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Furious activity is no substitute for understanding.

—H. H. Williams
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Preface

THIS BOOK GREW OUT OF MY EXPERIENCE OF WORKING WITH DATA FOR VARIOUS COMPANIES IN THE TECH

industry. It is a collection of those concepts and techniques that I have found to be the

most useful, including many topics that I wish I had known earlier—but didn’t.

My degree is in physics, but I also worked as a software engineer for several years. The

book reflects this dual heritage. On the one hand, it is written for programmers and others

in the software field: I assume that you, like me, have the ability to write your own

programs to manipulate data in any way you want.

On the other hand, the way I think about data has been shaped by my background and

education. As a physicist, I am not content merely to describe data or to make black-box

predictions: the purpose of an analysis is always to develop an understanding for the

processes or mechanisms that give rise to the data that we observe.

The instrument to express such understanding is the model: a description of the system

under study (in other words, not just a description of the data!), simplified as necessary

but nevertheless capturing the relevant information. A model may be crude (“Assume a

spherical cow . . . ”), but if it helps us develop better insight on how the system works, it is

a successful model nevertheless. (Additional precision can often be obtained at a later

time, if it is really necessary.)

This emphasis on models and simplified descriptions is not universal: other authors and

practitioners will make different choices. But it is essential to my approach and point of

view.

This is a rather personal book. Although I have tried to be reasonably comprehensive, I

have selected the topics that I consider relevant and useful in practice—whether they are

part of the “canon” or not. Also included are several topics that you won’t find in any

other book on data analysis. Although neither new nor original, they are usually not used

or discussed in this particular context—but I find them indispensable.

Throughout the book, I freely offer specific, explicit advice, opinions, and assessments.

These remarks are reflections of my personal interest, experience, and understanding. I do

not claim that my point of view is necessarily correct: evaluate what I say for yourself and

feel free to adapt it to your needs. In my view, a specific, well-argued position is of greater

use than a sterile laundry list of possible algorithms—even if you later decide to disagree

with me. The value is not in the opinion but rather in the arguments leading up to it. If

your arguments are better than mine, or even just more agreeable to you, then I will have

achieved my purpose!

xiii
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Data analysis, as I understand it, is not a fixed set of techniques. It is a way of life, and it

has a name: curiosity. There is always something else to find out and something more to

learn. This book is not the last word on the matter; it is merely a snapshot in time: things I

knew about and found useful today.

“Works are of value only if they give rise to better ones.”

(Alexander von Humboldt, writing to Charles Darwin, 18 September 1839)

Before We Begin

More data analysis efforts seem to go bad because of an excess of sophistication rather

than a lack of it.

This may come as a surprise, but it has been my experience again and again. As a

consultant, I am often called in when the initial project team has already gotten stuck.

Rarely (if ever) does the problem turn out to be that the team did not have the required

skills. On the contrary, I usually find that they tried to do something unnecessarily

complicated and are now struggling with the consequences of their own invention!

Based on what I have seen, two particular risk areas stand out:

• The use of “statistical” concepts that are only partially understood (and given the

relative obscurity of most of statistics, this includes virtually all statistical concepts)

• Complicated (and expensive) black-box solutions when a simple and transparent

approach would have worked at least as well or better

I strongly recommend that you make it a habit to avoid all statistical language. Keep it

simple and stick to what you know for sure. There is absolutely nothing wrong with

speaking of the “range over which points spread,” because this phrase means exactly what

it says: the range over which points spread, and only that! Once we start talking about

“standard deviations,” this clarity is gone. Are we still talking about the observed width of

the distribution? Or are we talking about one specific measure for this width? (The

standard deviation is only one of several that are available.) Are we already making an

implicit assumption about the nature of the distribution? (The standard deviation is only

suitable under certain conditions, which are often not fulfilled in practice.) Or are we even

confusing the predictions we could make if these assumptions were true with the actual

data? (The moment someone talks about “95 percent anything” we know it’s the latter!)

I’d also like to remind you not to discard simple methods until they have been proven

insufficient. Simple solutions are frequently rather effective: the marginal benefit that

more complicated methods can deliver is often quite small (and may be in no reasonable

relation to the increased cost). More importantly, simple methods have fewer

opportunities to go wrong or to obscure the obvious.

xiv P R E F A C E
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True story: a company was tracking the occurrence of defects over time. Of course, the

actual number of defects varied quite a bit from one day to the next, and they were

looking for a way to obtain an estimate for the typical number of expected defects. The

solution proposed by their IT department involved a compute cluster running a neural

network! (I am not making this up.) In fact, a one-line calculation (involving a moving

average or single exponential smoothing) is all that was needed.

I think the primary reason for this tendency to make data analysis projects more

complicated than they are is discomfort: discomfort with an unfamiliar problem space and

uncertainty about how to proceed. This discomfort and uncertainty creates a desire to

bring in the “big guns”: fancy terminology, heavy machinery, large projects. In reality, of

course, the opposite is true: the complexities of the “solution” overwhelm the original

problem, and nothing gets accomplished.

Data analysis does not have to be all that hard. Although there are situations when

elementary methods will no longer be sufficient, they are much less prevalent than you

might expect. In the vast majority of cases, curiosity and a healthy dose of common sense

will serve you well.

The attitude that I am trying to convey can be summarized in a few points:

Simple is better than complex.

Cheap is better than expensive.

Explicit is better than opaque.

Purpose is more important than process.

Insight is more important than precision.

Understanding is more important than technique.

Think more, work less.

Although I do acknowledge that the items on the right are necessary at times, I will give

preference to those on the left whenever possible.

It is in this spirit that I am offering the concepts and techniques that make up the rest of

this book.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, and email addresses

Constant width

Used to refer to language and script elements

P R E F A C E xv
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Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this

book in your programs and documentation. You do not need to contact us for permission

unless youre reproducing a significant portion of the code. For example, writing a

program that uses several chunks of code from this book does not require permission.

Selling or distributing a CD-ROM of examples from OReilly books does require

permission. Answering a question by citing this book and quoting example code does not

require permission. Incorporating a significant amount of example code from this book

into your products documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,

author, publisher, and ISBN. For example: “Data Analysis with Open Source Tools, by Philipp

K. Janert. Copyright 2011 Philipp K. Janert, 978-0-596-80235-6.”

If you feel your use of code examples falls outside fair use or the permission given above,

feel free to contact us at permissions@oreilly.com.

Safari® Books Online
.>

Safari
Books online

Safari Books Online is an on-demand digital library that lets you easily search

over 7,500 technology and creative reference books and videos to find the

answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.

Read books on your cell phone and mobile devices. Access new titles before they are

available for print, and get exclusive access to manuscripts in development and post

feedback for the authors. Copy and paste code samples, organize your favorites, download

chapters, bookmark key sections, create notes, print out pages, and benefit from tons of

other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full

digital access to this book and others on similar topics from OReilly and other publishers,

sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)
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We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at:

http://oreilly.com/catalog/9780596802356

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly

Network, see our website at:

http://oreilly.com
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C H A P T E R O N E

Introduction

IMAGINE YOUR BOSS COMES TO YOU AND SAYS: “HERE ARE 50 GB OF LOGFILES—FIND A WAY TO IMPROVE OUR

business!”

What would you do? Where would you start? And what would you do next?

It’s this kind of situation that the present book wants to help you with!

Data Analysis

Businesses sit on data, and every second that passes, they generate some more. Surely,

there must be a way to make use of all this stuff. But how, exactly—that’s far from clear.

The task is difficult because it is so vague: there is no specific problem that needs to be

solved. There is no specific question that needs to be answered. All you know is the

overall purpose: improve the business. And all you have is “the data.” Where do you start?

You start with the only thing you have: “the data.” What is it? We don’t know! Although

50 GB sure sounds like a lot, we have no idea what it actually contains. The first thing,

therefore, is to take a look.

And I mean this literally: the first thing to do is to look at the data by plotting it in different

ways and looking at graphs. Looking at data, you will notice things—the way data points

are distributed, or the manner in which one quantity varies with another, or the large

number of outliers, or the total absence of them. . . . I don’t know what you will find, but

there is no doubt: if you look at data, you will observe things!

These observations should lead to some reflection. “Ten percent of our customers drive

ninety percent of our revenue.” “Whenever our sales volume doubles, the number of

1
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returns goes up by a factor of four.” “Every seven days we have a production run that has

twice the usual defect rate, and it’s always on a Thursday.” How very interesting!

Now you’ve got something to work with: the amorphous mass of “data” has turned into

ideas! To make these ideas concrete and suitable for further work, it is often useful to

capture them in a mathematical form: a model. A model (the way I use the term) is a

mathematical description of the system under study. A model is more than just a

description of the data—it also incorporates your understanding of the process or the

system that produced the data. A model therefore has predictive power: you can predict

(with some certainty) that next Thursday the defect rate will be high again.

It’s at this point that you may want to go back and alert the boss of your findings: “Next

Thursday, watch out for defects!”

Sometimes, you may already be finished at this point: you found out enough to help

improve the business. At other times, however, you may need to work a little harder.

Some data sets do not yield easily to visual inspection—especially if you are dealing with

data sets consisting of many different quantities, all of which seem equally important. In

such cases, you may need to employ more-sophisticated methods to develop enough

intuition before being able to formulate a relevant model. Or you may have been able to

set up a model, but it is too complicated to understand its implications, so that you want

to implement the model as a computer program and simulate its results. Such

computationally intensive methods are occasionally useful, but they always come later in

the game. You should only move on to them after having tried all the simple things first.

And you will need the insights gained from those earlier investigations as input to the

more elaborate approaches.

And finally, we need to come back to the initial agenda. To “improve the business” it is

necessary to feed our understanding back into the organization—for instance, in the form

of a business plan, or through a “metrics dashboard” or similar program.

What's in This Book

The program just described reflects the outline of this book.

We begin in Part I with a series of chapters on graphical techniques, starting in Chapter 2

with simple data sets consisting of only a single variable (or considering only a single

variable at a time), then moving on in Chapter 3 to data sets of two variables. In Chapter 4

we treat the particularly important special case of a quantity changing over time, a

so-called time series. Finally, in Chapter 5, we discuss data sets comprising more than two

variables and some special techniques suitable for such data sets.

In Part II, we discuss models as a way to not only describe data but also to capture the

understanding that we gained from graphical explorations. We begin in Chapter 7 with a

discussion of order-of-magnitude estimation and uncertainty considerations. This may

2 C H A P T E R O N E
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seem odd but is, in fact, crucial: all models are approximate, so we need to develop a sense

for the accuracy of the approximations that we use. In Chapters 8 and 9 we introduce

basic building blocks that are useful when developing models.

Chapter 10 is a detour. For too many people, “data analysis” is synonymous with

“statistics,” and “statistics” is usually equated with a class in college that made no sense at

all. In this chapter, I want to explain what statistics really is, what all the mysterious

concepts mean and how they hang together, and what statistics can (and cannot) do for

us. It is intended as a travel guide should you ever want to read a statistics book in the

future.

Part III discusses several computationally intensive methods, such as simulation and

clustering in Chapters 12 and 13. Chapter 14 is, mathematically, the most challenging

chapter in the book: it deals with methods that can help select the most relevant variables

from a multivariate data set.

In Part IV we consider some ways that data may be used in a business environment. In

Chapter 16 we talk about metrics, reporting, and dashboards—what is sometimes referred

to as “business intelligence.” In Chapter 17 we introduce some of the concepts required to

make financial calculations and to prepare business plans. Finally, in chapter 18, we

conclude with a survey of some methods from classification and predictive analytics.

At the end of each part of the book you will find an “Intermezzo.” These intermezzos are

not really part of the course; I use them to go off on some tangents, or to explain topics

that often remain a bit hazy. You should see them as an opportunity to relax!

The appendices contain some helpful material that you may want to consult at various

times as you go through the text. Appendix A surveys some of the available tools and

programming environments for data manipulation and analysis. In Appendix B I have

collected some basic mathematical results that I expect you to have at least passing

familiarity with. I assume that you have seen this material at least once before, but in this

appendix, I put it together in an application-oriented context, which is more suitable for

our present purposes. Appendix C discusses some of the mundane tasks that—like it or

not—make up a large part of actual data analysis and also introduces some data-related

terminology.

What's with the Workshops?

Every full chapter (after this one) includes a section titled “Workshop” that contains some

programming examples related to the chapter’s material. I use these Workshops for two

purposes. On the one hand, I’d like to introduce a number of open source tools and

libraries that may be useful for the kind of work discussed in this book. On the other

hand, some concepts (such as computational complexity and power-law distributions)

must be seen to be believed: the Workshops are a way to demonstrate these issues and

allow you to experiment with them yourself.

I N T R O D U C T I O N 3
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Among the tools and libraries is quite a bit of Python and R. Python has become

somewhat the scripting language of choice for scientific applications, and R is the most

popular open source package for statistical applications. This choice is neither an endorsement

nor a recommendation but primarily a reflection of the current state of available software.

(See Appendix A for a more detailed discussion of software for data analysis and related

purposes.)

My goal with the tool-oriented Workshops is rather specific: I want to enable you to

decide whether a given tool or library is worth spending time on. (I have found that

evaluating open source offerings is a necessary but time-consuming task.) I try to

demonstrate clearly what purpose each particular tool serves. Toward this end, I usually

give one or two short, but not entirely trivial, examples and try to outline enough of the

architecture of the tool or library to allow you to take it from there. (The documentation

for many open source projects has a hard time making the bridge from the trivial,

cut-and-paste “Hello, World” example to the reference documentation.)

What's with the Math?

This book contains a certain amount of mathematics. Depending on your personal

predilection you may find this trivial, intimidating, or exciting.

The reality is that if you want to work analytically, you will need to develop some

familiarity with a few mathematical concepts. There is simply no way around it. (You can

work with data without any math skills—look at what any data modeler or database

administrator does. But if you want to do any sort of analysis, then a little math becomes a

necessity.)

I have tried to make the text accessible to readers with a minimum of previous knowledge.

Some college math classes on calculus and similar topics are helpful, of course, but are by

no means required. Some sections of the book treat material that is either more abstract or

will likely be unreasonably hard to understand without some previous exposure. These

sections are optional (they are not needed in the sequel) and are clearly marked as such.

A somewhat different issue concerns the notation. I use mathematical notation wherever

it is appropriate and it helps the presentation. I have made sure to use only a very small

set of symbols; check Appendix B if something looks unfamiliar.

Couldn’t I have written all the mathematical expressions as computer code, using Python

or some sort of pseudo-code? The answer is no, because quite a few essential mathematical

concepts cannot be expressed in a finite, floating-point oriented machine (anything

having to do with a limit process—or real numbers, in fact). But even if I could write all

math as code, I don’t think I should. Although I wholeheartedly agree that mathematical

notation can get out of hand, simple formulas actually provide the easiest, most succinct

way to express mathematical concepts.
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Just compare. I’d argue that:
n∑

k=0

c(k)

(1 + p)k

is clearer and easier to read than:

s = 0

for k in range( len(c) ):

s += c[k]/(1+p)**k

and certainly easier than:

s = ( c / (1+p)**numpy.arange(1, len(c)+1) ).sum(axis=0)

But that’s only part of the story. More importantly, the first version expresses a concept,

whereas the second and third are merely specific prescriptions for how to perform a

certain calculation. They are recipes, not ideas.

Consider this: the formula in the first line is a description of a sum—not a specific sum,

but any sum of this form: it’s the idea of this kind of sum. We can now ask how this

abstract sum will behave under certain conditions—for instance, if we let the upper limit n

go to infinity. What value does the sum have in this case? Is it finite? Can we determine

it? You would not even be able to ask this question given the code versions. (Remember

that I am not talking about an approximation, such as letting n get “very large.” I really do

mean: what happens if n goes all the way to infinity? What can we say about the sum?)

Some programming environments (like Haskell, for instance) are more at ease dealing

with infinite data structures—but if you look closely, you will find that they do so by

being (coarse) approximations to mathematical concepts and notations. And, of course,

they still won’t be able to evaluate such expressions! (All evaluations will only involve a

finite number of steps.) But once you train your mind to think in those terms, you can

evaluate them in your mind at will.

It may come as a surprise, but mathematics is not a method for calculating things.

Mathematics is a theory of ideas, and ideas—not calculational prescriptions—are what I

would like to convey in this text. (See the discussion at the end of Appendix B for more

on this topic and for some suggested reading.)

If you feel uncomfortable or even repelled by the math in this book, I’d like to ask for just

one thing: try! Give it a shot. Don’t immediately give up. Any frustration you may

experience at first is more likely due to lack of familiarity rather than to the difficulty of

the material. I promise that none of the content is out of your reach.

But you have to let go of the conditioned knee-jerk reflex that “math is, like, yuck!”

What You'll Need

This book is written with programmers in mind. Although previous programming

experience is by no means required, I assume that you are able to take an idea and
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implement it in the programming language of your choice—in fact, I assume that this is

your prime motivation for reading this book.

I don’t expect you to have any particular mathematical background, although some

previous familiarity with calculus is certainly helpful. You will need to be able to count,

though!

But the most important prerequisite is not programming experience, not math skills, and

certainly not knowledge of anything having to do with “statistics.” The most important

prerequisite is curiosity. If you aren’t curious, then this book is not for you. If you get a

new data set and you are not itching to see what’s in it, I won’t be able to help you.

What's Missing

This is a book about data analysis and modeling with an emphasis on applications in a

business settings. It was written at a beginning-to-intermediate level and for a general

technical audience.

Although I have tried to be reasonably comprehensive, I had to choose which subjects to

include and which to leave out. I have tried to select topics that are useful and relevant in

practice and that can safely be applied by a nonspecialist. A few topics were omitted

because they did not fit within the book’s overall structure, or because I did not feel

sufficiently competent to present them.

Scientific data. This is not a book about scientific data analysis. When you are doing

scientific research (however you wish to define “scientific”), you really need to have a

solid background (and that probably means formal training) in the field that you are

working in. A book such as this one on general data analysis cannot replace this.

Formal statistical analysis. A different form of data analysis exists in some particularly

well-established fields. In these situations, the environment from which the data arises is

fully understood (or at least believed to be understood), and the methods and models to

be used are likewise accepted and well known. Typical examples include clinical trials as

well as credit scoring. The purpose of an “analysis” in these cases is not to find out

anything new, but rather to determine the model parameters with the highest degree of

accuracy and precision for each newly generated set of data points. Since this is the kind

of work where details matter, it should be left to specialists.

Network analysis. This is a topic of current interest about which I know nothing.

(Sorry!) However, it does seem to me that its nature is quite different from most problems

that are usually considered “data analysis”: less statistical, more algorithmic in nature. But

I don’t know for sure.

Natural language processing and text mining. Natural language processing is a big topic

all by itself, which has little overlap (neither in terms of techniques nor applications) with
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the rest of the material presented here. It deserves its own treatment—and several books

on this subject are available.

Big data. Arguably the most painful omission concerns everything having to do with Big

Data. Big Data is a pretty new concept—I tend to think of it as relating to data sets that not

merely don’t fit into main memory, but that no longer fit comfortably on a single disk,

requiring compute clusters and the respective software and algorithms (in practice,

map/reduce running on Hadoop).

The rise of Big Data is a remarkable phenomenon. When this book was conceived (early

2009), Big Data was certainly on the horizon but was not necessarily considered

mainstream yet. As this book goes to print (late 2010), it seems that for many people in

the tech field, “data” has become nearly synonymous with “Big Data.” That kind of

development usually indicates a fad. The reality is that, in practice, many data sets are

“small,” and in particular many relevant data sets are small. (Some of the most important

data sets in a commercial setting are those maintained by the finance department—and

since they are kept in Excel, they must be small.)

Big Data is not necessarily “better.” Applied carelessly, it can be a huge step backward. The

amazing insight of classical statistics is that you don’t need to examine every single

member of a population to make a definitive statement about the whole: instead you can

sample! It is also true that a carefully selected sample may lead to better results than a

large, messy data set. Big Data makes it easy to forget the basics.

It is a little early to say anything definitive about Big Data, but the current trend strikes

me as being something quite different: it is not just classical data analysis on a larger scale.

The approach of classical data analysis and statistics is inductive. Given a part, make

statements about the whole: from a sample, estimate parameters of the population; given

an observation, develop a theory for the underlying system. In contrast, Big Data (at least

as it is currently being used) seems primarily concerned with individual data points. Given

that this specific user liked this specific movie, what other specific movie might he like? This is

a very different question than asking which movies are most liked by what people in

general!

Big Data will not replace general, inductive data analysis. It is not yet clear just where Big

Data will deliver the greatest bang for the buck—but once the dust settles, somebody

should definitely write a book about it!
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C H A P T E R T W O

A Single Variable: Shape and
Distribution

WHEN DEALING WITH UNIVARIATE DATA, WE ARE USUALLY MOSTLY CONCERNED WITH THE OVERALL SHAPE OF

the distribution. Some of the initial questions we may ask include:

• Where are the data points located, and how far do they spread? What are typical, as

well as minimal and maximal, values?

• How are the points distributed? Are they spread out evenly or do they cluster in certain

areas?

• How many points are there? Is this a large data set or a relatively small one?

• Is the distribution symmetric or asymmetric? In other words, is the tail of the

distribution much larger on one side than on the other?

• Are the tails of the distribution relatively heavy (i.e., do many data points lie far away

from the central group of points), or are most of the points—with the possible

exception of individual outliers—confined to a restricted region?

• If there are clusters, how many are there? Is there only one, or are there several?

Approximately where are the clusters located, and how large are they—both in terms

of spread and in terms of the number of data points belonging to each cluster?

• Are the clusters possibly superimposed on some form of unstructured background, or

does the entire data set consist only of the clustered data points?

• Does the data set contain any significant outliers—that is, data points that seem to be

different from all the others?

• And lastly, are there any other unusual or significant features in the data set—gaps,

sharp cutoffs, unusual values, anything at all that we can observe?

11
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As you can see, even a simple, single-column data set can contain a lot of different

features!

To make this concrete, let’s look at two examples. The first concerns a relatively small data

set: the number of months that the various American presidents have spent in office. The

second data set is much larger and stems from an application domain that may be more

familiar; we will be looking at the response times from a web server.

Dot and Jitter Plots

Suppose you are given the following data set, which shows all past American presidents

and the number of months each spent in office.* Although this data set has three

columns, we can treat it as univariate because we are interested only in the times spent in

office—the names don’t matter to us (at this point). What can we say about the typical

tenure?

1 Washington 94

2 Adams 48

3 Jefferson 96

4 Madison 96

5 Monroe 96

6 Adams 48

7 Jackson 96

8 Van Buren 48

9 Harrison 1

10 Tyler 47

11 Polk 48

12 Taylor 16

13 Filmore 32

14 Pierce 48

15 Buchanan 48

16 Lincoln 49

17 Johnson 47

18 Grant 96

19 Hayes 48

20 Garfield 7

21 Arthur 41

22 Cleveland 48

23 Harrison 48

24 Cleveland 48

25 McKinley 54

26 Roosevelt 90

27 Taft 48

28 Wilson 96

29 Harding 29

*The inspiration for this example comes from a paper by Robert W. Hayden in the Journal of Statistics
Education. The full text is available at http://www.amstat.org/publications/jse/v13n1/datasets.hayden.html.

12 C H A P T E R T W O

http://www.amstat.org/publications/jse/v13n1/datasets.hayden.html


O’Reilly-5980006 master October 28, 2010 20:25

30 Coolidge 67

31 Hoover 48

32 Roosevelt 146

33 Truman 92

34 Eisenhower 96

35 Kennedy 34

36 Johnson 62

37 Nixon 67

38 Ford 29

39 Carter 48

40 Reagan 96

41 Bush 48

42 Clinton 96

43 Bush 96

This is not a large data set (just over 40 records), but it is a little too big to take in as a

whole. A very simple way to gain an initial sense of the data set is to create a dot plot. In a

dot plot, we plot all points on a single (typically horizontal) line, letting the value of each

data point determine the position along the horizontal axis. (See the top part of Figure

2-1.)

A dot plot can be perfectly sufficient for a small data set such as this one. However, in our

case it is slightly misleading because, whenever a certain tenure occurs more than once in

the data set, the corresponding data points fall right on top of each other, which makes it

impossible to distinguish them. This is a frequent problem, especially if the data assumes

only integer values or is otherwise “coarse-grained.” A common remedy is to shift each

point by a small random amount from its original position; this technique is called jittering

and the resulting plot is a jitter plot. A jitter plot of this data set is shown in the bottom part

of Figure 2-1.

What does the jitter plot tell us about the data set? We see two values where data points

seem to cluster, indicating that these values occur more frequently than others. Not

surprisingly, they are located at 48 and 96 months, which correspond to one and two full

four-year terms in office. What may be a little surprising, however, is the relatively large

number of points that occur outside these clusters. Apparently, quite a few presidents left

office at irregular intervals! Even in this simple example, a plot reveals both something

expected (the clusters at 48 and 96 months) and the unexpected (the larger number of

points outside those clusters).

Before moving on to our second example, let me point out a few additional technical

details regarding jitter plots.

• It is important that the amount of “jitter” be small compared to the distance between

points. The only purpose of the random displacements is to ensure that no two points

fall exactly on top of one another. We must make sure that points are not shifted

significantly from their true location.

A S I N G L E V A R I A B L E : S H A P E A N D D I S T R I B U T I O N 13
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F I G U R E 2-1. Dot and jitter plots showing the number of months U.S. presidents spent in office.

• We can jitter points in either the horizontal or the vertical direction (or both),

depending on the data set and the purpose of the graph. In Figure 2-1, points were

jittered only in the vertical direction, so that their horizontal position (which in this

case corresponds to the actual data—namely, the number of months in office) is not

altered and therefore remains exact.

• I used open, transparent rings as symbols for the data points. This is no accident:

among different symbols of equal size, open rings are most easily recognized as

separate even when partially occluded by each other. In contrast, filled symbols tend to

hide any substructure when they overlap, and symbols made from straight lines (e.g.,

boxes and crosses) can be confusing because of the large number of parallel lines; see

the top part of Figure 2-1.

Jittering is a good trick that can be used in many different contexts. We will see further

examples later in the book.

Histograms and Kernel Density Estimates

Dot and jitter plots are nice because they are so simple. However, they are neither pretty

nor very intuitive, and most importantly, they make it hard to read off quantitative

information from the graph. In particular, if we are dealing with larger data sets, then we

need a better type of graph, such as a histogram.

14 C H A P T E R T W O



O’Reilly-5980006 master October 28, 2010 20:25

 0

 10

 20

 30

 40

 50

 60

 70

 0  500  1000  1500  2000  2500  3000

N
um

be
r 

of
 O

bs
er

va
tio

ns

Response Time

F I G U R E 2-2. A histogram of a server’s response times.

Histograms

To form a histogram, we divide the range of values into a set of “bins” and then count the

number of points (sometimes called “events”) that fall into each bin. We then plot the

count of events for each bin as a function of the position of the bin.

Once again, let’s look at an example. Here is the beginning of a file containing response

times (in milliseconds) for queries against a web server or database. In contrast to the

previous example, this data set is fairly large, containing 1,000 data points.

452.42

318.58

144.82

129.13

1216.45

991.56

1476.69

662.73

1302.85

1278.55

627.65

1030.78

215.23

44.50

...

Figure 2-2 shows a histogram of this data set. I divided the horizontal axis into 60 bins of

50 milliseconds width and then counted the number of events in each bin.
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What does the histogram tell us? We observe a rather sharp cutoff at a nonzero value on

the left, which means that there is a minimum completion time below which no request

can be completed. Then there is a sharp rise to a maximum at the “typical” response time,

and finally there is a relatively large tail on the right, corresponding to the smaller number

of requests that take a long time to process. This kind of shape is rather typical for a

histogram of task completion times. If the data set had contained completion times for

students to finish their homework or for manufacturing workers to finish a work product,

then it would look qualitatively similar except, of course, that the time scale would be

different. Basically, there is some minimum time that nobody can beat, a small group of

very fast champions, a large majority, and finally a longer or shorter tail of “stragglers.”

It is important to realize that a data set does not determine a histogram uniquely. Instead,

we have to fix two parameters to form a histogram: the bin width and the alignment of the

bins.

The quality of any histogram hinges on the proper choice of bin width. If you make the

width too large, then you lose too much detailed information about the data set. Make it

too small and you will have few or no events in most of the bins, and the shape of the

distribution does not become apparent. Unfortunately, there is no simple rule of thumb

that can predict a good bin width for a given data set; typically you have to try out several

different values for the bin width until you obtain a satisfactory result. (As a first guess,

you can start with Scott’s rule for the bin width w = 3.5σ/ 3
√

n, where σ is the standard

deviation for the entire data set and n is the number of points. This rule assumes that the

data follows a Gaussian distribution; otherwise, it is likely to give a bin width that is too

wide. See the end of this chapter for more information on the standard deviation.)

The other parameter that we need to fix (whether we realize it or not) is the alignment of

the bins on the x axis. Let’s say we fixed the width of the bins at 1. Where do we now

place the first bin? We could put it flush left, so that its left edge is at 0, or we could center

it at 0. In fact, we can move all bins by half a bin width in either direction.

Unfortunately, this seemingly insignificant (and often overlooked) parameter can have a

large influence on the appearance of the histogram. Consider this small data set:

1.4

1.7

1.8

1.9

2.1

2.2

2.3

2.6

Figure 2-3 shows two histograms of this data set. Both use the same bin width (namely, 1)

but have different alignment of the bins. In the top panel, where the bin edges have been

aligned to coincide with the whole numbers (1, 2, 3, . . . ), the data set appears to be flat.

Yet in the bottom panel, where the bins have been centered on the whole numbers, the
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F I G U R E 2-3. Histograms can look quite different, depending on the choice of anchoring point for the first bin. The figure
shows two histograms of the same data set, using the same bin width. In the top panel, the bin edges are aligned on whole
numbers; in the bottom panel, bins are centered on whole numbers.

data set appears to have a rather strong central peak and symmetric wings on both sides.

It should be clear that we can construct even more pathological examples than this. In the

next section we shall introduce an alternative to histograms that avoids this particular

problem.

Before moving on, I’d like to point out some additional technical details and variants of

histograms.

• Histograms can be either normalized or unnormalized. In an unnormalized histogram,

the value plotted for each bin is the absolute count of events in that bin. In a normalized

histogram, we divide each count by the total number of points in the data set, so that

the value for each bin becomes the fraction of points in that bin. If we want the

percentage of points per bin instead, we simply multiply the fraction by 100.

• So far I have assumed that all bins have the same width. We can relax this constraint

and allow bins of differing widths—narrower where points are tightly clustered but

wider in areas where there are only few points. This method can seem very appealing

when the data set has outliers or areas with widely differing point density. Be warned,

though, that now there is an additional source of ambiguity for your histogram: should

you display the absolute number of points per bin regardless of the width of each bin;

or should you display the density of points per bin by normalizing the point count per

bin by the bin width? Either method is valid, and you cannot assume that your

audience will know which convention you are following.
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• It is customary to show histograms with rectangular boxes that extend from the

horizontal axis, the way I have drawn Figures 2-2 and 2-3. That is perfectly all right

and has the advantage of explicitly displaying the bin width as well. (Of course, the

boxes should be drawn in such a way that they align in the same way that the actual

bins align; see Figure 2-3.) This works well if you are only displaying a histogram for a

single data set. But if you want to compare two or more data sets, then the boxes start

to get in the way, and you are better off drawing “frequency polygons”: eliminate the

boxes, and instead draw a symbol where the top of the box would have been. (The

horizontal position of the symbol should be at the center of the bin.) Then connect

consecutive symbols with straight lines. Now you can draw multiple data sets in the

same plot without cluttering the graph or unnecessarily occluding points.

• Don’t assume that the defaults of your graphics program will generate the best

representation of a histogram! I have already discussed why I consider frequency

polygons to be almost always a better choice than to construct a histogram from boxes.

If you nevertheless choose to use boxes, it is best to avoid filling them (with a color or

hatch pattern)—your histogram will probably look cleaner and be easier to read if you

stick with just the box outlines. Finally, if you want to compare several data sets in the

same graph, always use a frequency polygon, and stay away from stacked or clustered

bar graphs, since these are particularly hard to read. (We will return to the problem of

displaying composition problems in Chapter 5.)

Histograms are very common and have a nice, intuitive interpretation. They are also easy

to generate: for a moderately sized data set, it can even be done by hand, if necessary.

That being said, histograms have some serious problems. The most important ones are as

follows.

• The binning process required by all histograms loses information (by replacing the

location of individual data points with a bin of finite width). If we only have a few data

points, we can ill afford to lose any information.

• Histograms are not unique. As we saw in Figure 2-3, the appearance of a histogram can

be quite different. (This nonuniqueness is a direct consequence of the information loss

described in the previous item.)

• On a more superficial level, histograms are ragged and not smooth. This matters little if

we just want to draw a picture of them, but if we want to feed them back into a

computer as input for further calculations, then a smooth curve would be easier to

handle.

• Histograms do not handle outliers gracefully. A single outlier, far removed from the

majority of the points, requires many empty cells in between or forces us to use bins

that are too wide for the majority of points. It is the possibility of outliers that makes it

difficult to find an acceptable bin width in an automated fashion.

18 C H A P T E R T W O
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F I G U R E 2-4. Histogram and kernel density estimate of the distribution of the time U.S. presidents have spent in office.

Fortunately, there is an alternative to classical histograms that has none of these problems.

It is called a kernel density estimate.

Kernel Density Estimates

Kernel density estimates (KDEs) are a relatively new technique. In contrast to histograms,

and to many other classical methods of data analysis, they pretty much require the

calculational power of a reasonably modern computer to be effective. They cannot be

done “by hand” with paper and pencil, even for rather moderately sized data sets. (It is

interesting to see how the accessibility of computational and graphing power enables new

ways to think about data!)

To form a KDE, we place a kernel—that is, a smooth, strongly peaked function—at the

position of each data point. We then add up the contributions from all kernels to obtain a

smooth curve, which we can evaluate at any point along the x axis.

Figure 2-4 shows an example. This is yet another representation of the data set we have

seen before in Figure 2-1. The dotted boxes are a histogram of the data set (with bin width

equal to 1), and the solid curves are two KDEs of the same data set with different

bandwidths (I’ll explain this concept in a moment). The shape of the individual kernel

functions can be seen clearly—for example, by considering the three data points below 20.

You can also see how the final curve is composed out of the individual kernels, in

particular when you look at the points between 30 and 40.
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F I G U R E 2-5. Graphs of some frequently used kernel functions.

We can use any smooth, strongly peaked function as a kernel provided that it integrates to

1; in other words, the area under the curve formed by a single kernel must be 1. (This is

necessary to make sure that the resulting KDE is properly normalized.) Some examples of

frequently used kernel functions include (see Figure 2-5):

K (x) =
⎧
⎨

⎩

1
2 if |x | ≤ 1

0 otherwise
box or boxcar kernel

K (x) =
⎧
⎨

⎩

3
4

(
1 − x2

)
if |x | ≤ 1

0 otherwise
Epanechnikov kernel

K (x) = 1√
2π

exp

(
−1

2
x2

)
Gaussian kernel

The box kernel and the Epanechnikov kernel are zero outside a finite range, whereas the

Gaussian kernel is nonzero everywhere but negligibly small outside a limited domain. It

turns out that the curve resulting from the KDE does not depend strongly on the

particular choice of kernel function, so we are free to use the kernel that is most

convenient. Because it is so easy to work with, the Gaussian kernel is the most widely

used. (See Appendix B for more information on the Gaussian function.)

Constructing a KDE requires t o things: first, we must move the kernel to the position of

each point by shifting it appropriately. For example, the function K (x − xi ) will have its

peak at xi , not at 0. Second, we have to choose the kernel bandwidth, which controls the

spread of the kernel function. To make sure that the area under the curve stays the same

as we shrink the width, we have to make the curve higher (and lower if we increase the
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F I G U R E 2-6. The Gaussian kernel for three different bandwidths. The height of the kernel increases as the width
decreases, so the total area under the curve remains constant.

width). The final expression for the shifted, rescaled kernel function of bandwidth h is:

1

h
K

(
x − xi

h

)

This function has a peak at xi , its width is approximately h, and its height is such that the

area under the curve is still 1. Figure 2-6 shows some examples, using the Gaussian

kernel. Keep in mind that the area under all three curves is the same.

Using this expression, we can now write down a formula for the KDE with bandwidth h

for any data set {x1, x2, . . . , xn}. This formula can be evaluated for any point x along the x

axis:

Dh (x; {xi }) =
n∑

i=1

1

h
K

(
x − xi

h

)

All of this is straightforward and easy to implement in any computer language. Be aware

that for large data sets (those with many thousands of points), the required number of

kernel evaluations can lead to performance issues, especially if the function D(x) needs to

be evaluated for many different positions (i.e., many different values of x). If this becomes

a problem for you, you may want to choose a simpler kernel function or not evaluate a

kernel if the distance x − xi is significantly greater than the bandwidth h.*

*Yet another strategy starts with the realization that forming a KDE amounts to a convolution of the
kernel function with the data set. You can now take the Fourier transform of both kernel and data set
and make use of the Fourier convolution theorem. This approach is suitable for very large data sets
but is outside the scope of our discussion.
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Now we can explain the wide gray line in Figure 2-4: it is a KDE with a larger bandwidth.

Using such a large bandwidth makes it impossible to resolve the individual data points,

but it does highlight entire periods of greater or smaller frequency. Which choice of

bandwidth is right for you depends on your purpose.

A KDE constructed as just described is similar to a classical histogram, but it avoids two of

the aforementioned problems. Given data set and bandwidth, a KDE is unique; a KDE is

also smooth, provided we have chosen a smooth kernel function, such as the Gaussian.

Optional: Optimal Bandwidth Selection

We still have to fix the bandwidth. This is a different kind of problem than the other two:

it’s not just a technical problem, which could be resolved through a better method;

instead, it’s a fundamental problem that relates to the data set itself. If the data follows a

smooth distribution, then a wider bandwidth is appropriate, but if the data follows a very

wiggly distribution, then we need a smaller bandwidth to retain all relevant detail. In

other words, the optimal bandwidth is a property of the data set and tells us something

about the nature of the data.

So how do we choose an optimal value for the bandwidth? Intuitively, the problem is

clear: we want the bandwidth to be narrow enough to retain all relevant detail but wide

enough so that the resulting curve is not too “wiggly.” This is a problem that arises in

every approximation problem: balancing the faithfulness of representation against the

simplicity of behavior. Statisticians speak of the “bias–variance trade-off.”

To make matters concrete, we have to define a specific expression for the error of our

approximation, one that takes into account both bias and variance. We can then choose a

value for the bandwidth that minimizes this error. For KDEs, the generally accepted

measure is the “expected mean-square error” between the approximation and the true

density. The problem is that we don’t know the true density function that we are trying to

approximate, so it seems impossible to calculate (and minimize) the error in this way. But

clever methods have been developed to make progress. These methods fall broadly into

two categories. First, we could try to find explicit expressions for both bias and variance.

Balancing them leads to an equation that has to be solved numerically or—if we make

additional assumptions (e.g., that the distribution is Gaussian)—can even yield explicit

expressions similar to Scott’s rule (introduced earlier when talking about histograms).

Alternatively, we could realize that the KDE is an approximation for the probability

density from which the original set of points was chosen. We can therefore choose points

from this approximation (i.e., from the probability density represented by the KDE) and

see how well they replicate the KDE that we started with. Now we change the bandwidth

until we find that value for which the KDE is best replicated: the result is the estimate of

the “true” bandwidth of the data. (This latter method is known as cross-validation.)

Although not particularly hard, the details of both methods would lead us too far afield,

and so I will skip them here. If you are interested, you will have no problem picking up
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the details from one of the references at the end of this chapter. Keep in mind, however,

that these methods find the optimal bandwidth with respect to the mean-square error, which

tends to overemphasize bias over variance and therefore these methods lead to rather

narrow bandwidths and KDEs that appear too wiggly. If you are using KDEs to generate

graphs for the purpose of obtaining intuitive visualizations of point distributions, then you

might be better off with a bit of manual trial and error combined with visual inspection. In

the end, there is no “right” answer, only the most suitable one for a given purpose. Also,

the most suitable to develop intuitive understanding might not be the one that minimizes

a particular mathematical quantity.

The Cumulative Distribution Function

The main advantage of histograms and kernel density estimates is that they have an

immediate intuitive appeal: they tell us how probable it is to find a data point with a

certain value. For example, from Figure 2-2 it is immediately clear that values around 250

milliseconds are very likely to occur, whereas values greater than 2,000 milliseconds are

quite rare.

But how rare, exactly? That is a question that is much harder to answer by looking at the

histogram in Figure 2-2. Besides wanting to know how much weight is in the tail, we

might also be interested to know what fraction of requests completes in the typical band

between 150 and 350 milliseconds. It’s certainly the majority of events, but if we want to

know exactly how many, then we need to sum up the contributions from all bins in that

region.

The cumulative distribution function (CDF) does just that. The CDF at point x tells us what

fraction of events has occurred “to the left” of x . In other words, the CDF is the fraction of

all points xi with xi ≤ x .

Figure 2-7 shows the same data set that we have already encountered in Figure 2-2, but

here the data is represented by a KDE (with bandwidth h = 30) instead of a histogram. In

addition, the figure also includes the corresponding CDF. (Both KDE and CDF are

normalized to 1.)

We can read off several interesting observations directly from the plot of the CDF. For

instance, we can see that at t = 1,500 (which certainly puts us into the tail of the

distribution) the CDF is still smaller than 0.85; this means that fully 15 percent of all

requests take longer than 1,500 milliseconds. In contrast, less than a third of all requests

are completed in the “typical” range of 150–500 milliseconds. (How do we know this? The

CDF for t = 150 is about 0.05 and is close to 0.40 for t = 500. In other words, about 40

percent of all requests are completed in less than 500 milliseconds; of these, 5 percent are

completed in less than 150 milliseconds. Hence about 35 percent of all requests have

response times of between 150 and 500 milliseconds.)
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F I G U R E 2-7. Kernel density estimate and cumulative distribution function of the server response times shown
in Figure 2-2.

It is worth pausing to contemplate these findings, because they demonstrate how

misleading a histogram (or KDE) can be despite (or because of) their intuitive appeal!

Judging from the histogram or KDE alone, it seems quite reasonable to assume that “most”

of the events occur within the major peak near t = 300 and that the tail for t > 1,500

contributes relatively little. Yet the CDF tells us clearly that this is not so. (The problem is

that the eye is much better at judging distances than areas, and we are therefore misled by

the large values of the histogram near its peak and fail to see that nevertheless the area

beneath the peak is not that large compared to the total area under the curve.)

CDFs are probably the least well-known and most underappreciated tool in basic

graphical analysis. They have less immediate intuitive appeal than histograms or KDEs,

but they allow us to make the kind of quantitative statement that is very often required

but is difficult (if not impossible) to obtain from a histogram.

Cumulative distribution functions have a number of important properties that follow

directly from how they are calculated.

• Because the value of the CDF at position x is the fraction of points to the left of x , a

CDF is always monotonically increasing with x .

• CDFs are less wiggly than a histogram (or KDE) but contain the same information in a

representation that is inherently less noisy.

• Because CDFs do not involve any binning, they do not lose information and are

therefore a more faithful representation of the data than a histogram.
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• All CDFs approach 0 as x goes to negative infinity. CDFs are usually normalized so that

they approach 1 (or 100 percent) as x goes to positive infinity.

• A CDF is unique for a given data set.

If you are mathematically inclined, you have probably already realized that the CDF is (an

approximation to) the antiderivative of the histogram and that the histogram is the

derivative of the CDF:

cdf(x) ≈
∫ x

−∞
dt histo(t)

histo(x) ≈ d

dx
cdf(x)

Cumulative distribution functions have several uses. First, and most importantly, they

enable us to answer questions such as those posed earlier in this section: what fraction of

points falls between any two values? The answer can simply be read off from the graph.

Second, CDFs also help us understand how imbalanced a distribution is—in other words,

what fraction of the overall weight is carried by the tails.

Cumulative distribution functions also prove useful when we want to compare two

distributions. It is notoriously difficult to compare two bell-shaped curves in a histogram

against each other. Comparing the corresponding CDFs is usually much more conclusive.

One last remark, before leaving this section: in the literature, you may find the term

quantile plot. A quantile plot is just the plot of a CDF in which the x and y axes have been

switched. Figure 2-8 shows an example using once again the server response time data

set. Plotted this way, we can easily answer questions such as, “What response time

corresponds to the 10th percentile of response times?” But the information contained in

this graph is of course exactly the same as in a graph of the CDF.

Optional: Comparing Distributions with Probability Plots and QQ Plots

Occasionally you might want to confirm that a given set of points is distributed according

to some specific, known distribution. For example, you have a data set and would like to

determine whether it can be described well by a Gaussian (or some other) distribution.

You could compare a histogram or KDE of the data set directly against the theoretical

density function, but it is notoriously difficult to compare distributions that

way—especially out in the tails. A better idea would be to compare the cumulative

distribution functions, which are easier to handle because they are less wiggly and are

always monotonically increasing. But this is still not easy. Also keep in mind that most

probability distributions depend on location and scale parameters (such as mean and

variance), which you would have to estimate before being able to make a meaningful

comparison. Isn’t there a way to compare a set of points directly against a theoretical

distribution and, in the process, read off the estimates for all the parameters required?
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F I G U R E 2-8. Quantile plot of the server data. A quantile plot is a graph of the CDF with the x and y axes interchanged.
Compare to Figure 2-7.
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F I G U R E 2-9. Jitter plot, histogram, and cumulative distribution function for a Gaussian data set.

As it turns out, there is. The method is technically easy to do, but the underlying logic is a

bit convoluted and tends to trip up even experienced practitioners.

Here is how it works. Consider a set of points {xi } that we suspect are distributed

according to the Gaussian distribution. In other words, we expect the cumulative

distribution function of the set of points, yi = cdf(xi ), to be the Gaussian cumulative
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F I G U R E 2-10. Probability plot for the data set shown in Figure 2-9.

distribution function � ((x − μ)/σ) with mean μ and standard deviation σ :

yi = �

(
xi − μ

σ

)
only if data is Gaussian

Here, yi is the value of the cumulative distribution function corresponding to the data

point xi ; in other words, yi is the quantile of the point xi .

Now comes the trick. We apply the inverse of the Gaussian distribution function to both

sides of the equation:

�−1(yi ) = xi − μ

σ

With a little bit of algebra, this becomes

xi = μ + σ�−1(yi )

In other words, if we plot the values in the data set as a function of �−1(yi ), then they

should fall onto a straight line with slope σ and zero intercept μ. If, on the other hand, the

points do not fall onto a straight line after applying the inverse transform, then we can

conclude that the data is not distributed according to a Gaussian distribution.

The resulting plot is known as a probability plot. Because it is easy to spot deviation from a

straight line, a probability plot provides a relatively sensitive test to determine whether a

set of points behaves according to the Gaussian distribution. As an added benefit, we can

read off estimates for the mean and the standard deviation directly from the graph: μ is

the intercept of the curve with the y axis, and σ is given by the slope of the curve. (Figure

2-10 shows the probability plot for the Gaussian data set displayed in Figure 2-9.)
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One important question concerns the units that we plot along the axes. For the vertical

axis the case is clear: we use whatever units the original data was measured in. But what

about the horizontal axis? We plot the data as a function of �−1(yi ), which is the inverse

Gaussian distribution function, applied to the percentile yi for each point xi . We can

therefore choose between two different ways to dissect the horizontal axis: either using

the percentiles yi directly (in which case the tick marks will not be distributed uniformly),

or dividing the horizontal axis uniformly. In the latter case we are using the width of the

standard Gaussian distribution as a unit. You can convince yourself that this is really true by

realizing that �−1(y) is the inverse of the Gaussian distribution function �(x). Now ask

yourself: what units is x measured in? We use the same units for the horizontal axis of a

Gaussian probability plot. These units are sometimes called probits. (Figure 2-10 shows

both sets of units.) Beware of confused and confusing explanations of this point elsewhere

in the literature.

There is one more technical detail that we need to discuss: to produce a probability plot,

we need not only the data itself, but for each point xi we also need its quantile yi (we will

discuss quantiles and percentiles in more detail later in this chapter). The simplest way to

obtain the quantiles, given the data, is as follows:

1. Sort the data points in ascending order.

2. Assign to each data point its rank (basically, its line number in the sorted file), starting

at 1 (not at 0).

3. The quantile yi now is the rank divided by n + 1, where n is the number of data points.

This prescription guarantees that each data point is assigned a quantile that is strictly

greater than 0 and strictly less than 1. This is important because �−1(x) is defined only for

0 < x < 1. This prescription is easy to understand and easy to remember, but you may

find other, slightly more complicated prescriptions elsewhere. For all practical purposes,

the differences are going to be small.

Finally, let’s look at an example where the data is clearly not Gaussian. Figure 2-11 shows

the server data from Figure 2-2 plotted in a probability plot. The points don’t fall on a

straight line at all—which is no surprise since we already knew from Figure 2-2 that the

data is not Gaussian. But for cases that are less clear-cut, the probability plot can be a

helpful tool for detecting deviations from Gaussian behavior.

A few additional comments are in order here.

• Nothing in the previous discussion requires that the distribution be Gaussian! You can

use almost any other commonly used distribution function (and its inverse) to generate

the respective probability plots. In particular, many of the commonly used probability
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F I G U R E 2-11. A probability plot of the server response times from Figure 2-2. The data does not follow a Gaussian
distribution and thus the points do not fall on a straight line.

distributions depend on location and scale parameters in exactly the same way as the

Gaussian distribution, so all the arguments discussed earlier go through as before.

• So far, I have always assumed that we want to compare an empirical data set against a

theoretical distribution. But there may also be situations where we want to compare two

empirical data sets against each other—for example, to find out whether they were

drawn from the same family of distributions (without having to specify the family

explicitly). The process is easiest to understand when both data sets we want to

compare contain the same number of points. You sort both sets and then align the

points from both data sets that have the same rank (once sorted). Now plot the

resulting pairs of points in a regular scatter plot (see Chapter 3); the resulting graph is

known as a QQ plot. (If the two data sets do not contain the same number of points,

you will have to interpolate or truncate them so that they do.)

Probability plots are a relatively advanced, specialized technique, and you should evaluate

whether you really need them. Their purpose is to determine whether a given data set

stems from a specific, known distribution. Occasionally, this is of interest in itself; in other

situations subsequent analysis depends on proper identification of the underlying model.

For example, many statistical techniques assume that the errors or residuals are Gaussian

and are not applicable if this condition is violated. Probability plots are a convenient

technique for testing this assumption.
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Rank-Order Plots and Lift Charts

There is a technique related to histograms and CDFs that is worth knowing about.

Consider the following scenario. A company that is selling textbooks and other

curriculum materials is planning an email marketing campaign to reach out to its existing

customers. For this campaign, the company wants to use personalized email messages that

are tailored to the job title of each recipient (so that teachers will receive a different email

than their principals). The problem is the customer database contains about 250,000

individual customer records with over 16,000 different job titles among them! Now what?

The trick is to sort the job titles by the number of individual customer records

corresponding to each job title. The first few records are shown in Table 2-1. The four

columns give the job title, the number of customers for that job title, the fraction of all

customers having that job title, and finally the cumulative fraction of customers. For the

last column, we sum up the number of customers for the current and all previously seen

job titles, then divide by the total number of customer records. This is the equivalent of

the CDF we discussed earlier.

We can see immediately that fully two thirds of all customers account for only 10 different

job titles. Using just the top 30 job titles gives us 75 percent coverage of customer records.

That’s much more manageable than the 16,000 job titles we started with!

Let’s step back for a moment to understand how this example is different from those we

have seen previously. What is important to notice here is that the independent variable has

no intrinsic ordering. What does this mean?

For the web-server example, we counted the number of events for each response time;

hence the count of events per bin was the dependent variable, and it was determined by

the independent variable—namely, the response time. In that case, the independent

variable had an inherent ordering: 100 milliseconds are always less than 400 milliseconds

(and so on). But in the case of counting customer records that match a certain job title,

the independent variable (the job title) has no corresponding ordering relation. It may

appear otherwise since we can sort the job titles alphabetically, but realize that this

ordering is entirely arbitrary! There is nothing “fundamental” about it. If we choose a

different font encoding or locale, the order will change. Contrast this with the ordering

relationship on numbers—there are no two ways about it: 1 is always less than 2.

In cases like this, where the independent variable does not have an intrinsic ordering, it is

often a good idea to sort entries by the dependent variable. That’s what we did in the

example: rather than defining some (arbitrary) sort order on the job titles, we sorted by

the number of records (i.e., by the dependent variable). Once the records have been sorted

in this way, we can form a histogram and a CDF as before.
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T A B L E 2 -1. The first 30 job titles and their relative frequencies.

Number of Fraction of Cumulative
Title customers customers fraction

Teacher 66,470 0.34047 0.340
Principal 22,958 0.11759 0.458
Superintendent 12,521 0.06413 0.522
Director 12,202 0.06250 0.584
Secretary 4,427 0.02267 0.607
Coordinator 3,201 0.01639 0.623
Vice Principal 2,771 0.01419 0.637
Program Director 1,926 0.00986 0.647
Program Coordinator 1,718 0.00880 0.656
Student 1,596 0.00817 0.664
Consultant 1,440 0.00737 0.672
Administrator 1,169 0.00598 0.678
President 1,114 0.00570 0.683
Program Manager 1,063 0.00544 0.689
Supervisor 1,009 0.00516 0.694
Professor 961 0.00492 0.699
Librarian 940 0.00481 0.704
Project Coordinator 880 0.00450 0.708
Project Director 866 0.00443 0.713
Office Manager 839 0.00429 0.717
Assistant Director 773 0.00395 0.721
Administrative Assistant 724 0.00370 0.725
Bookkeeper 697 0.00357 0.728
Intern 693 0.00354 0.732
Program Supervisor 602 0.00308 0.735
Lead Teacher 587 0.00300 0.738
Instructor 580 0.00297 0.741
Head Teacher 572 0.00292 0.744
Program Assistant 572 0.00292 0.747
Assistant Teacher 546 0.00279 0.749

This trick of sorting by the dependent variable is useful whenever the independent

variable does not have a meaningful ordering relation; it is not limited to situations where

we count events per bin. Figures 2-12 and 2-13 show two typical examples.

Figure 2-12 shows the sales by a certain company to different countries. Not only the sales

to each country but also the cumulative sales are shown, which allows us to assess the

importance of the remaining “tail” of the distribution of sales.

In this example, I chose to plot the independent variable along the vertical axis. This is

often a good idea when the values are strings, since they are easier to read this way. (If

you plot them along the horizontal axis, it is often necessary to rotate the strings by 90

degrees to make them fit, which makes hard to read.)

Figure 2-13 displays what in quality engineering is known as a Pareto chart. In quality

engineering and process improvement, the goal is to reduce the number of defects in a
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F I G U R E 2-13. The Pareto chart is another example of a rank-order plot.

certain product or process. You collect all known causes of defects and observe how often

each one occurs. The results can be summarized conveniently in a chart like the one in

Figure 2-13. Note that the causes of defects are sorted by their frequency of occurrence.

From this chart we can see immediately that problems with the engine and the electrical

system are much more common than problems with the air conditioning, the brakes, or
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the transmission. In fact, by looking at the cumulative error curve, we can tell that fixing

just the first two problem areas would reduce the overall defect rate by 80 percent.

Two more bits of terminology: the term “Pareto chart” is not used widely outside the

specific engineering disciplines mentioned in the previous paragraph. I personally prefer

the expression rank-order chart for any plot generated by first sorting all entries by the

dependent variable (i.e., by the rank of the entry). The cumulative distribution curve is

occasionally referred to as a lift curve, because it tells us how much “lift” we get from each

entry or range of entries.

Only When Appropriate: Summary Statistics and Box Plots

You may have noticed that so far I have not spoken at all about such simple topics as

mean and median, standard deviation, and percentiles. That is quite intentional. These

summary statistics apply only under certain assumptions and are misleading, if not

downright wrong, if those assumptions are not fulfilled. I know that these quantities are

easy to understand and easy to calculate, but if there is one message I would like you to

take away from this book it is this: the fact that something is convenient and popular is no

reason to follow suit. For any method that you want to use, make sure you understand

the underlying assumptions and always check that they are fulfilled for the specific

application you have in mind!

Mean, median, and related summary statistics apply only to distributions that have a

single, central peak—that is, to unimodal distributions. If this basic assumption is not

fulfilled, then conclusions based on simple summary statistics will be wrong. Even worse,

nothing will tip you off that they are wrong: the numbers will look quite reasonable. (We

will see an example of this problem shortly.)

Summary Statistics

If a distribution has only a single peak, then it makes sense to ask about the properties of

that peak: where is it located, and what is its width? We may also want to know whether

the distribution is symmetric and whether any outliers are present.

Mean and standard deviation are two popular measures for location and spread. The mean

or average is both familiar and intuitive:

m = 1

n

∑

i

xi

The standard deviation measures how far points spread “on average” from the mean: we

take all the differences between each individual point and the mean, and then calculate

the average of all these differences. Because data points can either overshoot or

undershoot the mean and we don’t want the positive and negative deviations to cancel
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each other, we sum the square of the individual deviations and then take the mean of the

square deviations. (The second equation is very useful in practice and can be found from

the first after plugging in the definition of the mean.)

s2 = 1

n

∑

i

(xi − m)2

= 1

n

∑

i

x2
i − m2

The quantity s2 calculated in this way is known as the variance and is the more important

quantity from a theoretical point of view. But as a measure of the spread of a distribution,

we are better off using its square root, which is known as the standard deviation. Why take

the square root? Because then both measure for the location, and the measure for the

spread will have the same units, which are also the units of the actual data. (If our data set

consists of the prices for a basket of goods, then the variance would be given in “square

dollars,” whereas the standard deviation would be given in dollars.)

For many (but certainly not all!) data sets arising in practice, one can expect about two

thirds of all data points to fall within the interval [m − s, m + s] and 99 percent of all

points to fall within the wider interval [m − 3s, m + 3s].

Mean and standard deviation are easy to calculate, and have certain nice mathematical

properties—provided the data is symmetric and does not contain crazy outliers.

Unfortunately, many data sets violate at least one of these assumptions. Here is an

example for the kind of trouble that one may encounter. Assume we have 10 items

costing $1 each, and one item costing $20. The mean item price comes out to be $2.73,

even though no item has a price anywhere near this value. The standard deviation is

even worse: it comes out to $5.46, implying that most items have a price between

$2.73 − $5.46 and $2.73 + $5.46. The “expected range” now includes negative prices—an

obviously absurd result. Note that the data set itself is not particularly pathological: going

to the grocery store and picking up a handful of candy bars and a bottle of wine will do it

(pretty good wine, to be sure, but nothing outrageous).

A different set of summary statistics that is both more flexible and more robust is based on

the concepts of median and quantiles or percentiles. The median is conventionally defined as

the value from a data set such that half of all points in the data set are smaller and the

other half greater that that value. Percentiles are the generalization of this concept to

other fractions (the 10th percentile is the value such that 10 percent of all points in the

data set are smaller than it, and so on). Quantiles are similar to percentiles, only that they

are taken with respect to the fraction of points, not the percentage of points (in other

words, the 10th percentile equals the 0.1 quantile).

Simple as it is, the percentile concept is nevertheless ambiguous, and so we need to work

a little harder to make it really concrete. As an example of the problems that occur,

consider the data set {1, 2, 3}. What is the median? It is not possible to break this data set
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into two equal parts each containing exactly half the points. The problem becomes even

more uncomfortable when we are dealing with arbitrary percentile values (rather than

the median only).

The Internet standard laid down in RFC 2330 (“Framework for IP Performance Metrics”)

gives a definition of percentiles in terms of the CDF, which is unambiguous and practical,

as follows. The pth percentile is the smallest value x , such that the cumulative distribution

function of x is greater or equal p/100.

pth percentile: smallest x for which cdf(x) ≥ p/100

This definition assumes that the CDF is normalized to 1, not to 100. If it were normalized

to 100, the condition would be cdf(x) ≥ p.

With this definition, the median (i.e., the 50th percentile) of the data set {1, 2, 3} is 2

because the cdf(1) = 0.33 . . . , cdf(2) = 0.66 . . . , and cdf(3) = 1.0. The median of the data

set {1, 2} would be 1 because now cdf(1) = 0.5, and cdf(2) = 1.0.

The median is a measure for the location of the distribution, and we can use percentiles to

construct a measure for the width of the distribution. Probably the most frequently used

quantity for this purpose is the inter-quartile range (IQR), which is the distance between

the 75th percentile and 25th percentile.

When should you favor median and percentile over mean and standard deviation?

Whenever you suspect that your distribution is not symmetric or has important outliers.

If a distribution is symmetric and well behaved, then mean and median will be quite close

together, and there is little difference in using either. Once the distribution becomes

skewed, however, the basic assumption that underlies the mean as a measure for the

location of the distribution is no longer fulfilled, and so you are better off using the

median. (This is why the average wage is usually given in official publications as the

median family income, not the mean; the latter would be significantly distorted by the

few households with extremely high incomes.) Furthermore, the moment you have

outliers, the assumptions behind the standard deviation as a measure of the width of the

distribution are violated; in this case you should favor the IQR (recall our shopping basket

example earlier).

If median and percentiles are so great, then why don’t we always use them? A large part

of the preference for mean and variance is historical. In the days before readily available

computing power, percentiles were simply not practical to calculate. Keep in mind that

finding percentiles requires to sort the data set whereas to find the mean requires only to

add up all elements in any order. The latter is an O(n) process, but the former is an O(n2)

process, since humans—being nonrecursive—cannot be taught Quicksort and therefore

need to resort to much less efficient sorting algorithms. A second reason is that it is much

harder to prove rigorous theorems for percentiles, whereas mean and variance are

mathematically very well behaved and easy to work with.
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Box-and-Whisker Plots

There is an interesting graphical way to represent these quantities, together with

information about potential outliers, known as a box-and-whisker plot, or box plot for short.

Figure 2-15 illustrates all components of a box plot. A box plot consists of:

• A marker or symbol for the median as an indicator of the location of the distribution

• A box, spanning the inter-quartile range, as a measure of the width of the distribution

• A set of whiskers, extending from the central box to the upper and lower adjacent

values, as an indicator of the tails of the distribution (where “adjacent value” is defined

in the next paragraph)

• Individual symbols for all values outside the range of adjacent values, as a

representation for outliers

You can see that a box plot combines a lot of information in a single graph. We have

encountered almost all of these concepts before, with the exception of upper and lower

adjacent values. While the inter-quartile range is a measure for the width of the central

“bulk” of the distribution, the adjacent values are one possible way to express how far its

tails reach. The upper adjacent value is the largest value in the data set that is less than

twice the inter-quartile range greater than the median. In other words: extend the

whisker upward from the median to twice the length of the central box. Now trim the

whisker down to the largest value that actually occurs in the data set; this value is the

upper adjacent value. (A similar construction holds for the lower adjacent value.)

You may wonder about the reason for this peculiar construction. Why not simply extend

the whiskers to, say, the 5th and 95th percentile and be done with it? The problem with

this approach is that it does not allow us to recognize true outliers! Outliers are data points

that are, when compared to the width of the distribution, unusually far from the center. Such

values may or may not be present. The top and bottom 5 percent, on the other hand, are

always present even for very compact distributions. To recognize outliers, we therefore

cannot simply look at the most extreme values, instead we must compare their distance from

the center to the overall width of the distribution. That is what box-and-whisker plots, as

described in the previous paragraph, do.

The logic behind the preceding argument is extremely important (not only in this

application but more generally), so I shall reiterate the steps: first we calculated a measure

for the width of the distribution, then we used this width to identify outliers as those

points that are far from the center, where (and this is the crucial step) “far” is measured in

units of the width of the distribution. We neither impose an arbitrary distance from the

outside, nor do we simply label the most extreme x percent of the distribution as

outliers—instead, we determine the width of the distribution (as the range into which

points “typically” fall) and then use it to identify outliers as those points that deviate from

this range. The important insight here is that the distribution itself determines a typical

scale, which provides a natural unit in which to measure other properties of the
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distribution. This idea of using some typical property of the system to describe other parts

of the system will come up again later (see Chapter 8).

Box plots combine many different measures of a distribution into a single, compact graph.

A box plot allows us to see whether the distribution is symmetric or not and how the

weight is distributed between the central peak and the tails. Finally, outliers (if present)

are not dropped but shown explicitly.

Box plots are best when used to compare several distributions against one another—for a

single distribution, the overhead of preparing and managing a graph (compared to just

quoting the numbers) may often not appear justified. Here is an example that compares

different data sets against each other.

Let’s say we have a data set containing the index of refraction of 121 samples of glass.*

The data set is broken down by the type of glass: 70 samples of window glass, 29 from

headlamps, 13 from containers of various kinds, and 9 from tableware. Figures 2-14 and

2-15 are two representations of the same data, the former as a kernel density estimate and

the latter as a box plot.

The box plot emphasizes the overall structure of the data sets and makes it easy to

compare the data sets based on their location and width. At the same time, it also loses

much information. The KDE gives a more detailed view of the data—in particular

showing the occurrence of multiple peaks in the distribution functions—but makes it

more difficult to quickly sort and classify the data sets. Depending on your needs, one or

the other technique may be preferable at any given time.

Here are some additional notes on box plots.

• The specific way of drawing a box plot that I described here is especially useful but is

far from universal. In particular, the specific definition of the adjacent values is often

not properly understood. Whenever you find yourself looking at a box plot, always ask

what exactly is shown, and whenever you prepare one, make sure to include an

explanation.

• The box plot described here can be modified and enhanced. For example, the width

of the central box (i.e., the direction orthogonal to the whiskers) can be used to

indicate the size of the underlying data set: the more points are included, the wider the

box. Another possibility is to abandon the rectangular shape of the box altogether and

to use the local width of the box to display the density of points at each location—

which brings us almost full circle to KDEs.

*The raw data can be found in the “Glass Identification Data Set” on the UCI Machine Learning Repos-
itory at http://archive.ics.uci.edu/ml/.
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 1.51  1.515  1.52  1.525

Headlamps
Window

Tableware
Containers

F I G U R E 2-14. Comparing data sets using KDEs: refractive index of different types of glass. (Compare Figure 2-15.)

Workshop: NumPy

The NumPy module provides efficient and convenient handling of large numerical arrays

in Python. It is the successor to both the earlier Numeric and the alternative numarray

modules. (See the Appendix A for more on the history of scientific computing with

Python.) The NumPy module is used by many other libraries and projects and in this

sense is a “base” technology.

Let’s look at some quick examples before delving a bit deeper into technical details.

NumPy in Action

NumPy objects are of type ndarray. There are different ways of creating them. We can

create an ndarray by:

• Converting a Python list

• Using a factory function that returns a populated vector

• Reading data from a file directly into a NumPy object

The listing that follows shows five different ways to create NumPy objects. First we create

one by converting a Python list. Then we show two different factory routines that

generate equally spaced grid points. These routines differ in how they interpret the

provided boundary values: one routine includes both boundary values, and the other

includes one and excludes the other. Next we create a vector filled with zeros and set each

element in a loop. Finally, we read data from a text file. (I am showing only the simplest

38 C H A P T E R T W O



O’Reilly-5980006 master October 28, 2010 20:25

F I G U R E 2-15. Comparing data sets using box plots: refractive index of different types of glass. (Compare Figure 2-14.)

or default cases here—all these routines have many more options that can be used to

influence their behavior.)

# Five different ways to create a vector...

import numpy as np

# From a Python list

vec1 = np.array( [ 0., 1., 2., 3., 4. ] )

# arange( start inclusive, stop exclusive, step size )

vec2 = np.arange( 0, 5, 1, dtype=float )

# linspace( start inclusive, stop inclusive, number of elements )

vec3 = np.linspace( 0, 4, 5 )

# zeros( n ) returns a vector filled with n zeros

vec4 = np.zeros( 5 )

for i in range( 5 ):

vec4[i] = i

# read from a text file, one number per row

vec5 = np.loadtxt( "data" )

In the end, all five vectors contain identical data. You should observe that the values in

the Python list used to initialize vec1 are floating-point values and that we specified the

type desired for the vector elements explicitly when using the arange() function to create

vec2. (We will come back to types in a moment.)
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Now that we have created these objects, we can operate with them (see the next listing).

One of the major conveniences provided by NumPy is that we can operate with NumPy

objects as if they were atomic data types: we can add, subtract, and multiply them (and so

forth) without the need for explicit loops. Avoiding explicit loops makes our code clearer. It

also makes it faster (because the entire operation is performed in C without overhead—

see the discussion that follows).

# ... continuation from previous listing

# Add a vector to another

v1 = vec1 + vec2

# Unnecessary: adding two vectors using an explicit loop

v2 = np.zeros( 5 )

for i in range( 5 ):

v2[i] = vec1[i] + vec2[i]

# Adding a vector to another in place

vec1 += vec2

# Broadcasting: combining scalars and vectors

v3 = 2*vec3

v4 = vec4 + 3

# Ufuncs: applying a function to a vector, element by element

v5 = np.sin(vec5)

# Converting to Python list object again

lst = v5.tolist()

All operations are performed element by element: if we add two vectors, then the

corresponding elements from each vector are combined to give the element in the

resulting vector. In other words, the compact expression vec1 + vec2 for v1 in the listing is

equivalent to the explicit loop construction used to calculate v2. This is true even for

multiplication: vec1 * vec2 will result in a vector in which the corresponding elements of

both operands have been multiplied element by element. (If you want a true vector or

“dot” product, you must use the dot() function instead.) Obviously, this requires that all

operands have the same number of elements!

Now we shall demonstrate two further convenience features that in the NumPy

documentation are referred to as broadcasting and ufuncs (short for “universal functions”).

The term “broadcasting” in this context has nothing to do with messaging. Instead, it

means that if you try to combine two arguments of different shapes, then the smaller one

will be extended (“cast broader”) to match the larger one. This is especially useful when

combining scalars with vectors: the scalar is expanded to a vector of appropriate size and

whose elements all have the value given by the scalar; then the operation proceeds,

element by element, as before. The term “ufunc” refers to a scalar function that can be

applied to a NumPy object. The function is applied, element by element, to all entries in
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the NumPy object, and the result is a new NumPy object with the same shape as the

original one.

Using these features skillfully, a function to calculate a kernel density estimate can be

written as a single line of code:

# Calculating kernel density estimates

from numpy import *

# z: position, w: bandwidth, xv: vector of points

def kde( z, w, xv ):

return sum( exp(-0.5*((z-xv)/w)**2)/sqrt(2*pi*w**2) )

d = loadtxt( "presidents", usecols=(2,) )

w = 2.5

for x in linspace( min(d)-w, max(d)+w, 1000 ):

print x, kde( x, w, d )

This program will calculate and print the data needed to generate Figure 2-4 (but it does

not actually draw the graph—that will have to wait until we introduce matplotlib in the

Workshop of Chapter 3).

Most of the listing is boilerplate code, such as reading and writing files. All the actual work

is done in the one-line function kde(z, w, xv). This function makes use of both

“broadcasting” and “ufuncs” and is a good example for the style of programming typical of

NumPy. Let’s dissect it—inside out.

First recall what we need to do when evaluating a KDE: for each location z at which we

want to evaluate the KDE, we must find its distance to all the points in the data set. For

each point, we evaluate the kernel for this distance and sum up the contributions from all

the individual kernels to obtain the value of the KDE at z.

The expression z-xv generates a vector that contains the distance between z and all the

points in xv (that’s broadcasting). We then divide by the required bandwidth, multiply by

1/2, and square each element. Finally, we apply the exponential function exp() to this

vector (that’s a ufunc). The result is a vector that contains the exponential function

evaluated at the distances between the points in the data set and the location z. Now we

only need to sum all the elements in the vector (that’s what sum() does) and we are done,

having calculated the KDE at position z. If we want to plot the KDE as a curve, we have to

repeat this process for each location we wish to plot—that’s what the final loop in the

listing is for.

NumPy in Detail

You may have noticed that none of the warm-up examples in the listings in the previous

section contained any matrices or other data structures of higher dimensionality—just
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one-dimensional vectors. To understand how NumPy treats objects with dimensions

greater than one, we need to develop at least a superficial understanding for the way

NumPy is implemented.

It is misleading to think of NumPy as a “matrix package for Python” (although it’s

commonly used as such). I find it more helpful to think of NumPy as a wrapper and access

layer for underlying C buffers. These buffers are contiguous blocks of C memory,

which—by their nature—are one-dimensional data structures. All elements in those data

structures must be of the same size, and we can specify almost any native C type

(including C structs) as the type of the individual elements. The default type corresponds

to a C double and that is what we use in the examples that follow, but keep in mind that

other choices are possible. All operations that apply to the data overall are performed in C

and are therefore very fast.

To interpret the data as a matrix or other multi-dimensional data structure, the shape or

layout is imposed during element access. The same 12-element data structure can

therefore be interpreted as a 12-element vector or a 3 × 4 matrix or a 2 × 2 × 3 tensor—the

shape comes into play only through the way we access the individual elements. (Keep in

mind that although reshaping a data structure is very easy, resizing is not.)

The encapsulation of the underlying C data structures is not perfect: when choosing the

types of the atomic elements, we specify C data types not Python types. Similarly, some

features provided by NumPy allow us to manage memory manually, rather than have the

memory be managed transparently by the Python runtime. This is an intentional design

decision, because NumPy has been designed to accommodate large data structures—large

enough that you might want (or need) to exercise a greater degree of control over the

way memory is managed. For this reason, you have the ability to choose types that take

up less space as elements in a collection (e.g., C float elements rather than the default

double). For the same reason, all ufuncs accept an optional argument pointing to an

(already allocated) location where the results will be placed, thereby avoiding the need to

claim additional memory themselves. Finally, several access and structuring routines

return a view (not a copy!) of the same underlying data. This does pose an aliasing

problem that you need to watch out for.

The next listing quickly demonstrates the concepts of shape and views. Here, I assume

that the commands are entered at an interactive Python prompt (shown as >>> in the

listing). Output generated by Python is shown without a prompt:

>>> import numpy as np

>>> # Generate two vectors with 12 elements each

>>> d1 = np.linspace( 0, 11, 12 )

>>> d2 = np.linspace( 0, 11, 12 )

>>> # Reshape the first vector to a 3x4 (row x col) matrix

>>> d1.shape = ( 3, 4 )

>>> print d1
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[[ 0. 1. 2. 3.]

[ 4. 5. 6. 7.]

[ 8. 9. 10. 11.]]

>>> # Generate a matrix VIEW to the second vector

>>> view = d2.reshape( (3,4) )

>>> # Now: possible to combine the matrix and the view

>>> total = d1 + view

>>> # Element access: [row,col] for matrix

>>> print d1[0,1]

1.0

>>> print view[0,1]

1.0

>>> # ... and [pos] for vector

>>> print d2[1]

1.0

>>> # Shape or layout information

>>> print d1.shape

(3,4)

>>> print d2.shape

(12,)

>>> print view.shape

(3,4)

>>> # Number of elements (both commands equivalent)

>>> print d1.size

12

>>> print len(d2)

12

>>> # Number of dimensions (both commands equivalent)

>>> print d1.ndim

2

>>> print np.rank(d2)

1

Let’s step through this. We create two vectors of 12 elements each. Then we reshape the

first one into a 3 × 4 matrix. Note that the shape property is a data member—not an

accessor function! For the second vector, we create a view in the form of a 3 × 4 matrix.

Now d1 and the newly created view of d2 have the same shape, so we can combine them

(by forming their sum, in this case). Note that even though reshape() is a member

function, it does not change the shape of the instance itself but instead returns a new view

object: d2 is still a one-dimensional vector. (There is also a standalone version of this

function, so we could also have written view = np.reshape( d2, (3,4) ). The presence of

such redundant functionality is due to the desire to maintain backward compatibility with

both of NumPy’s ancestors.)
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We can now access individual elements of the data structures, depending on their shape.

Since both d1 and view are matrices, they are indexed by a pair of indices (in the order

[row,col]). However, d2 is still a one-dimensional vector and thus takes only a single

index. (We will have more to say about indexing in a moment.)

Finally, we examine some diagnostics regarding the shape of the data structures,

emphasizing their precise semantics. The shape is a tuple, giving the number of elements

in each dimension. The size is the total number of elements and corresponds to the value

returned by len() for the entire data structure. Finally, ndim gives the number of

dimensions (i.e., d.ndim == len(d.shape)) and is equivalent to the “rank” of the entire data

structure. (Again, the redundant functionality exists to maintain backward compatibility.)

Finally, let’s take a closer look at the ways in which we can access elements or larger

subsets of an ndarray. In the previous listing we saw how to access an individual element

by fully specifying an index for each dimension. We can also specify larger subarrays of a

data structure using two additional techniques, known as slicing and advanced indexing. The

following listing shows some representative examples. (Again, consider this an interactive

Python session.)

>>> import numpy as np

>>> # Create a 12-element vector and reshape into 3x4 matrix

>>> d = np.linspace( 0, 11, 12 )

>>> d.shape = ( 3,4 )

>>> print d

[[ 0. 1. 2. 3.]

[ 4. 5. 6. 7.]

[ 8. 9. 10. 11.]]

>>> # Slicing...

>>> # First row

>>> print d[0,:]

[ 0. 1. 2. 3.]

>>> # Second col

>>> print d[:,1]

[ 1. 5. 9.]

>>> # Individual element: scalar

>>> print d[0,1]

1.0

>>> # Subvector of shape 1

>>> print d[0:1,1]

[ 1.]

>>> # Subarray of shape 1x1

>>> print d[0:1,1:2]

[[ 1.]]

44 C H A P T E R T W O



O’Reilly-5980006 master October 28, 2010 20:25

>>> # Indexing...

>>> # Integer indexing: third and first column

>>> print d[ :, [2,0] ]

[[ 2. 0.]

[ 6. 4.]

[ 10. 8.]]

>>> # Boolean indexing: second and third column

>>> k = np.array( [False, True, True] )

>>> print d[ k, : ]

[[ 4. 5. 6. 7.]

[ 8. 9. 10. 11.]]

We first create a 12-element vector and reshape it into a 3 × 4 matrix as before. Slicing

uses the standard Python slicing syntax start:stop:step, where the start position is

inclusive but the stopping position is exclusive. (In the listing, I use only the simplest form

of slicing, selecting all available elements.)

There are two potential “gotchas” with slicing. First of all, specifying an explicit

subscripting index (not a slice!) reduces the corresponding dimension to a scalar. Slicing,

though, does not reduce the dimensionality of the data structure. Consider the two

extreme cases: in the expression d[0,1], indices for both dimensions are fully specified,

and so we are left with a scalar. In contrast, d[0:1,1:2] is sliced in both dimensions.

Neither dimension is removed, and the resulting object is still a (two-dimensional) matrix

but of smaller size: it has shape 1 × 1.

The second issue to watch out for is that slices return views, not copies.

Besides slicing, we can also index an ndarray with a vector of indices, by an operation

called “advanced indexing.” The previous listing showed two simple examples. In the first

we use a Python list object, which contains the integer indices (i.e., the positions) of the

desired columns and in the desired order, to select a subset of columns. In the second

example, we form an ndarray of Boolean entries to select only those rows for which the

Boolean evaluates to True.

In contrast to slicing, advanced indexing returns copies, not views.

This completes our overview of the basic capabilities of the NumPy module. NumPy is

easy and convenient to use for simple use cases but can get very confusing otherwise. (For

example, check out the rules for general broadcasting when both operators are

multi-dimensional, or for advanced indexing).

We will present some more straightforward applications in Chapters 3 and 4.

Further Reading
• The Elements of Graphing Data. William S. Cleveland. 2nd ed., Hobart Press. 1994.

A book-length discussion of graphical methods for data analysis such as those described

in this chapter. In particular, you will find more information here on topics such as
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box plots and QQ plots. Cleveland’s methods are particularly careful and well

thought-out.

• All of Statistics: A Concise Course in Statistical Inference. Larry Wasserman. Springer. 2004.

A thoroughly modern treatment of mathematical statistics, very advanced and

condensed. You will find some additional material here on the theory of “density

estimation”—that is, on histograms and KDEs.

• Multivariate Density Estimation. David W. Scott. 2nd ed., Wiley. 2006.

A research monograph on density estimation written by the creator of Scott’s rule.

• Kernel Smoothing. M. P. Wand and M. C. Jones. Chapman & Hall. 1995.

An accessible treatment of kernel density estimation.
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C H A P T E R T H R E E

Two Variables: Establishing
Relationships

WHEN WE ARE DEALING WITH A DATA SET THAT CONSISTS OF TWO VARIABLES (THAT IS, A BIVARIATE DATA SET),

we are mostly interested in seeing whether some kind of relationship exists between the

two variables and, if so, what kind of relationship this is.

Plotting one variable against another is pretty straightforward, therefore most of our effort

will be spent on various tools and transformations that can be applied to characterize the

nature of the relationship between the two inputs.

Scatter Plots

Plotting one variable against another is simple—you just do it! In fact, this is precisely

what most people mean when they speak about “plotting” something. Yet there are

differences, as we shall see.

Figures 3-1 and 3-2 show two examples. The data in Figure 3-1 might come from an

experiment that measures the force between two surfaces separated by a short distance.

The force is clearly a complicated function of the distance—on the other hand, the data

points fall on a relatively smooth curve, and we can have confidence that it represents the

data accurately. (To be sure, we should ask for the accuracy of the measurements shown

in this graph: are there significant error bars attached to the data points? But it doesn’t

matter; the data itself shows clearly that the amount of random noise in the data is small.

This does not mean that there aren’t problems with the data but only that any problems

will be systematic ones—for instance, with the apparatus—and statistical methods will not

be helpful.)
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F I G U R E 3-1. Data that clearly shows that there is a relationship, albeit a complicated one, between x and y.

In contrast, Figure 3-2 shows the kind of data typical of much of statistical analysis. Here

we might be showing the prevalence of skin cancer as a function of the mean income for a

group of individuals or the unemployment rate as a function of the frequency of

high-school drop-outs for a number of counties, and the primary question is whether

there is any relationship at all between the two quantities involved. The situation here is

quite different from that shown in Figure 3-1, where it was obvious that a strong

relationship existed between x and y, and therefore our main concern was to determine

the precise nature of that relationship.

A figure such as Figure 3-2 is referred to as a scatter plot or xy plot. I prefer the latter term

because scatter plot sounds to me too much like “splatter plot,” suggesting that the data

necessarily will be noisy—but we don’t know that! Once we plot the data, it may turn out

to be very clean and regular, as in Figure 3-1; hence I am more comfortable with the

neutral term.

When we create a graph such as Figure 3-1 or Figure 3-2, we usually want to understand

whether there is a relationship between x and y as well as what the nature of that

relationship is. Figure 3-3 shows four different possibilities that we may find: no

relationship; a strong, simple relationship; a strong, not-simple relationship; and finally a

multivariate relationship (one that is not unique).

Conquering Noise: Smoothing

When data is noisy, we are more concerned with establishing whether the data exhibits a

meaningful relationship, rather than establishing its precise character. To see this, it is
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F I G U R E 3-2. A noisy data set. Is there any relationship between x and y?

F I G U R E 3-3. Four types of functional relationships (left to right, top to bottom): no relationship; strong, simple
relationship; strong, not-simple relationship; multivariate relationship.

often helpful to find a smooth curve that represents the noisy data set. Trends and

structure of the data may be more easily visible from such a curve than from the cloud of

points.
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Two different methods are frequently used to provide smooth representation of noisy data

sets: weighted splines and a method known as LOESS (or LOWESS), which is short for

locally weighted regression.

Both methods work by approximating the data in a small neighborhood (i.e., locally) by a

polynomial of low order (at most cubic). The trick is to string the various local

approximations together to form a single smooth curve. Both methods contain an

adjustable parameter that controls the “stiffness” of the resulting curve: the stiffer the

curve, the smoother it appears but the less accurately it can follow the individual data

points. Striking the right balance between smoothness and accuracy is the main challenge

when it comes to smoothing methods.

Splines

Splines are constructed from piecewise polynomial functions (typically cubic) that are

joined together in a smooth fashion. In addition to the local smoothness requirements at

each joint, splines must also satisfy a global smoothness condition by optimizing the

functional:

J [s] = α

∫ (
d2s

dt2

)2

dt + (1 − α)
∑

i

wi (yi − s(xi ))
2

Here s(t) is the spline curve, (xi , yi ) are the coordinates of the data points, the wi are

weight factors (one for each data point), and α is a mixing factor. The first term controls

how “wiggly” the spline is overall, because the second derivative measures the curvature

of s(t) and becomes large if the curve has many wiggles. The second term captures how

accurately the spline represents the data points by measuring the squared deviation of the

spline from each data point—it becomes large if the spline does not pass close to the data

points. Each term in the sum is multiplied by a weight factor wi , which can be used to give

greater weight to data points that are known with greater accuracy than others. (Put

differently: we can write wi as wi = 1/d2
i , where di measures how close the spline should

pass by yi at xi .) The mixing parameter α controls how much weight we give to the first

term (emphasizing overall smoothness) relative to the second term (emphasizing accuracy

of representation). In a plotting program, α is usually the dial we use to tune the spline for

a given data set.

To construct the spline explicitly, we form cubic interpolation polynomials for each

consecutive pair of points and require that these individual polynomials have the same

values, as well as the same first and second derivatives, at the points where they meet.

These smoothness conditions lead to a set of linear equations for the coefficients in the

polynomials, which can be solved. Once these coefficients have been found, the spline

curve can be evaluated at any desired location.
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LOESS

Splines have an overall smoothness goal, which means that they are less responsive to local

details in the data set. The LOESS smoothing method addresses this concern. It consists of

approximating the data locally through a low-order (typically linear) polynomial

(regression), while weighting all the data points in such a way that points close to the

location of interest contribute more strongly than do data points farther away (local

weighting).

Let’s consider the case of first-order (linear) LOESS, so that the local approximation takes

the particularly simple form a + bx . To find the “best fit” in a least-squares sense, we must

minimize:

χ2 =
∑

i

w(x − xi ; h) (a + bxi − yi )
2

with respect to the two parameters a and b. Here, w(x) is the weight function. It should be

smooth and strongly peaked—in fact, it is basically a kernel, similar to those we

encountered in Figure 2-5 when we discussed kernel density estimates. The kernel most

often used with LOESS is the “tri-cube” kernel K (x) = (
1 − |x |3)3

for |x | < 1, K (x) = 0

otherwise; but any of the other kernels will also work. The weight depends on the distance

between the point x where we want to evaluate the LOESS approximation and the

location of the data points. In addition, the weight function also depends on the parameter

h, which controls the bandwidth of the kernel: this is the primary control parameter for

LOESS approximations. Finally, the value of the LOESS approximation at position x is

given by y(x) = a + bx , where a and b minimize the expression for χ2 stated earlier.

This is the basic idea behind LOESS. You can see that it is easy to generalize—for example,

to two or more dimensions or two higher-order approximation polynomials. (One

problem, though: explicit, closed expressions for the parameters a and b can be found

only if you use first-order polynomials; whereas for quadratic or higher polynomials you

will have to resort to numerical minimization techniques. Unless you have truly

compelling reasons, you want to stick to the linear case!)

LOESS is a computationally intensive method. Keep in mind that the entire calculation

must be performed for every point at which we want to obtain a smoothed value. (In other

words, the parameters a and b that we calculated are themselves functions of x .) This is in

contrast to splines: once the spline coefficients have been calculated, the spline can be

evaluated easily at any point that we wish. In this way, splines provide a summary or

approximation to the data. LOESS, however, does not lend itself easily to semi-analytical

work: what you see is pretty much all you get.

One final observation: if we replace the linear function a + bx in the fitting process with

the constant function a, then LOESS becomes simply a weighted moving average.
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F I G U R E 3-4. The 1970 draft lottery: draft number versus birth date (the latter as given in days since the beginning of the
year). Two LOESS curves with different values for the smoothing parameter h indicate that men born later in the year tended
to have lower draft numbers. This would not be easily recognizable from a plot of the data points alone.

Examples

Let’s look at two examples where smoothing reveals behavior that would otherwise not

be visible.

The first is a famous data set that has been analyzed in many places: the 1970 draft lottery.

During the Vietnam War, men in the U.S. were drafted based on their date of birth. Each

possible birth date was assigned a draft number between 1 and 366 using a lottery process,

and men were drafted in the order of their draft numbers. However, complaints were

soon raised that the lottery was biased—that men born later in the year had a greater

chance of receiving a low draft number and, consequentially, a greater chance of being

drafted early.*

Figure 3-4 shows all possible birth dates (as days since the beginning of the year) and their

assigned draft numbers. If the lottery had been fair, these points should form a completely

*More details and a description of the lottery process can be found in The Statistical Exorcist. M. Hollander
and F. Proschan. CRC Press. 1984.
.
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random pattern. Looking at the data alone, it is virtually impossible to tell whether there

is any structure in the data. However, the smoothed LOESS lines reveal a strong falling

tendency of the draft number over the course of the year: later birth dates are indeed

more likely to have a lower draft number!

The LOESS lines have been calculated using a Gaussian kernel. For the solid line, I used a

kernel bandwidth equal to 5, but for the dashed line, I used a much larger bandwidth of

100. For such a large bandwidth, practically all points in the data set contribute equally to

the smoothed curve, so that the LOESS operation reverts to a linear regression of the

entire data set. (In other words: if we make the bandwidth very large, then LOESS

amounts to a least-squares fit of a straight line to the data.)

In this draft number example, we mostly cared about a global property of the data: the

presence or absence of an overall trend. Because we were looking for a global property, a

stiff curve (such as a straight line) was sufficient to reveal what we were looking for.

However, if we want to extract more detail—in particular if we want to extract local

features—then we need a “softer” curve, which can follow the data on smaller scales.

Figure 3-5 shows an amusing example.* Displayed are the finishing times (separately for

men and women) for the winners in a marathon. Also shown are the “best fit”

straight-line approximations for all events up to 1990. According to this (straight-line)

model, women should start finishing faster than men before the year 2000 and then

continue to become faster at a dramatic rate! This expectation is not borne out by actual

observations: finishing times for women (and men) have largely leveled off.

This example demonstrates the danger of attempting to describe data by using a model of

fixed form (a “formula”)—and a straight line is one of the most rigid models out there! A

model that is not appropriate for the data will lead to incorrect conclusions. Moreover, it

may not be obvious that the model is inappropriate. Look again at Figure 3-5: don’t the

straight lines seem reasonable as a description of the data prior to 1990?

Also shown in Figure 3-5 are smoothed curves calculated using a LOESS process. Because

these curves are “softer” they have a greater ability to capture features contained in the

data. Indeed, the LOESS curve for the women’s results does give an indication that the

trend of dramatic improvements, seen since they first started competing in the mid-1960s,

had already begun to level off before the year 1990. (All curves are based strictly on data

prior to 1990.) This is a good example of how an adaptive smoothing curve can highlight

local behavior that is present in the data but may not be obvious from merely looking at

the individual data points.

*This example was inspired by Graphic Discovery: A Trout in the Milk and Other Visual Adventures. Howard
Wainer. 2nd ed., Princeton University Press. 2007.
.
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F I G U R E 3-5. Winning times (in minutes) for an annual marathon event, separately for men and women. Also shown are
the straight-line and smooth-curve approximations. All approximations are based entirely on data points prior to 1990.

Residuals

Once you have obtained a smoothed approximation to the data, you will usually also

want to check out the residuals—that is, the remainder when you subtract the smooth

“trend” from the actual data.

There are several details to look for when studying residuals.

• Residuals should be balanced: symmetrically distributed around zero.

• Residuals should be free of a trend. The presence of a trend or of any other large-scale

systematic behavior in the residuals suggests that the model is inappropriate! (By

construction, this is never a problem if the smooth curve was obtained from an

adaptive smoothing model; however, it is an important indicator if the smooth curve

comes from an analytic model.)

• Residuals will necessarily straddle the zero value; they will take on both positive and

negative values. Hence you may also want to plot their absolute values to evaluate

whether the overall magnitude of the residuals is the same for the entire data set or

not. The assumption that the magnitude of the variance around a model is constant

throughout (“homoscedasticity”) is often an important condition in statistical methods.

If it is not satisfied, then such methods may not apply.

• Finally, you may want to use a QQ plot (see Chapter 2) to check whether the residuals

are distributed according to a Gaussian distribution. This, too, is an assumption that is

often important for more advanced statistical methods.
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F I G U R E 3-6. Residuals for the women’s marathon results, both for the LOESS smoothing curve and the straight-line linear
regression model. The residuals for the latter show an overall systematic trend, which suggests that the model does not
appropriately describe the data.

It may also be useful to apply a smoothing routine to the residuals in order to recognize

their features more clearly. Figure 3-6 shows the residuals for the women’s marathon

results (before 1990) both for the straight-line model and the LOESS smoothing curve.

For the LOESS curve, the residuals are small overall and hardly exhibit any trend. For the

straight-line model, however, there is a strong systematic trend in the residuals that is

increasing in magnitude for years past 1985. This kind of systematic trend in the residuals

is a clear indicator that the model is not appropriate for the data!

Additional Ideas and Warnings

Here are some additional ideas that you might want to play with.

As we have discussed before, you can calculate the residuals between the real data and

the smoothed approximation. Here an isolated large residual is certainly odd: it suggests

that the corresponding data point is somehow “different” than the other points in the

neighborhood—in other words, an outlier. Now we argue as follows. If the data point is

an outlier, then it should contribute less to the smoothed curve than other points. Taking

this consideration into account, we now introduce an additional weight factor for each

data point into the expression for J [s] or χ2 given previously. The magnitude of this

weight factor is chosen in such a way that data points with large residuals contribute less

to the smooth curve. With this new weight factor reducing the influence of points with

large residuals, we calculate a new version of the smoothed approximation. This process is

iterated until the smooth curve no longer changes.

T W O V A R I A B L E S : E S TA B L I S H I N G R E L AT I O N S H I P S 55



O’Reilly-5980006 master October 28, 2010 20:27

 120

 130

 140

 150

 160

 170

 180

 1900  1920  1940  1960  1980  2000

F I G U R E 3-7. A “smooth tube” for the men’s marathon results. The solid line is a smooth representation of the entire data
set; the dashed lines are smooth representations of only those points that lie above (or below) the solid line.

Another idea is to split the original data points into two classes: those that give rise to a

positive residual and those with a negative residual. Now calculate a smooth curve for

each class separately. The resulting curves can be interpreted as “confidence bands” for the

data set (meaning that the majority of points will lie between the upper and the lower

smooth curve). We are particularly interested to see whether the width of this band varies

along the curve. Figure 3-7 shows an example that uses the men’s results from Figure 3-5.

Personally, I am a bit uncomfortable with either of these suggestions. They certainly have

an unpleasant air of circular reasoning about them.

There is also a deeper reason. In my opinion, smoothing methods are a quick and useful

but entirely nonrigorous way to explore the structure of a data set. With some of the more

sophisticated extensions (e.g., the two suggestions just discussed), we abandon the

simplicity of the approach without gaining anything in rigor! If we need or want better (or

deeper) results than simple graphical methods can give us, isn’t it time to consider a more

rigorous toolset?

This is a concern that I have with many of the more sophisticated graphical methods you

will find discussed in the literature. Yes, we certainly can squeeze ever more information

into a graph using lines, colors, symbols, textures, and what have you. But this does not

necessarily mean that we should. The primary benefit of a graph is that it speaks to us

directly—without the need for formal training or long explanations. Graphs that require

training or complicated explanations to be properly understood are missing their mark no

matter how “clever” they may be otherwise.
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Similar considerations apply to some of the more involved ways of graph preparation.

After all, a smooth curve such as a spline or LOESS approximation is only a rough

approximation to the data set—and, by the way, contains a huge degree of arbitrariness in

the form of the smoothing parameter (α or h, respectively). Given this situation, it is not

clear to me that we need to worry about such details as the effect of individual outliers on

the curve.

Focusing too much on graphical methods may also lead us to miss the essential point. For

example, once we start worrying about confidence bands, we should really start thinking

more deeply about the nature of the local distribution of residuals (Are the residuals

normally distributed? Are they independent? Do we have a reason to prefer one statistical

model over another?)—and possibly consider a more reliable estimation method (e.g.,

bootstrapping; see Chapter 12)—rather than continue with hand-waving (semi-)graphical

methods.

Remember: The purpose of computing is insight, not pictures! (L. N. Trefethen)

Logarithmic Plots

Logarithmic plots are a standard tool of scientists, engineers, and stock analysts

everywhere. They are so popular because they have three valuable benefits:

• They rein in large variations in the data.

• They turn multiplicative variations into additive ones.

• They reveal exponential and power law behavior.

In a logarithmic plot, we graph the logarithm of the data instead of the raw data. Most

plotting programs can do this for us (so that we don’t have to transform the data

explicitly) and also take care of labeling the axes appropriately.

There are two forms of logarithmic plots: single or semi-logarithmic plots and double

logarithmic or log-log plots, depending whether only one (usually the vertical or y axis) or

both axes have been scaled logarithmically.

All logarithmic plots are based on the fundamental property of the logarithm to turn

products into sums and powers into products:

log(xy) = log(x) + log(y)

log(xk) = k log(x)

Let’s first consider semi-log plots. Imagine you have data generated by evaluating the

function:

y = C exp(αx) where C and α are constants
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F I G U R E 3-8. A semi-logarithmic plot.

on a set of x values. If you plot y as a function of x , you will see an upward- or

downward-sloping curve, depending on the sign of α (see Appendix B). But if you instead

plot the logarithm of y as a function of x , the points will fall on a straight line. This can be

easily understood by applying the logarithm to the preceding equation:

log y = αx + log C

In other words, the logarithm of y is a linear function of x with slope α and with offset

log C . In particular, by measuring the slope of the line, we can determine the scale factor

α, which is often of great interest in applications.

Figure 3-8 shows an example of a semi-logarithmic plot that contains some experimental

data points as well as an exponential function for comparison. I’d like to point out a few

details. First, in a logarithmic plot, we plot the logarithm of the values, but the axes are

usually labeled with the actual values (not their logarithms). Figure 3-8 shows both: the

actual values on the left and the logarithms on the right (the logarithm of 100 to base 10

is 2, the logarithm of 1,000 is 3, and so on). We can see how, in a logarithmic plot, the

logarithms are equidistant, but the actual values are not. (Observe that the distance

between consecutive tick marks is constant on the right, but not on the left.)

Another aspect I want to point out is that on a semi-log plot, all relative changes have the

same size no matter how large the corresponding absolute change. It is this property that

makes semi-log plots popular for long-running stock charts and the like: if you lost $100,

your reaction may be quite different if originally you had invested $1,000 versus $200: in

the first case you lost 10 percent but 50 percent in the second. In other words, relative

change is what matters.
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F I G U R E 3-9. Heart rate versus body mass for a range of mammals. Compare to Figure 3-10.

The two scale arrows in Figure 3-8 have the same length and correspond to the same

relative change, but the underlying absolute change is quite different (from 1 to 3 in one

case, from 100 to 300 in the other). This is another application of the fundamental

property of the logarithm: if the value before the change is y1 and if y2 = γ y1 after the

change (where γ = 3), then the change in absolute terms is:

y2 − y1 = γ y1 − y1 = (γ − 1)y1

which clearly depends on y1. But if we consider the change in the logarithms, we find:

log y2 − log y1 = log(γ y1) − log y1 = log γ + log y1 − log y1 = log γ

which is independent of the underlying value and depends only on γ , the size of the

relative change.

Double logarithmic plots are now easy to understand—the only difference is that we plot

logarithms of both x and y. This will render all power-law relations as straight lines—that

is, as functions of the form y = Cxk or y = C/xk , where C and k are constants. (Taking

logarithms on both sides of the first equation yields log y = k log x + log C , so that now

log y is a linear function of log x with a slope that depends on the exponent k.)

Figures 3-9 and 3-10 provide stunning example for both uses of double logarithmic plots:

their ability to render data spanning many order of magnitude accessible and their ability

to reveal power-law relationships by turning them into straight lines. Figure 3-9 shows

the typical resting heart rate (in beats per minute) as a function of the body mass (in

kilograms) for a selection of mammals from the hamster to large whales. Whales weigh in

at 120 tons—nothing else even comes close! The consequence is that almost all of the data

points are squished against the lefthand side of the graph, literally crushed by the whale.
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F I G U R E 3-10. The same data as in Figure 3-9 but now plotted on a double logarithmic plot. The data points seem to fall on
a straight line, which indicates a power-law relationship between resting heart rate and body mass.

On the double logarithmic plot, the distribution of data points becomes much clearer.

Moreover, we find that the data points are not randomly distributed but instead seem to

fall roughly on a straight line with slope −1/4: the signature of power-law behavior. In

other words, a mammal’s typical heart rate is related to its mass: larger animals have

slower heart beats. If we let f denote the heart rate and m the mass, we can summarize

this observation as:

f ∼ m−1/4

This surprising result is known as allometric scaling. It seems to hold more generally and

not just for the specific animals and quantities shown in these figures. (For example, it

turns out that the lifetime of an individual organism also obeys a 1/4 power-law

relationship with the body mass: larger animals live longer. The surprising consequence is

that the total number of heartbeats per life of an individual is approximately constant for

all species!) Allometric scaling has been explained in terms of the geometric constraints of

the vascular network (veins and arteries), which brings nutrients to the cells making up a

biological system. It is sufficient to assume that the network must be a space-filling fractal,

that the capillaries where the actual exchange of nutrients takes place are the same size in

all animals, and that the overall energy required for transport through the network is

minimized, to derive the power-law relationships observed experimentally!* We’ll have

more to say about scaling laws and their uses in Part II.

*The original reference is “A General Model for the Origin of Allometric Scaling Laws in Biology.”
G. B. West, J. H. Brown, and B. J. Enquist. Science 276 (1997), p. 122. Additional references can be
found on the Web.
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Banking

Smoothing methods and logarithmic plots are both tools that help us recognize structure

in a data set. Smoothing methods reduce noise, and logarithmic plots help with data sets

spanning many orders of magnitude.

Banking (or “banking to 45 degrees”) is another graphical method. It is different than the

preceding ones because it does not work on the data but on the plot as a whole by

changing its aspect ratio.

We can recognize change (i.e., the slopes of curves) most easily if they make approximately

a 45 degree angle on the graph. It is much harder to see change if the curves are nearly

horizontal or (even worse) nearly vertical. The idea behind banking is therefore to adjust

the aspect ratio of the entire plot in such a way that most slopes are at an approximate 45

degree angle.

Chances are, you have been doing this already by changing the plot ranges. Often when

we “zoom” in on a graph it’s not so much to see more detail as to adjust the slopes of

curves to make them more easily recognizable. The purpose is even more obvious when

we zoom out. Banking is a more suitable technique to achieve the same effect and opens

up a way to control the appearance of a plot by actively adjusting the aspect ratio.

Figures 3-11 and 3-12 show the classical example for this technique: the annual number

of sunspots measured over the last 300 years.* In Figure 3-11, the oscillation is very

compressed, and so it is difficult to make out much detail about the shape of the curve. In

Figure 3-12, the aspect ratio of the plot has been adjusted so that most line segments are

now at roughly a 45 degree angle, and we can make an interesting observation: the rising

edge of each sunspot cycle is steeper than the falling edge. We would probably not have

recognized this by looking at Figure 3-11.

Personally, I would probably not use a graph such as Figure 3-12: shrinking the vertical

axis down to almost nothing loses too much detail. It also becomes difficult to compare

the behavior on the far left and far right of the graph. Instead, I would break up the time

series and plot it as a cut-and-stack plot, such as the one in Figure 3-13. Note that in this plot

the aspect ratio of each subplot is such that the lines are, in fact, banked to 45 degrees.

As this example demonstrates, banking is a good technique but can be taken too literally.

When the aspect ratio required to achieve proper banking is too skewed, it is usually

better to rethink the entire graph. No amount of banking will make the data set in

Figure 3-9 look right—you need a double logarithmic transform.

There is also another issue to consider. The purpose of banking is to improve human

perception of the graph (it is, after all, exactly the same data that is displayed). But graphs

*The discussion here is adapted from my book Gnuplot in Action. Manning Publications. 2010.
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F I G U R E 3-11. The annual sunspot numbers for the last 300 years. The aspect ratio of the plot makes it hard to recognize
the details of each cycle.
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F I G U R E 3-12. The same data as in Figure 3-11. The aspect ratio has been changed so that rising and falling flanks of the
curve make approximately a 45 degree angle with the horizontal (banking to 45 degrees), but the figure has become so small
that it is hard to recognize much detail.

with highly skewed aspect ratios violate the great affinity humans seem to have for

proportions of roughly 4 by 3 (or 11 by 8.5 or
√

2 by 1). Witness the abundance of display

formats (paper, books, screens) that adhere approximately to these proportions the world

over. Whether we favor this display format because we are so used to it or (more likely, I

think) it is so predominant because it works well for humans is rather irrelevant in this

context. (And keep in mind that squares seem to work particularly badly—notice how

squares, when used for furniture or appliances, are considered a “bold” design. Unless

there is a good reason for them, such as graphing a square matrix, I recommend you avoid

square displays.)

Linear Regression and All That

Linear regression is a method for finding a straight line through a two-dimensional scatter

plot. It is simple to calculate and has considerable intuitive appeal—both of which

together make it easily the single most-often misapplied technique in all of statistics!

There is a fundamental misconception regarding linear regression—namely that it is a

good and particularly rigorous way to summarize the data in a two-dimensional scatter
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F I G U R E 3-13. A cut-and-stack plot of the data from Figure 3-11. By breaking the time axis into three chunks, we can bank
each century to 45 degrees and still fit all the data into a standard-size plot. Note how we can now easily recognize an
important feature of the data: the rising flank tends to be steeper than the falling one.

plot. This misconception is often associated with the notion that linear regression provides

the “best fit” to the data.

This is not so. Linear regression is not a particularly good way to summarize data, and it

provides a “best fit” in a much more limited sense than is generally realized.

Linear regression applies to situations where we have a set of input values (the controlled

variable) and, for each of them, we measure an output value (the response variable). Now

we are looking for a linear function f (x) = a + bx as a function of the controlled variable

x that reproduces the response with the least amount of error. The result of a linear

regression is therefore a function that minimizes the error in the responses for a given set

of inputs.

This is an important understanding: the purpose of a regression procedure is not to

summarize the data—the purpose is to obtain a function that allows us to predict the value

of the response variable (which is affected by noise) that we expect for a certain value of

the input variable (which is assumed to be known exactly).

As you can see, there is a fundamental asymmetry between the two variables: the two are

not interchangeable. In fact, you will obtain a different solution when you regress x on y

than when you regress y on x . Figure 3-14 demonstrates this effect: the same data set is

fitted both ways: y = a + bx and x = c + dy. The resulting straight lines are quite different.

This simple observation should dispel the notion that linear regression provides the best

fit—after all, how could there be two different “best fits” for a single data set? Instead,
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F I G U R E 3-14. The first data set from Anscombe’s quartet (Table 3 -1), fit both ways: y = a + bx and x = c + dy. The thin
lines indicate the errors, the squares of which are summed to give χ2. Depending on what you consider the input and the
response variable, the “best fit” turns out to be different!

linear regression provides the most faithful representation of an output in response to an

input. In other words, linear regression is not so much a best fit as a best predictor.

How do we find this “best predictor”? We require it to minimize the error in the

responses, so that we will be able to make the most accurate predictions. But the error in

the responses is simply the sum over the errors for all the individual data points. Because

errors can be positive or negative (as the function over- or undershoots the real value),

they may cancel each other out. To avoid this, we do not sum the errors themselves but

their squares:

χ2 =
∑

i

( f (xi ) − yi )
2

=
∑

i

(a + bxi − yi )
2

where (xi , yi ) with i = 1 . . . n are the data points. Using the values for the parameters a

and b that minimize this quantity will yield a function that best explains y in terms of x .

Because the dependence of χ2 on a and b is particularly simple, we can work out

expressions for the optimal choice of both parameters explicitly. The results are:

b = n
∑

xi yi − (∑
xi

) (∑
yi

)

n
(∑

x2
i

) − (∑
xi

)2

a = 1

n

(∑
yi − b

∑
xi

)
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F I G U R E 3-15. Anscombe’s quartet: all summary statistics (in particular the regression coefficients) for all four data sets are
numerically equal, yet only data set A is well represented by the linear regression function.

T A B L E 3 -1. Anscombe’s quartet.

A B C D

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

These results are simple and beautiful—and, in their simplicity, very suggestive. But they

can also be highly misleading. Table 3-1 and Figure 3-15 show a famous example,

Anscombe’s quartet. If you calculate the regression coefficients a and b for each of the four

data sets shown in Table 3-1, you will find that they are exactly the same for all four data

sets! Yet when you look at the corresponding scatter plots, it is clear that only the first

data set is properly described by the linear model. The second data set is not linear, the

third is corrupted by an outlier, and the fourth does not contain enough independent x

values to form a regression at all! Looking only at the results of the linear regression, you

would never know this.

T W O V A R I A B L E S : E S TA B L I S H I N G R E L AT I O N S H I P S 65



O’Reilly-5980006 master October 28, 2010 20:27

I think this example should demonstrate once and for all how dangerous it can be to rely

on linear regression (or on any form of aggregate statistics) to summarize a data set. (In

fact, the situation is even worse than what I have presented: with a little bit more work,

you can calculate confidence intervals on the linear regression results, and even they turn

out to be equal for all four members of Anscombe’s quartet!)

Having seen this, here are some questions to ask before computing linear regressions.

