur
./tmp

Our Postfix configuration states that a mailbox has no maximum size, but
since our users have their own mailboxes on the AFS space, the usual AFS
quota mechanism applies. Please note that Postfix imposes a message size
limit of 10 MB by default, but these settings can be easily changed according
to your organizational needs.

254 9 Electronic Mail

9.3 Reading Mail with Courier

It remains to provide a way for the users to consult their email, and as we have
introduced earlier, this is done over two possible protocols: IMAP or POP.
The use of the Maildir format for the user’s mailbox restricts the choice
of possible daemons considerably, and needing AFS compatibility only the
Courier implementation remains as a free of charge product. Courier provides
an IMAP and POP server that enables our users to read their email with a
client of their choice. Our aim is to enable both protocols in a secure fashion,
and inhibit any unencrypted communication.

9.3.1 Installing Courier

Since we do not want unencrypted connections, we just install the SSL-enabled
packages courier-pop-ssl and courier-imap-ssl, which also install their
own authentication daemon. Debian’s installer script creates during the in-
stallation two keys and certificates for these servers, referenced in the server
configuration files: in the following we will replace those with our self gener-
ated files.

The above Debian package by default enables both secure and unencrypted
versions POP and IMAP daemons, so with a tool like rcconf remove the non
SSL-enabled daemons from the boot services list. Before continuing with the
configuration the daemons have to be stopped:

/etc/init.d/courier-imap-ssl stop
Stopping Courier IMAP-SSL server: imapd-ssl.

/etc/init.d/courier-pop-ssl stop
Stopping Courier POP3-SSL server: pop3d-ssl.

/etc/init.d/courier-authdaemon stop
Stopping Courier authdaemon: done.

Remember to stop the non-SSL daemons, too, since disabling a ser-
vice does not imply that it should be immediately stopped. The Courier-
provided authentication service courier-authdaemon plays a similar role as
the saslauthd for Postfix; the respective authentication daemons need to be
started before the application accessing it.

In the following we assume a dedicated host with the name, not an alias,
mail.example.edu for the installation of Courier. As we did for Postfix, we
create a certificate for our mail server. We need one certificate for POP, and
one for IMAP service, with their private keys in the same file2:

-rw------- 1 root root 8120 2006-07-25 16:28 imapd.pem
-rw------- 1 root root 8120 2006-07-25 16:28 pop3d.pem

2 If both POP and IMAP services run on the same host, the files can be identical.

9.3 Reading Mail with Courier 255

Note the permission bits that restrict all accesses to the root user, since
we are creating a single file for both public and private certificate keys:

cat /etc/courier/imapd.pem
-----BEGIN RSA PRIVATE KEY-----
MIIEpQIBAAKCAQEAxLEU4f/+l+Wglymvq7zsHUdm5P7YNpF/nB1P2jo1tXY3WV9l
...
eRLqiouErlXR7c8G/F5l+XJzSNE7dP/2fySWTmuvA6tx+ieVrlauSbA=
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
MIIF+TCCA+GgAwIBAgIBBDANBgkqhkiG9w0BAQUFADCBrjELMAkGA1UEBhMCWlox
...
LLc2zqwF2ZP7nBmG1zXDEIqUKRkBM+bfQapjALcdXP0Eu39itS/s6v4rV0Go
-----END CERTIFICATE-----

9.3.2 Configuring Courier

The following configuration process will mimic Apache’s settings by modify-
ing Courier’s startup scripts; it will also mirror the Postfix settings, enabling
a Kerberos authentication via PAM as in Fig. 9.4, replacing the SASL au-
thentication daemon with Courier’s courier-authdaemon.

Configuring the Authentication

Courier with its authentication daemon uses PAM to authenticate users read-
ing the service names imap and pop3. So in /etc/pam.d/ we have to create
two files with names matching these services, configuring them to authenticate
against Kerberos:

cat /etc/pam.d/imap
auth required pam_krb5.so
account required pam_permit.so
password required pam_permit.so
session required pam_permit.so

cat /etc/pam.d/pop3
auth required pam_krb5.so
account required pam_permit.so
password required pam_permit.so
session required pam_permit.so

The configuration of Courier’s authentication daemon is in /etc/courier/,
using a file called authdaemonrc. Debian default values are fine for us, since
they point to a PAM-based authentication mechanism, as we can see from the
authmodulelist field:

authmodulelist="authpam"
authmodulelistorig="authcustom authcram authuserdb authldap authpgsql authmysql authpam"
daemons=5
version=""
authdaemonvar=/var/run/courier/authdaemon

256 9 Electronic Mail

Courier and AFS

Courier is not yet AFS-ready, so we have to create the correct group and
users as we did before for Apache and Postfix. We choose to put Courier in
the already created mailservers group, since Courier needs write-enabled
access to users mailboxes, so all we need is to create the AFS pts entry:

pts createuser courier -id 505
User courier has id 505

pts adduser courier mailservers

pts membership mailservers
Members of mailservers (id: -401) are:

procmail
courier

Again we have to create the Kerberos principal matching the AFS entry
and export its credentials to a keytab file:

kadmin: add_principal -randkey courier
WARNING: no policy specified for courier@EXAMPLE.EDU; defaulting to no policy
Principal "courier@EXAMPLE.EDU" created.

kadmin: ktadd -k /etc/courier/courier.keytab courier
Entry for principal courier with kvno 3, encryption type \
Triple DES cbc mode with HMAC/sha1 added to keytab WRFILE:/etc/courier/courier.keytab.
Entry for principal courier with kvno 3, encryption type \
DES cbc mode with CRC-32 added to keytab WRFILE:/etc/courier/courier.keytab.

Exporting the principal and creating a keytab file readable only by root
should work as before:

klist -ke /etc/courier/courier.keytab
Keytab name: FILE:/etc/courier/courier.keytab
KVNO Principal
---- --

3 courier@EXAMPLE.EDU (Triple DES cbc mode with HMAC/sha1)
3 courier@EXAMPLE.EDU (DES cbc mode with CRC-32)

ls -l /etc/courier/courier.keytab
-rw------- 1 root root 116 2006-07-25 16:47 /etc/courier/courier.keytab

In /etc/default we have a file called courier which is used by the startup
script to set some default environment variables. As we did for Apache, we
create first a Kerberos ticket and then gain the AFS token via aklog:

MAILDIR="email"

PRE_COMMAND1="/usr/bin/kinit -l 1day -k -t /etc/courier/courier.keytab courier"
PRE_COMMAND2="/usr/bin/aklog -setpag"
POST_COMMAND="/usr/bin/kdestroy"

The first line tells which directory should Courier look for in each user’s
home to read the email in Maildir format. Remember that this daemon like
Apache has to be restarted every day, which can easily be done with a simple
cron job.

9.3 Reading Mail with Courier 257

IMAP Configuration

The IMAP server configuration is located in Courier’s configuration directory
/etc/courier/ and is named imapd-ssl. The important change which should
be made to this file is the last line, MAILDIRPATH, indicating which directory
holds the mailbox directory:

SSLPORT=993
SSLADDRESS=0
SSLPIDFILE=/var/run/courier/imapd-ssl.pid
IMAPDSSLSTART=YES
IMAPDSTARTTLS=YES
IMAP_TLS_REQUIRED=1
COURIERTLS=/usr/bin/couriertls
TLS_PROTOCOL=SSL3
TLS_STARTTLS_PROTOCOL=TLS1
TLS_CERTFILE=/etc/courier/imapd.pem
TLS_VERIFYPEER=NONE
TLS_CACHEFILE=/var/lib/courier/couriersslcache
TLS_CACHESIZE=524288

MAILDIRPATH=email

The SSL-enabled service will automatically start a TLS communication as
stated by the IMAPDSTARTTLS, supporting the encrypted channel on port 993;
the TLS CERTFILE points to the certificate file that contains both private and
public key for our server, used to establish the authenticity of our host. Note
that we force users to use secure communications with the IMAP TLS REQUIRED
value set to 1: non encrypted connections will then be discarded.

Some values such as the Trash name are set in the non-encrypted configura-
tion file imapd, as we can see from the init script itself. This file contains some
other useful configuration variables such as the sendmail command Courier
should use: Postfix is designed as a complete Sendmail replacement, and no
change is needed. Although the non-encrypted version is not implemented in
our system, we show its configuration file for completeness:

ADDRESS=0
PORT=143
MAXDAEMONS=40
MAXPERIP=20
PIDFILE=/var/run/courier/imapd.pid
TCPDOPTS="-nodnslookup -noidentlookup"
AUTHMODULES="authdaemon"
AUTHMODULES_ORIG="authdaemon"
DEBUG_LOGIN=0
IMAP_CAPABILITY="IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJECT \
THREAD=REFERENCES SORT QUOTA IDLE"
IMAP_KEYWORDS=1
IMAP_CAPABILITY_ORIG="IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJECT \
THREAD=REFERENCES SORT QUOTA AUTH=CRAM-MD5 AUTH=CRAM-SHA1 IDLE"
IMAP_IDLE_TIMEOUT=60
IMAP_CAPABILITY_TLS="$IMAP_CAPABILITY AUTH=PLAIN"
IMAP_CAPABILITY_TLS_ORIG="$IMAP_CAPABILITY_ORIG AUTH=PLAIN"
IMAP_DISABLETHREADSORT=0
IMAP_CHECK_ALL_FOLDERS=0
IMAP_OBSOLETE_CLIENT=0
IMAP_ULIMITD=65536

258 9 Electronic Mail

IMAP_USELOCKS=1
IMAP_SHAREDINDEXFILE=/etc/courier/shared/index
IMAP_ENHANCEDIDLE=0
IMAP_TRASHFOLDERNAME=Trash
IMAP_EMPTYTRASH=Trash:7
IMAP_MOVE_EXPUNGE_TO_TRASH=0
SENDMAIL=/usr/sbin/sendmail
HEADERFROM=X-IMAP-Sender
IMAPDSTART=YES

MAILDIRPATH=email

POP Configuration

The same approach is used to configure the POP server: the principal modifi-
cation is the mailbox name, which matches the default one, and as for IMAP,
some default values are set in the unencrypted version of our configuration
file. For additional security the POP3 TLS REQUIRED option guarantee that a
potential server running on the conventional port requires an encrypted com-
munication:

cat /etc/courier/pop3d-ssl
SSLPORT=995
SSLADDRESS=0
SSLPIDFILE=/var/run/courier/pop3d-ssl.pid
POP3DSSLSTART=YES
POP3_STARTTLS=YES
POP3_TLS_REQUIRED=1
COURIERTLS=/usr/bin/couriertls
TLS_PROTOCOL=SSL3
TLS_STARTTLS_PROTOCOL=TLS1
TLS_CERTFILE=/etc/courier/pop3d.pem
TLS_VERIFYPEER=NONE
TLS_CACHEFILE=/var/lib/courier/couriersslcache
TLS_CACHESIZE=524288

MAILDIRPATH=email

cat /etc/courier/pop3d
PIDFILE=/var/run/courier/pop3d.pid
MAXDAEMONS=40
MAXPERIP=4
AUTHMODULES="authdaemon"
AUTHMODULES_ORIG="authdaemon"
DEBUG_LOGIN=0
POP3AUTH=""
POP3AUTH_ORIG="LOGIN CRAM-MD5 CRAM-SHA1"
POP3AUTH_TLS=""
POP3AUTH_TLS_ORIG="LOGIN PLAIN"
PORT=110
ADDRESS=0
TCPDOPTS="-nodnslookup -noidentlookup"
POP3DSTART=YES

MAILDIRPATH=email

Modifying the Startup Script

As the last step of our configuration we have to modify courier-imap-ssl
and courier-pop3-ssl, startup scripts located in /etc/init.d/ to gain the

9.3 Reading Mail with Courier 259

correct AFS token from the Kerberos keytab. The modifications are similar
to what we did for Apache, thus the start) stanza looks like the following
for our IMAP script:

start)
echo -n "Starting $PROGRAM:"
AUTHMODULELIST=""
for f in $AUTHMODULES
do

if [-e $libexecdir/authlib/$f]; then
AUTHMODULELIST="$AUTHMODULELIST $libexecdir/authlib/$f"
fi

done
AUTHMODULELIST="‘echo $AUTHMODULELIST‘"

ulimit -d $IMAP_ULIMITD
/usr/bin/env - /bin/sh -c " . ${sysconfdir}/imapd ; \

. ${sysconfdir}/imapd-ssl ; \
IMAP_TLS=1 ; export IMAP_TLS ; \
$PRE_COMMAND1 ; $PRE_COMMAND2; \
‘sed -n ’/^#/d;/=/p’ <${sysconfdir}/imapd | \

sed ’s/=.*//;s/^/export /;s/$/;/’‘
‘sed -n ’/^#/d;/=/p’ <${sysconfdir}/imapd-ssl | \

sed ’s/=.*//;s/^/export /;s/$/;/’‘
$TCPD -address=$SSLADDRESS \

-stderrlogger=${sbindir}/courierlogger \
-stderrloggername=imapd-ssl \
-maxprocs=$MAXDAEMONS -maxperip=$MAXPERIP \
-pid=$SSLPIDFILE $TCPDOPTS \
$SSLPORT $COURIERTLS -server -tcpd \
${libexecdir}/courier/imaplogin $AUTHMODULELIST \

${bindir}/imapd $MAILDIR"
echo " $DAEMON."
$POST_COMMAND

;;

Note the calls to PRE COMMAND1, PRE COMMAND2 and POST COMMAND; the
corresponding POP server startup script will look similar to the previous one.
Now we are ready to start all servers to make these settings take effect:

/etc/init.d/courier-authdaemon start
Starting Courier authdaemon: done.

/etc/init.d/courier-imap-ssl start
Starting Courier IMAP-SSL server: imapd-ssl.

/etc/init.d/courier-pop-ssl start
Starting Courier POP3-SSL server: pop3d-ssl.

Remember that both IMAP and POP daemons have to be restarted every
day: the frequency depends on the life time of the corresponding AFS token.
However, there should be no need to restart the authentication daemon.

9.3.3 Testing Courier

As a first test, we check all the available open ports with nmap, confirming
that the server has no insecure open ports:

260 9 Electronic Mail

nmap localhost

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-07-25 17:38 CEST
Interesting ports on localhost.localdomain (127.0.0.1):
(The 1659 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
993/tcp open imaps
995/tcp open pop3s

Nmap finished: 1 IP address (1 host up) scanned in 0.507 seconds

Using a modern mail client, such as the Apple Mail pictured in Figs. 9.5
and 9.6, you should be able to access the testuser mailbox securely.

Fig. 9.5. Apple Mail settings for TLS-enabled IMAP access

9.4 Redundant Mail System

One way to achieve redundancy for the SMTP server is to have several MX
records in the DNS with the same preference number: this would try to balance
the load over all the MTA servers. Another way is to have several A records
in the DNS with the same name and different IPs. Again, the DNS would try
to balance loads on every IP address.

9.4 Redundant Mail System 261

Fig. 9.6. The results reading an email via TSL connection

In the first case we need two different names, their reverse DNS mappings,
and obviously different certificates. In the second case the host names are
the same, the reverse DNS mapping giving the same name for different IPs,
but certificates remain the same—host names do not change. Additionally the
second way gives us more control over the load balancing since the DNS server
takes care of that and not every single client.

Keeping it in symmetry with the solution for the web server we prefer the
second method: in that case the entire client configuration is identical on two
or more hosts except their IP address. The rest of the work is handled by the
redundancy of the core services Kerberos, LDAP, and AFS file system.

Practice

Exercise 33. Compare other possible MTAs with respect to their suitability
in the context of Kerberos, LDAP, and AFS. The Carnegie Mellon University,
the birth place of AFS, decided in the meantime not to use AFS file space in
its Cyrus mailing system.

Exercise 34. Confront the advantages and disadvantages of a centralized
anti-spam and antivirus system like SpamAssasin combined with AMaViS

262 9 Electronic Mail

plus ClamAV versus a client-side solution. Modern clients support spam de-
tection and there are many antivirus solutions.

Exercise 35. Decide a suitable mail spool location inside AFS space for your
needs, and if users are permitted simple file access. Do you want to have
dedicated volumes per user with appropriate quotas? Create two separated
PTS groups, one for mail delivery plus one for consultation, and fine tune
their permissions to the spool area.

Exercise 36. Test what happens if the mail spool area in AFS space for
some user exceeds its quota. Incoming mail should remain in the local
/var/spool/mail/ on the receiving host as a single file in mbox format. If
the mail spool for this user is no longer full then the formail command can
be used to iterate over all blocked messages to deliver them.

10

Newsgroups

The man who reads nothing at all is better educated than
the man who reads nothing but newspapers.
Thomas Jefferson

10.1 The Usenet

Before the web became publicly available, users all over the world used a
community-based system called User Network, or simply Usenet1, as a way
of sharing files and messages. It was first originally conceived at the Duke
University and the University of North Carolina-Chapel Hill by Tom Truscott
and Jim Ellis in 1979, using the UUCP protocol to offer an email-like system
where users could publicly “post” articles using a news client.

Usenet is organized in newsgroups with a name describing its “on-topic”
articles, and threaded in a tree-based hierarchy. Originally there were seven
major topics named the “Big 7”, described in Table 10.1, and all the news-
groups were sub-topics of these ones, with the dot “.” separating each sub-
ject name (e.g. comp.lang.c relates with computers “comp”, then languages
“lang”, and finally with the C programming language, “c”).

Table 10.1. The “Big 7” newsgroup hierarchies

Hierarchy Example Topics

comp comp.answers Discussion groups about computers
misc misc.fitness.aerobics General discussions
news news.admin.announce Usenet-related topics
rec rec.windsurfing Recreational discussion boards
sci sci.engr.biomed Debates on science
soc soc.history.medieval Society-related arguments
talk talk.environment Arguable topics

Each article was posted to a particular newsgroup where it could be on-
topic and thus made publicly available. People could respond to a “post” on
1 The name was intended to attract the USENIX community the Advanced Com-

puting Technical Association focused on the UNIX operating system.

264 10 Newsgroups

a newsgroup, organizing the discussion in a simple tree-based hierarchy of ar-
ticles called “threads”, the same way email threads are commonly displayed
on modern clients. Prior to the “Great Renaming” of the mid-80s, where
the “Big 7” were created, Usenet had only the net hierarchy, with vivid de-
bate on whether highly controversial topics should be allowed. The conflict
resulted in the creation of the alt chain, the “alternative” newsgroup hierar-
chy, where all discussions were permitted: such a freedom lead to a complete
alt-based newsgroup hierarchy that mirrored the others in a much more an-
archic way (e.g. alt.comp.lang.php and the comp.lang.php newsgroups).
The “Big 7” became the “Big 8” with the growth of the new humanities tree
(e.g. humanities.classics), and all the major hierarchies were collectively
known as the “Big 8 and alt”. Generally, newsgroup posts are supposed to
be written in English, thus language-based hierarchies were created such as
it.comp.lang.c and de.comp.lang.c. Nowadays newsgroups are also han-
dled by companies and institutions, for instance yale.general dealing with
the Yale University , and microsoft.public.fortran held by the Microsoft
Corporation; an historical archive of Usenet is currently a service free of charge
offered by Google Inc.

The original UUCP protocol, employed in the early implementation, was
replaced in the late 80s by the Network News Transfer Protocol, or NNTP,
that mimics the SMTP, with later specifications allowing secure and encrypted
solutions. This chapter shows the setup of a Usenet bulletin board system
open only to users of our organization, providing also a secure channel for au-
thentication employing the TLS/SSL protocol for NNTP, sometimes referred
to as NNTPS. Our news server will have the real name nntp.example.edu,
meaning no CNAME alias.

10.2 INN

InterNetNews INN was the first available news server, programmed by Rich
Salz and released in 1991. It became renowned at the USENIX conference
of 1992, being the first available news server supporting the NNTP protocol.
Debian provides the older version, along with a more recent one, and clearly
our decision falls on the newer inn2-ssl package, which also provides SSL
support. The INN software needs some MTA which can be exim in a minimal
Debian default installation: this is needed for moderated newsgroups2 to con-
tact the moderator. Since we already got familiar with Postfix, we stop exim4
and replace it with a minimal Postfix configuration.

During the Postfix installation Debian removes the exim mail agent, which
is normal behavior when there are two packages able to perform the same task
as daemon and thus considered potentially conflicting software. Here we are
2 Some newsgroups may enforce an etiquette about topics and expressions: posts

may be analyzed and edited by a human or an automatic moderator program.

10.2 INN 265

going to configure a “satellite system” that forwards mails to our relay host
smtp.example.edu. The configuration file for the Postfix daemon, located at
/etc/postfix/main.cf, should be like the following:

inet_interfaces = loopback-only
relayhost = smtp.example.edu

biff = no
append_dot_mydomain = no

myhostname = nntp.example.edu
mydestination = nntp.example.edu, localhost
mynetworks = 127.0.0.0/8

mailbox_size_limit = 0
alias_maps = hash:/etc/aliases
alias_database = hash:/etc/aliases

The first two lines differ from previous Postfix configurations in that they
restrict SMTP to just listen to its local lo interface and forward all mail
to smtp.example.edu: this SMTP server is not visible from outside the nntp
host. We have to add the IP address of nntp.example.edu to the mynetworks
option on the principal mail relay host, such that mail relay is permitted with-
out authentication from the nntp machine. For the news host no myorigin
option is needed, since it defaults to the myhostname setting. All administra-
tive emails are, by default, redirected to root as we can see from the settings
in /etc/aliases:

cat /etc/aliases
mailer-daemon: postmaster
postmaster: root
nobody: root
hostmaster: root
usenet: root
news: root
webmaster: root
www: root
ftp: root
abuse: root
noc: root
security: root
root: admin

10.2.1 Configuring INN

After installation stop the daemon inn2 in order to modify the INN configura-
tion files located in /etc/news/. We start to modify the inn.conf file, setting
our organization name in the organization fields, and telling INN to track
all the senders of posts in the headers which is set by the nnrpdauthsender
line, here an excerpt:

mta: "/usr/sbin/sendmail -oi -oem %s"
organization: "Example Organization Newsgroups"
nnrpdauthsender: true

266 10 Newsgroups

All other Debian default settings should be fine. Postfix installed a re-
placement for /usr/sbin/sendmail, therefore the above mta configuration is
correct. All our newsgroups need a root, a common prefix, such as the famous
public comp.* newsgroups have comp as root. Following the ongoing habit of
naming the newsgroup root with the company or the organization name, we
decide for the prefix example. This can be anything suitable for your organi-
zation, but should not be in conflict with any global newsgroup if you wish
to propagate news to the global Usenet infrastructure. This prefix will later
be necessary for restricting accesses to our service. The next configuration
regards the expiration of articles, in other words the lifetime of posts on our
server. Our choice is to keep posts for one year, except for all testing news-
groups ending in .test which have an expiration period of one day. The file
that handles these settings is expire.ctl:

/remember/:10
*:A:1:10:never
example.*:A:365:365:365
*.test:A:1:1:1

The remember tag defines how long the service will keep the history of
expired articles. The specification for article lifetime is constituted of 5 fields
separated by colons. The first field indicates the newsgroup string pattern,
followed by a flag for further limitation to the applied rule: A for all groups, M
for moderated ones, U to apply the rule only to unmoderated newsgroups, and
X to immediately remove articles posted on all newsgroups it was sent to. Then
follows the description of expiration dates in the format keep:default:purge,
where the default value will be used in most occasions, expressing a lifetime
in days. The other values, keep and purge will be used only in case an article
requests a specific expiration period, restricted by the minimum and maximum
lifetime expressed by keep and purge, respectively.

As next step for conducting some tests, we enable all the local networks to
read and post to our news server: note that this procedure is intended to show
and test INN, our final configuration will permit only authenticated users to
submit articles. The file that determines the news reading and writing access
is called readers.conf:

auth "localhost" {
hosts: "localhost, 127.0.0.1, stdin"
default: "<localhost>"

}
auth "network" {

hosts: "192.168.127.0/24"
default: "<network>"

}
access "localhost" {

users: "<localhost>"
newsgroups: "*"
access: RPA

}
access "network" {

users: "<network>"

10.2 INN 267

newsgroups: "example.*"
access: RP

}

First a client host gets classified with respect to the authentication groups
auth: both groups define a default value between angular parentheses, indi-
cating the relative access rule. Here localhost can read R, post P, and approve
A articles for moderated newsgroups. Users from our network can read and
post articles for groups under the example hierarchy, and clients outside the
network cannot contact this news server, because they do not occur in the
above settings. Another configuration file is news2mail.conf that forwards
posts to a possible mailing list. Just comment the mail forwarding line, which
is there just for illustration, as follows:

news-software@localhost.our.domain.com news-software@real-host.somewhere.com

Creating Newsgroups

Right now there are no newsgroups except some default administrative ones.
These predefined groups are needed by INN for its internal operations, so in
order to proceed in creating our groups, we have to start the INN daemon
first:

/etc/init.d/inn2 start
Starting news server: done.

We want to create our first newsgroup, called example.test: note that any
organization, and almost all news hierarchy, provides a newsgroup dedicated
to tests, such that users can check their news clients. The tool that controls
INN is ctlinnd, and the subcommand newgroup creates a new group:

ctlinnd newgroup example.test
Ok

The counterpart of this subcommand is rmgroup which deletes a news-
group. Another important subcommand could be cancel to remove a specific
message from a newsgroup, using its unique identifier called Message-ID. This
might be necessary to delete undesired contents before its expiration date.

10.2.2 Testing INN

To test our current INN daemon we make use of the Mozilla Thunderbird
program, which is also an NNTP client. After configuring the software to
utilize our nntp.example.edu host, we post an article and read the results
as in Fig. 10.1. On either client or server side we can see the full header of a
posted article with some useful information:

268 10 Newsgroups

Fig. 10.1. Posting and reading articles to the example.test newsgroup

Path: unknown!not-for-mail
From: Test User <testuser@example.edu>
Newsgroups: example.test
Subject: Our posting test
Date: Tue, 01 Aug 2006 12:36:26 +0200
Organization: Example Organization Newsgroups
Lines: 1
Message-ID: <eanas1$467$1@nntp.example.edu>
NNTP-Posting-Host: 192.168.127.224
Mime-Version: 1.0
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit
X-Trace: nntp.example.edu 1154428609 4295 192.168.127.224 (1 Aug 2006 10:36:49 GMT)
X-Complaints-To: usenet@nntp.example.edu
NNTP-Posting-Date: Tue, 1 Aug 2006 10:36:49 +0000 (UTC)
User-Agent: Thunderbird 1.5.0.5 (Macintosh/20060719)
Xref: unknown example.test:1

This should be a successful test.

The line Message-ID3 is unique on the NNTP server and can serve to
delete unwanted messages with the command ctlinnd cancel followed by
the Message-ID.
3 The real Message-ID includes the angular parentheses.

10.3 Posting with Authentication 269

10.3 Posting with Authentication

As the next step we want to restrict postings only to authenticated users
enforcing the use of an encrypted communication channel. As we previewed,
NNTP supports the TLS and SSL protocols, so before proceeding we need to
create a key and certificate for our NNTP host:

openssl genrsa -out privatekeys/nntp.pem 2048

openssl req -new -days 1000 -key privatekeys/nntp.pem -out nntp.req

openssl ca -days 1000 -in nntp.req -out certificates/nntp.pem

These files must be copied securely on the NNTP machine, in a private
subdirectory ssl/ of /etc/news/ that contains the private key and the public
certificates of the server and our authority:

ls -ld ssl
drwxr-x--- 2 root news 4096 2006-08-01 14:23 ssl/

ls -l ssl/
total 16
-r--r--r-- 1 news news 2480 2006-08-01 14:22 cacert.pem
-r--r--r-- 1 news news 6446 2006-08-01 14:22 nntpcert.pem
-r-------- 1 news news 1675 2006-08-01 14:23 nntpkey.pem

INN runs under user and group news. For accessing the file containing
the private key this user needs access to it. This is reflected by the actual
permission bits.

10.3.1 Authentication with FreeRADIUS

A commonly available authentication mechanism is the Remote Authentica-
tion Dial In User Service, or simply RADIUS, originally designed and devel-
oped by Livingston Enterprises as an AAA protocol: “authentication, autho-
rization, accounting”. Its main usage is for dial-up connections and mobile
solutions such as wireless LANs, but because of its flexibility it can be em-
ployed for different usages. There are several RADIUS implementations on
the market, but we focus on the free of charge server called FreeRADIUS.
The procedure, we are going to explain, will once again make use of an au-
thentication server, bounded to the local host, which then diverts the process
to the Kerberos infrastructure via PAM as we have already seen for the email
system. So let us proceed installing the server provided by the freeradius
package:

apt-get install freeradius

We configure the RADIUS daemon on the same host as INN, binding it
just to the localhost, such that it remains invisible to external users and

270 10 Newsgroups

less prone to possible attacks. Internally, RADIUS uses a symmetric crypto-
graphy, with a shared secret key for client and server which is used to encode
the communication between them: in this case, it is used to encrypt the com-
munication between RADIUS and INN, which reside on the same host.

