'BEYOND
BIOS

Developing with the Unified
Extensible Firmware Interface

Srd Edition

VINCENT ZIMMER,
MICHAEL ROTHMAN,
SURESH MARISETTY

Vincent Zimmer, Suresh Marisetty, Michael Rothman
Beyond BIOS
Developing with the Unified Extensible Firmware Interface

Vincent Zimmer
Suresh Marisetty
Michael Rothman

Beyond BIOS

Developing with the
Unified Extensible Firmware Interface

Third Edition

ISBN 978-1-5015-1478-4
e-ISBN (PDF) 978-1-5015-0569-0
e-ISBN (EPUB) 978-1-5015-0583-6

Library of Congress Cataloging-in-Publication Data
A CIP catalog record for this book has been applied for at the Library of Congress.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available
on the Internet at http://dnb.dnb.de.

© 2017 Walter de Gruyter Inc., Boston/Berlin

www.degruyter.com

http://dnb.dnb.de
http://www.degruyter.com

Acknowledgements

The authors recognize the efforts and contribution of the two men and a dog: Mark Doran, Ken
Reneris, and Andrew Fish, who conceived and hatched EFI.

The authors recognize and thank the other original Framework (Tiano) architects Andrew
Fish, Bob Hale, Mike Kinney, Barnes Cooper, Will Stevens, Krithivas, ER Uber, Mahesh Natu,
Rahul Khanna, Jim Ewertz, Kirk Brannock, and others whose names are lost to time and the
team’s intrepid leader, Mark Doran. We thank Isaac Oram, John Lambino, and the entire Tiano
Architecture Team (TAT) team for fleshing out and enhancing the architecture. Thank you to the
Tiano engineering team for their patience while implementing the first versions and to our internal
and external customers. The innovation in this book is from these fertile brains. Also, many of this
team will recall over ten years of “design discussions” at R&R.

We thank our managers, past and present, for giving us the chance and the time to work on the
architecture and this book including Doug Fisher, Richard Wirt, Stu Goossen, Mike Richmond,
Kah Loh, Jeff Griffen, Michael Greene, Ju Ly, and Ron Story.

We acknowledge the ever-supportive marketing team: Shala, Laurie, Harry, Fadi, Elmer, and
Bailey.

No Intel book is published without peer review. We’d like to thank all the reviewers for
identifying errors and for providing valuable insight and encouragement along the way. Without
their help, this book would not have been a success. From Intel, these individuals participated, at
one time or another, in the review of this project: Rob Branch, Mallik Bulusu, Brad Davis,
Michael Krau, John Suresh Kumar, Matthew Parrish, Mike Richmond, Lee Rosenbaum, and
Sudhakar Otturu. Other reviewers included Cameron Esfahani from Apple Computer Corporation,
Todd Greene from QLogic Corporation, Penny Huang from Micro-Star International Company,
Limited, Jimmy Hwang from American Megatrends, Incorporated, and Dong Wei from Hewlett-
Packard Development Company, L.P.

A book like this describes the efforts of a large number of talented individuals. The authors
would like to thank all of them for their efforts and support. Please accept our apologies if we
missed you. We can only say that space is as limited here as it is in ROMs and time as limited
here as it is in schedules. We’ll try to fix it in the next release.

Preface

There are two mistakes one can make on the road to truth...not going all the way, and not starting.

Buddha

This is a book about a new way to solve an old set of problems that are persistent as well as
fundamental, but not always well understood: How should you boot a computer? What sits at the
reset vector? What can the operating system count on when it is loaded and initially receives
control? What should the internal structures be between these two endpoints? How can the same
basic structure work for handhelds and megaservers? How do we convince ourselves today’s
design will work 10 or 20 years from now? How much will it cost to switch? How much will it
cost steady state? What comes after BIOS (Basic Input/ Output System)?

Beyond BIOS is a book about a largely invisible subject. The general user, if they have any
view of BIOS at all, tends to view it as ten unnecessary seconds on the way to booting the
operating system or as setup. The community that knows and uses the BIOS has tended to view it
as an uncontrolled place of kludge, myth, bug, and legend. The very small community of BIOS
developers has viewed their code not only as highly mutable and embodying much of the
compatibility that has made the PC and its offspring so successful, but also as their livelihood.

This is a book that is about what comes after BIOS, which we call the Unified Extensible
Firmware Interface (UEFI) and Platform Initialization (PI). In doing so, it must also be a book at
least partly about what a BIOS or its replacement is called upon to do. It is not a cookbook on
how to port the PI from platform to platform. It is not a rehash of the specifications. Instead, it
tries to fit in the middle ground between specifications and cookbook. It tries to focus on the
concepts and constructs that are cross-platform and implied, if not stated, by the architecture. It is
supposed to help to get to some of the “why” behind the specs and make the porting work make
some sense.

This book is a child of its time. Both the UEFI and the PI are under the control of the UEFI
Forum, an industry-wide group in which you are encouraged to participate. Beyond BIOS mainly
focuses on the current state of the PI and UEFI since the 2005 formation of the Forum, its working
groups, and its sub-teams. This is not to say that this is only a history book or a simple summary
of the standard. Instead, we believe it remains valuable as an introduction to the newer versions
of the specifications no matter who “has the pen.”

If you find this book to be useful, then we encourage you to obtain Harnessing the UEFI Shell:
Moving the Platform beyond DOS by Rothman, Zimmer and Lewis, De|G Press, February 2017.

The Chapters

Chapter 1 provides a description of the evolution.

The rest of the book is organized into two major sections. The earlier chapters present an
introduction to UEFI, and the later chapters cover the Platform Initialization.

Chapter 2 provides an overview of the basic UEFI architecture. This is a must-read for anyone
seeking an understanding of the Unified Extensible Firmware Interface (UEFI).

Chapter 3 describes the UEFI driver model. This is important for vendors writing device drivers
for output devices (such as video), input devices (such as keyboards or mice), networking
adapters, and block devices. These drivers can be stored in the host-bus adapter, the platform
ROM, or loaded from the UEFI system partition.

Chapter 4 describes of series of commonly used UEFI protocols. This chapter complements the
earlier two chapters and includes data on additional boot services application interfaces.

Chapter 5 includes information on the UEFI runtime operational environment. This chapter is
important for operating system vendors who need to interact with the platform during the
operating system execution.

Chapter 6 describes UEFI input and output console services. This chapter provides details on the
particular capabilities, interfaces, and relationships of the console services.

Chapter 7 includes a list of different platforms and the Platform Initialization-based
implementations. This chapter demonstrates the flexibility of the Platform Initialization by
mapping the infrastructure to widely varying hardware platforms.

Chapter 8 describes the basics of the Platform Initialization Driver Execution Environment
(DXE). This is important to read for anyone working on the phase of execution prior to UEFI
service availability but after early pre-EFI initialization (PEI).

Chapter 9 describes some common UEFI interfaces. This chapter includes information on
interfaces that are important for both UEFI and DXE development.

Chapter 10 describes UEFI and platform initialization issues around security and platform trust.
This is important because beyond the basic UEFI and Platform Initialization specifications, which
describe mechanism, further discussion is included on composition and construction of
technology.

Chapter 11 describes Boot Device Selection (BDS). This includes the policy by which

Framework platforms decide look-and-feel, in addition to how to boot.

Chapter 12 describes the various boot flows that can occur within a platform. These include
power-event restarts, and so on.

Chapter 13 describes the Pre-EFI Initialization environment. This is the phase of execution that
occurs after reset and is responsible for the early hardware state and memory initialization.

Chapter 14 includes information on emulation of a firmware environment within an operating
system.

Chapter 15 describes mechanisms and capabilities for reducing platform boot time. Since
“visible” firmware is often broken firmware, decreasing time for a system restart is key.

Chapter 16 describes the application of firmware for an embedded boot solution. The bulk of
shipping systems are embedded computing environments, so the use of UEFI and Platform
Initialization for this class of system is becoming more important.

Chapter 17 includes details on manageability. The platform and firmware play a pivotal role in
both bare-metal, OS-absent scenarios and also as a complement to OS runtime manageability
usages.

The Appendixes include source code data types and commonly-used interfaces.

Contents

Acknowledgements
Preface

Chapter 1 — Introduction
Terminology
Short History of EFI
EFI Becomes UEFI—The UEFI Forum
PIWG and USWG
Platform Trust/Security
Embedded Systems: The New Challenge
How the Boot Process Differs between a Normal Boot and an Optimized/Embedded Boot
Summary

Chapter 2 — Basic UEFI Architecture
Objects Managed by UEFI-based Firmware
UEFI System Table
Handle Database
Protocols

Working with Protocols
Multiple Protocol Instances
Tag GUID
UEFT Images
Applications
OS Loader
Drivers
Events and Task Priority Levels
Summary

Chapter 3 — UEFI Driver Model
Why a Driver Model Prior to OS Booting?
Driver Initialization
Host Bus Controllers
Device Drivers
Bus Drivers
Platform Components
Hot Plug Events
Pseudo Code

Device Driver

Bus Driver that Creates All of Its Child Handles on the First Call to Start()

Bus Driver that Is Able to Create All or One of Its Child Handles on Each Call to Start():
Additional Innovations

Security

Manageability

Networking
Summary

Chapter 4 — Protocols You Should Know
EFI OS Loaders
Device Path and Image Information of the OS Loader
Accessing Files in the Device Path of the OS Loader
Finding the OS Partition
Getting the Current System Configuration
Getting the Current Memory Map
Getting Environment Variables
Transitioning to an OS Kernel
Summary

Chapter 5 — UEFI Runtime
Isn’t There Only One Kind of Memory?
How Are Runtime Services Exposed?
Time Services
Why Abstract Time?
Get Time
Set Time
Get Wakeup Time
Set Wakeup Time
Virtual Memory Services
Set Virtual Address Map
ConvertPointer
Variable Services
GetVariable
GetNextVariableName
SetVariable
Miscellaneous Services
Reset System
Get Next High Monotonic Count
UpdateCapsule
QueryCapsuleCapabilities
Summary

Chapter 6 — UEFI Console Services
Simple Text Input Protocol
Simple Text Input Ex Protocol
Simple Text Output Protocol
Remote Console Support
Console Splitter
Network Consoles
Summary

Chapter 7 — Different Types of Platforms
Summary

Chapter 8 — DXE Basics: Core, Dispatching, and Drivers
DXE Core
Hand-Off Block (HOB) List
DXE Architectural Protocols
EFI System Table
EFI Boot Services Table
EFI Runtime Services Table
DXE Services Table
Global Coherency Domain Services
GCD Memory Resources
GCD I/O Resources
DXE Dispatcher
The a priori File
Dependency Grammar
DXE Drivers
Boot Device Selection (BDS) Phase
Console Devices
Boot Devices
Boot Services Terminate
Summary

Chapter 9 — Some Common UEFI and PI Functions
Architectural Protocol Examples
CPU Architectural Protocol
Real Time Clock Architectural Protocol
Timer Architectural Protocol
Reset Architectural Protocol
Boot Device Selection Architectural Protocol
Variable Architectural Protocol
Watchdog Timer Architectural Protocol
PCI Protocols

PCI Host Bridge Resource Allocation Protocol
PCI Root Bridge I/0
PCIT/O
Block /O
Disk I/O
Simple File System
EFI File Protocol
Configuration Infrastructure
Using the Configuration Infrastructure
Driver Model Interactions
Provisioning the Platform
Summary

Chapter 10 — Platform Security and Trust

Trust Overview

Trusted Platform Module (TPM) and Measured Boot
What Is a Trusted Building Block (TBB)?
What Is the Point of Measurements?

UEFI Secure Boot
UEFI Executable Verification

UEFI Networking

UEFI User Identification (UID)

Hardware Evolution: SRTM-to-DRTM

Platform Manufacturer

Vulnerability Classification

Roots of Trust/Guards

Summary

Chapter 11 — Boot Device Selection

Firmware Boot Manager

Related Definitions
Globally-Defined Variables
Default Behavior for Boot Option Variables
Boot Mechanisms

Boot via Simple File Protocol

Boot via LOAD_FILE Protocol
Summary

Chapter 12 — Boot Flows
Defined Boot Modes
Priority of Boot Paths
Reset Boot Paths
Intel® Itanium® Processor Reset

Non-Power-On Resets
Normal Boot Paths
Basic GO-to-S0 and SO Variation Boot Paths
S-State Boot Paths
Recovery Paths
Discovery
General Recovery Architecture
Special Boot Path Topics
Special Boot Paths

Special Intel Ttanium® Architecture Boot Paths

Intel Itanium® Architecture Access to the Boot Firmware Volume
Architectural Boot Mode PPIs
Recovery

Discovery
Summary

Chapter 13 — Pre-EFI Initialization (PEI)
Scope
Rationale
Overview
Phase Prerequisites
Temporary RAM
Boot Firmware Volume
Security Primitives
Concepts
PEI Foundation
Pre-EFTI Initialization Modules (PEIMs)
PEI Services
PEIM-to-PEIM Interfaces (PPIs)
Simple Heap
Hand-Off Blocks (HOBs)
Operation
Dependency Expressions
Verification/Authentication
PEIM Execution
Memory Discovery
Intel® Itanium® Processor MP Considerations
Recovery
S3 Resume
The “Terse Executable” and Cache-as-RAM
Example System
Summary

Chapter 14 — Putting It All Together-Firmware Emulation
Virtual Platform
Emulation Firmware Phases
Hardware Pass-Through
Summary

Chapter 15 — Reducing Platform Boot Times

Proof of Concept

Marketing Requirements
What Are the Design Goals?
Platform Policy
What Are the Supported OS Targets?
Do We Have to Support Legacy Operating Systems?
Do We Have to Support Legacy Option ROMs?
Are We Required to Display an OEM Splash Screen?
What Type of Boot Media Is Supported?
What Is the BIOS Recovery/Update Strategy?
When Processing Things Early
Is There a Need for Pre-OS User Interaction?

Additional Details
Adjusting the BIOS to Avoid Unnecessary Drivers
What Is the Boot Target?
Steps Taken in a Normal and Optimized Boot
Loading a Boot Target
Organizing the Flash Effectively
Minimize the Files Needed

Summary
The Primary Adjustments
Suggested Next Steps

Chapter 16 — Embedded Boot Solution
CE Device Landscape
CE Device Boot Challenges
In-Vehicle Infotainment
Other Embedded Platforms
Generic Requirements
Boot Strategies
Power Management
Boot Storage Devices
Security
Manageability
Summary

Chapter 17 — Manageability
Overall Management Framework
Dynamic In-Band
Out-of-Band
Distributed Management Task Force (DMTF)
UEFI Error Format Standardization
UEFT Error Format Overview
Error Record Types
Windows Hardware Error Architecture and the Role of UEFI
Technology Intercepts: UEFI, IPMI, Intel® AMT, WS-MAN
Intelligent Platform Management Interface (IPMI)
Intel® Active Management Technology (Intel AMT)
Web Services Management Protocol (WS-MAN)
Other Industry Initiatives
The UEFI/IPMI/Intel® AMT/WS-MAN Bridge
IPMI Error Records to UEFI
UEFI Error Records to IPMI
Intel® AMT and IPMI
Future Work
Configuration Namespace
Namespace Entries
Summary

Appendix A — Data Types
Appendix B — Status Codes

Index

Chapter 1 — Introduction

The suddenness of the leap from hardware to software cannot but produce a period of anarchy and collapse, especially in the
developed countries.

—Marshall McLuhan

This chapter provides an overview of the evolution of the Extensible Firmware Interface (EFI) to
the Unified Extensible Firmware Interface (UEFI) and from the Intel Framework specifications to
the UEFI Platform Initialization (PI) specifications. Note the omission of the word “Framework”
from the title of the present volume. Some of the changes that have occurred since the first edition
of this book include the migration of much of the Intel Framework specification content into the
five volumes of the UEFI Platform Initialization (PI) specifications, which are presently at
revision 1.5 and can be found at the Web site www.uefi.org. In addition to the PI evolution from
Framework, additional capabilities have evolved in both the PI building-block specifications and
in the UEFT specification. The UEFI specification itself has evolved to revision 2.6 in the time
since the first edition of this text, as well.

When we discuss UEFI, we need to emphasize that UEFI is a pure interface specification that
does not dictate how the platform firmware is built; the “how” is relegated to PI. The consumers
of UEFT include but are not limited to operating system loaders, installers, adapter ROMs from
boot devices, pre-OS diagnostics, utilities, and OS runtimes (for the small set of UEFI runtime
services). In general, though, UEFI is about booting, or passing control to a successive layer of
control, namely an operating system loader, as shown in Figure 1.1. UEFI offers many interesting
capabilities and can exist as a limited runtime for some application set, in lieu of loading a full,
shrinkwrapped multi-address space operating system like Microsoft WindowsT, Apple OS XT,
HP-UXf, or Linux, but that is not the primary design goal.

http://www.uefi.org

Componenis covered by EFT & UEFI
I\

0§ -Absent

08 -Present
App

Final 08 Boot Final 08
Loader Envronment

Shutdown

Figure 1.1: Where EFI and UEFI Fit into the Platform Boot Flow

PI, on the other hand, should be largely opaque to the pre-OS boot devices, operating systems,
and their loaders since it covers many software aspects of platform construction that are
irrelevant to those consumers. PI instead describes the phases of control from the platform reset
and into the success phase of operation, including an environment compatible with UEFI, as
shown in Figure 1.2. In fact, the PI DXE component is the preferred UEFI core implementation.

| Pre
| Verifier

Dispatcher

Architectural
Protocols

Pre EFI Driver Execution = = 4
Initialization Environment Select ¥ cFr 800 (@ =t |

iz o select Y Covclldt _
v PIclfagunewlis

Securil
sec)”

Power on « [- . Platform initialization . .]

i o
Components coverelf by Framework & PI

Shutdown

Figure 1.2: Where PI and Framework Fit into the Platform Boot Flow

Within the evolution of Framework to PI, some things were omitted from inclusion in the PI
specifications. As a result of these omissions, some subjects that were discussed in the first

edition of Beyond BIOS, such as the compatibility support module (CSM), have been removed
from the second edition in order to provide space to describe the newer PI and UEFI capabilities.
This omission is both from a scope perspective, namely that the PI specification didn’t want to
codify or include the CSM, but also from a long-term perspective. Specifically, the CSM
specification abstracted booting on a PC/AT system. This requires an x86 processor, PC/AT
hardware complex (for example, 8254, 8259, RTC). The CSM also inherited other conventional
BIOS boot limitations, such as the 2.2-TB disk limit of Master Boot Record (MBR) partition
tables. For a world of PI and UEFI, you get all of the x86 capabilities (IA-32 and x64,
respectively), ARMT, Itanium®, and future CPU bindings. Also, via the polled driver model
design, UEFI APIs, and the PI DXE architectural protocols, the platform and component hardware
details are abstracted from all consumer software. Other minor omissions also include data hub
support. The latter has been replaced by purpose-built infrastructure to fill the role of data hub in
Framework-based implementations, such as SMBIOS table creation and agents to log report
status code actions.

What has happened in PI beyond Framework, though, includes the addition of a
multiprocessor protocol, Itanium E-SAL and MCA support, the above-listed reportstatus code
listener and SMBIOS protocol, an ACPI editing protocol, and an SIO protocol. With Framework
collateral that moved to PI, a significant update was made to the System Management Mode
(SMM) protocol and infrastructure to abstract out various CPU and chipset implementations from
the more generic components. On the DXE front, small cleanup was added in consideration of
UEFI 2.3 incompatibility. Some additions occurred in the PEI foundation for the latest evolution
in buses, such as PCI Expresst. In all of these cases, the revisions of the SMM, PEI, and DXE
service tables were adjusted to ease migration of any SMM drivers, DXE drivers, and PEI
module (PEIM) sources to PI. In the case of the firmware file system and volumes, the headers
were expanded to comprehend larger file and alternate file system encodings, respectively.
Unlike the case for SMM drivers, PEIMs, and DXE drivers, these present a new binary encoding
that isn’t compatible with a pure Framework implementation.

The notable aspect of the PI is the participation of the various members of the UEFI Forum,
which will be described below. These participants represent the consumers and producers of PI
technology. The ultimate consumer of a PI component is the vendor shipping a system board,
including multinational companies such as Apple, Dell, HP, IBM, Lenovo, and many others. The
producers of PI components include generic infrastructure producers such as the independent
BIOS vendors (IBVs) like AMI, Insyde, Phoenix, and others. And finally, the vendors producing
chipsets, CPUs, and other hardware devices like AMD, ARM, and Intel would produce drivers
for their respective hardware. The IBVs and the OEMs would use the silicon drivers, for
example. If it were not for this business-to-business transaction, the discoverable binary
interfaces and separate executable modules (such as PEIMs and DXE drivers) would not be of
interest. This is especially true since publishing GUID-based APIs, marshalling interfaces,
discovering and dispatching code, and so on take some overhead in system board ROM storage
and boot time. Given that there’s never enough ROM space, and also in light of the customer
requirements for boot-time such as the need to be “instantly on,” this overhead must be balanced
by the business value of PI module enabling. If only one vendor had access to all of the source
and intellectual property to construct a platform, a statically bound implementation would be
more efficient, for example. But in the twenty-first century with the various hardware and

software participants in the computing industry, software technology such as PI is key to getting
business done in light of the ever-shrinking resource and time-to-market constraints facing all of
the UEFI forum members.

There is a large body of Framework-based source-code implementations, such as those
derived or dependent upon EDK I (EFI Developer Kit, which can be found on www.tianocore.or
g. These software artifacts can be recompiled into a UEFI 2.6, PI 1.5-compliant core, such as
UDK2015 (the UEFI Developer Kit revision 2015), via the EDK Compatibility Package (ECP).
For new development, though, the recommendation is to build native PI 1.5, UEFI 2.6 modules in
the UDK2015 since these are the specifications against which long-term silicon enabling and
operating system support will occur, respectively.

http://www.tianocore.org

Terminology

The following list provides a quick overview of some of the terms that may be encountered later

in the book and have existed in the industry associated with the BIOS standardization efforts.

B UEFI Forum. The industry body, which produces UEFI, Platform Initialization (PI), and
other specifications.

B UEFI Specification. The firmware-OS interface specification.

B EDK. The EFI Development Kit, an open sourced project that provides a basic
implementation of UEFI, Framework, and other industry standards. It, is not however, a
complete BIOS solution. An example of this can be found at www.tianocore.org.

B UDK. The UEFI Development Kit is the second generation of the EDK (EDK II), which has
added a variety of codebase related capabilities and enhancements. The inaugural UDK is
UDK?2015, with the number designating the instance of the release.

B Framework. A deprecated term for a set of specifications that define interfaces and how
various platform components work together. What this term referred to is now effectively
replaced by the PI specifications.

B Tiano. An obsolete codename for an Intel codebase that implemented the Framework
specifications.

http://www.tianocore.org

Short History of EFI

The Extensible Firmware interface (EFI) project was developed by Intel, with the initial
specification released in 1999. At the time, it was designed as the means by which to boot
Itanium-based systems. The original proposal for booting Itanium was the SAL (System
Architectural Layer) SAL_PROC interface, with an encapsulation of the PC/AT BIOS registers as
the arguments and parameters. Specifically, the means to access the disk in the SAL_PROC
proposal was “SAL_PROC (0x13, 0x2, ...)”, which is aligned with the PC/AT conventional
BIOS call of “int13h.”

Given the opportunity to clean up the boot interface, various proposals were provided. These
included but were not limited to Open Firmware and Advanced RISC Computing (ARC).
Ultimately, though, EFI prevailed and its architecture-neutral interface was adopted.

The initial EFI specification included both an Itanium and IA-32 binding. EFI evolved from
the EFI 1.02 interface into EFI1.10 in 2001. EFI1.10 introduced the EFI Driver model.

With the advent of 64-bit computing on [IA-32 (for example, x64) and the industry’s need to
have a commonly owned specification, the UEFI 2.0 specification appeared in 2005. UEFI 2.0
was largely the same as EFI 1.0, but also included the modular networking stack APIs for IPv4
and the x64 binding.

In Figure 1.3 we illustrate the evolution of the BIOS from its legacy days through 2016.

Industry Transition

All Platforms BIOS were
g%r.‘:roprietaw

Pre-2000

L
E}{‘J |

Intel invented the Extensible
) Firmware Interface (EFI) and
:@ provided sample

= implementation under free
BSD terms

il
rlgl
I

i
I“Hd
"

X

Ei
|
i

2000

ii
:

i
I I

-]

1}

i
fil

Tomma
e

tianocore.org, open 3 =
source EFl community | ™ B [A =T
launched

Unified EFI (UEFI)
Industry forum, with 11
members, was formed to
standardize EFI

2004

2005

ijilgmi’

T

I

240 members and growing!
Major MMCs shipping; UEFI
latforms crossed most of |A
worldwide units; Microsoft® UEFI
xB4 support in Server 2008, Vista®
and Win7", RedHat" and SuSEF
035 support. Mandatory for
Windows 8 client. ARM 32 and

84 bit support. ACPI added.

2016

I

Figure 1.3: BIOS Evolution Timeline

EFI Becomes UEFI—The UEFI Forum

Regarding the UEFI Forum, there are various aspects to how it manages both the UEFI and PI
specifications. Specifically, the UEFI forum is responsible for creating the UEFI and PI
specifications. When the UEFI Forum first formed, a variety of factors and steps were part of the
creation process of the first specification:

The UEFI forum stakeholders agree on EFI direction

Industry commitment drives need for broader governance on specification

Intel and Microsoft contribute seed material for updated specification

FI 1.10 components provide starting drafts

Intel agrees to contribute EFT test suite

As this had established the framework of the specification material that was produced, which the
industry used, the forum itself was formed with several thoughts in mind:
B The UEFI Forum is established as a Washington non-profit Corporation

— Develops, promotes and manages evolution of Unified EFI Specification

— Continue to drive low barrier for adoption

B The Promoter members for the UEFI forum are:
— AMD, AMI, Apple, Dell, HP, IBM, Insyde, Intel, Lenovo, Microsoft, Phoenix

B The UEFI Forum has a form of tiered Membership:
— Promoters, Contributors and Adopters
— More information on the membership tiers can be found at: www.uefi.org

B The UEFI Forum has several work groups:
— Figure 1.4 illustrates the basic makeup of the forum and the corresponding roles.

http://www.uefi.org

Note. Engaged in firmware/boat + Ewvolve network boot & network security
Related WG's of Trusted Computing Group (TCG), IETF, DMTF T S e e e

UNST
+ TUEFI Network S8ub-team (VZ chairs, too)

Working Groups in UEFI

Figure 1.4: Forum group hierarchy

B Sub-teams are created in the main owning workgroup when a topic of sufficient depth
requires a lot of discussion with interested parties or experts in a particular domain. These
teams are collaborations amongst many companies who are responsible for addressing the
topic in question and bringing back to the workgroup either a response or material for
purposes of inclusion in the main working specification. Some examples of sub-teams that
have been created are as follows as of this book publication:

— UCST - UEFI Configuration Sub-team

O
O

Chaired by Michael Rothman
Responsible for all configuration related material and the team has been

responsible for the creation of the UEFI configuration infrastructure commonly
known as HII, which is in the UEFI Specification.

— UNST — UEFI Networking Sub-team

O
O

Chaired by Vincent Zimmer
Responsible for all network related material. The team has been responsible
for the update/inclusion of the network related material in the UEFI

specification, most notably the IPv6 network infrastructure.

— USHT — UEFI Shell Sub-team

O
O

Chaired by Michael Rothman
Responsible for all command shell related material. The team has been

responsible for the creation of the UEFI Shell specification and continue to
maintain the contents as technology evolves.

— USST - UEFI Security Sub-team
[0 Chaired by Vincent Zimmer
[0 Responsible for all security related material. The team has been responsible for
the added security infrastructure in the UEFI specification.

PIWG and USWG

The Platform Initialization Working Group (PIWG) is the portion of the UEFI forum that defines
the various specifications in the PI corpus. The UEFI Specification Working Group (USWG) is
the group that evolves the main UEFI specification. Figure 1.5 illustrates the layers of the
platform and what the scope that the USWG and PIWG cover.

Epr 0s Pre-boot| ® UEFI Specis about interfaces between 0S, add-in driver
USWG i and system firmware
5S¢ uiu-{ - Operating systems and other high-level software should
b ' only interact with interfaces and services defined by the

UEFI Specification
* PIWG Specs relate to making UEFI implementations
- Promote interoperability between firmware components
providers
= Allinterfaces and services produced and consumed by
firmware only

PIWG Sq ope ™

ilicon Component
Modules

.

O Framework
[Modular componenta

Figure 1.5: PI/UEFI layering

Over time, these specifications have evolved. Below we enumerate the recent history of
specifications and the work associated with each:

B UEFI21
— Roughly one year of Specification work
O Builds on UEFI 2.0
— New content area highlights:

O Human Interface Infrastructure
O Hardware Error Record Support
[0 Authenticated Variable Support
O Simple Text Input Extensions
[0 Absolute Pointer Support

B UEFI2.2

— Follow-on material from existing 2.1 content
[0 Backlog that needed more gestation time

— Security/Integrity related enhancements
[0 Provide service interfaces for UEFI drivers that want to operate with high

integrity implementations of UEFI

— Human Interface Infrastructure enhancements
[0 Further enhancements pending to help interaction/configuration of platforms
with standards-based methodologies.

— Networking
O IPv6, PXE+, IPsec

— Various other subject areas possible

— More boot devices, more authentication support, more networking updates, etc.
B UEFI23

— ARM binding

— Firmware management protocol
B UEFI24

— Disk I02 was added as symmetry to Block 102

— AIP Protocol (FCoE/Image/iSCSI)

— Timestamp Protocol

— RNG/Entropy Protocol

— FMP delivery via capsule

— Capsule on Disk
B UEFI25

— HASH2 Protocol

— ESRT

— Smart Card Reader

— IPV6 for UNDI

— Inline Cryptographic Interface Protocol

— Persistent Memory Types

— PKCS7 Signature Verification Services

— AArch64

— NVMe Pass-through Protocol

— HTTP Boot

— Bluetooth Support

— REST Protocol

— Smartcard Edge Protocol

— Regular Expression Protocol

— x-UEFI Keyword Support

— Transport Layer Security(TLS) support
B UEFI26

— SD/eMMC Pass-through Protocol

— FontEx/Font Glyph Generator protocol

— Wireless MAC Connection Protocol

— RAM Disk Protocol

To complement the layering picture in Figure 1.5, Figure 1.6 shows how the PI elements evolve
into the UEFL The left half of the diagram with SEC, PEI, and DXE are described by the PI

specifications. BDS, UEFI+OS Loader handshake, and RT are the province of the UEFI

specification.

Components now c?vered by UEFI & PI

[

! Verifier

EFI Driver
Dispatcher

Architectural

UEFI

Interfaces

0S-Absent
App

Q)

Transient OS
Environment

Q)

Transient OS
Boot Loader

O0S-Present

App

Final OS Boot Final OS
S?guEg’ty Pre EFI Dl:ve: Execution | Boot Dev Run Time
Initialization nviranment Select | UEFI & OS Loader RT
(PET) (DXE) (BDS) handshake R
Poweron __, [.. Platform initialization..] — ___,[....0S8boot....]

Figure 1.6: Where PI and Framework Fit into the Platform Boot Flow

In addition, as time has elapsed, the specifications have evolved. Figure 1.7 is a timeline for the
specifications and the implementations associated with them.

Specification & Tianocore.org Timeline

_f http:/iuefi.org 5
-

Shell 2.0

D0b 00

e
[

; EDK 7.06: |]
n UEFI 2.1+ e
§< Pl 1.0
91 UEFI 2.1+ UEFI 2.3 UEFI 2.4
p P11.0 P12 Pl1.3
m —{ http://tianocore.org SourceForge.net

Al produas, daes, and programe are bazed on cument expeamtions 3nd subject b changs w Ehout notice,

Figure 1.7: Specification and Codebase Timeline

Platform Trust/Security

Recall that PI allowed for business-to-business engagements between component providers and
system builders. UEFI, on the other hand, has a broader set of participants. These include the
operating system vendors that built the OS installers and UEFI-based runtimes; BIOS vendors
who provide UEFI implementations; platform manufacturers, such as multi-national corporations
who ship UEFI-compliant boards; independent software vendors who create UEFI applications
and diagnostics; independent hardware vendors who create drivers for their adapter cards; and
platform owners, whether a home PC user or corporate IT, who must administer the UEFI-based
system.

PI differs from UEFT in the sense that the PI components are delivered under the authority of
the platform manufacturer and are not typically extensible by third parties. UEFI, on the other
hand, has a mutable file system partition, boot variables, a driver load list, support of
discoverable option ROMs in host-bus adapters (HBAs), and so on. As such, PI and UEFI offer
different issues with respect to security. Chapter 10 treats this topic in more detail, but in general,
the security dimension of the respective domains include the following: PI must ensure that the PI
elements are only updateable by the platform manufacturer, recovery, and PI is a secure
implementation of UEFI features, including security; UEFI provides infrastructure to authenticate
the user, validate the source and integrity of UEFI executables, network authentication and
transport security, audit (including hardware-based measured boot), and administrative controls
across UEFI policy objects, including write-protected UEFI variables.

A fusion of these security elements in a PI implementation is shown in Figure 1.8.

PEI

SEC

F\/
Recovery

UEFI-OS Ldr
And Drivers

ESecureFirmwareUpdateJ-bl Measure FV Main |

PhysPresence, SHAL |
igned update/content|

S$-CRTM

a /f Measuf-ement
- “Me men
UEFI Secure Boot =4
4 == Me
UEFI TCG Measurement —
"'“-“-‘;:." Z
=

SEC, PI F&mdaﬁon |

Figure 1.8: Trusted UEFI/PI stack

Embedded Systems: The New Challenge

As the UEFI took off and became pervasive, a new challenge has been taking shape in the form of
the PC platform evolution to take on the embedded devices, more specifically the consumer
electronic devices, with a completely different set of requirements driven by user experience
factors like instant power-on for various embedded operating systems. Many of these operating
systems required customized firmware with OS-specific firmware interfaces and did not fit well
into the PC firmware ecosystem model.

The challenge now is to make the embedded platform firmware have similar capabilities to
the traditional model such as the being OS-agnostic, being scalable across different platform
hardware, and being able to lessen the development time to port and to leverage the UEFI
standards.

How the Boot Process Differs between a Normal Boot and an Optimized/Embedded Boot

Figure 1.9 indicates that between the normal boot and an optimized boot, there are no design
differences from a UEFI architecture point of view. Optimizing a platform’s performance does
not mean that one has to violate any of the design specifications. It should also be noted that to
comply with UEFI, one does not need to encompass all of the standard PC architecture, but
instead the design can limit itself to the components that are necessary for the initialization of the
platform itself. Chapter 2 in the UEFI 2.6 specification does enumerate the various components
and conditions that comprise UEFI compliance.

SEC Phaze

Pre-mamary eardy initialization, microcode
patching, and MTRR programming.

¥
PEIl Phasa

Dispalches varous PEI drivers. Pra-mamary early

| initialization, microcode palching, and MTRR programming.

hd

" Areweinan ™.

e .53 Boot mode?~

h J
V5 Resurma Vaclor

k
DOXE + BDS Phase

Discover all drivers available to the platform,
Digpatch all drivers encountered

Normal Boot

SEC Phase

Pre-meamory aarly initialization, microcode
patching, and MTRR programming.

l

EEIl Phase

Dispatches only minimal PEl drivess.
Pre-mamory aarly initialization, microcode
patching, and MTRR programming.

.

e we in an ™.

Yes .83 Bool mode?-"

/S Resume Vectar
Mo

l

DXE + BDS Phase
Discover tha drivers availabla to the platfiorm.

Dispatch only the minimal drivers reguired to
koot the target

Optimized Boot

Figure 1.9: Architectural Boot Flow Comparison

Summary

We have provided some rationale in this chapter for the changes from Beyond BIOS:
Implementing the Unified Extensible Firmware Interface with Intel’s Framework to Beyond
BIOS: Implementing UEFI — the Unified Extensible Firmware Interface. These elements include
the industry members’ ownership and governance of the UEFI specification. Beyond this sea
change, the chapter describes the migration of Framework to PI and the evolution of PI over the
former Framework feature set. In addition, the section describes the evolution of UEFI to UEFI
2.6 from UEFI 2.0 matter in the first edition. Finally, some of the codebase technology to help
realize implementations of this technology was discussed.
So fasten your seatbelt and dive into a journey through industry standard firmware.

Chapter 2 — Basic UEFI Architecture

I believe in standards. Everyone should have one.

—George Morrow

The Unified Extensible Firmware Interface (UEFI) describes a programmatic interface to the
platform. The platform includes the motherboard, chipset, central processing unit (CPU), and
other components. UEFI allows for pre-operating system (pre-OS) agents. Pre-OS agents are OS
loaders, diagnostics, and other applications that the system needs for applications to execute and
interoperate, including UEFI drivers and applications. UEFI represents a pure interface
specification against which the drivers and applications interact, and this chapter highlights some
of the architectural aspects of the interface. These architectural aspects include a set of objects
and interfaces described by the UEFI Specification.

The cornerstones for understanding UEFT applications and drivers are several UEFI concepts that
are defined in the UEFI 2.6 Specification. Assuming you are new to UEFI, the following
introduction explains a few of the key UEFI concepts in a helpful framework to keep in mind as
you study the specification:

B Objects managed by UEFI-based firmware - used to manage system state, including I/O
devices, memory, and events

The UEFI System Table - the primary data structure with data information tables and
function calls to interface with the systems

Handle database and protocols - the means by which callable interfaces are registered

UEFT images - the executable content format by which code is deployed

Events - the means by which software can be signaled in response to some other activity
Device paths - a data structure that describes the hardware location of an entity, such as the
bus, spindle, partition, and file name of an UEFI image on a formatted disk.

Objects Managed by UEFI-based Firmware

Several different types of objects can be managed through the services provided by UEFIL. Some
UEFI drivers may need to access environment variables, but most do not. Rarely do UEFI drivers
require the use of a monotonic counter, watchdog timer, or real-time clock. The UEFI System
Table is the most important data structure, because it provides access to all UEFI-provided the
services and to all the additional data structures that describe the configuration of the platform.

UEFI System Table

The UEFI System Table is the most important data structure in UEFI. A pointer to the UEFI
System Table is passed into each driver and application as part of its entry-point handoff. From
this one data structure, an UEFI executable image can gain access to system configuration
information and a rich collection of UEFI services that includes the following;

B UEFI Boot Services

B UEFI Runtime Services

B Protocol services

The UEFI Boot Services and UEFI Runtime Services are accessed through the UEFI Boot
Services Table and the UEFI Runtime Services Table, respectively. Both of these tables are data
fields in the UEFI System Table. The number and type of services that each table makes available
is fixed for each revision of the UEFI specification. The UEFI Boot Services and UEFI Runtime
Services are defined in the UEFI 2.6 Specification.

Protocol services are groups of related functions and data fields that are named by a Globally
Unique Identifier (GUID), a 16-byte, statistically-unique entity defined in Appendix A of the
UEFTI 2.6 Specification. Typically, protocol services are used to provide software abstractions
for devices such as consoles, disks, and networks, but they can be used to extend the number of
generic services that are available in the platform. Protocols are the mechanism for extending the
functionality of UEFI firmware over time. The UEFI 2.6 Specification defines over 30 different
protocols, and various implementations of UEFI firmware and UEFI drivers may produce
additional protocols to extend the functionality of a platform.

Handle Database

The handle database is composed of objects called handles and protocols. Handles are a
collection of one or more protocols, and protocols are data structures that are named by a GUID.
The data structure for a protocol may be empty, may contain data fields, may contain services, or
may contain both services and data fields. During UEFTI initialization, the system firmware, UEFI
drivers, and UEFI applications create handles and attach one or more protocols to the handles.
Information in the handle database is global and can be accessed by any executable UEFI image.

The handle database is the central repository for the objects that are maintained by UEFI-based
firmware. The handle database is a list of UEFI handles, and each UEFI handle is identified by a
unique handle number that is maintained by the system firmware. A handle number provides a
database “key” to an entry in the handle database. Each entry in the handle database is a
collection of one or more protocols. The types of protocols, named by a GUID, that are attached
to an UEFT handle determine the handle type. An UEFI handle may represent components such as
the following:

B Executable images such as UEFI drivers and UEFT applications

B Devices such as network controllers and hard drive partitions

B UEFI services such as UEFI Decompression and the EBC Virtual Machine

Figure 2.1 below shows a portion of the handle database. In addition to the handles and
protocols, a list of objects is associated with each protocol. This list is used to track which
agents are consuming which protocols. This information is critical to the operation of UEFI
drivers, because this information is what allows UEFI drivers to be safely loaded, started,
stopped, and unloaded without any resource conflicts.

First Handle

—
Handle } i l
GUID GUID
Protocol Agent Handle Protocol Agent Handle
Interface Controller Handle Interface Controller Handle
Attributes Attributes
Agent Handle Agent Handle
Controller Handle Controller Handle
Attributes Attributes
Agent Handle
Controller Handle
Attributes
Handle ll .
i l r L} L] L]
GUID GUID GUID
Protocol Agent Handle Protocol Protocol
Interface Controller Handle Interface Interface
Attributes
v

Figure 2.1: Handle Database

Figure 2.2 shows the different types of handles that can be present in the handle database and the
relationships between the various handle types. All handles reside in the same handle database
and the types of protocols that are associated with each handle differentiate the handle type. Like
file system handles in an operating system context, the handles are unique for the session, but the
values can be arbitrary. Also, like the handle returned from an fopen function in a C library, the
value does not necessarily serve a useful purpose in a different process or during a subsequent
restart in the same process. The handle is just a transitory value to manage state.

Handles

Agent
Handles

Image
Handles

Driver

Driver Image Handles

Handles

Controller Handles

Physical
Controller
Handles

Virtual
Controller
Handles

Figure 2.2: Handle Types Handle

Protocols

The extensible nature of UEFI is built, to a large degree, around protocols. UEFI drivers are
sometimes confused with UEFI protocols. Although they are closely related, they are distinctly
different. A UEFI driver is an executable UEFI image that installs a variety of protocols of
various handles to accomplish its job.

A UEFI protocol is a block of function pointers and data structures or APIs that have been
defined by a specification. At a minimum, the specification must define a GUID. This number is
the protocol’s real name; boot services like LocateProtocol uses this number to find his protocol
in the handle database. The protocol often includes a set of procedures and/ or data structures,
called the protocol interface structure. The following code sequence is an example of a protocol
definition. Notice how it defines two function definitions and one data field.

Sample GUID

#define EFI_ COMPONENT NAME2 PROTOCOL GUID \
{Dx6a7a5cff, Oxe8d9, 0x4f70, 0xba, Oxda, 0x75, 0xab,
0x30, 0x25, Oxce, 0x14}

Protocol Interface Structure

typedef struct EFI COMPONENT NAME2 PROTOCOL {

EFI_COMPONENT NAME GET DRIVER NAME
GetDriverName;

EFI COMPONENT NAME GET CONTROLLER_ NAME
GetControllerName;

CHARS
*SupportedLanguages;

} EFI_COMPONENT NAME2 PROTOCOL;

Figure 2.3 shows a single handle and protocol from the handle database that is produced by an
UEFI driver. The protocol is composed of a GUID and a protocol interface structure. Many times,
the UEFI driver that produces a protocol interface maintains additional private data fields. The
protocol interface structure itself simply contains pointers to the protocol function. The protocol
functions are actually contained within the UEFI driver. An UEFI driver might produce one
protocol or many protocols depending on the driver’s complexity.

First Handle

e

GUID
Protocol Interface

GUID 1

Function 1

Private Data

Access
Device or
Services

Produced by
other EFI

Drivers

Function 2

Figure 2.3: Construction of a Protocol

Not all protocols are defined in the UEFI 2.6 Specification. The EFI Developer Kit II (EDKII)
includes many protocols that are not part of the UEFI 2.6 Specification. This project can be found
at http://www.tianocore.org. These protocols provide the wider range of functionality that might
be needed in any particular implementation, but they are not defined in the UEFI 2.6
Specification because they do not present an external interface that is required to support booting
an OS or writing an UEFI driver. The creation of new protocols is how UEFI-based systems can
be extended over time as new devices, buses, and technologies are introduced. For example,
some protocols that are in the EDK II but not in the UEFI 2.6 Specification are:

Varstore — interface to abstract storage of UEFI persistent binary objects

Conln — service to provide a character console input

ConOut — service to provide a character console output

StdErr — service to provide a character console output for error messaging

PrimaryConln — the console input with primary view

VgaMiniPort — a service that provides Video Graphics Array output

UsbAtapi — a service to abstract block access on USB bus

The UEFI Application Toolkit also contains a number of UEFI protocols that may be found on
some platforms, such as:

B PPP Daemon — Point-to-Point Protocol driver

B Ramdisk - file system instance on a Random Access Memory buffer

B TCP/IP - Transmission Control Protocol / Internet Protocol

B The Trusted Computing Group interface and platform specification, such as: — EFI TCG

Protocol — interaction with a Trusted Platform Module (TPM).

http://www.tianocore.org

The OS loader and drivers should not depend on these types of protocols because they are not
guaranteed to be present in every UEFI-compliant system. OS loaders and drivers should depend
only on protocols that are defined in the UEFI 2.6 Specification and protocols that are required
by platform design guides such as Design Implementation Guide for 64-bit Server.

The extensible nature of UEFI allows the developers of each platform to design and add
special protocols. Using these protocols, they can expand the capabilities of UEFI and provide
access to proprietary devices and interfaces in congruity with the rest of the UEFI architecture.

Because a protocol is “named” by a GUID, no other protocols should have that same
identification number. Care must be taken when creating a new protocol to define a new GUID for
it. UEFI fundamentally assumes that a specific GUID exposes a specific protocol interface.
Cutting and pasting an existing GUID or hand-modifying an existing GUID creates the opportunity
for a duplicate GUID to be introduced. A system containing a duplicate GUID inadvertently could
find the new protocol and think that it is another protocol, crashing the system as a result. For
these types of bugs, finding the root cause is also very difficult. The GUID allows for naming
APIs without having to worry about namespace collision. In systems such as PC/AT BIOS,
services were added as an enumeration. For example, the venerable Int15h interface would pass
the service type in AX. Since no central repository or specification managed the evolution of
Int15h services, several vendors defined similar service numbers, thus making interoperability
with operating systems and pre-OS applications difficult. Through the judicious use of GUIDs to
name APIs and an association to develop the specification, UEFI balances the need for API
evolution with interoperability.

Working with Protocols

Any UEFI code can operate with protocols during boot time. However, after Exit-
BootServices() is called, the handle database is no longer available. Several UEFI boot time
services work with UEFI protocols.

Multiple Protocol Instances

A handle may have many protocols attached to it. However, it may have only one protocol of each
type. In other words, a handle may not have more than one instance of the exact same protocol.
Otherwise, it would make requests for a particular protocol on a handle nondeterministic.

However, drivers may create multiple instances of a particular protocol and attach each
instance to a different handle. The PCI I/O Protocol fits this scenario, where the PCI bus driver
installs a PCI I/O Protocol instance for each PCI device. Each instance of the PCI I/O Protocol is
configured with data values that are unique to that PCI device, including the location and size of
the UEFI Option ROM (OpROM) image.

Also, each driver can install customized versions of the same protocol as long as they do not
use the same handle. For example, each UEFI driver installs the Component Name Protocol on its
driver image handle, yet when the EFI_COMPONENT_NAME2_ PROTOCOL.GetDriverName()
function is called, each handle returns the unique name of the driver that owns that image handle.
The EFI_COMPONENT_NAME2_PROTOCOL.GetDriverName() function on the USB bus driver
handle returns “USB bus driver” for the English language, but on the PXE driver handle it returns

“PXE base code driver.”

Tag GUID

A protocol may be nothing more than a GUID. In such cases, the GUID is called a tag GUID.
Such protocols can serve useful purposes such as marking a device handle as special in some
way or allowing other UEFI images to easily find the device handle by querying the system for the
device handles with that protocol GUID attached. The EDKII uses the HOT_PLUG_DEVICE_GUID
in this way to mark device handles that represent devices from a hot-plug bus such as USB.

UEFI Images

All UEFT images contain a PE/COFF header that defines the format of the executable code as
required by the Microsoft Portable Executable and Common Object File Format Specification
(Microsoft 2008). The target for this code can be an [A-32 processor, an Itanium® processor,
x64, ARM, or a processor agnostic, generic EFI Byte Code (EBC). The header defines the
processor type and the image type. Presently there are three processor types and the following
three image types defined:

B UEFI applications — images that have their memory and state reclaimed upon exit.