Do you need regression?
Remember that regression coefficients are not a particularly good way to summarize

data. Regression only makes sense when you want to use it for prediction. If this is not

the case, then calculating regression coefficients is not useful.

Is the linear assumption appropriate?
Linear regression is appropriate only if the data can be described by a straight line. If

this is obviously not the case (as with the second data set in Anscombe’s quartet), then

linear regression does not apply.

Is something else entirely going on?
Linear regression, like all summary statistics, can be led astray by outliers or other

“weird” data sets, as is demonstrated by the last two examples in Anscombe’s quartet.

Historically, one of the attractions of linear regression has been that it is easy to calculate:

all you need to do is to calculate the four sums
∑

xi ,
∑

x2
i ,

∑
yi , and

∑
xi yi , which can be

done in a single pass through the data set. Even with moderately sized data sets (dozens of

points), this is arguably easier than plotting them using paper and pencil! However, that

argument simply does not hold anymore: graphs are easy to produce on a computer and

contain so much more information than a set of regression coefficients that they should

be the preferred way to analyze, understand, and summarize data.

Remember: The purpose of computing is insight, not numbers! (R. W. Hamming)

Showing What's Important

Perhaps this is a good time to express what I believe to be the most important principle in

graphical analysis:

Plot the pertinent quantities!

As obvious as it may appear, this principle is often overlooked in practice.

For example, if you look through one of those books that show and discuss examples of

poor graphics, you will find that most examples fall into one of two classes. First, there are

those graphs that failed visually, with garish fonts, unhelpful symbols, and useless

embellishments. (These are mostly presentation graphics gone wrong, not examples of

bad graphical analysis.)

The second large class of graphical failures consists of those plots that failed conceptually or,

one might better say, analytically. The problem with these is not in the technical aspects of
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drawing the graph but in the conceptual understanding of what the graph is trying to

show. These plots displayed something, but they failed to present what was most

important or relevant to the question at hand.

The problem, of course, is that usually it is not at all obvious what we want to see, and it is

certainly not obvious at the beginning. It usually takes several iterations, while a mental

model of the data is forming in your head, to articulate the proper question that a data set

is suggesting and to come up with the best way of answering it. This typically involves

some form of transformation or manipulation of the data: instead of the raw data, maybe

we should show the difference between two data sets. Or the residual after subtracting a

trend or after subtracting the results from a model. Or perhaps we need to normalize data

sets from different sources by subtracting their means and dividing by their spreads. Or

maybe we should not use the original variables to display the data but instead apply some

form of transformation on them (logarithmic scales are only the simplest example of such

transformations). Whatever we choose to do, it will typically involve some form of

transformation of the data—it’s rarely the raw data that is most interesting; but any

deviation from the expected is almost always an interesting discovery.

Very roughly, I think we can identify a three-step (maybe four-step) process. It should be

taken not in the sense of a prescriptive checklist but rather in the sense of a gradual

process of learning and discovery.

First: The basics. Initially, we are mostly concerned with displaying what is there.

• Select proper ranges.

• Subtract a constant offset.

• Decide whether to use symbols (for scattered data), lines (for continuous data), or

perhaps both (connecting individual symbols can help emphasize trends in sparse data

sets).

Second: The appearance. Next, we work with aspects of the plot that influence its overall

appearance.

• Log plots.

• Add a smoothed curve.

• Consider banking.

Third: Build a model. At this point, we start building a mathematical model and

compare it against the raw data. The comparison often involves finding the differences

between the model and the data (typically subtracting the model or forming a ratio).

• Subtract a trend.

• Form the ratio to a base value or baseline.

• Rescale a set of curves to collapse them onto each other.
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Fourth (for presentation graphics only): Add embellishments. Embellishments and

decorations (labels, arrows, special symbols, explanations, and so on) can make a graph

much more informative and self-explanatory. However, they are intended for an audience

beyond the actual creator of the graph. You will rarely need them during the analysis

phase, when you are trying to find out something new about the data set, but they are an

essential part when presenting your results. This step should only occur if you want to

communicate your results to a wider and more general audience.

Graphical Analysis and Presentation Graphics

I have used the terms graphical analysis and presentation graphics without explaining them

properly. In short:

Graphical analysis
Graphical analysis is an investigation of data using graphical methods. The purpose is

the discovery of new information about the underlying data set. In graphical analysis,

the proper question to ask is often not known at the outset but is discovered as part of

the analysis.

Presentation graphics
Presentation graphics are concerned with the communication of information and

results that are already understood. The discovery has been made, and now it needs to be

communicated clearly.

The distinction between these two activities is important, because they do require

different techniques and yield different work products.

During the analysis process, convenience and ease of use are the predominant

concerns—any amount of polishing is too much! Nothing should keep you from redrawing

a graph, changing some aspect of it, zooming in or out, applying transformations, and

changing styles. (When working with a data set I haven’t seen before, I probably create

dozens of graphs within a few minutes—basically, “looking at the data from all angles.”)

At this stage, any form of embellishment (labels, arrows, special symbols) is

inappropriate—you know what you are showing, and creating any form of decoration on

the graph will only make you more reluctant to throw the graph away and start over.

For presentation graphics, the opposite applies. Now you already know the results, but

you would like to communicate them to others. Textual information therefore becomes

very important: how else will people know what they are looking at?

You can find plenty of advice elsewhere on how to prepare “good” presentation

graphics—often strongly worded and with an unfortunate tendency to use emotional

responses (ridicule or derision) in place of factual arguments. In the absence of good

empirical evidence one way or the other, I will not add to the discussion. But I present a

checklist below, mentioning some points that are often overlooked when preparing graphs

for presentation:
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• Try to make the text self-explanatory. Don’t rely on a (separate) caption for basic

information—it might be removed during reproduction. Place basic information on the

graph itself.

• Explain what is plotted on the axes. This can be done with explicit labels on the axes or

through explanatory text elsewhere. Don’t forget the units!

• Make labels self-explanatory. Be careful with nonstandard abbreviations. Ask yourself:

If this is all the context provided, are you certain that the reader will be able to figure

out what you mean? (In a recent book on data graphing, I found a histogram labeled

Married, Nvd, Dvd, Spd, and Wdd. I could figure out most of them, because at least

Married was given in long form, but I struggled with Nvd for quite a while!)

• Given how important text is on a graph, make sure to pick a suitable font. Don’t

automatically rely on the default provided by your plotting software. Generally,

sans-serif fonts (such as Helvetica) are preferred for short labels, such as those on a

graph, whereas serif fonts (such as Times) are more suitable for body text. Also pick an

appropriate size—text fonts on graphics are often too large, making them look garish.

(Most text fonts are used at 10-point to 12-point size; there is no need for type on

graphics to be much larger.)

• If there are error bars, be sure to explain their meaning. What are they: standard

deviations, inter-quartile ranges, or the limits of experimental apparatus? Also, choose

an appropriate measure of uncertainty. Don’t use standard deviations for highly

skewed data.

• Don’t forget the basics. Choose appropriate plot ranges. Make sure that data is not

unnecessarily obscured by labels.

• Proofread graphs! Common errors include: typos in textual labels, interchanged data

sets or switched labels, missing units, and incorrect order-of-magnitude qualifiers (e.g.,

milli- versus micro-).

• Finally, choose an appropriate output format for your graph! Don’t use bitmap formats

(GIF, JPG, PNG) for print publication—use a scalable format such as PostScript or PDF.

One last piece of advice: creating good presentation graphics is also a matter of taste, and

taste can be acquired. If you want to work with data, then you should develop an interest

in graphs—not just the ones you create yourself, but all that you see. If you notice one

that seems to work (or not), take a moment to figure out what makes it so. Are the lines

too thick? The labels too small? The choice of colors just right? The combination of curves

helpful? Details matter.

Workshop: matplotlib

The matplotlib module is a Python module for creating two-dimensional xy plots, scatter

plots, and other plots typical of scientific applications. It can be used in an interactive
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session (with the plots being shown immediately in a GUI window) or from within a

script to create graphics files using common graphics file formats.

Let’s first look at some examples to demonstrate how matplotlib can be used from within

an interactive session. Afterward, we will take a closer look at the structure of the library

and give some pointers for more detailed investigations.

Using matplotlib Interactively

To begin an interactive matplotlib session, start IPython (the enhanced interactive Python

shell) with the -pylab option, entering the following command line like at the shell

prompt:

ipython -pylab

This will start IPython, load matplotlib and NumPy, and import both into the global

namespace. The idea is to give a Matlab-like experience of interactive graphics together

with numerical and matrix operations. (It is important to use IPython here—the flow of

control between the Python command interpreter and the GUI eventloop for the graphics

windows requires it. Other interactive shells can be used, but they may require some

tinkering.)

We can now create plots right away:

In [1]: x = linspace( 0, 10, 100 )

In [2]: plot( x, sin(x) )

Out[2]: [<matplotlib.lines.Line2D object at 0x1cfefd0>]

This will pop up a new window, showing a graph like the one in Figure 3-16 but

decorated with some GUI buttons. (Note that the sin() function is a ufunc from the

NumPy package: it takes a vector and returns a vector of the same size, having applied the

sine function to each element in the input vector. See the Workshop in Chapter 2.)

We can now add additional curves and decorations to the plot. Continuing in the same

session as before, we add another curve and some labels:

In [3]: plot( x, 0.5*cos(2*x) )

Out[3]: [<matplotlib.lines.Line2D object at 0x1cee8d0>]

In [4]: title( "A matplotlib plot" )

Out[4]: <matplotlib.text.Text object at 0x1cf6950>

In [5]: text( 1, -0.8, "A text label" )

Out[5]: <matplotlib.text.Text object at 0x1f59250>

In [6]: ylim( -1.1, 1.1 )

Out[6]: (-1.1000000000000001, 1.1000000000000001)
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F I G U R E 3-16. A simple matplotlib figure (see text).

In the last step, we increased the range of values plotted on the vertical axis. (There is also

an axis() command, which allows you to specify limits for both axes at the same time.

Don’t confuse it with the axes() command, which creates a new coordinate system.) The

plot should now look like the one in Figure 3-17, except that in an interactive terminal

the different lines are distinguished by their color, not their dash pattern.

Let’s pause for a moment and point out a few details. First of all, you should have noticed

that the graph in the plot window was updated after every operation. That is typical for

the interactive mode, but it is not how matplotlib works in a script: in general, matplotlib

tries to delay the (possibly expensive) creation of an actual plot until the last possible

moment. (In a script, you would use the show() command to force generation of an actual

plot window.)

Furthermore, matplotlib is “stateful”: a new plot command does not erase the previous

figure and, instead, adds to it. This behavior can be toggled with the hold() command, and

the current state can be queried using ishold(). (Decorations like the text labels are not

affected by this.) You can clear a figure explicitly using clf().

This implicit state may come as a surprise: haven’t we learned to make things explicit,

when possible? In fact, this stateful behavior is a holdover from the way Matlab works.

Here is another example. Start a new session and execute the following commands:

In [1]: x1 = linspace( 0, 10, 40 )

In [2]: plot( x1, sqrt(x1), 'k-' )

Out[2]: [<matplotlib.lines.Line2D object at 0x1cfef50>]
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F I G U R E 3-17. The plot from Figure 3-16 with an additional curve and some decorations added.

In [3]: figure(2)

Out[3]: <matplotlib.figure.Figure object at 0x1cee850>

In [4]: x2 = linspace( 0, 10, 100 )

In [5]: plot( x1, sin(x1), 'k--', x2, 0.2*cos(3*x2), 'k:' )

Out[5]:

[<matplotlib.lines.Line2D object at 0x1fb1150>,

<matplotlib.lines.Line2D object at 0x1fba250>]

In [6]: figure(1)

Out[6]: <matplotlib.figure.Figure object at 0x1cee210>

In [7]: plot( x1, 3*exp(-x1/2), linestyle='None', color='white', marker='o',

...: markersize=7 )

Out[7]: [<matplotlib.lines.Line2D object at 0x1d0c150>]

In [8]: savefig( 'graph1.png' )

This snippet of code demonstrates several things. We begin as before, by creating a plot.

This time, however, we pass a third argument to the plot() command that controls the

appearance of the graph elements. That matplotlib library supports Matlab-style

mnemonics for plot styles; the letter k stands for the color “black” and the single dash - for

a solid line. (The letter b stands for “blue.”)

Next we create a second figure in a new window and switch to it by using the figure(2)

command. All graphics commands will now be directed to this second figure—until we

switch back to the first figure using figure(1). This is another example of “silent state.”

Observe also that figures are counted starting from 1, not from 0.
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In line 5, we see another way to use the plot command—namely, by specifying two sets of

curves to be plotted together. (The formatting commands request a dashed and a dotted

line, respectively.) Line 7 shows yet a different way to specify plot styles: by using named

(keyword) arguments.

Finally, we save the currently active plot (i.e., figure 1) to a PNG file. The savefig()

function determines the desired output format from the extension of the filename given.

Other formats that are supported out of the box are PostScript, PDF, and SVG. Additional

formats may be available, depending on the libraries installed on your system.

Case Study: LOESS with matplotlib

As a quick example of how to put the different aspects of matplotlib together, let’s discuss

the script used to generate Figure 3-4. This also gives us an opportunity to look at the

LOESS method in a bit more detail.

To recap: LOESS stands for locally weighted linear regression. The difference between

LOESS and regular linear regression is the introduction of a weight factor, which

emphasizes those data points that are close to the location x at which we want to evaluate

the smoothed curve. As explained earlier, the expression for squared error (which we

want to minimize) now becomes:

χ2(x) =
∑

i

w(x − xi ; h) (a + bxi − yi )
2

Keep in mind that this expression now depends on x , the location at which we want to

evaluate the smoothed curve!

If we minimize this expression with respect to the parameters a and b, we obtain the

following expressions for a and b (remember that we will have to evaluate them from

scratch for every point x):

b =
∑

wi
∑

wi xi yi − (∑
wi xi

) (∑
wi yi

)
∑

wi

(∑
wi x2

i

) − (∑
wi xi

)2

a =
(∑

wi yi − b
∑

wi xi

)
∑

wi

This can be quite easily translated into NumPy and plotted with matplotlib. The actual

LOESS calculation is contained entirely in the function loess(). (See the Workshop in

Chapter 2 for a discussion of this type of programming.)

from pylab import *

# x: location; h: bandwidth; xp, yp: data points (vectors)

def loess( x, h, xp, yp ):

w = exp( -0.5*( ((x-xp)/h)**2 )/sqrt(2*pi*h**2) )

b = sum(w*xp)*sum(w*yp) - sum(w)*sum(w*xp*yp)
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b /= sum(w*xp)**2 - sum(w)*sum(w*xp**2)

a = ( sum(w*yp) - b*sum(w*xp) )/sum(w)

return a + b*x

d = loadtxt( "draftlottery" )

s1, s2 = [], []

for k in d[:,0]:

s1.append( loess( k, 5, d[:,0], d[:,1] ) )

s2.append( loess( k, 100, d[:,0], d[:,1] ) )

xlabel( "Day in Year" )

ylabel( "Draft Number" )

gca().set_aspect( 'equal' )

plot( d[:,0], d[:,1], 'o', color="white", markersize=7, linewidth=3 )

plot( d[:,0], array(s1), 'k-', d[:,0], array(s2), 'k--' )

q = 4

axis( [1-q, 366+q, 1-q, 366+q] )

savefig( "draftlottery.eps" )

We evaluate the smoothed curve at the locations of all data points, using two different

values for the bandwidth, and then proceed to plot the data together with the smoothed

curves. Two details require an additional word of explanation. The function gca() returns

the current “set of axes” (i.e., the current coordinate system on the plot—see below for

more information on this function), and we require the aspect ratio of both x and y axes

to be equal (so that the plot is a square). In the last command before we save the figure to

file, we adjust the plot range by using the axis() command. This function must follow the

plot() commands, because the plot() command automatically adjusts the plot range

depending on the data.

Managing Properties

Until now, we have ignored the values returned by the various plotting commands. If you

look at the output generated by IPython, you can see that all the commands that add

graph elements to the plot return a reference to the object just created. The one exception

is the plot() command itself, which always returns a list of objects (because, as we have

seen, it can add more than one “line” to the plot).

These references are important because it is through them that we can control the

appearance of graph elements once they have been created. In a final example, let’s study

how we can use them:

In [1]: x = linspace( 0, 10, 100 )

In [2]: ps = plot( x, sin(x), x, cos(x) )
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In [3]: t1 = text( 1, -0.5, "Hello" )

In [4]: t2 = text( 3, 0.5, "Hello again" )

In [5]: t1.set_position( [7, -0.5] )

In [6]: t2.set( position=[5, 0], text="Goodbye" )

Out[6]: [None, None]

In [7]: draw()

In [8]: setp( [t1, t2], fontsize=10 )

Out[8]: [None, None]

In [9]: t2.remove()

In [10]: Artist.remove( ps[1] )

In [11]: draw()

In the first four lines, we create a graph with two curves and two text labels, as before, but

now we are holding on to the object references. This allows us to make changes to these

graph elements. Lines 5, 6, and 8 demonstrate different ways to do this: for each property

of a graph element, there is an explicit, named accessor function (line 5). Alternatively,

we can use a generic setter with keyword arguments—this allows us to set several

properties (on a single object) in a single call (line 6). Finally, we can use the standalone

setp() function, which takes a list of graph elements and applies the requested property

update to all of them. (It can also take a single graph element instead of a one-member

list.) Notice that setp() generates a redraw event whereas individual property accessors do

not; this is why we must generate an explicit redraw event in line 7. (If you are confused

by the apparent duplication of functionality, read on: we will come back to this point in

the next section.)

Finally, we remove one of the text labels and one of the curves by using the remove()

function. The remove() function is defined for objects that are derived from the Artist

class, so we can invoke it using either member syntax (as a “bound” function, line 9) or

the class syntax (as an “unbound” function, line 10). Keep in mind that plot() returns a

list of objects, so we need to index into the list to access the graph objects themselves.

There are some useful functions that can help us handle object properties. If you issue

setp(r) with only a single argument in an interactive session, then it will print all

properties that are available for object r together with information about the values that

each property is allowed to take on. The getp(r) function on the other hand prints all

properties of r together with their current values.

Suppose we did not save the references to the objects we created, or suppose we want to

change the properties of an object that we did not create explicitly. In such cases we can

use the functions gcf() and gca(), which return a reference to the current figure or axes
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object, respectively. To make use of them, we need to develop at least a passing familiarity

with matplotlib’s object model.

The matplotlib Object Model and Architecture

The object model for matplotlib is constructed similarly to the object model for a GUI

widget set: a plot is represented by a tree of widgets, and each widget is able to render

itself. Perhaps surprisingly, the object model is not flat. In other words, the plot elements

(such as axes, labels, arrows, and so on) are not properties of a high-level “plot” or

“figure” object. Instead, you must descend down the object tree to find the element that

you want to modify and then, once you have an explicit reference to it, change the

appropriate property on the element.

The top-level element (the root node of the tree) is an object of class Figure. A figure

contains one or more Axes objects: this class represents a “coordinate system” on which

actual graph elements can be placed. (By contrast, the actual axes that are drawn on the

graph are objects of the Axis class!) The gcf() and gca() functions therefore return a

reference to the root node of the entire figure or to the root node of a single plot in a

multiplot figure.

Both Figure and Axes are subclasses of Artist. This is the base class of all “widgets” that

can be drawn onto a graph. Other important subclasses of Artist are Line2D (a polygonal

line connecting multiple points, optionally with a symbol at each point), Text, and Patch

(a geometric shape that can be placed onto the figure). The top-level Figure instance is

owned by an object of type FigureCanvas (in the matplotlib.backend bases module). Most

likely you won’t have to interact with this class yourself directly, but it provides the bridge

between the (logical) object tree that makes up the graph and a backend, which does the

actual rendering. Depending on the backend, matplotlib creates either a file or a graph

window that can be used in an interactive GUI session.

Although it is easy to get started with matplotlib from within an interactive session, it can

be quite challenging to really get one’s arms around the whole library. This can become

painfully clear when you want to change some tiny aspect of a plot—and can’t figure out

how to do that.

As is so often the case, it helps to investigate how things came to be. Originally, matplotlib

was conceived as a plotting library to emulate the behavior found in Matlab. Matlab

traditionally uses a programming model based on functions and, being 30 years old,

employs some conventions that are no longer popular (i.e., implicit state). In contrast,

matplotlib was implemented using object-oriented design principles in Python, with the

result that these two different paradigms clash.

One consequence of having these two different paradigms side by side is redundancy.

Many operations can be performed in several different ways (using standalone functions,

Python-style keyword arguments, object attributes, or a Matlab-compatible alternative
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syntax). We saw examples of this redundancy in the third listing when we changed object

properties. This duplication of functionality matters because it drastically increases the size

of the library’s interface (its application programming interface or API), which makes it

that much harder to develop a comprehensive understanding. What is worse, it tends to

spread information around. (Where should I be looking for plot attributes—among

functions, among members, among keyword attributes? Answer: everywhere!)

Another consequence is inconsistency. At least in its favored function-based interface,

matplotlib uses some conventions that are rather unusual for Python programming—for

instance, the way a figure is created implicitly at the beginning of every example, and how

the pointer to the current figure is maintained through an invisible “state variable” that is

opaquely manipulated using the figure() function. (The figure() function actually

returns the figure object just created, so the invisible state variable is not even necessary.)

Similar surprises can be found throughout the library.

A last problem is namespace pollution (this is another Matlab heritage—they didn’t have

namespaces back then). Several operations included in matplotlib’s function-based

interface are not actually graphics related but do generate plots as side effects. For example,

hist() calculates (and plots) a histogram, acorr() calculates (and plots) an autocorrelation

function, and so on. From a user’s perspective, it makes more sense to adhere to a

separation of tasks: perform all calculations in NumPy/SciPy, and then pass the results

explicitly to matplotlib for plotting.

Odds and Ends

There are three different ways to import and use matplotlib. The original method was to

enter:

from pylab import *

This would load all of NumPy as well as matplotlib and import both APIs into the global

namespace! This is no longer the preferred way to use matplotlib. Only for interactive use

with IPython is it still required (using the -pylab command-line option to IPython).

The recommended way to import matplotlib’s function-based interface together with

NumPy is by using:

import matplotlib.pyplot as plt

import numpy as np

The pyplot interface is a function-based interface that uses the same Matlab-like stateful

conventions that we have seen in the examples of this section; however, it does not

include the NumPy functions. Instead, NumPy must be imported separately (and into its

own namespace).

Finally, if all you want is the object-oriented API to matplotlib, then you can import just

the explicit modules from within matplotlib that contain the class definitions you need
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(although it is customary to import pyplot instead and thereby obtain access to the whole

collection).

Of course, there are many details that we have not discussed. Let me mention just a few:

• Many more options (to configure the axes and tick marks, to add legend or arrows).

• Additional plot types (density or “false-color” plots, vector plots, polar plots).

• Digital image processing—matplotlib can read and manipulate PNG images and can

also call into the Python Image Library (PIL) if it is installed.

• Matplotlib can be embedded in a GUI and can handle GUI events.

The Workshop of Chapter 4 contains another example that involves matplotlib being

called from a script to generate image files.

Further Reading

In addition to the books listed below, you may check the references in Chapter 10 for

additional material on linear regression.

• The Elements of Graphing Data. William S. Cleveland. 2nd ed., Hobart Press. 1994.

This is probably the definitive reference on graphical analysis (as opposed to

presentation graphics). Cleveland is the inventor of both the LOESS and the banking

techniques discussed in this chapter. My own thinking has been influenced strongly by

Cleveland’s careful approach. A companion volume by the same author, entitled

Visualizing Data, is also available.

• Exploratory Data Analysis with MATLAB. Wendy L. Martinez and Angel R. Martinez.

Chapman & Hall/CRC. 2004.

This is an interesting book—it covers almost the same topics as the book you are

reading but in opposite order, starting with dimensionality reduction and clustering

techniques and ending with univariate distributions! Because it demonstrates all

techniques by way of Matlab, it does not develop the conceptual background in great

depth. However, I found the chapter on smoothing to be quite useful.
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C H A P T E R F O U R

Time As a Variable: Time-Series
Analysis

IF WE FOLLOW THE VARIATION OF SOME QUANTITY OVER TIME, WE ARE DEALING WITH A TIME SERIES. TIME

series are incredibly common: examples range from stock market movements to the tiny

icon that constantly displays the CPU utilization of your desktop computer for the

previous 10 seconds. What makes time series so common and so important is that they

allow us to see not only a single quantity by itself but at the same time give us the typical

“context” for this quantity. Because we have not only a single value but a bit of history as

well, we can recognize any changes from the typical behavior particularly easily.

On the face of it, time-series analysis is a bivariate problem (see Chapter 3). Nevertheless,

we are dedicating a separate chapter to this topic. Time series raise a different set of issues

than many other bivariate problems, and a rather specialized set of methods has been

developed to deal with them.

Examples

To get started, let’s look at a few different time series to develop a sense for the scope of

the task.

Figure 4-1 shows the concentration of carbon dioxide (CO2) in the atmosphere, as

measured by the observatory on Mauna Loa on Hawaii, recorded at monthly intervals

since 1959.

This data set shows two features we often find in a time-series plot: trend and seasonality.

There is clearly a steady, long-term growth in the overall concentration of CO2; this is the

trend. In addition, there is also a regular periodic pattern; this is the seasonality. If we look

closely, we see that the period in this case is exactly 12 months, but we will use the term
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F I G U R E 4-1. Trend and seasonality: the concentration of CO2 (in parts per million) in the atmosphere as measured by the
observatory on Mauna Loa, Hawaii, at monthly intervals.

“seasonality” for any regularly recurring feature, regardless of the length of the period. We

should also note that the trend, although smooth, does appear to be nonlinear, and in

itself may be changing over time.

Figure 4-2 displays the concentration of a certain gas in the exhaust of a gas furnace over

time. In many ways, this example is the exact opposite of the previous example. Whereas

the data in Figure 4-1 showed a lot of regularity and a strong trend, the data in Figure 4-2

shows no trend but a lot of noise.

Figure 4-3 shows the dramatic drop in the cost of a typical long-distance phone call in the

U.S. over the last century. The strongly nonlinear trend is obviously the most outstanding

feature of this data set. As with many growth or decay processes, we may suspect an

exponential time development; in fact, in a semi-logarithmic plot (Figure 4-3, inset) the

data follows almost a straight line, confirming our expectation. Any analysis that fails

to account explicitly for this behavior of the original data is likely to lead us astray. We

should therefore work with the logarithms of the cost, rather than with the absolute

cost.

There are some additional questions that we should ask when dealing with a

long-running data set like this. What exactly is a “typical” long-distance call, and has that

definition changed over the observation period? Are the costs adjusted for inflation or

not? The data itself also begs closer scrutiny. For instance, the uncharacteristically low

prices for a couple of years in the late 1970s make me suspicious: are they the result of a

clerical error (a typo), or are they real? Did the breakup of the AT&T system have
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F I G U R E 4-2. No trend but relatively smooth variation over time: concentration of a certain gas in a furnace exhaust (in
arbitrary units).
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F I G U R E 4-3. Nonlinear trend: cost of a typical long-distance phone call in the U.S.

anything to do with these low prices? We will not follow up on these questions here

because I am presenting this example only as an illustration of an exponential trend, but

any serious analysis of this data set would have to follow up on these questions.

Figure 4-4 shows the development of the Japanese stock market as represented by the

Nikkei Stock Index over the last 40 years, an example of a time series that exhibits a
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F I G U R E 4-4. Change in behavior: the Nikkei Stock Index over the last 40 years.

marked change in behavior. Clearly, whatever was true before the New Year’s Day 1990

was no longer true afterward. (In fact, by looking closely, you can make out a second

change in behavior that was more subtle than the bursting of the big Japanese bubble: its

beginning, sometime around 1985–1986.)

This data set should serve as a cautionary example. All time-series analysis is based on the

assumption that the processes generating the data are stationary in time. If the rules of the

game change, then time-series analysis is the wrong tool for the task; instead we need to

investigate what caused the break in behavior. More benign examples than the bursting of

the Japanese bubble can be found: a change in sales or advertising strategy may

significantly alter a company’s sales patterns. In such cases, it is more important to inquire

about any further plans that the sales department might have, rather than to continue

working with data that is no longer representative!

After these examples that have been chosen for their “textbook” properties, let’s look at a

“real-world” data set. Figure 4-5 shows the number of daily calls placed to a call center for

a time period slightly longer than two years. In comparison to the previous examples, this

data set has a lot more structure, which makes it hard to determine even basic properties.

We can see some high-frequency variation, but it is not clear whether this is noise or has

some form of regularity to it. It is also not clear whether there is any sort of regularity on a

longer time scale. The amount of variation makes it hard to recognize any further

structure. For instance, we cannot tell if there is a longer-term trend in the data. We will

come back to this example later in the chapter.

82 C H A P T E R F O U R



O’Reilly-5980006 master October 28, 2010 20:29

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

 40,000

 45,000

 50,000

Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov

Data
Smoothed

F I G U R E 4-5. A real-world data set: number of daily calls placed to a call center. The data exhibits short- and long-term
seasonality, noise, and possibly changes in behavior. Also shown is the result of applying a 31-point Gaussian smoothing
filter.

The Task

After this tour of possible time-series scenarios, we can identify the main components of

every time series:

• Trend

• Seasonality

• Noise

• Other(!)

The trend may be linear or nonlinear, and we may want to investigate its magnitude. The

seasonality pattern may be either additive or multiplicative. In the first case, the seasonal

change has the same absolute size no matter what the magnitude of the current baseline of

the series is; in the latter case, the seasonal change has the same relative size compared

with the current magnitude of the series. Noise (i.e., some form of random variation) is

almost always part of a time series. Finding ways to reduce the noise in the data is usually

a significant part of the analysis process. Finally, “other” includes anything else that we

may observe in a time series, such as particular significant changes in overall behavior,

special outliers, missing data—anything remarkable at all.

Given this list of components, we can summarize what it means to “analyze” a time series.

We can distinguish three basic tasks:

• Description
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• Prediction

• Control

Description attempts to identify components of a time series (such as trend and

seasonality or abrupt changes in behavior). Prediction seeks to forecast future values.

Control in this context means the monitoring of a process over time with the purpose of

keeping it within a predefined band of values—a typical task in many manufacturing or

engineering environments. We can distinguish the three tasks in terms of the time frame

they address: description looks into the past, prediction looks to the future, and control

concentrates on the present.

Requirements and the Real World

Most standard methods of time-series analysis make a number of assumptions about the

underlying data.

• Data points have been taken at equally spaced time steps, with no missing data points.

• The time series is sufficiently long (50 points are often considered as an absolute

minimum).

• The series is stationary: it has no trend, no seasonality, and the character (amplitude and

frequency) of any noise does not change with time.

Unfortunately, most of these assumptions will be more or less violated by any real-world

data set that you are likely to encounter. Hence you may have to perform a certain

amount of data cleaning before you can apply the methods described in this chapter.

If the data has been sampled at irregular time steps or if some of the data points are

missing, then you can try to interpolate the data and resample it at equally spaced

intervals. Time series obtained from electrical systems or scientific experiments can be

almost arbitrarily long, but most series arising in a business context will be quite short and

contain possibly no more than two dozen data points. The exponential smoothing

methods introduced in the next section are relatively robust even for relatively short

series, but somewhere there is a limit. Three or four data points don’t constitute a series!

Finally, most interesting series will not be stationary in the sense of the definition just

given, so we may have to identify and remove trend and seasonal components explicitly

(we’ll discuss how to do that later). Drastic changes in the nature of the series also violate

the stationarity condition. In such cases we must not continue blindly but instead deal

with the break in the data—for example, by treating the data set as two different series

(one before and one after the event).

Smoothing

An important aspect of most time series is, the presence of noise—that is, random (or

apparently random) changes in the quantity of interest. Noise occurs in many real-world
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F I G U R E 4-6. Simple and a Gaussian weighted moving average: the weighted average is less affected by sudden jumps in
the data.

data sets, but we can often reduce the noise by improving the apparatus used to measure

the data or by collecting a larger sample and averaging over it. But the particular structure

of time series makes this impossible: the sales figures for the last 30 days are fixed, and

they constitute all the data we have. This means that removing noise, or at least reducing

its influence, is of particular importance in time-series analysis. In other words, we are

looking for ways to smooth the signal.

Running Averages

The simplest smoothing algorithm that we can devise is the running, moving, or floating

average. The idea is straightforward: for any odd number of consecutive points, replace the

centermost value with the average of the other points (here, the {xi } are the data points

and the smoothed value at position i is si ):

si = 1

2k + 1

k∑

j=−k

xi+ j

This naive approach has a serious problem, as you can see in Figure 4-6. The figure shows

the original signal together with the 11-point moving average. Unfortunately, the signal

has some sudden jumps and occasional large “spikes,” and we can see how the smoothed

curve is affected by these events: whenever a spike enters the smoothing window, the

moving average is abruptly distorted by the single, uncommonly large value until the

outlier leaves the smoothing window again—at which point the floating average equally

abruptly drops again.
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We can avoid this problem by using a weighted moving average, which places less weight on

the points at the edge of the smoothing window. Using such a weighted average, any new

point that enters the smoothing window is only gradually added to the average and then

gradually removed again:

si =
k∑

j=−k

w j xi+ j where
k∑

j=−k

w j = 1

Here the w j are the weighting factors. For example, for a 3-point moving average, we

might use (1/4, 1/2, 1/4). The particular choice of weight factors is not very important

provided they are peaked at the center, drop toward the edges, and add up to 1. I like to

use the Gaussian function:

f (x, σ ) = 1√
2πσ 2

exp

(
−1

2

( x

σ

)2
)

to build smoothing weight factors. The parameter σ in the Gaussian controls the width of

the curve, and the function is essentially zero for values of x larger than about 3.5σ .

Hence f (x, 1) can be used to build a 9-point kernel by evaluating f (x, 1) at the positions

[−4, −3, −2, −1, 0, 1, 2, 3, 4]. Setting σ = 2, we can form a 15-point kernel by evaluating

the Gaussian for all integer arguments between −7 and +7. And so on.

Exponential Smoothing

All moving-average schemes have a number of problems.

• They are painful to evaluate. For each point, the calculation has to be performed from

scratch. It is not possible to evaluate weighted moving averages by updating a previous

result.

• Moving averages can never be extended to the true edge of the available data set,

because of the finite width of the averaging window. This is especially problematic

because often it is precisely the behavior at the leading edge of a data set that we are

most interested in.

• Similarly, moving averages are not defined outside the range of the existing data set. As

a consequence, they are of no use in forecasting.

Fortunately, there exists a very simple calculational scheme that avoids all of these

problems. It is called exponential smoothing or Holt–Winters method. There are various forms

of exponential smoothing: single exponential smoothing for series that have neither trend

nor seasonality, double exponential smoothing for series exhibiting a trend but no

seasonality, and triple exponential smoothing for series with both trend and seasonality.

The term “Holt–Winters method” is sometimes reserved for triple exponential smoothing

alone.
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All exponential smoothing methods work by updating the result from the previous time

step using the new information contained in the data of the current time step. They do so

by “mixing” the new information with the old one, and the relative weight of old and

new information is controlled by an adjustable mixing parameter. The various methods

differ in terms of the number of quantities they track and the corresponding number of

mixing parameters.

The recurrence relation for single exponential smoothing is particularly simple:

si = αxi + (1 − α)si−1 with 0 ≤ α ≤ 1

Here si is the smoothed value at time step i , and xi is the actual (unsmoothed) data at that

time step. You can see how si is a mixture of the raw data and the previous smoothed

value si−1. The mixing parameter α can be chosen anywhere between 0 and 1, and it

controls the balance between new and old information: as α approaches 1, we retain only

the current data point (i.e., the series is not smoothed at all); as α approaches 0, we retain

only the smoothed past (i.e., the curve is totally flat).

Why is this method called “exponential” smoothing? To see this, simply expand the

recurrence relation:

si = αxi + (1 − α)si−1

= αxi + (1 − α) [αxi−1 + (1 − α)si−2]

= αxi + (1 − α)
[
αxi−1 + (1 − α) [αxi−2 + (1 − α)si−3]

]

= α
[
xi + (1 − α)xi−1 + (1 − α)2xi−2

] + (1 − α)3si−3

= . . .

= α

i∑

j=0

(1 − α) j xi− j

What this shows is that in exponential smoothing, all previous observations contribute to

the smoothed value, but their contribution is suppressed by increasing powers of the

parameter α. That observations further in the past are suppressed multiplicatively is

characteristic of exponential behavior. In a way, exponential smoothing is like a floating

average with infinite memory but with exponentially falling weights. (Also observe that

the sum of the weights,
∑

j α(1 −α) j , equals 1 as required by virtue of the geometric series∑
i qi = 1/(1 − q) for q < 1. See Appendix B for information on the geometric series.)

The results of the simple exponential smoothing procedure can be extended beyond the

end of the data set and thereby used to make a forecast. The forecast is extremely simple:

xi+h = si

where si is the last calculated value. In other words, single exponential smoothing yields a

forecast that is absolutely flat for all times.
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Single exponential smoothing as just described works well for time series without an

overall trend. However, in the presence of an overall trend, the smoothed values tend to

lag behind the raw data unless α is chosen to be close to 1; however, in this case the

resulting curve is not sufficiently smoothed.

Double exponential smoothing corrects for this shortcoming by retaining explicit

information about the trend. In other words, we maintain and update the state of two

quantities: the smoothed signal and the smoothed trend. There are two equations and two

mixing parameters:

si = αxi + (1 − α)(si−1 + ti−1)

ti = β(si − si−1) + (1 − β)ti−1

Let’s look at the second equation first. This equation describes the smoothed trend. The

current unsmoothed “value” of the trend is calculated as the difference between the

current and the previous smoothed signal; in other words, the current trend tells us how

much the smoothed signal changed in the last step. To form the smoothed trend, we

perform a simple exponential smoothing process on the trend, using the mixing

parameter β. To obtain the smoothed signal, we perform a similar mixing as before but

consider not only the previous smoothed signal but take the trend into account as well.

The last term in the first equation is the best guess for the current smoothed

signal—assuming we followed the previous trend for a single time step.

To turn this result into a forecast, we take the last smoothed value and, for each additional

time step, keep adding the last smoothed trend to it:

xi+h = si + h ti

Finally, for triple exponential smoothing we add yet a third quantity, which describes the

seasonality. We have to distinguish between additive and multiplicative seasonality. For

the additive case, the equations are:

si = α(xi − pi−k) + (1 − α)(si−1 + ti−1)

ti = β(si − si−1) + (1 − β)ti−1

pi = γ (xi − si ) + (1 − γ )pi−k

xi+h = si + h ti + pi−k+h

For the multiplicative case, they are:

si = α
xi

pi−k
+ (1 − α)(si−1 + ti−1)

ti = β(si − si−1) + (1 − β)ti−1

pi = γ
xi

si
+ (1 − γ )pi−k

xi+h = (si + h ti )pi−k+h

Here, pi is the “periodic” component, and k is the length of the period. I have also

included the expressions for forecasts.
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All exponential smoothing methods are based on recurrence relations. This means that we

need to fix the start-up values in order to use them. Luckily, the specific choice for these

values is not very critical: the exponential damping implies that all exponential smoothing

methods have a short “memory,” so that after only a few steps, any influence of the initial

values is greatly diminished. Some reasonable choices for start-up values are:

s0 = x0 or s0 = 1

n

n∑

i

xi with 1 < n < 5, . . . , 10

and:

t0 = 0 or t0 = x1 − x0

For triple exponential smoothing we must provide one full season of values for start-up,

but we can simply fill them with 1s (for the multiplicative model) or 0s (for the additive

model). Only if the series is short do we need to worry seriously about finding good

starting values.

The last question concerns how to choose the mixing parameters α, β, and γ . My advice is

trial and error. Try a few values between 0.2 and 0.4 (very roughly), and see what results

you get. Alternatively, you can define a measure for the error (between the actual data

and the output of the smoothing algorithm), and then use a numerical optimization

routine to minimize this error with respect to the parameters. In my experience, this is

usually more trouble than it’s worth for at least the following two reasons. The numerical

optimization is an iterative process that is not guaranteed to converge, and you may end

up spending way too much time coaxing the algorithm to convergence. Furthermore, any

such numerical optimization is slave to the expression you have chosen for the “error” to

be minimized. The problem is that the parameter values minimizing that error may not

have some other property you want to see in your solution (e.g., regarding the balance

between the accuracy of the approximation and the smoothness of the resulting curve) so

that, in the end, the manual approach often comes out ahead. However, if you have many

series to forecast, then it may make sense to expend the effort and build a system that can

determine the optimal parameter values automatically, but it probably won’t be easy to

really make this work.

Finally, I want to present an example of the kind of results we can expect from

exponential smoothing. Figure 4-7 is a classical data set that shows the monthly number

of international airline passengers (in thousands of passengers).* The graph shows the

actual data together with a triple exponential approximation. The years 1949 through

1957 were used to “train” the algorithm, and the years 1958 through 1960 are forecasted.

Note how well the forecast agrees with the actual data—especially in light of the strong

seasonal pattern—for a rather long forecasting time frame (three full years!). Not bad for a

method as simple as this.

*This data is available in the “airpass.dat” data set from R. J. Hyndman’s Time Series Data Library at
http://www.robjhyndman.com/TSDL.
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F I G U R E 4-7. Triple exponential smoothing in action: comparison between the raw data (solid line) and the smoothed
curve (dashed). For the years after 1957, the dashed curve shows the forecast calculated with only the data available in 1957.

Don't Overlook the Obvious!

On a recent consulting assignment, I was discussing monthly sales numbers with the

client when he made the following comment: “Oh, yes, sales for February are always

somewhat lower—that’s an after effect of the Christmas peak.” Sales are always lower in

February? How interesting.

Sure enough, if you plotted the monthly sales numbers for the last few years, there was a

rather visible dip from the overall trend every February. But in contrast, there wasn’t

much of a Christmas spike! (The client’s business was not particularly seasonal.) So why

should there be a corresponding dip two months later?

By now I am sure you know the answer already: February is shorter than any of the other

months. And it’s not a small effect, either: with 28 days, February is about three days

shorter than the other months (which have 30–31 days). That’s about 10 percent—close

to the size of the dip in the client’s sales numbers.

When monthly sales numbers were normalized by the number of days in the month, the

February dip all but disappeared, and the adjusted February numbers were perfectly in line

with the rest of the months. (The average number of days per month is 365/12 = 30.4.)

Whenever you are tracking aggregated numbers in a time series (such as weekly, monthly,

or quarterly results), make sure that you have adjusted for possible variation in the

aggregation time frame. Besides the numbers of days in the month, another likely
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candidate for hiccups is the number of business days in a month (for months with five

weekends, you can expect a 20 percent drop for most business metrics). But the problem

is, of course, much more general and can occur whenever you are reporting aggregate

numbers rather than rates. (If the client had been reporting average sales per day for each

month, then there would never have been an anomaly.)

This specific problem (i.e., nonadjusted variations in aggregation periods) is a particular

concern for all business reports and dashboards. Keep an eye out for it!

The Correlation Function

The autocorrelation function is the primary diagnostic tool for time-series analysis. Whereas

the smoothing methods that we have discussed so far deal with the raw data in a very

direct way, the correlation function provides us with a rather different view of the same

data. I will first explain how the autocorrelation function is calculated and will then

discuss what it means and how it can be used.

The basic algorithm works as follows: start with two copies of the data set and subtract the

overall average from all values. Align the two sets, and multiply the values at

corresponding time steps with each other. Sum up the results for all time steps. The result

is the (unnormalized) correlation coefficient at lag 0. Now shift the two copies against

each other by a single time step. Again multiply and sum: the result is the correlation

coefficient at lag 1. Proceed in this way for the entire length of the time series. The set of

all correlation coefficients for all lags is the autocorrelation function. Finally, divide all

coefficients by the coefficient for lag 0 to normalize the correlation function, so that the

coefficient for lag 0 is now equal to 1.

All this can be written compactly in a single formula for c(k)—that is the correlation

function at lag k:

c(k) =

N−k∑
i=1

(xi − μ)(xi+k − μ)

N∑
i=1

(xi − μ)2

with μ = 1

N

N∑

i=1

xi

Here, N is the number of points in the data set. The formula follows the mathematical

convention to start indexing sequences at 1, rather than the programming convention to

start indexing at 0. Notice that we have subtracted the overall average μ from all values

and that the denominator is simply the expression of the numerator for lag k = 0.

Figure 4-8 illustrates the process.

The meaning of the correlation function should be clear. Initially, the two signals are

perfectly aligned and the correlation is 1. Then, as we shift the signals against each other,

they slowly move out of phase with each other, and the correlation drops. How quickly it
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F I G U R E 4-8. Algorithm to compute the correlation function.

drops tells us how much “memory” there is in the data. If the correlation drops quickly,

we know that, after a few steps, the signal has lost all memory of its recent past. However,

if the correlation drops slowly, then we know that we are dealing with a process that is

relatively steady over longer periods of time. It is also possible that the correlation

function first drops and then rises again to form a second (and possibly a third, or

fourth, . . . ) peak. This tells us that the two signals align again if we shift them far

enough—in other words, that there is periodicity (i.e., seasonality) in the data set. The

position of the secondary peak gives us the number of time steps per season.

Examples

Let’s look at a couple of examples. Figure 4-9 shows the correlation function of the gas

furnace data in Figure 4-2. This is a fairly typical correlation function for a time series that

has only short time correlations: the correlation falls quickly, but not immediately, to zero.

There is no periodicity; after the initial drop, the correlation function does not exhibit any

further significant peaks.
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F I G U R E 4-9. The correlation function for the exhaust gas data shown in Figure 4-2. The data has only short time
correlations and no seasonality; the correlation function falls quickly (but not immediately) to zero, and there are no
secondary peaks.

Figure 4-10 is the correlation function for the call center data from Figure 4-5. This data

set shows a very different behavior. First of all, the time series has a much longer

“memory”: it takes the correlation function almost 100 days to fall to zero, indicating that

the frequency of calls to the call center changes more or less once per quarter but not

more frequently. The second notable feature is the pronounced secondary peak at a lag of

365 days. In other words, the call center data is highly seasonal and repeats itself on a

yearly basis. The third feature is the small but regular sawtooth structure. If we look

closely, we will find that the first peak of the sawtooth is at a lag of 7 days and that all

repeating ones occur at multiples of 7. This is the signature of the high-frequency

component that we could see in Figure 4-5: the traffic to the call center exhibits a

secondary seasonal component with 7-day periodicity. In other words, traffic is weekday

dependent (which is not too surprising).

Implementation Issues

So far I have talked about the correlation function mostly from a conceptual point of view.

If we want to proceed to an actual implementation, there are some fine points we need to

worry about.

The autocorrelation function is intended for time series that do not exhibit a trend and

have zero mean. Therefore, if the series we want to analyze does contain a trend, then we

must remove it first. There are two ways to do this: we can either subtract the trend or we

can difference the series.
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F I G U R E 4-10. The correlation function for the call center data shown in Figure 4-5. There is a secondary peak after exactly
365 days, as well as a smaller weekly structure to the data.

Subtracting the trend is straightforward—the only problem is that we need to determine

the trend first! Sometimes we may have a “model” for the expected behavior and can use

it to construct an explicit expression for the trend. For instance, the airline passenger data

from the previous section, describes a growth process, and so we should suspect an

exponential trend (a exp(x/b)). We can now try guessing values for the two parameters

and then subtract the exponential term from the data. For other data sets, we might try a

linear or power-law trend, depending on the data set and our understanding of the

process generating the data. Alternatively, we might first apply a smoothing algorithm to

the data and then subtract the result of the smoothing process from the raw data. The

result will be the trend-free “noise” component of the time series.

A different approach consists of differencing the series: instead of dealing with the raw data,

we instead work with the changes in the data from one time step to the next. Technically,

this means replacing the original series xi with one consisting of the differences of

consecutive elements: xi+1 − xi . This process can be repeated if necessary, but in most

cases, single differencing is sufficient to remove the trend entirely.

Making sure that the time series has zero mean is easier: simply calculate the mean of the

(de-trended!) series and subtract it before calculating the correlation function. This is done

explicitly in the formula for the correlation function given earlier.

Another technical wrinkle concerns how we implement the sum in the formula for the

numerator. As written, this sum is slightly messy, because its upper limit depends on the

lag. We can simplify the formula by padding one of the data sets with N zeros on the right

and letting the sum run from i = 1 to i = N for all lags. In fact, many computational
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Signal 1
Filter 1

Signal 2
Filter 2

Signal 3

F I G U R E 4-11. A filter chain: each filter applied to a signal yields another signal, which itself can be filtered.

software packages assume that the data has been prepared in this way (see the Workshop

section in this chapter).

The last issue you should be aware of is that there are two different normalization

conventions for the autocorrelation function, which are both widely used. In the first

variant, numerator and denominator are not normalized separately—this is the scheme

used in the previous formula. In the second variant, the numerator and denominator are

each normalized by the number of nonzero terms in their respective sum. With this

convention, the formula becomes:

c(k) =
1

N − k

N−k∑
i=1

(xi − μ)(xi+k − μ)

1

N

N∑
i=1

(xi − μ)2

with μ = 1

N

N∑

i=1

xi

Both conventions are fine, but if you want to compare results from different sources or

different software packages, then you will have to make sure you know which convention

each of them is following!

Optional: Filters and Convolutions

Until now we have always spoken of time series in a direct fashion, but there is also a way

to describe them (and the operations performed on them) on a much higher level of

abstraction. For this, we borrow some concepts and terminology from electrical

engineering, specifically from the field of digital signal processing (DSP).

In the lingo of DSP, we deal with signals (time series) and filters (operations). Applying a

filter to a signal produces a new (filtered) signal. Since filters can be applied to any signal,

we can apply another filter to the output of the first and in this way chain filters together

(see Figure 4-11). Signals can also be combined and subtracted from each other.

As it turns out, many of the operations we have seen so far (smoothing, differencing) can

be expressed as filters. We can therefore use the convenient high-level language of DSP

when referring to the processes of time-series analysis. To make this concrete, we need to

understand how a filter is represented and what it means to “apply” a filter to a signal.

Each digital filter is represented by a set of coefficients or weights. To apply the filter, we

multiply the coefficients with a subset of the signal. The sum of the products is the value

of the resulting (filtered) signal:

yt =
k∑

i=−k

wi xt+i
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This should look familiar! We used a similar expression when talking about moving

averages earlier in the chapter. A moving average is simply a time series run through an

n-point filter, where every coefficient is equal to 1/n. A weighted moving average filter

similarly consists of the weights used in the expression for the average.

The filter concept is not limited to smoothing operations. The differencing step discussed

in the previous section can be viewed as the application of the filter [1, −1]. We can even

shift an entire time series forward in time by using the filter [0, 1].

The last piece of terminology that we will need concerns the peculiar sum of a product

that we have encountered several times by now. It’s called a convolution. A convolution is a

way to combine two sequences to yield a third sequence, which you can think of as the

“overlap” between the original sequences. The convolution operation is usually defined as

follows:

yt =
∞∑

i=−∞
wi xt−i

Symbolically, the convolution operation is often expressed through an asterisk: y = w � x ,

where y, w, and x are sequences.

Of course, if one or both of the sequences have only a finite number of elements, then the

sum also contains only a finite number of terms and therefore poses no difficulties. You

should be able to convince yourself that every application of a filter to a time series that

we have done was in fact a convolution of the signal with the filter. This is true in general:

applying a filter to a signal means forming the convolution of the two. You will find that

many numerical software packages provide a convolution operation as a built-in function,

making filter operations particularly convenient to use.

I must warn you, however, that the entire machinery of digital signal processing is geared

toward signals of infinite (or almost infinite) length, which makes good sense for typical

electrical signals (such as the output from a microphone or a radio receiver). But for the

rather short time series that we are likely to deal with, we need to pay close attention to a

variety of edge effects. For example, if we apply a smoothing or differencing filter, then the

resulting series will be shorter, by half the filter length, than the original series. If we now

want to subtract the smoothed from the original signal, the operation will fail because the

two signals are not of equal length. We therefore must either pad the smoothed signal or

truncate the original one. The constant need to worry about padding and proper

alignment detracts significantly from the conceptual beauty of the signal-theoretic

approach when used with time series of relatively short duration.

Workshop: scipy.signal

The scipy.signal package provides functions and operations for digital signal processing

that we can use to good effect to perform calculations for time-series analysis. The
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scipy.signal package makes use of the signal processing terminology introduced in the

previous section.

The listing that follows shows all the commands used to create graphs like Figures 4-5 and

4-10, including the commands required to write the results to file. The code is heavily

commented and should be easy to understand.

from scipy import *

from scipy.signal import *

from matplotlib.pyplot import *

filename = 'callcenter'

# Read data from a text file, retaining only the third column.

# (Column indexes start at 0.)

# The default delimiter is any whitespace.

data = loadtxt( filename, comments='#', delimiter=None, usecols=(2,) )

# The number of points in the time series. We will need it later.

n = data.shape[0]

# Finding a smoothed version of the time series:

# 1) Construct a 31-point Gaussian filter with standard deviation = 4

filt = gaussian( 31, 4 )

# 2) Normalize the filter through dividing by the sum of its elements

filt /= sum( filt )

# 3) Pad data on both sides with half the filter length of the last value

# (The function ones(k) returns a vector of length k, with all elements 1.)

padded = concatenate( (data[0]*ones(31//2), data, data[n-1]*ones(31//2)) )

# 4) Convolve the data with the filter. See text for the meaning of "mode".

smooth = convolve( padded, filt, mode='valid' )

# Plot the raw data together with the smoothed data:

# 1) Create a figure, sized to 7x5 inches

figure( 1, figsize=( 7, 5 ) )

# 2) Plot the raw data in red

plot( data, 'r' )

# 3) Plot the smoothed data in blue

plot( smooth, 'b' )

# 4) Save the figure to file

savefig( filename + "_smooth.png" )

# 5) Clear the figure

clf()

# Calculate the autocorrelation function:

# 1) Subtract the mean

tmp = data - mean(data)

# 2) Pad one copy of data on the right with zeros, then form correlation fct

# The function zeros_like(v) creates a vector with the same dimensions

# as the input vector v but with all elements zero.

corr = correlate( tmp, concatenate( (tmp, zeros_like(tmp)) ), mode='valid' )

# 3) Retain only some of the elements

corr = corr[:500]
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# 4) Normalize by dividing by the first element

corr /= corr[0]

# Plot the correlation function:

figure( 2, figsize=( 7, 5 ) )

plot( corr )

savefig( filename + "_corr.png" )

clf()

The package provides the Gaussian filter as well as many others. The filters are not

normalized, but this is easy enough to accomplish.

More attention needs to be paid to the appropriate padding and truncating. For example,

when forming the smoothed version of the data, I pad the data on both sides by half the

filter length to ensure that the smoothed data has the same length as the original set. The

mode argument to the convolve() and correlate functions determines which pieces of the

resulting vector to retain. Several modes are possible. With mode="same", the returned

vector has as many elements as the largest input vector (in our case, as the padded data

vector), but the elements closest to the ends would be corrupted by the padded values. In

the listing, I therefore use mode="valid", which retains only those elements that have full

overlap between the data and the filter—in effect, removing the elements added in the

padding step.

Notice how the signal processing machinery leads in this application to very compact

code. Once you strip out the comments and plotting commands, there are only about 10

lines of code that perform actual operations and calculations. However, we had to pad all

data carefully and ensure that we kept only those pieces of the result that were least

contaminated by the padding.

Further Reading
• The Analysis of Time Series. Chris Chatfield. 6th ed., Chapman & Hall. 2003.

This is my preferred text on time-series analysis. It combines a thoroughly practical

approach with mathematical depth and a healthy preference for the simple over the

obscure. Highly recommended.
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C H A P T E R F I V E

More Than Two Variables: Graphical
Multivariate Analysis

AS SOON AS WE ARE DEALING WITH MORE THAN TWO VARIABLES SIMULTANEOUSLY, THINGS BECOME MUCH MORE

complicated—in particular, graphical methods quickly become impractical. In this chapter,

I’ll introduce a number of graphical methods that can be applied to multivariate problems.

All of them work best if the number of variables is not too large (less than 15–25).

The borderline case of three variables can be handled through false-color plots, which we

will discuss first.

If the number of variables is greater (but not much greater) than three, then we can

construct multiplots from a collection of individual bivariate plots by scanning through the

various parameters in a systematic way. This gives rise to scatter-plot matrices and co-plots.

Depicting how an overall entity is composed out of its constituent parts can be a rather

nasty problem, especially if the composition changes over time. Because this task is so

common, I’ll treat it separately in its own section.

Multi-dimensional visualization continues to be a research topic, and in the last sections

of the chapter, we look at some of the more recent ideas in this field.

One recurring theme in this chapter is the need for adequate tools: most multi-

dimensional visualization techniques are either not practical with paper and pencil, or are

outright impossible without a computer (in particular when it comes to animated

techniques). Moreover, as the number of variables increases, so does the need to look at a

data set from different angles; this leads to the idea of using interactive graphics for

exploration. In the last section, we look at some ideas in this area.
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F I G U R E 5-1. A simple but effective way to show three variables: treat one as parameter and draw a separate curve for
several parameter values.

False-Color Plots

There are different ways to display information in three variables (typically, two

independent variables and one dependent variable). Keep in mind that simple is

sometimes best! Figure 5-1 shows the function f (x, a) = x4/2 + ax2 − x/2 + a/4 for

various values of the parameter a in a simple, two-dimensional xy plot. The shape of the

function and the way it changes with a are perfectly clear in this graph. It is very difficult

to display this function in any other way with comparable clarity.

Another way to represent such trivariate data is in the form of a surface plot, such as the

one shown in Figure 5-2. As a rule, surface plots are visually stunning but are of very

limited practical utility. Unless the data set is very smooth and allows for a viewpoint such

that we can look down onto the surface, they simply don’t work! For example, it is pretty

much impossible to develop a good sense for the behavior of the function plotted in

Figure 5-1 from a surface plot. (Try it!) Surface plots can help build intuition for the

overall structure of the data, but it is notoriously difficult to read off quantitative

information from them.

In my opinion, surface plots have only two uses:

1. To get an intuitive impression of the “lay of the land” for a complicated data set

2. To dazzle the boss (not that this isn’t important at times)
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F I G U R E 5-2. Surface plots are often visually impressive but generally don’t represent quantitative information very well.

F I G U R E 5-3. Grayscale version of a false-color plot of the function shown as a surface plot in Figure 5-2. Here white
corresponds to positive values of the function, and black corresponds to negative values.

Another approach is to project the function into the base plane below the surface in

Figure 5-2. There are two ways in which we can represent values: either by showing

contours of constant alleviation in a contour plot or by mapping the numerical values to a

palette of colors in a false-color plot. Contour plots are familiar from topographic

maps—they can work quite well, in particular if the data is relatively smooth and if one is

primarily interested in local properties.

The false-color plot is an alternative and quite versatile technique that can be used for

different tasks and on a wide variety of data sets. To create a false-color plot, all values of

the dependent variable z are mapped to a palette of colors. Each data point is then plotted

as a region of the appropriate color. Figure 5-3 gives an example (where the color has

been replaced by grayscale shading).
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I like false-color plots because one can represent a lot of information in a them in a way

that retains quantitative information. However, false-color plots depend crucially on the

quality of the palette—that is, the mapping that has been used to associate colors with

numeric values.

Let’s quickly recap some information on color and computer graphics. Colors for

computer graphics are usually specified by a triple of numbers that specify the intensity of

their red, green, and blue (RGB) components. Although RGB triples make good sense

technically, they are not particularly intuitive. Instead, we tend to think of color in terms

of its hue, saturation, and value (i.e., luminance or lightness). Conventionally, hue runs

through all the colors of the rainbow (from red to yellow, green, blue, and magenta).

Curiously, the spectrum of hues seems to circle back onto itself, since magenta smoothly

transforms back to red. (The reason for this behavior is that the hues in the rainbow

spectrum are arranged in order of their dominant electromagnetic frequency. For

violet/magenta, no frequency dominates; instead, violet is a mixture of low-frequency

reds and high-frequency blues.) Most computer graphics programs will be able to generate

color graphics using a hue–saturation–value (HSV) triple.

It is surprisingly hard to find reliable recommendations on good palette design, which is

even more unfortunate given that convenience and what seems like common sense often

lead to particularly bad palettes. Here are some ideas and suggestions that you may wish

to consider:

Keep it simple
Very simple palettes using red, white, and blue often work surprisingly well. For

continuous color changes you could use a blue-white-red palette, for segmentation

tasks you could use a white-blue-red-white palette with a sharp blue–red transition at

the segmentation threshold.

Distinguish between segmentation tasks and the display of smooth changes
Segmentation tasks (e.g., finding all points that exceed a certain threshold, finding the

locations where the data crosses zero) call for palettes with sharp color transitions at

the respective thresholds, whereas representing smooth changes in a data set calls for

continuous color gradients. Of course, both aspects can be combined in a single palette:

gradients for part of the palette and sharp transitions elsewhere.

Try to maintain an intuitive sense of ordering
Map low values to “cold” colors and higher values to “hot” colors to provide an

intuitive sense of ordering in your palette. Examples include the simple blue-red

palette and the “heat scale” (black-red-yellow-white—I’ll discuss in a moment why I

don’t recommend the heat scale for use). Other palettes that convey a sense of

ordering (if only by convention) are the “improved rainbow” (blue-cyan-green-

yellow-orange-red-magenta) and the “geo-scale” familiar from topographic maps

(blue-cyan-green-brown-tan-white).
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Place strong visual gradients in regions with important changes
Suppose that you have a data set with values that span the range from −100 to +100

but that all the really interesting or important change occurs in the range −10 to +10.

If you use a standard palette (such as the improved rainbow) for such a data set, then

the actual region of interest will appear to be all of the same color, and the rest of the

spectrum will be “wasted” on parts of the data range that are not that interesting. To

avoid this outcome, you have to compress the rainbow so that it maps only to the

region of interest. You might want to consider mapping the extreme values (from −100

to −10 and from 10 to 100) to some unobtrusive colors (possibly even to a grayscale)

and reserving the majority of hue changes for the most relevant part of the data range.

Favor subtle changes
This is possibly the most surprising recommendation. When creating palettes, there is a

natural tendency to “crank it up full” by using fully saturated colors at maximal

brightness throughout. That’s not necessarily a good idea, because the resulting effect

can be so harsh that details are easily lost. Instead, you might want to consider using

soft, pastel colors or even to experiment with mixed hues in favor of the pure primaries

of the standard rainbow. (Recent versions of Microsoft Excel provide an interesting and

easily accessible demonstration for this idea: all default colors offered for shading the

background of cells are soft, mixed pastels—to good effect.) Furthermore, the eye is

quite good at detecting even subtle variations. In particular, when working with

luminance-based palettes, small changes are often all that is required.

Avoid changes that are hard to detect
Some visual changes are especially hard to perceive visually. For example, it is

practically impossible to distinguish between different shades of yellow, and the

transition from yellow to white is even worse! (This is why I don’t recommend the

heat scale, despite its nice ordering property: the bottom third consists of

hard-to-distinguish dark reds, and the entire upper third consists of very

hard-to-distinguish shades of light yellow.)

Use hue- and luminance-based palettes for different purposes
In particular, consider using a luminance-based palette to emphasize fine detail and

using hue- or saturation-based palettes for smooth, large-scale changes. There is some

empirical evidence that luminance-based palettes are better suited for images that

contain a lot of fine detail and that hue-based palettes are better suited for bringing out

smooth, global changes. A pretty striking demonstration of this observation can be

found when looking at medical images (surely an application where details matter!): a

simple grayscale representation, which is pure luminance, often seems much clearer

than a multicolored representation using a hue-based rainbow palette. This rule is

more relevant to image processing of photographs or similar images (such as that in
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our medical example) than to visualization of the sort of abstract information that we

consider here, but it is worth keeping in mind.

Don’t forget to provide a color box
No matter how intuitive you think your palette is, nobody will know for sure what you

are showing unless you provide a color box (or color key) that shows the values and

the colors they are mapped to. Always, always, provide one.

One big problem not properly addressed by these recommendations concerns visual

uniformity. For example, consider palettes based on the “improved rainbow,” which is

created by distributing the six primaries in the order blue-cyan-green-yellow-red-magenta

across the palette. If you place these primaries at equal distances across from each other

and interpolate linearly between them in color space, then the fraction of the palette

occupied by green appears to be much larger than the fraction occupied by either yellow

or cyan. Another example is that when placing a fully saturated yellow next to a fully

saturated blue, then the blue region will appear to be more intense (i.e., saturated) than

the yellow. Similarly, the browns that occur in a geo-scale easily appear darker than the

other colors in the palette. This is a problem with our perception of color: simple

interpolations in color space do not necessarily result in visually uniform gradients!

There is a variation of the HSV color space, called the HCL (hue–chroma–luminance)

space that takes visual perception into account to generate visually uniform color maps

and gradients. The HCL color model is more complicated to use than the HSV model,

because not all combinations of hue, chroma, and luminance values exist. For instance, a

fully saturated yellow appears lighter than a fully saturated blue, so a palette at full

chroma and with high luminance will include the fully saturated yellow but not the blue.

As a result, HCL-based palettes that span the entire rainbow of hues tend naturally toward

soft, pastel colors. A disadvantage of palettes in the HCL space is that they often degrade

particularly poorly when reproduced in black and white.*

A special case of false-color plots are geographic maps, and cartographers have significant

experience developing color schemes for various purposes. Their needs are a little

different and not all of their recommendations may work for general data analysis

purposes, but it is worthwhile to become familiar with what they have learned.†

Finally, I’d like to point out two additional problems with all plots that depend on color to

convey critical information.

• Color does not reproduce well. Once photocopied or printed on a black-and-white

laser printer, a false-color plot will become useless!

*An implementation of the transformations between HCL and RGB is available in R and C in the
“colorspace” module available from CRAN.
†An interesting starting point is Cynthia Brewer’s online ColorBrewer at http://colorbrewer2.org/.
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• Also keep in mind that about 10 percent of all men are at least partially color blind;

these individuals won’t be able to make much sense of most images that rely heavily or

exclusively on color.

Either one of these problems is potentially serious enough that you might want to

reconsider before relying entirely on color for the display of information.

In my experience, preparing good false-color plots is often a tedious and time-consuming

task. This is one area where better tools would be highly desirable—an interactive tool

that could be used to manipulate palettes directly and in real time would be very nice to

have. The same is true for a publicly available set of well-tested palettes.

A Lot at a Glance: Multiplots

The primary concern in all multivariate visualizations is finding better ways to put more

“stuff” on a graph. In addition to color (see the previous section), there are basically two

ways we can go about this. We can make the graph elements themselves richer, so that

they can convey additional information beyond their position on the graph; or we can put

several similar graphs next to each other and vary the variables that are not explicitly

displayed in a systematic fashion from one subgraph to the next. The first idea leads to

glyphs, which we will introduce later in this chapter, whereas the latter idea leads to

scatter-plot matrices and co-plots.

The Scatter-Plot Matrix

For a scatter-plot matrix (occasionally abbreviated SPLOM), we construct all possible

two-dimensional scatter plots from a multivariate data set and then plot them together in

a matrix format (Figure 5-4). We can now scan all of the graphs for interesting behavior,

such as a marked correlation between any two variables.

The data set shown in Figure 5-4 consists of seven different properties of a sample of 250

wines.* It is not at all clear how these properties should relate to each other, but by

studying the scatter-plot matrix, we can make a few interesting observations. For

example, we can see that sugar content and density are positively correlated: if the sugar

content goes up, so does the density. The opposite is true for alcohol content and density:

as the alcohol content goes up, density goes down. Neither of these observations should

come as a surprise (sugar syrup has a higher density than water and alcohol a lower one).

What may be more interesting is that the wine quality seems to increase with increasing

alcohol content: apparently, more potent wines are considered to be better!

*The data can be found in the “Wine Quality” data set, available at the UCI Machine Learning repository
at http://archive.ics.uci.edu/ml/.
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F I G U R E 5-4. In a scatter-plot matrix (SPLOM), a separate scatter plot is shown for each pair of variables. All scatter plots in
a given row or column have the same plot range, so that we can compare them easily.

One important detail that is easy to overlook is that all graphs in each row or column

show the same plot range; in other words, they use shared scales. This makes it possible to

compare graphs across the entire matrix.

The scatter-plot matrix is symmetric across the diagonal: the subplots in the lower left are

equal to the ones in the upper right but rotated by 90 degrees. It is nevertheless customary

to plot both versions because this makes it possible to scan a single row or column in its

entirety to investigate how one quantity relates to each of the other quantities.

Scatter-plot matrices are easy to prepare and easy to understand. This makes them very

popular, but I think they can be overused. Once we have more than about half a dozen

variables, the individual subplots become too small as that we could still recognize
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anything useful, in particular if the number of points is large (a few hundred points or

more). Nevertheless, scatter-plot matrices are a convenient way to obtain a quick

overview and to find viewpoints (variable pairings) that deserve a closer look.

The Co-Plot

In contrast to scatter-plot matrices, which always show all data points but project them

onto different surfaces of the parameter space, co-plots (short for “conditional plots”) show

various slices through the parameter space such that each slice contains only a subset of

the data points. The slices are taken in a systematic manner, and we can form an image of

the entire parameter space by mentally gluing the slices back together again (the salami

principle). Because of the regular layout of the subplots, this technique is also known as a

trellis plot.

Figure 5-5 shows a trivariate data set projected onto the two-dimensional xy plane.

Although there is clearly structure in the data, no definite pattern emerges. In particular,

the dependence on the third parameter is entirely obscured!

Figure 5-6 shows a co-plot of the same data set that is sliced or conditioned on the third

parameter a. The bottom part of the graph shows six slices through the data

corresponding to different ranges of a. (The slice for the smallest values of a is in the lower

left, and the one for the largest values of a is in the upper righthand corner.) As we look at

the slices, the structure in the data stands out clearly, and we can easily follow the

dependence on the third parameter a.

The top part of Figure 5-6 shows the range of values that a takes on for each of the slices.

If you look closely, you will find that there are some subtle issues hidden in (or rather

revealed by) this panel, because it provides information on the details of the slicing

operation.

Two decisions need to be made with regard to the slicing:

1. By what method should the overall parameter range be cut into slices?

2. Should slices overlap or not?

In many ways, the most “natural” answer to these questions would be to cut the entire

parameter range into a set of adjacent intervals of equal width. It is interesting to observe

(by looking at the top panel in Figure 5-6) that in the example graph, a different decision

was made in regard to both questions! The slices are not of equal width in the range of

parameter values that they span; instead, they have been made in such a way that each

slice contains the same number of points. Furthermore, the slices are not adjacent but

partially overlap each other.

The first decision (to have each slice contain the same number of points, instead of

spanning the same range of values) is particularly interesting because it provides

additional information on how the values of the parameter a are distributed. For instance,
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F I G U R E 5-5. Projection of a trivariate data set onto the xy plane. How does the data vary with the third variable?

we can see that large values of a (larger than about a = −1) are relatively rare, whereas

values of a between −4 and −2 are much more frequent. This kind of behavior would be

much harder to recognize precisely if we had chopped the interval for a into six slices of

equal width. The other decision (to make the slices overlap partially) is more important

for small data sets, where otherwise each slice contains so few points that the structure

becomes hard to see. Having the slices overlap makes the data “go farther” than if the

slices were entirely disjunct.

Co-plots are especially useful if some of the variables in a data set are clearly “control”

variables, because co-plots provide a systematic way to study the dependence of the

remaining (“response”) variables on the controls.

Variations

The ideas behind scatter-plot matrices and co-plots are pretty generally applicable, and you

can develop different variants depending on your needs and tastes. Here are some ideas:

• In the standard scatter-plot matrix, half of the individual graphs are redundant. You

can remove the individual graphs from half of the overall matrix and replace them with

something different—for example, the numerical value of the appropriate correlation
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F I G U R E 5-6. A co-plot of the same data as in Figure 5-5. Each scatter plot includes the data points for only a certain range
of a values; the corresponding values of a are shown in the top panel. (The scatter plot for the smallest value of a is in the
lower left corner, and that for the largest value of a is in the upper right.)

coefficient. However, you will then lose the ability to visually scan a full row or column

to see how the corresponding quantity correlates with all other variables.

• Similarly, you can place a histogram showing the distribution of values for the quantity

in question on the diagonal of the scatter-plot matrix.

• The slicing technique used in co-plots can be used with other graphs besides scatter

plots. For instance, you might want to use slicing with rank-order plots (see Chapter

2), where the conditioning “parameter” is some quantity not explicitly shown in the

rank-order plot itself. Another option is to use it with histograms, making each subplot

a histogram of a subset of the data where the subset is determined by the values of the

control “parameter” variable.

• Finally, co-plots can be extended to two conditioning variables, leading to a matrix of

individual slices.

By their very nature, all multiplots consist of many individual plot elements, sometimes

with nontrivial interactions (such as the overlapped slicing in certain co-plots). Without a
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good tool that handles most of these issues automatically, these plot types lose most of

their appeal. For the plots in this section, I used R (the statistical package), which provides

support for both scatter-plot matrices and co-plots as built-in functionality.

Composition Problems

Many data sets describe a composition problem; in other words, they describe how some

overall quantity is composed out of its parts. Composition problems pose some special

challenges because often we want to visualize two different aspects of the data

simultaneously: on the one hand, we are interested in the relative magnitude of the

different components, and on the other, we also care about their absolute size.

For one-dimensional problems, this is not too difficult (see Chapter 2). We can use a

histogram or a similar graph to display the absolute size for all components; and we can

use a cumulative distribution plot (or even the much-maligned pie chart) to visualize the

relative contribution that each component makes to the total.

But once we add additional variables into the mix, things can get ugly. Two problems

stand out: how to visualize changes to the composition over time and how to depict the

breakdown of an overall quantity along multiple axes at the same time.

Changes in Composition

To understand the difficulties in tracking compositional problems over time, imagine a

company that makes five products labeled A, B, C, D, and E. As we track the daily

production numbers over time, there are two different questions that we are likely to be

interested in: on the one hand, we’d like to know how many items are produced overall;

on the other hand, we would like to understand how the item mix is changing over time.

Figures 5-7, 5-8, and 5-9 show three attempts to plot this kind of data. Figure 5-7 simply

shows the absolute numbers produced per day for each of the five product lines. That’s

not ideal—the graph looks messy because some of the lines obscure each other. Moreover,

it is not possible to understand from this graph how the total number of items changes

over time. Test yourself: does the total number of items go up over time, does it go down,

or does it stay about even?

Figure 5-8 is a stacked plot of the same data. The daily numbers for each product are added

to the numbers for the products that appear lower down in the diagram—in other words,

the line labeled B gives the number of items produced in product lines A and B. The

topmost line in this diagram shows the total number of items produced per day (and

answers the question posed in the previous paragraph: the total number of items does not

change appreciably over the long run—a possibly surprising observation, given the

appearance of Figure 5-7).

Stacked plots can be compelling because they have intuitive appeal and appear to be clear

and uncluttered. In reality, however, they tend to hide the details in the development of
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F I G U R E 5-7. Absolute number of items produced per product line and day.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50

Product A
B
C
D
E

F I G U R E 5-8. Stacked graph of the number of items produced per product line and day.

the individual components because the changing baseline makes comparison difficult if

not impossible. For example, from Figure 5-7 it is pretty clear that production of item D

increased for a while but then dropped rapidly over the last 5 to 10 days. We would never

guess this fact from Figure 5-8, where the strong growth of product line A masks the

smaller changes in the other product lines. (This is why you should order the components

in a stacked graph in ascending order of variation—which was intentionally not done in

Figure 5-8.)
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F I G U R E 5-9. Stacked graph of the relative contribution that each product line makes to the total.

Figure 5-9 shows still another attempt to visualize this data. This figure is also a stacked

graph, but now we are looking not at the absolute numbers of items produced but instead

at the relative fraction that each product line contributes to the daily total. Because the

change in the total number of items produced has been eliminated, this graph can help us

understand how the item mix varies over time (although we still have the changing

baseline problem common to all stacked graphs). However, information about the total

number of items produced has been lost.

All things considered, I don’t think any one of these graphs succeeds very well. No single

graph can satisfy both of our conflicting goals—to monitor both absolute numbers as well

as relative contributions—and be clear and visually attractive at the same time.

I think an acceptable solution for this sort of problem will always involve a combination of

graphs—for example, one for the total number of items produced and another for the

relative item mix. Furthermore, despite their aesthetic appeal, stacked graphs should be

avoided because they make it too difficult to recognize relevant information in the graph.

A plot such as Figure 5-7 may seem messy, but at least it can be read accurately and

reliably.

Multidimensional Composition: Tree and Mosaic Plots

Composition problems are generally difficult even when we do not worry about changes

over time. Look at the following data:

Male BS NYC Engineering

Male MS SFO Engineering

Male PhD NYC Engineering
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Male BS LAX Engineering

Male MS NYC Finance

Male PhD SFO Finance

Female PhD NYC Engineering

Female MS LAX Finance

Female BS NYC Finance

Female PhD SFO Finance

The data set shows information about ten employees of some company, and for each

employee, we have four pieces of information: gender, highest degree obtained, office

where they are located (given by airport code—NYC: New York, SFO: San Francisco, LAX:

Los Angeles), and their department. Keep in mind that each line corresponds to a single

person.

The usual way to summarize such data is in the form of a contingency table. Table 5-1

summarizes what we know about the relationship between an employee’s gender and his

or her department. Contingency tables are used to determine whether there is a

correlation between categorical variables: in this case, we notice that men tend to work in

engineering and women in finance. (We may want to divide by the total number of

records to get the fraction of employees in each cell of the table.)

The problem is that contingency tables only work for two dimensions at a time. If we also

want to include the breakdown by degree or location, we have no other choice than to

repeat the basic structure from Table 5-1 several times: once for each office or once for

each degree.

A mosaic plot is an attempt to find a graphical representation for this kind of data. The

construction of a mosaic plot is essentially recursive and proceeds as follows (see Figure

5-10):

1. Start with a square.

2. Select a dimension, and then divide the square proportionally according to the counts

for this dimension.

3. Pick a second dimension, and then divide each subarea according to the counts along

the second dimension, separately for each subarea.

4. Repeat for all dimensions, interchanging horizontal and vertical subdivisions for each

new dimension.

T A B L E 5 -1. A contingency table: breakdown of male and
female employees across two departments

Male Female Total

Engineering 4 1 5
Finance 2 3 5

Total 6 4 10
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F I G U R E 5-10. Mosaic plots. In the top row, we start by dividing by gender, then also by department. In the bottom row, we
have divided by gender, department, and location, with doctorate degrees shaded. The graph on the left uses the same sort
order of dimensions as the graphs in the top row, whereas the graph on the bottom right uses a different sort order. Notice
how the sort order changes the appearance of the graph!

In the lower left panel of Figure 5-10, location is shown as a secondary vertical

subdivision in addition to the gender (from left to right: LAX, NYC, SFO). In addition, the

degree is shown through shading (shaded sections correspond to employees with a Ph.D.).

Having seen this, we should ask how much mosaic plots actually help us understand this

data set. Obviously, Figure 5-10 is difficult to read and has to be studied carefully. Keep in

mind that the information about the number of data points within each category is

represented by the area—recursively at all levels. Also note that some categories are

empty and therefore invisible (for instance, there are no female employees in either the

Los Angeles or San Francisco engineering departments).
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F I G U R E 5-11. A tree map (left) and the corresponding tree (right). The numbers give the weight of each node and, if
applicable, also the weight of the entire subtree.

I appreciate mosaic plots because they represent a new idea for how data can be displayed

graphically, but I have not found them to be useful. In my own experience, it is easier to

understand a data set by poring over a set of contingency tables than by drawing mosaic

plots. Several problems stand out.

• The order in which the dimensions are applied matters greatly for the appearance of

the plot. The lower right panel in Figure 5-10 shows the same data set yet again, but

this time the data was split along the location dimension first and along the gender

dimension last. Shading again indicates employees with a Ph.D. Is it obvious that this is

the same data set? Is one representation more helpful than the other?

• Changing the sort order changes more than just the appearance, it also influences what

we are likely to recognize in the graph. Yet even with an interactive tool, I find it

thoroughly confusing to view a large number of mosaic plots with changing layouts.

• It seems that once we have more than about four or five dimensions, mosaic plots

become too cluttered to be useful. This is not a huge advance over the two dimensions

presented in basic contingency tables!

• Finally, there is a problem common to all visualization methods that rely on area to

indicate magnitude: human perception is not that good at comparing areas, especially

areas of different shape. In the lower right panel in Figure 5-10, for example, it is not

obvious that the sizes of the two shaded areas for engineering in NYC are the same.

(Human perception works by comparing visual objects to each other, and the easiest to

compare are lengths, not areas or angles. This is also why you should favor histograms

over pie charts!)

In passing, let’s quickly consider a different but related concept: tree maps. Tree maps are

area-based representations of hierarchical tree structures. As shown in Figure 5-11, the

area of each parent node in the tree is divided according to the weight of its children.
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Tree maps are something of a media phenomenon. Originally developed for the purpose

of finding large files in a directory hierarchy, they seem to be more talked about then

used. They share the problems of all area-based visualizations already discussed, and even

their inventors report that people find them hard to read—especially if the number of

levels in the hierarchy increases. Tree maps lend themselves well to interactive

explorations (where you can “zoom in” to deeper levels of the hierarchy).

My greatest concern is that tree maps have abandoned the primary advantage of graphical

methods without gaining sufficiently in power, namely intuition: looking at a tree map

does not conjure up the image of, well, a tree! (I also think that the focus on treelike

hierarchies is driven more by the interests of computer science, rather than by the needs

of data analysis—no wonder if the archetypical application consisted of browsing a file

system!)

Novel Plot Types

Most of the graph types I have described so far (with the exception of mosaic plots) can be

described as “classical”: they have been around for years. In this section, we will discuss a

few techniques that are much more recent—or, at least, that have only recently received

greater attention.

Glyphs

We can include additional information in any simple plot (such as a scatter plot) if we

replace the simple symbols used for individual data points with glyphs: more complicated

symbols that can express additional bits of information by themselves.

An almost trivial application of this idea occurs if we put two data sets on a single scatter

plot and use different symbols (such as squares and crosses) to mark the data points from

each data set. Here the symbols themselves carry meaning but only a simple, categorical

one—namely, whether the point belongs to the first or second data set.

But if we make the symbols more complicated, then they can express more information.

Textual labels (letters and digits) are often surprisingly effective when it comes to

conveying more information—although distinctly low-tech, this is a technique to keep in

mind!

The next step up in sophistication are arrows, which can represent both a direction and a

magnitude (see Figure 5-12), but we need not stop there. Each symbol can be a fully

formed graph (such as a pie chart or a histogram) all by itself. And even that is not the

end—probably the craziest idea in this realm are “Chernoff faces,” where different

quantities are encoded as facial features (e.g., size of the mouth, distance between the eyes),

and the faces are used as symbols on a plot!
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F I G U R E 5-12. Simple glyphs: using arrows to indicate both direction and magnitude of a field. Notice that the variation in
the data is smooth and that the data itself has been recorded on a regular grid.

As you can see, the problem lies not so much in putting more information on a graph as

in being able to interpret the result in a useful manner. And that seems to depend mostly

on the data, in particular on the presence of large-scale, regular structure in it. If such

structure is missing, then plots using glyphs can be very hard to decode and quite possibly

useless.

Figures 5-12 and 5-13 show two extreme examples. In Figure 5-12, we visualize a

four-dimensional data set using arrows (each point of the two-dimensional plot area has

both a direction and a magnitude, so the total number of dimensions is four). You can

think of the system as flow in a liquid, as electrical or magnetic field lines, or as

deformations in an elastic medium—it does not matter, the overall nature of the data

becomes quite clear. But Figure 5-13 is an entirely different matter! Here we are dealing

with a data set in seven dimensions: the first two are given by the position of the symbol

on the plot, and the remaining five are represented via distortions of a five-edged polygon.

Although we can make out some regularities (e.g., the shapes of the symbols in the lower

lefthand corner are all quite similar and different from the shapes elsewhere), this graph is

hard to read and does not reveal the overall structure of the data very well. Also keep in

mind that the appearance of the graph will change if we map a different pair of variables

to the main axes of the plot, or even if we change the order of variables in the polygons.

Parallel Coordinate Plots

As we have seen, a scatter plot can show two variables. If we use glyphs, we can show

more, but not all variables are treated equally (some are encoded in the glyphs, some are
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F I G U R E 5-13. Complex glyphs: each polygon encodes five different variables, and its position on the plot adds another
two.

encoded by the position of the symbol on the plot). By using parallel coordinate plots, we

can show all the variables of a multivariate data set on equal footing. The price we pay is

that we end up with a graph that is neither pretty nor particularly intuitive, but that can

be useful for exploratory work nonetheless.

In a regular scatter plot in two (or even three) dimensions, the coordinate axes are at right

angles to each other. In a parallel coordinate plot, the coordinate axes instead are parallel

to each other. For every data point, its value for each of the variables is marked on the

corresponding axis, and then all these points are connected with lines. Because the axes

are parallel to each other, we don’t run out of spatial dimensions and therefore can have

as many of them as we need. Figure 5-14 shows what a single record looks like in such a

plot, and Figure 5-15 shows the entire data set. Each record consists of nine different

quantities (labeled A through J).

The main use of parallel coordinate plots is to find clusters in high-dimensional data sets.

For example, in Figure 5-15, we can see that the data forms two clusters for the quantity

labeled B: one around 0.8 and one around 0. Furthermore, we can see that most records

for which B is 0, tend to have higher values of C than those that have a B near 0.8. And

so on.

A few technical points should be noted about parallel coordinate plots:

• You will usually want to rescale the values in each coordinate to the unit interval via

the linear transformation (also see Appendix B):

xscaled = x − xmin

xmax − xmin
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F I G U R E 5-14. A single record (i.e., a single data point) from a multivariate data set shown in a parallel coordinate plot.
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F I G U R E 5-15. All records from the data set shown in a parallel coordinate plot. The record shown in Figure 5-14 is
highlighted.

This is not mandatory, however. There may be situations where you care about the

absolute positions of the points along the coordinate axis or about scaling to a different

interval.

• The appearance of parallel coordinate plots depends strongly on the order in which the

coordinate lines are drawn: rearranging them can hide or reveal structure. Ideally, you

have access to a tool that lets you reshuffle the coordinate axis interactively.
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• Especially for larger data sets (several hundreds of points or more), overplotting of lines

becomes a problem. One way to deal with this is through “alpha blending”: lines are

shown as semi-transparent, and their visual effects are combined where they overlap

each other.

• Similarly, it is often highly desirable to be able to select a set of lines and highlight them

throughout the entire graph—for example, to see how data points that are clustered in

one dimension are distributed in the other dimensions.

• Instead of combining points on adjacent coordinate axes with straight lines that have

sharp kinks at the coordinate axes, one can use smooth lines that pass the coordinate

axes without kinks.

All of these issues really are tool issues, and in fact parallel coordinates don’t make sense

without a tool that supports them natively and includes good implementations of the

features just described. This implies that parallel coordinate plots serve less as finished,

static graphs than as an interactive tool for exploring a data set.

Parallel coordinate plots still seem pretty novel. The idea itself has been around for about

25 years, but even today, tools that support parallel coordinates plots well are far from

common place.

What is not yet clear is how useful parallel coordinate plots really are. On the one hand,

the concept seems straightforward and easy enough to use. On the other hand, I have

found the experience of actually trying to apply them frustrating and not very fruitful. It is

easy to get bogged down in technicalities of the plot (ordering and scaling of coordinate

axes) with little real, concrete insight resulting in the end. The erratic tool situation of

course does not help. I wonder whether more computationally intensive methods (e.g.,

principal component analysis—see Chapter 14) do not give a better return on investment

overall. But the jury is still out.

Interactive Explorations

All the graphs that we have discussed so far (in this and the preceding chapters) were by

nature static. We prepared graphs, so that we then could study them, but this was the

extent of our interaction. If we wanted to see something different, we had to prepare a

new graph.

In this section, I shall describe some ideas for interactive graphics: graphs that we can

change directly in some way without having to re-create them anew.

Interactive graphics cannot be produced with paper and pencil, not even in principle: they

require a computer. Conversely, what we can do in this area is even more strongly limited

by the tools or programs that are available to us than for other types of graphs. In this

sense, then, this section is more about possibilities than about realities because the tool

support for interactive graphical exploration seems (at the time of this writing) rather

poor.
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Querying and Zooming

Interaction with a graph does not have to be complicated. A very simple form of

interaction consists of the ability to select a point (or possibly a group of points) and have

the tool display additional information about it. In the simplest case, we hover the mouse

pointer over a data point and see the coordinates (and possibly additional details) in a tool

tip or a separate window. We can refer to this activity as querying.

Another simple form of interaction would allow us to change aspects of the graph directly

using the mouse. Changing the plot range (i.e., zooming) is probably the most common

application, but I could also imagine to adjust the aspect ratio, the color palette, or

smoothing parameters in this way. (Selecting and highlighting a subset of points in a

parallel coordinate plot, as described earlier, would be another application.)

Observe that neither of these activities is inherently “interactive”: they all would also be

possible if we used paper and pencil. The interactive aspect consists of our ability to

invoke them in real time and by using a graphical input device (the mouse).

Linking and Brushing

The ability to interact directly with graphs becomes much more interesting once we are

dealing with multiple graphs at the same time! For example, consider a scatter-plot matrix

like the one in Figure 5-4. Now imagine we use the mouse to select and highlight a group

of points in one of the subplots. If the graphs are linked, then the symbols corresponding

to the data points selected in one of the subplots will also be highlighted in all other

subplots as well.

Usually selecting some points and then highlighting their corresponding symbols in the

linked subgraphs requires two separate steps (or mouseclicks). A real-time version of the

same idea is called brushing: any points currently under the mouse pointer are selected

and highlighted in all of the linked subplots.

Of course, linking and brushing are not limited to scatter-plot matrices, but they are

applicable to any group of graphs that show different aspects of the same data set.

Suppose we are working with a set of histograms of a multivariate data set, each

histogram showing only one of the quantities. Now I could imagine a tool that allows us

to select a bin in one of the histograms and then highlights the contribution from the

points in that bin in all the other histograms.

Grand Tours and Projection Pursuits

Although linking and brushing allow us to interact with the data, they leave the graph

itself static. This changes when we come to Grand Tours and Projection Pursuits. Now we are

talking about truly animated graphics!

Grand Tours and Projection Pursuits are attempts to enhance our understanding of a data

set by presenting many closely related projections in the form of an animated “movie.”
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The concept is straightforward: we begin with some projection and then continuously

move the viewpoint around the data set. (For a three-dimensional data set, you can

imagine the viewpoint moving on a sphere that encloses the data.)

In Grand Tours, the viewpoint is allowed to perform essentially a random walk around the

data set. In Projection Pursuits, the viewpoint is moved so that it will improve the value of

an index that measures how “interesting” a specific projection will appear. Most indices

currently suggested measure properties such as deviation from Gaussian behavior. At each

step of a Pursuit, the program evaluates several possible projections and then selects the

one that most improves the chosen index. Eventually, a Pursuit will reach a local

maximum for the index, at which time it needs to be restarted from a different starting

point.

Obviously, Tours and Pursuits require specialized tools that can perform the required

projections—and do so in real time. They are also exclusively exploratory techniques and

not suitable for preserving results or presenting them to a general audience.

Although the approach is interesting, I have not found Tours to be especially useful in

practice. It can be confusing to watch a movie of essentially random patterns and

frustrating to interact with projections when attempting to explore the neighborhood of

an interesting viewpoint.

Tools

All interactive visualization techniques require suitable tools and computer programs;

they cannot be done using paper-and-pencil methods. This places considerable weight on

the quality of the available tools. Two issues stand out.

• It seems difficult to develop tools that support interactive features and are sufficiently

general at the same time. For example, if we expect the plotting program to show

additional detail on any data point that we select with the mouse, then the input (data)

file will have to contain this information—possibly as metadata. But now we are

talking about relatively complicated data sets, which require more complicated,

structured file formats that will be specific to each tool. So before we can do anything

with the data, we will have to transform it into the required format. This is a significant

burden, and it may make these methods infeasible in practice. (Several of the more

experimental programs mentioned in the Workshop section in this chapter are nearly

unusable on actual data sets for exactly this reason.)

• A second problem concerns performance. Brushing, for instance, makes sense only if it

truly occurs in real time—without any discernible delay as the mouse pointer moves.

For a large data set and a scatter-plot matrix of a dozen attributes, this means updating

a few thousand points in real time. Although by no means infeasible, such

responsiveness does require that the tool is written with an eye toward performance

and using appropriate technologies. (Several of the tools mentioned in the Workshop

exhibit serious performance issues on real-world data sets.)
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A final concern involves the overall design of the user interface. It should be easy to learn

and easy to use, and it should support the activities that are actually required. Of course,

this concern is not specific to data visualization tools but common to all programs with a

graphical user interface.

Workshop: Tools for Multivariate Graphics

Multivariate graphs tend to be complicated and therefore require good tool support even

more strongly than do other forms of graphs. In addition, some multivariate graphics are

highly specialized (e.g., mosaic plots) and cannot be easily prepared with a general-

purpose plotting tool.

That being said, the tool situation is questionable at best. Here are three different starting

points for exploration—each with its own set of difficulties.

R

R is not a plotting tool per se; it is a statistical analysis package and a full development

environment as well. However, R has always included pretty extensive graphing

capabilities. R is particularly strong at “scientific” graphs: straightforward but highly

accurate line diagrams.

Because R is not simply a plotting tool, but instead a full data manipulation and

programming environment, its learning curve is rather steep; you need to know a lot of

different things before you can do anything. But once you are up and running, the large

number of advanced functions that are already built in can make working with R very

productive. For example, the scatter-plot matrix in Figure 5-4 was generated using just

these three commands:

d <- read.delim( "wines", header=T )

pairs(d)

dev.copy2eps( file="splom.eps" )

(the R command pairs() generates a plot of all pairs—i.e., a scatter-plot matrix). The

scatter plot in Figure 5-5 and the co-plot in Figure 5-6 were generated using:

d <- read.delim( "data", header=F )

names( d ) <- c( "x", "a", "y" )

plot( y ~ x, data=d )

dev.copy2eps( file='coplot1.eps' )

coplot( y ~ x | a, data=d )

dev.copy2eps( file='coplot2.eps' )

Note that these are the entire command sequences, which include reading the data from

file and writing the graph back to disk! We’ll have more to say about R in the Workshop

sections of Chapters 10 and 14.
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R has a strong culture of user-contributed add-on packages. For multiplots consisting of

subplots arranged on a regular grid (in particular, for generalized co-plots), you should

consider the lattice package, which extends or even replaces the functionality of the

basic R graphic systems. This package is part of the standard R distribution.

Experimental Tools

If you want to explore some of the more novel graphing ideas, such as parallel coordinate

plots and mosaic plots, or if you want to try out interactive ideas such as brushing and

Grand Tours, then there are several options open to you. All of them are academic

research projects, and all are highly experimental. (In a way, this is a reflection of the state

of the field: I don’t think any of these novel plot types have been refined to a point where

they are clearly useful.)

• The ggobi project (http://www.ggobi.org) allows brushing in scatter-plot matrices and

parallel coordinate plots and includes support for animated tours and pursuits.

• Mondrian (http://www.rosuda.org/mondrian) is a Java application that can produce

mosaic plots (as well as some other multivariate graphs).

Again, both tools are academic research projects—and it shows. They are technology

demonstrators intended to try out and experiment with new graph ideas, but neither is

anywhere near production strength. Both are rather fussy about the required data input

format, their graphical user interfaces are clumsy, and neither includes a proper way to

export graphs to file (if you want to save a plot, you have to take a screenshot). The

interactive brushing features in ggobi are slow, which makes them nearly unusable for

realistically sized data sets. There are some lessons here (besides the intended ones) to be

learned about the design of tools for statistical graphics. (For instance, GUI widget sets do

not seem suitable for interactive visualizations: they are too slow. You have to use a

lower-level graphics library instead.)

Other open source tools you may want to check out are Tulip (http://tulip.labri.fr) and

ManyEyes (http://manyeyes.alphaworks.ibm.com/manyeyes). The latter project is a web-based

tool and community that allows you to upload your data set and generate plots of it

online.

A throwback to a different era is OpenDX (http://www.research.ibm.com/dx). Originally

designed by IBM in 1991, it was donated to the open source community in 1999. It

certainly feels overly complicated and dated, but it does include a selection of features not

found elsewhere.

Python Chaco Library

The Chaco library (http://code.enthought.com/projects/chaco/) is a Python library for

two-dimensional plotting. In addition to the usual line and symbol drawing capabilities, it
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includes easy support for color and color manipulation as well as—more importantly—for

real-time user interaction.

Chaco is an exciting toolbox if you plan to experiment with writing your own programs to

visualize data and interact with it. However, be prepared to do some research: the best

available documentation seems to be the set of demos that ship with it.

Chaco is part of the Enthought Tool Suite, which is developed by Enthought, Inc., and is

available under a BSD-style license.

Further Reading
• Graphics of Large Datasets: Visualizing a Million. Antony Unwin, Martin Theus, and Heike

Hofmann. Springer. 2006.

This is a modern book that in many ways describes the state of the art in statistical data

visualization. Mosaic plots, glyph plots, parallel coordinate plots, Grand Tours—all are

discussed here. Unfortunately, the basics are neglected: standard tools like logarithmic

plots are never even mentioned, and simple things like labels are frequently messed

up. This book is nevertheless interesting as a survey of some of the state of the art.

• The Elements of Graphing Data. William S. Cleveland. 2nd ed., Hobart Press. 1994.

This book provides an interesting counterpoint to the book by Unwin and colleagues.

Cleveland’s graphs often look pedestrian, but he thinks more deeply than almost

anyone else about ways to incorporate more (and more quantitative) information in a

graph. What stands out in his works is that he explicitly takes human perception into

account as a guiding principle when developing new graphs. My discussion of

scatter-plot matrices and co-plots is heavily influenced by his careful treatment.

• Gnuplot in Action: Understanding Data with Graphs. Philipp K. Janert. Manning

Publications. 2010.

Chapter 9 of this book contains additional details on and examples for the use of color

to prepare false-color plots, including explicit recipes to create them using gnuplot. But

the principles are valid more generally, even if you use different tools.

• Why Should Engineers and Scientists Be Worried About Color? B. E. Rogowitz and L. A.

Treinish. http://www.research.ibm.com/people/l/lloydt/color/color.HTM. 1995. This paper

contains important lessons for false-color plots, including the distinction between

segmentation and smooth variation as well as the difference between hue- and

luminance-based palettes. The examples were prepared using IBM’s (now open source)

OpenDX graphical Data Explorer.

• Escaping RGBland: Selecting Colors for Statistical Graphics. A. Zeileis, K. Hornik, and

P. Murrell. http://statmath.wu.ac.at/∼zeileis/papers/Zeileis+Hornik+Murrell-2009.pdf . 2009.

This is a more recent paper on the use of color in graphics. It emphasizes the

importance of perception-based color spaces, such as the HCL model.
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C H A P T E R S I X

Intermezzo: A Data Analysis Session

OCCASIONALLY I GET THE QUESTION: “HOW DO YOU ACTUALLY WORK?” OR “HOW DO YOU COME UP WITH THIS

stuff?” As an answer, I want to take you on a tour through a new data set. I will use

gnuplot, which is my preferred tool for this kind of interactive data analysis—you will see

why. And I will share my observations and thoughts as we go along.

A Data Analysis Session

The data set is a classic: the CO2 measurements above Mauna Loa on Hawaii. The

inspiration for this section comes from Cleveland’s Elements of Graphical Analysis,* but the

approach is entirely mine.

First question: what’s in the data set? I see that the first column represents the date

(month and year) while the second contains the measured CO2 concentration in parts per

million. Here are the first few lines:

Jan-1959 315.42

Feb-1959 316.32

Mar-1959 316.49

Apr-1959 317.56

...

The measurements are regularly spaced (in fact, monthly), so I don’t need to parse the

date in the first column; I simply plot the second column by itself. (In the figure, I have

*The Elements of Graphing Data. William S. Cleveland. Hobart Press. 1994. The data itself (in a slightly
different format) is available from StatLib: http://lib.stat.cmu.edu/datasets/visualizing.data.zip and from
many other places around the Web.
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F I G U R E 6-1. The first look at the data: plot “data” u 1 w l

added tick labels on the horizontal axis for clarity, but I am omitting the commands

required here—they are not essential.)

plot "data" u w l

The plot shows a rather regular short-term variation overlaid on a nonlinear upward

trend. (See Figure 6-1.)

The coordinate system is not convenient for mathematical modeling: the x axis is not

numeric, and for modeling purposes it is usually helpful if the graph goes through the

origin. So, let’s make it do so by subtracting the vertical offset from the data and

expressing the horizontal position as the number of months since the first measurement.

(This corresponds to the line number in the data file, which is accessible in a gnuplot

session through the pseudo-column with column number 0.)

plot "data" u 0:($2-315) w l

A brief note on the command: the specification after the u (short for using) gives the

columns to be used for the x and y coordinates, separated by a colon. Here we use the line

number (which is in the pseudo-column 0) for the x coordinate. Also, we subtract the

constant offset 315 from the values in the second column and use the result as the y

value. Finally, we plot the result with lines (abbreviated w l) instead of using points or

other symbols. See Figure 6-2.

The most predominant feature is the trend. What can we say about it? First of all, the

trend is nonlinear: if we ignore the short-term variation, the curve is convex downward.

This suggests a power law with an as-yet-unknown exponent: xk . All power-law functions

go through the origin (0, 0) and also through the point (1, 1). We already made sure that

the data passes through the origin, but to fix the upper-right corner, we need to rescale

both axes: if xk goes through (1, 1), then b
(

x
a

)k
goes through (a, b).
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F I G U R E 6-2. Making the x values numeric and subtracting the constant vertical offset: plot “data” u 0:($2-315) w l
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F I G U R E 6-3. Adding a function: plot “data” u 0:($2-315) w l, 35*(x/350)**2

What’s the value for the exponent k? All I know about it right now is that it must be

greater than 1 (because the function is convex). Let’s try k = 2. (See Figure 6-3.)

plot "data" u 0:($2-315) w l, 35*(x/350)**2

Not bad at all! The exponent is a bit too large—some fiddling suggests that k = 1.35 would

be a good value (see Figure 6-4).

plot "data" u 0:($2-315) w l, 35*(x/350)**1.35

To verify this, let’s plot the residual; that is, we subtract the trend from the data and plot

what’s left. If our guess for the trend is correct, then the residual should not exhibit any

trend itself—it should just straddle y = 0 in a balanced fashion (see Figure 6-5).

plot "data" u 0:($2-315 - 35*($0/350)**1.35) w l
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F I G U R E 6-4. Getting the exponent right: f (x) = 35
(

x
350

)1.35
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F I G U R E 6-5. The residual, after subtracting the function from the data.

It might be hard to see the longer-term trend in this data, so we may want to approximate

it by a smoother curve. We can use the weighted-spline approximation built into gnuplot

for that purpose. It takes a third parameter, which is a measure for the smoothness: the

smaller the third parameter, the smoother the resulting curve; the larger the third

parameter, the more closely the spline follows the original data (see Figure 6-6).

plot "data" u 0:(2 − 315 − 35 ∗ (0/350)**1.35) w l, \
"" u 0:($2-315 - 35*($0/350)**1.35):(0.001) s acs w l

At this point, the expression for the function that we use to approximate the data has

become unwieldy. Thus it now makes sense to define it as a separate function:

f(x) = 315 + 35*(x/350)**1.35

plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l
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F I G U R E 6-6. Plotting a smoothed version of the residual together with the unsmoothed residual to test whether there is
any systematic trend remaining in the residual.

From the smoothed line we can see that the overall residual is pretty much flat and

straddles zero. Apparently, we have captured the overall trend quite well: there is little

evidence of a systematic drift remaining in the residuals.

With the trend taken care of, the next feature to tackle is the seasonality. The seasonality

seems to consist of rather regular oscillations, so we should try some combination of sines

and cosines. The data pretty much starts out at y = 0 for x = 0, so we can try a sine by

itself. To make a guess for its wavelength, we recall that the data is meteorological and has

been taken on a monthly basis—perhaps there is a year-over-year periodicity. This would

imply that the data is the same every 12 data points. If so, then a full period of the sine,

which corresponds to 2π , should equal a horizontal distance of 12 points. For the

amplitude, the graph suggests a value close to 3 (see Figure 6-7).

plot "data" u 0:($2-f($0)) w l, 3*sin(2*pi*x/12) w l

Right on! In particular, our guess for the wavelength worked out really well. This makes

sense, given the origin of the data.

Let’s take residuals again, employing splines to see the bigger picture as well (see Figure

6-8):

f(x) = 315 + 35*(x/350)**1.35 + 3*sin(2*pi*x/12)

plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l

The result is pretty good but not good enough. There is clearly some regularity remaining

in the data, although at a higher frequency than the main seasonality. Let’s zoom in on a

smaller interval of the data to take a closer look. The data in the interval [60:120] appears

particularly regular, so let’s look there (see Figure 6-9):

plot [60:120] "data" u 0:($2-f($0)) w lp, "" u 0:($2-f($0)):(0.001) s acs w l
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F I G U R E 6-7. Fitting the seasonality with a sine wave: 3 sin
(
2π x
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F I G U R E 6-8. Residuals after subtracting both trend and seasonality.

I have indicated the individual data points using gnuplot’s linespoints (lp) style. We can

now count the number of data points between the main valleys in the data: 12 points.

This is the main seasonality. But it seems that between any two primary valleys there is

exactly one secondary valley. Of course: higher harmonics! The original seasonality had a

period of exactly 12 months, but its shape was not entirely symmetric: its rising flank

comprised 7 months but the falling flank only 5 (as you can see by zooming in on the

original data with only the trend removed). This kind of asymmetry implies that the

seasonality cannot be represented by a simple sine wave alone but that we have to take

into account higher harmonics—that is, sine functions with frequencies that are integer

multiples of the primary seasonality. So let’s try the first higher harmonic, again punting a

little on the amplitude (see Figure 6-10):

f(x) = 315 + 35*(x/350)**1.35 + 3*sin(2*pi*x/12) - 0.75*sin(2*pi*$0/6)

plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l
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F I G U R E 6-9. Zooming in for a closer look. Individual data points are marked by symbols.
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F I G U R E 6-10. Residual after removing trend and the first and second harmonic of the seasonality.

Now we are really pretty close. Look at the residual—in particular, for values of x greater

than about 150. The data starts to look quite “random,” although there is some systematic

behavior for x in the range [0:70] that we don’t really capture. Let’s add some constant

ranges to the plot for comparison (see Figure 6-11):

plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l, 0, 1, -1

It looks as if the residual is skewed toward positive values, so let’s adjust the vertical offset

by 0.1 (see Figure 6-12):

f(x) = 315 + 35*(x/350)**1.35 + 3*sin(2*pi*x/12) - 0.75*sin(2*pi*$0/6) + 0.1

plot "data" u 0:($2-f($0)) w l, "" u 0:($2-f($0)):(0.001) s acs w l, 0, 1, -1
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F I G U R E 6-11. Adding some grid lines for comparison.
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F I G U R E 6-12. The final residual.

That’s now really close. You should notice how small the last adjustment was—we started

out with data ranging from 300 to 350, and now we are making adjustments to the

parameters on the order of 0.1. Also note how small the residual has become: mostly in

the range from −0.7 to 0.7. That’s only about 3 percent of the total variation in the data.

Finally, let’s look at the original data again, this time together with our analytical model

(see Figure 6-13):

f(x) = 315 + 35*(x/350)**1.35 + 3*sin(2*pi*x/12) - 0.75*sin(2*pi*$0/6) + 0.1

plot "data" u 0:2 w l, f(x)

All in all, pretty good.
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F I G U R E 6-13. The raw data with the final fit.

So what is the point here? The point is that we started out with nothing—no idea at all of

what the data looked like. And then, layer by layer, we peeled off components of the data,

until only random noise remained. We ended up with an explicit, analytical formula that

describes the data remarkably well.

But there is something more. We did so entirely “manually”: by plotting the data, trying

out some approximations, and wiggling the numbers until they agreed reasonably well

with the data. At no point did we resort to a black-box fitting routine—because we didn’t

have to! We did just fine. (In fact, after everything was finished, I tried to perform a

nonlinear fit using the functional form of the analytical model as we have worked it

out—only to have it explode terribly! The model depends on seven parameters, which

means that convergence of a nonlinear fit can be a bit precarious. In fact, it took me longer

to try to make the fit work than it took me to work the parameters out manually as just

demonstrated.)

I’d go even further. We learned more by doing this work manually than if we had used a

fitting routine. Some of the observations (such as the idea to include higher harmonics)

arose only through direct interaction with the data. And it’s not even true that the

parameters would be more accurate if they had been calculated by a fitting routine. Sure,

they would contain 16 digits but not more information. Our manual wiggling of the

parameters enabled us to see quickly and directly the point at which changes to the

parameters are so small that they no longer influence the agreement between the data

and the model. That’s when we have extracted all the information from the data—any

further “precision” in the parameters is just insignificant noise.

You might want to try your hand at this yourself and also experiment with some

variations of your own. For example, you may question the choice of the power-law

behavior for the long-term trend. Does an exponential function (like exp(x)) give a better
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F I G U R E 6-14. The extended data set up to early 2010 together with the model (up to 1990).

fit? It is not easy to tell from the data, but it makes a huge difference if we want to project

our findings significantly (10 years or more) into the future. You might also take a closer

look at the seasonality. Because it is so regular—and especially since its period is known

exactly—you should be able to isolate just the periodic part of the data in a separate model

by averaging corresponding months for all years. Finally, there is 20 years’ worth of

additional data available beyond the “classic” data set used in my original exploration.*

Figure 6-14 shows all the available data together with the model that we have developed.