The configuration file for the FreeRADIUS daemon is located in the
/etc/freeradius/ directory inside radiusd.conf. One option to modify is
authenticate, specifying PAM as a valid authentication module and inhibit-
ing the classic UNIX /etc/passwd file. Additionally bind address is set in
such a way that only the local host can contact the server:

bind_address = 127.0.0.1
...
authenticate {
...

pam
unix
}

The next FreeRADIUS configuration file to edit is users, such that the
default authentication mechanism is set to PAM:

DEFAULT Auth-Type = Pam

As we have already seen, FreeRADIUS uses a secret password, stored in
the clients.conf file, in order to authenticate its clients; the value is used
to encrypt the traffic between the daemon and the network client:

client 127.0.0.1 {
secret = testing123
shortname = localhost
nastype = other

}

The daemon contacts PAM with a service name called radiusd, so as
we did for the email system, we have to create a file with this name in
/etc/pam.d/. As the previous authentication daemons it redirects to Ker-
beros with the pam krb5.so:

auth required pam_krb5.so
account required pam_permit.so
password required pam_permit.so
session required pam_permit.so

It is then necessary to install the Kerberos PAM module and configure our
host to access the EXAMPLE.EDU realm. At this point the daemon is ready to
be started, and you should verify immediately that only ports on localhost
are opened:

/etc/init.d/freeradius start
Starting FreeRADIUS daemon: Tue Aug 1 14:54:15 2006 : Info: \
Starting - reading configuration files ...
freeradius.

10.3 Posting with Authentication 271

The RADIUS server can be tested with the radtest tool, providing a
username, a password, the host, the port number, and shared secret, exactly
in this order; in our case the port number is meaningless, so a any value, for
example 0, is valid:

radtest testuser password 127.0.0.1 0 testing123
Sending Access-Request of id 11 to 127.0.0.1:1812

User-Name = "testuser"
User-Password = "password"
NAS-IP-Address = nntp
NAS-Port = 0

rad_recv: Access-Accept packet from host 127.0.0.1:1812, id=11, length=20

The Access-Accept packets represents a successful authentication at-
tempt on the RADIUS port 1812. If a wrong password is used, the authen-
tication will be correctly rejected encoded by a Access-Reject packet after
some delay:

radtest testuser WrongPassword 127.0.0.1 0 testing123
Sending Access-Request of id 15 to 127.0.0.1:1812

User-Name = "testuser"
User-Password = "WrongPassword"
NAS-IP-Address = nntp
NAS-Port = 0

Re-sending Access-Request of id 15 to 127.0.0.1:1812
User-Name = "testuser"
User-Password = "\002\021\336\\:8\354\025\250i\364\210\266\t\311A"
NAS-IP-Address = nntp
NAS-Port = 0

rad_recv: Access-Reject packet from host 127.0.0.1:1812, id=15, length=20

10.3.2 Secure INN

To configure an SSL-enabled INN server, we start restricting the daemon
running on the unencrypted port to the outer world in the readers.conf
INN configuration file: any configuration except for localhost is removed.
The default behavior is then to deny any access:

auth "localhost" {
hosts: "localhost, 127.0.0.1, stdin"
default: "<localhost>"

}
access "localhost" {

users: "<localhost>"
newsgroups: "*"
access: RPA

}

Remember that these settings for localhost are necessary for the oper-
ation of INN: at least the daemon itself has to reach its internal groups for
server administration. Next we prepare another configuration file for readers
connecting over SSL that we choose to call readers.sasl. Here we enforce au-
thentication with the help of the predefined method radius. Setting a pattern

272 10 Newsgroups

for the newsgroups restricts reading and posting just to all groups starting
with example, and it avoids to expose the internal administrative groups of
the server:

auth "world" {
hosts: "*"
auth: "radius"

}
access "world" {

users: "*"
newsgroups: "example.*"
access: RP

}

Since there is no default stanza, non authenticated users are not permit-
ted to access the service. Next we have to adapt our certificate configuration
file for INN, that is /etc/news/sasl.conf, pointing to the right location
where the private key and the public certificates are stored:

tls_cert_file: /etc/news/ssl/nntpcert.pem
tls_key_file: /etc/news/ssl/nntpkey.pem
tls_ca_path: /etc/news/ssl
tls_ca_file: /etc/news/ssl/cacert.pem

Now INN needs to be started on the SSL-enabled port, too: as seen for the
Kerberos replication, we let the xinetd daemon take care of this part. Hence
we have to install the corresponding suer-server package. The NNTPS service
has to be configured in the /etc/xinetd.d/ configuration directory, with a
file called nntps according to the naming in /etc/services:

service nntps
{

disable = no
socket_type = stream
protocol = tcp
user = news
wait = no
server = /usr/lib/news/bin/nnrpd-ssl
server_args = -S -f -c /etc/news/readers.sasl

}

The program specified in server is part of the inn2-ssl package, and
activates the SSL enabled NNTP daemon for requests with the readers.sasl
configuration, given after the -c option, for client access. The option -S forces
INN to start a SSL negotiation for client connections.

The last step is to link INN and FreeRADIUS. This is done by modifying
the radius.conf file in /etc/news/, where we have to provide the RADIUS
host and port, together with the shared secret:

server radiusserver {
radhost: 127.0.0.1
radport: 1812
lochost: 127.0.0.1

10.3 Posting with Authentication 273

secret: testing123
ignore-source: false
}

This configuration reflects that INN and RADIUS reside on the same host
127.0.0.1, and the setting of the ignore-source option checks that the
answer comes indeed from the RADIUS authenticator on localhost. To ac-
tivate this new configuration stop the INN server, and next start both INN
and xinetd. Since this xinetd setting requires INN to work, we have to start
if after the news server:

/etc/init.d/inn2 start
Starting news server: done.

/etc/init.d/xinetd start
Starting internet superserver: xinetd.

As we can see, from the outside we can reach both NNTP ports, encrypted
and unencrypted, nevertheless the configuration will drop connections from
the outside to the unencrypted port. On the encrypted port, the authentica-
tion is enforced:

nmap nntp.example.edu

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-08-01 15:23 CEST
Interesting ports on nntp.example.edu (192.168.127.237):
(The 1660 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
119/tcp open nntp
563/tcp open snews

Nmap finished: 1 IP address (1 host up) scanned in 0.507 seconds

Another time Thunderbird is used for testing, and its setup has to require
the use of SSL and user authentication since otherwise the news server rejects
the communication. The application might complain about an unknown cer-
tificate authority, but afterwards the username and password dialog starts.
Successful reading after a posting is shown in Fig.10.2 and the name of the
authenticated user appears in the Sender: field.

Practice

Exercise 37. Decide if INN is the right choice for your organizational needs:
there might exist other simpler web based newsgroup servers. Also the Really
Simple Syndication RSS standard could be of interest in this context.

Exercise 38. Design a newsgroup hierarchy suitable for your organization,
deciding also suitable expiration dates. What is a sensible setting for unau-
thenticated access?

274 10 Newsgroups

Fig. 10.2. Posting and reading articles via NNTPS

Exercise 39. The demonstrated RADIUS server directed all authentication
requests towards Kerberos with the help of PAM. Explore other possibilities
to use a RADIUS server.

Exercise 40. Try some backup procedure for net news in AFS space assuming
that the tradspool and the tradindexed methods are used. The FAQs about
INN suggest to make a backup of all the files in $patharticles, $pathdb, and
$pathetc. These can be restored on an accordingly compiled and configured
INN server in combination with the commands makehistory and makedbz for
reproducing the previous state.

11

PostgreSQL Database

As a general rule the most successful man in life is the
man who has the best information.
Benjamin Disraeli

11.1 Database Software

Commonly a database is a software that handles information, organizing it
under a suitable form so that data retrieval can be fast, as well as permit-
ting complex queries on its contents. The Database Management Systems,
or DBMS, became renowned applications in the 60s, and were formally de-
fined in their relational form by Edgar Frank Codd at IBM in 1970, but the
first commercial products were not available until the 80s, with notable prod-
ucts as dBASE, Oracle, and DB2. During the 90s there was an explosion of
object-oriented database management systems, which paved the way to the
XML-based DBMS of later years.

The topic of DBMS can easily fill entire book shelfs, and cannot be ex-
plained in details here, being far beyond the scope of this book. Nevertheless,
so far we have seen the MySQL database, used in the context of dynamic web
applications. For this purpose it is sufficient that it is just available for the
web server, while in this chapter we want to provide our users with a personal
database. Note that if you need a mission-critical DBMS with Kerberos ca-
pability, and high-bandwidth usage, it is strongly advisable to look for other
solutions, for example the Oracle RDBMS (i.e. Relational DBMS) which is a
commercially available Kerberized database software.

The PostgreSQL DBMS

PostgreSQL is an object-rational DBMS, available free of charge from the
PostgreSQL Global Development Group, which is one example of a Kerberos-
enabled database software. It was developed in 1986 by Prof. Michael Stone-
brake to replace its ancestor Ingres: in fact the name was initially “Postgres”,
later changing the name to PostgreSQL and starting as an open source project
from the initial academic concept.

It uses the Structured Query Language SQL for data manipulation respect-
ing the ANSI standards SQL 92/99, and for the support of transactions it has

276 11 PostgreSQL Database

been a forerunner in the world of open source databases. As we mentioned,
PostgreSQL is also capable of using Kerberos credentials to allow users to
manipulate their records.

The database server host will be called psql.example.edu and should not
be an alias. Since we will run a Kerberized service, we need the machine to
operate with our infrastructure as there are NTP, DNS, and Kerberos. As for
the news server, we do not need any LDAP or AFS client configuration: the
AFS file system is not an option for the location of the data base files, since
DBMSs need direct file access, sometimes even at the level of a raw device.

11.2 PosgreSQL Installation

We start with the installation of the postgresql package, setting up both
server and client programs. An advantage of this Debian-provided package
is that it is compiled in such a way to be ready for Kerberos and SSL right
out of the box. Debian asks for the preferred location for the database files.
We can leave the default location, remembering to make sure that the chosen
directory is not in the AFS file space. After installation we stop the service
immediately: unlike MySQL which is not available over the public network,
the PostgreSQL service needs to be reachable from the outside.

11.2.1 Configuring PostgreSQL

The configuration files for this DBMS are located in the /etc/postgresql/
directory. We start modifying the main configuration file postgresql.conf.
For security reasons we want to log errors verbosely, and make sure to track
also the connecting hosts; here is an excerpt of postgresql.conf:

#ssl = false
password_encryption = true
#krb_server_keyfile = ’’
syslog = 0
log_error_verbosity = verbose
silent_mode = false
log_connections = true
log_duration = true
log_timestamp = true
log_hostname = true
datestyle = ’ISO,European’

Note the commented line for SSL and Kerberos support, which are going
to be modified later on. The setting of password encryption forces the en-
cryption of internal stored passwords, while the datestyle option does some
localization for the presentation of dates.

11.2 PosgreSQL Installation 277

11.2.2 PostgreSQL with Kerberos

Next we have to create an administrative user that will be used in connection
with Kerberos. By default there is a UNIX user postgres which is granted all
administrative rights coming from localhost, so let us start the PostgreSQL
server and proceed administering it:

/etc/init.d/postgresql start
Starting PostgreSQL database server: postmaster.

We get the rights of the postgres user with the help of the su command,
and connect to the default database created during installation time called
template1 with the client psql:

su - postgres
postgres@psql:~$ psql template1
Welcome to psql 7.4.7, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

template1=#

Notice the typical prompt showing the database name of the connec-
tion, and the “#” sign that indicates an administrative user. This auxil-
iary database template1 is needed for the operation of PostgreSQL and
should not be deleted. The next step is to create a user in the internal Post-
greSQL user database that has full administrative privileges: our choice is
that sysadmin becomes PostgreSQL superuser, too, which is achieved by the
option createuser. After that, just exit the DBMS and stop the daemon:

template1=# create user sysadmin createuser;
CREATE USER

template1=# select * from pg_user;
usename | usesysid | usecreatedb | usesuper | usecatupd | passwd | valuntil |

----------+----------+-------------+----------+-----------+----------+----------+...
postgres | 1 | t | t | t | ******** | |
sysadmin | 100 | t | t | t | ******** | |

(2 rows)

template1=# \q

The pg user table above is an internal PostgreSQL system table, similar
to /etc/passwd, reflecting the users known to the DBMS which have nothing
to do with the underlying operating system.

On the KDC we have to create the PostgreSQL service principal, similarly
to the LDAP service; the DBMS needs a principal called postgres/hostname,
so in our case it will be postgres/psql.example.edu. We finally need to
export its credentials to a keytab file on the database server:

278 11 PostgreSQL Database

klist -ke /etc/postgresql/postgres.keytab
Keytab name: FILE:postgres.keytab
KVNO Principal
---- --

3 postgres/psql.example.edu@EXAMPLE.EDU (Triple DES cbc mode with HMAC/sha1)
3 postgres/psql.example.edu@EXAMPLE.EDU (DES cbc mode with CRC-32)

Note that here the keytab file should be readable by the postgres group
or user in order to make the Kerberos authentication work:

-rw-r----- 1 root postgres 154 2006-08-01 17:07 postgres.keytab

We are ready to make a first modification to the postgresql.conf file
which refers to the keytab file:

...
#ssl = false
password_encryption = true
krb_server_keyfile = ’/etc/postgresql/postgres.keytab’
...

To enable all Kerberized hosts to connect to PostgreSQL with the sysadmin
user we have to modify the pg hba.conf file containing access permissions.
The first three lines are default settings, in particular the first line permitted
the earlier operation as the postgres user, whereas the second and third line
allow connections via sockets or localhost with coinciding database and user
name:

local all postgres ident sameuser
local all all ident sameuser
host all all 127.0.0.1 255.255.255.255 ident sameuser
host all sysadmin 0.0.0.0 0.0.0.0 krb5
host all all 0.0.0.0 0.0.0.0 reject

This file lists in order type, database, user, optionally an IP address, and
method with possible options for client authentication. The lines are examined
from top to bottom and the first matching line decides the authentication
method. Now we can start PostgreSQL service and proceed testing it:

/etc/init.d/postgresql start
Starting PostgreSQL database server: postmaster.

11.2.3 Testing Kerberos Authentication

As a test we can try to connect to our DBMS from a machine without any
Kerberos ticket. To test our configuration we must install the PostgreSQL
client package called postgresql-client, and we expect to be rejected by
the database server:

11.2 PosgreSQL Installation 279

klist
klist: No credentials cache found (ticket cache FILE:/tmp/krb5cc_0)

Kerberos 4 ticket cache: /tmp/tkt0
klist: You have no tickets cached

psql -h psql.example.edu template1
psql: FATAL: no pg_hba.conf entry for host "192.168.127.145", user "root", \
database "template1", SSL off

The next test is to gain the sysadmin Kerberos credentials and to retry
the connection to the server:

kinit sysadmin
Password for sysadmin@EXAMPLE.EDU:

psql -h psql.example.edu template1
Welcome to psql 7.4.7, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

template1=#

Note that it worked using a single sign on since we were not asked any
password; moreover from the prompt we know to have administrative rights.

11.2.4 Securing PostgreSQL

At the moment all our connections work over an unencrypted channel, except
for the Kerberos authentication. Since we wish to have secure services, we will
encrypt our traffic on the network via SSL. As for all SSL-enabled services,
we need to create a certificate and a private key for our PostgreSQL host
psql.example.edu:

openssl genrsa -out privatekeys/psql.pem 2048

openssl req -new -days 1000 -key privatekeys/psql.pem -out psql.req

openssl ca -days 1000 -in psql.req -out certificates/psql.pem

Next, we have to copy the private key and public certificate to the Post-
greSQL server with the file names specified by the DBMS software. These files
must be called server.key and server.crt in /var/lib/postgres/data/,
with the following permissions and ownership:

-r--r--r-- 1 postgres postgres 6446 2006-08-01 17:37 server.crt
-r-------- 1 postgres postgres 1679 2006-08-01 17:37 server.key

280 11 PostgreSQL Database

Note that only the public certificate is world-readable. You can also opt for
symbolic links placing the files under /etc/postgresql/ as Debian normally
does: in any case, PostgreSQL will refuse to start if it cannot find them in
/var/lib/postgres/data/. At this point we can enable SSL connections in
postgresql.conf:

...
ssl = true
password_encryption = true
krb_server_keyfile = ’/etc/postgresql/postgres.keytab’
...

PostgreSQL distinguishes between open or SSL-encrypted channels for
client authentication, achieved by substituting host with the hostssl direc-
tive in the pg hba.conf configuration file. With the following configuration
the sysadmin user is allowed from everywhere provided that the connection
is SSL encrypted, and the user is authenticated by Kerberos:

local all postgres ident sameuser
local all all ident sameuser
host all all 127.0.0.1 255.255.255.255 ident sameuser
hostssl all sysadmin 0.0.0.0 0.0.0.0 krb5
host all all 0.0.0.0 0.0.0.0 reject

The server has to be restarted so that these new setting take effect, and
besides the sysadmin user all other connection attempts will be rejected. To
test, gain sysadmin credentials and connect to the database server to see that
an SSL connection has been started:

psql -h psql.example.edu template1
Welcome to psql 7.4.7, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)

template1=#

As it appears in the output, SSL explicitely reports the settings for the
opened channel.

11.3 PostgreSQL Users

So far we connected to PostreSQL by means of a Kerberos authentication,
but this does not mean that the DBMS automatically knows about our users:
in fact we needed to add the sysadmin entry in the internal administrative
database. Every user has to be created for PostgreSQL as well and, to sim-
plify administration, we choose to prepare a database for every user with

11.3 PostgreSQL Users 281

the identical name. The change of connectivity permissions is reflected in the
pg hba.conf file, enabling our Kerberos authenticated users for connections
from everywhere to a database which matches their principal name with the
sameuser option. The configuration file looks like the following:

local all postgres ident sameuser
local all all ident sameuser
host all all 127.0.0.1 255.255.255.255 ident sameuser
hostssl all sysadmin 0.0.0.0 0.0.0.0 krb5
hostssl all all 0.0.0.0 0.0.0.0 krb5 sameuser
host all all 0.0.0.0 0.0.0.0 reject

Note that we reject all insecure connections over the network using the
hostssl directive instead of the host one.

11.3.1 User Privileges

Our user database name has to match the user name, so for instance our
testuser will posses a database called testuser: of course this is a choice
that eases the administration, but other decisions might be suitable as well.
Remember that, as database administrators, we have to create users and pro-
vide them with a dedicated database. We need to connect to the database
server as an administrator from a client system: first we create the user and
give optionally a password which is used later, and next make a database
granting all the privileges to just that user:

kinit sysadmin

psql -h psql.example.edu template1
Welcome to psql 7.4.7, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)

template1=# create user testuser password ’initialpw’;
CREATE USER

template1=# create database testuser owner testuser;
CREATE DATABASE

Now it is possible to test the new PostgreSQL user testuser connecting to
the corresponding database, and without any Kerberos credential the access
should be denied:

klist
klist: No credentials cache found (ticket cache FILE:/tmp/krb5cc_0)

Kerberos 4 ticket cache: /tmp/tkt0

282 11 PostgreSQL Database

klist: You have no tickets cached

psql -h psql.example.edu testuser
psql: Kerberos 5 authentication failed

psql -h psql.example.edu -u testuser
psql: Warning: The -u option is deprecated. Use -U.
User name: testuser
Password:
psql: Kerberos 5 authentication failed

The last example using the -u switch shows that our database password
“initialpw” does not work for connections. Gaining the initial ticket we are
allowed to issue any command we have the privilege for. Note that the prompt
differs from the previous one, since testuser is not a superuser:

kinit testuser
Password for testuser@EXAMPLE.EDU:

klist
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: testuser@EXAMPLE.EDU

Valid starting Expires Service principal
08/03/06 10:25:45 08/03/06 20:25:43 krbtgt/EXAMPLE.EDU@EXAMPLE.EDU

Kerberos 4 ticket cache: /tmp/tkt0
klist: You have no tickets cached

psql -h psql.example.edu testuser
Welcome to psql 7.4.7, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)

testuser=>

Our user is not able to create new databases, neither there are permissions
to access other databases, but any operation is granted to operate in the
sandbox of its own database over the safe and encrypted channel:

testuser=> create table test(i int);
CREATE TABLE

testuser=> insert into test values(1000);
INSERT 17145 1

testuser=> insert into test values(2000);
INSERT 17146 1

testuser=> insert into test values(3000);
INSERT 17147 1

testuser=> select * from test;
i

11.3 PostgreSQL Users 283

1000
2000
3000

(3 rows)

testuser=> \q

11.3.2 Access from Web Scripts

Our objective is to allow the web server to connect to these personal Post-
greSQL databases. We have to enable all of our web servers with the help
of their IP addresses to connect to the DBMS, using the password we have
set in the user creation process, which internally is encoded with the MD5
algorithm. In the pg hba.conf configuration file we add our web servers, and
due to the stack-like property of PostgreSQL host settings, it is mandatory
that these lines come before the Kerberos authentication, and after sysadmin,
which has higher priority.

The web server has an AFS token but no Kerberos ticket, therefore it needs
to authenticate with the help of a password which can occur in scripts, too.
This procedure guarantees that every user has an own password for access to
the personal data base:

local all postgres ident sameuser
local all all ident sameuser
host all all 127.0.0.1 255.255.255.255 ident sameuser
hostssl all sysadmin 0.0.0.0 0.0.0.0 krb5
hostssl all all 192.168.127.145 255.255.255.255 md5 sameuser
hostssl all all 192.168.127.230 255.255.255.255 md5 sameuser
hostssl all all 0.0.0.0 0.0.0.0 krb5 sameuser
host all all 0.0.0.0 0.0.0.0 reject

Two web server with the IPs 192.168.127.145 and 192.168.127.230,
occour in this configuration repectively. Be aware that every user can change
this personal web-only password by the following command from the SQL
interaction when authenticated either via Kerberos or also from a web server
host via the old password:

testuser=> alter user testuser with password ’webpasswd’;
ALTER USER

The new password can be tested from one web server by installing there the
PostgreSQL client and connecting to the database server with the modified
web password for testuser:

klist
klist: No credentials cache found (ticket cache FILE:/tmp/krb5cc_0)

Kerberos 4 ticket cache: /tmp/tkt0
klist: You have no tickets cached

284 11 PostgreSQL Database

ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:10:5A:C4:93:37

inet addr:192.168.127.145 Bcast:192.168.127.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:11979 errors:0 dropped:0 overruns:0 frame:0
TX packets:682 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1075115 (1.0 MiB) TX bytes:81461 (79.5 KiB)
Interrupt:10 Base address:0xd000

psql -h psql.example.edu -u testuser
psql: Warning: The -u option is deprecated. Use -U.
User name: testuser
Password:
Welcome to psql 7.4.7, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)

testuser=>

To benefit from the personal database for web applications we have to
enable PostgreSQL support in the relative scripting language. On our web
server we decide to add the PHP-PostgreSQL connector and restart the web
server, such that the extension gets loaded:

apt-get install php4-pgsql

tail -2 php.ini
extension=mysql.so
extension=pgsql.so

/etc/init.d/apache2 stop
Stopping web server: Apache2.

/etc/init.d/apache2 start
Starting web server: Apache2.

To check that the connection is working we create a simple PHP script to
show the fields of the table we have created before:

<?php
$db_connection = pg_connect("host=psql.example.edu " .

"dbname=testuser " .
"user=testuser " .
"password=webpasswd")

or die(’Could not connect to database: ’ .
pg_last_error());

$query = "SELECT * FROM test";
$result = pg_query($query) or die(’Query failed: ’ . pg_last_error());
echo "<html>\n";
echo "<head><title>PostgreSQL Test</title></head>\n";
echo "<body>\n";
echo "<table>\n";
while ($row = pg_fetch_row($result, null)) {

echo "<tr>\n";

11.3 PostgreSQL Users 285

foreach ($row as $column) {
echo "<td>$column</td>\n";

};
echo "</tr>\n";

};
echo "</table>\n";
echo "</body>\n";
echo "</html>\n";
pg_free_result($result);
pg_close($db_connection);

?>

This script has to be stored in a file with the .php suffix, for instance
psql.php. The http://www.example.edu/∼testuser/psql.php web loca-
tion should show the previously created entries as in Fig. 11.1. Analogously

Fig. 11.1. PHP Script Using PostgreSQL

to the phpMyAdmin package there exists the PostgreSQL counterpart phpP-
gAdmin. The installation is very similar to the version for MySQL and it pro-
vides a web interface for PostgreSQL. Although the web server authenticates
with the help of the simple password, the actual access to these administra-
tive web pages could be additionally protected by Kerberos to avoid data base
break in attempts over the web server.

PHP Security Issue

Again this PHP script can be an entry point for malicious users: the password
is stored in clear text inside the scripts, and since PHP works at the same
level as Apache, a user could use another PHP script to discover passwords

286 11 PostgreSQL Database

of others. Please refer to the web server chapter for possible solutions to this
problem.

Practice

Exercise 41. Judge on the base of your user requests if Open Database Con-
nectivity, the ODBC, is a desirable option to connect to databases from UNIX.
There exist packages for Debian, too, as unixodbc. Additionally there are li-
brary files for MySQL and PostgreSQL plus the connector for PHP.

Exercise 42. Check the presented authentication methods. Do they fit your
needs? How would your pg hba.conf look like?

Exercise 43. Does your activity often require statistical analysis? In this case
the programming language GNU R inspired by S might be of interest. Try
the package r-cran-rodbc providing database access for R or the package
postgresql-plr allowing for a language interface from PostgreSQL to R.

Exercise 44. For the redundancy of PostgreSQL there is the SLONY-I
project as a master-slave setting with the possibility of fail-over. A second
solution is to implement high availability with a second node in stand-by: the
support for such a two-node cluster can be found in the package heartbeat.

12

Further Web Applications

There are no such things as applied sciences, only
applications of science.
Louis Pasteur

12.1 Web Application

Web applications are a special form of the general client-server architecture:
on the client side they require a web browser and on the server side a web
server. These two sides communicate with the help of the standardized pro-
tocol HTTP over an unencrypted or encrypted channel depending on the
settings. Usually a web application is organized as a “three-tiered” service, as
pitured in Fig. 12.1. The client performs an operation on the web browser,
and sends the necessary data to the server: this is the first tier or “presenta-
tion” level. The second level, the “logic” tier, is a dynamic content manager
as ASP, JSP, or PHP which can translate the requested operation to a per-
manent data management system such as DBMS, which constitute the third
“data” tier along with the actual storage medium. Although for the client

Fig. 12.1. A three-tier architecture

288 12 Further Web Applications

any specific application can be substituted conveniently with general browser
software, nevertheless the standards to be supported by the client are sev-
eral, such as JavaScript or Flash: JavaScript can be found in most browser
software by default independently of the underlying platform, while the other
technology usually requires an add-on for the browser in use.

This chapter presents some examples of web applications. We will show a
mailing list management system, a groupware software, an e-Learning system,
and simple calendaring. Only the first steps in the setup process are shown
up to the point when the rest of the configuration can be handled with the
help of a web interface.

12.2 Mailman Mailing List Manager

Mailing lists are a method to distribute email messages to many recipients
simultaneously, where users normally subscribe or unsubscribe to a specific
mailing list. Here we present a commonly used mailing list software Mailman,
developed by a community that releases the software under the GPL license.
The Mailman software has the option to synchronize mailing lists with a
newsgroup server: in order to simplify the entire setup we choose to install
this package on the same machine running INN which is nntp.example.edu.