B UEFI Boot Service drivers — images that have their memory and state preserved throughout
the pre-operating system flow. Their memory is reclaimed upon invocation of
ExitBootServices() by the OS loader.

B UEFI Runtime drivers — images whose memory and state persist throughout the evolution of
the machine. These images coexist with and can be invoked by an UEFI-aware operating
system.

The value of the UEFI Image format is that various parties can create binary executables that

interoperate. For example, the operating system loader for Microsoft Windows' and Linux for an
UEFI-aware OS build is simply an UEFI application. In addition, third parties can create UEFI
drivers to abstract their particular hardware, such as a networking interface host bus adapter
(HBA) or other devices. UEFI images are loaded and relocated into memory with the Boot
Service gBS->LoadImage (). Several supported storage locations for UEFI images are available,
including the following:

B Expansion ROMs on a PCI card

B System ROM or system flash

B A media device such as a hard disk, floppy, CD-ROM, or DVD

B ALAN boot server

In general, UEFI images are not compiled and linked at a specific address. Instead, the UEFI
image contains relocation fix-ups so the UEFI image can be placed anywhere in system memory.
The Boot Service gBS->LoadImage() does the following:

B Allocates memory for the image being loaded

B Automatically applies the relocation fix-ups to the image

B Creates a new image handle in the handle database, which installs an instance of the
EFI_LOADED_IMAGE_PROTOCOL

This instance of the EFI_LOADED_IMAGE_PROTOCOL contains information about the UEFI image
that was loaded. Because this information is published in the handle database, it is available to
all UEFI components.

After an UEFI image is loaded with gBS->LoadImage(), it can be started with a call to gBS-
>StartImage(). The header for an UEFI image contains the address of the entry point that is
called by gBS->StartImage (). The entry point always receives the following two parameters:
B The image handle of the UEFI image being started

B A pointer to the UEFI System Table

These two items allow the UEFI image to do the following:

B Access all of the UEFI services that are available in the platform.

B Retrieve information about where the UEFI image was loaded from and where in memory
the image was placed.

The operations that the UEFI image performs in its entry point vary depending on the type of UEFI
image. Figure 2.4 shows the various UEFI image types and the relationships between the different
levels of images.

EFIl Images

Drivers

Service Driv@
Initializing
Drivers
Root Bridge
Drivers
EFI11.02
Drivers

EFI Driver Model Drivers

Device
Drivers

Bus

Hybrid
Drivers

Drivers

Applications

QS LoadeD

Figure 2.4: Image Types and Their Relationship to One Another

Table 2.1: Description of Image Types

Type of Image Description

Application A UEFI image of type EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION. This
image is executed and automatically unloaded when the image exits or
returns from its entry point.

OS loader A special type of application that normally does not return or exit.
Instead, it calls the UEFI Boot Service gBS->ExitBootServices() to
transfer control of the platform from the firmware to an operating
system.

Driver A UEFI image of type EFI_IMAGE_SUBSYSTEM_BOOT_SER-VICE_DRIVER
or EFI_IMAGE_SUBSYS-TEM_RUNTIME_DRIVER. If this image returns
EFI_SUCCESS, then the image is not unloaded. If the image returns an
error code other than EFI_SUCCESS, then the image is automatically
unloaded from system memory. The ability to stay resident in system
memory is what differentiates a driver from an application. Because
drivers can stay resident in memory, they can provide services to other
drivers, applications, or an operating system. Only the services produced

by runtime drivers are allowed to persist past gBS-
>ExitBootServices().

Service driver

A driver that produces one or more protocols on one or more new
service handles and returns EFI_SUCESS from its entry point.

Initializing driver

A driver that does not create any handles and does not add any protocols
to the handle database. Instead, this type of driver performs some
initialization operations and returns an error code so the driver is unloaded
from system memory.

Root bridge driver

A driver that creates one or more physical controller handles that contain
a Device Path Protocol and a protocol that is a software abstraction for
the 1/O services provided by a root bus produced by a core chipset. The
most common root bridge driver is one that creates handles for the PCI
root bridges in the platform that support the Device Path Protocol and the
PCI Root Bridge 1/0 Protocol.

EFI 1.02 driver

A driver that follows the EFI 1.02 Specification. This type of driver
does not use the UEFI Driver Model. These types of drivers are not
discussed in detail in this document. Instead, this document presents
recommendations on converting EFI 1.02 drivers to drivers that follow
the UEFI Driver Model.

UEFI Driver Model driver

A driver that follows the UEFI Driver Model that is described in detail in
the UEFI 2.6 Specification. This type of driver is fundamentally
different from service drivers, initializing drivers, root bridge drivers, and
EFI 1.02 drivers because a driver that follows the UEFI Driver Model is
not allowed to touch hardware or produce device-related services in the
driver entry point. Instead, the driver entry point of a driver that follows
the UEFI Driver Model is allowed only to register a set of services that
allow the driver to be started and stopped at a later point in the system
initialization process.

Device driver

A driver that follows the UEFI Driver Model. This type of driver
produces one or more driver handles or driver image handles by installing
one or more instances of the Driver Binding Protocol into the handle
database. This type of driver does not create any child handles when the
Start() service of the Driver Binding Protocol is called. Instead, it only
adds additional I/O protocols to existing controller handles.

Bus driver

A driver that follows the UEFI Driver Model. This type of driver
produces one or more driver handles or driver image handles by installing
one or more instances of the Driver Binding Protocol in the handle
database. This type of driver creates new child handles when the
Start() service of the Driver Binding Protocol is called. It also adds I/O
protocols to these newly created child handles.

Hybrid driver

A driver that follows the UEFI Driver Model and shares characteristics
with both device drivers and bus drivers. This distinction means that the
Start() service of the Driver Binding Protocol will add I/O protocols to
existing handles and it will create child handles.

Applications

A UEFT application starts execution at its entry point, then continues execution until it reaches a
return from its entry point or it calls the Exit () boot service function. When done, the image is
unloaded from memory. Some examples of common UEFI applications include the UEFT shell,
UEFT shell commands, flash utilities, and diagnostic utilities. It is perfectly acceptable to invoke
UEFTI applications from inside other UEFI applications.

OS Loader

A special type of UEFI application, called an OS boot loader, calls the Exit-BootServices()
function when the OS loader has set up enough of the OS infrastructure to be ready to assume
ownership of the system resources. At Exit-BootServices(), the UEFI core frees all of its boot
time services and drivers, leaving only the run-time services and drivers.

Drivers

UEFI drivers differ from UEFI applications in that the driver stays resident in memory unless an
error is returned from the driver’s entry point. The UEFI core firmware, the boot manager, or
other UEFI applications may load drivers.

EFI 1.02 Drivers

Several types of UEFI drivers exist, having evolved with subsequent levels of the specification.
In EFI 1.02, drivers were constructed without a defined driver model. The UEFI 2.6
Specification provides a driver model that replaces the way drivers were built in EFI 1.02 but
that still maintains backward compatibility with EFI 1.02 drivers. EFI 1.02 immediately started
the driver inside the entry point. Following this method meant that the driver searched
immediately for supported devices, installed the necessary I/O protocols, and started the timers
that were needed to poll the devices. However, this method did not give the system control over
the driver loading and connection policies, so the UEFI Driver Model was introduced in Section
10.1 of the UEFI 2.6 Specification to resolve these issues.

The Floating-Point Software Assist (FPSWA) driver is a common example of an EFI 1.02
driver; other EFI 1.02 drivers can be found in the EFI Application Toolkit 1.02.12.38. For
compatibility, EFI 1.02 drivers can be converted to UEFI 2.6 drivers that follow the UEFI Driver
Model.

Boot Service and Runtime Drivers

Boot-time drivers are loaded into area of memory that are marked as EfiBootServicesCode,
and the drivers allocate their data structures from memory marked as EfiBootServicesData.
These memory types are converted to available memory after gBS->ExitBootServices() is
called.

Runtime drivers are loaded in memory marked as EfiRuntimeServices-Code, and they
allocate their data structures from memory marked as Efi-RuntimeServicesData. These types
of memory are preserved after gBS->ExitBootServices() is called, thereby enabling the
runtime driver to provide services to an operating system while the operating system is running.
Runtime drivers must publish an alternative calling mechanism, because the UEFI handle
database does not persist into OS runtime. The most common examples of UEFI runtime drivers
are the Floating-Point Software Assist driver (FPSWA.efi) and the network Universal Network
Driver Interface (UNDI) driver. Other than these examples, runtime drivers are not very common.
In addition, the implementation and validation of runtime drivers is much more difficult than boot
service drivers because UEFI supports the translation of runtime services and runtime drivers
from a physical addressing mode to a virtual addressing mode. With this translation, the operating

system can make virtual calls to the runtime code. The OS typically runs in virtual mode, so it
must transition into physical mode to make the call. Transitions into physical mode for modern,
multiprocessor operating systems are expensive because they entail flushing translation look-up
blocks (TLB), coordinating all CPUs, and other tasks. As such, UEFI runtime offers an efficient
invocation mechanism because no transition is required.

Events and Task Priority Levels

Events are another type of object that is managed through UEFI services. An event can be created
and destroyed, and an event can be either in the waiting state or the signaled state. A UEFI image

can do any of the following:
Create an event.
Destroy an event.

Check to see if an event is in the signaled state.
Wait for an event to be in the signaled state.
Request that an event be moved from the waiting state to the signaled state.

Because UEFI does not support interrupts, it can present a challenge to driver writers who are
accustomed to an interrupt-driven driver model. Instead, UEFI supports polled drivers. The most
common use of events by an UEFI driver is the use of timer events that allow drivers to
periodically poll a device. Figure 2.5 shows the different types of events that are supported in

UEFT and the relationships between those events.

Events

Signal
Events

Timer
Events

Exit Boot
Services
Events

One-Shot
Timer
Events

Periodic
Timer
Events

Set Virtual
Address Map
Events

Table 2.2: Description of Event Types

Figure 2.5: Event Types and Relationships

Type of Events

Description

Wait event

An event whose notification function is executed whenever the
event is checked or waited upon.

Signal event

An event whose notification function is scheduled for execution
whenever the event goes from the waiting state to the signaled
state.

Exit Boot Services event

A special type of signal event that is moved from the waiting
state to the signaled state when the UEFI Boot Service
ExitBootServices() is called. This call is the point in time when

ownership of the platform is transferred from the firmware to an
operating system. The event’s notification function is scheduled
for execution when Exit-BootServices() is called.

Set Virtual Address Map event

A special type of signal event that is moved from the waiting
state to the signaled state when the UEFI Runtime Service
SetVirtualAddressMap() is called. This call is the point in time
when the operating system is making a request for the runtime
components of UEFI to be converted from a physical addressing
mode to a virtual addressing mode. The operating system
provides the map of virtual addresses to use. The event’s
notification function is scheduled for execution when
SetVirtualAddressMap() is called.

Timer event

A type of signal event that is moved from the waiting state to the
signaled state when at least a specified amount of time has
elapsed. Both periodic and one-shot timers are supported. The
event’s notification function is scheduled for execution when a
specific amount of time has elapsed.

Periodic timer event

A type of timer event that is moved from the waiting state to the
signaled state at a specified frequency. The event’s notification
function is scheduled for execution when a specific amount of
time has elapsed.

One-shot timer event

A type of timer event that is moved from the waiting state to the
signaled state after the specified timer period has elapsed. The
event’s notification function is scheduled for execution when a
specific amount of time has elapsed.

The following three elements are associated with every event:

B The Task Priority Level (TPL) of the event

B A notification function
B A notification context

The notification function for a wait event is executed when the state of the event is checked or
when the event is being waited upon. The notification function of a signal event is executed
whenever the event transitions from the waiting state to the signaled state. The notification context
is passed into the notification function each time the notification function is executed. The TPL is
the priority at which the notification function is executed. Table 2.3: lists the four TPL levels that
are defined today. Additional TPLs could be added later. An example of a compatible addition to
the TPL list could include a series of “Interrupt TPLs” between TPL_NOTIFY and
TPL_HIGH_LEVEL in order to provide interrupt-driven I/O support within UEFL.

Table 2.3: Task Priority Levels Defined in UEFI

Task Priority Level

Description

TPL_APPLICATION

The priority level at which UEFI images are executed.

TPL_CALLBACK

The priority level for most notification functions.

TPL_NOTIFY

The priority level at which most I/O operations are performed.

TPL_HIGH_LEVEL

The priority level for the one timer interrupt supported in UEFI.

TPLs serve the following two purposes:

B To define the priority in which notification functions are executed

B To create locks

For priority definition, you use this mechanism only when more than one event is in the signaled
state at the same time. In these cases, the application executes the notification function that has
been registered with the higher priority first. Also, notification functions at higher priorities can
interrupt the execution of notification functions executing at a lower priority.

For creating locks, code running in normal context and code in an interrupt context can access the
same data structure because UEFI does support a single-timer interrupt. This access can cause
problems and unexpected results if the updates to a shared data structure are not atomic. An UEFI
application or UEFI driver that wants to guarantee exclusive access to a shared data structure can
temporarily raise the task priority level to prevent simultaneous access from both normal context
and interrupt context. The application can create a lock by temporarily raising the task priority
level to TPL_HIGH_LEVEL. This level blocks even the one-timer interrupt, but you must take care
to minimize the amount of time that the system is at TPL_HIGH_LEVEL. Since all timer-based
events are blocked during this time, any driver that requires periodic access to a device is
prevented from accessing its device. A TPL is similar to the IRQL in Microsoft Windows and the
SPL in various Unix implementations. A TPL describes a prioritization scheme for access control
to resources.

Summary

This chapter has introduced some of the basic UEFI concepts and object types. These items have
included events, protocols, task priority levels, image types, handles, GUIDs, and service tables.
Many of these UEFI concepts, including images and protocols, are used extensively by other
firmware technology, including the UEFI Platform Initialization (PI) building blocks, such as the
DXE environment. These concepts will be revisited in different guises in subsequent chapters.

Chapter 3 — UEFI Driver Model

Things should be made as simple as possible—but no simpler.
—Albert Einstein

The Unified Extensible Firmware Interface (UEFI) provides a driver model for support of
devices that attach to today’s industry-standard buses, such as Peripheral Component Interconnect
(PCI) and Universal Serial Bus (USB), and architectures of tomorrow. The UEFI Driver Model is
intended to simplify the design and implementation of device drivers, and produce small
executable image sizes. As a result, some complexity has been moved into bus drivers and to a
greater extent into common firmware services. A device driver needs to produce a Driver
Binding Protocol on the same image handle on which the driver was loaded. It then waits for the
system firmware to connect the driver to a controller. When that occurs, the device driver is
responsible for producing a protocol on the controller’s device handle that abstracts the I/O
operations that the controller supports. A bus driver performs these exact same tasks. In addition,
a bus driver is also responsible for discovering any child controllers on the bus, and creating a
device handle for each child controller found.

The combination of firmware services, bus drivers, and device drivers in any given platform
is likely to be produced by a wide variety of vendors including Original Equipment
Manufacturers (OEMs), Independent BIOS Vendors (IBVs), and Independent Hardware Vendors
(IHVs). These different components from different vendors are required to work together to
produce a protocol for an I/O device than can be used to boot a UEFI compliant operating system.
As a result, the UEFI Driver Model is described in great detail in order to increase the
interoperability of these components.

This chapter gives a brief overview of the UEFI Driver Model. It describes the entry point of
a driver, host bus controllers, properties of device drivers, properties of bus drivers, and how the
UEFI Driver Model can accommodate hot plug events.

Why a Driver Model Prior to OS Booting?

Under the UEFI Driver Model, only the minimum number of I/O devices needs to be activated.
For example, with today’s BIOS-based systems, a server with dozens of SCSI drives needs to
have those drives “spun-up” or activated. This is because the BIOS Int19h code does not know a
priori which device will contain the operating system loader. The UEFI Driver Model allows for
only activating the subset of devices that are necessary for booting. This makes a rapid system
restart possible and pushes the policy of which additional devices need activation up into the
operating system. With the more aggressive boot time requirements more along the lines of
consumer electronics devices being pushed to all open platforms, this capability is imperative.

Driver Initialization

The file for a driver image must be loaded from some type of media. This could include ROM,
flash, hard drives, floppy drives, CD-ROM, or even a network connection. Once a driver image
has been found, it can be loaded into system memory with the Boot Service LoadImage().
LoadImage() loads a Portable Executable/ Common File Format (PE/COFF) formatted image
into system memory. A handle is created for the driver, and a Loaded Image Protocol instance is
placed on that handle. A handle that contains a Loaded Image Protocol instance is called an
Image Handle. At this point, the driver has not been started. It is just sitting in memory waiting to
be started. Figure 3.1 shows the state of an image handle for a driver after LoadImage() has been
called.

Image Handle

Figure 3.1: Image Handle

After a driver has been loaded with the Boot Service LoadImage(), it must be started with the
Boot Service startImage(). This is true of all types of UEFI applications and UEFI drivers that
can be loaded and started on an UEFI compliant system. The entry point for a driver that follows
the UEFI Driver Model must follow some strict rules. First, it is not allowed to touch any
hardware. Instead, it is only allowed to install protocol instances onto its own Image Handle. A
driver that follows the UEFI Driver Model is required to install an instance of the Driver Binding
Protocol onto its own Image Handle. It may optionally install the Driver Configuration Protocol,
the Driver Diagnostics Protocol, or the Component Name Protocol. In addition, if a driver wishes
to be unloadable it may optionally update the Loaded Image Protocol to provide its own
Unload() function. Finally, if a driver needs to perform any special operations when the Boot
Service ExitBootServices() is called, it may optionally create an event with a notification
function that is triggered when the Boot Service ExitBootServices() is called. An Image
Handle that contains a Driver Binding Protocol instance is known as a Driver Image Handle. Fig
ure 3.2 shows a possible configuration for the Image Handle from Figure 3.1 after the Boot
Service StartImage() has been called.

b)

i

Driver Image Handle

EFI_LOADED_IMAGE_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

EFI_DRIVER_CONFIGURATION_PROTOCOL

EFI_DRIVER_DIAGNOSTICS_PROTOCOL

EFI_COMPONENT_NAME2_PROTOCOL

Figure 3.2: Driver Image Handle

Host Bus Controllers

Drivers are not allowed to touch any hardware in the driver's entry point. As a result, drivers are
loaded and started, but they are all waiting to be told to manage one or more controllers in the
system. A platform component, like the UEFI Boot Manager, is responsible for managing the
connection of drivers to controllers. However, before even the first connection can be made,
some initial collection of controllers must be present for the drivers to manage. This initial
collection of controllers is known as the Host Bus Controllers. The I/O abstractions that the Host
Bus Controllers provide are produced by firmware components that are outside the scope of the
UEFI Driver Model. The device handles for the Host Bus Controllers and the I/O abstraction for
each one must be produced by the core firmware on the platform, or an UEFI Driver that may not
follow the UEFI Driver Model. See the PCI Host Bridge I/O Protocol description in Chapter 13
of the UEFT 2.6 specification for an example of an I/O abstraction for PCI buses.

A platform can be viewed as a set of CPUs and a set of core chip set components that may
produce one or more host buses. Figure 3.3 shows a platform with n CPUs, and a set of core
chipset components that produce m host bridges.

Figure 3.3: Host Bus Controllers

Each host bridge is represented in UEFI as a device handle that contains a Device Path Protocol
instance, and a protocol instance that abstracts the I/O operations that the host bus can perform.
For example, a PCI Host Bus Controller supports the PCI Host Bridge I/O Protocol. Figure 3.4
shows an example device handle for a PCI Host Bridge.

i

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_HOST_BRIDGE_IO_PROTOCOL

Figure 3.4: Host Bus Device Handle

A PCI Bus Driver could connect to this PCI Host Bridge, and create child handles for each of the
PCI devices in the system. PCI Device Drivers should then be connected to these child handles,
and produce I/O abstractions that may be used to boot a UEFI compliant OS. The following
section describes the different types of drivers that can be implemented within the UEFI Driver
Model. The UEFI Driver Model is very flexible, so not all the possible types of drivers are
discussed here. Instead, the major types are covered that can be used as a starting point for
designing and implementing additional driver types.

Device Drivers

A device driver is not allowed to create any new device handles. Instead, it installs additional
protocol interfaces on an existing device handle. The most common type of device driver attaches
an I/0 abstraction to a device handle that has been created by a bus driver. This I/O abstraction
may be used to boot an UEFI compliant OS. Some example I/O abstractions would include
Simple Text Output, Simple Input, Block I/O, and Simple Network Protocol. Figure 3.5 shows a
device handle before and after a device driver is connected to it. In this example, the device
handle is a child of the XYZ Bus, so it contains an XYZ I/O Protocol for the I/O services that the
XYZ bus supports. It also contains a Device Path Protocol that was placed there by the XYZ Bus
Driver. The Device Path Protocol is not required for all device handles. It is only required for
device handles that represent physical devices in the system. Handles for virtual devices do not
contain a Device Path Protocol.

i

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFl_XYZ_I0_PROTOCOL

Device Handle
Stop()

EFI_DEVICE_PATH_PROTOCOL
EFI_XYZ_IO_PROTOCOL

[EFI_BLOCK_IO_PROTOCDL |]

Figure 3.5: Connecting Device Drivers

The device driver that connects to the device handle in Figure 3.5 must have installed a Driver
Binding Protocol on its own image handle. The Driver Binding Protocol contains three functions
called Supported(), Start(), and Stop(). The Supported() function tests to see if the driver
supports a given controller. In this example, the driver will check to see if the device handle
supports the Device Path Protocol and the XYZ I/O Protocol. If a driver's Supported() function
passes, then the driver can be connected to the controller by calling the driver’s Start()
function. The start () function is what actually adds the additional I/O protocols to a device
handle. In this example, the Block I/O Protocol is being installed. To provide symmetry, the

Driver Binding Protocol also has a Stop() function that forces the driver to stop managing a
device handle. This causes the device driver to uninstall any protocol interfaces that were
installed in Start ().

The Support(), Start(), and Stop() functions of the UEFI Driver Binding Protocol are
required to make use of the new Boot Service OpenProtocol() to get a protocol interface and
the new Boot Service CloseProtocol() to release a protocol interface. openProtocol() and
CloseProtocol() update the handle database maintained by the system firmware to track which
drivers are consuming protocol interfaces. The information in the handle database can be used to
retrieve information about both drivers and controllers. The new Boot Service
OpenProtocolInformation() can be used to get the list of components that are currently
consuming a specific protocol interface.

Bus Drivers

Bus drivers and device drivers are virtually identical from the UEFI Driver Model’s point of
view. The only difference is that a bus driver creates new device handles for the child controllers
that the bus driver discovers on its bus. As a result, bus drivers are slightly more complex than
device drivers, but this in turn simplifies the design and implementation of device drivers. There
are two major types of bus drivers. The first creates handles for all the child controllers on the
first call to start (). The second type allows the handles for the child controllers to be created
across multiple calls to start (). This second type of bus driver is very useful in supporting a
rapid boot capability. It allows a few child handles or even one child handle to be created. On
buses that take a long time to enumerate all of their children (such as SCSI), this can lead to a
very large time savings in booting a platform. Figure 3.6 shows the tree structure of a bus
controller before and after Start() is called. The dashed line coming into the bus controller
node represents a link to the bus controller's parent controller. If the bus controller is a Host Bus
Controller, then it does not have a parent controller. Nodes A, B, C, D, and E represent the child
controllers of the bus controller.

Bus Controller

Start() Bus Controller

Stop()

OOOOC

Figure 3.6: Connecting Bus Drivers

A bus driver that supports creating one child on each call to start () might choose to create child
C first, and then child E, and then the remaining children A,B, and D. The Supported(),
Start(), and Stop() functions of the Driver Binding Protocol are flexible enough to allow this
type of behavior.

A bus driver must install protocol interfaces onto every child handle that is creates. At a
minimum, it must install a protocol interface that provides an I/O abstraction of the bus's services
to the child controllers. If the bus driver creates a child handle that represents a physical device,
then the bus driver must also install a Device Path Protocol instance onto the child handle. A bus
driver may optionally install a Bus Specific Driver Override Protocol onto each child handle.
This protocol is used when drivers are connected to the child controllers. A new Boot Service
ConnectController () uses architecturally defined precedence rules to choose the best set of

drivers for a given controller. The Bus Specific Driver Override Protocol has higher precedence
than a general driver search algorithm, and lower precedence than platform overrides. An
example of a bus specific driver selection occurs with PCI. A PCI Bus Driver gives a driver
stored in a PCI controller's option ROM a higher precedence than drivers stored elsewhere in the
platform. Figure 3.7 shows an example child device handle that has been created by the XYZ Bus
Driver that supports a bus specific driver override mechanism.

Child Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I0_PROTOCOL

SLUCUCIN | £F| BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

Figure 3.7: Child Device Handle with a Bus Specific Override

Platform Components

Under the UEFI Driver Model, the act of connecting and disconnecting drivers from controllers in
a platform is under the platform firmware's control. This will typically be implemented as part of
the UEFI Boot Manager, but other implementations are possible. The new Boot Services
ConnectController() and DisconnectController () can be used by the platform firmware to
determine which controllers get started and which ones do not. If the platform wishes to perform
system diagnostics or install an operating system, then it may choose to connect drivers to all
possible boot devices. If a platform wishes to boot a pre-installed operating system, it may
choose to only connect drivers to the devices that are required to boot the selected operating
system. The UEFI Driver Model supports both of these modes of operation through the new Boot
Services ConnectController() and DisconnectController (). In addition, since the platform
component that is in charge of booting the platform has to work with device paths for console
devices and boot options, all of the services and protocols involved in the UEFI Driver Model
are optimized with device paths in mind.

The platform may also choose to produce an optional protocol named the Platform Driver
Override Protocol. This is similar to the Bus Specific Driver Override Protocol, but it has higher
priority. This gives the platform firmware the highest priority when deciding which drivers are
connected to which controllers. The Platform Driver Override Protocol is attached to a handle in
the system. The new Boot Service ConnectController () will make use of this protocol if it is
present in the system.

Hot Plug Events

In the past, system firmware has not had to deal with hot plug events in the pre-boot environment.
However, with the advent of buses like USB, where the end user can add and remove devices at
any time, it is important to make sure that it is possible to describe these types of buses in the
UEFI Driver Model. It is up to the bus driver of a bus that supports the hot adding and removing
of devices to provide support for such events. For these types of buses, some of the platform
management is going to have to move into the bus drivers. For example, when a keyboard is
added hot to a USB bus on a platform, the end user would expect the keyboard to be active. A
USB Bus driver could detect the hot add event and create a child handle for the keyboard device.
However, since drivers are not connected to controllers unless ConnectController() is called
the keyboard would not become an active input device. Making the keyboard driver active
requires the USB Bus driver to call connectController() when a hot add event occurs. In
addition, the USB Bus driver would have to call bisconnectController () when a hot remove
event oCcCurs.

Device drivers are also affected by these hot plug events. In the case of USB, a device can be
removed without any notice. This means that the Stop() functions of USB device drivers must
deal with shutting down a driver for a device that is no longer present in the system. As a result,
any outstanding I/O requests must be flushed without actually being able to touch the device
hardware.

In general, adding support for hot plug events greatly increases the complexity of both bus
drivers and device drivers. Adding this support is up to the driver writer, so the extra complexity
and size of the driver must be weighed against the need for the feature in the pre-boot
environment.

The two example code sequences below provide guidance on how a device driver writer
might discover if it in fact manages the candidate hardware device. These mechanisms include
looking at the controller handle in the first example and examining the device path in the second
example.

extern EFI_GUID
geEfiDriverBindingProtocolGuid;

EFI_HANDLE gMyImageHandle;

EFI HANDLE DriverImageHandle;
EFI_HANDLE ControllerHandle;

EFI DRIVER BINDING PROTOCOL *DriverBinding;
EFI_DEVICE PATH PROTOCOL *RemainingDevicePath;
//

// Use the DriverImageHandle to get the Driver Binding
Protocol
// instance
//
Status = gBS->0OpenProtocol
DriverImageHandle,
&gEfiDriverBindingProtocolGuid,
&DriverBinding,
gMyImageHandle,
NULL,
EFI OPEN PROTOCOL HANDLE PROTOCOL
L

if (EFI_ERROR (Status})
return Status:;

}

/7
// EXAMPLE #1

f/

// Use the Driver Binding Protocol instance to test to
see if

// the driver specified by DriverlImageHandle supports the
// controller specified by ControllerHandle

/S

Status = DriverBinding-s>Supported |
DriverBinding,
ControllerHandle,
WNLI:

) ;
if (!EFI_ERROR (Status)) {
Status = DriverBinding->Start

DriverBinding,
ControllerHandle,
NULL

}

return Status;

!/

// EXAMPLE #2

£

// The RemainingDevicePath parameter can be used to
initialize

// only the minimum devices required to boot. For
example,

// maybe we only want to initialize 1 hard disk on a SCSI
// channel. If DriverImageHandle is a SCSI Bus Driver,
and

// ControllerHandle is a SCSI Controller, and we only
want to

// create a child handle for PUN=3 and LUN=0, then the
// RemainingDevicePath would be SCSI(3,0)/END. The
following

// example would return EFI_SUCCESS if the SCSI driver
supports

// creating the child handle for PUN=3, LUN=0. Otherwise
it

// would return an error.

/7

Status = DriverBinding->Supported (
DriverBinding,
ControllerHandle,
RemainingDevicePath
s
if (!EFI_ERROR (Status))
Status = DriverBinding->Start
DriverBinding,
ControllerHandle,
RemainingDevicePath
) §
}

return Status;

Pseudo Code

The algorithms for the start () function for three different types of drivers are presented here.
How the start () function of a driver is implemented can affect how the Supported() function
is implemented. All of the services in the EFI_DRIVER_BINDING_PROTOCOL need to work
together to make sure that all resources opened or allocated in Supported() and Start() are
released in Stop ().

The first algorithm is a simple device driver that does not create any additional handles. It
only attaches one or more protocols to an existing handle. The second is a simple bus driver that
always creates all of its child handles on the first call to Start(). It does not attach any
additional protocols to the handle for the bus controller. The third is a more advanced bus driver
that can either create one child handles at a time on successive calls to Start (), or it can create
all of its child handles or all of the remaining child handles in a single call to Sstart(). Once
again, it does not attach any additional protocols to the handle for the bus controller.

Device Driver

1. Open all required protocols with openProtocol(). If this driver allows the opened
protocols to be shared with other drivers, then it should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver does not allow the opened protocols to
be shared with other drivers, then it should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It must use the
same Attribute value that was used in Supported().

2. If any of the calls to openProtocol() in Step 1 returned an error, then close all of the
protocols opened in Step 1 with CloseProtocol(), and return the status code from the
call to openProtocol() that returned an error.

3. Ignore the parameter RemainingDevicePath.

4.

5.

7.

Initialize the device specified by ControllerHandle. If an error occurs, close all of the
protocols opened in Step 1 with CloseProtocol(), and return EFI_DEVICE_ERROR.
Allocate and initialize all of the data structures that this driver requires to manage the
device specified by ControllerHandle. This would include space for public protocols
and space for any additional private data structures that are related to ControllerHandle.
If an error occurs allocating the resources, then close all of the protocols opened in Step
1 with CloseProtocol(), and return EFI_OUT_OF_RESOURCES.

Install all the new protocol interfaces onto ControllerHandle using
InstallProtocolInterface(). If an error occurs, close all of the protocols opened in
Step 1 with CloseProtocol(), and return the error from
InstallProtocolInterface().

Return EFI_SUCCESS.

Bus Driver that Creates All of Its Child Handles on the First Call to Start()

1.

w

i

N

10.

11.

12.

Open all required protocols with openProtocol(). If this driver allows the opened
protocols to be shared with other drivers, then it should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver does not allow the opened
protocols to be shared with other drivers, then it should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It must use the
same Attribute value that was used in Supported().

. If any of the calls to openProtocol() in Step 1 returned an error, then close all of the

protocols opened in Step 1 with CloseProtocol(), and return the status code from the
call to openProtocol() that returned an error.

Ignore the parameter RemainingDevicePath.

Initialize the device specified by ControllerHandle. If an error occurs, close all of the
protocols opened in Step 1 with CloseProtocol(), and return EFI_DEVICE_ERROR.
Discover all the child devices of the bus controller specified by Controller-Handle.

If the bus requires it, allocate resources to all the child devices of the bus controller
specified by ControllerHandle.

FOR each child C of ControllerHandle

Allocate and initialize all of the data structures that this driver requires to manage the
child device C. This would include space for public protocols and space for any
additional private data structures that are related to the child device C. If an error occurs
allocating the resources, then close all of the protocols opened in Step 1 with
CloseProtocol(), and return EFI_OUT_OF_RESOURCES.

If the bus driver creates device paths for the child devices, then create a device path for
the child C based upon the device path attached to ControllerHandle.

Initialize the child device C. If an error occurs, close all of the protocols opened in Step
1 with closeProtocol(), and return EFI_DEVICE_ERROR.

Create a new handle for C, and install the protocol interfaces for child device C. This
may include the EFI_DEVICE_PATH_PROTOCOL.

Call openProtocol() on behalf of the child C with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

13.
14.

END FOR
Return EFI_SUCCESS.

Bus Driver that Is Able to Create All or One of Its Child Handles on Each Call to Start():

1.

v

10.
11.
12.
13.

14.
15.

16.

17.
18.

Open all required protocols with openProtocol(). If this driver allows the opened
protocols to be shared with other drivers, then it should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver does not allow the opened protocols to
be shared with other drivers, then it should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It must use the
same Attribute value that was used in Supported().

. If any of the calls to openProtocol() in Step 1 returned an error, then close all of the

protocols opened in Step 1 with CloseProtocol(), and return the status code from the
call to openProtocol() that returned an error.

Initialize the device specified by ControllerHandle. If an error occurs, close all of the
protocols opened in Step 1 with CloseProtocol(), and return EFI_DEVICE_ERROR.

IF RemainingDevicePath is not NULL, THEN

C is the child device specified by RemainingDevicePath.

Allocate and initialize all of the data structures that this driver requires to manage the
child device C. This would include space for public protocols and space for any
additional private data structures that are related to the child device C. If an error occurs
allocating the resources, then close all of the protocols opened in Step 1 with
CloseProtocol(), and return EFI_OUT_OF_RESOURCES.

If the bus driver creates device paths for the child devices, then create a device path for
the child C based upon the device path attached to ControllerHandle.

Initialize the child device C.

Create a new handle for C, and install the protocol interfaces for child device C. This
may include the EFI_DEVICE_PATH_PROTOCOL.

Call openProtocol() on behalf of the child C with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

ELSE

Discover all the child devices of the bus controller specified by Controller-Handle.

If the bus requires it, allocate resources to all the child devices of the bus controller
specified by ControllerHandle.

FOR each child C of ControllerHandle

Allocate and initialize all of the data structures that this driver requires to manage the
child device C. This would include space for public protocols and space for any
additional private data structures that are related to the child device C. If an error occurs
allocating the resources, then close all of the protocols opened in Step 1 with
CloseProtocol(), and return EFI_OUT_OF_RESOURCES.

If the bus driver creates device paths for the child devices, then create a device path for
the child C based upon the device path attached to ControllerHandle.

Initialize the child device C.

Create a new handle for C, and install the protocol interfaces for child device C. This

may include the EFI_DEVICE_PATH_PROTOCOL.

19. Call openProtocol() on behalf of the child C with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

20. END FOR

21. END IF

22. Return EFI_SUCCESS.

Listed below is sample code of the Start () function of device driver for a device on the XYZ
bus. The XYZ bus is abstracted with the EFI_XYz_10_PROTOCOL. This driver does allow the
EFI_XYZ_I0 _PROTOCOL to be shared with other drivers, and just the presence of the
EFI_XYZ_I0_PROTOCOL on ControllerHandle is enough to determine if this driver supports
ControllerHandle. This driver installs the EFI_ABC_I10_PROTOCOL on ControllerHandle. The
gBS and gMyImageHandle variables are initialized in this driver’s entry point.

The following code sequence provides a generic example of what a driver can do in its start
routine in the hope of particularizing the guidance listed above.

extern EFI_GUID gEfiXyzIoProtocol;

extern EFI GUID gEfiAbcIoProtocol;
EFI_BOOT_SERVICES TABLE *gBS;
EFI_HANDLE gMyImageHandle;
EFI_STATUS
AbcStart
IN EFI_DRIVER BINDING PROTOCOL *This,
IN EFI HANDLE ControllerHandle,
IN EFI_DEVICE PATH PROTOCOL *RemainingDevicePath
OPTIONAL
)
{
EFI_ STATUS Status;
EFI_XYZ IO PROTOCOL *XyzlIo;
EFI_ABC_DEVICE AbcDevice;
/Y

// Open the Xyz I/0 Protocol that this driver consumes

/7

Status = gBS-s>0OpenProtocol (
ControllerHandle,
&gEfiXyzIoProtoceol,
&Xyzlo,
gMyImageHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY DRIVER
Y ;

if (EFI_ERRCR (Status)) {

return Status;
}

i

// Allocate and zero a private data structure for the
Abc

// device.

'Fi
Status = gBS->AllocatePool (

EfiBootServicesData,
sizeof (EFI_ABC_DEVICE),
&AbcDevice
| 5
if (EFI_ERROR (Status)) {
goto ErrorExit;
}

ZeroMem (AbcDevice, sizeof (EFI_ABC DEVICE)) ;

//

// Initialize the contents of the private data
structure for

// the Abc device. This includes the Xyzlo protocol
instance

// and other private data fields and the
EFI_ABC IO PROTOCOL

// instance that will be installed.

!/

AbcDevice->Signature - EFI_ABC DEVICE SIGNATURE;
AbcDevice->XyzIo = XyzIlIo;
AbcDevice->PrivateDatal = PrivatevValuel;
AbcDevice->PrivateDatal = PrivateValue?2;
AbcDevice->=PrivateDatal = PrivateValuelN;

AbcDevice->abclIo.Revision =
EFI_ABC_ IO PROTOCOL_REVISION;

AbcDevice->Abclo.Funcl = AbcIoFuncl;
AbcDevice->AbclIo.Func?2 = AbcIoFunc?;
AbcDevice->AbclIo.FunchN = AbcIoFuncN;
AbcDevice->AbcIo.Datal = Valuel;
AbcDevice->=AbclIo.DataZz = ValueZ2;
AbcDevice->=AbcIo.DatalN = ValueN;

I

// Install protocol interfaces for the ABC I/C device.

Ff

Status = gBS->InstallProtocolInterface (
&ControllerHandle,
&gEfiAbcIoProtocolGuid,
EFI NATIVE INTERFACE,
&AbcDevice->Abclo
) ;

if (EFI_ERROR (Status)) {

goto ErrorExit;
}

return EFI_SUCCESS;

ErrorExit:

//

// When there is an error, the provate data structures
need

// to be freed and the protocols that were opened need
to be

// closed.

//

if (AbcDevice != NULL) ({

gBS->FreePool (AbcDevice) ;

}

gBS->CloseProtocol (
ControllerHandle,
&gEfiXyzIoProtocolGuid,
gMyImageHandle,
ControllerHandle
Jup

return Status;

Additional Innovations

In addition to the basic capabilities for booting, such as support for the various buses, there are
other classes of feature drivers that provide capabilities to the platform. Some examples of these
feature drivers include security, manageability, and networking.

Security

In addition to the bus driver-based architecture, the provenance of the UEFI driver may be a
concern for some vendors. Specifically, if the UEFI driver is loaded from a host-bus adapter
(HBA) PCI card or from the UEFI system partition, the integrity of the driver could be called into
question. As such, the UEFI 2.6 Specification describes a means by which to enroll signed UEFI
drivers and applications. The particular signature format is Authenticode, which is a well-known
usage of X509V2 certificates and PKCS#7 signature formats. The use of a well-known embedded
signature format in the PE/COFF images of the UEFI drivers allows for interoperable trust,
including the use of Certificate Authorities (CAs), such as Verisign, to sign the executables and
distribute the credentials. More information on the enrollment can be found in Chapter 27 of the
UEFTI 2.6 Specification. Information on the Windows Authenticode Portable Executable Signature
Format can be found at
http://www.microsoft.com/whdc/winlogo/drvsign/ Authenticode_PE.mspx.

Other security features in UEFI 2.6 include the User Identity (UID) infrastructure. The UID
allows for the inclusion of credential provider drivers, such as biometric devices, smart cards,
and other authentication methods, into a user manager framework. This framework will allow for
combining the factors from the various credential providers and assigning rights to different UEFI
users. One use case could include only the administrator having access to the USB devices in the
pre-OS, whereas other users could only access the boot loader on the UEFI system partition.
More information on UID can be found in Chapter 31 of the UEFT 2.6 Specification.

Manageability

The UEFI driver model has also introduced the Driver Health Protocol. The Driver Health
Protocol exposes additional capabilities that a boot manager might use in concert with a device.
These capabilities include EFI_DRIVER_HEALTH_PROTOCOL. GetHealthStatus() and
EFI_DRIVER_HEALTH_PROTOCOL.Repair() services. The former will allow the boot
manager to ascertain the state of the device, and the latter API will allow for the invocation of
some recovery operation. An example of the usage may include a large solid-state disk cache or
redundant array of inexpensive disks (RAID). If the system were powered down during operating
system runtime in an inconsistent state, say not having the RAID5 parity disk fully updated, the
driver health protocol would allow for exposing the need to synchronize the cache or RAID
during the pre-OS without “disappearing” for a long period during this operation and making the
user believe the machine had failed. More information on the Driver Health Protocol can be
found in Chapter 10 of the UEFI 2.6 Specification. In addition to the firmware healthy protocol,

http://www.microsoft.com/whdc/winlogo/drvsign/Authenticode_PE.mspx

there have been evolutions in the firmware management protocol (FMP), as described in Chapter
22 of the UEFI 2.6 specification. This protocol allows for host processing of capsule updates by
devices. As such, it works in blended scenarios with the EFI System Resource Table (ESRT) that
exposes updatable elements and the existing UpdateCapsule runtime service. This scenario is

shown below.

B \Af s
mm VVindows ‘ redhat. eme capsule

UEFI Firmware Resource Table
(ESRT)
{ Camera GUID1, Versioninfo }

{ G-Sensor GUID2, Versioninfo }
{ System Firmware GUID3, e

% Routinglinfo

"Updated Data
(Optional)

Update UEFI
driver
(Optional)

UPDATE

Versioninfo }

Camera G-Sensor System
firmware
Figure 3.8: ESRT, Capsule, FMP
Networking

The UEFI driver model has also evolved to support complex device hierarchies, such as a dual
IPV4 and IPV6 modular network stack. Figure 3.8 is a picture of the Internet Small Computer
Systems Interface (iSCSI) network application atop both the IPV4 and IPV6 network stack.

X

TCP4

CP6
[arp Je—{ 14] |A§PF—'| I£’4| [1r6]
)
[Mp] [MNp] [MNP] (MNP E
By child

MNP_SBJ

Figure 3.9: ISCSI on IPV4 and IPV6

In addition to the ISCSI usage above, the UEFI standard now has support for HTTP boot.

Load T Device
File |Path

Boot Service Discovery/

Configuration
HTTP API 4 ‘
HTTP(S) DNS DHCP
o 2 T it
TLS TCP UDP
IP Stack

MNP Driver

UNDI/NII

Figure 3.10: HTTP software stack

Both of these implementations can be found in on the Tianocore website located at http://www.tia
nocore.org/. HTTP builds upon the same TCP protocol found in ISCSI, but unlike the earlier PXE
based upon UDP and TFTP, HTTP provides a connectionoriented download experience. Beyond
the connection-oriented nature of HTTP boot, the scenario adds DNS support so that named octets
like aa.bb.cc.dd are not needed for entering the boot server, but instead human-readable names
like can be used. And finally, HTTP boot allows for being routable over Port 80. In the past
TFTP-based PXE used ports that were typically blocked on enterprise routers. In summary, HTTP
boot makes the boot, deployment, and recovery scenarios from UEFI truly wide area network and
internet-wide capable.
A common use-case for booting includes the following;

EFl HTTPBoot
Client

DHCP Server DNS Server HTTP(S) Server

DHCP: address config

\

DNS: Host name resolution /

\
/ 1

\ HTTP: 1). Get NBP file size 2). Download NBP file
I I /

Figure 3.11: HTTP network boot

One notable infrastructure element precipitated by this modular design includes the Service
Binding Protocol (SBP). The EFI_DRIVER_BINDING_PROTOCOL allows for producing a set
of protocols related to a device via simple layering, but for more complex relationships like
graphs and trees, the driver binding protocol was found to be deficient. For this reason, the SBP
provides a member function to create a child handle with a new protocol installed upon it. This
allows for the more generalized via as shown in Figure 3.8.

http://www.tianocore.org/

Summary

This chapter has introduced the UEFI driver model and some sample drivers. The UEFI driver
model allows for support of modern bus architectures in addition to the lazy activation of devices
needed by boot for today’s platforms and designs in the future. The support for buses is key
because most of the storage, console, and networking devices are attached via an industry-
standard bus like USB, PCI, and SCSI. The architecture described is general enough to support
these and future evolutions in platform hardware. In addition to access to boot devices, though,
there are other features and innovations that need to be surfaced in the platform. UEFI drivers are
the unit of delivery for these types of capabilities, and examples of networking, security, and
management feature drivers were reviewed.

Chapter 4 — Protocols You Should Know

Common sense ain’t common.

—Will Rogers

This chapter describes protocols that everyone who is working with the Unified Extensible
Firmware Interface (UEFI), whether creating device drivers, UEFI pre-OS applications, or
platform firmware, should know. The protocols are illustrated by a few examples, beginning with
the most common exercise from any programming text, namely “Hello world.” The test
application listed here is the simplest possible application that can be written. It does not depend
upon any UEFT Library functions, so the UEFI Library is not linked into the executable that is
generated. This test application uses the SystemTable that is passed into the entry point to get
access to the UEFI console devices. The console output device is used to display a message using
the OutputString() function of the SIMPLE_TEXT_OUTPUT_INTERFACE protocol, and the
application waits for a keystroke from the user on the console input device using the
wWaitForEvent () service with the WaitForKey event in the SIMPLE_INPUT_INTERFACE protocol.
Once a key is pressed, the application exits.

[x4+

Module Name:
helloworld.c

Abstract:

This is a simple module to display behavior of a
basic UEFI application.

Author:
Waldo

Revision History

__*/

#include "efi.h"

EFI STATUS

InitializeHelloApplication (
IN EFI HANDLE ImageHandle,
IN EFI_SYSTEM_ TABLE *SystemTable

)

UINTN Index;

//

// Send a message to the ConsoleOut device.

//

SystemTable->ConQOut->0OutputString (
SystemTable->ConOut,
L"Hello application started\n\r");

//

// Wait for the user to press a key.

//

SystemTable->ConOut->0utputString (
SystemTable->ConOut,
L"\n\r\n\r\n\rHit any key to exit\n\r");

SystemTable->BootServices->WaitForEvent (
1,
& (SystemTable->ConIn->WaitForKey) ,
&Index) ;

SystemTable->ConOut ->0OutputString (
SystemTable->ConQOut,L"\n\r\n\xr") ;

//
// Exit the application.

//

return EFI_SUCCESS;

}

To execute an UEFI application, type the program’s name at the UEFI Shell command line. The
following examples show how to run the test application described above from the UEFI Shell.
The application waits for the user to press a key before returning to the UEFI Shell prompt. It is
assumed that hello.efi is inthe search path of the UEFI Shell environment.

Example
Shell> hello

Hello application started

Hit any key to exit this image

EFI OS Loaders

This section discusses the special considerations that are required when writing an OS loader. An
OS loader is a special type of UEFI application responsible for transitioning a system from a
firmware environment into an OS environment. To accomplish this task, several important steps
must be taken:

1.

2.

The OS loader must determine from where it was loaded. This determination allows an
OS loader to retrieve additional files from the same location.

The OS loader must determine where in the system the OS exists. Typically, the OS
resides on a partition of a hard drive. However, the partition where the OS exists may not
use a file system that is recognized by the UEFI environment. In this case, the OS loader
can only access the partition as a block device using only block I/ O operations. The OS
loader will then be required to implement or load the file system driver to access files on
the OS partition.

The OS loader must build a memory map of the physical memory resources so that the OS
kernel can know what memory to manage. Some of the physical memory in the system
must remain untouched by the OS kernel, so the OS loader must use the UEFI APIs to
retrieve the system’s current memory map.