Does the fit continue to work well for the years past 1990?

Workshop: gnuplot

The example commands in this chapter should have given you a good idea what working

with gnuplot is like, but let’s take a quick look at some of the basics.

Gnuplot (http://www.gnuplot.info) is command-line oriented: when you start gnuplot, it

presents you with a text prompt at which to enter commands; the resulting graphs are

shown in a separate window. Creating plots is simple—the command:

plot sin(x) with lines, cos(x) with linespoints

will generate a plot of (you guessed it) a sine and a cosine. The sine will be drawn with

plain lines, and the cosine will be drawn with symbols (“points”) connected by lines.

*You can obtain the data from the observatory’s official website at http://www.esrl.noaa.gov/gmd/ccgg/
trends/. Also check out the narrative (with photos of the apparatus!) at http://celebrating200years.noaa.
gov/datasets/mauna/welcome.html.
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(Many gnuplot keywords can be abbreviated: instead of with lines I usually type: w l, or w

lp instead of with linespoints. These short forms are a major convenience although

rather cryptic in the beginning. In this short introductory section, I will make sure to only

use the full forms of all commands.)

To plot data from a file, you also use the plot command; for instance:

plot "data" using 1:2 with lines

When plotting data from a file, we use the using keyword to specify which columns from

the file we want to plot—in the command just given, we use entries from the first column

as x values and use entries from the second column for y values.

One of the nice features of gnuplot is that you can apply arbitrary transformations to the

data as it is being plotted. To do so, you put parentheses around each entry in the column

specification that you want to apply a transform to. Within these parentheses you can use

any mathematical expression. The data from each column is available by prefixing the

column index by the dollar sign. An example will make this more clear:

plot "data" using (1/$1):($2+$3) with lines

This command plots the sum of the second and third columns (that is: $2+$3) as a function

of one over the value in the first column (1/$1).

It is also possible to mix data and functions in a single plot command (as we have seen in

the examples in this chapter):

plot "data" using 1:2 with lines, cos(x) with lines

This is different from the Matlab-style of plotting, where a function must be explicitly

evaluated for a set of points before the resulting set of values can be plotted.

We can now proceed to add decorations (such as labels and arrows) to the plot. All kinds

of options are available to customize virtually every aspect of the plot’s appearance: tick

marks, the legend, aspect ratio—you name it. When we are done with a plot, we can save

all the commands used to create it (including all decorations) via the save command:

save "plot.gp"

Now we can use load "plot.gp" to re-create the graph.

As you can see, gnuplot is extremely straightforward to use. The one area that is often

regarded as somewhat clumsy is the creation of graphs in common graphics file formats.

The reason for this is historical: the first version of gnuplot was written in 1985, a time

when one could not expect every computer to be connected to a graphics-capable terminal

and when many of our current file formats did not even exist! The gnuplot designers dealt

with this situation by creating the so-called “terminal” abstraction. All hardware-specific

capabilities were encapsulated by this abstraction so that the rest of gnuplot could be as

portable as possible. Over time, this “terminal” came to include different graphics file

formats as well (not just graphics hardware terminals), and this usage continues to this day.
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Exporting a graph to a common file format (such as GIF, PNG, PostScript, or PDF) requires

a five-step process:

set terminal png

set output "plot.png"

replot

set terminal wxt

set output

In the first step, we choose the output device or “terminal”: here, a PNG file. In the second

step, we choose the file name. In the third step, we explicitly request that the graph be

regenerated for this newly chosen device. The remaining commands restore the

interactive session by selecting the interactive wxt terminal (built on top of the wxWidgets

widget set) and redirecting output back to the interactive terminal. If you find this process

clumsy and error-prone, then you are not alone, but rest assured: gnuplot allows you to

write macros, which can reduce these five steps to one!

I should mention one further aspect of gnuplot: because it has been around for 25 years, it

is extremely mature and robust when it comes to dealing with typical day-to-day

problems. For example, gnuplot is refreshingly unpicky when it comes to parsing input

files. Many other data analysis or plotting programs that I have seen are pretty rigid in this

regard and will bail when encountering unexpected data in an input file. This is the right

thing to do in theory, but in practice, data files are often not clean—with ad hoc formats

and missing or corrupted data points. Having your plotting program balk over whitespace

instead of tabs is a major nuisance when doing real work. In contrast, gnuplot usually does

an amazingly good job at making sense of almost any input file you might throw at it, and

that is indeed a great help. Similarly, gnuplot recognizes undefined mathematical

expressions (such as 1/0, log(0), and so on) and discards them. This is also very helpful,

because it means that you don’t have to worry about the domains over which functions

are properly defined while you are in the thick of things. Because the output is graphical,

there is usually very little risk that this silent discarding of undefined values will lead you

to miss essential behavior. (Things are different in a computer program, where silently

ignoring error conditions usually only compounds the problem.)

Further Reading
• Gnuplot in Action: Understanding Data with Graphs. Philipp K. Janert. Manning

Publications. 2010.

If you want to know more about gnuplot, then you may find this book interesting. It

includes not only explanations of all sorts of advanced options, but also helpful hints

for working with gnuplot.
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C H A P T E R S E V E N

Guesstimation and the Back
of the Envelope

LOOK AROUND THE ROOM YOU ARE SITTING IN AS YOU READ THIS. NOW ANSWER THE FOLLOWING QUESTION:

how many Ping-Pong balls would it take to fill this room?

Yes, I know it’s lame to make the reader do jot’em-dot’em exercises, and the question is

old anyway, but please make the effort to come up with a number. I am trying to make a

point here.

Done? Good—then, tell me, what is the margin of error in your result? How many balls,

plus or minus, do you think the room might accommodate as well? Again, numbers,

please! Look at the margin of error: can you justify it, or did you just pull some numbers

out of thin air to get me off your back? And if you found an argument to base your

estimate on: does the result seem right to you? Too large, too small?

Finally, can you state the assumptions you made when answering the first two questions?

What did or did you not take into account? Did you take the furniture out or not? Did

you look up the size of a Ping-Pong ball, or did you guess it? Did you take into account

different ways to pack spheres? Which of these assumptions has the largest effect on the

result? Continue on a second sheet of paper if you need more space for your answer.

The game we just played is sometimes called guesstimation and is a close relative to the

back-of-the-envelope calculation. The difference is minor: the way I see it, in guesstimation

we worry primarily about finding suitable input values, whereas in a typical

back-of-the-envelope calculation, the inputs are reasonably well known and the

challenge is to simplify the actual calculation to the point that it can be done on the back

of the proverbial envelope. (Some people seem to prefer napkins to envelopes—that’s the

more sociable crowd.)
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Let me be clear about this: I consider proficiency at guesstimation and similar techniques

the absolute hallmark of the practical data analyst—the person who goes out and solves

real problems in the real world. It is so powerful because it connects a conceptual

understanding (no matter how rough) with the concrete reality of the problem domain; it

leaves no place to hide. Guesstimation also generates numbers (not theories or models)

with their wonderful ability to cut through vague generalities and opinion-based

discussions.

For all these reasons, guesstimation is a crucial skill. It is where the rubber meets the road.

The whole point of guesstimation is to come up with an approximate answer—quickly

and easily. The flip side of this is that it forces us to think about the accuracy of the result:

first how to estimate the accuracy and then how to communicate it. That will be the

program for this chapter.

Principles of Guesstimation

Let’s step through our introductory Ping-Pong ball example together. This will give me an

opportunity to point out a few techniques that are generally useful.

First consider the room. It is basically rectangular in shape. I have bookshelves along

several walls; this helps me estimate the length of each wall, since I know that shelves are

90 cm (3 ft) wide—that’s a pretty universal standard. I also know that I am 1.80 m (6 ft)

tall, which helps me estimate the height of the room. All told, this comes to 5 m by 3.5 m

by 2.5 m or about 50 m3.

Now, the Ping-Pong ball. I haven’t had one in my hands for a long time, but I seem to

remember that they are about 2.5 cm (1 in) in diameter. That means I can line up 40 of

them in a meter, which means I have 403 in a cubic meter. The way I calculate this is:

403 = 43 · 103 = 26 · 1,000 = 64,000. That’s the number of Ping-Pong balls that fit into a

cubic meter.

Taking things together, I can fit 50 · 64,000 or approximately 3,000,000 Ping-Pong balls

into this room. That’s a large number. If each ball costs me a dollar at a sporting goods

store, then the value of all the balls required to fill this room would be many times greater

than the value of the entire house!

Next, the margins of error. The uncertainty in each dimension is at least 10 percent.

Relative errors are added to each other in a multiplication (we will discuss error

propagation later in this chapter), so the total error turns out to be 3 · 10 percent = 30

percent! That’s pretty large—the number of balls required might be as low as two million

or as high as four million. It is uncomfortable to see how the rather harmless-looking 10

percent error in each individual dimension has compounded to lead to a 30 percent

uncertainty.
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The same problem applies to the diameter of the Ping-Pong balls. Maybe 2.5 cm is a bit

low—perhaps 3 cm is more like it. Now, that’s a 20 percent increase, which means that

the number of balls fitting into one cubic meter is reduced by 60 percent (3 times the

relative error, again): now we can fit only about 30,000 of them into a cubic meter. The

same goes for the overall estimate: a decrease by half if balls are 5 mm larger than initially

assumed. Now the range is something between one and two million.

Finally, the assumptions. Yes, I took the furniture out. Given the uncertainty in the total

volume of the room, the space taken up by the furniture does not matter much. I also

assumed that balls would stack like cubes, when in reality they pack tighter if we arrange

them in the way oranges (or cannonballs) are stacked. It’s a slightly nontrivial exercise in

geometry to work out the factor, but it comes to about 15 percent more balls in the same

space.

So, what can we now say with certainty? We will need a few million Ping-Pong

balls—probably not less than one million and certainly not more than five million. The

biggest uncertainty is the size of the balls themselves; if we need a more accurate estimate

than the one we’ve obtained so far, then we can look up their exact dimensions and

adjust the result accordingly.

(After I wrote this paragraph, I finally looked up the size of a regulation Ping-Pong ball:

38–40 mm. Oops. This means that only about 15,000 balls fit into a cubic meter, and so I

must adjust all my estimates down by a factor of 4.)

This example demonstrates all important aspects of guesstimation:

• Estimate sizes of things by comparing them to something you know.

• Establish functional relationships by using simplifying assumptions.

• Originally innocuous errors can compound dramatically, so tracking the accuracy of an

estimate is crucial.

• And finally, a few bad guesses on things that are not very familiar can have a

devastating effect (I really haven’t played Ping-Pong in a long time), but they can be

corrected easily when better input is available.

Still, we did find the order of magnitude, one way or the other: a few million.

Estimating Sizes

The best way to estimate the size of an object is to compare it to something you know. The

shelves played this role in the previous example, although sometimes you have to work a

little harder to find a familiar object to use as reference in any given situation.

Obviously, this is easier to do the more you know, and it can be very frustrating to find

yourself in a situation where you don’t know anything you could use as a reference. That
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being said, it is usually possible to go quite far with just a few data points to use as

reference values.

(There are stories from the Middle Ages of how soldiers would count how many rows of

stone blocks were used in the walls of a fortress before mounting an attack, the better to

estimate the height of the walls. Obtaining an accurate value was necessary to prepare

scaling ladders of the appropriate length: if the ladders were too short, then the top of the

wall could not be reached; if they were too long, the defenders could grab the

overhanging tops and topple the ladders back over. Bottom line: you’ve got to find your

reference objects where you can.)

Knowing the sizes of things is therefore the first order of business. The more you know,

the easier it is to form an estimate; but also the more you know, the more you develop a

feeling for the correct answer. That is an important step when operating with

guesstimates: to perform an independent “sanity check” at the end to ensure we did not

make some horrible mistake along the way. (In fact, the general advice is that “two

(independent) estimates are better than one”; this is certainly true but not always

possible—at least I can’t think of an independent way to work out the Ping-Pong ball

example we started with.)

Knowing the sizes of things can be learned. All it takes is a healthy interest in the world

around you—please don’t go through the dictionary, memorizing data points in

alphabetical order. This is not about beating your buddies at a game of Trivial Pursuit!

Instead, this is about becoming familiar (I’d almost say intimate) with the world you live

in. Feynman once wrote about Hans A. Bethe that “every number was near something he

knew.” That is the ideal.

The next step is to look things up. In situations where one frequently needs relatively good

approximations to problems coming from a comparably small problem domain,

special-purpose lookup tables can be a great help. I vividly remember a situation in a

senior physics lab where we were working on an experiment (I believe, to measure the

muon lifetime), when the instructor came by and asked us some guesstimation

problem—I forget what it was, but it was nontrivial. None of us had a clue, so he whipped

out from his back pocket a small booklet the size of a playing card that listed the physical

properties of all kinds of subnuclear particles. For almost any situation that could arise in

the lab, he had an approximate answer right there.

Specialized lookup tables exist in all kinds of disciplines, and you might want to make

your own as necessary for whatever it is you are working on. The funniest I have seen

gave typical sizes (and costs) for all elements of a manufacturing plant or warehouse: so

many square feet for the office of the general manager, so many square feet for his

assistant (half the size of the boss’s), down to the number of square feet per toilet stall,

and—not to forget—how many toilets to budget for every 20 workers per 8-hour shift.

Finally, if we don’t know anything close and we can’t look anything up, then we can try

to estimate “from the ground up”: starting just with what we know and then piling up
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arguments to arrive at an estimate. The problem with this approach is that the result may

be way off. We have seen earlier how errors compound, and the more steps we have in

our line of arguments the larger the final error is likely to be—possibly becoming so large

that the result will be useless. If that’s the case, we can still try and find a cleverer

argument that makes do with fewer argument steps. But I have to acknowledge that

occasionally we will find ourselves simply stuck: unable to make an adequate estimate

with the information we have.

The trick is to make sure this happens only rarely.

Establishing Relationships

Establishing relationships that get us from what we know to what we want to find is

usually not that hard. This is true in particular under common business scenarios, where

the questions often revolve around rather simple relationships (how something fits into

something else, how many items of a kind there are, and the like). In scientific

applications, this type of argument can be harder. But for most situations that we are

likely to encounter outside the science lab, simple geometric and counting arguments will

suffice.

In the next chapter, we will discuss in more detail the kinds of arguments you can use to

establish relationships. For now, just one recommendation: make it simple! Not: keep it

simple because, more likely than not, initially the problem is not simple; hence you have

to make it so in order to make it tractable.

Simplifying assumptions let you cut through the fog and get to the essentials of a

situation. You may incur an error as you simplify the problem, and you will want to

estimate its effect, but at least you are moving toward a result.

An anecdote illustrates what I mean. When working for Amazon.com, I had a discussion

with a rather sophisticated mathematician about how many packages Amazon can

typically fit onto a tractor-trailer truck, and he started to work out the different ways you

can stack rectangular boxes into the back of the truck! This is entirely missing the point

because, for a rough calculation, we can make the simplifying assumption that the

packages can take any shape at all (i.e., they behave like a liquid) and simply divide the

total volume of the truck by the typical volume of a package. Since the individual package

is tiny compared to the size of the truck, the specific shapes and arrangements of

individual packages are irrelevant: their effect is much smaller than the errors in our

estimates for the size of the truck, for instance. (We’ll discuss this in more detail in

Chapter 8, where we discuss the mean-field approximation.)

The point of back-of-the-envelope estimates is to retain only the core of the problem,

stripping away as much nonessential detail as possible. Be careful that your sophistication

does not get in the way of finding simple answers.
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Working with Numbers

When working with numbers, don’t automatically reach for a calculator! I know that I am

now running the risk of sounding ridiculous—praising the virtues of old-fashioned

reading, ’riting, and ’rithmetic. But that’s not my point. My point is that it is all right to

work with numbers. There is no reason to avoid them.

I have seen the following scenario occur countless times: a discussion is under way,

everyone is involved, ideas are flying, concentration is intense—when all of a sudden we

need a few numbers to proceed. Immediately, everything comes to a screeching halt while

several people grope for their calculators and others fire up their computers, followed by

hasty attempts to get the required answer, which invariably (given the haste) leads to

numerous keying errors and false starts, followed by arguments about the best calculator

software to use. In any case, the whole creative process just died. It’s a shame.

Besides forcing you to switch context, calculators remove you one step further from the

nature of the problem. When working out a problem in your head, you get a feeling for

the significant digits in the result: for which digits does the result change as the inputs

take on any value from their permissible range? The surest sign that somebody has no

clue is when they quote the results from a calculation based on order-of-magnitude inputs

to 16 digits!

The whole point here is not to be religious about it—either way. If it actually becomes

more complicated to work out a numerical approximation in your head, then by all

means use a calculator. But the compulsive habit to avoid working with numbers at all

cost should be restrained.

There are a few good techniques that help with the kinds of calculations required for

back-of-the-envelope estimates and that are simple enough that they still (even today)

hold their own against uncritical calculator use. Only the first is a must-have; the other

two are optional.

Powers of ten

The most important technique for deriving order-of-magnitude estimates is to work with

orders of magnitudes directly—that is, with powers of ten.

It quickly gets confusing to multiply 9,000 by 17 and then to divide by 400, and so on.

Instead of trying to work with the numbers directly, split each number into the most

significant digit (or digits) and the respective power of ten. The multiplications now take

place among the digits only while the powers of ten are summed up separately. In the

example I just gave, we split 9,000 = 9 · 1,000, 17 = 1.7 · 10 ≈ 2 · 10, and 400 = 4 · 100.

From the leading digits we have 9 times 2 divided by 4 equals 4.5, and from the powers of

ten we have 3 plus 1 minus 2 equals 2; so then 4.5 · 102 = 450. That wasn’t so hard, was

it? (I have replaced 17 with 2 · 10 in this approximation, so the result is a bit on the high
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side, by about 15 percent. I might want to correct for that in the end—a better

approximation would be closer to 390. The exact value is 382.5.)

More systematically, any number can be split into a decimal fraction and a power of ten. It

will be most convenient to require the fraction to have exactly one digit before the

decimal point, like so:

123.45 = 1.2345 · 102

1,000,000 = 1.0 · 106

0.00321 = 3.21 · 10−3

The fraction is commonly known as the mantissa (or the significand in most recent usage),

whereas the power of ten is always referred to as the exponent.

This notation significantly simplifies multiplication and division between numbers of very

different magnitude: the mantissas multiply (involving only single-digit multiplications, if

we restrict ourselves to the most significant digit), and the exponents add. The biggest

challenge is to keep the two different tallies simultaneously in one’s head.

Small perturbations

The techniques in this section are part of a much larger family of methods known as

perturbation theory, methods that play a huge role in applied mathematics and related

fields. The idea is always the same—we split the original problem into two parts: one that

is easy to solve and one that is somehow “small” compared to the first. If we do it right, the

effect of the latter part is only a “small perturbation” to the first, easy part of the problem.

(You may want to review Appendix B if some of this material is unfamiliar to you.)

The easiest application of this idea is in the calculation of simple powers, such as 123. Here

is how we would proceed:

123 = (10 + 2)3 = 103 + 3 · 102 · 2 + 3 · 10 · 22 + 23

= 1,000 + 600 + · · ·
= 1,600 + · · ·

In the first step, we split 12 into 10 + 2: here 10 is the easy part (because we know how to

raise 10 to an integer power) and 2 is the perturbation (because 2 � 10). In the next step,

we make use of the binomial formula (see Appendix B), ignoring everything except the

linear term in the “perturbation.” The final result is pretty close to the exact value.

The same principle can be applied to many other situations. In the context of this chapter,

I am interested in this concept because it gives us a way to estimate and correct for the

error introduced by ignoring all but the first digit in powers-of-ten calculations. Let’s look

at another example:

32 · 430
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Using only the most significant digits, this is (3 · 101) · (4 · 102) = (3 · 4) · 101+2 = 12,000.

But this is clearly not correct, because we dropped some digits from the factors.

We can consider the nonleading digits as small perturbations to the result and treat them

separately. In other words, the calculation becomes:

(3 + 0.2) · (4 + 0.3) · 103 ≈ 3(1 + 0.1 . . . ) · 4(1 + 0.1 . . . ) · 103

where I have factored out the largest factor in each term. On the righthand side I did not

write out the correction terms in full—for our purposes, it’s enough to know that they are

about 0.1.

Now we can make use of the binomial formula:

(1 + ε)2 = 1 + 2ε + ε2

We drop the last term (since it will be very small compared to the other two), but the

second term gives us the size of the correction: +2ε. In our case, this amounts to about 20

percent, since ε is one tenth.

I will admit that this technique seems somewhat out of place today, although I do use it

for real calculations when I don’t have a calculator on me. But the true value of this

method is that it enables me to estimate and reason about the effect that changes to my

input variables will have on the overall outcome. In other words, this method is a first

step toward sensitivity analysis.

Logarithms

This is the method by which generations before us performed numerical calculations. The

crucial insight is that we can use logarithms for products (and exponentiation) by making

use of the functional equation for logarithms:

log(xy) = log(x) + log(y)

In other words, instead of multiplying two numbers, we can add their logarithms. The slide

rule was a mechanical calculator based on this idea.

Amazingly, using logarithms for multiplication is still relevant—but in a slightly different

context. For many statistical applications (in particular when using Bayesian methods),

we need to multiply the probabilities of individual events in order to arrive at the

probability for the combination of these events. Since probabilities are by construction less

than 1, the product of any two probabilities is always smaller than the individual factors.

It does not take many probability factors to underflow the floating-point precision of

almost any standard computer. Logarithms to the rescue! Instead of multiplying the

probabilities, take logarithms of the individual probabilities and then add the logarithms.

(The logarithm of a number that is less than 1 is negative, so one usually works with

− log(p).) The resulting numbers, although mathematically equivalent, have much better

numerical properties. Finally, since in many applications we mostly care which of a
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selection of different events has the maximum probability, we don’t even need to convert

back to probabilities: the event with maximum probability will also be the one with the

maximum (negative) logarithm.

More Examples

We have all seen this scene in many a Hollywood movie: the gangster comes in to pay off

the hitman (or pay for the drug deal, or whatever it is). Invariably, he hands over an

elegant briefcase with the money—cash, obviously. Question: how much is in the case?

Well, a briefcase is usually sized to hold two letter-size papers next to each other; hence it

is about 17 by 11 inches wide, and maybe 3 inches tall (or 40 by 30 by 7 centimeters). A

bank note is about 6 inches wide and 3 inches tall, which means that we can fit about six

per sheet of paper. Finally, a 500-page ream of printer paper is about 2 inches thick. All

told, we end up with 2 · 6 · 750 = 9,000 banknotes. The highest dollar denomination in

general circulation is the $100 bill,* so the maximum value of that payoff was about $1

million, and certainly not more than $5 million.

Conclusion: for the really big jobs, you need to pay by check. Or use direct transfer.

For a completely different example, consider the following question. What’s the typical

takeoff weight of a large, intercontinental jet airplane? It turns out that you can come up

with an approximate answer even if you don’t know anything about planes.

A plane is basically an aluminum tube with wings. Ignore the wings for now; let’s

concentrate on the tube. How big is it? One way to find out is to check your boarding

pass: it will display your row number. Unless you are much classier than your author,

chances are that it shows a row number in the range of 40–50. You can estimate that the

distance between seats is a bit over 50 cm—although it feels closer. (When you stand in

the aisle, facing sideways, you can place both hands comfortably on the tops of two

consecutive seats; your shoulders are about 30 cm apart, so the distance between seats

must be a tad greater than that.) Thus we have the length: 50 · 0.5 m. We double this to

make up for first and business class, and to account for cockpit and tail. Therefore, the

length of the tube is about 50 m. How about its diameter? Back in economy, rows are

about 9 seats abreast, plus two aisles. Each seat being just a bit wider than your shoulders

(hopefully), we end up with a diameter of about 5 m. Hence we are dealing with a tube

that is 50 m long and 5 m in diameter.

As you walked through the door, you might have noticed the strength or thickness of the

tube: it’s about 5 mm. Let’s make that 10 mm (1 cm) to account for “stuff”: wiring, seats,

and all kinds of other hardware that’s in the plane. Imagining now that you unroll the

entire plane (the way you unroll aluminum foil), the result is a sheet that is

*Larger denominations exist but—although legal tender—are not officially in circulation and apparently
fetch far more than their face value among collectors.
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T A B L E 7 -1. Approximate measurements for some common intercontinental jets

Weight Weight
Length Width Diameter (empty) (full) Passengers

B767 50 m 50 m 5 m 90 t 150 t 200
B747 70 m 60 m 6.5 m 175 t 350 t 400
A380 75 m 80 m 7 m 275 t 550 t 500

50 · π · 5 · 0.01m3. The density of aluminum is a little higher than water (if you have ever

been to a country that uses aluminum coins, you know that you can barely make them

float), so let’s say it’s 3 g/cm3.

It is at this point that we need to employ the proverbial back of the envelope (or the

cocktail napkin they gave you with the peanuts) to work out the numbers. It will help to

realize that there are 1003 = 106 cubic centimeters in a cubic meter and that the density

of aluminum can therefore be written as 3 tons per cubic meter. The final mass of the

“tube” comes out to about 25 ton. Let’s double this to take into account the wings (wings

are about as long as the fuselage is wide—if you look at the silhouette of a plane in the

sky, it forms an approximate square); this yields 50 ton just for the “shell” of the airplane.

It does not take into account the engines and most of the other equipment inside the

plane.

Now let’s compare this number with the load. We have 50 rows, half of them with 9

passengers and the other half with 5; this gives us an average of 7 passengers per row or a

total of 350 passengers per plane. Assuming that each passenger contributes 100 kg (body

weight and baggage), the load amounts to 35 ton: comparable to the weight of the plane

itself. (This weight-to-load ratio is actually not that different than for a car, fully occupied

by four people. Of course, if you are driving alone, then the ratio for the car is much

worse.)

How well are we doing? Actually, not bad at all: Table 7-1 lists typical values for three

planes that are common on transatlantic routes: the mid size Boeing 767, the large Boeing

747 (the “Jumbo”), and the extra-large Airbus 380. That’s enough to check our

calculations. We are not far off.

(What we totally missed is that planes don’t fly on air and in-flight peanuts alone: in fact,

the greatest single contribution to the weight of a fully loaded and fuelled airplane is the

weight of the fuel. You can estimate its weight as well, but to do so, you will need one

additional bit of information: the fuel consumption of a modern jet airplane per passenger

and mile traveled is less than that of a typical compact car with only a single passenger.)

That was a long and involved estimation, and I won’t blame you if you skipped some of

the intermediate steps. In case you are just joining us again, I’d like to emphasize one

point: we came up with a reasonable estimate without having to resort to any “seat of the

pants” estimates—even though we had no prior knowledge! Everything that we used, we
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could either observe directly (such as the number of rows in the plane or the thickness of

the fuselage walls) or could relate to something that was familiar to us (such as the

distance between seats). That’s an important takeaway!

But not all calculations have to be complicated. Sometimes, all you have to do is “put two

and two together.” A friend told me recently that his company had to cut their budget by

a million dollars. We knew that the overall budget for this company was about five

million dollars annually. I also knew that, since it was mostly a service company, almost

all of its budget went to payroll (there was no inventory or rent to speak of). I could

therefore tell my friend that layoffs were around the corner—even with a salary reduction

program, the company would have to cut at least 15 percent of their staff. The response

was: “Oh, no, our management would never do that.” Two weeks later, the company

eliminated one third of all positions.

Things I Know

Table 7-2 is a collection of things that I know and frequently use to make estimates. Of

course, this list may seem a bit whimsical, but it is actually pretty serious. For instance,

note the range of areas from which these items are drawn! What domains can you reason

about, given the information in this table?

Also notice the absence of systematic “scales.” That is no accident. I don’t need to

memorize the weights of a mouse, a cat, and a horse—because I know (or can guess) that

a mouse is 1,000 times smaller than a human, a cat 10 times smaller, and a horse 10 times

larger. The items in this table are not intended to be comprehensive; in fact, they are the

bare minimum. Knowing how things relate to each other lets me take it from there.

Of course, this table reflects my personal history and interests. Yours will be different.

How Good Are Those Numbers?

Remember the Ping-Pong ball question that started out this chapter? I once posted that

question as a homework problem in a class, and one student’s answer was something like

1,020,408.16327. (Did you catch both mistakes? Not only does the result of this rough

estimate pretend to be accurate to within a single ball; but the answer also includes a

fractional part—which is meaningless, given the context.) This type of confusion is

incredibly common: we focus so much on the calculation (any calculation) that we forget

to interpret the result!

This story serves as a reminder that there are two questions that we should ask before any

calculation as well as one afterward. The two questions to ask before we begin are:

• What level of correctness do I need?

• What level of correctness can I afford?
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T A B L E 7 -2. Reference points for guesstimations

Size of an atomic data type 10 bytes
A page of text 55 lines of 80 characters, or about 4,500 characters total
A record (of anything) 100–1,000 bytes

A car 4 m long, 1 ton weight
A person 2 m tall, 100 kg weight
A shelf 1 m wide, 2 m tall
Swimming pool (not Olympic) 25 × 12.5 meters
A story in a commercial building 4 m high

Passengers on a large airplane 350
Speed of a jetliner 1,000 km/hr
Flight time from NY 6 hr (to the West Coast or Europe)

Human, walking 1 m/s (5 km/hr)
Human, maximum power output 200 W (not sustainable)

Power consumption of a water kettle 2 kW
Electricity grid 100 V (U.S.), 220 V (Europe)
Household fuse 16 A

3 · 3 10 (minus 10%)
π 3

Large city 1 million
Population, Germany or Japan 100 million
Population, USA 300 million
Population, China or India 1 billion
Population, Earth 7 billion

U.S. median annual income $60,000
U.S. federal income tax rate 25% (but also as low as 0% and as high as 40%)
Minimum hourly wage $10 per hour
Billable hours in a year 2,000 (50 weeks at 40 hours per week)
Low annual inflation 2%
High annual inflation 8%

Price of a B-2 bomber $2 billion

American Civil War; Franco-Prussian War 1860s; 1870s
French Revolution 1789
Reformation 1517
Charlemagne 800
Great Pyramids 3000 B.C.E.

Hot day 35 Celsius
Very hot kitchen oven 250 Celsius
Steel melts 1200 Celsius

Density of water 1 g/cm3

Density of aluminum 3 g/cm3

Density of lead 13 g/cm3

Density of gold 20 g/cm3

Ionization energy of hydrogen 13.6 eV
Atomic diameter (Bohr radius) 10−10 m
Energy of X-ray radiation keV
Nuclear binding energy per particle MeV
Wavelength of the sodium doublet 590 nm
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The question to ask afterward is:

• What level of correctness did I achieve?

I use the term “correctness” here a bit loosely to refer to the quality of the result. There

are actually two different concepts involved: accuracy and precision.

Accuracy
Accuracy expresses how close the result of a calculation or measurement comes to the

“true” value. Low accuracy is due to systematic error.

Precision
Precision refers to the “margin of error” in the calculation or the experiment. In

experimental situations, precision tells us how far the results will stray when the

experiment is repeated several times. Low precision is due to random noise.

Said another way: accuracy is a measure for the correctness of the result, and precision is

a measure of the result’s uncertainty.

Before You Get Started: Feasibility and Cost

The first question (what level of correctness is needed) will define the overall

approach—if I only need an order-of-magnitude approximation, then the proverbial back

of the envelope will do; if I need better results, I might need to work harder. The second

question is the necessary corollary: it asks whether I will be able to achieve my goal given

the available resources. In other words, these two questions pose a classic engineering

trade-off (i.e., they require a regular cost–benefit analysis).

This obviously does not matter much for a throwaway calculation, but it matters a lot for

bigger projects. I once witnessed a huge project (involving a dozen developers for over a

year) to build a computation engine that had failed to come clear on both counts until it

was too late. The project was eventually canceled when it turned out that it would cost

more to achieve the accuracy required than the project was supposed to gain the company

in increased revenue! (Don’t laugh—it could happen to you. Or at least in your company.)

This story points to an important fact: correctness is usually expensive, and high

correctness is often disproportionally more expensive. In other words, a 20 percent

approximation can be done on the back of an envelope, a 5 percent solution can be done

in a couple of months, but the cost for a 1 percent solution may be astronomical. It is also

not uncommon that there is no middle ground (e.g., an affordable 10 percent solution).

I have also seen the opposite problem: projects chasing correctness that is not really

necessary—or not achievable because the required input data is not available or of poor

quality. This is a particular risk if the project involves the opportunity to play with some

attractive new technology.

Finding out the true cost or benefit of higher-quality results can often be tricky. I was

working on a project to forecast the daily number of visitors viewing the company’s

website, when I was told that “we must have absolute forecast accuracy; nothing else
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matters.” I suggested that if this were so, then we should take the entire site down, since

doing so would guarantee a perfect forecast (zero page views). Yet because this would also

imply zero revenue from display advertising, my suggestion focused the client’s mind

wonderfully to define more clearly what “else” mattered.

After You Finish: Quoting and Displaying Numbers

It is obviously pointless to report or quote results to more digits than is warranted. In fact,

it is misleading or at the very least unhelpful, because it fails to communicate to the reader

another important aspect of the result—namely its reliability!

A good rule (sometimes known as Ehrenberg’s rule) is to quote all digits up to and

including the first two variable digits. Starting from the left, you keep all digits that do not

change over the entire range of numbers from one data point to the next; then you also

keep the first two digits that vary over the entire range from 0 to 9 as you scan over all data

points. An example will make this clear. Consider the following data set:

121.733

122.129

121.492

119.782

120.890

123.129

Here, the first digit (from the left) is always 1 and the second digit takes on only two

values (1 and 2), so we retain them both. All further digits can take on any value between

0 and 9, and we retain the first two of them—meaning that we retain a total of four digits

from the left. The two right-most digits therefore carry no significance, and we can drop

them when quoting results. The mean (for instance) should be reported as:

121.5

Displaying further digits is of no value.

This rule—to retain the first two digits that vary over the entire range of values and all

digits to the left of them—works well with the methods described in this chapter. If you

are working with numbers as I suggested earlier, then you also develop a sense for the

digits that are largely unaffected by reasonable variations in the input parameters as well

as for the position in the result after which uncertainties in the input parameters corrupt

the outcome.

Finally, a word of warning. The accuracy level of a numerical result should be established

from the outset, since doing so later will trigger resistance. I have encountered a system

that reported projected sales numbers (which were typically in the hundreds of

thousands) to six “significant” digits (e.g., as 324,592 or so). But because these were

forecasts that were at best accurate to within 30 percent, all digits beyond the first were

absolute junk! (Note that 30 percent of 300,000 is 100,000, which means that the
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confidence band for this result was 200,000–400,000.) However, a later release of the

same software, which now reported only the actually significant digits, was met by violent

opposition from the user community because it was “so much less precise”!

Optional: A Closer Look at Perturbation Theory and Error Propagation

I already mentioned the notion of “small perturbations.” It is one of the great ideas of

applied mathematics, so it is worth a closer look.

Whenever we can split a problem into an “easy” part and a part that is “small,” the

problem lends itself to a perturbative solution. The “easy” part we can solve directly (that’s

what we mean by “easy”), and the part that is “small” we solve in an approximative

fashion. By far the most common source of approximations in this area is based on the

observation that every function (every curve) is linear (a straight line) in a sufficiently

small neighborhood: we can therefore replace the full problem by its linear approximation

when dealing with the “small” part—and linear problems are always solvable.

As a simple example, let’s calculate
√

17. Can we split this into a “simple” and a “small”

problem? Well, we know that 16 = 42 and so
√

16 = 4. That’s the simple part, and we

therefore now write
√

17 = √
16 + 1. Obviously 1 � 16, so there’s the “small” part of the

problem. We can now rewrite our problem as follows:

√
17 = √

16 + 1

=
√

16(1 + ε)

=
√

16
√

1 + ε

= 4
√

1 + ε

It is often convenient to factor out everything so that we are left with 1 + small stuff as in

the second line here. At this point, we also replaced the small part with ε (we will put the

numeric value back in at the end).

So far everything has been exact, but to make progress we need to make an

approximation. In this case, we replace the square root by a local approximation around

1. (Remember: ε is small, and
√

1 is easy.) Every smooth function can be replaced by a

straight line locally, and if we don’t go too far, then that approximation turns out to be

quite good (see Figure 7-1). These approximations can be derived in a systematic fashion

by a process known as Taylor expansion. The figure shows both the simplest approximation,

which is just a straight line, and also the next-higher (second-order) approximation,

which is even better.

Taylor expansions are so fundamental that they are almost considered a fifth basic

operation (after addition, subtraction, multiplication, and division). See Appendix B for a

little more information on them.
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F I G U R E 7-1. The square-root function
√

1 + x and the first two approximations around x = 0.

With the linear approximation in place, our problem has now become quite tractable:

√
17 ≈ 4

(
1 + ε

2
+ · · ·

)

= 4 + 2ε

We can now plug the numeric value ε = 1/16 back in:
√

17 ≈ 4 + 2/16 = 4.125. The

exact value is
√

17 = 4.12310 . . . . Our approximation is pretty good.

Error Propagation

Error propagation considers situations where we have some quantity x and an associated

uncertainty δx . We write x ± δx to indicate that we expect the true value to lie anywhere

in the range from x − δx to x + δx . In other words, we have not just a single value for the

quantity x , but instead a whole range of possible values.

Now suppose we have several quantities—each with its own error term—and we need to

combine them in some fashion. We probably know how to work with the quantities

themselves, but what about the uncertainties? For example, we know both the height and

width of a rectangle to within some range: h + δh and w + δw. We also know that the area

is A = hw (from basic geometry). But what can we say about the uncertainty in the area?

This kind of scenario is ideal for the perturbative methods discussed earlier: the

uncertainties are “small,” so we can use simplifying approximations to deduce their

behavior.
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Let’s work through the area example:

A = (h ± δh)(w ± δw)

= hw

(
1 ± δh

h

) (
1 ± δw

w

)

= hw

(
1 ± δh

h
± δw

w
+ δh

h

δw

w

)

Here again we have factored the primary terms out, to end up with terms of the form

1 + small stuff, because that makes life easier. This also means that, instead of expressing

the uncertainty through the absolute error δh or δw, we express them through the relative

error δh/h or δw/w. (Observe that if δh � h, then δh/h � 1.)

So far, everything has been exact. Now comes the approximation: the error terms are

small (in fact, smaller than 1); hence their product is extra-small, and we can therefore

drop it. Our final result is thus A = hw
(
1 ± ( δh

h + δw

w
)
)

or, in words: “When multiplying

two quantities, their relative errors add.” So if I know both the width and the height to

within 10 percent each, then my uncertainty in the area will be 20 percent.

Here are a few more results of this form, which are useful whenever you work with

quantities that have associated uncertainties (you might want to try deriving some of

these yourself):

(x ± δx) + (y ± δy) = x + y ± (δx + δy) Sum

(x ± δx) · (y ± δy) = xy

(
1 ±

(
δx

x
+ δy

y

))
Product

x ± δx

y ± δy
= x

y

(
1 ±

(
δx

x
+ δy

y

))
Fraction

√
x + δx = √

x

√
1 + δx

x
≈ √

x

(
1 + 1

2

δx

x

)
Square root

log(x + δx) = log

(
x

(
1 + δx

x

))
≈ log x + δx

x
Logarithm

The most important ones are the first two: when adding (or subtracting) two quantities,

their absolute errors add; and when multiplying (or dividing) two quantities, their relative

errors add. This implies that, if one of two quantities has a significantly larger error than

the other, then the larger error dominates the final uncertainty.

Finally, you may have seen a different way to calculate errors that gives slightly tighter

bounds, but it is only appropriate if the errors have been determined by calculating the

variances in repeated measurements of the same quantity. Only in that case are the statistical

assumptions valid upon which this alternative calculation is based. For guesstimation, the

simple (albeit more pessimistic) approach described here is more appropriate.
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Workshop: The Gnu Scientific Library (GSL)

What do you do when a calculation becomes too involved to do it in your head or even

on the back of an envelope? In particular, what can you do if you need the extra precision

that a simple order-of-magnitude estimation (as practiced in this chapter) will not

provide? Obviously, you reach for a numerical library!

The Gnu Scientific Library, or GSL, (http://www.gnu.org/software/gsl/) is the best currently

available open source library for numerical and scientific calculations that I am aware of.

The list of included features is comprehensive, and the implementations are of high

quality. Thanks to some unifying conventions, the API, though forbidding at first, is

actually quite easy to learn and comfortable to use. Most importantly, the library is

mature, well documented, and reliable.

Let’s use it to solve two rather different problems; this will give us an opportunity to

highlight some of the design choices incorporated into the GSL. The first example involves

matrix and vector handling: we will calculate the singular value decomposition (SVD) of a

matrix. The second example will demonstrate how the GSL handles non-linear, iterative

problems in numerical analysis as we find the minimum of a nonlinear function.

The listing that follows should give you a flavor of what vector and matrix operations look

like when using the GSL. First, we allocate a couple of (two-dimensional) vectors and

assign values to their elements. We then perform some basic vector operations: adding

one vector to another and performing a dot product. (The result of a dot product is a

scalar, not another vector.) Finally, we allocate and initialize a matrix and calculate its

SVD. (See Chapter 14 for more information on vector and matrix operations.)

/* Basic Linear Algebra using the GSL */

#include <stdio.h>

#include <gsl/gsl_vector.h>

#include <gsl/gsl_matrix.h>

#include <gsl/gsl_blas.h>

#include <gsl/gsl_linalg.h>

int main() {
double r;

gsl_vector *a, *b, *s, *t;

gsl_matrix *m, *v;

/* --- Vectors --- */

a = gsl_vector_alloc( 2 ); /* two dimensions */

b = gsl_vector_alloc( 2 );

/* a = [ 1.0, 2.0 ] */

gsl_vector_set( a, 0, 1.0 );

gsl_vector_set( a, 1, 2.0 );
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/* b = [ 3.0, 6.0 ] */

gsl_vector_set( b, 0, 3.0 );

gsl_vector_set( b, 1, 6.0 );

/* a += b (so that now a = [ 4.0, 8.0 ]) */

gsl_vector_add( a, b );

gsl_vector_fprintf( stdout, a, "%f" );

/* r = a . b (dot product) */

gsl_blas_ddot( a, b, &r );

fprintf( stdout, "%f\n", r );

/* --- Matrices --- */

s = gsl_vector_alloc( 2 );

t = gsl_vector_alloc( 2 );

m = gsl_matrix_alloc( 2, 2 );

v = gsl_matrix_alloc( 2, 2 );

/* m = [ [1, 2],

[0, 3] ] */

gsl_matrix_set( m, 0, 0, 1.0 );

gsl_matrix_set( m, 0, 1, 2.0 );

gsl_matrix_set( m, 1, 0, 0.0 );

gsl_matrix_set( m, 1, 1, 3.0 );

/* m = U s V^T (SVD : singular values are in vector s) */

gsl_linalg_SV_decomp( m, v, s, t );

gsl_vector_fprintf( stdout, s, "%f" );

/* --- Cleanup --- */

gsl_vector_free( a );

gsl_vector_free( b );

gsl_vector_free( s );

gsl_vector_free( t );

gsl_matrix_free( m );

gsl_matrix_free( v );

return 0;

}

It is becoming immediately (and a little painfully) clear that we are dealing with plain C,

not C++ or any other more modern, object-oriented language! There is no operator

overloading; we must use regular functions to access individual vector and matrix

elements. There are no namespaces, so function names tend to be lengthy. And of course

there is no garbage collection!

What is not so obvious is that element access is actually boundary checked: if you try to

access a vector element that does not exist (e.g., gsl vector set( a, 4, 1.0 );), then

the GSL internal error handler will be invoked. By default, it will halt the program and

print a message to the screen. This is quite generally true: if the library detects an
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error—including bad inputs, failure to converge numerically, or an out-of-memory

situation—it will invoke its error handler to notify you. You can provide your own error

handler to respond to errors in a more flexible fashion. For a fully tested program, you

can also turn range checking on vector and matrix elements off completely, to achieve the

best possible runtime performance.

Two more implementation details before leaving the linear algebra example: although the

matrix and vector elements are of type double in this example, versions of all routines exist

for integer and complex data types as well. Furthermore, the GSL will use an optimized

implementation of the BLAS (Basic Linear Algebra Subprograms) API if one is available; if

not, the GSL comes with its own, basic implementation.

Now let’s take a look at the second example. Here we use the GSL to find the minimum of

a one-dimensional function. The function to minimize is defined at the top of the listing:

x2 log(x). In general, nonlinear problems such as this must be solved iteratively: we start

with a guess, then calculate a new trial solution based on that guess, and so on until the

result meets whatever stopping criteria we care to define.

At least that’s what the introductory textbooks tell you.

In the main part of the program, we instantiate a “minimizer,” which is an encapsulation

of a specific minimization algorithm (in this case, Golden Section Search—others are

available, too) and initialize it with the function to minimize as well as our initial guess for

the interval containing the minimum.

Now comes the surprising part: an explicit loop! In this loop, the “minimizer” takes a

single step in the iteration (i.e., calculates a new, tighter interval bounding the minimum)

but then essentially hands control back to us. Why so complicated? Why can’t we just

specify the desired accuracy of the interval and let the library handle the entire iteration

for us? The reason is that real problems more often than not don’t converge as obediently

as the textbooks suggest! Instead they can (and do) fail in a variety of ways: they converge

to the wrong solution, they attempt to access values for which the function is not defined,

they attempt to make steps that (for reasons of the larger system of which the routine is

only a small part) are either too large or too small, or they diverge entirely. Based on my

experience, I have come to the conclusion that every nonlinear problem is different (whereas

every linear problem is the same), and therefore generic black-box routines don’t work!

This brings us back to the way this minimization routine is implemented: the required

iteration is not a black box and instead is open and accessible to us. We can simply

monitor its progress (as we do in this example, by printing every iteration step to the

screen), but we could also interfere with it—for instance to enforce some invariant that is

specific to our problem. The “minimizer” does as much as it can by calculating and

proposing a new interval; ultimately, however, we are in control over how the iteration

progresses. (For the textbook example used here, this doesn’t matter, but it makes all the

difference when you are doing serious numerical analysis on real problems!)
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/* Minimizing a function with the GSL */

#include <stdio.h>

#include <gsl/gsl_min.h>

double fct( double x, void *params ) {
return x*x*log(x);

}

int main() {
double a = 0.1, b = 1; /* interval which bounds the minimum */

gsl_function f; /* pointer to the function to minimize */

gsl_min_fminimizer *s; /* pointer to the minimizer instance */

f.function = &fct; /* the function to minimize */

f.params = NULL; /* no additional parameters needed */

/* allocate the minimizer, choosing a particular algorithm */

s = gsl_min_fminimizer_alloc( gsl_min_fminimizer_goldensection );

/* initialize the minimizer with a function an an initial interval */

gsl_min_fminimizer_set( s, &f, (a+b)/2.0, a, b );

while ( b-a > 1.e-6 ) {
/* perform one minimization step */

gsl_min_fminimizer_iterate( s );

/* obtain the new bounding interval */

a = gsl_min_fminimizer_x_lower( s );

b = gsl_min_fminimizer_x_upper( s );

printf( "%f\t%f\n", a, b );

}

printf( "Minimum Position: %f\tValue: %f\n",
gsl_min_fminimizer_x_minimum(s), gsl_min_fminimizer_f_minimum(s) );

gsl_min_fminimizer_free( s );

return 0;

}

Obviously, we have only touched on the GSL. My primary intention in this section was to

give you a sense for the way the GSL is designed and for what kinds of considerations it

incorporates. The list of features is extensive—consult the documentation for more

information.

Further Reading
• Guesstimation: Solving the World’s Problems on the Back of a Cocktail Napkin. Lawrence

Weinstein and John A. Adam. Princeton University Press. 2008.
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This little book contains about a hundred guesstimation problems (with solutions!)

from all walks of life. If you are looking for ideas to get you started, look no further.

• Programming Pearls. Jon Bentley. 2nd ed., Addison-Wesley. 1999; also, More

Programming Pearls: Confessions of a Coder. Jon Bentley. Addison-Wesley. 1989.

These two volumes of reprinted magazine columns are delightful to read, although (or

because) they breathe the somewhat dated atmosphere of the old Bell Labs. Both

volumes contain chapters on guesstimation problems in a programming context.

• Back-of-the-Envelope Physics. Clifford E. Swartz. Johns Hopkins University Press. 2003.

Physicists regard themselves as the inventors of back-of-the-envelope calculations. This

book contains a set of examples from introductory physics (with solutions).

• The Flying Circus of Physics. Jearl Walker. 2nd ed., Wiley. 2006.

If you’d like some hints on how to take an interest in the world around you, try this

book. It contains hundreds of everyday observations and challenges you to provide an

explanation for each. Why are dried coffee stains always darker around the rim? Why

are shower curtains pulled inward? Remarkably, many of these observations are still

not fully understood! (You might also want to check out the rather different and more

challenging first edition.)

• Pocket Ref. Thomas J. Glover. 3rd ed., Sequoia Publishing. 2009.

This small book is an extreme example of the “lookup” model. It seems to contain

almost everything: strength of wood beams, electrical wiring charts, properties of

materials, planetary data, first aid, military insignia, and sizing charts for clothing. It

also shows the limitations of an overcomplete collection of trivia: I simply don’t find it

all that useful, but it is interesting for the breadth of topics covered.
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C H A P T E R E I G H T

Models from Scaling Arguments

AFTER FAMILIARIZING YOURSELF WITH THE DATA THROUGH PLOTS AND GRAPHS, THE NEXT STEP IS TO START

building a model for the data. The meaning of the word “model” is quite hazy, and I don’t

want to spend much time and effort attempting to define this concept in an abstract way.

For our purposes, a model is a mathematical description of the data that ideally is guided

by our understanding of the system under consideration and that relates the various

variables of the system to each other: a “formula.”

Models

Models like this are incredibly important. It is at this point that we go from the merely

descriptive (plots and graphs) to the prescriptive: having a model allows us to predict what

the system will do under a certain set of conditions. Furthermore, a good or truly useful

model—because it helps us to understand how the system works—allows us to do so

without resorting to the model itself or having to evaluate any particular formula

explicitly. A good model ties the different variables that control the system together in

such a way that we can see how varying any one of them will influence the outcome. It is

this use of models—as an aide to or expression of our understanding—that is the most

important one. (Of course, we must still evaluate the model formulas explicitly in order to

obtain actual numbers for a specific prediction.)

I should point out that this view of models and what they can do is not universal, and you

will find the term used quite differently elsewhere. For instance, statistical models (and

this includes machine-learning models) are much more descriptive: they do not purport

to explain the observed behavior in the way just described. Instead, their purpose is to

predict expected outcomes with the greatest level of accuracy possible (numbers in,
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numbers out). In contrast, my training is in theoretical physics, where the development of

conceptual understanding of the observed behavior is the ultimate goal. I will use all

available information about the system and how it works (or how I suspect it works!)

wherever I can; I don’t restrict myself to using only the information contained in the data

itself. (This is a practice that statisticians traditionally frown upon, because it constitutes a

form of “pollution” of the data. They may very well be right, but my purpose is different: I

don’t want to understand the data, I want to understand the system!) At the same time, I

don’t consider the absolute accuracy of a model paramount: a model that yields only

order-of-magnitude accuracy but helps me understand the system’s behavior (so that I

can, for instance, make informed trade-off decisions) is much more valuable to me than a

model that yields results with 1 percent accuracy but that is a black box otherwise.

To be clear: there are situations when achieving the best possible accuracy is all that

matters and conceptual understanding is of little interest. (Often these cases involve

repeatable processes in well-understood systems.) If this describes your situation, then

you need to use different methods that are appropriate to your problem scenario.

Modeling

As should be clear from the preceding description, building models is basically a creative

process. As such, it is difficult (if not impossible) to teach: there are no established

techniques or processes for arriving at a useful model in any given scenario. One common

approach to teaching this material is to present a large number of case studies, describing

the problem situations and attempts at modeling them. I have not found this style to be

very effective. First of all, every (nontrivial) problem is different, and tricks and fortuitous

insights that work well for one example rarely carry over to a different problem. Second,

building effective models often requires fairly deep insight into the particulars of the

problem space, so you may end up describing lots of tedious details of the problem when

actually you wanted to talk about the model (or the modeling).

In this chapter, we will take a different approach. Effective modeling is often an exercise

in determining “what to leave out”: good models should be simple (so that they are

workable) yet retain the essential features of the system—certainly those that we are

interested in.

As it turns out, there are a few essential arguments and approximations that prove helpful

again and again to make a complex problem tractable and to identify the dominant

behavior. That’s what I want to talk about.

Using and Misusing Models

Just a reminder: models are not reality. They are descriptions or approximations of

reality—often quite coarse ones! We need to ensure that we only place as much

confidence in a model as is warranted.
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How much confidence is warranted? That depends on how well-tested the model is. If a

model is based on a good theory, agrees well with a wide range of data sets, and has

shown it can predict observations correctly, then our confidence may be quite strong.

At the other extreme are what one might call “pie in the sky” models: ad hoc models,

involving half a dozen (or so) parameters—all of which have been estimated

independently and not verified against real data. The reliability of such a model is highly

dubious: each of the parameters introduces a certain degree of uncertainty, which in

combination can make the results of the model meaningless. Recall the discussion in

Chapter 7: three parameters known to within 10 percent produce an uncertainty in the

final result of 30 percent—and that assumes that the parameters are actually known to

within 10 percent! With four to six parameters that possibly are known, only much less

precisely than 10 percent, the situation is correspondingly worse. (Many business models

fall into this category.)

Also keep in mind that virtually all models have only a limited region of validity. If you try

to apply an existing model to a drastically different situation or use input values that are

very different from those that you used to build the model, then you may well find that

the model makes poor predictions. Be sure to check that the assumptions on which the

model is based are actually fulfilled for each application that you have in mind!

Arguments from Scale

Next to the local stadium there is a large, open parking lot. During game days, the parking

lot is filled with cars, and—for obvious reasons—a line of portable toilets is set up all along

one of the edges of the parking lot. This poses an interesting balancing problem: will this

particular arrangement work for all situations, no matter how large the parking lot in

question?

The answer is no. The number of people in the parking lot grows with the area of the

parking lot, which grows with the square of the edge length (i.e., it “scales as” L2); but the

number of toilets is proportional to the edge length itself (so it scales as L). Therefore, as

we make the parking lot bigger and bigger, there comes a point where the number of

people overwhelms the number of available facilities. Guaranteed.

Scaling Arguments

This kind of reasoning is an example of a scaling argument. Scaling arguments try to

capture how some quantity of interest depends on a control parameter. In particular, a

scaling argument describes how the output quantity will change as the control parameter

changes. Scaling arguments are a particularly fruitful way to arrive at symbolic

expressions for phenomena (“formulas”) that can be manipulated analytically.

You should have observed that the expressions I gave in the introductory example were

not “dimensionally consistent.” We had people expressed as the square of a length and
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toilets expressed as length—what is going on here? Nothing, I merely omitted some detail

that was not relevant for the argument I tried to make. A car takes up some amount of

space on a parking lot; hence given the size of the parking lot (its area), we can figure out

how many cars it can accommodate. Each car seats on average two people (on a game

day), so we can figure out the number of people as well. Each person has a certain

probability of using a bathroom during the duration of the game and will spend a certain

number of minutes there. Given all these parameters, we can figure out the required

“toilet availability minutes.” We can make a similar argument to find the “availability

minutes” provided by the installed facilities. Observe that none of these parameters

depend on the size of the parking lot: they are constants. Therefore, we don’t need to

worry about them if all we want to determine is whether this particular arrangement

(with toilets all along one edge, but nowhere else) will work for parking lots of any size.

(It is a widely followed convention to use the tilde, as in A ∼ B, to express that A “scales

as” B, where A and B do not necessarily have the same dimensions.)

On the other hand, if we actually want to know the exact number of toilets required for a

specific parking lot size, then we do need to worry about these factors and try to obtain

the best possible estimates for them.

Because scaling arguments free us from having to think about pesky numerical factors,

they provide such a convenient and powerful way to begin the modeling process. At the

beginning, when things are most uncertain and our understanding of the system is least

developed, they free us from having to worry about low-level details (e.g., how long does

the average person spend in the bathroom?) and instead help us concentrate on the

system’s overall behavior. Once the big picture has become clearer (and if the model still

seems worth pursuing), we may want to derive some actual numbers from it as well. Only

at this point do we need to concern ourselves with numerical constants, which we must

either estimate or derive from available data.

A recurring challenge with scaling models is to find the correct scales. For example, we

implicitly assumed that the parking lot was square (or at least nearly so) and would

remain that shape as it grew. But if the parking lot were growing in one direction only

(i.e., becoming longer and longer, while staying the same width), then its area would no

longer scale as L2 but instead scale as L, where L is now the “long” side of the lot. This

changes the argument, for if the portable toilets were located along the long side of the lot

then the balance between people and available facilities would be the same no matter

how large the lot became! On the other hand, if the facilities were set up along the short

side, then their number would remain constant while the long side grew, resulting again

in an imbalanced situation.

Finding the correct scales is a bit of an experience issue—the important point here is that

it is not as simple as saying: “It’s an area, therefore it must scale as length squared.” It

depends on the shape of the area and on which of its lengths controls the size.
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F I G U R E 8-1. Heights and weights of a group of middle-school students.

The parking lot example demonstrates one typical application of high-level scaling

arguments: what I call a “no-go argument.” Even without any specific numbers, the

scaling behavior alone was enough to determine that this particular arrangement of toilets

to visitors will break down at some point.

Example: A Dimensional Argument

Figure 8-1 shows the heights and weights of a class of female middle-school students.*

Also displayed is the function m = 0.84h − 84.0, where m stands for the mass (or weight)

and h for the height. The fit seems to be quite close—is this a good model?

The answer is no, because the model makes unreasonable predictions. Look at it: the

model suggests that students have no weight unless they are at least 84 centimeters

(almost 3 feet) tall; if they were shorter, their weight would be negative. Clearly, this model

is no good (although it does describe the data over the range shown quite well). We expect

that people who have no height also have no weight, and our model should reflect that.

Rather than a model of the form ax + b, we might instead try axb, because this is the

simplest function that gives the expected result for x = 0.

*A description of this data set can be found in A Handbook of Small Data Sets. David J. Hand, Fergus Daly,
K. McConway, D. Lunn, and E. Ostrowski. Chapman & Hall/CRC. 1993.
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F I G U R E 8-2. A double logarithmic plot of the data from Figure 8-1. The cubic function m = ah3 seems to describe the
data much better than the linear function m = ah.

Figure 8-2 shows the same data but on a double logarithmic plot. Also indicated are

functions of the form y = ax and y = ax3. The cubic function ax3 seems to represent the

data quite well—certainly better than the linear function.

But this makes utmost sense! The weight of a body is proportional to its volume—that is, to

height times width times depth or h · w · d. Since body proportions are pretty much the

same for all humans (i.e., a person who is twice as tall as another will have shoulders that

are twice as wide, too), it follows that the volume of a person’s body (and hence its mass)

scales as the third power of the height: mass ∼ height3.

Figure 8-3 shows the data one more time and together with the model m = 1.25 · 10−5h3.

Notice that the model makes reasonable predictions even for values outside the range of

available data points, as you can see by comparing the model predictions with the average

body measurements for some different age groups. (The figure also shows the possible

limitations of a model that is built using less than perfectly representative data: the model

underestimates adult weights because middle-school students are relatively light for their

size. In contrast, two-year-olds are notoriously “chubby.”)

Nevertheless, this is a very successful model. On the one hand, although based on very

little data, the model successfully predicts the weight to within 20 percent accuracy over a

range of almost two orders of magnitude in height. On the other hand, and arguably more

importantly, it captures the general relationship between body height and weight—a

relationship that makes sense but that we might not necessarily have guessed without

looking at the data.
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F I G U R E 8-3. The data from Figure 8-1, together with the cubic model and the linear approximation to this model around
h = 150 cm. Note that the approximation is good over the range of the actual data set but is wildly off farther away from it.

The last question you may ask is why the initial description, m = 0.84x − 84 in Figure 8-1

seemed so good. The answer is that this is exactly the linear approximation to the correct

model, m = 1.25 · 10−5h3, near h = 150 cm. (See Appendix B.) As with all linear

approximations, it works well in a small region but fails for values farther away.

Example: An Optimization Problem

Another application of scaling arguments is to cast a question as an optimization problem.

Consider a group of people scheduled to perform some task (say, a programming team).

The amount of work that this group can perform in a fixed amount of time (its

“throughput”) is obviously proportional to the number n of people on the team: ∼ n.

However, the members of the team will have to coordinate with each other. Let’s assume

that each member of the team needs to talk to every other member of the team at least

once a day. This implies a communication overhead that scales the square of the number

of people: ∼ −n2. (The minus sign indicates that the communication overhead results in a

loss in throughput.) This argument alone is enough to show that for this task, there is an

optimal number of people for which the realized productivity will be highest. (Also see

Figure 8-4.)

To find the optimal staffing level, we want to maximize the productivity P with respect to

the number of workers on the team n:

P(n) = cn − dn2
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F I G U R E 8-4. The work achievable by a team as a function of its size: the raw amount of work that can be accomplished
grows with the team size, but the communication overhead grows even faster, which leads to an optimal team size.

where c is the number of minutes each person can contribute during a regular workday,

and d is the effective number of minutes consumed by each communication event. (I’ll

return to the cautious “effective” modifier shortly.)

To find the maximum, we take the derivative of P(n) with respect to n, set it equal to 0,

and solve for n (see Appendix B). The result is:

noptimal = c

2d

Clearly, as the time consumed by each communication event d grows larger, the optimal

team size shrinks.

If we now wish to find an actual number for the optimal staffing level, then we need to

worry about the numerical factors, and this is where the “effective” comes in. The total

number of hours each person can put in during a regular workday is easy to estimate

(8 hours at 60 minutes, less time for diversions), but the amount of time spent in a single

communication event is more difficult to determine. There are also additional effects that I

would lump into the “effective” parameter: for example, not everybody on the team needs

to talk to everybody else. Adjustments like this can be lumped into the parameter d which

increasingly turns it into a synthetic parameter and less one that can be measured directly.

Example: A Cost Model

Models don’t have to be particularly complicated to provide important insights. I

remember a situation where we were trying to improve the operation of a manufacturing

environment. One particular job was performed on a special machine that had to be
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retooled for each different type of item to be produced. First the machine would be set up

(which took about 5 to 10 minutes), and then a worker would operate the machine to

produce a batch of 150 to 200 identical items. The whole cycle lasted a bit longer than an

hour and a half to complete the batch, and then the machine was retooled for the next

batch.

The retooling part of the cycle was a constant source of management frustration: for

10 minutes (while the machine was being set up), nothing seemed to be happening.

Wasted time! (In manufacturing, productivity—defined as “units per hour”—is the most

closely watched metric.) Consequently, there had been a long string of process

improvement projects dedicated to making the retooling part more efficient and thereby

faster. By the time I arrived, it had been streamlined very well. Nevertheless, there were

constant efforts underway to reduce the time it took—after all, the sight of the machine

sitting idle for 10 minutes seemed to be all the proof that was needed.

It is interesting to set up a minimal cost model for this process. The relevant quantity to

study is “minutes per unit.” This is essentially the inverse of the productivity, but I find it

easier to think in terms of the time it takes to produce a single unit than the other way

around. Also note that “time per unit” equates to “cost per unit” after we take the hourly

wage into account. Thus, the time per unit is the time T it takes to produce an entire batch,

divided by the number of items n in the batch. The total processing time itself consists of

the setup time T1 and n times the amount of time t required to produce a single item:

T

n
= T1 + nt

n

= T1

n
+ t

The first term on the righthand side is the amount of the setup time that can be attributed

to a single item; the second term, of course, is the time it takes to actually produce the

item. The larger the batch size, the smaller the contribution of the setup time to the cost of

each item as the setup time is “amortized” over more units.

This is one of those situations where the numerical factors actually matter. We know that

T1 is in the range of 300–600 seconds, and that n is between 150 and 200, so that the

setup time per item, T1/n, is between 1–4 seconds. We can also find the time t required to

actually produce a single item if we recall that the cycle time for the entire batch was

about 90 minutes; therefore t = 90 · 60/n, which is about 30 seconds per item. In other

words, the setup time that caused management so much grief actually accounted for less

than 10 percent of the total time to produce an item!

But we aren’t finished yet. Let’s assume that, through some strenuous effort, we are able

to reduce the setup time by 10 percent. (Not very likely, given that this part of the process

had already received a lot of attention, but let’s assume—best case!) This would mean that

we can reduce the setup time per item to 1–3.5 seconds. However, this means that the total

time per item is reduced by only 1 or 2 percent! This is the kind of efficiency gain that
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makes sense only in very, very controlled situations where everything else is completely

optimized. In contrast, a 10 percent reduction in t , the actual work time per item, would

result in (almost) a 10 percent improvement in overall productivity (because the amount

of time that it takes to produce an item is so much greater than the fraction of the setup

time attributable to a single item).

We can see this in Figure 8-5 which shows the “loaded” time per unit (including the setup

time) for two typical values of the setup time as a function of the number of items

produced in a single batch. Although the setup time contributes significantly to the

per-item time when there are fewer than about 50 items per batch, its effect is very small

for batch sizes of 150 or more. For batches of this size, the time it takes to actually make an

item dominates the time to retool the machine.

The story is still not finished. We eventually launched a project to look at ways to reduce t

for a change, but it was never strongly supported and shut down at the earliest possible

moment by plant management in favor of a project to look at, you guessed it, the setup

time! The sight of the machine sitting idle for 10 minutes was more than any

self-respecting plant manager could bear.

Optional: Scaling Arguments Versus Dimensional Analysis

Scaling arguments may seem similar to another concept you may have heard of:

dimensional analysis. Although they are related, they are really quite different. Scaling

concepts, as introduced here, are based on our intuition of how the system behaves and

are a way to capture this intuition in a mathematical expression.
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Dimensional analysis, in contrast, applies to physical systems, which are described by a

number of quantities that have different physical dimensions, such as length, mass, time, or

temperature. Because equations describing a physical system must be dimensionally

consistent, we can try to deduce the form of these equations by forming dimensionally

consistent combinations of the relevant variables.

Let’s look at an example. Everybody is familiar with the phenomenon of air resistance, or

drag: there is a force F that acts to slow a moving body down. It seems reasonable to

assume that this force depends on the cross-sectional area of the body A and the speed (or

velocity) v. But it must also depend on some property of the medium (air, in this case)

through which the body moves. The most basic property is the density ρ, which is the

mass (in grams or kilograms) per volume (in cubic centimeters or meters):

F = f (A, v, ρ)

Here, f (x, y, z) is an as-yet-unknown function.

Force has units of mass · length2
/ 2 2

/time,

and density has units of mass/length3. We can now try to combine A, v, and ρ to form a

combination that has the same dimensions as force. A little experimentation leads us to:

F = cρ Av2

where c is a pure (dimensionless) number. This equation expresses the well-known result

that air resistance increases with the square of the speed. Note that we arrived at it using

purely dimensional arguments without any insight into the physical mechanisms at work.

This form of reasoning has a certain kind of magic to it: why did we choose these specific

quantities? Why did we not include the viscosity of air, the ambient air pressure, the

temperature, or the length of the body? The answer is (mostly) physical intuition. The

viscosity of air is small (viscosity measures the resistance to shear stress, which is the force

transmitted by a fluid captured between parallel plates moving parallel to each other but

in opposite directions—clearly, not a large effect for air at macroscopic length scales). The

pressure enters indirectly through the density (at constant temperature, according to the

ideal gas law). And the length of the body is hidden in the numerical factor c, which

depends on the shape of the body and therefore on the ratio of the cross-sectional radius√
A to the length. In summary: it is impressive how far we came using only very simple

arguments, but it is hard to overcome a certain level of discomfort entirely.

Methods of dimensional analysis appear less arbitrary when the governing equations are

known. If this is the case, then we can use dimensional arguments to reduce the number

of independently variable quantities. For example: assume that we already know the drag

force is described by F = cρ Av2. Suppose further that we want to perform experiments to

determine c for various bodies by measuring the drag force on them under various

conditions. Naively, it might appear as if we had to map out the full three-dimensional
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parameter space by making measurements for all combinations of (ρ, A, v). But these

three parameters only occur in the combination γ = ρ Av2, therefore it is sufficient to run

a single series of tests that varies γ over the range of values that we are interested in. This

constitutes a significant simplification!

Dimensional analysis relies on dimensional consistency and therefore works best for

physical and engineering systems, which are described by independently measurable,

dimensional quantities. It is particularly prevalent in areas such as fluid dynamics, where

the number of variables is especially high, and the physical laws are complicated and often

not well understood. It is much less applicable in economic or social settings, where there

are fewer (if any) rigorously established, dimensionally consistent relationships.

Other Arguments

There are other arguments that can be useful when attempting to formulate models. They

come from the physical sciences, and (like dimensional analysis) they may not work as

well in social and economic settings, which are not governed by strict physical laws.

Conservation laws
Conservation laws tell us that some quantity does not change over time. The

best-known example is the law of conservation of energy. Conservation laws can be

very powerful (in particular when they are exact, as opposed to only approximate) but

may not be available: after all, the entire idea of economic growth and (up to a point)

manufacturing itself rest on the assumption that more comes out than is being put in!

Symmetries
Symmetries, too, can be helpful in reducing complexity. For example, if an apparently

two-dimensional system exhibits the symmetry of a circle, then I know that I’m

dealing with a one-dimensional problem: any variation can occur only in the radial

direction, since a circle looks the same in all directions. When looking for symmetries,

don’t restrict yourself to geometric considerations—for instance, items entering and

leaving a buffer at the same rate exhibit a form of symmetry. In this case, you might

only need to solve one of the two processes explicitly while treating the other as a

mirror image of the first.

Extreme-value considerations
How does the system behave at the extremes? If there are no customers, messages,

orders, or items? If there are infinitely many? What if the items are extremely large or

vanishingly small, or if we wait an infinite amount of time? Such considerations can

help to “sanity check” an existing model, but they can also provide inspiration when

first establishing a model. Limiting cases are often easier to treat because only one

effect dominates, which eliminates the complexities arising out of the interplay of

different factors.
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Mean-Field Approximations

The term mean-field approximation comes from statistical physics, but I use it only as a

convenient and intuitive expression for a much more general approximation scheme.

Statistical physics deals with large systems of interacting particles, such as gas molecules

in a piston or atoms on a crystal lattice. These systems are extraordinarily complicated

because every particle interacts with every other particle. If you move one of the particles,

then this will affect all the other particles, and so they will move, too; but their movement

will, in turn, influence the first particle that we started with! Finding exact solutions for

such large, coupled systems is often impossible. To make progress, we ignore the

individual interactions between explicit pairs of particles. Instead, we assume that the test

particle experiences a field, the “mean-field,” that captures the “average” effect of all the

other particles.

For example, consider N gas atoms in a bottle of volume V . We may be interested to

understand how often two gas atoms collide with each other. To calculate that number

exactly, we would have to follow every single atom over time to see whether it bumps

into any of the other atoms. This is obviously very difficult, and it certainly seems as if we

would need to keep track of a whole lot of detail that should be unnecessary if we are

only interested in macroscopic properties.

Realizing this, we can consider this gas in a mean-field approximation: the probability that

our test particle collides with another particle should be proportional to the average

density of particles in that bottle ρ = N/V . Since there are N particles in the bottle, we

expect that the number of collisions (over some time frame) will be proportional to Nρ.

This is good enough to start making some predictions—for example, note that this

expression is proportional to N 2. Doubling the number of particles in the bottle therefore

means that the number of collisions will grow by a factor of 4. In contrast, reducing the

volume of the container by half will increase the number of collisions only by a factor

of 2.

You will have noticed that in the previous argument, I omitted lots of detail—for example,

any reference to the time frame over which I intend to count collisions. There is also a

constant of proportionality missing: Nρ is not really the number of collisions but is merely

proportional to it. But if all I care about is understanding how the number of collisions

depends on the two variables I consider explicitly (i.e., on N and V ), then I don’t need to

worry about any of these details. The argument so far is sufficient to work out how the

number of collisions scales with both N and V .

You can see how mean-field approximations and scaling arguments enhance and support

each other. Let’s step back and look at the concept behind mean-field approximations

more closely.
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T A B L E 8 -1. Mean-field approximations replace an average over functions with functions of averages.

Exact Mean-Field

E[x] = ∑
all outcomes x

F(x)p(x) EMF[x] = F

( ∑
all outcomes x

x p(x)

)

Background and Further Examples

If mean-field approximations were limited to systems of interacting particles, they would

not be of much interest in this book. However, the concept behind them is much more

general and is very widely applicable.

Whenever we want to calculate with a quantity whose values are distributed according to

some probability distribution, we face the challenge that this quantity does not have a

single, fixed value. Instead, it has a whole spectrum of possible values, each more or less

likely according to the probability distribution. Operating with such a quantity is difficult

because at least in principle we have to perform all calculations for each possible outcome

and then weight the result of our calculation by the appropriate probability. At the very

end of the calculation, we eventually form the average (properly weighted according to

the probability factors) to arrive at a unique numerical value.

Given the combinatorial explosion of possible outcomes, attempting to perform such a

calculation exactly invariably starts to feel like wading in a quagmire—and that assumes

that the calculation can be carried out exactly at all!

The mean-field approach cuts through this difficulty by performing the average before

embarking on the actual calculation. Rather than working with all possible outcomes (and

averaging them at the end), we determine the average outcome first and then only work

with that value alone. Table 8-1 summarizes the differences.

This may sound formidable, but it is actually something we do all the time. Do you ever

try to estimate how high the bill is going to be when you are waiting in line at the

supermarket? You can do this explicitly—by going through all the items individually and

adding up their prices (approximately) in your head—or you can apply a mean-field

approximation by realizing that the items in your cart represent a sample, drawn “at

random,” from the selection of goods available. In the mean-field approximation, you

would estimate the average single-item price for goods from that store (probably about

$5–$7) and then multiply that value by the number of items in your cart. Note that it

should be much easier to count the items in your cart than to add up their individual

prices explicitly.

This example also highlights the potential pitfalls with mean-field arguments: it will only

be reliable if the average item price is a good estimator. If your cart contains two bottles of

champagne and a rib roast for a party of eight, then an estimate based on a typical item

price of $7 is going to be way off.
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To get a grip on the expected accuracy of a mean-field approximation, we can try to find a

measure for the width of the original distribution (e.g., its standard deviation or

inter-quartile range) and then repeat our calculations after adding (and subtracting) the

width from the mean value. (We may also treat the width as a small perturbation to the

average value and use the perturbation methods discussed in Chapter 7.)

Another example: how many packages does UPS (or any comparable freight carrier) fit

onto a truck (to be clear: I don’t mean a delivery truck, but one of these 53 feet

tractor-trailer long-hauls)? Well, we can estimate the “typical” size of a package as about a

cubic foot (0.33 m3), but it might also be as small as half that or as large as twice that size.

To find an estimate for the number of packages that will fit, we divide the volume of the

truck (17 m long, 2 m wide, 2.5 m high—we can estimate height and width if we realize

that a person can stand upright in these things) by the typical size of a package:

(17 · 2 · 2.5/0.33) ≈ 3,000 packages. Because the volume (not the length!) of each package

might vary by as much as a factor of 2, we end up with lower and upper bounds of

(respectively) 1,500 to 6,000 packages.

This calculation makes use of the mean-field idea twice. First, we work with the “average”

package size. Second, we don’t worry about the actual spatial packing of boxes inside the

truck; instead, we pretend that we can reshape them like putty. (This also is a form of

“mean-field” approximation.)

I hope you appreciate how the mean-field idea has turned this problem from almost

impossibly difficult to trivial—and I don’t just mean with regard to the actual computation

and the eventual numerical result; but more importantly in the way we thought about it.

Rather than getting stuck in the enormous technical difficulties of working out different

stacking orders for packages of different sizes, the mean-field notion reduced the problem

description to the most fundamental question: into how many small pieces can we divide

a large volume? (And if you think that all of this is rather trivial, I fully agree with

you—but the “trivial” can easily be overlooked when one is presented with a complex

problem in all of its ugly detail. Trying to find mean-field descriptions helps strip away

nonessential detail and helps reveal the fundamental questions at stake.)

One common feature of mean-field solutions is that they frequently violate some of the

system’s properties. For example, at Amazon, we would often consider the typical order to

contain 1.7 items, of which 0.9 were books, 0.3 were CDs, and the remaining 0.5 items

were other stuff (or whatever the numbers were). This is obviously nonsense, but don’t

let this disturb you! Just carry on as if nothing happened, and work out the correct

breakdown of things at the end. This approach doesn’t always work: you’ll still have to

assign a whole person to a job, even it requires only one tenth of a full-time worker.

However, this kind of argument is often sufficient to work out the general behavior of

things.

There is a story involving Richard Feynman working on the Connection Machine, one of

the earliest massively parallel supercomputers. All the other people on the team were
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computer scientists, and when a certain problem came up, they tried to solve it using

discrete methods and exact enumerations—and got stuck with it. In contrast, Feynman

worked with quantities such as “the average number of 1 bits in a message address”

(clearly a mean-field approach). This allowed him to cast the problem in terms of partial

differential equations, which were easier to solve.*

Common Time-Evolution Scenarios

Sometimes we can propose a model based on the way the system under consideration

evolves. The “proper” way to do this is to write down a differential equation that describes

the system (in fact, this is exactly what the term “modeling” often means) and then

proceed to solve it, but that would take us too far afield. (Differential equations relate the

change in some quantity, expressed through its derivative, to the quantity itself. These

equations can be solved to yield the quantity for all times.)

However, there are a few scenarios so fundamental and so common that we can go ahead

and simply write down the solution in its final form. (I’ll give a few notes on the

derivation as well, but it’s the solutions to these differential equations that should be

committed to memory.)

Unconstrained Growth and Decay Phenomena

The simplest case concerns pure growth (or death) processes. If the rate of change of some

quantity is constant in time, then the quantity will follow an exponential growth (or

decay). Consider a cell culture. At every time step, a certain fraction of all cells in existence

at that time step will split (i.e., generate offspring). Here the fraction of cells that participate

in the population growth at every time step is constant in time; however, because the

population itself grows, the total number of new cells at each time step is larger than at

the previous time step. Many pure growth processes exhibit this behavior—compound

interest on a monetary amount is another example (see Chapter 17).

Pure death processes work similarly, only in this case a constant fraction of the population

dies or disappears at each time step. Radioactive decay is probably the best-known

example; but another one is the attenuation of light in a transparent medium (such as

water). For every unit of length that light penetrates into the medium, its intensity is

reduced by a constant fraction, which gives rise to the same exponential behavior. In this

case, the independent variable is space, not time, but the argument is exactly the same.

Mathematically, we can express the behavior of a cell culture as follows: if N (t) is the

number of cells alive at time t and if a fraction f of these cells split into new cells, then the

*This story is reported in “Richard Feynman and the Connection Machine.” Daniel Hillis. Physics Today
42 (February 1989), p. 78. The paper can also be found on the Web.
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number of cells at the next time step t + 1 will be:

N (t + 1) = N (t) + f N (t)

The first term on the righthand side comes from the cells which were already alive at time

t , whereas the second term on the right comes from the “new” cells created at t . We can

now rewrite this equation as follows:

N (t + 1) − N (t) = f N (t)

This is a difference equation. If we can assume that the time “step” is very small, we can

replace the lefthand side with the derivative of N (this process is not always quite as

simple as in this example—you may want to check Appendix B for more details on

difference and differential quotients):

d

dt
N = 1

T
N (t)

This equation is true for growth processes; for pure death processes instead we have an

additional minus sign on the righthand side.

These equations can be solved or integrated explicitly, and their solutions are:

N (t) = N0 et/T Pure birth process

N (t) = N0 e−t/T Pure death process

Instead of using the “fraction” f of new or dying cells that we used in the difference

equation, here we employ a characteristic time scale T , which is the time over which the

number of cells changes by a factor e or 1/e, where e = 2.71828 . . . . The value for this

time scale will depend on the actual system: for cells that multiply rapidly, T will be

smaller than for another species that grows more slowly. Notice that such a scale factor

must be there to make the argument of the exponential function dimensionally

consistent! Furthermore, the parameter N0 is the number of cells in existence at the

beginning t = 0.

Exponential processes (either birth or death) are very important, but they never last very

long. In a pure death process, the population very quickly dwindles to practically nothing.

At t = 3T , only 5 percent of the original population are left; at t = 10T , less than 1 in

10,000 of the original cells has survived; at t = 20T , we are down to one in a billion. In

other words, after a time that is a small multiple of T , the population will have all but

disappeared.

Pure birth processes face the opposite problem: the population grows so quickly that, after

a very short while, it will exceed the capacity of its environment. This is so generally true

that it is worth emphasizing: exponential growth is not sustainable over extended time

periods. A process may start out as exponential, but before long, it must and will saturate.

That brings us to the next scenario.
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Constrained Growth: The Logistic Equation

Pure birth processes never continue for very long: the population quickly grows to a size

that is unsustainable, and then the growth slows. A common model that takes this

behavior into account assumes that the members of the population start to “crowd” each

other, possibly competing for some shared resource such as food or territory.

Mathematically, this can be expressed as follows:

d

dt
N = λN (K − N ) λ, K > 0 fixed

The first term on the righthand side (which equals λK N) is the same as in the exponential

growth equation. By itself, it would lead to an exponentially growing population

N (t) = C exp(λK t). But the second term (−λN 2) counteracts this: it is negative, so its

effect is to reduce the population; and it is proportional to N 2, so it grows more strongly as

N becomes large. (You can motivate the form of this term by observing that it measures

the number of collisions between members of the population and therefore expresses the

“crowding” effect.)

This equation is known as the logistic differential equation, and its solution is the logistic

function:

N (t) = K

1 +
(

K
N0

− 1
)

e−λK t

This is a complicated function that depends on three parameters:

λ The characteristic growth rate

K The carrying capacity K = N (t → ∞)

N0 The initial number N0 = N (t = 0) of cells

Compared to a pure (exponential) growth process, the appearance of the parameter K is

new. It stands for the system’s “carrying capacity”—that is the maximum number of cells

that the environment can support. You should convince yourself that the logistic function

indeed tends to K as t becomes large. (You will find different forms of this function

elsewhere and with different parameters, but the form given here is the most useful one.)

Figure 8-6 shows the logistic function for a selection of parameter values.

I should point out that determining values for the three parameters from data can be

extraordinarily difficult especially when the only data points available are those to the left

of the inflection point (the point with maximum slope, about halfway between N0 and

K ). Many different combinations of λ, K , and N0 may seem to fit the data about equally

well. In particular, it is difficult to assess K from early-stage data alone. You may want to

try to obtain an independent estimate (even a very rough one) for the carrying capacity

and use it when determining the remaining parameters from the data.
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F I G U R E 8-6. Logistic growth for different values of the growth rate λ. The initial population N0 and the overall carrying
capacity K are the same in all cases.

The logistic function is the most common model for all growth processes that exhibit some

form of saturation. For example, infection rates for contagious diseases can be modeled

using the logistic equation, as can the approach to equilibrium for cache hit rates.

Oscillations

The last of the common dynamical behaviors occurs in systems in which some quantity

has an equilibrium value and that respond to excursions from that equilibrium position

with a restoring effect, which drives the system back to the equilibrium position. If the

system does not come to rest in the equilibrium position but instead overshoots, then the

process will continue, going back and forth across the neutral position—in other words,

the system undergoes oscillation. Oscillations occur in many physical systems (from tides to

grandfather clocks to molecular bonds), but the “restore and overshoot” phenomenon is

much more general. In fact, oscillations can be found almost everywhere: the pendulum

that has “swung the other way” is proverbial, from the political scene to personal

relationships.

Oscillations are periodic: the system undergoes the same motion again and again. The

simplest functions that exhibit this kind of behavior are the trigonometric functions sin(x)

and cos(x) (also see Appendix B), therefore we can express any periodic behavior, at least

approximately, in terms of sines or cosines. Sine and cosine are periodic with period 2π .

To express an oscillation with period D, we therefore need to rescale x by 2π/D. It may

also be necessary to shift x by a phase factor φ: an expression like sin(2π(x − φ)/D) will at

least approximately describe any periodic data set.
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F I G U R E 8-7. The sawtooth function can be composed out of sine functions and their higher harmonics.

But it gets better: a powerful theorem states that every periodic function, no matter how

crazy, can be written as a (possibly infinite) combination of trigonometric functions called

a Fourier series. A Fourier series looks like this:

f (x) =
∞∑

n=1

an sin
(

2πn
x

D

)

where I have assumed that φ = 0. The important point is that only integer multiples of

2π/D are being used in the argument of the sine—the so-called “higher harmonics” of

sin(2πx/D). We need to adjust the coefficients an to describe a data set. Although the

series is in principle infinite, we can usually get reasonably good results by truncating it

after only a few terms. (We saw an example for this in Chapter 6, where we used the first

two terms to describe the variation in CO2 concentration over Mauna Loa on Hawaii.)

If the function is known exactly, then the coefficients an can be worked out. For the

sawtooth function (see Figure 8-7), the coefficients are simply 1, 1/2, 1/3, 1/4, . . . with

alternating signs:

f (x) = sin x

1
− sin 2x

2
+ sin 3x

3
∓ · · ·

You can see that the series converges quite rapidly—even for such a crazy, discontinuous

function as the sawtooth.

Case Study: How Many Servers Are Best?

To close out this chapter, let’s discuss an additional simple case study in model building.

182 C H A P T E R E I G H T



O’Reilly-5980006 master October 28, 2010 20:55

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

C
os

t

Servers

Fixed Cost
Expected Loss

Total Cost
Total Cost, Alternative Vendor

F I G U R E 8-8. Costs associated with provisioning a data center, as a function of the number of servers.

Imagine you are deciding how many servers to purchase to power your ecommerce site.

Each server costs you a fixed amount E per day—this includes both the operational cost

for power and colocation as well as the amortized acquisition cost (i.e., the purchase price

divided by the number of days until the server is obsolete and will be replaced). The total

cost for n servers is therefore nE .

Given the expected traffic, one server should be sufficient to handle the load. However,

each server has a finite probability p of failing on any given day. If your site goes down,

you expect to lose B in profit before a new server can be provisioned and brought back

online. Therefore, the expected loss when using a single server is pB.

Of course, you can improve the reliability of your site by using multiple servers. If you

have n servers, then your site will be down only if all of them fail simultaneously. The

probability for this event is pn . (Note that pn < p, since p is a probability and therefore

p < 1.)

The total daily cost C that you incur can now be written as the combination of the fixed

cost nE and the expected loss due to server downtime pn B (also see Figure 8-8):

C = pn B + nE

Given p, B, and E , you would like to minimize this cost with respect to the number of

servers n. We can do this either analytically (by taking the derivative of C with respect to

n) or numerically.

But wait, there’s more! Suppose we also have an alternative proposal to provision our

data center with servers from a different vendor. We know that their reliability q is worse
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(so that q > p), but their price F is significantly lower (F � E). How does this variant

compare to the previous one?

The answer depends on the values for p, B, and E . To make a decision, we must evaluate

not only the location of the minimum in the total cost (i.e., the number of servers required)

but also the actual value of the total cost at the minimum position. Figure 8-8 includes the

total cost for the alternative proposal that uses less reliable but much cheaper servers.

Although we need more servers under this proposal, the total cost is nevertheless lower

than in the first one.

(We can go even further: how about a mix of different servers? This scenario, too, we can

model in a similar fashion and evaluate it against its alternatives.)

Why Modeling?

Why worry about modeling in a book on data analysis? It seems we rarely have touched

any actual data in the examples of this chapter.

It all depends on your goals when working with data. If all you want to do is to describe it,

extract some features, or even decompose it fully into its constituent parts, then the

“analytic” methods of graphical and data analysis will suffice. However, if you intend to

use the data to develop an understanding of the system that produced the data, then

looking at the data itself will be only the first (although important) step.

I consider conceptual modeling to be extremely important, because it is here that we go

from the descriptive to the prescriptive. A conceptual model by itself may well be the most

valuable outcome of an analysis. But even if not, it will at the very least enhance the

purely analytical part of our work, because a conceptual model will lead us to additional

hypothesis and thereby suggest additional ways to look at and study the data in an

iterative process—in other words, even a purely conceptual model will point us back to

the data but with added insight.

The methods described in this chapter and the next are the techniques that I have found

to be the most practically useful when thinking about data and the processes that

generated it. Whenever looking at data, I always try to understand the system behind it,

and I always use some (if not all) of the methods from these two chapters.

Workshop: Sage

Most of the tools introduced in this book work with numbers, which makes sense given

that we are mostly interested in understanding data. However, there is a different kind of

tool that works with formulas instead: computer algebra systems. The big (commercial)

brand names for such systems have been Maple and Mathematica; in the open source

world, the Sage project (http://www.sagemath.org) has become somewhat of a front runner.
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Sage is an “umbrella” project that attempts to combine several existing open source

projects (SymPy, Maxima, and others) together with some added functionality into a

single, coherent, Python-like environment. Sage places heavy emphasis on features for

number theory and abstract algebra (not exactly everyone’s cup of tea) and also includes

support for numerical calculations and graphics, but in this section we will limit ourselves

to basic calculus and a little linear algebra. (A word of warning: if you are not really

comfortable with calculus, then you probably want to skip the rest of this section. Don’t

worry—it won’t be needed in the rest of the book.)

Once you start Sage, it drops you into a text-based command interpreter (a REPL, or

read-eval-print loop). Sage makes it easy to perform some simple calculations. For

example, let’s define a function and take its derivative:

sage: a, x = var( 'a x' )

sage: f(x) = cos(a*x)

sage: diff( f, x )

x |--> -a*sin(a*x)

In the first line we declare a and x as symbolic variables—so that we can refer to them

later and Sage knows how to handle them. We then define a function using the

“mathematical” notation f(x) = . . . . Only functions defined in this way can be used in

symbolic calculations. (It is also possible to define Python functions using regular Python

syntax, as in def f(x, a): return cos(a*x), but such functions can only be evaluated

numerically.) Finally, we calculate the first derivative of the function just defined.

All the standard calculus operations are available. We can combine functions to obtain

more complex ones, we can find integrals (both definite and indefinite), and we can even

evaluate limits:

sage: # Indefinite integral:

sage: integrate( f(x,a) + a*x^2, x )

1/3*a*x^3 + sin(a*x)/a

sage:

sage: # Definite integral on [0,1]:

sage: integrate( f(x,a) + a*x^2, x, 0, 1 )

1/3*(a^2 + 3*sin(a))/a

sage:

sage: # Definite integral on [0,pi], assigned to function:

sage: g(x,a) = integrate( f(x,a) + a*x^2, x, 0, pi )

sage:

sage: # Evaluate g(x,a) for different a:

sage: g(x,1)

1/3*pi^3

sage: g(x,1/2)

1/6*pi^3 + 2

sage: g(x,0)

----------------------------------------------------------

RuntimeError

(some output omitted...)
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RuntimeError: power::eval(): division by zero

sage: limit( g(x,a), a=0 )

pi

In the next-to-last command, we tried to evaluate an expression that is mathematically

not well defined: the function g(x,a) includes a term of the form sin(πa)/a, which we

can’t evaluate for a = 0 because we can’t divide by zero. However, the limit

lima→0
sin(πa)

a = π exists and is found by the limit() function.

As a final example from calculus, let’s evaluate some Taylor series (the arguments are: the

function to expand, the variable to expand in, the point around which to expand, and the

degree of the desired expansion):

sage: taylor( f(x,a), x, 0, 5 )

1/24*a^4*x^4 - 1/2*a^2*x^2 + 1

sage: taylor( sqrt(1+x), x, 0, 3 )

1/16*x^3 - 1/8*x^2 + 1/2*x + 1

So much for basic calculus. Let’s also visit an example from linear algebra. Suppose we

have the linear system of equations:

ax + by = 1

2x + ay + 3z = 2

b2x − z = a

and that we would like to find those values of (x, y, z) that solve this system. If all the

coefficients were numbers, then we could use a numeric routine to obtain the solution;

but in this case, some coefficients are known only symbolically (as a and b), and we

would like to express the solution in terms of these variables.

Sage can do this for us quite easily:

sage: a, b, x, y, z = var( 'a b x y z' )

sage:

sage: eq1 = a*x + b*y == 1

sage: eq2 = 2*x + a*y + 3*z == 2

sage: eq3 = b^2 - z == a

sage:

sage: solve( [eq1,eq2,eq3], x,y,z )

[[x == (3*b^3 - (3*a + 2)*b + a)/(a^2 - 2*b),

y == -(3*a*b^2 - 3*a^2 - 2*a + 2)/(a^2 - 2*b),

z == b^2 - a]]

As a last example, let’s demonstrate how to calculate the eigenvalues of the following

matrix:

M =

⎛

⎜⎝
a b a

b c b

a b 0

⎞

⎟⎠

Again, if the matrix were given numerically, then we could use a numeric algorithm, but

here we would like to obtain a symbolic solution.
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Again, Sage can do this easily:

sage: m = matrix( [[a,b,a],[b,c,b],[a,b,0]] )

sage: m.eigenvalues()

[-1/18*(-I*sqrt(3) + 1)*(4*a^2 - a*c + 6*b^2 + c^2)/(11/54*a^3 - 7/18*a^2*c + 1/3

*b^2*c + 1/27*c^3 + 1/18*(15*b^2 - c^2)*a + 1/18*sqrt(-5*a^6 - 6*a^4*b^2 + 11*a^2

*b^4 - 5*a^2*c^4 - 32*b^6 + 2*(5*a^3 + 4*a*b^2)*c^3 + (5*a^4 - 62*a^2*b^2 - 4*b^4

)*c^2 - 2*(5*a^5 + 17*a^3*b^2 - 38*a*b^4)*c)*sqrt(3))^(1/3) - 1/2*(I*sqrt(3) + 1)

*(11/54*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18*(15*b^2 - c^2)*a + 1/18*sq

rt(-5*a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^6 + 2*(5*a^3 + 4*a*b^2)*c^3

+ (5*a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^3*b^2 - 38*a*b^4)*c)*sqrt(3

))^(1/3) + 1/3*a + 1/3*c, -1/18*(I*sqrt(3) + 1)*(4*a^2 - a*c + 6*b^2 + c^2)/(11/5

4*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18*(15*b^2 - c^2)*a + 1/18*sqrt(-5*

a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^6 + 2*(5*a^3 + 4*a*b^2)*c^3 + (5*

a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^3*b^2 - 38*a*b^4)*c)*sqrt(3))^(1/

3) - 1/2*(-I*sqrt(3) + 1)*(11/54*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18*(

15*b^2 - c^2)*a + 1/18*sqrt(-5*a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^6

+ 2*(5*a^3 + 4*a*b^2)*c^3 + (5*a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^3*

b^2 - 38*a*b^4)*c)*sqrt(3))^(1/3) + 1/3*a + 1/3*c, 1/3*a + 1/3*c + 1/9*(4*a^2 - a

*c + 6*b^2 + c^2)/(11/54*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18*(15*b^2 -

c^2)*a + 1/18*sqrt(-5*a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^6 + 2*(5*a

^3 + 4*a*b^2)*c^3 + (5*a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^3*b^2 - 38

*a*b^4)*c)*sqrt(3))^(1/3) + (11/54*a^3 - 7/18*a^2*c + 1/3*b^2*c + 1/27*c^3 + 1/18

*(15*b^2 - c^2)*a + 1/18*sqrt(-5*a^6 - 6*a^4*b^2 + 11*a^2*b^4 - 5*a^2*c^4 - 32*b^

6 + 2*(5*a^3 + 4*a*b^2)*c^3 + (5*a^4 - 62*a^2*b^2 - 4*b^4)*c^2 - 2*(5*a^5 + 17*a^

3*b^2 - 38*a*b^4)*c)*sqrt(3))^(1/3)]

Whether these results are useful to us is a different question!

This last example demonstrates something I have found to be quite generally true when

working with computer algebra systems: it can be difficult to find the right kind of

problem for them. Initially, computer algebra systems seem like pure magic, so effortlessly

do they perform tasks that took us years to learn (and that we still get wrong). But as we

move from trivial to more realistic problems, it is often difficult to obtain results that are

actually useful. All too often we end up with a result like the one in the eigenvalue

example, which—although “correct”—simply does not shed much light on the problem

we tried to solve! And before we try manually to simplify an expression like the one for

the eigenvalues, we might be better off solving the entire problem with paper and pencil,

because using paper and pencil, we can can introduce new variables for frequently

occurring terms or even make useful approximations as we go along.

I think computer algebra systems are most useful in scenarios that require the generation

of a very large number of terms (e.g., combinatorial problems), which in the end are

evaluated (numerically or otherwise) entirely by the computer to yield the final result

without providing a “symbolic” solution in the classical sense at all. When these

conditions are fulfilled, computer algebra systems enable you to tackle problems that

would simply not be feasible with paper and pencil. At the same time, you can maintain a

greater level of accuracy because numerical (finite-precision) methods, although still

required to obtain a useful result, are employed only in the final stages of the calculation

(rather than from the outset). Neither of these conditions is fulfilled for relatively
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straightforward ad hoc symbolic manipulations. Despite their immediate “magic” appeal,

computer algebra systems are most useful as specialized tools for specialized tasks!

One final word about the Sage project. As an open source project, it leaves a strange

impression. You first become aware of this when you attempt to download the binary

distribution: it consists of a 500 MB bundle, which unpacks to 2 GB on your disk! When

you investigate what is contained in this huge package, the answer turns out to be

everything. Sage ships with all of its dependencies. It ships with its own copy of all libraries

it requires. It ships with its own copy of R. It ships with its own copy of Python! In short,

it ships with its own copy of everything.

This bundling is partially due to the well-known difficulties with making deeply

numerical software portable, but is also an expression of the fact that Sage is an umbrella

project that tries to combine a wide range of otherwise independent projects. Although I

sincerely appreciate the straightforward pragmatism of this solution, it also feels

heavy-handed and ultimately unsustainable. Personally, it makes me doubt the wisdom of

the entire “all under one roof” approach that is the whole purpose of Sage: if this is what

it takes, then we are probably on the wrong track. In other words, if it is not feasible to

integrate different projects in a more organic way, then perhaps those projects should

remain independent, with the user free to choose which to use.

Further Reading

There are two or three dozen books out there specifically on the topic of modeling, but I

have been disappointed by most of them. Some of the more useful (from the elementary

to the quite advanced) include the following.

• How to Model It: Problem Solving for the Computer Age. A. M. Starfield, K. A. Smith, and

A. L. Bleloch. Interaction Book Company. 1994.

Probably the best elementary introduction to modeling that I am aware of. Ten

(ficticious) case studies are presented and discussed, each demonstrating a different

modeling method. (Available directly from the publisher.)

• An Introduction to Mathematical Modeling. Edward A. Bender. Dover Publications. 2000.

Short and idiosyncratic. A bit dated but still insightful.

• Concepts of Mathematical Modeling. Walter J. Meyer. Dover Publications. 2004.

This book is a general introduction to many of the topics required for mathematical

modeling at an advanced beginner level. It feels more dated than it is, and the

presentation is a bit pedestrian; nevertheless, it contains a lot of accessible, and most of

all practical, material.

• Introduction to the Foundations of Applied Mathematics. Mark H. Holmes. Springer. 2009.

This is one of the few books on modeling that places recurring mathematical

techniques, rather than case studies, at the center of its discussion. Much of the

material is advanced, but the first few chapters contain a careful discussion of
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dimensional analysis and nice introductions to perturbation expansions and

time-evolution scenarios.

• Modeling Complex Systems. Nino Boccara. 2nd ed., Springer. 2010.

This is a book by a physicist (not a mathematician, applied or otherwise), and it

demonstrates how a physicist thinks about building models. The examples are rich, but

mostly of theoretical interest. Conceptually advanced, mathematically not too difficult.

• Practical Applied Mathematics. Sam Howison. Cambridge University Press. 2005.

This is a very advanced book on applied mathematics with a heavy emphasis on partial

differential equations. However, the introductory chapters, though short, provide one

of the most insightful (and witty) discussions of models, modeling, scaling arguments,

and related topics that I have seen.

The following two books are not about the process of modeling. Instead, they provide

examples of modeling in action (with a particular emphasis on scaling arguments):

• The Simple Science of Flight. Henk Tennekes. 2nd ed., MIT Press. 2009.

This is a short yet fascinating book about the physics and engineering of flying, written

at the “popular science” level. The author makes heavy use of scaling laws throughout.

If you are interested in aviation, then you will be interested in this book.

• Scaling Concepts in Polymer Physics. Pierre-Gilles de Gennes. Cornell University Press.

1979.

This is a research monograph on polymer physics and probably not suitable for a

general audience. But the treatment, which relies almost exclusively on a variety of

scaling arguments, is almost elementary. Written by the master of the scaling models.
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C H A P T E R N I N E

Arguments from Probability Models

WHEN MODELING SYSTEMS THAT EXHIBIT SOME FORM OF RANDOMNESS, THE CHALLENGE IN THE MODELING

process is to find a way to handle the resulting uncertainty. We don’t know for sure what

the system will do—there is a range of outcomes, each of which is more or less likely,

according to some probability distribution. Occasionally, it is possible to work out the

exact probabilities for all possible events; however, this quickly becomes very difficult, if

not impossible, as we go from simple (and possibly idealized systems) to real applications.

We need to find ways to simplify life!

In this chapter, I want to take a look at some of the “standard” probability models that

occur frequently in practical problems. I shall also describe some of their properties that

make it possible to reason about them without having to perform explicit calculations for

all possible outcomes. We will see that we can reduce the behavior of many random

systems to their “typical” outcome and a narrow range around that.

This is true for many situations but not for all! Systems characterized by power-law

distribution functions can not be summarized by a narrow regime around a single value,

and you will obtain highly misleading (if not outright wrong) results if you try to handle

such scenarios with standard methods. It is therefore important to recognize this kind of

behavior and to choose appropriate techniques.

The Binomial Distribution and Bernoulli Trials

Bernoulli trials are random trials that can have only two outcomes, commonly called

Success and Failure. Success occurs with probability p, and Failure occurs with probability
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1 − p. We further assume that successive trials are independent and that the probability

parameter p stays constant throughout.

Although this description may sound unreasonably limiting, in fact many different

processes can be expressed in terms of Bernoulli trials. We just have to be sufficiently

creative when defining the class of events that we consider “Successes.” A few examples:

• Define Heads as Success in n successive tosses of a fair coin. In this case, p = 1/2.

• Using fair dice, we can define getting an “ace” as Success and all other outcomes as

Failure. In this case, p = 1/6.

• We could just as well define not getting an “ace” as Success. In this case, p = 5/6.

• Consider an urn that contains b black tokens and r red tokens. If we define drawing a

red token as Success, then repeated drawings (with replacement!) from the urn

constitute Bernoulli trials with p = r/(r + b).

• Toss two identical coins and define obtaining two Heads as Success. Each toss of the

two coins together constitutes a Bernoulli trial with p = 1/4.

As you can see, the restriction to a binary outcome is not really limiting: even a process

that naturally has more than two possible outcomes (such as throwing dice) can be cast in

terms of Bernoulli trials if we restrict the definition of Success appropriately. Furthermore,

as the last example shows, even combinations of events (such as tossing two coins or,

equivalently, two successive tosses of a single coin) can be expressed in terms of Bernoulli

trials.

The restricted nature of Bernoulli trials makes it possible to derive some exact results

(we’ll see some in a moment). More importantly, though, the abstraction forced on us by

the limitations of Bernoulli trials can help to develop simplified conceptual models of a

random process.

Exact Results

The central formula for Bernoulli trials gives the probability of observing k Successes in N trials

with Success probability p, and it is also known as the Binomial distribution (see Figure 9-1):

P(k, N ; p) =
(

N

k

)
pk(1 − p)N−k

This should make good sense: we need to obtain k Successes, each occurring with

probability p, and N − k Failures, each occurring with probability 1 − p. The term:

(
N

k

)
= N !

k!(N − k)!

consisting of a binomial coefficient is combinatorial in nature: it gives the number of distinct

arrangements for k successes and N − k failures. (This is easy to see. There are N ! ways to
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F I G U R E 9-1. The Binomial distribution: the probability of obtaining k Successes in N trials with Success probability p.

arrange N distinguishable items: you have N choices for the first item, N − 1 choices for the

second, and so on. However, the k Successes are indistinguishable from each other, and

the same is true for the N − k Failures. Hence the total number of arrangements is

reduced by the number of ways in which the Successes can be rearranged, since all these

rearrangements are identical to each other. With k Successes, this means that k!

rearrangements are indistinguishable, and similarly for the N − k failures.) Notice that the

combinatorial factor does not depend on p.

This formula gives the probability of obtaining a specific number k of Successes. To find

the expected number of Successes μ in N Bernoulli trials, we need to average over all

possible outcomes:

μ =
N∑

k

k P(k, N ; p)

= N p

This result should come as no surprise. We use it intuitively whenever we say that we

expect “about five Heads in ten tosses of fair coin” (N = 10, p = 1/2) or that we expect to

obtain “about ten aces in sixty tosses of a fair die” (N = 60, p = 1/6).

Another result that can be worked out exactly is the standard deviation:

σ =
√

N p(1 − p)
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The standard deviation gives us the range over which we expect the outcomes to vary.

(For example, assume that we perform m experiments, each consisting of N tosses of a fair

coin. The expected number of Successes in each experiment is N p, but of course we won’t

obtain exactly this number in each experiment. However, over the course of the m

experiments, we expect to find the number of Successes in the majority of them to lie

between N p − √
N p(1 − p) and N p + √

N p(1 − p)).

Notice that σ grows more slowly with the number of trials than does μ (σ ∼ √
N versus

μ ∼ N). The relative width of the outcome distribution therefore shrinks as we conduct

more trials.

Using Bernoulli Trials to Develop Mean-Field Models

The primary reason why I place so much emphasis on the concept of Bernoulli trials is

that it lends itself naturally to the development of mean-field models (see Chapter 8).

Suppose we try to develop a model to predict the staffing level required for a call center to

deal with customer complaints. We know from experience that about one in every

thousand orders will lead to a complaint (hence p = 1/1000). If we shipped a million

orders a day, we could use the Binomial distribution to work out the probability to receive

1, 2, 3, . . . , 999,999, 1,000,000 complaints a day and then work out the required staffing

levels accordingly—a daunting task! But in the spirit of mean-field theories, we can cut

through the complexity by realizing that we will receive “about N p = 1,000” complaints a

day. So rather than working with each possible outcome (and its associated probability),

we limit our attention to a single expected outcome. (And we can now proceed to

determine how many calls a single person can handle per day to find the required number

of customer service people.) We can even go a step further and incorporate the

uncertainty in the number of complaints by considering the standard deviation, which in

this example comes out to
√

N p(1 − p) ≈ √
1000 ≈ 30. (Here I made use of the fact that

1 − p is very close to 1 for the current value of p.) The spread is small compared to the

expected number of calls, lending credibility to our initial approximation of replacing the

full distribution with only its expected outcome. (This is a demonstration for the

observation we made earlier that the width of the resulting distribution grows much more

slowly with N than does the expected value itself. As N gets larger, this effect becomes

more drastic, which means that mean-field theory gets better and more reliable the more

urgently we need it! The tough cases can be situations where N is of moderate size—say,

in the range of 10, . . . , 100. This size is too large to work out all outcomes exactly but not

large enough to be safe working only with the expected values.)

Having seen this, we can apply similar reasoning to more general situations. For example,

notice that the number of orders shipped each day will probably not equal exactly one

million—instead, it will be a random quantity itself. So, by using N = 1,000,000 we have

employed the mean-field idea already. It should be easy to generalize to other situations

from here.
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F I G U R E 9-2. The Gaussian probability density.

The Gaussian Distribution and the Central Limit Theorem

Probably the most ubiquitous formula in all of probability theory and statistics is:

p(x; μ, σ) = 1√
2πσ

e− 1
2 (

x−μ
σ )

2

This is the formula for the Gaussian (or Normal) probability density. This is the proverbial

“Bell Curve.” (See Figure 9-2 and Appendix B for additional details.)

Two factors contribute to the elevated importance of the Gaussian distribution: on the

foundational side, the Central Limit Theorem guarantees that the Gaussian distribution

will arise naturally whenever we take averages (of almost anything). On the sheerly

practical side, the fact that we can actually explicitly work out most integrals involving the

Gaussian means that such expressions make good building blocks for more complicated

theories.

The Central Limit Theorem

Imagine you have a source of data points that are distributed according to some common

distribution. The data could be numbers drawn from a uniform random-number

generator, prices of items in a store, or the body heights of a large group of people.

Now assume that you repeatedly take a sample of n elements from the source (n random

numbers, n items from the store, or measurements for n people) and form the total sum of
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the values. You can also divide by n to get the average. Notice that these sums (or

averages) are random quantities themselves: since the points are drawn from a random

distribution, their sums will also be random numbers.

Note that we don’t necessarily know the distributions from which the original points

come, so it may seem it would be impossible to say anything about the distribution of

their sums. Surprisingly, the opposite is true: we can make very precise statements about

the form of the distribution according to which the sums are distributed. This is the

content of the Central Limit Theorem.

The Central Limit Theorem states that the sums of a bunch of random quantities will be

distributed according to a Gaussian distribution. This statement is not strictly true; it is

only an approximation, with the quality of the approximation improving as more points

are included in each sample (as n gets larger, the approximation gets better). In practice,

though, the approximation is excellent even for quite moderate values of n.