12.2.1 Installing Mailman

We start with the installation of the mailman package: the software depends
on a web server which has to be installed on the same host, thus all cooper-
ating servers Apache, INN, Mailman, and Postfix are on the nntp machine.
Additionally, some form of indexing is used in the mailing list management
system: AFS is therefore not an option. This minimal web server installa-
tion is separated from the principal one, moreover as we are acting on nntp
there exists some minimal Postfix configuration already. Let us then proceed
installing both web server and list manager:

apt-get install apache2 mailman

Apache gets immediately started, so stop it before proceeding. Now we
have to create our first administrative mailing list called mailman as a manda-
tory administrative list to be created with the newlist tool, giving the email
of the mailing list system administrator:

newlist mailman
Enter the email of the person running the list: testuser@example.edu
Initial mailman password:
To finish creating your mailing list, you must edit your /etc/aliases (or
equivalent) file by adding the following lines, and possibly running the
‘newaliases’ program:

12.2 Mailman Mailing List Manager 289

mailman mailing list
mailman: "|/var/lib/mailman/mail/mailman post mailman"
mailman-admin: "|/var/lib/mailman/mail/mailman admin mailman"
mailman-bounces: "|/var/lib/mailman/mail/mailman bounces mailman"
mailman-confirm: "|/var/lib/mailman/mail/mailman confirm mailman"
mailman-join: "|/var/lib/mailman/mail/mailman join mailman"
mailman-leave: "|/var/lib/mailman/mail/mailman leave mailman"
mailman-owner: "|/var/lib/mailman/mail/mailman owner mailman"
mailman-request: "|/var/lib/mailman/mail/mailman request mailman"
mailman-subscribe: "|/var/lib/mailman/mail/mailman subscribe mailman"
mailman-unsubscribe: "|/var/lib/mailman/mail/mailman unsubscribe mailman"

Hit enter to notify mailman owner...

At the moment we have to append manually the last lines to /etc/aliases
and run the newaliases command as requested. Be aware, that without this
list Mailman will refuse to work. For all non-administrative mailing lists we
will not need to modify this alias file, but all the changes will happen with the
help of a web interface and operate on a separated file. The last installation
step is to set the mailing lists administrator and creator passwords with the
proper command mmsitepass:

mmsitepass sitepassword
Password changed.

mmsitepass -c listpassword
Password changed.

The first command is for the site administrator, and can be used in any
situation that an authentication is required by Mailman. The second command
defines the password for the list creator, the user that can initialize new lists
through the Mailman web interface. Remember that the site password is a
then passe-partout to administer all mailing lists and to create new ones.

12.2.2 Postfix Configuration

We tune our previous Postfix configuration done for NNTP, preferring that
the host nntp.example.edu handles all mail relay by itself: mailing lists could
provoke a very heavy load for the machines involved, because they send copies
to potentially thousands of different email addresses, and we do not want
this load to harm our principal mailing system. The changes to our previous
Postfix configuration includes the setup of a Mailman-only alias file as seen
in alias maps, handled by the software via the web interface:

inet_interfaces = all

biff = no
append_dot_mydomain = no

myhostname = nntp.example.edu
mydestination = nntp.example.edu, localhost
mynetworks = 127.0.0.0/8

290 12 Further Web Applications

mailbox_size_limit = 0
alias_maps = hash:/etc/aliases, hash:/var/lib/mailman/data/aliases
alias_database = hash:/etc/aliases

In comparison with the previous configuration all the network interfaces
have been enabled, as the inet interfaces field clearly shows; furthermore
the mail relay has been removed. The alias file dedicated to Mailman still has
to be created with the right ownership and permissions:

cd /var/lib/mailman/data/

touch aliases

ls -l aliases
-rw-rw---- 1 www-data list 0 2006-08-03 12:29 aliases

We prepare settings that assume the addresses for our mailing lists to look
like listname@nntp.example.edu, therefore our main SMTP servers have to
pass on the entire subdomain nntp.example.edu to nntp. The Postfix settings
in main.cf have to contain the following new line on the central servers:

masquerade_domains = !nntp.example.edu, example.edu

This means, that the subdomain nntp.example.edu will not be treated as
the domain example.edu, and the mail is forwarded to the nntp host which
takes care of all mailing list addresses. Therefore all mailing list related mail
is principally handled by the dedicated host.

12.2.3 Mailman Configuration

Mailman is programmed in the Python scripting language and some more
global modifications have to be done. The main configuration file is called
mm cfg.py, hinting the language, and located in the /etc/mailman/ direc-
tory. We want to activate Mailman only on the SSL-enabled web server, since
we avoid our passwords to travel the network unencrypted. Mailman can ad-
ditionally send periodically reminders containing the user’s password, but we
inhibit this behavior since sending unencrypted emails containing passwords
is clearly a security threat. Another configuration parameter is the default
NNTP host for newsgroup synchronization which we set to localhost:

from Defaults import *
MAILMAN_SITE_LIST = ’mailman’
DEFAULT_URL_PATTERN = ’https://%s/mailman/’
PRIVATE_ARCHIVE_URL = ’/mailman/private/’
IMAGE_LOGOS = ’/images/’
DEFAULT_EMAIL_HOST = ’nntp.example.edu’
DEFAULT_URL_HOST = ’nntp.example.edu’
add_virtualhost(DEFAULT_URL_HOST, DEFAULT_EMAIL_HOST)
DEFAULT_SERVER_LANGUAGE = ’en’
USE_ENVELOPE_SENDER = 0
DEFAULT_SEND_REMINDERS = 0

12.2 Mailman Mailing List Manager 291

MTA=’Postfix’
DEFAULT_NNTP_HOST = ’localhost’

These settings refer to the site list mailman for management, furthermore
they define default URLs and hosts. For the moment we have created just
one mailing list, necessary for internal administrative purposes of Mailman.
To verify the existence of this list we call the list lists tool:

list_lists
1 matching mailing lists found:

Mailman - [no description available]

12.2.4 Apache Configuration

We have already created the SSL certificates for nntp.example.edu, therefore
we can copy key and certificates into /etc/apache2/ssl/:

ls -l /etc/apache2/ssl
total 16
-r--r--r-- 1 root root 2480 2006-08-03 12:49 cacert.pem
-r--r--r-- 1 root root 6446 2006-08-03 12:49 nntpcert.pem
-r-------- 1 root root 1675 2006-08-03 12:49 nntpkey.pem

Then we have to enable the SSL module with a2enmod, in order to be able
to serve https:// requests:

a2enmod ssl
Module ssl installed; run /etc/init.d/apache2 force-reload to enable.

Again, we avoid using insecure protocols, since users have to subscribe and
unsubscribe using web forms. Then we need to create the configuration for
both encrypted and unencrypted sites, redirecting any HTTP connection to
the SSL-based HTTPS protocol. Our site files are called nntp.example.edu
and nntp.example.edu ssl, where the SSL-enabled site has its document
root in /var/www/nntp.example.edu ssl:

<VirtualHost 192.168.127.237:443>
ServerAdmin www@example.edu

SSLEngine on
SSLCipherSuite HIGH:MEDIUM
SSLProtocol -all +SSLv3 +TLSv1
SSLCaCertificateFile /etc/apache2/ssl/cacert.pem
SSLCertificateFile /etc/apache2/ssl/nntpcert.pem
SSLCertificateKeyFile /etc/apache2/ssl/nntpkey.pem

DocumentRoot /var/www/nntp.example.edu_ssl
<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>
<Directory /var/www/nntp.example.edu_ssl>

Options All MultiViews

292 12 Further Web Applications

AllowOverride All
Order allow,deny
Allow from all

</Directory>

ErrorLog /var/log/apache2/error_ssl.log
LogLevel warn
CustomLog /var/log/apache2/access_ssl.log combined

ScriptAlias /mailman/ /usr/lib/cgi-bin/mailman/
Alias /images/ /usr/share/images/mailman/
Alias /pipermail/ /var/lib/mailman/archives/public/

<Directory "/usr/lib/cgi-bin/mailman/">
Options ExecCGI
AllowOverride None
Order allow,deny
Allow from all

</Directory>

<Directory "/usr/share/images/mailman/">
AllowOverride None
Order allow,deny
Allow from all

</Directory>

<Directory "/var/lib/mailman/archives/public/">
Options All
AddDefaultCharset Off
AllowOverride None
Order allow,deny
Allow from all

</Directory>

</VirtualHost>

The Alias and ScriptAlias instructions redirect all URLs pointing to
mailman/, images/, and pipermail/ to the correct Mailman directories as
indicated by the software documentation. Note that GCI execution is enabled
for all mailman web locations as indicated by the Options ExecCGI directive.
Our non-SSL site shall redirect all communication to the secure server: one
way to achieve this is using an Apache module that rewrites URLs. So let us
enable the rewrite module:

a2enmod rewrite
Module rewrite installed; run /etc/init.d/apache2 force-reload to enable.

Then our site configuration for the normal port 80 should redirect every-
thing to port 443 with the RewriteEngine instruction enabled. According to
Redirect the root locations is rewritten immediately:

<VirtualHost 192.168.127.237:80>
ServerAdmin www@example.edu

DocumentRoot /var/www/nntp.example.edu
<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>

12.2 Mailman Mailing List Manager 293

<Directory /var/www/nntp.example.edu>
Options All MultiViews
AllowOverride All
Order allow,deny
Allow from all

</Directory>

ErrorLog /var/log/apache2/error.log
LogLevel warn
CustomLog /var/log/apache2/access.log combined

RewriteEngine On
Redirect / https://nntp.example.edu/

</VirtualHost>

Remember to create the site directories in /var/www/, and to enable
Apache to listen to HTTPS in /etc/apache2/ports.conf:

Listen 80
Listen 443

The last step is to enable these two sites and to remove the default one
from the installation:

a2ensite nntp.example.edu
Site nntp.example.edu installed; run /etc/init.d/apache2 reload to enable.

a2ensite nntp.example.edu_ssl
Site nntp.example.edu_ssl installed; run /etc/init.d/apache2 reload to enable.

a2dissite default
Site default disabled; run /etc/init.d/apache2 reload to fully disable.

12.2.5 Starting Mailman

At this point we are ready to start all our services in order: first comes the
MTA Postfix, then the Mailman list manager, and finally the Apache web
server:

/etc/init.d/postfix start
Starting mail transport agent: Postfix.

/etc/init.d/mailman start
Starting Mailman’s master qrunner.

/etc/init.d/apache2 start
Starting web server: Apache2.

It is helpful that the SSL site contains an index.html file in order to make
browsers load directly the Mailman overview web page:

cat /var/www/nntp.example.edu_ssl/index.html
<html>
<head>

294 12 Further Web Applications

<META HTTP-EQUIV="Refresh" CONTENT="0;
URL=https://nntp.example.edu/mailman/listinfo">

</head>
<body>
</body>
</html>

This way any browser gets directed to the information about mailing lists,
and any insecure connection is forced to the secure port which lists all visible
lists. All administrative tasks can be handled via the web interface, as we see
in Fig. 12.2.

Fig. 12.2. The Mailman administrative page

Some aspects of a user’s configuration can be handled by sending specially
crafted mail messages too, which is a remainder of previous list software like
listserv or majordomo. Remember that in case of a forgotten list administra-
tor password one can always use the site administrator’s password. A mailing
list can be manually removed by issuing the rmlist command, where the -a
switch forces the removal of the archives, too:

rmlist testlist
Not removing archives. Reinvoke with -a to remove them.
Removing list info

rmlist -a testlist
No such list: testlist. Removing its residual archives.
Removing private archives
Removing private archives
Removing public archives
testlist public archives not found as /var/lib/mailman/archives/public/testlist.mbox

12.3 Horde Groupware 295

list_lists
1 matching mailing lists found:

Mailman - [no description available]

In the rare circumstance that the site’s password is lost, it is still possible
to reset this password directly with the mmsitepass command.

12.3 Horde Groupware

In this section we present the Horde web based groupware system developed
by the Horde Project as an open source and free of charge project. Essentially
Horde is a framework of a web-based application, on the top of which it is
possible to add supplementary services in order to provide an environment
where users may interactively collaborate. Horde, based on the LAMP stack
that we have already implemented, provides users with easy web interfaces to
email system, calendaring, sketch notes, and address books; a complete list
of Horde projects is in Table 12.1. In the following we assume that Horde is

Table 12.1. Horde Projects

Project Description

Chora Source code repository viewer
DIMP Dynamic IMP based on AJAX1

Gollem Web-based file manager
IMP Access to POP and IMAP email
Ingo Mail filter manager

Kronolith Calendaring system
MIMP Mobile version of IMP for PDAs
Mnemo Sketch note manager

Nag Task manager
Sork Account management (e.g. forwarding and vacation)
Trean Bookmark manager
Turba Address book
Whups Bug tracking system

installed on a host prepared with the LAMP stack as seen in the chapter about
the Apache web server. For simplicity we configure everything on a local file
system but it could be in AFS space as well. Remember that the web server
needs write access to the installation area, at least until the configuration is
finished, since much of the settings can be changed by a web interface as for
Mailman.

296 12 Further Web Applications

12.3.1 Installing Horde

We download directly the latest version from the Internet, which at the time
of writing this book is 3.1.3, so the current version can differ. Here the wget
command line tool is used, which can fetch a specific URL:

wget ftp://ftp.horde.org/pub/horde/horde-3.1.3.tar.gz

Since Horde requires passwords over the network, too, we install Horde in
the SSL enabled site. First uncompress the Horde archive and make a symbolic
link to the directory such that you can smoothly change it, if a new version
is released:

cd /var/www/example.edu_ssl/

tar zxf /var/www/src/horde-3.1.3.tar.gz

ln -s horde-3.1.3 horde

ls -l /var/www/example.edu_ssl/
total 4
lrwxrwxrwx 1 root root 11 2006-09-05 11:36 horde -> horde-3.1.3/
drwxr-xr-x 14 root root 4096 2006-08-17 15:28 horde-3.1.3/

Horde needs PEAR, the PHP Extension and Application Repository, which
is a PHP code repository library:

apt-get install php4-pear php4-pear-log

Next, we have to install all the PHP components needed by Horde with
the pear tool, which acts in a similar way as the apt program:

pear install -o Log Mail Mail_Mime DB Date File
downloading Log-1.9.8.tgz ...
Starting to download Log-1.9.8.tgz (38,841 bytes)
..........done: 38,841 bytes
Package ’Mail’ already installed, skipping
downloading Mail_Mime-1.3.1.tgz ...
Starting to download Mail_Mime-1.3.1.tgz (16,481 bytes)
...done: 16,481 bytes
Package ’DB’ already installed, skipping
downloading Date-1.4.6.tgz ...
Starting to download Date-1.4.6.tgz (53,535 bytes)
...done: 53,535 bytes
downloading File-1.2.2.tgz ...
Starting to download File-1.2.2.tgz (15,796 bytes)
...done: 15,796 bytes
skipping Package ’log’ optional dependency ’DB’
skipping Package ’log’ optional dependency ’MDB2’
Package ’PEAR’ already installed, skipping
install ok: Date 1.4.6
install ok: Mail_Mime 1.3.1
install ok: File 1.2.2
Optional dependencies:
package ‘MDB2’ version >= 2.0.0RC1 is recommended to utilize some features.
’sqlite’ PHP extension is recommended to utilize some features
install ok: Log 1.9.8

12.3 Horde Groupware 297

Now we are ready to configure Horde according to its installation instruc-
tions. In the config subdirectory of the Horde distribution we have to copy
all the configuration files removing the .dist suffix:

for f in *.dist; do cp $f ‘basename $f .dist‘; done

ls
conf.php hooks.php.dist motd.php.dist prefs.php.dist
conf.php.dist mime_drivers.php nls.php registry.php
conf.xml mime_drivers.php.dist nls.php.dist registry.php.dist
hooks.php motd.php prefs.php

Besides PEAR, Horde requires some more PHP components contained
in several Debian packages, and belong to the PHP Extension Community
Library or PECL library. We need to intall them before proceeding:

apt-get install php4-domxml php4-mcrypt php4-gd imagemagick php-mail-mime

Horde relies on the complete LAMP stack, so our system must contain
MySQL, too, symmetrically to the host www.example.edu. This has to be
accessible from PHP as seen in a previous chapter:

tail -5 /etc/php4/apache2/php.ini
extension=mysql.so
extension=pgsql.so
extension=domxml.so
extension=mcrypt.so
extension=gd.so

The inclusion of these extensions is the result of the installation of several
PECL components.

12.3.2 Configuring Horde

In the following we assume, that MySQL is already configured and running on
the same host as the Horde installation, since the groupware software needs a
dedicated database for its own internal use. Unfortunately the scripts shipped
with Horde pretend, that you are the DBMS administrator since they operated
directly on the system database mysql:

cd ../scripts/sql/

head -30 create.mysql.sql
-- $Horde: horde/scripts/sql/create.mysql.sql,v 1.4.6.9 2006/07/05 15:53:10 jan Exp $
--
-- If you are installing Horde for the first time, you can simply
-- direct this file to mysql as STDIN:
--
-- $ mysql --user=root --password=<MySQL-root-password> < create.mysql.sql
--
-- If you are upgrading from a previous version, you will need to comment
-- out the the user creation steps below, as well as the schemas for any
-- tables that already exist.

298 12 Further Web Applications

--
-- If you choose to grant permissions manually, note that with MySQL, PEAR DB
-- emulates sequences by automatically creating extra tables ending in _seq,
-- so the MySQL ‘‘horde’’ user must have CREATE privilege on the ‘‘horde’’
-- database.
--
-- If you are upgrading from Horde 1.x, the Horde tables you have from
-- that version are no longer used; you may wish to either delete those
-- tables or simply recreate the database anew.

USE mysql;

REPLACE INTO user (host, user, password)
VALUES (

’localhost’,
’horde’,

-- IMPORTANT: Change this password!
PASSWORD(’horde’)

);

We prefer to be more cautious and do not run such script as the MySQL
administrator acting directly on system tables. Instead, we execute some
preparatory statements in order to create a dedicated user and database for
Horde: this user will be just allowed to operate on the corresponding database,
so connect to MySQL with an administrative identity:

mysql -u admin -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 17 to server version: 4.1.11-Debian_4sarge7-log

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql> create database horde;
Query OK, 1 row affected (0.00 sec)

mysql> grant all privileges on horde.* to ’horde’@’localhost’ identified by ’hordepasswd’;
Query OK, 0 rows affected (0.00 sec)

mysql> quit
Bye

The above defines a user horde and a database horde for the Horde frame-
work. The user got all privileges for that database. It is good practice that
only such restricted user is used to initialize the database using the MySQL
source command:

mysql -u horde -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 22 to server version: 4.1.11-Debian_4sarge7-log

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql> connect horde;
Connection id: 23
Current database: horde

mysql> source create.mysql.sql;

12.3 Horde Groupware 299

Note that some commands do fail: this is not harmful since all those state-
ments are related to database creation and privilege settings, which has been
taken care of before. A verification executed in the horde database shows all
the created tables:

mysql> show tables;
+---------------------------+
| Tables_in_horde |
+---------------------------+
| horde_datatree |
| horde_datatree_attributes |
| horde_histories |
| horde_prefs |
| horde_sessionhandler |
| horde_tokens |
| horde_users |
| horde_vfs |
+---------------------------+
8 rows in set (0.00 sec)

mysql> quit
Bye

At this point we are ready to test Horde, first granting Apache all privileges
to the Horde directories and restart it:

chown -R www-data.www-data horde-3.1.3

/etc/init.d/apache2 stop
Stopping web server: Apache2.

/etc/init.d/apache2 start
Starting web server: Apache2.

Finally, we can connect with a web browser to the web server at the
horde/test.php location as in Fig. 12.3. The final step is to connect di-
rectly to the administrative section and define the database connection: browse
to https://www.example.edu/horde/ and set up the MySQL connection as
seen in Fig. 12.4. As a good practice the test link should be disabled or deleted
after successfully completing the installation.

12.3.3 Additional Packages

So far we have just installed the basic Horde framework: in the following it has
to be enhanced by further components. Therefore we download some other
Horde packages, including IMP, the web-based email access system:

wget ftp://ftp.horde.org/pub/imp/imp-h3-4.1.3.tar.gz

wget ftp://ftp.horde.org/pub/turba/turba-h3-2.1.2.tar.gz

wget ftp://ftp.horde.org/pub/ingo/ingo-h3-1.1.1.tar.gz

wget ftp://ftp.horde.org/pub/kronolith/kronolith-h3-2.1.2.tar.gz

300 12 Further Web Applications

Fig. 12.3. The Horde test page

Fig. 12.4. The Horde administration pages

12.3 Horde Groupware 301

wget ftp://ftp.horde.org/pub/nag/nag-h3-2.1.1.tar.gz

wget ftp://ftp.horde.org/pub/mnemo/mnemo-h3-2.1.tar.gz

wget ftp://ftp.horde.org/pub/mimp/mimp-h3-1.0.tar.gz

wget ftp://ftp.horde.org/pub/chora/chora-h3-2.0.1.tar.gz

wget ftp://ftp.horde.org/pub/gollem/gollem-h3-1.0.2.tar.gz

We focus on the IMP package for IMAP mail access over the web, because
it is one of the most complex ones, since all other packages follow the same
style of setup. We show the most difficult part since IMP requires additional
configuration steps to handle the SMTP and IMAP protocols. The first step
is to uncompress the imp archive in the horde subdirectory; again make a
symbolic link to the relative directory, such that an upgrade will be easy in
the future:

cd /var/www/example.edu_ssl/horde/

tar zxf /var/www/src/imp-h3-4.1.3.tar.gz

ln -s imp-h3-4.1.3 imp

To work as a web-based email system, IMP requires PHP to be able to
handle mail via the IMAP protocol, so we have to install the php4-imap
package, another part of the PECL library:

apt-get install php4-imap

By default Debian allows uploading of files setting the maximum size in the
php.ini configuration file with the parameters shown below. These settings
have to be tuned if you wish users to send larger attachments, caring also
about the restrictions on post max size, since this limits the size for the
HTTP POST method:

file_uploads = On
upload_max_filesize = 2M

Next we have to create the configuration files for IMP the same way we
did for Horde, removing the trailing .dist suffix:

cd imp/config/

for f in *.dist; do cp $f ‘basename $f .dist‘; done

ls
conf.xml menu.php motd.php.dist trailer.txt
filter.txt menu.php.dist prefs.php trailer.txt.dist
filter.txt.dist mime_drivers.php prefs.php.dist
header.php mime_drivers.php.dist servers.php
header.php.dist motd.php servers.php.dist

302 12 Further Web Applications

cd ../..

chown -R www-data.www-data imp-h3-4.1.3/

The last command is necessary, since the web server will try to write
modifications directly into this space, and thus it needs a write-enabled access.
We prefer to manually enumerate the IMAP servers, our users can connect
to: this is done inside the servers.php file within the config subdirectory
of IMP. Our servers require SSL but their certificate is signed by our non-
official certificate authority, so we need to disable any CA validation. For our
Example organization then, the configuration file contains the following:

$servers[’_prompt’] = array(
’name’ => _("Choose a mail server:")

);

$servers[’imap’] = array(
’name’ => ’IMAP Server’,
’server’ => ’mail.example.edu’,
’hordeauth’ => true,
’protocol’ => ’imap/ssl/novalidate-cert’,
’port’ => 993,
’maildomain’ => ’example.com’,
’smtphost’ => ’smtp.example.edu’,
’smtpport’ => 25,
’realm’ => ’’,
’preferred’ => ’’,

);

Setting hordeauth to true makes IMP use the credentials already pro-
vided by a user during the Horde login process. Restart Apache to enable
the last configuration steps over the web, and test that IMP actually works
reaching the location under horde/imp/test.php, mirrored by the URL
https://www.example.edu/horde/imp/test.php. The final setup is tuned
over the web interface, in particular the Horde authentication can coincide
with the IMP authentication, as in Fig. 12.5: with these settings the user has
to authenticate only once since the entire Horde authentication is delegated to
the IMP module which on its part contacts the IMAP server. Before enabling
the authentication, do not forget to define an administrator for Horde: in case
that something went wrong there is always a backup file with the suffix .bak
located in the config directory of Horde which can be used to overwrite the
freshly created settings. The IMP interface can be tested with the testuser
shown in Fig. 12.6.

Security

For security reasons, it is a good practice to deny all users the web access to
those Horde subdirectories not necessary for direct browsing. Horde already
provides .htaccess files in its distribution, so we need to enable this feature
in the Apache configuration:

12.3 Horde Groupware 303

Fig. 12.5. Setting IMP to use the Horde login credentials

Fig. 12.6. The IMP login page

304 12 Further Web Applications

find horde-3.1.3/ -name .htaccess -print
horde-3.1.3/config/.htaccess
horde-3.1.3/lib/.htaccess
horde-3.1.3/locale/.htaccess
horde-3.1.3/po/.htaccess
horde-3.1.3/scripts/.htaccess
horde-3.1.3/templates/.htaccess

12.4 ILIAS e-Learning System

The last example for a bigger LAMP application is ILIAS, a web based learn-
ing management system. The development of ILIAS started at the University
of Cologne under Prof. Wolfgang Leidhold and is also supported by several
other universities and the Novell, Inc. It provides every user with a personal-
ized desktop, offers students a learning environment, teaching personnel with
class tests services, and includes a content authoring for lecturers. This system
comes with its own internal communication features and supports the work in
groups. It has been localized to many languages and can make use of several
authentication mechanisms; furthermore it is aware of several standards in
the context of e-Learning like SCORM, AICC, and LOM. Again, we suppose
a fully-functional LAMP-based system as we did for Horde.

Let us start the installation of this software by downloading it from the
official site:

wget http://www.ilias.de/download/src/ilias-3.7.0.tar.gz

ILIAS has to be installed in the SSL-enabled site, because it will send au-
thentication data to the machine, holding the ILIAS system. Although ILIAS
has an own authentication system, it could connect to a RADIUS server as
shown for newsgroups, allowing all our users in the organization to access this
facility. After successfully downloading the software we need to uncompress it
on the SSL-enabled site and allow Apache to write in the chosen location:

cd /var/www/example.edu_ssl/

tar zxf /var/www/src/ilias/ilias-3.7.0.tar.gz

ln -s ilias3 ilias

chown -R www-data.www-data ilias3

The symbolic link ilias makes the passage to newer versions easier for our
users, since the URL of the web-based service can remain the same. ILIAS
requires additional packages and recommends other optional softwares de-
pending on the organization’s need such as LATEX support for mathematical
coding. This application has similar requirements as Horde with the following
additional packages:

12.4 ILIAS e-Learning System 305

apt-get install zip unzip sablotron php-auth php-xslt htmldoc php-imagick

Moreover, ILIAS requires a Java SDK to be installed in the system which
has to be downloaded from Sun’s web site. At the time of writing this book
the recommended version is JSDK 1.4.2. Take care of setting the necessary
environment variables like PATH such that the java command can be found.
Additionally ILIAS requires some PEAR-provided components:

pear install Auth HTML_Template_IT Net_URL Net_Socket

pear upgrade Net_Socket

pear install HTTP_Request

ILIAS makes use of the uploading facility via PHP as Horde, and has to
be granted a long session lifetime for allowing users to answer questions, for
instance in class tests. The following parameters might have to be tuned for an
individual setting, and are considerably larger than the settings for Horde:

memory_limit = 50M
session.gc_maxlifetime = 3600
max_execution_time = 600
post_max_size = 50M
upload_max_filesize = 50M

As the next step ILIAS, based on LAMP, requires a database for its own
purposes. Proceeding as for Horde, a dedicated user and database get created
by the MySQL administrator:

mysql -u admin -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 32 to server version: 4.1.11-Debian_4sarge7-log

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql> create database ilias;
Query OK, 1 row affected (0.11 sec)

mysql> grant all privileges on ilias.* to ’ilias’@’localhost’ identified by ’iliaspasswd’;
Query OK, 0 rows affected (0.23 sec)

mysql> quit
Bye

Another directory is needed for ILIAS to store all documents for the
courses and related data, which is required to be located outside the web
space. Our choice is /var/spool/ilias/ for the purpose of demonstration,
and the web server is allowed full write access:

cd /var/spool

mkdir ilias

chown www-data.www-data ilias/

306 12 Further Web Applications

A further package, which should be considered for installation is mimetex,
which provides a way for converting LATEX or TEX code to images, a soft-
ware that is particularly handy when dealing with mathematical courses and
exams. We will then install this package and copy the installed binary to a di-
rectory reachable over the web; we choose to have the same ILIAS installation
directory handle this binary as a CGI script:

apt-get install mimetex

cd /var/www/example.edu_ssl/ilias

cp /usr/bin/mimetex mimetex.cgi

To make Apache aware of CGIs apart from the default cgi-bin subdi-
rectory, we activate a handler in the apache2.conf file, a setting that will
become active as we restart the service:

AddHandler cgi-script .cgi

Fig. 12.7. The initial ILIAS setup

At this point we can configure ILIAS over the web by connecting to
ilias/setup/setup.php as we can see in Fig. 12.7, and follow all the in-
structions provided by the web-driven setup process. After the setup you are
provided with a login screen for Ilias: the very first time we have to login as
root with password homer, which is stored by default in the MySQL backend
of Ilias.