An OS has the option of storing boot paths and boot options in nonvolatile storage in the
form of environment variables. The OS loader may need to use some of the environment
variables that are stored in nonvolatile storage. In addition, the OS loader may be
required to pass some of the environment variables to the OS kernel.

The next step is to call ExitBootServices(). This call can be done from either the OS
loader or from the OS kernel. Special care must be taken to guarantee that the most
current memory map has been retrieved prior to making this call. Once
ExitBootServices() had been called, no more UEFI Boot Services calls can be made.
At some point, either just prior to calling Exit-BootServices() or just after, the OS
loader will transfer control to the OS kernel.

Finally, after ExitBootServices() has been called, the UEFI Boot Services calls are no
longer available. This lack of availability means that once an OS kernel has taken control
of the system, the OS kernel may only call UEFI Runtime Services.

A complete listing of a sample application for an OS loader can be found below. The code
fragments in the following sections do not perform any error checking. Also, the OS loader
sample application makes use of several UEFI Library functions to simplify the implementation.

The output shown below starts by printing out the device path and the file path of the OS
loader itself. It also shows where in memory the OS loader resides and how many bytes it is
using. Next, it loads the file OSKERNEL.BIN into memory. The file 0OSKERNEL.BIN is retrieved
from the same directory as the image of the OS loader sample of Figure 4.1.

Compatibility

| EF11.10 |

Drivers

EFIOS
Loader

Figure 4.1: EFI Loader in System Diagram

The next section of the output shows the first block of several block devices. The first one is the
first block of the floppy drive with a FAT12 file system. The second one is the Master Boot
Record (MBR) from the hard drive. The third one is the first block of a large FAT32 partition on
the same hard drive, and the fourth one is the first block of a smaller FAT16 partition on the same
hard drive.

The final step shows the pointers to all the system configuration tables, the system’s current
memory map, and a list of all the system’s environment variables. The very last step shown is the
OS loader calling ExitBootServices().

Device Path and Image Information of the OS Loader

The following code fragment shows the steps that are required to get the device path and file
path to the OS loader itself. The first call to HandleProtocol() gets the
LOADED_IMAGE_PROTOCOL interface from the ImageHandle that was passed into the OS loader
application. The second call to HandleProtocol() gets the DEVICE_PATH_PROTOCOL interface to
the device handle of the OS loader image. These two calls transmit the device path of the OS
loader image, the file path, and other image information to the OS loader itself.

BS->HandleProtocol (
ImageHandle,
&LoadedImageProtocol,
LoadedImage

) i

BS->HandleProtocol (
LoadedImage->DeviceHandle,
&DevicePathProtocol,
&DevicePath

) ;

Print
L"Image device : %s\n",
DevicePathToStr (DevicePath)
e

Print (
L"Image file : ¥s\n",
DevicePathToStr (LoadedImage->FilePath)
)

Print (
L"Image Base : %X\n",
LoadedImage->ImageBase

)i

Print: |
L"Image Size : 3X\n",
LoadedImage->ImageSize
)i

Accessing Files in the Device Path of the OS Loader

The previous section shows how to retrieve the device path and the image path of the OS loader
image. The following code fragment shows how to use this information to open another file called
OSKERNEL .BIN that resides in the same directory as the OS loader itself. The first step is to use
HandleProtocol() to get the FILE_SYSTEM_PROTOCOL interface to the device handle retrieved
in the previous section. Then, the disk volume can be opened so file access calls can be made.
The end result is that the variable CurDir is a file handle to the same partition in which the OS
loader resides.

BS->HandleProtocol (
LoadedImage->DeviceHandle,
&FileSystemProtocol,

&Vol

) ;

Vol->OpenVolume (
Vol,
&RootFs
'

CurDir = RootFs;

The next step is to build a file path to OSKERNEL.BIN that exists in the same directory as the OS
loader image. Once the path is built, the file handle CurDir can be used to call open(), Close(),
Read(), and Write() onthe OSKERNEL.BIN file. The following code fragment builds a file path,
opens the file, reads it into an allocated buffer, and closes the file.

StrCpy (FileName,DevicePathToStr (LoadedImage-
~FilePath)) ;

for (i=StrLen(FileName) ;i>=0 && FileName[1i]!="\\"';i-
=5

FileName [i] = 0;

StrCat (FileName,L"\\OSKERNEL.BIN") ;
CurDir->Open (CurDir, &FileHandle, FileName,
EFI FILE MODE READ, 0);

Size = 0x00100000;

BS->AllocatePool (EfiloaderData, Size,
&0sKernelBuffer) ;

FileHandle->Read (FileHandle, &Size,
OsKernelBuffer) ;

FileHandle->Close (FileHandle) ;

Finding the OS Partition

The UEFI sample environment materializes a BLOCK_IO_PROTOCOL instance for every partition
that is found in a system. An OS loader can search for OS partitions by looking at all the
BLOCK_IO devices. The following code fragment uses LibLocateHandle() to get a list of
BLOCK_I0 device handles. These handles are then used to retrieve the first block from each one of
these BLOCK_I0 devices. The HandleProtocol() API is wused to get the
DEVICE_PATH_PROTOCOL and BLOCK_IO_PROTOCOL instances for each of the BLOCK_I0 devices.
The variable Blklo is a handle to the BLOCK_I0 device using the BLOCK_I0_PROTOCOL interface.
At this point, a ReaddBlocks() call can be used to read the first block of a device. The sample
OS loader just dumps the contents of the block to the display. A real OS loader would have to test
each block read to see if it is a recognized partition. If a recognized partition is found, then the OS
loader can implement a simple file system driver using the UEFI API ReadBlocks() function to
load additional data from that partition.

NoHandles = 0;
HandleBuffer = NULL;

LibLocateHandle (ByProtocol, &BlockIoProtocol,
&NoHandles, &HandleBuffer);

for (1=0; i<NoHandles;i++) {

BS->HandleProtocol |
HandleBuffer[i],
&DevicePathProtocol,
&DevicePath

) :

BS->HandleProtocol (
HandleBuffer[i],
&BlockIoProtocol,
&BlkIo

};
Block = AllocatePool (BlkIo->BlockSize);
MediaId = BlkIo->MedialId;

BlkIo->ReadBlocks (
BlkIo,
Mediald,
(EFI_LBA) 0,
BlkIo->BlockSize,
Block
)

Print (
L"\nBlock #0 of device
%$s\n" ,DevicePathToStr (DevicePath)) ;

DumpHex (0, 0,BlkIo->BlockSize,Block) ;

NULL,

Getting the Current System Configuration

The system configuration is available through the SystemTable data structure that is passed into
the OS loader. The operating system loader is an UEFI application that is responsible for bridging
the gap between the platform firmware and the operating system runtime. The System Table
informs the loader of many things: the services available from the platform firmware (such as
block and console services for loading the OS kernel binary from media and interacting with the
user prior to the OS drivers are loaded, respectively) and access to industry standard tables like
ACPI, SMBIOS, and so on. Five tables are available, and their structure and contents are
described in the appropriate specifications.

LibGetSystemConfigurationTable (
&AcpiTableGuid, &AcpiTable
iy

LibGetSystemConfigurationTable (
&SMBIOSTableGuid, &SMBIOSTable
}

LibGetSystemConfigurationTable (
&SalSystemTableGuid, &SalSystemTable
) ;

LibGetSystemConfigurationTable (
&MpsTableGuid, &MpsTable
) ;

Print (
LL" ACPI Table is at address
$X\n",AcpiTable
X

Print (
LL" SMBIOS Table is at address
$X\n",SMBIOSTable
i

Print (
LL" BSal System Table is at address
$X\n",SalSystemTable
)i

Print (
L" MPS Table is at address
$X\n" ,MpsTable
) &

Getting the Current Memory Map

One UEFI Library function can retrieve the memory map maintained by the UEFI environment.
While the loader is running, the memory has been managed by the platform firmware. It has
allocated memory for both firmware usage (boot services memory) and other memory that needs
to persist into the OS runtime (runtime memory). Until the loader passes final control to the OS
kernel and invokes Exit-BootServices(), the UEFI platform firmware manages the allocation
of memory. The means by which the OS loader and other UEFI applications can ascertain the
allocation of memory is via the memory map services. The following code fragment shows the
use of this function to ascertain the memory map, and it displays the contents of the memory map.
An OS loader must pay special attention to the MapKey parameter. Every time that the UEFI
environment modifies the memory map that it maintains, the MapKey is incremented. An OS
loader needs to pass the current memory map to the OS kernel. Depending on what functions the
OS loader calls between the time the memory map is retrieved and the time that Exit-
BootServices() is called, the memory map may be modified. In general, the OS loader should
retrieve the memory map just before calling ExitBootServices(). If ExitBootServices()
fails because the MapKey does not match, then the OS loader must get a new copy of the memory
map and try again.

MemoryMap = LibMemoryMap (
&NoEntries,
&MapKey,
&DescriptorSize,
&DescriptorVersion

¥

Print (
L"Memory Descriptor List:\n\n"

)i

Print (
L" Type Start Address End Address
Attributes \n"

MemoryMapEntry = MemoryMap;

for (1=0;i<NoEntries;i++) {
Print (L" %8s %1X %1X %1X\a",

OsLoaderMemoryTypeDesc [MemoryMapEntry-
>Type] ,
MemoryMapEntry->PhysicalStart,
MemoryMapEntry->PhysicalStart +
LShiftUe64 (
MemoryMapEntry->NumberOfPages,
PAGE SHIFT)-1,
MemoryMapEntry->Attribute
) ;
MemoryMapEntry = NextMemoryDescriptor (
MemoryMapEntry,
DescriptorSize

17

Getting Environment Variables

The following code fragment shows how to extract all the environment variables maintained by
the UEFI environment. It uses the GetNextvariableName() API to walk the entire list.

VariableName [0] = 0x0000;
VendorGuid = NullGuid;

Print (
L"GUID Variable

do {
VariableNameSize = 256;
Status = RT->GetNextVariableName (
&VariableNameSize,
VariableName,
&VendorGuid
iy
if (Status == EFI SUCCESS) {
VariableValue = LibGetVariable (
VariableName,
&VendorGuid
)i

Print (
L"%.-35g 5.-208
$X\n", &VendorGuid, VariableName, VariableValue
15
}

} while (Status == EFI_SUCCESS) ;

Transitioning to an OS Kernel

A single call to ExitBootServices() terminates all the UEFI Boot Services that the UEFI
environment provides. From that point on, only the UEFI Runtime Services may be used. Once
this call is made, the OS loader needs to prepare for the transition to the OS kernel. It is assumed
that the OS kernel has full control of the system and that only a few firmware functions are
required by the OS kernel. These functions are the UEFI Runtime Services. The OS loader must
pass the SystemTable to the OS kernel so that the OS kernel can make the Runtime Services calls.
The exact mechanism that is used to transition from the OS loader to the OS kernel is
implementationdependent. It is important to note that the OS loader could transition to the OS
kernel prior to calling ExitBootServices(). In this case, the OS kernel would be responsible
for calling ExitBootServices() before taking full control of the system.

Summary

This chapter has provided an overview of some common protocols and their demonstration via a
sample operating system loader application. Given that UEFI has been primarily designed as an
operating system loader environment, this is a key chapter for demonstrating the usage and
capability of the UEFI service set.

Chapter 5 — UEFI Runtime

Adding manpower to a late software project makes it later.

—Brook’s Law

This chapter describes the fundamental services that are made available in an UEFI-compliant
system. The services are defined by interface functions that may be used by code running in the
UEFI environment. Such code may include protocols that manage device access or extend
platform capabilities. In this chapter, the runtime services will be the focus of discussion. These
runtime services are functions that are available both during UEFT operation and when the OS has
been launched and running,

During boot, system resources are owned by the firmware and are controlled through a variety of

system services that expose callable APIs. In UEFI there are two primary types of services:

B Boot Services — Functions that are available prior to the launching of the boot target (such as
the OS), and prior to the calling of the ExitBootServices() function.

B Runtime Services — Functions that are available both during the boot phase prior to the
launching of the boot target and after the boot target is executing.

Figure 5.1 illustrates the phases of boot operation that a platform evolves through.

Exposed
i Runtime !

BT OS-Absent
) f App

!

|

(]

' |
1 1
| |
B Transient OS
Device, ' Environment '
i]
| |
| |
I i
|

i

Bus, or
Service

Driver Transient OS

Boot Loader

O5-Present

Environment

i Final OS i
| | BootLoader ||, Final 0S
|

Reset Early
Vector Platform
Initialization

Power on==[. . Platform initialization . .] =———==[....0S boot....] »Shutdown

Figure 5.1: Phases of Boot Operation

In Figure 5.1, it is clearly evident that the two previously mentioned forms of services (Boot
Services and Runtime Services) are available during the early launch of the UEFTI infrastructure

and only the runtime services are available after the remainder of the firmware stack has
relinquished control to an OS loader. Once an OS loader has loaded enough of its own
environment to take control of the system’s continued operation it can then terminate the boot
services with a call to ExitBootServices().

In principle, the ExitBootServices() call is intended for use by the operating system to
indicate that its loader is ready to assume control of the platform and all platform resource
management. Thus, boot services are available up to this point to assist the OS loader in
preparing to boot the operating system. Once the OS loader takes control of the system and
completes the operating system boot process, only runtime services may be called. Code other
than the OS loader, however, may or may not choose to call ExitBootServices(). This choice
may in part depend upon whether or not such code is designed to make continued use of UEFI
boot services or the boot services environment.

Isn’t There Only One Kind of Memory?

When UEFI memory is allocated, it is “typed” according to certain classifications which
designate the general purpose of a particular memory type. For instance, one might choose to
allocate a buffer as an EfiRuntimeServicesbData buffer if it was desired that a buffer containing
some data remained available into the runtime phase of platform operations. When allocated
memory, one might think “Why not allocate everything as a runtime memory type ‘just in case’?”
Such activity is hazardous because when the platform transitions from Boot Services phase into
Runtime phase, all of the buffers which might have been allocated as runtime as now frozen and
unavailable to the OS. Since there is an implicit assumption that items which request runtime-
enabled memory know what they are doing, one can imagine a proliferation of memory leaks if
we simply assumed a single type of memory usage. With this situation in mind, UEFI establishes a
certain set of memory types with certain expected usage associated with each.

Table 5.1: UEFI Memory Types and Usage Prior to ExitBootServices()

Mnemonic Description

EfiReservedMemoryType Not used.

EfiL.oaderCode The code portions of a loaded application. (Note that UEFI OS loaders are UEFI
applications.)

EfiLoaderData The data portions of a loaded application and the default data allocation type used by an
application to allocate pool memory.

EfiBootServicesCode The code portions of a loaded Boot Services Driver.

EfiBootServicesData The data portions of a loaded Boot Serves Driver, and the default data allocation type used
by a Boot Services Driver to allocate pool memory.

EfiRuntimeServicesCode The code portions of a loaded Runtime Services Driver.

EfiRuntimeServicesData The data portions of a loaded Runtime Services Driver and the default data allocation type
used by a Runtime Services Driver to allocate pool memory.

EfiConventionalMemory Free (unallocated) memory.

EfiUnusableMemory Memory in which errors have been detected.

EfiACPIReclaimMemory Memory that holds the ACPI tables.

EfiACPIMemoryNVS Address space reserved for use by the firmware.

EfiMemoryMappedIO Used by system firmware to request that a memory-mapped IO region be mapped by the OS

to a virtual address so it can be accessed by UEFI runtime services.

EfiMemoryMappedIOPortSpace System memory-mapped IO region that is used to translate memory cycles to IO cycles by
the processor.

EfiPalCode Address space reserved by the firmware for code that is part of the processor.

Table 5.1 lists memory types and their corresponding usage prior to launching a boot target (such
as an OS). The memory types that would be used by most runtime drivers would be those with the
keyword “runtime” in them.

However, to better illustrate how these memory types are used in the runtime phase of the
platform evolution, Table 5.2 illustrates how these UEFI Memory types are used after the OS
loader has called ExitBootServices() to indicate the transition from the pre-boot, to the
runtime phase of operations.

Table 5.2:UEFI Memory Types and Usage after ExitBootServices()

Mnemonic Description

EfiReservedMemoryType Not used.

EfiL.oaderCode The Loader and/or OS may use this memory as they see fit. Note: the OS loader that called
Exit-BootServices() is utilizing one or more Efi-LoaderCode ranges.

EfiLoaderData The Loader and/or OS may use this memory as they see fit. Note: the OS loader that called
Exit-BootServices() is utilizing one or more Efi-LoaderData ranges.

EfiBootServicesCode Memory available for general use.

EfiBootServicesData Memory available for general use.

EfiRuntimeServicesCode The memory in this range is to be preserved by the loader and OS in the working and ACPI
S1-S3 states.

EfiRuntimeServicesData The memory in this range is to be preserved by the loader and OS in the working and ACPI
S1-S3 states.

EfiConventionalMemory Memory available for general use.

EfiUnusableMemory Memory that contains errors and is not to be used.

EfiACPIReclaimMemory This memory is to be preserved by the loader and OS until ACPI is enabled. Once ACPI is
enabled, the memory in this range is available for general use.

EfiACPIMemoryNVS This memory is to be preserved by the loader and OS in the working and ACPI S1-S3
states.

EfiMemoryMappedIO This memory is not used by the OS. All system memorymapped IO information should

come from ACPI tables.

EfiMemoryMappedIOPortSpace

This memory is not used by the OS. All system memorymapped IO port space information
should come from ACPI tables.

EfiPalCode

This memory is to be preserved by the loader and OS in the working and ACPI S1-S3
states. This memory may also have other attributes that are defined by the processor
implementation.

In Table 5.2, one can see how the runtime memory types are preserved, and the BootServices type
of memory is available for the OS to reclaim as its own.

How Are Runtime Services Exposed?

In UEFI, firmware services are exposed through a set of UEFI protocol definitions, a series of

function pointers in some special purpose service tables, and finally in the UEFI configuration

table. Of these mechanisms that are used to expose firmware APIs, only the following two are
persistent into the runtime phase of computer operations.

B Runtime Services Table - The UEFI Runtime Services Table contains pointers to all of the
runtime services. All elements in the UEFI Runtime Services Table are prototypes of
function pointers that are valid after the operating system has taken control of the platform
with a call to ExitBootServices().

B UEFI Configuration Table - The UEFI Configuration Table contains a set of GUID/ pointer
pairs. The number of entries in this table can easily grow over time. That is why a GUID is
used to identify the configuration table type. This table may contain at most one instance of
each table type.

The runtime services that are exposed in the UEFI Runtime Services Table at minimum define the
core required runtime API capabilities of an UEFI-compliant platform. These functions include
services that expose time, virtual memory, and variable services at a minimum.

The information exposed through the UEFI Configuration Table is going to vary widely
between platform implementations. One key thing to note, however, is that the GUID associated
with the GUID/ pointer pair defines how one interprets the data to which the pointer is pointing.
The content to which the pointer is pointed could be a function/AP], a table of data, or practically
anything else. Some examples of the type of information that can be exposed through this table are
SMBIOS, ACPI, and MPS tables, as well as function prototypes for an UNDI-compliant network
card. Figure 5.2 is an example diagram of the interactions between the UEFI Configuration Table
and an example function prototype.

EF| System Table

NumberQfTableEntries

L 3 2
*ConfigurationTable GUED S THIGEET

GUID ¥, *Pointer Y’ '-*

GUID Z, *Pointer 2’ tvpedef struct {

E Fl Configuration Table *FunctionPointerTBD,
*FunctionfPointerTeD2,
*FunctionPointerTeD3,

*etc
1 EFI_SYSTEM_ERROR _LOG_PROTOCOL
Protocol/APT Defindion

Figure 5.2: Interactions between the UEFI Configuration Table and a Function Prototype

Time Services

This section describes the core UEFI definitions for time-related functions that are specifically
needed by operating systems at runtime to access underlying hardware that manages time
information and services. The purpose of these interfaces is to provide runtime consumers of
these services an abstraction for hardware time devices, thereby relieving the need to access
legacy hardware devices directly. The functions listed in Table 5.3 reside in the UEFI Runtime
Services table.

Table 5.3: Time-based Functions in the UEFI Runtime Services Table

Name Type Description

GetTime Runtime Returns the current time and date, and the time-keeping capabilities of the platform.
SetTime Runtime Sets the current local time and date information.

GetWakeupTime Runtime Returns the current wakeup alarm clock setting.

SetWakeupTime Runtime Sets the system wakeup alarm clock time.

Why Abstract Time?

For a variety of reasons one might choose to abstract the access to the platform Real Time Clock
(RTC). First, very poor standard mechanisms (if any) exist to access the platform’s RTC. A
variety of legacy interrupts might serve some purposes, but typically might not abstract sufficient
information to be particularly useful. If a user wanted to talk to the RTC directly, the user would
not typically know how to with the exception of using some of the standard IBM CMOS
directives. Ultimately, how one might gain access to this fundamental piece of information (“What
time is it?”) could change over time. With that in mind, one needed the platform to provide a set
of abstractions so that the caller would not have to worry about the vagaries of varying
programming some RTC to acquire time information or to depend on some poorly documented
and completely nonstandard set of legacy interrupts to abstract this same data.

Get Time

Even though this function is called “GetTime”, it is intended to return the current time as well as
the date information along with the capabilities of the current underlying time-based hardware.
This service is not intended to provide highly accurate timings beyond certain described levels.
During the Boot Services phase of platform initialization, there are other means by which to do
accurate time stall measurements (for example, see the Sstall() boot services function in the
UEFI specification).

Even though Figure 5.3 shows the smallest granularity of time measurement in nanoseconds,
this is by no means intended as an indication of the accuracy of the time measurement of which the
function is capable. The only thing that is guaranteed by the call to this function is that it returns a
time that was valid during the call to the function. This guarantee is more understandable when
one thinks about the processing time for the call to traverse various levels of code between the

caller and the service function actually talking to the hardware device and this data then being
passed back to the caller. Since this is a call initiated during the runtime phase of platform
operations, the highly accurate timers that are needed for small granularity timing events would be
provided by alternate (likely OS-based) solutions.

,//****-.k-A'*********'ﬂr****ir*********************t************

//EFI_TIME

‘/‘l/"k*'lr*********'k'A"Jt'k******‘ki’*'k*'k***************************

// This represents the current time information
typedef struct {

UINT16 Year; // 1998 - 20XX
UINTS Month; ff a1 = 12
UINTS Day; // 1 - 31
UINTS8 Hour; J/ 0 - 23
UINTS Minute; // 0 - 59
UINTS Second; // 0 - 59
UINTS Padl;
UINT32 Nanosecond; // 0 - 999,999,999
INT16 TimeZone; // -1440 to 1440 or 2047
UINTS8 Daylight;
UINT8 Pad2;
} EFI_TIME;

Figure 5.3 Example Time Definition

Set Time

This function provides the ability to set the current time and date information on the platform.

Get Wakeup Time

This function provides the abstraction for obtaining the alarm clock settings for the platform. This
is often used to determine if a platform has been set for being woken up, and if so, at what time it
should be woken up.

Set Wakeup Time

Setting a system wakeup alarm causes the system to wake up or power on at the set time. When
the alarm fires, the alarm signal is latched until acknowledged by calling setwakeupTime() to
disable the alarm. If the alarm fires before the system is put into a sleeping or off state, since the
alarm signal is latched the system will immediately wake up.

Virtual Memory Services

This section contains function definitions for the virtual memory support that may be optionally
used by an operating system at runtime. If an operating system chooses to make UEFI runtime
service calls in a virtual addressing mode instead of the flat physical mode, then the operating
system must use the services in this section to switch the UEFI runtime services from flat physical
addressing to virtual addressing. Table 5.4 lists the virtual memory services functions that UEFI
provides.

Table 5.4: Virtual Memory Services

Name Type Description

SetVirtualAddressMap Runtime =~ Used by an OS loader to convert from physical addressing to virtual addressing.

ConvertP ointer Runtime Used by UEFI components to convert internal pointers when switching to virtual
addressing.

By using these functions, the platform provides a mechanism by which components that will exist
during the runtime phase of operations can adjust their own data references to the new virtual
addresses that the runtime caller has supplied. This makes it possible for the underlying firmware
component(s) to adjust from a physical address mode to virtual address mode entity.

This conversion applies to all functions in the runtime services table as well as the pointers in
the UEFI System Table. However, this is not necessarily the case for the UEFI Configuration
Table. In the UEFI Configuration Table, one is dealing with GUID/ pointer pairs, and since the
pointers are all physical to start with in the firmware, one might think that the pointers are
converted during the transition to the runtime phase of platform operations, right? In this
particular case, you would be wrong.

The GUID portion of the GUID/pointer pair defines the state of the pointer itself. In theory,
one might have a particular GUID that during runtime has a virtual address pointer paired with it,
but the next GUID’ in the table might very well be a physical pointer. This is because the UEFI
Configuration Table can often be used to advertise certain pieces of information and the consumer
of this information might have reason for interpreting the pointer as a physical pointer even though
the OS has converted all other pertinent data to virtual addresses. In addition, the UEFI
Configuration Table often might be pointing to a runtime enabled function prototype. In most
cases, the pointers for this function would be converted, while other items that might be pointed at
by the UEFI Configuration Table (Data Tables, for instance) might have no reason to have any
data be converted.

Set Virtual Address Map

By calling this service, the agent that is the owner of the system’s memory map (the component
that called ExitBootServices()) can change the runtime addressing mode of the underlying
UEFI firmware from physical to virtual. The inputs of course are the new virtual memory map
which shows an array of memory descriptors that have mapping information for all runtime
memory ranges.

When this service is called, all runtime-enabled agents will in turn be called through a
notification event triggered by the SetvirtualAddressMap() function.

ConvertPointer

The convertPointer function is used by an UEFI component during the Set-
VirtualAddressMap() operation. When the platform has passed control to an OS loader and it
in turn calls SetvirtualAddressMap(), a function is called in most runtime drivers that
responds to the virtual address change event that is triggered. This function uses the
ConvertPointer service to convert the current physical pointer to an appropriate virtual address
pointer. All pointers that the component has allocated should be updated using this mechanism.

Variable Services

Variables are defined as key/value pairs that consist of identifying information, attributes, and
some quantity of data. Variables are intended for use as a means to store data that is passed
between the UEFI environment implemented in the platform and UEFI OS loaders and other
applications that run in the UEFI environment.

Although the implementation of variable storage is not specifically defined for a given
platform, variables must be able to persist across reboots of the platform. This implies that the
UEFI implementation on a platform must arrange it so that variables passed in for storage are
retained and available for use each time the system boots, at least until they are explicitly deleted
or overwritten. Provision of this type of nonvolatile storage may be very limited on some
platforms, so variables should be used sparingly in cases where other means of communicating
information cannot be used. Table 5.5 lists the variable services functions that UEFI provides.

Table 5.5: Variable Services

Name Type Description

GetVariable Runtime Returns the value of a variable.
GetNextVariableName Runtime Enumerates the current variable names.
SetVariable Runtime Sets the value of a variable.
GetVariable

This function returns the value of a given UEFI variable. Since a fully qualified UEFI variable

name is composed of both a human-readable text value paired with a GUID, a vendor can create

and manage its own variables without the risk of name conflicts by using its own unique GUID
value. For instance, one can easily have three variables named “Setup” that are wholly unique
assuming that each of these “Setup” variables has a different numeric GUID value.

One of the key items to note in the definition of an UEFI variable is that each one has some
attributes associated with it. These attributes are treated as a bit field, which implies that none,
any, or all of the bits can be activated at any given time. In the case of UEFI variables, however,
there are three defined attribute bits to be aware of:

B Nonvolatile — a variable that has this attribute activated is defined to be persistent across
platform resets. It should also be noted that the explicit absence of this bit being activated
indicates that the variable is volatile, and is therefore a temporary variable that will be
absent once the system resets or the variable is deleted.

B BootService — a variable that has this attribute activate provides read/write access to it
during the BootService phase of the platform evolution. This simply means that once the
platform enters the runtime phase, the data will no longer be able to be set through the
SetVariable service.

B Runtime — a variable that has this attribute activated must also have the BootService attribute
activated. With this, the variable is accessible during all phases of the platform evolution.

GetNextVariableName

Since the UEFI variable repository is very similar in concept to a file system, the ability to parse
the repository is provided by the GetNextVariableName service. This service enumerates the
current variable names in the platform, and with each subsequent call to the service the previous
results can be passed into the interface, and on output the interface returns the next variable name
data. Once the entire list of variables has been returned, a subsequent call into the service
providing the previous “last” variable name will provide the equivalent of a “Not Found” error.

It should be noted that this service is affected by the phase of platform operations. Variables
that do not have the runtime attribute activated are allocated typically from some type of
BootServices memory. Since this is the case, once Exit-BootServices() is performed to
signify the transition into the runtime phase, these variables will no longer show up in the search
list that GetNextVariableName provides.

One other behavior that should be noted is that one might conceive that if a variable has the
ability to be named the same human-readable name (such as “Setup”) and the only thing that
differs is the GUID, one could seed the search mechanism for this service by walking a common
GUID-based list of variables. This is not the case. The usage of this service is typically initiated
with a call that starts with a pointer to a Null Unicode string as the human-readable name; the
GUID is ignored. Instead, the entire list of variables must be retrieved, and the caller may act as a
filter if you choose to have it do so.

SetVariable

UEFTI variables are often used to provide a means by which to save platform-based context
information. For instance, when the platform initializes the I/O infrastructure and has probed for
all known console output devices, it will likely construct a ConOutDev global variable. These
global variables have a unique purpose in the platform since they have a specific architectural
role to play with a specific purpose. Table 5.6 shows some of the defined global variables.

Table 5.6:Global Variables

Variable Name Attribute Description
LangCodes BS, RT The language codes that the firmware supports. This value is deprecated.
Lang NV, BS, The language code that the system is configured for. This value is deprecated.
RT
Timeout NV, BS, The firmware boot manager’s timeout, in seconds, before initiating the default boot
RT selection.
PlatformLangCodes =~ BS, RT The language codes that the firmware supports.
PlatformlLang NV, BS, The language code that the system is configured for.
RT
ConIn NV, BS, The device path of the default input console.
RT
ConOut NV, BS, The device path of the default output console.
RT
ErrOut NV, BS, The device path of the default error output device.
RT
ConInDev BS, RT The device path of all possible console input devices.

ConOutDev BS, RT The device path of all possible console output devices.

ErrOutDev BS, RT The device path of all possible error output devices.

The examples in Table 5.6 show some of the common global variables, their descriptions, and
their attributes. Some of the noted differences are the presence or absence of the NV (nonvolatile)
attribute. This simply means that the values associated with these variables are not persistent
across platform resets and their values are determined during the initialization phase of platform
operations. Unlike variables that are persistent, robust implementations of UEFI enable the setting
of volatile variables in memory-backed store, and do not necessarily have the storage size
sensitivities that the other variables have that are stored in a fixed hardware with often very
limited storage capacity.

Software should only use a nonvolatile variable when absolutely necessary. It should be noted
that a variable has no concept of a zero-byte data payload. All variables must contain at least 1
byte of data, since the service definition stipulates that the means by which you delete a target
variable is by calling the SetVariable() service with a zero byte data payload.

There are certain rules that should definitely be noted when it comes to the use of the attributes:

B Attributes are only applied to a variable when the variable is created. If a preexisting
variable is rewritten with different attributes, the result is indeterminate and may vary
between implementations. The correct method of changing the attributes of a variable is to
delete the variable and recreate it with different attributes.

B Setting a data variable with no access attributes or a zero size data payload causes it to be

deleted.

Runtime access to a data variable implies boot service access.

Once ExitBootServices() is performed, data variables that did not have the runtime access

attribute set are no longer visible. This simply enforces the paradigm that once in runtime

phase, variables without the runtime attribute are not to be read from.

B Once ExitBootServices() is performed, only variables that have the runtime and the
nonvolatile access attributes set can be set with a call to the SetVariable() service. In
addition, variables that have runtime access but that are not nonvolatile are now read-only
data variables. The reason for this situation is that once the platform firmware has handed
off control to another agent (such as the OS), it no longer controls the memory services and
cannot further allocate services that might be backed by memory. Since the SetVariable
service typically uses memory to spill content to store a volatile variable, this capability is
no longer available during the runtime phase of operations.

By providing a mechanism for shared data content such as an UEFI variable, the use of variables
can be seen as a fairly flexible and highly available mechanism for firmware components to
communicate. The variables shown in Table 5.6 are some of the architectural variables that steer
the behavior of a platform. In this case aspects of the platform configuration can be seen in the
data reflected by these variables. Another usage of the variable services can be to use the volatile
(one must stress volatile, and not nonvolatile) variable as means by which two disparate
components can have a common repository that is independent of a nonvolatile backing store
(such as a hard disk), yet can act as a temporary repository of data such as registry content that is
discovered by one agent and retrieved by another. This infrastructure provides for a lot of

flexibility in implementation.

Miscellaneous Services

This section contains the remaining function definitions for runtime services that were not talked
about in previous sections but are required to complete a compliant implementation of an UEFI
environment. The services that are in this section are as listed in Table 5.7.

Table 5.7: Miscellaneous Services

Name Type Description

GetNextHighMonotonicCount ~Runtime Returns the next high 32 bits of the platform’s monotonic counter.

ResetSystem Runtime Resets the entire platform.

UpdateCapsule Runtime Pass capsules to the firmware. The firmware may process the capsules immediately or

return a value to be passed into Reset -System() that will cause the capsule to be
processed by the firmware as part of the reset process.

QueryCapsuleCapabilities Runtime Returns if the capsule can be supported via UpdateCapsule()

Reset System

This service provides a caller the ability to reset the entire platform including all processors and

devices, and reboots the system. This service provides the ability to stipulate three types of rests:

B Cold Reset — A call to the ResetSystem() service stipulating a cold reset will cause a
system-wide reset. This sets all circuitry within the system to its initial state. This type of
reset is asynchronous to system operation and operates without regard to cycle boundaries.
This is tantamount to a system power cycle.

B Warm Reset — Calling the ResetSystem() service stipulating a warm reset will also cause a
system-wide initialization. The processors are set to their initiate state, and pending cycles
are not corrupted. This difference should be noted, since memory is not typically
reinitialized and the machine may be rebooting without having cleared memory that
previously existed. There are a lot of examples of this usage model, and implementations
vary on exactly what platforms choose to do with this type of feature. If the system does not
support this reset type, then a Cold Reset must be performed.

B Reset Shutdown — Calling the ResetSystem() service stipulating a Reset Shutdown will
cause the system to enter a power state equivalent to the ACPI G2/S5 or G3 states. If the
system does not support this reset type, then when the system is rebooted, it should exhibit
the same attributes as having booted from a Cold Reset.

Get Next High Monotonic Count

The platform provides a service to get the platform monotonic counter. The platform’s monotonic
counter is comprised of two 32-bit quantities: the high 32 bits and the low 32 bits. During boot
service time the low 32-bit value is volatile: it is reset to zero on every system reset and is
increased by 1 on every call to GetNextMonotonicCount(). The high 32-bit value is nonvolatile
and will be increased by 1 whenever the system resets or whenever the low 32-bit count
overflows.

Since the GetNextMonotonicCount() service is available only at boot services time, and if the

operating system wishes to extend the platform monotonic counter to runtime, it may do so by

utilizing the GetNextHighMonotonicCount() runtime service. To do this, before calling

ExitBootServices() the operating system would call Get-NextMonotonicCount() to obtain the

current platform monotonic count. The operating system would then provide an interface that

returns the next count by:

B Adding 1 to the last count.

B Before the lower 32 bits of the count overflows, call GetNextHighMonotonic-Count(). This
will increase the high 32 bits of the platform’s nonvolatile portion of the monotonic count by
1.

This function may only be called at runtime.

UpdateCapsule

This runtime function allows a caller to pass information to the firmware. UpdateCapsule is
commonly used to update the firmware FLASH or for an operating system to have information
persist across a system reset. Other usage models such as updating platform configuration are also
possible depending on the underlying platform support.

A capsule is simply a contiguous set of data that starts with an EFI_CAPSULE_HEADER.
The CapsuleGuid field in the header defines the format of the capsule.

The capsule contents are designed to be communicated from an OS-present environment to the
system firmware. To allow capsules to persist across system reset, a level of indirection is
required for the description of a capsule, since the OS primarily uses virtual memory and the
firmware at boot time uses physical memory. This level of abstraction is accomplished via the
EFI_CAPSULE_BLOCK_DESCRIPTOR. The EFI_CAPSULE_BLOCK_DESCRIPTOR allows
the OS to allocate contiguous virtual address space and describe this address space to the
firmware as a discontinuous set of physical address ranges. The firmware is passed both physical
and virtual addresses and pointers to describe the capsule so the firmware can process the
capsule immediately or defer processing of the capsule until after a system reset.

Depending on the intended consumption, the firmware may process the capsule immediately.
If the payload should persist across a system reset, the reset value returned from
QueryCapsuleCapabilities must be passed into ResetSystem() and will cause the capsule to be
processed by the firmware as part of the reset process.

QueryCapsule Capabilities

This runtime function allows a caller to check whether or not a particular capsule can be
supported by the platform prior to sending it to the UpdateCapsule routine. Many of these checks
are based on the type of capsule being passed and their associated flag values contained within
the capsule header.

Summary

This chapter has introduced some of the basic UEFI runtime capabilities. These are unique in that
they are the few aspects of the firmware that will reside in the system even when the target
software (such as the operating system) is running. These are the functions that can be leveraged
any time during the platform’s evolution from pre-OS through the runtime phases.

Chapter 6 — UEFI Console Services

Never test for an error condition you don’t know how to handle.

—Steinbach’s Guideline for Systems Programming

This chapter describes how UEFI extends the traditional boundaries of console support in the
pre-boot phase and provides a series of software layering approaches that are commonly used in
UEFI-compliant platforms. Most platforms, at minimum, would have a text-based console for a
user to either locally or remotely interact with the system. A variety of mechanisms can
accomplish this communication in UEFI. Whether it is through a remote interface, through a local
keyboard and monitor, or even a remote network connection, each has a common root that can be
thought of as the basic UEFI console support. This support is used to handle input and output of
text-based information intended for the system user during the operation of code in the UEFI boot
services environment. These console definitions are split into three types of console devices: one
for input, and one each for normal output and errors.

These interfaces are specified by function call definitions to allow maximum flexibility in
implementation. For example, a compliant system is not required to have a keyboard or screen
directly connected to the system. As long as the semantics of the functions are preserved,
implementations may direct information using these interfaces in any way that succeeds in passing
the information to the system user.

The UEFI console is built out of two primary protocols: UEFI Simple Text Input and UEFI
Simple Text Output. These two protocols implement a basic text-based console that allows
platform firmware, UEFI applications, and UEFI OS loaders to present information to and
receive input from a system administrator. The UEFI console consists of 16-bit Unicode
characters, a simple set of input control characters known as scan codes, and a set of output-
oriented programmatic interfaces that give functionality equivalent to an intelligent terminal. In
the UEFT 2.1 specification, an extension to the Simple Text Input protocol was introduced (now
referred to as Simple Text Input Ex), which greatly expanded the supportable keys as well as state
information that can be retrieved from the keyboard. This text-based set of interfaces does not
inherently support pointing devices on input or bitmaps on output.

To ensure greatest interoperability, the UEFI Simple Text Output protocol is recommended to
support at least the printable basic Latin Unicode character set to enable standard terminal
emulation software to be used with a UEFI console. The basic Latin Unicode character set
implements a superset of ASCII that has been extended to 16-bit characters. This provides the
maximum interoperability with external terminal emulations that might otherwise require the
conversion of text encoding to be down-converted to a set of ASCII equivalents.

UEFI has a variety of system-wide references to consoles. The UEFI System Table contains
six console-related entries:

B cCconsoleInHandle — The handle for the active console input device. This handle must
support the UEFI Simple Text Input protocol and the UEFI Simple Text Input Ex protocol.
B conIn— A pointer to the UEFI Simple Text Input protocol interface that is associated with

ConsoleInHandle.

ConsoleOutHandle — The handle for the active console output device. This handle must
support the UEFI Simple Text Output protocol.

Cconout — A pointer to the UEFI Simple Text Output protocol interface that is associated with
ConsoleOutHandle.

StandardErrorHandle — The handle for the active standard error console device. This
handle must support the UEFI Simple Text Output protocol.

StdErr — A pointer to the UEFI Simple Text Output protocol interface that is associated with
StandardErrorHandle.

Other system-wide references to consoles in UEFI are contained within the global variable
definitions. Some of the pertinent global variable definitions in UEFI are:

conIn — The UEFI global variable that contains the device path of the default input console.
conInDev — The UEFI global variable that contains the device path of all possible console
input devices.

conout — The UEFI global variable that contains the device path of the default output
console.

conoutDev — The UEFI global variable that contains the device path of all possible console
output devices.
Errout — The UEFI global variable that contains the device path of the default error
console.
ErroutDev — The UEFI global variable that contains the device path of all possible console
output devices.

Figure 6.1 illustrates the software layering discussed so far. An UEFI application or driver that
wants to communicate through a text interface can use the active console shown in the UEFI
System Table to call the interface that supports the appropriate text input or text output protocol.
During initialization, the system table is passed to the launched UEFI application or driver, and
this component can then immediately start using the console in question.

= Conln/Con0ut/SIdE M =

Application/Driver

L 4

Y

EFI_SIMPLE TEXT_IN

EFI_SIMPLE_TEXT_OUT

H
L]
]
[
i
»
[
]
r

-
-«
"

—_

1
[l
3
L3

-

Text I/0 : . -
. EFI_SIMPLE_TEXT_IN al 1 -
Abstraction X i VIdEO Mm EFI_SIMPLE_TEXT_OUT
' .
r
HW Device is discovered and the Y

Abstraction device driver is launched.

Device is discovered and
the device's opfion
ROM idriveris launched.

Figure 6.1: Initial Software Layering

To further describe these interactions, it is necessary to delve a bit deeper into what these text I/O

interfaces really look like and what they are effectively responsible for.

Simple Text Input Protocol

The Simple Text Input Protocol defines the minimum input required to support a specific Conln
device. This interface provides two basic functions for the caller:

Reset — This function resets the input device hardware. As part of the initialization process,
the firmware/ device makes a quick but reasonable attempt to verify that the device is
functioning. This hardware verification process is implementation-specific and is left up to
the firmware and/ or UEFI driver to implement.

ReadKeyStroke — This function reads the next keystroke from the input device. If no
keystroke is pending, the function returns a UEFI Not Ready error. If a keystroke is pending,
a UEFI key is returned. A UEFI key is composed of a scan code as well as a Unicode
character. The Unicode character is the actual printable character or is zero if the key is not
represented by a printable character, such as the control key or a function key.

When reading a key from the ReadKeyStroke() function, an UEFI Input Key is retrieved. In
traditional firmware, all PS/2 keys had a hardware specific scan code, which was the sole item
firmware dealt with. In UEFI, things have been changed a bit to facilitate the reasonable
transaction of this data both with local and remote users. The data sent back has two primary
components:

Unicode Character — The Simple Text Input protocol defines an input stream that contains
Unicode characters. This value represents the Unicode-encoded 16-bit value that
corresponds to the key that was pressed by the user. A few Unicode characters have special
meaning and are thus defined as supported Unicode control characters, as described in Table
6.1.

Table 6.1: UEFI-supported Unicode Control Characters

Mnemonic Unicode Description

Null U+0000 Null character ignored when received.

BS U+0008 Backspace. Moves cursor left one column. If the cursor is at the left margin, no
action is taken.

TAB U-+0x0009 Tab.

LF U+000A Linefeed. Moves cursor to the next line.

CR U+000D Carriage Return. Moves cursor to left margin of the current line.

B Scan Code - The input stream supports UEFI scan codes in addition to Unicode characters. If

the scan code is set to 0x00 then the Unicode character is valid and should be used. If the

UEFT scan code is set to a value other than 0x00, it represents a special key as defined in Ta
ble 6.2.

Table 6.2: UEFI-supported Scan Codes

UEFI Scan Code Description
0x00 Null scan code.
0x01 Move cursor up 1 row.

0x02

Move cursor down 1 row.

0x03 Move cursor right 1 column.

0x04 Move cursor left 1 column.
UEFI Scan Code Description
0x05 Home.

0x06 End.

0x07 Insert.

0x08 Delete.

0x09 Page Up.
0x0a Page Down.
0x0b Function 1.
0x0c Function 2.
0x0d Function 3.
0x0e Function 4.
0x0f Function 5.
0x10 Function 6.
0x11 Function 7.
0x12 Function 8.
0x13 Function 9.
0x14 Function 10.
0x17 Escape.

The ReadKeyStroke function provides the additional capability to signal an UEFI event when a

key has been received. To leverage this capability, one must use either the WaitForEvent or

CheckEvent services. The event to pass into these services is the following:

B waitForkKey — The event to use when calling waitForEvent() to wait for a key to be
available.

The activity being handled by the Simple Text Input protocol is very similar to the INT 16h
services that were available in legacy firmware. Some of the primary differences are that the
legacy firmware service returned only the ASCII equivalent 8-bit value for the key that was
pressed along with the hardware-specific (such as PS/2) scan codes.

Simple Text Input Ex Protocol

The Simple Text Input Ex protocol provides the same functionality that the Simple Text Input
protocol produced and adds a series of additional capabilities. This interface provides a few new
basic functions for the caller:

Table

ReadKeyStrokeEx — This function reads the next keystroke from the input device. It operates
in a fashion similar to the ReadkeyStroke from the Simple Text Input protocol, except it has
the ability to extract a series of extended keystrokes that were not previously possible (See
Table 6.3 and Table 6.4). This includes both shift state (for example, Left Control key
pressed, Right Shift pressed, and so on), and toggle information (for example, Caps Lock is
turned on). If no keystroke is pending, the function returns an EFI Not Ready error. If a
keystroke is pending, a UEFI key is returned.

Key Registration Capabilities — This set of functions provides for the ability to register and
unregister a set of keystrokes so that when a user hits the same keystroke, a notification
function is called. This is useful in the case where there is a desire to have a particular hot-
key registered and then associated with a particular piece of software. This capability is
often associated with the KEY#### UEFI global variable, which associated a key sequence
with a particular BOOT#### variable target.

SetState — This function allows the settings of certain state data for a given input device.
This data often encompasses information such as whether or not Caps Lock, Num Lock, or
Scroll Lock are active.

6.3: Simple Text Input Ex Keyboard Shift States

Key Shift State Mask Description

Value

0x80000000 If high bit is on, then the state value is valid. For devices that are not capable of producing shift state
values, this value will be off.

0x01 Right Shift key is pressed

0x02 Left Shift key is pressed

0x04 Right Control key is pressed

0x08 Left Control key is pressed

0x10 Right Alt key is pressed

0x20 Left Alt key is pressed

0x40 Right logo key is pressed

0x80 Left logo key is pressed

Key Shift State Mask Value Description

0x100 Menu key is pressed

0x200 System Request (SysReq) key is pressed

Table 6.4: Simple Text Input Ex Keyboard Toggle States

Keyboard Toggle State Mask Value Description

0x80 If high bit is on, then the state value is valid. For devices that are

not capable of representing toggle state values, this value will be
off.

0x01 Scroll Lock is active

0x02 Num Lock is active

0x04 Caps Lock is active

Simple Text Output Protocol

The Simple Text Output protocol is used to control text-based output devices. It is the minimum
required protocol for any handle supplied as the ConOut or StdOut device. In addition, the

minimum supported text mode of such devices is at least 80 * 25 characters.

A video device that supports only graphics mode is required to emulate text mode
functionality. Output strings themselves are not allowed to contain any control codes other than
those defined in Table 6.1. Positional cursor placement is done only via the
SetCursorPosition() function. It is highly recommended that text output to the StdErr device be
limited to sequential string outputs. That is, it is not recommended to use ClearScreen() or
SetCursorPosition() on output messages to StdErr, so that this data can be clearly captured
or viewed.