This is an amazing statement, given that we made no assumptions whatsoever about the

original distributions (I will qualify this in a moment): it seems as if we got something for

nothing! After a moment’s thought, however, this result should not be so surprising: if we

take a single point from the original distribution, it may be large or it may be small—we

don’t know. But if we take many such points, then the highs and the lows will balance

each other out “on average.” Hence we should not be too surprised that the distribution of

the sums is a smooth distribution with a central peak. It is, however, not obvious that this

distribution should turn out to be the Gaussian specifically.

We can now state the Central Limit Theorem formally. Let {xi } be a sample of size n, having

the following properties:

1. All xn are mutually independent.

2. All xn are drawn from a common distribution.

3. The mean μ and the standard deviation σ for the distribution of the individual data points xi are

finite.

Then the sample average 1
n

∑n
i xi is distributed according to a Gaussian with mean μ and standard

deviation σ/
√

n. The approximation improves as the sample size n increases. In other words, the

probability of finding the value x for the sample mean 1
n

∑
i xi becomes Gaussian as n gets

large:

P

(
1

n

n∑

i

xi = x

)
→ 1√

2π

√
n

σ
exp

(
−1

2

(
x − μ

σ/
√

n

)2
)

Notice that, as for the binomial distribution, the width of the resulting distribution of the

average is smaller than the width of the original distribution of the individual data points.

This aspect of the Central Limit Theorem is the formal justification for the common

practice to “average out the noise”: no matter how widely the individual data points

scatter, their averages will scatter less.
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On the other hand, the reduction in width is not as fast as one might want: it is not

reduced linearly with the number n of points in the sample but only by
√

n. This means

that if we take 10 times as many points, the scatter is reduced to only 1/
√

10 ≈ 30 percent

of its original value. To reduce it to 10 percent, we would need to increase the sample size

by a factor of 100. That’s a lot!

Finally, let’s take a look at the Central Limit Theorem in action. Suppose we draw samples

from a uniform distribution that takes on the values 1, 2, . . . , 6 with equal probability—in

other words, throws of a fair die. This distribution has mean μ = 3.5 (that’s pretty

obvious) and standard deviation σ = √
(62 − 1)/12 ≈ 1.71 (not as obvious but not terribly

hard to work it out, or you can look it up).

We now throw the die a certain number of times and evaluate the average of the values

that we observe. According to the Central Limit Theorem, these averages should be

distributed according to a Gaussian distribution that becomes narrower as we increase the

number of throws used to obtain an average. To see the distribution of values, we

generate a histogram (see Chapter 2). I use 1,000 “repeats” to have enough data for a

histogram. (Make sure you understand what is going on here: we throw the die a certain

number of times and calculate an average based on those throws; and this entire process is

repeated 1,000 times.)

The results are shown in Figure 9-3. In the upper-left corner we have thrown the die only

once and thus form the “average” over only a single throw. You can see that all of the

possible values are about equally likely: the distribution is uniform. In the upper-right

corner, we throw the dice twice every time and form the average over both throws.

Already a central tendency in the distribution of the average of values can be observed! We

then continue to make longer and longer averaging runs. (Also shown is the Gaussian

distribution with the appropriately adjusted width: σ/
√

n, where n is the number of

throws over which we form the average.)

I’d like to emphasize two observations in particular. First, note how quickly the central

tendency becomes apparent—it only takes averaging over two or three throws for a

central peak to becomes established. Second, note how well the properly scaled Gaussian

distribution fits the observed histograms. This is the Central Limit Theorem in action.

The Central Term and the Tails

The most predominant feature of the Gaussian density function is the speed with which

it falls to zero as |x | (the absolute value of x—see Appendix B) becomes large. It is

worth looking at some numbers to understand just how quickly it does decay. For

x = 2, the standard Gaussian with zero mean and unit variance is approximately

p(2, 0, 1) = 0.05 . . . . For x = 5, it is already on the order of 10−6; for x = 10 it’s about

10−22; and not much further out, at x = 15, we find p(15, 0, 1) ≈ 10−50. One needs to
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F I G U R E 9-3. The Central Limit Theorem in action. Distribution of the average number of points when throwing a fair die
several times. The boxes show the histogram of the value obtained; the line shows the distribution according to the Central
Limit Theorem.

keep this in perspective: the age of the universe is currently estimated to be about 15

billion years, which is about 4 · 1017 seconds. So, even if we had made a thousand trials per

second since the beginning of time, we would still not have found a value as large or larger

than x = 10!

Although the Gaussian is defined for all x , its weight is so strongly concentrated within a

finite, and actually quite small, interval (about [−5, 5]) that values outside this range will

not occur. It is not just that only one in a million events will deviate from the mean by

more than 5 standard deviations: the decline continues, so that fewer than one in 1022

events will deviate by more than 10 standard deviations. Large outliers are not just

rare—they don’t happen!

This is both the strength and the limitation of the Gaussian model: if the Gaussian model

applies, then we know that all variation in the data will be relatively small and therefore

“benign.” At the same time, we know that for some systems, large outliers do occur in

practice. This means that, for such systems, the Gaussian model and theories based on it will

not apply, resulting in bad guidance or outright wrong results. (We will return to this

problem shortly.)

Why Is the Gaussian so Useful?

It is the combination of two properties that makes the Gaussian probability distribution so

common and useful: because of the Central Limit Theorem, the Gaussian distribution will
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occur whenever we we dealing with averages; and because so much of the Gaussian’s

weight is concentrated in the central region, almost any expression can be approximated

by concentrating only on the central region, while largely disregarding the tails.

As we will discuss in Chapter 10 in more detail, the first of these two arguments has been

put to good use by the creators of classical statistics: although we may not know anything

about the distribution of the actual data points, the Central Limit Theorem enables us to

make statements about their averages. Hence, if we concentrate on estimating the sample

average of any quantity, then we are on much firmer ground, theoretically. And it is

impressive to see how classical statistics is able to make rigorous statements about the

extent of confidence intervals for parameter estimates while using almost no information

beyond the data points themselves! I’d like to emphasize these two points again: through

clever application of the Central Limit Theorem, classical statistics is able to give rigorous

(not just intuitive) bounds on estimates—and it can do so without requiring detailed

knowledge of (or making additional assumptions about) the system under investigation.

This is a remarkable achievement!

The price we pay for this rigor is that we lose much of the richness of the original data set:

the distribution of points has been boiled down to a single number—the average.

The second argument is not so relevant from a conceptual point, but it is, of course, of

primary practical importance: we can actually do many integrals involving Gaussians,

either exactly or in very good approximation. In fact, the Gaussian is so convenient in this

regard that it is often the first choice when an integration kernel is needed (we have

already seen examples of this in Chapter 2, in the context of kernel density estimates, and

in Chapter 4, when we discussed the smoothing of a time series).

Optional: Gaussian Integrals

The basic idea goes like this: we want to evaluate an integral of the form:

∫
f (x)e−x2/2 dx

We know that the Gaussian is peaked around x = 0, so that only nearby points will

contribute significantly to the value of the integral. We can therefore expand f (x) in a

power series for small x . Even if this expansion is no good for large x , the result will not

be affected significantly because those points are suppressed by the Gaussian. We end up

with a series of integrals of the form

an

∫
xne−x2/2 dx

which can be performed exactly. (Here, an is the expansion coefficient from the expansion

of f (x).)
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We can push this idea even further. Assume that the kernel is not exactly Gaussian but is

still strongly peaked:

∫
f (x)e−g(x) dx

where the function g(x) has a minimum at some location (otherwise, the kernel would

not have a peak at all). We can now expand g(x) into a Taylor series around its minimum

(let’s assume it is at x = 0), retaining only the first two terms:

g(x) ≈ g(0) + g′′(0)x2/2 + · · · . The linear term vanishes because the first derivative g′ must

be zero at a minimum. Keeping in mind that the first term in this expansion is a constant

not depending on x , we have transformed the original integral to one of Gaussian type:

e−g(0)

∫
f (x)e−g′′(0) x2/2 dx

which we already know how to solve.

This technique goes by the name of Laplace’s method (not to be confused with “Gaussian

integration,” which is something else entirely).

Beware: The World Is Not Normal!

Given that the Central Limit Theorem is a rigorously proven theorem, what could possibly

go wrong? After all, the Gaussian distribution guarantees the absence of outliers, doesn’t

it? Yet we all know that unexpected events do occur.

There are two things that can go wrong with the discussion so far:

• The Central Limit Theorem only applies to sums or averages of random quantities but

not necessarily to the random quantities themselves. The distribution of individual data

points may be quite different from a Gaussian, so if we want to reason about individual

events (rather than about an aggregate such as their average), then we may need

different methods. For example, although the average number of items in a shipment

may be Gaussian distributed around a typical value of three items per shipment, there

is no guarantee that the actual distribution of items per shipment will follow the same

distribution. In fact, the distribution will probably be geometrical, with shipments

containing only a single item being much more common than any other shipment size.

• More importantly, the Central Limit Theorem may not apply. Remember the three

conditions listed as requirements for the Central Limit Theorem to hold? Individual

events must be independent, follow the same distribution, and must have a finite

mean and standard deviation. As it turns out, the first and second of these conditions

can be weakened (meaning that individual events can be somewhat correlated and

drawn from slightly different distributions), but the third condition cannot be

weakened: individual events must be drawn from a distribution of finite width.
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Now this may seem like a minor matter: surely, all distributions occurring in practice

are of finite width, aren’t they? As it turns out, the answer is no! Apparently

“pathological” distributions of this kind are much more common in real life than one

might expect. Such distributions follow power-law behavior, and they are the topic of

the next section.

Power-Law Distributions and Non-Normal Statistics

Let’s start with an example. Figure 9-4 shows a histogram for the number of visits per

person that a sample of visitors made to a certain website over one month. Two things

stand out: the huge number of people who made a handful of visits (fewer than 5 or 6)

and, at the other extreme, the huge number of visits that a few people made. (The

heaviest user made 41,661 visits: that’s about one per minute over the course of the

month—probably a bot or monitor of some sort.)

This distribution looks nothing like the “benign” case in Figure 9-2. The distribution in

Figure 9-4 is not merely skewed—it would be no exaggeration to say that it consists

entirely of outliers! Ironically, the “average” number of visits per person—calculated

naively, by summing the visits and dividing by the number of unique visitors—equals 26

visits per person. This number is clearly not representative of anything: it describes

neither the huge majority of light users on the lefthand side of the graph (who made one

or two visits), nor the small group of heavy users on the right. (The standard deviation is

±437, which clearly suggests that something is not right, given that the mean is 26 and

the number of visits must be positive.)

This kind of behavior is typical for distributions with so-called fat or heavy tails. In contrast

to systems ruled by a Gaussian distribution or another distribution with short tails, data

values are not effectively limited to a narrow domain. Instead, we can find a nonnegligible

fraction of data points that are very far away from the majority of points.

Mathematically speaking, a distribution is heavy-tailed if it falls to zero much slower than

an exponential function. Power laws (i.e., functions that behave as ∼ 1/xβ for some

exponent β > 0) are usually used to describe such behavior.

In Chapter 3, we discussed how to recognize power laws: data points falling onto a

straight line on a double logarithmic plot. A double logarithmic plot of the data from

Figure 9-4 is shown in Figure 9-5, and we see that eventually (i.e., for more than five

visits per person), the data indeed follows a power law (approximately ∼ x−1.9). On the

lefthand side of Figure 9-5 (i.e., for few visits per person), the behavior is different. (We

will come back to this point later.)

Power-law distributions like the one describing the data set in in Figures 9-4 and 9-5 are

surprisingly common. They have been observed in a number of different (and often

colorful) areas: the frequency with which words are used in texts, the magnitude of

A R G U M E N T S F R O M P R O B A B I L I T Y M O D E L S 201



O’Reilly-5980006 master October 28, 2010 20:57

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 0  5,000  10,000  15,000  20,000  25,000  30,000  35,000  40,000

N
um

be
r 

of
 U

se
rs

Number of Visits per User

F I G U R E 9-4. A histogram of the number of visitors who made x number of visits to a certain website. Note the extreme
skewness of the distribution: most visitors made one or two visits, but a few made tens of thousands of visits.

earthquakes, the size of files, the copies of books sold, the intensity of wars, the sizes of

sand particles and solar flares, the population of cities, and the distribution of wealth.

Power-law distributions go by different names in different contexts—you will find them

referred to as “Zipf” of “Pareto” distributions, but the mathematical structure is always the

same. The term “power-law distribution” is probably the most widely accepted, general

term for this kind of heavy-tailed distribution.

Whenever they were found, power-law distributions were met with surprise and

(usually) consternation. The reason is that they possess some unexpected and

counterintuitive properties:

• Observations span a wide range of values, often many orders of magnitude.

• There is no typical scale or value that could be used to summarize the distribution of

points.

• The distribution is extremely skewed, with many data points at the low end and few

(but not negligibly few) data points at very high values.

• Expectation values often depend on the sample size. Taking the average over a sample

of n points may yield a significantly smaller value than taking the average over 2n or

10n data points. (This is in marked contrast to most other distributions, where the

quality of the average improves when it is based on more points. Not so for power-law

distributions!)
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F I G U R E 9-5. The data from Figure 9-4 but on double logarithmic scales. The righthand side of this curve is well described
by the power law 1/x1.9.

It is the last item that is the most disturbing. After all, didn’t the Central Limit Theorem

tell us that the scatter of the average was always reduced by a factor of 1/
√

n as the

sample size increases? Yes, but remember the caveat at the end of the last section: the

Central Limit Theorem applies only to those distributions that have a finite mean and

standard deviation. For power-law distributions, this condition is not necessarily fulfilled,

and hence the Central Limit Theorem does not apply.

The importance of this fact cannot be overstated. Not only does much of our intuition go

out the window but most of statistical theory, too! For the most part, distributions without

expectations are simply not treated by standard probability theory and statistics.*

Working with Power-Law Distributions

So what should you do when you encounter a situation described by a power-law

distribution? The most important thing is to stop using classical methods. In particular, the

mean-field approach (replacing the distribution by its mean) is no longer applicable and

will give misleading or incorrect results.

From a practical point of view, you can try segmenting the data (and, by implication, the

system) into different groups: the majority of data points at small values (on the lefthand

side in Figure 9-5), the set of data points in the tail of the distribution (for relatively large

*The comment on page 48 (out of 440) of Larry Wasserman’s excellent All of Statistics is typical: “From
now on, whenever we discuss expectations, we implicitly assume that they exist.”
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values), and possibly even a group of data points making up the intermediate regime.

Each such group is now more homogeneous, so that standard methods may apply. You

will need insight into the business domain of the data, and you should exercise discretion

when determining where to make those cuts, because the data itself will not yield a

natural “scale” or other quantity that could be used for this purpose.

There is one more practical point that you should be aware of when working with

power-law distributions: the form ∼ 1/xβ is only valid “asymptotically” for large values of

x . For small x , this rule must be supplemented, since it obviously cannot hold for x → 0

(we can’t divide by zero). There are several ways to augment the original form near x = 0.

We can either impose a minimum value xmin of x and consider the distribution only for

values larger than this. That is often a reasonable approach because such a minimum

value may exist naturally. For example there is an obvious “minimum” number of pages

(i.e., one page) that a website visitor can view and still be considered a “visitor.” Similar

considerations hold for the population of a city and the copies of books sold—all are

limited on the left by xmin = 1. Alternatively, the behavior of the observed distribution

may be different for small values. Look again at Figure 9-5: for values less than about 5,

the curve deviates from the power-law behavior that we find elsewhere.

Depending on the shape that we require near zero, we can modify the original rule in

different ways. Two examples stand out: if we want a flat peak for x = 0, then we can try

a form like ∼ 1/(a + xβ) for some a > 0, and if we require a peak at a nonzero location,

we can use a distribution like ∼ exp(−C/x)/xβ (see Figure 9-6). For specific values of β,

two distributions of this kind have special names:

1

π

1

1 + x2
Cauchy distribution

√
c

2π

e−c/2x

x3/2
Lévy distribution

Optional: Distributions with Infinite Expectation Values

The expectation value E( f ) of a function f (x), which in turn depends on some random

quantity x , is nothing but the weighted average of that function in which we use the

probability density p(x) of x as the weight function:

E( f ) =
∫

f (x)p(x) dx

Of particular importance are the expectation values for simple powers of the variable x ,

the so called moments of the distribution:

E(1) =
∫

p(x) dx (must always equal 1)

E(x) =
∫

x p(x) dx Mean or first moment

E(x2) =
∫

x2 p(x) dx Second moment
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F I G U R E 9-6. The Lévy distribution for several values of the parameter c.

The first expression must always equal 1, because we expect p(x) to be properly

normalized. The second is the familiar mean, as the weighted average of x . The last

expression is used in the definition of the standard deviation:

σ =
√

E(x2) − E(x)2

For power-law distributions, which behave as ∼ 1/xβ with β > 1 for large x , some of

these integrals may not converge—in this case, the corresponding moment “does not

exist.” Consider the kth moment (C is the normalization constant C = E(1) = ∫
p(x) dx):

E(xk) = C
∫ ∞

xk 1

xβ
dx

= C
∫ ∞ 1

xβ−k
dx

Unless β − k > 1, this integral does not converge at the upper limit of integration. (I

assume that the integral is proper at the lower limit of integration, through a lower cutoff

xmin or another one of the methods discussed previously.) In particular, if β < 2, then the

mean and all higher moments do not exist; if β < 3, then the standard deviation does not

exist.

We need to understand that this is an analytical result—it tells us that the distribution is ill

behaved and that, for instance, the Central Limit Theorem does not apply in this case. Of

course, for any finite sample of n data points drawn from such a distribution, the mean (or

other moment) will be perfectly finite. But these analytical results warn us that, if we

continue to draw additional data points from the distribution, then their average (or other
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moment) will not settle down: it will grow as the number of data points in the sample

grows. Any summary statistic calculated from a finite sample of points will therefore not

be a good estimator for the true (in this case: infinite) value of that statistic. This poses an

obvious problem because, of course, all practical samples contain only a finite number of

points.

Power-law distributions have no parameters that could (or need ) be estimated—except for

the exponent, which we know how to obtain from a double logarithmic plot. There is also

a maximum likelihood estimator for the exponent:

β = 1 + n∑n
i=0 log xi

x0

where x0 is the smallest value of x for which the asymptotic power-law behavior holds.

Where to Go from Here

If you want to dig deeper into the theory of heavy-tail phenomena, you will find that it is

a mess. There are two reasons for that: on the one hand, the material is technically hard

(since one must make do without two standard tools: expectation values and the Central

Limit Theorem), so few simple, substantial, powerful results have been obtained—a fact

that is often covered up by excessive formalism. On the other hand, the “colorful” and

multi disciplinary context in which power-law distributions are found has led to much

confusion. Similar results are being discovered and re-discovered in various fields, with

each field imposing its own terminology and methodology, thereby obscuring the

mathematical commonalities.

The unexpected and often almost paradoxical consequences of power-law behavior also

seem to demand an explanation for why such distributions occur in practice and whether

they might all be expressions of some common mechanisms. Quite a few theories have

been proposed toward this end, but none has found widespread acceptance or proved

particularly useful in predicting new phenomena—occasionally grandiose claims to the

contrary notwithstanding.

At this point, I think it is fair to say that we don’t understand heavy-tail phenomena: not

when and why they occur, nor how to handle them if they do.

Other Distributions

There are some other distributions that describe common scenarios you should be aware

of. Some of the most important (or most frequently used) ones are described in this

section.
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F I G U R E 9-7. The geometric distribution: p(k, p) = p(1 − p)k−1.

Geometric Distribution

The geometric distribution (see Figure 9-7):

p(k, p) = p(1 − p)k−1 with k = 1, 2, 3, . . .

is a special case of the binomial distribution. It can be viewed as the probability of

obtaining the first Success at the kth trial (i.e., after observing k − 1 failures). Note that

there is only a single arrangement of events for this outcome, hence the combinatorial

factor is equal to one. The geometric distribution has mean μ = 1/p and standard

deviation σ = √
1 − p/p.

Poisson Distribution

The binomial distribution gives us the probability of observing exactly k events in n

distinct trials. In contrast, the Poisson distribution describes the probability of finding k

events during some continuous observation interval of known length. Rather than being

characterized by a probability parameter and a number of trials (as for the binomial

distribution), the Poisson distribution is characterized by a rate λ and an interval length t .

The Poisson distribution p(k, t, λ) gives the probability of observing exactly k events

during an interval of length t when the rate at which events occur is λ (see Figure 9-8):

p(k, t, λ) = (λt)k

k!
e−λt
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F I G U R E 9-8. The Poisson distribution: p(k, t, λ) = (λt)k

k! e−λt .

Because t and λ only occur together, this expression is often written in a two-parameter

form as p(k, ν) = e−ννk/k!. Also note that the term e−λt does not depend on k at all—it is

merely there as a normalization factor. All the action is in the fractional part of the

equation.

Let’s look at an example. Assume that phone calls arrive at a call center at a rate of 15 calls

per hour (so that λ = 0.25 calls/minute). Then the Poisson distribution p(k, 1, 0.25) will

give us the probability that k = 0, 1, 2, . . . calls will arrive in any given minute. But we

can also use it to calculate the probability that k calls will arrive during any 5-minute time

period: p(k, 5, 0.25). Note that in this context, it makes no sense to speak of independent

trials: time passes continuously, and the expected number of events depends on the length

of the observation interval.

We can collect a few results. Mean μ and standard deviation σ for the Poisson distribution

are given by:

μ = λt

σ =
√

λt

Notice that only a single parameter (λt) controls both the location and the width of the

distribution. For large λ, the Poisson distribution approaches a Gaussian distribution with

μ = λ and σ = √
λ. Only for small values of λ (say, λ < 20) are the differences notable.

Conversely, to estimate the parameter λ from observations, we divide the number k of

events observed by the length t of the observation period: λ = k/t . Keep in mind that
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when evaluating the formula for the Poisson distribution, the rate λ and the length t of

the interval of interest must be of compatible units. To find the probability of k calls over 6

minutes in our call center example above, we can either use t = 6 minutes and

λ = 0.25 calls per minute or t = 0.1 hours and λ = 15 calls per hour, but we cannot mix

them. (Also note that 6 · 0.25 = 0.1 · 15 = 1.5, as it should.)

The Poisson distribution is appropriate for processes in which discrete events occur

independently and at a constant rate: calls to a call center, misprints in a manuscript,

traffic accidents, and so on. However, you have to be careful: it applies only if you can

identify a rate at which events occur and if you are interested specifically in the number of

events that occur during intervals of varying length. (You cannot expect every histogram

to follow a Poisson distribution just because “we are counting events.”)

Log-Normal Distribution

Some quantities are inherently asymmetrical. Consider, for example, the time it takes

people to complete a certain task: because everyone is different, we expect a distribution

of values. However, all values are necessarily positive (since times cannot be negative).

Moreover, we can expect a particular shape of the distribution: there will be some

minimum time that nobody can beat, then a small group of very fast champions, a peak at

the most typical completion time, and finally a long tail of stragglers. Clearly, such a

distribution will not be well described by a Gaussian, which is defined for both positive

and negative values of x , is symmetric, and has short tails!

The log-normal distribution is an example of an asymmetric distribution that is suitable

for such cases. It is related to the Gaussian: a quantity follows the log-normal distribution

if its logarithm is distributed according to a Gaussian.

The probability density for the log-normal distribution looks like this:

p(x; μ, σ) = 1√
2πσ x

exp

(
−1

2

(
log(x/μ)

σ

)2
)

(The additional factor of x in the denominator stems from the Jacobian in the change of

variables from x to log x .) You may often find the log-normal distribution written slightly

differently:

p(x; μ̃, σ ) = 1√
2πσ x

exp

(
−1

2

(
log(x) − μ̃

σ

)2
)

This is the same once you realize that log(x/μ) = log(x) − log(μ) and make the

identification μ̃ = log(μ). The first form is much better because it expresses clearly that μ

is the typical scale of the problem. It also ensures that the argument of the logarithm is

dimensionless (as it must be).
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F I G U R E 9-9. The log-normal distribution.

Figure 9-9 shows the log-normal distribution for a few different values of σ . The

parameter σ controls the overall “shape” of the curve, whereas the parameter μ controls

its “scale.” In general, it can be difficult to predict what the curve will look like for different

values of the parameters, but here are some results (the mode is the position of the peak).

Mode: μe−σ2

Mean: μe
σ2
2

Standard deviation: μ

√
eσ2

(
eσ2 − 1

)

Values for the parameters can be estimated from a data set as follows:

μ = exp

(
1

n

n∑

i=1

log xi

)

σ =
√√√√1

n

n∑

i=1

(
log

xi

μ

)2

The log-normal distribution is important as an example of a standard statistical

distribution that provides an alternative to the Gaussian model for situations that require

an asymmetrical distribution. That being said, the log-normal distribution can be fickle to

use in practice. Not all asymmetric point distributions are described well by a log-normal

distribution, and you may not be able to obtain a good fit for your data using a log-

normal distribution. For truly heavy-tail phenomena in particular, you will need a

power-law distribution after all. Also keep in mind that the log-normal distribution
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approaches the Gaussian as σ becomes small compared to μ (i.e., σ/μ � 1), at which

point it becomes easier to work with the familiar Gaussian directly.

Special-Purpose Distributions

Many additional distributions have been defined and studied. Some, such as the gamma

distribution, are mostly of theoretical importance, whereas others—such as the

chi-square, t , and F distributions—are are at the core of classical, frequentist statistics (we

will encounter them again in Chapter 10). Still others have been developed to model

specific scenarios occurring in practical applications—especially in reliability engineering,

where the objective is to make predictions about likely failure rates and survival times.

I just want to mention in passing a few terms that you may encounter. The Weibull

distribution is used to express the probability that a device will fail after a certain time.

Like the log-normal distribution, it depends on both a shape and a scale parameter.

Depending on the value of the shape parameter, the Weibull distribution can be used to

model different failure modes. These include “infant mortality” scenarios, where devices

are more likely to fail early but the failure rate declines over time as defective items

disappear from the population, and “fatigue death” scenarios, where the failure rate rises

over time as items age.

Yet another set of distributions goes by the name of extreme-value or Gumbel distributions.

They can be used to obtain the probability that the smallest (or largest) value of some

random quantity will be of a certain size. In other words, they answer the question: what

is the probability that the largest element in a set of random numbers is precisely x?

Quite intentionally, I don’t give formulas for these distributions here. They are rather

advanced and specialized tools, and if you want to use them, you will need to consult the

appropriate references. However, the important point to take away here is that, for many

typical scenarios involving random quantities, people have developed explicit models and

studied their properties; hence a little research may well turn up a solution to whatever

your current problem is.

Optional: Case Study—Unique Visitors over Time

To put some of the ideas introduced in the last two chapters into practice, let’s look at an

example that is a bit more involved. We begin with a probabilistic argument and use it to

develop a mean-field model, which in turn will lead to a differential equation that we

proceed to solve for our final answer. This example demonstrates how all the different

ideas we have been introducing in the last few chapter can fit together to tackle more

complicated problems.

Imagine you are running a website. Users visit this website every day of the month at a

rate that is roughly constant. We can also assume that we are able to track the identity of

A R G U M E N T S F R O M P R O B A B I L I T Y M O D E L S 211



O’Reilly-5980006 master October 28, 2010 20:57

these users (through a cookie or something like that). By studying those cookies, we can

see that some users visit the site only once in any given month while others visit it several

times. We are interested in the number of unique users for the month and, in particular,

how this number develops over the course of the month. (The number of unique visitors

is a key metric in Internet advertising, for instance.)

The essential difficulty is that some users visit several times during the month, and so the

number of unique visitors is smaller than the total number of visitors. Furthermore, we

will observe a “saturation effect”: on the first day, almost every user is new; but on the last

day of the month, we can expect to have seen many of the visitors earlier in the month

already.

We would like to develop some understanding for the number of unique visitors that can

be expected for each day of the month (e.g., to monitor whether we are on track to meet

some monthly goal for the number of unique visitors). To make progress, we need to

develop a model.

To see more clearly, we use the following idealization, which is equivalent to the original

problem. Consider an urn that contains N identical tokens (total number of potential

visitors). At each turn (every day), we draw k tokens randomly from the urn (average

number of visitors per day). We mark all of the drawn tokens to indicate that we have

“seen” them and then place them back into the urn. This cycle is repeated for every day of

the month.

Because at each turn we mark all unmarked tokens from the random sample drawn at

this turn, the number of marked tokens in the urn will increase over time. Because each

token is marked at most once, the number of marked tokens in the urn at the end of the

month is the number of unique visitors that have visited during that time period.

Phrased this way, the process can be modeled as a sequence of Bernoulli trials. We define

drawing an already marked token as Success. Because the number of marked tokens in

the urn is increasing, the success probability p will change over time. The relevant

variables are:

N Total number of tokens in urn

k Number of tokens drawn at each turn

m(t) Number of already-marked tokens drawn at turn t

n(t) Total number of marked tokens in urn at time t

p(t) = n(t)

N
Probability of drawing an already-marked token at turn t

Each day consists of a new Bernoulli trial in which k tokens are drawn from the urn.

However, because the number of marked tokens in the urn increases every day, the

probability p(t) is different every day.
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On day t , we have n(t) marked tokens in the urn. We now draw k tokens, of which we

expect m(t) = kp(t) to be marked (Successes). This is simply an application of the basic

result for the expectation value of Bernoulli trials, using the current value for the

probability. (Working with the expectation value in this way constitutes a mean-field

approximation.)

The number of unmarked tokens in the current drawing is:

k − m(t) = k − kp(t) = k(1 − p(t))

We now mark these tokens and place them back into the urn, which means that the

number of marked tokens in the urn grows by k(1 − p(t)):

n(t + 1) = n(t) + k(1 − p(t))

This equation simply expresses the fact that the new number of marked tokens n(t + 1)

consists of the previous number of marked tokens n(t) plus the newly marked tokens

k(1 − p(t)).

We can now divide both sides by N (the total number of tokens). Recalling that

p(t) = n(t)/N , we write:

p(t + 1) = p(t) + f (1 − p(t)) with f = k

N

This is a recurrence relation for p(t), which can be rewritten as:

p(t + 1) − p(t) = f (1 − p(t))

In the continuum limit, we replace the difference between the “new” and the “old” values

by the derivative at time t , which turns the recurrence relation into a more convenient

differential equation:

dp(t)

dt
= f (1 − p(t))

with initial condition p(t = 0) = 0 (because initially there are no marked tokens in the

urn). This differential equation has the solution:

p(t) = 1 − e− f t

Figure 9-10 shows p(t) for various values of the parameter f . (The parameter f has an

obvious interpretation as size of each drawing expressed as a fraction of the total number

of tokens in the urn.)

This is the result that we have been looking for. Remember that p(t) = n(t)/N ; hence the

probability is directly proportional to the number of unique visitors so far. We can rewrite

it more explicitly as:

n(t) = N
(

1 − e− k
N t

)
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F I G U R E 9-10. Fraction of unique visitors seen on day t . The parameter f is the number of daily users expressed as a
fraction of all potential users.

In this form, the equation gives us, for each day of the month, the number of unique

visitors for the month up to that date. There is only one unknown parameter: N , the total

number of potential visitors. (We know k, the average number of total visitors per day,

because this number is immediately available from the web-server logs.) We can now try

to fit one or two months’ worth of data to this formula to obtain a value for N . Once we

have determined N , the formula predicts the expected number of unique visitors for each

day of the month. We can use this information to track whether the actual number of

unique visitors for the current month is above or below expectations.

The steps we took in this little example are typical of a lot of modeling. We start with a

real problem in a specific situation. To make headway, we recast it in an idealized format

that tries to retain only the most relevant information. (In this example: mapping the

original problem to an idealized urn model.) Expressing things in terms of an idealized

model helps us recognize the problem as one we know how to solve. (Urn models have

been studied extensively; in this example, we could identify it with Bernoulli trials, which

we know how to handle.) Finding a solution often requires that we make actual

approximations in addition to the abstraction from the problem domain to an idealized

model. (Working with the expectation value was one such approximation to make the

problem tractable; replacing the recurrence relation with a differential equation was

another.) Finally, we end up with a “model” that involves some unknown parameters. If

we are mostly interested in developing conceptual understanding, then we don’t need to

go any further, since we can read off the model’s behavior directly from the formula.
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However, if we actually want to make numerical predictions, then we’ll need to find

numerical values for those parameters, which is usually done by fitting the model to some

already available data. (We should also try to validate the model to see whether it gives a

good “fit”; refer to the discussion in Chapter 3 on examining residuals, for instance.)

Finally, I should point out that the model in this example is simplified—as models usually

are. The most critical simplification (which would most likely not be correct in a real

application) is that every token in the urn has the same probability of being drawn at each

turn. In contrast, if look at the behavior of actual visitors, we will find that some are much

more likely to visit more frequently while others are less likely to visit. Another

simplification is that we assumed the total number of potential visitors to be constant. But

if we have a website that sees significant growth from one month to the next, this

assumption may not be correct, either. You may want to try and build an improved model

that takes these (and perhaps other) considerations into account. (The first one in

particular is not easy—in fact, if you succeed, then let me know how you did it!)

Workshop: Power-Law Distributions

The crazy effects of power-law distributions have to be seen to be believed. In this

workshop, we shall generate (random) data points distributed according to a power-law

distribution and begin to study their properties.

First question: how does one actually generate nonuniformly distributed random

numbers on a computer? A random generator that produces uniformly distributed

numbers is available in almost all programming environments, but generating random

numbers distributed according to some other distribution requires a little bit more work.

There are different ways of going about it; some are specific to certain distributions only,

whereas others are designed for speed in particular applications. We’ll discuss a simple

method that works for distributions that are analytically known.

The starting point is the cumulative distribution function for the distribution in question.

By construction, the distribution function is strictly monotonic and takes on values in the

interval [0, 1]. If we now generate uniformly distributed numbers between 0 and 1, then

we can find the locations at which the cumulative distribution function assumes these

values. These points will be distributed according to the desired distribution (see Figure

9-11).

(A good way to think about this is as follows. Imagine you distribute n points uniformly on

the interval [0, 1] and find the corresponding locations at which the cumulative

distribution function assumes these values. These locations are spaced according to the

distribution in question—after all, by construction, the probability grows by the same

amount between successive locations. Now use points that are randomly distributed,

rather than uniformly, and you end up with random points distributed according to the

desired distribution.)
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F I G U R E 9-11. Generating random numbers from the Gaussian distribution: generate uniformly distributed numbers
between 0 and 1, then find the locations values at which the Gaussian distribution function assumes these values. The
locations follow a Gaussian distribution.

For power-law distributions, we can easily work out the cumulative distribution function

and its inverse. Let the probability density p(x) be:

p(x) = α

xα+1
x ≥ 1, α > 0

This is known as the the “standard” form of the Pareto distribution. It is valid for values of

x greater than 1. (Values of x < 1 have zero probability of occurring.) The parameter α is

the “shape parameter” and must be greater than zero, because otherwise the probability is

not normalizable. (This is a different convention than the one we used earlier: β = 1 + α.)

We can work out the cumulative distribution function P(x):

P(x) = y =
∫ x

1
p(t) dt

= 1 − 1

xα

This expression can be inverted to give:

x = 1

(1 − y)1/α

If we now use uniformly distributed random values for y, then the values for x will be

distributed according to the Pareto distribution that we started with. (For other

distributions, such as the Gaussian, inverting the expression for the cumulative

distribution function is often harder, and you may have to find a numerical library that

includes the inverse of the distribution function explicitly.)

216 C H A P T E R N I N E



O’Reilly-5980006 master October 28, 2010 20:57

Now remember what we said earlier. If the exponent in the denominator is less than 2

(i.e., if β ≤ 2 or α ≤ 1), then the “mean does not exist.” In practice, we can evaluate the

mean for any sample of points, and for any finite sample the mean will, of course, also be

finite. But as we take more and more points, the mean does not settle down—instead it

keeps on growing. On the other hand, if the exponent in the denominator is strictly

greater than 2 (i.e., if β > 2 or α > 1), then the mean does exist, and its value does not

depend on the sample size.

I would like to emphasize again how counterintuitive the behavior for α ≤ 1 is. We

usually expect that larger samples will give us better results with less noise. But in this

particular scenario, the opposite is true!

We can explore behavior of this type using the simple program shown below. All it does is

generate 10 million random numbers distributed according to a Pareto distribution. I

generate those numbers using the method described at the beginning of this section;

alternatively, I could have used the paretovariate() function in the standard random

module. We maintain a running total of all values (so that we can form the mean) and

also keep track of the largest value seen so far. The results for two runs with α = 0.5 and

α = 1.2 are shown in Figures 9-12 and 9-13, respectively.

import sys, random

def pareto( alpha ):

y = random.random()

return 1.0/pow( 1-y, 1.0/alpha )

alpha = float( sys.argv[1] )

n, ttl, mx = 0, 0, 0

while n<1e7:

n += 1

v = pareto( alpha )

ttl += v

mx = max( mx, v )

if( n%50000 == 0 ):

print n, ttl/n, mx

The typical behavior for situations with α ≤ 1 versus α > 1 is immediately apparent:

whereas in Figure 9-13, the mean settles down pretty quickly to a finite value, the mean

in Figure 9-12 continues to grow.

We can also recognize clearly what drives this behavior. For α ≤ 1, very large values occur

relatively frequently. Each such occurrence leads to an upward jump in the total sum of

values seen, which is reflected in a concomitant jump in the mean. Over time, as more

trials are conducted, the denominator in the mean grows, and hence the value of the
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F I G U R E 9-12. Sampling from the Pareto distribution P(x) = 1
2x3/2 . Both the mean and the maximum value grow without

bound.

mean begins to fall. However (and this is what is different for α ≤ 1 versus α > 1), before

the mean has fallen back to its previous value, a further extraordinarily large value occurs,

driving the sum (and hence the mean) up again, with the consequence that the numerator

of the expression ttl/n in the example program grows faster than the denominator.

You may want to experiment yourself with this kind of system. The behavior at the

borderline value of α = 1 is particularly interesting. You may also want to investigate how

quickly ttl/n grows with different values of α. Finally, don’t restrict yourself only to the

mean. Similar considerations hold for the standard deviation (see our discussion regarding

this point earlier in the chapter).

Further Reading
• An Introduction to Probability Theory and Its Applications, vol. 1. William Feller. 3rd ed.,

Wiley. 1968.

Every introductory book on probability theory covers most of the material in this

chapter. This classic is my personal favorite for its deep, yet accessible treatment and for

its large selection of interesting or amusing examples.

• An Introduction to Mathematical Statistics and Its Applications. Richard J. Larsen and Morris

L. Marx. 4th ed., Prentice Hall. 2005.

This is my favorite book on theoretical statistics. The first third contains a good,

practical introduction to many of this chapter’s topics.
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F I G U R E 9-13. Sampling from the Pareto distribution P(x) = 1.2
x2.2 . Both the mean and the maximum reach a finite value

and retain it as we continue to make further drawings.

• NIST/SEMATECH e-Handbook of Statistical Methods. NIST.

http://www.itl.nist.gov/div898/handbook/. 2010.

This free ebook is made available by the National Institute for Standards and

Technology (NIST). There is a wealth of reliable, high-quality information here.

• Statistical Distributions. Merran Evans, Nicholas Hastings, and Brian Peacock. 3rd ed.,

Wiley. 2000.

This short and accessible reference includes basic information on 40 of the most useful

or important probability distributions. If you want to know what distributions exist and

what their properties are, this is a good place to start.

• “Power Laws, Pareto Distributions and Zipf’s Law.” M. E. J. Newman. Contemporary

Physics 46 (2005), p. 323.

This review paper provides a knowledgeable yet very readable introduction to the field

of power laws and heavy-tail phenomena. Highly recommended. (Versions of the

document can be found on the Web.)

• Modeling Complex Systems. Nino Boccara. 2nd ed., Springer. 2010.

Chapter 8 of this book provides a succinct and level-headed overview of the current

state of research into power-law phenomena.
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C H A P T E R T E N

What You Really Need to Know
About Classical Statistics

BASIC CLASSICAL STATISTICS HAS ALWAYS BEEN SOMEWHAT OF A MYSTERY TO ME: A TOPIC FULL OF OBSCURE

notions, such as t-tests and p-values, and confusing statements like “we fail to reject the

null hypothesis”—which I can read several times and still not know if it is saying yes, no,

or maybe.* To top it all off, all this formidable machinery is then used to draw conclusions

that don’t seem to be all that interesting—it’s usually something about whether the means

of two data sets are the same or different. Why would I care?

Eventually I figured it out, and I also figured out why the field seemed so obscure initially.

In this chapter, I want to explain what classical statistics does, why it is the way it is, and

what it is good for. This chapter does not attempt to teach you how to perform any of the

typical statistical methods: this would require a separate book. (I will make some

recommendations for further reading on this topic at the end of this chapter.) Instead, in

this chapter I will tell you what all these other books omit.

Let me take you on a trip. I hope you know where your towel is.

Genesis

To understand classical statistics, it is necessary to realize how it came about. The basic

statistical methods that we know today were developed in the late 19th and early 20th

centuries, mostly in Great Britain, by a very small group of people. Of those, one worked

*I am not alone—even professional statisticians have the same experience. See, for example, the preface
of Bayesian Statistics. Peter M. Lee. Hodder & Arnold. 2004.
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for the Guinness brewing company and another—the most influential one of

them—worked at an agricultural research lab (trying to increase crop yields and the like).

This bit of historical context tells us something about their working conditions and

primary challenges.

No computational capabilities
All computations had to be performed with paper and pencil.

No graphing capabilities, either
All graphs had to be generated with pencil, paper, and a ruler. (And complicated

graphs—such as those requiring prior transformations or calculations using the

data—were especially cumbersome.)

Very small and very expensive data sets
Data sets were small (often not more than four to five points) and could be obtained

only with great difficulty. (When it always takes a full growing season to generate a

new data set, you try very hard to make do with the data you already have!)

In other words, their situation was almost entirely the opposite of our situation today:

• Computational power that is essentially free (within reason)

• Interactive graphing and visualization capabilities on every desktop

• Often huge amounts of data

It should therefore come as no surprise that the methods developed by those early

researchers seem so out of place to us: they spent a great amount of effort and ingenuity

solving problems we simply no longer have! This realization goes a long way toward

explaining why classical statistics is the way it is and why it often seems so strange to us

today.

By contrast, modern statistics is very different. It places greater emphasis on nonparametric

methods and Bayesian reasoning, and it leverages current computational capabilities

through simulation and resampling methods. The book by Larry Wasserman (see the

recommended reading at the end of this chapter) provides an overview of a more

contemporary point of view.

However, almost all introductory statistics books—that is, those books one is likely to pick

up as a beginner—continue to limit themselves to the same selection of slightly stale

topics. Why is that? I believe it is a combination of institutional inertia together with the

expectations of the “end-user” community. Statistics has always been a support science for

other fields: originally agriculture but also medicine, psychology, sociology, and others.

And these fields, which merely apply statistics but are not engaged in actively developing

it themselves, continue to operate largely using classical methods. However, the

machine-learning community—with its roots in computer science but great demand for

statistical methods—provides a welcome push for the widespread adoption of more

modern methods.
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Keep this historical perspective in mind as we take a closer look at statistics in the rest of

this chapter.

Statistics Defined

All of statistics deals with the following scenario: we have a population—that is the set of

all possible outcomes. Typically, this set is large: all male U.S. citizens, for example, or all

possible web-server response times. Rather than dealing with the total population (which

might be impossible, infeasible, or merely inconvenient), we instead work with a sample.

A sample is a subset of the total population that is chosen so as to be representative of the

overall population. Now we may ask: what conclusions about the overall population can

we draw given one specific sample? It is this particular question that classical statistics

answers via a process known as statistical inference: properties of the population are

inferred from properties of a sample.

Intuitively, we do this kind of thing all the time. For example, given the heights of five

men (let’s say 178 cm, 180 cm, 179 cm, 178 cm, and 180 cm), we are immediately

comfortable calculating the average (which is 179 cm) and concluding that the “typical”

body size for all men in the population (not just the five in the sample!) is 179 cm, “more

or less.” This is where formal classical statistics comes in: it provides us with a way of

making the vague “more or less” statement precise and quantitative. Given the sample,

statistical reasoning allows us to make specific statements about the population, such as,

“We expect x percent of men to be between y and z cm tall,” or, “We expect fewer than x

percent of all men to be taller than y cm,” and so on.

Classical statistics is mostly concerned with two procedures: parameter estimation (or

“estimation” for short) and hypothesis testing. Parameter estimation works as follows. We

assume that the population is described by some distribution—for example, the Gaussian:

N (x; μ, σ) = 1√
2πσ

exp

(
−1

2

(
x − μ

σ

)2
)

and we seek to estimate values for the parameters (μ and σ this case) from a sample. Note

that once we have estimates for the parameters, the distribution describing the population

is fully determined, and we can (at least in principle) calculate any desired property of the

population directly from that distribution. Parameter estimation comes in two flavors:

point estimation and interval estimation. The first just gives us a specific value for the

parameter, whereas the second gives us a range of values that is supposed to contain the

true value.

Compared with parameter estimation, hypothesis testing is the weirder of the two

procedures. It does not attempt to quantify the size of an effect; it merely tries to

determine whether there is any effect at all. Note well that this is a largely theoretical
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argument; from a practical point of view, the existence of an effect cannot be separated

entirely from its size. We will come back to this point later, but first let’s understand how

hypothesis testing works.

Suppose we have developed a new fertilizer but don’t know yet whether it actually

works. Now we run an experiment: we divide a plot of land in two and treat the crops on

half of the plot with the new fertilizer. Finally, we compare the yields: are they different?

The specific amounts of the yield will almost surely differ, but is this difference due to the

treatment or is it merely a chance fluctuation? Hypothesis testing helps us decide how

large the difference needs to be in order to be statistically significant.

Formal hypothesis testing now proceeds as follows. First we set up the two hypotheses

between which we want to decide: the null hypothesis (no effect; that is there is no

difference between the two experiments) and the alternate hypothesis (there is an effect so

that the two experiments have significantly different outcomes). If the difference between

the outcomes of the two experiments is statistically significant, then we have sufficient

evidence to “reject the null hypothesis,” otherwise we “fail to reject the null hypothesis.”

In other words: if the outcomes are not sufficiently different, then we retain the null

hypothesis that there is no effect.

This convoluted, indirect line of reasoning is required because, strictly speaking, no

hypothesis can ever be proved correct by empirical means. If we find evidence against

a hypothesis, then we can surely reject it. But if we don’t find evidence against the

hypothesis, then we retain the hypothesis—at least until we do find evidence against it

(which may possibly never happen, in which case we retain the hypothesis indefinitely).

This, then, is the process by which hypothesis testing proceeds: because we can never

prove that a treatment was successful, we instead invent a contradicting statement that

we can prove to be false. The price we pay for this double negative (“it’s not true that there

is no effect”) is that the test results mean exactly the opposite from what they seem to be

saying: “retaining the null hypothesis,” which sounds like a success, means that the

treatment had no effect; whereas “rejecting the null hypothesis” means that the treatment

did work. This is the first problem with hypothesis testing: it involves a convoluted,

indirect line of reasoning and a terminology that seems to be saying the exact opposite

from what it means.

But there is another problem with hypothesis testing: it makes a statement that has

almost no practical meaning! In reducing the outcome of an experiment to the Boolean

choice between “significant” and “not significant,” it creates an artificial dichotomy that is

not an appropriate view of reality. Experimental outcomes are not either strictly

significant or strictly nonsignificant: they form a continuum. In order to judge the results

of an experiment, we need to know where along the continuum the experimental

outcome falls and how robust the estimate is. If we have this information, we can decide

how to interpret the experimental result and what importance to attach to it.

224 C H A P T E R T E N



O’Reilly-5980006 master October 28, 2010 20:59

Classical hypothesis testing exhibits two well-known traps. The first is that an

experimental outcome that is marginally outside the statistical significance level abruptly

changes the interpretation of the experiment from “significant” to “not significant”—a

discontinuity in interpretation that is not borne out by the minimal change in the actual

outcome of the experiment. The other problem is that almost any effect, no matter how

small, can be made “significant” by increasing the sample size. This can lead to

“statistically significant” results that nevertheless are too small to be of any practical

importance. All of this is compounded by the arbitrariness of the chosen “significance

level” (typically 5 percent). Why not 4.99 percent? Or 1 percent, or 0.1 percent? This

seems to render the whole hypothesis testing machinery (at least as generally practiced)

fundamentally inconsistent: on the one hand, we introduce an absolutely sharp cutoff

into our interpretation of reality; and on the other hand, we choose the position of this

cutoff in an arbitrary manner. This does not seem right.

(There is a third trap: at the 5 percent significance level, you can expect 1 out of 20 tests to

give the wrong result. This means that if you run enough tests, you will always find one

that supports whatever conclusion you want to draw. This practice is known as data

dredging and is strongly frowned upon.)

Moreover, in any practical situation, the actual size of the effect is so much more

important than its sheer existence. For this reason, hypothesis testing often simply misses

the point. A project I recently worked on provides an example of this. The question arose

as to whether two events were statistically independent (this is a form of hypothesis

testing). But, for the decision that was ultimately made, it did not matter whether the

events truly were independent (they were not) but that treating them as independent

made no measurable difference to the company’s balance sheet.

Hypothesis testing has its place but typically in rather abstract or theoretical situations

where the mere existence of an effect constitutes an important discovery (“Is this coin

loaded?” “Are people more likely to die a few days after their birthdays than before?”). If

this describes your situation, then you will quite naturally employ hypothesis tests.

However, if the size of an effect is of interest to you, then you should feel free to ignore

tests altogether and instead work out an estimate of the effect—including its confidence

interval. This will give you the information that you need. You are not “doing it wrong”

just because you haven’t performed a significance test somewhere along the way.

Finally, I’d like to point out that the statistics community itself has become uneasy with

the emphasis that is placed on tests in some fields (notably medicine but also social

sciences). Historically, hypothesis testing was invented to deal with sample sizes so small

(possibly containing only four or five events) that drawing any conclusion at all was a

challenge. In such cases, the broad distinction between “effect” and “no effect” was about

the best one could do. If interval estimates are available, there is no reason to use

statistical tests. The Wikipedia entry on p-values (explained below) provides some starting

points to the controversy.
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I have devoted quite a bit of space to a topic that may not seem especially relevant.

However, hypothesis tests feature so large in introductory statistics books and courses

and, at the same time, are so obscure and counterintuitive, that I found it important to

provide some background. In the next section, we will take a more detailed look at some

of the concepts and terminology that you are likely to find in introductory (or not-so-

introductory) statistics books and courses.

Statistics Explained

In Chapter 9, we already encountered several well-known probability distributions,

including the binomial (used for trials resulting in Success or Failure), the Poisson

(applicable in situations where events are evenly distributed according to some density),

and the ubiquitous Normal, or Gaussian, distribution. All of these distributions describe

real-world, observable phenomena.

In addition, classical statistics uses several distributions that describe the distribution of

certain quantities that are not observed but calculated. These distributions are not (or not

usually) used to describe events in the real world. Instead, they describe how the

outcomes of specific typical calculations involving random quantities will be distributed.

There are four of these distributions, and they are known as sampling distributions.

The first of these (and the only one having much use outside of theoretical statistics) is the

Gaussian distribution. As a sampling distribution, it is of interest because we already know

that it describes the distribution of a sum of independent, identically distributed random

variables. In other words, if X1, X2, . . . , Xn are random variables, then

Z = X1 + X2 + · · · + Xn will be normally distributed and (because we can divide by a

constant) the average m = (X1 + X2 + · · · + Xn)/n will also follow a Gaussian. It is this last

property that makes the Gaussian important as a sampling distribution: it describes the

distribution of averages. One caveat: to arrive at a closed formula for the Gaussian, we need

to know the variance (i.e., the width) of the distribution from which the individual Xi are

drawn. For most practical situations this is not a realistic requirement, and in a moment

we will discuss what to do if the variance is not known.

The second sampling distribution is the chi-square (χ2) distribution. It describes the

distribution of the sum of squares of independent, identically distributed Gaussian random

variables. Thus, if X1, X2, . . . , Xn are Gaussian random variables with unit variance, then

U = X2
1 + X2

2 + · · · + X2
n will follow a chi-square distribution. Why should we care?

Because we form this kind of sum every time we calculate the variance. (Recall that the

variance is defined as 1
n

∑
(xi − m)2.) Hence, the chi-square distribution is used to describe

the distribution of variances. The number n of elements in the sum is referred to as the

number of degrees of freedom of the chi-square distribution, and it is an additional parameter

we need to know to evaluate the distribution numerically.
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The third sampling distribution describes the behavior of the ratio T of a normally

(Gaussian) distributed random variable Z and a chi-square-distributed random variable U .

This distribution is the famous Student t distribution. Specifically, let Z be distributed

according to the standard Gaussian distribution and U according to the chi-square

distribution with n degrees of freedom. Then T = Z/
√

U/n is distributed according to the t

distribution with n degrees of freedom. As it turns out, this is the correct formula to use

for the distribution of the average if the variance is not known but has to be determined from

the sample together with the average.

The t distribution is a symmetric, bell-shaped curve like the Gaussian but with fatter tails.

How fat the tails are depends on the number of degrees of freedom (i.e., on the number of

data points in the sample). As the number of degrees of freedom increases, the t

distribution becomes more and more like the Gaussian. In fact, for n larger than about 30,

the differences between them are negligible. This is an important point to keep in mind:

the distinction between the t distribution and the Gaussian matters only for small

samples—that is, samples containing less than approximately 30 data points. For larger

samples, it is all right to use the Gaussian instead of the t distribution.

The last of the four sampling distributions is Fisher’s F distribution, which describes the

behavior of the ratio of two chi-square random variables. We care about this when we

want to compare two variances against each other (e.g., to test whether they are equal or

not).

These are the four sampling distributions of classical statistics. I will neither trouble you

with the formulas for these distributions, nor show you their graphs—you can find them

in every statistics book. What is important here is to understand what they are describing

and why they are important. In short, if you have n independent but identically

distributed measurements, then the sampling distributions describe how the average, the

variance, and their ratios will be distributed. The sampling distributions therefore allow us

to reason about averages and variances. That’s why they are important and why statistics

books spend so much time on them.

One way to use the sampling distribution is to construct confidence intervals for an

estimate. Here is how it works. Suppose we have n observations. We can find the average

and variance of these measurements as well as the ratio of the two. Finally, we know that

the ratio is distributed according to the t distribution. Hence we can find the interval

that has a 95 percent probability of containing the true value (see Figure 10-1). The

boundaries of this range are the 95 percent confidence interval; that is, we expect the true

value to fall outside this confidence range in only 1 out 20 cases.

A similar concept can be applied to hypothesis testing, where sampling distributions are

often used to calculate so-called p-values. A p-value is an attempt to express the strength

of the evidence in a hypothesis test and, in so doing, to soften the sharp binary distinction
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95% Confidence Interval

95% of Area

F I G U R E 10-1. The shaded area contains 95 percent of the area under the curve; the boundaries of the shaded region are
the bounds on the 95 percent confidence interval.

between significant and not significant outcomes mentioned earlier. A p-value is the

probability of obtaining a value as (or more) extreme than the one actually observed under the

assumption that the null hypothesis is true (see Figure 10-2). In other words, if the null

hypothesis is that there is no effect, and if the observed effect size is x , then the p-value is

the probability of observing an effect at least as large as x . Obviously, a large effect is

improbable (small p-value) if the null hypothesis (zero effect) is true; hence a small

p-value is considered strong evidence against the null hypothesis. However, a p-value is

not “the probability that the null hypothesis is true”—such an interpretation (although

appealing!) is incorrect. The p-value is the probability of obtaining an effect as large or

larger than the observed one if the null hypothesis is true. (Classical statistics does not

make probability statements about the truth of hypotheses. Doing so would put us into

the realm of Bayesian statistics, a topic we will discuss toward the end of this chapter.)

By the way, if you are thinking that this approach to hypothesis testing—with its sliding

p-values—is quite different from the cut-and-dried significant–not significant approach

discussed earlier, then you are right. Historically, two competing theories of significance

tests have been developed and have generated quite a bit of controversy; even today they

sit a little awkwardly next to each other. (The approach based on sliding p-values that

need to be interpreted by the researcher is due to Fisher; the decision-rule approach was

developed by Pearson and Neyman.) But enough, already. You can consult any statistics

book if you want to know more details.
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Observed Value

p-value:
Area Under Curve

F I G U R E 10-2. The p-value is the probability of observing a value as large or larger than the one actually observed if the
null hypothesis is true.

Example: Formal Tests Versus Graphical Methods

Historically, classical statistics evolved as it did because working with actual data was hard.

The early statisticians therefore made a number of simplifying assumptions (mostly that

data would be normally distributed) and then proceeded to develop mathematical tools

(such as the sampling distributions introduced earlier in the chapter) that allowed them to

reason about data sets in a general way and required only the knowledge of a few, easily

calculated summary statistics (such as the mean). The ingenuity of it all is amazing, but it

has led to an emphasis on formal technicalities as opposed to the direct insight into the

data. Today our situation is different, and we should take full advantage of that.

An example will demonstrate what I mean. The listing below shows two data sets. Are

they the same, or are they different (in the sense that their means are the same or

different)?*

0.209 0.225

0.205 0.262

0.196 0.217

0.210 0.240

0.202 0.230

0.207 0.229

0.224 0.235

0.223 0.217

0.220

0.201

*This is a famous data set with history that is colorful but not really relevant here. A Web search for
“Quintus Curtius Snodgrass” will turn up plenty of references.
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F I G U R E 10-3. Box-and-whisker plots of the two Quintus Curtius Snodgrass data sets. There is almost no overlap between
the two.

In case study 9.2.1 of their book, Larsen and Marx (see the recommended reading at the

end of this chapter) labor for several pages and finally conclude that the data sets are

different at the 99 percent level of significance.

Figure 10-3 shows a box plot for each of the data sets. Case closed.

(In fairness, the formal test does something that a graphical method cannot do: it gives us

a quantitative criterion by which to make a decision. I hope that the discussion in this

chapter has convinced you that this is not always an advantage, because it can lead to

blind faith in “the number.” Graphical methods require you to interpret the results and

take responsibility for the conclusions. Which is why I like them: they keep you honest!)

Controlled Experiments Versus Observational Studies

Besides the machinery of formal statistical inference (using the sampling distributions just

discussed), the early statistics pioneers also developed a general theory of how best to

undertake statistical studies. This conceptual framework is sometimes known as Design of

Experiment and is worth knowing about—not least because so much of typical data mining

activity does not make use of it.

The most important distinction formalized by the Design of Experiment theory is the one

between an observational study and a controlled experiment. As the name implies, a controlled
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experiment allows us to control many aspects of the experimental setup and procedure; in

particular, we control which treatment is applied to which experimental unit (we will

define these terms shortly). For example, in an agricultural experiment, we would treat

some (but not all) of the plots with a new fertilizer and then later compare the yields from

the two treatment groups. In contrast, with an observational study, we merely collect data

as it becomes (or already is) available. In particular, retrospective studies are always

observational (not controlled).

In a controlled experiment, we are able to control the “input” of an experiment (namely,

the application of a treatment) and therefore can draw much more powerful conclusions

from the output. In contrast to observational studies, a properly conducted controlled

experiment can provide strong support for cause-and-effect relationships between two

observations and can be used to rule out hidden (or confounding) causes. Observational

studies can merely suggest the existence of a relationship between two observations;

however, they can neither prove that one observation is caused by the other nor rule out

that additional (unobserved) factors have played a role.

The following (intentionally whimsical) example will serve to make the point. Let’s say

we have data that suggests that cities with many lawyers also have many espresso stands

and that cities with few lawyers have few espresso stands. In other words, there is strong

correlation between the two quantities. But what conclusions can we draw about the

causal relationship between the two? Are lawyers particularly high consumers of

expensive coffee? Or does caffeine make people more litigious? In short, there is no way

for us to determine what is cause and what is effect in this example. In contrast, if the

fertilized yields in the controlled agricultural experiment are higher than the yields from

the untreated control plots, we have strong reason to conclude that this effect is due to

the fertilizer treatment.

In addition to the desire to establish that the treatment indeed causes the effect, we also

want to rule out the possibility of additional, unobserved factors that might account for

the observed effect. Such factors, which influence the outcome of a study but are not

themselves part of it, are known as confounding (or “hidden” or “lurking”) variables. In our

agricultural example, differences in soil quality might have a significant influence on the

yield—perhaps a greater influence than the fertilizer. The spurious correlation between

the number of lawyers and espresso stands is almost certainly due to confounding: larger

cities have more of everything! (Even if we account for this effect and consider the per

capita density of lawyers and espresso stands, there is still a plausible confounding factor:

the income generated per head in the city.) In the next section, we will discuss how

randomization can help to remove the effect of confounding variables.

The distinction between controlled experiments and observational studies is most critical.

Many of the most controversial scientific or statistical issues involve observational studies.

In particular, reports in the mass media often concern studies that (inappropriately) draw

causal inferences from observational studies (about topics such as the relationship
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between gun laws and homicide rates, for example). Sometimes controlled experiments

are not possible, with the result that it becomes almost impossible to settle certain

questions once and for all. (The controversy around the connection between smoking and

lung cancer is a good example.)

In any case, make sure you understand clearly the difference between controlled and

observational studies, as well as the fundamental limitations of the latter!

Design of Experiments

In a controlled experiment, we divide the experimental units that constitute our sample into

two or more groups and then apply different treatments or treatment levels to the units in

each group. In our agricultural example, the plots correspond to the experimental units,

fertilization is the treatment, and the options “fertilizer” and “no fertilizer” are the

treatment levels.

Experimental design involves several techniques to improve the quality and reliability of

any conclusions drawn from a controlled experiment.

Randomization
Randomization means that treatments (or treatment levels) are assigned to

experimental units in a random fashion. Proper randomization suppresses systematic

errors. (If we assign fertilizer treatment randomly to plots, then we remove the

systematic influence of soil quality, which might otherwise be a confounding factor,

because high-quality and low-quality plots are now equally likely to receive the

fertilizer treatment.) Achieving true randomization is not as easy as it looks—I’ll come

back to this point shortly.

Replication
Replication means that the same treatment is applied to more than one experimental

unit. Replication serves to reduce the variability of the results by averaging over a

larger sample. Replicates should be independent of each other, since nothing is gained

by repeating the same experiment on the same unit multiple times.

Blocking
We sometimes know (or at least strongly suspect) that not all experimental units are

equal. In this case, it may make sense to group equivalent experimental units into

“blocks” and then to treat each such block as a separate sample. For example, if we

know that plots A and C have poor soil quality and that B and D have better soil, then

we would form two blocks—consisting of (A, C) and (B, D), respectively—before

proceeding to make a randomized assignment of treatments for each block separately.

Similarly, if we know that web traffic is drastically different in the morning and the

afternoon, we should collect and analyze data for both time periods separately. This

also is a form of blocking.

Factorization
The last of these techniques applies only to experiments involving several treatments

(e.g., irrigation and fertilization, to stay within our agricultural framework). The
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simplest experimental design would make only a single change at any given time, so

that we would observe yields with and without irrigation as well as with and without

fertilizer. But this approach misses the possibility that there are interactions between the

two treatments—for example, the effect of the fertilizer may be significantly higher

when coupled with improved irrigation. Therefore, in a factorial experiment all

possible combinations of treatment levels are tried. Even if a fully factorial experiment

is not possible (the number of combinations goes up quickly as the number of different

treatments grows), there are rules for how best to select combinations of treatment

levels for drawing optimal conclusions from the study.

Another term you may come across in this context is ANOVA (analysis of variance),

which is a standard way of summarizing results from controlled experiments. It

emphasizes the variations within each treatment group for easy comparison with the

variances between the treatments, so that we can determine whether the differences

between different treatments are significant compared to the variation within each

treatment group. ANOVA is a clever bookkeeping technique, but it does not introduce

particularly noteworthy new statistical concepts.

A word of warning: when conducting a controlled experiment, make sure that you apply

the techniques properly; in particular, beware of pseudo-randomization and

pseudo-replication.

Pseudo-randomization occurs if the assignment of treatments to experimental units is not

truly random. This can occur relatively easily, even if the assignment seems to be random.

For example, if you would like to try out two different drugs on lab rats, it is not sufficient

to “pick a rat at random” from the cage to administer the treatment. What does “at

random” mean? It might very well mean picking the most active rat first because it comes

to the cage door. Or maybe the least aggressive-looking one. In either case, there is a

systematic bias!

Here is another example, perhaps closer to home: the web-lab. Two different site designs

are to be presented to viewers, and the objective is to measure conversion rate or

click-throughs or some other metric. There are multiple servers, so we dedicate one of

them (chosen “at random”) to serve the pages with the new design. What’s wrong with

that?

Everything! Do you have any indication that web requests are assigned to servers in a

random fashion? Or might servers have, for example, a strong geographic bias? Let’s

assume the servers are behind some “big-IP” box that routes requests to the servers. How

is the routing conducted—randomly, or round-robin, or based on traffic intensity? Is the

routing smart, so that servers with slower response times get fewer hits? What about

sticky sessions, and what about the relationship between sticky sessions and slower

response times? Is the router reordering the incoming requests in some way? That’s a lot

of questions—questions that randomization is intended to avoid. In fact, you are not

running a controlled experiment at all: you are conducting an observational study!
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The only way that I know to run a controlled experiment is by deciding ahead of time

which experimental unit will receive which treatment. In the lab rat example, rats should

have been labeled and then treatments assigned to the labels using a (reliable) random

number generator or random table. In the web-server example it is harder to achieve true

randomization, because the experimental units are not known ahead of time. A simple

rule (e.g., show the new design to every nth request) won’t work, because there may be

significant correlation between subsequent requests. It’s not so easy.

Pseudo-replication occurs when experimental units are not truly independent. Injecting

the same rat five times with the same drug does not reduce variability! Similarly, running

the same query against a database could be misleading because of changing cache

utilization. And so on. In my experience, pseudo-replication is easier to spot and hence

tends to be less of a problem than pseudo-randomization.

Finally, I should mention one other term that often comes up in the context of proper

experimental process: blind and double-blind experiments. In a blind experiment, the

experimental unit should not know which treatment it receives; in a double-blind

experiment, the investigator—at the time of the experiment—does not know either. The

purpose of blind and double-blind experiments is to prevent the knowledge of the

treatment level from becoming a confounding factor. If people know that they have been

given a new drug, then this knowledge itself may contribute to their well-being. An

investigator who knows which field is receiving the fertilizer might weed that particular

field more vigorously and thereby introduce some invisible and unwanted bias. Blind

experiments play a huge role in the medical field but can also be important in other

contexts. However, I would like to emphasize that the question of “blindness” (which

concerns the experimental procedure) is a different issue than the Design of Experiment

prescriptions (which are intended to reduce statistical uncertainty).

Perspective

It is important to maintain an appropriate perspective on these matters.

In practice, many studies are observational, not controlled. Occasionally, this is a painful

loss and only due to the inability to conduct a proper controlled experiment (smoking and

lung cancer, again!). Nevertheless, observational studies can be of great value: one reason

is that they may be exploratory and discover new and previously unknown behavior. In

contrast, controlled experiments are always confirmatory in deciding between the

effectiveness or ineffectiveness of a specific “treatment.”

Observational studies can be used to derive predictive models even while setting aside the

question of causation. The machine-learning community, for instance, attempts to

develop classification algorithms that use descriptive attributes or features of the unit to

predict whether the unit belongs to a given class. They work entirely without controlled

experiments and have developed methods for quantifying the accuracy of their results.

(We will describe some in Chapter 18.)
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That being said, it is important to understand the limitations of observational studies—in

particular, their inability to support strong conclusions regarding cause-and-effect

relationships and their inability to rule out confounding factors. In the end, the power of

controlled experiments can be their limitation, because such experiments require a level

of control that limits their application.

Optional: Bayesian Statistics—The Other Point of View

There is an alternative approach to statistics that is based on a different interpretation of

the concept of probability itself. This may come as a surprise, since probability seems to be

such a basic concept. The problem is that, although we have a very strong intuitive sense

of what we mean by the word “probability,” it is not so easy to give it a rigorous meaning

that can be used to develop a mathematical theory.

The interpretation of probability used by classical statistics (and, to some degree, by

abstract probability theory) treats probability as a limiting frequency: if you toss a fair coin

“a large number of times,” then you will obtain Heads about half of the time; hence the

probability for Heads is 1/2. Arguments and theories starting from this interpretation are

often referred to as “frequentist.”

An alternative interpretation of probability views it as the degree of our ignorance about

an outcome: since we don’t know which side will be on top in the next toss of a fair coin,

we assign each possible outcome the same probability—namely 1/2. We can therefore

make statements about the probabilities associated with individual events without having

to invoke the notion of a large number of repeated trials. Because this approach to

probability and statistics makes use of Bayes’ theorem at a central step in its reasoning, it is

usually called Bayesian statistics and has become increasingly popular in recent years. Let’s

compare the two interpretations in a bit more detail.

The Frequentist Interpretation of Probability

In the frequentist interpretation, probability is viewed as the limiting frequency of each

outcome of an experiment that is repeated a large number of times. This “frequentist”

interpretation is the reason for some of the peculiarities of classical statistics. For example,

in classical statistics it is incorrect to say that a 95 percent confidence interval for some

parameter has a 95 percent chance of containing the true value—after all, the true value

is either contained in the interval or not; period. The only statement that we can make is

that, if we perform an experiment to measure this parameter many times, then in about

95 percent of all cases the experiment will yield a value for this parameter that lies within

the 95 percent confidence interval.

This type of reasoning has a number of drawbacks.

• It is awkward and clumsy, and liable to (possibly even unconscious) misinterpretations.
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• The constant appeal to a “large number of trials” is artificial even in situations where

such a sequence of trials would—at least in principle—be possible (such as tossing a

coin). But it becomes wholly ficticious in situations where the trial cannot possibly be

repeated. The weather report may state: “There is an 80 percent chance of rain

tomorrow.” What is that supposed to mean? It is either going to rain tomorrow or not!

Hence we must again invoke the unlimited sequence of trials and say that in 8 out of

10 cases where we observe the current meteorological conditions, we expect rain on

the following day. But even this argument is illusionary, because we will never observe

these precise conditions ever again: that’s what we have been learning from chaos

theory and related fields.

• We would frequently like to make statements such as the one about the chance of rain,

or similar ones—for example, “The patient has a 60 percent survival probability,” and

“I am 25 percent certain that the contract will be approved.” In all such cases the actual

outcome is not of a probabilistic nature: it will rain or it will not; the patient will

survive or not; the contract will be approved or not. Even so, we’d like to express a

degree of certainty about the expected outcome even if appealing to an unlimited

sequence of trials is neither practical nor even meaningful.

From a strictly frequentist point of view, a statement like “There is an 80 percent chance

of rain tomorrow” is nonsensical. Nevertheless, it seems to make so much intuitive sense.

In what way can this intuition be made more rigorous? This question leads us to Bayesian

statistics or Bayesian reasoning.

The Bayesian Interpretation of Probability

To understand the Bayesian point of view, we first need to review the concept of

conditional probability. The conditional probability P(A|B) gives us the probability for the

event A, given (or assuming) that event B has occurred. You can easily convince yourself

that the following is true:

P(A|B) = P(A ∩ B)

P(B)

where P(A ∩ B) is the joint probability of finding both event A and event B. For example, it

is well known that men are much more likely than women to be color-blind: about 10

percent of men are color-blind but fewer than 1 percent of women are color-blind. These

are conditional probabilities—that is, the probability of being color-blind given the gender:

P(color-blind|male) = 0.1

P(color-blind|female) = 0.01

In contrast, if we “randomly” pick a person off the street, then we are dealing with the joint

probability that this person is color-blind and male. The person has a 50 percent chance of
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being male and a 10 percent conditional probability of being color-blind, given that the

person is male. Hence, the joint probability for a random person to be color-blind and male

is 5 percent, in agreement with the definition of conditional probability given previously.

One can now rigorously prove the following equality, which is known as Bayes’ theorem:

P(A|B) = P(B|A)P(A)

P(B)

In words: the probability of finding A given B is equal to the probability of finding B given

A multiplied by the probability of finding A and divided by the probability of finding B.

Now, let’s return to statistics and data analysis. Assume there is some parameter that we

attempt to determine through an experiment (say, the mass of the proton or the survival

rate after surgery). We are now dealing with two “events”: event B is the occurrence of

the specific set of measurements that we have observed, and the parameter taking some

specific value constitutes event A. We can now rewrite Bayes’ theorem as follows:

P(parameter|data) ∝ P(data|parameter)P(parameter)

(I have dropped the denominator, which I can do because the denominator is simply a

constant that does not depend on the parameter we wish to determine. The left- and

righthand sides are now no longer equal, so I have replaced the equality sign with ∝ to

indicate that the two sides of the expression are merely proportional: equal to within a

numerical constant.)

Let’s look at this equation term by term.

On the lefthand side, we have the probability of finding a certain value for the parameter, given

the data. That’s pretty exciting, because this is an expression that makes an explicit

statement about the probability of an event (in this case, that the parameter has a certain

value), given the data. This probability is called the posterior probability, or simply the

posterior, and is defined solely through Bayes’ theorem without reference to any unlimited

sequence of trials. Instead, it is a measure of our “belief” or “certainty” about the outcome

(i.e., the value of the parameter) given the data.

The first term on the righthand side, P(data|parameter), is known as the likelihood function.

This is a mathematical expression that links the parameter to the probability of obtaining

specific data points in an actual experiment. The likelihood function constitutes our

“model” for the system under consideration: it tells us what data we can expect to

observe, given a particular value of the parameter. (The example in the next section will

help to clarify the meaning of this term.)

Finally, the term P(parameter) is known as the prior probability, or simply the prior,

and captures our “prior” (prior to the experiment) belief of finding a certain

outcome—specifically our prior belief that the parameter has a certain value. It is the
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existence of this prior that makes the Bayesian approach so controversial, because it

seems to introduce an inappropriately subjective element into the analysis. In reality,

however, the influence of the prior on the final result of the analysis is typically small, in

particular when there is plenty of data. One can also find so-called “noninformative”

priors that express our complete ignorance about the possible outcomes. But the prior is

there, and it forces us to think about our assumptions regarding the experiment and to

state some of these assumptions explicitly (in form of the prior distribution function).

Bayesian Data Analysis: A Worked Example

All of this will become much clearer once we demonstrate these concepts in an actual

example. The example is very simple, so as not to distract from the concepts.

Assume we have a coin that has been tossed 10 times, producing the following set of

outcomes (H for Heads, T for Tails):

T H H H H T T H H H

If you count the outcomes, you will find that we obtained 7 Heads and 3 Tails in 10 tosses

of the coin.

Given this data, we would like to determine whether the coin is fair or not. Specifically,

we would like to determine the probability p that a toss of this coin will turn out Heads.

(This is the “parameter” we would like to estimate.) If the coin is fair, then p should be

close to 1/2.

Let’s write down Bayes’ equation, adapted to this system:

P(p| {T H H H H T T H H H}) ∝ P({T H H H H T T H H H} |p)P(p)

Notice that at this point, the problem has become parametric. All that is left to do is to

determine the value of the parameter p or, more precisely, the posterior probability

distribution for all values of p.

To make progress, we need to supply the likelihood function and the prior. Given this

system, the likelihood function is particularly simple: P(H|p) = p and P(T|p) = 1 − p.

You should convince yourself that this choice of likelihood function gives us exactly what

we want: the probability to obtain Heads or Tails, given p.

We also assume that the tosses are independent, which implies that only the total

number of Heads or Tails matters but not the order in which they occurred. Hence we

don’t need to find the combined likelihood for the specific sequence of 10 tosses; instead,

the likelihood of the set of events is simply the product of the 10 individual tosses. (The

likelihood “factors” for independent events—this argument occurs frequently in Bayesian

analysis.)
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P( p | {7 Heads, 3 Tails} ) ∝ p7(1-p)3

F I G U R E 10-4. The (unnormalized) posterior probability of obtaining 7 Heads in 10 tosses of a coin as a function of p.

Finally, we know nothing about this coin. In particular, we have no reason to believe that

any value of p is more likely than any other, so we choose as prior probability distribution

the “flat” distribution P(p) = 1 for all p.

Collecting everything, we end up with the following expression (where I have dropped

some combinatorial factors that do not depend on p):

P(p| {7 Heads, 3 Tails}) ∝ p7(1 − p)3

This is the posterior probability distribution for the parameter p based on the

experimental data (see Figure 10-4). We can see that it has a peak near p = 0.7, which is

the most probable value for p. Note that the absence of tick marks on the y axis in Figure

10-4: the denominator, which we dropped earlier, is still undetermined, and therefore the

overall scale of the function is not yet fixed. If we are interested only in the location of the

maximum, this does not matter.

But we are not restricted to a single (point) estimate for p—the entire distribution

function is available to us! We can now use it to construct confidence intervals for p. And

because we are now talking about Bayesian probabilities, it would be legitimate to state

that “the confidence interval has a 95 percent chance of containing the true value of p.”

We can also evaluate any function that depends on p by integrating it against the

posterior distribution for p. As a particularly simple example, we could calculate the
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 0  0.2  0.4  0.6  0.8  1

10 Tosses:  7 Heads, 3 Tails
30 Tosses: 21 Heads, 9 Tails

F I G U R E 10-5. The (unnormalized) posterior probability of obtaining 70 percent Heads in 10 and in 30 tosses of a coin. The
more data there is, the more strongly peaked the posterior distribution becomes.

expectation value of p to obtain the single “best” estimate of p (rather than use the most

probable value as we did before):

E[p] =
∫

p P(p| {7 Heads, 3 Tails}) dp∫
P(p| {7 Heads, 3 Tails}) dp

Here we finally need to worry about all the factors that we dropped along the way, and

the denominator in the formula is our way of fixing the normalization “after the fact.” To

ensure that the probability distribution is properly normalized, we divide explicitly by the

integral over the whole range of values, thereby guaranteeing that the total probability

equals 1 (as it must).

It is interesting to look at the roles played by the likelihood and the prior in the result. In

Bayesian analysis, the posterior “interpolates” between the prior and the data-based

likelihood function. If there is only very little data, then the likelihood function will be

relatively flat, and therefore the posterior will be more influenced by the prior. But as we

collect more data (i.e., as the empirical evidence becomes stronger), the likelihood

function becomes more and more narrowly peaked at the most likely value of p,

regardless of the choice of prior. Figure 10-5 demonstrates this effect. It shows the

posterior for a total of 10 trials and a total of 30 trials (while keeping the same ratio of

Heads to Tails): as we gather more data, the uncertainty in the resulting posterior shrinks.
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 0  0.2  0.4  0.6  0.8  1

 10 Tosses:  7 Heads, 3 Tails
 30 Tosses: 21 Heads, 9 Tails
100 Tosses: 70 Heads, 30 Tails
Prior

F I G U R E 10-6. The effect of a nonflat prior: posterior probabilities for data sets of different sizes, calculated using a
Gaussian prior.

Finally, Figure 10-6 demonstrates the effect of the prior. Whereas the posterior

distributions shown in Figure 10-5 were calculated using a flat prior, those in Figure 10-6

were calculated using a Gaussian prior—which expresses a rather strong belief that the

value of p will be between 0.35 and 0.65. The influence of this prior belief is rather

significant for the smaller data set, but as we take more and more data points, its influence

is increasingly diminished.

Bayesian Inference: Summary and Discussion

Let’s summarize what we have learned about Bayesian data analysis or Bayesian inference

and discuss what it can do for us—and what it can’t.

First of all, the Bayesian (as opposed to the frequentist) approach to inference allows us to

compute a true probability distribution for any parameter in question. This has great

intuitive appeal, because it allows us to make statements such as “There is a 90 percent

chance of rain tomorrow” without having to appeal to the notion of extended trials of

identical experiments.

The posterior probability distribution arises as the product of the likelihood function and

the prior. The likelihood links experimental results to values of the parameter, and the

prior expresses our previous knowledge or belief about the parameter.

The Bayesian approach has a number of appealing features. Of course, there is the

intuitive nature of the results obtained using Bayesian arguments: real probabilities and
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95 percent confidence intervals that have exactly the kind of interpretation one would

expect! Moreover, we obtain the posterior probability distribution in full generality and

without having to make limiting assumptions (e.g., having to assume that the data is

normally distributed).

Additionally, the likelihood function enters the calculation in a way that allows for great

flexibility in how we build “models.” Under the Bayesian approach, it is very easy to deal

with missing data, with data that is becoming available over time, or with heterogeneous

data sets (i.e., data sets in which different attributes are known about each data point).

Because the result of Bayesian inference is a probability distribution itself, it can be used

as input for a new model that builds on the previous one (hierarchical models). Moreover,

we can use the prior to incorporate previous (domain) knowledge that we may have

about the problem under consideration.

On the other hand, Bayesian inference has some problems, too—even when we

concentrate on practical applications only, leaving the entire philosophical debate about

priors and subjectivity aside.

First of all, Bayesian inference is always parametric; it is never just exploratory or

descriptive. Because Bayesian methods force us to supply a likelihood function explicitly,

they force us to be specific about our choice of model assumptions: we must already have

a likelihood function in mind, for otherwise we can’t even get started (hence such analysis

can never be exploratory). Furthermore, the result of a Bayesian analysis is always a

posterior distribution—that is, a conditional probability of something, given the data. Here,

that “something” is some form of hypothesis that we have, and the posterior gives us the

probability that this hypothesis is true. To make this prescription operational (and, in

particular, expressible through a likelihood function), we pretty much have to

parameterize the hypothesis. The inference then consists of finding the best value for this

parameter, given the data—which is a parametric problem, given a specific choice for the

model (i.e., the likelihood function). (There are so-called “nonparametric” Bayesian

methods, but in reality they boil down to parametric models with very large numbers of

parameters.)

Additionally, actual Bayesian calculations are often difficult. Recall that Bayesian

inference gives us the full explicit posterior distribution function. If we want to summarize

this function, we either need to find its maximum or integrate it to obtain an expectation

value. Both of these problems are hard, especially when the likelihood function is

complicated and there is more than one parameter that we try to estimate. Instead of

explicitly integrating the posterior, one can sample it—that is, draw random points that are

distributed according to the posterior distribution, in order to evaluate expectation values.

This is clearly an expensive process that requires computer time and specialized software

(and the associated know-how). There can also be additional problems. For example, if

the parameter space is very high-dimensional, then evaluating the likelihood function

(and hence the posterior) may be difficult.
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In contrast, frequentist methods tend to make more assumptions up front and rely more

strongly on general analytic results and approximations. With frequentist methods, the

hard work has typically already been done (analytically), leading to an asymptotic or

approximate formula that you only need to plug in. Bayesian methods give you the full,

nonapproximate result but leave it up to you to evaluate it. The disadvantage of the

plug-in approach, of course, is that you might be plugging into an inappropriate

formula—because some of the assumptions or approximations that were used to derive it

do not apply to your system or data set.

To bring this discussion to a close, I’d like to end with a cautionary note. Bayesian

methods are very appealing and even exciting—something that is rarely said about

classical frequentist statistics. On the other hand, they are probably not very suitable for

casual uses.

• Bayesian methods are parametric and specific; they are never exploratory or

descriptive. If we already know what specific question to ask, then Bayesian methods

may be the best way of obtaining an answer. But if we don’t yet know the proper

questions to ask, then Bayesian methods are not applicable.

• Bayesian methods are difficult and require a fair deal of sophistication, both in setting

up the actual model (likelihood function and prior) and in performing the required

calculations.

As far as results are concerned, there is not much difference between frequentist and

Bayesian analysis. When there is sufficient data (so that the influence of the prior is

small), then the end results are typically very similar, whether they were obtained using

frequentist methods or Bayesian methods.

Finally, you may encounter some other terms and concepts in the literature that also bear

the “Bayesian” moniker: Bayesian classifier, Bayesian network, Bayesian risk, and more.

Often, these have nothing to do with Bayesian (as opposed to frequentist) inference as

explained in this chapter. Typically, these methods involve conditional probabilities and

therefore appeal at some point to Bayes’ theorem. A Bayesian classifier, for instance, is the

conditional probability that an object belongs to a certain class, given what we know

about it. A Bayesian network is a particular way of organizing the causal relationships that

exist among events that depend on many interrelated conditions. And so on.

Workshop: R

R is an environment for data manipulation and numerical calculations, specifically

statistical applications. Although it can be used in a more general fashion for

programming or computation, its real strength is the large number of built-in (or

user-contributed) statistical functions.
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R is an open source clone of the S programming language, which was originally developed

at Bell Labs in the 1970s. It was one of the first environments to combine the capabilities

that today we expect from a scripting language (e.g., memory management, proper strings,

dynamic typing, easy file handling) with integrated graphics and intended for an

interactive usage pattern.

I tend to stress the word environment when referring to R, because the way it integrates its

various components is essential to R. It is misleading to think of R as a programming

language that also has an interactive shell (like Python or Groovy). Instead, you might

consider it as a shell but for handling data instead of files. Alternatively, you might want

to view R as a text-based spreadsheet on steroids. The “shell” metaphor in particular is

helpful in motivating some of the design choices made by R.

The essential data structure offered by R is the so-called data frame. A data frame

encapsulates a data set and is the central abstraction that R is built on. Practically all

operations involve the handling and manipulation of frames in one way or the other.

Possibly the best way to think of a data frame is as being comparable to a relational database

table. Each data frame is a rectangular data structure consisting of rows and columns. Each

column has a designated data type, and all entries in that column must be of that type.

Consequently, each row will in general contain entries of different types (as defined by the

types of the columns), but all rows must be of the same form. All this should be familiar

from relational databases. The similarities continue: operations on frames can either

project out a subset of columns, or filter out a subset of rows; either operation results in a

new data frame. There is even a command (merge) that can perform a join of two data

frames on a common column. In addition (and in contrast to databases), we will

frequently add columns to an existing frame—for example, to hold the results of an

intermediate calculation.

We can refer to columns by name. The names are either read from the first line of the

input file, or (if not provided) R will substitute synthetic names of the form V1, V2, . . . . In

contrast, we filter out a set of rows through various forms of “indexing magic.” Let’s look

at some examples.

Consider the following input file:

Name Height Weight Gender

Joe 6.2 192.2 0

Jane 5.5 155.4 1

Mary 5.7 164.3 1

Jill 5.6 166.4 1

Bill 5.8 185.8 0

Pete 6.1 201.7 0

Jack 6.0 195.2 0

Let’s investigate this data set using R, placing particular emphasis on how to handle and

manipulate data with R—the full session transcript is included below. The commands
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entered at the command prompt are prefixed by the prompt >, while R output is shown

without the prompt:

> d <- read.csv( "data", header = TRUE, sep = "\t" )

> str(d)

'data.frame': 7 obs. of 4 variables:

$ Name : Factor w/ 7 levels "Bill","Jack",..: 5 3 6 4 1 7 2

$ Height: num 6.2 5.5 5.7 5.6 5.8 6.1 6

$ Weight: num 192 155 164 166 186 ...

$ Gender: int 0 1 1 1 0 0 0

>

> mean( d$Weight )

[1] 180.1429

> mean( d[,3] )

[1] 180.1429

>

> mean( d$Weight[ d$Gender == 1 ] )

[1] 162.0333

> mean( d$Weight[ 2:4 ] )

[1] 162.0333

>

> d$Diff <- d$Height - mean( d$Height )

> print(d)

Name Height Weight Gender Diff

1 Joe 6.2 192.2 0 0.35714286

2 Jane 5.5 155.4 1 -0.34285714

3 Mary 5.7 164.3 1 -0.14285714

4 Jill 5.6 166.4 1 -0.24285714

5 Bill 5.8 185.8 0 -0.04285714

6 Pete 6.1 201.7 0 0.25714286

7 Jack 6.0 195.2 0 0.15714286

> summary(d)

Name Height Weight Gender Diff

Bill:1 Min. :5.500 Min. :155.4 Min. :0.0000 Min. :-3.429e-01

Jack:1 1st Qu.:5.650 1st Qu.:165.3 1st Qu.:0.0000 1st Qu.:-1.929e-01

Jane:1 Median :5.800 Median :185.8 Median :0.0000 Median :-4.286e-02

Jill:1 Mean :5.843 Mean :180.1 Mean :0.4286 Mean : 2.538e-16

Joe :1 3rd Qu.:6.050 3rd Qu.:193.7 3rd Qu.:1.0000 3rd Qu.: 2.071e-01

Mary:1 Max. :6.200 Max. :201.7 Max. :1.0000 Max. : 3.571e-01

Pete:1

>

> d$Gender <- factor( d$Gender, labels = c("M", "F") )

> summary(d)

Name Height Weight Gender Diff

Bill:1 Min. :5.500 Min. :155.4 M:4 Min. :-3.429e-01

Jack:1 1st Qu.:5.650 1st Qu.:165.3 F:3 1st Qu.:-1.929e-01

Jane:1 Median :5.800 Median :185.8 Median :-4.286e-02

Jill:1 Mean :5.843 Mean :180.1 Mean : 2.538e-16

Joe :1 3rd Qu.:6.050 3rd Qu.:193.7 3rd Qu.: 2.071e-01

Mary:1 Max. :6.200 Max. :201.7 Max. : 3.571e-01

Pete:1

>

> plot( d$Height ~ d$Gender )

> plot( d$Height ~ d$Weight, xlab="Weight", ylab="Height" )
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> m <- lm( d$Height ~ d$Weight )

> print(m)

Call:

lm(formula = d$Height ~ d$Weight)

Coefficients:

(Intercept) d$Weight

3.39918 0.01357

> abline(m)

> abline( mean(d$Height), 0, lty=2 )

Let’s step through this session in some detail and explain what is going on.

First, we read the file in and assign it to the variable d, which is a data frame as discussed

previously. The function str(d) shows us a string representation of the data frame. We can

see that the frame consists of five named columns, and we can also see some typical

values for each column. Notice that R has assigned a data type to each column: height and

weight have been recognized as floating-point values; the names are considered a “factor,”

which is R’s way of indicating a categorical variable; and finally the gender flag is

interpreted as an integer. This is not ideal—we will come back to that.

> d <- read.csv( "data", header = TRUE, sep = "\t" )

> str(d)

'data.frame': 7 obs. of 4 variables:

$ Name : Factor w/ 7 levels "Bill","Jack",..: 5 3 6 4 1 7 2

$ Height: num 6.2 5.5 5.7 5.6 5.8 6.1 6

$ Weight: num 192 155 164 166 186 ...

$ Gender: int 0 1 1 1 0 0 0

Let’s calculate the mean of the weight column to demonstrate some typical ways in which

we can select rows and columns. The most convenient way to specify a column is by

name: d$Weight. The use of the dollar-sign ($) to access members of a data structure is one

of R’s quirks that one learns to live with. Think of a column as a shell variable! (By

contrast, the dot (.) is not an operator and can be part of a variable or function name—in

the same way that an underscore ( ) is used in other languages. Here again the shell

metaphor is useful: recall that shells allow the dot as part of filenames!)

> mean( d$Weight )

[1] 180.1429

> mean( d[,3] )

[1] 180.1429

Although its name is often the most convenient method to specify a column, we can also

use its numeric index. Each element in a data frame can be accessed using its row and

column index via the familiar bracket notation: d[row,col]. Keep in mind that the vertical

(row) index comes first, followed by the horizontal (column) index. Omitting one of them

selects all possible values, as we do in the listing above: d[,3] selects all rows from the

third column. Also note that indices in R start at 1 (mathematical convention), not at 0

(programming convention).
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Now that we know how to select a column, let’s see how to select rows. In R, this is

usually done through various forms of “indexing magic,” two examples of which are

shown next in the listing. We want to find the mean weight of only the women in the

sample. To do so, we take the weight column but now index it with a logical expression.

This kind of operation takes some getting used to: inside the brackets, we seem to

compare a column (d$Gender) with a scalar—and then use the result to index another

column. What is going on here? Several things: first, the scalar on the righthand side of

the comparison is expanded into a vector of the same length as the operator on the

lefthand side. The result of the equality operator is then a Boolean vector of the same

length as d$Gender or d$Weight. A Boolean vector of the appropriate length can be used as

an index and selects only those rows for which it evaluates as True—which it does in this

case only for the women in the sample. The second line of code is much more

conventional: the colon operator (:) creates a range of numbers, which are used to index

into the d$Weight column. (Remember that indices start at 1, not at 0!)

> mean( d$Weight[ d$Gender == 1 ] )

[1] 162.0333

> mean( d$Weight[ 2:4 ] )

[1] 162.0333

These kinds of operation are very common in R: using some form of creative indexing to

filter out a subset of rows (there are more ways to do this, which I don’t show) and

mixing vectors and scalars in expressions. Here is another example:

> d$Diff <- d$Height - mean( d$Height )

Here we create an additional column, called d$Diff, as the residual that remains when the

mean height is subtracted from each individual’s height. Observe how we mix a column

with a scalar expression to obtain another vector.

summary(d)

Next, we calculate the summary of the entire data frame with the new column added.

Take a look at the gender column: because R interpreted the gender flag as an integer, it

went ahead and calculated its “mean” and other quantities. This is meaningless, of course;

the values in this column should be treated as categorical. This can be achieved using the

factor() function, which also allows us to replace the uninformative numeric labels with

more convenient string labels.

> d$Gender <- factor( d$Gender, labels = c("M", "F") )

As you can see when we run summary(d) again, R treats categorical variables differently: it

counts how often each value occurs in the data set.

Finally, let’s take a look at R’s plotting capabilities. First, we plot the height “as a function

of” the gender. (R uses the tilde (~) to separate control and response variables; the

response variable is always on the left.)

> plot( d$Height ~ d$Gender )
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F I G U R E 10-7. A box plot, showing the distribution of heights by gender.

This gives us a box plot, which is shown in Figure 10-7. On the other hand, if we plot the

height as a function of the weight, then we obtain a scatter plot (see Figure 10-8—without

the lines; we will add them in a moment).

> plot( d$Height ~ d$Weight, xlab="Weight", ylab="Height" )

Given the shape of the data, we might want to fit a linear model to it. This is trivially easy

to do in R—it’s a single line of code:

> m <- lm( d$Height ~ d$Weight )

Notice once again the tilde notation used to indicate control and response variable.

We may also want to add the linear model to the scatter plot with the data. This can be

done using the abline() function, which plots a line given its offset (“a”) and slope (“b”).

We can either specify both parameters explicitly, or simply supply the result m of the fitting

procedure; the abline function can use either. (The parameter lty selects the line type.)

> abline(m)

> abline( mean(d$Height), 0, lty=2 )

This short example should have given you an idea of what working with R is like.

R can be difficult to learn: it uses some unfamiliar idioms (such as creative indexing) as

well as some obscure function and parameter names. But the greatest challenge to the

newcomer (in my opinion) is its indiscriminate use of function overloading. The same

function can behave quite differently depending on the (usually opaque) type of inputs it

is given. If the default choices made by R are good, then this can be very convenient, but

it can be hellish if you want to exercise greater, manual control.
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F I G U R E 10-8. A scatter plot with a linear fit.

Look at our example again: the same plot() command generates entirely different plot

types depending on whether the control variable is categorical or numeric (box plot in the

first case, scatter plot in the latter). For the experienced user, this kind of implicit behavior

is of course convenient, but for the beginner, the apparent unpredictability can be very

confusing. (In Chapter 14, we will see another example, where the same plot() command

generates yet a different type of plot.)

These kinds of issues do not matter much if you use R interactively because you see the

results immediately or, in the worst case, get an error message so that you can try

something else. However, they can be unnerving if you approach R with the mindset of a

contemporary programmer who prefers for operations to be explicit. It can also be difficult

to find out which operations are available in a given situation. For instance, it is not at all

obvious that the (opaque) return type of the lm() function is admissible input to the

abline() function—it certainly doesn’t look like the explicit set of parameters used in the

second call to abline(). Issues of this sort make it hard to predict what R will do at any

point, to develop a comprehensive understanding of its capabilities, or how to achieve a

desired effect in a specific situation.

Further Reading

The number of introductory statistics texts seems almost infinite—which makes it that

much harder to find good ones. Below are some texts that I have found useful:
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• An Introduction to Mathematical Statistics and Its Applications. Richard J. Larsen and Morris

L. Marx. 4th ed., Prentice Hall. 2005.

This is my preferred introductory text for the mathematical background of classical

statistics: how it all works. This is a math book; you won’t learn how to do practical

statistical fieldwork from it. (It contains a large number of uncommonly interesting

examples; however, on close inspection many of them exhibit serious flaws in their

experimental design—at least as described in this book.) But as a mathematical

treatment, it very neatly blends accessibility with sufficient depth.

• Statistics for Technology: A Course in Applied Statistics. Chris Chatfield. 3rd ed., Chapman &

Hall/CRC. 1983.

This book is good companion to the book by Larsen and Marx. It eschews most

mathematical development and instead concentrates on the pragmatics of it, with an

emphasis on engineering applications.

• The Statistical Sleuth: A Course in Methods of Data Analysis. Fred Ramsey and Daniel

Schafer. 2nd ed., Duxbury Press. 2001.

This advanced undergraduate textbook emphasizes the distinction between

observational studies and controlled experiments more strongly than any other book I

am aware of. After working through some of their examples, you will not be able to

look at the description of a statistical study without immediately classifying it as

observational or controlled (and questioning the conclusions if it was merely

observational). Unfortunately, the development of the general theory gets a little lost

in the detailed description of application concerns.

• The Practice of Business Statistics. David S. Moore, George P. McCabe, William M.

Duckworth, and Layth Alwan. 2nd ed., Freeman. 2008.

This is a “for business” version of a popular beginning undergraduate textbook. The

coverage of topics is comprehensive, and the presentation is particularly easy to follow.

This book can serve as a first course, but will probably not provide sufficient depth to

develop proper understanding.

• Problem Solving: A Statistician’s Guide. Chris Chatfield. 2nd ed., Chapman & Hall/CRC.

1995; and Statistical Rules of Thumb. Gerald van Belle. 2nd ed., Wiley. 2008.

Two nice books with lots of practical advice on statistical fieldwork. Chatfield’s book is

more general; van Belle’s contains much material specific to epidemiology and related

applications.

• All of Statistics: A Concise Course in Statistical Inference. Larry Wasserman. Springer. 2004.

A thoroughly modern treatment of mathematical statistics, this book presents all kinds

of fascinating and powerful topics that are sorely missing from the standard

introductory curriculum. The treatment is advanced and very condensed, requiring

general previous knowledge in basic statistics and a solid grounding in mathematical

methods.
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• Bayesian Methods for Data Analysis. Bradley P. Carlin, and Thomas A. Louis. 3rd ed.,

Chapman & Hall. 2008.

This is a book on Bayesian methods applied to data analysis problems (as opposed to

Bayesian theory only). It is a thick book, and some of the topics are fairly advanced.

However, the early chapters provide the best introduction to Bayesian methods that I

am aware of.

• “Sifting the Evidence—What’s Wrong with Significance Tests?” Jonathan A. C. Sterne

and George Davey Smith. British Medical Journal 322 (2001), p. 226.

This paper provides a penetrating and nonpartisan overview of the problems associated

with classical hypothesis tests, with an emphasis on applications in medicine (although

the conclusions are much more generally valid). The full text is freely available on the

Web; a search will turn up multiple locations.
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C H A P T E R E L E V E N

Intermezzo: Mythbusting—Bigfoot,
Least Squares, and All That

EVERYBODY HAS HEARD OF BIGFOOT, THE MYSTICAL FIGURE THAT LIVES IN THE WOODS, BUT NOBODY HAS EVER

actually seen him. Similarly, there are some concepts from basic statistics that everybody

has heard of but that—like Bigfoot—always remain a little shrouded in mystery. Here, we

take a look at three of them: the average of averages, the mystical standard deviation, and

the ever-popular least squares.

How to Average Averages

Recently, someone approached me with the following question: given the numbers in

Table 11-1, what number should be entered in the lower-right corner? Just adding up the

individual defect rates per item and dividing by 3 (in effect, averaging them) did not seem

right—if only because it would come out to about 0.75, which is pretty high when one

considers that most of the units produced (100 out of 103) are not actually defective. The

specific question asked was: “Should I weight the individual rates somehow?”

This situation comes up frequently but is not always recognized: we have a set of rates (or

averages) and would like to summarize them into an overall rate (or overall average). The

T A B L E 11 -1. Defect rates: what value should go into the lower-right corner?

Item type Units produced Defective units Defect rate

A 2 1 0.5
B 1 1 1.0
C 100 1 0.01

Total defect rate ???
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problem is that the naive way of doing so (namely, to add up the individual rates and then

to divide by the number of rates) will give an incorrect result. However, this is rarely

noticed unless the numbers involved are as extreme as in the present example.

The correct way to approach this task is to start from scratch. What is the “defect rate,”

anyway? It is the number of defective items divided by the number of items produced.

Hence, the total defect rate is the total number of defective items divided by the total

number of items produced: 3/103 ≈ 0.03. There should be no question about that.

Can we arrive at this result in a different way by starting with the individual defect rates?

Absolutely—provided we weight them appropriately. Each individual defect rate should

contribute to the overall defect rate in the same way that the corresponding item type

contributes to the total item count. In other words, the weight for item type A is 2/103,

for B is 1/103, and for C it is 100/103. Pulling all this together, we have:

0.5 · 2/103 + 1.0 · 1/103 + 0.01 · 100/103 = (1 + 1 + 1)/103 = 3/103 as before.

To show that this agreement is not accidental, let’s write things out in greater generality:

nk Number of items of type k

dk Number of defective items of type k

εk = dk

nk
Defect rate for type k

fk = nk∑
i ni

Contribution of type k to total production

Now look at what it means to weight each individual defect rate:

fkεk = nk∑
i ni

dk

nk

= dk∑
i ni

In other words, weighting the individual defect rate εk by the appropriate weight factor fk

has the effect of turning the defect rate back to the the defect count dk (normalized by total

number of items).

In this example, each item could get only one of two “grades,” namely 1 (for defective) or

0 (for not defective), and so the “defect rate” was a measure of the “average defectiveness”

of a single item. The same logic as just demonstrated applies if you have a greater (or

different) range of values. (You can make up your own example: give items grades from 1

to 5, and then calculate the overall “average grade” to see how it works.)

Simpson's Paradox

Since we are talking about mystical figures that can sometimes be found in tables, we

should also mention Simpson’s paradox. Look at Table 11-2 which shows applications and

admissions to a fictional college in terms the applicants’ gender and department.
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T A B L E 11 -2. Simpson’s paradox: applications and admissions by gender of applicant.

Male Female Overall

Department A 80/100 = 0.8 9/10 = 0.9 89/110 = 0.81
Department B 5/10 = 0.5 60/100 = 0.6 65/110 = 0.59

Total 85/110 = 0.77 69/110 = 0.63

If you look only at the bottom line with the totals, then it might appear that the college is

discriminating against women, since the acceptance rate for male applicants is higher than

that for female applicants (0.77 versus 0.63).* But when you look at the rates for each

individual department within the college, it turns out that women have higher acceptance

rates than men for every department. How can that be?

The short and intuitive answer is that many more women apply to department B, which

has a lower overall admission rate than department A (0.59 versus 0.81), and this drags

down their (gender-specific) acceptance rate.

The more general explanation speaks of a “reversal of association due to a confounding

factor.” When considering only the totals, it may seem as if there is an association

between gender and admission rates, with male applicants being accepted more

frequently. However, this view ignores the presence of a hidden but important factor: the

choice of department. In fact, the choice of department has a greater influence on the

acceptance rate than the original explanatory variable (the gender). By lumping the

observations for the different departments into a single number, we have in fact masked

the influence of this factor—with the consequence that the association between

acceptance rate (which favors women for each department) and gender was reversed.

The important insight here is that such “reversal of association” due to a confounding

factor is always possible. However, both conditions must occur: the confounding factor

must be sufficiently strong (in our case, the acceptance rates for departments A and B

were sufficiently different), and the assignment of experimental units to the levels of this

factor must be sufficiently imbalanced (in our case, many more women applied to

department B than to department A).

As opposed to Bigfoot, Simpson’s paradox is known to occur in the real world. The

example in this section, for instance, was based on a well-publicized case involving the

University of California (Berkeley) in the early 1970s. A quick Internet search will turn up

additional examples.

*You should check that the entries in the bottom row have been calculated properly, per the discussion
in the previous section!
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The Standard Deviation

The fabled standard deviation is another close relative of Bigfoot. Everybody (it seems)

has heard of it, everybody knows how to calculate it, and—most importantly—everybody

knows that 68 percent of all data points fall within 1 standard deviation, 95 percent

within 2, and virtually all (that is: 99.7 percent) within 3.

Problem is: this is utter nonsense.

It is true that the standard deviation is a measure for the spread (or width) of a

distribution. It is also true that, for a given set of points, the standard deviation can always

be calculated. But that does not mean that the standard deviation is always a good or

appropriate measure for the width of a distribution; in fact, it can be quite misleading if

applied indiscriminately to an unsuitable data set. Furthermore, we must be careful how

to interpret it: the whole 68 percent business applies only if the data set satisfies some

very specific requirements.

In my experience, the standard deviation is probably the most misunderstood and

misapplied quantity in all of statistics.

Let me tell you a true story (some identifying details have been changed to protect the

guilty). The story is a bit involved, but this is no accident: in the same way that Bigfoot

sightings never occur in a suburban front yard on a sunny Sunday morning, severe

misunderstandings in mathematical or statistical methods usually don’t reveal themselves

as long as the applications are as clean and simple as the homework problems in a

textbook. But once people try to apply these same methods in situations that are a bit less

standard, anything can happen. This is what happened in this particular company.

I was looking over a bit of code used to identify outliers in the response times from a

certain database server. The purpose of this program was to detect and report on

uncommonly slow responses. The piece of code in question processed log files containing

the response times and reported a threshold value: responses that took longer than this

threshold were considered “outliers.”

An existing service-level agreement defined an outlier as any value “outside of 3 standard

deviations.” So what did this piece of code do? It sorted the response times to identify the

top 0.3 percent of data points and used those to determine the threshold. (In other words,

if there were 1,000 data points in the log file, it reported the response time of the third

slowest as threshold.) After all, 99.7 percent of data points fall within 3 standard

deviations. Right?

After reading Chapter 2, I hope you can immediately tell where the original programmer

went wrong: the threshold that the program reported had nothing at all to do with

standard deviations—instead, it reported the top 0.3 percentile. In other words, the

program completely failed to do what it was supposed to do. Also, keep in mind that it is
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incorrect to blindly consider the top x percent of any distribution as outliers (review the

discussion of box plots in Chapter 2 if you need a reminder).

But the story continues. This was a database server whose typical response time was less

than a few seconds. It was clear that anything that took longer than one or two minutes

had to be considered “slow”—that is, an outlier. But when the program was run, the

threshold value it reported (the 0.3 percentile) was on the order of hours. Clearly, this

threshold value made no sense.

In what must have been a growing sense of desperation, the original programmer now

made a number of changes: from selecting the top 0.3 percent, to the top 1 percent, then

the top 5 percent and finally the top 10 percent. (I could tell, because each such change

had dutifully been checked into source control!) Finally, the programmer had simply

hard-coded some seemingly “reasonable” value (such as 47 seconds or something) into the

program, and that’s what was reported as “3 standard deviations” regardless of the input.

It was the only case of outright technical fraud that I have ever witnessed: a technical

work product that—with the original author’s full knowledge—in no way did what it

claimed to do.

What went wrong here? Several things. First, there was a fundamental misunderstanding

about the definition of the standard deviation, how it is calculated, and some of the

properties that in practice it often (but not always) has. The second mistake was applying

the standard deviation to a situation where it is not a suitable measure.

Let’s recap some basics: we often want to characterize a point distribution by a typical

value (its location) and its spread around this location. A convenient measure for the

location is the mean: μ = 1
n

∑n
i xi . Why is the mean so convenient? Because it is easy to

calculate: just sum all the values and divide by n.

To find the width of the distribution, we would like see how far points “typically” stray

from the mean. In other words, we would like to find the mean of the deviations xi − μ.

But since the deviations can be positive and negative, they would simply cancel, so

instead we calculate the mean of the squared deviations: σ 2 = 1
n

∑n
i (xi − μ)2. This

quantity is called the variance, and its square root is the standard deviation. Why do we

bother with the square root? Because it has the same units as the mean, whereas in the

variance the units are raised to the second power.

Now, if and only if the point distribution is well behaved (which in practice means: it is

Gaussian), then it is true that about 68 percent of points will fall within the interval

[μ − σ, μ + σ ] and that 95 percent fall within the interval [μ − 2σ, μ + 2σ ] and so on. The

inverse is not true: you cannot conclude that 68 percent of points define a “standard

deviation” (this is where the programmer in our story made the first mistake). If the point

distribution is not Gaussian, then there are no particular patterns by which fractions of

points will fall within 1, 2, or any number of standard deviations from the mean.

However, keep in mind that the definitions of the mean and the standard deviation (as
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given by the previous equations) both retain their meaning: you can calculate them for

any distribution and any data set.

However (and this is the second mistake that was made), if the distribution is strongly

asymmetrical, then mean and standard deviation are no longer good measures of location

and spread, respectively. You can still calculate them, but their values will just not be very

informative. In particular, if the distribution has a fat tail then both mean and standard

deviation will be influenced heavily by extreme values in the tail.