12.5 Calendaring 307

The application of an e-Learning platform needs some initial training on
how to map your ideas to the specific platform. In case of ILIAS, it is usual
to start defining role templates and roles for users which will be handy for
creating users. Next it is useful to create some categories in the global
repository with access rights, such that a lecturer has read-write access, while
students are only allowed to read.

12.5 Calendaring

Sharing schedules may be quite useful in large teams, posting publicly and
updating appointments. The iCalendar is the standard IETF specification
based on the historical vCalendar standard provided by the Internet Mail
Consortium. There are already many iCalendar-aware clients such as Apple
iCal, Lotus Notes from IBM, Microsoft Outloook, and Mozilla Sunbird. As the
last example for a very simple web application we show a calendaring system,
which does not require the complete LAMP stack, but only the WebDAV
support. Calendar data is stored in text-based files with suffix .ics, in the
standardized iCalendar format, sometimes abbreviated as iCal.

In the chapter about the web server we have already prepared all neces-
sary components: users can access their personal web space with the help of
WebDAV over HTTPS providing their credentials. Thereafter the uploaded
files appear in their home page. Our goal is to provide a facility to our users
for sharing public calendars via web: this works right out of the box with our
WebDAV-enabled web site, where a calendaring software such as Mozilla Sun-
bird export the calendar file to a web location, and the same location is used
by another user using a WebDAV-aware calendaring software to subscribe to
the exported schedule. In Fig. 12.8 we used the Apple iCal software to sub-
scribe a public iCalendar schedule. Note that calendar updates occour by the
owner via WebDAV, handled over the secure SSL-enabled HTTPS protocol.

Practice

Exercise 45. Confront the mailing list and newsgroup approach with respect
to your needs. Are they both needed, and to which degree do they have to
be synchronized? Is the Mailman software sufficient for your needs or would
you investigate other solutions, such as for example the Sympa mailing list
manager?

Exercise 46. Verify if the Horde framework is sufficient for your situation:
which components are needed by your users? Check for possible helper appli-
cations to visualize Windows documents in the UNIX world.

Exercise 47. Ilias is just one example of an e-Learning system. Confront it
with other solutions, such as the Moodle software, also provided by a Debian
package. A further software making use of the LAMP stack is ATutor.

308 12 Further Web Applications

Fig. 12.8. The Apple iCal with a subscribed calendar

Exercise 48. What about other possible solutions besides Horde’s IMP and
the shown iCalendar sharing? Courier contains, together with its own web
interface sqwebmail, the courier-pcp package supporting the personal cal-
endaring protocol PCP. For the sake of completeness it has to be mentioned
that Courier has some form of mailing list handling offered by courier-mlm,
too.

Part III

Applications

13

Client Systems

All things are difficult before they are easy.
Thomas Fuller

13.1 Server-side Configuration

This chapter is dedicated to client setup using different platforms and op-
erating systems, allowing users to log into the system using their common
password, with home directories located under the AFS file space. All clients
will be connected to our environment, becoming Kerberos, LDAP, and Open-
AFS clients, or on the Windows side, joining our WIN.EXAMPLE.EDU domain.

We will first configure the client from a server-side point of view. For the
client machine we will make use of the name client.example.edu, using a
fixed IP address given on a per-host basis by the DHCP service using the
client MAC address. Note that MAC addresses change on each machine with
a different card, but we will show a prototype configuration for just the first
Ethernet card.

DNS and DHCP

Each client has a host name that needs to be resolved by the DNS service,
with both direct and reverse queries. Hence the zone files contain entries like
the following:

client A 192.168.127.237

237 PTR client.example.edu.

Restarting the bind9 daemon is sufficient to make changes take effect. On
the client machine, we need to retrieve the Ethernet card MAC address in
order to configure the DHCP server. Each client gets a special stanza that
matches its MAC address to a fixed host name, as in the following example
from the dhcpd.conf file:

host client {
hardware ethernet 00:b0:d0:20:f2:e3;
fixed-address client.example.edu;

}

312 13 Client Systems

Kerberos Host Principal

In order to identify each machine it is a good practice to create a host principal
in the Kerberos database. Additionally, some services as SSH will require such
a principal and need its keys to be exported to a file on the client machine. Let
us use the kadmin interface to create a new principal for the client machine
called host/client.example.edu@EXAMPLE.EDU with a random password:

kadmin -p sysadmin
Authenticating as principal sysadmin with password.
Password for sysadmin@EXAMPLE.EDU:

kadmin: add_principal -randkey host/client.example.edu
WARNING: no policy specified for host/client.example.edu@EXAMPLE.EDU; \
defaulting to no policy
Principal "host/client.example.edu@EXAMPLE.EDU" created.

For other hosts just the FQDN part of this principal has to be modified
for the creation of its service principal.

13.2 Ubuntu Linux

In this section we focus on setting up a client running Linux Ubuntu version
6.10. This distribution is very similar to Debian, so all the commands, tools
and locations are compatible with the ones described in previous chapters.
The advantage of using this distribution is, that it ships up-to-date packages
and also commercial ones, including closed source applications (e.g. the Adobe
Acrobat Reader, the Flash Player and plugin, or the Opera web browser). The
installation is driven by a graphical user interface using the Gnome Desktop
Environment, and usually it is suitable for workstations. We should mention
the previous Ubuntu version 6.06 since it comes with long term support of 3
years for the desktop version and 5 years for servers. The Ubuntu distribu-
tion, with respect to Debian, can be considered more desktop-oriented, while
the other retains a server-prone attitude. Installation of software packages is
identical to Debian, using the apt-get tool or dpkg. Furthermore, Ubuntu
provides a graphical front-end to this command line interface, called Synaptic
and pictured in Fig. 13.1. In order to be allowed to install all kinds of software,
we need to manually enable all repositories in the Synaptic configuration. By
default Ubuntu activates a DHCP-based networking setting, as we can see
from the /etc/network/interfaces configuration file:

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet dhcp

It is seldom required to manually set the host name, given a valid DHCP
server-side configuration. Contrary to Debian, Ubuntu ships with no root

13.2 Ubuntu Linux 313

Fig. 13.1. The Synaptic package manager

user available for login, and uses the sudo package to obtain administrative
privileges from the user added during the installation process:

$ sudo -s
Password:
#

That user has to provide its own password another time in order to become
root or perform commands as root.

Time Synchronization

Since the machine becomes a Kerberos and OpenAFS client it needs its clock
to be synchronized with our NTP servers. It is possible to install the NTP
server on the client, thus opening a port on the machine, or use the predefined
services in the Ubuntu system based on the ntpdate client program. The
default setting in the last release is to use an if-up script: a daemon will
monitor the network cable link, and start all the scripts contained in the
/etc/network/if-up.d/ directory when the link is brought up. The location
contains a script ntpdate that will be executed each time the network is
enabled:

#!/bin/sh

["$IFACE" != "lo"] || exit 0

314 13 Client Systems

test -f /usr/sbin/ntpdate || exit 0

if [-f /etc/default/ntpdate]; then
. /etc/default/ntpdate
test -n "$NTPSERVERS" || exit 0

else
NTPSERVERS="ntp.ubuntu.com"

fi

if ["$VERBOSITY" = 1]; then
echo "Synchronizing clock to $NTPSERVERS..."
/usr/sbin/ntpdate -b -s $NTPOPTIONS $NTSERVERS >/dev/null 2>&1 || true

fi

Finally we need to set our default NTP servers and options, configuring
them in the ntpdate file located in /etc/default:

NTPSERVERS="ntp1.example.edu ntp2.example.edu"
NTPOPTIONS="-u"

Kerberos

Now we have to install all the Kerberos client-side tools, including the PAM
module. It is possible to install the packages either from the Synaptic interface
or with the usual apt-get tools:

apt-get install krb5-config krb5-user libpam-krb5

Ubuntu, deriving from Debian, configures the packages upon a successful
installation, using a command line interface or a graphical front-end depending
on how we installed the software. After setting up the realm and Kerberos
servers, the /etc/krb5.conf file looks like the following:

[libdefaults]
default_realm = EXAMPLE.EDU
krb4_config = /etc/krb.conf
krb4_realms = /etc/krb.realms
kdc_timesync = 1
ccache_type = 4
forwardable = true
proxiable = true
v4_instance_resolve = false
v4_name_convert = {

host = {
rcmd = host
ftp = ftp

}
plain = {

something = something-else
}

}

[realms]
EXAMPLE.EDU = {

kdc = kdc1.example.edu
kdc = kdc2.example.edu
admin_server = krb.example.edu

13.2 Ubuntu Linux 315

}

[domain_realm]
.example.edu = EXAMPLE.EDU
example.edu = EXAMPLE.EDU

It is a good practice before proceeding to test the new configuration by
obtaining the initial ticket for a Kerberos principal:

kinit testuser
Password for testuser@EXAMPLE.EDU:

klist
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: testuser@EXAMPLE.EDU

Valid starting Expires Service principal
07/27/06 11:41:36 07/27/06 21:41:32 krbtgt/EXAMPLE.EDU@EXAMPLE.EDU

Kerberos 4 ticket cache: /tmp/tkt0
klist: You have no tickets cached

We can then safely continue with the export of the host principal keys to
the default keytab file from the client using the kadmin interface:

kadmin -p sysadmin
Authenticating as principal sysadmin with password.
Password for sysadmin@EXAMPLE.EDU:

kadmin: ktadd host/client.example.edu
Entry for principal host/client.example.edu with kvno 3, encryption type \
Triple DES cbc mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/client.example.edu with kvno 3, encryption type \
DES cbc mode with CRC-32 added to keytab WRFILE:/etc/krb5.keytab.

Finally we add Kerberos to the PAM authentication stack in the configu-
ration file common-auth, enabling the use of the previously entered password
with the use first pass option:

auth sufficient pam_unix.so
auth sufficient pam_krb5.so use_first_pass
auth required pam_deny.so

LDAP

Since Kerberos user passwords are now enabled, we can proceed in permitting
the retrieval of user information from our LDAP servers. We should install
the LDAP client tools shipped with the ldap-utils package, the name ser-
vice switch plugin libnss-ldap, and the GSSAPI library for the SASL layer
libsasl2-gssapi-mit, so that users can modify and retrieve data from the
LDAP server with a secure authentication method. As for other packages, we
may choose the graphical interface or the command line, being completely
equivalent, and as usual the system configures the installed softwares asking
for server names and search base.

316 13 Client Systems

The GSSAPI mechanism is not enabled by default after installing these
packages, so we have to modify the ldap.conf file in /etc/ldap/ adding the
SASL MECH option:

BASE dc=example,dc=edu
URI ldap://ldap1.example.edu ldap://ldap2.example.edu
SASL_MECH GSSAPI

After configuring the client-side LDAP tools we are able to test both:
simple anonymous authentication and SASL-based authentication.

ldapsearch -x -LLL "uid=testuser"
dn: uid=testuser,ou=users,dc=example,dc=edu
objectClass: top
objectClass: posixAccount
objectClass: shadowAccount
objectClass: inetOrgPerson
cn: Test
sn: User
uid: testuser
uidNumber: 10000
gidNumber: 10000
loginShell: /bin/bash
gecos: Test User,001,555-123,1-123,none
homeDirectory: /afs/example.edu/users/testuser
userCertificate;binary:: MIIFlDCCA3ygAwIBAgIBAjANBgkqhkiG9w0BAQUFADCBrjELMAkGA
1UEBhMCWloxETAPBgNVBAgTCFByb3ZpbmNlMQ0wCwYDVQQHEwRDaXR5MR0wGwYDVQQKExRFeGFtcG
...
Qv/GouuJjz0x/81oD75/gfeDCqsP8iWDGspHIvKGK1qpN0o3JWpWOJ8sbMF/ClwQXdN06AcIZ4u55
LFI7OYI3Q==

kinit testuser
Password for testuser@EXAMPLE.EDU:

ldapsearch -LLL "uid=testuser"
SASL/GSSAPI authentication started
SASL username: testuser@EXAMPLE.EDU
SASL SSF: 56
SASL installing layers
dn: uid=testuser,ou=users,dc=example,dc=edu
objectClass: top
objectClass: posixAccount
objectClass: shadowAccount
objectClass: inetOrgPerson
cn: Test
sn: User
uid: testuser
uidNumber: 10000
gidNumber: 10000
loginShell: /bin/bash
gecos: Test User,001,555-123,1-123,none
homeDirectory: /afs/example.edu/users/testuser
userCertificate;binary:: MIIFlDCCA3ygAwIBAgIBAjANBgkqhkiG9w0BAQUFADCBrjELMAkGA
1UEBhMCWloxETAPBgNVBAgTCFByb3ZpbmNlMQ0wCwYDVQQHEwRDaXR5MR0wGwYDVQQKExRFeGFtcG
...
Qv/GouuJjz0x/81oD75/gfeDCqsP8iWDGspHIvKGK1qpN0o3JWpWOJ8sbMF/ClwQXdN06AcIZ4u55
LFI7OYI3Q==

Finally we can enable the system to map group and user IDs with the
help of entries in our LDAP database. For this we need to modify the

13.2 Ubuntu Linux 317

nsswitch.conf file first, enabling LDAP as a valid source for a map, and
next the mapping configuration file libnss-ldap.conf:

cat nsswitch.conf
passwd: compat ldap
group: compat ldap
shadow: compat ldap

hosts: files dns
networks: files
protocols: db files
services: db files
ethers: db files
rpc: db files
netgroup: nis

cat libnss-ldap.conf
host ldap1.example.edu ldap2.example.edu
base dc=example,dc=edu
ldap_version 3
timelimit 30
bind_timelimit 30
bind_policy hard
idle_timelimit 60

nss_base_passwd ou=users,dc=example,dc=edu
nss_base_shadow ou=users,dc=example,dc=edu
nss_base_group ou=groups,dc=example,dc=edu

These changes take effect immediately, hence we can test the system with
standard UNIX tools:

groups testuser
testuser : testgroup

echo ~testuser
/afs/example.edu/users/testuser

OpenAFS

As for Debian, the Ubuntu Linux distribution does not provide an OpenAFS
pre-compiled binary kernel module, and we need to create one on our own.
Installing the openafs-modules-source usually includes Linux kernel head-
ers, but no symbolic link linux pointing at the current kernel version as in
the following:

uname -a
Linux client 2.6.17-10-generic #2 SMP Tue Dec 5 22:28:26 UTC 2006 i686 GNU/Linux

ls -l
total 4356
lrwxrwxrwx 1 root src 31 2007-01-16 11:01 linux -> linux-headers-2.6.17-10-generic
drwxr-xr-x 19 root root 4096 2007-01-16 08:53 linux-headers-2.6.17-10
drwxr-xr-x 4 root root 4096 2007-01-16 08:53 linux-headers-2.6.17-10-generic
-rw-r--r-- 1 root root 4436150 2007-01-11 22:41 openafs.tar.gz

Once uncompressed the OpenAFS module sources, we can invoke the
make-kpkg tool from the linux directory, obtaining a Debian package in

318 13 Client Systems

/usr/src/, which can be easily installed by dpkg. It is a good practice to
load the module with modprobe in order to test it, and successively remove
it from the kernel space with the rmmod tool. It might be necessary to use
the depmod program to generate the module dependencies for the new kernel.
Note that if your system is running any file system other than ext2 or ext3,
the OpenAFS client complains about its cache. Either use a dedicated parti-
tion for this cache or create an on-file ext2 file system and mounting it in the
cache directory as shown before.

After installing and testing the kernel module we can proceed installing
the OpenAFS client openafs-client, configuring the package as the sys-
tem requests. Additionally we need the Kerberos-OpenAFS interaction tools
openafs-krb5 and the PAM session library libpam-openafs-session in or-
der to allow an integrated login on the client. The configuration files for our
OpenAFS client, and for the common PAM authentication and session, are
as shown the in the following output:

cd /etc/openafs/

head CellServDB
>example.edu #Example Organization
192.168.127.154 #afs1.example.edu
192.168.127.230 #afs2.example.edu
>grand.central.org #GCO Public CellServDB 27 Jan 2005
18.7.14.88 #grand-opening.mit.edu
128.2.191.224 #penn.central.org
130.237.48.87 #andrew.e.kth.se
>wu-wien.ac.at #University of Economics, Vienna, Austria
137.208.3.33 #afsdb1.wu-wien.ac.at
137.208.7.4 #afsdb2.wu-wien.ac.at

cat ThisCell
example.edu

cat /etc/pam.d/common-auth
auth sufficient pam_unix.so nullok_secure
auth sufficient pam_krb5.so use_first_pass
auth required pam_deny.so

cat /etc/pam.d/common-session
session required pam_unix.so
session optional pam_krb5.so
session optional pam_openafs_session.so

After starting manually the OpenAFS client—or simply rebooting the
system—we can login with our Kerberos testuser, obtaining both Kerberos
and AFS credentials as in Fig. 13.2.

13.3 Apple MacOS X

Apple released the first version of its UNIX-based operating system in 1999,
after the Mac System 9: the X is the Roman numeral standing for 10, and also
a hint on the UNIX heritage. In fact, Apple’s operating system directly derives

13.3 Apple MacOS X 319

Fig. 13.2. The Ubuntu 6.10 desktop after a login, and cached credential

from NeXT, a microkernel operating system released by NeXT Software Inc.
founded by Steve Jobs in 1985—also founder of Apple Computer Inc., now
Apple Inc.—based on the Mach kernel and having its UNIX roots in the BSD
implementation of NeXTSTEP. We focus in this section on the latest release
of Apple’s operating system, the MacOS X version 10.4 “Tiger”.

Much of the configuration can be easily done by graphical interactions,
and in the following we will show some of the settings with graphical images,
as well as textually describe the procedure. The first operation regards the
time synchronization with our NTP servers, which is easily configured with
the System Preferences application as shown in Fig. 13.3.

Kerberos

The graphical Kerberos configuration is preceded by a command line interac-
tion. Opening the Terminal application, we need to gain root privileges with
the sudo tool and create the standard krb5.conf file. The password for sudo
is the same as for the first user created during system installation.

$ sudo -s

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.
#2) Think before you type.

320 13 Client Systems

Fig. 13.3. The MacOS X 10.4 time synchronization control panel

#3) With great power comes great responsibility.

Password:
touch /etc/krb5.conf

ln -s /etc/krb5.conf /Library/Preferences/edu.mit.Kerberos

Notice that we created an empty file, since the actual configuration is done
graphically with the Kerberos application. The last line creates a symbolic
link edu.mit.Kerberos which might be useful for some rare applications.
The Kerberos tool can be reached under /System/Library/CoreServices/
under the boot volume, and it can be used to modify all the configuration
parameters as well as obtaining the initial ticket. The application, shown in
Fig. 13.4, can also renew expiring tickets automatically and destroy existing
ones. After configuring and testing the realm, we can use the kadmin interface
to export the host key to the default keytab file:

kadmin -p sysadmin
Authenticating as principal sysadmin with password.
Password for sysadmin@EXAMPLE.EDU:

kadmin: ktadd host/client.example.edu
Entry for principal host/client.example.edu with kvno 4, encryption type \
Triple DES cbc mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/client.example.edu with kvno 4, encryption type \
DES cbc mode with CRC-32 added to keytab WRFILE:/etc/krb5.keytab.

13.3 Apple MacOS X 321

Fig. 13.4. The MacOS X 10.4 Kerberos configuration tool

Observe that MacOS X is Kerberos aware, where there are several clients
compiled and configured with Kerberos support.

LDAP

MacOS X inherits a legacy configuration database from the NeXTSTEP called
NetInfo. It is used to store system information such as users, groups, services,
and machines, replacing the common UNIX files. Its contents can be queried
via the niutil tool, as we can see from the following interaction:

niutil -list . /
1 users
2 groups
3 machines
4 networks
5 protocols
6 rpcs
7 services
8 aliases
9 mounts
10 printers

niutil -list . /users
11 nobody
12 root
13 daemon
14 unknown
15 lp
16 postfix
17 www
18 eppc
19 mysql
20 sshd
21 qtss

322 13 Client Systems

22 cyrusimap
23 mailman
24 appserver
25 clamav
26 amavisd
27 jabber
28 xgridcontroller
29 xgridagent
30 appowner
31 windowserver
32 tokend
33 securityagent
92 installuser

niutil -list . /machines
72 localhost
73 broadcasthost

Its usage will not be supported in future releases, and it is going to be
replaced by an LDAP database in the next version of the operating system.
Although to be discontinued, its utilization in MacOS X 10.4 is still critical
for user information, and we shall use the Directory Access application to
enable LDAP for both services and authentication settings, as in Fig. 13.5.
Remember that the LDAP version is 3 and that UNIX mappings are defined
by the RFC 2307, using our LDAP search base dc=example,dc=edu. We need

Fig. 13.5. The NetInfo-LDAP binding settings

to prevent the system from performing an automatic login in the Accounts
pane of the System Preferences. Furthermore it should not display the login
window asking for user name and password by displaying all available users in
the system. After configuring the NetInfo subsystem to use LDAP mappings,
we can test it asking for all users and groups in the tree with the dscl tool:

13.3 Apple MacOS X 323

dscl localhost list /LDAPv3/ldap.example.edu/Users
testuser

dscl localhost list /LDAPv3/ldap.example.edu/Groups
testgroup

Kerberos Login

Apple’s MacOS X has a PAM-like mechanism to handle login authentica-
tion requests, driven by a single file called /etc/authorization. This file,
contrary to most UNIX configurations, is an XML file, where each sec-
tion can be compared to a service file in the /etc/pam.d/ directory. The
<key>authenticate</key> section is the equivalent to the /lib/security/
directory on a Linux system: on Linux it contains all the available plug-
ins, while on MacOS X it lists all the possible authentication mechanisms.
Since Kerberos is bundled in the operating system, we simply need to add a
new <string> field for the builtin:krb5authnoverify mechanism, with the
privileged option as in the following excerpt:

<key>authenticate</key>
<dict>

<key>class</key>
<string>evaluate-mechanisms</string>
<key>mechanisms</key>
<array>

<string>builtin:authenticate</string>
<string>builtin:krb5authnoverify,privileged</string>
<string>authinternal</string>

</array>
</dict>

The same consideration applies to the login mechanisms available to
the login service. On Linux we had to modify a file called login in the
PAM configuration directory, while on MacOS X we simply add a new
<string> field to the <key>system.login.console</key> stanza for the
builtin:krb5authnoverify mechanism:

<key>system.login.console</key>
<dict>

<key>class</key>
<string>evaluate-mechanisms</string>
<key>comment</key>
<string>Login mechanism based rule.</string>
<key>mechanisms</key>
<array>

<string>builtin:auto-login,privileged</string>
<string>loginwindow_builtin:login</string>
<string>builtin:krb5authnoverify,privileged</string>
<string>builtin:reset-password,privileged</string>
<string>authinternal</string>
<string>builtin:getuserinfo,privileged</string>
<string>builtin:sso,privileged</string>
<string>HomeDirMechanism:login,privileged</string>
<string>HomeDirMechanism:status</string>
<string>MCXMechanism:login</string>

324 13 Client Systems

<string>loginwindow_builtin:success</string>
<string>loginwindow_builtin:done</string>

</array>
</dict>

OpenAFS

The installation of the OpenAFS client, which can be downloaded from the
official site, is guided by a wizard, and requires administrative privileges as any
other software with an impact on the operating system. After the installation
we need to configure as usual the cell name and the database server list:
ThisCell and CellServDB, respectively. These configuration files are located
in the /var/db/openafs/etc/ directory, and after restarting the machine, we
can easily test it obtaining a valid ticket and AFS token with an administrative
user:

kinit testuser
Please enter the password for testuser@EXAMPLE.EDU:

klist
Kerberos 5 ticket cache: ’API:Initial default ccache’
Default principal: testuser@EXAMPLE.EDU

Valid Starting Expires Service Principal
10/12/06 16:12:52 10/13/06 02:12:52 krbtgt/EXAMPLE.EDU@EXAMPLE.EDU

renew until 10/19/06 16:12:52

klist: No Kerberos 4 tickets in credentials cache

aklog

klist
Kerberos 5 ticket cache: ’API:Initial default ccache’
Default principal: testuser@EXAMPLE.EDU

Valid Starting Expires Service Principal
10/12/06 16:12:52 10/13/06 02:12:52 krbtgt/EXAMPLE.EDU@EXAMPLE.EDU

renew until 10/19/06 16:12:52
10/12/06 16:13:00 10/13/06 02:12:52 afs/example.edu@EXAMPLE.EDU

renew until 10/19/06 16:12:52

klist: No Kerberos 4 tickets in credentials cache

tokens

Tokens held by the Cache Manager:

User’s (AFS ID 10000) tokens for afs@example.edu [Expires Oct 13 02:12]
--End of list--

ls /afs/example.edu/
services software users

Note that we had full access to the AFS file space, but we still need to
obtain a valid token upon a successful login in order to let users work within
their AFS home directories. The equivalent of a PAM session on the MacOS X
system is a login hook, easily done via a shell script that directly calls aklog.

13.3 Apple MacOS X 325

Therefore in the /Applications/Scripts/ folder we create the login.sh
shell script with the following contents and permissions:

cat /Applications/Scripts/login.sh

#!/bin/bash
/usr/bin/sudo -u "$1" /usr/bin/aklog &> /dev/null
exit 0

ls -l /Applications/Scripts/login.sh
-rwsr-sr-x 1 root root 69 2006-10-29 12:20 /Applications/Scripts/login.sh

Verify that the system has the SUID bit set for the sudo command itself
which has to be owned by root. The login process calls the login hook script
with the user name as a parameter, such that the sudo program authenticates
as the given user name through the parameter $1, running aklog that obtains
a valid AFS token. Obviously the script must be owned by root in order to
let sudo work with any user in the system. A reference to the login hook
must be set system-wide using the defaults tool, which handles all the user
and system properties. On MacOS X settings are organized in “domains”,
identified by a DNS-like string as in the following example:

defaults read com.apple.loginwindow LoginHook
2006-10-17 11:27:57.225 defaults[408]
The domain/default pair of (com.apple.loginwindow, LoginHook) does not exist

The com.apple.loginwindow entry contains attributes that describe the
behavior of the login process, and is actually a binary file with the same name
located in the /Library/Preferences/ folder:

ls /Library/Preferences
DirectoryService/ com.apple.dockfixup.plist
Network/ com.apple.iDVD.plist
Soundtrack/ com.apple.iLifeMediaBrowser.plist
SystemConfiguration/ com.apple.iMovie.plist
Systems/ com.apple.iWork.plist
com.apple.ARDAgent.plist com.apple.iWork06.Installer.plist
com.apple.BezelServices.plist com.apple.iWork06.plist
com.apple.ByteRangeLocking.plist com.apple.loginwindow.plist
com.apple.HIToolbox.plist com.apple.networkConfig.plist
com.apple.QuickTime.plist com.apple.security.plist
com.apple.RemoteManagement.plist com.apple.sharing.firewall.plist
com.apple.SetupAssistant.plist com.apple.windowserver.plist
com.apple.SoftwareUpdate.plist com.apple.xgrid.agent.plist
com.apple.audio.DeviceSettings.plist com.apple.xgrid.controller.plist

These files are another NeXTSTEP heritage, convertible to a textual XML
file through the plutil tool. If we choose to install the Apple’s Developer
Tools we are able to open property list files, or shortly plist files, with a
graphical front-end. An example of a plist file is as follows:

plutil -convert xml1 /Library/Preferences/com.apple.networkConfig.plist -o a.txt

cat a.txt

326 13 Client Systems

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>NetworkingConfigured</key>
<integer>1</integer>

</dict>
</plist>

Let us now update the login settings with the LoginHook attribute pointing
at our new shell script:

defaults write com.apple.loginwindow LoginHook ’/Applications/Scripts/login.sh’

defaults read com.apple.loginwindow
{LoginHook = "/Applications/Scripts/login.sh"; }

Finally, it is possible to login for our Kerberos users, having their home
directory mounted at login time with a valid AFS token thanks to the login
hook, as we can see in Fig. 13.6.

Fig. 13.6. The desktop of MacOS X 10.4 after a login

13.4 Microsoft Windows XP 327

13.4 Microsoft Windows XP

Microsoft Windows XP is for many realities probably the most used desktop
operating system, and Samba in our environment acts as a gateway between
the two major worlds: the UNIX world with MacOS X or Linux and the
Windows world. Windows XP, released in 2001, is the natural successor of
Windows 2000, and like its ancestor has its root in the NT operating system.
It has the ability, in its Professional version, to join NT or Active Directory
domains.