The Simple Text Output protocol also has a pointer to some mode data, as shown in Figure 6.
2. This mode data is used to determine what the current text settings are for the given device.
Much of this information is used to determine what the current cursor position is as well as the
given foreground and background color. In addition, one can stipulate whether a cursor should be
visible or not.

typedef struct {

INT32 MaxMode;

// current settings

INT32 Mode ;

INT32 Attribute;
INT32 CursorColumn;
INT32 CursorRow;
BOOLEAN CursorvVisible;

} SIMPLE TEXT OUTPUT_ MODE;

Figure 6.2: Mode Structure for UEFI Simple Text Output Protocol

The Simple Text Output protocol also has a variety of text output related functions; however, this

chapter focuses on some of the most commonly used ones:

B outputString — Provides the ability to write a NULL-terminated Unicode string to the
output device and have it displayed. All output devices must also support some of the basic
Unicode drawing characters listed in the UEFI 2.1 Specification. This is the most basic
output mechanism on an output device. The string is displayed at the current cursor location
on the output device(s) and the cursor is advanced according to the rules listed in Table 6.3.

Table 6.5: Cursor Advancement Rules

Mnemonic Unicode Description

Null U+0000 Ignore the character, and do not move the cursor.
BS U+0008 If the cursor is not at the left edge of the display, then move the cursor left one column.
LF U+000A If the cursor is at the bottom of the display, then scroll the display one row, and do not update the

cursor position. Otherwise, move the cursor down one row.

CR U+000D Move the cursor to the beginning of the current row.

Other U+XXXX Print the character at the current cursor position and move the cursor right one column. If this moves
the cursor past the right edge of the display, then the line should wrap to the beginning of the next line.
This is equivalent to inserting a CR and an LF. Note that if the cursor is at the bottom of the display,
and the line wraps, then the display will be scrolled one line.

By providing an abstraction that allows a console device, such as a video driver, to produce a

text interface, this can be compared to legacy firmware support for INT 10h. The producer of the

Simple Text Output interface is responsible for converting the Unicode text characters into the

appropriate glyphs for that device. In the case where an unrecognized Unicode character has been

sent to the outputString() API, the result is typically a warning that indicates that these
characters were skipped.

B setAttribute — This function sets the background and foreground colors for both the
OutputString() and CclearScreen() functions. A variety of foreground and background
colors are defined by the UEFI 2.1 Specification. The color mask can be set even if the
device is in an invalid text mode. Devices that support a different number of text colors must
emulate the specified colors to the best of the device’s capabilities.

B cCclearScreen — This function clears the output device(s) display to the currently selected
background color. The cursor position is set to (0,0).

B sSetCursorPosition — This function sets the current coordinates of the cursor position. The
upper left corner of the screen is defined as coordinate (0,0).

Remote Console Support

The previous sections of this chapter described some of the text input and output protocols, and
used some examples that were generated through local devices. UEFI also supports many types of
remote console. This support leverages the pre-existing local interfaces but enables the routing of
this data to and from devices outside of the platform being executed.

When a remote console is instantiated, it typically results from UEFI constructing an I/O
abstraction that a console driver latches onto. In this case, the discussion initially concerns serial
interface consoles. A variety of console transport protocols, such as PC ANSI, VI-100, and so
on, describe the format of the data that is sent to and from the machine.

The console driver responsible for producing the Text I/O interfaces acts as a filter for the
I/O. For example, when a remote key is pressed, this might require a variety of pieces of data to
be constructed and sent from the remote device and upon receipt, the console driver needs to
interpret this information and convert it into the corresponding UEFI semantics such as the UEFI
scan code and Unicode character. The same is true for any application running on the local
machine that prints a message. This message is received by the console driver and translated to
the remote terminal type semantics.

Table 6.6 gives examples of how an UEFI scan code can be mapped to ANSI X3.64 terminal,
PC-ANSI terminal, or an AT 101/102 keyboard. PC ANSI terminals support an escape sequence
that begins with the ASCII character Ox1b and is followed by the ASCII character 0x5B, “[“.
ASCII characters that define the control sequence that should be taken follow the escape
sequence. The escape sequence does not contain spaces, but spaces are used in Table 6.6 for ease
of reading. For additional information on UEFI terminal support, see the latest UEFI
Specification.

Table 6.6: Sample Conversion Table for UEFI Scan Codes to other Terminal Formats

EFI ANSI X3.64 PC ANSI AT 101/102 Keyboard
Scan Code Description Codes Codes Scan Codes
0x00 Null scan code N/A N/A N/A

0x01 Move cursorup 1 row CSER ESC[A Oxe0, Ox48
0x02 Move cursor down 1 row CSIB ESC[B Oxe0, 0x50
0x03 Move cursorright 1 column CSIC ESC|C 0xe0, Ox4d
0x04 Move cursor left 1 column CSID ESCID 0xe0, Ox4b
0x05 Home CSIH ESC[H Oxe0, 0x47
0x06 End CSIK ESC[K 0xe0, Ox4f
0x07 Insert CSl@ ESC[@ 0xe0, 0x52
0x08 Delete CSIP ESC[P Oxe0, Ox53
0x09 Page Up csl? ESCIL? 0xe0, 0x49
0x0a Page Down csl/ ESC[/ 0xe0, 0x51

Table 6.7 shows some of the PC ANSI and ANSI X3.64 control sequences for adjusting display/
text display attributes for text displays.

Table 6.7: Example Control Sequences that Can Be Used in Console Drivers

PC ANSI Codes ANSI X3.64 Codes Description

ESC[2] CSI2J Clear Display Screen.

ESC[O0m CSI0Om Normal Text.

ESC[1m CSI1m Bright Text.

ESC[7m CSI7m Reversed Text.

ESC[30m CSI 30 m Black foreground, compliant with ISO Standard 6429.
ESC[31m CSI31m Red foreground, compliant with ISO Standard 6429.
ESC[32m CSI32m Green foreground, compliant with ISO Standard 6429.
ESC[33m CSI33m Yellow foreground, compliant with ISO Standard 6429.
ESC[34m CSI 34 m Blue foreground, compliant with ISO Standard 6429.

Figure 6.3 illustrates the software layering for a remote serial interface with Text 1/O
abstractions. The primary difference between this illustration and one that exhibits the same Text
I/O abstractions on local devices is that this one has one additional layer of software drivers. In
the former examples, the local device was discovered by an agent, launched, and it in turn would
establish a set of Text I/O abstractions. In the remote case, the local device is a serial device,
which has a console driver that is layered onto it, and it in turn would establish a set of Text I/O

abstractions.

= Conln/Con Out/StdErr =

Application/Driver

L

w
EFI_SIMPLE_TEXT_IN EFI_SIMPLE_TEXT_OUT
Textl® [eqm siMPLE TEXT IN EFI_SIMPLE_TEXT_OUT
Abstraction
Console Console Driver layers onto Serial I/O interface
and produces Text |/O interfaces along with an
Abstraction identifying terminal device path (e.g. VT100).
HW Device is discovered and the
Abstraction Serial I/0 Interface is installed
Serial terminal connections
Through a serial connection

Remote System

Figure 6.3: Remote Console Software Layering

Console Splitter

The ability to describe a variety of console devices poses interesting new possibilities. In
previous generations of firmware, one had a single means by which one could describe what the
Text I/O sources and targets were. Now the UEFI variables that specify the active consoles are
specified by a device path. In this case, these device paths are multi-instance, meaning that more
than one target device could be the active input or output. For instance, if one wanted to be able to
have an application print text to the local screen as well as to the screen of a remote terminal, it
would be highly impractical for anyone to customize their software to accommodate that
particular scenario. In the solution that UEFI provides with its console splitting/ merging
capability, an application can simply use the standard text interfaces that UEFI provides and the
console splitter routes the text requests to the appropriate target or targets. This works for both
input as well as output streams.

This is how it works: when the UEFI-compliant platform initializes, the console splitter
installs itself in the UEFI System Table as the primary active console. In doing so, it can then
proceed to monitor the platform as other UEFI text interfaces get installed as protocols and the
console splitter keeps a running tally of the user selected devices for a given console variable,
such as ConoOut, ConIn, or Errout.

Figure 6.4 illustrates a scenario where an application is calling UEFI text interfaces, which in
turn calls the UEFI System Table console interfaces. These interfaces belong to the console
splitter, and the console splitter then sends the text I/O requests from the application to the
platform-configured consoles.

Application/Driver

EFI_SIMPLE_TEXT_IN EFI_SIMPLE_TEXT_OUT

EFI_SIMPLE_TEXT_OUT

Data is sent to the semantics. This driver proxies it to
target video device the physical device abstraction.

Senal teminal connections
Through & serial connection

Remate System

Figure 6.4: Software Layering Description of the UEFI Console Splitter

Network Consoles

UEFTI also provides the ability to establish data connections with remote platforms across a
network. Given the appropriate installed drivers, one could also enable an UEFI-compliant
platform to support a text I/O set of abstractions. Similar to previously discussed concepts where
the hardware interface (for example, serial device, keyboard, video, network interface card) has
an abstraction, other components build on top of this hardware abstraction to provide a working
software stack.

Some network components that UEFI might include are as follows:

B Network Interface Identifier — This is an optional protocol that is produced by the Universal
Network Driver Interface (UNDI) and is used to produce the Simple Network Protocol. This
protocol is only required if the underlying network interface is a 16-bit UNDI, 32/64-bit
software UNDI, or hardware UNDIL. It is used to obtain type and revision information about
the underlying network interface.

B Simple Network Protocol — This protocol provides a packet level interface to a network
adapter. It additionally provides services to initialize a network interface, transmit packets,
receive packets, and close a network interface.

To illustrate what a common network console might look like, you could describe an initial
hardware abstraction that talks directly to the network interface controller (NIC) produced by an
UNDI driver. This in turn has a Simple Network Protocol that layers on top of UNDI. It provides
basic network abstraction interfaces such as Send and Receive. On top of this, a transport
protocol might be installed such as a TCP/IP stack. As with most systems, once an established
transport mechanism is provided, one can build all sorts of extensions into the platform such as a
Telnet daemon to allow remote users to log into the system through a network connection.
Ultimately, this daemon would produce and be responsible for handling the normal Text I/O
interfaces already described in this chapter.

Figure 6.5 illustrates an example where a remote machine is able to access the EFI-compliant
platform through a network connection. Providing the top layer of the software stack
(EFI_SIMPLE_TEXT_IN and EFI_SIMPLE_TEXT_OUT) as the interoperable surface area that
applications talk to allows for all standard UEFI applications to seamlessly leverage the console
support in a platform. Couple this with console splitting and merging as inherent capabilities and
you have the ability to interact with the platform in a much more robust manner without requiring
a lot of specially tuned software to enable it.

Conln/ConOut/StdE -

Application/Driver

= EFI System Table =

EFI_SIMPLE_TEXT_IN EFI_SIMPLE_TEXT_OUT
: l' r“
Text 10 ':
i
|E FI_SIMPLE_TEXT_IN | | EFI_SIMPLE_TEXT_IN | ¥
Abstraction
Console
: Telnet Daemon
Abstraction ;

E

L 4

Transport TCP/IP
Layer Stack

F 3

Sinple Netwark
Protecol

SNP

Abstraction

Figure 6.5: Example of Network Console Software Layering

Summary

In conclusion, UEFI provides a very robust means of describing the various possible input and
output console possibilities. It can also support console representations through a gamut of
protocols such as terminal emulators (such as ANSI/VT100) as well as remote network consoles
leveraging wider variations of the underlying UEFI network stack.

Chapter 7 — Different Types of Platforms

Variety's the very spice of life, that gives it all its flavor.
—William Cowper

This chapter describes different platform types and instantiations of the Platform Initialization
(PI), such as embedded system, laptop, smart phone, netbook, tablet, PDA, desktop, and server. In
addition to providing a “BIOS replacement” for platforms that are commonly referred to as the
Personal Computer, the PI infrastructure can be used to construct a boot and initialization
environment for servers, handheld devices, televisions, and so on. These sundry devices may
include the more common [A-32 processors in the PC, but also feature the lower-power Intel
Atom® processor, or the mainframe-class processors such as the Itanium®-based systems. This
chapter examines the PEI modules and DXE drivers that are necessary to construct a standard PC
platform. Then a subset of these modules used for emulation and Intel Atom-based netbooks and
smart phones is described.

Figure 7.1 is a block diagram of a typical system, showing the various components,
integrating the CPU package, south bridge, and super I/O, beyond other possible components.
These blocks represent components manufactured on the system board. Each silicon and platform
component will have an associated module or driver to handle the respective initialization. In
addition to the components on the system board, the initial system address map of the platform has
specific region allocations. Figure 7.2 shows the system address map of the PC platform,
including memory allocation. The system flash in this platform configuration is 1 megabyte in
size. The system flash appears at the upper end of the 32-bit address space in order to allow the
Intel® Core i7™ processor to fetch the first opcodes from flash upon reset. The reset vector lies
16 bytes from the end of the address space. In the SEC, the initial opcodes of the SEC file allow
for initial control flow of the PI-based platform firmware. From the SEC, a collection of
additional modules is executed. The Intel Core i7 processor has both the central processing unit
(CPU), or core, and portions of the chipset, or uncore. The latter elements include the integrated
memory controller (IMC) and the system bridge, such as to PCI.

Intel

._ CPU Cores

Memory |

Zcontroller

Slots
SPI Bus

Figure 7.1: Typical PC System

X P SystemFLASH | . UEFIPICode

(1MB) and Data Stored Here
0xFF00_0000 CPU SEC Maps Unused
OxFEFO 0000 TempMemory |<®= Regionas Temporary

o Local APIC Memory

OxFEEO_0000
0xFEDO_0000

0xFECO0_0000 AT
0xZZZ0_0000
PCI
Resources

0xYYY0_0000
Low Top Of Memory

System Memory

0x0000_0000

Figure 7.2: System Address Map

Before going through the various components of the PC firmware load, a few other platforms will
be reviewed. These include the wireless personal digital assistant, which can be a low-power
x64 or IA-32 CPU or an Intel Atom processor/ system-on-a-chip (SoC). The platforms then scale
up to a server. This is shown in Figure 7.3.

System Flash

Desktop/Server PC

Figure 7. 3: Span of Systems

Figure 7.4 shows a series of non-PCs, such as tablets and smart phones. The former includes a
touch screen and integrated peripherals, such as 3G, Wi-Fit and LTE/Wi-MAXT radios. The
latter devices, namely the smart phones, are highly integrated devices with GPS, several radios,
touch screens, accelerometers, and some NAND storage. Within all of these devices, an Intel
Atom-based system on a chip and a specific collection of PEI modules (PEIMs) and DXE drivers
execute to initialize the local hardware complex. Then the DXE-based UEFI core would boot a
UEFI-aware version of an embedded operating system, such as MeeGot or VxWorksT. This
demonstrates how the platform concept can span many different topologies. These topologies
include the classical, open-architecture PC and the headless, closed embedded system of an I/O
board.

Figure 7.4: An Intel Atom®-based System

Now let’s examine the components for the PC in Figure 7.1 in greater detail. The PEI phase of
execution runs immediately after a restart event, such as a power-on reset, resume from hibernate,

and so on. The PEI modules execute in place from the flash store, at least until the main memory
complex (such as DRAM) has been initialized.

Figure 7.5 displays the collection of PEIMs for the PC platform. Different business interests
would supply the modules. For example, in the platform codenamed Lakeport, Intel would
provide the Intel™ Core™ i7 CPU with an integrated Memory Controller Hub Memory
Controller PEIM and the PCH (Platform Controller Hub) PEIM. The PCH is also known as the
“South Bridge.” In addition, for the SMBUS (System management bus) attached to the PCH, there
would be a PCH-specific SMBUS PEIM. The status code PEIM would describe a platform-
specific means by which to emit debug information, such as an 8-bit code emitted to I/O port 80-
hex

Core i7 CPU PEIM Init and CPU 1/O
DXE IPL PEIM Starts DXE Foundation
PCI Configuration PEIM Uses /O 0xCF8, 0xCFC
Stall PEIM Uses 8254 Timer

Status Code PEIM | Platform | Debug Messages

SMBUS PEIM SMBUS Transactions
Memory Controller PEIMs Read SPD, Init Memory
Motherboard PEIM FLASHMap, BootPolicy

Figure 7.5: Components of PEI on PC

The SMBUS PEIM for the PCH listed in Figure 7.5 provides a standard interface, or PEIM-to-
PEIM interface (PPI), as shown in Figure 7.6. This allows the memory controller PEIM to use the
SMBUS read command in order to get information regarding the dual-inline memory module
(DIMM) Serial Presence Detect (SPD) data on the memory. The SPD data includes the size,
timing, and other details about the memory modules. The memory initialization PEIM will use the
EFI_PEI_SMBUS_PPI so that the GMCH-specific memory initialization module does not need to
know which component provides the SMBUS capability. In fact, many integrated super 1/O (SIO)
components also provide an SMBUS controller, so this platform could have replaced the PCH
SMBUS PEIM with an SIO SMBUS PEIM without having to modify the memory controller PEIM.

typedef
EFI_STATUS
(EFIAPI *PEI_SMBUS_PPI_EXECUTE OPERATION) (
IN EFI_PEI_SERVICE **PeiServices,
IN struct EFI_PEI_SMBUS PPI *This,
IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
IN EFI_SMBUS DEVICE COMMAND Command,
IN EFI_SMBUS_OPERATION Operation,
IN BOOLEAN PecCheck,
IN OUT UINTN *Length,
IN OUT VOID *Buffer

o

typedef struct {
PEI_SMBUS_PPI_EXECUTE OPERATION Execute;
PEI_SMBUS_PPI_ARP DEVICE ArpDevice;
} EFI_PEI_SMBUS_PPI;

Figure 7.6: Code Fragment for a PEIM PPI

Many implementations are possible beyond the EFI_PEI_SMBUS_PPI shown earlier. Figure 7.7
shows a code fragment that implements the SMBUS read operation for the PCH component listed
earlier. Note the use of the CPU I/O abstraction for performing the I/O operations against the PCH
component. The fact that the logic is written in C means that this same PCH on an Intel Atom or
Itanium-based system could reuse the same source code through a simple compilation for the
target microarchitecture.

#define SMBUS R HDO OxEFAS
#define SMBUS_R HBD OxEFA7

EFI_PEI_SERVICES *PeiServices;
SMBUS_PRIVATE_ DATA *Private;
UINT8 Index, BlockCount *Length;
UINTS8 *Buffer;

BlockCount = Private->Cpulo.IoRead8 (
*PeiServices, Private->Cpulo,SMBUS R HDO) ;
if (*Length < BlockCount) {
return EFI_BUFFER_TOO_ SMALL;

} else {
for (Index = 0; Index < BlockCount; Index++) {
Buffer[Index] = Private->Cpulo.IoRead8 (

*PeiServices, Private->Cpulo,SMBUS R HED) ;

Figure 7.7: Code Fragment of PEIM Implementation

Beyond the PEI phase, the DXE core requires a series of platform-, CPU-, and chipsetspecific
drivers in order to provide a fully-instantiated set of DXE/EFI services. Figure 7.8 lists the
collection of architectural protocols that are necessary for the PC platform under study.

Watchdog Generic | Uses Timer-based Events
Monotonic Counter | Generic | Uses Variable Services
Runtime Generic | Platform Independent
CPU Generic | Pentium 4 DXE Driver
BDS Generic | Use Sample One for Now
Timer PCAT | Uses 8254 Timer
Metronome PCAT | Uses 8254 Timer

Reset PCAT |1/O OxCF9

Real Time Clock PCAT | 1/O 0x70-0x71

Security Platform | Platform Specific Authentication
Status Code Debug Messages
Variable Depends on FLASH Map

Figure 7.8: Architectural Protocols

The fact that the DXE Foundation does not presume anything about the timekeeping logic,
interrupt controller, instruction set, and so on, means that the DXE Foundation C code can be
retargeted for a large class of platforms without reengineering the Foundation code itself. Instead,
a different collection of the architectural protocols (APs) can affect the Foundation port.

One aspect of the system that needs to be abstracted is the management of time. The
timekeeping hardware on a PC/AT compatible chipset, such as the 8254 timer, differs from the
CPU-integrated timer-counter (ITC) on the Itanium processor or the timekeeping logic specific to
the Intel Atom processor. As such, in order to have a single implementation of the DXE
Foundation watchdog-timer logic, the access to CPU/chipset-specific timing hardware is
implemented via the Timer Architectural Protocol. This AP has a series of services, such as
getting and setting the time period. The setting of the time period will be reviewed across our
reference class of platforms.

To begin, Figure 7.9 provides an instance of the set timer service for the NT32 platform.
NT32 is a virtual PI platform that executes upon a 32-bit Microsoft Windows system as a user-
mode process. It is a “soft” platform in that the platform capabilities are abstracted through
Win32 services. As such, the implementation of this AP service doesn’t access an I/O controller
or chipset control/status registers. Instead, the AP invokes a series of Win32 services to provide
mutual exclusion and an operating system thread to emulate the timer action.

EFI_STATUS

TimerDriverSetTimerPeriod (
IN EFI_TIMER ARCH PROTOCOL *This,
IN UINTG64 TimerPeriod
)

gWinNt->EnterCriticalSection (&mNtCriticalSection) ;
mTimerPeriod = TimerPeriod;
mCancelTimerThread = FALSE;
gWinNt->LeaveCriticalSection (&mNtCriticalSection) ;
mNtLastTick = gWinNt->GetTickCount ()
mNtTimerThreadHandle = gWinNt->CreateThread (

NULL,

o,

NtTimerThread,

smTimer,

0,

&NtThreadId) ;

Figure 7.9: NT32 Architectural Protocol

The NT32 implementation is radically different from a bare-metal PI implementation. An instance
of a hardware implementation can be found in Figure 7.10. Herein the memorymapped registers
of an Intel Atom system on a chip are accessed by the same AP set timer interface. The DXE
Foundation cannot discern the difference between the virtual NT32 platform service and the
actual hardware instance for an Intel Atom processor.

EFI_STATUS

TimerDriverSetTimerPeriod |
IN EFI_TIMER ARCH PROTOCOL *This,
IN UINT64 TimerPeriod
)

{

UINT64 Count;

UINT32 Data;

Count = DivU64x32 (MultU64x32 (TimerPeriod, APBT CRYSTAL FREQ) + 5000000,
10000000, NULL) ;

mCpuIlo->Mem. Read (mequ JEfiWidthUint32 ,APBT_BASE_PHYSI CAL,1,&Data) ;

Data += (UINT32)Count:;

mCpulo->Mem.Write {mequ,EfiWidthUint32,APBT_?ASE_PHYSICAL,l,&Data):

Data ~= APBT MSFT;

mCpulo->Mem.Write (mCpulo,EfiWidthUint32 APBT BASE PHYSICAL, 1, &Data);

mCpulo->Mem.Read (mCpulo,EfiWidthUint32 APBT PHYSICAL,1,&Data);

Data |= (UINT32) (1 << APBT SHIFT):

mCpuIo->Mem.Write (mequ,EfiWidthUintSZ,APET_PHYSICAL,I,&Data];

Figure 7.10: AP from Intel® Atom™

Finally, for the PC/AT and the circa mid-1980s ISA I/O hardware, there is an additional
implementation of the AP service. Figure 7.11 shows the same set timer service when accessing
the 8254 timer-counter and then registering an interrupt with the 8259 Programmable Interrupt
Controller (PIC). This is often referred to as a PC/ AT version of the AP since all PCs since the
PC-XT have supported these hardware interfaces. For the PC example in this chapter, these ISA
I/O resources are supported by the PCH component, versus discrete components in the original
PC.

EFI_STATUS
TimerDriverSetTimerPeriod (
IN EFI_TIMER ARCH PROTOCOL *This,
IN UINT64 TimerPeriod
)
{
UINT64 Count;
UINTS Data;

Count = DivU64x32 (MultUé4x32(119318, (UINTN) TimerPeriod) + 500000,
1000000, NULL);

Data = 0x36;

mCpulo->Io.Write (mCpulo,EfiCpuloWidthUint8,TIMER CONTROL_PORT, 1, &Data);

mCpulo->Io.Write (mCpulo,EfiCpuloWidthFifoUint8, TIMER0O COUNT PORT, 2, &Count) ;

mLegacy8259->Enablelrg (mLegacy8259, Efi8259Irqg0, FALSE);

Fig7.11: AP for PC/AT

Beyond the many implementation options for an AP to provide the breadth of platform porting,
additional capabilities in DXE support various platform targets. In UEFI, the interaction with the
platform occurs through the input and output console services. The console input for a PC is
typically a PS/2 or USB keyboard, and the output is a VGA or enhanced video display. But the
I/O card studied earlier has no traditional “head” or display. These deeply embedded platforms
may only have a simple serial interface to the system. Interestingly, the same PC hardware can
also run without a traditional display and interact with the user via a simple serial interface. Figur

e 7.12 displays a console stack for an UEFI system built upon a serial interface.

BDS / EFI Shell

Simple Input Simple Text Virtual
Protocol Output frotocol Console

Simple Input Simple Text Physical
Protocol Output Protocol Console

Serial 1/O Protocol

ISA I/O Protocol

¥
PCI 1/0 Protocol

Figure 7.12: Console Stack ona PC

In order to build out this stack, the boot-device selection (BDS) or the UEFI shell provides an
application or command line interface (CLI) to the user. The Simple Input and output protocols
are published via a console driver that layers upon the Serial I/O protocol. For the PCI-based PC,
a PCI root bridge protocol allows access to the serial port control and status registers; for the
Intel Atom platform with an internallyintegrated UART/ serial port, an alternate low-level
protocol may exist to access these same registers.

For this platform layering, the components listed in Figure 7.13 describe the DXE and UEFI
components needed to build out this console stack. Just as in the case of the PEI modules,
different interests can deliver the DXE and UEFI drivers. For example, the Super I/O vendor may
deliver the ISA ACPI driver, the silicon vendor PCI root bridge (such as the GMCH in this PC), a
platform console driver, and then a set of reusable components based upon the PC/AT ISA
hardware.

BDS / EFI Shell
Console Splitter
Terminal

ISA Serial

ISA Bus

|PC| Bus
Console Platform
PCI Root Bridge
PCI| Host Bridge
ISAACPI

Policy
Work with Chipset Vendor
Work with Chipset Vendor

Work with Super /O Vendor

Figure 7.13: Components for Console Stack

Beyond the console components, several other PEI modules and DXE components need to be
included into the firmware volume. These other components, listed in Figure 7.14, provide for
other capabilities. These include the platform-specific means by which to store UEFI variables,
platform policy for security, and configuration.

Status Code PEI |
Memory Controller | PEI|
SMBUS PEI
Motherboard PEI
Security DXE
Status Code

Variable
Console Platform

PCI| Root Bridge
PCI| Host Bridge
ISA ACPI

Platform

Platform

Platform

Figure 7.14: DXE Drivers ona PC

The UEFI variables can be stored in various regions of the flash part (or a service processor on a
server), so a driver needs to abstract this store. For security, the vendor may demand that field
component updates be signed or that modules dispatched be hash-extended into a Trusted
Platform Module (TPM). The security driver will abstract these security capabilities.

A final feature to describe the component layering of DXE drivers is support for the disk
subsystem, namely the Integrated Device Electronics (IDE) and a UEFI file system. The protocol
layering for the disk subsystem up to the file system instance are shown in Figure 7.15.

BDS / EFI Shell

A
File Sys Protocol File Sys Protocol
Disk I!O*Protocol Disk I!O*Protocoi
Block I;'(g Protocol Block Ilg Protocol Partition
Disk IfOIProtoco! Disk I;‘OIProtocoi

Block I/0 Protocol Block I/O Protocol Physical Disk

PCI I/O Protocol

Figure 7.15: IDE Stack

The same UEFI shell or BDS resides at the top of the protocol layering. Instances of the simple
file system (FS) protocol provide the read/write/open/close capability to applications. The FS
protocols layer atop disk I/O protocol. A disk I/O provides bytelevel access to a sector-oriented
block device. As such, disk I/O is a software-only driver that provides this mapping from
hardware-specific block I/O abstractions. The disk I/O layer binds to a series of block I/O
instances. The block I/O protocol is published by the block device interest, such as the PCH
driver in DXE that abstracts the Serial AT-Attachment (SATA) disk controller in the PCH. The
disk driver uses the PCI Block I/O protocol to access the control and status registers in the PCH
component.

The components that provide these capabilities in the file system stack can be found in Figure
7.16. The file system components include the File Allocation Table (FAT) driver, a driver that
provides FAT12/16/32 support. FAT is the original file system for MS-DOS on the original PC
that has been extended over time, culminating in the 32-bit evolution of FAT in Windows95 as
FAT32. In addition, providing different performance options of the storage channel can be
abstracted via the IDE Controller Initialization component. This provides an API so that a
platform setup/ configuration program or diagnostic can change the PCH settings of this feature.

BDS / EFI| Shell
FAT

Partition

Disk 1/0O

IDE Bus

PCI| Bus

PCIl Root Bridge

PCI| Host Bridge
IDE Controller Init

IDE Channel Attributes

Figure 7.16: Components for IDE Init

This same console stack for the serial port and file system stack for the SATA controller only
depends upon the PCH components, a PCI abstraction, and appropriate support components. As
such, putting this same PCH, or a logically-equivalent version of this chip integrated into another
application-specific integrated circuit (ASIC), will admit reuse of these same binaries on other
like systems (such as an x64 desktop to an x64 server). Beyond this binary reuse across IA32 and
x64 platform classes, the C code allows for reuse. The use of this PCH, whether the literal
component or the aforementioned logical integration, on the Itanium Processor, can occur via a
recompilation of the component C code with the Itanium Processor as the target for the binary.

Pre-boot
Tools

UEFI Specification

Platform

Drivers

Intel® FSP

Figure 7.17: Intel ® FSP

Beyond the platforms listed above, there is an increasing focus on open source. This open source
of a UEFI conformant core, such as one based upon the EFI Developer Kit II, must be tempered
with the need to preserve intellectual property. As such, one approach to deployment to open
source core plus closed source binary includes leveraging the Intel ® Firmware Support Package,
or Intel FSP. The idea behind the Intel FSP is to encapsulate low-level flows, such as the memory
initialization PEIM’s, into a well-defined binary.

This is the familiar layering diagram with the Green H of the generic EDKII UEFI core, the
yellow line designating the UEFI API conformance, the newly introduced element of the Intel FSP
at the bottom, and finally, the platform drivers. The platform drivers include board specific
PEIM’s and DXE drivers that encapsulate board specific details like GPIO programming, ACPI
tables, and silicon drivers based upon public documentation.

The Intel FSP will allow for a work flow wherein a developer can take an open source set of
schematics, such as the Minnow Board Max for the Intel® Atom® E3800-series CPU, and
combine with the EDKII core and platform code from GitHub, along with the Intel ® FSP binary
from an alternate public repository. These elements can be combined together to provide a full
platform bootable solution.

The original Intel FSP was used by several open source boot environments, such as coreboot,

U-Boot, and EDKII. There was inconsistency in the interface implementation that was
retrospectively locked down into what was called Intel FSP 1.0. This entailed separating out the
generic interfaces to the Intel FSP from the system on a chip (SOC) specific details. From 1.0 the

architecture was evolved slightly to 1.1 to ease integration.

——

——

" e -~
Boot Flow 1.0 Boot Flow 1 1
Switch to 32-bit Mode TempRaminit Switch to 32-bit Mode
), Find FSP_INFO_HEADER | 4 - Load microcode Find FSP_INFO_HEADER |\
fll Call to TempRaminit API = Endble CAR Call to TempRaminit APl \‘.
/ Y

/ Pre Memory Init : Pre Memoryinit |

}f Caill Fspinn API u::' E Call FspMemeorylnit API \
f n J (& _m

| (Pass Continuation Func) = :;? 3 % ________ Switch Stack & |
E..EL‘E E Temp RAM migration '
Ug s CallT it APl l
Continuation Func - gf‘g M — .
{Parse FSP Return Data) = T I
I\] b Call to FspSiliconnit AP {

\ Bus and Device Init : ; |

\ ; Bus and Device Init /

\ Call NotifyPhase | Call NotifyPhase /

[l rosroEumenin - Comoite b pourcemamernio I
\ ,ff

Boot Device Init

Reset Vector
Switch to 32 bit Mode

Find FSP Header in F5P-T
call TempRaminit()
Setup Stack
Pre-Mem Init

Find F5P Header in F5P-M
call FspMemoryinit{)

Reset
Required?

Migrate Temp Stack
call TempRamExit()

\ Boot Device Init
\‘.

Find FSP Header in FSP-S
call FspSiliconinit()

Reset
Required?

Bus and Device Init
call NotifyPhase{) AP
{post PCI}

Boot Device Init
calt Motify Phase() API
{ReadyToBoot)

Load 05 / Payload
call NotifyPhase() AP
{EndOfFirmware)
FW handoff to 05

Figure 7.19: Intel ® FSP 2.0

Finally, the need for memory-mapped tables in 1.0 and 1.1, and dependency upon memory-

mapped SPI-attached SPI NOR, led to decoupling the header. This led to the definition of the Intel
FSP 2.0 now seem in the market.

From a code re-use, the Intel FSP re-uses the PI Firmware Volume (FV) and internal PEI
Modules. So even though the aggregate Intel FSP is a large binary, the internal contents are PI-
based art, as shown below.

FSP Firmware Volume

Fspinfo

PeiMain -

Memorylnit

PlatformEarlylnit

Soclnit

Cpulnit

PlatformLatelnit

Y Y v v v v ¥

Dxelpl

FspVpd

PadFile

SecCore

Figure 7.20: Intel ® FSP binary

Intel FSP2.0 comprehends a world of source plus binary. This is not the only path to
implementation, of course. The Intel Galileo Quark-based EDKII firmware is fully open source,
for example.

Summary

This chapter has provided an overview of some platforms that are based upon UEFI and PI
firmware technology. The power of the abstractions of the interfaces comes into play as the
firmware can be implemented on a PC/AT system, Itanium, and non-PC/AT system on a chip
(SoC). In addition to the portability of the abstractions, this chapter has also shown have various
modules are integrated in order to provide a full console and storage stack. It is through these
detailed platform realizations that the composition of the industry APIs and their interoperation
comes into light.

Chapter 8 — DXE Basics: Core, Dispatching, and Drivers

I do not fear computers. I fear the lack of them.

—Isaac Asimov

This chapter describes the makeup of the Driver Execution Environment (DXE) and how it
operates during the platform evolution. In addition, it describes some of the fundamental concepts
of how information is handed off between phases of the platform boot process and how the
underlying components are launched. The launching description also provides some insight into
how launch orders are constructed, since they do deviate from what is commonly referred to as
POST tables in legacy firmware.

The DXE phase contains an implementation of UEFI that is compliant with the PI (Platform
Initialization) Specification. As a result, both the DXE Core and DXE drivers share many of the
attributes of UEFI images. The DXE phase is the phase where most of the system initialization is
performed. The Pre-EFI Initialization (PEI) phase is responsible for initializing permanent
memory in the platform so the DXE phase can be loaded and executed. The state of the system at
the end of the PEI phase is passed to the DXE phase through a list of position-independent data
structures called Hand-Off Blocks (HOBs). The DXE phase consists of several components:

B DXE Core

B DXE Dispatcher

B DXE Drivers

The DXE Core produces a set of Boot Services, Runtime Services, and DXE Services. The DXE
Dispatcher is responsible for discovering and executing DXE drivers in the correct order. The
DXE drivers are responsible for initializing the processor, chipset, and platform components as
well as providing software abstractions for console and boot devices. These components work
together to initialize the platform and provide the services required to boot an OS. The DXE and
Boot Device Selection (BDS) phases work together to establish consoles and attempt the booting
of operating systems. The DXE phase is terminated when an OS successfully begins its boot
process—that is, when the BDS phase starts. Only the runtime services provided by the DXE
Core and services provided by runtime DXE drivers are allowed to persist into the OS runtime
environment. The result of DXE is the presentation of a fully formed UEFI interface.

Figure 8.1 shows the phases that a platform with UEFI compatible firmware goes through on a
cold boot. This chapter covers the following:

B Transition from the PEI to the DXE phase

B The DXE phase

B The DXE phase’s interaction with the BDS phase

Security | Pre-EFI Driver Boot Transient Runtime After-

(SEC) | Initialization | Execution Device | SystemLoad (RT) life
(PEI) Environment | Selection (TSL) (AL)
(DXE) (BDS)

Power on=9[. . Platforminitialization ..] =] OS boot] ==———————) Shutdown

Figure 8.1: Platform Boot Phases

DXE Core

The DXE Core is designed to be completely portable with no processor, chipset, or platform

dependencies. This portability is accomplished by incorporating several features:

B The DXE Core depends only upon a HOB list for its initial state. This single dependency
means that the DXE Core does not depend on any services from a previous phase, so all the
prior phases can be unloaded once the HOB list is passed to the DXE Core.

B The DXE Core does not contain any hard-coded addresses. As a result, the DXE Core can
be loaded anywhere in physical memory, and it can function correctly no matter where
physical memory or where firmware volumes are located in the processor’s physical
address space.

B The DXE Core does not contain any processor-specific, chipset-specific, or platform-
specific information. Instead, the DXE Core is abstracted from the system hardware through
a set of architectural protocol interfaces. These architectural protocol interfaces are
produced by a set of DXE drivers that are invoked by the DXE Dispatcher.

Below is an illustration showing how data is handed off between the PEI and DXE phases.

e e e e e

ot el EL
L ik DXE
M g
Pre-EFI Driver Execution
Iniialization Ervironment
(=) (DXE)
Power On » Platform Initialization

Figure 8.2: Early Initialization Illustrating a Handoff between PEI and DXE

The DXE Core produces the EFI System Table and its associated set of EFI Boot Services and

EFI Runtime Services. The DXE Core also contains the DXE Dispatcher, whose main purpose is
to discover and execute DXE drivers stored in firmware volumes. The order in which DXE
drivers are executed is determined by a combination of the optional a priori file (see the section
on the DXE dispatcher) and the set of dependency expressions that are associated with the DXE
drivers. The firmware volume file format allows dependency expressions to be packaged with the
executable DXE driver image. DXE drivers utilize a PE/COFF image format, so the DXE
Dispatcher must also contain a PE/COFF loader to load and execute DXE drivers.

The DXE Core must also maintain a handle database. A handle database is a list of one or
more handles, and a handle is a list of one or more unique protocol GUIDs. A protocol is a
software abstraction for a set of services. Some protocols abstract I/O devices, and other
protocols abstract a common set of system services. A protocol typically contains a set of APIs
and some number of data fields. Every protocol is named by a GUID, and the DXE Core produces
services that allow protocols to be registered in the handle database. As the DXE Dispatcher
executes DXE drivers, additional protocols are added to the handle database including the DXE
Architectural Protocols that are used to abstract the DXE Core from platform-specific details.

Hand-Off Block (HOB) List

The HOB list contains all the information that the DXE Core requires to produce its memory-
based services. The HOB list contains information on the boot mode, the processor’s instruction
set, and the memory that was discovered in the PEI phase. It also contains a description of the
system memory that was initialized by the PEI phase, along with information about the firmware
devices that were discovered in the PEI phase. The firmware device information includes the
system memory locations of the firmware devices and of the firmware volumes that are contained
within those firmware devices. The firmware volumes may contain DXE drivers, and the DXE
Dispatcher is responsible for loading and executing the DXE drivers that are discovered in those
firmware volumes. Finally, the HOB list may contain the I/ O resources and memory-mapped I/ O
resources that were discovered in the PEI phase.

Figure 8.3 shows an example HOB list. The first entry in the HOB list is always the Phase
Handoff Information Table (PHIT) HOB that contains the boot mode. The rest of the HOB list
entries can appear in any order. This example shows the different types of system resources that
can be described in a HOB list. The most important ones to the DXE Core are the HOBs that
describe system memory and the HOBs that describe firmware volumes. A HOB list is always
terminated by an end-of-list HOB. The one additional HOB type that is not shown in Figure 8.3 is
the GUID extension HOB that allows a PEIM to pass private data to a DXE driver. Only the DXE
driver that recognizes the GUID value in the GUID extension HOB can understand the data in that
HOB. The HOB entries are all designed to be position-independent. This independence allows
the DXE Core to relocate the HOB list to a different location if it is not suitable to the DXE Core.

DXE
Volunes Drivers
PHIT| [HOB | [HOB| |HOB| [HOB| |HOB ' DXE

Figure 8.3: HOB List

DXE Architectural Protocols

The DXE Core is abstracted from the platform hardware through a set of DXE Architectural
Protocols. The DXE Core consumes these protocols to produce the EFI Boot Services and EFI
Runtime Services. DXE drivers that are loaded from firmware volumes produce the DXE
Architectural Protocols. This design means that the DXE Core must have enough services to load
and start DXE drivers before even a single DXE driver is executed.

The DXE Core is passed a HOB list that must contain a description of some amount of system
memory and at least one firmware volume. The system memory descriptors in the HOB list are
used to initialize the UEFT services that require only memory to function correctly. The system is
also guaranteed to be running on only one processor in flat physical mode with interrupts
disabled. The firmware volume is passed to the DXE Dispatcher, which must contain a read-only
FFS driver to search for the a priori file and any DXE drivers in the firmware volumes. When a
driver is discovered that needs to be loaded and executed, the DXE Dispatcher uses a PE/COFF
loader to load and invoke the DXE driver. The early DXE drivers produce the DXE Architectural
Protocols, so the DXE Core can produce the full complement of EFI Boot Services and EFI
Runtime Services. Figure 8.4 shows the HOB list being passed to the DXE Core. The DXE Core
consumes the services of the DXE Architectural Protocols shown in the figure and then produces
the EFI System Table, EFI Boot Services Table, and the EFI Runtime Services Table.

ISHIHIII| o I| MMIO I[Fi'mwnl Firmware DXE
Memory Resources Resources Devices Volumes Drivers
HOB List \' * \' * +

PHIT DXE
HoB L

EFl Boot Services Table DXE Services EFl System Table EFI Runtime Services Table
DXE Foundation / DXE Dispatcher

Variable Monotonic
Write Counter

Architectural Architectural
Protocol Protocol

BDS Runtirme
Architectural Archite ctural
Protocol Protocol

Real Time
Clock
Architectural
Protocol

CPRU Variable Resst
Architectural Architectural Architectural
Protocol Protocol Protocol

Figure 8.4: DXE Architectural Protocols

Figure 8.4 shows all the major components present in the DXE phase. The EFI Boot Services
Table and DXE Services Table shown on the left are allocated from UEFI boot services memory.
This allocation means that the EFI Boot Services Table and DXE Services Table are freed when
the OS runtime phase is entered. The EFI System Table and EFI Runtime Services Table on the
right are allocated from EFI Runtime Services memory, and they do persist into the OS runtime
phase.

The DXE Architectural Protocols shown on the left in Figure 8.4 are used to produce the EFI
Boot Services. The DXE Core, DXE Dispatcher, and the protocols shown on the left are freed
when the system transitions to the OS runtime phase. The DXE Architectural Protocols shown on
the right are used to produce the EFI Runtime Services. These services persist in the OS runtime
phase. The Runtime Architectural Protocol in the middle is special. This protocol provides the
services that are required to transition the runtime services from physical mode to virtual mode
under the direction of an OS. Once this transition is complete, these services can no longer be
used.

The following is a brief summary of the DXE Architectural Protocols:

Security Architectural Protocol: Allows the DXE Core to authenticate files stored in
firmware volumes before they are used.

CPU Architectural Protocol: Provides services to manage caches, manage interrupts,
retrieve the processor’s frequency, and query any processor-based timers.

Metronome Architectural Protocol: Provides the services required to perform very short
calibrated stalls.

Timer Architectural Protocol: Provides the services required to install and enable the
heartbeat timer interrupt required by the timer services in the DXE Core.

BDS Architectural Protocol: Provides an entry point that the DXE Core calls once after all

of the DXE drivers have been dispatched from all of the firmware volumes. This entry point
is the transition from the DXE phase to the BDS phase, and it is responsible for establishing
consoles and enabling the boot devices required to boot an OS.

B Watchdog Timer Architectural Protocol: Provides the services required to enable and
disable a watchdog timer in the platform.

B Runtime Architectural Protocol: Provides the services required to convert all runtime
services and runtime drivers from physical mappings to virtual mappings.

B Variable Architectural Protocol: Provides the services to retrieve environment variables and
set volatile environment variables.

B Variable Write Architectural Protocol: Provides the services to set nonvolatile environment
variables.

B Monotonic Counter Architectural Protocol: Provides the services required by the DXE Core
to manage a 64-bit monotonic counter.

B Reset Architectural Protocol: Provides the services required to reset or shutdown the
platform.

B Status Code Architectural Protocol: Provides the services to send status codes from the
DXE Core or DXE drivers to a log or device.

B Real Time Clock Architectural Protocol: Provides the services to retrieve and set the current
time and date as well as the time and date of an optional wakeup timer.

EFI System Table

The DXE Core produces the EFI System Table, which is consumed by every DXE driver and
executable image invoked by BDS. It contains all the information that is required for these
components to use the services provided by the DXE Core and any previously loaded DXE
driver. Figure 8.5 shows the various components that are available through the EFI System Table.

i
Active Consoles : EFl Runtime Services Table
Input Console i Variable Services
Output Console | Real Time Clock Services
Standard Error Console i Reset Services

Status Code Services
EFI Boot Services Table Virtual Memory Services
Task Priority Level Services
Memory Services
Event and Timer Services
Protocol Handler Services
Image Services

Driver Support Services

Version Information

EFI Specification Version
Firmware Vendor
Firmware Revision

System Configuration Table

DXE Services Table DXE Services Table

‘ Global Coherency Domain Services HOB List
Dispatcher Services ACPI Table

l SMBIOS Table

SAL System Table
Protocol Interface
Boot Services and Structures Runtime Services and Structures

Only avallable prior to 0S runtime Avallable before and during OS runtime

Figure 8.5: EFI System Table and Related Components

The DXE Core produces the EFI Boot Services, EFI Runtime Services, and DXE Services with
the aid of the DXE Architectural Protocols. The EFI System Table provides access to all the
active console devices in the platform and the set of EFI Configuration Tables. The EFI
Configuration Tables are an extensible list of tables that describe the configuration of the platform
including pointers to tables such as DXE Services, the HOB list, ACPI, System Management
BIOS (SMBIOS), and the SAL System Table. This list may be expanded in the future as new table
types are defined. Also, through the use of the Protocol Handle Services in the EFI Boot Services
Table, any executable image can access the handle database and any of the protocol interfaces that
have been registered by DXE drivers.

When the transition to the OS runtime is performed, the handle database, active consoles, EFI
Boot Services, and services provided by boot service DXE drivers are terminated. This
termination frees more memory for use by the OS and leaves the EFI System Table, EFI Runtime
Services Table, and the system configuration tables available in the OS runtime environment. You
also have the option of converting all of the EFI Runtime Services from a physical address space
to an operating system specific virtual address space. This address space conversion may only be
performed once.

EFI Boot Services Table

The following is a brief summary of the services that are available through the EFI Boot Services

Table:

B Task Priority Services: Provides services to increase or decrease the current task priority
level. This priority mechanism can be used to implement simple locks and to disable the
timer interrupt for short periods of time. These services depend on the CPU Architectural
Protocol.

B Memory Services: Provides services to allocate and free pages in 4 KB increments and
allocate and free pool on byte boundaries. It also provides a service to retrieve a map of all
the current physical memory usage in the platform.

B Event and Timer Services: Provides services to create events, signal events, check the
status of events, wait for events, and close events. One class of events is timer events, which
supports periodic timers with variable frequencies and one-shot timers with variable
durations. These services depend on the CPU Architectural Protocol, Timer Architectural
Protocol, Metronome Architectural Protocol, and Watchdog Timer Architectural Protocol.

B Protocol Handler Services: Provides services to add and remove handles from the handle
database. It also provides services to add and remove protocols from the handles in the
handle database. Additional services are available that allow any component to look up
handles in the handle database and open and close protocols in the handle database.

[Image Services: Provides services to load, start, exit, and unload images using the
PE/COFF image format. These services depend on the Security Architectural Protocol.

B Driver Support Services: Provides services to connect and disconnect drivers to devices in
the platform. These services are used by the BDS phase to either connect all drivers to all
devices, or to connect only the minimum number of drivers to devices required to establish

the consoles and boot an OS. The minimal connect strategy is how a fast boot mechanism is
provided.

EFI Runtime Services Table

The following is a brief summary of the services that are available through the EFI Runtime
Services Table:

Variable Services: Provides services to lookup, add, and remove environment variables
from nonvolatile storage. These services depend on the Variable Architectural Protocol and
the Variable Write Architectural Protocol.

Real Time Clock Services: Provides services to get and set the current time and date. It also
provides services to get and set the time and date of an optional wakeup timer. These
services depend on the Real Time Clock Architectural Protocol.

Reset Services: Provides services to shut down or reset the platform. These services depend
on the Reset Architectural Protocol.