In this case, the situation was even worse: the distribution of response times was a

power-law distribution, which is extremely poorly summarized by quantities such as mean

and standard deviation. This explains why the top 0.3 percent of response times were on

the order of hours: with power-law distributions, all values—even extreme ones—can

(and do!) occur; whereas for Gaussian or exponential distributions, the range of values

that do occur in practice is pretty well limited. (See Chapter 9 for more information on

power-law distributions.)

To summarize, the standard deviation, defined as
√

1
n

∑n
i (xi − μ)2, is a measure of the

width of a distribution (or a sample). It is a good measure for the width only if the

distribution of points is well behaved (i.e., symmetric and without fat tails). Points that are

far away from the center (compared to the width of the distribution) can be considered

outliers. For distributions that are less well behaved, you will have to use other measures

for the width (e.g., the inter-quartile range); however, you can usually still identify

outliers as points that fall outside the typical range of values. (For power-law distributions,

which do not have a “typical” scale, it doesn’t make sense to define outliers by statistical

means; you will have to justify them differently—for instance by appealing to

requirements from the business domain.)

How to Calculate

Here is a good trick for calculating the standard deviation efficiently. At first, it seems you

need to make two passes over the data in order to calculate both mean and standard

deviation. In the first pass you calculate the mean, but then you need to make a second

pass to calculate the deviations from that mean:

σ 2 = 1

n

∑
(xi − μ)2

It appears as if you can’t find the deviations until the mean μ is known.

However, it turns out that you can calculate both quantities in a single pass through the

data. All you need to do is to maintain both the sum of the values (
∑

xi ) and the sum of

the squares of the values (
∑

x2
i ), because you can write the preceding equation for σ 2 in a
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form that depends only on those two sums:

σ 2 = 1

n

∑
(xi − μ)2

= 1

n

∑ (
x2

i − 2xiμ + μ2
)

= 1

n

(∑
x2

i − 2μ
∑

xi + μ2
∑

1
)

= 1

n

∑
x2

i − 2μ
1

n

∑
xi + μ2 1

n
n

= 1

n

∑
x2

i − 2μ · μ + μ2

= 1

n

∑
x2

i − μ2

= 1

n

∑
x2

i −
(

1

n

∑
xi

)2

This is a good trick that is apparently too little known. Keep it in mind; similar situations

crop up in different contexts from time to time. (To be sure, the floating-point properties

of both methods are different, but if you care enough to worry about the difference, then

you should be using a library anyway.)

Optional: One over What?

You may occasionally see the standard deviation defined with an n in the denominator

and sometimes with a factor of n − 1 instead.
√√√√1

n

n∑

i

(xi − μ)2 or

√√√√ 1

n − 1

n∑

i

(xi − μ)2

What really is the difference, and which expression should you use?

The factor 1/n applies only if you know the exact value of the mean μ ahead of time. This

is usually not the case; instead, you will usually have to calculate the mean from the data.

This adds a bit of uncertainty, which leads to the widening of the proper estimate for the

standard deviation. A theoretical argument then leads to the use of the factor 1/(n − 1)

instead of 1/n.

In short, if you calculated the mean from the data (as is usually the case), then you should

really be using the 1/(n − 1) factor. The difference is going to be small, unless you are

dealing with very small data sets.

Optional: The Standard Error

While we are on the topic of obscure sources of confusion, let’s talk about the standard

error.
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F I G U R E 11-1. Fitting for statistical parameter estimation: data affected by random noise. What is the slope of the straight
line?

The standard error is the standard deviation of an estimated quantity. Let’s say we

estimate some quantity (e.g., the mean). If we repeatedly take samples, then the means

calculated from those samples will scatter around a little, according to some distribution.

The standard deviation of this distribution is the “standard error” of the estimated

quantity (the mean, in this example).

The following observation will make this clearer. Take a sample of size n from a normally

distributed population with standard deviation σ . Then 68 percent of the members of the

sample will be within ±σ from the estimated mean (i.e., the sample mean).

However, the mean itself is normally distributed (because of the Central Limit Theorem,

since the mean is a sum of random variables) with standard deviation σ/
√

n (again

because of the Central Limit Theorem). So if we take several samples, each of size n, then

we can expect 68 percent of the estimated means to lie within ±σ/
√

n of the true mean

(i.e., the mean of the overall population).

In this situation, the quantity σ/
√

n is therefore the standard error of the mean.

Least Squares

Everyone loves least squares. In the confusing and uncertain world of data and statistics,

they provide a sense of security—something to rely on! They give you, after all, the “best”

fit. Doesn’t that say it all?

Problem is, I have never (not once!) seen least squares applied appropriately, and I have

come to doubt that it should ever be considered a suitable technique. In fact, when today I
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F I G U R E 11-2. Fitting a function to approximate a curve known only at discrete locations. Is the fit a good representation of
the data?

see someone doing anything involving “least-squares fitting,” I am pretty certain this

person is at wit’s end—and probably does not even know it!

There are two problems with least squares. The first is that it is used for two very different

purposes that are commonly confused. The second problem is that least-squares fitting is

usually not the best (or even a suitable) method for either purpose. Alternative

techniques should be used, depending on the overall purpose (see first problem) and on

what, in the end, we want to do with the result.

Let’s try to unravel these issues.

Why do we ever want to “fit” a function to data to begin with? There are two different

reasons.

Statistical Parameter Estimation
Data is corrupted by random noise, and we want to extract parameters from it.

Smooth Interpolation or Approximation
Data is given as individual points, and we would like either to find a smooth

interpolation to arbitrary positions between those points or to determine an analytical

“formula” describing the data.

These two scenarios are conceptually depicted in Figures 11-1 and 11-2.

Statistical Parameter Estimation

Statistical parameter estimation is the more legitimate of the two purposes. In this case,

we have a control variable x and an outcome y. We set the former and measure the latter,
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resulting in a data set of pairs: {(x1, y1), (x2, y2), . . .}. Furthermore, we assume that the

outcome is related to the control variable through some function f (x; {a, b, c, . . .}) of

known form that depends on the control variable x and also on a set of (initially

unknown) parameters {a, b, c, . . .}. However, in practice, the actual measurements are

affected by some random noise ε, so that the measured values yi are a combination of the

“true” value and the noise term:

yi = f (xi , {a, b, c, . . .}) + εi

We now ask: how should we choose values for the parameters {a, b, c, . . .}, such that the

function f (x, {a, b, c, . . .}) reproduces the measured values of y most faithfully? The usual

answer is that we want to choose the parameters such that the total mean-square error E2

(sometimes called the residual sum of squares):

E2 =
∑

i

( f (xi , {a, b, c, . . .}) − yi )
2

is minimized. As long as the distribution of errors is reasonably well behaved (not too

asymmetric and without heavy tails), the results are adequate. If, in addition, the noise is

Gaussian, then we can even invoke other parts of statistics and show that the estimates for

the parameters obtained by the least-squares procedure agree with the “maximum

likelihood estimate.” Thus the least-squares results are consistent with alternative ways of

calculation.

But there is another important aspect to least-squares estimation that is frequently lost:

we can obtain not only point estimates for the parameters {a, b, c, . . .} but also confidence

intervals, through a self-consistent argument that links the distribution of the parameters

to the distribution of the measured values.

I cannot stress this enough: a point estimate by itself is of limited use. After all, what

good is knowing that the point estimate for a is 5.17 if I have no idea whether this

means a = 5.17 ± 0.01 or a = 5.17 ± 250? We must have some way of judging the range

over which we expect our estimate to vary, which is the same as finding a confidence

interval for it. Least squares works, when applied in a probabilistic context like this,

because it gives us not only an estimate for the parameters but also for their confidence

intervals.

One last point: in statistical applications, it is rarely necessary to perform the minimization

of E2 by numerical means. For most of the functions f (x, {a, b, c, . . .}) that are commonly

used in statistics, the conditions that will minimize E2 can be worked out explicitly. (See

Chapter 3 for the results when the function is linear.) In general, you should be reluctant

to resort to numerical minimization procedures—there might be better ways of obtaining

the result.
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Function Approximation

In practice, however, least-squares fitting is often used for a different purpose. Consider

the situation in Figure 11-2, where we have a set of individual data points. These points

clearly seem to fall on a smooth curve. It would be convenient to have an explicit formula

to summarize these data points rather than having to work with the collection of points

directly. So, can we “fit” a formula to them?

Observe that, in this second application of least-squares fitting, there is no random noise. In

fact, there is no random component at all! This is an important insight, because it implies

that statistical methods and arguments don’t apply.

This becomes relevant when we want to determine the degree of confidence in the results

of a fit. Let’s say we have performed a least-squares routine and obtained some values for

the parameters. What confidence intervals should we associate with the parameters, and

how good is the overall fit? Whatever errors we may incur in the fitting process, they will

not be of a random nature, and we therefore cannot make probabilistic arguments about

them.

The scenario in Figure 11-2 is typical: the plot shows the data together with the best fit for

a function of the form f (x; a, b) = a/(1 + x)b, with a = 1.08 and b = 1.77. Is this a good

fit? And what uncertainty do we have in the parameters? The answer depends on what

you want to do with the results—but be aware that the deviations between the fit and the

data are not at all “random” and hence that statistical “goodness of fit” measures are

inappropriate. We have to find other ways to answer our questions. (For instance, we

may find the largest of the residuals between the data points and our fitted function and

report that the fit “represents the data with a maximum deviation of . . . .”)

This situation is typical in yet another way: given how smooth the curve is that the data

points seem to fall on, our “best fit” seems really bad. In particular, the fit exhibits a

systematic error: for 0 < x < 1.5, the curve is always smaller than the data, and for

x > 1.5, it is always greater. Is this really the best we can do? The answer is yes, for

functions of the form a/(1 + x)b. However, a different choice of function might give much

better results. The problem here is that the least-squares approach forces us to specify the

functional form of the function we are attempting to fit, and if we get it wrong, then the

results won’t be any good. For this reason, we should use less constraining approaches

(such as nonparametric or local approximations) unless we have good reasons to favor a

particular functional form.

In other words, what we really have here is a problem of function interpolation or

approximation: we know the function on a discrete set of points, and we would like to

extend it smoothly to all values. How we should do this depends on what we want to do

with the results. Here is some advice for common scenarios:

• To find a “smooth curve” for plotting purposes, you should use one of the smoothing

routines discussed in Chapter 3, such as splines or LOESS. These nonparametric
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methods have the advantage that they do not impose a particular functional form on

the data (in contrast to the situation in Figure 11-2).

• If you want to be able to evaluate the function easily at an arbitrary location, then you

should use a local interpolation method. Such methods build a local approximation by

using the three or four data points closest to the desired location. It is not necessary to

find a global expression in this case: the local approximation will suffice.

• Sometimes you may want to summarize the behavior of the data set in just a few

“representative” values (e.g., so you can more easily compare one data set against

another). This is tricky—it is probably a better idea to compare data sets directly against

each other using similarity metrics such as those discussed in Chapter 13. If you still

need to do this, consider a basis function expansion using Fourier, Hermite, or wavelet

functions. (These are special sets of functions that enable you to extract greater and

greater amounts of detail from a data set. Expansion in basis functions also allows you

to evaluate and improve the quality of the approximation in a systematic fashion.)

• At times you might be interested in some particular feature of the data: for example,

you suspect that the data follows a power law xb and you would like to extract the

exponent; or the data is periodic and you need to know the length of one period. In

such cases, it is usually a better idea to transform the data in such a way that you can

obtain that particular feature directly, rather than fitting a global function. (To extract

exponents, you should consider a logarithmic transform. To obtain the length of an

oscillatory period, measure the peak-to-peak (or, better still, the zero-to-zero)

distance.)

• Use specialized methods if available and applicable. Time series, for instance, should be

treated with the techniques discussed in Chapter 4.

You may have noticed that none of these suggestions involve least squares!

Further Reading

Every introductory statistics book covers the standard deviation and least squares (see the

book recommendations in Chapter 10). For the alternatives to least squares, consult a

book on numerical analysis, such as the one listed here.

• Numerical Methods That (Usually) Work. Forman S. Acton. 2nd ed., Mathematical

Association of America. 1997.

Although originally published in 1970, this book does not feel the least bit dated—it is

still one of the best introductions to the art of numerical analysis. Neither a cookbook

nor a theoretical treatise, it stresses practicality and understanding first and foremost. It

includes an inimitable chapter on “What Not to Compute.”
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C H A P T E R T W E L V E

Simulations

IN THIS CHAPTER, WE LOOK AT SIMULATIONS AS A WAY TO UNDERSTAND DATA. IT MAY SEEM STRANGE TO FIND

simulations included in a book on data analysis: don’t simulations just generate even more

data that needs to be analyzed? Not necessarily—as we will see, simulations in the form of

resampling methods provide a family of techniques for extracting information from data. In

addition, simulations can be useful when developing and validating models, and in this

way, they facilitate our understanding of data. Finally, in the context of this chapter we

can take a brief look at a few other relevant topics, such as discrete event simulations and

queueing theory.

A technical comment: I assume that your programming environment includes a

random-number generator—not only for uniformly distributed random numbers but also

for other distributions (this is a pretty safe bet). I also assume that this random-number

generator produces random numbers of sufficiently high quality. This is probably a

reasonable assumption, but there’s no guarantee: although the theory of random-number

generators is well understood, broken implementations apparently continue to ship. Most

books on simulation methods will contain information on random-number

generators—look there if you feel that you need more detail.

A Warm-Up Question

As a warm-up to demonstrate how simulations can help us analyze data, consider the

following example. We are given a data set with the results of eight tosses of a coin: six

Heads and two Tails. Given this data, would we say the coin is biased?
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F I G U R E 12-1. The likelihood function p6(1 − p)2 of observing six Heads and two Tails in eight tosses of a coin, as a
function of the coin’s “balance parameter” p.

The problem is that the data set is small—if there had been 80,000 tosses of which 60,000

came out Heads, then we would have no doubt that the coin was biased. But with just

eight tosses, it seems plausible that the imbalance in the results might be due to chance

alone—even with a fair coin.

It was for precisely this kind of question that formal statistical methods were developed.

We could now either invoke a classical frequentist point of view and calculate the

probability of obtaining six or more Heads in eight tosses of a fair coin (i.e., six or more

successes in eight Bernoulli trials with p = 0.5). The probability comes out to

37/256 ≈ 0.14, which is not enough to “reject the null hypothesis (that the coin is fair) at

the 5 percent level.” Alternatively, we could adopt a Bayesian viewpoint and evaluate the

appropriate likelihood function for the given data set with a noninformative prior (see

Figure 12-1). The graph suggests that the coin is not balanced.

But what if we have forgotten how to evaluate either quantity, or (more likely!) if we are

dealing with a problem more intricate than the one in this example, so that we neither

know the appropriate model to choose nor the form of the likelihood function? Can we

find a quick way to make progress on the question we started with?

Given the topic of this chapter, the answer is easy. We can simulate tosses of a coin, for

various degrees of imbalance, and then compare the simulation results to our data set.

import random

repeats, tosses = 60, 8
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F I G U R E 12-2. Results of 60 simulation runs, each consisting of eight tosses of a coin, for different values of the coin’s
“balance parameter” p. Shown are the number of Heads observed in each run. Although a slight balance toward Heads
( p ≈ 0.7) seems most probable, note that as many as six Heads can occasionally be observed even with a coin that is
balanced toward Tails.

def heads( tosses, p ):

h = 0

for x in range( 0, tosses ):

if random.random() < p: h += 1

return h

p = 0

while p < 1.01:

for t in range( 0, repeats ):

print p, "\t", heads( tosses, p )

p += 0.05

The program is trivial to write, and the results, in the form of a jitter plot, are shown in

Figure 12-2. (For each value of the parameter p, which controls the imbalance of the coin,

we have performed 60 repeats of 8 tosses each and counted the number of Heads in each

repeat.)

The figure is quite clear: for p = 0.5 (i.e., a balanced coin), it is pretty unlikely to obtain six

or more Heads, although not at all impossible. On the other hand, given that we have

observed six Heads, we would expect the parameter to fall into the range p = 0.6, . . . , 0.7.

We have thus not only answered the question we started with but also given it some

context. The simulation therefore not only helped us understand the actual data set but

also allowed us to explore the system that produced it. Not bad for 15 lines of code.
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Monte Carlo Simulations

The term Monte Carlo simulation is frequently used to describe any method that involves

the generation of random points as input for subsequent operations.

Monte Carlo techniques are a major topic all by themselves. Here, I only want to sketch

two applications that are particularly relevant in the context of data analysis and

modeling. First, simulations allow us to verify analytical work and to experiment with it

further; second, simulations are a way of obtaining results from models for which

analytical solutions are not available.

Combinatorial Problems

Many basic combinatorial problems can be solved exactly—but obtaining a solution is

often difficult. Even when one is able to find a solution, it is surprisingly easy to arrive at

incorrect conclusions, missing factors like 1/2 or 1/n! and so on. And lastly, it takes only

innocuous looking changes to a problem formulation to render the problem intractable.

In contrast, simulations for typical combinatorial problems are often trivially easy to write.

Hence they are a great way to validate theoretical results, and they can be extended to

explore problems that are not tractable otherwise.

Here are some examples of questions that can be answered easily in this way:

• If we place n balls into n boxes, what is the probability that no more than two boxes

contain two or more balls? What if I told you that exactly m boxes are empty? What if at

most m boxes are empty?

• If we try keys from a key chain containing n different keys, how many keys will we

have to try before finding the one that fits the lock? How is the answer different if we

try keys randomly (with replacement) as opposed to in order (without replacement)?

• Suppose an urn contains 2n tokens consisting of n pairs of items. (Each item is marked

in such a way that we can tell to which pair it belongs.) Repeatedly select a single

token from the urn and put it aside. Whenever the most recently selected token is the

second item from a pair, take both items (i.e., the entire pair) and return them to the

urn. How many “broken pairs” will you have set aside on average? How does the

answer change if we care about triples instead of pairs? What fluctuations can we

expect around the average value?

The last problem is a good example of the kind of problem for which the simple case

(average number of broken pairs) is fairly easy to solve but that becomes rapidly more

complicated as we make seemingly small modifications to the original problem (e.g., going

from pairs to triples). However, in a simulation such changes do not pose any special

difficulties.
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Another way that simulations can be helpful concerns situations that appear unfamiliar or

even paradoxical. Simulations allow us to see how the system behaves and thereby to

develop intuition for it. We already encountered an example in the Workshop section of

Chapter 9, where we studied probability distributions without expectation values. Let’s

look at another example.

Suppose, we are presented with a choice of three closed envelopes. One envelope

contains a prize, the other two are empty. After we have selected an envelope, it is

revealed that one of the envelopes that we had not selected is empty. We are now

permitted to choose again. What should we do? Stick with our initial selection? Randomly

choose between the two remaining envelopes? Or pick the remaining envelope—that is,

not the one that we selected initially and not the one that has been opened?

This is a famous problem, which is sometimes known as the “Monty Hall Problem” (after

the host of a game show that featured a similar game).

As it turns out, the last strategy (always switch to the remaining envelope) is the most

beneficial. The problem appears to be paradoxical because the additional information that

is revealed (that an envelope we did not select is empty) does not seem to be useful in any

way. How can this information affect the probability that our initial guess was correct?

The argument goes as follows. Our initial selection is correct with probability p = 1/3

(because one envelope among the original three contains the prize). If we stick with our

original choice, then we should therefore have a 33 percent chance of winning. On the

other hand, if in our second choice, we choose randomly from the remaining options

(meaning that we are as likely to pick the initially chosen envelope or the remaining one),

then we will select the correct envelope with probability p = 1/2 (because now one out of

two envelopes contains the prize). A random choice is therefore better than staying put!

But this is still not the best strategy. Remember that our initial choice only had a p = 1/3

probability of being correct—in other words, it has probability q = 2/3 of being wrong. The

additional information (the opening of an empty envelope) does not change this

probability, but it removes all alternatives. Since our original choice is wrong with probability

q = 2/3 and since now there is only one other envelope remaining, switching to this

remaining envelope should lead to a win with 66 percent probability!

I don’t know about you, but this is one of those cases where I had to “see it to believe it.”

Although the argument above seems compelling, I still find it hard to accept. The program

in the following listing helped me do exactly that.

import sys

import random as rnd

strategy = sys.argv[1] # must be 'stick', 'choose', or 'switch'

wins = 0

for trial in range( 1000 ):
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# The prize is always in envelope 0 ... but we don't know that!

envelopes = [0, 1, 2]

first_choice = rnd.choice( envelopes )

if first_choice == 0:

envelopes = [0, rnd.choice( [1,2] ) ] # Randomly retain 1 or 2

else:

envelopes = [0, first_choice] # Retain winner and first choice

if strategy == 'stick':

second_choice = first_choice

elif strategy == 'choose':

second_choice = rnd.choice( envelopes )

elif strategy == 'switch':

envelopes.remove( first_choice )

second_choice = envelopes[0]

# Remember that the prize is in envelope 0

if second_choice == 0:

wins += 1

print wins

The program reads our strategy from the command line: the possible choices are stick,

choose, and switch. It then performs a thousand trials of the game. The “prize” is always in

envelope 0, but we don’t know that. Only if our second choice equals envelope 0 we

count the game as a win.

The results from running this program are consistent with the argument given previously:

stick wins in one third of all trials, choose wins half the time, but switch amazingly wins

in two thirds of all cases.

Obtaining Outcome Distributions

Simulations can be helpful to verify with combinatorial problems, but the primary reason

for using simulations is that they allow us to obtain results that are not available

analytically. To arrive at an analytical solution for a model, we usually have to make

simplifying assumptions. One particularly common one is to replace all random quantities

with their most probable value (the mean-field approximation; see Chapter 8). This

allows us to solve the model, but we lose information about the distribution of outcomes.

Simulations are a way of retaining the effects of randomness when determining the

consequences of a model.

Let’s return to the case study discussed at the end of Chapter 9. We had a visitor

population making visits to a certain website. Because individual visitors can make repeat

visits, the number of unique visitors grows more slowly than the number of total visitors.

We found an expression for the number of unique visitors over time but had to make
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some approximations in order to make progress. In particular, we assumed that the

number of total visitors per day would be the same every day, and be equal to the average

number of visitors per day. (We also assumed that the fraction of actual repeat visitors on

any given day would equal the fraction of repeat visitors in the total population.)

Both of these assumptions are of precisely the nature discussed earlier: we replaced what

in reality is a random quantity with its most probable value. These approximations made

the problem tractable, but we lost all sense of the accuracy of the result. Let’s see how

simulations can help provide additional insight to this situation.

The solution which in Chapter 9 was a model: an analytical (mean-field) model. The short

program that follows is another model of the same system, but this time it is a simulation

model. It is a model in the sense that again everything that is not absolutely essential has

been stripped away: there is no website, no actual visits, no browsing behavior. But the

model retains two aspects that are important and that were missing from the mean-field

model. First, the number of visitors per day is no longer fixed, instead it is distributed

according to a Gaussian distribution. Second, we have a notion of individual visitors (as

elements of the list has visited), and on every “day” we make a random selection from

this set of visitors to determine who does visit on this day and who does not.

import random as rnd

n = 1000 # total visitors

k = 100 # avg visitors per day

s = 50 # daily variation

def trial():

visitors_for_day = [0] # No visitors on day 0

has_visited = [0]*n # A flag for each visitor

for day in range( 31 ):

visitors_today = max( 0, int(rnd.gauss( k, s )) )

# Pick the individuals who visited today and mark them

for i in rnd.sample( range( n ), visitors_today ):

has_visited[i] = 1

# Find the total number of unique visitors so far

visitors_for_day.append( sum(has_visited) )

return visitors_for_day

for t in range( 25 ):

r = trial()

for i in range( len(r) ):

print i, r[i]

print

print
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F I G U R E 12-3. Unique visitors as a function of time: results from the simulation run, together with predictions from the
analytical model. All data points are jittered horizontally to minimize overplotting. The solid line is the most probable
number of visitors according to the model; the dashed lines indicate a confidence band.

The program performs 25 trials, where each trial consists of a full, 31-day month of visits.

For each day, we find the number of visitors for that day (which must be a positive

integer) and then randomly select the same number of “visitors” from our list of visitors,

setting a flag to indicate that they have visited. Finally, we count the number of visitors

that have the flag set and print this number (which is the number of unique visitors so

far) for each day. The results are shown in Figure 12-3.

Figure 12-3 also includes results from the analytical model. In Chapter 9, we found that

the number of unique visitors on day t was given by:

n(t) = N
(

1 − e− k
N t

)

where N is the total number of visitors (N = 1,000 in the simulation) and k is the average

number of visitors per day (k = 100 in the simulation). Accordingly, the solid line in

Figure 12-3 is given by n(t) = 1,000
(
1 − exp

(− 100
1000 t

))
.

The simulation includes a parameter that was not part of the analytical model—namely

the width s of the daily fluctuations in visitors. I have chosen the value s = 50 for the

simulation runs. The dashed lines in Figure 12-3 show the analytical model, with values

of k ± s/2 (i.e., k = 75 and k = 125) to provide a sense for the predicted spread, according

to the mean-field model.

First of all, we should note that the analytical model agrees very well with the data from

the simulation run: that’s a nice confirmation of our previous result! But we should also
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note the differences; in particular, the simulation results are consistently higher than the

theoretical predictions. If we think about this for a moment, this makes sense. If on any

day there are unusually many visitors, then this irrevocably bumps the number of unique

visitors up: the number of unique visitors can never shrink, so any outlier above the

average can never be neutralized (in contrast to an outlier below the average, which can

be compensated by any subsequent high-traffic day).

We can further analyze the data from the simulation run, depending on our needs. For

instance, we can calculate the most probable value for each day, and we can estimate

proper confidence intervals around it. (We will need more than 25 trials to obtain a good

estimate of the latter.)

What is more interesting about the simulation model developed here is that we can use it

to obtain additional information that would be difficult or impossible to calculate from the

analytical formula. For example, we may ask for the distribution of visits per user (i.e., how

many users have visited once, twice, three times, and so on). The answer to this question

is just a snap of the fingers away! We can also extend the model and ask for the number of

unique visitors who have paid two or more visits (not just one). (For two visits per person,

this question can be answered within the framework of the original analytical model, but

the calculations rapidly become more tedious as we are asking for higher visit counts per

person.)

Finally, we can extend the simulation to include features not included in the analytical

model at all. For instance, for a real website, not all possible visitors are equally likely to

visit: some individuals will have a higher probability of visiting the website than do others.

It would be very difficult to incorporate this kind of generalization into the approach

taken in Chapter 9, because it contradicts the basic assumption that the fraction of actual

repeat visitors equals the fraction of repeat visitors in the total population. But it is not at

all difficult to model this behavior in a simulation model!

Pro and Con

Basic simulations of the kind discussed in this section are often easy to program—certainly

as compared with the effort required to develop nontrivial combinatorial arguments!

Moreover, when we start writing a simulation project, we can be fairly certain of being

successful in the end; whereas there is no guarantee that an attempt to find an exact

answer to a combinatorial problem will lead anywhere.

On the other hand, we should not forget that a simulation produces numbers, not insight!

A simulation is always only one step in a larger process, which must include a proper

analysis of the results from the simulation run and, ideally, also involves an attempt to

incorporate the simulation data into a larger conceptual model. I always get a little

uncomfortable when presented with a bunch of simulation results that have not been fit

into a larger context. Simulations cannot replace analytical modeling.
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In particular, simulations do not yield the kind of insight into the mechanisms driving

certain developments that a good analytical model affords. For instance, recall the case

study near the end of Chapter 8, in which we tried to determine the optimal number of

servers. One important insight from that model was that the probability pn for a total

failure dropped extremely rapidly as the number n of servers increased: the exponential

decay (with n) is much more important than the reliability p of each individual server. (In

other words, redundant commodity hardware beats expensive supercomputers—at least

for situations in which this simplified cost model holds!) This is the kind of insight that

would be difficult to gain simply by looking at results from simulation runs.

Simulations can be valuable for verifying analytical work and for extending it by

incorporating details that would be difficult or impossible to treat in an analytical model.

At the same time, the benefit that we can derive from simulations is enhanced by the

insight gained from the analytical, conceptual modeling of the the mechanisms driving a

system.

The two methods are complementary—although I will give primacy to analytical work.

Analytical models without simulation may be crude but will still yield insight, whereas

simulations without analysis produce only numbers, not insight.

Resampling Methods

Imagine you have taken a sample of n points from some population. It is now a trivial

exercise to calculate the mean from this sample. But how reliable is this mean? If we

repeatedly took new samples (of the same size) from the population and calculated their

means, how much would the various values for the mean jump around?

This question is important. A point estimate (such as the mean by itself) is not very

powerful: what we really want is an interval estimate which also gives us a sense of the

reliability of the answer.

If we could go back and draw additional samples, then we could obtain the distribution of

the mean directly as a histogram of the observed means. But that is not an option: all we

have are the n data points of the original sample.

Much of classical statistics deals with precisely this question: how can we make statements

about the reliability of an estimate based only on a set of observations? To make progress,

we need to make some assumptions about the way values are distributed. This is where

the sampling distributions of classical statistics come in: all those Normal, t , and chi-square

distributions (see Chapter 10). Once we have a theoretical model for the way points are

distributed, we can use this model to establish confidence intervals.

Being able to make such statements is one of the outstanding achievements of classical

statistics, but at the same time, the difficulties in getting there are a major factor in making

classical statistics seem so obscure. Two problems stand out:
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• Our assumptions about the shape of those distributions may not be correct, or we may

not be able to formulate those distributions at all—in particular, if we are interested in

more complicated quantities than just the sample mean or if we are dealing with

populations that are ill behaved (i.e., not even remotely Gaussian).

• Even if we know the sampling distribution, determining confidence limits from it may

be tedious, opaque, and error-prone.

The Bootstrap

The bootstrap is an alternative approach for finding confidence intervals and similar

quantities directly from the data. Instead of making assumptions about the distribution of

values and then employing theoretical arguments, the bootstrap goes back to the original

idea: what if we could draw additional samples from the population?

We can’t go back to the original population, but the sample that we already have should

be a fairly good approximation to the overall population. We can therefore create

additional samples (also of size n) by sampling with replacement from the original sample.

For each of these “synthetic” samples, we can calculate the mean (or any other quantity,

of course) and then use this set of values for the mean to determine a measure of the

spread of its distribution via any standard method (e.g., we might calculate its

inter-quartile range; see Chapter 2).

Let’s look at an example—one that is simple enough that we can work out the analytical

answer and compare it directly to the bootstrap results. We draw n = 25 points from a

standard Gaussian distribution (with mean μ = 0 and standard deviation σ = 1). We then

ask about the (observed) sample mean and more importantly, about its standard error. In

this case, the answer is simple: we know that the error of the mean is σ/
√

n (see Chapter

11), which amounts to 1/5 here. This is the analytical result.

To find the bootstrap estimate for the standard error, we draw 100 samples, each

containing n = 25 points, from our original sample of 25 points. Points are drawn

randomly with replacement (so that each point can be selected multiple times). For each

of these bootstrap samples, we calculate the mean. Now we ask: what is the spread of the

distribution of these 100 bootstrap means?

The data is plotted in Figure 12-4. At the bottom, we see the 25 points of the original data

sample; above that, we see the means calculated from the 100 bootstrap samples. (All

points are jittered vertically to minimize overplotting.) In addition, the figure shows

kernel density estimates (see Chapter 2) of the original sample and also of the bootstrap

means. The latter is the answer to our original question: if we repeatedly took samples

from the original distribution, the sample means would be distributed similarly to the

bootstrap means.

(Because in this case we happen to know the original distribution, we can also plot both it

and the theoretical distribution of the mean, which happens to be Gaussian as well but
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F I G U R E 12-4. The bootstrap. The points in the original sample are shown at the bottom; the means calculated from the
bootstrap samples are shown above. Also displayed are the original distribution and the distribution of the sample means,
both using the theoretical result and a kernel density estimate from the corresponding samples.

with a reduced standard deviation of σ/
√

n. As we would expect, the theoretical

distributions agree reasonably well with the kernel density estimated calculated from the

data.)

Of course, in this example the bootstrap procedure was not necessary. It should be clear,

however, that the bootstrap provides a simple method for obtaining confidence intervals

even in situations where theoretical results are not available. For instance, if the original

distribution had been highly skewed, then the Gaussian assumption would have been

violated. Similarly, if we had wanted to calculate a more complicated quantity than the

mean, analytical results might have been hard to obtain.

Let me repeat this, because it’s important: bootstrapping is a method to estimate the spread

of some quantity. It is not a method to obtain “better” estimates of the original quantity

itself—for that, it is necessary to obtain a larger sample by making additional drawings

from the original population. The bootstrap is not a way to give the appearance of a larger

sample size by reusing points!

When Does Bootstrapping Work?

As we have seen, the bootstrap is a simple, practical, and relatively transparent method to

obtain confidence intervals for estimated quantities. This begs the question: when does it

work? The following two conditions must be fulfilled.

1. The original sample must provide a good representation of the entire population.

2. The estimated quantity must depend “smoothly” on the data points.
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The first condition requires the original sample to be sufficiently large and relatively clean.

If the sample size is too small, then the original estimate for the actual quantity in question

(the mean, in our example) won’t be very good. (Bootstrapping in a way exacerbates this

problem because data points have a greater chance of being reused repeatedly in the

bootstrap samples.) In other words, the original sample has to be large enough to allow

meaningful estimation of the primary quantity. Use common sense and insight into your

specific application area to establish the required sample size for your situation.

Additionally, the sample has to be relatively clean: crazy outliers, for instance, can be a

problem. Unless the sample size is very large, outliers have a significant chance of being

reused in a bootstrap sample, distorting the results.

Another problem exists in situations involving power-law distributions. As we saw in

Chapter 9, estimated values for such distributions may not be unique but depend on the

sample size. Of course, the same considerations apply to bootstrap samples drawn from

such distributions.

The second condition suggests that bootstrapping does not work well for quantities that

depend critically on only a few data points. For example, we may want to estimate the

maximum value of some distribution. Such an estimate depends critically on the largest

observed value—that is, on a single data point. For such applications, the bootstrap is not

suitable. (In contrast, the mean depends on all data points and with equal weight.)

Another questions concerns the number of bootstrap samples to take. The short answer is:

as many as you need to obtain a sufficiently good estimate for the spread you are

calculating. If the number of points in the original sample is very small, then creating too

many bootstrap samples is counterproductive because you will be regenerating the same

bootstrap samples over and over again. However, for reasonably sized samples, this is not

much of a problem, since the number of possible bootstrap samples grows very quickly

with the number of data points n in the original sample. Therefore, it is highly unlikely

that the same bootstrap example is generated more than once—even if we generate

thousands of bootstrap samples.

The following argument will help to develop a sense for the order of magnitudes involved.

The problem of choosing n data points with replacement from the original n-point sample

is equivalent to assigning n elements to n cells. It is a classical problem in occupancy

theory to show that there are:

(
2n − 1

n

)
= (2n − 1)!

n!(n − 1)!

ways of doing this. This number grows extremely quickly: for n = 5 it is 126, for n = 10

we have 92,378, but for n = 20 it already exceeds 1010.

(The usual proof proceeds by observing that assigning r indistinguishable objects to n bins

is equivalent to aligning r objects and n − 1 bin dividers. There are r + n − 1 spots in total,
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which can be occupied by either an object or a divider, and the assignment amounts to

choosing r of these spots for the r objects. The number of ways one can choose r elements

out of n + r − 1 is given by the binomial coefficient
(r+n−1

r

)
. Since in our case r = n, we

find that the number of different bootstrap samples is given by the expression above.)

Bootstrap Variants

There are a few variants of the basic bootstrap idea. The method so far—in which points

are drawn directly from the original sample—is known as the nonparametric bootstrap. An

alternative is the parametric bootstrap: in this case, we assume that the original population

follows some particular probability distribution (such as the Gaussian), and we estimate its

parameters (mean and standard deviation, in this case) from the original sample. The

bootstrap samples are then drawn from this distribution rather than from the original

sample. The advantage of the parametric bootstrap is that the bootstrap values do not

have to coincide exactly with the known data points. In a similar spirit, we may use the

original sample to compute a kernel density estimate (as an approximation to the

population distribution) and then draw bootstrap samples from it. This method combines

aspects of both parametric and nonparametric approaches: it is nonparametric (because it

make no assumption about the form of the underlying population distribution), yet the

bootstrap samples are not restricted to the values occurring in the original sample. In

practice, neither of these variants seems to provide much of an advantage over the

original idea (in part because the number of possible bootstrap samples grows so quickly

with the number of points in the sample that choosing the bootstrap samples from only

those points is not much of a restriction).

Another idea (which historically predates the bootstrap) is the so-called jackknife. In the

jackknife, we don’t draw random samples. Instead, given an original sample consisting of

n data points, we calculate the n estimates of the quantity of interest by successively

omitting one of the data points from the sample. We can now use these n values in a

similar way that we used values calculated from bootstrap samples. Since the jackknife

does not contain any random element, it is an entirely deterministic procedure.

Workshop: Discrete Event Simulations with SimPy

All the simulation examples that we considered so far were either static (coin tosses,

Monty Hall problem) or extremely stripped down and conceptual (unique visitors). But if

we are dealing with the behavior and time development of more complex systems—

consisting of many different particles or actors that interact with each other in

complicated ways—then we want a simulation that expresses all these entities in a

manner that closely resembles the problem domain. In fact, this is probably exactly what

most of us think of when we hear the term “simulation.”

There are basically two different ways that we can set up such a simulation. In a continuous

time simulation, time progresses in “infinitesimally” small increments. At each time step, all
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simulation objects are advanced while taking possible interactions or status changes into

account. We would typically choose such an approach to simulate the behavior of

particles moving in a fluid or a similar system.

But in other cases, this model seems wasteful. For instance, consider customers arriving at

a bank: in such a situation, we only care about the events that change the state of the

system (e.g., customer arrives, customer leaves)—we don’t actually care what the

customers do while waiting in line! For such system we can use a different simulation

method, known as discrete event simulation. In this type of simulation, time does not pass

continuously; instead, we determine when the next event is scheduled to occur and then

jump ahead to exactly that moment in time.

Discrete event simulations are applicable to a wide variety of problems involving multiple

users competing for access to a shared server. It will often be convenient to phrase the

description in terms of the proverbial “customers arriving at a bank,” but exactly the same

considerations apply, for instance, to messages on a computer network.

Introducing SimPy

The SimPy package (http://simpy.sourceforge.net/) is a Python project to build discrete event

simulation models. The framework handles all the event scheduling and messaging

“under the covers” so that the programmer can concentrate on describing the behavior

of the actors in the simulation.

All actors in a SimPy simulation must be subclasses of the class Process. Congestion points

where queues form are modeled by instances of the Resource class or its subclasses. Here is

a short example, which describes a customer visiting a bank:

from SimPy.Simulation import *

class Customer( Process ):

def doit( self ):

print "Arriving"

yield request, self, bank

print "Being served"

yield hold, self, 100.0

print "Leaving"

yield release, self, bank

# Beginning of main simulation program

initialize()

bank = Resource()

cust = Customer()

cust.start( cust.doit() )

simulate( until=1000 )
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Let’s skip the class definition of the Customer object for now and concentrate on the rest of

the program. The first function to call in any SimPy program is the initialize() method,

which sets up the simulation run and sets the “simulation clock” to zero. We then proceed

to create a Resource object (which models the bank) and a single Customer object. After

creating the Customer, we need to activate it via the start() member function. The start()

function takes as argument the function that will be called to advance the Customer

through its life cycle (we’ll come back to that). Finally, we kick off the actual simulation,

requiring it to stop after 1,000 time steps on the simulation clock have passed.

The Customer subclasses Process, therefore its instances are active agents, which will be

scheduled by the framework to receive events. Each agent must define a process execution

method (PEM), which defines its behavior and which will be invoked by the framework

whenever an event occurs.

For the Customer class, the PEM is the doit() function. (There are no restrictions on its

name—it can be called anything.) The PEM describes the customer’s behavior: after the

customer arrives, the customer requests a resource instance (the bank in this case). If the

resource is not available (because it is busy, serving other customers), then the framework

will add the customer to the waiting list (the queue) for the requested resource. Once the

resource becomes available, the customer is being serviced. In this simple example, the

service time is a fixed value of 100 time units, during which the customer instance is

holding—just waiting until the time has passed. When service is complete, the customer

releases the resource instance. Since no additional actions are listed in the PEM, the

customer is not scheduled for future events and will disappear from the simulation.

Notice that the Customer interacts with the simulation environment through Python yield

statements, using special yield expressions of the form shown in the example. Yielding

control back to the framework in this way ensures that the Customer retains its state and

its current spot in the life cycle between invocations. Although there are no restrictions on

the name and argument list permissible for a PEM, each PEM must contain at least one of

these special yield statements. (But of course not necessarily all three, as in this case; we

are free to define the behavior of the agents in our simulations at will.)

The Simplest Queueing Process

Of course the previous example which involved only a single customer entering and

leaving the bank, is not very exciting—we hardly needed a simulation for that! Things

change when we have more than one customer in the system at the same time.

The listing that follows is very similar to the previous example, except that now there is

an infinite stream of customers arriving at the bank and requesting service. To generate

this infinite sequence of customers, the listing makes use of an idiom that’s often used in

SimPy programs: a “source” (the CustomerGenerator instance).
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from SimPy.Simulation import *

import random as rnd

interarrival_time = 10.0

service_time = 8.0

class CustomerGenerator( Process ):

def produce( self, b ):

while True:

c = Customer( b )

c.start( c.doit() )

yield hold, self, rnd.expovariate(1.0/interarrival_time)

class Customer( Process ):

def __init__( self, resource ):

Process.__init__( self )

self.bank = resource

def doit( self ):

yield request, self, self.bank

yield hold, self, self.bank.servicetime()

yield release, self, self.bank

class Bank( Resource ):

def servicetime( self ):

return rnd.expovariate(1.0/service_time)

initialize()

bank = Bank( capacity=1, monitored=True, monitorType=Monitor )

src = CustomerGenerator()

activate( src, src.produce( bank ) )

simulate( until=500 )

print bank.waitMon.mean()

print

for evt in bank.waitMon:

print evt[0], evt[1]

The CustomerGenerator is itself a subclass of Process and defines a PEM (produce()).

Whenever it is triggered, it generates a new Customer and then goes back to sleep for a

random amount of time. (The time is distributed according to an exponential

distribution—we will discuss this particular choice in a moment.) Notice that we don’t

need to keep track of the Customer instances explicitly: once they have been activated

using the start() member function, the framework ensures that they will receive

scheduled events.
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There are two changes to the Customer class. First of all, we explicitly inject the resource to

request (the bank) as an additional argument to the constructor. By contrast, the Customer

in the previous example found the bank reference via lookup in the global namespace.

That’s fine for small programs but becomes problematic for larger ones—especially if there

is more than one resource that may be requested. The second change is that the Customer

now asks the bank for the service time. This is in the spirit of problem domain

modeling—it’s usually the server (in this case, the bank) that controls the time it takes to

complete a transaction. Accordingly, we have introduced Bank as subclass of Resource in

order to accommodate this additional functionality. (The service time is also exponentially

distributed but with a different wait time than that used for the CustomerGenerator.)

Subtypes of the Process class are used to model actors in a SimPy simulation. Besides

these active simulation objects, the next most important abstraction describes congestion

points, modeled by the Resource class and its subclasses. Each Resource instance models a

shared resource that actors may request, but its more important function is to manage the

queue of actors currently waiting for access.

Each Resource instance consists of a single queue and one or more actual “server units”

that can fulfill client requests. Think of the typical queueing discipline followed in banks

and post offices (in the U.S.—other countries have different conventions!): a single line

but multiple teller windows, with the person at the head of the line moving to the next

available window. That is the model represented by each Resource instance. The number

of server units is controlled through the keyword argument capacity to the Resource

constructor. Note that all server units in a single Resource instance are identical. Server

units are also “passive”: they have no behavior themselves. They only exist so that a

Process object can acquire them, hold them for a period of time, and then release them

(like a mutex).

Although a Resource instance may have multiple server units, it can contain only a single

queue. If you want to model a supermarket checkout situation, where each server unit

has its own queue, you therefore need to set up multiple Resource instances, each with

capacity=1: one for each checkout stand and each managing its own queue of customers.

For each Resource instance, we can monitor the length of the queue and the events that

change it (arrivals and departures) by registering an observer object with the Resource.

There are two types of such observers in SimPy: a Monitor records the time stamp and new

queue length for every event that affects the queue, whereas a Tally only keeps enough

information to calculate summary information (such as the average queue length). Here

we have registered a Monitor object with the Bank. (We’ll later see an example of a Tally.)

As before, we run the simulation until the internal simulation clock reaches 1,000. The

CustomerGenerator produces an infinite stream of Customer objects, each requesting service

from the Bank, while the Monitor records all changes to the queue.
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F I G U R E 12-5. Number of customers in queue over time.

After the simulation has run to completion, we retrieve the Monitor object from the Bank:

if an observer had been registered with a Resource, then it is available in the waitMon

member variable. We print out the average queue length over the course of the

simulation as well as the full time series of events. (The Monitor class is a List subclass, so

we can iterate over it directly.) The time evolution of the queue is shown in Figure 12-5.

One last implementation detail: if you look closely, you will notice that the

CustomerGenerator is activated using the standalone function activate(). This function is

an alternative to the start() member function of all Process objects and is entirely

equivalent to it.

Optional: Queueing Theory

Now that we have seen some of these concepts in action already, it is a good time to step

back and fill in some theory.

A queue is a specific example of a stochastic process. In general, the term “stochastic process”

refers to a sequence of random events occurring in time. In the queueing example,

customers are joining or leaving the queue at random times, which makes the queue grow

and shrink accordingly. Other examples of stochastic processes include random walks, the

movement of stock prices, and the inventory levels in a store. (In the latter case, purchases

by customers and possibly even deliveries by suppliers constitute the random events.)
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In a queueing problem, we are concerned only about arrivals and departures. A

particularly important special case assumes that the rate at which customers arrive is

constant over time and that arrivals at different times are independent of each other.

(Notice that these are reasonable assumptions in many cases.) These two conditions imply

that the number of arrivals during a certain time period t follows a Poisson distribution,

since the Poisson distribution:

p(k, t, λ) = (λt)k

k!
e−λt

gives the probability of observing k Successes (arrivals, in our case) during an interval of

length t if the “rate” of Successes is λ (see Chapter 9).

Another consequence is that the times between arrivals are distributed according to an

exponential distribution:

p(t, λ) = λe−λt

The mean of the exponential distribution can be calculated without difficulty and equals

1/λ. It will often be useful to work with its inverse ta = 1/λ, the average interarrival time.

(It’s not hard to show that interarrival times are distributed according to the exponential

distribution when the number of arrivals per time interval follows a Poisson distribution.

Assume that an arrival occurred at t = 0. Now we ask for the probability that no arrival

has occurred by t = T ; in other words, p(0, T, λ) = e−λT because x0 = 1 and 0! = 1.

Conversely, the probability that the next arrival will have occurred sometime between

t = 0 and t = T is 1 − p(0, T, λ). This is the cumulative distribution function for the

interarrival time, and from it, we find the probability density for an arrival to occur at t as
d
dt (1 − p(0, t, λ)) = λe−λt .)

The appearance of the exponential distribution as the distribution of interarrival times

deserves some comment. At first glance, it may seem surprising because this distribution is

greatest for small interarrival times, seemingly favoring very short intervals. However, this

observation has to be balanced against the infinity of possible interarrival times, all of

which may occur! What is more important is that the exponential distribution is in a sense

the most “random” way that interarrival times can be distributed: no matter how long we

have waited since the last arrival, the probability that the next visitor will arrive after t

more minutes is always the same: p(t, λ) = λe−λt . This property is often referred to as the

lack of memory of the exponential distribution. Contrast this with a distribution of

interarrival times that has a peak for some nonzero time: such a distribution describes a

situation of scheduled arrivals, as we would expect to occur at a bus stop. In this scenario,

the probability for an arrival to occur within the next t minutes will change with time.

Because the exponential distribution arises naturally from the assumption of a constant

arrival rate (and from the independence of different arrivals), we have used it as the

distribution of interarrival times in the CustomerGenerator in the previous example. It is

less of a natural choice for the distribution of service times (but it makes some theoretical

arguments simpler).
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The central question in all queueing problems concerns the expected length of the

queue—not only how large it is but also whether it will settle down to a finite value at all,

or whether it will “explode,” growing beyond all bounds.

In the simple memoryless, single-server–single-queue scenario that we have been

investigating, the only two control parameters are the arrival rate λa and the service or

exit rate λe; or rather their ratio:

u = λa

λe

which is the fraction of time the server is busy. The quantity u is the server’s utilization. It

is intuitively clear that if the arrival rate is greater than the exit rate (i.e., if customers are

arriving at a faster rate then the server can process them), then the queue length will

explode. However, it turns out that even if the arrival rate equals the service rate (so that

u = 1), the queue length still grows beyond all bounds. Only if the arrival rate is strictly

lower than the service rate will we end up with a finite queue.

Let’s see how this surprising result can be derived. Let pn be the probability of finding

exactly n customers waiting in the queue. The rate at which the queue grows is λa , but the

rate at which the queue grows from exactly n to exactly n + 1 is λa pn , since we must take

into account the probability of the queue having exactly n members. Similarly, the

probability of the queue shrinking from n + 1 to n members is λe pn+1.

In the steady state (which is the requirement for a finite queue length), these two rates

must be equal:

λa pn = λe pn+1

which we can rewrite as:

pn+1 = λa

λe
pn = upn

This relationship must hold for all n, and therefore we can repeat this argument and write

pn = upn−1 and so on. This leads to an expression for pn in terms of p0:

pn = un p0

The probability p0 is the probability of finding no customer in the queue—in other words,

it is the probability that the server is idle. Since the utilization is the probability for the

server to be busy, the probability p0 for the server to be idle must be p0 = 1 − u.

We can now ask about the expected length L of the queue. We already know that the

queue has length n with probability pn = un p0. Finding the expected queue length L
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requires that we sum over all possible queue lengths, each one weighted by the

appropriate probability:

L =
∞∑

n=0

npn

= p0

∞∑

n=0

nun

Now we employ a trick that is often useful for sums of this form: observe that
d
du un = nun−1 and hence that nun = u d

du un . Using this expression in the sum for L leads to:

L = p0

∞∑

n=0

u
d

du
un

= p0u
d

du

∞∑

n=0

un

= p0u
d

du

1

1 − u
(geometric series)

= p0
u

(1 − u)2

= u

1 − u

where we have used the sum of the geometric series (see Appendix B) and the expression

for p0 = 1 − u. We can rewrite this expression directly in terms of the arrival and exit rates

as:

L = u

1 − u
= λa

λe − λa

This is a central result. It gives us the expected length of the queue in terms of the

utilization (or in terms of the arrival and exit rates). For low utilization (i.e., an arrival rate

that is much lower than the service rate or, equivalently, an interarrival time that is much

larger than the service time), the queue is very short on average. (In fact, whenever the

server is idle, then the queue length equals 0, which drags down the average queue

length.) But as the arrival rate approaches the service rate, the queue grows in length and

becomes infinite when the arrival rate equals the service rate. (An intuitive argument for

why the queue length will explode when the arrival rate equals the service time is that, in

this case, the server never has the opportunity to “catch up.” If the queue becomes longer

due to a chance fluctuation in arrivals, then this backlog will persist forever, since overall

the server is only capable of keeping up with arrivals. The cumulative effect of such

chance fluctuations will eventually make the queue length diverge.)

Running SimPy Simulations

In this section, we will try to confirm the previous result regarding the expected queue

length by simulation. In the process, we will discuss a few practical points of using SimPy

to understand queueing systems.
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First of all, we must realize that each simulation run is only a particular realization of the

sequence of events. To draw conclusions about the system in general, we therefore always

need to perform several simulation runs and average their results.

In the previous listing, the simulation framework maintained its state in the global

environment. Hence, in order to rerun the simulation, you had to restart the entire

program! The program in the next listing uses an alternative interface that encapsulates

the entire environment for each simulation run in an instance of class Simulation. The

global functions initialize(), activate(), and simulate() are now member functions of

this Simulation object. Each instance of the Simulation class provides a separate, isolated

simulation environment. A completely new simulation run now requires only that we

create a new instance of this class.

The Simulation class is provided by SimPy. Using it does not require any changes to the

previous program, except that the current instance of the Simulation class must be passed

explicitly to all simulation objects (i.e., instances of Process and Resource and their

subclasses):

from SimPy.Simulation import *

import random as rnd

interarrival_time = 10.0

class CustomerGenerator( Process ):

def produce( self, bank ):

while True:

c = Customer( bank, sim=self.sim )

c.start( c.doit() )

yield hold, self, rnd.expovariate(1.0/interarrival_time)

class Customer( Process ):

def __init__( self, resource, sim=None ):

Process.__init__( self, sim=sim )

self.bank = resource

def doit( self ):

yield request, self, self.bank

yield hold, self, self.bank.servicetime()

yield release, self, self.bank

class Bank( Resource ):

def setServicetime( self, s ):

self.service_time = s

def servicetime( self ):

return rnd.expovariate(1.0/self.service_time )

def run_simulation( t, steps, runs ):

for r in range( runs ):

S I M U L AT I O N S 289



O’Reilly-5980006 master October 29, 2010 17:45

sim = Simulation()

sim.initialize()

bank = Bank( monitored=True, monitorType=Tally, sim=sim )

bank.setServicetime( t )

src = CustomerGenerator( sim=sim )

sim.activate( src, src.produce( bank ) )

sim.startCollection( when=steps//2 )

sim.simulate( until=steps )

print t, bank.waitMon.mean()

t = 0

while t <= 11.0:

t += 0.5

run_simulation( t, 100000, 10 )

Another important change is that we don’t start recording until half of the simulation

time steps have passed (that’s what the startCollection() method is for). Remember that

we are interested in the queue length in the steady state—for that reason, we don’t want to

start recording until the system has settled down and any transient behavior has

disappeared.

To record the queue length, we now use a Tally object instead of a Monitor. The Tally will

not allow us to replay the entire sequence of events, but since we are only interested in

the average queue length, it is sufficient for our current purposes.

Finally, remember that as the utilization approaches u = 1 (i.e., as the service time

approaches the interarrival time), we expect the queue length to become infinite. Of

course, in any finite simulation it is impossible for the queue to grow to infinite length:

the length of the queue is limited by the finite duration of the simulation run. The

consequence of this observation is that, for utilizations near or above 1, the queue length

that we will observe depends on the number of steps that we allow in the simulation. If

we terminate the simulation too quickly, then the system will not have had time to truly

reach its fully developed steady state and so our results will be misleading.

Figure 12-6 shows the results obtained when running the example program with 1,000

and 100,000 simulation steps. For low utilization (i.e., short queue lengths), the results

from both data sets agree with each other (and with the theoretical prediction). However,

as the service time approaches the interarrival time, the short simulation run does not last

long enough for the steady state to form, and so the observed queue lengths are too short.

Summary

This concludes our tour of discrete event simulation with SimPy. Of course, there is more

to SimPy than mentioned here—in particular, there are two additional forms of resources:

290 C H A P T E R T W E L V E



O’Reilly-5980006 master October 29, 2010 17:45

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

Service Time

1k Simulation Steps
100k Simulation Steps

Theory

F I G U R E 12-6. Average queue length as a function of the service time for a fixed interarrival time of ta = 10.

the Store and Level abstractions. Both of them not only encapsulate a queue but also

maintain an inventory (of individual items for Store and of an undifferentiated amount

for Level). This inventory can be consumed or replenished by simulation objects, allowing

us to model inventory systems of various forms. Other SimPy facilities to explore include

asynchronous events, which can be received by simulation objects as they are waiting in

queue and additional recording and tracing functionality. The project documentation will

provide further details.

Further Reading
• A First Course in Monte Carlo. George S. Fishman. Duxbury Press. 2005.

This book is a nice introduction to Monte Carlo simulations and includes many topics

that we did not cover. Requires familiarity with calculus.

• Bootstrap Methods and Their Application. A. C. Davison and D. V. Hinkley. Cambridge

University Press. 1997.

The bootstrap is actually a fairly simple and practical concept, but most books on it are

very theoretical and difficult, including this one. But it is comprehensive and relatively

recent.

• Applied Probability Models. Do Le Paul Minh. Duxbury Press. 2000.

The theory of random processes is difficult, and the results often don’t seem

commensurate with the amount of effort required to obtain them. This book (although

possibly hard to find) is one of the more accessible ones.
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• Introduction to Stochastic Processes. Gregory F. Lawler. Chapman & Hall/CRC. 2006.

This short book is much more advanced and theoretical than the previous one. The

treatment is concise and to the point.

• Introduction to Operations Research. Frederick S. Hillier and Gerald J. Lieberman. 9th ed.,

McGraw-Hill. 2009.

The field of operations research encompasses a set of mathematical methods that are

relevant for many problems arising in a business or industrial setting, including

queueing theory. This text is a standard introduction.

• Fundamentals of Queueing Theory. Donald Gross, John F. Shortle, James M. Thompson,

and Carl M. Harris. 4th ed., Wiley. 2008.

The standard textbook on queueing theory. Not for the faint of heart.
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C H A P T E R T H I R T E E N

Finding Clusters

THE TERM CLUSTERING REFERS TO THE PROCESS OF FINDING GROUPS OF POINTS WITHIN A DATA SET THAT ARE IN

some way “lumped together.” It is also called unsupervised learning—unsupervised because

we don’t know ahead of time where the clusters are located or what they look like. (This

is in contrast to supervised learning or classification, where we attempt to assign data points

to preexisting classes; see Chapter 18.)

I regard clustering as an exploratory method: a computer-assisted (or even computationally

driven) approach to discovering structure in a data set. As an exploratory technique, it

usually needs to be followed by a confirmatory analysis that validates the findings and

makes them more precise.

Clustering is a lot of fun. It is a rich topic with a wide variety of different problems, as we

will see in the next section, where we discuss the different kinds of cluster one may

encounter. The topic also has a lot of intuitive appeal, and most clustering methods are

rather straightforward. This allows for all sorts of ad hoc modifications and enhancements

to accommodate the specific problem one is working on.

What Constitutes a Cluster?

Clustering is not a very rigorous field: there are precious few established results, rigorous

theorems, or algorithmic guarantees. In fact, the whole notion of a “cluster” is not

particularly well defined. Descriptions such as “groups of points that are similar” or “close

to each other” are insufficient, because clusters must also be well separated from each

other. Look at Figure 13-1: some points are certainly closer to each other than to other

points, yet there are no discernible clusters. (In fact, it is an interesting exercise to define
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F I G U R E 13-1. A uniform point distribution. Any “clusters” that we may recognize are entirely spurious.

what constitutes the absence of clusters.) This leads to one possible definition of clusters:

contiguous regions of high data point density separated by regions of lower point density. Although

not particularly rigorous either, this description does seem to capture the essential

elements of typical clusters. (For a different point of view, see the next section.)

The definition just proposed allows for very different kinds of clusters. Figures 13-2 and

13-3 show two very different types. Of course, Figure 13-2 is the “happy” case, showing a

data set consisting of well-defined and clearly separated regions of high data point density.

The clusters in Figure 13-3 are of a different type, one that is more easily thought of by

means of nearest-neighbor (graph) relationships than by point density. Yet in this case as

well, there are higher density regions separated by lower density regions—although we

might want to exploit the nearest-neighbor relationship instead of the higher density

when developing with a practical algorithm for this case.

Clustering is not limited to points in space. Figures 13-4 and 13-5 show two rather

different cases for which it nevertheless makes sense to speak of clusters. Figure 13-4

shows a bunch of street addresses. No two of them are exactly the same, but if we look

closely, we will easily recognize that all of them can be grouped into just a few

neighborhoods. Figure 13-5 shows a bunch of different time series: again, some of them

are more alike than others. The challenge in both of these examples is finding a way to

express the “similarity” among these nonnumeric, nongeometric objects!

Finally, we should keep in mind that clusters may have complicated shapes. Figure 13-6

shows two very well-behaved clusters as distinct regions of high point density. However,

complicated and intertwined shapes of the regions will challenge many commonly used

clustering algorithms.
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F I G U R E 13-2. The “happy” case: three well-separated, globular clusters.

F I G U R E 13-3. Examples of non-globular clusters in a smiley face. Some of the clusters are nested, meaning that they are
entirely contained within other clusters.

A bit of terminology can help to distinguish different cluster shapes. If the line connecting

any two points lies entirely within the cluster itself (as in Figure 13-2), then the cluster is

convex. This is the easiest shape to handle. A cluster is convex only if the connecting line

between two points lies entirely within the cluster for all pairs of points. Sometimes this is

not the case, but we can still find at least one point (the center) such that the connecting

line from the center to any other point lies entirely within the cluster: such a cluster is
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First Avenue 35

First Avenue 53

45 Second Street E

Furst Avenue 33

1st Avenue 53

48 Second Street

Main Blvd 19

45 Second St

44 second street

Second Street, 48

Main Boulevard 9

Mn Boulevard 11

First Ave 35

Main Boulevrd 1

Main Bulevard 19

F I G U R E 13-4. Clustering strings. Although none of these strings are identical, we can make out several groups of strings
that are similar to each other.

F

E

D

C

B

A

F I G U R E 13-5. Six time series. We can recognize groups of time series that seem more similar to each other than to others.

called star convex. Notice that the clusters in Figure 13-6 are neither convex nor star

convex. Sometimes one cluster is entirely surrounded by another cluster without actually

being part of it: in this case we speak of a nested cluster. Nested clusters can be particularly

challenging (see Figure 13-3).

A Different Point of View

In the absence of a precise (mathematical) definition, a cluster can be whatever we

consider as one. That is important because our minds have a different, alternative way of

grouping (“clustering”) objects: not by proximity or density but rather by the way objects

fit into a larger structure. Figures 13-7 and 13-8 show two examples.

Intuitively, we have no problem grouping the points in Figure 13-7 into two overlapping

clusters. Yet, the density-based definition of a cluster we proposed earlier will not support

such a conclusion. Similar considerations apply to the set of points in Figure 13-8. The

distance between any two adjacent points is the same, but we perceive the larger
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F I G U R E 13-6. Two clusters that are well separated but not globular. Some algorithms (e.g., the k-means algorithm) will not
be able to handle such clusters.

F I G U R E 13-7. An impossible situation for most clustering algorithms: although we believe to recognize two crossed
clusters, no strictly local algorithm will be able to separate them.

structures of the vertical and horizontal arrangements and assign points to clusters based

on them.

This notion of a cluster does not hinge on the similarity or proximity of any pair of points

to each other but instead on the similarity between a point and a property of the entire

cluster. For any algorithm that considers a single point (or a single pair of points) at a time,

this leads to a problem: to determine cluster membership, we need the property of the

whole cluster; but to determine the properties of the cluster, we must first assign points to

clusters.
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F I G U R E 13-8. The two clusters are distinguished not by a local property between pairs of points but rather by a global
property of the entire cluster.

To handle such situations, we would need to perform some kind of global structure

analysis—a task our minds are incredibly good at (which is why we tend to think of

clusters this way) but that we have a hard time teaching computers to do. For problems in

two dimensions, digital image processing has developed methods to recognize and extract

certain features (such as edge detection). But general clustering methods, such as those

described in the rest of this chapter, deal only with local properties and therefore can’t

handle problems such as those in Figures 13-7 and 13-8.

Distance and Similarity Measures

Given how strongly our intuition about clustering is shaped by geometric problems such

as those in Figures 13-2 and 13-3, it is an interesting and perhaps surprising observation

that clustering does not actually require data points to be embedded into a geometric

space: all that is required is a distance or (equivalently) a similarity measure for any pair of

points. This makes it possible to perform clustering on a set of strings, such as those in

Figure 13-4 that do not map to points in space. However, if the data points have

properties of a vector space (see Appendix C), then we can develop more efficient

algorithms that exploit these properties.

A distance is any function d(x, y) that takes two points and returns a scalar value that is a

measure for how different these points are: the more different, the larger the distance.

Depending on the problem domain, it may make more sense to express the same

information in terms of a similarity function s(x, y), which returns a scalar that tells us

how similar two points are: the more different they are, the smaller the similarity. Any
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distance can be transformed into a similarity and vice versa. For example if we know that

our similarity measure s can take on values only in the range [0, 1], then we can form an

equivalent distance by setting d = 1 − s. In other situations, we might decide to use

d = 1/s, or s = e−d , and so on; the choice will depend on the problem we are working on.

In what follows, I will express problems in terms of either distances or similarities,

whichever seems more natural. Just keep in mind that you can always transform between

the two.

How we define a distance function is largely up to us, and we can express different

semantics about the data set through the appropriate choice of distance. For some

problems, a particular distance measure will present itself naturally (if the data points are

points in space, then we will most likely employ the Euclidean distance or a measure

similar to it), but for other problems, we have more freedom to define our own metric.

We will see several examples shortly.

There are certain properties that a distance (or similarity) function should have.

Mathematicians have developed a set of properties that a function must possess to be

considered a metric (or distance) in a mathematical sense. These properties can provide

valuable guidance, but don’t take them too seriously: for our purposes, different

properties might be more important. The four axioms of a mathematical metric are:

d(x, y) ≥ 0

d(x, y) = 0 if and only if x = y

d(x, y) = d(y, x)

d(x, y) + d(y, z) ≥ d(x, z)

The first two axioms state that a distance is always positive and that it is null only if the

two points are equal. The third property (“symmetry”) states that the distance between x

and y is the same as the distance between y and x—no matter which way we consider the

pair. The final property is the so-called triangle inequality, which states that to get from x

to z, it is never shorter to take a detour through a third point y instead of going directly

(see Figure 13-9).

This all seems rather uncontroversial, but these conditions are not necessarily fulfilled in

practice. A funny example for an asymmetric distance occurs if you ask everyone in a

group of people how much they like every other member of the group and then use the

responses to construct a distance measure: it is not at all guaranteed that the feelings of

person A for person B are requited by B. (Using the same example, it is also possible to

construct scenarios that violate the triangle inequality.) For technical reasons, the

symmetry property is usually highly desirable. You can always construct a symmetric

distance function from an asymmetric one:

dS(x, y) = d(x, y) + d(y, x)

2

is always symmetric.
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x

y

z

d(x,y)

d(y,z)

d(x,z) ≤ d(x,y) + d(y,z)

F I G U R E 13-9. The triangle inequality: the direct path from x to z is always shorter than any path that goes through an
intermediate point y.

One property of great practical importance but not included among the distance axioms is

smoothness. For example, we could define a rather simple-minded distance function that is

0 if and only if both points are equal to each other and that is 1 if the two points are not

equal:

d(x, y) =
⎧
⎨

⎩
0 if x = y

1 otherwise

You can convince yourself that this distance fulfills all four of the distance axioms.

However, this is not a very informative distance measure, because it gives us no

information about how different two nonidentical points are! Most clustering algorithms

require this information. A certain kind of tree-based algorithm, for example, works by

successively considering the pairs of points with the smallest distance between them.

When using this binary distance, the algorithm will make only limited progress before

having exhausted all information available to it.

The practical upshot of this discussion is that a good distance function for clustering

should change smoothly as its inputs become more or less similar. (For classification tasks,

a binary one as in the example just discussed might be fine.)

Common Distance and Similarity Measures

Depending on the data set and the purpose of our analysis, there are different distance

and similarity measures available.

First, let’s clarify some terminology. We are looking for ways to measure the distance

between any two data points. Very often, we will find that a point has a number of

dimensions or features. (The first usage is more common for numerical data, the latter for

categorical data.) In other words, each point is a collection of individual values:

x = {x1, x2, . . . , xd}, where d is the number of dimensions (or features). For example, the

data point {0, 1} has two dimensions and describes a point in space; whereas the tuple

[ 'male', 'retired', 'Florida' ], which describes a person, has three features.
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T A B L E 13 -1. Commonly used distance and similarity measures for
numeric data

Name Definition

Manhattan d(x, y) = ∑d
i |xi − yi |

Euclidean d(x, y) =
√∑d

i (xi − yi )
2

Maximum d(x, y) = maxi |xi − yi |
Minkowski d(x, y) =

(∑d
i |xi − yi |p

)1/p

Dot product x · y =
∑d

i xi yi√∑d
i x2

i

√∑d
i y2

i

Correlation
coefficient

corr(x, y) =
∑d

i (xi −x̄)(yi −ȳ)
√∑d

i (xi −x̄)2
√∑d

i (yi −ȳ)2

x̄ = 1
d

∑d
i xi ȳ = 1

d

∑d
i yi

For any given data set containing n elements, we can form n2 pairs of points. The set of all

distances for all possible pairs of points can be arranged in a quadratic table known as the

distance matrix. The distance matrix embodies all information about the mutual

relationships between all points in the data set. If the distance function is symmetric, as is

usually the case, then the matrix is also symmetric. Furthermore, the entries along the

main diagonal typically are all 0, since d(x, x) = 0 for most well-behaved distance

functions.

Numerical data

If the data is numerical and also“mixable” or vector-like (in the sense of Appendix C),

then the data points bear a strong resemblance to points in space; hence we can use a

metric such as the familiar Euclidean distance. The Euclidean distance is the most

commonly used from a large family of related distance measures, which also contains the

so-called Manhattan (or taxicab) distance and the maximum (or supremum) distance. All of

these are in fact special cases of a more general Minkowski or p-distance.* Table 13-1 shows

some examples. (The Manhattan distance is so named because it measures distances the

way a New York taxicab moves: at right angles, along the city blocks. The Euclidean

distance measures distances “as the crow flies.” Finally, it is an amusing exercise to show

that the maximum distance corresponds to the Minkowski p-distance as p → ∞.)

All these distance measures have very similar properties, and the differences between

them usually do not matter much. The Euclidean distance is by far the most commonly

used. I list the others here mostly to give you a sense of the kind of leeway that exists in

defining a suitable distance measure—without significantly affecting the results!

*The Minkowski distance defined here should not be confused with the Minkowski metric, which defines
the metric of the four-dimensional space-time in special relativity.
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If the data is numeric but not mixable (so that it does not make sense to add a random

fraction of one data set to a random fraction of a different data set), then these distance

measures are not appropriate. Instead, you may want to consider a metric based on the

correlation between two data points.

Correlation-based measures are measures of similarity: they are large when objects are

similar and small when the objects are dissimilar. There are two related measures: the dot

product and the correlation coefficient, which are also defined in Table 13-1. The only

difference is that when calculating the correlation coefficient, we first center both data

points by subtracting their respective means.

In both measures, we multiply entries for the same “dimension” and sum the results; then

we divide by the correlation of each data point with itself. Doing so provides a

normalization and ensures that the correlation of any point with itself is always 1. This

normalization step makes correlation-based distance measures suitable for data sets

containing data points with widely different numeric values.

By construction, the value of a dot product always falls in the interval [0, 1], and the

correlation coefficient always falls in the interval [−1, 1]. You can therefore transform

either one into a distance measure if need be (e.g., if d is the dot product, then 1 − d is a

proper distance).

I should point out that the dot product has a geometric meaning. If we regard the data

points as vectors in some suitable space, then the dot product of two points is the cosine of

the angle that the two vectors make with each other. If they are perfectly aligned (i.e.,

they fall onto each other), then the angle is 0 and the cosine (and the correlation) is 1. If

they are at right angles to each other, the cosine is 0.

Correlation-based distance measures are suitable whenever numeric data is not readily

mixable—for instance, when evaluating the similarity of the time series in Figure 13-5.

Categorical data

If the data is categorical, then we can count the number of features that do not agree in

both data points (i.e., the number of mismatched features); this is the Hamming distance.

(We might want to divide by the total number of features to obtain a number between 0

and 1, which is the fraction of mismatched features.)

In certain data mining problems, the number of features is large, but only relatively few of

them will be present for each data point. Moreover, the features may be binary: we care

only whether or not they are present, but their values don’t matter. (As an example,

imagine a patient’s health record: each possible medical condition constitutes a feature,

and we want to know whether the patient has ever suffered from it.) In such situations,

where features are not merely categorical but binary and sparse (meaning that just a few

of the features are On), we may be more interested in matches between features that are

On than in matches between features that are Off. This leads us to the Jaccard coefficient sJ ,

which is the number of matches between features that are On for both points, divided by
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the number of features that are On in at least one of the data points. The Jaccard

coefficient is a similarity measure; the corresponding distance function is the Jaccard

distance dJ = 1 − sJ .

n00 features that are Off in both points

n10 features that are On in the first point, and Off in the second point

n01 features that are Off in the first point, and On in the second point

n11 features that are On in both points

sJ = n11

n10 + n01 + n11

dJ = n10 + n01

n10 + n01 + n11

There are many other measures of similarity or dissimilarity for categorical data, but

the principles are always the same. You calculate some fraction of matches, possibly

emphasizing one aspect (e.g., the presence or absence of certain values) more than others.

Feel free to invent your own—as far as I can see, none of these measures has achieved

universal acceptance or is fundamentally better than any other.

String data

If the data consists of strings, then we can use a form of Hamming distance and count the

number of mismatches. If the strings in the data set are not all of equal length, we can pad

the shorter string and count the number of characters added as mismatches.

If we are dealing with many strings that are rather similar to each other (distorted

through typos, for instance), then we can use a more detailed measure of the difference

between them—namely the edit or Levenshtein distance. The Levenshtein distance is the

minimum number of single-character operations (insertions, deletions, and substitutions)

required to transform one string into the other. (A quick Internet search will give many

references to the actual algorithm and available implementations.)

Another approach is to find the length of the longest common subsequence. This metric is

often used for gene sequence analysis in computational biology.

This may be a good place to make a more general point: the best distance measure to use

does not follow automatically from data type; rather, it depends on the semantics of the

data—or, more precisely, on the semantics that you care about for your current analysis!

In some cases, a simple metric that only calculates the difference in string length may be

perfectly sufficient. In another case, you might want to use the Hamming distance. If you

really care about the details of otherwise similar strings, the Levenshtein distance is most

appropriate. You might even want to calculate how often each letter appears in a string

and then base your comparison on that. It all depends on what the data means and on

what aspect of it you are interested at the moment (which may also change as the analysis

progresses). Similar considerations apply everywhere—there are no “cookbook” rules.
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Special-purpose metrics

A more abstract measure for the similarity of two points is based on the number of

neighbors that the two points have in common; this metric is known as the shared nearest

neighbor (SNN) similarity. To calculate the SNN for two points x and y, you find the k

nearest neighbors (using any suitable distance function) for both x and y. The number of

neighbors shared by both points is their mutual SNN.

The same concept can be extended to cases in which there is some property that the two

points may have in common. For example, in a social network we could define the

“closeness” of two people by the number of friends they share, by the number of movies

they have both seen, and so on. (This application is equivalent to the Hamming distance.)

Nearest-neighbor-based metrics are particularly suitable for high-dimensional data, where

other distance measures can give spuriously small results.

Finally, let me remind you that sometimes the solution does not consist of inventing a

new metric. Instead, the trick is to map the problem to a different space that already has a

predefined, suitable metric.

As an example, consider the problem of measuring the degree of similarity between

different text documents (we here assume that these documents are long—hundreds or

thousands of words). The standard approach to this problem is to count how often each

word appears in each document. The resulting data structure is referred to as the document

vector. You can now form a dot product between two document vectors as a measure of

their correspondence.

Technically speaking, we have mapped each document to a point in a (high-dimensional)

vector space. Each distinct word that occurs in any of the documents spans a new

dimension, and the frequency with which each word appears in a document provides the

position of that document along this axis. This is very interesting, because we have

transformed highly structured data (text) into numerical, even vector-like data and can

therefore now manipulate it much more easily. (Of course, the benefit comes at a price: in

doing so we have lost all information about the sequence in which words appeared in the

text. It is a separate consideration whether this is relevant for our purpose.)

One last comment: one can overdo it when defining distance and similarity measures.

Complicated or sophisticated definitions are usually not necessary as long as you capture

the fundamental semantics. The Hamming distance and the document vector correlation

are two good examples of simplified metrics that intentionally discard a lot of information

yet still turn out to be highly successful in practice.

Clustering Methods

In this section, we will discuss several very different clustering algorithms. As you will see,

the basic ideas behind all three algorithms are rather simple, and it is straightforward to
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come up with perfectly adequate implementations of them yourself. These algorithms are

also important as starting points for more sophisticated clustering routines, which usually

augment them with various heuristics or combine ideas from different algorithms.

Different algorithms are suitable for different kinds of problems—depending, for example,

on the shape and structure of the clusters. Some require vector-like data, whereas others

require only a distance function. Different algorithms tend to be misled by different kinds

of pitfalls, and they all have different performance (i.e., computational complexity)

characteristics. It is therefore important to have a variety of different algorithms at your

disposal so that you can choose the one most appropriate for your problem and for the

kind of solution you seek! (Remember: it is pretty much the choice of algorithm that

defines what constitutes a “cluster” in the end.)

Center Seekers

One of the most popular clustering methods is the k-means algorithm. The k-means

algorithm requires the number of expected clusters k as input. (We will later discuss how

to determine this number.) The k-means algorithm is an iterative scheme. The main idea

is to calculate the position of each cluster’s center (or centroid) from the positions of the

points belonging to the cluster and then to assign points to their nearest centroid. This

process is repeated until sufficient convergence is achieved. The basic algorithm can be

summarized as follows:

choose initial positions for the cluster centroids

repeat:

for each point:

calculate its distance from each cluster centroid

assign the point to the nearest cluster

recalculate the positions of the cluster centroids

The k-means algorithm is nondeterministic: a different choice of starting values may result

in a different assignment of points to clusters. For this reason, it is customary to run the

k-means algorithm several times and then compare the results. If you have previous

knowledge of likely positions for the cluster centers, you can use it to precondition the

algorithm. Otherwise, choose random data points as initial values.

What makes this algorithm efficient is that you don’t have to search the existing data

points to find one that would make a good centroid—instead you are free to construct a

new centroid position. This is usually done by calculating the cluster’s center of mass. In

two dimensions, we would have:

xc = 1

n

n∑

i

xi

yc = 1

n

n∑

i

yi
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where each sum is over all points in the cluster. (Generalizations to higher dimensions are

straightforward.) You can only do this for vector-like data, however, because only such

data allows us to form arbitrary “mixtures” in this way.

For strictly categorical data (such as the strings in Figure 13-4), the k-means algorithm

cannot be used (because it is not possible to “mix” different points to construct a new

centroid). Instead, we have to use the k-medoids algorithm. The k-medoids algorithm

works in the same way as the k-means algorithm except that, instead of calculating the

new centroid, we search through all points in the cluster to find the data point (the

medoid) that has the smallest average distance to all other points in the cluster.

The k-means algorithm is surprisingly modest in its resource consumption. On each

iteration, the algorithm evaluates the distance function once for each cluster and each

point; hence the computational complexity per iteration is O(k · n), where k is the number

of clusters and n is the number of points in the data set. This is remarkable because it

means that the algorithm is linear in the number of points. The number of iterations is

usually pretty small: 10–50 iterations are typical. The k-medoids algorithm is more costly

because the search to find the medoid of each cluster is an O(n2) process. For very large

data sets this might be prohibitive, but you can try running the k-medoids algorithm on

random samples of all data points. The results from these runs can then be used as starting

points for a run using the full data set.

Despite its cheap-and-cheerful appearance, the k-means algorithm works surprisingly

well. It is pretty fast and relatively robust. Convergence is usually quick. Because the

algorithm is simple and highly intuitive, it is easy to augment or extend it—for example,

to incorporate points with different weights. You might also want to experiment with

different ways to calculate the centroid, possibly using the median position rather than

the mean, and so on.

That being said, the k-means algorithm can fail—annoyingly in situations that exhibit

especially strong clustering! Because of its iterative nature, the algorithm works best in

situations that involve gradual density changes. If your data sets consists of very dense

and widely separated clusters, then the k-means algorithm can get “stuck” if initially two

centroids are assigned to the same cluster: moving one centroid to a different cluster

would require a large move, which is not likely to be found by the mostly local steps

taken by the k-means algorithm.

Among variants, a particularly important one is fuzzy clustering. In fuzzy clustering, we

don’t assign each point to a single cluster; instead, for each point and each cluster, we

determine the probability that the point belongs to that cluster. Each point therefore

acquires a set of k probabilities or weights (one for each cluster; the probabilities must sum

to 1 for each point). We then use these probabilities as weights when calculating the

centroid positions. The probabilities also make it possible to declare certain points as

“noise” (having low probability of belonging to any cluster) and thus can help with data
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sets that contain unclustered “noise” points and with ambiguous situations such as the

one shown in Figure 13-7.

To summarize:

• The k-means algorithms and its variants work best for globular (at least star-convex)

clusters. The results will be meaningless for clusters with complicated shapes and for

nested clusters (Figures 13-6 and 13-3, respectively).

• The expected number of clusters is required as an input. If this number is not known, it

will be necessary to repeat the algorithm with different values and compare the results.

• The algorithm is iterative and nondeterministic; the specific outcome may depend on

the choice of starting values.

• The k-means algorithm requires vector data; use the k-medoids algorithm for

categorical data.

• The algorithm can be misled if there are clusters of highly different size or different

density.

• The k-means algorithm is linear in the number of data points; the k-medoids algorithm

is quadratic in the number of points.

Tree Builders

Another way to find clusters is by successively combining clusters that are “close” to each

other into a larger cluster until only a single cluster remains. This approach is known as

agglomerative hierarchical clustering, and it leads to a treelike hierarchy of clusters. Clusters

that are close to each other are joined early (near the leaves of the tree) and more distant

clusters are joined late (near the root of the tree). (One can also go in the opposite

direction, continually splitting the set of points into smaller and smaller clusters. When

applied to classification problems, this leads to a decision tree—see Chapter 18.)

The basic algorithm proceeds exactly as just outlined:

1. Examine all pairs of clusters.

2. Combine the two clusters that are closest to each other into a single cluster.

3. Repeat.

What do we mean by the distance between clusters? The distance measures that we have

defined are valid only between points! To apply them, we need to select (or construct) a

single “representative” point from each cluster. Depending on this choice, hierarchical

clustering will lead to different results. The most important alternatives are as follows.

Minimum or single link
We define the distance between two clusters as the distance between the two points

(one from each cluster) that are closest to each other. This choice leads to extended,
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thinly connected clusters. Because of this, this approach can handle clusters of

complicated shapes, such as those in Figure 13-6, but it can be sensitive to noise points.

Maximum or complete link
The distance between two clusters is defined as the distance between the two points

(one from each cluster) that are farthest away from each other. With this choice, two

clusters are not joined until all points within each cluster are connected to each

other—favoring compact, globular clusters.

Average
In this case, we form the average over the distances between all pairs of points (one

from each cluster). This choice has characteristics of both the single- and complete-link

approaches.

Centroid
For each cluster, we calculate the position of a centroid (as in k-means clustering) and

define the distance between clusters as the distance between centroids.

Ward’s method
Ward’s method measures the distance between two clusters in terms of the decrease in

coherence that occurs when the two clusters are combined: if we combine clusters that

are closer together, the resulting cluster should be more coherent than if we combine

clusters that are farther apart. We can measure coherence as the average distance of all

points in the cluster from a centroid, or as their average distance from each other.

(We’ll come back to cohesion and other cluster properties later.)

The result of hierarchical clustering is not actually a set of clusters. Instead, we obtain a

treelike structure that contains the individual data points at the leaf nodes. This structure

can be represented graphically in a dendrogram (see Figure 13-10). To extract actual

clusters from it, we need to walk the tree, evaluate the cluster properties for each subtree,

and then cut the tree to obtain clusters.

Tree builders are expensive: we need at least the full distance matrix for all pairs of points

(requiring O(n2) operations to evaluate). Building the complete tree takes O(n) iterations:

there are n clusters (initially, points) to start with, and at each iteration, the number of

clusters is reduced by one because two clusters are combined. For each iteration, we need

to search the distance matrix for the closest pair of clusters—naively implemented, this is

an O(n2) operation that leads to a total complexity of O(n3) operations. However, this can

be reduced to O(n2 log n) by using indexed lookup.

One outstanding feature of hierarchical clustering is that it does more than produce a flat

list of clusters; it also shows their relationships in an explicit way. You need to decide

whether this information is relevant for your needs, but keep in mind that the choice of

measure for the cluster distance (single- or complete-link, and so on) can have a

significant influence on the appearance of the resulting tree structure.
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F I G U R E 13-10. A typical dendrogram for data like the data in Figure 13-5. Individual data points are at the leaf nodes. The
vertical distance between the tree nodes represents the dissimilarity between the nodes.

Neighborhood Growers

A third kind of clustering algorithm could be dubbed “neighborhood growers.” They work

by connecting points that are “sufficiently close” to each other to form a cluster and then

keep doing so until all points have been classified. This approach makes the most direct

use of the definition of a cluster as a region of high density, and it makes no assumptions

about the overall shape of the cluster. Therefore, such methods can handle clusters of

complicated shapes (as in Figure 13-6), interwoven clusters, or even nested clusters (as in

Figure 13-3). In general, neighborhood-based clustering algorithms are more of a

special-purpose tool: either for cases that other algorithms don’t handle well (such as the

ones just mentioned) or for polishing, in a second pass, the features of a cluster found by a

general-purpose clustering algorithm such as k-means.

The DBSCAN algorithm which we will introduce in this section is one such algorithm, and

it demonstrates some typical concepts. It requires two parameters. One is the minimum

density that we expect to prevail inside of a cluster—points that are less densely packed

will not be considered part of any cluster. The other parameter is the size of the region over

which we expect this density to be maintained: it should be larger than the average

distance between neighboring points but smaller than the entire cluster. The choice of

parameters is rather subtle and clearly requires an appropriate balance.
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In a practical implementation, it is easier to work with two slightly different parameters:

the neighborhood radius r and the minimum number of points n that we expect to find

within the neighborhood of each point in a cluster. The DBSCAN algorithm distinguishes

between three types of points: noise, edge, and core points. A noise point is a point which

has fewer than n points in its neighborhood of radius r , such a point does not belong to

any cluster. A core point of a cluster has more than n neighbors. An edge point is a point that

has fewer neighbors than required for a core point but that is itself the neighbor of a core

point. The algorithm discards noise points and concentrates on core points. Whenever it

finds a core point, the algorithm assigns a cluster label to that point and then continues to

add all its neighbors, and their neighbors recursively to the cluster, until all points have

been classified.

This description is simple enough, but actually deriving a concrete implementation that is

both correct and efficient is less than straightforward. The pseudo-code in the original

paper* appears needlessly clumsy; on the other hand, I am not convinced that the

streamlined version that can be found (for example) on Wikipedia is necessarily correct.

Finally, the basic algorithm lends itself to elegant recursive implementations, but keep in

mind that the recursion will not unwind until the current cluster is complete. This means

that, in the worst case (of a single connected cluster), you will end up putting the entire

data set onto the stack!

As pointed out earlier, the main advantage of the DBSCAN algorithm is that it handles

clusters of complicated shapes and nested clusters gracefully. However, it does depend

sensitively on the appropriate choice of values for its two control parameters, and it

provides little help in finding them. If a data set contains several clusters with widely

varying densities, then a single set of parameters may not be sufficient to classify all of the

clusters. These problems can be ameliorated by coupling the DBSCAN algorithm with the

k-means algorithm: in a first pass, the k-means algorithm is used to identify candidates for

clusters. Moreover, statistics on these subsets of points (such as range and density) can be

used as input to the DBSCAN algorithm.

The DBSCAN algorithm is dominated by the calculations required to find the neighboring

points. For each point in the data set, all other points have to be checked; this leads to a

complexity of O(n2). In principle, algorithms and data structures exist to find candidates

for neighboring points more efficiently (e.g., kd-trees and global grids), but their

implementations are subtle and carry their own costs (grids can be very memory

intensive). Coupling the DBSCAN algorithm with a more efficient first-pass algorithm

(such as k-means) may therefore be a better strategy.

*“A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.” Martin
Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. Proceedings of 2nd International Conference
on Knowledge Discovery and Data Mining (KDD-96). 1996.
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Pre- and Postprocessing

The core algorithm for grouping data points into clusters is usually only part (though the

most important one) of the whole strategy. Some data sets may require some cleanup or

normalization before they are suitable for clustering: that’s the first topic in this section.

Furthermore, we need to inspect the results of every clustering algorithm in order to

validate and characterize the clusters that have been found. We will discuss some concepts

and quantities used to describe clusters and to measure the clustering quality.

Finally, several cluster algorithms require certain input parameters (such as the number of

clusters to find), and we need to confirm that the values we provided are consistent with

the outcome of the clustering process. That will be our last topic in this section.

Scale Normalization

Look at Figures 13-11 and 13-12. Wouldn’t you agree that the data set in Figure 13-11

exhibits two reasonably clearly defined and well-separated clusters while the data set in

Figure 13-12 does not? Yet both figures show the same data set—only drawn to different

scales! In Figure 13-12, I used identical units for both the x axis and the y axis; whereas

Figure 13-11 was drawn to maintain a suitable aspect ratio for this data set.

This example demonstrates that clustering is not independent of the units in which the

data is measured. In fact, for the data set shown in Figures 13-11 and 13-12, points in two

different clusters may be closer to each other than to other points in the same cluster! This

is clearly a problem.

If, as in this example, your data spans very different ranges along different dimensions,

you need to normalize the data before starting a clustering algorithm. An easy way to

achieve this is to divide the data, dimension for dimension, by the range of the data along

that dimension. Alternatively, you might want to divide by the standard deviation along

that dimension. This process is sometimes called whitening or prewhitening, particularly in

signal-theoretic literature.

You only need to worry about this problem if you are working with vector-like data and

are using a distance measure like the Euclidean distance. It does not affect

correlation-based similarity measures. In fact, there is a special variant of the Euclidean

distance that performs the appropriate rescaling for each dimension on the fly: the

Mahalanobis distance.

Cluster Properties and Evaluation

It is easiest to think about cluster properties in the context of vector-like data and a

straightforward clustering algorithm such as k-means. The algorithm already gives us the
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F I G U R E 13-11. It is easy to argue that there are two clusters in this graph. (Compare Figure 13-12.)

coordinates of the cluster centroids directly, hence we have the cluster location. Two

additional quantities are the mass of the cluster (i.e., the number of points in the cluster)

and its radius. The radius is simply the average deviation of all points from the cluster

center—basically the standard deviation, when using the Euclidean distance:

r2 =
∑

i

(xc − xi )
2 + (yc − yi )

2

in two dimensions (equivalently in higher dimensions). Here xc and yc are the coordinates

of the center of the cluster, and the sum runs over all points i in the cluster. Dividing the

mass by the radius gives us the density of the cluster. (These values can be used to

construct input values for the DBSCAN algorithm.)

We can apply the same principles to develop a measure for the overall quality of the

clustering. The key concepts are cohesion within a cluster and separation between clusters.

The average distance for all points within one cluster is a measure of the cohesion, and

the average distance between all points in one cluster from all points in another cluster is

a measure of the separation between the two clusters. (If we know the centroids of the

clusters, we can use the distance between the centroids as a measure for the separation.)

We can go further and form the average (weighted by the cluster mass) of the cohesion

for all clusters as a measure for the overall quality.

If a data set can be cleanly grouped into clusters, then we expect the distance between the

clusters to be large compared to the radii of the clusters. In other words, we expect the

ratio:
separation

cohesion

to be large.

312 C H A P T E R T H I R T E E N



O’Reilly-5980006 master October 28, 2010 21:20

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

F I G U R E 13-12. It is difficult to recognize two well-separated clusters in this figure. Yet the data is the same as in Figure 13-11
but drawn to a different scale! (Compare the horizontal and vertical scales in both graphs.)

A particular measure based on this concept is the silhouette coefficient S. The silhouette

coefficient is defined for individual points as follows. Let ai be the average distance (the

cohesion) that point i has from all other points in the cluster to which it belongs. Evaluate

the average distance that point i has from all points in any cluster to which it does not

belong, and let bi be the smallest such value (i.e., bi is the separation from the “closest”

other cluster). Then the silhouette coefficient of point i is defined as:

Si = bi − ai

max(ai , bi )

The numerator is a measure for the “empty space” between clusters (i.e., it measures the

amount of distance between clusters that is not occupied by the original cluster). The

denominator is the greater of the two length scales in the problem—namely the cluster

radius and the distance between clusters.

By construction, the silhouette coefficient ranges from −1 to 1. Negative values indicate

that the cluster radius is greater than the distance between clusters, so that clusters overlap;

this suggests poor clustering. Large values of S suggest good clustering. We can form the

average of the silhouette coefficients for all points belonging to a single cluster and thereby

develop a measure for the quality of the entire cluster. We can further define the average

over the silhouette coefficients for all individual points as the overall silhouette coefficient

for the entire data set; this would be a measure for the quality of the clustering result.

The overall silhouette coefficient can be useful to determine the number of clusters

present in the data set. If we run the k-means algorithm several times for different values
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F I G U R E 13-13. How many clusters are in this data set?

of the expected number of clusters and calculate the overall silhouette coefficient each

time, then it should exhibit a peak near the optimal number of clusters.

Let’s work through an example to see how the the silhouette coefficient performs in

practice. Figure 13-13 shows the points of a two-dimensional data set. This is an

interesting data set because, even though it exhibits clear clustering, it is not at all obvious

how many distinct clusters there really are—any number between six and eight seems

plausible. The total silhouette coefficient (averaged over all points in the data set) for this

data set (see Figure 13-14) confirms this expectation, clearly leaning toward the lower

end of this range. (It is interesting to note that the data set was generated, using a

random-number generator, to include 10 distinct clusters, but some of those clusters are

overlapping so strongly that it is not possible to distinguish them.) This example also

serves as a cautionary reminder that it may not always be so easy to determine what

actually constitutes a cluster!

Another interesting question concerns distinguishing legitimate clusters from a random

(unclustered) background. Of the algorithms that we have seen, only the DBSCAN

algorithm explicitly labels some points as background; the k-means and the tree-building

algorithm perform what is known as complete clustering by assigning every point to a

cluster. We may want to relax this behavior by trimming those points from each cluster

that exceed the average cohesion within the cluster by some amount. This is easiest for

fuzzy clustering algorithms, but it can be done for other algorithms as well.

Other Thoughts

The three types of clustering algorithms introduced in this chapter are probably the

most popular and widely used, but they certainly don’t exhaust the range of possibilities.
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F I G U R E 13-14. The silhouette coefficient for the data in Figure 13-13. According to this measure, six or seven clusters give
optimal results for this data set.

Here is a brief list of other ideas that can (and have) been used to develop clustering

algorithms.

• We can impose a specific topology, such as a grid on the data points. Each data point will

fall into a single grid cell, and we can use this information to find cells containing

unusually many points and so guide clustering. Cell-based methods will perform

poorly in many dimensions, because most cells will be empty and have few occupied

neighbors (the “curse of dimensionality”).

• Among grid-based approaches, Kohonen maps (which we will discuss in Chapter 14)

have a lot of intuitive appeal.

• Some special methods have been suggested to address the challenges posed by

high-dimensional feature spaces. In subspace clustering, for example, clustering is

performed on only a subset of all available features. These results are then successively

extended by including features ignored in previous iterations.

• Remember kernel density estimates (KDEs) from Chapter 2? If the dimensionality is

not too high, then we can generate a KDE for the data set. The KDE provides a smooth

approximation to the local point density. We can then identify clusters by finding the

maxima of this density directly, using standard methods from numerical analysis.

• The QT (“quality threshold”) algorithm is a center-seeking algorithm that does not

require the number of clusters as input; instead, we have to fix a maximum radius. The

QT algorithm treats every point in the cluster as a potential centroid and adds

neighboring points (in the order of increasing distance from the centroid) until the

maximum radius is exceeded. Once all candidate clusters have been completed in this
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way, the cluster with the greatest number of points is removed from the data set, and

then the process starts again with the remaining points.

• There is a well-known correspondence between graphs and distance matrices. Given a

set of points, a graph tells us which points are directly connected to each other—but so

does a distance matrix! We can exploit this equivalence by treating a distance matrix as

the adjacency matrix of a graph. The distance matrix is pruned (by removing

connections that are too long) to obtain a sparse graph, which can be interpreted as the

backbone of a cluster.

• Finally, spectral clustering uses powerful but abstract methods from linear algebra

(similar to those used for principal component analysis; see Chapter 14) to structure

and simplify the distance matrix.

Obviously, much depends on our prior knowledge about the data set: if we expect clusters

to be simple and convex, then the k-means algorithm suggests itself. On the other hand, if

we have a sense for the typical radius of the clusters that we expect to find, then QT

clustering would be a more natural approach. If we expect clusters of complicated shapes

or nested clusters, then an algorithm like DBSCAN will be required. Of course, it might be

difficult to develop this kind of intuition—especially for problems that have significantly

more than two or three dimensions!

Besides thinking of different ways to combine points into clusters, we can also think of

different ways to define clusters to begin with. All methods discussed so far have relied

(directly or indirectly) on the information contained in the distance between any two

points. We can extend this concept and begin to think about three-point (or higher) distance

functions. For example, it is possible to determine the angle between any three consecutive

points and use this information as the measure of the similarity between points. Such an

approach might help with cases like the one shown in Figure 13-8. Yet another idea is to

measure not the similarity between points but instead the similarity between a point and a

property of the cluster. For example, there is a straightforward generalization of the k-means

algorithm in which the centroids are no longer pointlike but are straight lines,

representing the “axis” of an elongated cluster. Rather than measuring the distance for

each point from the centroid, this algorithm calculates the distance from this axis when

assigning points to clusters. This algorithm would be suitable for cases like that shown in

Figure 13-7. I don’t think any of these ideas that try to generalize beyond pairwise

distances have been explored in detail yet.

A Special Case: Market Basket Analysis

Which items are frequently bought together? This and similar questions arise in market

basket analysis or—more generally—in association analysis. Because association analysis is

looking for items that occur together, it is in some ways related to clustering. However,

the specific nature of the problem is different enough to require a separate toolset.
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The starting point for association analysis is usually a data set consisting of transactions—

that is, items that have been purchased together (we will often stay with the market

basket metaphor when illustrating these concepts). Each transaction corresponds to a

single “data point” in regular clustering.

For each transaction, we keep track of all items that have occurred together but typically

ignore whether or not any particular item was purchased multiple times: all attributes are

Boolean and indicate only the presence or absence of a certain item. Each item spans a

new dimension: if the store sells N different items, then each transaction can have up to

N different (Boolean) attributes, although each transaction typically contains only a tiny

subset of the entire selection. (Note that we do not necessarily need to know the

dimensionality N ahead of time: if we don’t know it, we can infer an approximation from

the number of different items that actually occur in the data set.)

From this description, you can already see how association analysis differs from regular

clustering: data points in association analysis are typically very high-dimensional but also

very sparse. It also differs from clustering (as we have discussed it so far) in that we are

not necessarily interested in grouping entire “points” (i.e., transactions) but would like to

identify those dimensions that frequently occur together.

A group of zero or more items occurring together is known as an item set (or itemset). Each

transaction consists of an item set, but every one of its subsets is also an item set. We can

construct arbitrary item sets from the selection of available items. For each such item set,

its support count is the number of actual transactions that contain the candidate item set as

a subset.

Besides simply identifying frequent item sets, we can also try to derive association

rules—that is, rules of the form “if items A and B are bought, then item C is also likely to

be bought.” Two measures are important when evaluating the strength of an association

rule: its support s and its confidence c. The support of a rule is the fraction of transactions

in the entire data set that contain the combined item set (i.e., the fraction of transactions

that contain all three items A, B, and C). A rule with low support is not very useful

because it is rarely applicable.

The confidence is a measure for the reliability of an association rule. It is defined as the

number of transactions in which the rule is correct, divided by the number of transactions

in which it is applicable. In our example, it would be the number of times A, B, and C

occur together divided by the number of times A and B occur together.

How do we go about finding frequent item sets (and association rules)? Rather than

performing an open-ended search for the “best” association rule, it is customary to set

thresholds for the minimum support (such as 10 percent) and confidence (such as 80

percent) required of a rule and then to generate all rules that meet these conditions.
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To identify rules, we generate candidate item sets and then evaluate them against the set

of transactions to determine whether they exceed the required thresholds. However, the

naive approach—to create and evaluate all possible item sets of k elements—is not feasible

because of the huge number (2k) of candidate item sets that could be generated, most of

which will not be frequent! We must find a way to generate candidate item sets more

efficiently.

The crucial observation is that an item set can occur frequently only if all of its subsets occur

frequently. This insight is the basis for the so-called apriori algorithm, which is the most

fundamental algorithm for association analysis.

The apriori algorithm is a two-step algorithm: in the first step, we identify frequent item

sets; in the second step, we extract association rules. The first part of the algorithm is the

more computationally expensive one. It can be summarized as follows.

Find all 1-item item sets that meet the minimum support threshold.

repeat:

from the current list of k-item item sets, construct (k+1)-item item sets

eliminate those item sets that do not meet the minimum support threshold

stop when no (k+1)-item item set meets the minimum support threshold

The list of frequent item sets may be all that we require, or we may postprocess the list to

extract explicit association rules. To find association rules, we split each frequent item set

into two sets, and evaluate the confidence associated with this pair. From a practical point

of view, rules that have a 1-item item set on the “righthand side” are the easiest to

generate and the most important. (In other words, rules of the form “people who bought

A and B also bought C,” rather than rules of the form “people who bought A and B also

bought C and D.”)

This basic description leaves out many technical details, which are important in actual

implementations. For example: how exactly do we create a (k + 1)-item item set from the

list of k-item item sets? We might take every single item that occurs among the k-item

item sets and add it, in turn, to every one of the k-item item sets; however, this would

generate a large number of duplicate item sets that need to be pruned again. Alternatively,

we might combine two k-item item sets only if they agree on all but one of their

items. Clearly, appropriate data structures are essential for obtaining an efficient

implementation. (Similar considerations apply when determining the support count of a

candidate item set, and so on.)*

Although the apriori algorithm is probably the most popular algorithm for association

analysis, there are also very different approaches. For example, the FP-Growth Algorithm

(where FP stands for “Frequent Pattern”) identifies frequent item sets using something

*An open source implementation of the apriori algorithm (and many other algorithms for frequent pat-
tern identification), together with notes on efficient implementation, can be found at
http://borgelt.net/apriori.html. The arules package for R is an alternative. It can be found on CRAN.
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like a string-matching algorithm. Items in transactions are sorted by their support count,

and a treelike data structure is built up by exploiting data sets that agree in the first k

items. This tree structure is then searched for frequently occurring item sets.

Association analysis is a relatively complicated problem that involves many technical (as

opposed to conceptual) challenges as well. The discussion in this section could only

introduce the topic and attempt to give a sense of the kinds of approaches that are

available. We will see some additional problems of a similar nature in Chapter 18.

A Word of Warning

Clustering can lead you astray, and when done carelessly it can become a huge waste of

time. There are at least two reasons for this: although the algorithms are deceptively

simple, it can be surprisingly difficult to obtain useful results from them. Many of them

depend quite sensitively on several heuristic parameters, and you can spend hours

fiddling with the various knobs. Moreover, because the algorithms are simple and the field

has so much intuitive appeal, it can be a lot of fun to play with implementations and to

develop all kinds of modifications and variations.

And that assumes there actually are any clusters present! (This is the second reason.) In

the absence of rigorous, independent results, you will actually spend more time on data

sets that are totally worthless—perpetually hunting for those clusters that “the stupid

algorithm just won’t find.” Perversely, additional domain knowledge does not necessarily

make the task any easier: knowing that there should be exactly 10 clusters present in

Figure 13-13 is of no help in finding the clusters that actually can be identified!

Another important question concerns the value that you ultimately derive from clustering

(assuming now that at least one of the algorithms has returned something apparently

meaningful). It can be difficult to distinguish spurious results from real ones: like

clustering algorithms, cluster evaluation methods are not particularly rigorous or

unequivocal either (Figure 13-14 does not exactly inspire confidence). And we still have

not answered the question of what you will actually do with the results—assuming that

they turn out to be significant.

I have found that understanding the actual question that needs to be answered,

developing some pertinent hypotheses and models around it, and then verifying them on

the data through specific, focused analysis is usually a far better use of time than to go off

on a wild-goose clustering search.

Finally, I should emphasize that, in keeping with the spirit of this book, the algorithms in

this chapter are suitable for moderately sized data sets (a few thousand data points and a

dozen dimensions, or so) and for problems that are not too pathological. Highly developed

algorithms (e.g., CURE and BIRCH) exist for very large or very high-dimensional

problems; these algorithms usually combine several different cluster-finding approaches
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together with a set of heuristics. You need to evaluate whether such specialized

algorithms make sense for your situation.

Workshop: Pycluster and the C Clustering Library

The C Clustering Library (http://bonsai.hgc.jp/∼mdehoon/software/cluster/software.htm) is a

mature and relatively efficient clustering library originally developed to find clusters

among gene expressions in microarray experiments. It contains implementations of the

k-means and k-medoids algorithms, tree clustering, and even self-organized (Kohonen)

maps. It comes with its own GUI frontend as well as excellent Perl and Python bindings.

It is easy to use and very well documented. In this Workshop, we use Python to

demonstrate the library’s center-seeker algorithms.

import Pycluster as pc

import numpy as np

import sys

# Read data filename and desired number of clusters from command line

filename, n = sys.argv[1], int( sys.argv[2] )

# x and y coordinates, whitespace-separated

data = np.loadtxt( filename, usecols=(0,1) )

# Perform clustering and find centroids

clustermap = pc.kcluster( data, nclusters=n, npass=50 )[0]

centroids = pc.clustercentroids( data, clusterid=clustermap )[0]

# Obtain distance matrix

m = pc.distancematrix( data )

# Find the masses of all clusters

mass = np.zeros( n )

for c in clustermap:

mass[c] += 1

# Create a matrix for individual silhouette coefficients

sil = np.zeros( n*len(data) )

sil.shape = ( len(data), n )

# Evaluate the distance for all pairs of points

for i in range( 0, len(data) ):

for j in range( i+1, len(data) ):

d = m[j][i]

sil[i, clustermap[j] ] += d

sil[j, clustermap[i] ] += d

# Normalize by cluster size (that is: form average over cluster)

for i in range( 0, len(data) ):

sil[i,:] /= mass
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# Evaluate the silhouette coefficient

s = 0

for i in range( 0, len(data) ):

c = clustermap[i]

a = sil[i,c]

b = min( sil[i, range(0,c)+range(c+1,n) ] )

si = (b-a)/max(b,a) # This is the silhouette coeff of point i

s += si

# Print overall silhouette coefficient

print n, s/len(data)

The listing shows the code used to generate Figure 13-14, showing how the silhouette

coefficient depends on the number of clusters. Let’s step through it.

We import both the Pycluster library itself as well as the NumPy package. We will use

some of the vector manipulation abilities of the latter. The point coordinates are read from

the file specified on the command line. (The file is assumed to contain the x and y

coordinates of each point, separated by whitespace; one point per line.) The point

coordinates are then passed to the kcluster() function, which performs the actual

k-means algorithm. This function takes a number of optional arguments: nclusters is the

desired number of clusters, and npass holds the number of trials that should be performed

with different starting values. (Remember that k-means clustering is nondeterministic with

regard to the initial guesses for the positions of the cluster centroids.) The kcluster()

function will make npass different trials and report on the best one.

The function returns three values. The first return value is an array that, for each point in

the original data set, holds the index of the cluster to which it has been assigned. The

second and third return values provide information about the quality of the clustering

(which we ignore in this example). This function signature is a reflection of the

underlying C API, where you pass in an array of the same length as the data array and

then the cluster assignments of each point are communicated via this additional array.

This frees the kcluster() function from having to do its own resource management,

which makes sense in C (and possibly also for extremely large data sets).

All information about the result of the clustering procedure are contained in the

clustermap data structure. The Pycluster library provides several functions to extract this

information; here we demonstrate just one: we can pass the clustermap to the

clustercentroids() function to obtain the coordinates of the cluster centroids. (However,

we won’t actually use these coordinates in the rest of the program.)

You may have noticed that we did not specify the distance function to use in the listing.

The C Clustering Library does not give us the option of a user-defined distance function

with k-means. It does include several standard distance measures (Euclidean, Manhattan,

correlation, and several others), which can be selected through a keyword argument to

kcluster() (the default is to use the Euclidean distance). Distance calculations can be a

rather expensive part of the algorithm, and having them implemented in C makes the
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k = 6

F I G U R E 13-15. The result of running the k-means algorithm on the data from Figure 13-13, finding six clusters. Different
clusters are shown in black and gray, and the cluster centroids are indicated by filled dots.

overall program faster. (If we want to define our own distance function, then we have to

use the kmedoids() function, which we will discuss in a moment.)

To evaluate the silhouette coefficient we need the point-to-point distances, and so we

obtain the distance matrix from the Pycluster library. We will also need the number of

points in each cluster (the cluster’s “mass”) later.

Next, we calculate the individual silhouette coefficients for all data points. Recall that the

silhouette coefficient involves both the average distance to the all points in the same cluster

as well as the average distance to all points in the nearest cluster. Since we don’t know

ahead of time which one will be the nearest cluster to each point, we simply go ahead and

calculate the average distance to all clusters. The results are stored in the matrix sil.

(In the implementation, we make use of some of the vector manipulation features of

NumPy: in the expression sil[i,:] /= mass, each entry in row i is divided componentwise

by the corresponding entry in mass. Further down, we make use of “advanced indexing”

when looking for the minimum distance between the point i and a cluster to which it

does not belong: in the expression b = min( sil[i, range(0,c)+range(c+1,n) ] ), we

construct an indexing vector that includes indices for all clusters except the one that the

point i belongs to. See the Workshop in Chapter 2 for more details.)

Finally, we form the average over all single-point silhouette coefficients and print the

results. Figure 13-14 shows them as a graph.