Like MacOS X, configuring a Windows operating system is commonly done
by means of the graphical user interface, and in the following paragraphs we
describe the procedures to enable full AFS access along with pictures of the
operation in progress. We start with Fig. 13.7 showing the NTP synchroniza-
tion settings, where the “Internet Time” tab is clearly visible.

Fig. 13.7. The Windows XP time settings window

Kerberos

We assume the client machine to be installed with Windows XP Professional,
and after the necessary reboot we need to login as an administrator in order
to install the Kerberos software. As we already previewed, Kerberos is at the
core of the authentication system, and it is also supported by Microsoft but
with some modifications. Therefore we stick with the the official Kerberos for
Windows package from the MIT, enabling the automatic ticket retireval as
in Fig. 13.8. This setting enables the Kerberos manager to obtain the initial

328 13 Client Systems

Fig. 13.8. The Kerberos for Windows installation process

ticket for a user that matches both user name and password with a Kerberos
principal. It is important to test the configuration of the Kerberos manager by
obtaining an initial ticket, either via the graphical interface, or through kinit
with a command line interaction. At the time of writing an older version of
the MIT software, as shown in the picture, is recommended for use with AFS.

If the initial ticket could be obtained, as we did on UNIX machines through
PAM or via the login hook on a Mac, we can gain a valid AFS token through
the OpenAFS tool aklog. A similar procedure is done on the Windows client,
as we will see in the following.

OpenAFS

Once Kerberos has been configured properly, we can move on installing
the OpenAFS Windows client. The client correctly handles a pre-existing
Kerberos installation and enables an integrated login, a setting pictured in
Fig. 13.9: we obtain an AFS token for the current user if Kerberos could ac-
quire the initial ticket, i.e. if user name and password coincide with the prin-
cipal name and password. This means that Kerberos password and Samba
password have to coincide, otherwise this procedure fails, assuming that the
host joined our Windows domain.

The OpenAFS client can automatically mount the AFS file space as a
network shared drive, similar to the [homes] share in a Samba domain. It is
useful to configure a system-wide shared drive such that all users can access
their AFS space seamlessly.

Recently the client has been added the useful functionality of accessing
the AFS file space with a UNC \\afs: this convenient solution makes it pos-

13.4 Microsoft Windows XP 329

Fig. 13.9. The OpenAFS for Windows integrated login setting

sible to point directly to the AFS cell with the standard Windows notation
\\afs\example.edu.

Domain Join

Now we are ready to join the WIN.EXAMPLE.EDU Windows domain, having all
our users obtain a Kerberos ticket and an AFS token at login time, since our
Samba password coincides with the Kerberos password.

As previously detailed, Windows XP Professional can join a Samba domain
in case we set the RequireSignOrSeal property to 0. This key of the registry,
which is the main Windows database containing system and user settings, is
located under the following path:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netlogon\Parameters]
requiresignorseal=dword:00000000

We can manually set the value by using the Registry Editor, as in
Fig. 13.10, running the regedit tool from the Start menu—or locating it
under the Windows root folder. An easier way to immediately set this key in
the registry on multiple machines, is to use the same Registry Editor for mod-
ifying the entry on a host, and then export the entire \Netlogon\Parameters
to a file. Exported registry entries are actually text files that can also be
modified with a text editor:

330 13 Client Systems

Fig. 13.10. The Registry Editor highlighting the RequireSignOrSeal key

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netlogon\Parameters]
"DisablePasswordChange"=dword:00000000
"maximumpasswordage"=dword:0000001e
"requiresignorseal"=dword:00000000
"requirestrongkey"=dword:00000000
"sealsecurechannel"=dword:00000001
"signsecurechannel"=dword:00000001
"Update"="no"

We can then remove all the unnecessary entries and leave only the
RequireSignOrSeal item as in the following example:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netlogon\Parameters]
"requiresignorseal"=dword:00000000

By using the modified registry file on each client, we merge the only key
contained in the file with the machine registry content, actually overwriting
the host RequireSignOrSeal entry. Once the system has been enabled to join
a Samba domain, we can use the control panel and provide a WIN.EXAMPLE.EDU
administrative password in order to join the domain, as in Fig. 13.11: remem-
ber that the Administrator user in this procedure is the domain administra-
tor, and not the local Windows user. If the join succeeds then we are welcomed
to the domain and we are asked to reboot the machine: on the next boot we

13.4 Microsoft Windows XP 331

Fig. 13.11. The Windows domain joining procedure

are able to use our domain users, for example the testuser as in Fig. 13.12,
and one should automatically obtain Kerberos and AFS credentials.

User Profiles

We have seen in the chapter regarding Samba that user profiles, the analogous
of users home directories, are stored on the Samba server:

Application Data/ Favorites/ NTUSER.DAT* PrintHood/ Start Menu/
Cookies/ My Documents/ NTUSER.DAT.LOG* Recent/ Templates/
Desktop/ NetHood/ ntuser.ini SendTo/

Windows upon login creates a local copy of the profile on the client, and
then synchronizes the profile with the domain controller. Since a profile con-
tains the My Documents folder, it might grow in size as Windows user are
used to save personal file in this location, or even on the Desktop which is
again part of the profile. This means that Samba gets used intensively instead
of employing the OpenAFS service, which scales better than Samba or NFS
from small to big companies. Hence it is a good practice to instruct users to
set the path of My Documents to their AFS space to seamlessly employ the
distributed file system architecture, for instance our testuser should point
its personal folder to the \\afs\example.edu\users\testuser, or a subdi-
rectory of its choice.

Local profiles may be left on machines, or if this fact raises security or
privacy concerns, Windows XP can be instructed to purge the local copy

332 13 Client Systems

Fig. 13.12. The Windows integrated login provides both Kerberos ticket and AFS
token, with a full AFS file space access

upon a successful logout. This configuration can be set on a per-host basis on
the client itself with the Group Policy Editor gpedit.msc tool, modifying the
“Delete cached copies of roaming profiles” property as in Fig 13.13:

[Computer Configuration\Administrative Templates\System\User Profiles]
Delete cached copies of roaming profiles="Enabled"

Practice

Exercise 49. Exploit PAM to introduce further restrictions for login on an
Ubuntu host, convenient for hosts dedicated to a group of users. Make use of
the central LDAP service.

Exercise 50. Introduce similar restrictions for a Mac OS X client, referring
again to the LDAP service. As before, the best would be to define a group.

Exercise 51. Explore the possibilities of the netlogon share, opening the
client configuration for scripting. To some extend one should be able to re-
semble “group policies” of Active Directory.

Exercise 52. Are the here presented client systems sufficient for your pur-
poses? Do you need support for other architectures? Verify the availability of
a client with the OpenAFS site.

13.4 Microsoft Windows XP 333

Fig. 13.13. The roaming profile settings in the Group Policy Editor tool

14

Clustering

Suum Cuique (“To each his own”).
Marcus Tullius Cicero

14.1 Introduction

Computer clusters are basically groups of computers working on a common
task, and their birth may be traced back in history to the time when one
computer occupied an entire room, and often was not enough powerful to
fulfill the requested jobs. Suddenly it appeared clear that more than one ma-
chine could increase productivity by splitting jobs on each host, and in 1967
Gene Amdahl of IBM paved the way to modern clustering introducing the
paper “Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities” in the proceedings of the American Federation of
Information Processing Societies Conference. The research paper presented a
mathematical explanation of the supposed speedup allowed by parallelizing
tasks with respect to a simple serial execution; later this mathematical model
become famous as Amdahl’s law.

Clusters are usually constituted by networked computers, although this is
not true for all environments. Historically, cluster development was coupled
with the growth of networking solutions. After the first commercialization of
ARCnet by Datapoint, the first cluster based on PDP-11, several solutions
were available as DEC’s VAXcluster and IBM’s S/390 Parallel Sysplex.

Different products were later introduced, with an affordable clustering
solution proposed by the Parallel Virtual Machine, or PVM, a joint effort
from the Oak Ridge National Laboratory, the University of Tennessee, and
Emory University. Later the Message Passing Interface, MPI, became available
as a standard communication library specification for both the C and Fortran
programming languages. Using both PVM and MPI in different software, the
NASA then developed the Beowulf project, a cluster of homogeneous reduced-
cost computers running a Linux system. Another notable project was started
in 1981 at the Hebrew University of Jerusalem by a team lead by Prof. Amnon
Barak, providing a transparent clustering software (i.e. no ad-hoc code is
virtually needed) called MOSIX.

336 14 Clustering

In the following of this chapter we are going to install and configure a
cluster constituted by two nodes called node01 and node02, employing MPI,
PVM, and MOSIX. Since communication between nodes on a network is a cru-
cial operation, we will introduce the Secure Shell software SSH which avoids
any unencrypted communications among hosts, and can use Kerberos authen-
tication though the GSSAPI layer.

14.2 Secure Shell

The Secure Shell is an encrypted network protocol that uses public key au-
thentication in order to allow secure communication between hosts. The first
version was developed by Tatu Ylönen at the Helsinki University of Tech-
nology with the objective to replace remote login protocols such as rlogin,
rsh, and telnet, which did not provide any encryption facility. The original
author released the software free of charge, and founded the SSH Communi-
cations Security to commercialize SSH. The second version of this protocol
was developed in 1996 and standardized by the IEFT in 2006, improving se-
curity and integrity check features. The implementation shipped with Debian
is OpenSSH, a free and open source implementation started by the OpenBSD
team. The SSH servers in our network, as well as clients, have to become
Kerberos clients, with name service switch using the LDAP plugin for user
information, and the AFS file system for users home directories. These prereq-
uisites then imply that the time on each host is synchronized with the NTP
servers.

In order to allow the Single Sign-On, that is the ability to authenticate once
and use the obtained credentials for further services—as for our LDAP ser-
vice through SASL—the SSH server needs a manual intervention of a system
administrator. The SSH server makes use of the host principal keys exported
to the default keytab file in order to enable Kerberos logins.

Debian provides a Kerberized version of SSH with the package ssh-krb5,
and after installing it, the system configures the daemon as usual: the first SSH
protocol version should be avoided if possible, since it is vulnerable by design
and considered obsolete. After stopping the daemon, we can proceed config-
uring it by modifying the sshd config file, located under /etc/ssh/. The
critical settings to enable Kerberos authentication and dealing with the GSS-
API layer, are the GSSAPIAuthentication and KerberosAuthentication
options. It is important to notice that some older systems may require the
GSSAPINoMICAuthentication to be enabled, allowing an old GSSAPI authen-
tication method inherently vulnerable to man in the middle attacks. A full
detail of all OpenSSH configuration options is out of the scope of this book,
here we illustrate the main concepts to employ the remote login service. The
resulting configuration file looks like the following:

14.2 Secure Shell 337

Port 22
Protocol 2
HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_dsa_key
UsePrivilegeSeparation no
KeyRegenerationInterval 3600
ServerKeyBits 768
SyslogFacility AUTH
LogLevel INFO
LoginGraceTime 600
PermitRootLogin yes
StrictModes yes
RSAAuthentication yes
PubkeyAuthentication yes
IgnoreRhosts yes
RhostsRSAAuthentication no
HostbasedAuthentication no
PermitEmptyPasswords no
PasswordAuthentication no

KerberosAuthentication yes
KerberosTicketCleanup yes

GSSAPIAuthentication yes
GSSAPINoMICAuthentication yes
GSSAPICleanupCredentials yes

X11Forwarding yes
X11DisplayOffset 10
PrintMotd no
PrintLastLog yes
KeepAlive yes

Subsystem sftp /usr/lib/sftp-server

UsePAM yes

The ServerKeyBits define the length of the key which can be changed
and all keys in /etc/ssh/ are freshly generated when removed. Enabling
PAM allows us to permit local users upon login to gain a valid AFS token
through the pam openafs session.so plugin. Restarting the service activates
the changes. The corresponding script is /etc/init.d/ssh-krb5.

The client-side configuration file is located in the same directory as for the
server, named ssh config. OpenSSH permits a host-based configuration by
declaring a Host stanza followed by the host name specification. In our case
we enable GSSAPI for all our example.edu machines, delegating the issued
credential to the server in order to allow Single Sign-On:

Host *.example.edu
GSSAPIAuthentication yes
GSSAPIDelegateCredentials yes

To test the credential forwarding, and actually establishing a remote con-
nection utilizing the issued tickets via the ssh program, we start a SSH session
between two nodes in the cluster system. First, let us check for valid tickets
on the originating host node01:

338 14 Clustering

testuser@node01:~$ klist
Ticket cache: FILE:/tmp/krb5cc_10000_8Yvjas
Default principal: testuser@EXAMPLE.EDU

Valid starting Expires Service principal
08/03/06 17:20:23 08/04/06 03:20:23 host/node01.example.edu@EXAMPLE.EDU
08/03/06 17:20:23 08/04/06 03:20:23 krbtgt/EXAMPLE.EDU@EXAMPLE.EDU
08/03/06 17:20:23 08/04/06 03:20:23 afs/example.edu@EXAMPLE.EDU

Kerberos 4 ticket cache: /tmp/tkt10000
klist: You have no tickets cached

testuser@node01:~$ tokens

Tokens held by the Cache Manager:

User’s (AFS ID 10000) tokens for afs@example.edu [Expires Aug 4 03:20]
--End of list--

Then we can connect to the node02 system, using the -v switch to increase
the verbosity level:

testuser@node01:~$ ssh -v node02.example.edu
OpenSSH_3.8.1p1 Debian-krb5 3.8.1p1-7, OpenSSL 0.9.7e 25 Oct 2004
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Applying options for *.example.edu
debug1: Connecting to node02.example.edu [192.168.127.145] port 22.
debug1: Connection established.
debug1: identity file /afs/example.edu/users/testuser/.ssh/identity type -1
debug1: identity file /afs/example.edu/users/testuser/.ssh/id_rsa type -1
debug1: identity file /afs/example.edu/users/testuser/.ssh/id_dsa type -1
debug1: Remote protocol version 2.0, remote software version OpenSSH_3.8.1p1 \
Debian-krb5 3.8.1p1-7
debug1: match: OpenSSH_3.8.1p1 Debian-krb5 3.8.1p1-7 pat OpenSSH*
debug1: Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-2.0-OpenSSH_3.8.1p1 Debian-krb5 3.8.1p1-7
debug1: Mechanism encoded as toWM5Slw5Ew8Mqkay+al2g==
debug1: Mechanism encoded as A/vxljAEU54gt9a48EiANQ==
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug1: kex: server->client aes128-cbc hmac-md5 none
debug1: kex: client->server aes128-cbc hmac-md5 none
debug1: Calling gss_init_sec_context
debug1: Delegating credentials
debug1: Received GSSAPI_COMPLETE
debug1: Calling gss_init_sec_context
debug1: Delegating credentials
debug1: SSH2_MSG_NEWKEYS sent
debug1: expecting SSH2_MSG_NEWKEYS
debug1: SSH2_MSG_NEWKEYS received
debug1: SSH2_MSG_SERVICE_REQUEST sent
debug1: SSH2_MSG_SERVICE_ACCEPT received
...
debug1: channel 0: new [client-session]
debug1: Entering interactive session.

testuser@node02:~$

The remote login session has been successfully established without prompt-
ing for any further password, and with the help of PAM node02 enabled the
user to gain the correct AFS token upon authentication:

14.3 MPI and PVM 339

testuser@node02:~$ klist
Ticket cache: FILE:/tmp/krb5cc_10000_ym2150
Default principal: testuser@EXAMPLE.EDU

Valid starting Expires Service principal
08/03/06 17:21:18 08/04/06 03:20:23 krbtgt/EXAMPLE.EDU@EXAMPLE.EDU
08/03/06 17:21:18 08/04/06 03:20:23 afs/example.edu@EXAMPLE.EDU

Kerberos 4 ticket cache: /tmp/tkt10000
klist: You have no tickets cached

testuser@node02:~$ tokens

Tokens held by the Cache Manager:

User’s (AFS ID 10000) tokens for afs@example.edu [Expires Aug 4 03:20]
--End of list--

By default the clustering software, MPI and PVM, use an unencrypted
channel with rsh. In the following section we will install both packages in-
structing them to use the SSH protocol encrypting the communication be-
tween nodes. In any case Debian installs ssh as a substitution for rsh em-
ploying a mechanism of alternatives configured under /etc/alternatives/.

14.3 MPI and PVM

The Message Passing Interface along with the Parallel Virtual Machine are
commonly used to implement parallel and distributed computations, often on
computer clusters. MPI is actually a description of APIs, implemented by
independent projects that are not bound to a single specification, such as a
particular network protocol, although the majority of MPI libraries employ
TCP/IP and socket connections. Such a library allows developers to write pro-
grams relying on general functions, such as sending data to a process, without
caring about the physical location of any of these. The Parallel Virtual Ma-
chine is an analogous software, allowing transparency about the location of
processes and providing high-level functions to the programmer. Contrary to
MPI, which is a specification, PVM is a concrete implementation. The com-
plete transparency from the developer point of view is achieved by a MOSIX
cluster which is based on the “fork and forget” principle: this kernel extension
itself distributes processes to different nodes.

14.3.1 Message Passing Interface

The MPI specification reached the second version, and from its original C
and Fortran version, bindings were made available for other languages such
as Java, OCaml, and Python. There are various implementations of the MPI
specification, among these we want to mention MPICH, LAM-MPI, and Open-
MPI. We prefer the LAM-MPI library, distributed with the lam4-dev and
lam-runtime Debian packages:

340 14 Clustering

apt-get install lam4-dev lam-runtime

LAM-MPI uses by default the remote shell program rsh; or by setting
the LAMRSH environment variable to ssh, the MPI library is forced to use
the secure shell instead of the unencrypted remote shell. All what is needed
to start a program on multiple machines, such as our node01 and node02
hosts, is to create a node configuration file containing the host names—or
IP addresses—of all the nodes that will constitute the cluster. Note that the
localhost name cannot be used since it would be resolved to 127.0.0.1
regardless of the actual IP address of a host and hence it is not suitable for
Kerberos:

$ export LAMRSH=ssh

$ cat machinefile
node01.example.edu
node02.example.edu

A simple MPI example coded in the programming language C is the fol-
lowing:

1 #include <stdio.h>
#include <string.h>

3 #include "mpi.h"

5 #define MSG_LEN 1024

7 int main(int argc , char *argv [])
{

9 int ntasks , whoami , len , i;
char host[MPI_MAX_PROCESSOR_NAME];

11 char message[MSG_LEN];
MPI_Comm handle;

13 MPI_Status status;

15 memset(host , 0, MPI_MAX_PROCESSOR_NAME);

17 /* Initialize MPI */
MPI_Init (&argc , &argv);

19 handle = MPI_COMM_WORLD;
/* Get the total number of processes ,

21 process rank and host name */
MPI_Comm_size(handle , &ntasks);

23 MPI_Comm_rank(handle , &whoami);
MPI_Get_processor_name(host , &len);

25 /* If we are the root , aka process rank 0 */
if (! whoami)

27 {
for (i = 1; i < ntasks; i++)

29 {
/* Initialize the buffer */

31 memset(message , 0, MSG_LEN);
/* Receive strings in order

33 and print the output */
MPI_Recv(message , MSG_LEN , MPI_CHAR ,

35 i, 0, MPI_COMM_WORLD , &status);
puts(message);

37 }
}

39 else

14.3 MPI and PVM 341

{
41 /* Initialize the buffer */

memset(message , 0, MSG_LEN);
43 printf("%d: starting snprintf\n", whoami);

snprintf(message , MSG_LEN - 1,
45 "Hello from host %s, process %d, total processes %d!",

host , whoami , ntasks);
47 /* Send to the rank 0 process */

MPI_Send(message , MSG_LEN , MPI_CHAR ,
49 0, 0, MPI_COMM_WORLD);

}
51 printf("Finally done.");

MPI_Finalize ();
53 return 0;

}

After compiling and linking this code with the gcc compiler wrapper mpicc,
LAM-MPI has to be started with the lamboot command providing the ma-
chine file as a command line parameter:

$ mpicc -Wall -pedantic -ansi mpi-example.c -o mpi-example

$ lamboot -v machinefile

LAM 7.1.1/MPI 2 C++/ROMIO - Indiana University

n-1<1549> ssi:boot:base:linear: booting n0 (node01.example.edu)
n-1<1549> ssi:boot:base:linear: booting n1 (node02.example.edu)
n-1<1549> ssi:boot:base:linear: finished

The lamboot tool starts the LAM-MPI daemon on all the cluster nodes,
and thereafter we can run the MPI-based program with the starter tool mpirun
specifying the number of processes to be spawned in the cluster with the -np
switch:

$ mpirun -np 10 mpi-example
Finally done.
Finally done.
Hello from host node01, process 1, total processes 10!
Hello from host node02, process 2, total processes 10!
Hello from host node01, process 3, total processes 10!
Hello from host node02, process 4, total processes 10!
Finally done.
Finally done.
Finally done.
Hello from host node01, process 5, total processes 10!
Hello from host node02, process 6, total processes 10!
Finally done.
Hello from host node01, process 7, total processes 10!
Hello from host node02, process 8, total processes 10!
Finally done.
Finally done.
Hello from host node01, process 9, total processes 10!
Finally done.
Finally done.

14.3.2 Parallel Virtual Machine

Historically the Parallel Virtual Machine is a predecessor of MPI, developed in
1989 by the Oak Ridge National Laboratory, and its functionalities are similar

342 14 Clustering

to its counterpart. Its last stable release was made available in 1994, and is
currently being lively maintained and supported by the PVM community.
The Parallel Virtual Machine software has several bindings, such as the R
statistical programming language, Java, PERL and common LISP. PVM is
distributed by Debian with the pvm and pvm-dev packages:

apt-get install pvm pvm-dev

As for MPI, we need to force PVM to use SSH instead of the RSH protocol,
again using an environment variable. Providing a machine file, which indicates
all the hosts in the cluster, is optional with the PVM software since it uses a
command line interface similar to the kadmin tool:

$ export PVM_RSH=ssh

$ cat machinefile
node01.example.edu
node02.example.edu

The C program we are going to test on the machines is the following:
#include <stdio.h>

2 #include "pvm3.h"

4 int main(int argc , char *argv [])
{

6 int whoami;

8 /* Get the ID */
whoami = pvm_mytid ();

10 /* Print it */
printf("My PVM ID is %d\n", whoami);

12 /* Ask PVM to exit gently */
pvm_exit ();

14

return 0;
16 }

After compiling and linking the source code file with the gcc tool, we can
start the PVM console program pvm:

$ gcc -Wall pvm-example.c -o pvm-example -lpvm3

$ pvm
pvm> help
help
help Print helpful information about a command
Syntax: help [command]
Commands are:

add Add hosts to virtual machine
alias Define/list command aliases
conf List virtual machine configuration
delete Delete hosts from virtual machine
echo Echo arguments
export Add environment variables to spawn export list
halt Stop pvmds
help Print helpful information about a command
id Print console task id

14.3 MPI and PVM 343

jobs Display list of running jobs
kill Terminate tasks
mstat Show status of hosts
names List message mailbox names
ps List tasks
pstat Show status of tasks
put Add entry to message mailbox
quit Exit console
reset Kill all tasks, delete leftover mboxes
setenv Display or set environment variables
sig Send signal to task
spawn Spawn task
trace Set/display trace event mask
unalias Undefine command alias
unexport Remove environment variables from spawn export list
version Show libpvm version

pvm> version
version
3.4.2

pvm> quit
quit

Console: exit handler called
pvmd still running.

It is possible, as we can see in the output above, to add manually new
hosts with the add command, or feed a machine file to the pvm tools, so that
all the hosts are automatically added to the cluster host list. Running a PVM
program is done via the PVM console with the spawn command, indicating
the number of tasks and the PVM program:

$ pvm machinefile
pvm> conf
conf
2 hosts, 1 data format

HOST DTID ARCH SPEED DSIG
node01.example.edu 40000 LINUX 1000 0x00408841
node02.example.edu 80000 LINUX 1000 0x00408841

pvm> spawn -5 -> /afs/example.edu/users/testuser/local/pvm/pvm-example
spawn -5 -> /afs/example.edu/users/testuser/local/pvm/pvm-example
[2]
5 successful
t80004
t80005
t80006
t40007
t40008

pvm>
[2:t40007] My PVM ID is 262151
[2:t40008] My PVM ID is 262152
[2:t40007] EOF
[2:t40008] EOF
[2:t80004] My PVM ID is 524292
[2:t80005] My PVM ID is 524293
[2:t80004] EOF
[2:t80005] EOF
[2:t80006] My PVM ID is 524294
[2:t80006] EOF
[2] finished

344 14 Clustering

pvm> halt
halt
Terminated

14.4 MOSIX Cluster Management

MOSIX is a cluster management system capable of automatic job distribution
among machines on a network. Contrary to MPI or PVM a cluster based
on the MOSIX software acts transparently to a user, as if they were part
of a symmetric multi-processor host, a strategy mentioned before as “fork
and forget”. Of course this assumes that a program makes use of several
communicating processes, as it is common in the world of UNIX.

The software was developed in 1981 at the Hebrew University of Jerusalem
by Prof. Amnon Barak and his research team. Originally the Multicomputer
OS or MOS, was developed on a cluster of PDP-11 machines with Bell Lab
Unix 7, and later ported to UNIX flavors as Unix System V and BSD. MOSIX
in 1999 turned its efforts to the Linux kernel, providing both a kernel patch
and maintenance tools. A parallel program was started in 2001 by Moshe Bar
to comply with the GPL software license, called OpenMOSIX, although the
latest version according to the official home page is of December 2004. In this
section we focus on the MOSIX package, showing how to configure a cluster
based on this software with just two machines node01 and node02. Note that
MOSIX is not certified to run on the AFS file system, and deployment of
MOSIX-based clusters on AFS clients should be carefully planned, especially
running jobs that access the OpenAFS file space. Anyway, the process we are
going to show does not depend on files located in AFS file space.

14.4.1 Patching the Kernel

We describe in this section a typical installation process on the node01 ma-
chine, a host that is already a Kerberos, LDAP, and OpenAFS client with
synchronized time. Again, we stress that programs run by MOSIX and ac-
cessing the AFS file space are not guaranteed to function correctly, and may
result in unexpected behaviors.

MOSIX is basically a patch to the Linux kernel, and as a patch it must be
applied to the exact version of the kernel it was developed for. The clustering
system is released only for the official Linux kernel source, also known as
“vanilla” kernel, with a package called MOSKRN, and with user tools MOSIX. Let
us start then downloading the kernel sources, and both MOSIX packages:

wget http://www.kernel.org/pub/linux/kernel/v2.4/linux-2.4.33.tar.gz

wget http://www.mosix.org/moskrn/MOSKRN-1.13.4.tar.bz2

wget http://www.mosix.org/mosultp/MOSIX-1.13.4.tar.bz2

14.4 MOSIX Cluster Management 345

Note that we downloaded a specific kernel version, since MOSIX version
1.13.4 was developed for the Linux kernel version 2.4.33, and the installa-
tion may fail on subversions as 2.4.33.3. Proceed with uncompressing the
MOSIX packages by the bzip2 compression tool, provided by Debian with
the homonymous package:

cd /usr/src/

tar zxf ~/linux-2.4.33.tar.gz

tar jxf ~/MOSKRN-1.13.4.tar.bz2

tar jxf ~/MOSIX-1.13.4.tar.bz2

The next steps, in order to create a full MOSIX node, are to apply the
kernel patch, and then to recompile it with the gcc compiler, which should be
already installed on machines that are AFS clients and needed to compile the
AFS kernel module before. As usual, we create a symbolic link to the Linux
kernel source in /usr/src/ called simply linux:

rm -f linux

ln -s linux-2.4.33 linux

ls -l linux
lrwxrwxrwx 1 root src 14 2006-09-06 11:00 linux -> linux-2.4.33/

Next we have to apply the MOSIX patch with the patch tool, and pro-
ceed configuring the Linux kernel with the standard vanilla make menuconfig
command.

cd linux

patch -p0 < /usr/src/MOSKRN-1.13.4/patches.2.4.33

make menuconfig

A kernel configuration description is out of the scope of this book, and
it is highly dependent on the hardware configuration of the machine. The
basic requirements for MOSIX to work are usually met1, leaving the hard-
ware, network, and disk access configuration to the system administrator.
As required by the MOSIX documentation, we need to remove the Linux
version.h header file and create a symbolic link to the clustering software in
/usr/include/:

rm -f include/linux/version.h

ls -l /usr/include/mos
lrwxrwxrwx 1 root root 26 2006-09-06 14:26 /usr/include/mos -> \
/usr/src/linux/include/mos/

1 MOSIX requires an ELF binary image for the kernel, and the procfs, two stan-
dard options often enabled on all Linux systems.