Status Code Services: Provides services to send status codes to a system log or a status code
reporting device. These services depend on the Status Code Architectural Protocol.

Virtual Memory Services: Provides services that allow the runtime DXE components to be
converted from a physical memory map to a virtual memory map. These services can only be
called once in physical mode. Once the physical to virtual conversion has been performed,
these services cannot be called again. These services depend on the Runtime Architectural
Protocol.

DXE Services Table

The following is a brief summary of the services that are available through the DXE Services
Table:

Global Coherency Domain Services: Provides services to manage I/O resources, memory-
mapped I/O resources, and system memory resources in the platform. These services are
used to dynamically add and remove these resources from the processor’s Global Coherency
Domain (GCD).

DXE Dispatcher Services: Provides services to manage DXE drivers that are being
dispatched by the DXE Dispatcher.

Global Coherency Domain Services

The Global Coherency Domain (GCD) Services are used to manage the memory and I/O
resources visible to the boot processor. These resources are managed in two different maps:

B GCD memory space map

B GCD /O space map

If memory or I/O resources are added, removed, allocated, or freed, then the GCD memory space
map and GCD I/O space map are updated. GCD Services are also provided to retrieve the
contents of these two resource maps.

The GCD Services can be broken up into two groups. The first manages the memory
resources visible to the boot processor, and the second manages the I/O resources visible to the
boot processor. Not all processor types support I/O resources, so the management of I/O
resources may not be required. However, since system memory resources and memory-mapped I/
O resources are required to execute the DXE environment, the management of memory resources
is always required.

GCD Memory Resources

The Global Coherency Domain (GCD) Services used to manage memory resources include the
following:
AddMemorySpace ()

AllocateMemorySpace ()
FreeMemorySpace ()
RemoveMemorySpace ()
SetMemorySpaceAttributes ()

The GCD Services used to retrieve the GCD memory space map include the following;
B GetMemorySpaceDescriptor ()

B CetMemorySpaceMap ()

The GCD memory space map is initialized from the HOB list that is passed to the entry point of
the DXE Core. One HOB type describes the number of address lines that are used to access
memory resources. This information is used to initialize the state of the GCD memory space map.
Any memory regions outside this initial region are unavailable to any of the GCD Services that
are used to manage memory resources. The GCD memory space map is designed to describe the
memory address space with as many as 64 address lines. Each region in the GCD memory space
map can begin and end on a byte boundary. Additional HOB types describe the location of system
memory, the location memory mapped I/O, the location of firmware devices, the location of
firmware volumes, the location of reserved regions, and the location of system memory regions
that were allocated prior to the execution of the DXE Core. The DXE Core must parse the

contents of the HOB list to guarantee that memory regions reserved prior to the execution of the
DXE Core are honored. As a result, the GCD memory space map must reflect the memory regions
described in the HOB list. The GCD memory space map provides the DXE Core with the
information required to initialize the memory services such as AllocatePages(), FreePages(),
AllocatePool(), FreePool(), and GetMemoryMap().

A memory region described by the GCD memory space map can be in one of several different
states:

B Nonexistent memory

B System memory

B Memory-mapped I/O

B Reserved memory

These memory regions can be allocated and freed by DXE drivers executing in the DXE
environment. In addition, a DXE driver can attempt to adjust the caching attributes of a memory
region. Figure 8.6 shows the possible state transitions for each byte of memory in the GCD
memory space map. The transitions are labeled with the GCD Service that can move the byte
from one state to another. The GCD services are required to merge similar memory regions that
are adjacent to each other into a single memory descriptor, which reduces the number of entries in
the GCD memory space map.

Setattributes

Allocated
MMIO

Allocate

Setattributes SetAttributes

Allocated

Allocate

SetAttributes

Allocated

Allocate

Free
SetAttributes

Setattributes

[Operation GCD Service
Add AddhemorySpace(
Remave RemoveMernoySpaceq)
Allocate AllocateMemorySpace()
Free Fr m

SelAlfibules | SellemoryopaceARrbules

Allocated
Non Existent

Figure 8.6: GCD Memory State Transitions

GCD I/O Resources

The Global Coherency Domain (GCD) Services used to manage I/O resources include the

following:

B AddIoSpace()

B A~AllocateIoSpace()
B FreelIoSpace()

B RemovelIoSpace()

The GCD Services used to retrieve the GCD I/O space map include the following;
B GetIoSpaceDescriptor ()

B GetIoSpaceMap ()

The GCD I/O space map is initialized from the HOB list that is passed to the entry point of the
DXE Core. One HOB type describes the number of address lines that are used to access I/O
resources. This information is used to initialize the state of the GCD I/O space map. Any I/O
regions outside this initial region are not available to any of the GCD Services that are used to
manage I/O resources. The GCD I/O space map is designed to describe the I/O address space
with as many as 64 address lines. Each region in the GCD I/O space map can begin and end on a
byte boundary.

An I/O region described by the GCD I/O space map can be in several different states. These
include nonexistent I/O, I/0, and reserved I/O. These I/O regions can be allocated and freed by
DXE drivers executing in the DXE environment. Figure 8.7 shows the possible state transitions
for each byte of I/O in the GCD I/O space map. The transitions are labeled with the GCD Service
that can move the byte from one state to another. The GCD Services are required to merge similar
I/O regions that are adjacent to each other into a single I/O descriptor, which reduces the number
of entries in the GCD I/O space map.

Allocate

Allocated
Reserved

Allocated
o

Aliocate

Allocated

Non Existent

Operation | GCD Service
Add AddioSpace(
Remove RemoveloSpacel
Allocate AllocateloSpace(
Free EreeloSiaced

Figure 8.7: GCD I/O State Transitions

DXE Dispatcher

After the DXE Core is initialized, control is handed to the DXE Dispatcher. The DXE Dispatcher
is responsible for loading and invoking DXE drivers found in firmware volumes. The DXE
Dispatcher searches for drivers in the firmware volumes described by the HOB list. As execution
continues, other firmware volumes might be located. When they are, the DXE Dispatcher searches
them for drivers as well.

When a new firmware volume is discovered, a search is made for its a priori file. The a
priori file has a fixed file name and contains the list of DXE drivers that should be loaded and
executed first. There can be at most one a priori file per firmware volume, although it is
acceptable to have no a priori file at all. Once the DXE drivers from the a priori file have been
loaded and executed, the dependency expressions of the remaining DXE drivers in the firmware
volumes are evaluated to determine the order in which they will be loaded and executed. The a
priori file provides a strongly ordered list of DXE drivers that are not required to use
dependency expressions. The dependency expressions provide a weakly ordered execution of the
remaining DXE drivers. Before each DXE driver is executed, it must be authenticated with the
Security Architectural Protocol. This authentication prevents DXE drivers with unknown origins
from being executed.

Control is transferred from the DXE Dispatcher to the BDS Architectural Protocol after the
DXE drivers in the a priori file and all the DXE drivers whose dependency expressions evaluate
to TRUE have been loaded and executed. The BDS Architectural Protocol is responsible for
establishing the console devices and attempting the boot of operating systems. As the console
devices are established and access to boot devices is established, additional firmware volumes
may be discovered. If the BDS Architectural Protocol is unable to start a console device or gain
access to a boot device, it reinvokes the DXE Dispatcher. This invocation allows the DXE
Dispatcher to load and execute DXE drivers from firmware volumes that have been discovered
since the last time the DXE Dispatcher was invoked. Once the DXE Dispatcher has loaded and
executed all the DXE drivers it can, control is once again returned to the BDS Architectural
Protocol to continue the OS boot process. Figure 8.8 illustrates this basic flow between the
Dispatcher, its launched drivers, and the BDS.

HOB List

DXE Drivers

Flrmmwass Volams
Protocol driver

SN
FITware Yolime Bl
Prodocol driver

: BDS
| Fl:hﬁ;mrm : O/S Loader

| Driver Execution Environment (DXE) |Boot Device Selection (BDS)‘

Platform Initialization 0/S Boot

Figure 8.8: The Handshake between the Dispatcher and Other Components

The a priori File

The a priori file is a special file that may be present in a firmware volume. The rule is that there
may be at most one a priori file per firmware volume present in a platform. The a priori file has a
known GUID file name, so the DXE Dispatcher can always find the a priori file. Every time the
DXE Dispatcher discovers a firmware volume, it first looks for the a priori file. The a priori file
contains the list of DXE drivers that should be loaded and executed before any other DXE drivers
are discovered. The DXE drivers listed in the a priori file are executed in the order that they
appear. If any of those DXE drivers have an associated dependency expression, then those
dependency expressions are ignored.

The purpose of the a priori file is to provide a deterministic execution order of DXE drivers.
DXE drivers that are executed solely based on their dependency expression are weakly ordered,
which means that the execution order is not completely deterministic between boots or between
platforms. Some cases, however, require a deterministic execution order. One example would be
to list the DXE drivers that are required to debug the rest of the DXE phase in the a priori file.
These DXE drivers that provide debug services might have been loaded much later if only their
dependency expressions were considered. By loading them earlier, more of the DXE Core and
DXE drivers can be debugged. Another example is to use the a priori file to eliminate the need
for dependency expressions. Some embedded platforms may require only a few DXE drivers
with a highly deterministic execution order. The a priori file can provide this ordering, and none
of the DXE drivers would require dependency expressions. The dependency expressions do have
some amount of firmware device overhead, so this method might actually conserve firmware
space. The main purpose of the a priori file is to provide a greater degree of flexibility in the
firmware design of a platform.

Dependency Grammar

A DXE driver is stored in a firmware volume as a file with one or more sections. One of the
sections must be a PE/COFF image. If a DXE driver has a dependency expression, then it is
stored in a dependency section. A DXE driver may contain additional sections for compression
and security wrappers. The DXE Dispatcher can identify the DXE drivers by their file type. In
addition, the DXE Dispatcher can look up the dependency expression for a DXE driver by
looking for a dependency section in a DXE driver file. The dependency section contains a section
header followed by the actual dependency expression that is composed of a packed byte stream of
opcodes and operands.

Dependency expressions stored in dependency sections are designed to be small to conserve
space. In addition, they are designed to be simple and quick to evaluate to reduce execution
overhead. These two goals are met by designing a small, stackbased instruction set to encode the
dependency expressions. The DXE Dispatcher must implement an interpreter for this instruction
set to evaluate dependency expressions. Table 8.1 gives a summary of the supported opcodes in
the dependency expression instruction set.

Table 8.1: Supported Opcodes in the Dependency Expression Instruction Set

Opcode Description

0x00 BEFORE <File Name GUID>
0x01 AFTER <File Name GUID>
0x02 PUSH <Protocol GUID>
0x03 AND

0x04 OR

0x05 NOT

0x06 TRUE

0x07 FALSE

0x08 END

0x09 SOR

Because multiple dependency expressions may evaluate to TRUE at the same time, the order in
which the DXE drivers are loaded and executed may vary between boots and between platforms
even though the contents of their firmware volumes are identical. This variation is why the
ordering is weak for the execution of DXE drivers in a platform when dependency expressions
are used.

DXE Drivers

DXE drivers have two subclasses:
B DXE drivers that execute very early in the DXE phase
B DXE drivers that comply with the UEFI Driver Model

The execution order of the first subclass, the early DXE drivers, depends on the presence and
contents of an a priori file and the evaluation of dependency expressions. These early DXE
drivers typically contain processor, chipset, and platform initialization code. They also typically
produce the DXE Architectural Protocols that are required for the DXE Core to produce its full
complement of EFI Boot Services and EFI Runtime Services. To support the fastest possible boot
time, as much initialization as possible should be deferred to the second subclass of DXE drivers,
those that comply with the UEFI Driver Model.

The DXE drivers that comply with the UEFI Driver Model do not perform any hardware
initialization when they are executed by the DXE Dispatcher. Instead, they register a Driver
Binding Protocol interface in the handle database. The set of Driver Binding Protocols are used
by the BDS phase to connect the drivers to the devices required to establish consoles and provide
access to boot devices. The DXE Drivers that comply with the UEFI Driver Model ultimately
provide software abstractions for console devices and boot devices but only when they are
explicitly asked to do so.

All DXE drivers may consume the EFI Boot Services and EFI Runtime Services to perform
their functions. However, the early DXE drivers need to be aware that not all of these services
may be available when they execute because not all of the DXE Architectural Protocols might
have been registered yet. DXE drivers must use dependency expressions to guarantee that the
services and protocol interfaces they require are available before they are executed.

The DXE drivers that comply with the UEFI Driver Model do not need to be concerned with
this possibility. These drivers simply register the Driver Binding Protocol in the handle database
when they are executed. This operation can be performed without the use of any DXE
Architectural Protocols. The BDS phase will not be entered until all of the DXE Architectural
Protocols are registered. If the DXE Dispatcher does not have any more DXE drivers to execute
but not all of the DXE Architectural Protocols have been registered, then a fatal error has
occurred and the system will be halted.

Boot Device Selection (BDS) Phase

The Boot Device Selection (BDS) Architectural Protocol executes during the BDS phase. The
BDS Architectural Protocol is discovered in the DXE phase, and it is executed when two
conditions are met:

B All of the DXE Architectural Protocols have been registered in the handle database. This
condition is required for the DXE Core to produce the full complement of EFI Boot Services
and EFI Runtime Services.

B The DXE Dispatcher does not have any more DXE drivers to load and execute. This
condition occurs only when all the a priori files from all the firmware volumes have been
processed and all the DXE drivers whose dependency expression have evaluated to TRUE
have been loaded and executed.

The BDS Architectural Protocol locates and loads various applications that execute in the pre-
boot services environment. Such applications might represent a traditional OS boot loader or
extended services that might run instead of or prior to loading the final OS. Such extended pre-
boot services might include setup configuration, extended diagnostics, flash update support, OEM
services, or the OS boot code.

Vendors such as IBVs, OEMs, and ISVs may choose to use a reference implementation,
develop their own implementation based on the reference, or develop an implementation from
scratch.

The BDS phase performs a well-defined set of tasks. The user interface and user interaction that

occurs on different boots and different platforms may vary, but the boot policy that the BDS phase

follows is very rigid. This boot policy is required so OS installations will behave predictably

from platform to platform. The tasks include the following:

B Initialize console devices based on the ConIn, ConOut, and StdErr environment variables

B Attempt to load all drivers listed in the Driver#### and DriverOrder environment
variables.

B Attempt to boot from the boot selections listed in the Boot#### and BootOrder environment
variables.

If the BDS phase is unable to connect a console device, load a driver, or boot a boot selection, it
is required to reinvoke the DXE Dispatcher. This invocation is required because additional
firmware volumes may have been discovered while attempting to perform these operations. These
additional firmware volumes may contain the DXE drivers required to manage the console
devices or boot devices. Once all of the DXE drivers have been dispatched from any newly
discovered firmware volumes, control is returned to the BDS phase. If the BDS phase is unable to
make any additional forward progress in connecting the console device or the boot device, then
the connection of that console device or boot selection fails. When a failure occurs, the BDS
phase moves on to the next console device, driver load, or boot selection.

Console Devices

Console devices are abstracted through the Simple Text Output and Simple Input Protocols. Any

device that produces one or both of these protocols may be used as a console device on a UEFI-

based platform. Several types of devices are capable of producing these protocols, including the
following:

B VGA Adapters: These adapters can produce a text-based display that is abstracted with the
Simple Text Output Protocol.

B Video Adapters: These adapters can produce a Graphics Output Protocol (GOP) which is a
graphical interface that supports Block Transfer (BLT) operations. A text-based display that
produces the Simple Text Output Protocol can be simulated on top of a GOP display by using
BLT operations to send Unicode glyphs into the frame buffer. GOP is also the means by
which graphics is typically rendered to the local video device.

B Serial Terminal: A serial terminal device can produce both the Simple Input and Simple Text
Output Protocols. Serial terminals are very flexible, and they can support a variety of wire
protocols such as PC ANSI, VI-100, VI-100+, and VTUTFS8.

B Telnet: A telnet session can produce both the Simple Input and Simple Text Output
Protocols. Like the serial terminal, a variety of wire protocols can be supported including
PC ANS], VI-100, VI-100+, and VTUTF8

B Remote Graphical Displays (HTTP): A remote graphical display can produce both the
Simple Input and Simple Text Output Protocols. One possible implementation could use
HTTP, so standard Internet browsers could be used to manage a UEFI-based platform.

Boot Devices

Several types of boot devices are supported in UEFT:

Devices that produce the Block I/ O Protocol and are formatted with a FAT file system
Devices that directly produce the File System Protocol

Devices that directly produce the Load File Protocol

Disk devices typically produce the Block I/ O Protocol, and network devices typically
produce the Load File Protocol.

A UEFI implementation may also choose to include legacy compatibility drivers. These drivers
provide the services required to boot a traditional OS, and the BDS phase could then also support
booting a traditional OS.

Boot Services Terminate

The BDS phase is terminated when an OS loader is executed and an OS is successfully booted.
An OS loader or an OS kernel may call a single service called Exit-BootServices() to
terminate the BDS phase. Once this call is made, all of the boot service components are freed and
their resources are available for use by the OS. When the call to ExitBootServices() returns,
the Runtime (RT) phase has been entered.

Summary

In conclusion, the DXE phase encompasses the establishing of the entire infrastructure necessary
for UEFI compliant components to operate. This includes the establishment of the service tables
and other requisite architectural protocols. As the DXE phase completes and passes control to the
BDS, the platform then proceeds to complete any initialization required to launch of boot target.

Chapter 9 — Some Common UEFI and PI Functions

Never let the future disturb you. You will meet it, if you have to, with the same weapons of reason which today arm you against
the present.

—Marcus Aurelius Antoninus

UEFI provides a variety of functions that are used for drivers and applications to communication
with the underlying UEFI components. Many of the designs for interfaces have historically been
short-sighted due to their inability to predict changes in technology. An example of such
shortsightedness might be where a disk interface assumed that a disk might never have more than
8 gigabytes of space available. It is often hard to predict what changes technology might provide.
Many famous statements have been made that fret about how a personal computer might never be
practical, or assure readers that 640 kilobytes of memory would be more than anyone would ever
need. With these poor past predictions in mind, one can attempt to learn from such mistakes and
design interfaces that are robust enough for common practices today, and make the best attempt at
predicting how one might use these interfaces years from today.

This chapter describes a selection of common interfaces that show up in UEFI as well as the PI

specifications:

B Architectural Protocols: These are a set of protocols that abstract the platform hardware
from the UEFI drivers and applications. They are unusual only in that they are the protocols
that are going to be used by the UEFI compatible firmware implementation. These protocols
in their current form were introduced into the PI specifications.

B PCI Protocols: These protocols abstract all aspects of interaction with the underlying PCI
bus, enumeration of said bus, as well as resource allocation. These interfaces were
introduced for UEFI, and would be present in both UEFI and PI implementations.

B Block I/0: This protocol is used to abstract mass storage devices to allow code running in
the EFI Boot Services environment to access them without specific knowledge of the type of
device or controller that manages the device. This interface was introduced for UEFI, and
would be present in both UEFI and PI implementations.

B Disk I/0O: This protocol is used to abstract the block accesses of the Block I/O protocol to a
more general offset-length protocol. The firmware is responsible for adding this protocol to
any Block I/O interface that appears in the system that does not already have a Disk I/O
protocol. File systems and other disk access code utilize the Disk I/O protocol. This
interface was introduced for UEFI, and would be present in both UEFI and PI
implementations.

B Simple File System: This protocol allows code running in the EFI Boot Services
environment to obtain file-based access to a device. The Simple File System protocol is
used to open a device volume and return an EFI_FILE handle that provides interfaces to
access files on a device volume. This interface was introduced for UEFI, and would be
present in both UEFI and PI implementations.

Architectural Protocol Examples

A variety of architectural protocols exist in the platform. These protocols function just like other
protocols in every way. The only difference is that these protocols are consumed by the
platform’s core services and the remainder of the drivers and applications in turn call these core
services to act on the platform in various ways. Generally, the only users of the architectural
protocols are the core services themselves. The architectural protocols abstract the hardware and
are the only agents in the system that would typically talk directly to the hardware in the pre-boot
environment. Everything else in the system would communicate with a core service to
communicate any sort of requests to the hardware. Figure 9.1 illustrates this high-level software
handshake.

.2

Core Services DXE
Applications

|Architectural Protoools}A/.

Boot Device
Driver Execution Environment (DXE) Selection
(BDS)

Figure 9.1: Platform Software Flow Diagram

To show more clearly how some of these architectural protocols are designed and how they
operate, several key examples will be examined in further detail. Note that the following
examples are not the full set of architectural protocols but are used to illustrate some of their
functionality. For the full set, please refer to the appropriate DXE specifications.

CPU Architectural Protocol

The CPU Architectural Protocol is used to abstract processor-specific functions from the DXE
Foundation. This includes flushing caches, enabling and disabling interrupts, hooking interrupt
vectors and exception vectors, reading internal processor timers, resetting the processor, and
determining the processor frequency. This protocol must be produced by a boot service or
runtime DXE driver and may only be consumed by the DXE Foundation and DXE drivers that

produce architectural protocols. By allowing this protocol to be produced by a boot service
driver, it is evident that this abstraction will not persist when the platform has the boot services
terminated by launching a boot target such as an operating system.

The GCD memory space map is initialized by the DXE Foundation based on the contents of
the HOB list. The HOB list contains the capabilities of the different memory regions, but it does
not contain their current attributes. The DXE driver that produces the CPU Architectural Protocol
is responsible for maintaining the current attributes of the memory regions visible to the
processor.

This means that the DXE driver that produces the CPU Architectural Protocol must seed the
GCD memory space map with the initial state of the attributes for all the memory regions visible
to the processor. The DXE Service SetMemorySpaceAttributes() allows the attributes of a
memory range to be modified. The Set-MemorySpaceAttributes() DXE Service is implemented
using the SetMemoryAttributes() service of the CPU Architectural Protocol.

To initialize the state of the attributes in the GCD memory space map, the DXE driver that
produces the CPU Architectural Protocol must call the DXE Service Set-
MemorySpaceAttributes() for all the different memory regions visible to the processor passing in
the current attributes. This, in turn, will call back to the SetMemoryAttributes() service of the
CPU Architectural Protocol, and all of these calls must return EFI_SUCCESS, since the DXE
Foundation is only requesting that the attributes of the memory region be set to their current
settings. This forces the current attributes in the GCD memory space map to be set to these current
settings. After this initialization is complete, the next call to the DXE Service
GetMemorySpaceMap() will correctly show the current attributes of all the memory regions. In
addition, any future calls to the DXE Service SetMemorySpaceAttributes() will in turn call the
CPU Architectural Protocol to see if those attributes can be modified, and if they can, the GCD
memory space map will be updated accordingly.

The CPU Architectural Protocol uses the following protocol definition:

Protocol Interface Structure

typedef struct EFI CPU ARCH PROTOCOL f{

EFI CPU FLUSH DATA CACHE FlushDataCache;

ki1 CPU ENABLE INTERRUPT EnablelInterrupt;

EFI_CPU DISABLE INTERRUPT DisableInterrupt;

EFI CPU GET INTERRUPT STATE GetInterruptState;

EFT CPU INIT Init;

EFI CPU REGISTER INTERRUPT HANDLER RegisterInterruptHandler;
Bl CEU GrI TIMER VALUE GetTimerValue;

EFI CPU SET MEMORY ATTRIBUTES SetMemoryAttributes;
UINT32 NumberOfTimers:;

UINT32 DmaBufferAlignment;

EFTI CPU ARCH PROTOCOL;

FlushDataCache - Flushes a range of the processor’s data cache. If the processor does not
contain a data cache, or the data cache is fully coherent, then this function can just return
EFI_SUCCESS. If the processor does not support flushing a range of addresses from the data
cache, then the entire data cache must be flushed. This function is used by the root bridge /'O
abstractions to flush data caches for DMA operations.

Enablelnterrupt - Enables interrupt processing by the processor. See the Enable-Interrupt()
function description. This function is used by the Boot Service RaiseTPL() and
RestoreTPL().

Disablelnterrupt - Disables interrupt processing by the processor. See the Disable-
Interrupt() function description. This function is used by the Boot Service RaiseTPL()
andRestoreTPL().

GetInterruptState - Retrieves the processor’s current interrupt state.

Init - Generates an INIT on the processor. This function may be used by the Reset
Architectural Protocol depending upon a specified boot path. If a processor cannot
programmatically generate an INIT without help from external hardware, then this function
returns EFI_UNSUPPORTED.

RegisterInterruptHandler - Associates an interrupt service routine with one of the
processor’s interrupt vectors. This function is typically used by the
EFI_TIMER_ARCH_PROTOCOL to hook the timer interrupt in a system. It can also be used
by the debugger to hook exception vectors.

GetTimerValue - Returns the value of one of the processor’s internal timers.
SetMemoryAttributes - Attempts to set the attributes of a memory region.

NumberOfTimers — Gives the number of timers that are available in a processor. The value
in this field is a constant that must not be modified after the CPU Architectural Protocol is
installed. All consumers must treat this as a read-only field.

DmaBufferAlignment — Gives the size, in bytes, of the alignment required for DMA buffer
allocations. This is typically the size of the largest data cache line in the platform. This value
can be determined by looking at the data cache line sizes of all the caches present in the
platform, and returning the largest. This is used by the root bridge I/O abstraction protocols
to guarantee that no two DMA buffers ever share the same cache line. The value in this field
is a constant that must not be modified after the CPU Architectural Protocol is installed. All
consumers must treat this as a read-only field.

Real Time Clock Architectural Protocol

The Real Time Clock Architectural Protocol provides the services required to access a system’s
real time clock hardware. This protocol must be produced by a runtime DXE driver and may only
be consumed by the DXE Foundation.

The DXE driver that produces this protocol must be a runtime driver. This driver is

responsible for initializing the GetTime(), SetTime(), GetWakeupTime(), and SetWakeupTime()
fields of the EFI Runtime Services Table. See the section “Time Services” in Chapter 5 for
details on these services. After the four fields of the EFI Runtime Services Table have been
initialized, the driver must install the Real Time Clock Architectural Protocol on a new handle
with a NULL interface pointer. The installation of this protocol informs the DXE Foundation that

the real time clock-related services are now available and that the DXE Foundation must update
the 32-bit CRC of the EFI Runtime Services Table.

Timer Architectural Protocol

The Timer Architectural Protocol provides the services to initialize a periodic timer interrupt and
to register a handler that is called each time the timer interrupt fires. It may also provide a service
to adjust the rate of the periodic timer interrupt. When a timer interrupt occurs, the handler is
passed the amount of time that has passed since the previous timer interrupt. This protocol
enables the use of the SetTimer() Boot Service. This protocol must be produced by a boot service
or runtime DXE driver and may only be consumed by the DXE Foundation or DXE drivers that
produce other DXE Architectural Protocols. By allowing this protocol to be produced by a boot
service driver, it is evident that this abstraction will not persist when the platform has the boot
services terminated by launching a boot target, such as an operating system.

Protocol Interface Structure

typedef struct EFI TIMER ARCH PROTOCOL ({

EFI_TIMER REGISTER HANDLER RegisterHandler;
EFT_TIMER SET TIMER PERIOD SetTimerPeriod;
EFI_TIMER GET TIMER PERIOD GetTimerPeriod;

EFI_TIMER_GENERATE_@DFT_INTERRUPT
GenerateSoftInterrupt;
} EFI TIMER ARCH PROTOCOL;

B RegisterHandler - Registers a handler that is called each time the timer interrupt fires.
TimerPeriod defines the minimum time between timer interrupts, so TimerPeriod is also the
minimum time between calls to the registered handler.

B SetTimerPeriod - Sets the period of the timer interrupt in 100 nanosecond units. This

function is optional and may return EFI_UNSUPPORTED. If this function is supported, then

the timer period is rounded up to the nearest supported timer period.

GetTimerPeriod - Retrieves the period of the timer interrupt in 100 nanosecond units.

GenerateSoftinterrupt - Generates a soft timer interrupt that simulates the firing of the timer

interrupt. This service can be used to invoke the registered handler if the timer interrupt has

been masked for a period of time.

Reset Architectural Protocol

The Reset Architectural Protocol provides the service required to reset a platform. This protocol
must be produced by a runtime DXE driver and may only be consumed by the DXE Foundation.
This driver is responsible for initializing the ResetSystem() field of the EFI Runtime Services
Table. After this field of the EFI Runtime Services Table has been initialized, the driver must
install the Reset Architectural Protocol on a new handle with a NULL interface pointer. The
installation of this protocol informs the DXE Foundation that the reset system service is now
available and that the DXE Foundation must update the 32-bit CRC of the EFI Runtime Services

Table.

Boot Device Selection Architectural Protocol

The Boot Device Selection (BDS) Architectural Protocol transfers control from DXE to an
operating system or a system utility, as illustrated in Figure 9.2. This protocol must be produced
by a boot service or runtime DXE driver and may only be consumed by the DXE Foundation. By
allowing this protocol to be produced by a boot service driver, it is evident that this abstraction
will not persist when the platform has the boot services terminated by launching a boot target such
as an operating system.

If not enough drivers have been initialized when this protocol is used to access the required
boot device(s), then this protocol should add drivers to the dispatch queue and return control back
to the dispatcher. Once the required boot devices are available, then the boot device can be used
to load and invoke an OS or a system utility.

0s
Booted

/u/Failure

Operation

Retry

Failure

handed off
to operating
system loader
Standard Drivers and Boot from
firmware applications ordered list
platform loaded of EFl operating
initialization iteratively system loaders

Figure 9.2: Basic Dispatch and BDS Software Flow

Protocol Interface Structure

typedef struct EFI BDS ARCH PROTOCOL (
EFI_BDS ENTRY Entry;
} EFI_BDS ARCH PROTOCOL;

B Entry - The entry point to BDS. See the Entry() function description. This call does not take
any parameters, and the return value can be ignored. If it returns, then the dispatcher must be
invoked again, if it never returns, then an operating system or a system utility have been

invoked.

Variable Architectural Protocol

The Variable Architectural Protocol provides the services required to get and set environment
variables. This protocol must be produced by a runtime DXE driver and may be consumed only
by the DXE Foundation. This driver is responsible for initializing the GetVariable(),
GetNextVariableName(), and SetVariable() fields of the EFI Runtime Services Table. See the
section “Variable Services” in Chapter 5 for details on these services. After the three fields of the
EFI Runtime Services Table have been initialized, the driver must install the Variable
Architectural Protocol on a new handle with a NULL interface pointer. The installation of this
protocol informs the DXE Foundation that the read-only and the volatile environment variable
related services are now available and that the DXE Foundation must update the 32-bit CRC of
the EFI Runtime Services Table. The full complement of environment variable services is not
available until both this protocol and Variable Write Architectural Protocol are installed. DXE
drivers that require read-only access or read/write access to volatile environment variables must
have this architectural protocol in their dependency expressions. DXE drivers that require write
access to nonvolatile environment variables must have the Variable Write Architectural Protocol
in their dependency expressions.

Watchdog Timer Architectural Protocol

The Watchdog Timer Architectural Protocol is used to program the watchdog timer and optionally
register a handler when the watchdog timer fires. This protocol must be produced by a boot
service or runtime DXE driver and may be consumed only by the DXE Foundation or DXE
drivers that produce other DXE Architectural Protocols. If a platform wishes to perform a
platform-specific action when the watchdog timer expires, then the DXE driver containing the
implementation of the BDS Architectural Protocol should use this protocol's RegisterHandler()
service.

This protocol provides the services required to implement the Boot Service
SetWatchdogTimer(). It provides a service to set the amount of time to wait before firing the
watchdog timer, and it also provides a service to register a handler that is invoked when the
watchdog timer fires. This protocol can implement the watchdog timer by using the event and
timer Boot Services, or it can make use of custom hardware. When the watchdog timer fires,
control will be passed to a handler if a handler has been registered. If no handler has been
registered, or the registered handler returns, then the system will be reset by calling the Runtime
Service ResetSystem().

Protocol Interface Structure

typedef struct EFI WATCHDOG TIMER ARCH PROTOCOL {
EFI WATCHDOG TIMER REGISTER HANDLER RegisterHandler;
EFI_WATCHDOG TIMER SET TIMER PERIOD SetTimerPeriod;
EFI_WATCHDOG_TIMER GET TIMER PERIOD GetTimerPeriod;
} EFI_WATCHDOG TIMER ARCH PROTOCOL;

RegisterHandler - Registers a handler that is invoked when the watchdog timer fires.
SetTimerPeriod - Sets the amount of time in 100 nanosecond units to wait before the
watchdog timer is fired. If this function is supported, then the watchdog timer period is
rounded up to the nearest supported watchdog timer period.

GetTimerPeriod - Retrieves the amount of time in 100 nanosecond units that the system will
wait before the watchdog timer is fired.

PCI Protocols

This section describes a series of protocols that are all related to abstracting various aspects of
PClI related interaction such as resource allocation and I/O.

PCI Host Bridge Resource Allocation Protocol

The PCI Host Bridge Resource Allocation Protocol is used by a PCI bus driver to program a PCI
host bridge. The registers inside a PCI host bridge that control configuration of PCI root buses are
not governed by the PCI specification and vary from chipset to chipset. The PCI Host Bridge
Resource Allocation Protocol implementation is therefore specific to a particular chipset.

Each PCI host bridge is composed of one or more PCI root bridges, and hardware registers
are associated with each PCI root bridge. These registers control the bus, I/O, and memory
resources that are decoded by the PCI root bus that the PCI root bridge produces and all the PCI
buses that are children of that PCI root bus.

The PCI Host Bridge Resource Allocate Protocol allows for future innovation of the chipsets.
It abstracts the PCI bus driver from the chipset details. This design allows system designers to
make changes to the host bridge hardware without impacting a platform independent PCI bus
driver.

Figure 9.3 shows a platform with a set of processors (CPUs) and a set of core chipset
components that produce n host bridges. Most systems with one PCI host bus controller contain a
single instance of the PCI Host Bridge Allocation Protocol. More complex systems may contain
multiple instances of this protocol.

Front Side Bus

|

Core Chipset Component
[Host Bridge 1] [Host Bridge 2] [Host Bridge n|

bl !

Figure 9.3: Example Host Bus Controllers

Figure 9.4 shows how the PCI Host Bridge Resource Allocation Protocol is used to identify the
associated PCI root bridges. After the steps shown in Figure 9.4 are completed, the PCI Host
Bridge Resource Allocation Protocol can then be queried to identify the device handles of the

associated PCI root bridges.

DXE driver produces
PCl Host Bridge
Resource Allocation
Protocol.

I

Protocolis placed on
the device handle
corresponding to the
PCl host bridge.

4

Same driver creates
device handles for all
associated PCl root
bridges.

!

Same driver installs an
instance of the
PCI Root Bridge
I/O Protocol on each
handle.

Figure9.4: Producing the PCI Host Bridge Resource Allocation Protocol

Sample Desktop System with One PCI Root Bridge

Figure 9.5 shows an example of a PCI host bus with one PCI root bridge. This PCI root bridge
produces one PCI local bus that can contain PCI devices on the motherboard and/ or PCI slots.
This setup would be typical of a desktop system. In this system, the PCI root bridge needs
minimal setup. Typically, the PCI root bridge decodes the following:

B The entire bus range on Segment 0

B The entire I/ O space of the processor

B All the memory above the top of system memory

The firmware for this platform would produce the following:
B One instance of the PCI Host Bridge Resource Allocation Protocol
B One instance of PCI Root Bridge 1/0 Protocol

Core Chipset Components

Figure 9.5: Desktop System with One PCI Root Bridge

Sample Server System with Four PCI Root Bridges

Figure 9.6 shows an example of a larger server with one PCI host Bus with four PCI root bridges
(RBs). The PCI devices that are attached to the PCI root bridges are all part of the same
coherency domain, which means they share the following:

B A common PCII/O space

B A common PCI memory space

B A common PCI pre-fetchable memory space

As a result, each PCI root bridge must get resources out of a common pool. Each PCI root bridge
produces one PCI local bus that can contain PCI devices on the motherboard or PCI slots. The
firmware for this platform would produce the following:

B One instance of the PCI Host Bridge Resource Allocation Protocol

B Four instances of the PCI Root Bridge I/ O Protocol

Core Chipset Components

Figure 9.6: Server System with Four PCI Root Bridges

Sample Server System with 2 PCI Segments

Figure 9.7 shows an example of a server with one PCI host bus and two PCI root bridges (RBs).
Each of these PCI root bridges is on a different PCI segment, which allows the system to have up
to 512 PCI buses. A single PCI segment is limited to 256 PCI buses. These two segments do not
share the same PCI configuration space, but they do share the following, which is why they can be
described with a single PCI host bus:

B A common PCII/O space

B A common PCI memory space

B A common PCI pre-fetchable memory space

The firmware for this platform would produce the following:
B One instance of the PCI Host Bridge Resource Allocation Protocol
B Two instances of the PCI Root Bridge I/O Protocol

Core Chipset Components

PCI Host Bridge

PCl Segment0 PCI Segment 1

Figure 9.7: Server System with 2 PCI Segments

Core Chipset Components

PCl Host Bus 0 PC| Host Bus 1

PCl

PCI Segment 1

Figure 9.8: Sample Server System with Two PCI Host Buses

Figure 9.8 shows a server system with two PCI host buses and one PCI root bridge (RB) per PCI
host bus. Like the server system with 2 PCI segments, this system supports up to 512 PCI buses,

but the following resources are not shared between the two PCI root bridges:
B PCIIO space

B PCImemory space

B PCI pre-fetchable memory space

The firmware for this platform would produce the following:
B Two instances of the PCI Host Bridge Resource Allocation Protocol
B Two instances of the PCI Root Bridge I/O Protocol

PCI Root Bridge I/0

The interfaces provided in the PCI Root Bridge I/O Protocol are for performing basic operations
to memory, I/O, and PCI configuration space. The system provides abstracted access to basic
system resources to allow a driver to have a programmatic method to access these basic system
resources.

The PCI Root Bridge I/0O Protocol allows for future innovation of the platform. It abstracts
device-specific code from the system memory map. This allows system designers to make
changes to the system memory map without impacting platform-independent code that is
consuming basic system resources.

PCI Root Bridge I/0 Protocol instances are either produced by the system firmware or by an
UEFTI driver. When a PCI Root Bridge I/O Protocol is produced, it is placed on a device handle
along with an EFI Device Path Protocol instance. The PCI Root Bridge I/O Protocol does not
abstract access to the chipset-specific registers that are used to manage a PCI Root Bridge. This
functionality is hidden within the system firmware or the UEFI driver that produces the handles
that represent the PCI Root Bridges.

Protocol Interface Structure

typedef struct EFI PCI ROOT BRIDGE IO PROTOCOL {

EFI HANDLE B -
ParentHandle;

EFI_PCI_ROOT BRIDGE IO PROTOCOL POLL IO MEM
PollMem;

EFI PCI ROOT BRIDGE IO PROTOCOL POLL IO MEM
Polllo;

EFI_PCI ROOT BRIDGE IO PROTOCOL ACCESS

EFI PCI ROOT BRIDGE IO PROTOCOL ACCESS

EFI PCI ROOT BRIDGE IO PROTOCOL ACCESS

EFI_PCI_ROOT BRIDGE IO PROTOCOL COPY MEM
CopyMem;

EFI_PCI ROOT BRIDGE IO PROTOCOL MAP

EFI PCI ROOT BRIDGE IO PROTOCOL UNMAP

EFI PCI ROOT BRIDGE I0 PROTOCOL ALLOCATE BUFFER
AllocateBuffer; - B N

EFI PCI ROOT BRIDGE IO PROTOCOL FREE BUFFER
FreeBuffer; B - - B

EFI_PCI_ROOT BRIDGE IO PROTOCOL FLUSH

EFI PCI ROOT BRIDGE IO PROTOCOL GET ATTRIBUTES
GetAttributes; - B B

EFI PCI ROOT BRIDGE 10 PROTOCOL SET ATTRIBUTES
SetAttributes; - B B

EFI PCI ROOT BRIDGE IO PROTOCOL CONFIGURATION
Configuration;

UINT32
SegmentNumber;
} EFI PCI ROOT BRIDGE IO PROTOCOL;

Mem;
10;
Pci;

Map:;
Unmap;

Flush;

B ParentHandle — Gives the EFI_HANDLE of the PCI Host Bridge of which this PCI Root

Bridge is a member.
timeout occurs.
Mem - Allows reads and writes for memory mapped I/O space.

Io - Allows reads and writes for I/O space.
Pci - Allows reads and writes for PCI configuration space.

region of PCI root bridge memory space.

PollMem - Polls an address in memory mapped I/O space until an exit condition is met, or a

Polllo - Polls an address in I/O space until an exit condition is met, or a timeout occurs.

CopyMem - Allows one region of PCI root bridge memory space to be copied to another

Map - Provides the PCI controller—specific addresses needed to access system memory for
DMA.

Unmap - Releases any resources allocated by Map().

AllocateBuffer - Allocates pages that are suitable for a common buffer mapping.

FreeBuffer — Frees pages that were allocated with AllocateBuffer().

Flush - Flushes all PCI posted write transactions to system memory.

GetAttributes - Gets the attributes that a PCI root bridge supports setting with
SetAttributes(), and the attributes that a PCI root bridge is currently using.

SetAttributes - Sets attributes for a resource range on a PCI root bridge.

Configuration - Gets the current resource settings for this PCI root bridge.

SegmentNumber - The segment number that this PCI root bridge resides.

PCIVO

The interfaces provided in the PCI I/O Protocol are for performing basic operations to memory,
I/O, and PCI configuration space. The system provides abstracted access to basic system
resources to allow a driver to have a programmatic method to access these basic system
resources. The main goal of this protocol is to provide an abstraction that simplifies the writing
of device drivers for PCI devices. This goal is accomplished by providing the following features:

A driver model that does not require the driver to search the PCI busses for devices to
manage. Instead, drivers are provided the location of the device to manage or have the
capability to be notified when a PCI controller is discovered.
A device driver model that abstracts the I/O addresses, Memory addresses, and PCI
Configuration addresses from the PCI device driver. Instead, BAR (Base Address Register)
relative addressing is used for I/O and Memory accesses, and device relative addressing is
used for PCI Configuration accesses. The BAR relative addressing is specified in the PCI
I/O services as a BAR index. A PCI controller may contain a combination of 32-bit and 64-
bit BARs. The BAR index represents the logical BAR number in the standard PCI
configuration header starting from the first BAR. The BAR index does not represent an offset
into the standard PCI Configuration Header because those offsets will vary depending on the
combination and order of 32-bit and 64-bit BARSs.
The Device Path for the PCI device can be obtained from the same device handle that the
PCI I/O Protocol resides.
The PCI Segment, PCI Bus Number, PCI Device Number, and PCI Function Number of the
PCI device if they are required. The general idea is to abstract these details away from the
PCI device driver. However, if these details are required, then they are available.
Details on any nonstandard address decoding that are not covered by the PCI device’s Base
Address Registers.
Access to the PCI Root Bridge I/O Protocol for the PCI Host Bus for which the PCI device
is a member.
A copy of the PCI Option ROM if it is present in system memory.

Functions to perform bus mastering DMA. This includes both packet based DMA and
common buffer DMA.

Protocol Interface Structure
typedef struct EFI PCI IO PROTOCOL {

EFT PCT IO PROTOCOL POLL IO MEM PollMem;
EFI_PCI_ID_PRDTOCOL_PDLL_IO_MEM PolllIo;
EFI_PCI_ IO PROTOCOL_ACCESS Mem;

EFI PCI IO PROTOCOL ACCESS 1a;

EFI PCI IO PROTOCOL CONFIG ACCESS Pci;

EFI _PC I IO PRDTOCOL Bl MEM CopyMem;
EFI PCI IO PROTOCOL MAP Map;
EFI_PCI_ID_PROTOCDL_UNMAP Unmap;

EFI PCI IO PROTOCOL ALLOCATE BUFFER AllocateBuffer;
EFI PCI IO PROTOCOL_FREE BUFFER FreeBuffer;
EFI PCI IO PRDTOCDL FLUSH Flush;
EFI_PC I_ID_PROTOCOL GET LOCATION GetLocation;
EFI PCI IO PROTOCOL ATTRIBUTES Attributes;
EFI PCI I0 PRDTOCOL GET BAR ATTRIBUTES

GetBarAttributes ;

EFI PCI IO PROTOCOL SET BAR ATTRIBUTES

SetBarAttributes;

UINT64 RomSize;
VOID *RomImage;
} EFI_PCI IO PROTOCOL;

B PollMem - Polls an address in PCI memory space until an exit condition is met, or a timeout
occurs.

B Polllo - Polls an address in PCI I/O space until an exit condition is met, or a timeout occurs.

B Mem - Allows BAR relative reads and writes for PCI memory space.

B Jo- Allows BAR relative reads and writes for PCI I/O space.

B Pci- Allows PCI controller relative reads and writes for PCI configuration space.

B CopyMem - Allows one region of PCI memory space to be copied to another region of PCI
memory space.

B Map - Provides the PCI controller—specific address needed to access system memory for
DMA.

B Unmap - Releases any resources allocated by Map().

B AllocateBuffer - Allocates pages that are suitable for a common buffer mapping.

B FreeBuffer - Frees pages that were allocated with AllocateBuffer().

B Flush - Flushes all PCI posted write transactions to system memory.

B GetLocation - Retrieves this PCI controller’s current PCI bus number, device number, and
function number.

B Attributes - Performs an operation on the attributes that this PCI controller supports. The
operations include getting the set of supported attributes, retrieving the current attributes,
setting the current attributes, enabling attributes, and disabling attributes.

B GetBarAttributes - Gets the attributes that this PCI controller supports setting on a BAR

using SetBarAttributes(), and retrieves the list of resource descriptors for a BAR.

B SetBarAttributes - Sets the attributes for a range of a BAR on a PCI controller.

B RomSize — Gives the size, in bytes, of the ROM image.

B Romlmage — Returns a pointer to the in memory copy of the ROM image. The PCI Bus
Driver is responsible for allocating memory for the ROM image, and copying the contents of
the ROM to memory. The contents of this buffer are either from the PCI option ROM that can
be accessed through the ROM BAR of the PCI controller, or from a platform-specific
location. The Attributes() function can be used to determine from which of these two sources
the RomImage buffer was initialized.

Block 1/0

The Block I/0O Protocol is used to abstract mass storage devices to allow code running in the
UEFTI boot services environment to access them without specific knowledge of the type of device
or controller that manages the device. Functions are defined to read and write data at a block
level from mass storage devices as well as to manage such devices in the UEFI boot services
environment.

The Block interface constructs a logical abstraction of the storage device. Figure 9.9 shows
how a typical device that has multiple partitions will have a variety of Block interfaces
constructed on it. For example, a partition that is a logical designation of how a disk might be
apportioned will have a block interface for it. It should be noted that a particular storage device
will have a block interface that has a scope that spans the entire storage device, and the logical
partitions will have a scope that is a subset of the device. For instance, in the example shown in F
igure 9.8, Block I/ O #1 has access to the entire disk, while Block I/ O #2 has its first LBA
starting at the physical location of the partition it is associated with.

Cdlers to the Bodk /O interface will interact with the
davice using Logical Bock Addressing (LBA).

H#1
2 #

BLOCK_lIO
DISK L
P

~

Partition _a_ Partition g

~ e ¥ -
Partition , Pargion

T oty 7771

o parttions

Partition Table A Partition Table
o)

(g

| G

Fig. 9.9: Software Layering of the Storage Device

L Pointers
1o parttions

3

Protocol Interface Structure

typedef struct EFI BLOCK IO PROTOCOL ({

UINTo64 Revision;
EFI BLOCK IO MEDIA *Media;
EE‘IWBLOCKWRESET Reset;

EFI BLOCK READ ReadBlocks;
EFI BLOCK WRITE WriteBlocks;
EFI BLOCK FLUSH FlushBlocks;

} EFI_BLOCK IO PROTOCOL;

— Revision - The revision to which the block IO interface adheres. All future revisions must be
backward compatible. If a future version is not backward compatible it is not the same
GUID.

— Media - A pointer to the EFI_BLOCK_IO_MEDIA data for this device. Type
EFI_BLOCK_IO_MEDIA is defined in the next code sample.

— Reset - Resets the block device hardware.

— ReadBlocks - Reads the requested number of blocks from the device.

— WriteBlocks - Writes the requested number of blocks to the device.

— FlushBlocks - Flushes and cache blocks. This function is optional and only needs to be
supported on block devices that cache writes.