Figures 13-15 and 13-16 show how the program assigned points to clusters in two runs,

finding 6 and 10 clusters, respectively. These results agree with Figure 13-14: k = 6 is
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k = 10

F I G U R E 13-16. Similar to Figure 13-15 but for k = 10. Ten seems too high a number of clusters for this data set, which
agrees with the results from calculating the silhouette coefficient in Figure 13-14.

close to the optimal number of clusters, whereas k = 10 seems to split some clusters

artificially.

The next listing demonstrates the kmedoids() function, which we have to use if we want

to provide our own distance function. As implemented by the Pycluster library, the

k-medoids algorithm does not require the data at all—all it needs is the distance matrix!

import Pycluster as pc

import numpy as np

import sys

# Our own distance function: maximum norm

def dist( a, b ):

return max( abs( a - b ) )

# Read data filename and desired number of clusters from command line

filename, n = sys.argv[1], int( sys.argv[2] )

# x and y coordinates, whitespace-separated

data = np.loadtxt( filename, usecols=(0,1) )

k = len(data)

# Calculate the distance matrix

m = np.zeros( k*k )

m.shape = ( k, k )

for i in range( 0, k ):

for j in range( i, k ):

d = dist( data[i], data[j] )
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m[i][j] = d

m[j][i] = d

# Perform the actual clustering

clustermap = pc.kmedoids( m, n, npass=20 )[0]

# Find the indices of the points used as medoids, and the cluster masses

medoids = {}
for i in clustermap:

medoids[i] = medoids.get(i,0) + 1

# Print points, grouped by cluster

for i in medoids.keys():

print "Cluster=", i, " Mass=", medoids[i], " Centroid: ", data[i]

for j in range( 0, len(data) ):

if clustermap[j] == i:

print "\t", data[j]

In the listing, we calculate the distance matrix using the maximum norm (which is not

supplied by Pycluster) as distance function. Obviously, we could use any other function

here—such as the Levenshtein distance if we wanted to cluster the strings in Figure 13-4.

We then call the kmedoids() function, which returns a clustermap data structure similar to

the one returned by kcluster(). For the kmedoids() function, the data structure

contains—for each data point—the index of the data point that is the centroid of the

assigned cluster.

Finally, we calculate the masses of the clusters and print the coordinates of the cluster

medoids as well as the coordinates of all points assigned to that cluster.

The C Clustering Library is small and relatively easy to use. You might also want to

explore its tree-clustering implementation. The library also includes routines for Kohonen

maps and principal component analysis, which we will discuss in Chapter 14.

Further Reading
• Introduction to Data Mining. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.

Addison-Wesley. 2005.

This is my favorite book on data mining. The presentation is compact and more

technical than in most other books on this topic. The section on clustering is

particularly strong.

• Data Clustering: Theory, Algorithms, and Applications. Guojun Gan, Chaoqun Ma, and

Jianhong Wu. SIAM. 2007.

This book is a recent survey of results from clustering research. The presentation is too

terse to be useful, but it provides a good source of concepts and keywords for further

investigation.
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• Algorithms for Clustering Data. Anil K. Jain and Richard C. Dubes. Prentice Hall. 1988.

An older book on clustering as freely available at

http://www.cse.msu.edu/∼jain/Clustering Jain Dubes.pdf .

• Metric Spaces: Iteration and Application. Victor Bryant. Cambridge University Press. 1985.

If you are interested in thinking about distance measures in arbitrary spaces in a more

abstract way, then this short (100-page) book is a wonderful introduction. It requires

no more than some passing familiarity with real analysis, but it does a remarkable job

of demonstrating the power of purely abstract reasoning—both from a conceptual

point of view but also with an eye to real applications.
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C H A P T E R F O U R T E E N

Seeing the Forest for the Trees:
Finding Important Attributes

WHAT DO YOU DO WHEN YOU DON’T KNOW WHERE TO START? WHEN YOU ARE DEALING WITH A DATA SET THAT

offers no structure that would suggest an angle of attack?

For example, I remember looking through a company’s contracts with its suppliers for a

certain consumable. These contracts all differed in regards to the supplier, the number of

units ordered, the duration of the contract and the lead time, the destination location that

the items were supposed to be shipped to, the actual shipping date, and the procurement

agent that had authorized the contract—and, of course, the unit price. What I tried to

figure out was which of these quantities had the greatest influence on the unit price.

This kind of problem can be very difficult: there are so many different variables, none of

which seems, at first glance, to be predominant. Furthermore, I have no assurance that

the variables are all independent; many of them may be expressing related information.

(In this case, the supplier and the shipping destination may be related, since suppliers are

chosen to be near the place where the items are required.)

Because all variables arise on more or less equal footing, we can’t identify a few as the

obvious “control” or independent variables and then track the behavior of all the other

variables in response to these independent variables. We can try to look at all possible

pairings—for example, using graphical techniques such as scatter-plot matrices (Chapter

5)—but that may not really reveal much either, particularly if the number of variables is

truly large. We need some form of computational guidance.

In this chapter, we will introduce a number of different techniques for exactly this

purpose. All of them help us select the most important variables or features from a

multivariate data set in which all variables appear to arise on equal footing. In doing so,
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we reduce the dimension of the data set from the original number of variables (or

features) to a smaller set, which (hopefully) captures most of the “interesting” behavior of

the data. These methods are therefore also known as feature selection or dimensionality

reduction techniques.

A word of warning: the material in this chapter is probably the most advanced and least

obvious in the whole book, both conceptually and also with respect to actual

implementations. In particular, the following section (on principal component analysis) is

very abstract, and it may not make much sense if you haven’t had some previous exposure

to matrices and linear algebra (including eigentheory). Other sections are more accessible.

I include these techniques here nevertheless, because they are of considerable practical

importance but also to give you a sense of the kinds of (more advanced) techniques that

are available, and also as a possible pointer for further study.

Principal Component Analysis

Principal component analysis (PCA) is the primary tool for dimensionality reduction in

multivariate problems. It is a foundational technique that finds applications as part of

many other, more advanced procedures.

Motivation

To understand what PCA can do for us, let’s consider a simple example. Let’s go back to

the contract example given earlier and now assume that there are only two variables for

each contract: its lead time and the number of units to be delivered. What can we say

about them? Well, we can draw histograms for each to understand the distribution of

values and to see whether there are “typical” values for either of these quantities. The

histograms (in the form of kernel density estimates—see Chapter 2) are shown in Figure

14-1 and don’t reveal anything of interest.

Because there are only two variables in this case, we can also plot one variable against the

other in a scatter plot. The resulting graph is shown in Figure 14-2 and is very revealing:

the lead time of the contract grows with its size. So far, so good.

But we can also look at Figure 14-2 in a different way. Recall that the contract data

depends on two variables (lead time and number of items), so that we would expect the

points to fill the two-dimensional space spanned by the two axes (lead time and number

of items). But in reality, all the points fall very close to a straight line. A straight line,

however, is only one-dimensional, and this means that we need only a single variable to

describe the position of each point: the distance along the straight line. In other words,

although it appears to depend on two variables, the contract data mostly depends on a

single variable that lies halfway between the original ones. In this sense, the data is of

lower dimensionality than it originally appeared.
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F I G U R E 14-1. Contract data: distribution of points for the lead time and the number of units per order. The distributions do
not reveal anything in particular about the data.
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F I G U R E 14-2. Contract data: individual contracts in a scatter plot spanned by the two original variables. All the points fall
close to a straight line that is not parallel to either of the original coordinate axes.

Of course, the data still depends on two variables—as it did originally. But most of the

variation in the data occurs along only one direction. If we were to measure the data only

along this direction, we would still capture most of what is “interesting” about the data. In

Figure 14-3, we see another kernel density estimate of the same data, but this time not

taken along the original variables but instead showing the distribution of data points along
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F I G U R E 14-3. Contract data: distribution of points along the principal directions. Most of the variation is along the “long”
direction, whereas there is almost no variation perpendicular to it. (The vertical scales have been adjusted to make the
curves comparable.)

the two “new” directions indicated by the arrows in the scatter plot of Figure 14-2. In

contrast to the variation occurring along the “long” component, the “short” component is

basically irrelevant.

For this simple example, which had only two variables to begin with, it was easy enough

to find the lower-dimensional representation just by looking at it. But that won’t work

when there are significantly more than two variables involved. If there aren’t too many

variables, then we can generate a scatter-plot matrix (see Chapter 5) containing all

possible pairs of variables, but even this becomes impractical once there are more than

seven or eight variables. Moreover, scatter-plot matrices can never show us more than the

combination of any two of the original variables. What if the data in a three-dimensional

problem falls onto a straight line that runs along the space diagonal of the original

three-dimensional data cube? We will not find this by plotting the data against any

(two-dimensional!) pair of the original variables.

Fortunately, there is a calculational scheme that—given a set of points—will give us the

principal directions (in essence, the arrows in Figure 14-2) as a combination of the

original variables. That is the topic of the next section.

Optional: Theory

We can make progress by using a technique that works for many multi-dimensional

problems. If we can summarize the available information regarding the multi-dimensional

system in matrix form, then we can invoke a large and powerful body of results from linear
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algebra to transform this matrix into a form that reveals any underlying structure (such as

the structure visible in Figure 14-2).

In what follows, I will often appeal to the two-dimensional example of Figure 14-2, but

the real purpose here is to develop a procedure that will be applicable to any number of

dimensions. These techniques become necessary when the number of dimensions exceeds

two or three so that simple visualizations like the ones discussed so far will no longer

work.

To express what we know about the system, we first need to ask ourselves how best to

summarize the way any two variables relate to each other. Looking at Figure 14-2, the

correlation coefficient suggests itself. In Chapter 13, we introduced the correlation coefficient

as a measure for the similarity between two multi-dimensional data points x and y. Here,

we use the same concept to express the similarity between two dimensions in a

multivariate data set. Let x and y be two different dimensions (“variables”) in such a data

set, then the correlation coefficient is defined by:

corr(x, y) = 1

N

∑
i (xi − x̄)(yi − ȳ)

σ (x)σ (y)

where the sum is over all data points, x̄ and ȳ are the means of the xi and the yi ,

respectively, and σ(x) =
√

1
N

∑
i (xi − x̄)2 is the standard deviation of x (and equivalently

for y). The denominator in the expression of the correlation coefficient amounts to a

rescaling of the values of both variables to a standard interval. If that is not what we want,

then we can instead use the covariance between the xi and the yi :

cov(x, y) = 1

N

N∑

i

(xi − x̄)(yi − ȳ)

All of these quantities can be defined for any two variables (just supply values for, say xi

and zi ). For a p-dimensional problem, we can find all the p(p − 1)/2 different

combinations (remember that these coefficients are symmetric: cov(x, y) = cov(y, x)).

It is now convenient to group the values in a matrix, which is typically called � (not to be

confused with the summation sign!)

� =

⎛

⎜⎜⎝

cov(x, x) cov(x, y) . . .

cov(y, x) cov(y, y)

...
. . .

⎞

⎟⎟⎠

and similarly for the correlation matrix. Because the covariance (or correlation) itself is

symmetric under an interchange of its arguments, the matrix � is also symmetric (so that

it equals its transpose).
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We can now invoke an extremely important result from linear algebra, known as the

spectral decomposition theorem, as follows. For any real, symmetric N × N matrix A, there exists

an orthogonal matrix U such that:

B =

⎛

⎜⎜⎜⎜⎝

λ1

λ2

. . .

λN

⎞

⎟⎟⎟⎟⎠
= U−1 AU

is a diagonal matrix.

Let’s explain some of the terminology. A matrix is diagonal if its only nonzero entries are

along the main diagonal from the top left to the bottom right. A matrix is orthogonal if its

transpose equals its inverse: U T = U−1 or U T U = UU T = 1.

The entries λi in the diagonal matrix are called the eigenvalues of matrix A, and the column

vectors of U are the eigenvectors. The spectral theorem also implies that all eigenvectors are

mutually orthogonal. Finally, the ith column vector in U is the eigenvector “associated”

with the eigenvalue λi ; each eigenvalue has an associated eigenvector.

What does all of this mean? In a nutshell, it means that we can perform a change of

variables that turns any symmetric matrix A into a diagonal matrix B. Although it may

not be obvious, the matrix B contains the same information as A—it’s just packaged

differently.

The change of variables required for this transformation consists of a rotation of the

original coordinate system into a new coordinate system in which the correlation matrix

has a particularly convenient (diagonal) shape. (Notice how in Figure 14-2, the new

directions are rotated with respect to the original horizontal and vertical axes.)

When expressed in the original coordinate system (i.e., the original variables that the

problem was initially expressed in), the matrix � is a complicated object with off-diagonal

entries that are nonzero. However, the eigenvectors span a new coordinate system that is

rotated with respect to the old one. In this new coordinate system, the matrix takes on a

simple, diagonal form in which all entries that are not on the diagonal vanish. The arrows

in Figure 14-2 show the directions of the new coordinate axes, and the histogram in

Figure 14-3 measures the distribution of points along these new directions.

The purpose of performing a matrix diagonalization is to find the directions of this new

coordinate system, which is more suitable for describing the data than was the original

coordinate system.

Because the new coordinate system is merely rotated relative to the original one, we can

express its coordinate axes as linear combinations of the original ones. In Figure 14-2, for

instance, to make a step in the new direction (along the diagonal), you take a step along

the (old) x axis, followed by a step along the (old) y axis. We can therefore express the
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new direction (call it x̂) in terms of the old ones: x̂ = (x + y)/
√

2 (the factor
√

2 is just a

normalization factor).

Interpretation

The spectral decomposition theorem applies to any symmetric matrix. For any such

matrix, we can find a new coordinate system, in which the matrix is diagonal. But the

interpretation of the results (what do the eigenvalues and eigenvectors mean?) depends on

the specific application. In our case, we apply the spectral theorem to the covariance or

correlation matrix of a set of points, and the results of the decomposition will give us the

principal axes of the distribution of points (hence the name of the technique).

Look again at Figure 14-2. Points are distributed in a region shaped like an extremely

stretched ellipse. If we calculate the eigenvalues and eigenvectors of the correlation

matrix of this point distribution, we find that the eigenvectors lie in the directions of the

principal axes of the ellipse while the eigenvalues give the relative length of the

corresponding principal axes.

Put another way, the eigenvalues point along the directions of greatest variance: the data

is most stretched out if we measure it along the principal directions. Moreover, the

eigenvalue corresponding to each eigenvector is a measure of the width of the distribution

along this direction.

(In fact, the eigenvalue is the square of the standard deviation along that direction;

remember that the diagonal entries of the covariance matrix � are σ 2(x) = ∑
i (xi − x̄)2.

Once we diagonalize �, the entries along the diagonal—that is, the eigenvalues—are the

variances along the “new” directions.)

You should also observe that the variables measured along the principal directions are

uncorrelated with each other. (By construction, their correlation matrix is diagonal,

which means that the correlation between any two different variables is zero.)

This, then, is what the principal component analysis does for us: if the data points are

distributed as a globular cloud in the space spanned by all the original variables (which

may be more than two!), then the eigenvectors will give us the directions of the principal

axes of the ellipsoidal cloud of data points and the eigenvalues will give us the length of

the cloud along each of these directions. The eigenvectors and eigenvalues therefore

describe the shape of the point distribution. This becomes especially useful if the data set

has more than just two dimensions, so that a simple plot (as in Figure 14-2) is no longer

feasible. (There are special varieties of PCA, such as “Kernel PCA” or “ISOMAP,” that work

even with point distributions that do not form globular ellipsoids but have more

complicated, contorted shapes.)

The description of the shape of the point distribution provided by the PCA is already

helpful. But it gets even better, because we may suspect that not all of the original
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variables are really needed. Some of them may be redundant (expressing more or less the

same thing), and others may be irrelevant (carrying little information).

An indication that variables may be redundant (i.e., express the “same thing”) is that they

are correlated. (That’s pretty much the definition of correlation: knowing that if we

change one variable, then there will be a corresponding change in the other.) The PCA

uses the information contained in the mutual correlations between variables to identify

those that are redundant. By construction, the principal coordinates are uncorrelated (i.e.,

not redundant), which means that the information contained in the original (redundant)

set of variables has been concentrated in only a few of the new variables while the

remaining variables have become irrelevant. The irrelevant variables are those

corresponding to small eigenvalues: the point distribution will have only little spread in

the corresponding directions (which means that these variables are almost constants and

can therefore be ignored).

The price we have to pay for the reduction in dimensions is that the new directions will

not, in general, map neatly to the original variables. Instead, the new directions will

correspond to combinations of the original variables.

There is an important consequence of the preceding discussion: the principal component

analysis works with the correlation between variables. If the original variables are

uncorrelated, then there is no point in carrying out a PCA! For instance, if the data points

in Figure 14-2 had shown no structure but had filled the entire two-dimensional

parameter space randomly, then we would not have been able to simplify the problem by

reducing it to a one-dimensional one consisting of the new direction along the main

diagonal.

Computation

The theory just described would be of only limited interest if there weren’t practical

algorithms for calculating both eigenvalues and eigenvectors. These calculations are

always numerical. You may have encountered algebraic methods matrix diagonalization

methods in school, but they are impractical for matrices larger than 2 × 2 and infeasible

for matrices larger than about 4 × 4.

However, there are several elegant numerical algorithms to invert and diagonalize

matrices, and they tend to form the foundational part of any numerical library. They are

not trivial to understand, and developing high-quality implementations (that avoid, say

round-off error) is a specialized skill. There are no good reasons to write your own, so you

should always use an established library. (Every numerical library or package will include

the required functionality.)

Matrix operations are relatively expensive, and run time performance can be a serious

concern for large matrices. Matrix operations tend to be of O(N 3) complexity, which

means that doubling the size of the matrix will increase the time to perform an operation
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by a factor of 23 = 8. In other words, doubling the problem size will result in nearly a

tenfold increase in runtime! This is not an issue for small matrices (up to 100 × 100 or so),

but you will hit a brick wall at a certain size (somewhere between 5,000 × 5,000 and

50,000 × 50,000). Such large matrices do occur in practice but usually not in the context

of the topic of this chapter. For even larger matrices there are alternative algorithms—

which, however, calculate only the most important of the eigenvalues and eigenvectors.

I will not go into details about different algorithms, but I want to mention one explicitly

because it is of particular importance in this context. If you read about principal

component analysis (PCA), then you will likely encounter the term singular value

decomposition (SVD); in fact, many books treat PCA and SVD as equivalent expressions for

the same thing. That is not correct; they are really quite different. PCA is the application of

spectral methods to covariance or correlation matrices; it is a conceptual technique, not an

algorithm. In contrast, the SVD is a specific algorithm that can be applied to many

different problems one of which is the PCA.

The reason that the SVD features so prominently in discussions of the PCA is that the SVD

combines two required steps into one. In our discussion of the PCA, we assumed that you

first calculate the covariance or correlation matrix explicitly from the set of data points

and then diagonalize it. The SVD performs these two steps in one fell swoop: you pass the

set of data points directly to the SVD, and it calculates the eigenvalues and eigenvectors of

the correlation matrix directly from those data points.

The SVD is a very interesting and versatile algorithm, which is unfortunately rarely

included in introductory classes on linear algebra.

Practical Points

As you can see, principal component analysis is an involved technique—although with

the appropriate tools it becomes almost ridiculously easy to perform (see the Workshop in

this chapter). But convenient implementations don’t make the conceptual difficulties go

away or ensure that the method is applied appropriately.

First, I’d like to emphasize that the mathematical operations underlying principal

component analysis (namely, the diagonalization of a matrix) are very general: they

consist of a set of formal transformations that apply to any symmetric matrix.

(Transformations of this sort are used for many different purposes in literally all fields of

science and engineering.)

In particular, there is nothing specific to data analysis about these techniques. The PCA

thus does not involve any of the concepts that we usually deal with in statistics or

analysis: there is no mention of populations, samples, distributions, or models. Instead,

principal component analysis is a set of formal transformations, which are applied to the

covariance matrix of a data set. As such, it can be either exploratory or preparatory.
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As an exploratory technique, we may inspect its results (the eigenvalues and

eigenvectors) for anything that helps us develop an understanding of the data set. For

example, we may look at the contributions to the first few principal components to see

whether we can find an intuitive interpretation of them (we will see an example of this in

the Workshop section). Biplots (discussed in the following section) are a graphical

technique that can be useful in this context.

But we should keep in mind that this kind of investigation is exploratory in nature: there

is no guarantee that the results of a principal component analysis will turn up anything

useful. In particular, we should not expect the principal components to have an intuitive

interpretation in general.

On the other hand, PCA may also be used as a preparatory technique. Keep in mind that,

by construction, the principal components are uncorrelated. We can therefore transform

any multivariate data set into an equivalent form, in which all variables are mutually

independent, before performing any subsequent analysis. Identifying a subset of principal

components that captures most of the variability in the data set—for the purpose of

reducing the dimensionality of the problem, as we discussed earlier—is another

preparatory use of principal component analysis.

As a preparatory technique, principal component analysis is always applicable but may

not always be useful. For instance, if the original variables are already uncorrelated, then

the PCA cannot do anything for us. Similarly, if none of the eigenvalues are significantly

smaller (so that their corresponding principal components can be dropped), then again we

gain nothing from the PCA.

Finally, let me reiterate that PCA is just a mathematical transformation that can be applied

to any symmetric matrix. This means that its results are not uniquely determined by the

data set but instead are sensitive to the way the inputs are prepared. In particular, the

results of a PCA depend on the actual numerical values of the data points and therefore on

the units in which the measurements have been recorded. If the numerical values for one

of the original variables are consistently larger than the values of the other variables, then

the variable with the large values will unduly dominate the spectrum of eigenvalues. (We

will see an example of this problem in the Workshop.) To avoid this kind of problem, all

variables should be of comparable scale. A systematic way to achieve this is to work with

the correlation matrix (in which all entries are normalized by their autocorrelation)

instead of the covariance matrix.

Biplots

Biplots are an interesting way to visualize the results of a principal component analysis. In

a biplot, we plot the data points in a coordinate system spanned by the first two principal

components (i.e., those two of the new variables corresponding to the largest eigenvalues).

In addition, we also plot a representation of the original variables but now projected into
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the space of the new variables. The data points are represented by symbols, whereas the

directions of the original variables are represented by arrows. (See Figure 14-5 in the

Workshop section.)

In a biplot, we can immediately see the distribution of points when represented through

the new variables (and can also look for clusters, outliers, or other interesting features).

Moreover, we can see how the original variables relate to the first two principal

components and to each other: if any of the original variables are approximately aligned

with the horizontal (or vertical) axis, then they are approximately aligned with the first

(or second) principal component (because in a biplot, the horizonal and vertical axes

coincide with the first and second principal components). We can thus see which of the

original variables contribute strongly to the first principal components, which might help

us develop an intuitive interpretation for those components. Furthermore, any of the

original variables that are roughly redundant will show up as more or less parallel to each

other in a biplot—which can likewise help us identify such combinations of variables in

the original problem.

Biplots may or may not be helpful. There is a whole complicated set of techniques for

interpreting biplots and reading off various quantities from them, but these techniques

seem rarely used, and I have not found them to be very practical. If I do a PCA, I will

routinely also draw a biplot: if it tells me something worthwhile, that’s great; but if not,

then I’m not going to spend much time on it.

Visual Techniques

Principal component analysis is a rigorous prescription, and example of a “data-centric”

technique: it transforms the original data in a precisely prescribed way, without ambiguity

and without making further assumptions. The results are an expression of properties of

the data set. It is up to us to interpret them, but the results are true regardless of whether

we find them useful or not.

In contrast, the methods described in this section are convenience methods that attempt

to make multi-dimensional data sets more “palatable” for human consumption. These

methods do not calculate any rigorous properties inherent in the data set; instead, they try

to transform the data in such a way that it can be plotted while at the same time trying to

be as faithful to the data as possible.

We will not discuss any of these methods in depth, since personally, I do not find them

worth the effort: on the one hand, they are (merely) exploratory in nature; on the other

hand, they require rather heavy numerical computations and some nontrivial theory.

Their primary results are projections (i.e., graphs) of data sets, which can be difficult to

interpret if the number of data points or their dimensionality becomes large—which is

exactly when I expect a computationally intensive method to be helpful! Nevertheless,
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there are situations where you might find these methods useful, and they do provide

some interesting concepts for how to think about data. This last reason is the most

important to me, which is why this section emphasizes concepts while skipping most of

the technical details.

The methods described in this section try to calculate specific “views” or projections of the

data into a lower number of dimensions. Instead of selecting a specific projection, we can

also try to display many of them in sequence, leaving it to the human observer to choose

those that are “interesting.” That is the method we introduced in Chapter 5, when we

discussed Grand Tours and Projection Pursuits—they provide yet another approach to the

problem of dimensionality reduction for multivariate data sets.

Multidimensional Scaling

Given a set of data points (i.e., the coordinates of each data point), we can easily find the

distance between any pair of points (see Chapter 13 for a discussion of distance

measures). Multidimensional scaling (MDS) attempts to answer the opposite question:

given a distance matrix, can we recover the explicit coordinates of the points?

This question has a certain intellectual appeal in its own right, but of course, it is relevant

in situations where our information about a certain system is limited to the differences

between data points. For example, in usability studies or surveys we may ask respondents

to list which of a set of cars (or whiskeys, or pop singers) they find the most or the least

alike; in fact, the entire method was first developed for use in psychological studies. The

question is: given such a matrix of relative preferences or distances, can we come up with

a set of absolute positions for each entry?

First, we must choose the desired number of dimensions of our points. The dimension

D = 2 is used often, so that the results can be plotted easily, but other values for D are

also possible.

If the distance measure is Euclidean—that is, if the distance between two points is given

by:

d(x, y) =
√√√√

D∑

i

(xi − yi )2

where the sum is running over all dimensions—then it turns out that we can invert this

relationship explicitly and find expressions for the coordinates in terms of the distances.

(The only additional assumption we need to make is that the center of mass of the entire

data set lies at the origin, but this amounts to no more than an arbitrary translation of all

points.) This technique is known as classical or metric scaling.

The situation is more complicated if we cannot assume that the distance measure is

Euclidean. Now we can no longer invert the relationship exactly and must resort instead

to iterative approximation schemes. Because the resulting coordinates may not replicate
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the original distances exactly, we include an additional constraint: the distance matrix

calculated from the new positions must obey the same rank order as the original distance

matrix: if the original distances between any three points obeyed the relationship

d(x, y) < d(x, z), then the calculated coordinates of the three points must satisfy this also.

For this reason, this version of multidimensional scaling is known as ordinal scaling.

The basic algorithm makes an initial guess for the coordinates and calculates a distance

matrix based on the guessed coordinates. The coordinates are then changed iteratively to

minimize the discrepancy (known as the “stress”) between the new distance matrix and

the original one.

Both versions of multidimensional scaling lead to a set of coordinates in the desired

number of dimensions (usually two), which we can use to plot the data points in a form

of scatter plot. We can then inspect this plot for clusters, outliers, or other features.

Network Graphs

In passing, I’d like to mention force-based algorithms for drawing network graphs because

they are similar in spirit to multidimensional scaling.

Imagine we have a network consisting of nodes, some of which are connected by vertices

(or edges), and we would like to find a way to plot this network in a way that is

“attractive” or “pleasing.” One approach is to treat the edges as springs, in such a way that

each spring has a preferred extension and exerts an opposing force—in the direction of

the spring—if compressed or extended beyond its preferred length. We can now try to

find a configuration (i.e., a set of coordinates for all nodes) that will minimize the overall

tension of the springs.

There are basically two ways we can go about this. We can write down the the total

energy due to the distorted springs and then minimize it with respect to the node

coordinates using a numerical minimization algorithm. Alternatively, we can “simulate”

the system by initializing all nodes with random coordinates and then iteratively moving

each node in response to the spring forces acting on it. For smaller networks, we can

update all nodes at the same time; for very large networks, we may randomly choose a

single node at each iteration step for update and continue until the configuration no

longer changes. It is easy to see how this basic algorithm can be extended to include richer

situations—for instance, edges carrying different weights.

Note that this algorithm makes no guarantees regarding the distances that are maintained

between the nodes in the final configuration. It is purely a visualization technique.

Kohonen Maps

Self-organizing maps (SOMs), often called Kohonen maps after their inventor, are

different from the techniques discussed so far. In both principal component analysis and

multidimensional scaling, we attempted to find a new, more favorable arrangement of
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points by moving them about in a continuous fashion. When constructing a Kohonen

map, however, we map the original data points to cells in a lattice. The presence of a lattice

forces a fixed topology on the system; in particular, each point in a lattice has a fixed set of

neighbors. (This property is typically and confusingly called “ordering” in most of the

literature on Kohonen maps.)

The basic process of constructing a Kohonen map works as follows. We start with a set of

k data points in p dimensions, so that each data point consists of a tuple of p numeric

values. (I intentionally avoid the word “vector” here because there is no requirement that

the data points must satisfy the “mixable” property characteristic of vectors—see

Appendix C and Chapter 13.)

Next we prepare a lattice. For simplicity, we consider a two-dimensional square lattice

consisting of n × m cells. Each cell contains a p-dimensional tuple, similar to a data point,

which is called the reference tuple. We initialize this tuple with random values. In other

words, our lattice consists of a collection of random data points, arranged on a regular grid.

Now we perform the following iteration. For each data point, we find that cell in the

lattice with the smallest distance between its contained p-tuple and the data point; then

we assign the data point to this cell. Note that multiple data points can be assigned to the

same cell if necessary.

Once all the data points have been assigned to cells in the lattice, we update the p-tuples

of all cells based on the values of the data points assigned to the cell itself and to its

neighboring cells. In other words, we use the data points assigned to each cell, as well as

those assigned to the cell’s neighbors, to compute a new tuple for the cell.

When all lattice points have been updated, we restart the iteration and begin assigning

data points to cells again (after erasing the previous assignments). We stop the iteration if

the assignments no longer change or if the differences between the original cell values

and their updates are sufficiently small.

This is the basic algorithm for the construction of a Kohonen map. It has certain

similarities with the k-means algorithm discussed in Chapter 13. Both are iterative

procedures in which data points are assigned to cells or clusters, and the cell or cluster is

updated based on the points assigned to it. However, two features are specific to Kohonen

maps:

• Each data point is mapped to a cell in the lattice, and this implies that each data point is

placed in a specific neighborhood of other data points (which have been mapped to

neighboring cells).

• Because the updating step for each cell relies not only on the current cell but also on

neighboring cells, the resulting map will show a “smooth” change of values: changes

are averaged or “smeared out” over all cells in the neighborhood. Viewed the other

way around, this implies that points that are similar to each other will map to lattice

cells that are in close proximity to each other.
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Although the basic algorithm seems fairly simple, we still need to decide on a number of

technical details if we want to develop a concrete implementation. Most importantly, we

still need to give a specific prescription for how the reference tuples will be updated by the

data points assigned to the current cell and its neighborhood.

In principle, it would be possible to recalculate the values for the reference tuple from

scratch every time by forming a componentwise average of all data points assigned to the

cell. In practice, this may lead to instability during iteration, and therefore it is usually

recommended to perform an incremental update of the reference value instead, based on

the difference between the current value of the reference tuple and the assigned data

points. If yi (t) is the value of the reference tuple at position i and at iteration t , then we

can write its value at the next iteration step t + 1 as:

yi (t + 1) = yi (t) +
∑

k

h(i, j; t) (xk( j; t) − yi (t))

where xk( j; t) is the data point k which has been assigned to lattice point j at iteration

step t and where the sum runs over all data points. The weight function h(i, j; t) is now

chosen to be a decreasing function of the distance between the lattice cells i and j , and it

is also made to shrink in value as the iteration progresses. A typical choice is a Gaussian:

h(i, j; t) = α(t) exp

(
− di j

2σ(t)

)2

where di j is the Euclidean distance between lattice points i and j and where α(t) and σ(t)

are decreasing functions of t . Choices other than the Gaussian are also possible—for

instance, we may choose a step function to delimit the effective neighborhood.

Even with these definitions, we still need to decide on further details:

• What is the topology of the lattice? Square lattices (like quad-ruled paper) are

convenient but strongly single out two specific directions. Hexagonal lattices (like a

honeycomb) are more isotropic. We also need to fix the boundary conditions. Do cells

at the edge of the lattice have fewer neighbors than cells in the middle of the lattice, or

do we wrap the lattice around and connect the opposite edges to form periodic

boundary conditions?

• What is the size of the lattice? Obviously, the number of cells in the lattice should be

smaller than the number of data points (otherwise, we end up with unoccupied cells).

But how much smaller? Is there a preferred ratio between data points and lattice cells?

Also, should the overall lattice be square (n × n) or rectangular (n × m)? In principle,

we can even consider lattices of different shape—triangular, for example, or circular.

However, if we choose a lattice of higher symmetry (square or circular), then the

orientation of the final result within the lattice is not fixed; for this reason, it has been

suggested that the lattice should always be oblongated (e.g., rectangular rather than

square).

• We need to choose a distance or similarity measure for measuring the distance

between data points and reference tuples.
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• We still need to fix the numerical range of α(t) and σ(t) and define their behavior as

functions of t .

In addition, there are many opportunities for low-level tuning, in particular with regard to

performance and convergence. For example, we may find it beneficial to initialize the

lattice points with values other than random numbers.

Finally, we may ask what we can actually do with the resulting lattice of converged

reference tuples. Here are some ideas.

• We can use the lattice to form a smooth, “heat map” visualization of the original data

set. Because cells in the lattice are closely packed, a Kohonen map interpolates

smoothly between different points. This is in contrast to the result from either PCA or

MDS, which yield only individual, scattered points.

• One problem when plotting a Kohonen map is deciding which feature to show. If the

original data set was p-dimensional, you may have to plot p different graphs to see the

distribution of all features.

• The situation is more favorable if one of the features of interest is categorical and has

only a few possible values. In this case, you can plot the labels on the graph and study

their relationships (which labels are close to each other, and so on). In this situation, it

is also possible to use a “trained” Kohonen map to classify new data points or data

points with missing data.

• If the number of cells in the lattice was chosen much smaller than the number of

original data points, then you can try mapping the reference tuples back into the

original data space—for example, to use them as prototypes for clustering purposes.

Kohonen maps are an interesting technique that occupy a space between clustering and

dimensionality reduction. Kohonen maps group similar points together like a clustering

algorithm, but they also generate a low-dimensional representation of all data points by

mapping all points to a low-dimensional lattice. The entire concept is very ad hoc and

heuristic; there is little rigorous theory, and thus there is little guidance on the choice of

specific details. Nonetheless, the hands-on, intuitive nature of Kohonen maps lends itself

to exploration and experimentation in a way that a more rigorous (but also more abstract)

technique like PCA does not.

Workshop: PCA with R

Principal component analysis is a complicated technique, so it makes sense to use

specialized tools that hide most of the complexity. Here we shall use R, which is the

best-known open source package for statistical calculations. (We covered some of the

basics of R in the Workshop section of Chapter 10; here I want to demonstrate some of the

advanced functionality built into R.)
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Let’s consider a nontrivial example. For a collection of nearly 5,000 wines, almost a dozen

physico-chemical properties were measured, and the results of a subjective “quality” or

taste test were recorded as well.* The properties are:

1 - fixed acidity

2 - volatile acidity

3 - citric acid

4 - residual sugar

5 - chlorides

6 - free sulfur dioxide

7 - total sulfur dioxide

8 - density

9 - pH

10 - sulphates

11 - alcohol

12 - quality (score between 0 and 10)

This is a complicated data set, and having to handle 11 input variables is not comfortable.

Can we find a way to make sense of them and possibly even find out which are most

important in determining the overall quality of the wine?

This is a problem that is perfect for an application of the PCA. And as we will see, R makes

this really easy for us.

For this example, I’ll take you on a slightly roundabout route. Be prepared that our initial

attempt will lead to an incorrect conclusion! I am including this detour here for a number

of reasons. I want to remind you that real data analysis, with real and interesting data sets,

usually does not progress linearly. Instead, it is very important that, as we work with a

data set, we constantly keep checking and questioning our results as we go along. Do they

make sense? Might we be missing something? I also want to demonstrate how R’s

interactive programming model facilitates the required exploratory work style: try

something and look at the results; if they look wrong, go back and make sure you are on

the right track, and so on.

Although it can be scripted for batch operations, R is primarily intended for interactive

use, and that is how we will use it here. We first load the data set into a heterogeneous

“data frame” and then invoke the desired functions on it. Functions in turn may return

data structures themselves that can be used as input to other functions, that can be

printed in a human readable format to the screen, or that can be plotted.

R includes many statistical functions as built-in functions. In our specific case, we can

perform an entire principal component analysis in a single command:

wine <- read.csv( "winequality-white.csv", sep=';', header=TRUE )

pc <- prcomp( wine )

plot( pc )

*This example is taken from the “Wine Quality” data set, available at the UCI Machine Learning repos-
itory at http://archive.ics.uci.edu/ml/.
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F I G U R E 14-4. A scree plot: the values of the principal components, from largest to smallest. Here, the largest component
totally dominates the spectrum. But be careful: this result is spurious! (See text.)

This snippet of code reads the data from a file and assigns the resulting data frame to the

variable wine. The prcomp() function performs the actual principal component analysis and

returns a data structure containing the results, which we assign to the variable pc. We can

now examine this returned data structure in various ways.

R makes heavy use of function overloading—a function such as plot() will accept

different forms of input and try to find the most useful action to perform, given the input.

For the data structure returned by prcomp(), the plot() function constructs a so-called scree

plot* (see Figure 14-4), showing the magnitudes of the variances for the various principal

components, from the greatest to the smallest.

We see that the first eigenvalue entirely dominates the spectrum, suggesting that the

corresponding new variable is all that matters (which of course would be great). To

understand in more detail what is going on, we look at the corresponding eigenvector.

The print() function is another overloaded function, which for this particular data

structure prints out the eigenvalues and eigenvectors:

print( pc )

(some output omitted...)

PC1 PC2 PC3

fixed.acidity -1.544402e-03 -9.163498e-03 -1.290026e-02

volatile.acidity -1.690037e-04 -1.545470e-03 -9.288874e-04

citric.acid -3.386506e-04 1.403069e-04 -1.258444e-03

residual.sugar -4.732753e-02 1.494318e-02 -9.951917e-01

chlorides -9.757405e-05 -7.182998e-05 -7.849881e-05

free.sulfur.dioxide -2.618770e-01 9.646854e-01 2.639318e-02

total.sulfur.dioxide -9.638576e-01 -2.627369e-01 4.278881e-02

density -3.596983e-05 -1.836319e-05 -4.468979e-04

pH -3.384655e-06 -4.169856e-05 7.017342e-03

sulphates -3.409028e-04 -3.611112e-04 2.142053e-03

alcohol 1.250375e-02 6.455196e-03 8.272268e-02

(some output omitted...)

*Scree is the rubble that collects at the base of mountain cliffs.
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This is disturbing: if you look closely, you will notice that both the first and the second

eigenvector are dominated by the sulfur dioxide concentration—and by a wide margin!

That does not seem right. I don’t understand much about wine, but I would not think that

the sulfur dioxide content is all that matters in the end.

Perhaps we were moving a little too fast. What do we actually know about the data in the

data set? Right: absolutely nothing! Time to find out. One quick way to do so is to use the

summary() function on the original data:

summary(wine)

fixed.acidity volatile.acidity citric.acid residual.sugar

Min. : 3.800 Min. :0.0800 Min. :0.0000 Min. : 0.600

1st Qu.: 6.300 1st Qu.:0.2100 1st Qu.:0.2700 1st Qu.: 1.700

Median : 6.800 Median :0.2600 Median :0.3200 Median : 5.200

Mean : 6.855 Mean :0.2782 Mean :0.3342 Mean : 6.391

3rd Qu.: 7.300 3rd Qu.:0.3200 3rd Qu.:0.3900 3rd Qu.: 9.900

Max. :14.200 Max. :1.1000 Max. :1.6600 Max. :65.800

chlorides free.sulfur.dioxide total.sulfur.dioxide density

Min. :0.00900 Min. : 2.00 Min. : 9.0 Min. :0.9871

1st Qu.:0.03600 1st Qu.: 23.00 1st Qu.:108.0 1st Qu.:0.9917

Median :0.04300 Median : 34.00 Median :134.0 Median :0.9937

Mean :0.04577 Mean : 35.31 Mean :138.4 Mean :0.9940

3rd Qu.:0.05000 3rd Qu.: 46.00 3rd Qu.:167.0 3rd Qu.:0.9961

Max. :0.34600 Max. :289.00 Max. :440.0 Max. :1.0390

pH sulphates alcohol quality

Min. :2.720 Min. :0.2200 Min. : 8.00 Min. :3.000

1st Qu.:3.090 1st Qu.:0.4100 1st Qu.: 9.50 1st Qu.:5.000

Median :3.180 Median :0.4700 Median :10.40 Median :6.000

Mean :3.188 Mean :0.4898 Mean :10.51 Mean :5.878

3rd Qu.:3.280 3rd Qu.:0.5500 3rd Qu.:11.40 3rd Qu.:6.000

Max. :3.820 Max. :1.0800 Max. :14.20 Max. :9.000

I am showing the output in its entire length to give you a sense of the kind of output

generated by R. If you look through this carefully, you will notice that the two sulfur

dioxide columns have values in the tens to hundreds, whereas all other columns have

values between 0.01 and about 10.0. This explains a lot: the two sulfur dioxide columns

dominate the eigenvalue spectrum simply because they were measured in units that make

the numerical values much larger than the other quantities. As explained before, if this is

the case, then we need to scale the input variables before performing the PCA. We can

achieve this by passing the scale option to the prcomp() command, like so:

pcx <- prcomp( wine, scale=TRUE )

Before we examine the result of this operation, I’d like to point out something else. If you

look really closely, you will notice that the quality column is not what it claims to be. The

description of the original data set stated that quality was graded on a scale from 1 to 10.

But as we can see from the data summary, only grades between 3 and 9 have actually

been assigned. Worse, the first quartile is 5 and the third quartile is 6, which means that at
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least half of all entries in the data set have a quality ranking of either 5 or 6. In other

words, the actual range of qualities is much narrower than we might have expected

(given the original description of the data) and is strongly dominated by the center. This

makes sense (there are more mediocre wines than outstanding or terrible ones), but it

also makes this data set much less interesting because whether a wine will be ranked 5

versus 6 during the sensory testing is likely a toss-up.

We can use the table() function to see how often each quality ranking occurs in the data

set (remember that the dollar sign is used to select a single column from the data frame):

table( wine$quality )

3 4 5 6 7 8 9

20 163 1457 2198 880 175 5

As we suspected, the middling ranks totally dominate the distribution. We might therefore

want to change our goal and instead try to predict the outliers, either good or bad, rather

than spending too much effort on the undifferentiated middle.

Returning to the results of the scaled PCA, we can look at the spectrum of eigenvalues for

the scaled version by using the summary() function (again, overloaded!) on the return

value of prcomp():

summary( pcx )

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 1.829 1.259 1.171 1.0416 0.9876 0.9689

Proportion of Variance 0.279 0.132 0.114 0.0904 0.0813 0.0782

Cumulative Proportion 0.279 0.411 0.525 0.6157 0.6970 0.7752

PC7 PC8 PC9 PC10 PC11 PC12

Standard deviation 0.8771 0.8508 0.7460 0.5856 0.5330 0.14307

Proportion of Variance 0.0641 0.0603 0.0464 0.0286 0.0237 0.00171

Cumulative Proportion 0.8393 0.8997 0.9460 0.9746 0.9983 1.00000

No single eigenvalue dominates now, and the first 5 (out of 12) eigenvalues account for

only 70 percent of the total variance. That’s not encouraging—it doesn’t seem that we can

significantly reduce the number of variables this way.

As a last attempt, we can create a biplot. This, too, is very simple; all we need to do is

execute (see Figure 14-5)

biplot( pcx )

This is actually a fascinating graph! We see that three of the original variables—alcohol

content, sugar content, and density— are parallel to the first principal component (the

horizontal axis). Moreover, alcohol content is aligned in the direction opposite to the

other two quantities.

But this makes utmost sense. If you recall from chemistry class, alcohol has a lower

density than water, and sugar syrup has a higher density. So the result of the PCA reminds

us that density, sugar concentration, and alcohol content are not independent: if you
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F I G U R E 14-5. A biplot: symbols correspond to the individual data points projected onto the plane spanned by the two
largest principal components. Also shown are the original variables projected onto the same plane.

change one, the others will change accordingly. And because these variables are parallel to

the first principal component, we can conclude that the overall density of the wine is an

important quantity.

The next set of variables that we can read off are the fixed acidity, the citric acid

concentration, and the pH value. Again, this makes sense: the pH is a measure of the

acidity of a solution (with higher pH values indicating less acidity). In other words, these

three variables are also at least partially redundant.

The odd one out, then, is the overall sulfur content, which is a combination of sulfur

dioxide and sulphate concentration.
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And finally, it is interesting to see that the quality seems to be determined primarily by the

alcohol content and the acidity. This suggests that the more alcoholic and the less sour the

wine, the more highly it is ranked—quite a reasonable conclusion!

We could have inferred all of this from the original description of the data set, but I must

say that I, for one, failed to see these connections when initially scanning the list of

columns. In this sense, the PCA has been a tremendous help in interpreting and

understanding the content of the data set.

Finally, I’d like to reflect one more time on our use of R in this example. This little

application demonstrates both the power and the shortcomings of R. On the one hand, R

comes with many high-level, powerful functions built in, often for quite advanced

statistical techniques (even an unusual and specialized graph like a biplot can be created

with a single command). On the other hand, the heavy reliance on high-level functions

with implicit behavior leads to opaque programs that make it hard to understand exactly

what is going on. For example, such a critical question as deciding whether or not to

rescale the input data is handled as a rather obscure option to the prcomp() command. In

particular, the frequent use of overloaded functions—which can exhibit widely differing

functionality depending on their input—makes it hard to predict the precise outcome of an

operation and makes discovering ways to perform a specific action uncommonly difficult.

Further Reading
• Introduction to Multivariate Analysis. Chris Chatfield and Alexander Collins. Chapman &

Hall/CRC. 1981.

A bit dated but still one of the most practical, hands-on introductions to the

mathematical theory of multivariate analysis. The section on PCA is particularly clear

and practical but entirely skips computational issues and makes no mention of the SVD.

• Principal Component Analysis. I. T. Jolliffe. 2nd ed., Springer. 2002.

The definitive reference on principal component analysis. Not an easy read.

• Multidimensional Scaling. Trevor F. Cox and Michael A. A. Cox. Chapman & Hall/CRC.

2001.

The description of multidimensional scaling given in this chapter is merely a

sketch—mostly, because I find it hard to imagine scenarios where this technique is

truly useful. However, it has a lot of appeal and is fun to tinker with. Much more

information, including some extensions, can be found in this book.

• Introduction to Data Mining. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.

Addison-Wesley. 2005.

This is my favorite reference on data mining. The presentation is compact and more

technical than in most other books on this topic.
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Linear Algebra

Linear algebra is a foundational topic. It is here that one encounters for the first time

abstract concepts such as spaces and mappings treated as objects of interest in their own

right. It takes time and some real mental effort to get used to these notions, but one gains

a whole different perspective on things.

The material is also of immense practical value—particularly its central result, which is the

spectral decomposition theorem. The importance of this result cannot be overstated: it is

used in every multi-dimensional problem in mathematics, science, and engineering.

However, the material is abstract and unfamiliar, which makes it hard for the beginner.

Most introductory books on linear algebra try to make the topic more palatable by

emphasizing applications, but that only serves to confuse matters even more, because it

never becomes clear why all that abstract machinery is needed when looking at

elementary examples. The abstract notions at the heart of linear algebra are best

appreciated, and most easily understood, when treated in their own right.

The resources listed here are those I have found most helpful in this regard.

• Linear Algebra Done Right. Sheldon Axler. 2nd ed., Springer. 2004.

The book lives up to its grandiose title. It treats linear algebra as an abstract theory of

mappings but on a very accessible, advanced undergraduate level. Highly

recommended but probably not as the first book on the topic.

• Matrix Methods in Data Mining and Pattern Recognition. Lars Eldén. SIAM. 2007.

This short book is an introduction to linear algebra with a particular eye to applications

in data mining. The pace is fast and probably requires at least some previous familiarity

with the subject.

• Understanding Complex Datasets: Data Mining with Matrix Decompositions. David Skillicorn.

Chapman & Hall/CRC. 2007.

An advanced book, concentrating mostly on applications of the SVD and its variants.

• “A Singularly Valuable Decomposition: The SVD of a Matrix.” Dan Kalman. The College

Mathematics Journal 27 (1996), p. 2. This article, which can be found on the Web, is a

nice introduction to the SVD. It’s not for beginners, however.
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C H A P T E R F I F T E E N

Intermezzo: When More Is Different

WHEN DEALING WITH SOME OF THE MORE COMPUTATIONALLY INTENSIVE DATA ANALYSIS OR MINING

algorithms, you may encounter an unexpected obstacle: the brick wall. Programs or

algorithms that seemed to work just fine turn out not to work once in production. And I

don’t mean that they work slower than expected. I mean they do not work at all!

Of course, performance and scalability problems are familiar to most enterprise

developers. However, the kinds of problems that arise in data-centric or computationally

intensive applications are different, and most enterprise programmers (and, in fact, most

computer science graduates) are badly prepared for them.

Let’s try an example: Table 15-1 shows the time required to perform 10 matrix

multiplications for square matrices of various size. (The details of matrix multiplication

don’t concern us here; suffice it to say that it’s the basic operation in almost all problems

involving matrices and is at the heart of operator decomposition problems, including the

principal component analysis introduced in Chapter 14.)

T A B L E 15 -1. Time required to
perform 10 matrix multiplications for
square matrices of different sizes

Size n Time [seconds]

100 0.00
200 0.06
500 2.12

1,000 22.44
2,000 176.22
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Would you agree that the data in Table 15-1 does not look too threatening? For a

2,000 × 2,000 matrix, the time required is a shade under three minutes. How long might

it take to perform the same operation for a 10,000 × 10,000 matrix? Five, maybe ten

minutes? Yeah, right. It takes five hours! And if you need to go a little bit bigger still—say,

30,000 × 30,000, the computation will take five days.

What we observe here is typical of many computationally intensive algorithms: they

consume disproportionately more time as the problem size becomes larger. Of course, we

have all heard about this in school, but our intuition for the reality of this phenomenon is

usually not very good. Even if we run a few tests on small data sets, we fail to spot the

trouble: sure, the program takes longer as the data sets get larger, but it all seems quite

reasonable. Nevertheless, we tend to be unprepared for what appears to be a huge jump in

the required time as we increase the data set by a seemingly not very large factor.

(Remember: what took us from three minutes to five hours was an increase in the

problem size by a factor of 5—not even an order of magnitude!)

The problem is that, unless you have explicitly worked on either a numerical or a

combinatorial problem in the past, you probably have never encountered the kind of

scaling behavior exhibited by computational or combinatorial problems. This skews our

perception.

Where are you most likely to encounter perceptible performance problems in an

enterprise environment? Answer: slow database queries! We all have encountered the

frustration resulting from queries that perform a full table scan instead of using an

indexed lookup (regardless whether no index is available or the query optimizer fails to

use it). Yet a query that performs a full table scan rather than using an index exhibits one

of the most benign forms of scaling: from O(log n) (meaning that the response time is

largely insensitive to the size of the table) to O(n) (meaning that doubling the table size

will double the response time).

In contrast, matrix operations—such as the matrix multiplication encountered in the

earlier example—scale as O(n3); this means that if the problem doubles in size, then the

time required grows by a factor of 8 (because 23 = 8). In other words, as you go from a

2,000 × 2,000 matrix to a 4,000 × 4,000 matrix, the problem will take almost 10 times as

long; and if you go to a 10,000 × 10,000 matrix, it will take 53 = 125 times as long. Oops.

And this is the good news. Many combinatorial problems (such as the Traveling Salesman

problem and similar problems) don’t scale according to a power law (such as O(n3)) but

instead scale exponentially (O(en)). In these cases, you will hit the brick wall much faster

and much more brutally. For such problems, an incremental increase in the size of the

problem (i.e., from n to n + 1) will typically at least double the runtime. In other words, the

last element to calculate takes as much time as all the previous elements taken together.

System sizes of around n = 50 are frequently the end of the line. With extreme effort you

might be able to push it to n = 55, but n = 100 will be entirely out of reach.
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The reason I stress this kind of problem so much is that in my experience, not only are

most enterprise developers unprepared for the reality of it but also that the standard set of

software engineering practices and attitudes is entirely inadequate to deal with them. I

once heard a programmer say, “It’s all just engineering” in response to challenges about

the likely performance problems of a computational system he was working on. Nothing

could be further from the truth: no amount of low-level performance tuning will save a

program of this nature that is algorithmically hosed—and no amount of faster hardware,

either. Moreover, “standard software engineering practices” are either of no help or are

even entirely inapplicable (we’ll see an example in a moment).

Most disturbing to me was his casual, almost blissful ignorance—this coming from a guy

who definitely should have known better.

A Horror Story

I was once called into a project in its thirteenth hour—they had far exceeded both their

budget and their schedule and were about to be shut down for good because they could

not make their system work. They had been trying to build an internal tool that was

intended to solve what was, essentially, a combinatorial problem. The tool was supposed

to be used interactively: the user supplies some inputs and receives an answer within, at

most, a few minutes. By the time I got involved, the team had labored for over a year, but

the minimum response time achieved by their system exceeded 12 hours—even though it

ran on a very expensive (and very expensive to operate) supercomputer.

After a couple of weeks, I came up with an improved algorithm that calculated answers in

real time and could run on a laptop.

No amount of “engineering” will be able to deliver that kind of speed-up.

How was this possible? By attacking the problem on many different levels. First of all, we

made sure we fully understood the problem domain. The original project team had always

been a little vague about what exactly the program was trying to calculate, as a result

their “domain model” was not truly logically consistent. Hence the first thing to do was to

put the whole problem on sound mathematical footing. Second, we redefined the problem:

the original program had attempted to calculate a certain quantity by explicit

enumeration of all possible combinations, whereas the new solution calculated an

approximation instead. This was warranted because the input data was not known very

precisely, anyway, and because we were able to show that the uncertainty introduced by

the approximation was less than the uncertainty already present in the data. Third, we

treated hot spots differently than the happy case: the new algorithm could calculate the result to

higher accuracy, but it did so only when the added accuracy was needed. Fourth, we used

efficient data structures and implemented some core pieces ourselves instead of relying on

general-purpose libraries; we also judiciously precalculated and cached some frequently

used intermediate results.
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After putting the whole effort on a conceptually consistent footing, the most important

contribution was changing the problem definition: dropping the exact approach, which

was unnecessary and infeasible, and adopting an approximate solution that was cheap

and all that was required.

Some Suggestions

Computational and combinatorial programming is really different. It runs into different

limits and requires different techniques. Most important is the appropriate choice of

algorithm at the outset, since no amount of low-level tuning or “engineering” will save a

program that is algorithmically flawed.

Here is a list of recommendations in case you find yourself setting out on a project that

involves heavy computation or deals with combinatorial complexity issues:

Do your homework. Understand computational complexity, know the complexity of the

algorithm you intend to use, and research the different algorithms (and their trade-offs)

available for your kind of problem. Read broadly—although the exact problem as

specified may turn out to be intractable, you may find that a small change in the

requirements may lead to a much simpler problem. It is definitely worth it to renegotiate

the problem with the customer or end users than setting out on a project that is infeasible

from the outset. (Skiena’s Algorithm Design Manual is a particularly good resource for

algorithms grouped by problems.)

Run a few numbers. Do a few tests with small programs and evaluate their scaling

performance. Don’t just look at the actual numbers themselves—also consider the scaling

behavior as you vary the problem size. If the program does not exhibit the scaling

behavior you expect theoretically, it has a bug. If so, fix the bug before proceeding! (In

general, algorithms follow the theoretical scaling prediction quite closely for all but the

smallest of problem sizes.) Extrapolate to real-sized problems: can you live with the

expected runtime predictions?

Forget standard software engineering practices. It is a standard assumption in current

software engineering that developer time is the scarcest resource and that programs

should be designed and implemented accordingly. Computationally intensive programs

are one case where this is not true: if you are likely to max out the machine, then it’s

worth having the developer—rather than the computer—go the extra mile. Additional

developer time may very well make the difference between an “infeasible” problem and a

solved one.

For instance, in situations where you are pressed for space, it might very well make sense

to write your own container implementations instead of relying on the system-provided

hash map. Beware of the trap of conditioned thinking, though: in one project I worked

on, we knew that we would have a memory size problem and that we therefore had to
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keep the size of individual elements small. On the other hand, it was not clear at first

whether the 4-byte Java int data type would be sufficient to represent all required values

or whether we would have to use the 8-bye Java long type. In response, someone

suggested that we wrap the atomic data type in an object so we could swap out the

implementation, in case the 4-byte int turned out to be insufficient. That’s a fine

approach in a standard software engineering scenario (“encapsulation” and all that), but

in this situation—where space was at a premium—it missed the point entirely: the space

that the Java wrapper would have consumed (in addition to its data members) would

have been larger than the payload!

Remember: standard software engineering practices are typically intended to trade

machine resources for developer resources. However, for computationally intensive

problems, machine resources (not developer time) are the limiting factor.

Don’t assume that parallelization will be possible. Don’t assume that you’ll be able to

partition the problem in such a way that simultaneous execution on multiple machines

(i.e., parallelization) will be possible, until you have developed an actual, concrete,

implementable algorithm—many computational problems don’t parallelize well. Even if

you can come up with a parallel algorithm, performance may be disappointing: hidden

costs (such as communication overhead) often lead to performance that is much poorer

than predicted; a cluster consisting of twice as many nodes often exhibits a behavior much

less than double the original one! Running realistic tests (on realistically sized data sets

and on realistically sized clusters) is harder for parallel programs than for single processor

implementations—but even more important.

Leave yourself some margin. Assume that the problem size will be larger by a factor of 3

and that hardware will deliver only 50 percent of theoretically predicted performance.

If the results are not wholly reassuring, explore alternatives. Take the results for the

expected runtime and memory requirements that you obtained from theoretical

predictions and the tests that you have performed seriously. Unless you seem able to meet

your required benchmarks comfortably, explore alternatives. Consider better algorithms,

research whether the problem can be simplified or whether the problem can be

approached in an entirely different manner, and look into approximate or heuristic

solutions. If you feel yourself stuck, get help!

If you can’t make it work on paper, STOP. It won’t work in practice, either. It is a

surprisingly common anti-pattern to see the warning signs early but to press on regardless

with the hopeful optimism that “things will work themselves out during

implementation.” This is entirely misguided: nothing will work out better as you proceed

with an implementation; everything is always a bit worse than expected.
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Unless you can make it work on paper and make it work comfortably, there is no point in

proceeding!

The recurring recommendation here is that nobody is helped by a project that ultimately

fails, because it was impossible (or at least infeasible) from the get-go. Unless you can

demonstrate at least the feasibility of a solution (at an acceptable price point!), there is no

use to proceed. And everybody is much better off knowing this ahead of time.

What About Map/Reduce?

Won’t the map/reduce family of techniques make most of these considerations obsolete?

The answer, in general, is no.

It is important to understand that map/reduce is not actually a clever algorithm or even

an algorithm at all. It is a piece of infrastructure that makes naive algorithms convenient.

That’s a whole different ball game. The map/reduce approach does not speed up any

particular algorithm at all. Instead, it makes the parallel execution of many subproblems

convenient. For map/reduce to be applicable, therefore, it must be possible to partition the

problem in such a way that individual partitions don’t need to talk to each other. Search is

such an application that is trivially parallelizable, and many (if not all) successful current

applications of map/reduce that I am aware of seem to be related to generalized forms of

search.

This is not to say that map/reduce is not a very important advance. (Any device that

makes an existing technique orders of magnitudes more convenient is an important

innovation!) At the moment, however, we are still in the process of figuring how which

problems are most amenable to the map/reduce approach and how best to adapt them. I

suspect that the algorithms that will work best on map/reduce will not be straightforward

generalizations of serial algorithms but instead will be algorithms that would be entirely

unattractive on a serial computer.

It is also worth remembering that parallel computation is not new. What has killed it in

the past was the need for different partitions of the problem to communicate with each

other: very quickly, the associated communication overhead annihilated the benefit from

parallelization. This problem has not gone away, it is merely masked by the current

emphasis on search and searchlike problems, which allow trivial parallelization without

any need for communication among partitions. I worry that more strictly computational

applications (such as the matrix multiplication problem discussed earlier or the simulation

of large physical systems) will require so much sharing of information among nodes that

the map/reduce approach will appear unattractive.

Finally, amid the excitement currently generated by map/reduce, it should not be

forgotten that its total cost of ownership (including the long-term operational cost of

maintaining the required clusters as well as the associated network and storage

infrastructure) is not yet known. Although map/reduce installations make distributed
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computing “freely” available to the individual programmer, the required hardware

installations and their operations are anything but “free.”

In the end, I expect map/reduce to have an effect similar to the one that compilers had

when they came out. The code that they produced was less efficient than handcoded

assembler code, but the overall efficiency gain far outweighed this local disadvantage.

But keep in mind that even the best compilers have rendered neither Quicksort nor

indexed lookup obsolete.

Workshop: Generating Permutations

Sometimes, you have to see it to believe it. In this spirit, let’s write a program that

calculates all permutations (i.e., all possible rearrangements) of a set. (That is, if the set is

[1,2,3], then the program will generate [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2],

[3,2,1].) You can imagine this routine to be part of a larger program: in order to solve the

Traveling Salesman problem exactly, for example, one needs to generate all possible trips

(i.e., all permutations of the cities to visit) and evaluate the associated distances.

Of course, we all “know” that the number of permutations grows as n! = 1 · 2 · 3 · · · n,

where n is the number of elements in the set and that the factorial function grows

“quickly.” Nevertheless, you have to see it to believe it. (Even I was shocked by what I

found when developing and running the program below!)

The program that follows reads a positive integer n from the command line and then

generates all permutations of a list of n elements, using a recursive algorithm. (It

successively removes one element of the list, generates all permutations of the remainder,

and then tacks the removed element back on to the results.) The time required is

measured and printed.

import sys, time

def permutations( v ):

if len(v) == 1: return [ [v[0]] ]

res = []

for i in range( 0, len(v) ):

w = permutations( v[:i] + v[i+1:] )

for k in w:

k.append( v[i] )

res += w

return res

n = int(sys.argv[1])

v = range(n)
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t0 = time.clock()

z = permutations( v )

t1 = time.clock();

print n, t1-t0

(You may object to the use of recursion here, pointing out that Python does not allow

infinite depth of recursion. This is true but is not a factor: we will run into trouble long

before that constraint comes into play.)

I highly recommend that you try it. Because we know (or suspect) that this program

might take a while to run when the number of elements is large, we probably want to

start out with three elements. Or with four. Then maybe we try five, six, or seven. In all

cases, the program finishes almost instantaneously. Then go ahead and run it with n=10.

Just 10 elements. Go ahead, do it. (But I suggest you save all files and clean up your login

session first, so you can reboot without losing too much work if you have to.)

Go ahead. You have to see it to believe it!*

Further Reading
• The Algorithm Design Manual. Steven S. Skiena. 2nd ed., Springer. 2008.

This is an amazing book, because it presents algorithms not as abstract entities to be

studied for their own beauty but as potential solutions to real problems. Its second half

consists of a “hitchhiker’s guide to algorithms”: a catalog of different algorithms for

common problems. It helps you find an appropriate algorithm by asking detailed

questions about your specific problem and provides pointers to existing

implementations. In addition, the author’s “war stories” of past successes and failures

in the real world provide a vivid reminder that algorithms are real.

*Anybody who scoffs that this example is silly, because “you should not store all the intermediate
results; use a generator” or because “everyone knows you can’t find all permutations exhaustively;
use heuristics” is absolutely correct—and entirely missing the point. I know that this implementation
is naive, but—cross your heart—would you really have assumed that the naive implementation would
be in trouble for n = 10? Especially, when it didn’t even blink for n = 7?
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C H A P T E R S I X T E E N

Reporting, Business Intelligence,
and Dashboards

DATA ANALYSIS DOES NOT JUST CONSIST OF CRUNCHING NUMBERS. IT ALSO INCLUDES NAVIGATING THE CONTEXT

and environment in which the need for data analysis arises. In this chapter and the next,

we will look at two areas that often have a demand for data analysis and analytical

modeling but that tend to be unfamiliar if you come from a technical background: in this

chapter, we discuss business intelligence and corporate metrics; in the next chapter,

financial calculations and business plans.

This material may seem a little out of place because it is largely not technical. But that is

precisely why it is important to include this topic here: to a person with a technical

background, this material is often totally new. Yet it is precisely in these areas that sound

technical and analytical advice is often required: the primary consumers of these services

are “business people,” who may not have the necessary background and skills to make

appropriate decisions without help. This places additional responsibility on the person

working with the data to understand the problem domain thoroughly, in order to make

suitable recommendations.

This is no joke. I have seen otherwise very smart people at high-quality companies

completely botch business metrics programs simply because they lacked basic software

engineering and math skills. As the person who (supposedly!) “understands data,” I see it

as part of my responsibility to understand what my clients actually want to do with the

data—and advise them accordingly on the things they should be doing. But to do so

effectively, it is not enough to understand the data—I also need to understand my clients.

That’s the spirit in which these chapters are intended. The aim is to describe some of the

ways that demand for data arises in a business environment, to highlight some of the traps

for the unwary, and to give some advice on using data more successfully.
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Business Intelligence

Businesses have been trying to make use of the data that they collect for years and, in the

process, have accumulated a fair share of disappointments. I think we need to accept that

the problem is hard: you need to find a way to represent, store, and make accessible a

comprehensive view of all available data in such a way that is useful to anybody and for

any purpose. That’s just hard. In addition, to be comprehensive, such an initiative has to

span the entire company (or at least a very large part of it), which brings with it a whole

set of administrative and political problems.

This frustrating state of affairs has brought forth a number of attempts to solve what is

essentially a conceptual and political problem using technical means. In particular, the

large enterprise tool vendors saw (and see) this problem space as an opportunity!

The most recent iteration on this theme was data warehouses—that is, long-term,

comprehensive data stores in which data is represented in a denormalized schema that is

intended to be more general than the schema of the transactional databases and also

easier to use for nontechnical users. Data is imported into the data warehouse from the

transactional databases using so-called ETL (extraction, transformation, and load)

processes.

Overall, there seems to be a feeling that data warehouses fell short of expectations for

three reasons. First of all, since data warehouses are enterprise-wide, they respond slowly

to changes in any one business unit. In particular, changes to the transactional data

schema tend to propagate into the data warehouse at a glacial pace, if at all. The second

reason is that accessing the data in the data warehouse never seems to be as convenient as

it should be. The third and final reason is that doing something useful with the data (once

obtained) turns out to be difficult—in part because the typical query interface is often

clumsy and not designed for analytic work.

While data warehouses were the most recent iteration in the quest for making company

data available and useful, the current trend goes by the name of business intelligence, or BI.

The term is not new (Wikipedia tells me that it was first used in the 1950s), but only in

the last one or two years have I seen the term used regularly.

The way I see it, business intelligence is an accessibility layer sitting on top of a data

warehouse or similar data store, trying to make the underlying data more useful through

better reporting, improved support for ad hoc data analysis, and even some attempts at

canned predictive analytics.

Because it sits atop a database, all business intelligence stays squarely within the database

camp; and what it aspires to do is constrained by what a database (or a database

developer!) can do. The “analytics” capabilities consist mostly of various aggregate

operations (sums, averages, and so on) that are typically supported by OLAP (Online
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Analytical Processing) cubes. OLAP cubes are multi-dimensional contingency tables (i.e.,

with more than two dimensions) that are precomputed and stored in the database and

that allow for (relatively) quick summaries or projections along any of the axes. These

“cubes” behave much like spreadsheets on steroids, which makes them familiar and

accessible to the large number of people comfortable with spreadsheets and pivot tables.

In my experience, the database heritage (in contrast to a software engineering heritage) of

BI has another consequence: the way people involved with business intelligence relate to

it. While almost all software development has an element of product development to it,

business intelligence often feels like infrastructure maintenance. And while the purpose of

the former typically involves innovation and the development of new ways to please the

customer, the latter tends to be more reactive and largely concerned with “keeping the

trains on time.” This is not necessarily a bad thing, as long as one pays attention to the

difference in cultures.

What is the take away here? First of all, I think it is important to have realistic

expectations: when it comes right down to it, business intelligence initiatives are mostly

about better reporting. That is fine as far as it goes, but it does not require (or provide)

much data analysis per se. The business users who are the typical customers of such

projects usually don’t need much help in defining the numbers they would like to see.

There may be a need for help with visualization and overall user interface design, but the

possibilities here tend to be mostly defined (and that means limited) by the set of tools

being used.

More care needs to be taken when any of the “canned” analysis routines are being used

that come bundled with many BI packages. Most (if not all) of these tools are freebies,

thrown in by the vendor to pad the list of supported features, but they are likely to lack

production strength and instead emphasize “ease of use.” These tools will produce results,

all right—but it will be our job to decide how significant and how relevant these results are.

We should first ask what these routines are actually doing “under the hood.” For example,

a clustering package may employ any one of a whole range of clustering algorithms (as we

saw in Chapter 13) or even use a combination of algorithms together with various

heuristics. Once we understand what the package does, we can then begin asking

questions about the quality and, in particular, the significance of the results. Given that

the routine is largely a black box to us, we will not have an intuitive sense regarding the

extent of the region of validity of its results, for example. And because it is intended as an

easy-to-use give away, it is not likely to have support for (or report at length about) nasty

details such as confidence limits on the results. Finally, we should ask how relevant and

useful these results are. Was there an original question that is being addressed—or was

the answer mostly motivated by the ease with which it could be obtained?
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One final observation: when there are no commercial tool vendors around, there is not

much momentum for developing business intelligence implementations. Neither of the

two major open source databases (MySQL and Postgres) has developed BI functionality or

the kinds of ad hoc analytics interfaces that are typical of BI tools. (There are, however, a

few open source projects that provide reporting and OLAP functionality.)

Reporting

The primary means by which data is used for “analysis” purposes in an enterprise

environment is via reports. Whether we like it or not, much of “business intelligence”

revolves around reporting, and “reporting” is usually a big part of what companies do

with their data.

It is also one of the greatest sources of frustration. Given the ubiquity of reporting and the

resources spent on it, one would think that the whole area would be pretty well figured

out by now. But this is not so: in my experience, nobody seems to like what the reporting

team is putting out—including the reporting team itself.

I have come to the conclusion that reporting, as currently understood and practiced, has it

all wrong. Reporting is the one region of the software universe that has so far been barely

touched by the notions of “agility” and “agile development.” Reporting solutions are

invariably big, bulky, and bureaucratic, slow to change, and awkward to use. Moreover, I

think with regards to two specific issues they get it exactly wrong:

1. In an attempt to conserve resources, reporting solutions are often built generically: a

single reporting system that supports all the needs of all the users. The reality, of

course, is that the system does not serve the needs of any user (certainly not well), even

as the overhead of the general-purpose architecture drives the cost through the roof.

2. Most reporting that I have seen confuses “up to date” with “real time.” Data for reports

is typically pulled in immediate response to a user’s query, which ensures that the data

is up to date but also (for many reports) that it will take a while before the report is

available—often quite a while! I believe that this delay is the single greatest source of

frustration with all reports, anywhere. For a user, it typically matters much more to get

the data right this minute than to get it up to this minute!

Can we conceive of an alternative to the current style of reporting, one that actually

delivers on its promise and is easy and fun to use? I think so (in fact, I have seen it in

action), but first we need to slaughter a sacred cow: namely, that one reporting system

should be able to handle all kinds of different requirements. In particular, I think it will be

helpful to distinguish very clearly between operational and representative reports.

Representative reports are those intended for external users. Quarterly filings certainly fall

into this category, as do reports the company may provide to its customers on various

metrics. In short, anything that gets published.
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Operational reports, in contrast, are those used by managers within the company to

actually run the business. Such reports include information on the the number of orders

shipped today, the size of the backlog, or the CPU loads of various servers.

These two report types have almost nothing in common! Operational reports need to be

fast and convenient—little else matters. Representative reports need to be definitive and

optically impressive. It is not realistic to expect a single reporting system to support both

requirements simultaneously! I’d go further and say that the preparation of representative

reports is always somewhat of a special operation and should be treated as such: “making

it look good.” If you have to do this a lot (e.g., because you regularly send invoices to a

large number of customers), then by all means automate the process—but don’t kid

yourself into thinking that this is still merely “reporting.” (Billing is a core business activity

for all service businesses!)

When it comes to operational reports, there are several ideas to consider:

Think “simple, fast, convenient.” Reports should be simple to understand, quick

(instantaneous) to run, and convenient to use. Convenience dictates that the users must

not be required to fill in an input mask with various parameters. The most the user can be

expected to do is to select one specific report from a fixed list of available ones.

Don’t waste real estate. The whole point of having a report is the data. Don’t waste space

on other things, especially if they never change. I have seen reports in which fully one

third of the screen was taken up by a header showing the company logo! In another case,

a similar amount of space was taken up by an input mask. Column headers and

explanations are another common culprit: once people have seen the report twice, they

will know what the columns are. (You will still need headers, but they can be short.)

Move explanatory material to a different location and provide a link to it. Remember: the

reason people ran the report is to see the data.

Make reports easy to read. In particular, this means putting lots of data onto a single page

that can be read by scrolling (instead of dividing the data across several pages that require

reloading those pages). Use a large enough font and consider (gently!) highlighting every

second line. Less is more.

Consider expert help for the visual design. Reports don’t have to be ugly. It may be worth

enlisting an expert to design and implement a report that looks pleasant and is easy to use.

Good design will emphasize the content and avoid distracting embellishments. Developing

good graphic designs is a specialized skill, and some people are simply better at this task

than others. Remember: a report’s ease of use is not an unnecessary detail but an essential

quality!
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Provide raw data, and let the user handle filtering and aggregation. This is a potentially

radical idea: instead of providing a complicated input mask whereby the user has to

specify a bunch of selection criteria and the columns to return, a report can simply return

everything (within reason, of course) and leave it to the user to perform any desired

filtering and aggregation. This idea is based on the realization that most people who use

reports are going to be comfortable working with Excel (or an equivalent spreadsheet

program). Hence, we can regard a report not as an end product but rather as a data feed

for spreadsheets.

This approach has a number of advantages: it is simple, cheap, and flexible (because users

are free to design their own reports). It also implies that the report needs to include

additional columns, which are required for user-level filtering and aggregation.

Consider cached reports instead of real-time queries. Once the input mask has been

removed, the content of a report is basically fixed. But once it is fixed, it can be run ahead

of time and cached—which means that we can return the data to the user instantaneously.

It also means that the database is hit only once no matter how often the report is viewed.

Find out what your users are doing with reports—and then try to provide it for them. I

cannot tell how often I’ve witnessed the following scenario. The reporting team spends

significant time and effort worrying about the details and layout of its reports. But a few

doors down the hall, the first thing that the report’s actual users do is cut-and-paste the

results from the reporting system and import them into, yes, Excel. And then they often

spend a lot of time manually editing and formatting the results so that they reflect the

information that the users actually need. This occurs every day (or every week, or every

hour—each time the report is accessed).

These edits are often painfully simple: the users need the report sorted on some numerical

column, but this is impossible because the entry in that column is text: “Quantity 17.” Or

they need the difference between two columns rather than the raw values. In any case,

it’s usually something that could be implemented in half an hour, solving the problem

once and for all. (These informal needs tend not to be recognized in formal

“requirements” meetings, but they become immediately apparent if you spend a couple of

hours tracking the the users’ daily routines.)

Reports are for consumers, not producers. A common response to the previous item is

that every user seems to have his own unique set of needs, and trying to meet all of them

would lead to a proliferation of different reports.

There is of course some truth to that. But in my experience, certain reports are used by

work groups in a fairly standard fashion. It is in these situations that the time spent on

repetitive, routine editing tasks (such as those just described) is especially painful—and
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avoidable. In such cases it might also be worthwhile to work with the group (or its

management) to standardize their processes, so that in the end, a single report can meet

everybody’s needs.

But there is a bigger question here, too. Whose convenience is more important—the

producers’ or the users’? More broadly: for whom are the reports intended—for the

reporting team or for the people looking at them?

Think about the proper metrics to show. For reports that show some form of summary

statistics (as opposed to raw counts), think about which quantities to show. Will a mean

(e.g., “average time spent in queue”) be sufficient, or is the distribution of values skewed,

so that the median would be more appropriate? Do you need to include a measure for the

width of the distribution (standard deviation or inter-quartile range)? (Answer: probably!)

Also, don’t neglect cumulative information (see Chapter 2).

Don’t mix drill-down functionality with standard reporting. This may be a controversial

item. In my opinion, reports are exactly that: standard overviews of the status of the

system. Every time I run a report, I expect to find the same picture. (The numbers will

change, of course, but not the overall view.) Drill-downs, on the other hand, are always

different. After all, they are usually conducted in response to something out of the

ordinary. Hence I don’t think it makes sense devising a general-purpose framework for

them; ad hoc work is best done using ad hoc tools.

Consider this: general-purpose frameworks are always clumsy and expensive yet they

rarely deliver the functionality required. Would it be more cost-effective to forget about

maintaining drill-down functionality in the reporting system itself and instead deploy the

resources (i.e., the developers) liberated thereby to address drill-down tasks on an ad hoc

basis?

Don’t let your toolset strangle you. Don’t let your toolset limit the amount of value you

can deliver. Many reporting solutions that I have seen can be awfully limiting in terms of

the kind of information you can display and the formatting options that are available. As

with any tool: if it gets in the way, evaluate again whether it is a net gain!

This is the list. I think the picture I’m trying to paint is pretty clear: fast, simple, and

convenient reports that show lots of data but little else. Minimal overhead and a

preference for cheap one-offs as opposed to expensive, general-purpose solutions. It’s not

all roses—in particular, the objection that a large number of cheap one-off reports might

incur a significant total cost of ownership in the long run is well taken. On the other

hand, every general-purpose reporting solution that I have seen incurred a similar cost of

ownership—but did not deliver the same level of flexibility and convenience.

I think it is time to rethink reporting. The agile movement (whether right or wrong in all

detail) has brought fresh life to software development processes. We should start applying

its lessons to reporting.
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Finally, a word about reporting tools. The promise of the reporting tools that I have seen is

to consume data from “many sources” and to deliver reports to “many formats” (such as

HTML, PDF, and Excel).

I have already suggested why I consider this largely an imaginary problem: I cannot

conceive of a situation where you really need to deliver the same report in both HTML

and PDF versions. If there is a requirement to support both formats, on close examination

we will probably find that the HTML report is an operational report, whereas the PDF

report is to be representational. There are probably additional differences between the two

versions (besides the output format), in terms of layout, content, life cycle, and

audience—just about everything.

Similar considerations apply regarding the need to pull data from many sources. Although

this does occur, does it occur often enough that it should form the basis for the entire

reporting architecture? Or does, in reality, most of the data come from relational databases

and the odd case where some information comes from a different source (e.g., an XML

document, an LDAP server, or a proprietary data store) is best handled as a special case?

(If you do in fact need to pull data from very different sources, then you should consider

implementing a proper intermediate layer, one that extracts and stores data from all

sources in a robust, common format. Reporting requires a solid and reliable data model. In

other words, you want to isolate your reporting solution from the vagaries of the data

sources—especially if these sources are “weird.”)

The kinds of problems that reporting tools promise to solve strike me as classic examples

of cases where a framework seems like a much better idea than it actually is. Sure, a lot of

the tasks involved in reporting are lame and repetitive. However, designing a framework

that truly has the flexibility required to function as a general-purpose tool is difficult,

which leads to frameworks that are hard to use for everyone—and you still have to work

around their limitations. The alternative is to write some boring but straightforward and

most of all simple boilerplate code that solves your specific problems simply and well. I tend

to think that some simple, problem-specific boilerplate code is in every way preferable to a

big, complicated, all-purpose framework.

As for the actual delivery technology, I am all for simple tables and static, precomputed

graphics—provided they are useful and well thought-out (which is not always as easy as it

may seem). Specifically, I don’t think that animated or interactive graphics—for example,

using Adobe Flash, Microsoft Silverlight, or some other “Thick Client” technology—work

well for reporting. Test yourself: how often do you want to wait for 5–10 seconds while

some bar chart is slowly rendering itself (with all the animated bars growing individually

from the base line)? Once you have seen this a few times, the “cute” effect has worn off,

and the waiting becomes a drag. Remember that reports should be convenient, and that

mostly means quick.
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Thick clients do make sense as technologies for building “control consoles”: complex user

interfaces designed to operate a complex system that needs to be controlled in real time.

But that’s a very different job than reporting and should be (and usually is) treated as a

core product with a dedicated software team.

Corporate Metrics and Dashboards

It is always surprising when a company doesn’t have good, real-time, and consistent

visibility into some of its own fundamental processes. It can be amazingly difficult to

obtain insight into data such as: orders fulfilled today, orders still pending, revenue by

item type, and so on.

But this lack of visibility should not come as surprise because up close, the problem is

harder than it appears. Any business of sufficient size will have complex business rules,

which furthermore may be inconsistent across divisions or include special exceptions for

major customers. The IT infrastructure that provides the data will have undergone several

iterations over the years and be a mixture of “legacy” and more current systems—none of

which were primarily designed for our current purposes! The difficulties in presenting the

desired data are nothing more than a reflection of the complexity of the business.

You may encounter two concepts that try to address the visibility problem just described:

special dashboards and more general metrics programs. The goals of a metrics program are to

define those quantities that are most relevant and should be tracked and to design and

develop the infrastructure required to collect the appropriate data and make it accessible.

A dashboard might be the visible outcome of a metrics program. The purpose of a

dashboard is to provide a high-level view of all relevant metrics in a single report (rather

than a collection of individual, more detailed reports). Dashboards often include

information on whether any given metric is within its desired range.

Dashboard implementations can be arbitrarily fancy, with various forms of graphical

displays for individual quantities. An unfortunate misunderstanding results from taking

the word “dashboard” too seriously and populating the report with graphical images of

dials, as one might find in a car. Of course, this is beside the point and actually detracts

from a legitimate, useful idea: to have a comprehensive, unified view of the whole set of

relevant metrics.

I think it is important to keep dashboards simple. Stick to the original idea of all the

relevant data on a single page—together with clear indications of whether each value is

within the desired range or not.

As already explained when discussing reports, I do not believe that drill-down

functionality should be part of the overall infrastructure. The purpose of the dashboard is
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to highlight areas that need further attention, but the actual work on these areas is better

done using individual, detailed research.

Recommendations for a Metrics Program

In case you find yourself on a project team to implement a metrics program, tasked to

define the metrics to track and to design the required infrastructure, here are some

concrete recommendations that you might want to consider.

Understand the cost of metrics programs. Metrics aren’t free. They require development

effort and deployment infrastructure of production-level strength, both of which have

costs and overhead. Once in production, these systems will also require regular

maintenance. None of this is free.

I think the single biggest mistake is to assume that a successful metrics program can be

run as an add-on project without additional resources. It can’t.

Have realistic expectations for the achievable benefit. The short-term effect of any sort of

metrics program is likely to be small and possibly nondetectable. Metrics provide visibility

and only visibility, but they don’t improve performance. Only the decisions based on these

metrics will (perhaps!) improve performance. But here the marginal gain can be quite

small, since many of the same decisions might have been made anyway, based on routine

and gut feeling.

The more important effect of a metrics program stems from the long-term effect it has on

the organizational culture. A greater sense of accountability, or even the realization that

there are different levels of performance, can change the way the business runs. But these

effects take time to materialize.

Start with the actions that the metrics should drive. When setting out to define a set of

metrics to collect, make sure to ask yourself: what decision would I make differently in

response to the value of this metric? If none comes to mind, you don’t need to collect it!

Don’t define what you can’t measure. This is a good one. I remember a metrics program

where the set of metrics to track had been decided at the executive management level,

based on what would be “useful” to see. Problem was, for a significant fraction of those

quantities, no data was being collected and none could be collected because of limitations

in the physical processes.

Build appropriate infrastructure. For a metrics program to be successful, it must be

technically reliable, and the data must be credible. In other words, the systems that

support it must be of production-level quality in regard to robustness, uptime, and reliability.

For a company of any size, this requires databases, network infrastructure,

monitoring—the whole nine yards. Plan on them! It will be difficult to be successful with

only flat files and a CGI script (or with Excel sheets on a SharePoint, for that matter).
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There is an important difference here between a more comprehensive program that

purports to be normative and widely available, and an ad hoc report. Ad hoc reports can

be extremely effective precisely because they do not require any infrastructure beyond a

CGI script (or an Excel sheet), but they do not scale. They won’t scale to more metrics,

larger groups of users, more facilities, longer historical time frames, or whatever it is.

That being said, if all you need is an ad hoc report, by all means go for it.

Steer clear of manually collected metrics. First of all, manually collected metrics are

neither reliable nor credible (people will forget to enter numbers and, if pressed, will

make them up). Second, most people will resist having to enter numbers (especially in

detail—think timesheets!), which will destroy the acceptance and credibility of the

program. Avoid manually collected metrics at all cost.

Beware of aggregates. It can be very appealing to aggregate values as much as possible:

“Just give me one number so that I see how my business is doing.” The problem is that

every aggregation step loses information that is impossible to regain: you can’t unscramble

an egg. And actionable information is typically detailed information. Knowing that my

aggregated performance score has tanked is not actionable but knowing which specific

system has failed is!

This leads us to questions about user interface design, roll-ups, and drill-downs. I think

most of this is unnecessary. All that’s required is a simple, high-level report. If details are

required, one can always dig deeper in an ad hoc fashion.

Think about the math involved. The math required for corporate metrics is rarely

advanced, but it still offers opportunities for mistakes. A common example occurs

whenever we are forming a ratio—for example, to calculate the defect rate as the number

of defects divided by the number of items produced. The problem is that the denominator

can become zero (no items produced during the observation time frame), which makes it

impossible to calculate a defect rate. There are different ways you can handle this (report

as “not available,” treat zero items produced as a special case, especially slick: add a small

number to the denominator in your definition of the defect rate, so that it can never

become zero), but you need to handle this possibility somehow (also see Appendix B).

There are other problems for which careful thinking about the best mathematical

representation can be helpful. For example, to compare metrics they need to be

normalized through rescaling by an appropriate scaling factor. For quantities that vary

over many orders of magnitude, it might be more useful to track the logarithm instead of

the raw quantity. Consider getting expert help: a specialist with sufficient analytical

background can recognize trouble spots and make recommendations for how best to deal

with them that may not be obvious.
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Be careful with statistical methods that might not apply. Mean and standard deviation

are good representations for the typical value and the typical spread only if the

distribution of data points is roughly symmetrical. In many practical situations, this is not

the case—waiting times, for instance, can never be negative and, although the “typical”

waiting time may be quite short, there is likely to be a tail of events that take a very long

time to complete. This tail will corrupt both mean and standard deviation. In such cases,

median-based statistics are a better bet (see Chapter 2 and Chapter 9).

In general, it is necessary to study the nature of the data before settling on an appropriate

way to summarize it. Again, consider expert help if you don’t have the competency

in-house.

Don’t buy what you don’t need. It is tempting to ask for a lot of detail that is not really

required. Generally, it is not necessary to track sales numbers on a millisecond basis

because we cannot respond to changes at that speed—and even if we could, the numbers

would not be very meaningful because sales normally fluctuate over the course of a day.

Establish a meaningful time scale or the frequency with which to track changes. This time

scale should be similar to the time scale in which we can make decisions and also similar

to the time scale after which we see the results of those decisions. Note that this time scale

might vary drastically: daily is probably good enough for sales, but for, say, the reactor

temperature, a much shorter time scale is certainly appropriate!

Don’t oversteer. This recommendation is the logical consequence of the previous one.

Every “system” has a certain response time within which it reacts to changes. Applying

changes more frequently than this response time is useless and possibly harmful (because

it prevents the system from reaching a steady state).

Learn to distinguish trend and variation. Most metrics will be tracked over time, so what

we have learned about time-series analysis (see Chapter 4) applies. The most important

skill is to develop an understanding for the duration and magnitude of typical “noise”

fluctuations and to distinguish them from significant changes (trends) in the data.

Suppose sales dipped today by 20 percent: this is no cause for alarm if we know that sales

fluctuate by ±25 percent from day to day. But if sales fall by 5 percent for five days in a

row, that could possibly be a warning sign.

Don’t forget the power of perverted incentives. When metrics are used to manage staff

performance, this often means changing from a vague yet broad sense of “performance”

to a much narrower focus on specifically those quantities that are being measured. This

development can result in creating perverted incentives.
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Take, for instance, the primary performance metric in a customer service call center: the

number of calls a worker handles per hour, or “calls per hour.” The best way for a call

center worker who is evaluated solely in terms of calls per hour to improve her standing is

by picking up the phone when it rings and hanging up immediately! By making calls per

hour the dominant metric, we have implicitly deemphasized other important aspects,

such as customer satisfaction (i.e., quality).

Beware of availability bias. Some quantities are easier to measure than others and

therefore tend to receive greater attention. In my experience, productivity is generally

easier to measure than quality, with all the unfortunate consequences this entails.

Just because it can’t be measured does not mean it does not exist. Some quantities cannot

be measured. This includes “soft” factors such as culture, commitment, and fun; but also

some very “hard” factors like customer satisfaction. You can’t measure that—all you can

measure directly are proxies (e.g., the return rate). An alternative are surveys, but because

participants decide themselves whether they reply, the results may be misleading. (This is

known as self-selection bias.)

Above all, don’t forget that a metrics program is intended to help the business by

providing visibility—it should never become an end in itself. Also keep in mind that it is

an effort to support others, not the other way around.

Data Quality Issues

All reporting and metrics efforts depend on the availability and quality of the underlying

data. If the required data is improperly captured (or not captured at all), there is nothing

to work with!

The truth of the matter is that if a company wants to have a successful business

intelligence or metrics program, then its data model and storage solution must be designed

with reporting needs in mind. By the time the demand for data analysis services rolls around,

it is too late to worry about data modeling!

Two problems in particular occur frequently when one is trying to prepare reports or

metrics: data may not be available or it may not be consistent.

Data Availability

Data may not be collected at all, often with the innocent argument that “nobody wanted

to use it.” That’s silly: data that’s directly related to a company’s business is always

relevant—whether or not anybody is looking at it right now.

If data is not available, this does not necessarily mean that it is not being collected. Data

may be collected but not at the required level of granularity. Or it is collected but

immediately aggregated in a way that loses the details required for later analysis. (For
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instance, if server logs are aggregated daily into hits per page, then we lose the ability to

associate a specific user to a page, and we also lose information about the order in which

pages were visited.)

Obviously, there is a trade-off between the amount of data that can be stored and the level

of detail that we can achieve in an analysis. My recommendation: try to keep as much

detail as you can, even if you have to spool it out to tape (or whatever offline storage

mechanism is available). Keep in mind that operational data, once lost, can never be

restored. Furthermore, gathering new data takes time and cannot be accelerated. If you

know that data will be needed for some planned analysis project, start collecting it today.

Don’t wait for the “proper” extraction and storage solution to be in place—that could

easily take weeks or even months. If necessary, I do not hesitate to pull daily snapshots of

relevant data to my local desktop, to preserve it temporarily, while a long-term storage

solution is being worked out. Remember: every day that data is not collected is another

day by which your results will be delayed.

Even when data is in principle collected at the appropriate level of detail, it may still not

be available in a practical sense, if the storage schema was not designed with reporting

needs in mind. (I assume here that the data in question comes from a corporate

database—certainly the most likely case by far.) Three problems stand out to me in this

context: lack of revision history, business logic commingled with data, and awkward

encodings.

Some entities have a nontrivial life cycle: orders will go through several status updates,

contracts have revisions, and so on. In such cases, it is usually important to preserve the

full revision history—that is, all life-cycle events. The best way to do this is to model the

time-varying state as a separate entity. For instance, you might have the Order entity

(which contains, for example, the order ID and the customer ID) and the OrderStatus,

which represents the actual status of the order (placed, accepted, shipped, paid,

completed, . . . ), as well as a timestamp for the time that the status change took place. The

current status is the one with the most recent status change. (A good way to handle this is

with two timestamps: ValidFrom and ValidTo, where the latter is NULL for the current

status.) Such a model preserves all the information necessary to study quantities like the

typical time that orders remain in any one state. (In contrast, the presence of history

tables with OldValue and NewValue columns suggests improper relational modeling.)

The important principle is that data is never updated—we only append to the revision

history. Keep in mind that every time a database field is updated, the previous value is

destroyed. Try to avoid this whenever you can! (I’d go so far as to say that CRUD—create,

read, update, delete—is indeed a four-letter word. The only two operations that should

ever be used are create and read. There may be valid operational reasons to move very old

data to offline storage, but the data model should be designed in such a way that we never

clobber existing data. In my experience, this point is far too little understood and even less

heeded.)
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The second common problem is business logic that is commingled with data in such a way

that the data alone does not present an accurate picture of the business. A sure sign of this

situation is a statement like the following: “Don’t try to read from the database

directly—you have to go through the access layer API to get all the business rules.” What

this is saying is that the DB schema was not designed so that the data can stand by itself:

the business rules in the access layer are required to interpret the data correctly. (Another

indicator is the presence of long, complicated stored procedures. This is worse, in fact,

because it suggests that the situation developed inadvertently, whereas the presence of an

access layer is proof of at least some degree of foreplanning.)

From a reporting point of view, the difficulty with a mandatory access layer like this is

that a reporting system typically has to consume the data in bulk, whereas application-

oriented access layers tend to access individual records or small collections of items. The

problem is not the access layer as such—in fact, an abstraction layer between the database

and the application (or applications) often makes sense. But it should be exactly that: an

abstraction and access layer without embedded business logic, so that it can be bypassed if

necessary.

Finally, the third problem that sometimes arises is the use of weird data representations,

which (although complete) make bulk reporting excessively difficult. As an example,

think of a database that stores only updates (to inventory levels, for example) but not the

grand total. To get a view of the current state, it is now necessary to replay the entire

transaction history since the beginning of time. (This is why your bank statement lists

both a transaction history and an account balance!) In such situations it may actually

make sense to invest in the required infrastructure to pull out the data and store it in a

more manageable fashion. Chances are good that plenty of uses for the sanitized data will

appear over time (build it, and they will come).

Data Consistency

Problems of data consistency (as opposed to data availability) occur in every company of

sufficient size, and they are simply an expression of the complexity of the underlying

business. Here are some typical examples that I have encountered.

• Different parts of the company use different definitions for the same metric.

Operations, for example, may consider an order to be completed when it has left the

warehouse, whereas the finance department does consider an order to be complete

once the payment for it has been received.

• Reporting time frames may not be aligned with operational process flows. A seemingly

simple question such as, “How many orders did we complete yesterday?” can quickly

become complicated, depending on whose definition of “yesterday” we use. For

example, in a warehouse, we may only be able to obtain a total for the number of

orders completed per shift—but then how do we account for the shift that stretches

from 10 at night to 6 the next morning? How do we deal with time zones? Simply
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stating that “yesterday” refers to the local time at the corporate headquarters sounds

simple but is probably not practical, since all the facilities will naturally do their

bookkeeping and reporting according to their local time.

• Time flows backward. How does one account for an order that was later returned? If

we want to recognize revenue in the quarter in which the order was completed but an

item is later returned, then we have a problem. We can still report on the revenue

accurately—but not in a timely manner. (In other words, final quarterly revenue

reports cannot be produced until the time allowed to return an item has elapsed. Keep

in mind that this may be a long time in the case of extended warranties or similar

arrangements.)

Additional difficulties will arise if information has been lost—for instance, because the

revision history of a contract has not been kept (recall our earlier discussion). You can

probably think of still other scenarios in which problems of data or metric inconsistency

occur.

The answer to this set of problems is not technical but administrative or political. Basically

it comes down to agreeing on a common definition of all metrics. An even more drastic

recommendation to deal with conflicting metrics is to declare one data source as the

“normative” one; this does not make the data any more accurate, but it can help to stop

fruitless efforts to reconcile different sources at any cost. At least that’s the theory.

Unfortunately, if the manager of an off-site facility can expect to have his feet held to the

fire by the CEO over why the facility missed its daily goal of two million produced units by

a handful of units last Friday, he will look for ways to pass the blame. And pointing to

inconsistencies in the reports is an easy way out. (In my experience, one major drawback

of all metrics programs is the amount of work generated to reconcile minute

inconsistencies between different versions of the same data. The costs—in terms of

frustration and wasted developer time—can be stunning.)

As practical advice I recommend striving as much as possible for clear definitions of all

metrics, so that at least we know what we’re talking about. Furthermore, wherever

possible, try to make those metrics normative that are practical to gather, rather than those

“correct” from a theoretical point of view (e.g., report metrics in local instead of global

time coordinates). Apply conversion factors behind the scenes, if necessary, but try to

make sure that humans only need to deal with quantities that are meaningful and familiar

to them.

Workshop: Berkeley DB and SQLite

For analysis purposes, the most suitable data format is usually the flat file. Most of the

time, we will want all (or almost all) of the records in a data set for our analysis. It

therefore makes more sense to read the whole file, possibly filter out the unneeded

records, and process the rest, rather than to do an indexed lookup of only the records that

we want.
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Common as this scenario is, it does not always apply. Especially when it comes to

reporting, it can be highly desirable to have access to a data storage solution that supports

structured data, indexed lookup, and even the ability to merge and aggregate data. In

other words, we want a database.

The problem is that most databases are expensive—and I don’t (just) mean in terms of

money. They require their own process (or processes), they require care and feeding, they

require network access (so that people and processes can actually get to them). They must

be designed, installed, and provisioned; very often, they require architectural approval

before anything else. (The latter point can become such an ordeal that it makes anything

requiring changes to the database environment virtually impossible; one simply has to

invent solutions that do without them.) In short, most databases are expensive: both

technically and politically.

Fortunately, other people have recognized this and developed database solutions that are

cheap: so-called embedded databases. Their distinguishing feature is that they do not run in

a separate process. Instead, embedded databases store their data in a regular file, which is

accessed through a library linked into the application. This eliminates most of the

overhead for provisioning and administration, and we can replicate the entire database

simply by copying the data file! (This is occasionally very useful to “deploy” databases.)

Let’s take a look at the two most outstanding examples of (open source) embedded

databases: the Berkeley DB, which is a key/value hash map stored on disk, and SQLite,

which is a complete relational database “in a box.” Both have bindings to almost any

programming language—here, we demonstrate them from Python. (Both are included

in the Python Standard Library and therefore should already be available wherever

Python is.)

Berkeley DB

The Berkeley DB is a key/value hash map (a “dictionary”) persisted to disk. The notion of

a persistent key/value database originated on Unix; the first implementation being the

Unix dbm facility. Various reimplementations (ndbm, gdbm, and so on) exist. The original

“Berkeley DB” was just one specific implementation that added some additional

capabilities—mostly multiuser concurrency support. It was developed and distributed by a

commercial company (Sleepycat) that was acquired by Oracle in 2008. However, the

name “Berkeley DB” is often used generically for any key/value database.

Through the magic of operator overloading, a Berkeley DB also looks like a dictionary to

the programmer* (with the requirement that keys and values must be strings):

import dbm

db = dbm.open( "data.db", 'c' )

*In Perl, you use a “tied hash” to the same effect.

R E P O R T I N G , B U S I N E S S I N T E L L I G E N C E , A N D D A S H B O A R D S 377



O’Reilly-5980006 master October 28, 2010 21:35

db[ 'abc' ] = "123"

db[ 'xyz' ] = "Hello, World!"

db[ '42' ] = "42"

print db[ 'abc' ]

del db[ 'xyz' ]

for k in db.keys():

print db[k]

db.close()

That’s all there is to it. In particular, notice that the overhead (“boilerplate”) required is

precisely zero. You can’t do much better than that.

I used to be a great fan of the Berkeley DB, but over time I have become more aware of its

limitations. Berkeley DBs store single-key/single-value pairs—period. If that’s what you

want to do, then a Berkeley DB is great. But as soon as that’s not exactly what you want to

do, then the Berkeley DB simply is the wrong solution. Here are a few things you cannot

do with a Berkeley DB:

• Range searches: 3 < x < 17

• Regular expression searches: x like 'Hello%'

• Aggregation: count(*)

• Duplicate keys

• Result sets consisting of multiple records and iteration over result sets

• Structured data values

• Joins

In fairness, you can achieve some of these features, but you have to build them yourself

(e.g., provide your own serialization and deserialization to support structured data values)

or be willing to lose almost all of the benefit provided by the Berkeley DB (you can have

range or regular expression searches, as long as you are willing to suck in all the keys and

process them sequentially in a loop).

Another area in which Berkeley DBs are weak is administrative tasks. There are no

standard tools for browsing and (possibly) editing entries, with the consequence that you

have to write your own tools to do so. (Not hard but annoying.) Furthermore, Berkeley

DBs don’t maintain administrative information about themselves (such as the number of

records, most recent access times, and so on). The obvious solution—which I have seen

implemented in just about every project using a Berkeley DB—is to maintain this
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information explicitly and to store it in the DB under a special, synthetic key. All of this is

easy enough, but it does bring back some of the “boilerplate” code that we hoped to avoid

by using a Berkeley DB in the first place.

SQLite

In contrast to the Berkeley DB, SQLite (http://www.sqlite.org/) is a full-fledged relational

database, including tables, keys, joins, and WHERE clauses. You talk to it in the familiar

fashion through SQL. (In Python, you can use the DB-API 2.0 or one of the higher-level

frameworks built on top of it.)

SQLite supports almost all features found in standard SQL with very few exceptions. The

price you pay is that you have to design and define a schema. Hence SQLite has a bit more

overhead than a Berkeley DB: it requires some up-front design as well as a certain

amount of boilerplate code.

A simple example exercising many features of SQLite is shown in the following listing. It

should pose few (if any) surprises, but it does demonstrate some interesting features of

SQLite:

import sqlite3

# Connect and obtain a cursor

conn = sqlite3.connect( 'data.dbl' )

conn.isolation_level = None # use autocommit!

c = conn.cursor()

# Create tables

c.execute( """CREATE TABLE orders

( id INTEGER PRIMARY KEY AUTOINCREMENT,

customer )""" )

c.execute( """CREATE TABLE lineitems

( id INTEGER PRIMARY KEY AUTOINCREMENT,

orderid, description, quantity )""" )

# Insert values

c.execute( "INSERT INTO orders ( customer ) VALUES ( 'Joe Blo' )" )

id = str( c.lastrowid )

c.execute( """INSERT INTO lineitems ( orderid, description, quantity )

VALUES ( ?, 'Widget 1', '2' )""", ( id, ) )

c.execute( """INSERT INTO lineitems ( orderid, description, quantity )

VALUES ( ?, 'Fidget 2', '1' )""", ( id, ) )

c.execute( """INSERT INTO lineitems ( orderid, description, quantity )

VALUES ( ?, 'Part 17', '5' )""", ( id, ) )

c.execute( "INSERT INTO orders ( customer ) VALUES ( 'Jane Doe' )" )

id = str( c.lastrowid )
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c.execute( """INSERT INTO lineitems ( orderid, description, quantity )

VALUES ( ?, 'Fidget 2', '3' )""", ( id, ) )

c.execute( """INSERT INTO lineitems ( orderid, description, quantity )

VALUES ( ?, 'Part 9', '2' )""", ( id, ) )

# Query

c.execute( """SELECT li.description FROM orders o, lineitems li

WHERE o.id = li.orderid AND o.customer LIKE '%Blo'""" )

for r in c.fetchall():

print r[0]

c.execute( """SELECT orderid, sum(quantity) FROM lineitems

GROUP BY orderid ORDER BY orderid desc""" )

for r in c.fetchall():

print "OrderID: ", r[0], "\t Items: ", r[1]

# Disconnect

conn.close()

Initially, we “connect” to the database—if it doesn’t exist yet, it will be created. We specify

autocommit mode so that each statement is executed immediately. (SQLite also supports

concurrency control through explicit transaction.)

Next we create two tables. The first column is specified as a primary key (which implies

that it will be indexed automatically) with an autoincrement feature. All other columns

do not have a data type associated with them, because basically all values are stored in

SQLite as strings. (It is also possible to declare certain type conversions that should be

applied to the values, either in the database or in the Python interface.)

We then insert two orders and some associated line items. In doing so, we make use of a

convenience feature provided by the sqlite3 module: the last value of an

autoincremented primary key is available through the lastrowid attribute (data member)

of the current cursor object.

Finally, we run two queries. The first one demonstrates a join as well as the use of SQL

wildcards; the second uses an aggregate function and also sorts the result set. As you can

see, basically everything you know about relational databases carries over directly to

SQLite!

SQLite supports some additional features that I have not mentioned. For example, there is

an “in-memory” mode, whereby the entire database is kept entirely in memory: this can

be very helpful if you want to use SQLite as a part of a performance-critical application.

Also part of SQLite is the command-line utility sqlite3, which allows you to examine a

database file and run ad hoc queries against it.

I have found SQLite to be extremely useful—basically everything you expect from a

relational database but without most of the pain. I recommend it highly.
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Further Reading
• Information Dashboard Design: The Effective Visual Communication of Data. Stephen Few.

O’Reilly. 2006.

This book addresses good graphical design of dashboards and reports. Many of the

author’s points are similar in spirit to the recommendations in this chapter. After

reading his book, you might consider hiring a graphic or web designer to design your

reports for you!
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C H A P T E R S E V E N T E E N

Financial Calculations and Modeling

I RECENTLY RECEIVED A NOTICE FROM A MAGAZINE REMINDING ME THAT MY SUBSCRIPTION WAS RUNNING OUT.

It’s a relatively expensive weekly magazine, and they offered me three different plans to

renew my subscription: one year (52 issues) for $130, two years for $220, or three years

for $275. Table 17-1 summarizes these options and also shows the respective cost per

issue.

T A B L E 17 -1. Pricing plans for a magazine subscription

Subscription Total price Price per issue

Single issue n/a 6.00
1 year 130 2.50
2 years 220 2.12
3 years 275 1.76

Assuming that I want to continue the subscription, which of these three options makes

the most sense? From Table 17-1, we can see that each issue of the magazine becomes

cheaper as I commit myself to a longer subscription period, but is this a good deal? In fact,

what does it mean for a proposal like this to be a “good deal”? Somehow, stomping up

nearly three hundred dollars right now seems like a stretch, even if I remind myself that it

saves me more than half the price on each issue.

This little story demonstrates the central topic of this chapter: the time value of money,

which expresses the notion that a hundred dollars today are worth more than a hundred

dollars a year from now. In this chapter, I shall introduce some standard concepts and
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calculational tools that are required whenever we need to make a choice between

different investment decisions—whether they involve our own personal finances or the

evaluation of business cases for different corporate projects.

I find the material in this chapter fascinating—not because it is rocket science (it isn’t) but

because it is so fundamental to how the economy works. Yet very few people, in

particular, very few tech people, have any understanding of it. (I certainly didn’t.) This is a

shame, not just because the topic is obviously important but also because it is not really all

that mystical. A little familiarity with the basic concepts goes a long way toward removing

most of the confusion (and, let’s face it, the intimidation) that many of us experience

when reading the Wall Street pages.

More important in the context of this book is that a lot of data analysis is done specifically

to evaluate different business proposals and to support decisions among them. To be able

to give effective, appropriate advice, you want to understand the concepts and

terminology of this particular problem domain.

The Time Value of Money

Let’s return to the subscription problem. The essential insight is that—instead of paying

for the second and third year of the subscription now—I could invest that money, reap the

investment benefit, and pay for the subsequent years of the subscription later. In other

words, the discount offered by the magazine must be greater than the investment income I

can expect if I were instead to invest the sum.

It is this ability to gain an investment benefit that makes having money now more

valuable than having the same amount of money later. Note well that this has nothing to

do with the concept of inflation, which is the process by which a certain amount of money

tends to buy a lesser amount of goods as time passes. For our purposes, inflation is an

external influence over which we have no control. In contrast, investment and

purchasing decisions (such as the earlier magazine subscription problem) are under our

control, and time value of money calculations can help us make the best possible decisions

in this regard.

A Single Payment: Future and Present Value

Things are easiest when there is only a single payment involved. Imagine we are given the

following choice: receive $1,000 today, or receive $1,050 a year from now. Which one

should we choose?

Well, that depends on what we could do with $1,000 right now. For this kind of analysis,

it is customary to assume that we would put the money in a “totally safe form of
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investment” and use the returns generated in this way as a benchmark for comparison.*

Now we can compare the alternatives against the interest that would be generated by this

“safe” investment. For example, assume that the current interest rate that we could gain

on a “safe” investment is 5 percent annually. If we invest $1,000 for a full year, then at the

year’s end, we will receive back our principal ($1,000) and, in addition, the accrued

interest (0.05 · $1000 = $50), for a total of $1,050.

In this example, both options lead to the same amount of money after one year; we say

that they are equivalent. In other words, receiving $1,000 now is equivalent to receiving

$1,050 a year from now, given that the current interest rate on a safe form of investment is

5 percent annually. Equivalence always refers to a specific time frame and interest rate.

Clearly, any amount of money that we now possess has a future value (or future worth) at

any point in the future; likewise, a payment that we will receive at some point in the

future has a present value (or present worth) now. Both values depend on the interest rate

that we could achieve by investing in a safe alternative investment instead. The present or

future values must be equivalent at equal times.

There is a little bit of math behind this that is not complicated but is often a little messy.