346 14 Clustering

Having successfully configured the Linux kernel we can proceed compiling
it with the standard make tool. Another possibility, which is the preferred
option on Debian systems, is to create packages the same way we did for the
OpenAFS kernel module with the make-kpkg tool. We first clean the source
tree from any binaries residue of preceding compilations, then configure the
kernel source tree, and finally produce the binary kernel image and module
packages:

make-kpkg clean

make-kpkg configure

make-kpkg --initrd kernel_image

make-kpkg modules_image

The --initrd option creates an initial RAM disk that is mounted as
the preliminary root file system containing the necessary modules to access
file systems and hardware devices. The resulting binary files are created in
/usr/src/, and as we can see from the following output, all preceding pack-
ages have not been removed by the process:

ls /usr/src/*.deb
/usr/src/kernel-image-2.4.33_10.00.Custom_i386.deb
/usr/src/openafs-modules-2.4.27-3-686_1.3.81-3sarge1+2.4.27-10sarge3_i386.deb
/usr/src/openafs-modules-2.4.33_1.3.81-3sarge1+10.00.Custom_i386.deb

dpkg -i kernel-image-2.4.33_10.00.Custom_i386.deb

dpkg -i openafs-modules-2.4.33_1.3.81-3sarge1+10.00.Custom_i386.deb

After installing the two packages, Debian will automatically update the
boot loader so that at the next boot we can choose the newly compiled kernel,
or in case of failure, boot with an older and working version. Before actually
rebooting, we need to proceed with some further configuration explained in
the following.

14.4.2 Configuring MOSIX

We have introduced MOSIX as a transparent clustering software, capable of
migrating processes from one host to another according to necessity. This
relocation may result in catastrophic results if crucial system processes are
migrated to a different machine, thus all critical processes should be locked
on the machine where they got started. The MOSIX userspace tools provide
such a vital facility.

MOSIX contains two additional archives: one for manuals and the other
for user programs. The latter archive is named user.tar, and includes a
Makefile that runs with make and the install target to copy all the necessary
files for the user space commands to their correct locations:

14.4 MOSIX Cluster Management 347

tar xf /usr/src/MOSIX-1.13.4/user.tar

ls
bin/ lib/ Makefile Rules.make sbin/ usr.bin/

make install

All critical daemons should be locked on the machine, and these MOSIX
user tools provide a program called mosrun that with the -h switch locks a pro-
gram to the host starting the process. We need to modify the /etc/inittab
file so that all the scripts in all run-levels become non-relocatable, as in the
following configuration file:

id:2:initdefault:

si::sysinit:/bin/mosrun -h /etc/init.d/rcS
~~:S:wait:/bin/mosrun -h /sbin/sulogin

l0:0:wait:/bin/mosrun -h /etc/init.d/rc 0
l1:1:wait:/bin/mosrun -h /etc/init.d/rc 1
l2:2:wait:/bin/mosrun -h /etc/init.d/rc 2
l3:3:wait:/bin/mosrun -h /etc/init.d/rc 3
l4:4:wait:/bin/mosrun -h /etc/init.d/rc 4
l5:5:wait:/bin/mosrun -h /etc/init.d/rc 5
l6:6:wait:/bin/mosrun -h /etc/init.d/rc 6

z6:6:respawn:/bin/mosrun -h /sbin/sulogin
ca:12345:ctrlaltdel:/bin/mosrun -h /sbin/shutdown -t1 -a -r now
pf::powerwait:/bin/mosrun -h /etc/init.d/powerfail start
pn::powerfailnow:/bin/mosrun -h /etc/init.d/powerfail now
po::powerokwait:/bin/mosrun -h /etc/init.d/powerfail stop

1:2345:respawn:/sbin/getty 38400 tty1
2:23:respawn:/sbin/getty 38400 tty2
3:23:respawn:/sbin/getty 38400 tty3
4:23:respawn:/sbin/getty 38400 tty4
5:23:respawn:/sbin/getty 38400 tty5
6:23:respawn:/sbin/getty 38400 tty6

Note that all run-levels are prefixed by mosrun -h, and remember that
if a node runs services through the xinetd daemon or with cron jobs, such
services may require the host-locking command, too. On the other hand the
terminal sessions are not bount to the local host. Now that all vital services are
bound to the running host, we can install the MOSIX service in /etc/init.d/,
copying the script from the MOSIX user package, and creating the needed links
to the run-level directories to ensure MOSIX is started as the last service, and
stopped before any other:

cp /usr/src/MOSIX-1.13.4/mosix.init /etc/init.d/mosix

chmod a+x /etc/init.d/mosix

ls -l /etc/init.d/mosix
-rwxr-x--x 1 root root 3022 2006-09-06 15:27 mosix*

cd /etc/rc2.d/

348 14 Clustering

ln -s ../init.d/mosix S95mosix

ln -s ../init.d/mosix K05mosix

To ensure that MOSIX is stopped before halting the network services, thus
avoiding possible kernel panics, make sure to link the script also in run-levels
0, 1, and 6. Finally we can configure the cluster nodes in the mosix.map file
located in the /etc/ directory. The syntax of this configuration file is similar
to the machine file list used for PVM and MPI, with lines indicating the node
configuration: the first parameter specifies the node number, followed by the
IP address of the host, and finally by the number of consecutive IP addresses
to include in the cluster. Since our hosts have non-contiguous IP addresses,
we need to describe them individually, with a single IP address on each line:

1 192.168.127.141 1
2 192.168.127.103 1

After configuring the host list we can safely reboot the machine with our
new MOSIX enabled kernel. The next section assumes that in the meantime
the other host node02 got prepared with the MOSIX kernel, too.

14.4.3 Testing MOSIX

Once logged in, we can test immediately the functionality of the MOSIX
cluster using the provided monitor program mon, which graphically represents
the load on each node:

1.00 |
|
|
|
|

0.75 |
|
|

L |
|

O |
0.50 |

A |
|

D |
|

0.25 |
|
|
|
|

IDLE |
0 ---

Node # 1 2

For a simple test to show how MOSIX automatically migrates processes,
we can start a sequence of awk commands in background, as suggested in the
MOSIX documentation:

14.4 MOSIX Cluster Management 349

$ awk ’BEGIN {for (i=0;i<10000;i++) for (j=0;j<10000;j++);}’ &
[1] 898
$ awk ’BEGIN {for (i=0;i<10000;i++) for (j=0;j<10000;j++);}’ &
[2] 899
$ awk ’BEGIN {for (i=0;i<10000;i++) for (j=0;j<10000;j++);}’ &
[3] 900
$ awk ’BEGIN {for (i=0;i<10000;i++) for (j=0;j<10000;j++);}’ &
[4] 901
$ awk ’BEGIN {for (i=0;i<10000;i++) for (j=0;j<10000;j++);}’ &
[5] 902
$ awk ’BEGIN {for (i=0;i<10000;i++) for (j=0;j<10000;j++);}’ &
[6] 903
$ awk ’BEGIN {for (i=0;i<10000;i++) for (j=0;j<10000;j++);}’ &
[7] 904
$ awk ’BEGIN {for (i=0;i<10000;i++) for (j=0;j<10000;j++);}’ &
[8] 905
$ awk ’BEGIN {for (i=0;i<10000;i++) for (j=0;j<10000;j++);}’ &
[9] 906
$ awk ’BEGIN {for (i=0;i<10000;i++) for (j=0;j<10000;j++);}’ &
[10] 907
$ awk ’BEGIN {for (i=0;i<10000;i++) for (j=0;j<10000;j++);}’ &
[11] 908
$ awk ’BEGIN {for (i=0;i<10000;i++) for (j=0;j<10000;j++);}’ &
[12] 909

These one line awk scripts just simulate a computation intensive job with-
out further input or output. The processes are started on one specific host,
but seamlessly they get relocated on another node by the underlying MOSIX
system according to the local load of the machine. This can be nicely seen
from the mon output:

9.96 | #
| #
| #
| # #
| # #

7.47 | # #
| # #
| # #

L | # #
| # #

O | # #
4.98 | # #

A | # #
| # #

D | # #
| # #

2.49 | # #
| # #
| # #
| # #
| # #
| # #

0 ---
Node # 1 2

350 14 Clustering

Practice

Exercise 53. Check out the latest version of SSH. What is the current sup-
port for Kerberos and AFS? Are there situations where you need user keys
instead of Kerberos?

Exercise 54. Try the combination of MPI and Mosix. In this case MPI ini-
tializes the processes on determined nodes. Mosix takes care of load balancing
between them.

Exercise 55. Try the graphical interface for monitoring PVM. It is contained
in the xpvm package. POV-Ray is a ray tracer program which can benefit from
PVM and hence is suitable for testing.

Exercise 56. MOSIX works with the Linux kernel 2.4, but in the meantime
MOSIX2 is available for the new kernel 2.6. Test the new version which com-
bines support for cluster and grid computing. Compare this approach with
the Condor and BOINC projects.

15

Laboratories

I am among those who think that science has great
beauty. A scientist in his laboratory is not only a
technician: he is also a child placed before natural
phenomena which impress him like a fairy tale.
Marie Curie

15.1 Foreword

In a previous chapter we have employed the PXE system for an emergency op-
erating system obtainable from the network. Workstations are an integral part
of a company or organization, and it might arise the need for a specific client
or groups of machines, to have different boot options and to show or hide
installed operating systems: the Pre-Boot Execution Environment could be
used as a medium to provide a specific client with a particular boot option, as
we shall describe soon. Another problem often present in large environments is
constituted by the installation of several workstation providing them with an
operating system. PXE could once again become a useful tool to build a cus-
tomized operating system to suite our needs. In the following we will modify
the RIP Linux distribution, as we have already got accustomed with, but the
same procedure can be applied to any Linux distribution, such as Debian it-
self, to automatically clone machines or even start an unattended installation
process. The last section will be dedicated to the process of installing a client
that has to work as a kiosk, a public computer that is used by several guests
often offering just one predefined program such as a web browser. In the fol-
lowing we assume that a simple client client1.example.edu is installed, with
a known MAC address and already configured to run one or more operating
systems.

15.2 Multiboot Clients

We have already introduced PXE to have a rescue operating system on our
network. In this section we make use of the same infrastructure to boot clients
with multiple installed operating systems into a specific one, letting the system
administrator specify a choice, or even providing the user a selection of boot
options from a specific list.

352 15 Laboratories

Client configuration

Let us first analyze our example client and the installed operating systems: in
our client we installed both Debian Linux and Microsoft Windows operating
systems, as we can see from the partition list:

fdisk -l

Disk /dev/hda: 40.0 GB, 40060403712 bytes
255 heads, 63 sectors/track, 4870 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 1 3187 25599546 7 HPFS/NTFS
/dev/hda2 3188 3190 24097+ 83 Linux
/dev/hda3 3191 3299 875542+ 82 Linux swap / Solaris
/dev/hda4 3300 4870 12619057+ 83 Linux

The first partition is used by Windows and it is formatted with NTFS,
meaning that Linux cannot have a write-enabled access to the data stored
in the /dev/hda1 partition. The third partition is necessary for Linux swap
space, used by the operating system as additional virtual memory device1.
The second and forth partitions are /boot/ and / for Linux, respectively. Our
objective is to enable the network boot as the default boot device, done by
acting on the firmware, EFI, or BIOS depending on the client. On the server,
supporting the PXE boot, we want to decide which one of the two systems
has to boot, possibly avoiding any manual intervention like the choice from a
list at boot time.

15.2.1 Machine-specific Boot

Once the client has been enabled to boot from the network, we need to spec-
ify the DHCP settings regarding the PXE environment, such as the TFTP
server and the boot image, as we have previously done in order to enable the
emergency operating system boot:

host client1 {
hardware ethernet 00:0b:6a:84:09:93;
fixed-address client1.example.edu;
filename "pxelinux.0";
server-name "tftp.example.edu";

}

Besides mapping the given MAC address to the host name client1,
there are the reference to the TFTP server and the boot image pxelinux.0,
passed to the machine upon client request. On the TFTP server, we have to
modify the already installed RIP Linux in order to allow a machine-specific
configuration: in /var/lib/tftpd/ we have a configuration directory called
1 Linux needs a raw swap partition, while other operating systems such as Apple

MacOS X and Microsoft Windows make use of a file-based solution.

15.2 Multiboot Clients 353

pxelinux.cfg, where right now just the default boot is present. Each host
can have a specific configuration file with a name containing its MAC address
in the format 01-MAC, in our case, being 00:0b:6a:84:09:93 the machine
MAC address, it is the following:

cat /var/lib/tftpd/pxelinux.cfg/01-00-0b-6a-84-09-93
DEFAULT local
PROMPT 0
TIMEOUT 10

LABEL local
LOCALBOOT 0
SAY Booting from local disk.

These settings correspond to those of PXELinux, starting the client with
the configuration detailed in the DEFAULT field without showing a PROMPT,
and booting the system with the default medium upon a timeout of TIMEOUT
in tenths of a second, in our case then, 1 second. The default boot setting
local then displays a message indicated by the SAY directive. The LOCALBOOT
option specifies the default boot mechanism: a value of 0 sets the client to
operate normally. We have to restart the DHCP service, such that it can
consult the new configuration, whereas the TFTP service just accesses the
new files without further interventions. Test, if the client boots correctly over
the network showing the “Booting from local disk.” message: in this case
the host boots from Master Boot Record or MBR which is the first sector of
the primary hard drive.

15.2.2 Customized GRUB

GRUB, the Grand Unified Boot Loader from the GNU Project, is a universal
boot loader used in many distributions, and allows a greater flexibility in its
configuration than its historical counterpart LILO, the Linux Loader. One of
the major differences between the two is that LILO hardwires the configu-
ration in the MBR, meaning that any change in the system settings need a
reinstallation of the LILO loader. GRUB overcomes this barrier by directly
accessing the boot sequence stored into files in a particular disk partition: as
a consequence GRUB can be employed only on file systems2 it is aware of.

In the following we recompile GRUB on the TFTP server in order to send
a customized boot loader to our client machine, which is able to boot just a
specific partition of our choice. For this we download the GRUB source code,
uncompress it, and create a directory where we will store customized boot
menus:

2 Currently GRUB supports several file systems, among which we may mention
ext2, ext3, fat, jfs, reiser, and xfs.

354 15 Laboratories

cd grub-0.97/

mkdir menus

In this directory we create two menu files, one for each operating system
installed on our client, that is Windows and Linux. GRUB is compiled with
a default menu which we are going to set to one of these two:

cat menu.windows
default 0
timeout 0

title Microsoft Windows XP Professional
root (hd0,0)
makeactive
chainloader +1

cat menu.linux
default 0
timeout 0

title Debian GNU/Linux, kernel 2.6.8-3-686
root (hd0,3)
kernel /boot/vmlinuz-2.6.8-3-686 root=/dev/hda4 ro
initrd /boot/initrd.img-2.6.8-3-686
boot

As we can see, a GRUB boot menu list contains initial values such as the
default boot item, with increasing numbers starting at 0, and the automatic
boot timeout. Then we need to specify all the stanzas that describe each boot
option, with a title and the necessary root partition. The Linux configura-
tion specifies also the Linux kernel and an optional initial RAM disk used by
Debian to start the Linux system.

The following steps show how to compile GRUB with a given default menu,
assuming that at least the development packages make and gcc are installed:

./configure --enable-preset-menu=menus/menu.windows --enable-sis900 --enable-diskless

make

Note that we also compile a network device driver into GRUB which op-
tionally permits further network operation: the choice of that driver depends
on the system at hand, checking with configure --help for all the possible
options. The --enable-diskless option prevents that GRUB consults any
menu file on the hard disk, and uses directly the provided default. The com-
pilation will create a PXE-specific file located in the stage2/ subdirectory of
the source code, and it should be copied into the TFTP root directory:

ls -l stage2/pxegrub
-rw-r--r-- 1 root root 122688 2006-10-09 11:48 stage2/pxegrub

cp stage2/pxegrub /var/lib/tftpd/pxegrub.windows

15.3 PC Cloning 355

We repeat the same steps adapted for the Linux system, so that we end
up with two different PXE boot images, one for Windows and one for Linux:

cd /var/lib/tftpd/

ls -l pxegrub.*
-rw-r--r-- 1 root root 122752 2006-10-09 11:55 pxegrub.linux
-rw-r--r-- 1 root root 122688 2006-10-09 11:52 pxegrub.windows

All we need now for selecting the default boot image, is to create a symbolic
link called pxegrub.0 to the image of our choice, in our example we will use
Windows, and then modify the machine specific configuration to match the
new configuration:

ls -l pxegrub.0
lrwxrwxrwx 1 root root 15 2006-10-09 11:56 pxegrub.0 -> pxegrub.windows

cat pxelinux.cfg/01-00-0b-6a-84-09-93
DEFAULT pxegrub.0
APPEND -
TIMEOUT 0

Note that the file name suffix .0 is critical for a correct configuration
which derives from PXELinux. Now the system is ready to boot directly with
Microsoft Windows, without any query to the user, getting the decision which
image to boot from the network. The client1 machine can be booted now,
checking that it directly boots with Microsoft Windows: the entire process can
be easily customized to provide several choices and allowing users to select a
boot option.

15.3 PC Cloning

Another possibility, offered by this network boot procedure, is to create an
automated PC cloning facility. There are already several cloning solutions
on the market, for instance NetBackup from Symantec Corporation or the
NovaBACKUP software from NovaStor Corporation. In the following we will
modify the RIP Linux distribution such that NFS gets started automatically
and used to store or fetch disk images over the network. As for other solutions,
if you need a high-load backup solution it is strongly advisable to research for
commercial products.

15.3.1 Customizing RIP Linux

NFS has already been introduced as a way of sharing resources in case of
some emergency situation; the support for NFS is included in the RIP Linux
system and can be employed for automatic machine cloning. We modify the
startup scripts of RIP Linux to start networking and mount our previously
exported NFS partitions, here we recall the corresponding exports:

356 15 Laboratories

/var/lib/nfs/readonly 192.168.127.0/255.255.255.0(ro,sync)
/var/lib/nfs/readwrite 192.168.127.0/255.255.255.0(rw,all_squash,sync)

We wish now to modify the operation of RIP Linux: for this we leave the
kernel untouched but change the initial RAM disk, a temporary file system
used at boot time. Let us copy the RIP initial RAM disk and mount it in a
valid mount point:

cd /tmp

cp /var/lib/tftpd/initrd.gz .

gunzip initrd.gz

mkdir initrd.mount

mount -o loop initrd initrd.mount

The last mount command uses a loop device, permitting to mount as if
it were a regular file system. At the time of writing this RIP initial ramdisk
contains a compressed root filesystem rootfs.tgz which we uncompress in
order to modify it below the directory root.mount:

ls initrd.mount/
bin/ dev/ lib/ mnt/ root/ sbin/ usr/
boot/ etc/ linuxrc* proc/ rootfs.tgz tmp/ var/

cp initrd.mount/rootfs.tgz .

mkdir root.mount

cd root.mount

tar zxf ../rootfs.tgz

ls
acpi/ genpowerd.conf lvm/ pcmcia/ shells
adjtime group magic ppp/ skel/
apmd_proxy gshadow mailcap profile smartd.conf
at.deny host.conf modprobe.conf profile.d/ ssh/
cron.daily/ hosts modules.conf protocols ssmtp/
cron.hourly/ inittab modules.devfs raidtab sudoers
cron.monthly/ inputrc mtab rc.d/ sysctl.conf
cron.weekly/ issue mtools.conf rpc syslog.conf
dhcpc/ ld.so.cache networks samba/ termcap
dialogrc ld.so.conf nntpserver securetty vche.conf
DIR_COLORS localtime nsswitch.conf serial.conf vga/
exports login.access partimaged/ services wgetrc
fstab login.defs passwd shadow whois.conf

We start with a modification of the /etc/rc.d/rc.inet1.conf file that
drives the network interfaces known to the system, enabling the network at
boot time with DHCP support:

IPADDR[0]=""
NETMASK[0]=""
USE_DHCP[0]="yes"
DHCP_HOSTNAME[0]=""

15.3 PC Cloning 357

Additionally we act on the last script that is started in the RIP system
rc.local in order to mount the NFS exports:

#!/bin/sh
/etc/rc.d/rc.inet1 start
/etc/rc.d/rc.portmap start
cd /tmp
mkdir ro
mkdir rw
mount -o ro 192.168.127.154:/var/lib/nfs/readonly /tmp/ro
mount -o rw 192.168.127.154:/var/lib/nfs/readwrite /tmp/rw

Note that rc.inet1 and rc.portmap must have the executable bit set
in order to work, which might not be the default case. It is at this point
where other commands could be appended for further customization, starting
an automated process as cloning: we will not use an unmanned script other
than mounting the NFS exports for didactic reasons, anyway all the process
can be easily handled by an unsupervised procedure. Once that the system
configuration is finished, we need to recreate the compressed root file system,
and copy it into the mounted initial RAM disk directory:

cd /tmp/root.mount

tar czf ../rootfs.tgz *

cp ../rootfs.tgz ../initrd.mount/

The compressed rootfs.tgz archive has to be created in its mount point
so that it contains only relative paths, and not absolute ones. Now we can
unmount the initrd, compress it, and finally move it into the TFTP direc-
tory:

cd /tmp

umount /tmp/initrd.mount

gzip initrd

cp initrd.gz /var/lib/tftpd/newinitrd.gz

To test the modified system, we just have to modify the APPEND parameter
with respect to the default RIP configuration of PXE for the machine we want
to use, adding the string initrd=newinitrd.gz. Booting into the modified
RIP system, we should see, after entering as root without password, that it
correctly mounted the NFS exports:

cd /tmp

ls -l
total 12
drwxr-xr-x 2 root root 4096 Jul 13 14:18 ro
drwxrwxrwx 2 root root 4096 Oct 9 13:31 rw
-rw-r--r-- 1 root root 11 Oct 9 15:30 skip_tmpfs

358 15 Laboratories

mount
...
192.168.127.154:/var/lib/nfs/readonly on /tmp/ro type nfs (ro,addr=192.168.127.145)
192.168.127.154:/var/lib/nfs/readwrite on /tmp/rw type nfs (rw,addr=192.168.127.145)

15.3.2 Partition Images

There are many tools to store and recover disk images, one of the easiest is the
classic UNIX dd command, which operates just on a data stream: it has no
further knowledge about a concrete file system. More sophisticated is the dump
and restore combination, permitting a full and incremental backup solution,
unfortunately limited to ext2 and ext3 file systems. Another option is the
rsync program which can be combined with ssh: both are included in RIP
and allow for a synchronization of the local system with respect to a remote
reference system. Only the differences between files are propagated over the
network, allowing also the synchronization of special file types (e.g. symbolic
links, device files), and having the advantage of a complete transparency with
respect to the underlying file system3.

Here we show the partimage tool which acts on one entire partition, but
with the useful knowledge of the underlying file system: currently it has full
support for ext2, ext3, fat, hpfs, jfs, reiser, and xfs, while in the future
also ufs, hfs, ntfs will be supported. This command allows us to create
partition images and split them into files of a fixed size, useful in case of NFS
(with a 2GB file size limit) or with other file systems that do not allow large
file support. Although the procedure we are going to show could be completely
automated in a startup script, for purpose of explanation we start using the
commands interactively.

As example we create a dump of the Windows partition from our client
machine. The partimage tool can be used either interactively or with a com-
mand line. Interactively we can choose many options in a semi-graphic fashion,
such as the dump file name, the compression method to use, the maximum
file size, and a human-readable description:

+--------------------- Partition Image 0.6.4 ---------------------+
| * Partition to save/restore |
| hda1 ntfs 24.41 GiB |
| hda2 ext2fs 23.53 MiB # |
| hda3 swap (v1) 855.02 MiB |
| hda4 ext3fs 12.03 GiB |
| |
| |
| |
| |
| * Image file to create/use |
| /tmp/rw/windows___ |

3 The rsync tool may also synchronize owner, group and permission bits, although
such features may not be functional on some implementations such as the fat file
system.

15.4 Kiosks 359

| |
| Action to be done: <Next (F5)> |
| (*) Save partition into a new image file |
| () Restore partition from an image file <About> |
| () Restore an MBR from the imagefile |
| <Exit (F6)> |
| [] Connect to server |
| IP/name of the server: _________________________ Port: 4025__ |
| SSL disabled at compile time |
+---+

Just the first screen of user interaction is shown, where we use the NFS
mounted file space under /tmp/rw/, and it guides the user with a wizard
through the setting of all the needed parameters such as the already mentioned
file size split limit. Additionally, the partimage command has a dedicated
SSH-aware server which can be installed on a central host: in this case we
have to guarantee, that the client and server versions are exactly the same.

Using the presented combination of PXE boot and NFS mountable dump
files created by partimage, it is possible to easily deploy an automated and
completely unattended machine cloning, easily extendable to handle several
computers at once.

15.4 Kiosks

It is nowadays a common practice to provide guest users with public available
computers only supporting a single operation, such as browsing the web, called
kiosks. These computers include a limited minimal graphical interface running
a program, in our case, a web browser. Moreover, the browser should be locked
up, so that it does not store sensible informative contents. This section shows
how to modify a locally installed Debian Linux to grant only a minimal access,
allowing interaction through the Mozilla Firefox web browser, running on top
of a minimal X Windows system under a restricted user. Such settings could
provide a public Internet web access point, but it is also helpful for online
exams too, maybe with the introduction of additional constraints, such as
allowing selective connections with the use of a firewall.

15.4.1 Configuring a Kiosk

Our kiosk needs a minimal graphic interface and a web browser, hence we will
install the XFree86 server first, distributed via the x-window-system pack-
age. The configuration of an X-based system is out of the scope of this book,
since it is highly dependent on the provided hardware. Afterwards we install
the mozilla-firefox package such that all the needed libraries for Firefox
are downloaded: the actual browser we prefer is the more recent Mozilla Fire-
fox version 1.5, downloaded from the official site and correctly unpacked in
/usr/local/src/. For kiosk mode we need this up to date version making it
available in /usr/local/bin/:

360 15 Laboratories

cd /usr/local/bin/

ln -s /usr/local/src/firefox/firefox

To enhance kiosk security we create a local user kiosk, adding it to the
audio and video groups, so that the public computer will be enabled to such
contents:

adduser kiosk

adduser kiosk audio

adduser kiosk video

Immediately we try to login as the kiosk user, testing the recent Firefox
version. This has to be done with a running X windows environment which is
provided through the xinit tool, feeding it with the program to run, in our
case, the web browser:

$ xinit /usr/local/bin/firefox

As an additional feature, as kiosk user we browse to the Mozilla site and
search for Add-ons for Firefox: the web browser still needs to be enabled
in kiosk-mode. One possible add-on for kiosk-mode browsing is the R-kiosk
Plugin for Firefox, which can be easily downloaded and installed so that it will
become active immediately after restarting the browser. This plugin forces a
full-screen mode, and reduces the browser interface to a bare minimum (e.g. it
disables windows borders, program menus, and status bar). In order to remove
the plugin, Firefox has to be run in “safe mode” with the -safe-mode option,
yet it does not restrict the destination reachable by the browser.