Protocol Interface Structure

typedef struct {

UTHNT 32 MediaId;

BOOLEAN RemovableMedia;
BOOLEAN MediaPresent;
BOOLEAN LogicalPartition;
BOOLEAN ReadOnly;

BOOLEAN WriteCaching;
UINT32 BlockSize;

UINT32 IoAlign;

EFI LBA LastBlock;

} EFI_BLOCK IO MEDIA;

Disk I/0

The Disk I/O protocol is used to abstract the block accesses of the Block I/O protocol to a more
general offset-length protocol. The firmware is responsible for adding this protocol to any Block
I/O interface that appears in the system that does not already have a Disk I/O protocol. File
systems and other disk access code utilize the Disk I/O protocol.

The disk I/O functions allow I/O operations that need not be on the underlying device’s block
boundaries or alignment requirements. This is done by copying the data to/from internal buffers as
needed to provide the proper requests to the block I/O device. Outstanding write buffer data is
flushed by using the Flush() function of the Block I/O protocol on the device handle.

The firmware automatically adds a Disk I/O interface to any Block I/O interface that is produced.
It also adds file system, or logical block I/O, interfaces to any Disk I/O interface that contains any
recognized file system or logical block I/O devices. UEFI compliant firmware must automatically
support the following required formats:

B The UEFI FAT12, FAT16, and FAT32 file system type.

B The legacy master boot record partition block. (The presence of this on any block I/O device
is optional, but if it is present the firmware is responsible for allocating a logical device for
each partition).

The extended partition record partition block.

The EI Torito logical block devices.

The Disk I/O interface provides a very simple interface that allows for a more general
offset-length abstraction of the underlying Block I/O protocol.

Protocol Interface Structure

typedef struct EFI DISK 10 PROTOCOL {

UINTo64 Revision;
EFI_DI SK_READ ReadDisk;
EFI_DISK_WRITE WriteDisk;

} EFI_DISK IO PROTOCOL;

B Revision - The revision to which the disk I/O interface adheres. All future revisions must be
backwards compatible. If a future version is not backwards compatible, it is not the same
GUID.

ReadDisk - Reads data from the disk.

WriteDisk - Writes data to the disk.

Simple File System

The Simple File System protocol allows code running in the UEFI boot services environment to
obtain file-based access to a device. The Simple File System protocol is used to open a device
volume and return an EFI File Handle that provides interfaces to access files on a device volume.
This protocol is a bit different from most, since its use exposes a secondary protocol that will
directly act on the device on top of which the Simple File System was layered. Figure 9.10
illustrates this concept.

Applicati onDnverissues an Cperdume
cammand an this Snde Fle Sgtem
instane. It thenrecaives access tothe

ERA File Araood for this vdume:

I\

The fimaare has layared onio this partition aSinple Rle
Systemn Protocd becauseit was a recognized Rle System S e

BLOCK_lIO

DISK "
r]
Partition A Partition ol ﬁ
e L Patition Partton ! -3
= [5 eee]
to partitions to parttions
Partition Table Pantition Table

Figure 9.10: Simple File System Software Layering

Protocol Interface Structure

typedef struct {
UINT64 Revision;
EFI VOLUME OPEN OpenVolume;
} EFI_SIMPLE FILE SYSTEM PROTOCOL;

B Revision - The version of the EFI Simple File System Protocol. The version specified by
this specification is 0x00010000. All future revisions must be backward compatible. If a
future version is not backward compatible, it is not the same GUID.

B OpenVolume - Opens the volume for file I/O access.

EFI File Protocol

On requesting the file system protocol on a device, the caller gets the instance of the Simple File
System protocol to the volume. This interface is used to open the root directory of the file system
when needed. The caller must Close() the file handle to the root directory and any other opened
file handles before exiting. While open files are on the device, usage of underlying device
protocol(s) that the file system is abstracting must be avoided. For example, when a file system is
layered on a DISK_IO / BLOCK_IO protocol, direct block access to the device for the blocks
that comprise the file system must be avoided while open file handles to the same device exist.

A file system driver may cache data relating to an open file. A Flush() function is provided
that flushes all dirty data in the file system, relative to the requested file, to the physical medium.
If the underlying device may cache data, the file system must inform the device to flush as well.
Protocol Interface Structure

typedef struct EFI FILE ({

UINT64 Revision;
EFI_FILE OPEN Open;

EFI _FILE CLOSE Closes;
EFI FILE DELETE Delete;
EFI FILE READ Read;

EFI FILE WRITE Write;

EFI_FILE GET POSITION GetPosition;
EFI FILE SET POSITION SetPosition;

EFI_FILE GET INFO GetInfo;
EFI_FILE SET INFO SetInfo;
EFI_FILE FLUSH Flush;
EFI_FILE;

.‘—v—’

Revision - The version of the EFI_FILE interface. The version specified by this
specification is 0x00010000. Future versions are required to be backward compatible to
version 1.0.

Open - Opens or creates a new file.

Close - Closes the current file handle.

Delete - Deletes a file.

Read - Reads bytes from a file.

Write - Writes bytes to a file.

GetPosition - Returns the current file position.

SetPosition - Sets the current file position.

GetInfo - Gets the requested file or volume information.

SetInfo - Sets the requested file information.

Flush - Flushes all modified data associated with the file to the device.

Configuration Infrastructure

The modern UEFI configuration infrastructure that was first described in the UEFI 2.1
specification is known as the Human Interface Infrastructure (HII). HII includes the following set
of services:

Database Services. A series of UEFI protocols that are intended to be an inmemory
repository of specialized databases. These database services are focused on differing types
of information:

— Database Repository — This is the interface that drivers interact with to manipulate
configuration related contents. It is most often used to register data and update keyboard
layout related information.

— String Repository — This is the interface that drivers interact with to manipulate string-
based data. It is most often used to extract strings associated with a given token value.

— Font Repository — The interface to which drivers may contribute font-related
information for the system to use. Otherwise, it is primarily used by the underlying
firmware to extract the built-in fonts to render text to the local monitor. Note that since
not all platforms have inherent support for rendering fonts locally (think headless
platforms), general purpose Ul designs should not presume this capability.

— Image Repository — The interface to which drivers may contribute image-related
information for the system to use. This is for purposes of referencing graphical items as
a component of a user interface. Note that since not all platforms have inherent support
for rendering images locally (think headless platforms), general purpose UI designs
should not presume this capability.

Browser Services. The interface that is provided by the platform’s BIOS to interact with the

built-in browser. This service’s look-and-feel is implementation-specific, which allows for

platform differentiation.

Configuration Routing Services. The interface that manages the movement of configuration

data from drivers to target configuration applications. It then serves as the single point to

receive configuration information from configuration applications, routing the results to the
appropriate drivers.

Configuration Access Services. The interface that is exposed by a driver’s configuration

handler and is called by the configuration routing services. This service abstracts a driver’s

configuration settings and also provides a means by which the platform can call the driver to
initiate driver-specific operations.

Using the Configuration Infrastructure

The overview introduced the components of the UEFI configuration infrastructure. This section
discusses with a bit more detail how one goes about using aspects of this infrastructure. The
following steps are initiated by a driver that is concerned with using the configuration
infrastructure:

B [nitialize hardware. The primary job of a device driver is typically to initialize the
hardware that it owns. During this process of physically initializing the device, the driver is
also responsible for establishing the proper configuration state information for that device.
These typically include doing the following:

— Installing required protocols. Protocols are interfaces that will be used to
communicate with the driver. One of the more pertinent protocols associated with
configuration would be the Configuration Access protocol. This is used by the system
BIOS and agents in the BIOS to interact with the driver. This is also the mechanism by
which a driver can provide an abstraction to a proprietary nonvolatile storage that
under normal circumstances would not be usable by anyone other than the driver itself.
This is how configuration data can be exposed for add-in devices and others can send
configuration update requests without needing direct knowledge of that device.

— Creating an EFI device path on an EFI handle. A device path is a binary description
of the device and typically how it is attached to the system. This provides a unique
name for the managed device and will be used by the system to refer to the device later.

B Register Configuration Content. One of the latter parts of the driver initialization (once a
device path has been established) is the registration of the configuration data with the
underlying UEFI-compatible BIOS. The configuration data typically consists of sets of forms
and strings that contain sufficient information for the platform to render pages for a user to
interact with. It should also be noted that now that the configuration data is encapsulated in a
binary format, what was previously an opaque meaningless set of data is now a well-known
and exportable set of data that greatly expands the configurability of the device by both local
and remote agents as well as BIOS and OS-present components.

B Respond to Configuration Event. Once the initialization and registration functions have
completed, the driver could potentially remain dormant until called upon. A driver would
most often be called upon to act on a configuration event. A configuration event is an event
that occurs when a BIOS component calls upon one of the interfaces that the driver exposed
(such as the Configuration Access protocol) and sends the driver a directive. These
directives typically would be something akin to “give me your current settings” or “adjust
setting X’s value to a 5”.

Much more detail on this particular infrastructure is covered later in the book.

Driver Model Interactions

The drivers that interact with the UEFI configuration infrastructure are often compliant with the
UEFI driver model, as the examples shown in Figure 9.11 and Figure 9.12. Since driver model
compliance is very common (and highly recommended) for device drivers, several examples are
shown below that describe in detail how such a driver would most effectively leverage the

configuration infrastructure.
EFl
@ ’ Loaded Image Protocol I
l']] Hil 3

A Database
| - Driver Binding Protocol 1
-
Device driver managing 2 ~ . :
cn‘}g?%’;ﬁ?cgaw A} Configuration Access Protocol 4 1
I
EFI 'O Controller

Device =
Bl Device Path Protocol

—‘ PCI /O Protocol '

Single driver managing a device

—
o

3

Figure 9.11: A Single Driver that Is Registering Its Configuration Data and Establishing Its Environment in a
Recommended Fashion

Step 1. During driver initialization, install services on the controller handle.

Step 2. During driver initialization, discover the managed device. Create a device handle

and then install various services on it.

B Step 3. During driver initialization, configuration data for the device is registered with the
HII database (through the NewPackageList() API) using the device’s device handle. A
unique HII handle is created during the registration event.

B Step 4. During system operation, when a configuration event occurs, the system addresses

(through the Configuration Access protocol) the configuration services associated with the

device.

‘ Loaded Image Protocol ' -
Hil 3
Database
Driver Binding Protocol 'y
1t
1V
Configuration Access Protocol 4 [] 1
;X

Device driver managing

~
O Controller §f
configuration data mE
for a device _” Driver Path Protocol I—h — é 3
- I" i
<1}

i
1
|
1
1
!

PCI O Protocol
- Q
-~ s

j e} Cantmlle! p

mm’ A
Device Path Protocol —

L

PCI VO Protocol

1

Single driver managing more that one devices

Figure 9.12: A Single Driver that Is Managing Multiple Devices, Registering Its Configuration Data, and Establishing
Its Environment in a Recommended Fashion

Step 1. During driver initialization, install services on the controller handle.

Step 2. During driver initialization, discover the managed device(s). Create device
handle(s) and then install various services on them.

Step 3. During driver initialization, configuration data for each device is registered with the
HII database (through the NewPackageList() API) using each device’s device handle. A
unique HII handle is created during the registration event.

Step 4. During system operation, when a configuration event occurs, the system addresses
(through the Configuration Access protocol) the configuration services associated with the
driver. In this example, the configuration services will be required to disambiguate
references to each of its managed devices by the passed in HII handle.

Provisioning the Platform

Figure 9.13 is an illustration that builds on the previously introduced concepts and shows how the
remote interaction would introduce the concept of bare-metal provisioning (putting content on a
platform without the aid of a formal operating system). This kind of interaction could be used in
the manufacturing environment to achieve the provisioning of the platform or in the after-market
environment where one is remotely managing the platform and updating it.

Configuration Access Protocol j
|

| Tl 1
| =8 . - 1

R '
2 4

r-----

Figure 9.13: Remote Interaction Occurs with a Target System; the System in Turn Accesses the Configuration
Abstractions Associated with a Device or Set of Devices

Download configuration data

B Step 1. Remote administrator sends a query to a target workstation. This query could
actually be a component of a broadcast by the administrator to all members of the network.

B Step 2. Request received and an agent (possibly a shell-based one) proxies the request to the
appropriate device.

B Step 3. The agent responds based on interaction with the platform’s underlying configuration
infrastructure.

MAR - X-UEFI Config and Redfish

Summary

In conclusion, this chapter describes a series of the common protocols one would encounter in a
UEFI enabled platform, and also highlights the common scenarios where one would leverage
their use. With these protocols, one should be armed well for the future environments (both
hardware and software) that will be encountered as the platform ecosystem evolves.

Chapter 10 — Platform Security and Trust

We will bankrupt ourselves in the vain search for absolute security.

—Dwight D. Eisenhower

The Unified Extensible Firmware Interface (UEFI) and Platform Initialization (PI) specifications
describe the platform elements that take control of the system across the various restart events.
These elements are also responsible for ceding control to hypervisors, operating systems, or
staying in the UEFI boot services environment as the “runtime.” These modules and drivers can
provide support for various secure boot and trusted computing scenarios.

Beyond the feature drivers and boot flow, the UEFI and PI specifications describe interfaces
and binary image encoding of executable modules for purposes of interoperability. This allows
for business-to-business engagements, such as a chipset or CPU vendor providing drivers to a
system board vendor for purposes of building a whole solution. This is the positive side of the
extensibility. The darker side of extensibility, though, entails the need to have some assurance that
the final system board design meets various security goals, such as integrity, availability, and
confidentiality. In other words, how can the platform manufacturer who ships a system board have
confidence that the UEFI and PI modules have been safely composed?

This chapter describes some of the security and trusted computing capabilities. Then it
discusses how to construct and integrate elements.

Trust Overview

We begin the discussion of trusted platforms with some background on trust—specifically, the

definition of trust, and some related concepts, measurement and security:

B Trust. An entity can be trusted if it always behaves in the expected manner for the intended
purpose.

B Measurement. The process of obtaining the identity of an entity.

B Security. Maintenance that ensures a state of inviolability from hostile acts or influences
(from http://www.thefreedictionary.comvsecurity).

In fact, trust is an amalgam of several elements of the platform that span the enterprise to
consumer, including reliability, safety, confidentiality, integrity, and availability, as illustrated in
Figure 10.1.

Elements of TRUST

http://www.thefreedictionary.com/security

Figure 10.1: The Elements of Trust

Where should the solution reside, given the problems to be solved and some of the capabilities
like security, trust, and measurement to help effect the solution?

In fact, the implementation of trust and security entail a security architecture that spans the
entire system, starting at the base with hardware and spanning all of the way to the end-user
application.

Figure 10.2 shows all of the layers of a security architecture. The network layer is broken out
with a few examples, such as protocols (SSL, IPSec); this chapter does not delve too deeply into
this layer. The firmware layer is highlighted to show that a single-layer of security is not
sufficient.

Security Architecture

SSL, IPsec, etc.

Single layer “security”

Figure 10.2: All Layers of a Security Architecture

In fact, the scope of this chapter largely addresses firmware. Some description of hardware

elements and interaction are provided. Figure 10.3 highlights the area that this chapter discusses
in more depth.

Human User
Application

it

Figure 10.3: Layers Examined in this Chapter

As seen in Figure 10.3, all layers are important, but if you do not have firmware/ hardware
assurance, you cannot have a security architecture. As the logicians would say, it’s “necessary but
not sufficient” to have appropriate design in these layers. And as will be described later, the layer
of hardware and firmware provide a “root of trust” for the rest of the security architecture.

So now that we have trust, security, measurement, and a layered picture of the security
architecture, the goals of the security architecture and assets that are protected are as follows.

The first security goal is integrity, and this entails the protection of content and information
from unauthorized modification. The next goal is authenticity, and this provides guarantee or
assurance in the source of the code or data. Another important goal is availability, or the ability
to ensure behavior and the responsiveness of the system. Availability also protects from
destruction or denial of access. And finally, another goal is confidentiality, or the protection of
information from unauthorized access.

Through the subsequent discussion of trusted platforms and UEFI, some of these integrity,
authenticity, and availability goals will be discussed in more detail.

It is outside the scope of this chapter to describe confidentiality since this is typically a
concern of higher-level applications, but errors in lower layers of the trusted platform may
imperil this goal. Specifically, this relates to the introduction of vulnerability via a flaw in
integrity or authenticity implementations of a layer that wants to provide confidentiality (say an
application) when the hardware or firmware or network underneath is errant.

A final item that will be discussed in this chapter is a final goal that spans all of the above,
namely assurance. By assurance we mean having some guarantee of the correctness of an
implementation. And for this study, assurance will be treated in detail for the case when platform
firmware and trusted computing hardware elements are the embodiment of the platform.

And given the trust definition above, we see that these features are especially important in the
enterprise, such as a high-end server, where reliability and safety goals are co-equal to the other
concerns like integrity and confidentiality.

Trusted Platform Module (TPM) and Measured Boot

In building out the hardware layer of the security architecture, one problem with open platforms is
that there hasn’t been a location on the system to have a root of trust. The trusted platform module
(TPM) and the infrastructure around this component are an industry attempt to build a series of
roots of trust in the platform.

The maintenance and evolution of the capabilities of the TPM are managed through an
industry standards body known as the Trusted Computing Group (TCG). The TCG members
include systems manufacturers, TPM manufacturers, CPU and chipset vendors, operating system
vendors, and other parties that contribute hardware and software elements into a trusted platform.
HP and IBM are examples of vendors that span many of these categories. Intel also participates in
the TCG as CPU and chipset vendor.

To begin, what is a trusted platform module? It features a series of protected regions and
capabilities. Typically, a TPM is built as a microcontroller with integrated flash/ storage that is
attached to the LPC bus on PC, but it can also be a virtual device or more deeply integrated in the
platform chipset complex. The TPM interacts with system through a host interface. The TPM
Interface Specification (TIS) in the TCG PC Client working group describes the memory-mapped
I/O interfaces; the TIS is just one such interface. The TPM main specification describes the
ordinals or the byte stream of commands that are sent into the TPM. These commands are the
required actions that a TPM must carry out in service of the host. Figure 10.4 shows some of the
specifications that describe the TPM and its integration into the platform.

TCG Doc Roadmap, with

Architectural
Overview

TCG Documentation
Roadmap & Glossary

; : .

. " . F TCG
Platform-Specific TCG Main Specification Sof Stack Common
Design Guide Parts 1-4 = “"’(E‘““S) e Criteria
- Normative|Reference -
T ; " Common
l 1 ; H Evaluation
PC Platform Methodology

Specification

PC Platform
Compli{ EFT Platform &

[S0-15408 Common Criteria *
Protection Profiles

Figure 10.4: TCG Specification Hierarchy

The interoperability of the Trusted Computing elements is managed through the Trusted
Computing Group (TCG) and a series of specifications. For purposes of this review, the TPM
main specification, platform design guides, protection profiles, and the UEFI collateral will be of
interest, as highlighted above.

Figure 10.6 shows an instance of a TPM diagrammatically. Given the existence of the
specifications mentioned earlier, multiple vendors can provide conformant instances of this
technology with the ability to differentiate their implementations.

e TCG defines TPM’s functionality
— Protected capabilities
— Shielded locations

* Not the implementation

— Vendors are free to differentiate the
TPM implementation

— Must still meet the protected capabilities
and shielded locations requirements

Figure 10.5: TPM Overview

Figure 10.6 is a picture of the elements that are typically found within a TPM. The protected
execution and storage of the TPM allow for hosting the RSA asymmetric key pairs, such as the
endorsement key (EK), the attestation identity key (AIK), and storage root keys (SRKs). Recall
that in RSA cryptography, the public key can be known to all, but the private key must be
shrouded from users. The TPM and its isolated execution can both host the key-pairs and keep the
private RSA keys away from attacks/errant agents on the host. In today’s platforms without a
TPM, only a custom hardware security module (HSM) or other additional hardware can be used
for hosting key-pairs. But in these latter solutions, there is no guarantee on construction of
platform, surety of the host interface, and so on. The Trusted Computing Group attempts to both
describe the requirements on the TPM and the binding into the platform in order to have a trusted
building block (TBB) via design guides, protection profiles, conformance tests, and so on.

Basic TPM Block Diagram

P

| Exec Engine :r—J| Program Code

Non-Volatile

Storage

Volatile

Storage

Platform SR s]
Configuration RSA ‘ Key
Register (PCR) Engine Generation

Pasicieing

Figure 10.6: TPM Block Diagram

What Is a Trusted Building Block (TBB)?

The TBB includes the components that make up the platform. These can include the TPM, how the
TPM is bound to the platform, flash with the system board firmware, and portions of the firmware
that must be trusted. The TBB goes beyond TPM ordinals. It leads into prescriptions on the
construction of the physical platform. As such, it is not just an issue at one layer of the stack.

A S-CRTM is a “static core root of trust for measurement.” The S-CRTM is the portion of the
platform firmware that must be “implicitly trusted.” The S-CRTM makes the first measurements,
starts TPM, and detects physical presence per the TCG privacy model.

And it is where the S-CRTM portion of the TBB intersects with the platform firmware and
other roots-of-trust in the platform. S-CRTM, CRTM, and SRTM are used interchangeably later in
the section.

Following is a quick overview to clarify the roots-of-trust in the platform and which business
entity delivers them.

Taxonomy of terms in the platform:
B RIM

— Generic term for “Root of Trust for Measurement”
— SRTM is the static root of trust for measurement (SRTM) — CRTM + unbreakable
measurement chain to OS
— DRTM is the dynamic root of trust for measurement (DRTM)
B CRTM

— Static CRTM (S-CRTM) or CRTM. Portion of platform firmware that must be
implicitly trusted.
B RIR

— Root of trust for reporting

— These are the Platform Configuration Registers (PCRs) in the TPM

— 20-byte non-resettable registers to store the state or measurements of code + data
— Typically SHA1 (new info || former PCR value), where “||” is the catenation of data

— Root of trust for storage
— Endorsement key (EK) — unique per TPM
— Storage root keys (SRKs) — used by OS and others to build key hierarchies
B TPM Owner
— Applies the authentication value
— Several commands are “owner authorized”
B SRTM
— Static root of trust for measurement
— CRTM (CRTM) + platform firmware measuring all code and data prior to boot
— Records information into non-resettable or “static” PCRs (0-15); these static PCRs
zeroed only across platform reset
— Described by TCG BIOS and UEFT specifications
B DRTM
— Dynamic root of trust for measurement
— Initiative the measurement later in boot. Includes resettable PCRs 16 and above; these
resettable PCRs zeroed upon initiation of the DRTM launch
B Physical presence
— Administrative model of the TPM. Assertion by operator of presence in order to
perform privacy or administrative activities with the TPM.

In general, a hardware instantiation of the trusted platform module (TPM) is a passive hardware
device on the system board. It serves as the root of trust for storage (RTS) and root of trust for
reporting (RTR). The former is the use of the storage root key (SRK) and the Platform
Configuration Registers (PCRs). Figure 10.7 shows the synthesis of the various roots in the
platform.

Functional TPM Diagram

TPM Root of Trust for Reporting RTR

* Provides cryptographic mechanism to digitally
sign TPM state and information

RTR RTS Root of Trust for Storage RTS

+ Provides cryﬂto raphic mechanism to protect

information held outside of the TPM
RTM

Root of Trust for Measurement
* Provided by platform to measure platform state
+ Defined by platform specification

Interaction between RTR and RTS is important TPM capability

Figure 10.7: Functions of a TPM

The active agent on the platform is the root of trust for measurement (RTM). The RTM can be
either static or dynamic (SRTM versus DRTM, respectively). The SRTM, on the other hand,
entails a trust chain from the platform reset vector going forward.

The definition of the SRTM for UEFI is defined in the UEFI TCG Protocol Specification and
the TCG UEFI Platform Specification. The flow of the SRTM into the operating system is shown
in Figure 10.8.

Measurement and execution of
Framework/EFI, BIOS, Option

ROM, IPL, etc. Static
0s

I\LLY 21¢¥)S

Figure 10.8: Boot Flow that Includes a Static Root of Trust

There needs to be UEFI APIs available so that the UEFI OS loader can continue to measure the
operating system kernel, pass commands to the TPM to possibly unseal a secret, and perform
other TPM actions prior to the availability of the OS TPM driver. In addition, this API can be
installed at the beginning of DXE to enable measurement of the DXE and UEFI images. Figure 10.
9 shows where the UEFI TCG APIs would appear relative to the other interfaces.

Compatibility

| (OTHER)
| SMBIOS
[ACPI

|INTERFACE S |
FROM
OTHER —

REQUIRED | |
SPECS J_

Figure 10.9: UEFI API Layering

The UEFI specifications are cross-listed in the TCG PC and Server Working Groups such that
both consumer and enterprise-class operating systems can participate in this boot flow behavior.

The UEFI TCG Platform specification describes which objects to measure in an UEFI system,
such as the images, on-disk data structures, and UEFI variables. Figure 10.10 shows which
objects in a UEFI system correspond to measures in PCRs.

OPERATING SYSTEM

Legacy OS Loader m EFI OS LOADER
PCR4

PCR4

EFI BOOT SERVICES

EFI RUNTIME
SERVICES
Boot Devices
Protocols + Drivers in System ’
Handlers Board Flash

PLATFORM FIRMWARE FROM SYSTEM BOARD ROM

SMBIOS
ACPI

papeo| siaALQ E

J)8
YSIP 'S WEH Wou

INTERFACES

FROM OTHER
REQUIRED

SPECS

PLATFORM HARDWARE

Figure 10.10: Measured Objects in UEFI

Prior to the UEFI phase of platform execution, the PI describe the PEI and DXE phases. In these
phases the CRTM is mapped to the PEI phase and what is thought of as BIOS POST is mapped to
DXE. There are interfaces in PEI (namely, the PEIM-to-PEIM interface, or PPI) to allow for fine-

grain measurement in that phase of execution, too. Figure 10.11 shows one possible PEI-based
CRTM and the flow into the operating system.

L)
L]
S-CRTM u
|

Figure 10.11: SRTM boot flow

What Is the Point of Measurements?

The process of measurements records the state of the platform, for both executable code and data
hashes, into the TPM’s platform configuration registers (PCRs). These PCRs are write-only and
cleared upon a platform reset (at least the static PCRs for SRTM). The PCRs reflect the platform
state. They are used such that software, when installed upon the platform, can “seal” some
information to the platform. A Seal operation is like an encryption that also includes PCRs. There
is a corresponding Unseal operation, which is a decryption that also uses the PCRs

What this means practically is that if the state of the platform changes between the installation
of some software (and the Seal operation) and successive invocations of software on later
restarts (and the use of Unseal operation), unauthorized changes to the platform in the interim will
be detected (that is, PCRs changed).

This is sort of the Resurrecting Duckling security model wherein the initial state of the
platform (that is, PCR values upon installing application) is considered safe or acceptable.

UEFT offers an opportunity here. PI and UEFI have specification-based components written in
a high-level language (for example, C). The software development lifecycle (SDL) for drivers
and other system software can be applied, as can static analysis tools (such as Klockworkf and
CoverityT). Later in the chapter we’ll talk about additional practices to complement the SDL that
address domain-specific issues with platform firmware.

With all these elements of security and protections in place how the CRTM is updated
becomes critical and much more challenging. Since the CRTM is the root, and is itself inherently
trusted, it must be a very controlled and secure process. The TCG describes CRTM maintenance
in the Trusted Building Block (TBB) protection profile. Either the CRTM is immutable, or never
changed in the field, or appropriate cryptographic techniques need to be employed in order to
update the CRTM.

Regarding the cryptographic-based update, Figure 10.12 shows a possible implementation
where the firmware volume (FV) update is enveloped using an RSA-2048/SHA-256-based
update. This is just one possible UEFI PI implementation that leverages the UEFI PI-based
firmware volume construct and the WIN_CERT that can be found in the UEFI 2.0 specification.

| S e ! EFI_FIRMWARE_MANAGEMENT_CAPSULE
F / , _IMAGE_HEADER
| EFl Capsule Header Opioral Driver 1 |
: Dfset Within Body == Iremfsetf f
! In'
Optonal e 2 | / Binary Update Image
Ofset Wk body = iomfhell] | Image Length = UpdateimageSize
Payload 1
Ofsed Withn Body == RemOfised?]
Capsule Body
Vendor Code Byes
Payload 2 1\ Data Length = UpdateVendorCodeSize
Offset Within Body == Item{Yset(3
Paylcadn
Ofiset Withn Body == femOffsst |
[EmbeddedDrverCount + Payloadism Count |

o]

Figure 10.12: Firmware Volume Update

As noted above, a signed capsule is one implementation path. The system flash is not directly
updated by a flash utility but instead the CRTM update capsule is stored in a staging area. The
next time the CRTM gains control of the system (at reset), it will check for any pending updates. If
updates are found, they will be validated and then cryptographically verified. If they are valid, the
CRTM update can be applied. It’s important to note that when validating the update this all must
be done by using only CRTM code and data. Code or data outside the CRTM cannot be trusted
until verified.

UEFI Secure Boot

There are several terms that will be introduced in the context of UEFI and trust. These include
executable verification, driver signing, user identification, network authentication, and
network security.

To begin, the UEFI evolution described below appear as elements of the UEFI main
specification in version 2.6. These features entail updates to the boot behavior and the features
briefly treated will include image verification, networking enhancements such as IPSec, and user
identification.

Figure 10.13 shows where in the stack the emergent UEFI features described in this chapter
exist, namely in the UEFI Services and boot manager.

Operating System

UEFI Shell

— —
Boot Manager

UEFI Services

Platform Initialization

Fig10.13: UEFI Software Stack

UEFI Executable Verification

The first feature from UEFI to discuss is driver signing or executable verification. Driver signing:
B Expands the types of signatures recognized by UEFI
— SHA-1, SHA-256, RSA2048/SHA-1, RSA2048/SHA-256 and Authenticode
B Standard method for configuring the “known-good” and “known-bad” signature databases.
B Provides standard behavior when execution is denied to provide policy-based updates to the
lists.

One evolution beyond the SRTM described in earlier chapters, is that UEFI can provide
“verification.” Recall that the SRTM records the state of the code and data in the platform such
that a later entity may assess the measurements. For verification, or enforcement, of some policy,
the UEFI firmware can act as a root-of-trust-for-enforcement (RTE) or root-of-trust-for-
verification (RTV) wherein the boot process can change as part of policy. This policy can include
the UEFI image verification using Authenticode-signed images, for example.

Figure 10.14 shows the steps necessary for signing of UEFI images. The signing can include
RSA asymmetric encryption and the hash function a member of the security hash algorithm family.

UEFI executable developer
using SignTool/Signing Server

Figure 10.14: Driver signing

This preparation would happen at the manufacturer facility or could be facilitated by a third party,
such as VeriSignt Certificate Authority (CA).

Once the signed images are deployed in the field, whether loaded across the network, from a
host-bus adapter card, or via the UEFI system partition, the UEFI 2.6 firmware verifies the image
integrity, as illustrated in Figure 10.15.

PEIFV
1. Enroll
/ . —
S Authenticated
;'_\ Variables 2C. Signed S p——
Image Load OpRom.efi
PK & B
Measure to v S Certificaty
KEK TPM i | +Signinfo |
o~ ' ,
L] = r L
7& 3. Post ship - 2A. Signed Image
update DB P db Certificate Bilbssont
— I
JJ' 1
» AR
;’ ,..-"/— dbx Certificate
P I
i 7
!]
:. I.r'Ir Variable Osloader.efi
. i) Certificate
2B. Signature,y] :
Verification DXEFY +Signinfo C lnl ld
‘1:"\\‘ Image Ver ify
el -

Fig10.15: Verification of UEFI images

The figure above shows a single logical firmware volume from the system board manufacturer.
The characters on the left can either be the manufacturer provisioning and enrolling the keys
during system constructor, or the platform owner updating the database (DB) of the keys during
the one-touch provisioning,

The UEFI Secure boot flow has the DB and DBX for the allowed and disallowed UEFI
images, respectively, but it does not talk about boot time verification of the underlying PEI and
DXE FV. For that a hardware verifier that runs prior to the PEI FV can be used. This logically
maps to the PI SEC phase. One embodiment of this hardware verification of the system board
vendor PI code is shown below.

BIOS
CPU/SOC Start Block os
DXE/UEF! Loader/Kernel
{OEM) (0sV)
| B
Enfngri;es Enﬂ;'irces Enfogri:es
—Em o=
- l j n J
W’—/ e SRR,
Intel® Device Protection OEM PI OEM UEFT 2.6
Technology with Boot Guard Verification Secure Boot

Using PI Signed
Firmware Volumes

Fig. 10.16: Verification of OEM flow

This flow above shows the UEFI 2.6 chapter 30 UEFI Secure boot flow on the right hand side,
along with a hardware verification of the initial block on the left hand side, including reference to
Intel® Device Protection with Boot Guard Technology. There are many other hardware
implementations beyond Intel Boot Guard for Intel ® Atom® class SOC’s and other vendor
SOC’s. The ‘middle’ of the diagram shows how the verification action must be continued, with
one embodiment including signed firmware volumes.

The combination of robust UEFI implements and interoperable trust infrastructure will allow
for evolving the extensibility of UEFI in a safe, robust fashion.

UEFI Networking

Another element that appears in UEFI entails additional network security, including IPsec
support. Trusted hardware like the TPM can be used to help store the IPsec credentials, but to be
stronger, assurance around the UEFI firmware implementation of the IPsec cryptography and the
networking code will need to follow the guidelines in the preceding chapter. IPSec can be used
for platform network boot to harden scenarios such as ISCSI-based provisioning.

Figure 10.17 shows the EFI IPsec implementation using the UEFI IPsec protocol and IPV6
network stack, including a pre-deployed security association (SA).

EFI IPsec Impl (Pre-deployed SA)

IPsecConfig Call SetData()
-Add an SPD entry (for TRAFFIC 1, Manual SA)
Shell environment -Add required manual SA for this SPD entry
BF1 Drivers

= = EFI_IP6_PROTOCOL
fl‘CPﬁ driver] [UDPG driver]\ _1P6_
IP6_CONFIG_PROTOCOL
EFI_IPSEC_CONFIG
i i J Outbound packet
‘ Update SPD/SAD DB
"

IP6 driver Find 5A, and Encapsulate AH/ESP
N\ ™D I T header per SA info

e DI ICMEVE
SPD, SAD %’/
AH/ESP

| Inbound packet E _______________ - Find 54, and process AH,/ESP
By proyp

header

e [Cryptn driver

Figure 10.17: UEFI [Psec

IPsec in the platform will allow for performing both an IPV4 and IPV6-based ISCSI boot and
provisioning. Figure 10.18 shows an iSCSI layering on top of the UEFI network stack, for
example.

iISCSI over IP4 & IP6

[I I5CSI
F
DHCP4 DHCP6
$ h $ L
UDP4 TCP4 LUDP6 TCP6
) b))
ARP > IP4 ARP <= IP4 (20 IP6
3 v v 3
MNP MNP MNP MNP MNP MINP

IP4CONFIG_SB|
DHCP4 _SB

TCF4 SH
UUDP SH

IP4 SH

S X —

Figure 10.18: An iSCSI Application with UEFI Network Stack

By child

Beyond the IP6 and IPsec UEFI interfaces, the wire-protocol for network booting has
commensurate evolution to the UEFI APIs. Specifically, in the DHCPv6 extensions for IPV6
network booting, the boot file information is sent as a Uniform Resource Locator (URL); the
network boot option details are described in both the UEFI 2.6 specification and in IETF Request
For Comment (RFC) 5970. As such, the UEFI client machine and the boot server can negotiate
various types of downloads, including TFTP, FTP, HTTP, NFS, or ISCSI. This allows the
network capabilities to track the needs of the market and the machine’s firmware capabilities.

Beyond IPSec, the Transport Layer Security (TLS) has been added to the UEFI Specification.
A layering of this new protocol for purposes of secured HTTP, namely HTTP-S, is shown below.

TCP_PROTOCOL

P roF uce

TcpDxe

HttpDxe

comgjume

TLS_PROTOCOL

W

TlsDxe

Figure 10.19: UEFI TLS

TLS_CONFIGRATION
_PROTOCOL

TLS allows for confidentiality on HTTP boot via HTTP-S, but it can be used for other usages.
These other usages include support for EAP-TLS for a WIFI supplicant, as shown in the
following diagram of the UEFI 2.6 WIFT stack.

‘ SNP Driver H

c‘_';DNmt NilD |
| DevicePathiy (AP Protosol >

Wireless UNDI driver

o

¢ EFI_SUPPLICANT_SERVIC ™
“~.__E_BINDJNG_PROTOCOL

" EFI WIRELESS MAC ™~
T CONNECTION_I_PROTO (f'

Wireless Connection
Manager

r’IEFI SUPPLICANT F'ROTOCOI"J +

f

" “_EFI_EAP_CON

Supplicant Driver

Figure 10.20: UEFI WIFI

Wherein the ‘supplicant driver’ would produce the EFI_EAP_CONFIGURATION_PROTOCOL,
with the embodiment can include EAP-TLS.
More details on the EFI_TLS_PROTOOCL can be found in chapter 27 of the UEFI 2.6

specification. More details on the UEFI WIFI support can be found in chapter 25 of the UEFI 2.6
specification, too.

UEFI User Identification (UID)

A final ingredient in UEFI includes the user identity support. This is infrastructure that allows for
loading drivers from token vendors to abstract authentication of the user, including many factors,
and a policy engine to assign rights to certain users. This can include limiting service access for
certain users. Figure 10.21 shows this capability.

UEFI User Identification

Operating System '

Boot Manager

UEFI Services '
Platform Initialization '

 Standard framework for user-authentication devices such as
smart cards, smart tokens & fingerprint sensors.

 Uses UEFI HIl to display information to the user.

* Introduces optional policy controls for connecting to devices,
loading images and accessing setup pages.

Figure 10.21: User Identity

Implementation of these UEFI features would also build upon and require the assurance/best
practices in firmware discussed earlier. More information on the UEFI-based features can be
found in the UEFI main specification.

Hardware Evolution: SRTM-to-DRTM

As a final element getting introduced into the platform going forward is the dynamic root of trust
for measurement, or D-RTM. The D-RTM provides platform hardware capabilities to support a
measured launch environment (MLE). An S-RTM and D-RTM feature set can exist on the same
platform, or each feature can exist independently. Figure 10.22 compares the two RTMs and their
temporal evolution and features.

Trust Models: S-RTM & D-RTM

* S-RTM measurement chain starts at reset and includes components from
various sources

* D-RTM measurement chain starts with a trusted secure event trigger such
as SINIT. D-RTM leads to a smaller TCB, reduced attack surface and thus a
more secure system

¢ MLE provider must make assurances that the MLE maintains the TCB.
Smaller TCB simplifies MLE design.

Figure 10.22: DRTM Boot Flow
A DRTM implementation can also include a root-of-trust for verification (RTV), too. More

information on Intel’s D-RTM implementation can be found in the following book by David
Grawrock, Dynamics of a Trusted Platform from Intel Press.

Platform M anufacturer

There are several terms that will be introduced in order to facilitate the following discussion. The
first includes the entity that produces the final system board that includes the collection of UEFI
and PI modules shown in Figure 10.23. This will be called the platform manufacturer or PM.
The authority to perform updates or changes to the configuration of the UEFI and PI modules that
ship from the factory are mediated by PM_AUTH or Platform Manufacturer Authority.
PM_AUTH essentially describes the administrative roles that an entity who authenticates or
proves itself to be the PM or delegate of the PM can perform. These actions can include but are
not limited to the update of modules, firmware, or early PI settings. PM_AUTH typically is used
to ensure the integrity of the PI and UEFI modules, and this integrity, or ensuring that the modules
came from the manufacturer, can be accomplished via cryptographic updates of modules or signed
UEFI capsules, for example.

As noted above, integrity forms one of the key security goals of the platform. If a third party
can replace or impersonate a PI module without the PM’s knowledge, there is an opportunity to
introduce a vulnerability into the system.

Overall View of Boot Time Line

UEFI
- OS-Absent

&& App

for PM_AUTH — (4

Device UEFI Shell

Bus, or
Service
Driver

Rl DR ver

Dispatcher
Architectural
Protocols
|
S?EEE }‘y ! _ﬁr:}- _EFJL_ g Drivgr Boot Dev “ Tr?nsifggd Run Time
™ 1Zaion xecuon ystem
(PEI) Environment | Select (RT)
(DXE) (BDS) (TSL)

Poweron __ [.. Platforminitialization.. 1_, [....08boot....] . Shutdown
i L -
—-I-\..v..-—— -l\Y.--

OEM/PM 3% party extensible
Extensible

Figure 10.23: Overall View of Boot Time Line

When we refer to PM_AUTH, we mean “components that are under the authority of the Platform
manufacturer.” This can include provenance of the PI code and data at rest (in the system board
ROM container) and also the temporal state of the code in memory during system boot and
runtime. The PM_AUTH can include the PEI and DXE driver dispatch responsive to an S5
restart, the SMM code running during the operating system runtime x64, and data at rest in the
ROM after field updates.

The PM_AUTH really means that we do not have arbitrary third party extensibility. Arbitrary
third party code could include an operating system loader deposited on the EFI System Partition
during a post-ship OS install or upgrade, a PC/AT option ROM from a host bus adapter plugged
into a system.

So for this model of integrity analysis, PM_AUTH = {SEC, PEI Core, PEIMs, DXE core,
DXE drivers, firmware volumes, UEFI variables used only by PEI + DXE, BDS, PMI, SMM,
UEFI runtime, ACPI tables, SMBIOS tables}.

Non-PM_AUTH is non-signed UEFI drivers from a host-bus adapter (HBA), nonsigned UEFI
OS loaders.

Vulnerability Classification

There are several terms that will be introduced in this section. These include spoofing, tampering,
repudiation, information disclosure, denial of service, and elevation of privilege.

In order to talk about platform security, some terms will be introduced. Specifically, a
vulnerability in a software or firmware product can subject the computer on which it is running to
various attacks. Attacks may be grouped in the following categories:

Spoofing. An attacker pretends that he is someone else, perhaps in order to inflict some
damage on the person or organization impersonated.

Tampering. An attacker is able to modify data or program behavior.

Repudiation. An attacker, who has previously taken some action, is able to deny that he took
it.

Information Disclosure. An attacker is able to obtain access to information that he is not
allowed to have.

Denial of Service. An attacker prevents the system attacked from providing services to its
legitimate users. The victim may become bogged down in fake workload, or even shut down
completely.

Elevation of Privilege. An attacker, who has entered the system at a low privilege level
(such as a user), acquires higher privileges (such as those of an administrator).

Roots of Trust/ Guards

When discussing integrity, a more formal model helps define some of the terms. A popular
commercial integrity model includes that defined by Clark-Wilson (CW). In the CW model, there
are controlled data items (CDIs) and uncontrolled data items (UDIs). The former must have some
administrative control for changes, whereas the latter do not.

An example of a UDI can include a UEFI variable like the language code, whereas a CDI can
include authenticated variables such as the signature data base used for managing the x509V3
certificates. Figure 10.24 shows an example of a CDI, such as UEFI variables, and the Guard.
Typically the caller would be a UEFI or OS application, the “request” would be the “set
variable,” the Guard would be the UEFI implementation of the variable services, and the variable
itself could include the EFI_VARIA-BLE_AUTHENTICATED WRITE_ACCESS bit set.

Caller
({Pre-08
or 08)

Figure 10.24: Example of a CDI

Summary

This chapter has reviewed the static root of trust for measurement, or trusted boot, and the
associated trusted computing hardware, including the TPM. It then described other preventive
security technology, such as UEFI secure boot.

This chapter then described some background and guidance on how to prepare and integrate
components that meet the platform assurance goals and also realize the purported capabilities of
the security and trusted computing elements. This includes the concepts of trust and security. It
also reviewed trusted computing technology, such as the Trusted Platform Module, SRTM,
CRTM, and the TBB. Finally, the technology in the UEFI 2.6 specification for security, such as
driver signing, network authentication, and user identification was treated.

Chapter 11 — Boot Device Selection

I just invent, then wait until man comes around to needing what I invented.

—R. Buckminster Fuller

UEFTI has over time evolved a very basic paradigm for establishing a firmware policy engine. The
concept was developed from the concept of a single boot manager whose sole purpose was
exercising the policy established by some architecturally defined global NVRAM variables. As
the firmware design evolved, and several distinct boot phases such as SEC, PEI, DXE, BDS,
Runtime, and Afterlife were defined, the BDS (Boot Device Selection) phase became a distinct
boot manager-like phase. In this chapter, the architectural components that steer the policy of the
boot manager are reviewed. This content forms the architectural basis for what eventually became
the BDS phase.

In fact, the differences between what is known as the boot manager in earlier firmware
designs and what is known as the BDS in PI-based solutions is easy to illustrate. Figure 11.1
shows the software flow in an early firmware design environment, and Figure 11.2 shows one that
is PI-compatible.

Exposed
! Runtime |

| Interfacd 05'3"59“‘
) '8

Transient OS
Environment

Transient OS
Boot Loader

i | OS-Present
i App
Final OS
i Boot Loader i Final OS
S = i | Environment
Boot Services API Availability i
| Runtime Services APl Availabglity
Reset Early Launch Transient
Vector Platform EFI System Load
Initialization Infrastructure (TSL)

Power on — [. . Platform initialization ..] =———+[....OS boot....] * Shutdown

Figure 11.1: Earlier Firmware Designs with a Boot Manager Component

security
Security Pre-EFI Driver Boot Transient | Runtime After-
(SEC) | Initialization Execution Device System Load (RT) life
(PEl) Environment | Selection (TSL) (AL)
(DXE) (BDS)

Power on=p[. . Platform initialization . . | ==—p-[. ... OS boot | =) Shutdown

Figure 11.2: PI-based Solution with a BDS Component

As you can see from comparing the two figures, there is much overlap. The BDS phase subsumes
the direction described in this chapter and is further explained in Chapter 8.

The UEFI boot manager is a firmware policy engine that can be configured by modifying
architecturally defined global NVRAM variables. The boot manager attempts to load UEFI
drivers and UEFI applications (including UEFI OS boot loaders) in an order defined by the
global NVRAM variables. The platform firmware must use the boot order specified in the global
NVRAM variables for normal boot. The platform firmware may add extra boot options or remove
invalid boot options from the boot order list.

The platform firmware may also implement value-added features in the boot manager if an
exceptional condition is discovered in the firmware boot process. One example of a value-added
feature would be not loading an UEFI driver if booting failed the first time the driver was loaded.
Another example would be booting to an OEM-defined diagnostic environment if a critical error
was discovered during the boot process.

The boot sequence for UEFI consists of the following:

B The platform firmware reads the boot order list from a globally defined NVRAM variable.
The boot order list defines a list of NVRAM variables that contain information about what is
to be booted. Each NVRAM variable defines a Unicode name for the boot option that can be
displayed to a user.

B The variable also contains a pointer to the hardware device and to a file on that hardware
device that contains the UEFI image to be loaded.

B The variable might also contain paths to the OS partition and directory along with other
configuration-specific directories.

The NVRAM can also contain load options that are passed directly to the UEFI image. The
platform firmware has no knowledge of what is contained in the load options. The load options
are set by higher level software when it writes to a global NVRAM variable to set the platform
firmware boot policy. This information could be used to define the location of the OS kernel if it
was different than the location of the UEFI OS loader.

Firmware Boot Manager

The boot manager is a component in the UEFI firmware that determines which UEFI drivers and
UEFI applications should be explicitly loaded and when. Once the UEFI firmware is initialized,
it passes control to the boot manager. The boot manager is then responsible for determining what
to load and any interactions with the user that may be required to make such a decision. Much of
the behavior of the boot manager is left up to the firmware developer to decide, and details of
boot manager implementation are outside the scope of this specification. Likely implementation
options might include any console interface concerning boot, integrated platform management of
boot selections, possible knowledge of other internal applications or recovery drivers that may
be integrated into the system through the boot manager.

Programmatic interaction with the boot manager is accomplished through globally defined
variables. On initialization, the boot manager reads the values that comprise all of the published
load options among the UEFI environment variables. By using the Setvariable() function the
data that contain these environment variables can be modified.

Each load option entry resides in a Boot#### variable or a Driver#### variable where the
is replaced by a unique option number in printable hexadecimal representation using the
digits 0-9, and the uppercase versions of the characters A— F (0000-FFFF). The #### must
always be four digits, so small numbers must use leading zeros. The load options are then
logically ordered by an array of option numbers listed in the desired order. There are two such
option ordering lists. The first is Driverorder that orders the Driver#### load option variables
into their load order. The second is BootOrder that orders the Boot#### load options variables
into their load order.