The future value V f of some base amount M (the principal), after a single time period

during which the amount earns p percent of interest, is calculated as follows:

V f = M + p

100
M

=
(

1 + p

100

)
M

The first term on the righthand side expresses that we get our principal back, and the

second term is the amount of interest we receive in addition. Here and in what follows, I

explicitly show the denominator 100 that is used to translate a statement such as “p

percent” into the equivalent numerical factor p/100.

Conversely, if we want to know how much a certain amount of money in the future is

worth today, then we have to discount that amount to its present value. To find the present

value, we work the preceding equation backward. The present value Vp is unknown, but

we do know the amount of money M that we will have at some point in the future, hence

the equation becomes:

M =
(

1 + p

100

)
Vp

This can be solved for Vp:

Vp = M

1 + p
100

*This used to mean investing in U.S. Treasury Bonds or the equivalent, but at the time of this writing,
even these are no longer considered sacrosanct. But that’s leaving the scope of this discussion!
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Note how we find the future or present value by multiplying the base amount by an

appropriate equivalencing factor—namely, the future-worth factor 1 + p/100 and the

present-worth factor 1/(1 + p/100). Because most such calculations involve discounting a

future payment to the present value, the percentage rate p used in these formulas is

usually referred to as the discount rate.

This example was the simplest possible because there was only a single payment

involved—either at the beginning or at the end of the period under consideration. Next,

we look at scenarios where there are multiple payments occurring over time.

Multiple Payments: Compounding

Matters become a bit more complicated when there is not just a single payment involved

as in the example above but a series of payments over time. Each of these payments must

be discounted by the appropriate time-dependent factor, which leads us to cash-flow

analysis. In addition, payments made or received may alter the base amount on which we

operate, this leads to the concept of compounding.

Let’s consider compounding first, since it is so fundamental. Again, the idea is simple: if

we put a sum of money into an interest-bearing investment and then reinvest the

generated interest, we will start to receive interest on the interest itself. In other words,

we will start receiving compound interest.

Here is how it works: we start with principal M and invest it at interest rate p. After one

year, we have:

V (1) =
(

1 + p

100

)
M

In the second year, we receive interest on the combined sum of the principal and the

interest from the first year:

V (2) =
(

1 + p

100

)
V (1)

=
(

1 + p

100

)2
M

and so on. After n years, we will have:

V (n) =
(

1 + p

100

)n
M

These equations tell us the future worth of our investment at any point in time. It works

the other way around, too: we can determine the present value of a payment that we

expect to receive n years from now by working the equations backward (much as we did

previously for a single payment) and find:

V (present) = M(
1 + p

100

)n
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We can see from these equations that, if we continue to reinvest our earnings, then the

total amount of money grows exponentially with time (i.e., as at for some constant a)—in

other words, fast. The growth law that applies to compound interest is the same that

describes the growth of bacteria cultures or similar systems, where at each time step new

members are added to the population and start producing offspring themselves. In such

systems, not only does the population grow, but the rate at which it grows is constantly

increasing as well.

On the other hand, suppose you take out a loan without making payments and let the

lender add the accruing interest back onto your principal. In this case, you not only get

deeper into debt every month, but you do so at a faster rate as time goes by.

Calculational Tricks with Compounding

Here is a simple trick that is quite convenient when making approximate calculations

of future and present worth. The single-payment formula for future worth,

V = (1 + p/100)M , is simple and intuitive: the principal plus the interest after one period.

In contrast, the corresponding formula for present worth V = M
1+p/100 , seems to make less

intuitive sense and is harder to work with (how much is $1,000 divided by 1.05?). But

this is again one of those situations where guesstimation techniques (see Chapter 7; also

see Appendix B) can be brought to bear. We can approximate the discounting factor as

follows:

1

1 + p
100

≈ 1 − p

100
+

( p

100

)2
∓ · · ·

Since p is typically small (single digits), it follows that p/100 is very small, and so we can

terminate the expansion after the first term. Using this approximation, the discounting

equation for the present worth becomes V = (1 − p/100)M , which has an intuitive

interpretation: the present value is equal to the future value, less the interest that we will

have received by then.

We can use similar formulas even in the case of compounding, since:

(
1 + p

100

)n
≈ 1 + n

p

100
+ · · ·

(
1 + p

100

)−n
≈ 1 − n

p

100
+ · · ·

However, keep in mind that the overall perturbation must be small for the approximation

to be valid. In particular, as the number of years n grows, the perturbation term np/100

may no longer be small. Still, even for 5 percent over 5 years, the approximation gives

1 ± 25/100 = 1.25 or 0.75, respectively. Compare this with the exact values of 1.28 and

0.79. However, for 10 percent over 10 years, the approximation starts to break down,

yielding 2 and 0, respectively, compared to the exact values of 2.59 and 0.39.
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Similar logic is behind “Einstein’s Rule of 72.” This rule of thumb states that if you divide

72 by the applicable interest rate, you obtain the number of years it would take for your

investment to double. So if you earn 7 percent interest, your money will double in 10

years, but if you only earn 3.5 percent, it will take 20 years to double.

What’s the basis for this rule? By now, you can probably figure it out yourself, but here is

the solution in a nutshell: for your investment to double, the compounding factor must

equal 2. Therefore, we need to solve (1 + p/100)n = 2 for n. Applying logarithms on both

sides we find n = log(2)/ log(1 + p/100). In a second step, we expand the logarithm in the

denominator (remember that p/100 is a small perturbation!) and end up with

n = log(2) · (100/p) = 69/p, since the value of log(2) is approximately 0.69. The number

69 is awkward to work with, so it is usually replaced by the number 72—which has the

advantage of being evenly divisible by 2, 3, 4, 6, 8, and 9 (you can replace 72 with 70 for

interest rates of 5 or 7 percent).

Here is another calculational tool that you may find useful. Strictly speaking, an

expression such as xn is defined only for integer n. For general exponents, the power

function is defined as xn = exp(n log x). We can use this when calculating compounding

factors as follows:
(

1 + p

100

)n
= exp (n log (1 + p/100))

≈ enp/100

where in the second step we have expanded the logarithm again and truncated the

expansion after the first term. This form of the compounding factor is often convenient

(e.g., it allows us to use arbitrary values for the time period n, not just full years). It

becomes exact in the limit of continuous compounding (discussed shortly).

Interest rates are conventionally quoted “per year,” as in “5 percent annually.” But

payments may occur more frequently than that. Savings accounts, for example, pay out

any accrued interest on a monthly basis. That means that (as long as we don’t withdraw

anything) the amount of money that earns us interest grows every month; we say it is

compounded monthly. (This is in contrast to other investments, which pay out interest or

dividends only on a quarterly or even annual basis.) To take advantage of the additional

compounding, it is of course in our interest (pun intended) to receive payments as early as

possible.

This monthly compounding is the reason for the difference between the nominal interest

rate and the annual yield that you will find stated on your bank’s website: the nominal

interest rate is the rate p that is used to determine the amount of interest paid out to you

each month. The yield tells you by how much your money will grow over the course of

the year when the monthly compounding has been factored in. With our knowledge, we

can now calculate the yield from the nominal rate:

(
1 + pyield

100

)
=

(
1 +

pnominal
12

100

)12
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One more bit of terminology: the interest rate p/12 that is used to determine the value of

the monthly payout is known as the effective interest rate.

Of course, other payment periods are possible. Many mutual funds pay out quarterly. In

contrast, many credit cards compound daily. In theory, we can imagine payments being

made constantly (but at an appropriately reduced effective interest rate); this is the case of

continuous compounding mentioned earlier. In this case, the compounding factor is given by

the exponential function. (Mathematically, you replace the 12 in the last formula by n and

then let n go to infinity, using the identity limn→∞(1 + x/n)n = exp(x).)

The Whole Picture: Cash-Flow Analysis and Net Present Value

We now have all the tools at our disposal to evaluate the financial implications of any

investment decision, no matter how complicated. Imagine we are running a

manufacturing plant (or perhaps an operation like Amazon’s, where books and other

goods are put into boxes and mailed to customers—that’s how I learned about all these

things). We may consider buying some piece of automated equipment for some part of the

process (e.g., a sorting machine that sorts boxes onto different trucks according to their

destination). Alternatively, we can have people do the same job manually. Which of these

two alternatives is better from an economic point of view?

The manual solution has a simple structure: we just have to pay out the required wages

every year. If we decide to buy the machine, then we have to pay the purchase price now

(this is also known as the first cost) and also pay a small maintenance fee each year. For the

sake of the argument, assume also that we expect to use the machine for ten years and

then sell it on for scrap value.

In economics texts, you will often find the sequence of payments visualized using

cash-flow diagrams (see Figure 17-1). Time progresses from left to right; inflows are

indicated by upward-pointing arrows and outflows by downward-pointing arrows.

To decide between different alternatives, we now proceed as follows:

1. Determine all individual net cash flows (net cash flows, because we offset annual costs

against revenues).

2. Discount each cash flow to its present value.

3. Add up all contributions.

The quantity obtained in the last step is known either as the net present value (NPV) or the

discounted net cash flow: it is the total value of all cash flows, each properly discounted to its

present value. In other words, our financial situation will be the same, whether we

execute the entire series of cash flows or receive the net present value today. Because the

net present value contains all inflows and outflows (properly discounted to the present

value), it is a comprehensive single measure that can be used to compare the financial

outcomes of different investment strategies.
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Automated Solution

Manual Solution

F I G U R E 17-1. Examples of cash-flow diagrams. Arrows pointing up correspond to money received; arrows pointing down,
to money spent.

We can express the net present value of a series of cash flows in a single formula:

NPV =
∑

i

c(i)

(1 + p/100)i

where c(i) is the net cash flow at payment period i and 1/(1 + p/100)i is the associated

discounting factor.

There is one more concept that is interesting in this context. What should we use for the

discount rate p in the second step above? Instead of supplying a value, we can ask how

much interest we would have to receive elsewhere (on a “safe” investment) to obtain the

same (or higher) payoff than that expected from the planned project. Let’s consider an

example. Assume we are evaluating a project that would require us to purchase some

piece of equipment at the beginning but that would then result in a series of positive cash

flows over the next so many years. Is this a “good” investment? It is if its net present value

is positive! (That’s pretty much the definition of “net present value”: the NPV takes into

account the first cost to purchase the equipment as well as the subsequent positive cash

flows. If the discounted cash flows are greater than the first cost, we come out ahead.) But

the net present value depends on the discount rate p, so we need to find that value of p

for which the NPV first becomes zero: if we can earn a higher interest rate elsewhere, then

the project does not make financial sense and we should instead take our money to the

bank. But if the bank would pay us less than the rate of return just calculated, then the

project is financially the better option. (To find a numeric value for the rate of return, plug

your cash flow structure c(i) into the equation for NPV and then solve for p. Unless the

cash flows are particularly simple, you will have to do this numerically.)
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The net present value is such an important criterion when making investment decisions

because it provides us with a single number that summarizes the financial results of any

planned project. It gives us an objective (financial) quantity to decide among different

investment alternatives.

Up to a point, that is. The process described here is only as good as its inputs. In particular,

we have assumed that we know all inputs perfectly—possibly for many years into the

future. Of course we don’t have perfect knowledge, and so we better accommodate for

that uncertainty somehow. That will be the topic of the next section.

There is another, more subtle problem when evaluating different options solely based on

net present value: different investment alternatives may have nonfinancial benefits or

drawbacks that are not captured by the net present value. For example, using manual

labor may lead to greater flexibility: if business grows more strongly than expected, then

the company can hire additional workers, and if business slows down, then it can reduce

the number of workers. In contrast, any piece of equipment has a maximum capacity,

which may be a limiting factor if business grows more strongly than expected. The

distinction arising here is that between fixed and variable cost, and we will come back to it

toward the end of the chapter.

Uncertainty in Planning and Opportunity Costs

Now we are ready to revisit the magazine subscription problem from the beginning of this

chapter. Let’s consider only two alternatives: paying the entire amount for a two-year

subscription up front or making two single-year payments. The NPV for the second option

is (1 + 1/(1 + p/100)) C1yr, where we have left the discount rate p undetermined for the

moment. We can now ask: what interest rate would we have to earn elsewhere to make

the second option worthwhile? In other words, we want to know the discount rate we’d

have to apply to make the NPV of the multiple-payment option equal to the cost of the

single-payment plan:
(

1 + 1

1 + p
100

)
C1yr = C2yr

This equation can be solved for p. The result is p = 30 percent! In other words, the

two-year subscription is so much cheaper that we would have to find an investment

yielding 30 percent annually before it would be worthwhile to pay for the subscription

year by year and invest the saved money elsewhere. No investment (and certainly no

“safe” investment) yields anywhere near that much. Clearly, something is amiss. (Exercise

for the reader: find the net present value for the three-year subscription and verify that it

leads to the same value for p.)

Using Expectation Values to Account for Uncertainty

The two- and three-year plans carry a hidden cost for us: once we have signed up, we can

no longer freely decide over our money—we’re committed ourselves for the long haul. In
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contrast, if we pay on a yearly basis, then we can reevaluate every year whether we want

to continue the subscription. The price for this freedom is a higher subscription fee.

However, we will probably not find it easy to determine the exact dollar value that this

freedom is worth to us.

From the magazine’s perspective, the situation is simpler. They can simply ask how much

money they expect to make from an individual subscriber under either option. If I sign up

for the two-year subscription, they make C2yr with certainty; if I sign up for the one-year

subscription, they make C1yr with certainty now and another C1yr later—provided I renew

my subscription! In this case, then, the amount of money the magazine expects to make

on me is C1yr + γ C1yr, where γ is the probability that I will renew the subscription. From

the magazine’s perspective, both options must be equally favorable (otherwise they would

adjust the price of the two-year subscription to make them equal), so we can equate the

expected revenues and solve for γ . The result comes out to about γ = 0.7—in other

words, the magazine expects (based on past experience, and so on) that about 70 percent

of its current subscribers will renew their subscription. For three years, the equation

becomes (1 + γ + γ 2)C1yr = C3yr because, to sign up for three years, a subscriber must

decide twice to renew the subscription. If you work through the algebra, you will find that

γ again comes out to about γ = 0.7, providing a nice consistency check.

There are two takeaways in this example that are worth emphasizing: the first concerns

making economic decisions that are subject to uncertainty. The second is the concept of

opportunity cost, which is the topic of the following section.

When making economic decisions that are subject to uncertainty, you may want to take

this uncertainty into account by replacing the absolute cash flows with their expected

values. A simple probability model for the likely payout is often sufficient. In the

magazine example there were just two outcomes: the subscriber renews with probability

γ = 0.7 and value C1yr, or the subscriber does not renew with probability γ = 0.3 and

value 0, hence the expected value is 0.3 · 0 + 0.7 · C1yr. If your situation warrants it and if

you can specify the probability distribution for various payout alternatives in more detail,

then you can calculate the expected value accordingly. (See Chapter 8 and Chapter 9 for

more information on how to build models to support this kind of conclusion.)

Working with expectation values is convenient, because once you have determined the

expected value of the payout, you no longer need to worry about the probabilities for the

various outcomes: they have been entirely absorbed into the expectation values. What

you lose is insight into the probable spread of outcomes. For a quick order-of-magnitude

check, that’s acceptable, but for a more serious study, an estimate of the spread should be

included. There are two ways to do this: repeat your calculation multiple times using

different values (low, medium, high) for the expected payouts at every step to develop a

sense for the range of possible outcomes. (If there are many different options, you may

want to do this through simulation; see Chapter 12.) Alternatively, you can evaluate both
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the expectation value and the spread directly from the probability distribution to obtain a

range for each estimated value: μ ± σ . Now you can use this sum in your calculations,

treating σ as a small perturbation and evaluate the effect of this perturbation on your

model (see Chapter 7).

Opportunity Costs

The second point that I would like to emphasize is the concept of opportunity cost.

Opportunity costs arise when we miss out on some income (the “opportunity”) because

we were not in a position to take advantage of it. Opportunity costs formalize the notion

that resources are finite and that, if we apply them to one purpose, then those resources

are not available for other uses. In particular, if we commit resources to a project, then we

want that project to generate a benefit greater than the opportunity costs that arise,

because those resources are no longer available for other uses.

I find it easiest to think about opportunity cost in the context of certain business

situations. For instance, suppose a company takes on a project that pays $15,000. While

this contract is under way, someone else offers the company a project that would pay

$20,000. Assuming that the company cannot break its initial engagement, it is now

incurring an opportunity cost of $5,000.

I find the concept of opportunity cost useful as a way to put a price on alternatives,

particularly when no money changes hands. In textbooks, this is often demonstrated by

the example of the student who takes a trip around the world instead of working at a

summer job. Not only does the student have to pay the actual expenses for the trip but

also incurs an opportunity cost equal to the amount of forgone wages. The concept of

opportunity cost allows us to account for these forgone wages, which would otherwise be

difficult because they do not show up on any account statement (since they were never

actually paid).

On the other hand, I often find opportunity cost a somewhat shadowy concept because it

totally hinges on a competing opportunity actually arising. Imagine you try to decide

between two opportunities: an offer for a project that would pay $15,000 and the prospect

of a project paying $20,000. If you take the first job and then the second opportunity

comes through as well, you are incurring an opportunity cost of $5,000. But if the second

project falls through, your opportunity cost just dropped to zero! (The rational way to

make this decision would be to calculate the total revenue expected from each prospect

but weighted by the probability that the contract will actually be signed. This brings us back

to calculations involving expected payouts, as discussed in the preceding section.)

To be clear: the concept of opportunity cost has nothing to do with uncertainty in

planning. It is merely a way to evaluate the relative costs of competing opportunities.

However, when evaluating competing deals, we must often decide between plans that

have a different likelihood of coming to fruition, and therefore opportunity cost and

planning for uncertainty often arise together.
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Cost Concepts and Depreciation

The methods described in the previous sections might suggest that the net present value is

all there is to financial considerations. This is not so—other factors may influence our

decision. Some factors are entirely outside the financial realm (e.g., ethical or strategic

considerations); others might have direct business implications but are not sufficiently

captured by the quantities we have discussed so far.

For example, let’s go back to the situation discussed earlier where we considered the

choice between two alternatives: buying a sorting machine or having the same task

performed manually. Once we identify all arising costs and discount them properly to

their present value, it would seem we have accounted for all financial implications. But

that would be wrong: the solution employing manual labor is more flexible, for instance.

If the pace of the business varies over the course of the year, then we need to buy a

sorting machine that is large enough to handle the busiest season—which means it will be

underutilized during the rest of the year. If we rely on manual labor, then we can more

flexibly scale capacity up through temporary labor or overtime—and we can likewise

respond to unexpectedly strong (or weak) growth of the overall business more flexibly,

again by adjusting the number of workers. (This practice may have further

consequences—for example, regarding labor relations.) In short, we need to look at the

costs, and how they arise, in more detail.

To understand the cost structure of a business or an operation better, it is often useful to

discuss it in terms of three pairs of complementary concepts:

1. Direct versus indirect cost

2. Fixed versus variable cost

3. Capital expenditure versus operating cost

For good measure, I’ll also throw in the concept of depreciation, although it is not a cost in

the strict sense of the word.

Direct and Indirect Costs

Labor and materials that are applied in creating the product (i.e., in the creation of

something the company will sell) are considered direct labor or direct materials cost.

Indirect costs, on the other hand, arise from activities that the company undertakes to

maintain itself : management, maintenance, and administrative tasks (payroll and

accounting) but also training, for example. Another term for such indirect costs is overhead.

I should point out that this is a slightly different definition of direct and indirect costs than

the one you will find in the literature. Most textbooks define direct cost as the cost that is

“easily attributable” to the production process, whereas indirect cost is “not easily

attributable.” This definition makes it seem as if the distinction between direct and
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indirect costs is mostly one of convenience. Furthermore, the textbook definition provides

no reason why, for example, maintenance and repair activities are usually considered

indirect costs. Surely, we can keep track of which machine needed how much repair and

therefore assign the associated cost to the product made on that specific machine. On the

other hand, by my definition, it is clear that maintenance should be considered an indirect

cost because it is an activity the company undertakes to keep itself in good order—not to

generate value for the customer.

I have used the term “product” for whatever the company is selling. For manufacturing or

retail industries this is a straightforward concept, but for a service industry the “product”

may be intangible. Nevertheless, in probably all businesses we can introduce the concept

of a single produced unit or unit of production. In manufacturing and retail there are actual

“units,” but in other industries the notion of a produced unit is a bit more artificial: in

service industries, for instance, one often uses “billable hours” as a measure of production.

Other industries have specialized conventions: the airline industry uses “passenger miles,”

for example.

The unit is an important concept because it is the basis for the most common measure of

productivity—namely the unit cost or cost per unit (CPU). The cost per unit is obtained by

dividing the total (dollar) amount spent during a time period (per month, for instance) by

the total number of units produced during that time. If we include not only the direct cost

but also the indirect cost in this calculation, we obtain what is called the loaded or burdened

cost per unit.

We can go further and break out the various contributions to the unit cost. For example, if

there are multiple production steps, then we can determine how much each step

contributes to the total cost. We can also study how much indirect costs contribute to the

overall cost as well as how material costs relate to labor. Understanding the different

contributions to the total cost per unit is often a worthwhile exercise because it points

directly to where the money is spent. And appearances can be deceiving. I have seen

situations where literally hundreds of people were required for a certain processing step

whereas, next door, a single person was sufficient to oversee a comparable but highly

automated process. Yet once you calculated the cost per unit, it all looked very different:

because the number of units going through the automated process was low, its total cost

per unit was actually higher than for the manual process. And because so many units

where processed manually, their labor cost per unit turned out to be very low.

In general, it is desirable to have low overhead relative to the direct cost: a business

should spend relatively less time and money on managing itself than on generating value

for the customer. In this way, the ratio of direct to indirect cost can be a telling indicator

for “top-heavy” organizations that seem mostly occupied with managing themselves. On

the other hand, overeager attempts to improve the direct/indirect cost ratio can lead to

pretty unsanitary manipulations. For example, imagine a company that considers

software engineers direct labor, while any form of management (team leads and project
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managers) is considered indirect. The natural consequence is that management

responsibilities are pushed onto developers to avoid “indirect” labor. Of course, this does

not make these tasks go away; they just become invisible. (It also leads to the inefficient

use of a scarce resource: developers are always in short supply—and they are expensive.)

In short, beware the danger of perverted incentives!

Fixed and Variable Costs

Compared to the previous distinction (between direct and indirect costs), the distinction

between fixed and variable costs is clearer. The variable costs are those that change in

response to changing demand, while fixed costs don’t. For a car manufacturer, the cost of

steel is a variable cost: if fewer cars are being built, less steel is consumed. Whether labor

costs are fixed or variable depends on the type of labor and the employment contracts.

But the capital cost for the machines in the production line is a fixed cost, because it has

to be paid regardless of whether the machines are busy or idle.

It is important not to confuse direct and variable costs. Although direct costs are more

likely to be variable (and overhead, in general, is fixed), these are unrelated concepts; one

can easily find examples of fixed, yet direct costs. For example, consider a consultancy

with salaried employees: their staff of consultants is a direct cost, yet it is also a fixed cost

because the consultants expect their wages regardless of whether the consultancy has

projects for them or not. (We’ll see another example in a moment.)

In general, having high fixed costs relative to variable ones makes a business or industry

less flexible and more susceptible to downturns. An extreme example is the airline

industry: its cost structure is almost exclusively fixed (pretty much the only variable cost is

the price of the in-flight meal), but its demand pattern is subject to extreme cyclical

swings.

The numbers are interesting. Let’s do a calculation in the spirit of Chapter 7. A modern jet

airplane costs about $100M new and has a useful service life of about 10 years. The cost

attributable to a single 10-hour transatlantic flight (the depreciation—see below) comes to

about $30k (i.e., $100M/(10 · 365)—half that, if the plane is turned around immediately,

completing a full round-trip within 24 hours). Fuel consumption is about 6 gallons per

mile; if we assume a fuel price of $2 per gallon, then the 4,000-mile flight between New

York and Frankfurt (Germany) will cost $50k for fuel. Let’s say there are 10 members of

the cabin crew at $50k yearly salary and two people in the cockpit at $150k each. Double

these numbers for miscellaneous benefits, and we end up with about $2M in yearly labor

costs, or $10k attributable to this one flight. In contrast, the cost of an in-flight meal

(wholesale) is probably less than $10 per person. For a flight with 200 passengers, this

amounts to $1,000–2,000 dollars total. It is interesting to see that—all things

considered—the influence of the in-flight meal on the overall cost structure of the flight is

as high as it is: about 2 percent of the total. In a business with thin margins, improving

profitability by 2 percent is usually seen as worthwhile. In other words, we should be
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grateful that we get anything at all! A final cross-check: the cost per passenger for the

entire flight from the airline’s point of view is $375—and at the time of this writing, the

cheapest fare I could find was $600 round-trip, equivalent to $300 for a single leg. As is

well known, airlines break even on economy class passengers but don’t make any profits.

Capital Expenditure and Operating Cost

Our final distinction is the one between capital expenditure (CapEx) and operating expense

(OpEx—the abbreviation is rarely used). Capital expenses are money spent to purchase

long-lived and typically tangible assets: equipment, installations, real estate. Operating

expenses are everything else: payments for rents, raw materials, fees, salaries. In most

companies, separate budgets exist for both types of expense, and the availability of funds

may be quite different for each. For example, in a company that is financially strapped but

does have a revenue stream, it might be quite acceptable to hire and “throw people” at a

problem (even at great cost), but it might very well be impossible to buy a piece of

equipment that would take care of the problem for good. Conversely, in companies that

do have money in the bank, it is often easier to get a lump sum approved for a specific

purchase than to hire more people or to perform maintenance. Decision makers often are

more inclined to approve funding for an identifiable and visible purchase than for

spending money on “business as usual.” Political and vanity considerations may play a

role as well.

The distinction between CapEx and operating costs is important because, depending on

the availability of funds from either source, different solutions will be seen as feasible. (I

refer to such considerations as “color of money” issues—although all dollars are green,

some are greener than others!)

In the context of capital expenditure, there is one more concept that I’d like to introduce

because it provides an interesting and often useful way of thinking about money: the

notion of depreciation.* The idea is this: any piece of equipment that we purchase will have

a useful service life. We can now distribute the total cost of that purchase across the entire

life of the asset. For example, if I purchase a car for $24,000 and expect to drive it for 10

years, then I can say that this car costs me $200 per month “in depreciation” alone and

before taking into account any operating costs (such as gas and insurance). I may want to

compare this number with monthly lease payment options on the same kind of vehicle.

In other words, depreciation is a formalized way of capturing how an asset loses value

over time. There are different standard ways to calculate it: “straight-line” distributes the

purchase cost (less any salvage value that we might expect to obtain for the asset at the end

*Do not confuse to depreciate, which is the process by which an asset loses value over time, with to
deprecate, which is an expression of disapproval. The latter word is used most often to mark certain
parts of a software program or library as deprecated, meaning that they should no longer be used in
future work.
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of its life) evenly over the service life. The “declining balance” method assumes that the

asset loses a certain constant fraction of its value every year. And so on. (Interestingly,

land is never depreciated—because it does not wear out in the way a machine does and

therefore does not have a finite service life.)

I find depreciation a useful concept, because it provides a good way to think about large

capital expenses: as an ongoing cost rather than as an occasional lump sum. But

depreciation is just that: a way of thinking. It is important to understand that depreciation

is not a cash flow and therefore does not show up in any sort of financial accounting.

What’s in the books is the money actually spent, when it is spent.

The only occasion where depreciation is treated as a cash flow is when it comes to taxes.

The IRS (the U.S. tax authority) requires that certain long-lived assets purchased for

business purposes be depreciated over a number of years, with the annual depreciation

counted as a business expense for that year. For this reason, depreciation is usually

introduced in conjunction with tax considerations. But I find the concept more generally

useful as a way to think about and account for the cost of assets and their declining value

over time.

Should You Care?

What does all this talk about money, business plans, and investment decisions have to do

with data analysis? Why should you even care?

That depends. If you take a purely technical stance, then all of these questions are outside

your area of competence and responsibility. That’s a valid position to take, and many

practitioners will make exactly that decision.

Personally, I disagree. I don’t see it as my job to provide answers to questions. I see it as my

responsibility to provide solutions to problems, and to do this effectively, I need to

understand the context in which questions arise, and I need to understand how answers

will be evaluated and used. Furthermore, when it comes to questions having to do with

abstract topics like data and mathematical modeling, I have found that few clients are in a

good position to ask meaningful questions. Coaching the client on what makes a good

question (one that is both operational for me and actionable for the client) is therefore a

large part of what I do—and to do that, I must understand and speak the client’s language.

There are two more reasons why I find it important to understand issues such as those

discussed in this (and the previous) chapter: to establish my own credibility and to provide

advice and counsel on the mathematical details involved.

The decision makers—that is, the people who request and use the results of a data analysis

study—are “business people.” They tend to see decisions as investment decisions and thus

will evaluate them using the methods and terminology introduced in this chapter. Unless I

understand how they will look at my results and unless I can defend my results in those
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terms, I will be on weak ground—especially since I am supposed to be “the expert.” I

learned this the hard way: once, while presenting the results of a rather sophisticated and

involved analysis, some MBA bully fresh out of business school challenged me with: “OK,

now which of these options has the best discounted net cash flow?” I had no idea what he

was talking about. I looked like an idiot. That did not help my credibility! (No matter how

right I was in everything else I was presenting.)

Another reason why I think it is important to understand the concepts in this chapter is

that the math can get a little tricky. This is why the standard textbooks resort to large

collections of precooked scenarios—which is not only confusing but can become

downright misleading if none of them fit exactly and people start combining several of the

standard solutions in ad hoc (and probably incorrect) ways. Often the most important skill

I bring to the table is basic calculus. In one place I worked for, which was actually staffed

by some of the smartest people in the industry, I discovered a problem because people did

not fully understand the difference between 1/x and −x . Of course, if you put it like this,

everybody understands the difference. But if you muddy the waters a little bit and present

the problem in the business domain setting in which it arose, it’s no longer so easy to see

the difference. (And I virtually guarantee you that nobody will understand why 1/(1 − x)

is actually close to 1 − x for small x , when 1/x is not equal −x .)

In my experience, the correct and meaningful application of basic math outside a purely

mathematical environment poses a nearly insurmountable challenge even for otherwise

very bright people. Understanding exactly what people are trying to do (e.g., in calculating

a total rate of return) allows me to help them avoid serious mistakes.

But in the end, I think the most important reason for mastering this material is to be able

to understand the context in which questions arise and to be able to answer those

questions appropriately with a sense for the purpose driving the original request.

Is This All That Matters?

In this chapter, we discussed several financial concepts and how to use them when

deciding between different business or investment options.

This begs the question: are these the only issues that matter? Should you automatically

opt for the choice with the highest net present value and be done with it?

Of course, the short answer is no. Other aspects matter and may even be more important

(strategic vision, sustainability, human factors, personal interest, commitment). What

makes these factors different is that they are intangible. You have to decide on them

yourself.

The methods and concepts discussed in this chapter deal specifically and exclusively with

the financial implications of certain decisions. Those concerns are important—otherwise,

you would not even be in business. But this focus should not be taken to imply that

financial considerations are the only ones that matter.
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F I G U R E 17-2. Simulation results for the newsvendor problem: total revenue as a function of the initial inventory, for
several values of the sales price c1. Also shown is the (theoretical) locus of the initial inventory size that leads to maximum
revenue.

However, I am in no better position than you to give advice on ethical questions. It’s up to

each of us individually—what kind of life do we want to live?

Workshop: The Newsvendor Problem

In this workshop, I’d like to introduce one more idea that is often relevant when dealing

with business plans and calculations on how to find the optimal price or, alternatively, the

optimal inventory level for some item. The basic problem is often presented in the

following terms.

Imagine you run a newsstand. In the morning, you buy a certain number n of newspapers

at price c0. Over the course of the day, you try to sell this inventory at price c1; anything

that isn’t sold in the evening is discarded (no salvage value). If you knew how many

papers you would actually sell during the course of the day (the demand m), then it would

be easy: you would buy exactly m papers in the morning. However, the demand is not

known exactly, although we know the probability p(k) of selling exactly k copies. The

question is: how many papers should you buy in the morning in order to maximize your

net earnings (the revenue)?

A first guess might be to use the average number of papers that we expect to sell—that is,

the mean of p(k). However, this approach may not be good enough: suppose that c1 is

much larger than c0 (so that your markup is high). In that case, it makes sense to

purchase more papers in the hope of selling them, because the gain from selling an
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additional paper outweighs the loss from having purchased too many. (In other words,

the opportunity cost that we incur if we have too few papers to satisfy all demand is greater

than the cost of purchasing the inventory.) The converse also holds: if the markup is

small, then each unsold paper significantly reduces our overall revenue.

This problem lends itself nicely to simulations. The listing that follows shows a minimal

program for simulating the newsvendor problem. We fix the purchase price c0 at $1 and

read the projected sales price c1 from the command line. For the demand, we assume a

Gaussian distribution with mean μ = 100 and standard deviation σ = 10. Now, for each

possible initial level of inventory n, we make 1,000 random trials. Each trial corresponds

to a single “day”; we randomly generate a level of demand m and calculate the resulting

revenue for that day. The revenue consists of the sales price for the number of units that

were actually sold less the purchase price for the inventory. You should convince yourself

that the number of units sold is the lesser of the inventory and the demand: in the first

case, we sold out; in the second case, we ended up discarding inventory. Finally, we

average all trials for the current level of starting inventory and print the average revenue

generated. The results are shown in Figure 17-2 for several different sales prices c1:

from sys import argv

from random import gauss

c0, c1 = 1.0, float( argv[1] )

mu, sigma = 100, 10

maxtrials = 1000

for n in range( mu-5*sigma, mu+5*sigma ):

avg = 0

for trial in range( maxtrials ):

m = int( 0.5 + gauss( mu, sigma ) )

r = c1*min( n, m ) - c0*n

avg += r

print c1, n, avg/maxtrials

Of course, the total revenue depends on the actual sales price—the higher the price, the

more we take home. But we can also see that, for each value of the sales price, the

revenue curve has a maximum at a different horizontal location. The corresponding value

of n gives us the optimal initial inventory level for that sales price. Thus we have achieved

our objective: we have found the optimal number of newspapers to buy at the beginning

of the day to maximize our earnings.

This simple idea can be extended in different ways. More complicated situations may

involve different types of items, each with its own demand distribution. How much of each

item should we hold in inventory now? Alternatively, we can turn the problem around by

asking: given a fixed inventory, what would be the optimal price to maximize earnings? To

answer this question, we need to know how the demand varies as we change the

price—that is, we need to know the demand curve, which takes the role of the demand

distribution in our example.
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Optional: Exact Solution

For this particular example, involving only a single type of product at a fixed price, we can

actually work out the optimum exactly. (This means that running a simulation wasn’t

strictly necessary in this case. Nevertheless, this is one of those cases where a simulation

may actually be easier to do and less error-prone than an analytical model. For more

complicated scenarios, such as those involving different types of items with different

demands, simulations are unavoidable.)

To solve this problem analytically, we want to find the optimum of the expected revenue.

The revenue—as we already saw in our example simulation program—is given by

r(m) = c1 min(n, m) − c0n

The revenue depends on the demand m. However, the demand is a random quantity: all

that we know is that it is distributed according to some distribution p(m). The expected

revenue E[r(m)] is the average of the revenue over all possible values of m, where each

value is weighted by the appropriate probability factor:

E[r(m)] =
∫ ∞

0
r(m) p(m) dm

We can now plug in the previous expression for r(m), using the lesser of n and m in the

integral:

E[r(m)] = c1

∫ n

0
m p(m) dm + c1

∫ ∞

n
n p(m) dm − c0n

∫ ∞

0
p(m) dm

= c1

∫ n

0
m p(m) dm + c1n

(
1 −

∫ n

0
p(m) dm

)
− c0n

where we have made use of the fact that
∫ ∞

0 p(m) dm = 1 and that∫ n
0 p(m) dm + ∫ ∞

n p(m) dm = ∫ ∞
0 p(m) dm.

We now want to find the maximum of the expected revenue with respect to the initial

inventory level n. To locate the maximum, we first take the derivative with respect to n:

d

dn
E[r(m)] = c1 n p(n) + c1

(
1 −

∫ n

0
p(m) dm

)
− c1 n p(n) − c0

= c1 − c0 − c1

∫ n

0
p(m) dm

where we have used the product rule and the fundamental theorem of calculus:
d

dx

∫ x f (s) ds = f (x).

Next we equate the derivative to zero (that is the condition for the maximum) and

rearrange terms to find

∫ n

0
p(m) dm = 1 − c0

c1
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This is the final result. The lefthand side is the cumulative distribution function of the

demand, and the righthand side is a simple expression involving the ratio of the purchase

price and the sales price. Given the cumulative distribution function for the demand, we

can now find the value of n for which the cumulative distribution function equals

1 − c0/c1—that value of n is the optimal initial inventory level.

The lighter dotted line in Figure 17-2 shows the location of the optimum revenue

obtained by plugging the optimal inventory calculated in this way back into the

expression for the revenue. As we would expect, this line goes right through the peaks in

all the revenue curves. Notice that the maximum in the revenue curve occurs for n < 100

for c1 < 2.00: in other words, our markup has to be at least 100 percent, before it makes

sense to hold more inventory than the expected average demand. (Remember that we

expect to sell 100 papers on average.) If our markup is less than that, then we are

better-off selling our inventory out entirely, rather than having to discard some items. (Of

course, details such as these depend on the specific choice of the probability distribution

p(m) that is used to model the demand.)

Further Reading

If you want to read up on some of the details that I have (quite intentionally) skipped,

you should look for material on “engineering economics” or “engineering economic

analysis.” Some books that I have found useful include the following.

• Industrial Mathematics: Modeling in Industry, Science and Government. Charles R. MacCluer.

Prentice Hall. 1999.

In his preface, MacCluer points out that most engineers leaving school “will have no

experience with problems incorporating the unit $.” This observation was part of the

inspiration for this chapter. MacCluer’s book contains an overview over many more

advanced mathematical techniques that are relevant in practical applications. His

choice of topics is excellent, but the presentation often seems a bit aloof and too terse

for the uninitiated. (For instance, the material covered in this chapter is compressed

into only three pages.) Available as a 2010 Dover edition unter the title  

• Schaum’s Outline of Engineering Economics. Jose Sepulveda, William Souder, and Byron

Gottfried. McGraw-Hill. 1984.

If you want a quick introduction to the details left out of my presentation, then this

inexpensive book is a good choice. Includes many worked examples.

• Engineering Economy. William G. Sullivan, Elin M. Wicks, and C. Patrick Koelling.

14th ed., Prentice Hall. 2008.

Engineering Economic Analysis. Donald Newnan, Jerome Lavelle, and Ted Eschenbach.

10th ed., Oxford University Press. 2009.
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Principles of Engineering Economic Analysis. John A. White, Kenneth E. Case, and David

B. Pratt. 5th ed., Wiley. 2000.

Three standard, college-level textbooks that treat largely the same material on many

more pages.

The Newsvendor Problem

• Pricing and Revenue Optimization. Robert Phillips. Stanford Business Books. 2005.

Finding the optimal price for a given demand is the primary question in the field of

“revenue optimization.” This book provides an accessible introduction.

• Introduction to Operations Research. Frederick S. Hillier and Gerald J. Lieberman. 9th ed.,

McGraw-Hill. 2009.

The field of operations research encompasses a set of mathematical methods that are

useful for many problems that arise in a business setting, including inventory

management. This text is a standard introduction.
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C H A P T E R E I G H T E E N

Predictive Analytics

DATA ANALYSIS CAN TAKE MANY DIFFERENT FORMS—NOT ONLY IN THE TECHNIQUES THAT WE APPLY BUT ALSO

in the kind of results that we ultimately achieve. Looking back over the material that we

have covered so far, we see that the results obtained in Part I were mostly descriptive: we

tried to figure out what the data was telling us and to describe it. In contrast, the results in

Part II were primarily prescriptive: data was used as a guide for building models which

could then be used to infer or prescribe phenomena, including effects that had not

actually been observed yet. In this form of analysis, data is not used directly; instead it is

used only indirectly to guide (and verify) our intuition when building models.

Additionally, as I tried to stress in those chapters, we don’t just follow data blindly, but

instead we try to develop an understanding of the processes that generate the data and to

capture this understanding in the models we develop. The predictive power of such

models derives from this understanding we develop by studying data and the circumstances

in which it is generated.*

In this chapter, we consider yet another way to use data—we can call it predictive, since the

purpose will be to make predictions about future events. What is different is that now we

try to make predictions directly from the data without necessarily forming the kind of

conceptual model (and the associated deeper understanding of the problem domain) as

discussed in Part II. This difference is obviously both a strength and a weakness. It’s a

strength in that it enables us to deal with problems for which we have no hope of

developing a conceptual model, given the complexity of the situation. It is also a weakness

because we may end up with only a black-box solution and no deeper understanding.

*The techniques discussed in Part III are different: for the most part they were strictly computational
and can be applied to any purpose, depending on the context.
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There are technical difficulties also: this form of analysis tends to require huge data sets

because we are lacking the consistency and continuity guarantees provided by a

conceptual model. (We will come back to this point.)

Topics in Predictive Analytics

The phrase predictive analytics is a bit of an umbrella term (others might say: marketing

term) for various tasks that share the intent of deriving predictive information directly

from data. Three different specific application areas stand out:

Classification or supervised learning
Assign each record to exactly one of a set of predefined classes. For example, classify

credit card transactions as “valid” or “fraudulent.” Spam filtering is another example.

Classification is considered “supervised,” because the classes are known ahead of time

and don’t need to be inferred from the data. Algorithms are judged on their ability to

assign records to the correct class.

Clustering or unsupervised learning
Group records into clusters, where the size and shape—and often even the number—of

clusters is unknown. Clustering is considered “unsupervised,” because no information

about the clusters is available ahead of the clustering procedure.

Recommendation
Recommend a suitable item based on past interest or behavior. Recommendation can

be seen as a form of clustering, where you start with an anchor and then try to find

items that are similar or related to it.

A fourth topic that is sometimes included is time-series forecasting. However, I find that

it does not share many characteristics with the other three, so I usually don’t consider it

part of predictive analytics itself. (We discussed time-series analysis and forecasting in

Chapter 4.)

Of the three application areas, classification is arguably the most important and the best

developed; the rest of this chapter will try to give an overview over the most important

classification algorithms and techniques. We discussed unsupervised learning in Chapter

13 on clustering techniques—and I’ll repeat my impression that clustering is more an

exploratory than a predictive technique. Recommendations are the youngest branch of

predictive analytics and quite different from the other two. (There are at least two major

differences. First, on the technical side, many recommendation techniques boil down to

network or graph algorithms, which have little in common with the statistical techniques

used for classification and clustering. Second, recommendations tend to be explicitly about

predicting human behavior; this poses additional difficulties not shared by systems that

follow strictly deterministic laws.) For these reasons, I won’t have much to say about

recommendation techniques here.
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T A B L E 18 -1. The confusion matrix for a binary classification problem

Predicted: A Predicted: B

Actual: A Correct Incorrect

Actual: B Incorrect Correct

Let me emphasize that this chapter can serve only as an overview of classification. Entire

books could (and have!) been written about it. But we can outline the problem, introduce

some terminology, and give the flavor of different solution approaches.

Some Classification Terminology

We begin with a data set containing multiple elements, records, or instances. Each instance

consists of several attributes or features. One of the features is special: it denotes the record’s

class and is known as the class label. Each record belongs to exactly one class.

A large number of classification problems are binary, consisting only of two classes (valid

or fraudulent, spam or not spam); however, multiclass scenarios do also occur. Many

classification algorithms can deal only with binary problems, but this is not a real

limitation because any multiclass problem can be treated as a set of binary problems

(belongs to the target class or does belong to any other class).

A classifier takes a record (i.e., a set of attribute values) and produces a class label for this

record. Building and using a classifier generally follows a three-step process of training,

testing, and actual application.

We first split the existing data set into a training set and a test set. In the training phase, we

present each record from the training set to the classification algorithm. Next we compare

the class label produced by the algorithm to the true class label of the record in question;

then we adjust the algorithm’s “parameters” to achieve the greatest possible accuracy or,

equivalently, the lowest possible error rate. (Of course, the details of this “fitting” process

vary greatly from one algorithm to the next; we will look at different ways of how this is

done in the next section.)

The results can be summarized in a so-called confusion matrix whose entries are the number

of records in each category. (Table 18-1 shows the layout of a generic confusion matrix.)

Unfortunately, the error rate derived from the training set (the training error) is typically

way too optimistic as an indicator of the error rate the classifier would achieve on new

data—that is, on data that was not used during the learning phase. This is the purpose of

the test set: after we have optimized the algorithm using only the training data, we let the

classifier operate on the elements of the test set to see how well it classifies them. The

error rate obtained in this way is the generalization error and is a much more reliable

indicator of the accuracy of the classifier.
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F I G U R E 18-1. Overfitting: as a model becomes more complex, it becomes increasingly able to represent the training data.
However, such a model is overfitted and will not generalize well to data that was not used during training.

To understand the need for a separate testing phase (using a separate data set!), keep in

mind that as long as we use enough parameters (i.e., making the classifier more and more

complex) we can always tweak a classifier until it works very well on the training set. But

in doing so, we train the classifier to memorize every aspect of the training set, including

those that are atypical for the system in general. We therefore need to find the right level

of complexity for the classifier. On the one hand, if it is too simple, then it cannot

represent the desired behavior very well, and both its training and generalization error

will be poor; this is known as underfitting. On the other hand, if we make the classifier too

complex, then it will perform very well on the training set (low training error) but will

not generalize well to unknown data points (high generalization error); this is known as

overfitting. Figure 18-1 summarizes these concepts.

Once a classifier has been developed and tested, it can be used to classify truly new and

unknown data points—that is, data points for which the correct class label is not known.

(This is in contrast to the test set, where the class labels were known but not used by the

classifier when making a prediction.)

Algorithms for Classification

At least half a dozen different families of classification algorithms have been developed. In

this section, we briefly characterize the basic idea underlying each algorithm, emphasizing

how it differs from competing methods. The first two algorithms (nearest-neighbor and

Bayesian classifiers) are simpler, both technically and conceptually, than the other; I
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discuss them in more detail since you may want to implement them yourself. For the

other algorithms, you probably want to use existing libraries instead!

Instance-Based Classifiers and Nearest-Neighbor Methods

The idea behind instance-based classifiers is dead simple: to classify an unknown instance,

find an existing instance that is “most similar” to the new instance and assign the class

label of the known instance to the new one!

This basic idea can be generalized in a variety of ways. First of all, the notion of “most

similar” brings us back to the notion of distance and similarity measures introduced in

Chapter 13; obviously we have considerable flexibility in the choice of which distance

measure to use. Furthermore, we don’t have to stop at a single “most similar” existing

instance. We might instead take the nearest k neighbors and use them to classify the new

instance, typically by using a majority rule (i.e., we assign the new instance to the class that

occurs most often among the k neighbors). We could even employ a weighted-majority

rule whereby “more similar” neighbors contribute more strongly than those farther away.

Instance-based classifiers are atypical in that they don’t have a separate “training” phase;

for this reason, they are also known as “lazy learners.” (The only adjustable parameter is

the extent k of the neighborhood used for classification.) However, a (possibly large) set of

known instances must be kept available during the final application phase. For the same

reason, classification can be relatively expensive because the set of existing instances must

be searched for appropriate neighbors.

Instance-based classifiers are local: they do not take the overall distribution of points into

account. Additionally, they impose no particular shape or geometry on the decision

boundaries that they generate. In this sense they are especially flexible. On the other

hand, the are also susceptible to noise.

Finally, instance-based classifiers depend on the proper choice of distance measure, much

as clustering algorithms do. We encountered this situation before, when we discussed the

need for scale normalization in Chapters 13 and 14; the same considerations apply here as

well.

Bayesian Classifiers

A Bayesian classifier takes a probabilistic (i.e., nondeterministic) view of classification.

Given a set of attributes, it calculates the probability of the instance to belong to this or that

class. An instance is then assigned the class label with the highest probability.

A Bayesian classifier calculates a conditional probability. This is the probability of the

instance to belong to a specific class C , given the set of attribute values:

P(class C | {x1, x2, x3, . . . , xn})
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Here C is the class label, and the set of attribute values is {x1, x2, x3, . . . , xn}. Note that we

don’t yet know the value of the probability—if we did, we’d be finished.

To make progress, we invoke Bayes’ theorem (hence the name of the classifier—see also

Chapter 10 for a discussion of Bayes’ theorem) to invert this probability expression as

follows:

P(class C | {xi }) = P({xi } | class C) · P(class C)

P({xi })

where I have collapsed the set of n features into {xi } for brevity.

The first term in the numerator (the likelihood) is the probability of observing a set of

features {xi } if the instance belongs to class C (in the language of conditional probability:

given the class label C). We can find an empirical value for this probability from the set of

training instances: it is simply the frequency with which we observe the set of specific

attribute values {xi } among instances belonging to class C . Empirically, we can

approximate this distribution by a set of histograms of the {xi }, one for each class label. The

second term in the numerator, P(class C), is the prior probability of any instance

belonging to class C . We can estimate this probability from the fraction of instances in the

training set that belong to class C . The denominator does not depend on the class label

and—as usual with Bayesian computations—is ignored until the end, when the

probabilities are normalized.

Through the use of Bayes’ theorem, we have been able to express the probability for an

instance to belong to class C , given a set of features, entirely through expressions that can

be determined from the training set.

At least in theory. In practice, it will be almost impossible to evaluate this probability

directly. Look closely at the expression (now written again in its long form),

P({x1, x2, x3, . . . , xn} | class C). For each possible combination of attribute values, we must

have enough examples in our training set to be able to evaluate their frequency with

some degree of reliability. This is a combinatorial nightmare! Assume that each feature is

binary (i.e., it can take on one of only two values). The number of possible combinations is

then 2n , so for n = 5 we already have 32 different combinations. Let’s say we need about

20 example instances for each possible combination in order to evaluate the frequency,

then we’ll need a training set of at least 600 instances. In practice, the problem tends to be

worse because features frequently can take more than two values, the number of features

can easily be larger than five, and—most importantly—some combinations of features

occur much less frequently than others. We therefore need a training set large enough to

guarantee that even the least-frequent attribute combination occurs sufficiently often.

In short, the “brute force” approach of evaluating the likelihood function for all possible

feature combinations is not feasible for problems of realistic size. Instead, one uses one of

two simplifications.
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The naive Bayesian classifier assumes that all features are independent of each other, so that

we can write:

P({x1, x2, x3, . . . , xn} |C) = P(x1|C)P(x2|C)P(x3|C) · · · P(xn|C)

This simplifies the problem greatly, because now we need only determine the frequencies

for each attribute value for a single attribute at a time. In other words, each probability

distribution P(xi |C) is given as the histogram of a single feature xi , separately for each

class label. Despite their simplicity, naive Bayesian classifiers are often surprisingly

effective. (Many spam filters work this way.)

Another idea is to use a Bayesian network. Here we prune the set of all possible feature

combinations by retaining only those that have a causal relationship with each other.

Bayesian networks are best discussed through an example. Suppose we want to build a

classifier that predicts whether we will be late to work in the morning, based on three

binary features:

• Alarm clock went off: Yes or No

• Left the house on time: Yes or No

• Traffic was bad: Yes or No

Although we don’t assume that all features are independent (as we did for the naive

Bayesian classifier), we do observe that the traffic situation is independent of the other

two features. Furthermore, whether we leave the house on time does depend on the

proper working of the alarm clock. In other words, we can split the full probability:

P(Arrive on time | Alarm clock, Leave on time, Traffic)

into the following combination of events:

P(Arrive on time | Leave on time)

P(Leave on time | Alarm clock)

P(Arrive on time | Traffic)

Notice that only two of the terms give the probability for the class label (“Arrive on time”)

and that one gives the probability of an intermediate event (see Figure 18-2).

For such a small example (containing only three features), the savings compared with

maintaining all feature combinations are not impressive. But since the number of

combinations grows exponentially with the number of features, restricting our attention

to only those factors that have a causal relationship with each other can significantly

reduce the number of combinations we need to retain for larger problems.

The structure (or topology) of a Bayesian network is usually not inferred from the data;

instead, we use domain knowledge to determine which pathways to keep. This is exactly
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All Combinations

Alarm clock and Leave on time and Traffic Arrive on time 

Naive Bayesian

Alarm clock

Leave on time

Traffic

Arrive on time 

Bayesian Network

Alarm clock Leave on time

Traffic 

Arrive on time

F I G U R E 18-2. The structure of different Bayesian classifiers.

what we did in the example: we “knew” that traffic conditions were independent of the

situation at home and used this knowledge to prune the network accordingly.

There are some practical issues that need to be addressed when building Bayesian

classifiers. The description given here silently assumes that all attributes are categorical

(i.e., take on only a discrete set of values). Attributes that take on continuous numerical

values either need to be discretized, or we need to find the probability P({xi } |C) through

a kernel density estimate (see Chapter 2) for all the points in class C in the training set. If

the training set is large, the latter process may be expensive.
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F I G U R E 18-3. Using regression for classification: the data points show the they employee type (employee or manager) as a
function of the salary; managers tend to have higher salaries. (Data points are jittered in the vertical direction to avoid
overplotting.)

Another tricky detail concerns attribute values that do not occur in the training set: the

corresponding probability is 0. But a naive Bayesian classifier consists of a product of

probabilities and therefore becomes 0 as soon as a single term is 0! In particular with small

training sets, this is a problem to watch out for. On the other hand, naive Bayesian

classifiers are robust with regard to missing features: when information about an attribute

value is unknown for some of the instances, the corresponding probability simply

evaluates to 1 and does not affect the final result.

Regression

Sometimes we have reason to believe that there is a functional relationship between the

class label and the set of features. For example, we might assume that there is some

relationship between an employee’s salary and his status (employee or manager). See

Figure 18-3.

If it is reasonable to assume a functional relationship, then we can try to build a classifier

based on this relationship by “fitting” an appropriate function to the data. This turns the

classification problem into a regression problem.

However, as we can see in Figure 18-3, a linear function is usually not very appropriate

because it takes on all values, whereas class labels are discrete. Instead of fitting a straight

line, we need something like a step function: a function that is 0 for points belonging to

the one class, and 1 for points belonging to the other class. Because of its discontinuity,
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the step function is hard to work with; hence one typically uses the logistic function (see

Appendix B) as a smooth approximation to the step function. The logistic function gives

this technique its name: logistic regression. Like all regression methods, it is a global

technique that tries to optimize a fit over all points and not just over a particularly

relevant subset.

Logistic regression is not only important in practical applications but has deep roots in

theoretical statistics as well. Until the arrival of support vector machines, it was the

method of choice for many classification problems.

Support Vector Machines

Support vector machines are a relative newcomer among classification methods. The

name is a bit unfortunate: there is nothing particularly “machine-y” about them. They

are, in fact, based on a simple geometrical construction.

Consider training instances in a two-dimensional feature space like the one in Figure

18-4. Now we are looking for the “best” dividing line (or decision boundary) that separates

instances belonging to one class from instances belonging to the other.

We need to decide what we mean by “best.” The answer given by support vector

machines is that the “best” dividing line is one that has the largest margin. The margin is

the space, parallel to the decision boundary, that is free of any training instances. Figure

18-4 shows two possible decision boundaries and their respective margins. Although this

example is only two-dimensional, the reasoning generalizes directly to higher dimensions.

In such cases, the decision boundary becomes a hyperplane, and support vector machines

therefore find the maximum margin hyperplanes (a term you might find in the literature).

I will not go through the geometry and algebra required to construct a decision boundary

from a data set, since you probably don’t want to implement it yourself, anyway. (The

construction is not difficult, and if you have some background in analytic geometry, you

will be able to do it yourself or look it up elsewhere.) The important insight is that support

vector machines turn the task of finding a decision boundary first into the geometric task

of constructing a line (or hyperplane) from a set of points (this is an elementary task in

analytic geometry). The next step—find the decision boundary with the largest margin—is

then just a multi-dimensional optimization problem, with a particularly simple and

well-behaved objective function (namely, the square of the distance of each point from

the decision boundary), for which good numerical algorithms exist.

One important property of support vector machines is that they perform a strict global

optimization without having to rely on heuristics. Because of the nature of the objective

function, the algorithm is guaranteed to find the global optimum, not merely a local one.

On the other hand, the final solution does not depend on all points; instead it depends

only on those closest to the decision boundary, points that lie right on the edge of the

margin. (These are the support vectors, see Figure 18-4.) This means that the decision
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F I G U R E 18-4. Two decision boundaries and their margins. Note that the vertical decision boundary has a wider margin
than the other one. The arrows indicate the distance between the respective support vectors and the decision boundary.

boundary depends only on instances close to it and is not influenced by system behavior

far from the decision boundary. However, the global nature of the algorithm implies that,

for those support vectors, the optimal hyperplane will be found!

Two generalizations of this basic concept are of great practical importance. First, consider

Figure 18-4 again. We were lucky that we could find a straight line (in fact, more than

one) to separate the data points exactly into two classes, so that both decision boundaries

shown have zero training error. In practice, it is not guaranteed that we will always find

such a decision boundary, and there may be some stray instances that cannot be classified

correctly by any straight-line decision boundary. More generally, it may be advantageous

to have a few misclassified training instances—in return for a much wider margin—

because it is reasonable to assume that a larger margin will lead to a lower generalization

error later on. In other words, we want to find a balance between low training error and

large margin size. This can be done by introducing slack variables. Basically, they associate a

cost with each misclassified instance, and we then try to solve the extended optimization

problem, in which we try to minimize the cost of misclassified instances while at the same

time trying to maximize the margins.

The other important generalization allows us to use curves other than straight lines as

decision boundaries. This is usually achieved through kernelization or the “kernel trick.”

The basic idea is that we can replace the dot product between two vectors (which is

central to the geometric construction required to find the maximum margin hyperplane)

with a more general function of the two vectors. As long as this function meets certain

requirements (you may find references to “Mercer’s theorem” in the literature), it can be

shown that all the previous arguments continue to hold.
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One disadvantage of support vector machines is that they lead to especially opaque

results: they truly are black boxes. The final classifier may work well in practice, but it

does not shed much light on the nature of the problem. This is in contrast to techniques

such as regression or decision trees (see the next section), which often lead to results that

can be interpreted in some form. (In regression problems, for instance, one can often see

which attributes are the most influential ones, and which are less relevant.)

Decision Trees and Rule-Based Classifiers

Decision trees and rule-based classifiers are different from the classifiers discussed so far in

that they do not require a distance measure. For this reason, they are sometimes referred

to as nonmetric classifiers.

Decision trees consist of a hierarchy of decision points (the nodes of the tree). When using

a decision tree to classify an unknown instance, a single feature is examined at each node

of the tree. Based on the value of that feature, the next node is selected. Leaf nodes on the

tree correspond to classes; once we have reached a leaf node, the instance in question is

assigned the corresponding class label. Figure 18-5 shows an example of a simple decision

tree.

The primary algorithm (Hunt’s algorithm) for deriving a decision tree from a training set

employs a greedy approach. The algorithm is easiest to describe when all features are

categorical and can take only one of two values (binary attributes). If this is the case, then

the algorithm proceeds as follows:

1. For each instance in the training set, examine each feature in turn.

2. Split the training instances into two subsets based on the value of the current feature.

3. Select the feature that results in the “purest” subsets; the value of this attribute will be

the decision condition employed by the current node.

4. Repeat this algorithm recursively on the two subsets until the resulting subsets are

sufficiently pure.

To make this concrete, we must be able to measure the purity of a set. Let fC be the

fraction of instances in the set belonging to class C . Obviously, if fC = 1 for any class label

C , then the set is totally pure because all of its elements belong to the same class. We can

therefore define the a purity of a set as the frequency of its most common constituent.

(For example, if a set consists of 60 percent of items from class A, 30 percent from class B,

and 10 percent from class C, then its purity is 60 percent.) This is not the only way to

define purity. Other ways of measuring it are acceptable provided they reach a maximum

when all elements of a set belong to the same class and reach a minimum when the

elements of the set are distributed uniformly across classes.
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A > 10?

Class 0 B < 5?

A > 0? Class 1

Class 1 Class 0

Yes No

Yes No

Yes No

F I G U R E 18-5. A very simple decision tree.

Another important quantity related to decision trees is the gain ratio � from a parent node

to its children. This quantity measures the gain in purity from parent to children,

weighted by the relative size of the subsets:

� = I (parent) −
∑

children j

N j

N
I (child j)

where I is the purity (or impurity) of a node, N j is the number of elements assigned to

child node j , and N is the total number of elements at the parent node. We want to find a

splitting that maximizes this gain ratio.

What I have described so far is the outline of the basic algorithm. As with all greedy

algorithms, there is no guarantee that it will find the optimal solution, and therefore

various heuristics play a large role to ensure that the solution is as good as possible. Hence

the various published (and proprietary) algorithms for decision trees (you may find

references to CART, C4.5, and ID3) differ in such details such as the following:

• What choice of purity/impurity measure is used?

• At what level of purity does the splitting procedure stop? (Continuing to split a training

set until all leaf nodes are entirely pure usually results in overfitting.)

P R E D I C T I V E A N A LY T I C S 417



O’Reilly-5980006 master October 28, 2010 21:44

• Is the tree binary, or can a node have more than two children?

• How should noncategorical attributes be treated? (For attributes that take on a

continuum of values, we need to define the optimal splitting point.)

• Is the tree postprocessed? (To reduce overfitting, some algorithms employ a pruning

step that attempts to eliminate leaf nodes having too few elements.)

Decision trees are popular and combine several attractive features: with good algorithms,

decision trees are relatively cheap to build and are always very fast to evaluate. They are

also rather robust in the presence of noise. It can even be instructive to examine the

decision points of a decision tree, because they frequently reveal interesting information

about the distribution of class labels (such as when 80 percent of the class information is

contained in the topmost node). However, algorithms for building decision trees are

almost entirely black-box and do not lend themselves to ad hoc modifications or

extensions.

There is an equivalence between decision trees and rule-based classifiers. The latter consist

of a set of rules (i.e., logical conditions on attribute values) that, when taken in aggregate,

determine the class label of a test instance. There are two ways to build a rule-based

classifier. We can build a decision tree first and then transform each complete path

through the decision tree into a single rule. Alternatively, we can build rule-based

classifiers directly from a training set by finding a subset of instances that can be described

by a simple rule. These instances are then removed from the training set, and the process

is repeated. (This amounts to a bottom-up approach, whereas using a variant of Hunt’s

algorithm to build a decision-tree follows a top-down approach.)

Other Classifiers

In addition to the classifiers discussed so far, you will find others mentioned in the

literature. I’ll name just two—mostly because of their historical importance.

Fisher’s linear discriminant analysis (LDA) was one of the first classifiers developed. It is

similar to principal component analysis (see Chapter 14). Whereas in PCA, we introduce a

new coordinate system to maximize the spread along the new coordinates axes, in LDA

we introduce new coordinates to maximize the separation between two classes that we

try to distinguish. The position of the means, calculated separately for each class, are taken

as the location of each class.

Artificial neural networks were conceived as extremely simplified models for biological

brains. The idea was to have a network of nodes; each node receives input from several

other nodes, forms a weighted average of its input, and then sends it out to the next layer

of nodes. During the learning stage, the weights used in the weighted average are adjusted

to minimize training error. Neural networks were very popular for a while but have

recently fallen out of favor somewhat. One reason is that the calculations required are
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more complicated than for other classifiers; another is that the whole concept is very ad

hoc and lacks a solid theoretical grounding.

The Process

In addition to the primary algorithms for classification, various techniques are important

for dealing with practical problems. In this section, we look at some standard methods

commonly used to enhance accuracy—especially for the important case when the most

“interesting” type of class occurs much less frequently than the other types.

Ensemble Methods: Bagging and Boosting

The term ensemble methods refers to a set of techniques for improving accuracy by

combining the results of individual or “base” classifiers. The rationale is the same as when

performing some experiment or measurement multiple times and then averaging the

results: as long as the experimental runs are independent, we can expect that errors will

cancel and that the average will be more accurate than any individual trial. The same logic

applies to classification techniques: as long as the individual base classifiers are

independent, combining their results will lead to cancellation of errors and the end result

will have greater accuracy than the individual contributions.

To generate a set of independent classifiers, we have to introduce some randomness into

the process by which they are built. We can manipulate virtually any aspect of the overall

system: we can play with the selection of training instances (as in bagging and boosting),

with the selection of features (often in conjunction with random forests), or with

parameters that are specific to the type of classifier used.

Bagging is an application of the bootstrap idea (see Chapter 12) to classification. We

generate additional training sets by sampling with replacement from the original training

set. Each of these training sets is then used to train a separate classifier instance. During

production, we let each of these instances provide a separate assessment for each item we

want to classify. The final class label is then assigned based on a majority vote or similar

technique.

Boosting is another technique to generate additional training sets using a bootstrap

approach. In contrast to bagging, boosting is an iterative process that assigns higher

weights to instances misclassified in previous rounds. As the iteration progresses, higher

emphasis is placed on training instances that have proven hard to classify correctly. The

final result consists of the aggregate result of all base classifiers generated during the

iteration. A popular variant of this technique is known as “AdaBoost.”

Random forests apply specifically to decision trees. In this technique, randomness is

introduced not by sampling from the training set but by randomly choosing what features
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to use when building the decision tree. Instead of examining all features at every node to

find the feature that gives the greatest gain ratio, only a subset of features is evaluated for

each tree.

Estimating Prediction Error

Earlier, we already talked about the difference between the training and the

generalization error: the training error is the final error rate that the classifier achieves on

the training set. It is usually not a good measure for the accuracy of the classifier on new

data (i.e., on data that was not used to train the classifier). For this reason, we hold some

of the data back during training, and use it later as a test set. The error that the classifier

achieves on this test set is a much better measure for the generalization error that we can

expect when using the classifier on entirely new data.

If the original data set is very large, there is no problem in splitting it into a training and a

test set. In reality, however, available data sets are always “too small,” so that we need to

make sure we use the available data most efficiently, using a process known as

cross-validation.

The basic idea is that we randomly divide the original data set into k equally sized chunks.

We then perform k training and test runs. In each run, we omit one of the chunks from

the training set and instead use it as the test set. Finally, we average the generalization

errors from all k runs to obtain the overall expected generalization error.

A value of k = 10 is typical, but you can also use a value like k = 3. Setting k = n, where n

is the number of available data points, is special: in this so-called “leave-one-out”

cross-validation, we train the classifier on all data points except one and then try to

predict the omitted data point—this procedure is then repeated for all data points. (This

prescription is similar to the jackknife process that was mentioned briefly in Chapter 12.)

Yet another method uses the idea of random sampling with replacement, which is

characteristic of bootstrap techniques (see Chapter 12). Instead of dividing the available

data into k nonoverlapping chunks, we generate a bootstrap sample by drawing n data

points with replacement from the original n data points. This bootstrap sample will contain

some of the data points more than once, and some not at all: overall, the fraction of the

unique data points included in the bootstrap sample will be about 1 − e−1 ≈ 0.632 of the

available data points—for this reason, the method is often known as the 0.632 bootstrap.

The bootstrap sample is used for training, and the data points not included in the bootstrap

sample become the test set. This process can be repeated several times, and the results

averaged as for cross-validation, to obtain the final estimate for the generalization error.

(By the way, this is basically the “unique visitor” problem that we discussed in Chapters 9

and 12—after n days (draws) with one random visitor each day (one data point selected

per draw), we will have seen 1 − e− 1
n n = 1 − e−1 unique visitors (unique data points).)
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T A B L E 18 -2. Terminology for the confusion matrix in the case of class imbalance (i.e.“bad”
outcomes are much less frequent than “good” outcomes)

Predicted: Bad Predicted: Good

Actually: Bad True positive: “Hit” False negative: “Miss”

Actually: Good False positive: “False alarm” True negative: “Correct rejection”

Class Imbalance Problems

A special case of particular importance concerns situations where one of the classes occurs

much less frequently than any of the other classes in the data set—and, as luck would

have it, that’s usually the class we are interested in! Consider credit card fraud detection,

for instance: only one of every hundred credit card transactions may be fraudulent, but

those are exactly the ones we are interested in. Screening lab results for patients with

elevated heart attack risk or inspecting manufactured items for defects falls into the same

camp: the “interesting” cases are rare, perhaps extremely rare, but those are precisely the

cases that we want to identify.

For cases like this, there is some additional terminology as well as some special techniques

for overcoming the technical difficulties. Because there is one particular class that is of

greater interest, we refer to an instance belonging to this class as a positive event and the

class itself as the positive class. With this terminology, entries in the confusion matrix (see

Table 18-1) are often referred to as true (or false) positives (or negatives).

I have always found this terminology very confusing, in part because what is called

“positive” is usually something bad: a fraudulent transaction, a defective item, a bad

heart. Table 18-2 shows a confusion matrix employing the special terminology for

problems with a class imbalance—and also an alternative terminology that may be more

intuitive.

The two different types of errors may have very different costs associated with them.

From the point of view of a merchant accepting credit cards as payment, a false negative

(i.e., a fraudulent transaction incorrectly classified as “not fraudulent”—a “miss”) results

in the total loss of the item purchased, whereas a false positive (a valid transaction

incorrectly classified as “not valid”—a “false alarm”) results only in the loss of the profit

margin on that item.

The usual metrics by which we evaluate a classifier (such as accuracy and error rate), may

not be very meaningful in situations with pronounced class imbalances: keep in mind that

the trivial classifier that labels every credit card transaction as “valid” is 99 percent

accurate—and entirely useless! Two metrics that provide better insight into the ability of a

classifier to detect instances belonging to the positive class are recall and precision. The

precision is the fraction of correct classifications among all instances labeled positive; the
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F I G U R E 18-6. A ROC (receiver operating characteristic) curve: the trade-off between true positives (“hits”) and false
positives (“false alarms”), for three different classifier implementations.

recall is the fraction of correct classifications among all instances labeled negative:

precision = true positives

true positives + false positives

recall = true positives

true positives + false negatives

You can see that we will need to strike a balance. On the one hand, we can build a

classifier that is very aggressive, labeling many transactions as “bad,” but it will have a

high false-positive rate, and therefore low precision. On the other hand, we can build a

classifier that is highly selective, marking only those instances that are blatantly fraudulent

as “bad,” but it will have a high rate of false negatives and therefore low recall. These two

competing goals (to have few false positives and few false negatives) can be summarized

in a graph known as a receiver operating characteristic (ROC) curve. (The concept originated

in signal processing, where it was used to describe the ability of a receiver to distinguish a

true signal from a spurious one in the presence of noise, hence the name.)

Figure 18-6 shows an example of a ROC curve. Along the horizontal axis, we plot the false

positive rate (good events that were labeled as bad—“false alarms”) and along the vertical

axis we plot the true positive rate (bad events labeled as bad—“hits”). The lower-left

corner corresponds to a maximally conservative classifier, which labels every instance as

good; the upper-right corner corresponds to a maximally aggressive classifier, which labels

everything as bad. We can now imagine tuning the parameters and thresholds of our

classifier to shift the balance between “misses” and “false alarms” and thereby mapping

out the characteristic curve for our classifier. The curve for a random classifier (which
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assigns a positive class label with fixed probability p, irrespective of attribute values) will

be close to the diagonal: it is equally likely to classify a good instance as good as it is to

classify a bad one as good, hence its false positive rate equals its true positive rate. In

contrast, the ideal classifier would have a true positive rate equal to 1 throughout. We

want to tune our classifier so that it approximates the ideal classifier as nearly as possible.

Class imbalances pose some technical issues during the training phase: if positive instances

are extremely rare, then we want to make sure to retain as much of their information as

possible in the training set. One way to achieve this is by oversampling (i.e., resampling)

from the positive class instances—and undersampling from the negative class

instances—when generating a training set.

The Secret Sauce

All this detail about different algorithms and processes can easily leave the impression that

that’s all there is to classification. That would be unfortunate, because it leaves out what

can be the most important but also the most difficult part of the puzzle: finding the right

attributes!

The choice of attributes matters for successful classification—arguably more so than the

choice of classification algorithm. Here is an interesting case story. Paul Graham has

written two essays on using Bayesian classifiers for spam filtering.* In the second one, he

describes how using the information contained in the email headers is critical to obtaining

good classification results, whereas using only information in the body is not enough. The

punch line here is clear: in practice, it matters a lot which features or attributes you

choose to include.

Unfortunately, when compared with the extremely detailed information available on

different classifier algorithms and their theoretical properties, it is much more difficult to

find good guidance regarding how best to choose, prepare, and encode features for

classification. (None of the current books on classification discuss this topic at all.)

I think there are several reasons for this relative lack of easily available information—

despite the importance of the topic. One of them is lack of rigor: whereas one can prove

rigorous theorems on classification algorithms, most recommendations for feature

preparation and encoding would necessarily be empirical and heuristic. Furthermore,

every problem domain is different, which makes it difficult to come up with

recommendations that would be applicable more generally. The implication is that factors

such as experience, familiarity with the problem domain, and lots of time-consuming trial

and error are essential when choosing attributes for classification. (A last reason for the

*“A Plan for Spam” (http://www.paulgraham.com/spam.html) and “Better Bayesian Filtering”
(http://www.paulgraham.com/better.html).
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relative lack of available information on this topic may be that some prefer to keep their

cards a little closer to their chest: they may tell you how it works “in theory,” but they

won’t reveal all the tricks of the trade necessary to fully replicate the results.)

The difficulty of developing some recommendations that work in general and for a broad

range of application domains may also explain one particular observation regarding

classification: the apparent scarcity of spectacular, well-publicized successes. Spam

filtering seems to be about the only application that clearly works and affects many people

directly. Credit card fraud detection and credit scoring are two other widely used (if less

directly visible) applications. But beyond those two, I see only a host of smaller,

specialized applications. This suggests again that every successful classifier implementation

depends strongly on the details of the particular problem—probably more so than on the

choice of algorithm.

The Nature of Statistical Learning

Now that we have seen some of the most commonly used algorithms for classification as

well as some of the related practical techniques, it’s easy to feel a bit overwhelmed—there

seem to be so many different approaches (each nontrivial in its own way) that it can be

hard to see the commonalities among them: the “big picture” is easily lost. So let’s step

back for a moment and reflect on the specific challenges posed by classification problems

and on the overall strategy by which the various algorithms overcome these challenges.

The crucial problem is that from the outset, we don’t have good insight into which

features are the most relevant in predicting the class—in fact, we may have no idea at all

about the processes (if any!) that link observable features to the resulting class. Because

we don’t know ahead of time which features are likely to be most important, we need to

retain them all and perhaps even expand the feature set in an attempt to include any

possible clue we can get. In this way, the problem quickly becomes very

multi-dimensional. That’s the first challenge.

But now we run into a problem: multi-dimensional data sets are invariably sparse data

sets. Think of a histogram with (say) 5 bins per dimension. In one dimension, we have 5

bins total. If we want on average at least 5 items per bin, we can make do with 25 items

total. Now consider the same data set in two dimensions. If we still require 5 bins per

dimension, we have a total of 25 bins, so that each bin contains on average only a single

element. But it is in three dimensions that the situation becomes truly dramatic: now

there are 125 bins, so we can be sure that the majority of bins will contain no element at

all! It gets even worse in higher dimensions. (Mathematically speaking, the problem is

that the number of bins grows exponentially with the number of dimensions: N d , where d

is the number of dimensions and N is the number of bins per dimension. No matter what

you do, the number of cells is going to grow faster than you can obtain data. This problem

is known as the curse of dimensionality.) That’s the second challenge.
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It is this combinatorial explosion that drives the need for larger and larger data sets. We

have just seen that the the number of possible attribute value combinations grows

exponentially; therefore, if we want to have a reasonable chance of finding at least one

instance of each possible combination in our training data, we need to have very large

data sets indeed. Yet despite our best efforts, we will frequently end up with a sparse data

set (as discussed above). Nevertheless, we will often deal with inconveniently large data

sets. That’s the third challenge.

Basically all classification algorithms deal with these challenges by using some form of

interpolation between points in the sparse data set. In other words, they attempt to

smoothly fill the gaps left in the high-dimensional feature space, supported only by a

(necessarily sparse) set of points (i.e., the training instances).

Different algorithms do this in different ways: nearest-neighbor methods and naive

Bayesian classifiers explicitly “smear out” the training instances to fill the gaps locally,

whereas regression and support vector classifiers construct global structures to form a

smooth decision boundary from the sparse set of supporting points. Decision trees are

similar to nearest-neighbor methods in this regard but provide a particularly fast and

efficient lookup of the most relevant neighbors. Their differences aside, all algorithms

aim to fill the gaps between the existing data points in some smooth, consistent way.

This brings us to the question of what can actually be predicted in this fashion. Obviously,

class labels must depend on attribute values, and they should do so in some smooth,

predictable fashion. If the relationship between attribute values and class labels is too

crazy, no classifier will be very useful.

Furthermore, the distribution of attribute values for different classes must differ, for

otherwise no classifier will be able to distinguish classes by examining the attribute

values.

Unfortunately, there is—to my knowledge—no independent, rigorous way of determining

whether the information contained in a data set is sufficient to allow the data to be

classified. To find out, we must build an actual classifier. If it works, then obviously there

is enough information in the data set for classification. But if it does not work, we have

learned nothing, because it is always possible that a different or more sophisticated

classifier would work. But without an independent test, we can spend an infinite amount

of time building and refining classifiers on data sets that contain no useful information.

We encountered this kind of difficulty already in Chapter 13 in the context of clustering

algorithms, but it strikes me as even more of a problem here. The reason is that

classification is by nature predictive (or at least should be), whereas uncertainty of this

sort seems more acceptable in an exploratory technique such as clustering.

To make this more clear, suppose we have a large, rich data set: many records with many

features. We then arbitrarily assign class labels A and B to the records in the data set. Now,

by construction, it is clear that there is no way to predict the labels from the “data”—they
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are, after all, purely random! However, there is no unambiguous test that will clearly say

so. We can calculate the correlation coefficients between each feature (or combination of

features) and the class label, we can look at the distribution of feature values and see

whether they differ from class to class, and so eventually convince ourselves that we

won’t be able to build a good classifier given this data set. But there is no clear test or

diagnostic that would give us, for instance, an upper bound on the quality of any classifier

that could be built based on this data set. If we are not careful, we may spend a lot of time

vainly attempting to build a classifier capable of extracting useful information from this

data set. This kind of problem is a trap to be aware of!

Workshop: Two Do-It-Yourself Classifiers

With classification especially, it is really easy to end up with a black-box solution: a tool

or library that provides an implementation of a classification algorithm—but one that

we would not be able to write ourselves if we had to. This kind of situation always

makes me a bit uncomfortable, especially if the algorithms require any parameter tuning

to work properly. In order to adjust such parameters intelligently, I need to understand

the algorithm well enough that I could at least provide a rough-cut version myself (much

as I am happy to rely on the library designer for the high-performance version).

In this spirit, instead of discussing an existing classification library, I want to show you

how to write straightforward (you might say “toy version”) implementations for two

simple classifiers: a nearest-neighbor lazy learner and a naive Bayesian classifier. (I’ll give

some pointers to other libraries near end of the section.)

We will test our implementations on the classic data set in all of classification: Fisher’s Iris

data set.* The data set contains measurements of four different parts of an iris flower

(sepal length and width, petal length and width). There are 150 records in the data set,

distributed equally among three species of Iris (Iris setosa, versicolor, and virginica). The task

is to predict the species based on a given a set of measurements.

First of all, let’s take a quick look at the distributions of the four quantities, to see whether

it seems feasible to distinguish the three classes this way. Figure 18-7 shows histograms

(actually, kernel density estimates) for all four quantities, separately for the three classes.

One of the features (sepal width) does not seem very promising, but the distributions of

the other three features seem sufficiently separated that it should be possible to obtain

good classification results.

*First published in 1936. The data set is available from many sources, for example in the “Iris” data set
on the UCI Machine Learning repository at http://archive.ics.uci.edu/ml/.

426 C H A P T E R E I G H T E E N

http://archive.ics.uci.edu/ml


O’Reilly-5980006 master October 28, 2010 21:44

 3  4  5  6  7  8  9

Sepal Length
Iris Setosa
Versicolor

Virginica

 1.5  2  2.5  3  3.5  4  4.5  5  5.5

Sepal Width
Iris Setosa
Versicolor

Virginica

 0  1  2  3  4  5  6  7

Petal Length
Iris Setosa
Versicolor

Virginica

 0  0.5  1  1.5  2  2.5  3

Petal Width
Iris Setosa
Versicolor

Virginica

F I G U R E 18-7. The distribution of the four attributes in the Iris data set, displayed separately for the three classes.

As preparation, I split the original data set into two parts: a training set (in the file

iris.trn) and a test set (in file iris.tst). I randomly selected five records from each class

for the test set; the remaining records were used for training. The test set is shown in

full below: the columns are (in order) sepal length, sepal width, petal length, petal

width, and the class label. (All measurements are in centimeters and to millimeter

precision.)

5.0,3.6,1.4,0.2,Iris-setosa

4.8,3.0,1.4,0.1,Iris-setosa

5.2,3.5,1.5,0.2,Iris-setosa

5.1,3.8,1.6,0.2,Iris-setosa

5.3,3.7,1.5,0.2,Iris-setosa

5.7,2.8,4.5,1.3,Iris-versicolor

5.2,2.7,3.9,1.4,Iris-versicolor

6.1,2.9,4.7,1.4,Iris-versicolor

6.1,2.8,4.7,1.2,Iris-versicolor

6.0,3.4,4.5,1.6,Iris-versicolor

6.3,2.9,5.6,1.8,Iris-virginica

6.2,2.8,4.8,1.8,Iris-virginica

7.9,3.8,6.4,2.0,Iris-virginica

5.8,2.7,5.1,1.9,Iris-virginica

6.5,3.0,5.2,2.0,Iris-virginica

Our implementation of the nearest-neighbor classifier is shown in the next listing. The

implementation is exceedingly simple—especially once you realize that about two thirds

of the listing deal with file input and output. The actual “classification” is a matter of three
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lines in the middle:

# A Nearest-Neighbor Classifier

from numpy import *

train = loadtxt( "iris.trn", delimiter=',', usecols=(0,1,2,3) )

trainlabel = loadtxt( "iris.trn", delimiter=',', usecols=(4,), dtype=str )

test = loadtxt( "iris.tst", delimiter=',', usecols=(0,1,2,3) )

testlabel = loadtxt( "iris.tst", delimiter=',', usecols=(4,), dtype=str )

hit, miss = 0, 0

for i in range( test.shape[0] ):

dist = sqrt( sum( (test[i] - train)**2, axis=1 ) )

k = argmin( dist )

if trainlabel[k] == testlabel[i]:

flag = '+'

hit += 1

else:

flag = '-'

miss += 1

print flag, "\t Predicted: ", trainlabel[k], "\t True: ", testlabel[i]

print

print hit, "out of", hit+miss, "correct - Accuracy: ", hit/(hit+miss+0.0)

The algorithm loads both the training and the test data set into two-dimensional NumPy

arrays. Because all elements in a NumPy array must be of the same type, we store the

class labels (which are strings, not numbers) in separate vectors.

Now follows the actual classification step: for each element of the test set, we calculate the

Euclidean distance to each element in the training set. We make use of NumPy

“broadcasting” (see the Workshop in Chapter 2) to calculate the distance of the test

instance test[i] from all training instances in one fell swoop. (The argument axis=1 is

necessary to tell NumPy that the sum in the Euclidean distance should be taken over the

inner (horizontal) dimension of the two-dimensional array.) Next, we use the argmin()

function to obtain the index of the training record that has the smallest distance to the

current test record: this is our predicted class label. (Notice that we base our result only on

a single record—namely the closest training instance.)

Simple as it is, the classifier works very well (on this data set). For the test set shown, all

records in the test set are classified correctly!

The naive Bayesian classifier implementation is next. A naive Bayesian classifier needs an

estimate of the probability distribution P(class C | feature x), which we find from a

histogram of attribute values, separately for each class. In this case, we need a total of 12

histograms (3 classes × 4 features). I maintain this data in a triply nested data structure:

histo[label][feature][value]. The first index is the class label, the second index specifies
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the feature, and the third contains the values of the feature that occur in the histogram.

The value stored in the histogram is the number of times that each value has been

observed:

# A Naive Bayesian Classifier

total = {} # Training instances per class label

histo = {} # Histogram

# Read the training set and build up a histogram

train = open( "iris.trn" )

for line in train:

# seplen, sepwid, petlen, petwid, label

f = line.rstrip().split( ',' )

label = f.pop()

if not total.has_key( label ):

total[ label ] = 0

histo[ label ] = [ {}, {}, {}, {} ]

# Count training instances for the current label

total[label] += 1

# Iterate over features

for i in range( 4 ):

histo[label][i][f[i]] = 1 + histo[label][i].get( f[i], 0.0 )

train.close()

# Read the test set and evaluate the probabilities

hit, miss = 0, 0

test = open( "iris.tst" )

for line in test:

f = line.rstrip().split( ',' )

true = f.pop()

p = {} # Probability for class label, given the test features

for label in total.keys():

p[label] = 1

for i in range( 4 ):

p[label] *= histo[label][i].get(f[i],0.0)/total[label]

# Find the label with the largest probability

mx, predicted = 0, -1

for k in p.keys():

if p[k] >= mx:

mx, predicted = p[k], k

if true == predicted:

flag = '+'

hit += 1

else:

flag = '-'

miss += 1
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print flag, "\t", true, "\t", predicted, "\t",
for label in p.keys():

print label, ":", p[label], "\t",
print

print

print hit, "out of", hit+miss, "correct - Accuracy: ", hit/(hit+miss+0.0)

test.close()

I’d like to point out two implementation details. The first is that the second index is an

integer, which I use instead of the feature names; this simplifies some of the loops in the

program. The second detail is more important: I know that the feature values are given in

centimeters, with exactly one digit after the decimal point. In other words, the values are

already discretized, and so I don’t need to “bin” them any further—in effect, each bin in the

histogram is one millimeter wide. Because I never need to operate on the feature values,

I don’t even convert them to numbers: I read them as strings from file and use them (as

strings) as keys in the histogram. Of course, if we wanted to use a different bin width, then

we would have to convert them into numerical values so that we can operate on them.

In the evaluation part, the program reads data points from the test set and then evaluates

the probability that the record belongs to a certain class for all three class labels. We then

pick the class label that has the highest probability. (Notice that we don’t need an explicit

factor for the prior probability, since we know that each class is equally likely.)

On the test set shown earlier, the Bayesian classifier does a little worse than the nearest

neighbor classifier: it correctly classifies 12 of 15 instances for a total accuracy of 80 percent.

If you look at the results of the classifier more closely, you will immediately notice a

couple of problems that are common with Bayesian classifiers. First of all, the posterior

probabilities are small. This should come as no surprise: each Bayes factor is smaller than 1

(because it’s a probability), so their product becomes very small very quickly. To avoid

underflows, it’s usually a good idea to add the logarithms of the probabilities instead of

multiplying the probabilities directly. In fact, if you have a greater number of features, this

becomes a necessity. The second problem is that many of the posterior probabilities come

out as exactly zero: this occurs whenever no entry in the histogram can be found for at

least one of the feature values in the test record; in this case the histogram evaluates to

zero, which means the entire product of probabilities is also identical to zero. There are

different ways of dealing with this problem—in our case, you might want to experiment

with replacing the histogram of discrete feature values with a kernel density estimate

(similar to those in Figure 18-7), which, by construction, is nonzero everywhere. Keep in

mind that you will need to determine a suitable bandwidth for each histogram!

Let me be clear: the implementations of both classifiers are extremely simpleminded. My

intention here is to demonstrate the basic ideas behind these algorithms in as few lines of

code as possible—and also to show that there is nothing mystical about writing a simple

classifier. Because the implementations are so simple, it is easy to continue experimenting
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with them: can we do better if we use a larger number of neighbors in our nearest-

neighbor classifier? How about a different distance function? In the naive Bayesian

classifier, we can experiment with different bin widths in the histogram or, better yet,

replace the histogram of discrete bins with a kernel density estimate. In either case, we

need to start thinking about runtime efficiency: for a data set of only 150 elements this

does not matter much, but evaluating a kernel density estimate of a few thousand points

can be quite expensive!

If you want to use an established tool or library, there are several choices in the open

source world. Three projects have put together entire data analysis and mining

“toolboxes,” complete with graphical user interface, plotting capabilities, and various

plug-ins: RapidMiner (http://rapid-i.com/) and WEKA (http://www.cs.waikato.ac.nz/ml/

weka/), which are both in Java as well as Orange (http://www.ailab.si/orange/), which is in

Python. WEKA has been around for a long time and is very well established; RapidMiner

is part of a more comprehensive tool suite (and includes WEKA as a plug-in). Orange is an

alternative using Python.

All three of these projects use a “pipeline” metaphor: you select different processing steps

(discretizers, smoothers, principal component analysis, regression, classifiers) from a

toolbox and string them together to build up the whole analysis workflow entirely within

the tool. Give it a shot—the idea has a lot of appeal, but I must confess that I have never

succeeded in doing anything nontrivial with any of them!

There are some additional libraries worth checking out that have Python interfaces:

libSVM (http://www.csie.ntu.edu.tw/˜cjlin/libsvm/) and Shogun (http://www.shogun-toolbox

.org/) provide implementations of support vector machines, while the Modular toolkit for

Data Processing (http://mdp-toolkit.sourceforge.net/) is more general. (The latter also adheres

to the “pipeline” metaphor.)

Finally, all classification algorithms are also available as R packages. I’ll mention just three:

the class package for nearest-neighbor classifiers and the rpart package for decision trees

(both part of the R standard distribution) as well as the e1071 package (which can be

found on CRAN) for support vector machines and naive Bayesian classifiers.

Further Reading
• Introduction to Data Mining. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.

Addison-Wesley. 2005.

This is my favorite book on data mining. It contains two accessible chapters on

classification.

• The Elements of Statistical Learning. Trevor Hastie, Robert Tibshirani, and Jerome

Friedman. 2nd ed., Springer. 2009.

This book exemplifies some of the problems with current machine-learning theory: an

entire book of highly nontrivial mathematics—and what feels like not a single

real-world example or discussion of “what to use when.”
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C H A P T E R N I N E T E E N

Epilogue: Facts Are Not Reality

THE LAST (NOT LEAST) IMPORTANT SKILL WHEN WORKING WITH DATA IS TO KEEP IN MIND THAT DATA IS ONLY

part of the picture. In particular, when one is working intensely with data oneself, it is all

too easy to forget that just about everyone else will have a different perspective.

When the data contradicts appearances, appearances will win. Almost always, at least.

Abstract “data” will have little or no credibility when compared with direct, immediate

observation. This has been one of my most common experiences. A manager observes a

pile of defective items—and no amount of “data” will convince him that avoiding those

defects will cost more than the defects themselves. A group of workers spends an

enormous amount of effort on some task—and no amount of “data” will convince them

that their efforts make no measurable difference to the quality of the product.

If something strongly appears to be one way, then it will be very, very difficult to challenge

that appearance based on some abstract analysis—no matter how “hard” your facts may

be.

And it can get ugly. If your case is watertight, so that your analysis cannot be refuted, then

you may next find that your personal credibility or integrity is being challenged.

Never underestimate the persuasive power of appearance.

Data-driven decision making is a contradiction in terms. Making a decision means that

someone must stick his or her neck out and decide. If we wait until the situation is clear or

let “the data” dictate what we do, then there is no longer any decision involved. This also

means that if things don’t turn out well, then nobody will accept the blame (or the

responsibility) for the outcome: after all, we did what “the data” told us to do.
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It is a fine line. Gut-level decisions can be annoyingly random (this way today, that way

tomorrow). They can also lead to a lack of accountability: “It was my decision to do X that

led to Y!”—without a confirming look at some data, who can say?

Studying data can help us understand the situation in more detail and therefore make

better-informed decisions. On the other hand, data can be misleading in subtle ways. For

instance, by focusing on “data” it is easy to overlook aspects that are important but for

which no data is available (including but not limited to “soft factors”). Also, keep in mind

that data is always backward looking: there is no data available to evaluate any truly novel

idea!

Looking at data can help illuminate the situation and thereby help us make better

decisions. But it should not be used to absolve everyone from taking individual

responsibility.

Sometimes the only reason you need is that it is the right thing to do. Some organizations

feel as if you would not put out a fire in the mail room, unless you first ran a controlled

experiment and developed a business case for the various alternatives. Such an

environment can become frustrating and stifling; if the same approach is being applied to

human factors such as creature comforts (better chairs, larger monitors) or customer

service (“sales don’t dip proportionally if we lower the quality of our product”), then it

can start to feel toxic pretty quickly.

Don’t let “data” get in the way of ethical decisions.

The most important things in life can’t be measured. It is a fallacy to believe that, just

because something can’t be measured, it doesn’t matter or doesn’t even exist. And a pretty

tragic fallacy at that.
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A P P E N D I X A

Programming Environments for
Scientific Computation and

Data Analysis

MOST DATA ANALYSIS INVOLVES A GOOD DEAL OF DATA MANIPULATION AND NUMERICAL COMPUTATION. OF

course, we use computers for these tasks, hence we also need appropriate software.

This appendix is intended to give a brief survey of several popular software systems

suitable for the kind of data analysis discussed in the rest of the book. I am mostly

interested in open source software, although I also mention some of the most important

commercial players.

The emphasis here is on programming environments for scientific applications (i.e., libraries

or packages intended for general data manipulation and computation) because being able

to operate with data easily and conveniently is a fundamental capability for all data

analysis efforts. On the other hand, I do not include programs intended exclusively for

graphing data: not because visualization is not important (it is), but because the choice of

plotting or visualization software is less fundamental.

Software Tools

In many ways, our choice of a data manipulation environment determines what problems

we can solve; it certainly determines which problems we consider to be “easy” problems.

For data analysis, the hard problem that we should be grappling with is always the data

and what it is trying to tell us—the mechanics of handling it should be sufficiently

convenient that we don’t even think about them.

Properties I look for in a tool or programming environment include:

• Low overhead or ceremony; it must be easy to get started on a new investigation.

• Facilitates iterative, interactive use.
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• No arbitrary limitations (within reasonable limits).

• Scriptable—not strictly required but often nice to have.

• Stable, correct, mature; free of random defects and other annoying distractions.

Most of these items are probably not controversial. Given the investigative nature of most

data analysis, the ability to support iterative, interactive use is a requirement. Scriptability

and the absence of arbitrary limitations are both huge enablers. I have been in situations

where the ability to generate and compare hundreds of graphs revealed obvious

similarities and differences that had never been noticed before—not least because

everyone else was using tools (mostly Excel) that allowed graphs to be created only one at

a time. (Excel is notorious for unnecessarily limiting what can be done, and so is SQL.

Putting even minimal programming abilities on top of SQL greatly expands the range of

problems that can be tackled.)

In addition to these rather obvious requirements, I want to emphasize two properties that

may appear less important, but are, in fact, essential for successful data analysis. First, it is

very important that the tool or environment itself does not impose much overhead or

“ceremony”: we will be hesitant to investigate an ad hoc idea if our programming

environment is awkward to use or time-consuming to start. Second, the tool must be

stable and correct. Random defects that we could “work around” if we used it as a

component in a larger software project are unacceptable when we use the tool by itself.

In short: whatever we use for data manipulation must not get in our way! (I consider this

more important than how “sophisticated” the tool or environment might be: a dumb tool

that works is better than a cutting-edge solution that does not deliver—a point that is

occasionally a little bit forgotten.)

Before leaving this section, let me remind you that it is not only the size of the toolbox

that matters but also our mastery of the various elements within it. Only tools we know

well enough that using them feels effortless truly leverage our abilities. Balancing these

opposing trends (breadth of tool selection and depth of mastery) is a constant challenge.

When in doubt, I recommend you opt for depth—superficiality does not pay.

Scientific Software Is Different

It is important to realize that scientific software (for a sufficiently wide definition of

“scientific”) faces some unusual challenges. First of all, scientific software is hard. Writing

high-quality scientific programs is difficult and requires rather rare and specialized skills.

(We’ll come back to this later.) Second, the market for scientific software is small, which

makes it correspondingly harder for any one program or vendor to gain critical mass.

Both of these issues affect all players equally, but a third problem poses a particular

challenge for open source offerings: many users of scientific software are transients.

Graduate students graduate, moving on from their projects and often leaving the research
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environment entirely. As a result, “abandonware” is common among open source

scientific software projects. (And not just there—the long-term viability of commercial

offerings is also far from assured.)

Before investing significant time and effort into mastering any one tool, it is therefore

necessary to evaluate it with regard to two questions:

• Is the project of sufficiently high quality?

• Does the project have strong enough momentum and support?

A Catalog of Scientific Software

There are currently three main contenders for interactive, numeric programming

available: Matlab (and its open source clone, Octave), R (and its commercial predecessor,

S/S-Plus), and the NumPy/SciPy set of libraries for Python. Fundamentally, all three are

vector and matrix packages: they treat vectors and matrices as atomic data types and allow

mathematical functions to operate on them directly (addition, multiplication, application

of a function to all elements in a vector or matrix). Besides this basic functionality, all

three offer various other mathematical operations, such as special functions, support for

function minimization, or numerical integration and nonlinear equation solving. It is

important to keep in mind that all three are packages for numerical computations that

operate with floating-point numbers. None of these three packages handles symbolic

computations, such as the expansion of a function into its Taylor series. For this you need

a symbolic math package, such as Mathematica or Maple (both commercial) or Maxima,

Sage, or Axiom (all three open source). (Matlab has recently acquired the ability to

perform symbolic operations as well.)

Matlab

Matlab has been around since the mid-1980s; it has a very large user base, mostly in the

engineering professions but also in pure mathematics and in the machine-learning

community. Rather than do all the heavy lifting itself, Matlab was conceived as a

user-friendly frontend to existing high-performance numerical linear algebra libraries

(LINPACK and EISPACK, which have been replaced by LAPACK). Matlab was one of the

first widely used languages to treat complex data structures (such as vectors and matrices)

as atomic data types, allowing the programmer to work with them as if they were scalar

variables and without the need for explicit looping. (In this day and age, when

object-oriented programming and operator overloading are commonly used and entirely

mainstream, it is hard to imagine how revolutionary this concept seemed when it was first

developed.*) In 2008, The MathWorks (the company that develops Matlab) acquired the

*I remember how blown away I personally was when I first read about such features in the programming
language APL in the mid-1980s!
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rights to the symbolic math package MuPAD and incorporated it into subsequent Matlab

releases.

Matlab was mainly designed to be used interactively, and its programming model has

serious deficiencies for larger programming projects. (There are problems with abstraction

and encapsulation as well as memory management issues.) It is a commercial product but

quite reasonably priced.

Matlab places particular emphasis on the quality of its numerical and floating-point

algorithms and implementations.

There is an open source clone of Matlab called Octave. Octave (http://www.gnu.org/

software/octave/) strives to be fully compatible; however, there are reports of difficulties

when porting programs back and forth.

R

R is the open source clone of the S/S-Plus statistical package originally developed at Bell

Labs. R (http://www.r-project.org) has a very large user base, mostly in the academic statistics

community and a healthy tradition of user-contributed packages. The Comprehensive R

Archive Network (CRAN) is a large central repository of user-contributed modules.

When first conceived, S was revolutionary in providing an integrated system for data

analysis, including capabilities that we today associate with scripting languages (built-in

support for strings, hash maps, easy file manipulations, and so on), together with

extensive graphics functionality—and all that in an interactive environment! On the other

hand, S was not conceived as a general-purpose programming language but is strongly

geared toward statistical applications. Its programming model is quite different from

current mainstream languages, which can make it surprisingly difficult for someone with

a strong programming background to switch to S (or R). Finally, its primarily academic

outlook makes for a sometimes awkward fit within a commercial enterprise

environment.

The strongest feature of R is the large number of built-in (or user-contributed) functions

for primarily statistical calculations. In contrast to Matlab, R is not intended as a general

numerical workbench (although it can, with some limitations, be used for that purpose).

Moreover—and perhaps contrary to expectations—it is not intended as a general-purpose

data manipulation language, although it can serve as scripting language for text and file

manipulations and similar tasks.

A serious problem when working with R is its dated programming model. It relies strongly

on implicit behavior and “reasonable defaults,” which leads to particularly opaque

programs. Neither the language nor the libraries provide strong support for organizing

information into larger structures, making it uncommonly difficult to locate pertinent

information. Although it is easy to pick up isolated “tricks,” it is notoriously difficult to

develop a comprehensive understanding of the whole environment.
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Like Matlab, R is here to stay. It has proven its worth (for 30 years!); it is mature; and it

has a strong, high-caliber, and vocal user base. Unlike Matlab, it is free and open source,

making it easy to get started.

Python

Python has become the scripting language of choice for scientists and scientific

applications, especially in the machine-learning field and in the biological and social

sciences. (Hard-core, large-scale numerical applications in physics and related fields

continue to be done in C/C++ or even—horresco referens—in Fortran.)

The barrier to programming in Python is low, which makes it easy to start new projects.

This is somewhat of a mixed blessing: on the one hand, there is an abundance of exciting

Python projects out there; on the other hand, they seem to be particularly prone to the

“abandonware” problem mentioned before. Also, scientists are not programmers, and it

often shows (especially with regard to long-term, architectural vision and the cultivation

of a strong and committed community).

In addition to a large number of smaller and more specialized projects, there have been

five major attempts to provide a comprehensive Python library for scientific applications. It

can be confusing to understand how they relate to each other, so they are summarized

here:*

Numeric
This is the original Python module for the manipulation of numeric arrays, initiated in

1995 at MIT. Superceded by NumPy.

Numarray
An alternative implementation from the Space Telescope Science Institute (2001).

Considered obsolete, replaced by NumPy.

NumPy
The NumPy project was begun in 2005 to provide a unified framework for numerical

matrix calculations. NumPy builds on (and supercedes) Numeric, and it includes the

additional functionality developed by numarray.

SciPy
Started in 2001, the SciPy project evolved out of an effort to combine several

previously separate libraries for scientific computing. Builds on and includes NumPy.

ScientificPython
An earlier (started in 1997) general-purpose library for scientific applications. In

contrast to SciPy, this library tries to stay with “pure Python” implementations for

better portability.

*For more information on the history and interrelations of these libraries, check out the first chapter
in Travis B. Oliphant’s “Guide to NumPy,” which can be found on the Web.
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Today, the NumPy/SciPy project has established itself as the clear winner among

general-purpose libraries for scientific applications in Python, and we will take a closer

look at it shortly.

A strong point in favor of Python is the convenient support it has for relatively fancy and

animated graphics. The matplotlib library is the most commonly used Python library for

generating standard plots, and it has a particularly close relationship with NumPy/SciPy.

Besides matplotlib there are Chaco and Mayavi (for two- and three-dimensional graphics,

respectively) and libraries such as PyGame and Pyglet (for animated and interactive

graphics)—and, of course, many more.

Uncertainties associated with the future and adoption of Python3 affect all Python

projects, but they are particularly critical for many of the scientific and graphics libraries

just mentioned: to achieve higher performance, these libraries usually rely heavily on C

bindings, which do not port easily to Python3. Coupled with the issue of “abandonware”

discussed earlier, this poses a particular challenge for all scientific libraries based on

Python at this time.

NumPy/SciPy

The NumPy/SciPy project (http://www.scipy.org) has become the dominant player in

scientific programming for Python. NumPy provides efficient vector and matrix

operations; SciPy consists of a set of higher-level functions built on top of NumPy.

Together with the matplotlib graphing library and the IPython interactive shell,

NumPy/SciPy provides functionality resembling Matlab. NumPy/SciPy is open source

(BSD-style license) and has a large user community; it is supported and distributed by a

commercial company (Enthought).

NumPy is intended to contain low-level routines for handling vectors and matrices, and

SciPy is meant to contain all higher-level functionality. However, some additional

functions are included in NumPy for backward compatibility, and all NumPy functions are

aliased into the SciPy namespace for convenience. As a result, the distinction between

NumPy and SciPy is not very clear in practice.

NumPy/SciPy can be a lot of fun. It contains a wide selection of features and is very easy

to get started with. Creating graphical output is simple. Since NumPy/SciPy is built on

Python, it is trivial to integrate it into other software projects. Moreover, it does not

require you to learn (yet another) restricted, special-purpose language: everything is

accessible from a modern, widely used scripting language.

On the other hand, NumPy/SciPy has its own share of problems. The project has a

tendency to emphasize quantity over quality: the number of features is very large, but the

design appears overly complicated and is often awkward to use. Edge and error cases are

not always handled properly. On the scientific level, NumPy/SciPy feels amateurish. The

choice of algorithms appears to reflect some well-known textbooks more than deep,

practical knowledge arising from real experience.
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What worries me most is that the project does not seem to be managed very well:

although it has been around for nearly 10 years and has a large and active user base, it has

apparently not been able to achieve and maintain a consistent level of reliability and

maturity throughout. Features seem to be added haphazardly, without any long-term

vision or discernible direction. Despite occasional efforts in this regard, the documentation

remains patchy.

NumPy/SciPy is interesting because, among scientific and numeric projects, it probably

has the lowest barrier to entry and is flexible and versatile. That makes it a convenient

environment for getting started and for casual use. However, because of the overall

quality issues, I would not want to rely on it for “serious” production work at this

point.

What About Java?

Java is not a strong player when it comes to heavily numerical computations—so much so

that a Java Numerics Working Group ceased operations years ago (around the year 2002)

for lack of interest.

Nevertheless, a lot of production-quality machine-learning programming is done in Java,

where its relatively convenient string handling (compared to C) and its widespread use for

enterprise programming come into play. One will have to see whether these applications

will over time lead to the development of high-quality numerical libraries as well.

If you want a comfortable programming environment for large (possibly distributed)

systems that’s relatively fast, then Java is a reasonable choice. However, Java

programming has become very heavy-weight (with tools to manage your frameworks,

and so on), which does not encourage ad hoc, exploratory programming. Groovy carries

less programming overhead but is slow. A last issue concerns Java’s traditionally weak

capabilities for interactive graphics and user interfaces, especially on Linux.

Java is very strong in regard to Big Data; in particular, Hadoop—the most popular open

source map/reduce implementation—is written in Java. Java is also popular for text

processing and searching.

A relatively new project is Incanter (http://incanter.org/), which uses Clojure (a Lisp dialect

running on top of the Java virtual machine) to develop an “R-like statistical computing

and graphics environment.” Incanter is an interesting project, but I don’t feel that it has

stood the test of time yet, and one will have to see how it will position itself with respect

to R.

Other Players

The preceding list of programs and packages is, of course, far from complete. Among the

other players, I shall briefly mention three.
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SAS SAS is a classical statistics packages with strongly established uses in credit scoring

and medical trials. SAS was originally developed for OS/360 mainframes, and it shows. Its

command language has a distinct 1960s feel, and the whole development cycle is strongly

batch oriented (neither interactive nor exploratory). SAS works best when well-defined

procedures need to be repeated often and on large data sets. A unique feature of SAS is

that it works well with data sets that are too large to fit into memory and therefore need

to be processed on disk.

SAS, like the mainframes it used to run on, is very expensive and requires specially trained

operators—it is not for the casual user. (It is not exactly fun, either. The experience has

been described as comparable to “scraping down the wallpaper with your fingernails.”)

SciLab SciLab is an open source project similar to Matlab. It was created by the French

research institute INRIA.

GSL The GSL (Gnu Scientific Library) is a C library for classical numerical analysis:

special functions, linear algebra, nonlinear equations, differential equations, the lot. The

GSL was designed and implemented by a relatively small team of developers, who clearly

knew what they were doing—beyond the standard textbook treatment. (This is evident

from some design choices that specifically address ugly but important real-world needs.)

The API is wonderfully clear and consistent, the implementations are of high quality, and

even the documentation is complete and finished. I find the GSL thoroughly enjoyable to

use. (If you learned numerical analysis from Numerical Recipes,* this is the software that

should have shipped with the book—but didn’t.)

The only problem with the GSL is that it is written in C. You need to be comfortable with

C programming, including memory management and function pointers, if you want to

use it. Bindings to scripting languages exist, but they are not part of the core project and

may not be as complete or mature as the GSL itself.

Recommendations

So, which to pick? No clear winner emerges, and every single program or environment

has significant (not just superficial) drawbacks. However, here are some qualified

recommendations:

• Matlab is the 800-pound gorilla of scientific software. As a commercially developed

product, it also has a certain amount of “polish” that many open source alternatives

*Numerical Recipes 3rd Edition: The Art of Scientific Computing. William H. Press, Saul A. Teukolsky, William
T. Vetterling, and Brian P. Flannery. Cambridge University Press. 2007.

442 A P P E N D I X A



O’Reilly-5980006 master October 28, 2010 21:48

lack. If you don’t have a preferred programming environment yet, and if you can afford

it (or can make your employer pay for it), then Matlab is probably the most

comprehensive, most mature, and best supported all-purpose tool. Octave is a cheap

way to get started and “try before you buy.”

• If you work with statisticians or have otherwise a need for formal statistical methods

(tests, models), then R is a serious contender. It can also stand in as a scripting

language for data manipulation if you don’t already have a favorite one yet. Since it is

open source software, its financial cost to you is zero, but be prepared for a significant

investment of time and effort before you start feeling comfortable and proficient.

• NumPy/SciPy is particularly easy to get started with and can be a lot of fun for casual

use. However, you may want to evaluate carefully whether it will meet your needs in

the long run if you are planning to use it for a larger or more demanding project.

• NumPy/SciPy, together with some of its associated graphics packages, is also of interest

if you have a need for fancier, possibly interactive, graphics.