15.4.2 Stand-alone Kiosks

To enhance security, we make our kiosk host a pure stand-alone machine,
enabling the web browser at startup, and inhibiting the user login process.
First we lock down our kiosk user, such that there is no valid login shell to
execute commands, furthermore we exclude any kind of interactive login on
a console by creating the /etc/nologin file, which inhibits interactive logins
except for root:

usermod -s /bin/false -L kiosk

touch /etc/nologin

All the textual consoles should be turned off in the /etc/inittab file,
which is responsible for all tasks to be activated at boot time. Hence all
getty-related lines should be commented out:

15.4 Kiosks 361

id:2:initdefault:
si::sysinit:/etc/init.d/rcS
~~:S:wait:/sbin/sulogin

l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6
z6:6:respawn:/sbin/sulogin

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

pf::powerwait:/etc/init.d/powerfail start
pn::powerfailnow:/etc/init.d/powerfail now
po::powerokwait:/etc/init.d/powerfail stop

#1:2345:respawn:/sbin/getty 38400 tty1
#2:23:respawn:/sbin/getty 38400 tty2
#3:23:respawn:/sbin/getty 38400 tty3
#4:23:respawn:/sbin/getty 38400 tty4
#5:23:respawn:/sbin/getty 38400 tty5
#6:23:respawn:/sbin/getty 38400 tty6

It is also possible to ignore the famous key combination CTRL+ALT+DEL
by commenting the line starting with the ca: string: this restricts users from
forcing a reboot from a virtual terminal. It is advisable for public kiosks to turn
off all unnecessary services: the X Font Server xfs, and some administrative
daemons like the cron service are sufficient. To activate our kiosk at boot time,
we decide to create our own startup script in /etc/init.d/ called kiosk,
with symbolic links in all the necessary run-level directories called S99kiosk,
so that it is the last script to be called: startup scripts will be loaded in the
order specified by the number contained in their names. This script contains
an infinite loop which starts the browser as the kiosk user by means of the
sudo command. Therefore install the sudo package first, and next proceed
creating the shell script:

#!/bin/bash
trap "" SIGHUP SIGINT SIGTERM
url=http://www.google.com/

while true;
do

/usr/bin/sudo -u kiosk -H /usr/bin/X11/xinit \
/usr/local/bin/firefox $url -- -nolisten tcp
/usr/bin/pkill -u kiosk
/bin/sleep 3

done

/sbin/reboot

The X server is started without opening TCP/IP ports for security reasons
by the option -nolisten tcp, while the initial trap instruction prevents user
interrupts such as the CTR+C key combination. As the last step any local user
should be allowed to use the X server including kiosk, done by instructing the

362 15 Laboratories

X server with the allowed users directive in the Xwrapper.config located
in the /etc/X11/ directory:

allowed_users=anybody
nice_value=0

After rebooting the machine, it will automatically run in kiosk mode.
Killing the X server with the CTRL+ALT+BACKSPACE key combination will sim-
ply restart the kiosk mode after three seconds waiting, as indicated by the
script with the sleep command. In normal operation there is no way to login
into this host: this assumes that no daemons, for instance sshd, is running.
Maintenance still can be done done from the UNIX “single user mode”, hence
protect your firmware, boot loader, and the root user with suitable passwords.

Practice

Exercise 57. Confront RIP with PXELinux and ISOLinux. Can RIP be suf-
ficient for your requirements, or do you have to produce an own Linux version?

Exercise 58. Do you need cloning and to which extent? Does the described
procedure scale for your case? Compare with commercial solutions and inves-
tigate recent multicast possibilities.

Exercise 59. Look for other kiosk modes. Ubuntu contains now Opera, which
includes by default a kiosk mode, too.

Exercise 60. Benefit from an AFS configuration such that all laboratory
clients could have a BSD like rc.local script to be executed as the very
last one during startup. If the client is enabled for AFS, then this script could
copy some global rc.global script from the AFS file space and execute it.

16

Collaborative Software

No one wants advice, only collaboration.
John Ernst Steinbeck

16.1 Foreword

The field of collaborative software combines various methods to let teams
communicate, share information, and exchange files. This chapter will deal
with this topic, introducing some of the most used ways of interaction on a
network, apart from the email: the instant messaging. Actively there are sev-
eral different protocols and software available on the market, some of which
are distributed free of charge, such as AIM, ICQ, Skype, and WLM; or on
the commercial side the IBM collaborative software Lotus Notes, based on
a client-server architecture, include an instant messaging platform called Lo-
tus Sametime. The other side of team collaboration presented in this chapter
regards software development. Large companies and universities employ soft-
ware version control systems to allow multiple developers to work on the same
code without incurring into conflictual changes, or in case, resolve modifica-
tion problems tracking each change. In the following we are going to introduce
a secure instant messaging solution based on an open standard protocol, and
successively configure two of the most used software version control, allow-
ing also anonymous source code download, a usual facility provided by open
projects.

16.2 Instant Messaging

The instant messaging, similarly to the email system, has a long history, trac-
ing its root in the UNIX commands as write that could send a message to
a user on a particular console, in a one-way only fashion. The first form of
a real instant messaging software, allowing two users to have a conversation,
was the talk command, which paired with the talkd daemon provided an
earlier form of an IM infrastructure, with a textual interface as pictured in
Fig. 16.1.

364 16 Collaborative Software

Fig. 16.1. A talk session

Successively in the 90s there was an explosion of graphical IM programs,
with the renowned ICQ program, intended to sound as “I seek you”, and
immediately after America Online Inc., released the AIM program and even-
tually acquired the Mirabilis software company that developed ICQ. Later
there were other clients available such as Yahoo! Messenger, and Microsoft’s
MSN Messenger, now known as Windows Live Messenger. Among other his-
torical quick communication mediums we may mention the Internet Relay
Chat, granting users a conferencing environment based on channels focused
on a topic (e.g. #debian, #clanguage) and multi-user communication.

In 1998 Jeremie Miller started the development of the Jabber protocol,
which later became an IETF standard named XMPP, the Extensible Messag-
ing and Presence Protocol. The specification supports XML-based transmis-
sions of instant messages between peers, and being designed as extensible, it
can provide also voice capabilities as the Skype program. The XMPP protocol
is already used in other products, such as Google Talk, and provides also sup-
port for SSL-encrypted communications. Jabber functions as a decentralized
networking service comparable to SMTP: two users can communicate through
their respective Jabber servers, which take care of exchanging the actual data.
In the following we are going to create a Jabber server for our organization
employing secure connections and authenticating over our Kerberos infras-

16.2 Instant Messaging 365

tructure: we assume then that a Kerberos client jabber.example.edu has
been already properly configured.

16.2.1 Using Backports

The Debian stable distribution contains many well integrated packages, with
a security team guaranteeing fast response times for discovered security prob-
lems. On the downside several packets might become outdated during the
usually long lifetime of the stable version. To overcome this problem there
exists a repository of software ported back to the current stable Debian dis-
tribution called Backports. This back-ported software repository can simply
be activated by modifying the configuration file sources.list of the apt tool
which is located in /etc/apt/:

deb http://www.backports.org/debian/ sarge-backports main

In general, it is advisable to use packages from the stable branch only,
but occasionally we wish to get a software from the Backports in order to
install newer services, such as the Jabber server version 2, not included in the
current Debian stable branch. In order to avoid conflicts with newer pack-
ages, provided by the new source, we set a low priority to packages from the
back-ported repository by adding the /etc/apt/preferences file with the
following lines:

Package: *
Pin: release a=sarge-backports
Pin-priority: 200

Before proceeding, we need to update the current list of known packages,
such that also the new repository is consulted by the apt tools:

apt-get update
Get:1 http://www.backports.org sarge-backports/main Packages [484kB]
Hit http://mirror.switch.ch stable/main Packages
Hit http://mirror.switch.ch stable/main Release
Hit http://mirror.switch.ch stable/main Sources
Hit http://mirror.switch.ch stable/main Release
Get:2 http://www.backports.org sarge-backports/main Release [119B]
Get:3 http://security.debian.org stable/updates/main Packages [372kB]
Get:4 http://security.debian.org stable/updates/main Release [110B]
Fetched 856kB in 8s (100kB/s)
Reading Package Lists... Done

From this moment on, all software from the main Backports repository is
available, too; nevertheless the Debian stable branch is preferred.

16.2.2 Installing Jabber

As message storage Jabber provides different backends like MySQL, Post-
greSQL, and Berkeley DB: our choice is to use the last one, since it pro-

366 16 Collaborative Software

vides a straightforward installation, remembering that files related to Berke-
ley database have to stay outside AFS space due to locking problems. Let us
proceed with installing the jabberd2-bdb package and stopping the Jabber
daemon immediately:

apt-get install jabberd2-bdb

/etc/init.d/jabberd2-bdb stop
Stopping Jabber Services: c2s s2s sm resolver router.

The configuration files for the Jabber service are stored in the jabberd2/
subdirectory of /etc/ in XML files. We are going to modify the c2s.xml file
settings first, which is the file that determines all client-to-server connections.
In the local stanza, we set the correct host name to jabber.example.edu
and enable pam as the authentication module in the authreg stanza. Next we
have to remove from the register stanza the enable and password entries:
this means to deny the change of passwords via Jabber since it will use our
Kerberos-enabled facilities, and also external users are denied to register freely
on our server, since we did not intend to open our Jabber service to the public.
So the c2s.xml file will look like the following:

<c2s>
...
<local>

<id>jabber.example.edu</id>
<ip>0.0.0.0</ip>
<port>5222</port>

</local>
...
<authreg>

<module>pam</module>
<register>

<instructions>Enter your username and password.</instructions>
</register>

...
</authreg>

</c2s>

Next we have to change the session manager configuration file sm.xml: as
on the previous file we have to set our host name in the main stanza called
sm, and we want to enable our users to use Jabber without any further system
administration approval, so in the user stanza enable the auto-create entry.
The file should then look like the following:

<sm>
<id>jabber.example.edu</id>
...
<storage>

<driver>db</driver>
<db>

<path>/var/lib/jabberd2/db</path>
<sync/>

</db>
</storage>
<aci>

16.2 Instant Messaging 367

<acl type=’all’>
<jid>sysadmin@example.edu</jid>

</acl>
<acl type=’broadcast’>

<jid>sysadmin@example.edu</jid>
</acl>
<acl type=’disco’>

<jid>sysadmin@example.edu</jid>
</acl>

</aci>
...
<user>

<auto-create/>
<template>
</template>

</user>
</sm>

From the example above we notice as we set also the sysadmin user
to have administrative rights over the Jabber service: a Jabber user is
then identified by the username followed by our organization domain, as in
sysadmin@example.edu. With the help of PAM our users can be authenti-
cated using Kerberos, symmetrically to the settings we provided to Postfix and
Courier, without any intermediate authentication daemon. The corresponding
Jabber 2 service, called jabberd, will make use of the PAM Kerberos module
pam krb5.so:

auth required pam_krb5.so
account required pam_permit.so
password required pam_permit.so
session required pam_permit.so

16.2.3 Securing Jabber

Jabber uses plain text passwords to authenticate, hence we want our con-
nections to be established over a secure channel, such that these passwords
can not be easily intercepted. As usual, create a certificate for the host
jabber.example.edu and put both, private key and public certificate, to-
gether in a single file as needed by Jabber. Make sure that this file is readable
by the jabber user, since Jabber does not run as root, a fact that ensures
additional security:

ls -l /etc/jabberd2/server.pem
-rw------- 1 jabber nogroup 8123 2006-08-04 15:33 server.pem

To enable SSL for Jabber, we have to make further modifications to the
configuration file c2s.xml where we have to specify the location of the cer-
tificate file inside the local network stanza. Old Jabber clients start directly
an SSL connection on the port 5223 without any TLS handshake, and if
you want to support them too, you should enable the ssl-port entry in the
local stanza. The last step is, to insist on a TLS connection by enabling the

368 16 Collaborative Software

require-starttls entry, denying any insecure connections, thus the c2s.xml
file will now look like the following:

<c2s>
...
<local>

<id>jabber.example.edu</id>
<ip>0.0.0.0</ip>
<port>5222</port>
<pemfile>/etc/jabberd2/server.pem</pemfile>
<require-starttls/>
<ssl-port>5223</ssl-port>

</local>
...

</c2s>

From the above configuration, we observe that TSL is required on port
5222, while port 5223 directly starts an encrypted communication. After this
preparation the daemon can be safely started:

/etc/init.d/jabberd2-bdb start
Starting Jabber Services: router resolver sm s2s c2s.

We verify that Jabber is using SSL by looking at the log file located in the
/var/log/jabberd2/ directory:

cat c2s.log
Fri Aug 4 15:44:13 2006 [notice] starting up
Fri Aug 4 15:44:13 2006 [info] process id is 3357, written to /var/run/jabberd2/c2s.pid
Fri Aug 4 15:44:13 2006 [notice] initialised auth module ’pam’
Fri Aug 4 15:44:13 2006 [notice] [jabber.example.edu] configured; realm=(null)
Fri Aug 4 15:44:13 2006 [notice] attempting connection to router at 127.0.0.1, port=5347
Fri Aug 4 15:44:13 2006 [notice] connection to router established
Fri Aug 4 15:44:13 2006 [notice] [0.0.0.0, port=5222] listening for connections
Fri Aug 4 15:44:13 2006 [notice] [0.0.0.0, port=5223] listening for SSL connections
Fri Aug 4 15:44:13 2006 [notice] ready for connections

Port 5222 accepts only TLS enabled connections and port 5223 requires
immediately SSL, and both will accept connections from any host.

Closing All Ports

Jabber version 2 by default enables external server-to-server networking and
router connections, which are recent new features. This means that on our
server we have more than these two open ports. This can be seen by the nmap
tool using the host’s IP address:

nmap jabber.example.edu -p5000-6000

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-08-04 15:45 CEST
Interesting ports on jabber.example.edu (192.168.127.237):
(The 997 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
5222/tcp open unknown
5223/tcp open unknown

16.2 Instant Messaging 369

5269/tcp open unknown
5347/tcp open unknown

Nmap finished: 1 IP address (1 host up) scanned in 0.372 seconds

Since we do not want to supply these features publicly, the last two ports
should be restricted to localhost. In the resolver.xml file the use of port
5347 has to be bound to localhost:

<resolver>
<id>resolver</id>
...
<router>

<ip>127.0.0.1</ip>
<port>5347</port>
<user>jabberd</user>
<pass>secret</pass>
<retry>

<init>3</init>
<lost>3</lost>
<sleep>2</sleep>

</retry>
</router>
...

</resolver>

Here the IP address 127.0.0.1 is used for localhost. The same modi-
fication should be done to the router.xml file, restricting it to localhost,
too:

<router>
<id>router</id>
...
<local>

<ip>127.0.0.1</ip>
<port>5347</port>
<users>/etc/jabberd2/router-users.xml</users>
<secret>secret</secret>

</local>
...
<aci>

<acl type=’all’>
<user>jabberd</user>
<user>sysadmin@example.edu</user>

</acl>
</aci>

</router>

The last file to modify is the server-to-server connection s2s.xml, closing
the 5269 port to all but the localhost machine:

<s2s>
<id>s2s</id>
...
<router>

<ip>127.0.0.1</ip>
<port>5347</port>
<user>jabberd</user>
<pass>secret</pass>

370 16 Collaborative Software

<retry>
<init>3</init>
<lost>3</lost>
<sleep>2</sleep>

</retry>
</router>
...
<local>

<ip>127.0.0.1</ip>
<port>5269</port>
<resolver>resolver</resolver>

</local>
...

</s2s>

After these modifications the Jabber 2 daemon has to be restarted to
consult the new setup, and the nmap tool should report only two open Jab-
ber related ports now: 5222 and 5223. In order to test our Jabber server we
chose the testuser and a new sambauser created for the occasion, with re-
sults pictured in Fig. 16.2 on the Windows XP operating system running the
Jabber-aware free client GAIM.

Fig. 16.2. A Jabber IM conversation session

16.3 Collaborative Development 371

16.3 Collaborative Development

This section shows two applications that support code management also
known as revision control: these applications back the maintenance of source
code for complex software development. An early system has been SCCS, the
Source Code Control System, originally developed by the Bell Labs for the IBM
System/370 system, and later ported on the PDP-11 machine under UNIX.
Later this got replaced by RCS, the Revision Control System, developed by
by Walter Tichy at the Purdue University.

Two more recent tools are CVS and Subversion, produced by Dick Grune
(as the original developer), and the CollabNet Inc., respectively. The Concur-
rent Versions System, or CVS, overcomes the restrictions of RCS now sup-
porting work on multiple files concurrently, while Subversion, or SVN, adds
further features to CVS, such as atomic operations, fine-grained file locking,
and native support for binary files.

Both these systems aid the development of software, and rely on a cen-
tralized server that resolves conflicts between concurrent submits trying to
merge both versions, and not by just locking the files for exclusive access. The
purpose of versioning software is to initialize a file set for a common project
in some central repository: a developer can “check out” a working copy of the
file set, modify it locally, and then “commit” all changes after finishing work.
On this occasion a merge might be necessary with the work of another devel-
oper. In some situations one wants to grant access to the developed software
to everybody: in this case we need on the one hand some kind of anonymous
access. On the other hand this should not compromise the security of the en-
tire system. So let us start to prepare a host called src.example.edu which
has to be synchronized with respect to our network time server, a Kerberos
client, and with active LDAP name service switch. Additionally it needs an
active SSH daemon with Kerberos support provided by the ssh-krb5 package,
as we have previously seen. A complete description of CVS and Subversion,
their usage and terminology is out of the scope of this book, which provide a
possible solution to software managing for readers already accustomed with
such software products.

16.3.1 Anonymous Users

A versioning system that provides source code access to users other than
developers should enable some sort of anonymous user, and in the context
of AFS it is sometimes handy to create such a user with UID 32766, since
this reflects the PTS entry for unauthenticated users. So let us create a local
anonymous user, with a simple password:

adduser anonymous
Adding user ‘anonymous’...
Adding new group ‘anonymous’ (1001).
Adding new user ‘anonymous’ (1001) with group ‘anonymous’.

372 16 Collaborative Software

Creating home directory ‘/home/anonymous’.
Copying files from ‘/etc/skel’
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for anonymous
Enter the new value, or press ENTER for the default

Full Name []:
Room Number []:
Work Phone []:
Home Phone []:
Other []:

Is the information correct? [y/N] y

It is usual to provide anonymous users with the password matching the
username. Now, an anonymous user should not be able to do anything except
what is explicitly permitted: this means that such user cannot have a full ac-
cess to a normal shell. A tool called Restricted Shell provides such restrictions,
therefore we install the rssh package with the usual apt tool:

apt-get install rssh

Now we can edit the configuration file /etc/rssh.conf, and allow for
example only the operation of secure copy scp:

logfacility = LOG_USER
allowscp
umask = 022

To activate these restrictions we have to change the default shell for the
the anonymous user to this specific shell rssh:

usermod -s /usr/bin/rssh anonymous

To test the setup, we try to open an SSH connection to the src host, which
should not be possible because of the constraints imposing a secure copy as
the only available action:

$ ssh anonymous@src.example.edu
Password:
Last login: Thu Sep 21 13:14:01 2006 from client1.example.edu

This account is restricted by rssh.
Allowed commands: scp

If you believe this is in error, please contact your system administrator.

Connection to src.example.edu closed.

Instead, an scp command should be allowed, and as example we transfer
a file which got copied during the creation of the user account:

16.3 Collaborative Development 373

$ scp anonymous@src.example.edu:.bashrc .
Password:
.bashrc 100% 1834 288.1KB/s 00:00

16.3.2 Concurrent Versions System

CVS is the first of two presented applications to allow for several users to
collaborate on a set of files. It provides a dedicated server for public remote
access called pserver, but since it opens a new port, we prefer to employ the
secure SSH protocol permitting the anonymous user to access the repository
with the help of the restricted shell. We start with installing the cvs pack-
age and choose a directory, where to store the project files, for instance the
/home/cvs/ location:

apt-get install cvs

All CVS users have to belong to a common group, which we call src,
hence make sure that all users with write access to the repository belong to
this group:

ls -ld /home/cvs
drwxrwsr-x 3 root src 4096 2006-09-21 13:30 /home/cvs/

groups testuser
testuser : testgroup src

New projects can be immediately initiated, securely via SSH, for example
our testuser can “import” the previous MPI example with the help of the cvs
command, which consults the environment variables CVSROOT and CVS RSH:

$ klist
Ticket cache: FILE:/tmp/krb5cc_10000_Ywe67f
Default principal: testuser@EXAMPLE.EDU

Valid starting Expires Service principal
09/21/06 12:46:26 09/21/06 22:46:26 host/client1.example.edu@EXAMPLE.EDU
09/21/06 12:46:26 09/21/06 22:46:26 krbtgt/EXAMPLE.EDU@EXAMPLE.EDU
09/21/06 12:46:27 09/21/06 22:46:26 afs/example.edu@EXAMPLE.EDU

Kerberos 4 ticket cache: /tmp/tkt10000
klist: You have no tickets cached

$ ls
machinefile mpi-example.c

$ export CVSROOT=:ext:testuser@src.example.edu:/home/cvs
$ export CVS_RSH=ssh

$ cvs import MPI-Example main start
N MPI-Example/machinefile
N MPI-Example/mpi-example.c

No conflicts created by this import

374 16 Collaborative Software

$ ls -l /home/cvs/
total 8
drwxrwsr-x 3 root src 4096 2006-09-21 13:30 CVSROOT/
drwxrwsr-x 2 testuser src 4096 2006-09-21 13:38 MPI-Example/

CVSROOT defines an external method to connect to the repository, express-
ing the username followed by the CVS server and the repository directory;
the CVS RSH environment variable sets the underlying protocol to ssh. So far
we did not provide outsiders the ability to check out our projects, as we can
see from the following attempt by the user anonymous:

$ export CVSROOT=:ext:anonymous@src.example.edu:/home/cvs
$ export CVS_RSH=ssh

$ cvs co MPI-Example
Password:

This account is restricted by rssh.
Allowed commands: scp

If you believe this is in error, please contact your system administrator.

cvs [checkout aborted]: end of file from server (consult above messages if any)

Therefore in the restricted shell configuration CVS has to be enabled and
SCP can be disabled:

logfacility = LOG_USER
allowcvs
umask = 022

In this case CVS needs a lock directory accessible even by users not be-
longing to the src group, done by editing the config file in the repository’s
CVSROOT directory:

cat /home/cvs/CVSROOT/config
LockDir=/tmp
LogHistory=TMAR

The last line tells CVS to log only write operations such that the anonymous
user can check out any project, which is a read-only action:

$ export CVSROOT=:ext:anonymous@src.example.edu:/home/cvs
$ export CVS_RSH=ssh

$ cvs co MPI-Example
Password:
cvs checkout: Updating MPI-Example
U MPI-Example/machinefile
U MPI-Example/mpi-example.c

16.3 Collaborative Development 375

16.3.3 Subversion

The Subversion software, unlike CVS, allows each project to have its own
repository, and as CVS, it provides a dedicated daemon for remote access.
Again we prefer the use of SSH instead of a plain-text communication. The
current Subversion release from the Debian stable branch uses a Berkeley DB
back-end as default, which is not suitable for AFS. As the first step install
the administrative and client-side subversion tools:

apt-get install subversion subversion-tools

Unfortunately the restricted shell does not support Subversion, hence
anonymous access will not be possible over SSH. For remote connections we
have to enable SSH tunneling in the /etc/subversion file:

[auth]

[helpers]

[tunnels]
ssh = ssh

[miscellany]

Symmetrically to CVS we create in /home/ a svn/ directory for the repos-
itories with owner and permissions similar to CVS:

ls -ld cvs svn
drwxrwsr-x 5 root src 4096 2006-09-21 13:40 cvs/
drwxrwsr-x 2 root src 4096 2006-10-05 12:08 svn/

Again all developers need to belong to the same src group. Now, to create
a new project, we have to make a corresponding directory and initialize its
repository with the svnadmin command:

$ mkdir MPI-Example

$ svnadmin create MPI-Example

The structure of the resulting subversion repository is quite complex, as
we can see from the following output:

$ ls -al MPI-Example/
total 36
drwxr-sr-x 7 testuser src 4096 2006-10-05 12:15 ./
drwxrwsr-x 3 root src 4096 2006-10-05 12:14 ../
drwxr-sr-x 2 testuser src 4096 2006-10-05 12:15 conf/
drwxr-sr-x 2 testuser src 4096 2006-10-05 12:15 dav/
drwxr-sr-x 2 testuser src 4096 2006-10-05 12:15 db/
-r--r--r-- 1 testuser src 2 2006-10-05 12:15 format
drwxr-sr-x 2 testuser src 4096 2006-10-05 12:15 hooks/
drwxr-sr-x 2 testuser src 4096 2006-10-05 12:15 locks/
-rw-r--r-- 1 testuser src 379 2006-10-05 12:15 README.txt

376 16 Collaborative Software

On a client our testuser can issue an “import” command for svn, specify-
ing the URL of the remote repository. Subversion uses a simple syntax similar
to web addresses starting with svn:// or svn+ssh:// for SSH-tunneled op-
erations:

$ ls
machinefile mpi-example.c

$ svn import svn+ssh://testuser@src.example.edu/home/svn/MPI-Example -m "Project start"
Adding mpi-example.c
Adding machinefile

Committed revision 1.

The syntax for a checkout is similar to the respective CVS command:

$ svn checkout svn+ssh://testuser@src.example.edu/home/svn/MPI-Example
A MPI-Example/mpi-example.c
A MPI-Example/machinefile
Checked out revision 1.

Note that the restricted shell does not currently allow to use subversion
commands, therefore an anonymous access should be provided by different
means, for instance via a web access.

Practice

Exercise 61. Verify the demand for Voice Over IP, or VOIP, in your context:
can a specific Jabber client satisfy these needs?

Exercise 62. Test a CVS repository in AFS with write permissions for a
specific PTS group of developers. Granting system:anyuser read permissions
should allow for anonymous access as for the local file system. Anonymous
access should be possible with SSH as shown before.

Exercise 63. Test a Subversion repository in AFS space: more recent versions
of Subversion can use the FSFS back-end instead of the classic Berkeley DB.

Exercise 64. Weigh the benefits of “distributed” revision control as offered
by packages related to the GNU arch project, as archway, bazaar, and tla.

17

Where To Go From Here

I never think of the future—it comes soon enough.
Albert Einstein

This book presented an implementation of many fundamental services, as
they are needed today by institutions ranging from small to large companies
or universities, focusing on security and reliability while offering a completely
networked IT infrastructure. On the one hand the concrete realization for
the support of client systems like Linux, MacOS X, and Windows XP has
been performed with the help of the Debian GNU/Linux distribution. On
the other hand we believe that the most important aspect of this work is
the chosen combination of Kerberos, LDAP, and OpenAFS to approach an
enterprise infrastructure, which actually is an OS-independent method : the
whole infrastructure could be easily implemented on other UNIX operating
systems, such as the BSD-family.

Once that a core infrastructure is in place, organization becomes easier,
having configuration files centrally stored in AFS, making further services
benefit from Kerberos authentication and LDAP information, and additionally
monitoring the server performance. Although major topics have been covered,
there are still several points that could be enhanced.

We have to mention one notable omission which is printing that has not
been included in the list of services. Printers nowadays support several stan-
dards for network printing, however the communication usually is in clear-text
and there is no mutual authentication. Kerberos support for CUPS is on the
way, the Common UNIX Printing System, as it exists for LPRng, the new
generation of the legacy Line Printer Daemon, and it will hopefully soon find
its way in commercial systems: only then the offered solution would be satis-
factory from our point of view. Windows hosts could print in this case with
the help of Samba, and hence all platforms are then supported. We outline
in the following paragraphs other topics that should be considered for further
development.

Servers

Organizations sharing a common objective may trust each other’s Kerberos
infrastructure, with a cross-realm trust; enabling users from one realm to be

378 17 Where To Go From Here

trusted on another allows also AFS cross-cell authentication. Additionally, as
we have seen, some applications require certificates for authentication, there-
fore it would be helpful to have an integration of Kerberos with a public
key infrastructure and some implementations of such a service are already
available and applied.

Unfortunately the possibility for delegating administrative rights is quite
coarse-grained in OpenAFS at the moment. With suitable scripting one should
overcome this obstacle which is definitely useful in larger environments.

A last note on the ongoing development of the OpenAFS project. The
current roadmap indicates, among other important enhancements, that the
underlying Rx AFS protocol will support multiple encryption types as well as
full IPv6, the successor of IPv4.

Clients

Instead of a thick-client approach as used in this book, one could imagine a
thin-client approach, which has often been realized by NFS. A switch to Open-
AFS can raise the number of clients connected simultaneously with respect to
an NFS-based solution.

For an automated client installation procedure, there exist several solu-
tions, one of those is Fully Automatic Installation, or FAI, distributed by De-
bian with the fai package. Among its strong features is the ability to handle
unattended installations of several clients in heterogeneous contexts.

Finally the KNOPPIX distribution, bootable from CD or DVD, allows
for remastering with an own choice of preinstalled applications. It could be
customized to provide a test bed for a small example AFS installation.