For example, to add a new boot option, a new Boot#### variable would be added. Then the
option number of the new Boot#### variable would be added to the Bootorder ordered list and
the Bootorder variable would be rewritten. To change boot option on an existing Boot####, only
the Boot#### variable would need to be rewritten. A similar operation would be done to add,
remove, or modify the driver load list.

If the boot via Boot#### returns with a status of EFI_SUCCESS the boot manager stops
processing the BootOrder variable and presents a boot manager menu to the user. If a boot via
Boot#### returns a status other than EFI_SUCCESS, the boot has failed and the next Boot#### in
the BootOrder variable will be tried until all possibilities are exhausted.

The boot manager may perform automatic maintenance of the database variables. For
example, it may remove unreferenced load option variables, any unparseable or unloadable load
option variables, and rewrite any ordered list to remove any load options that do not have
corresponding load option variables. In addition, the boot manager may automatically update any
ordered list to place any of its own load options where it desires. The boot manager can also,
based on its platform-specific behavior, provide for manual maintenance operations as well.
Examples include choosing the order of any or all load options, activating or deactivating load
options, and so on.

The boot manager is required to process the Driver load option entries before the Boot load
option entries. The boot manager is also required to initiate a boot if the boot option specified by
the BootNext variable as the first boot option on the next boot, and only on the next boot. The

boot manager removes the BootNext variable before transferring control to the BootNext boot
option. If the boot from the Boot -Next boot option fails, the boot sequence continues utilizing the
BootOrder variable. If the boot from the BootNext boot option succeeds by returning
EFI_SUCCESS, the boot manager will not continue to boot utilizing the BootOrder variable.

The boot manager must call LoadImage(), which supports at least
SIMPLE_FILE_PROTOCOL and LOAD_FILE_PROTOCOL for resolving load options. If
LoadImage() succeeds, the boot manager must enable the watchdog timer for 5 minutes by using
the SetWatchdogTimer () boot service prior to calling StartImage(). If a boot option returns
control to the boot manager, the boot manager must disable the watchdog timer with an additional
call to the setwatchdog-Timer () boot service.

If the boot image is not loaded via LoadImage(), the boot manager is required to check for a
default application to boot. Searching for a default application to boot happens on both removable
and fixed media types. This search occurs when the device path of the boot image listed in any
boot option points directly to a SIMPLE_FILE_SYSTEM device and does not specify the exact
file to load. The file discovery method is explained in the section “Default Behavior for Boot Opt
ion Variables” later in this chapter. The default media boot case of a protocol other than
SIMPLE_FILE_SYSTEM is handled by the LOAD_FILE_PROTOCOL for the target device path
and does not need to be handled by the boot manager.

The boot manager must also support booting from a short-form device path that starts with the
first element being a hard drive media device path. The boot manager must use the GUID or
signature and partition number in the hard drive device path to match it to a device in the system.
If the drive supports the GPT partitioning scheme the GUID in the hard drive media device path is
compared with the UniquePartitionGuid field of the GUID Partition Entry. If the drive supports
the PC-AT MBR scheme the signature in the hard drive media device path is compared with the
UniqueMBRSignature in the Legacy Master Boot Record. If a signature match is made, then the
partition number must also be matched. The hard drive device path can be appended to the
matching hardware device path and normal boot behavior can then be used. If more than one
device matches the hard drive device path, the boot manager picks one arbitrarily. Thus, the
operating system must ensure the uniqueness of the signatures on hard drives to guarantee
deterministic boot behavior.

Each load option variable contains an EFI_LOAD_OPTION descriptor that is a bytepacked
buffer of wvariable-length fields. Since some of the fields are of wvariable length, an
EFI_LOAD_OPTION cannot be described as a standard C data structure. Instead, the fields are
listed here in the order that they appear in an EFI_LOAD_OPTION descriptor:

B UINT32 Attributes;
UINT16 FilePathListLength;
CHARI16 Description[];
EFI_DEVICE_PATH FilePathList[];
UINTS8 OptionalDatal J;

B Attributes - The attributes for this load option entry. All unused bits must be zero and are
reserved by the UEFTI specification for future growth. See “Related Definitions.”

B FilePathListLength - Length in bytes of the FilePathList. OptionalData starts at offset
sizeof(UINT32) + sizeof(UINT16) + StrSize(Description) + FilePathListLength of the
EFI_LOAD_OPTION descriptor.

B Description - The user readable description for the load option. This field ends with a Null
Unicode character.

B FilePathList - A packed array of UEFI device paths. The first element of the array is an
UEFTI device path that describes the device and location of the Image for this load option.
The FilePathList[0] is specific to the device type. Other device paths may optionally exist in
the FilePathList, but their usage is OSV specific. Each element in the array is variable
length, and ends at the device path end structure. Because the size of Description is arbitrary,
this data structure is not guaranteed to be aligned on a natural boundary. This data structure
may have to be copied to an aligned natural boundary before it is used.

B OptionalData - The remaining bytes in the load option descriptor are a binary data buffer
that is passed to the loaded image. If the field is zero bytes long, a Null pointer is passed to
the loaded image. The number of bytes in OptionalData can be computed by subtracting the
starting offset of OptionalData from total size in bytes of the EFI_LOAD_OPTION.

Related Definitions

The locad coption attributes are defined by the values
below.

//
// Attributes

//
#define LOAD OPTION ACTIVE 0x00000001
#define LOAD OPTION FORCE RECONNECT 0x00000002

Calling Setvariable() creates a load option. The size of the load option is the same as the size
of the DataSize argument to the Setvariable() call that created the variable. When creating a
new load option, all undefined attribute bits must be written as zero. When updating a load
option, all undefined attribute bits must be preserved. If a load option is not marked as
LOAD_OPTION_ACTIVE, the boot manager will not automatically load the option. This
provides an easy way to disable or enable load options without needing to delete and reload
them. If any Driver#### load option is marked as LOAD_OPTION_FORCE_RECONNECT,
then all of the UEFI drivers in the system will be disconnected and reconnected after the last
Driver#### load option is processed. This allows an UEFI driver loaded with a Driver####
load option to override an UEFI driver that was loaded prior to the execution of the UEFI Boot
Manager.

Globally-Defined Variables

This section defines a set of variables that have architecturally defined meanings. In addition to
the defined data content, each such variable has an architecturally defined attribute that indicates
when the data variable may be accessed. The variables with an attribute of NV are nonvolatile.
This means that their values are persistent across resets and power cycles. The value of any
environment variable that does not have this attribute will be lost when power is removed from
the system and the state of firmware reserved memory is not otherwise preserved. The variables
with an attribute of BS are only available before ExitBootServices() is called. This means that
these environment variables can only be retrieved or modified in the preboot environment. They
are not visible to an operating system. Environment variables with an attribute of RT are
available before and after ExitBootServices() is called. Environment variables of this type
can be retrieved and modified in the preboot environment, and from an operating system. All
architecturally defined variables use the EFI_GLOBAL_VARIABLE VendorGuid:

#define EFI_GLOBAL_VARIABLE \
{8BE4DF61-93CA-11d2-AA0D-00E098032B8C}

To prevent name collisions with possible future globally defined variables, other internal
firmware data variables that are not defined here must be saved with a unique VendorGuid other
than EFI_GLOBAL_VARIABLE. Table 11.1 lists the global variables.

Table 11. 1: Global Variables

Variable Attribute Description
Name
LangCodes BS, RT The language codes that the firmware supports.
Lang NV, BS, The language code that the system is configured for.
RT
Timeout NV, BS, The firmwares boot manager’s timeout, in seconds, before initiating the default boot
RT selection.
ConIn NV, BS, The device path of the default input console.
RT
Conout NV, BS, The device path of the default output console.
RT
Errout NV, BS, The device path of the default error output device.
RT
ConInbDev BS, RT The device path of all possible console input devices.
ConOutbDev BS, RT The device path of all possible console output devices.
ErroutbDev BS, RT The device path of all possible error output devices.
Boot#### NV, BS, A boot load option, where #### is a printed hex value. No 0x or h is included in the hex value.
RT
BootOrder NV, BS, The ordered boot option load list.
RT
BootNext NV, BS, The boot option for the next boot only.
RT

BootCurrent BS, RT The boot option that was selected for the current boot.

Driver#### NV, BS, A driver load option, where #### is a printed hex value.
RT

DriverOrder NV, BS, The ordered driver load option list.
RT

The LangCodes variable contains an array of 3-character (8-bit ASCII characters) ISO-639-2
language codes that the firmware can support. At initialization time the firmware computes the
supported languages and creates this data variable. Since the firmware creates this value on each
initialization, its contents are not stored in nonvolatile memory. This value is considered read-
only.

The Lang variable contains the 3-character (8-bit ASCII characters) ISO-639-2 language
code for which the machine has been configured. This value may be changed to any value
supported by LangCodes; however, the change does not take effect until the next boot. If the
language code is set to an unsupported value, the firmware chooses a supported default at
initialization and sets Lang to a supported value.

The Timeout variable contains a binary UINT16 (unsigned 16-bit value) that supplies the
number of seconds that the firmware waits before initiating the original default boot selection. A
value of 0 indicates that the default boot selection is to be initiated immediately on boot. If the
value is not present, or contains the value of OxFFFF, then firmware waits for user input before
booting. This means the default boot selection is not automatically started by the firmware.

The CconIn, Conout, and Errout variables each contain an EFI_DEVICE_PATH descriptor
that defines the default device to use on boot. Changes to these values do not take effect until the
next boot. If the firmware cannot resolve the device path, it is allowed to automatically replace
the value(s) as needed to provide a console for the system.

The conInDev, ConOutDev, and ErroutDev variables each contain an EFI_DEVICE_PATH
descriptor that defines all the possible default devices to use on boot. These variables are
volatile, and are set dynamically on every boot. ConIn, Conout, and Errout are always proper
subsets of ConInDev, ConOutDev, and ErrOutDev.

Each Boot#### variable contains an EFI_ LOAD_OPTION. Each Boot#### variable is the
name “Boot” appended with a unique four-digit hexadecimal number. For example, Boot 0001,
Boot 0002, Boot 0AG2, and So on.

The BootOrder variable contains an array of UINT16s that make up an ordered list of the
Boot#### options. The first element in the array is the value for the first logical boot option, the
second element is the value for the second logical boot option, and so on. The BootOrder order
list is used by the firmware’s boot manager as the default boot order.

The BootNext variable is a single UINT16 that defines the Boot#### option that is to be tried
first on the next boot. After the BootNext boot option is tried the normal Bootorder list is used.
To prevent loops, the boot manager deletes this variable before transferring control to the
preselected boot option.

The BootCurrent variable is a single UINT16 that defines the Boot#### option that was
selected on the current boot.

Each Driver#### variable contains an EFI_LOAD_OPTION. Each load option variable is
appended with a unique number, for example Drivere001, Drivere002, and so on.

The Driverorder variable contains an array of unsigned 16-bit values that make up an
ordered list of the Driver#### variable. The first element in the array is the value for the first

logical driver load option, the second element is the value for the second logical driver load
option, and so on. The Driverorder list is used by the firmware’s boot manager as the default
load order for UEFI drivers that it should explicitly load.

Default Behavior for Boot Option Variables

The default state of globally defined variables is firmware vendor specific. However, the boot
options require a standard default behavior in the exceptional case that valid boot options are not
present on a platform. The default behavior must be invoked any time the BootOrder variable
does not exist or only points to nonexistent boot options.

If no valid boot options exist, the boot manager enumerates all removable UEFI media
devices followed by all fixed UEFI media devices. The order within each group is undefined.
These new default boot options are not saved to nonvolatile storage. The boot manager then
attempts to boot from each boot option. If the device supports the SIMPLE_FILE_SYSTEM
protocol, then the removable media boot behavior (see the section “Removable Media Boot Beha
vior”) is executed. Otherwise the firmware attempts to boot the device via the LOAD_FILE
protocol.

It is expected that this default boot will load an operating system or a maintenance utility. If
this is an operating system setup program it is then responsible for setting the requisite
environment variables for subsequent boots. The platform firmware may also decide to recover
or set to a known set of boot options.

Boot Mechanisms

UEFI can boot from a device using the SIMPLE_FILE_SYSTEM protocol or the LOAD_FILE
protocol. A device that supports the SIMPLE_FILE_SYSTEM protocol must materialize a file
system protocol for that device to be bootable. If a device does not support a complete file
system, it may produce a LOAD_FILE protocol that allows it to create an image directly. The
boot manager will attempt to boot using the SIMPLE_FILE_SYSTEM protocol first. If that fails,
then the LOAD_FILE protocol will be used.

Boot via Simple File Protocol

When booting via the SIMPLE_FILE_SYSTEM protocol, the FilePath parameter will start with a
device path that points to the device that “speaks” the SIMPLE_FILE_SYSTEM protocol. The
next part of the FilePath will point to the file name, including subdirectories that contain the
bootable image. If the file name is a null device path, the file name must be discovered on the
media using the rules defined for removable media devices with ambiguous file names (see the
section "Removable Media Boot Behavior").

The format of the file system specified by UEFI is contained in the UEFI specification. While
the firmware must produce a SIMPLE_FILE_SYSTEM protocol that understands the UEFI file
system, any file system can be abstracted with the SIMPLE_FILE,_SYSTEM protocol interface.

Removable Media Boot Behavior

On a removable media device, it is not possible for the FilePath to contain a file name including
subdirectories. The FilePath is stored in nonvolatile memory in the platform and cannot possibly
be kept in sync with a media that can change at any time. A FilePath for a removable media
device will point to a device that “speaks” the SIMPLE_FILE_SYSTEM protocol. The FilePath
will not contain a file name or subdirectories.

The system firmware will attempt to boot from a removable media FilePath by adding a
default file name in the form \EFI\BOOT\BOOT{machine type shortname} .EFI. Where machine
type short-name defines a PE32+ image format architecture. Each file only contains one UEFI
image type, and a system may support booting from one or more images types. Table 11.2 lists the
UEFT image types.

Table 11.2: UEFI Image Types

Architecture File name convention PE Executable machine type*
[A-32 BOOTIA32.EFI 0x14c

x64 BOOTx64.EFI 0x8664

Itanium® architecture BOOTIAG64.EF1 0x200

ARMT architecture BOOTARM.EFI 0x01c2

Note: The PE Executable machine type is contained in the machine field of the COFF file header
as defined in the Microsoft Portable Executable and Common Object File Format Specification,

Revision 6.0.
A media may support multiple architectures by simply having a \EFI\BOOT\ B0OT{ machine
type short-name} .EF1I file of each possible machine type.

Non-removable Media Boot Behavior

On a non-removable media device, it is possible for the FilePath to contain a file name including
subdirectories. The FilePath will be used for the boot target and the platform will launch the
target according to normal system policy.

The platform policy will leverage the BOOT#### variables referenced by the BootOrder
variable in the system. These BOOT#### variables are the ones which contain the FilePath data
for the boot target and are what typically are used for the boot process to occur.

Boot via LOAD_ FILE Protocol

When booting via the LOAD_FILE protocol, the FilePath is a device path that points to a device
that “speaks” the LOAD_FILE protocol. The image is loaded directly from the device that
supports the LOAD_FILE protocol. The remainder of the FilePath contains information that is
specific to the device. UEFI firmware passes this device-specific data to the loaded image, but
does not use it to load the image. If the remainder of the FilePath is a null device path it is the
loaded image's responsibility to implement a policy to find the correct boot device.

The LOAD_FILE protocol is used for devices that do not directly support file systems.
Network devices commonly boot in this model where the image is materialized without the need
of a file system.

Network Booting

Network booting is described by the Preboot eXecution Environment (PXE) BIOS Support
Specification that is part of the Wired for Management Baseline specification. PXE specifies
UDP, DHCP, and TFTP network protocols that a booting platform can use to interact with an
intelligent system load server. UEFI defines special interfaces that are used to implement PXE.
These interfaces are contained in the PXE_BASE_CODE protocol defined in the UEFI
specification.

Future Boot Media

Since UEFI defines an abstraction between the platform and the operating system and its loader it
should be possible to add new types of boot media as technology evolves. The OS loader will not
necessarily have to change to support new types of boot. The implementation of the UEFI
platform services may change, but the interface will remain constant. The operating system will
require a driver to support the new type of boot media so that it can make the transition from
UEFI boot services to operating system control of the boot media.

Summary

In conclusion, this chapter indicates the mechanism by which a UEFI compliant system determines
what the boot target(s) is and in what order such execution would occur. This methodology also
provides a cooperative mechanism that is highly extensible and that third parties (such as an OS
vendor) can use for their own installation and execution.

Chapter 12 — Boot Flows

Two roads diverged in a wood....

—Robert Frost, “The Road Less Taken”

The restart of a system admits to many possibilities, or paths of execution. The restart of a CPU
execution for a given CPU can have many causes and different environment states that impinge
upon it. These can include requests to the firmware for an update of the flash store, resumption of
a power management event, initial startup of the system, and other possible restarts. This chapter
describes some of these possible flows and how the UEFI PI handles the events.

To begin, the normal code flow in the UEFI PI passes through a succession of phases, in the
following order:
1. SEC
PEI
DXE
BDS
Runtime
Afterlife

DO RWN

This chapter describes alternatives to this ordering, which can also be seen in Figure 12.1.

Pre !Expuszd Previous
| | | e
| -

‘ Framework
B { . APLs now

:) Transient 0S limited
Chipset 5 Environment
Init 1
N b
Transient 08

Boot Loader

0S-Present
App
Y \
g Runtime Services Boot Loader Environment

DXE Services
security |
Security | Pre-EFI Driver Boot Transient Runtime After-
(SEC) | Initialization Execution Device System Load (RT) life
(PEI) Environment | Selection (TSL) (AL)
(DXE) (BDS)

Power on=s[. . Platform initialization . . | me———jp.[. ... 0S boot | se——)-Shutdown

Figure 12.1: Ordering of UEFI PI Execution Phases

The PEI Foundation is unaware of the boot path required by the system. It relies on the PEIMs to
determine the boot mode and to take appropriate action depending on the mode. To implement this

determination of the boot mode, each PEIM has the ability to manipulate the boot mode using the
PEI Service SetBootMode() described in the discussion of PEI in Chapter 13. Note that the
PEIM does not change the order in which PEIMs are dispatched depending on the boot mode.

Defined Boot Modes

The list of possible boot modes and their corresponding priorities is shown in the following
section. UEFI PI architecture avoids defining an upgrade path specifically, should new boot
modes need be defined. This is necessary as the nature of those additional boot modes may work
in conjunction with or may conflict with the previously defined boot modes.

Priority of Boot Paths

Within a given PEIM, a priority of the boot modes must be observed, as shown in Figure 12.2.
The priority ordering of the sources of boot mode should be as follows (from highest priority to
lowest):

1. BOOT IN RECOVERY MODE

2. BOOT ON FLASH UPDATE

3. BOOT ON S3 RESUME

4. BOOT WITH MINIMAL CONFIGURATION

= BOOT WITH FULL CONFIGURATION

6. BOOT ASSUMING NO CONFIGURATION CHANGES

7. BOOT WITH FULL CONFIGURATION PLUS DIAGNOSTICS

8. BOOT WITH DEFAULT SETTINGS

9. BOOT ON S4 RESUME

10.BOOT ON S5 RESUME

11.BOOT ON S2 RESUME

Special PEIM -
Warm/Cold Start Detect

=
e
—_
=
z
=
=
|
=
=
=
[
=
S
g
-

-Asc:ertain this state, incl. Full
Config, Min config, etc.
1

Any PEIM’s
e that need different
I behavior

: on Boot Mode

Figure 12.2: Priority of the Boot Modes

Table 12.1 lists the assumptions that can and cannot be made about the system for each sleep
state.

Table 12.1: Boot Path Assumptions

System State

Description

Assumptions

RO

Cold Boot

Cannot assume that the previously stored
configuration data is valid.

R1

Warm Boot

May assume that the previously stored
configuration data is valid.

S3

ACPI Save to RAM Resume

The previously stored configuration data
is valid and RAM is valid. RAM
configuration must be restored from
nonvolatile storage (NVS) before RAM
may be used. The firmware may only
modify previously reserved RAM. There
are two types of reserved memory. One
is the equivalent of the BIOS INT15h,
E820 type-4 memory and indicates that
the RAM is reserved for use by the
firmware. The suggestion is to add
another type of memory that allows the
OS to corrupt the memory during runtime
but that may be overwritten during
resume.

S4,
S5

Save to Disk Resume,
“Soft Off”

S4 and S5 are identical from a PEIM's
point of view. The two are distinguished to
support follow-on phases. The entire
system must be reinitialized but the PEIMs
may assume that the previous
configuration is still valid.

Boot on Flash Update

This boot mode can be either an INIT, S3,
or other means by which to restart the
machine. If it is an S3, for example, the
flash update cause will supersede the S3
restart. It is incumbent upon platform
code, such as the Memory Initialization
PEIM, to determine the exact cause and
perform correct behavior (that is, S3 state
restoration versus INIT behavior).

Reset Boot Paths

The following sections describe the boot paths that are followed when a system encounters
several different types of reset.

Intel® Itanium® Processor Reset

Intel® Itanium® architecture contains enough hooks to authenticate PAL-A and PAL-B code that is
distributed by the processor vendor. The internal microcode on the processor silicon, which starts
up on a PowerGood reset, finds the first layer of processor abstraction code (called PAL-A) that
is located in the Boot Firmware Volume (BFV) using architecturally defined pointers in the BFV.
It is the responsibility of this microcode to authenticate that the PAL-A code layer from the
processor vendor has not been tampered with. If the authentication of the PAL-A layer passes,
control then passes to the PAL-A layer, which then authenticates the next layer of processor
abstraction code (called PAL-B) before passing control to it. In addition to this
microarchitecture-specific authentication, the SEC phase of UEFI PI is still responsible for
locating the PEI Foundation and verifying its authenticity.

In an Itanium-based system, it is also imperative that the firmware modules in the BFV be
organized such that at least the PAL-A is contained in the fault-tolerant regions. This processor-
specific PAL-A authenticates the PAL-B code, which is usually contained in the regions of the
firmware system that do not support fault-tolerant updates. The PAL-A and PAL-B binary
components are always visible to all the processors in a node at the time of power-on; the system
fabric should not need to be initialized.

Non-Power-On Resets

Non-power-on resets can occur for many reasons. Some PEI and DXE system services reset and
reboot the entire platform, including all processors and devices. It is important to have a standard
variant of this boot path for cases such as the following:

B Resetting the processor to change frequency settings

B Restarting hardware to complete chipset initialization

B Responding to an exception from a catastrophic error

This reset is also used for Configuration Values Driven through Reset (CVDR) configuration.

Normal Boot Paths

A traditional BIOS executes POST from a cold boot (G3 to SO state), on resumes, or in special
cases like INIT. UEFI covers all those cases but provides a richer and more standardized
operating environment

The basic code flow of the system needs to be changeable due to different circumstances. The
boot path variable satisfies this need. The initial value of the boot mode is defined by some early
PEIMs, but it can be altered by other, later PEIMs. All systems must support a basic SO boot path.
Typically a system has a richer set of boot paths, including SO variations, S-state boot paths, and
one or more special boot paths.

The architecture for multiple boot paths presented here has several benefits:

B The PEI Foundation is not required to be aware of system-specific requirements such as
multi-processor capability and various power states. This lack of awareness allows for
scalability and headroom for future expansion.

B Supporting the various paths only minimally impacts the size of the PEI Foundation.

B The PEIMs required to support the paths scale with the complexity of the system.

Note that the Boot Mode Register becomes a variable upon transition to the DXE phase. The
DXE phase can have additional modifiers that affect the boot path more than the PEI phase. These
additional modifiers can indicate if the system is in manufacturing mode, chassis intrusion, or AC
power loss or if silent boot is enabled.

In addition to the boot path types, modifier bits might be present. The recoveryneeded
modifier is set if any PEIM detects that it has become corrupted.

Basic G0-to-S0 and S0 Variation Boot Paths

The basic SO boot path is boot with full configuration. This path setting informs all PEIMs to do
a full configuration. The basic SO boot path must be supported.

The UEFI PI architecture also defines several optional variations to the basic SO boot path. The
variations that are supported depend on the following:

B Richness of supported features

M If the platform is open or closed

B Platform hardware

For example, a closed system or one that has detected a chassis intrusion could support a boot

path that assumes no configuration changes from last boot option, thus allowing a very rapid boot

time. Unsupported variations default to basic SO operation. The following are the defined

variations to the basic boot path:

B Boot with minimal configuration: This path is for configuring the minimal amount of
hardware to boot the system.

B Boot assuming no configuration changes: This path uses the last configuration data.

B Boot with full configuration plus diagnostics: This path also causes any diagnostics to be
executed.

B Boot with default settings: This path uses a known set of safe values for programming
hardware.

S-State Boot Paths

The following optional boot paths allow for different operation for a resume from S3, S4, and S5:

B S3 (Save to RAM Resume): Platforms that support S3 resume must take special care to
preserve/restore memory and critical hardware.

B S4 (Save to Disk): Some platforms may want to perform an abbreviated PEI and DXE phase
on a S4 resume.

B S5 (Soft Off): Some platforms may want an S5 system state boot to be differentiated from a
normal boot—for example, if buttons other than the power button can wake the system.

An S3 resume needs to be explained in more detail because it requires cooperation between a
G0-to-S0 boot path and an S3 resume boot path. The GO-to-S0 boot path needs to save hardware
programming information that the S3 resume path needs to retrieve. This information is saved in
the Hardware Save Table using predefined data structures to perform I/O or memory writes. The
data is stored in a UEFI equivalent of the INT15 E820 type 4 (firmware reserved memory) area
or a firmware device area that is reserved for use by UEFIL. The S3 resume boot path code can
access this region after memory has been restored.

Recovery Paths

All of the previously described boot paths can be modified or aborted if the system detects that
recovery is needed. Recovery is the process of reconstituting a system’s firmware devices when
they have become corrupted. The corruption can be caused by various mechanisms. Most
firmware volumes on nonvolatile storage devices (flash, disk) are managed as blocks. If the
system loses power while a block, or semantically bound blocks, are being updated, the storage
might become invalid. On the other hand, the device might become corrupted by an errant
program or by errant hardware. The system designers must determine the level of support for
recovery based on their perceptions of the probabilities of these events occurring and their
consequences.

The following are some reasons why system designers may choose not to support recovery:

B A system’s firmware volume storage media might not support modification after being
manufactured. It might be the functional equivalent of ROM.

B Most mechanisms of implementing recovery require additional firmware volume space,
which might be too expensive for a particular application.

B A system may have enough firmware volume space and hardware features that the firmware
volume can be made sufficiently fault tolerant to make recovery unnecessary.

Discovery

Discovering that recovery is required may be done using a PEIM (for example, by checking a
“force recovery” jumper) or the PEI Foundation itself. The PEI Foundation might discover that a
particular PEIM has not validated correctly or that an entire firmware has become corrupted.

General Recovery Architecture

The concept behind recovery is to preserve enough of the system firmware so that the system can
boot to a point where it can do the following:

B Read a copy of the data that was lost from chosen peripherals.

B Reprogram the firmware volume with that data.

Preserving the recovery firmware is a function of the way the firmware volume store is managed,
which is generally beyond the scope of this book. For the purpose of this description, it is
expected that the PEIMs and other contents of the firmware volumes required for recovery are
marked. The architecture of the firmware volume store must then preserve marked items, either by
making them unalterable (possibly with hardware support) or must protect them using a fault-
tolerant update process. Note that a PEIM is required to be in a fault-tolerant area if it indicates it
is required for recovery or if a PEIM required for recovery depends on it. This architecture also
assumes that it is fairly easy to determine that firmware volumes have become corrupted.

The PEI Dispatcher then proceeds as normal. If it encounters PEIMs that have been corrupted

(for example, by receiving an incorrect hash value), it itself must change the boot mode to
recovery. Once set to recovery, other PEIMs must not change it to one of the other states. After the
PEI Dispatcher has discovered that the system is in recovery mode, it will restart itself,
dispatching only those PEIMs that are required for recovery. A PEIM can also detect a
catastrophic condition or a forced-recovery event and inform the PEI Dispatcher that it needs to
proceed with a recovery dispatch. A PEIM can alert the PEI Foundation to start recovery by OR-
ing the BOOT_IN_RECOVERY_MODE_MASK bit onto the present boot mode. The PEI Foundation then
resets the boot mode to BOOT_IN_RECOVERY_MODE and starts the dispatch from the beginning with
BOOT_IN_RECOVERY_MODE as the sole value for the mode.

It is possible that a PEIM could be built to handle the portion of the recovery that would
initialize the recovery peripherals (and the buses they reside on) and then to read the new images
from the peripherals and update the firmware volumes.

It is considered far more likely that the PEI will transition to DXE because DXE is designed
to handle access to peripherals. This transition has the additional benefit that, if DXE then
discovers that a device has become corrupted, it may institute recovery without transferring
control back to the PEL

If the PEI Foundation does not have a list of what it is to dispatch, how does it know whether
an area of invalid space in a firmware volume should have contained a PEIM or not? It seems that
the PEI Foundation may discover most corruption as an incidental result of its search for PEIMs.
In this case, if the PEI Foundation completes its dispatch process without discovering enough
static system memory to start DXE, then it should go into recovery mode.

Special Boot Path Topics

The remaining sections in this chapter discuss special boot paths that might be available to all
processors or specific considerations that apply only for Intel Itanium processors.

Special Boot Paths

The following are special boot paths in the UEFI PI architecture. Some of these paths are optional

and others are processor-family specific.

B Forced recovery boot: A jumper or an equivalent mechanism indicates a forced recovery.

B Intel Itanium architecture boot paths: See the next section.

B Capsule update: This boot mode can be an INIT, S3, or some other means by which to
restart the machine. If it is an S3, for example, the capsule cause will supersede the S3
restart. It is incumbent upon platform code, such as a memory initialization PEIM, to
determine the exact cause and perform the correct behavior—that is, S3 state restoration
versus INIT behavior.

Special Intel Itanium® Architecture Boot Paths

The architecture requires the following special boot paths:
B Boot after INIT: An INIT has occurred.
B Boot after MCA: A Machine Check Architecture (MCA) event has occurred.

Intel Itanium processors possess several unique boot paths that also invoke the dispatcher located
at the System Abstraction Layer entry point SALE_ENTRY. The processor INIT and MCA are
two asynchronous events that start up the SEC code/dispatcher in an Itanium-based system. The
UEFTI PI security module is transparent during all the code paths except for the recovery check
call that happens during a cold boot. The PEIMs or DXE drivers that handle these events are
architecture-aware and do not return the control to the core dispatcher. They call their respective
architectural handlers in the OS.

Intel Itanium® Architecture Access to the Boot Firmware Volume

Figure 12.3 shows the reset boot path that an Intel Itanium processor follows. Figure 12.4 shows
the boot flow.

PowerGood

Microcode
Startup

. PAL-A

Authenticate

. PAL-B

Authenticate

Framework SEC Phase Starts Up

Rec. Mode
Check PEIM

Figure 12.3: Intel® I[tanium® Architecture Resets

< RESET
(J ¥

Al Provessos un
PAL A

]

PAL Handoff State (Regs)

FEIM Dispetche (SALE_Entry)

PEIM D spatcher Invoked

PEIM behavier depends on the handoff
state and the boot flag

Some PEIMs work in MP mode

First Phase Done

Res Mode

Hon Res. Mode

Begin Phase2

O O O

Figure 12.4: Intel® Itanium® Processor Boot Flow (MP versus UP on Other CPUs)

Se¢ond Phase Done

Load DXEHandoff

In Intel Itanium architecture, the microcode starts up the first layer of the PAL code, provided by
the processor vendor, which resides in the Boot Firmware Volume (BFV). This code minimally
initializes the processor and then finds and authenticates the second layer of PAL code (called
PAL-B). The location of both PAL-A and PAL-B can be found by consulting either the architected
pointers in the ROM near the 4-gigabyte region or by consulting the Firmware Interface Table
(FIT) pointer in the ROM. The PAL layer communicates with the OEM boot firmware using a

single entry point called SALE_ENTRY.

The Intel Itanium architecture defines the initialization described above. In addition, however,
Itanium-based systems that use the UEFI PI architecture must do the following:

A “special” PEIM must be resident in the BFV to provide information about the location of
the other firmware volumes.

The PEI Foundation will be located at the SALE_ENTRY point on the BFV. The Intel
Itanium architecture PEIMs may reside in the BFV or other firmware volumes, but a special
PEIM must be resident in the BFV to provide information about the location of the other
firmware volumes.

The BFV of a particular node must be accessible by all the processors running in that node.
All the processors in each node start up and execute the PAL code and subsequently enter the
PEI Foundation. The BFV of a particular node must be accessible by all the processors
running in that node. This distinction also means that some of the PEIMs in the Intel Itanium
architecture boot path will be multi-processor-aware.

Firmware modules in a BFV must be organized such that PAL-A, PAL-B, and FIT binaries
are always visible to all the processors in a node at the time of power-on.

These binaries must be visible without any initialization of the system fabric.

f/***

// EFI BOOT MODE
f/***

typedef UINT32 EFI BOOT MODE;

#define

BOOT _WITH_FULL_ CONFIGURATION 0x00
#define

BOOT WITH MINIMAL CONFIGURATION 0x01
#define

BOOT ASSUMING NO CONFIGURATION CHANGES 0x02
#define

BOOT WITH FULL CONFIGURATION PLUS DIAGNOSTICS 0x03
#define

BOOT WITH DEFAULT SETTINGS 0x04
#define

BOOT _ON_S4 RESUME 005
#define

BOOT ON S5 RESUME 0x06
#define

BOOT ON SZ2 RESUME 0x10

#define

BOOT ON S3 RESUME
#define

BOOT ON_FLASH UPDATE
#define

BOOT_IN_RECOVERY_ MODE

0x21 - OxF..F Reserved Encodings

Table 12.2 lists the values and descriptions of the boot modes.

Table 12.2: Boot Mode Register

0x11

Ox12

0x20

REGISTER BIT(S) VALUES

DESCRIPTIONS

MSBit-0 000000b

Boot with full configuration

000001b

Boot with minimal configuration

000010b

Boot assuming no configuration changes from last boot

000011b

Boot with full configuration plus diagnostics

000100b

Boot with default settings

000101b

Boot on S4 resume

000110b

Boot in S5 resume

000111b-001111b

Reserved for boot paths that configure memory

010000b

Boot on S2 resume

010001b

Boot on S3 resume

010010b

Boot on flash update restart

010011b-011111b

Reserved for boot paths that preserve memory context

100000b

Boot in recovery mode

100001b-111111b

Reserved for special boots

Architectural Boot Mode PPIs

In the PEI chapter the concept of an PEIM-to-PEIM interface (PPI) is introduced as the unit of
interoperability in this phase of execution. PEI modules can ascertain the boot mode via the
GetBootMode service once the module is dispatched, but a system designer may not want a PEIM
to even run unless in a given boot mode. A possible hierarchy of boot mode PPIs abstracts the
various producers of the boot mode. It is a hierarchy in that there should be an order of
precedence in which each mode can be set. The PPIs and their respective GUIDs are described in
Required Architectural PPIs for

the PEI phase that can be found in the PEI Core Interface Specification and Optional Architectural
PPIs. The hierarchy includes the master PPI, which publishes a PPI depended upon by the
appropriate PEIMs, and some subsidiary PPI. For PEIMs that require that the boot mode is finally
known, the Master Boot Mode PPI can be used as a dependency.

Table 12.3 lists the architectural boot mode PPIs.

Table 12.3: Architectural Boot Mode PPIs

PPI Name Required or Optional? PPI Definition in Section...

Master Boot Mode PPI Required Architectural PPIs: Required
Architectural PPIs

Boot in Recovery Mode PPI Optional Architectural PPIs: Optional Architectural

PPIs

Recovery

This section describes platform firmware recovery. Recovery is an option to provide higher
RASUM (Reliability, Availability, Serviceability, Usability, Manageability) in the field.
Recovery is the process of reconstituting a system’s firmware devices when they have become
corrupted. The corruption can be caused by various mechanisms. Most firmware volumes (FVs)
in nonvolatile storage (NVS) devices (flash or disk, for example) are managed as blocks. If the
system loses power while a block, or semantically bound blocks, are being updated, the storage
might become invalid. On the other hand, an errant program or hardware could corrupt the device.
The system designers must determine the level of support for recovery based on their perceptions
of the probabilities of these events occurring and the consequences.

Discovery

Discovering that recovery is required may be done using a PEIM (for example, by checking a
“force recovery” jumper) or the PEI Foundation itself. The PEI Foundation might discover that a
particular PEIM has not validated correctly or that an entire firmware has become corrupted.

Note At this point a physical reset of the system has not occurred. The PEI Dispatcher has only cleared all state
information and restarted itself.

It is possible that a PEIM could be built to handle the portion of the recovery that would initialize
the recovery peripherals (and the buses they reside on) and then to read the new images from the
peripherals and update the FVs.

It is considered far more likely that the PEI will transition to DXE because DXE is designed
to handle access to peripherals. This has the additional benefit that, if DXE then discovers that a
device has become corrupted, it may institute recovery without transferring control back to the
PEL

Since the PEI Foundation does not have a list of what to dispatch, how does it know if an area
of invalid space in an FV should have contained a PEIM or not? The PEI Foundation should
discover most corruption as an incidental result of its search for PEIMs. In this case, if the PEI
Foundation completes its dispatch process without discovering enough static system memory to
start DXE, then it should go into recovery mode.

Summary

This chapter has described the various boot modes that the UEFI PI firmware can support. This
concept is important to understand as both a provider of PEI modules and DXE drivers, along
with platform integrators. The former constituency needs to design their code to handle the boot
modes appropriately, whereas the latter group of engineers needs to understand how to compose a
set of modules and drivers for the respective boot paths of a resultant system.

Chapter 13 — Pre-EFI Initialization (PEI)

Small is Beautiful
—FE.F. Schumacher

The UEFI Platform Initialization (PI) pre-EFI initialization (PEI) phase of execution has two
primary roles in a platform’s life: determine the source of the restart and provide a minimum
amount of permanent memory for the ensuing DXE phase. Words such as small and minimal are
often used to describe PEI code because of hardware resource constraints that limit the
programming environment. Specifically, the Pre-EFI Initialization (PEI) phase provides a
standardized method of loading and invoking specific initial configuration routines for the
processor, chipset, and system board. The PEI phase occurs after the Security (SEC) phase. The
primary purpose of code operating in this phase is to initialize enough of the system to allow
instantiation of the Driver Execution Environment (DXE) phase. At a minimum, the PEI phase is
responsible for determining the system boot path and initializing and describing a minimum
amount of system RAM and firmware volume(s) that contain the DXE Foundation and DXE
Architectural Protocols. As an application of Occam’s razor to the system design, the minimum
amount of activity should be orchestrated and located in this phase of execution; no more, no less.

Scope

The PEI phase is responsible for initializing enough of the system to provide a stable base for
subsequent phases. It is also responsible for detecting and recovering from corruption of the
firmware storage space and providing the restart reason (bootmode).

Today’s PC generally starts execution in a very primitive state, from the perspective of the
boot firmware, such as BIOS or the UEFI PI. Processors might need updates to their internal
microcode; the chipset (the chips that provide the interface between processors and the other
major components of the system) require considerable initialization; and RAM requires sizing,
location, and other initialization. The PEI phase is responsible for initializing these basic
subsystems. The PEI phase is intended to provide a simple infrastructure by which a limited set of
tasks can easily be accomplished to transition to the more advanced DXE phase. The PEI phase is
intended to be responsible for only a very small subset of tasks that are required to boot the
platform; in other words, it should perform only the minimal tasks that are required to start DXE.
As improvements in the hardware occur, some of these tasks may migrate out of the PEI phase of
execution.

Rationale

The design for PEI is essentially a miniature version of DXE that addresses many of the same
issues. The PEI phase consists of several parts:

B APEIFoundation

B One or more Pre-EFI Initialization Modules (PEIMs)

The goal is for the PEI Foundation to remain relatively constant for a particular processor
architecture and to support add-in modules from various vendors for particular processors,
chipsets, platforms, and other components. These modules usually cannot be coded without some
interaction between one another and, even if they could, it would be inefficient to do so.

PEI is unlike DXE in that DXE assumes that reasonable amounts of permanent system RAM are
present and available for use. PEI instead assumes that only a limited amount of temporary RAM
exists and that it could be reconfigured for other uses during the PEI phase after permanent system
RAM has been initialized. As such, PEI does not have the rich feature set that DXE does. The
following are the most obvious examples of this difference:

B DXE has a rich database of loaded images and protocols bound to those images.

B PEIlacks a rich module hierarchy such as the DXE driver model.

Overview

The PEI phase consists of some Foundation code and specialized drivers known as PEIMs that
customize the PEI phase operations to the platform. It is the responsibility of the Foundation code
to dispatch the plug-ins in a sequenced order and provide basic services. The PEIMs are
analogous to DXE drivers and generally correspond to the components being initialized. It is
expected that common practice will be that the vendor of the component will provide the PEIM,
possibly in source form so the customer can quickly debug integration problems.

The implementation of the PEI phase is more dependent on the processor architecture than any
other UEFI PI phase. In particular, the more resources that the processor provides at its initial or
near initial state, the richer the PEI environment will be. As such, several parts of the following
discussion note requirements for the architecture but are otherwise left less completely defined
because they are specific to the processor architecture.

PEI can be viewed from both temporal and spatial perspectives. Figure 13.1 provides the
overall UEFI PI boot phase. The spatial view of PEI can be found in Figure 13.2. This picture
describes the layering of the UEFI PI components. This figure has often been referred to as the
“H”. PEI compromises the lower half of the “H”. The temporal perspective entails “when” the
PEI foundation and its associated modules execute. Figure 13.3 highlights the portions of Figure 1
3.1 that include PEL

Exposed

Pre Platform
Interface 0S-Absent
. App
— ¢)
Transient OS
Environment
()

Transient OS
Boot Loader

0OS-Present
App

Intrinsic Final OS -, Final OS
Boot Loader Environment

Services

Power on —[. . Platform initialization ..]——[....O0S boot....] * Shutdown

Figure 13.1: Overall Boot Flow

Chipset/Processor OEM, ISV &
Function EFI Driver Intel BU EFI Driver
specs specs

 Pro-EFl Inifialization (PE)) Spec

Legend
B API

Figure 13.2: System Components

Chipset/iProcessor OEM, ISV &
Function DXE Driver Intel BU EFI Driver
sSpecs Specs

Erterfane

I
i
i
2 !
B |
g |
F il == |
mrava [| & |
| |
I |
Driver Execution Environment (DXE)
Spu
Pre-EFI Initialization (PEI) C ¢
Spec
; Y| rhen Femimemiint | "o | st B e
(2] Bl LY L]

Pirwmt vm..} — R] e— e Bl

Figure 13.3: Portion of the Overall Boot Flow and Components for PEI

Phase Prerequisites

The following sections describe the prerequisites necessary for the successful completion of the
PEI phase.

‘Temporary RAM

The PEI Foundation requires that the SEC phase initialize a minimum amount of scratch pad RAM
that can be used by the PEI phase as a data store until system memory has been fully initialized.
This scratch pad RAM should have access properties similar to normal system RAM—through
memory cycles on the front side bus, for example. After system memory is fully initialized, the
temporary RAM may be reconfigured for other uses. Typical provision for the temporary RAM is
an architectural mode of the processor’s internal caches.

Boot Firmware Volume

The Boot Firmware Volume (BFV) contains the PEI Foundation and PEIMs. It must appear in the
memory address space of the system without prior firmware intervention and typically contains
the reset vector for the processor architecture.

The contents of the BFV follow the format of the UEFI PI flash file system. The PEI
Foundation follows the UEFT PI flash file system format to find PEIMs in the BFV. A platform-
specific PEIM may inform the PEI Foundation of the location of other firmware volumes in the
system, which allows the PEI Foundation to find PEIMs in other firmware volumes. The PEI
Foundation and PEIMs are named by unique IDs in the UEFI PI flash file system.

The PEI Foundation and some PEIMs required for recovery must either be locked into a non-
updateable BFV or be able to be updated using a fault-tolerant mechanism. The UEFI PI flash file
system provides error recovery; if the system halts at any point, either the old (pre-update)
PEIM(s) or the newly updated PEIM(s) are entirely valid and the PEI Foundation can determine
which is valid.

Security Primitives

The SEC phase provides an interface to the PEI Foundation to perform verification operations. To
continue the root of trust, the PEI Foundation will use this mechanism to validate various PEIMs.

Concepts

The following sections describe the concepts in the PEI phase design.

PEI Foundation

The PEI Foundation is a single binary executable that is compiled to function with each processor
architecture. It performs two main functions:

B Dispatching PEIMs

B Providing a set of common core services used by PEIMs

The PEI Dispatcher’s job is to transfer control to the PEIMs in an orderly manner. The common
core services are provided through a service table referred to as the PEI Services Table. These
services do the following:

n Assist in PEIM-to-PEIM communication.

B Abstract management of the temporary RAM.

B Provide common functions to assist the PEIMs in the following;
— Finding other files in the FFS
— Reporting status codes
— Preparing the handoff state for the next phase of the UEFI PI

When the SEC phase is complete, SEC invokes the PEI Foundation and provides the PEI

Foundation with several parameters:

B The location and size of the BFV so that the PEI Foundation knows where to look for the
initial set of PEIMs.

B A minimum amount of temporary RAM that the PEI phase can use

B A verification service callback to allow the PEI Foundation to verify that PEIMs that it
discovers are authenticated to run before the PEI Foundation dispatches them

The PEI Foundation assists PEIMs in communicating with each other. The PEI Foundation
maintains a database of registered interfaces for the PEIMs, as shown in Figure 13.4. These
interfaces are called PEIM-to-PEIM Interfaces (PPIs). The PEI Foundation provides the
interfaces to allow PEIMs to register PPIs and to be notified (called back) when another PEIM
installs a PPI.

PPI Descriptor Pir A l

PPI Descriptor PPI Descriptor Ptr B
\ PPI Descriptor Ptr C1
PPI Descriptor Ptr D

PPI Descriptor Ptr C2
NULL

Example Foundation Database

Figure 13.4: How a PPI Is Registered

The PEI Dispatcher consists of a single phase. It is during this phase that the PEI Foundation
examines each file in the firmware volumes that contain files of type PEIM. It examines the
dependency expression (depex) within each firmware file to decide if a PEIM can run. A
dependency expression is code associated with each driver that describes the dependencies that
must be satisfied for that driver to run. The binary encoding of dependency expressions for PEIMs
is the same as that of dependency expressions associated with a DXE driver.

Pre-EFI Initialization Modules (PEIMs)

Pre-EFI Initialization Modules (PEIMs) are executable binaries that encapsulate processor,
chipset, device, or other platform-specific functionality. PEIMs may provide interface(s) that
allow other PEIMs or the PEI Foundation to communicate with the PEIM or the hardware for
which the PEIM abstracts. PEIMs are separately built binary modules that typically reside in
ROM and are therefore uncompressed. A small subset of PEIMs exist that may run from RAM for
performance reasons. These PEIMs reside in ROM in a compressed format. PEIMs that reside in
ROM are execute-in-place modules that may consist of either position-independent code or
position-dependent code with relocation information.

PEI Services

The PEI Foundation establishes a system table named the PEI Services Table that is visible to all
PEIMs in the system. A PEI service is defined as a function, command, or other capability that is
manifested by the PEI Foundation when that service’s initialization requirements are met. Because
the PEI phase has no permanent memory available until nearly the end of the phase, the range of
services created during the PEI phase cannot be as rich as those created during later phases.
Because the location of the PEI Foundation and its temporary RAM is not known at build time, a
pointer to the PEI Services Table is passed into each PEIM’s entry point and also to part of each
PPI. The PEI Foundation provides the following classes of services:

B PPI Services: Manages PPIs to facilitate inter-module calls between PEIMs. Interfaces are

installed and tracked on a database maintained in temporary RAM.

Boot Mode Services: Manages the boot mode (S3, S5, normal boot, diagnostics, and so on)
of the system.

HOB Services: Creates data structures called Hand-Off Blocks (HOBs) that are used to pass
information to the next phase of the UEFI PI.

Firmware Volume Services: Scans the FFS in firmware volumes to find PEIMs and other
firmware files in the flash device.

PEI Memory Services: Provides a collection of memory management services for use both
before and after permanent memory has been discovered.

Status Code Services: Common progress and error code reporting services, that is, port
080h or a serial port for simple text output for debug.