• If you have a need for serious numerical analysis and you know C well, then the GSL is

a mature, high-quality library.

I am well aware that this list of options does not cover all possibilities that may occur in

practice!

Writing Your Own

Given the fragmented tool situation, it may be tempting to write your own. There is

nothing wrong with that: it can be very effective to write a piece of software specifically

for your particular problem and application domain. It is much harder to write

general-purpose scientific software.

Just how much harder is generally underappreciated. When P. J. Plauger worked on his

reference implementation of the standard C library,* he found that he “spent about as

much time writing and debugging the functions declared in <math.h> as [he] did all the

rest of this library combined”! Plauger then went on to state his design goals for his

implementation of those functions.

This should startle you: design goals? Why should a reference implementation need any

design goals beyond faithfully and correctly representing the standard?

The reason is that scientific and numerical routines can fail in more ways than most people

expect. For such routines, correctness is not so much a binary property, as a floating-point

value itself. Numerical routines have more complicated contracts than strlen(char *).

*The Standard C Library. P. J. Plauger. Prentice Hall. 1992.
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My prime example for this kind of problem is the sine function. What could possibly go

wrong with it? It is analytic everywhere, strictly bounded by [−1, 1], perfectly smooth,

and with no weird behavior anywhere. Nonetheless, it is impossible to evaluate the sine

accurately for sufficiently large values of x . The reason is that the sine sweeps out its

entire range of values when x changes by as little as 2π . Today’s floating-point values

carry about 16 digits of precision. Once x has become so large that all of these digits are

required to represent the value of x to the left of the decimal point, we are no longer able

to resolve the location of x within the interval of length 2π with sufficient precision to be

meaningful—hence the “value” returned by sin(x) is basically random. In practice, the

quality of the results starts to degrade long before we reach this extreme regime. (More

accurately the problem lies not so much in the implementation of the sine but in the

inability to express its input values with the precision required for obtaining a meaningful

result. This makes no difference for the present argument.)

There are two points to take away here. First, note how “correctness” is a relative quality

that can degrade smoothly depending on circumstances (i.e., the inputs). Second, you

should register the sense of surprise that a function, which in mathematical theory is

perfectly harmless, can turn nasty in the harsh reality of a computer program!

Similar examples can be found all over and are not limited to function evaluations. In

particular for iterative algorithms (and almost all numerical algorithms are iterative), one

needs to monitor and confirm that all intermediate values are uncorrupted—even in cases

where the final result is perfectly reasonable. (This warning applies to many matrix

operations, for instance.)

The punch line here is that although it is often not hard to produce an implementation

that works well for a limited set of input values and in a narrow application domain, it is

much more difficult to write routines that work equally well for all possible arguments. It

takes a lot of experience to anticipate all possible applications and provide built-in

diagnostics for likely failure modes. If at all possible, leave this work to specialists!

Further Reading

Matlab

• Numerical Computing with MATLAB. Cleve B. Moler. Revised reprint, SIAM. 2008.

The literature on Matlab is vast. I mention this title because its author is Cleve Moler,

the guy who started it all.

R

• A Beginner’s Guide to R. Alain F. Zuur, Elena N. Ieno, and Erik H. W. G. Meesters.

Springer. 2009.

Probably the most elementary introduction into the mechanics of R. A useful book to

get started, but it won’t carry you very far. Obviously very hastily produced.
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• R in a Nutshell. Joseph Adler. O’Reilly. 2009.

This is the first book on R that is organized by the task that you want to perform. This

makes it an invaluable resource in those situations where you know exactly what you

want to do but can’t find the appropriate commands that will tell R how to do it. The

first two thirds of the book address data manipulation, programming, and graphics in

general; the remainder is about statistical methods.

• Using R for Introductory Statistics. John Verzani. Chapman & Hall/CRC. 2004.

This is probably my favorite introductory text on how to perform basic statistical

analysis using R.

NumPy/SciPy

There is no comprehensive introduction to NumPy/SciPy currently available that takes a

user’s perspective. (The “Guide to NumPy” by Travis Oliphant, which can be found on the

NumPy website, is too concerned with implementation issues.) Some useful bits, together

with an introduction to Python and some other libraries, can be found in either of the

following two books.

• Python Scripting for Computational Science. Hans Petter Langtangen. 3rd ed., Springer.

2009.

• Beginning Python Visualization: Crafting Visual Transformation Scripts. Shai Vaingast. Apress.

2009.
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A P P E N D I X B

Results from Calculus

IN THIS APPENDIX, WE REVIEW SOME OF THE RESULTS FROM CALCULUS THAT ARE EITHER NEEDED EXPLICITLY IN

the main part of the book or are conceptually sufficiently important when doing data

analysis and mathematical modeling that you should at least be aware that they exist.

Obviously, this appendix cannot replace a class (or two) in beginning and intermediate

calculus, and this is also not the intent. Instead, this appendix should serve as a reminder

of things that you probably know already. More importantly, the results are presented

here in a slightly different context than usual. Calculus is generally taught with an eye

toward the theoretical development—it has to be, because the intent is to teach the entire

body of knowledge of calculus and therefore the theoretical development is most

important. However, for applications you need a different sort of tricks (based on the same

fundamental techniques, of course), and it generally takes years of experience to make out

the tricks from the theory. This appendix assumes that you have seen the theory at least

once, so I am just reminding you of it, but I want to emphasize those elementary

techniques that are most useful in applications of the kind explained in this book.

This appendix is also intended as somewhat of a teaser: I have included some results that

are particularly interesting, noteworthy, or fascinating as an invitation for further study.

The structure of this appendix is as follows:

1. To get a head start, we first look at some common functions and their graphs.

2. Then we discuss the core concepts of calculus proper: derivative, integral, limit.

3. Next I mention a few practical tricks and techniques that are frequently useful.
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4. Near the end, there is a section on notation and very basic concepts. If you start feeling

truly confused, check here! (I did not want to start with that section because I’m assuming

that most readers know this material already.)

5. I conclude with some pointers for further study.

A note for the mathematically fussy: this appendix quite intentionally eschews much

mathematical sophistication. I know that many of the statements can be made either

more general or more precise. But the way they are worded here is sufficient for my

purpose, and I want to avoid the obscurity that is the by-product of presenting

mathematical statements in their most general form.

Common Functions

Functions are mappings, which map a real number into another real number: f : R �→ R.

This mapping is always unique: every input value x is mapped to exactly one result value

f (x). (The converse is not true: many input values may be mapped to the same result. For

example, the mapping f (x) = 0, which maps all values to zero, is a valid function.)

More complicated functions are often built up as combinations of simpler functions. The

most important simple functions are powers, polynomials and rational functions, and

trigonometric and exponential functions.

Powers

The simplest nontrivial function is the linear function:

f (x) = ax

The constant factor a is the slope: if x increases by 1, then f (x) increases by a. Figure B-1

shows linear functions with different slopes.

The next set of elementary functions are the simple powers:

f (x) = xk

The power k can be greater or smaller than 1. The exponent can be positive or negative,

and it can be an integer or a fraction. Figure B-2 shows graphs of some functions with

positive integer powers, and Figure B-3 shows functions with fractional powers.

Simple powers have some important properties:

• All simple powers go through the two points (0, 0) and (1, 1).

• The linear function f (x) = x is a simple power with k = 1.

• The square-root function f (x) = √
x is a simple power with k = 1/2.

• Integer powers (k = 1, 2, 3, . . . ) can be evaluated for negative x , but for fractional

powers we have to be more careful.
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F I G U R E B-1. The linear function y = ax .
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F I G U R E B-2. Simple powers: y = axk .

Powers obey the following laws:

xn xm = xn+m

xn x−m = xn

xm

x0 = 1

x1 = x
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F I G U R E B-3. Fractional powers: y = a p/q .

If the exponent is negative, it turns the expression into a fraction:

x−n = 1

xn

When dealing with fractions, we must always remember that the denominator must not

become zero. As the denominator of a fraction approaches zero, the value of the overall

expression goes to infinity. We say: the expression diverges and the function has a

singularity at the position where the denominator vanishes. Figure B-4 shows graphs of

functions with negative powers. Note the divergence for x = 0.

Polynomials and Rational Functions

Polynomials are sums of integer powers together with constant coefficients:

p(x) = an xn + an−1xn−1 + · · · + a2x2 + a1x + a0

Polynomials are nice because they are extremely easy to handle mathematically (after all,

they are just sums of simple integer powers). Yet, more complicated functions can be

approximated very well using polynomials. Polynomials therefore play an important role

as approximations of more complicated functions.

All polynomials exhibit some “wiggles” and eventually diverge as x goes to plus or minus

infinity (see Figure B-5). The highest power occurring in a polynomial is known as that

degree of the polynomial.
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F I G U R E B-4. Negative powers: y = ax−k = a/xk .
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F I G U R E B-5. A polynomial: y = 16x5 − 20x3 + 2x2 + 4x .

Rational functions are fractions that have polynomials in both the numerator and the

denominator:

r(x) = p(x)

q(x)
= an xn + an−1xn−1 + · · · + a2x2 + a1x + a0

bm xm + bm−1xm−1 + · · · + b2x2 + b1x + b0
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F I G U R E B-6. The exponential function y = ex .

Although they may appear equally harmless, rational functions are entirely more

complicated beasts than polynomials. Whenever the denominator becomes zero, they

blow up. The behavior as x approaches infinity depends on the relative size of the largest

powers in numerator and denominator, respectively. Rational functions are not simple

functions.

Exponential Function and Logarithm

Some functions cannot be expressed as polynomials (or as fraction of polynomials) of

finite degree. Such functions are known as transcendental functions. For our purposes, the

most important ones are the exponential function f (x) = ex (where e = 2.718281 . . . is

Euler’s number) and its inverse, the logarithm.

A graph of the exponential function is shown in Figure B-6. For positive argument the

exponential function grows very quickly, and for negative argument it decays equally

quickly. The exponential function plays a central role in growth and decay processes.

Some properties of the exponential function follow from the rules for powers:

ex ey = ex+y

e−x = 1

ex

The logarithm is the inverse of the exponential function; in other words:

y = ex ⇐⇒ log y = x

elog(x) = x and log (ex ) = x
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F I G U R E B-7. The natural logarithm: y = log(x).

A plot of the logarithm is shown in Figure B-7. The logarithm is defined only for strictly

positive values of x , and it tends to negative infinity as x approaches zero. In the opposite

direction, as x becomes large the logarithm grows without bounds, but it grows almost

unbelievably slowly. For x = 2, we have log 2 = 0.69 . . . and for x = 10 we find

log 10 = 2.30 . . . , but for x = 1,000 and x = 106 we have only log 1000 = 6.91 . . . and

log 106 = 13.81 . . . , respectively. Yet the logarithm does not have an upper bound: it keeps

on growing but at an ever-decreasing rate of growth.

The logarithm has a number of basic properties:

log(1) = 0

log(x y) = log x + log y

log(xk) = k log x

As you can see, logarithms turn products into sums and powers into products. In other

words, logarithms “simplify” expressions. This property was (and is!) used in numerical

calculations: instead of multiplying two numbers (which is complicated), you add their

logarithms (which is easy—provided you have a logarithm table or a slide rule) and then

exponentiate the result. This calculational scheme is still relevant today, but not for the

kinds of simple products that previous generations performed using slide rules. Instead,

logarithmic multiplication can be necessary when dealing with products that would

generate intermediate over- or underflows even though the final result may be of

reasonable size. In particular, certain kinds of combinatorial and probabilistic problems

require finding the maximum of expressions such as pn(1 − p)k , where p < 1 is a

probability and n and k may be large numbers. Brute-force evaluation will underflow
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F I G U R E B-8. The trigonometric functions sin(x) and cos(x).

even for modest values of the exponents, but taking logarithms first will result in a

numerically harmless expression.

Trigonometric Functions

The trigonometric functions describe oscillations of all kinds and thus play a central role in

sciences and engineering. Like the exponential function, they are transcendental

functions, meaning they cannot be written down as a polynomial of finite degree.

Figure B-8 shows graphs of the two most important trigonometric functions: sin(x) and

cos(x). The cosine is equal to the sine but is shifted by π/2 (90 degrees) to the left. We can

see that both functions are periodic: they repeat themselves exactly after a period of length

2π . In other words, sin(x + 2π) = sin(x) and cos(x + 2π) = cos(x).

The length of the period is 2π , which you may recall is the circumference of a circle with

radius equal to 1. This should make sense, because sin(x) and cos(x) repeat themselves after

advancing by 2π and so does the circle: if you go around the circle once, you are back to

where you started. This similarity between the trigonometric functions and the geometry

of the circle is no accident, but this is not the place to explore it.

Besides their periodicity, the trigonometric functions obey a number of rules and

properties (“trig identities”), only one of which is important enough to mention here:

sin2 x + cos2 x = 1 for all x
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F I G U R E B-9. The Gaussian: y = 1√
2π

e− 1
2 x2

.

Finally, I should mention the tangent function, which is occasionally useful:

tan x = sin(x)

cos(x)

Gaussian Function and the Normal Distribution

The Gaussian function arises frequently and in many different contexts. It is given by the

formula:

φ(x) = 1√
2π

e− 1
2 x2

and its plot is shown in Figure B-9. (This is the form in which the Gaussian should be

memorized, with the factor 1/2 in the exponent and the factor 1/
√

2π up front: they

ensure that the integral of the Gaussian over all x will be equal to 1.)

Two applications of the Gaussian stand out. First of all, a strong result from probability

theory, the Central Limit Theorem states that (under rather weak assumptions) if we add

many random quantities, then their sum will be distributed according to a Gaussian

distribution. In particular, if we take several samples from a population and calculate the

mean for each sample, then the sample means will be distributed according to a Gaussian.

Because of this, the Gaussian arises all the time in probability theory and statistics.

It is because of this connection that the Gaussian is often identified as “the” bell

curve—quite incorrectly so, since there are many bell-shaped curves, many of which have

drastically different properties. In fact, there are important cases where the Central Limit
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F I G U R E B-10. The Gaussian distribution function.

Theorem fails, and the Gaussian is not a good way to describe the behavior of a random

system (see the discussion of power-law distributions in Chapter 9).

The other context in which the Gaussian arises frequently is as a kernel—that is, as a

strongly peaked and localized yet very smooth function. Although the Gaussian is greater

than zero everywhere, it falls off to zero so quickly that almost the entire area underneath

it is concentrated on the interval −3 ≤ x ≤ 3. It is this last property that makes the

Gaussian so convenient to use as a kernel. Although the Gaussian is defined and nonzero

everywhere (so that we don’t need to worry about limits of integration), it can be

multiplied against almost any function and integrated. The integral will retain only those

values of the function near zero; values at positions far from the origin will be suppressed

(smoothly) by the Gaussian.

In statistical applications, we are often interested in the area under certain parts of the

curve because that will provide the answer to questions such as: “What is the probability

that the point lies between −1 and 1?” The antiderivative of the Gaussian cannot be

expressed in terms of elementary functions; instead it is defined through the integral

directly:

�(x) = 1√
2π

∫ x

−∞
e− 1

2 t2
dt

This function is known as the Normal distribution function (see Figure B-10). As previously

mentioned, the factor 1/
√

2π is a normalization constant that ensures the area under the

entire curve is 1.

Given the function �(x), a question like the one just given can be answered easily: the

area over the interval [−1, 1] is simply �(1) − �(−1).
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F I G U R E B-11. The absolute value function y = |x | and the square y = x2.

Other Functions

There are some other functions that appear in applications often enough that we should

be familiar with them but are a bit more exotic than the families of functions considered

so far.

The absolute value function is defined as:

|a| =
⎧
⎨

⎩
a if a ≥ 0

−a otherwise

In other words, it is the positive (“absolute”) value of its argument. From a mathematical

perspective, the absolute value is hard to work with because of the need to treat the two

possible cases separately and because of the kink at x = 0, which poses difficulties when

doing analytical work. For this reason, one instead often uses the square x2 to guarantee a

positive value. The square relieves us of the need to worry about special cases explicitly,

and it is smooth throughout. However, the square is relatively smaller than the absolute

value for small values of x but relatively larger for large values of x . Weight functions

based on the square (as in least-squares methods, for instance) therefore tend to

overemphasize outliers (see Figure B-11).

Both the hyperbolic tangent tanh(x) (pronounced: tan-sh) and the logistic function are

S-shaped or sigmoidal functions. The latter function is the solution to the logistic differential

equation, hence the name. The logistic differential equation is used to model constrained
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F I G U R E B-12. Two sigmoid (step) functions: the hyperbolic tangent y = tanh(x) and the logistic function
y = 1/(1 + e−x ).

growth processes such as bacteria competing for food and infection rates for contagious

diseases. Both these functions are defined in terms of the exponential functions as follows:

tanh(x) = ex − e−x

ex + e−x

P(x) = 1

1 + e−x

Both functions are smooth approximations to a step function, and they differ mostly in

the range of values they assume: the tanh(x) takes on values in the interval [−1, 1],

whereas the logistic function takes on only positive values between 0 and 1 (see Figure

B-12). It is not hard to show that the two functions can be transformed into each other; in

fact, we have P(x) = (tanh(x/2) + 1)/2.

These two functions are each occasionally referred to as the sigmoid function. That is

incorrect: there are infinitely many functions that smoothly interpolate a step function.

But among those functions, the two discussed here have the advantage that—although

everywhere smooth—they basically consist of three straight lines: very flat as x goes to

plus or minus infinity and almost linear in the transition regime. The position and

steepness of the transition can be changed through a standard variable transformation; for

example, tanh((x − m)/a) will have a transition at m with local slope 1/a.

The last function to consider here is the factorial: n!. The factorial is defined only for

nonnegative integers, as follows:

0! = 1

n! = 1 · 2 · · · · · (n − 1) · n
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The factorial plays an important role in combinatorial problems, since it is the number of

ways that n distinguishable objects can be arranged. (To see this, imagine that you have to

fill n boxes with n items. To fill the first box, you have n choices. To fill the second box,

you have n − 1 choices. And so on. The total number of arrangements or permutations is

therefore n · (n − 1) · · · 1 = n!.)

The factorial grows very quickly; it grows faster even than the exponential. Because the

factorial grows so quickly, it is often convenient to work with its logarithm. An important

and widely used approximation for the logarithm of the factorial is Stirling’s approximation:

log n! ≈ n log(n) − n for large n

For the curious: it is possible to define a function that smoothly interpolates the factorial

for all positive numbers (not just integers). It is known as the Gamma function, and it is

another example (besides the Gaussian distribution function) for a function defined

through an integral:

�(x) =
∫ ∞

0
t x−1e−t dt

The variable t in this expression is just a “dummy” variable of integration—it does not

appear in the final result. You can see that the first term in the integral grows as a power

while the second falls exponentially, with the effect that the value of the integral is finite.

Note that the limits of integration are fixed. The independent variable x enters the

expression only as a parameter. Finally, it is easy to show that the Gamma function obeys

the rule n �(n) = �(n + 1), which is the defining property of the factorial function.

We do not need the Gamma function in this book, but it is interesting as an example of

how integrals can be used to define and construct new functions.

The Inverse of a Function

A function maps its argument to a result: given a value for x , we can find the

corresponding value of f (x). Occasionally, we want to turn this relation around and ask:

given a value of f (x), what is the corresponding value of x?

That’s what the inverse function does: if f (x) is some function, then its inverse f −1(x) is

defined as the function that, when applied to f (x), returns the original argument:

f −1 ( f (x)) = x

Sometimes we can invert a function explicitly. For example, if f (x) = x2, then the inverse

function is the square root, because
√

x2 = x (which is the definition of the inverse

function). In a similar way, the logarithm is the inverse function of the exponential:

log(ex ) = x .
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b-a

f(b)-f(a)

F I G U R E B-13. The slope of a linear function is the ratio of the growth in the vertical direction, f (b) − f (a), divided by
the corresponding growth in the horizontal direction, b − a.

In other cases, it may not be possible to find an explicit form for the inverse function. For

example, we sometimes need the inverse of the Gaussian distribution function �(x).

However, no simple form for this function exists, so we write it symbolically as �−1(x),

which refers to the function for which �−1 (�(x)) = x is true.

Calculus

Calculus proper deals with the consideration of limit processes: how does a sequence of

values behave if we make infinitely many steps? The slope of a function and the area

underneath a function are both defined through such limit processes (the derivative and

the integral, respectively).

Calculus allows us to make statements about properties of functions and also to develop

approximations.

Derivatives

We already mentioned the slope as the rate of change of a linear function. The same

concept can be extended to nonlinear functions, though for such functions, the slope itself

will vary from place to place. For this reason, we speak of the local slope of a curve at each

point.

Let’s examine the slope as the rate of change of a function in more detail, because this

concept is of fundamental importance whenever we want to interpolate or approximate

some data by a smooth function. Figure B-13 shows the construction used to calculate the
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a b3 b2 b1

F I G U R E B-14. As bi approaches a, the slope found for these two points becomes closer and closer to the local
slope at a.

slope of a linear function. As x goes from a to b, the function changes from f (a) to f (b).

The rate of change is the ratio of the change in f (x) to the change in x :

slope = f (b) − f (a)

b − a

Make sure that you really understand this formula!

Now, let’s apply this concept to a function that is nonlinear. Because the slope of the curve

varies from point to point, we cannot find the slope directly using the previous formula;

however, we can use the formula to approximate the local slope.

Figure B-14 demonstrates the concept. We fix two points on a curve and put a straight

line through them. This line has a slope, which is f (b)− f (a)

b−a . This is only an approximation

to the slope at point a. But we can improve the approximation by moving the second

point b closer to a. If we let b go all the way to a, we end up with the (local) slope at the

point a exactly. This is called the derivative. (It is a central result of calculus that, although

numerator and denominator in f (b)− f (a)

b−a each go to zero separately in this process, the

fraction itself goes to a well-defined value.)

The construction just performed was done graphically and for a single point only, but it

can be carried out analytically in a fully general way. The process is sufficiently instructive

that we shall study a simple example in detail—namely finding a general rule for the

derivative of the function f (x) = x2. It will be useful to rewrite the interval [a, b] as
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T A B L E B-1. Derivatives and antiderivatives
(integrals) for a few elementary functions.

Function Derivative Integral

xn nxn−1 1
n+1 xn+1

ex ex ex

log x 1/x x log x − x
sin x cos x − cos x
cos x − sin x sin x

[x, x + ε]. We can now go ahead and form the familiar ratio:

f (b) − f (a)

b − a
= f (x + ε) − f (x)

(x + ε) − x

= (x + ε)2 − x2

x + ε − x

= x2 + 2xε + ε2 − x2

ε

= 2xε + ε2

ε

= 2x + ε

→ 2x as ε goes to zero

In the second step, the terms not depending on ε cancel each other; in the third step, we

cancel an ε between the numerator and the denominator, which leaves an expression that

is perfectly harmless as ε goes to zero! The (harmless) result is the sought-for derivative of

the function. Notice that the result is true for any x , so we have obtained an expression for

the derivative of x2 that holds for all x : the derivative of x2 is 2x . Always. Similar rules can

be set up for other functions (you may try your hand at finding the rule for x3 or even xk

for general k). Table B-1 lists a few of the most important ones.

There are two ways to indicate the derivative. A short form uses the prime, like this: f ′(x)

is the derivative of f (x). Another form uses the differential operator d
dx , which acts on the

expression to its right. Using the latter, we can write:

d

dx
x2 = 2x

Finding Minima and Maxima

When a smooth function reaches a local minimum or maximum, its slope at that point is

zero. This is easy to see: as you approach a peak, you go uphill (positive slope); once over

the top, you go downhill (negative slope). Hence, you must have passed a point where

you were going neither uphill nor downhill—in other words, where the slope was zero.

(From a mathematically rigorous point of view, this is not quite as obvious as it may seem;

you may want to check for “Rolle’s theorem” in a calculus text.)

462 A P P E N D I X B



O’Reilly-5980006 master October 28, 2010 21:54

Maximum

Minimum

Saddle

F I G U R E B-15. The slope of a curve is zero when the curve reaches a maximum, a minimum, or a saddle point. Zeros in the
derivative therefore indicate the occurrence of one of those special points.

The opposite is also true: if the slope (i.e., the derivative) is zero somewhere, then the

function has either a minimum or a maximum at that position. (There is also a third

possibility: the function has a so-called saddle point there. In practice, this occurs less

frequently.) Figure B-15 demonstrates all these cases.

We can therefore use derivatives to locate minima or maxima of a function. First we

determine the derivative of the function, and then we find the locations where the

derivative is zero (the derivative’s roots). The roots are the locations of the extrema of the

original function.

Extrema are important because they are the solution to optimization problems. Whenever

we want to find the “best” solution in some context, we are looking for an extremum: the

lowest price, the longest duration, the greatest utilization, the highest efficiency. Hence, if

we have a mathematical expression for the price, duration, utilization, or efficiency, we

can take its derivative with respect to its parameters, set the derivative to zero, and solve

for those values of the parameters that maximize (or minimize) our objective function.

Integrals

Derivatives find the local rate of change of a curve as the limit of a sequence of better and

better approximations. Integrals calculate the area underneath a curve by a similar method.

Figure B-16 demonstrates the process. We approximate the area underneath a curve by

using rectangular boxes. As we make the boxes narrower, the approximation becomes

more accurate. In the limit of infinitely many boxes of infinitely narrow width, we obtain

the exact area under the curve.
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F I G U R E B-16. The integral is the area under a curve. It can be approximated by filling the area under the curve with narrow
rectangles and adding up their areas. The approximation improves as the width of the rectangles becomes smaller.

Integrals are conceptually very simple but analytically much more difficult than

derivatives. It is always possible to find a closed-form expression for the derivative of a

function. This is not so for integrals in general, but for some simple functions an

expression for the integral can be found. Some examples are included in Table B-1.

Integrals are often denoted using uppercase letters, and there is a special symbol to

indicate the “summing” of the area underneath a curve:

F(y) =
∫

f (x) dx

We can include the limits of the domain over which we want to integrate, like this:

A =
∫ b

a
f (x) dx

Notice that A is a number, namely the area underneath the curve between x = a and

x = b, whereas the indefinite integral (without the limits) is a function, which can be

evaluated at any point.
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Limits, Sequences, and Series

The central concept in all of calculus is the notion of a limit. The basic idea is as follows.

We construct some process that continues indefinitely and approximates some value ever

more closely as the process goes on—but without reaching the limit in any finite number

of steps, no matter how many. The important insight is that, even though the limit is

never reached, we can nevertheless make statements about the limiting value. The

derivative (as the limit of the difference ratio) and the integral (as the limit of the sum of

approximating “boxes”) are examples that we have already encountered.

As simpler example, consider the numbers 1/1, 1/2, 1/3, 1/4, . . . or 1/n in general as n

goes to infinity. Clearly, the numbers approach zero ever more closely; nonetheless, for

any finite n, the value of 1/n is always greater than zero. We call such an infinite, ordered

set of numbers a sequence, and zero is the limit of this particular sequence.

A series is a sum:

sn =
n∑

i=0

an

= a0 + a1 + a2 + a3 + · · · + an

As long as the number of terms in the series is finite, there is no problem. But once we let

the number of terms go to infinity, we need to ask whether the sum still converges to a

finite value. We have already seen a case where it does: we defined the integral as the

value of the infinite sum of infinitely small boxes.

It may be surprising that an infinite sum can still add up to a finite value. Yet this can

happen provided the terms in the sum become smaller rapidly enough. Here’s an

example: if you sum up 1, 0.1, 0.01, 0.001, 0.0001, . . . , you can see that the sum

approaches 1.1111 . . . but will never be larger than 1.2. Here is a more dramatic example:

I have a piece of chocolate. I break it into two equal parts and give you one. Now I repeat

the process with what I have left, and so on. Obviously, we can continue like this forever

because I always retain half of what I had before. However, you will never accumulate

more chocolate than what I started out with!

An infinite series converges to a finite value only if the magnitude of the terms decreases

sufficiently quickly. If the terms do not become smaller fast enough, the series diverges

(i.e., its value is infinite). An important series that does not converge is the harmonic series:

∞∑

k=1

1

k
= 1 + 1

2
+ 1

3
+ · · · = ∞

One can work out rigorous tests to determine whether or not a given series converges. For

example, we can compare the terms of the series to those from a series that is known to

converge: if the terms in the new series become smaller more quickly than in the

converging series, then the new series will also converge.
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Finding the value of an infinite sum is often tricky, but there is one example that is rather

straightforward. The solution involves a trick well worth knowing. Consider the infinite

geometric series:

s =
∞∑

i=0

= 1 + q + q2 + q3 + · · · for |q| < 1

Now, let’s multiply by q and add 1:

qs + 1 = q(1 + q + q2 + q3 + · · · ) + 1

= q + q2 + q3 + q4 + · · · + 1

= s

To understand the last step, realize that the righthand side equals our earlier definition of

s. We can now solve the resulting equation for s and obtain:

s = 1

1 − q

This is a good trick that can be applied in similar cases: if you can express an infinite series

in terms of itself, the result may be an equation that you can solve explicitly for the

unknown value of the infinite series.

Power Series and Taylor Expansion

An especially important kind of series contains consecutive powers of the variable x

multiplied by the constant coefficients ai . Such series are called power series. The variable x

can take on any value (it is a “dummy variable”), and the sum of the series is therefore a

function of x :

s(x) =
n∑

i=0

ai x
i

If n is finite, then there is only a finite number of terms in the series: in fact, the series is

simply a polynomial (and, conversely, every polynomial is a finite power series). But the

number of terms can also be infinite, in which case we have to ask for what values of x

does the series converge. Infinite power series are of great theoretical interest because

they are a (conceptually straightforward) generalization of polynomials and hence

represent the “simplest” nonelementary functions.

But power series are also of the utmost practical importance. The reason is a remarkable

result known as Taylor’s theorem. Taylor’s theorem states that any reasonably smooth

function can be expanded into a power series. This process (and the resulting series) is known

as the Taylor expansion of the function.

Taylor’s theorem gives an explicit construction for the coefficients in the series expansion:

f (x) = f (0) + f ′(0)x + f ′′(0)

2!
x2 + f ′′′(0)

3!
x3 + · · ·
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F I G U R E B-17. The sine function sin(x) and its Taylor expansions around zero, truncated after retaining different numbers
of terms. If more terms are kept, the approximation is acceptable over a greater range of values.

In other words, the coefficient of the nth term is the nth derivative (evaluated at zero)

divided by n!. The Taylor series converges for all x—the factorial in the denominator

grows so quickly that convergence is guaranteed no matter how large x is.

The Taylor series is an exact representation of the function on the lefthand side if we

retain all (infinitely many) terms. But we can also truncate the series after just a few terms

and so obtain a good local approximation of the function in question. The more terms we

keep, the larger will be the range over which the approximation is good. For the sine

function, Figure B-17 shows how the Taylor expansion improves as a greater number of

terms is kept. Table B-2 shows the Taylor expansions for some functions we have

encountered so far.

It is this last step that makes Taylor’s theorem so useful from a practical point of view: it

tells us that we can approximate any smooth function locally by a polynomial. And polynomials

are always easy to work with—often much easier than the complicated functions that we

started with.

One important practical point: the approximation provided by a truncated Taylor series is

good only locally—that is, near the point around which we expand. This is because in that

case x is small (i.e., x � 1) and so higher powers become negligible fast. Taylor series are

usually represented in a form that assumes that the expansion takes place around zero. If

this is not the case, we need to remove or factor out some large quantity so that we are

left with a “small parameter” in which to expand. As an example, suppose we want to

obtain an approximation to ex for values of x near 10. If we expanded in the usual fashion

around zero, then we would have to sum many terms before the approximation becomes
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T A B L E B-2. The first few terms of the Taylor expansion of some
important functions

Function Taylor expansion Comment

ex 1 + x + x2

2! + x3

3! + · · · all x

sin x x − x3

3! + x5

5! ∓ · · · all x

cos x 1 − x2

2! + x4

4! ∓ · · · all x

log(1 + x) x − x2

2 + x3

3 ∓ · · · −1 < x ≤ 1
√

1 + x 1 + x
2 + x2

8 + x3

16 + · · · |x | ≤ 1

1/(1 + x) 1 − x + x2 − x3 ± · · · |x | < 1

good (the terms grow until 10n < n!, which means we need to keep more than 20 terms).

Instead, we proceed as follows: we write ex = e10+δ = e10 eδ = e10 (1 + δ + δ2

2 + · · · ). In

other words, we set it up so that δ is small allowing us to expand eδ around zero as before.

Another important point to keep in mind is that the function must be smooth at the point

around which we expand: it must not have a kink or other singularity there. This is why

the logarithm is usually expanded around one (not zero): recall that the logarithm

diverges as x goes to zero.

Useful Tricks

The Binomial Theorem

Probably everyone has encountered the binomial formulas at some point:

(a + b)2 = a2 + 2ab + b2

(a − b)2 = a2 − 2ab + b2

The binomial theorem provides an extension of this result to higher powers. The theorem

states that, for an arbitrary integer power n, the expansion of the lefthand side can be

written as:

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk

=
(

n

0

)
anb0 +

(
n

1

)
an−1b1 +

(
n

2

)
an−2b2 + · · · +

(
n

n

)
a0bn

This complicated-looking expression involves the binomial coefficients:
(

n

k

)
= n!

k! (n − k)!
0 ≤ k ≤ n

The binomial coefficients are combinatorial factors that count the number of different

ways one can choose k items from a set of n items, and in fact there is a close relationship

between the binomial theorem and the binomial probability distribution.
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As is the case for many exact results, the greatest practical use of the binomial theorem

comes from an approximate expression. Assume that b < a, so that b/a < 1. Now we can

write:

(a + b)n = an

(
1 + b

a

)n

≈ an

(
1 + n

b

a
+ n(n − 1)

2

(
b

a

)2

+ · · ·
)

Here we have neglected terms involving higher powers of b/a, which are small compared

to the retained terms, since b/a < 1 by construction (so that higher powers of b/a, which

involve multiplying a small number repeatedly by itself, quickly become negligible).

In this form, the binomial theorem is frequently useful as a way to generate approximate

expansions. In particular, the first-order approximation:

(1 + x)n ≈ 1 + nx for |x | < 1

should be memorized.

The Linear Transformation

Here is a quick, almost trivial, trick that is useful enough to be committed to memory. Any

variable can be transformed to a similar variable that takes on only values from the

interval [0, 1], via the following linear transformation, where xmin and xmax are the

minimum and maximum values that x can take on:

y = x − xmin

xmax − xmin

This transformation is frequently useful—for instance, if we have two quantities and

would like to compare how they develop over time. If the two quantities have very

different magnitudes, then we need to reduce both of them to a common range of values.

The transformation just given does exactly that.

If we want the transformed quantity to fall whenever the original quantity goes up, we

can do this by writing:

ȳ = 1 − y = 1 − x − xmin

xmax − xmin

We don’t have to shift by xmin and rescale by the original range xmax − xmin. Instead, we

can subtract any “typical” value and divide by any “typical” measure of the range. In

statistical applications, for example, it is frequently useful to subtract the mean μ and to

divide by the standard deviation σ . The resulting quantity is referred to as the z-score:

z = x − μ

σ
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Alternatively, you might also subtract the median and divide by the inter-quartile range.

The exact choice of parameters is not crucial and will depend on the specific application

context. The important takeaway here is that we can normalize any variable by:

• Subtracting a typical value (shifting) and

• Dividing by the typical range (rescaling)

Dividing by Zero

Please remember that you cannot divide by zero! I am sure you know this—but it’s

surprisingly easy to forget (until the computer reminds us with a fatal “divide by zero”

error).

It is instructive to understand what happens if you try to divide by zero. Take some fixed

number (say, 1), and divide it by a sequence of numbers that approach zero:

1

10
= 0.1

1

5
= 0.2

1

1
= 1.0

1

1/5
= 5

1

1/10
= 10

1

0
= ?

In other words, as you divide a constant by numbers that approach zero, the result

becomes larger and larger. Finally, if you let the divisor go to zero, the result grows

beyond all bounds: it diverges. Figure B-18 shows this graphically.

What you should take away from this exercise and Figure B-18 is that you cannot replace

1/0 by something else—for instance, it is not a smart move to replace 1/0 by 0 “because

both don’t really mean anything, anyway.” If you need to find a numeric value for 1/0,

then it should be something like “infinity,” but this is not a useful value to operate with in

practical applications.

Therefore, whenever you encounter a fraction a
b of any kind, you must check whether the

denominator can become zero and exclude these points from consideration.

Failing to do so is one of the most common sources of error. What is worse, these errors

are difficult to recover from—not just in implementations but also conceptually. A typical
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F I G U R E B-18. As you divide a constant value by smaller and smaller numbers, the result is getting larger and larger. If you
divide by zero, it blows up!

example involves “relative errors,” where we divide the difference between the observed

and the expected value by the expected value:

relative error = observed − expected

expected

What happens if for one day the expected value drops to zero? You are toast. There is no

way to assign a meaningful value to the error in this case. (If the observed value is also

zero, then you can treat this as a special case and define the relative error to be zero in this

case, but if the observed value is not zero, then this definition is obviously inappropriate.)

These kinds of problems have an unpleasant ability to sneak up on you. A quantity such

as the relative error or the defect rate (which is also a ratio: the number of defects found

divided by the number of units produced) is a quantity commonly found in reports and

dashboards. You don’t want your entire report to crash because no units were produced

for some product on this day rendering the denominator zero in one of your formulas!

There are a couple of workarounds, neither of which is perfect. In the case of the defect

rate, where you can be sure that the numerator will be zero if the denominator is

(because no defects can be found if no items were produced), you can add a small positive

number to the denominator and thereby prevent it from ever becoming exactly zero. As

long as this number is small compared to the number of items typically produced in a day,

it will not significantly affect the reported defect rate, but will relieve you from having to

check for the 0
0 special case explicitly. In the case of calculating a relative error, you might

want to replace the numerator with the average of the expected and the observed values.

The advantage is that now the denominator can be zero only if the numerator is zero,

R E S U LT S F R O M C A L C U L U S 471



O’Reilly-5980006 master October 28, 2010 21:54

which brings us back to the suggestion for dealing with defect rates just discussed. The

problem with this method is that when no events are observed but some number was

expected, the relative error is reported as −2 (negative 200 percent instead of negative

100 percent); this is due to the factor 1/2 in the denominator, which comes from

calculating the average there.

So, let me say it again: whenever you are dealing with fractions, you must consider the

case of denominators becoming zero. Either rule them out or handle them explicitly.

Notation and Basic Math

This section is not intended as a comprehensive overview of mathematical notation or as

your first introduction to mathematical formulas. Rather, it should serve as a general

reminder of some basic facts and to clarify some conventions used in this book. (All my

conventions are pretty standard—I have been careful not to use any symbols or

conventions that are not generally used and understood.)

On Reading Formulas

A mathematical formula combines different components, called terms, by use of operators.

The most basic operators are plus and minus (+ and −) and multiplied by and divided by

(· and /). Plus and minus are always written explicitly, but the multiplication operator is

usually silent—in other words, if you see two terms next to each other, with nothing

between them, they should be multiplied. The division operator can be written in two

forms: 1/n or 1
n , which mean exactly the same thing. The former is more convenient in

text such as this; the latter is more clear for long, “display” equations. An expression such

as 1/n + 1 is ambiguous and should not be used, but if you encounter it, you should

assume that it means 1
n + 1 and not 1/(n + 1) (which is equivalent to 1

n+1 ).

Multiplication and division have higher precedence than addition and subtraction,

therefore ab + c means that first you multiply a and b and then add c to the result. To

change the priority, you need to use parentheses: a(b + c) means that first you add b and c

and then multiply the result by a. Parentheses can either be round (. . . ) or square [. . . ],

but their meaning is the same.

Functions take one (or several) arguments and return a result. A function always has a

name followed by the arguments. Usually the arguments are enclosed in parentheses: f (x).

Strictly speaking, this notation is ambiguous because an expression such as f (a + b) could

mean either “add a and b and then multiply by f ” or “add a and b and then pass the

result to the function f .” However, the meaning is usually clear from the context.

(There is a slightly more advanced way to look at this. You can think of f as an operator,

similar to a differential operator like d
dx or an integral operator like

∫
dt . This operator is

now applied to the expression to the right of it. If f is a function, this means applying the
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function to the argument; if the operator is a differential operator, this means taking the

derivative; and if f is merely a number, then applying it simply means multiplying the

term on its right by it.)

A function may take more than one argument; for example, the function f (x, y, z) takes

three arguments. Sometimes you may want to emphasize that not all of these arguments

are equivalent: some are actual variables, whereas others are “parameters,” which are

kept constant while the variables change. Consider f (x) = ax + b. In this function, x is the

variable (the quantity usually plotted along the horizontal axis) while a and b would be

considered parameters. If we want to express that the function f does depend on the

parameters as well as on the actual variable, we can do this by including the parameters in

the list of arguments: f (x, a, b). To visually separate the parameters from the actual

variable (or variables), a semicolon is sometimes used: f (x; a, b). There are no

hard-and-fast rules for when to use a semicolon instead of a comma—it’s simply a

convenience that is sometimes used and other times not.

One more word on functions: several functions are regarded as “well known” in

mathematics (such as sine and cosine, the exponential function, and the logarithm). The

names of such well-known functions are always written in upright letters, whereas

functions in general are denoted by an italic letter. (Variables are always written in italics.)

For well-known functions, the parentheses around the arguments can be omitted if the

argument is sufficiently simple. (This is another example of the “operator” point of view

mentioned earlier.) Thus we may write sin(x + 1) + log x − f (x) (note the upright letters

for sine and logarithm, and the parentheses around the argument for the logarithm have

been omitted, because it consists of only a single term). This has a different meaning than:

sin(x + 1) + log(x − f (x)).

Elementary Algebra

For numbers, the following is generally true:

a(b + c) = ab + ac

This is often applied in situations like the following, where we factor out the a:

a + b = a(1 + b/a)

If a is much greater than b, then we have now converted the original expression a + b into

another expression of the form:

something large · (1 + something small)

which makes it easy to see which terms matter and which can be neglected in an

approximation scheme. (The small term in the parentheses is “small” compared to the 1 in

the parentheses and can therefore be treated as a perturbation.)
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Quantities can be multiplied together, which gives rise to powers:

a · a = a2

a · a · a = a3

. . .

The raised quantity (the superscript) is also referred to as the exponent. In this book,

superscripts always denote powers.

The three binomial formulas should be committed to memory:

(a + b)2 = a2 + 2ab + b2

(a − b)2 = a2 − 2ab + b2

(a + b)(a − b) = a2 − b2

Because the easiest things are often the most readily forgotten, let me just work out the

first of these identities explicitly:

(a + b)2 = (a + b)(a + b)

= a(a + b) + b(a + b)

= a2 + ab + ba + b2

= a2 + 2ab + b2

where I have made use of the fact that ab = ba.

Working with Fractions

Let’s review the basic rules for working with fractions. The expression on top is called the

numerator, the one at the bottom is the denominator:

numerator

denominator

If you can factor out a common factor in both numerator and denominator, then this

common factor can be canceled:

2 + 4x

2 + 2 sin(y)
= 2(1 + 2x)

2(1 + sin(y)
= 1 + 2x

1 + sin y

To add two fractions, you have to bring them onto a common denominator in an

operation that is the opposite of canceling a common factor:

1

a
+ 1

b
= a

ab
+ b

ab
= a + b

ab

Here is a numeric example:

1

2
+ 1

3
= 3

6
+ 2

6
= 5

6
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Sets, Sequences, and Series

A set is a grouping of elements in no particular order. In a sequence, the elements occur in a

fixed order, one after the other.

The individual elements of sets and sequences are usually shown with subscripts that

denote the index of the element in the set or its position in the sequence (similar to

indexing into an array). In this book, subscripts are used only for the purpose of indexing

elements of sets or sequences in this way.

Sets are usually indicated by curly braces. The following expressions are equivalent:

{x1, x2, x3, . . . , xn}
{xi | i = 1, . . . , n}

For brevity, it is customary to suppress the range of the index if it can be understood from

context. For example, if it is clear that there are n elements in the set, I might simply write

{xi }.
One often wants to sum a finite or infinite sequence of numbers; the result is known as a

series:

x1 + x2 + x3 + · · · + xn

Instead of writing out the terms explicitly, it is often useful to use the sum notation:

n∑

i=1

xi = x1 + x2 + x3 + · · · + xn

The meaning of the summation symbol should be clear from this example. The variable

used as index (here, i) is written underneath the summation sign followed by the lower

limit (here, 1). The upper limit (here, n) is written above the summation sign. As a

shorthand, any one of these specifications can be omitted. For instance, if it is clear from

the context that the lower limit is 1 and the upper limit is n, then I might simply write∑
i xi or even

∑
xi . In the latter form, it is understood that the sum runs over the index of

the summands.

It is often convenient to describe the terms to be summed over in words, rather than

giving specific limits:
∑

all data points

xi

Some standard transformations involving the summation notation are used fairly often.

For example, one frequently needs to shift indices. The following three expressions are

equal, as you can easily see by writing out explicitly the terms of the sum in each case:

n∑

i=0

xi =
n+1∑

i=1

xi−1 = x0 +
n∑

i=1

xi
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Keep in mind that the summation notation is just a shorthand for the explicit form given

at the start of this section. If you become confused, you can always write out the terms

explicitly to understand what is going on.

Finally, we may take the upper limit of the sum to be infinity, in which case the sum runs

over infinitely many terms. Infinite series play a fundamental role in the theoretical

development of mathematics, but all series that you will encounter in applications are, of

course, finite.

Special Symbols

A few mathematical symbols are either indispensable or so useful that I wouldn’t do

without them.

Binary relationships

There are several special symbols to describe the relationship between two expressions.

Some of the most useful ones are listed in Table B-3.

T A B L E B-3. Commonly used relational operators

Operator Meaning

= �= equal to, not equal to
< > less than, greater than
≤ ≥ less than or equal to, greater than or equal to

� � much less than, much greater than
∝ proportional to
≈ approximately equal to
∼ scales as

The last three might require a word of explanation. We say two quantities are

approximately equal when they are equal up to a “small” error. Put differently, the

difference between the two quantities must be small compared to the quantities

themselves: x and 1.1x are approximately equal, x ≈ 1.1x , because the difference (which

is 0.1x) is small compared to x .

One quantity is proportional to another if they are equal up to a constant factor that has

been omitted from the expression. Often, this factor will have units associated with it. For

example, when we say “time is money,” what we really mean is:

money ∝ time

Here the omitted constant of proportionality is the hourly rate (which is also required to

fix the units: hours on the left, dollars on the right; hence hourly rate must have units of

“dollars per hour” to make the equation dimensionally consistent).
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We say that a quantity scales as some other quantity if we want to express how one

quantity depends on another one in a very general way. For example, recall that the area

of a circle is πr2 (where r is the length of the radius) but that the area of a square is a2

(where a is the length of the side of the square). We can now say that “the area scales as

the square of the length.” This is a more general statement than saying that the area is

proportional to the square of the length: the latter implies that they are equal up to a

constant factor, whereas the scaling behavior allows for more complicated dependencies.

(In this example, the constant of proportionality depends on the shape of the figure, but

the scaling behavior area ∼ length2 is true for all symmetrical figures.)

In particular when evaluating the complexity of algorithms, there is another notation to

express a very similar notion: the so-called big O notation. For example, the expression

O(n2) states that the complexity of an algorithm grows (“scales”) with the square of the

number of elements in the input.

Parentheses and other delimiters

Round parentheses (. . .) are used for two purposes: to group terms together (establishing

precedence) and to indicate the arguments to a function:

ab + c �= a(b + c) Parentheses to establish precedence

f (x, y) = x + y Parentheses to indicate function arguments

Square brackets [. . .] are mostly used to indicate an interval:

[a, b] all x such that a ≤ x ≤ b

For the purpose of this book, we don’t need to worry about the distinction between closed

and open intervals (i.e., intervals that do or don’t contain their endpoints, respectively).

Very rarely I use brackets for other purposes—for example as an alternative to round

parentheses to establish precedence, or indicate that a function takes another function as

its argument, as in the expectation value: E[ f (x)].

Curly braces {. . .} always denote a set.

Miscellaneous symbols

Two particular constants are indispensable. Everybody has heard of π = 3.141592 . . . ,

which is the ratio of the circumference of a circle to its diameter:

π = circumference

diameter
= 3.141592 . . .
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Equally important is the “base of the natural logarithm” e = 2.718281 . . . , sometimes

called Euler’s number. It is defined as the value of the infinite series:

e =
∞∑

n=0

1

n!
= 2.718281 . . .

The function ex obtained by raising e to the xth power has the property that its derivative

also equals ex , and it is the only function that equals its derivative (up to a multiplicative

constant, to be precise).

The number e also shows up in the definition of the Gaussian function:

e−x2

(Any function that contains e raised to −x2 power is called a “Gaussian”; what’s crucial is

that the x in the exponent is squared and enters with a negative sign. Other constants

may appear also, but the −x2 in the exponent is the defining property.)

Because the exponents are often complicated expressions themselves, there is an

alternative notation for the exponential function that avoids superscripts and instead uses

the function name exp(. . . ). The expression exp(x) means exactly the same as ex , and the

following two expressions are equivalent, also—but the one on the right is easier to write:

e−( x−μ
σ )

2 = exp

(
−

(
x − μ

σ

)2
)

A value of infinite magnitude is indicated by a special symbol:

∞ a value of infinite magnitude

The square root sign
√

x states that:

if y = √
x then y2 = x

Finally, the integral sign
∫

, which always occurs together with an expression of the form

dx (or dt , or so), is used to denote a generalized form of summation: the expression to the

right of the integral sign is to be “summed” for all values of x (or t). If explicit limits of the

integration are given, they are attached to the integral sign:
∫ 1

0
f (x) dx

This means: “sum all values of f (x) for x ranging from 0 to 1.”

The Greek Alphabet

Greek letters are used all the time in mathematics and other sciences and should be

committed to memory. (See Table B-4.)
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T A B L E B-4. The Greek alphabet

Lowercase Uppercase Name

α A Alpha
β B Beta
γ � Gamma
δ � Delta
ε E Epsilon
ζ Z Zeta
η H Eta
θ � Theta
ι I Iota
κ K Kappa
λ � Lambda
μ M Mu
ν N Nu
ξ � Xi
o O Omicron
π � Pi
ρ R Rho
σ � Sigma
τ T Tau
υ ϒ Upsilon
φ � Phi
χ X Chi
ψ ! Psi
ω # Omega

Where to Go from Here

This appendix can of course only give a cartoon version of the topics mentioned, or—if

you have seen this material before—at best serve as a reminder. But most of all, I hope it

serves as a teaser: mathematics is a wonderfully rich and stimulating topic, and I would

hope that in this appendix (and in the rest of this book) I have been able to convey some

of its fascination—and perhaps even convinced you to dig a little deeper.

If you want to learn more, here are a couple of hints.

The first topic to explore is calculus (or real analysis). All modern mathematics starts here,

and it is here that some of the most frequently used concepts (derivative, integral, Taylor

expansion) are properly introduced. It is a must-have.

But if you limit your attention to calculus, you will never get over the idea that

mathematics is about “calculating something.” To get a sense of what math is really all

about, you have to go beyond analysis. The next topic in a typical college syllabus is linear

algebra. In linear algebra, we go beyond relatively tangible things like curves and numbers

and for the first time start to consider concepts in a fully abstract way: spaces,

transformations, mappings. What can we say about them in general without having to
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appeal to any particular realization? Understanding this material requires real mental

effort—you have to change the way you think. (Similarly to how you have to change the

way you think if you try to learn Lisp or Haskell.) Linear algebra also provides the

theoretical underpinnings of all matrix operations and hence for most frequently used

numerical routines. (You can’t do paper-and-pencil mathematics without calculus, and

you can’t do numerical mathematics without linear algebra.)

With these two subjects under your belt, you will be able to pick up pretty much any

mathematical topic and make sense of it. You might then want to explore complex

calculus for the elegance and beauty of its theorems, or functional analysis and Fourier

theory (which blend analysis and linear algebra) because of their importance in all

application-oriented areas, or take a deeper look at probability theory, with its obvious

importance for anything having to do with random data.

On Math

I have observed that there are two misconceptions about mathematics that are

particularly prevalent among people coming from a software or computing background.

The first misconception holds that mathematics is primarily a prescriptive, calculational

(not necessarily numerical) scheme and similar to an Algol-derived programming

language: a pseudo-code for expressing algorithms. The other misconception views

mathematics as mostly an abstract method for formal reasoning, not dissimilar to certain

logic programming environments: a way to manipulate logic statements.

What both of them miss is that mathematics is not a method but first and foremost a body

of content in its own right. You will never understand what mathematics is if you see it

only as something you use to obtain certain results. Mathematics is, first and foremost, a

rich and exciting story in itself.

There is an unfortunate perception among nonmathematicians (and even partially

reinforced by this book) that mathematics is about “calculating things.” This is not so, and

it is probably the most unhelpful misconception about mathematics of all.

In fairness, this point of view is promulgated by many introductory college textbooks. In a

thoroughly misguided attempt to make their subject “interesting,” they try to motivate

mathematical concepts with phony applications to the design of bridges and airplanes, or

to calculating the probability of winning at poker. This not only obscures the beauty of the

subject but also creates the incorrect impression of mathematics as a utilitarian fingering

exercise and almost as a necessary evil.

Finally, I strongly recommend that you stay away from books on popular or recreational

math, for two reasons. First, they tend to focus on a small set of topics that can be treated

using “elementary” methods (mostly geometry and some basic number theory), and tend

to omit most of the conceptually important topics. Furthermore, in their attempt to
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present amusing or entertaining snippets of information, they fail to display the rich,

interconnected structure of mathematical theory: all you end up with is a book of (stale)

jokes.

Further Reading

Calculus

• The Hitchhiker’s Guide to Calculus. Michael Spivak. Mathematical Association of America.

1995.

If the material in this appendix is really new to you, then this short (120-page) booklet

provides a surprisingly complete, approachable, yet mathematically respectable

introduction. Highly recommended for the curious and the confused.

• Precalculus: A Prelude to Calculus. Sheldon Axler. Wiley. 2008.

Axler’s book covers the basics: numbers, basic algebra, inequalities, coordinate systems,

and functions—including exponential, logarithmic, and trigonometric functions—but it

stops short of derivatives and integrals. If you want to brush up on foundational

material, this is an excellent text.

• Calculus. Michael Spivak. 4th ed., Publish or Perish. 2008.

This is a comprehensive book on calculus. It concentrates exclusively on the clear

development of the mathematical theory and thereby avoids the confusion that often

results from an oversupply of (more or less) artificial examples. The presentation is

written for the reader who is relatively new to formal mathematical reasoning, and the

author does a good job motivating the peculiar arguments required by formal

mathematical manipulations. Rightly popular.

• Yet Another Introduction to Analysis. Victor Bryant. Cambridge University Press. 1990.

This short book is intended as a quick introduction for those readers who already

possess passing familiarity with the topic and are comfortable with abstract operations.

Linear Algebra

• Linear Algebra Done Right. Sheldon Axler. 2nd ed., Springer. 2004.

This is the best introduction to linear algebra that I am aware of, and it fully lives up to

its grandiose title. This book treats linear algebra as abstract theory of mappings, but on

a very accessible, advanced undergraduate level. Highly recommended.

• Linear Algebra. Klaus Jänich. Springer. 1994.

This book employs a greater amount of abstract mathematical formalism than the

previous entry, but the author tries very hard to explain and motivate all concepts. This

book might therefore give a better sense of the nature of abstract algebraic arguments

than Axler’s streamlined presentation. The book is written for a first-year course at

German universities; the style of the presentation may appear exotic to the American

reader.
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Complex Analysis

• Complex Analysis. Joseph Bak and Donald J. Newman. 2nd ed., Springer. 1996.

This is a straightforward, and relatively short, introduction to all the standard topics of

classical complex analysis.

• Complex Variables. Mark J. Ablowitz and Athanassios S. Fokas. 2nd ed., Cambridge

University Press. 2003.

This is a much more comprehensive and advanced book. It is split into two parts: the

first part developing the theory, the second part discussing several nontrivial

applications (mostly to the theory of differential equations).

• Fourier Analysis and Its Applications. Gerald B. Folland. American Mathematical Society.

2009.

This is a terrific introduction to Fourier theory. The book places a strong emphasis on

the solution of partial differential equations but in the course of it also develops the

basics of function spaces, orthogonal polynomials, and eigenfunction expansions. The

later chapters give an introduction to distributions and Green’s functions. This is a very

accessible book, but you will need a strong grounding in real and complex analysis, as

well as some linear algebra.

Mindbenders

If you really want to know what math is like, pick up any one of these. You don’t have to

understand everything—just get the flavor of it all. None of them are “useful,” all are

fascinating.

• A Primer of Analytic Number Theory. Jeffrey Stopple. Cambridge University Press. 2003.

This is an amazing book in every respect. The author takes one of the most advanced,

obscure, and “useless” topics—namely analytic number theory—and makes it

completely accessible to anyone having even minimal familiarity with calculus

concepts (and even those are not strictly required). In the course of the book, the

author introduces series expansions, complex numbers, and many results from

calculus, finally arriving at one of the great unsolved problems in mathematics: the

Riemann hypothesis. If you want to know what math really is, read this book!

• The Computer As Crucible: An Introduction to Experimental Mathematics. Jonathan Borwein

and Keith Devlin. AK Peters. 2008.

If you are coming from a programming background, you might be comfortable with

this book. The idea behind “experimental mathematics” is to see whether we can use a

computer to provide us with intuition about mathematical results that can later be

verified through rigorous proofs. Some of the observations one encounters in the

process are astounding. This book tries to maintain an elementary level of treatment.

• Mathematics by Experiment. Jonathan M. Borwein and David H. Bailey. 2nd ed., AK

Peters. 2008.
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This is a more advanced book coauthored by one of the authors of the previous entry

on much the same topic.

• A Mathematician’s Lament: How School Cheats Us Out of Our Most Fascinating and Imaginative

Art Form. Paul Lockhart. Bellevue Literary Press. 2009.

This is not a math book at all: instead it is a short essay by a mathematician (or math

teacher) on what mathematics is and why and how it should be taught. The author’s

philosophy is similar to the one I’ve tried to present in the observations toward the end

of this appendix. Read it and weep. (Then go change the world.) Versions are also

available on the Web (for example, check http://www.maa.org/devlin/devlin 03 08.

html).
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A P P E N D I X C

Working with Data

ONE OF THE UNCOMFORTABLE (AND EASILY OVERLOOKED) TRUTHS OF WORKING WITH DATA IS THAT USUALLY

only a small fraction of the time is spent on the actual “analysis.” Often a far greater

amount of time and effort is expended on a variety of tasks that may appear “menial” by

comparison but that are absolutely critical nevertheless: obtaining the data; verifying,

cleaning and possibly reformatting it; and dealing with updates, storage, and archiving.

For someone new to working with data (and even, periodically, for someone not so new),

it typically comes as a surprise that these preparatory tasks are not only necessary but also

take up as much time as they do.

By their nature, these housekeeping and auxiliary tasks tend to be very specific: specific to

the data, specific to the environment, and specific to the particular question being

investigated. This implies that there is little that can be said about them in generality—it

pretty much all comes down to ad hoc hackery. Of course, this absence of recognizable

nontrivial techniques is one of the main reasons these activities receive as little attention

as they do.

That being said, we can try to increase our awareness of such issues typically arising in

practical situations.

Sources for Data

The two most common sources for data in an enterprise environment are databases and

logfiles. As data sources, the two sources tend to address different needs. Databases will

contain data related to the “business,” whereas logfiles are a source for “operational” data:

databases answer the question “what did we sell to whom?” whereas logfiles answer the

question “what did we do, and when?”
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Databases can be either “online transaction processing” (OLTP) or “production” databases,

or “data warehouses” for long-term storage. Production databases tend to be normalized,

fast, and busy. You may or may not be able to get read access to them for ad hoc queries,

depending on company policy. Data warehouses tend to be denormalized, slow, and often

accessed through a batch processing facility (submit your query tonight and find out

tomorrow that you omitted a field you needed). Production databases tend to be owned

(at least in spirit) by the application development teams. Data warehouses are invariably

owned by the IT department, which implies a different culture (see also the discussion in

Chapter 17). In either form, databases tend to provide a stable foundation for data

needs—provided you are interested in something the company already considers part of

its “business.”

In contrast, logfiles are often an important source of data for new initiatives. If you want

to evaluate a new business idea, chances are that the data required for your analysis will

not be available in the database—not yet, since there has never been a reason to store it

before. In such situations you may still be able to find the information you need in logfiles

that are regularly produced.

One very important distinction is that databases and logfiles have different life cycles:

making changes to the design of a database is always a slow (often, excruciatingly slow)

process, but the data itself lives in the database forever (if the database is properly

designed). In contrast, logfiles often contain much more information than the database,

but they are usually deleted very quickly. If your organization keeps logfiles for two

weeks, consider yourself lucky!

Therefore, if you want to begin a project using data contained in logfiles then you need to

move fast: start saving all files to your desktop or another safe location immediately, then

figure out what you want to do with them! Frequently, you will need several weeks’ (or

months’) worth of data for a conclusive analysis, and every day that you wait can never

be made up. Also keep in mind that logfiles are usually generated on production servers to

which access may be heavily restricted. It is not uncommon to spend weeks in negotiations

with network administrators if you need to move significant amounts of data off of

production systems.

The same consideration applies if information is not available in the logfiles, so that

existing code needs to be instrumented to support collection of the required data. In this

situation, you will likely find yourself captive to preexisting release schedules and other

constraints. Again: start to think about collecting data early.

Because databases and logfiles are so common and so directly useful sources of data in an

enterprise environment, it’s easy to forget that they’re not the only available sources.

A separate data source that sometimes can be extremely useful is the company’s finance

department. Companies are required to report on various financial metrics, which means

that such information must be available, although possibly only in a highly aggregated

form (e.g., quarterly) and possibly quite late. On other hand, this information is normative
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and therefore reliable: after all, it’s what the company is paying taxes on! (I am ignoring

the possibility that the data provided by the finance department might be wrong, but don’t

get me wrong: forensic data analysis is also an interesting field of study.)

What works internally may also work with competitors. The quarterly filings that publicly

listed companies are required to make can make interesting reading!

So far we have assumed that you had to find and extract the data you need from

whatever sources are available; in my experience, this is by far the most common

scenario. However, your data may also be handed to you—for example, if it is

experimental data or if it comes from an external source. In this case, it may come in a

domain-specific file format (we’ll return to data formats shortly). The problem with this

situation is, of course, that now you have no control over what is in the data!

Cleaning and Conditioning

Raw data, whether it was obtained from a database query or by parsing a logfile, typically

needs to be cleaned or conditioned. Here are some areas that often need attention.

Missing values
If individual attributes or entire data points are missing, we need to decide how to

handle them. Should we discard the whole record, mark the information in question as

missing, or backfill it in some way? Your choice will depend strongly on your specific

situation and goals.

Outliers
In general, you should be extremely careful when removing outliers—you may be

removing the effect that you are looking for. Never should data points be removed

silently. (There is a (partly apocryphal) story* that the discovery of the hole in the

ozone layer over Antarctica was delayed by several years because the automated data

gathering system discarded readings that it considered to be “impossibly low.”)

Junk
Data that comes over a network may contain nonprintable characters or similar junk.

Such data is not only useless but can also seriously confuse downstream applications

that are attempting to process the data (e.g., when nonprintable characters are

interpreted as control characters—many programming environments will not issue

helpful diagnostics if this happens). This kind of problem frequently goes unnoticed,

because such junk is typically rare and not easily noticed simply by scanning the

beginning of a data set.

Formatting and normalizing
Individual values may not be formatted in the most useful way for subsequent analysis.

Examples of frequently used transformations for this purpose include: forcing upper- or

*http://www.nas.nasa.gov/About/Education/Ozone/history.html.
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lowercase; removing blanks within strings, or replacing them with dashes; replacing

timestamps with Unix Epoch seconds, the Julian day number, or a similar numerical

value; replacing numeric codes with string labels, or vice versa; and so on.

Duplicate records
Data sets often contain duplicate records that need to be recognized and removed

(“de-duped”). Depending on what you consider “duplicate,” this may require a

nontrivial effort. (I once worked on a project that tried to recognize misspelled postal

addresses and assign them to the correctly spelled one. This also is a form of

de-duping.)

Merging data sets
The need to merge data sets from different sources is arises pretty often—for instance,

when the data comes from different database instances. Make sure the data is truly

compatible, especially if the database instances are geographically dispersed. Differing

time zones are a common trouble spot, but don’t overlook things like monetary units.

In addition, you may need to be aware of localization issues, such as font encodings

and date formatting.*

Reading this list, you should realize that the process of cleaning data cannot be separated

from analyzing it. For instance: outlier detection and evaluation require some pretty deep

analysis to be reliable. On the other hand, you may need to remove outliers before you

can calculate meaningful values for certain summary statistics. This is an important

insight, which we will make time and again: data analysis is an iterative process, in which

each operation is at the same time the result of a previous step and the preparation for a

subsequent step.

Data files may also be defective in ways that only become apparent when subsequent

analysis fails or produces nonsensical results. Some common problems are:

Clerical errors
These are basically data entry errors: 0.01 instead of 0.001, values entered in the wrong

column, all that. Because most data these days is computer generated, the classic

occasional typo seems to be mostly a thing of the past. But watch out for its industrial

counterpart: entire data sets that are systematically corrupted. (Once, we didn’t realize

that a certain string field in the database was of fixed width. As we went from entries

of the form ID1, ID2, and so on to entries like ID10, the last character was silently

truncated by the database. It took a long time before we noticed—after all, the results

we got back looked all right.)

*Regarding time zones, I used to be a strong proponent of keeping all date/time information in Coordi-
nated Universal Time (UTC, “Greenwich Time”), always. However, I have since learned that this is not
always appropriate: for some information, such as customer behavior, it is the local time that matters,
not the absolute time. Nevertheless, I would prefer to store such information in two parts: timestamp
in UTC and in addition, the local time zone of the user. (Whether we can actually determine the user’s
time zone accurately is a different matter.)
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Numerical “special” values
Missing values in a data set may be encoded using special numerical values (such as −1

or 9999). Unless these values are filtered out, they will obviously corrupt any statistical

analysis. There is less of a need for special values like this when data is kept in text files

(because you can indicate missing values with a marker such as ???), but be aware that

it’s still an issue when you are dealing with binary files.

Crazy business rules and overloaded database fields
Bad schema design can thoroughly wreck your analysis. A pernicious problem is

overloaded database fields: fields that change their meaning depending on the values

of other fields in the database. I remember a case where the Quantity field in a table

contained the number of items shipped—unless it was zero—in which case it signaled a

discount, a promotion, or an out-of-stock situation depending on whether an entry

with the same order ID existed in the Discounts, Promotions, or BackOrders tables—or it

contained not the number of items shipped but rather the number of multi-item

packages that had been shipped (if the IsMulti flag was set), or it contained the ID (!)

of the return order associated with this line item (if some other flag was set). What

made the situation so treacherous was that running a query such as select

avg(Quantity) from . . . would produce a number that seemed sensible even though it

was, of course, complete nonsense. What’s worse, most people were unaware of this

situation because the data was usually accessed only through (massive) stored

procedures that took all these crazy business rules into account.

Sampling

When dealing with very large data sets, we can often simplify our lives significantly by

working with a sample instead of the full data set—provided the sample is representative of

the whole. And therein lies the problem.

In practice, sampling often means partitioning the data on some property of the data:

picking all customers whose names begin with the letter “t,” for instance, or whose

customer ID ends with “0”; or using the logfile from one server only (out of 10); or all

transactions that occurred today. The problem is that it can be very difficult to establish a

priori whether these subpopulations are at all representative of the entire population.

Determining this would require an in-depth study on the whole population—precisely

what we wanted to avoid!

Statistical lore is full of (often quite amusing) stories about the subtle biases introduced

through improper sampling. Choosing all customers whose first names end in “a” will

probably introduce a bias toward female customers. Surveying children for the number of

siblings will overestimate the number of children per household because it excludes

households without children. A long-term study of mutual funds may report overly

optimistic average returns on investment because it ignores funds that have been shut
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down because of poor performance (“survivorship bias”). A trailing zero may indicate a

customer record that was created long ago by the previous version of the software. The

server you selected for your logfile may be the “overflow” server that comes online during

peak hours only. And we haven’t even mentioned the problems involved with collecting

data in the first place! (A phone survey is inherently biased against those who don’t have

a phone or don’t answer it.) Furthermore, strange biases may exist that nobody is aware

of. (It is not guaranteed that the network administrators will know or understand the

algorithm that the load balancer uses to assign transactions to servers, particularly if the

load balancer itself is “smart” and changes its logic based on traffic patterns.)

A relatively safe way to create a sample is to take the whole data set (or as large a chunk

of it as possible) and randomly pick some of the records. The keyword is randomly: don’t

take every tenth record; instead, evaluate each record and retain it with a probability of

1/10. Also make sure that the data set does not contain duplicates. (For instance, to

sample customers given their purchases, you must first extract the customer IDs and

de-dupe them, then sample from the de-duped IDs. Sampling from the transactions alone

will introduce a bias toward repeat customers.)

Sampling in this way pretty much requires that the data be available as a file. In contrast,

sampling from a database is more difficult because, in general, we don’t have control (or

even full understanding) over how records are sorted internally. We can dump all records

to file and then sample from there, but this is rather awkward and may not even be

feasible for very large tables.

A good trick to enable random sampling from databases is to include an additional

column, which at the time the record is created is filled with a random integer between (say)

0 and 99. By selecting on this column, we can extract a sample consisting of 1 percent of

all records. This column can even be indexed (although the database engine may ignore

the index if the result set is too large). Even when it is not possible to add such a column

to the actual table, the same technique can still be used by adding a cross-reference table

that contains only the primary key of the table we want to sample from and the random

integer. It is critical that the the random number is assigned at the time the record is

created and is never changed or updated thereafter.

Whichever approach you take, you should verify that your sampling process does lead to

representative samples. (Take two independent samples and compare their properties.)

Sampling can be truly useful—even necessary. Just be very careful.

Data File Formats

When it comes to file formats for data, my recommendation is to keep it simple, even

dead-simple. The simpler the file format, the greater flexibility you have in terms of the

tools you can use on the data. Avoid formats that require a nontrivial parser!
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My personal favorite is that old standby, the delimiter-separated text file, with one record

per line and a single data set per file. (Despite the infamous difficulties with the Unix make

utility, I nevertheless like tab-delimited files: since numbers don’t contain tabs, I never

need to quote or escape anything; and the tabs make it easy to visually inspect a

file—easier than do commas.) In fairness, delimiter-separated text files do not work well

for one-to-many relationships or other situations where each record can have a varying

number of attributes. On the other hand, such situations are rare and tend to require

special treatment, anyway.

One disadvantage of this format is that it does not allow you to keep information about

the data (“metadata”) within the file itself, except possibly the column names as first row.

One solution is to use two files—one for the data and one for the metadata—and to adopt

a convenient naming convention (e.g., using the same basename for both files while

distinguishing them by the extensions .data and .names).*

In general, I strongly recommend that you stay with text files and avoid binary files. Text

files are portable (despite the annoying newline issue), robust, and self-explanatory. They

also compress nicely. If you nevertheless decide to use binary files, I suggest that you use

an established format (for which mature libraries exist!) instead of devising an ad hoc

format of your own.

I also don’t find XML very suitable as a file format for data: the ratio of markup to payload

is poor which leads to unnecessarily bloated files. XML is also notoriously expensive to

parse, in particular for large files. Finally, the flexibility provided by XML is rarely

necessary for data sets, which typically have a very regular structure. (It may seem as if

XML might be useful for metadata, but even here I disagree: the value of XML is to make

data machine-readable, whereas the primary consumers of metadata are humans!)

Everything I have said so far assumes that the data files are primarily for yourself (you

don’t want to distribute them) and that you are willing to read in the entire file

sequentially (so that you don’t need to perform seeks within the file). There are file

formats that allow you to bundle multiple data sets into a single file and efficiently extract

parts of them (for example, check out the Hierarchical Data Format (HDF) and its

variants, such as netCDF), but I have never encountered them in real life. It should not be

lost on you that the statistics and machine-learning communities use delimiter-separated

text almost exclusively as format for data sets on their public data repositories. (And if you

need indexed lookup, you may be better off setting up a minimal standalone database for

yourself: see the Workshop in Chapter 16.)

Finally, I should point out that some (scientific) disciplines have their own specialized file

formats as well as the tools designed to handle them. Use them when appropriate.

*This convention is used by many data sets available from the UCI Machine Learning Repository.
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The Care and Feeding of Your Data Zoo

If you work in the same environment for a while, you are likely to develop a veritable

collection of different data sets. Not infrequently, it is this ready access to relevant data

sets that makes you valuable to the organization (quite aside from your more celebrated

skills). On the downside, maintaining that collection in good order requires a certain

amount of effort.

My primary advice is make sure that all data sets are self-explanatory and reproducible.

To ensure that a data set is self-explanatory, you should not only include the minimal

metadata with or in the file itself, but include all the information necessary to make sense

of it. For instance, to represent a time series (i.e., a data set of measurements taken over

time at regular intervals), it is strictly necessary to store only the values, the starting time,

and the length of the interval between data points. However, it is safer to store the

corresponding timestamp with each measured value—this way, the data set still makes

sense even if the metadata has been lost or garbled. Similar considerations apply more

generally: I tend to be fairly generous when it comes to including information that might

seem “redundant.”

To keep data reproducible, you should keep track of its source and the cleaning and

conditioning transformations. This can be tedious because so much of the latter consists of

ad hoc, manual operations. I usually keep logs with my data sets to record the URLs (if the

data came from the Web) or the database queries. I also capture the commands and

pipelines issued at the shell prompt and keep copies of all transformation scripts. Finally, if

I combine data from multiple sources into a single data set, I always retain the original

data sets.

This kind of housekeeping is very important: not only to produce an audit trail (should it

ever be needed) but also because data sets tend to be reused again and again and for

different purposes. Being able to determine exactly what is in the data is crucial.

I have not found many opportunities to automate these processes; the tasks just vary too

much. The one exception is the automated scheduled collection and archiving of volatile

data (e.g., copying logfiles to a safe location). Your needs may be different.

Finally, here are three pieces of advice on the physical handling of data files. They should

be obvious but aren’t necessarily.

Keep data files readily available
Being able to run a minimal script on a file residing on a local drive to come up with an

answer in seconds (compared to the 12–24 hour turnaround typical of may data

warehouse installations) is a huge enabler.

Compress your data files
I remember a group of statisticians who constantly complained about the lack of disk

space and kept requesting more storage. None of them used compression or had even
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heard of it. And all their data sets were kept in a textlike format that could be

compressed by 90 percent! (Also keep in mind that gzip can read from and write to a

pipe, so that the uncompressed file never needs to exist on disk.)

Have a backup strategy
This is important especially if all of your data resides only on your local workstation. At

the very least, get a second drive and mirror files to it. Of course, a remote (and,

ideally, managed) storage location is much better. Keep in mind that data sets can

easily become large, so you might want to sit down with your network administrators

early in the process so that your storage needs can be budgeted appropriately.

Skills

I hope that I’ve convinced you that obtaining, preparing, and transforming data makes

up a large part of day-to-day activities when working with data. To be effective in this

role, I recommend you acquire and develop some skills that facilitate these aspects of

your role.

For the most part, these skills come down to easy, ad hoc programming. If you come from

software development, you will hardly find anything new here. But if you come from a

scientific (or academic) background, you might want to broaden your expertise a little.

A special consideration is due to those who come to “data analysis” from a

database-centric, SQL programming point of view. If this describes your situation, I strongly

encourage you to pick up a language besides SQL. SQL is simply too restricted in what it

can do and therefore limits the kinds of problems you will choose to tackle—whether you

realize it or not! It’s also a good idea to do the majority of your work “offline” so that there

is less of a toll on the database (which is, after all, usually a shared resource).

Learn a scripting language
A scripting language such as Perl, Python, or Ruby is required for easy manipulation of

data files. Knowledge of a “large-scale” programming language like C/C++/Java/C# is

not sufficient. Scripting languages eliminate the overhead (“boilerplate code”) typically

associated with common tasks such as input/output and file or string handling. This is

important because most data transformation tasks are tiny and therefore the typical

cost of overhead, relative to the overall programming task, is simply not acceptable.

Note that R (the statistics package) can do double duty as a scripting language for these

purposes.

Master regular expressions
If you are dealing with strings (or stringlike objects, such as timestamps), then regular

expressions are the solution (and an amazingly powerful solution) to problems you

didn’t even realize you had! You don’t need to develop intimate familiarity with the

whole regular expression bestiary, but working knowledge of the basics is required.
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Be comfortable browsing a database
Pick a graphical database frontend* and become proficient with it. You should be able

to figure out the schema of a database and the semantics of the data simply by

browsing the tables and their values, requiring only minimal help.

Develop a good relationship with your system administrator and DBA
System administrators and DBAs are in the position to make your life significantly

easier (by granting you access, creating accounts, saving files, providing storage,

running jobs for you, . . . ). However, they were not hired to do that—to the contrary,

they are paid to “keep the trains on time.” A rogue (and possibly clueless or oblivious)

data analyst, running huge batch jobs during the busiest time of the day, does not help

with that task!

I would like to encourage you to take an interest in the situation of your system

administrators: try to understand their position and the constraints they have to work

under. System administrators tend to be paranoid—that’s what they’re paid for! Their

biggest fear is that something will upset the system. If you can convince them that you

do not pose a great risk, you will probably find them to be incredibly helpful.

(Finally, I tend to adopt the attitude that any production job by default has higher

priority than the research and analysis I am working on, and therefore I better be

patient.)

Work on Unix
I mean it. Unix was developed for precisely this kind of ad hoc programming with files

and data, and it continues to provide the most liberating environment for such work.

Unix (and its variants, including Linux and Mac OS X) has some obvious technical

advantages, but its most important property in the present context is that it encourages

you to devise solutions. It does not try (or pretend) to do the job for you, but it goes out of

its way to give you tools that you might find handy—without prescribing how or for

what you use them. In contrast, other operating systems tend to encourage you to stay

within the boundaries of certain familiar activity patterns—which does not encourage

the development of your problem-solving abilities (or, more importantly, your

problem-solving attitudes).

True story: I needed to send a file containing several millions of keys to a coworker.

(The company did not work on Unix.) Since the file was too large to fit safely into an

email message, I posted it to a web server on my desktop and sent my coworker the

link. (I dutifully had provided the file with the extension .txt, so that he would be able

to open it.) Five minutes later, he calls me back: “I can’t open that”—“What do you

mean?”—“Well, I click the link, but ScrapPaper [the default text editor for small text

*The SQuirreL project (http://squirrel-sql.sourceforge.net) is a good choice. Free, open source, and mature,
it is also written in Java—which means that it can run anywhere and connect to any database for
which JDBC drivers exist.
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files on this particular system] dies because the file is too big.” This coworker was not

inept (in fact, he was quite good at his primary job), but he displayed the particular

non-problem-solving attitude that develops in predefined work environments: “link,

click.” It did not even occur to him to think of something else to try. That’s a problem!

If you want to be successful working with data, you want to work in an environment

that encourages you to devise your own solutions.

You want to work on Unix.

Terminology

When working with data, there is some terminology that is frequently used.

Types of Data

We can distinguish different types of data. The most important distinction is the one

between numerical and nonnumerical or categorical data.

Numerical data is the most convenient to handle because it allows us to perform arbitrary

calculations. (In other words, we can calculate quantities like the mean.) Numerical data

can be continuous (taking on all values) or discrete (taking on only a discrete set of values).

It is often necessary to discretize or bin continuous data.

You will sometimes find numerical data subdivided further into interval and ratio data.

Interval data is data that does not have a proper origin, whereas ratio data does. Examples

of interval data (without proper origin) are calendar dates and temperatures in units of

Fahrenheit or Celsius. You can subtract such data to form intervals (there are 7 days

between 01 April 09 and 07 April 09) but you cannot form ratios: it does not make sense

to say that 60 Celsius is “twice as hot” as 30 Celsius. In contrast, quantities like length or

weight measurements are ratio data: 0 kilograms truly means “no mass,” and 0

centimeters truly means “no length.” For ratio data, it makes sense to say that a mass of 2

kilograms is “twice as heavy” as a mass of 1 kilogram.

The distinction between ratio and interval data is not very important in practice, because

interval data occurs rarely (I can think of no examples other than the two just mentioned)

and can always be avoided through better encoding. The data is numeric by construction,

so a zero must exist; hence an encoding can be found that measures magnitudes from this

origin (the Kelvin scale for temperatures does exactly that).

All nonnumerical data is categorical—in practice, you will usually find categorical data

encoded as strings. Categorical data is less powerful than numerical data because there are

fewer things we can do with it. Pretty much the only available operation is counting how

often each value occurs.

Categorical data can be subdivided into nominal and ordinal data. The difference is that for

ordinal data, a natural sort order between values exists, whereas for nominal data no such
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sort order exists. An example for ordinal (sortable) data is a data set consisting of values

like Like, Dislike, Don't Care, which have a clear sort order (namely, Like > Don't Care >

Dislike). In contrast, the colors Red, Blue, Green when used to describe (say) a sweater are

nominal, because there is no natural order in which to arrange these values.

Sortability is an important property because it implies that the data is “almost” numerical.

If categorical data is sortable then it can be mapped to a set of numbers, which are more

convenient to handle. For example, we can map Like, Dislike, Don't Care to the numbers

1, −1, and 0, which allows us to calculate an average value after all! However, there is no

such thing as the “average color” of all sweaters that were sold.

Another property I look for determines whether data is “mixable.” Can I combine

arbitrary multiples of data points to construct a new data point? For data to be mixable in

this way, it is not enough to be able to combine data points (e.g., concatenating two strings)

I must also be able to combine arbitrary multiples of all data points. If I can do this, then I

can construct a new data point that lies, for example, “halfway” between the original ones,

like so: x/2 + y/2. Being able to construct new data points in this way can speed up

certain algorithms (see Chapter 13 for some applications).

When data is mixable it is similar to points in space, and a lot of geometric intuition can be

brought to bear. (Technically, the data forms a vector space over the real numbers.)

The Data Type Depends on the Semantics

It is extremely important to realize that the type of the data is determined by the semantics of the

data. The data type is not inherent in the data—it only arises from its context.

Postal codes are a good example: although a postal code like 98101 may look like a number,

it does not behave like a number. It just does not make sense to add two postal codes

together or to form the average of a bunch of postal codes! Similarly, the colors Red, Yellow,

Green may be either nominal (if they refer to the colors of a sweater) or ordinal (if they are

status indicators, in which case they obey a sort order akin to that of a traffic light).

Whether data is numerical or categorical, sortable or not, depends on its meaning. You

can’t just look at a data set in isolation to determine its type. You need to know what the

data means.

Data by itself does not provide information. It is only when we take the data together with

its context that defines its semantics that data becomes meaningful. (This point is

occasionally overlooked by people with an overly formalistic disposition.)

Types of Data Sets

Data sets can be classified by the number of variables or columns they contain. Depending

on the type of data set, we tend to be interested in different questions.
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Univariate
A data set containing values only for a single variable. The weights of all students in a

class, for example, form a univariate data set. For univariate data sets, we usually want

to know how the individual points are distributed: the shape of the distribution,

whether it is symmetric, does it have outliers, and so on.

Bivariate
A data set containing two variables. For such data sets, we are mostly interested in

determining whether there is a relationship between the two quantities. If we had the

heights in addition to the weights, for instance, we would ask whether there is any

discernible relationship between heights and weights (e.g., are taller students heavier?).

Multivariate
If a data set contains more than two variables, then it is considered multivariate. When

dealing with multivariate problems, we typically want to find a smaller group of

variables that still contains most of the information about the data set.

Of course, any bivariate or multivariate data set can be treated as a univariate one if we

consider a single variable at a time. Again, the nature of the data set is not inherent in the

data but depends on how we look at it.

Further Reading
• Problem Solving: A Statistician’s Guide. Chris Chatfield. 2nd ed., Chapman & Hall/CRC.

1995.

This is a highly informative book about all the messy realities that are usually not

mentioned in class: from botched experimental setups to effective communication with

the public. The book is geared toward professional statisticians, and some of the

technical discussion may be too advanced, but it is worthwhile for the practicality of its

general advice nonetheless.

• Unix Power Tools. Shelley Powers, Jerry Peek, Tim O’Reilly, and Mike Loukides. 3rd ed.,

O’Reilly. 2002.

The classic book on getting stuff done with Unix.

• The Art of UNIX Programming. Eric S. Raymond. Addison-Wesley. 2003.

The Unix philosophy has been expounded many times before but rarely more

eloquently. This is a partisan book, and one need not agree with every argument the

author makes, but some of his observations on good design and desirable features in a

programming environment are well worth contemplating.

Data Set Repositories

Although I assume that you have your own data sets that you would like to analyze, it’s

nice to have access to a wider selection of data sets—for instance, when you want to try

out and learn a new method.
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Several data set repositories exist on the Web. These are the ones that I have found

particularly helpful.

• The Data and Story Library at statlib. A smaller collection of data sets, together with their

motivating “stories,” intended for courses in introductory statistics.

(http://lib.stat.cmu.edu/DASL)

• Data Archive at the Journal of Statistics Education. A large collection of often uncommonly

interesting data sets. In addition to the data sets, the site provides links to the full text

of the articles in which these data sets were analyzed and discussed.

(http://www.amstat.org/publications/jse—then select “Data Archive” in the navigation bar)

• UCI Machine Learning Repository. A large collection of data sets, mostly suitable for

classification tasks. (http://archive.ics.uci.edu/ml/)

• Time Series Data Library. An extensive collection of times series data. Unfortunately,

many of the data sets are poorly documented. (http://robjhyndman.com/TSDL/)

• Frequent Itemset Mining Dataset Repository. A specialized repository with data sets for

methods to find frequent item sets. (http://fimi.cs.helsinki.fi/data/)

• UCINET IV Datasets. Another specialized collection: this one includes data sets with

information about social networks.

(http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm)

• A Handbook of Small Data Sets. David J. Hand, Fergus Daly, K. McConway, D. Lunn, and

E. Ostrowski. Chapman & Hall/CRC. 1993.

This is a rather curious resource: a book containing over 500 individual data sets (with

descriptions) from all walks of life. Most of the data sets are “small,” containing from a

handful to a few hundred points. The data sets themselves can be found all over the

Web, but only the book gives you the descriptions as well.
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INDEX

A
absolute value function, 457
accuracy

defined, 153
displaying, 154

advanced indexing (NumPy) 44
agglomerative hierarchical

clustering, 307
algebra

about, 473
linear algebra, 349, 481

algorithms, 354–356
for classification, 408–419

allometric scaling, 60
alternate hypotheses, 224
ANOVA (analysis of variance), 233
Anscombe’s Quartet, 65
approximations, function

approximation with least
squares, 261, 263

Taylor expansions 461
apriori algorithm, 318
arguments, scaling, 165–174
artificial neural networks, 418
aspect ratios, banking, 61
association analysis, 316
autocorrelation function,

91, 93
averaging averages, 253–255

B
back-of-the-envelope calculations,

141, 150
backups, data files, 493
bagging, 419
bandwidth selection, KDEs, 19, 22
banking, 61–63
base of the natural logarithm, 478
Bayesian classifiers, 409–413

Bayesian networks, 411
Bayesian statistics, 235–243

Bayesian interpretation of
probability, 236

data analysis example,
238–241

frequentist interpretation of
probability, 235

inference, 241
Berkeley DB, 376–380
Bernoulli trials, 194
binary relationships, notation

for, 476
Binomial distribution and Bernoulli

trials, 191–194
binomial theorem, 468
biplots, PCA, 336, 346
birth processes, 179
bivariate analysis, See also time-series

analysis, 47–78
banking, 61–63
linear regression, 62–66
logarithmic plots, 57–60
noise and smoothing, 48–57
scatter plots, 47

bivariate data sets, 497
blind experiments, 234
blocking, 232
boosting, 419
bootstrap, 277–280
box-and-whisker plots

about, 36–38
Quintus Curtius Snodgrass

example, 230
broadcasting (NumPy) 40
brushing and linking, multivariate

analysis, 121
business intelligence, See also financial

calculations, 362–369
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C
C Library: See GSL
C Clustering Library, 320–324
calculus, 447–483

absolute value function, 457
binomial theorem, 468
derivatives, 460–462
dividing by zero, 470
exponential functions, 452–454
factorial function, 458
Gaussian function and the Normal

distribution, 455
hyperbolic tangent function, 457
integrals, 463
inverse of a function, 459
limits, sequences and series, 465
linear transformation, 469
logarithms, 452–454
mathematical notation, 472–478
minima and maxima, 462
on math, 480
polynomials, 450
power series and Taylor

expansion, 466
powers, 448
rational functions, 450
trigonometric functions, 454

capital expenditures (CapEx), 397
carrying capacity (logistic

equation), 180
cash-flow analysis, 386, 389–391
categorical data

about, 495
clustering, 302

CDF (cumulative distribution
function), 23–29

Central Limit Theorem
Gaussian distribution, 195–201, 455
power-law distributions, 203

centroids, clusters, 305, 308
Chaco library (Python), 124
chi-square (χ2) distribution, 226
class imbalance problems, 421
classical statistics, See statistics
classification, See also predictive analytics

about, 406

terminology, 407
cleaning and conditioning data, 487
clustering, 293–325

about, 293–298, 406
distance and similarity measures,

298–304
market basket analysis, 316
methods, 304–310
pre- and postprocessing, 311–314
Pycluster and the C Clustering

Library, 320–324
CO2 measurements above Mauna Loa

on Hawaii, 80, 127–136
cohesion, clusters, 312
color, false-color plots, 100–105
combinatorial problems, 270
complete clustering, 314
composition, multivariate analysis,

110–116
compounding, 386–389
compression, data files, 492
conditional probability, 236
confidence intervals

bootstrap, 277
example, 227
least squares, 262

confidence, association rules, 317
confounding variables, 231
confusion matrix, 407
conservation laws, 174
consistency, data consistency, 375–376
contingency tables, 113
continuous time simulations, 280
contour plots, 101
convex clusters, 295
convolution, 95
coplots, 107–109
correlation coefficient

clustering, 302
PCA, 331

correlation function, 91–95
correlations, clustering, 302
costs

cost concepts and depreciation,
394–398

cost model example, 170
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direct and indirect costs 394–396
fixed and variable costs 396–397
opportunity costs, 393

CPU (cost per unit), 395
cross-validation, 420
cumulative distribution function

(CDF), 23–29
curse of dimensionality, 424

D
dashboards, 369–373
data, 485–498

cleaning and conditioning, 487
file formats, 490
maintenance, 492
quality issues, 373–376
sampling, 489
skills, 493
sources and availability, 373, 485
terminology and data types, 495

data analysis
bivariate analysis, 47–78
calculus, 447–483
clustering, 293–325
data, 485–498
dimensionality reduction, 327–349
financial calculations, 383–404
guesstimation, 141
multivariate analysis, 99–125
predictive analytics, 405–431
probability models, 191–219
reporting, business intelligence and

dashboards, 361–381
scaling, 163–189
session example, 127–138
simulations, 267–292
software, 435–445
statistics, 221–251
time-series analysis, 79–98
univariate analysis, 11–46

data frames (R), 244
data warehouses, 362
data-driven decision making, 433
databases

about, 485
browsing, 494

DBSCAN algorithm, 309, 314
death processes, 178
decision boundaries, 414
decision trees, 416–419
delimiter-separated text files, 491
delimiters, 477
dendrograms, 308
density, clusters, 312
depreciation, 397
derivatives, 460–462
differencing, time-series, 94
digital signal processing (DSP), 95
dimensional analysis versus scaling

arguments, 172
dimensional argument example, 167
dimensionality reduction, 327–349

Kohonen maps, 339–342
principal component analysis (PCA),

328–337, 342–348
R statistical analysis package,

342–348
visual techniques, 337

dimensionality, curse of, 424
direct costs, 394
discrete event simulations, 281
distance matrices, 301, 316
distance measures, clustering,

298–304, 307
distributions, See also Gaussian

distribution, 191–219
Binomial distribution and Bernoulli

trials, 191–194
chi-square (χ2) distribution, 226
Fisher’s F distribution, 227
geometric distribution, 207
log-normal distribution, 209
Monte Carlo simulation for outcome

distributions, 272–275
Poisson distribution, 207
posterior probability distribution,

239, 241
power-law distributions,

201–206, 215
sampling distributions, 226
special-purpose distributions, 211
statistics, 226–230
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distributions (Continued )
Student t distribution, 227

dividing by zero, 470
document vectors, 304
dot plots, 12
dot product, 302
double exponential smoothing, 88
double logarithmic plots, 57, 59
double-blind experiments, 234
draft lottery, LOESS, 52
DSP (digital signal processing), 95
duplicate records, 488

E
e (base of the natural logarithm), 478
edit distance, 303
Ehrenberg’s rule, 154
eigenvectors, 332, 333, 344
embedded databases, 377
ensemble methods, 419
error propagation, 155
estimation, parameter estimation, 223
ethics, 434
Euclidean distance, 301
Euler’s number, 478
expectation values

accounting for uncertainty, 391
distributions with infinite

expectation values, 204
experiments, versus observational

studies, 230–235
exponential distribution, 286
exponential function, 452–454
exponential growth or decay, 178
exponential smoothing, 86–89
exporting files from gnuplot, 138
extrema, 463
extreme-value considerations, 174

F
factorial function, 458
factorization, 232
false-color plots, 100–105
feasibility, numerical correctness, 153
feature selection, See dimensionality

reduction
Feynman, R. P., 144, 177

files
formats, 138, 490
maintenance, 492

filters, time-series analysis, 95
financial calculations, 383–404

cost concepts and depreciation,
394–398

newsvendor problem,
400–403

time value of money, 384–391
uncertainty and opportunity costs,

391–393
Fisher’s F distribution, 227
Fisher’s Iris data set, 426
Fisher’s LDA (linear discriminant

analysis), 418
fixed costs, 396
floating averages, 85
force-based algorithms, 339
format

data, 487
file formats, 490

Fourier series, 182
FP-Growth Algorithm, 318
fractions

about, 474
division by zero, 470

frequentist interpretation of
probability, 235

function approximation, 263
functions, See calculus; Gaussian

distribution
future value, 384
fuzzy clustering, 306

G
gain ratio, 417
Gaussian distribution (Gaussian

function)
about, 226, 455
Central Limit Theorem, 195–201
histograms, 16
KDEs, 20
moving averages, 86

Gaussian distribution function, 456
Gaussian kernel, LOESS, 53
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generalization errors, 407
geometric distribution, 207
ggobi 124
glyphs, 116
Gnu Scientific Library (GSL),

158–161, 442
gnuplot, 136
grand tours and projection

pursuits, multivariate
analysis, 121

graphical analysis
defined, 68
interpretation, 56
process, 66
versus statistical tests, 229

Greek alphabet, 478
growth and decay phenomena,

unconstrained, 178
growth, the logistic equation, 180
GSL (Gnu Scientific Library),

158–161, 442
guesstimation, 141

numerical correctness,
151–155

perturbation theory and error
propagation, 155

principles, 142–151

H
Hamming distance, 302
HCL (hue–chroma–luminance)

space, 104
hidden variables, 231
histograms

about, 15–19
bandwidth selection, 22
scatter-plot matrices, 109

homoscedasticity, LOESS, 54
Hunt’s algorithm, 416
hyperbolic tangent function, 457
hypothesis testing, 223

I
indirect costs, 394
infinite expectation values,

distributions, 204

instance-based classifiers, 409
integrals

about, 463
Gaussian integrals, 199

interpolation, least squares, 261
inverse of a function, 459
item sets, 317

J
Jaccard coefficient and distance, 302
jackknife, 280
Java, 441
jitter plots, 12
joint probability, 236

K
k-means algorithm, 305
k-medoids algorithm, 306
kernel density estimate (KDE),

19–23, 315
kernelization, 415
Kohonen maps, 339–342

L
LDA (linear discriminant analysis), 418
least squares, 260–264

function approximation, 263
statistical parameter estimation, 261

Levenshtein distance, 303
lift charts, 30–33, See also ROC
likelihood function, 237, 241
limits, calculus, 465
linear algebra, 349
linear discriminant analysis (LDA), 418
linear functions, 448
linear regression

about, 63–66
LOESS, 51, 73

linear transformation, calculus, 469
linking and brushing, multivariate

analysis, 121
Linux, 494
location, clusters, 312
LOESS

about, 51–53
matplotlib case study, 73
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log-log plots, 57
log-normal distribution, 209
logarithmic plots, 57–60
logarithms

about, 148
calculus, 452–454

logfiles, 485
logistic equation, constrained

growth, 180
longest common subsequence, 303
lurking variables, 231

M
Manhattan distance, 301
map/reduce techniques, 356
margin of error, 153
market basket analysis, 316
mass, clusters, 312
math 4–5, 447–483

absolute value function, 457
binomial theorem, 468
derivatives, 460–462
dividing by zero, 470
exponential functions, 452–454
factorial function, 458
Gaussian function and the Normal

distribution, 455
hyperbolic tangent function, 457
integrals, 463
inverse of a function, 459
limits, sequences and series, 465
linear transformation, 469
logarithms, 452–454
mathematical notation, 472–478
minima and maxima, 462
on math, 4, 480
polynomials, 450
power series and Taylor

expansion, 466
powers, 448
rational functions, 450
trigonometric functions, 454

mathematics, See also calculus;
distributions; financial calculations;
Gaussian distribution

about, 4, 480

notation, 472–478
Matlab, 437, 442
matplotlib, 69–78

LOESS case study, 73
object model and architecture, 76
properties, 74–76
using interactively, 70–73

matrix operations, 334, 351
maximum distance, 301
maximum margin hyperplanes, 414
MDS (multidimensional scaling), 338
mean

about, 33
exponential distribution, 286

mean-field approximations,
175–178

mean-field models, 194
mean-square error, KDE

bandwidth, 22
median, 33, 34
merging data sets, 488
metrics programs, 369–373
minima and maxima, functions, 462
Minkowski distance, 301
missing values, 487, 489
Mondrian 124
modeling, See also financial calculations;

probability models; scaling;
simulations

about, i
and data analysis, 184
principles, 163–164

money, See time value of money 7
Monte Carlo simulations, 270–276

combinatorial problems,
270–272

outcome distributions, 272–275
mosaic plots, multidimensional

composition, 112–116
moving averages, 85
multidimensional scaling (MDS), 338
multiplots, 105–110

coplots, 107–109
scatter-plot matrices, 105–107

multivariate analysis, See also
dimensionality reduction, 99–125
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composition problems, 110–116
false-color plots, 100–105
glyphs, 116
interactive explorations, 120–123
multiplots, 105–110
parallel coordinate plots, 117–120
tools, 122–125

multivariate data sets, 497

N
naive Bayesian classifier, 411
nearest-neighbor methods, 409
neighborhood growers clustering

algorithms, 309
nested clusters, 296
net present value (NPV),

389–391
network graphs, 339
neural networks, artificial, 418
noise, 48–57

examples, 52–53
ideas and warnings, 55
LOESS, 51
residuals, 54
splines, 50
time-series, 83

nominal data, 495
non-normal statistics and power-law

distributions, 201–206
nonmetric classifiers, 416
nonnumerical data, 495
nonparametric bootstrap, 280
Normal distribution function, 456
normalization

about, 487
scale normalization: clustering, 311

normalized histograms, 17
NPV (net present value), 389–391
null hypotheses, 224
numarray (Python) 439
Numeric (Python) 439
numerical data

about, 495
clustering, 301

NumPy (Python) 38–45, 77, 439,
440, 443

O
object model, matplotlib, 76
OLAP (Online Analytical Processing)

cubes, 363
operating costs, 397
opportunity costs, 393
optimization problems

extrema, 463
scaling, 169

order-of-magnitude estimates, 146
ordinal data, 495
outliers, 487
overfitting, 408

P
p-distance, 301
p-values, 227
parallel coordinate plots, 117–120
parallelization, 355
parameter estimation, 223
parametric bootstrap, 280
parenthesis and other delimiters, 477
Pareto charts, 31
Pareto distribution, standard form, 216
PCA (principal component analysis),

328–337
about, 328–330
biplots, 336
computation, 334
interpretation, 333
issues, 335
R statistical analysis package,

342–348
theory, 330–333

percentiles, 33, 34
performance

matrix operations and other
computational applications, 334,
351–356

permutations, 357
perturbation theory, 147, 155
plot command (matplotlib), 74
plot function (gnuplot), 127
plot function (R), 344
point estimates, 223

least squares, 262
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Poisson distribution, 207
polynomials

about, 450, 467
LOESS, 51
splines, 50

posterior probability (posterior
probability distribution), 237,
239, 241

power series and Taylor expansion, 466
power-law distributions

example, 215
non-normal statistics, 201–206

powers of ten, 146
powers, calculus, 448
precision

defined, 153
metrics, 421

predictive analytics, 405–431
about, 405–407
algorithms for classification,

408–419
class imbalance problems, 421
classification terminology, 407
ensemble methods, 419
prediction error, 420
statistical learning, 424–426
do-it-yourself classifiers, 426–431

present value, 384
presentation graphics, defined, 68
prewhitening, 311
principal components analysis,

See PCA
prior probability, 237
probability

Bayesian interpretation, 236
frequentist interpretation, 235

probability models, 191–219
Binomial distribution and Bernoulli

trials, 191–194
Gaussian Distribution and the

Central Limit Theorem, 195–201
geometric distribution, 207
log-normal distribution, 209
Poisson distribution, 207
power-law distributions,

201–206, 215

special-purpose distributions, 211
unique visitors over time case study,

211–215
probability plots, comparing with

distributions, 25–29
projection pursuits and grand tours,

multivariate analysis, 121
pseudo-randomization, 233
pseudo-replication, 233
Pycluster and the C Clustering Library,

320–324
pyplot, 77
Python

about, 439
NumPy 37–44
matplotlib, 77
SciPy, 439
scipy.signal, 96–98
SimPy 280–291

Q
QQ plots

comparing with distributions, 25–29
LOESS, 54

QT algorithm, 315
quality, data quality issues, 373–376
quantile plots, 25
quantiles, 34
querying and zooming, multivariate

analysis, 121
queueing problems 280–291

R
R statistical analysis package, 123,

243–249, 342–348, 438, 443
radius, clusters, 312
random forests, 419
randomization, 232
rank-order plots, 30–33
rational functions, 450
recall, 421
recommendations, 406
recurrence relations, exponential

smoothing, 89
regression, See also linear regression

using for classification, 413
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regular expressions, 493
relationships, establishing, 145
replication, 232
reports, 364–369
resampling methods, simulations,

276–280
residuals, smoothing, 54
reversal of association, 255
ROC (receiver operating characteristic)

curve, 422
rule-based classifiers, 416–418
running averages, 85

S
Sage, 184–188
sampling distributions, 226
sampling, data, 489
SAS, 442
scale normalization, clustering, 311
scaling, 163–189

arguments, 165–174
mean-field approximations,

175–178
modeling principles,

163–164
time-evolution scenarios, 178–182

scatter plots, 47
scatter-plot matrices, 105–107
ScientificPython, 439
SciLab, 442
SciPy, 439, 440, 443
scipy.signal, 96–98
scree plots, 344
scripting languages, 493
seasonality

CO2 measurements above Mauna
Loa on Hawaii, 131

time-series, 79, 83
self-organizing maps (SOMs), 339
semi-logarithmic plots, 57
sensitivity analysis, perturbation

theory, 148
separation, clusters, 312
sequences, calculus, 465
series, calculus, 465
servers case study, 182

sets, sequences and series, 475
sigmoid function, 458
signals, DSP, 95
significance, statistical

significance, 224
silhouette coefficient, 313
similarity measures, clustering,

298–304
Simpson’s paradox, 254
SimPy, 280–291

about, 281–282
queueing, 282–288
running simulations, 288–290

simulations, 267–292
about, 267
discrete event simulations with

SimPy, 280–291
Monte Carlo simulations, 270–276
resampling methods, 276–280

single logarithmic plots, 57
singular value decomposition

(SVD), 335
size, estimating, 143
slicing (NumPy), 44
smoothing, 48–57

examples, 52–53
ideas and warnings, 55
least squares, 261
LOESS, 51
residuals, 54
splines, 50
time-series analysis, 84–89

smoothness, clustering, 300
SNN (shared nearest neighbor)

similarity, 304
software, 435–445

about, 430
Berkeley DB 376–380
Chaco 124
ggobi 124
GSL, 158–161, 442
Java, 441
libSVM, 431
Matlab, 437, 442
manyeyes 124
Mondrian 124
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software (Continued )
NumPy, 38–45, 77, 439, 440, 443
Python, 77, 124, 185, 320, 439
RapidMiner, 431
R statistical analysis package, 123,

243–249, 342–348, 438, 443
Sage 184–188
SAS, 442
ScientificPython, 439
SciLab, 442
SciPy, 439, 440, 443
Shogun, 431
SimPy 280–291
skills, 493
SQLite 379–380
Tulip 124
WEKA, 431

SOMs (self-organizing maps), 339
special symbols, 476–478
spectral clustering, 316
spectral decomposition theorem, 332
splines

about, 50
weighted splines, 50

SQLite, 379–380
stacked plots, 110
standard deviation, 33, 193, 256–260
standard error

about, 259
bootstrap estimate, 277

star convex clusters, 296
statistical parameter estimation, 261
statistical significance, 224
statistics, 221–251

about, 223–226
Bayesian statistics, 235–243
controlled experiments versus

observational studies, 230–235
distributions, 226–230
historical development, 221
R statistical analysis package,

243–249
stochastic processes, 285
string data, clustering, 303
Student t distribution, 227
subspace clustering, 315

summary statistics, 33–35
supervised learning, 406
support count, 317
support vector machines

(SVM), 414
supremum distance, 301
surface plots, 100
SVD (singular value

decomposition), 335
symbols, 476–478
symmetry

clustering, 299
models, 174

T
t distribution, 227
taxicab distance, 301
Taylor expansion, 466
test sets, 407
tests

hypothesis testing, 223
versus graphical methods, 229

text files, 491
time value of money, 384–391

cash-flow analysis and net present
value, 389–391

compounding, 386–389
future and present value, 384

time-evolution scenarios, 178–182
constrained growth: the Logistic

equation, 180
oscillations, 181
unconstrained growth and decay

phenomena, 178
time-series analysis, 79–98

components of, 83–84
correlation function, 91–95
examples, 79–82
filters and convolutions, 95
scipy.signal, 96–98
smoothing, 84–89

tools, See software
topology, Bayesian networks, 411
training errors, 420
training sets, 407
transcendental functions, 452
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tree plots, multidimensional
composition, 112–116

trends
CO2 measurements above Mauna

Loa on Hawaii, 128
time-series, 79, 83, 93
versus variations, 372

trigonometric functions, 454
triple exponential smoothing, 88

U
ufuncs (NumPy), 40
uncertainty in planning, 391–393
underfitting, 408
unique visitors over time case study,

211–215
univariate analysis, 11–46

cumulative distribution function,
23–29

dot and jitter plots, 12
histograms and kernel density

estimates, 14–23
rank-order plots and lift charts,

30–33
summary statistics and box plots,

33–38

univariate data sets, 497
Unix, 494
unnormalized histograms, 17
unsupervised learning, 293, 406

V
variable costs, 396
vectors

document vectors, 304
eigenvectors, 332, 333, 344

visual uniformity, 104

W
Ward’s method, 308
weight functions, 457
weighted moving averages, 86
weighted splines, 50
whitening, 311

X
XML data file format, 491

Y
zero, dividing by, 470
zooming and querying, multivariate

analysis, 121
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Colophon

The animal on the cover of Data Analysis with Open Source Tools is a common kite, most

likely a member of the genus Milvus. Kites are medium-size raptors with long wings and

forked tails. They are noted for their elegant, soaring flight. They are also called “gledes”

(for their gliding motion) and, like the flying toys, they appear to ride effortlessly on air

currents.

The genus Milvus is a group of Old World kites, including three or four species and

numerous subspecies. These kites are opportunistic feeders that hunt small animals, such

as birds, fish, rodents, and earthworms, and also eat carrion, including sheep and cow

carcasses. They have been observed to steal prey from other birds. They may live 25 to

30 years in the wild.

The genus dates to prehistoric times; an Israeli Milvus pygmaeus specimen is thought to be

between 1.8 million and 780,000 years old. Biblical references to kites probably refer to

birds of this genus. In Coriolanus, Shakespeare calls Rome “the city of kites and crows,”

commenting on the birds’ prevalence in urban areas.

The most widespread member of the genus is the black kite (Milvus migrans), found in

Europe, Asia, Africa, and Australia. These kites are very common in many parts of their

habitat and are well adapted to city life. Attracted by smoke, they sometimes hunt by

capturing small animals fleeing from fires.

The other notable member of Milvus is the red kite (Milvus milvus), which is slightly larger

than the black kite and is distinguished by a rufous body and tail. Red kites are found only

in Europe. They were very common in Britain until 1800, but the population was

http://www.principal-value.com


O’Reilly-5980006 Colophon October 28, 2010 22:27

devastated by poisoning and habitat loss, and by 1930, fewer than 20 birds remained.

Since then, kites have made a comeback in Wales and have been reintroduced elsewhere

in Britain.

The cover image is from Cassell’s Natural History, Volume III. The cover font is Adobe ITC

Garamond; the text font is Adobe’s Meridien-Roman; the heading font is Adobe Myriad

Condensed; and the code font is LucasFont’s TheSansMonoCondensed.
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