A

Technical Summary

Table A.1. Kerberos administrative ACL (MIT)

Allow Deny Operation

a A Add principals or policies
d D Delete principals or policies
m M Modify principals or policies
c C Change passwords
i I Inquiry the database
l L List principals or policies
s S Set key for principals

* or x Allow all privileges

Table A.2. Kerberos kadmin password policies (MIT)

Option Meaning

-history Minimum count of unusable old passwords
-maxlife Maximum allowed lifetime

-minclasses Minimum character classes
-minlength Minimum password length
-minlife Minimum lifetime

380 A Technical Summary

Table A.3. LDAP access control list levels

Level Privilege Coding Explanation

none =0 No access at all
auth =x Permits authentication attempt

compare =cx Permits comparison
search =scx Permits search filter application
read =rscx Permits search result inspection
write =wrscx Permits modification or deletion

Table A.4. The OpenAFS access control list attributes

Permission Meaning

l List contents (lookup)
i Create new files or directories (insert)
d Delete files or directories
a Change ACL attributes of directories (administer)
r Read contents of files
w Modify contents of files (write)
k Lock files for reading

read Equivalent to rl

write Equivalent to rlidwk (no administrative rights)
all Equivalent to rlidwka

none Remove all ACL permissions

Table A.5. The OpenAFS @sys names (excerpt)

@sys Architecture

alpha dux40 Digital UNIX 4 on an Alpha
alpha dux50 Digital UNIX 5 on an Alpha
i386 linux24 Linux Kernel 2.4 on Intel and compatible
i386 linux26 Linux Kernel 2.6 on Intel and compatible
i386 nt40 Microsoft Windows NT and later on Intel and compatible
ppc darwin70 Apple MacOS X 10.3 on a PowerPC Macintosh
ppc darwin80 Apple MacOS X 10.4 on a PowerPC Macintosh
ppc darwin90 Apple MacOS X 10.5 on a PowerPC Macintosh
rs aix52 IBM AIX 5.2 on a pSeries
rs aix53 IBM AIX 5.3 on a pSeries
sgi 65 SGI Irix 6.5 on a MPIS
x86 darwin80 Apple MacOS X 10.4 on an Intel Macintosh
x86 darwin90 Apple MacOS X 10.5 on an Intel Macintosh

A Technical Summary 381

Table A.6. New OpenAFS extensions (excerpt)

Command Option or Subcommand Comment

afsd -afsdb DB lookup in DNS
-backuptree Prefer backup volumes
-dynroot Construct root dynamically
-fakestat Avoid blocking ls for cross-cell mounts
-fakestat-all Avoid blocking ls for all mounts
-nomount Do not mount /afs

fs getcalleraccess Show context permissions
getcrypt Show encryption flag
getfid Show file location
listaliases Show cell aliases
newalias Set new cell alias
rxstatpeer Rx peer statistics
rxstatproc Rx process statistics
setcbaddr Set call back address
setcrypt Set encryption flag

vos changeloc Set new RW location
clone Make a volume clone
convertROtoRW Convert RO volume to RW
copy Make a volume copy
offline Set volume offline (hidden from help)
online Set volume online (hidden from help)
setfields Set information fields
shadow Make a shadow volume
size Show size information

Table A.7. OpenAFS 1.4.2 characteristics (excerpt)

Feature Value Limitation

Access Control List Maximum 20 entries per directory
BOS Server Optionally restricted mode
Cache Size Gigabyte order of magnitude possible
Data Encryption Optionally with fcrypt()

Directory Entries For short file names maximal about 64000
Clone DB Servers Together with database servers, up to 20
Database Servers Minimum 1, recommended 3 or 5, maximum 8
File Server Type namei, iname, optional accelerated start
File Size More than 2GB possible (for Windows in 1.5 series)
Group Membership Optionally other groups allowed
Kerberos Support Moving from Kerberos IV to V
Partitions Up to 255 /vicepX per file server
Size Unit Kilobyte
Time Skew Allowed Up to 10 minutes
Volume Name Maximum 22 characters
Volume Sites Up to 13, hence at most 11 RO sites
Volume Size Theoretically up to Terabytes (OS-dependent)
Volume Types RW, RO, backup, clone

382 A Technical Summary

Table A.8. Brief OpenAFS terminology

Name Meaning

Normal mount point
% Force RW volume

.backup Backup volume extension
.readonly RO volume extension
apropos In most commands available
help In most commands available

BosConfig Server configuration for bos

CellAlias Aliases for cells
CellServDB List of DB servers for cells
KeyFile Server keytab file
NetInfo IP addresses to use

NetRestrict IP addresses not to use
ThisCell Name of the local cell
UserList AFS administrative user (for a server)

Table A.9. AFS and Kerberos/OpenAFS

AFS OpenAFS

bos addkey asetkey add

bos listkeys asetkey list

bos removekey asetkey delete

kas kadmin

kaserver fakeka, ka-forwarder
klog aklog

uss

Table A.10. Variable substitution in the Samba configuration file (excerpt)

Variable Substitution

%D Domain or workgroup name for the current user
%h Internet host name of the Samba server
%L NetBIOS Samba server name
%m NetBIOS client name
%M Internet host name of the client
%S Current requested service name
%U Session username as indicated by the client

A Technical Summary 383

Table A.11. Samba account flags

Flag Description

D Disabled account
H Account requires a home directory
I Inter-domain account trust
L The account has been locked
M A Microsoft Network Service (MSN) account
N No password is required
S Server trust account
T A temporarily duplicated account
U Normal user account
W Workstation trust account
X Password does not expire

Table A.12. Apache SSL options (excerpt)

Option Meaning

SSLCACertificateFile The CA public certificate file
SSLCARevocationFile The optional revoked certificates list
SSLCertificateFile The web server public certificate file

SSLCertificateKeyFile The web server private key file
SSLCipherSuite Enforces encryption methods for SSL negotiations

SSLEngine Enable or disable SSL/TLS
SSLProtocol Configures allowed SSL protocols

SSLVerifyClient Require the verification of the client’s certificate

References

[Ait05] Ronald G. F. Aitchison. Pro DNS and BIND. Apress, 2005.
[AL06] Paul Albitz and Cricket Liu. DNS and BIND. O’Reilly, 2006. 5th Edition.
[Bau05] Michael D. Bauer. Linux Server Security. O’Reilly, 2005. 2nd Edition.
[BC02] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel.

O’Reilly, 2002. 2nd Edition.
[BM06] Heiko Bauke and Stephan Mertens. Cluster Computing. Springer, 2006.

German.
[BSB05] Daniel J. Barret, Richard E. Silverman, and Robert G. Byrnes. SSH, The

Secure Shell: The Definitive Guide. O’Reilly, 2005. 2nd Edition.
[Buc03] W. J. Buchanan. The Complete Handbook of the Internet. Springer, 2003.
[Cam98] Richard Campbell. Managing AFS: The Andrew File System. Prentice

Hall, 1998.
[Car03] Gerald Carter. LDAP System Administration. O’Reilly, 2003.
[Den03] Kyle D. Dent. Postfix: The Definitive Guide. O’Reilly, 2003.
[DHS06] Rolf Dietze, Tatjana Heuser, and Jörg Schilling. OpenSolaris für Anwen-

der, Administratoren und Rechenzentren. Springer, 2006. German.
[Don06] Taylor Dondich. Network Monitoring with Nagios. O’Reilly, 2006.
[Fou95] Open Software Foundation. OSF DCE DFS Administration Guide and

Reference. Prentice Hall, 1995. Release 1.1.
[GA05] Peter H. Ganten and Wulf Alex. Debian GNU/Linux - PowerPack.

Springer, 2005. 2nd Edition, German.
[Gar03] Jason Garman. Kerberos: The Definitive Guide. O’Reilly, 2003.
[Has02] Jonathan Hassell. RADIUS: Securing Public Access to Private Resources.

O’Reilly, 2002.
[Jac05] Tom Jackiewicz. Deploying OpenLDAP. Apress, 2005.
[KHP05] Yanek Korff, Paco Hope, and Bruce Potter. Mastering FreeBSD and

OpenBSD Security. O’Reilly, 2005.
[KP05] Michael Kruckenberg and Jay Pipes. Pro MySQL. Apress, 2005.
[LL02] Ben Laurie and Peter Laurie. Apache: The Definitive Guide. O’Reilly,

2002. 3rd Edition.
[Luc06] Michael W. Lucas. PGP & GPG. No Starch Press, 2006.
[McC04] Bill McCarty. SELinux: NSA’s Open Source Security Enhanced Linux.

O’Reilly, 2004.
[MM00] Dianna Mullet and Kevin Mullet. Managing IMAP. O’Reilly, 2000.

386 References

[Mob04] Tony Mobily. Hardening Apache. Apress, 2004.
[MS05] Neil Matthews and Rick Stones. Beginning Databases with PostgreSQL:

From Novice to Professional. Apress, 2005. 2nd Edition.
[PHS03] Josef Pieprzyk, Thomas Hardjono, and Jennifer Seberry. Fundamentals

of Computer Security. Springer, 2003.
[Pre07] W. Curtis Preston. Backup & Recovery. O’Reilly, 2007.
[Ran04] Kyle Rankin. Knoppix Hacks. O’Reilly, 2004.
[ROC06] Kyle Rankin, Jonathan Oxer, and Bill Childers. Ubuntu Hacks: Tips &

Tools for Exploring, Using, and Tuning Linux. O’Reilly, 2006.
[Roo05] Garrett Rooney. Practical Subversion. Apress, 2005.
[Ryb05] Peter Rybaczyk. Expert Network Time Protocol: An Experience in Time

with NTP. Apress, 2005.
[RYK02] George Reese, Randy J. Yarger, and Tim King. Managing & Using

MySQL. O’Reilly, 2002. 2nd Edition with Hugh E. Williams.
[SEL01] Hal Stern, Mike Eisler, and Ricardo Labiaga. Managing NFS and NIS.

O’Reilly, 2001. 2nd Edition.
[Shi05] Chris Shiflett. Essential PHP Security. O’Reilly, 2005.
[Slo04] Joseph D. Sloan. High Performance Linux Clusters with OSCAR, Rocks,

OpenMosix, and MPI. O’Reilly, 2004.
[SMM05] Jared Smith, Jim Van Meggelen, and Leif Madsen. Asterisk: The Future

of Telephony. O’Reilly, 2005.
[ST05] Michael Stahnke and John Traenkenschuh. Pro OpenSSH. Apress, 2005.
[TECB03] Jay Ts, Robert Eckstein, and David Collier-Brown. Using Samba.

O’Reilly, 2003. 2nd Edition.
[Ves03] Jennifer Vesperman. Essential CVS. O’Reilly, 2003.
[VMC02] John Viega, Matt Messier, and Pravir Chandra. Network Security with

OpenSSL: Cryptography for Secure Communications. O’Reilly, 2002.
[vT05] Henk C. A. van Tilborg, editor. Encyclopedia of Cryptography and Secu-

rity. Springer, 2005.
[Wai04] Peter Wainwright. Pro Apache. Apress, 2004. 3rd Edition.
[WD02] John C. Worsley and Joshua D. Drake. Practical PostgreSQL. O’Reilly,

2002.
[WH05] Chris Wolf and Erik M. Halter. Virtualization. Apress, 2005.

Web Resources

1. Adaptive Technology Resource Centre.
Learning Content Management System.
http://www.atutor.ca/.

2. Alexander Enzmann. Persistence of Vision Raytracer.
http://www.povray.org/.

3. Amnon Barak. MOSIX Grid and Cluster Management.
http://www.mosix.org/.

4. Apache Software Foundation. Apache HTTP Server.
http://httpd.apache.org/.

5. Apache Software Foundation. SpamAssassin Spam Filter.
http://spamassassin.apache.org/.

6. Apple Computer, Inc. Mac OS X Operating System.
http://www.apple.com/macosx/.

7. Argonne National Laboratory. Message Passing Interface.
http://www-unix.mcs.anl.gov/mpi/.

8. Argonne National Laboratory. MPI Implementation.
http://www-unix.mcs.anl.gov/mpi/mpich/.

9. Canonical Ltd. Bazaar Distributed Version Control Software.
http://bazaar-vcs.org/.

10. Canonical Ltd. Ubuntu Linux.
http://www.ubuntu.com/.

11. Carnegie Mellon University. Project Cyrus.
http://cyrusimap.web.cmu.edu/.

12. Carnegie Mellon University. Simple Authentication and Security Layer.
http://asg.web.cmu.edu/sasl/.

13. Cellule Technique du CRU. Sympa Mailing List Manager.
http://www.sympa.org/.

14. Christian Bricar and Rainer Link. A Mail Virus Scanner.
http://www.amavis.org/.

15. CollabNet, Inc. Subversion Version Control System.
http://subversion.tigris.org/.

16. Dan Bernstein. Qmail Mailer.
http://www.qmail.org/.

388 Web Resources

17. Debian Project. Debian Linux.
http://www.debian.org/.

18. Derek Martin. rssh restricted shell.
http://www.pizzashack.org/rssh/.

19. Derek R. Price and Ximbiot and FSF, Inc. Concurrent Versions System.
http://www.nongnu.org/cvs/.

20. Digium, Inc. Asterisk telephone system IP PBX in software.
http://www.asterisk.org/.

21. Don Libes. Automating Interactive Applications.
http://expect.nist.gov/.

22. Double Precision, Inc. Courier IMAP/POP server.
http://www.courier-mta.org/.

23. Erich Stefan Boleyn. GNU GRand Unified Bootloader.
http://www.gnu.org/software/grub/.

24. Ethan Galstad. Nagios host and service monitor.
http://www.nagios.org/.

25. Francois Dupoux and Franck Ladurelle. Partition Image.
http://www.partimage.org/.

26. Frank Burkhardt. InstantAFS (German).
http://instantafs.cbs.mpg.de/.

27. Frédéric Giudicelli. Newpki PKI based on OpenSSL.
http://www.newpki.org/.

28. Free Software Foundation, Inc. GNU arch Revision Control System.
http://www.gnu.org/software/gnu-arch/.

29. Free Software Foundation, Inc. GNU Mailing List Manager.
http://www.list.org/.

30. Free Software Foundation, Inc. GNU Privacy Guard.
http://www.gnupg.org/.

31. Free Software Foundation, Inc. GNU Project.
http://www.gnu.org/.

32. FreeBSD Project. FreeBSD Operating System.
http://www.freebsd.org/.

33. FreeRADIUS Project. Remote Authentication Dial In User Service.
http://www.freeradius.org/.

34. GBorg. Slony-I replication system for PostgreSQL.
http://slony.info/.

35. Gentoo Foundation, Inc. Gentoo Linux.
http://www.gentoo.org/.

36. H. Peter Anvin. SYSLINUX, PXELINUX, ISOLINUX.
http://syslinux.zytor.com/.

37. High-Availability Linux Project. heartbeat.
http://linux-ha.org/.

38. Horde Project. HORDE Web Application Framework.
http://www.horde.org/.

39. ICANN. Internet Assigned Numbers Authority.
http://www.iana.org/.

40. ICANN. Internet Corporation for Assigned Names and Numbers.
http://www.icann.org/.

41. IETF. Web-based Distributed Authoring and Versioning.
http://www.webdav.org/.

Web Resources 389

42. ILIAS Open Source. Web-based Learning Management System.
http://www.ilias.de/.

43. International Business Machines. IBM Corporation.
http://www.ibm.com/.

44. Internet Engineering Task Force. Request for Comments.
http://www.ietf.org/rfc.html.

45. Internet Systems Consortium. Domain Name System.
http://www.isc.org/sw/bind/.

46. Internet Systems Consortium. Dynamic Host Configuration Protocol.
http://www.isc.org/sw/dhcp/.

47. Internet Systems Consortium. InterNetNews.
http://www.isc.org/sw/inn/.

48. Internet Systems Consortium. Network Time Protocol.
http://www.isc.org/sw/ntp/.

49. Internet Systems Consortium. NTP Public Services Project.
http://ntp.isc.org/.

50. Jabber Software Foundation. Jabber streaming XML technology.
http://www.jabber.org/.

51. John Andrews and Robert Shingledecker and others. Damn Small Linux.
http://www.damnsmalllinux.org/.

52. John Coffman. LInux LOader.
http://lilo.go.dyndns.org/.

53. John K. Ousterhout. Tool Command Language plus a Widget Toolkit.
http://www.tcl.tk/.

54. Kent Robotti. Recovery Is Possible Linux.
http://www.tux.org/pub/people/kent-robotti/looplinux/rip/.

55. Klaus Knopper. KNOPPIX Linux.
http://www.knoppix.org/.

56. KTH - Royal Institute of Technology. Arla AFS client implementation.
http://www.stacken.kth.se/project/arla/.

57. KTH - Royal Institute of Technology. Heimdal Kerberos V implementation.
http://www.pdc.kth.se/heimdal/.

58. Linux Kernel Organization, Inc. Linux Kernel.
http://www.kernel.org/.

59. Mandriva. Mandriva Linux.
http://www.mandriva.com/.

60. Martin Dougiamas. Course Management System.
http://moodle.org/.

61. Massachusetts Institute of Technology. MIT Kerberos.
http://web.mit.edu/kerberos/.

62. Microsoft Corporation. Windows XP Operating System.
http://www.microsoft.com/windowsxp/.

63. Moshe Bar. OpenMosix cluster project.
http://openmosix.sourceforge.net/.

64. Mozilla Corporation. Firefox web browser and Thunderbird mail client.
http://www.mozilla.com/.

65. Mozilla Foundation. SeaMonkey integrated web and mail application.
http://www.mozilla.org/.

66. MySQL AB. MySQL Database.
http://www.mysql.org/.

390 Web Resources

67. National Security Agency. Security-Enhanced Linux.
http://www.nsa.gov/selinux/.

68. NetBSD Foundation. NetBSD Operating System.
http://www.netbsd.org/.

69. Netfilter Project. Packet filtering framework.
http://www.netfilter.org/.

70. Nexenta Systems, Inc. Nexenta Operating System.
http://www.gnusolaris.org/.

71. Novell, Inc. Novell SuSE Linux.
http://www.novell.com/linux/.

72. ntp.org. Network Time Protocol Project.
http://www.ntp.org/.

73. Oak Ridge National Laboratory. Parallel Virtual Machine.
http://www.csm.ornl.gov/pvm/.

74. Open Source Applications Foundation. CalDAV calendar access via WebDAV.
http://ietf.osafoundation.org/caldav/.

75. Open Source Initiative Corporation. OSI.
http://www.opensource.org/.

76. OpenAFS Project. OpenAFS Distributed Filesystem.
http://www.openafs.org/.

77. OpenBSD. OpenSSH Secure Shell.
http://www.openssh.org/.

78. OpenBSD Project. OpenBSD Operating System.
http://www.openbsd.org/.

79. OpenCA PKI Research Labs. OpenCA PKI.
http://pki.openca.org/.

80. OpenLDAP Foundation. Directory Service.
http://www.openldap.org/.

81. OpenSSL Project. Secure Sockets Layer and Transport Layer Security.
http://www.openssl.org/.

82. Opera Software ASA. Opera web browser.
http://www.opera.com/.

83. Patrick Powell. LPRng print spooler.
http://www.lprng.org/.

84. Perl Foundation. Perl Programming Language.
http://www.perl.org/.

85. pGina Project. Pluggable Graphical Identification and Authentication.
http://www.pgina.org/.

86. Philip Hazel. Exim Mailer.
http://www.exim.org/.

87. PHP Group. PHP Extension and Application Repository.
http://pear.php.net/.

88. PHP Group. PHP Scripting Language.
http://www.php.net/.

89. phpMyAdmin Development Team. PHP based MySQL management.
http://www.phpmyadmin.net/.

90. phpPgAdmin Project. PHP based PostgreSQL management.
http://www.phppgadmin.org/.

91. PostgreSQL Global Development Group. PostgreSQL Database.
http://www.postgresql.org/.

Web Resources 391

92. Python Software Foundation. Python Programming Language.
http://www.python.net/.

93. R Project. R Programming Language for Statistics.
http://www.r-project.org/.

94. Red Hat, Inc. RedHat Linux.
http://www.redhat.com/.

95. Remi Lefebvre. Advanced TFTP.
http://freshmeat.net/projects/atftp/.

96. Rob Braun. eXtended InterNET daemon.
http://www.xinetd.org/.

97. root-servers.org. DNS root servers.
http://www.root-servers.org/.

98. Samba Project. SMB/CIFS server.
http://www.samba.org/.

99. Sebastian Marsching. suPHP restricting PHP script permissions.
http://www.suphp.org/.

100. Sendmail, Inc. Sendmail Mailer.
http://www.sendmail.org/.

101. Silicon Graphics, Inc. XFS Filesystem.
http://oss.sgi.com/projects/xfs/.

102. Slackware Linux, Inc. Slackware Linux.
http://www.slackware.org/.

103. Squid Project. Squid Web Proxy Cache.
http://www.squid-cache.org/.

104. SquirrelMail Project. SquirrelMail webmail package without JavaScript.
http://www.squirrelmail.org/.

105. Stephen R. Van Den Berg and Philip Guenther. Procmail Mail Processing.
http://www.procmail.org/.

106. Sun Microsystems, Inc. Java Programming Language.
http://java.sun.com/.

107. Sun Microsystems, Inc. Network Filesystem.
http://nfs.sourceforge.net/.

108. Sun Microsystems, Inc. OpenSolaris Operating System.
http://www.opensolaris.org/.

109. Sun Microsystems, Inc. Solaris Operating System.
http://www.sun.com/software/solaris/.

110. Sun Microsystems, Inc. ZFS Filesystem.
http://www.opensolaris.org/os/community/zfs/.

111. SWsoft, Inc. OpenVZ Virtualization.
http://openvz.org/.

112. The Open Group. Distributed Computing Environment.
http://www.opengroup.org/dce/.

113. Thomas Lange. Fully Automatic Installation.
http://www.informatik.uni-koeln.de/fai/.

114. Tomasz Kojm. Clam AntiVirus.
http://www.clamav.net/.

115. Trustees of Indiana University. Local Area Multicomputer.
http://www.lam-mpi.org/.

116. UML Project. User-mode Linux.
http://user-mode-linux.sourceforge.net/.

392 Web Resources

117. University of California.
Berkeley Open Infrastructure for Network Computing.
http://boinc.berkeley.edu/.

118. University of Maryland at College Park.
Advanced Maryland Automatic Network Disk Archiver.
http://www.amanda.org/.

119. University of Washington. IMAP Toolkit.
http://www.washington.edu/imap/.

120. University of Wisconsin-Madison. Condor High Throughput Computing.
http://www.cs.wisc.edu/condor/.

121. UnixODBC Project. Unix Open DataBase Connectivity.
http://www.unixodbc.org/.

122. VeriSign, Inc. VeriSign commercial certificate provider.
http://www.verisign.com/.

123. Volunteers. Debian Backports.
http://www.backports.org/.

124. Wietse Venema. Postfix Mailer.
http://www.postfix.org/.

125. Wikimedia Foundation. Wikipedia free encyclopedia.
http://en.wikipedia.org/.

126. XenSource, Inc. Xen Virtualization.
http://www.xensource.com/.

Index

.htaccess 212

@sys 105

CellServDB 89

KeyFile 92

ThisCell 89

Xwrapper.config 362

a2dismod 212

a2dissite 212

a2enmod 212

a2ensite 212

addgroup 52

adduser 52

afs.conf.client 102

afsd 99

aklog 99

apt-cache 4

apt-get 3

asetkey 91

atftp 189

authdaemonrc 255

backup 128

bosserver 92

bos 92

buserver 94

butc 126

chroot 249

clients.conf 270

courier-authd 254

cron 125

ctlinnd 267

cvs 373

debian.cnf 222

defaults 325

delgroup 77

deluser 77

depmod 318

dhcpd.conf 185

dhcpd.leases 187

dpkg 86

dscl 322

expire.ctl 266

exports 192

fileserver 97

fs 100

gpedit.msc 332

groups 80

host 22

id 52

imapd-ssl 257

inetd 47

inittab 347

inn.conf 265

ipconfig 186

kadm5.acl 38

kadmin.local 40

kadmin 45

kaserver 84

kas 99

kdb5 util 37

kdc.conf 43

kdestroy 44

kinit 44

klist 44

klog 99

kpropd.acl 48

kpropd 48

kprop 50

krb5.conf 39

krb5 newrealm 37

lamboot 341

ldap.cf 241

ldap.conf 63

ldapadd 64

ldapdelete 63

ldapmodify 144

ldapsearch 59

ldapwhoami 69

libnss-ldap.conf 78

list lists 291

lsmod 87

lsof 6

main.cf 240

make-kpkg 86

master.cf 249

mm cfg.py 290

mmsitepass 289

modconf 87

modprobe 87

mon 348

mosix.map 348

mosrun 347

mount 192

mpicc 341

mpirun 341

mysql 221

named.conf.local 19

named.conf 18

named 17

netstat 6

394 Index

net 157
newlist 288
news2mail.conf 267
niutil 321
nmap 6
nsswitch.conf 77
ntp.conf 12
ntpdate 12
ntpd 12
openssl.cnf 196
openssl 196, 199
partimage 358
patch 345
pear 296
pg hba.conf 278
phpmyadmin.conf 227
plist 325
plutil 325
portmap 191
ports.conf 218
postgresql.conf 276
postmap 242
procmailrc 251
procmail 251
psql 277
ptserver 95
pts 96
pvm 342
pxelinux.0 190
radiusd.conf 270
radtest 271
rcconf 5
readers.conf 266
regedit 329
resolv.conf 22
rmlist 294
rmmod 87
root.afs 98
root.cell 101
rssh 372
salvager 97
saslauthd 248
services 47
simple 94
slapd.conf 60
slapd 59
slappasswd 161
slurpd 71
smb.conf 151

smbclient 153
smbldap-passwd 166
smbldap-populate 165
smbldap-useradd 168
smbpasswd 153
sources.list 365
ssh config 337
sshd config 336
ssh 337
subversion 375
sudo 313
su 277
svnadmin 375
svn 376
testparm 152
testsaslauthd 249
tokens 99
unlog 99
update-rc.d 5
usermod 55
users 270
vlserver 95
volserver 97
vos 98
wget 296
xinetd.conf 47
xinetd 47

AFS
ACL 100
Authentication

Local 97
No 92

Backup 121
Incremental 121

BOS 83
Cell 82
Instance 94
PAG 172
Replication 117
Server

Database 82
File 82

Token 99
Ubik 83
Volume 82

Backup 123
Clone 116
Quota 98

Read Only 116
Apache 210

CGI 210
HTTPS 216
rewrite 292
suEXEC 227

Authentication 33
Authorization 33

Backports 365
BOOTP 185

Calendaring 307
Certificates 195
Cluster 335
Courier 254
CRL 198
Cryptography 193

Asymmetric 193
Diffie-Hellman 194
DSA 195
RSA 194

Symmetric 193
3DES 194
AES 194
DES 194

CVS 373

DBMS 275
DCE 1
DES 36
DHCP 185

Lease Time 185
DNS 15
AAAA 31
A 20
CNAME 28
HINFO 32
LOC 32
MX 30
NS 20
PTR 21
RP 32
SOA 19
SRV 29
TXT 32
WKS 32
FQDN 20
Load Balancing 30

Index 395

multiple A 30
Zone 16

GECOS 76
GRUB 353
GSSAPI 65

Horde 295

ILIAS 304
IMAP 238
INN 264

Jabber 364
Java 305

Kerberos 33
Authenticator 35
Host Principal 37
KDC 33
Key Table 35
Keytab 35
KVNO 42
Master Key 37
Principal 34
Realm 35
Service Principal 37
Session Key 34
Stash File 38
TG Service 35
TGT 35
Ticket 35

Kiosk 359

LAMP 210
LDAP 57
cn 60
dc 58
objectClass 59
ou 58
rootdn 61
rootpw 61
LDIF 59
Schema 57
slurpd Replication 71
sync Replication 71

LILO 353
Linux 2

Debian 2

Distribution 2
Novell 2
RedHat 2
RIP 190
Slackware 2
Ubuntu 2

MAC 187
MacOS X 318

NetInfo 321
Mail
Maildir 239
mbox 239
aliases 241
list 288
relay 246
satellite 265
spam 247

Mailing lists 288
Mailman 288
MBR 353
MDA 238
MOSIX 335
MPI 335
MTA 237
MUA 237
MySQL 220

News
Message-ID 268

Newsgroups 263
NFS 190

RPC 190
NIS 57
NNTP 264
NNTPS 264
NSS 77
NTP 11

GMT 11
Stratum 14
UTC 11

OpenAFS 81
OpenSSL 196

PAM 53
PEAR 296
PHP 225

phpMyAdmin 227
phpPgAdmin 285
Save Mode 227
suPHP 227

POP 238
Postfix 239
Procmail 250
PVM 335
PXE 188

RADIUS 269

SASL 248
Single Sign-On 35
SMTP 238
SQL 275
SSH 336
SSL 195
Subversion 375

TFTP 189
TLS 196

Ubuntu 312
Synaptic 312

Usenet 263

Web 209
browser 210
DAV 232
server 210

Windows
AD 149
BDC 149
CIFS 149
Domain 149
NetBIOS 149
PDC 149
SID 164
SMB 149
UNC 165
WINS 149
Workgroup 149

Windows XP 327

XMPP 364

YP 57