Reset Services: Provides a common means by which to initiate a restart of the system.

PEIM-to-PEIM Interfaces (PPIs)

PEIMs may invoke other PEIMs through interfaces named PEIM-to-PEIM Interfaces (PPIs). The
interfaces themselves are named using Globally Unique Identifiers (GUIDs) to allow the
independent development of modules and their defined interfaces without naming collision. A
GUID is a 128-bit value used to differentiate services and structures in the boot services. The
PPIs are defined as structures that may contain functions, data, or a combination of the two.
PEIMs must register their PPIs with the PEI Foundation, which manages a database of registered
PPIs. A PEIM that wants to use a specific PPI can then query the PEI Foundation to find the
interface it needs. The two types of PPIs are:

B Services

B Notifications

PPI services allow a PEIM to provide functions or data for another PEIM to use. PPI notifications
allow a PEIM to register for a callback when another PPI is registered with the PEI Foundation.

Simple Heap

The PEI Foundation uses temporary RAM to provide a simple heap store before permanent
system memory is installed. PEIMs may request allocations from the heap, but no mechanism
exists to free memory from the heap. Once permanent memory is installed, the heap is relocated to
permanent system memory, but the PEI Foundation does not fix up existing data within the heap.
Therefore, a PEIM cannot store pointers in the heap when the target is other data within the heap,
such as linked lists.

Hand-Off Blocks (HOBs)

Hand-Off Blocks (HOBs) are the architectural mechanism for passing system state information
from the PEI phase to the DXE phase in the UEFI PI architecture. A HOB is simply a data
structure (cell) in memory that contains a header and data section. The header definition is
common for all HOBs and allows any code using this definition to know two items:

B The format of the data section
B The total size of the HOB

HOBs are allocated sequentially in the memory that is available to PEIMs after permanent
memory has been installed. A series of core services facilitate This sequential list of HOBs in
memory is referred to as the HOB list. This first HOB in the HOB list must be the Phase Handoff
Information Table (PHIT) HOB that describes the physical memory used by the PEI phase and the
boot mode discovered during the PEI phase, as illustrated in Figure 13.5.

I 1 I I I
System J o J MMIO J Firmware J Firmware DXE
Memory Resources Resources Devices Volumes N i
HOB List * * T \
PHIT DXE
HOB HOB HOB HOB HOB| ... |HOB Drivers ||

Figure 13.5: The HOB List

Only PEI components are allowed to make additions or changes to HOBs. Once the HOB list is
passed into DXE, it is effectively read-only for DXE components. The ramifications of a read-
only HOB list for DXE is that handoff information, such as boot mode, must be handled in a
unique fashion; if DXE were to engender a recovery condition, it would not update the boot mode
but instead would implement the action using a special type of reset call. The HOB list contains
system state data at the time of PEI-to-DXE handoff and does not represent the current system
state during DXE. DXE components should use services that are defined for DXE to get the
current system state instead of parsing the HOB list.

As a guideline, it is expected that HOBs passed between PEI and DXE will follow a one
producer—to—one consumer model. In other words, a PEIM will produce a HOB in PEIL and a
DXE Driver will consume that HOB and pass information associated with that HOB to other
DXE components that need the information. The methods that the DXE Driver uses to provide that
information to other DXE components should follow mechanisms defined by the DXE
architecture.

Operation

PEI phase operation consists of invoking the PEI Foundation, dispatching all PEIMs in an orderly
manner, and discovering and invoking the next phase, as illustrated in Figure 13.6. During PEI
Foundation initialization, the PEI Foundation initializes the internal data areas and functions that
are needed to provide the common PEI services to PEIMs. During PEIM dispatch, the PEI
Dispatcher traverses the firmware volume(s) and discovers PEIMs according to the flash file
system definition. The PEI Dispatcher then dispatches PEIMs if the following criteria are met:

The PEIM has not already been invoked.

The PEIM file is correctly formatted.

The PEIM is trustworthy.

The PEIM’s dependency requirements have been met.

After dispatching a PEIM, the PEI Dispatcher continues traversing the firmware volume(s) until
either all discovered PEIMs have been invoked or no more PEIMs can be invoked because the
requirements listed above cannot be met for any PEIMs. Once this condition has been reached, the
PEI Dispatcher’s job is complete and it invokes an architectural PPI for starting the next phase of
the UEFI PI, the DXE Initial Program Load (IPL) PPL

SEC
EV(s)
W . § =
) =) ; =
wlia g . =) - =
Initialization | o § = = B
= = 2)
E o o -
'(.- ore .%- %" ? E System
DiSpﬂtCher ?’g _:t g Memory
. = 1 =
w

Entry

3| |

Entry

v

N
-

Figure 13.6: PEI Boot Flow

Dependency Expressions

The sequencing of PEIMs is determined by evaluating a dependency expression associated with
each PEIM. This Boolean expression describes the requirements that are necessary for that PEIM
to run, which imposes a weak ordering on the PEIMs. Within this weak ordering, the PEIMs may
be initialized in any order. The GUIDs of PPIs and the GUIDs of file names are referenced in the
dependency expression. The dependency expression is a representative syntax of operations that
can be performed on a plurality of dependencies to determine whether the PEIM can be run. The
PEI Foundation evaluates this dependency expression against an internal database of run PEIMs
and registered PPIs. Operations that may be performed on dependencies are the logical operators
AND, OR, and NOT and the sequencing operators BEFORE and AFTER.

Verification/Authentication

The PEI Foundation is stateless with respect to security. Instead, security decisions are assigned
to platform-specific components. The two components of interest that abstract security include the
Security PPI and a Verification PPI. The purpose of the Verification PPI is to check the
authentication status of a given PEIM. The mechanism used therein may include digital signature
verification, a simple checksum, or some other OEM-specific mechanism. The result of this
verification is returned to the PEI Foundation, which in turn conveys the result to the Security PPI.
The Security PPI decides whether to defer execution of the PEIM or to let the execution occur. In
addition, the Security PPI provider may choose to generate an attestation log entry of the
dispatched PEIM or provide some other security exception.

PEIM Execution

PEIMs run to completion when invoked by the PEI Foundation. Each PEIM is invoked only once
and must perform its job with that invocation and install other PPIs to allow other PEIMs to call it
as necessary. PEIMs may also register for a notification callback if it is necessary for the PEIM to
get control again after another PEIM has run.

Memory Discovery

Memory discovery is an important architectural event during the PEI phase. When a PEIM has

successfully discovered, initialized, and tested a contiguous range of system RAM, it reports this

RAM to the PEI Foundation. When that PEIM exits, the PEI Foundation migrates PEI usage of the

temporary RAM to real system RAM, which involves the following two tasks:

B The PEI Foundation must switch PEI stack usage from temporary RAM to permanent system
memory.

B The PEI Foundation must migrate the simple heap allocated by PEIMs (including HOBs) to
real system RAM.

Once this process is complete, the PEI Foundation installs an architectural PPI to notify any
interested PEIMs that real system memory has been installed. This notification allows PEIMs that
ran before memory was installed to be called back so that they can complete necessary tasks—
such as building HOBs for the next phase of DXE—in real system memory.

Intel® Itanium® Processor MP Considerations

This section gives special consideration to the PEI phase operation in Intel Itanium processor
family multiprocessor (MP) systems. In Itanium-based systems, all of the processors in the system
start up simultaneously and execute the PAL initialization code that is provided by the processor
vendor. Then all the processors call into the UEFI PI start-up code with a request for recovery
check. The start-up code allocates different chunks of temporary memory for each of the active
processors and sets up stack and backing store pointers in the allocated temporary memory. The
temporary memory could be a part of the processor cache (cache as RAM), which can be
configured by invoking a PAL call. The start-up code then starts dispatching PEIMs on each of
these processors. One of the early PEIMs that runs in MP mode is the PEIM that selects one of the
processors as the boot-strap processor (BSP) for running the PEIM stage of the booting.

This BSP continues to run PEIMs until it finds permanent memory and installs the memory
with the PEI Foundation. Then the BSP wakes up all the processors to determine their health and
PAL compatibility status. If none of these checks warrants a recovery of the firmware, the
processors are returned to the PAL for more processor initialization and a normal boot.

The UEFI PI start-up code also gets triggered in an Itanium-based system whenever an INIT
or a Machine Check Architecture (MCA) event occurs in the system. Under such conditions, the
PAL code outputs status codes and a buffer called the minimum state buffer. A UEFI PI-specific
data pointer that points to the INIT and MCA code data area is attached to this minimum state
buffer, which contains details of the code to be executed upon INIT and MCA events. The buffer
also holds some important variables needed by the start-up code to make decisions during these
special hardware events.

Recovery

Recovery is the process of reconstituting a system’s firmware devices when they have become
corrupted. The corruption can be caused by various mechanisms. Most firmware volumes on
nonvolatile storage devices are managed as blocks. If the system loses power while a block or
semantically bound blocks are being updated, the storage might become invalid. On the other
hand, the device might become corrupted by an errant program or by errant hardware. Assuming
PEI lives in a fault-tolerant block, it can support a recovery mode dispatch.

A PEIM or the PEI Foundation itself can discover the need to do recovery. A PEIM can check
a “force recovery” jumper, for example, to detect a need for recovery. The PEI Foundation might
discover that a particular PEIM does not validate correctly or that an entire firmware volume has
become corrupted.

The concept behind recovery is that enough of the system firmware is preserved so that the
system can boot to a point that it can read a copy of the data that was lost from chosen peripherals
and then reprogram the firmware volume with that data.

Preservation of the recovery firmware is a function of the way the firmware volume store is
managed. In the UEFI PI flash file system, PEIMs required for recovery are marked as such. The
firmware volume store architecture must then preserve marked items, either by making them
unalterable (possibly with hardware support) or protect them using a fault-tolerant update
process.

Until recovery mode has been discovered, the PEI Dispatcher proceeds as normal. If the PEI
Dispatcher encounters PEIMs that have been corrupted (for example, by receiving an incorrect
hash value), it must change the boot mode to recovery. Once set to recovery, other PEIMs must not
change it to one of the other states. After the PEI Dispatcher has discovered that the system is in
recovery mode, it will restart itself, dispatching only those PEIMs that are required for recovery.
It is also possible for a PEIM to detect a catastrophic condition or to be a forced-recovery detect
PEIM and to inform the PEI Dispatcher that it needs to proceed with a recovery dispatch. The
recovery dispatch is completed when a PEIM finds a recovery firmware volume on a recovery
media and the DXE Foundation is started from that firmware volume. Drivers within that DXE
firmware volume can perform the recovery process.

S3 Resume

The PEI phase on S3 resume (save-to-RAM resume) differs in several fundamental ways from the
PEI phase on a normal boot. The differences are as follows:

The memory subsection is restored to its pre-sleep state rather than initialized.

System memory owned by the OS is not used by either the PEI Foundation or the PEIMs.

The DXE phase is not dispatched on a resume because it would corrupt memory.

The PEIM that would normally dispatch the DXE phase instead uses a special Hardware
Save Table to restore fundamental hardware back to a boot configuration. After restoring the
hardware, the PEIM passes control to the OS-supplied resume vector.

The DXE and later phases during a normal boot save enough information in the UEFI PI
reserved memory or a firmware volume area for hardware to be restored to a state that the
OS can use to restore devices. This saved information is located in the Hardware Save
Table.

The “Terse Executable” and Cache-as-RAM

The flash storage where the PEI modules and core execute has several constraints. The first is that
the amount of flash allocated for PEI is limited. This stems both from the economics of system
board design and from the fact that the PEI phase supports critical operations, such as crisis
recovery and early memory initialization. These robustness requirements mean that many systems
have two instances of PEI: a backup and/ or truly read-only one that never changes and may only
be used for recovery and a security root-of-trust, and a second PEI block used for normal boots
that is the dual of the former one. Also, the execute-in-place (XIP) nature of code-fetches from
flash means that PEI is not as performant as DXE modules that are loaded into host memory. In
order to minimize the amount of space occupied by the PEI firmware volume (FV), the Terse
Executable (TE) image format was designed. The TE image format is a strict subset of the
Portable Executable/ Common File Format (PE/COFF) image used by UEFI applications, UEFI
drivers, and DXE drivers.

The advantages of having TE as a subset of PE include the ability to use standard, available
tools, such as linkers, which can be used during the development process. Only during the final
phases of the FV image creation does the tool chain need to convert the PE image into a TE. This
similarity extends to the headers and the relocation records. In order to have an in-situ agent, such

as a debugger nub, distinguish between the PE and TE images, the signature field has been slightly
modified. For the PE, the signature is “MZ” for Mark Zbikowski, the designer of the Microsoft
DOST image format, the origin of the PE/COFF image. For the TE image, the signature is “VZ”,
as found at the end of Volume 1 of the UEFI PI specification:

#define EFI TE IMAGE HEADER SIGNATURE 0x5A56 // “Vz”

This one character difference allows for sharing of debug scripts and code that only need to
distinguish between the PE and TE via this one character of the signature field. Although the
development and design team eschewed use of proper names in code or the resultant binaries, the
“VZ” and “Vincent Zimmer” association appeared harmless, especially given the interoperability
advantages.

In addition to the TE image, the “temporary memory” used during PEI is another innovation on
Intel architecture platforms. Recall that the goal of PEI is to provide a basic system fabric
initialization and some subset of memory that will be available throughout DXE, UEFI, and the
operating system runtime. In order to program a modern CPU, memory controller, and
interconnect, thousands of lines of C code may be required. In the spirit of using standard tools to
write this code, though, some memory store prior to the permanent Dynamic RAM (DRAM)
needed to be found.

Other approaches to this challenge in the past include the Coreboot use of the read-only-
memory C compiler (romcc), or a compiler that uses processor registers as the “temporary
memory.” This approach has proven difficult to maintain and entails a custom compiler. The other
approach is to have dedicated memory on the platform immediately available after reset. Given
the economics of modern systems and the transitory usage of this store, the use of discrete memory
as a scratchpad has proven difficult to provide in anything other than the high-end system or
extremely low-end, nontraditional systems. The approach taken for the bulk of Intel architecture
systems is to use the processor cache as a memory store, or cache-as-RAM (CAR). Although the
initialization sequence is unique per architecture instance (for example, Itanium® versus Core2®
versus Core i7®), the end result is some directly addressable memory after exiting the SEC phase
and entering PEL. As a result, PEIMs and a PEI core can be written in C using commonly
available C compilers, such as Microsoft cl.exe in Visual Studiot and the GNU C compiler
(GCC) available in the open source community. The UEFI Developer Kit, such as the PEI core in
the Module Development Environment (MDE) module package at www.tianocore.org provides
such as example of a generic PEI Core source collection.

Example System

All of the concepts regarding PEI can be synthesized when reviewing a specific platform. The
following list represents an 865 system with all of the associated system components. This same
system is also shown in Figure 13.7, which includes the actual silicon components. Figure 13.8
provides an idealized version of this same system. The components in the latter figure have
corresponding PEIMs to abstract both the initialization of and services by the components. For
each of these components, one to several PEI Modules can be delivered that abstract the specific
component’s behavior. An example of these components can include:

http://www.tianocore.org

Pentium® 4 processor PEIM: Initialization and CPU I/O service

PCI Configuration PEIM: PCI Configuration PPI
ICH PEIM: ICH initialization and the SMBUS PPI

Memory initialization PEIM: Reading SPD through the SMBUS PPI, initialization of the

memory controller, and reporting memory available to the PEI core
Platform PEIM: Creation of the flash mode, detection of boot mode
DXE IPL: Generic services to launch DXE, invoke S3 or recovery flow

Front-Side Bus
AGP
828656
DAC Out < GMCH DDR
TVOut «
Video Capture e |
|
Hub :
Interface SMBus |
UsSB PCl Bus
D ICHS ED
LAN
SEE PCI Slots
Audio Codec ‘ AC97
e RBGL
Modem Codec l— FWH LE SIO

Figure 13.7: Specific System

Intel
| Pentium 4 “

North
Bridge

South

=lds[«[- 3 PCI| Bus

Memory
Modules

SM Bus

PCI
Slots

LPC Bus

Super FLASH

I/O

Figure 13.8: Idealization of Actual System

typedetf
EFI STATUS
(EFIAPI *PEI SMBUS PPI EXECUTE OPERATION) (

IN EE‘I_PEI_SER‘JICE **PelServices,
IN struct EFI_PEI_SMBUS_PPI *This,

IN EFI SMBUS DEVICE ADDRESS SlaveAddress,

IN EFI_SMBUS DEVICE COMMAND Command,

IN EFI_SMBUS OPERATION Operation,

IN BOOLEAN PecCheck,

IN OUT UINTN *Length,

IN OUT VOID *Buffer

) ;

typedef struct ({
PEI SMBUS PPI EXECUTE OPERATION Execute;
PEI SMBUS PPI ARP DEVICE ArpDevice;
} EFI_PEI SMBUS PPI;

Figure 13.9: Instance of a PPI

What is notable about a PPI is that it is like an EFI protocol in that it has member services and/or
static data. The PPI is named by a GUID and can have several instances. The SMBUS PPI, for
example, could be implemented for SMBUS controllers in the ICH, in another vendor’s integrated
Super /0 (SIO), or other component. Figure 13.10 illustrates an instance of an SMBUS PPI for
an Intel ICH.

tdefine SMBUS R HDO OXEFAS5
#define SMBUS R HBD OxEFA7

EFI_PEI SERVICES *PeiServices;
SMBUS PRIVATE DATA *Private;
UINT8 Index, BlockCount *Length;
UINTS *Buffer:

BlocckCount = Private->Cpulc.IoRead8 (
*PeiServices,Private->Cpulo, SMBUS R HDO);
if (*Length < BlockCount) { -
return EFI BUFFER TOO SMALL;

} else {
for (Index = 0; Index < BlockCount; Index++) {
Buffer[Index] = Private->Cpulo.IoRead8 (

*PeiServices,Private-
>CpuTo, SMBUS R_HBD) ;
}
}

Figure 13.10: Code that Supports a PPI Service

Summary

This chapter has provided an overview of the PEI phase of the UEFI PI environment. PEI
provides a unique combination of software modularity so that various business interests can
provide modules, while at the same time have purpose-built technologies to support the
robustness and resource constraints of such an early phase of machine execution. Aspects of PEI
discussed in this chapter include the concept of temporary memory, the PEI Core services, PEI
relative to other UEFI PI components, recovery, and some sample PEI modules.

Chapter 14 — Putting It All Together—Firmware Emulation

An expert is a man who has made all the mistakes which can be made in a very narrow field.
—Niels Bohr

In the preceding chapters, various stages of the firmware initialization process were described. In
addition, various possible usage models have been described that can be implemented on a target
hardware platform. By now it should have become evident that many of the UEFI firmware
interfaces do not in and of themselves talk directly to hardware; instead they actually talk to
underlying components that are responsible for talking to hardware. Traditionally, firmware
development has not been an activity that could be performed without an in-circuit emulator (ICE)
or other hardware debug facility. Taking into consideration UEFI’s design and the fact that very
few components in the firmware actually have direct interaction with hardware devices, it is
possible to introduce a mechanism that allows the emulation of vast amounts of the firmware in a
standard deployment operation system environment.

In the UEFI sample implementation, a new target platform was introduced called NT32. This
environment features the ability to run much of the firmware code as an application running from
the operating system, and provides the ability to establish a robust development and debug
environment. Much of the firmware codebase was developed initially using the emulation
environment with off-the-shell compilers and debuggers, and without the need of a real hardware
debugger. Of course, this emulation has its limitations, since some components of the firmware
must talk to hardware. It is much more difficult to emulate such components, though later in this
chapter, some possibilities are discussed to alleviate some of this issue. Figure 14.1 shows an
example of a firmware emulation environment running the UEFT shell within an operating system
context.

i

EFI Shell [Built—inl

T and 4) hange

Figure 14.1: An Emulation Environment Contained within an Operating System Environment

Virtual Platform

This NT32 platform can be described as a hardware-agnostic platform in that it uses operating
system APIs for its primary hardware abstractions. Figure 14.2 shows how the firmware
emulation environment gets launched. It is part of a normal boot process, and will essentially
launch a firmware emulation environment as an application running from the operating system.
For most developers, this simply means launching a standard platform, loading an operating
system, and then building and executing the NT32 emulation environment as a native operating
system application. This application effectively executes the firmware that was built, and
emulates the launch of a new system.

Pre Exposed OS-Absent | | Previ
s B | e
Framework
11 APLs now
Transient OS limited
Environment
| .
Transient OS
Boot Loader

Runtime Services "
DXE Services
Security | Pre-EFl Driver Boot Transient Runtime After-
(SEC) | Initialization | Execution Device System Load (RT) life
(PEI) Environment | Selection (TSL) (AL)
(DXE) (BDS)

Power on= [. . Platform initialization . . | ==——p[.... OS boot.. . .| ==————— Shutdown

Figure 14.2: The Normal Boot Process Launching an Operating System that Will Launch the Emulation Environment

In Figure 14.3, the timeline is actually intended to illustrate the emulated firmware timeline. It has
the capability of processing all of the firmware evolution stages, yet of course certain operations
are emulated due to lack of direct hardware initialization. An example would be the direct
initialization of memory, which would be somewhat different in this environment, whereas in a
real platform, this process would be much more involved.

Exposed
AT e
f %
Transient OS
Device, Environment
Bus, or L
Service Transicnt OS
dined Boot Loader
v
D Cannot load
D conventional
O/S targets in
_Bo ce _ Final OS an emulated
o S = - environment
Security Pre-EFI Driver Boot Transient Runtime Alter-
(SEC) Initialization Execution Device System Load (RT) life
(PEI) Environment | Selection (TSL) (AL)
(DXE) (BDS)

Power on= [. . Platform initialization . .] =———p[. . .. OS boot] =—————— Shutdown

Figure 14.3: The Firmware Emulation Environment Itself

Emulation Firmware Phases

It should be noted that the emulation environment has several distinct phases:

Establishing a WinNtThunk capability for the emulation environment.

This phase constructs a means by which firmware components can make reference to some
“hardware” components. This is done by associating firmware-visible constructs that will
then be associated with operating system native API calls.

Figure 14.4 is an example where several firmware constructs are being associated with
operating system native APIs. For example, to create a file, we establish a firmware calling
mechanism (such as WinNtCreateFile) to call an operating system API known as CreateFile.
The following examples illustrate a mechanism of associating firmware calls to Windows
APIs, but this could just as easily happen for any underlying operation system.

typedef struct {

UINTG64 Signature;

//

// Win32 Process APIs

iy}

WinNtGetProcAddress GetProcAddress;
WinNtGetTickCount GetTickCount;
WinNtLoadLibraryEx LoadLibrarvyEx;
WinNtFreelibrary FreeLibrary;
WinNtSetPriorityClass SetPriorityClass;
WinNtSetThreadPriority SetThreadPriority;
WinNtSleep Sleep;

WinNtSuspendThread SuspendThread;
WinNtGetCurrentThread GetCurrentThread;
WinNtGetCurrentThreadId GetCurrentThreadld;
WinNtGetCurrentProcess GetCurrentProcess;
WinNtCreateThread CreateThread;
WinNtTerminateThread TerminateThread;
WinNtSendMessage SendMessage;
WinNtExitThread ExitThread;
WinNtResumeThread ResumeThread;
WinNtDuplicateHandle DuplicateHandle;

&

// Wint32 Mutex primitive

&l

WinNtInitializeCriticalSection InitializeCriticalSection;
WinNtEnterCriticalSection EnterCriticalSection;
WinNtlLeaveCriticalSection LeaveCriticalSection;
WinNtDeleteCriticalSection DeleteCriticalSection;

WinNtTlsAlloc TlsAlloc;

WinNtTlsFree
WinNtTlsSetValue
WinNtTlsGetValue
WinNtCreateSemaphore

WinNtWaitForSingleCbject

WinNtReleaseSemaphore

¥
// Win32 Console APIs
'y

WinNtCreateConsoleScreenBuffer
WinNtFillConsoleOutputAttribute
WinNtFillConsoleOutputCharacter
WinNtGetConsoleCursorInfo

TlaFree;

TlsSetValue;
TlsGetValue;
CreateSemaphore;
WaitForSingleCbject;
ReleaseSemaphore;

CreateConsoleScreenBuffer;
FillConscleOutputAttribute;
FillConsoleOutputCharacter;

GetConsoleCursorInfo;

WinNtGetNumberOfConsoleInputEvents GetNumberOfConsoleInputEvents;

WinNtPeekConsoleInput

WinNtScrollConsoleScreenBuffer

WinNtReadConsoleInput

WinNtSetConsoleActiveScreenBuffer
WinNtSetConsoleCursorInfo
WinNtSetConsoleCursorPosition
WinNtSetConsoleScreenBufferSize

WinNtSetConsoleTitleW
WinNtWriteConsoleInput
WinNtWriteConsoleOutput

fr

// Win32 File APIs

i

WinNtCreateFile
WinNtDeviceIoControl
WinNtCreateDirectory
WinNtRemoveDirectory
WinNtGetFileAttributes
WinNtSetFileAttributes
WinNtCreateFileMapping
WinNtCloseHandle
WinNtDeleteFile
WinNtFindFirstFile
WinNtFindNextFile
WinNtFindClose
WinNtFlushFileBuffers

WinNtGetEnvironmentVariabhle

WinNtGetLastError
WinNtSetErrorMode
WinNtGetStdHandle
WinNtMapViewOfFileEx
WinNtEReadFile
WinNtSetEndCOfFile
WinNtSetFilePointer
WinNtWriteFile

WinNtGetDiskFreeSpace

PeekConsoleInput;
ScrollConsocleScreenBuffer;
ReadConsolelnput;
SetConscoleActiveScreenBuffer;
SetConsoleCursorInfo;
SetConsoleCursorPosition;
SetConscoleScreenBufferSize;
SetConsoleTitleW;
WriteConsoleInput;
WriteConsoleOutput;

CreateFile;
DeviceloControl;
CreateDirectory:;
RemoveDirectory;

ZetFileAttributes;
SetFilelttributes;
CreateFileMapping:
CloseHandle;
DeleteFile;
FindFirstFile;
FindNextFile:

FindClose;

FlushFileBuffers;
GetEnvironmentVariable;
GetLastError;
SetErrorMode;
ZetStdHandle;
MapViewOfFileEx;

ReadFile;

SetEndofFile;
SetFilePointer;

WriteFile;
WinNtGetFileInformationByHandle

GetFileInformationByHandle;
GetDiskFreeSpace;

WinNtGetDiskFreeSpaceEx
WinNtMoveFile
WinMNtSetFileTime

WinNtSystemTimeToFileTime

¥
f/ Win32 Time APIs
¥

WinNtFileTimeToLocalFileTime
WinNtFileTimeToSystemTime

WinNtGetSystemTime
WinMNtSetSystemTime
WinNtGetLocalTime
WinNtSetLocalTime

WinNtGetTimeZoneInformation
WinMtSetTimeZoneInformation

WinNttimeSetEvent
WinMttimeKillEvent

L7

// Win32 Serial APIs

’

WinMtClearCommError
WinNtEscapeCommFunction
WinHNtGetCommModemStatus
WinMNtGetCommState
WinMtSetCommState
WinNtPurgeComm
WinMNtSetCommTimeouts

WinNtExitProcess
WinNtSprintf
WinNtGetDesktopWindow

WinNtGetForegroundWindow

WinNtCreateWindowEx
WinMtsShowWindow
WinNtUpdateWindow
WinNtDestroyWindow
WinWtInvalidateRect
WinNtGetWindowDC
WinMtGetClientRect
WinNtAdjustWindowRect
WinMtSetDIBitsToDevice
WinMtBitBlt
WinNtGetDC
WinMtEReleas=eDC
WinNtRegisterClassEx
WinNtUnregisterClass

WinNtBeginPaint
WinNtEndPaint
WinNtPostQuitMessage
WinHMtDefWindowProc

GetDiskFreeSpaceEx;
MoveFile;
SetFileTime;
SystemTimeToFileTime;

FileTimeToLocalFileTime;
FileTimeToSystemTime;
GetSystemTime;
SetSystemTime;

GetLocalTime;

SetLocalTime;
GetTimeZoneInformation:
SetTimeZoneInformation:;

timeSetEvent:

timeEillEvent:;

ClearCommError;
EscapeCommFunction;
GetCommModemStatus:

GetCommState;
SetCommState;
PurgeComm;
SetCommTimeocuts;

ExitProcess;
SPrintft;
GetDesktopWindow;
GetForegroundWindow;
CreateWindowEx;
ShowWindow;
UpdateWindow;
DestroyWindow;
InvalidateRect;
GetWindowDC;
GetClientRect;
AdjustWindowRect;
SetDIBitsToDevice;
BitBlt;

GetDC;

ReleaseDC;
RegisterClassEx;
UnregisterClass;

BeginPaint;
EndPaint;
PostQuitMessage;
DefWindowProc;

WinNtLoadIcon

WinNtLoadCursor
WinNtGetStockObject
WinNtSetViewportOrgEx
WinNtSetWindowlrgEx
WinNtMoveWindow
WinNtGetWindowRect
WinNtGetMessage
WinNtTranslateMessage
WinNtDispatchMessage
WinNtGetProcessHeap
WinNtHeapAlloc
WinNtHeapFree

LoadIcon;
LoadCursor;
GetStockObject;
SetViewportCrgEx;
SetWindowOrgEx;
MoveWindow;
GetWindowRect;
GetMessage;
TranslateMessage;
DispatchMessage;
GetProcessHeap;
HeaplAlloc;
HeapFree;

} EFI_ WIN NT THUNK PROTOCOL;

Figure 14.4: Thunk Protocol that Associates Some Firmware Names with Operating System APIs

Construct an UEFI hardware API handler that will be specific to the emulation platform.

In Figure 14.5, the EFI_SERIAL_IO_PROTOCOL interface is being seeded with a variety of
information associated with platform specific function data. In this case, these platform-
specific functions are tuned to the emulation environment.

Seriallo.Revision =
Seriallo.Reset =
Seriallo.SetAttributes
Seriallo.SetControl =
Seriallo.GetControl =
Seriallo.Write =
Seriallo.Read
Seriallo.Mode

SERIAL IC INTERFACE REVISION;
WinNtSerialToReset;

= WinNtSerialTIoSetAttributes;
WinNtSerialIoSetControl;
WinNtSeriallIoGetControl;

WinNtSerialloWrite;
= WinNtSerialIloRead;
SerialIoMode;

Figure 14.5: Establishing an UEFI API to Call Platform-Specific Operations

B Platform-specific functions (such as emulation platform) that are handling the calls to UEFI
interfaces and in turn will call the established WinNtThunk APIs that will end up making

operating specific API calls.

several tasks.

Figure 14.6 features several calls that could occur from within an API handler to accomplish

L

// Example of reading from a file

!/
Result = WinNtThunk->ReadFile |
NtHandle,
Buffer,
(DWORD) *BuffersSize,
&BytesRead,
NULL
) ;
i
// Example of resetting a serial device
o
WinNtThunk->PurgeComm (
NtHandle,
PURGE_TXCLEAR | PURGE_R}{CLEELR
)
I/
// Example of getting local time components
/f

WinNtThunk->GetLocalTime (&SystemTime);
WinNtThunk->GetTimeZoneInformation (&TimeZone) ;

Figure 14.6: Example Calls to the WinNtThunk Protocol

In summary, Figure 14.7 shows the software logic contained within the operating system,
firmware emulation component, and their associated interaction logic. It should be noted that this
logical software flow has three primary components:

B Firmware component under development

B Basic firmware codebase

B Firmware-to-Operating System thunk code

Figure 14.7: Firmware Emulation Software Logic Flow

Hardware Pass-Through

As is evident through the previous examples, the underlying firmware can enable calling to
several operating system APIs. However, since the firmware emulation environment is essentially
an operating system application, certain functions are not going to be available. This is true since
most operating systems have the concept of separating a user space from a more privileged kernel
space to prevent applications from inadvertently crashing the entire operating system. Using this
type of separation allows for the operating system to detect an error and simply kill the user
session without perturbing the remaining portions of the operating system.

It is possible to introduce several extensions to what is currently defined in the sample
implementations that enable even further capabilities. An operating system kernel driver could be
constructed to facilitate access to even more functions than would otherwise be available. This of
course circumvents some of the inherent safety of the operating system and can introduce
inadvertent crashes when care is not taken. By constructing a kernel driver that can reserve
certain hardware resources and is able to advertise an interface that the emulation environment
can call, the emulation environment can allow for an enhanced penetration into the hardware.

Figure 14.8 shows the logic flow associated with the various components and how they
interact.

[
1
1
!
.

o

Allows for added hardware interaction

Figure 14.8: Software Flow for Hardware Enhanced Firmware Emulation

Summary

This chapter illustrated how the majority of the UEFI code can be run in an emulated
environment so that development can occur on some modules even in the absence of physical
hardware that would otherwise have been necessary. This emulation, which is publicly available,
advances the accessibility of the overall UEFI programming infrastructure. It can also facilitate a
wider distribution of its use due to the relative simplicity of establishing such a development
environment.

Chapter 15 — Reducing Platform Boot Times

All problems are either kernel or BIOS problems depending on which context you are running in!

—Rothman’s Axiom

This chapter presents a series of methods that should enable a BIOS engineer to optimize the

underlying platform firmware so that it can reduce a platform’s boot speed. However, it should be

noted that the intent of this chapter is to illustrate how various, seemingly unrelated product

requirements can greatly affect the resulting platform boot performance. That being said, this

section also illustrates how the platform design based on marketing requirements, coupled with a

properly constructed UEFI-compliant firmware, can greatly affect the performance characteristics

of a platform. Some of the key points are:

B How specific marketing requirements affect boot performance

B Suggestions on what firmware engineering choices can be made to optimize for a given
platform requirement.

B Provide a realistic view of what performance enhancements can be done in a production
firmware.

B Establish viable next steps.

This chapter focuses on specific aspects of a platform’s pre-O/S boot behavior and leverages
concepts that are based on the UEFI firmware architecture.

Some of the fundamental things that need to be understood are different phases of platform
initialization and how they are exercised as part of the platform boot process. The following flow
diagrams, Figures 15.1, 15.2, and 15.3, illustrate the evolution of the platform initialization from
the first moment that power is applied until the point where the BIOS hands-off to the target O/S:

Reset Vector

Flush cache and jump into main initialization
routine in the ROM.

l

Switch to protected mode

Transition to a non-paged flat-model protected mode

:

Initialize MTRRs for BSP

Set cache states for various memory ranges to a known state.

A 4
Microcode Patch Update

Execute Microcode Patch Update for all of the present CPUs.
(Common process, but an optional behavior in closed-box
controlled configuration systems)

Initialize No-Eviction Mode (NEM])

Prior to the discovery of memory on the platform, a data area will
be established within the CPU cache so that a stack-based
programming language can be used early in the initialization.

l

Various early BSP/AP interactions

A series of standard steps which contain some fixed delay events such as:
Send INIT IPI to all APs
Send Start-up IPI (SIPI) to all Aps
Collect BIST data from the APs

l

Hand-off to PEI entry paint

Figure 15.1: SEC Phase

Dashed Boxes or lines | |
are Inf o | Hand-off from SEC fo PEI Core |

T T LN LT T |-\r|w.-||'|'!

Esiablish use of ‘memory”

Transfer services from being ROM-based o dala running from sarly
mamory {8.9. CPU cache). This incledes the prasence of PEI
sensces such as memary, PEl module imerfaces, and security.

L4
PEI Dispatcher

Loads a series of PEl modules (PEIM) based on a series of criferion. Dispalching staris with modules which have no
prarequisies and proceed throwgh other modules which have more complex dependencies. This is typically a leop which
i mxhaesiad whan fheee ane no Tulher modules thal nead dispalching and thara ane no newly discoversd modubes.

Y
CPU PEIM

| Module which exposas a saries of CPLU-related functions.
| Some of these functions are the CPU Cache interface (Set/
Reset), and CPU Frequency Seled Inlerface.

v
Miscelansous Platiorm PEIM ’
. [P
i MCH Init : Exgcules a series of earty hardwarne indializalion such as L L
! mamory condroller hub (MCH) ini, UD confroller hub (ICH) 3
| Programe scsns hey |, nilslize buli plafiorm interfeces (e.g. Stal SMBUS || Do Alach e "m"_'!'.:f:“ _
| aspects of the MCH such | Policy, Reset, elc) Also determines what the boot mode is | Aatr gy S borinrml) |
{ @sihe base addressof | we are cumenily booling with je.g. Normal, Recovery, 83, | and uning Flesh mep |
| ‘several key components. | glc.). Thisis also where e platfom exposes e boat m}E!cH
) made 50 that subsequent modules can patenBially have l e]
bool mode based behawvior.
L
Mamory Initialization PEIM

Emecuta Memory Initialization for the platform. Assign memony for remainder of PEI and subsequent boot
| phases. Inthis case, some oplimizafions are enabled for performance such as efiminaing memory best
| dusing 53 resume of re-programming capiuned memaory reference code stabe in 53 resurme mode.

.__.-' -\.-\.
P . T
~ e we in an Ny

*.$3 Boot mode?.” e
- %, rd
Ry
Yes
¥
Initializes & vaniety of components within the CPU domain with opli mizations
associated with 33. Basic inflialzation of CPU o estabiish various CPU-specific
seflings (e.g. VI, SMRR. Themmal Throfiling seftings, MTRR Swnchronization, lc,)
L
53 Bool Script Exscubor
| Exscules the 513 Boot Script to re-astablish hardware |
programming in a very low-gwerhead mannar,
 J 4
OFS Resuma Vecior Hand-off ko DXE entry paint

Figure 15.2: PEI Phase

Dashed Boxes or lines
| areinformational. | i Hand-off from PE1 1o DXE Core

I
|
¥

Establish DXE infrastructure

The Driver eXecution Enwvironment (DXE) is established based on the discovered
rasources described by the prior PEI phase of operations. This includes DXE core
callable intzrfaces, event sarvicas, and the eventual launch of the DXE dispatcher.

4

o e | DXE Dispatcher

Tha dispalcher is tasked with the job of discovering the FV (firmware volume)
components that are available and processing them. Each of the discovered drivers ——
| | within the FV is scheduled to be launched if and when their dependencies are met.
i ﬁ;‘;s E;TS “Tfm"s;'“ § Once & driver is scheduled to run, the dispatcher will proceed 1o launch the
WPttt ol o B | scheduled drivers and continue 1o do so until there are no more scheduled drivers.

{ Someof the key drivers |
i\ neededforthecorefo |

¥

. Discovered Componenis | y
During the search for FVs, | Boot Device Select Phase

various drivers can be
discoverad and pateniially

Based on the programmed boot variable, the Boot Device Select (BDS) phase uitimately will |

launched. Some of these *"' attempt 1o connect the oot devices required to load and invoke the sslected boot targat |~
drivars are components such | {e.g- OFS). This wsually encompasses a recursive search for additional Fs and contant to
 @s network drivers, 1O drivers | dispatch from them,
| {e.g. USBPCI), and any OEM | |
| or platiorm specific drivers. | l
o, o
i i Yes
_/,./ S /Fl-a/w i ma?ﬁi“ Dispatch new DXE drivers |
Yes ~"Can the boot lag&f&)_nwx’ ress since iasln " Yess
_ beloaded? - AN e Dispatch content from |
~ -~ M "‘Ft-/,— discovered FVs. i
Mo S
M l
P— e oo e /l‘\
Hand-off to the Baot Target - .
“Arethere more ™, oo " |]
“boot options o W?/) Yas D‘ Load new boot option i
b -~
b
Platform Policy

When no viable boot options exist, the platiorm
will have some built-in boot behavior that is
specific to the manufacturer of that platfarm.

Figure 15.3: DXE and BDS Phase

Given the above information, the remainder of the chapter focuses on the important elements when
considering how to best optimize some of the aforementioned behavior so a platform meets both
its technical and marketing requirements yet achieves an optimal boot speed.

Proof of Concept

In the proof of concept for this chapter, the overall performance numbers used are measured in
microseconds and the total boot time is described in seconds. Total boot time is measured as the
time between the CPU first having power applied and the transferring of control to the boot target
(which is typically the OS). This chapter does not focus on the specifics of the hardware design
itself since the steps that are described are intended to be platform-agnostic. However, for those
who absolutely must know from what type of platform some of the numbers are derived, they are:
1.8-GHz Intel ® Atom™-based netbook design

1 GB DDR2 memory

2 MB flash

Western Digital T 80-GB Scorpio Blue 5400-RPM drive (normal configuration)

Intel® Solid State Drive X25-E (Intel® X25E SSD) (in optimized configuration)

It should also be noted that this proof of concept was intended to emulate real-world expectations
of a BIOS, meaning that nothing was done to achieve results that could not reasonably be
expected in a mass-market product design. The steps that were taken for this effort should be
easily portable to other designs and should largely be codebase-independent.

Figure 15.4 shows the performance numbers achieved while maintaining all of the various
platform/ marketing requirements for this particular system.

SEC Phase Duration : 26342 (us) SEC Phase Duration : 26419 (us)
PEI Phase Duration : 1230905 (us) PEI Phasa Duration : T63315 (us)
DXE Phase Duration : 598234 (us) DXE Phase Duration : 443021 (us)
BDS Phase Duration : T386050 (us) BDS Phase Duration : TEETTE (us)
Total Duration : 8.651531 (s) Total Duration i 1.999533 (s)
Normal Boot Optimized Boot

Figure 15.4: Performance Measurement Results (Before/After)

The next several sections detail the various decisions that were made for this proof of concept
and how they improved the boot performance.

Marketing Requirements

Admittedly, marketing requirements are not the first thing that comes to mind when an engineer
sits down to optimize a BIOS’s performance. However, the reality is that marketing requirements
form the practical limits for how the technical solution can be adjusted.

The highlighted requirements are the pivot points in which an engineer can make decisions
that ultimately affect performance characteristics of the system. Since this section details the
engineering responses to marketing-oriented requirements, it does not provide a vast array of
code optimization “tricks.” Unless there is a serious set of implementation bugs in a given
codebase, the majority of boot speed improvements are achieved from following the guidelines
provided in this section. Not to worry though, there are codebase independent “tricks” included
that provide additional help.

What Are the Design Goals?

How does the user need to use the platform? Is it a “closed box” system? Is it a traditional
desktop? Is it a server? How the platform is thought of ultimately affects what the user expects.
Making conscious design choices to either enable or limit some of these expectations is where the
platform policy can greatly affect the resulting performance characteristics.

Platform Policy

One of the first considerations when looking at a BIOS and the corresponding requirements is
whether or not an engineer can limit the number of variables associated with what the user can do
“to” the system. For instance, it might be reasonable to presume that in a platform with no add-in
slots, a user will not be able to boot from a RAID controller since the user cannot physically plug
one in.

This is where a designer enters the zone of platform policy. Even though a platform may not
expose a slot, the platform might expose a USB connection. A conscious decision needs to be
made for how and when these components are used. A good general performance optimization
statement would be:

“If you can put off doing something in BIOS that the OS can do—then put it off!”

Since a user can connect anything from a record player to a RAID chassis via USB, the user might
think that they would be able to boot from a USB-connected device if physically possible. Though
this is physically possible, it is within the purview of the platform design to enable or disable
such a behavior.

In this particular platform, the decision was made to not support booting from USB media and
to not support the user interrupting the boot process. This means that during the DXE/BDS phase,
the BIOS was able to avoid initializing the USB infrastructure to get keystrokes and this resulted
in a savings of nearly 0.5 second in boot time.

Note Even though 0.5 second of boot time was saved by eliminating late BIOS USB initialization, upon launching the
platform OS, the OS was able to interact with plugged-in USB devices without a problem.

Platform policy ultimately affects how an engineer responds to the remaining questions.

What Are the Supported OS Targets?

Understanding the requirements of a particular platform-supported OS greatly affects what
optimization paths can be taken in the BIOS. Since many “open” platforms (platforms without a
fixed software or hardware configuration) have a wide variety of operating systems that they
choose to support, this limits some of the choices available. In the case of the proof-of-concept
platform, only two main operating systems were required to be supported. This enabled the author
to make a few choices that allowed the codebase to save roughly 400 ms of boot time by avoiding
the reading of some of the DIMM SPD data for creating certain SMBIOS records since they
weren’t used by the target operating systems.

Note Changes in the BIOS codebase that avoided the unnecessary creation of certain tables saved roughly 400 ms in the
boot time.

Do We Have to Support Legacy Operating Systems?

The main consideration was whether a particular OS target was UEFI-compliant or not. If all the
OS targets were UEFI-compliant, then the platform could have saved roughly 0.5 second in the
underlying initialization of the video option ROM. In this case, we had conflicting requirements:
one was UEFI-compliant and one was not. There are a variety of tricks that could have been
achieved by the platform BIOS when booting the UEFI-compliant OS but for purposes of keeping
fair measurement numbers, the overall boot speed numbers reflect the overhead of supporting
legacy operating systems as well.

To save an additional 0.5 second or more of boot time when booting a UEFI-compliant OS,
the BDS could analyze the target BOOT#### variable to determine if the target were associated
with an OS loader and thus it is a UEFI target. The platform in this case at least has the option to
avoid some of the overhead associated with the legacy compatibility support infrastructure.

Do We Have to Support Legacy Option ROMs?

Whether or not to launch a legacy option ROM depends on several possible variables:

B Does the motherboard have any devices built in that have a legacy option ROM?

B Does the platform support adding a device that requires the launch of a legacy option ROM?

B If any of the first two are true, does the platform need to initialize the device associated with
that option ROM?

One reason why launching legacy option ROMs is fraught with peril for boot performance is that
there are no rules associated with what a legacy option ROM will do while it has control of the

system. In some cases, the option ROM may be rather innocuous regarding boot performance, but
not always. For example, the legacy option ROM could attempt to interact with the user during
launch. This normally involves advertising a hot-key or two for the user to press, which would
delay the BIOS in finishing its job for however long the option ROM pauses waiting for a
keystroke.

For this particular situation, we avoided the launching of all of the drivers in a particular
BIOS and instead opted to launch only the drivers necessary for reaching the boot target itself.
Since the device we were booting from was a SATA device for which the BIOS had a native
UEFI driver, there was no need to launch an option ROM. This action alone saved approximately
three seconds on the platform. More details associated with this trick and others are in the section
“Additional Details.”

Are We Required to Display an OEM Splash Screen?

This is often a crucial element for many platforms, especially from a marketing point of view. The
display of the splash screen itself typically does not take that much time. Usually initializing the
video device to enable such a display takes a sizable amount of time. On the proof-of-concept
platform, it would typically take 300 ms. An important question is how long does marketing want
the logo to be displayed? The answer to this question will focus on what is most important for the
OEM delivering the platform. Sometimes speed is paramount (as it was with this proof of
concept), and the splash screen can be eliminated completely. Other times, the display of the logo
is deemed much more important and all things stop while the logo is displayed. An engineer’s
hands are usually tied by the decisions of the marketing infrastructure.

One could leverage the UEFI event services to take advantage of the marketingdriven delay to
accomplish other things, which effectively parallelizes some of the initialization.

What Type of Boot Media Is Supported?

In the proof of concept platform description, one element was a bit unusual. There was a
performance and a standard configuration associated with the drive attached to the system.
Though it may not be obvious, the choice of boot media can be a significant element in the boot
time when you consider that some drives require 1-5 seconds (or much more) to spin up. The
characteristics of the boot media are very important since, regardless of whatever else you might
do to optimize the boot process, the platform still has to read from the boot media and there are
some inherent tasks associated with doing that. Spin-up delays are one of those tasks that are
unavoidable in today’s rotating magnetic media.

For the proof of concept, the boot media of choice was one which incurs no spinup penalty;
thus a solid state drive (SSD) was chosen. This saved about two seconds from the boot time.

What Is the BIOS Recovery/Update Strategy?

How a platform handles a BIOS update or recovery can affect the performance of a platform.
Since this task may be accomplished in many ways, this may inevitably be one of those
mechanisms that has significant platform variability. There are a few very common ways a BIOS

update is achieved from a user’s perspective:

B A user executes an OS application, which they likely downloaded from the OEM’s Website.
This will eventually cause the machine to reboot.

B A user downloads a special file from an OEM’s Website and puts it on a USB dongle and
reboots the platform with the USB dongle connected.

B A user receives or creates a CD or floppy with a special file and reboots the platform to
launch the BIOS update utility contained within that special file.

These user scenarios usually resolve into the BIOS, during the initialization caused by the reboot,
reading the update/ recovery file from a particular location. Where that update/recovery file is
stored and when it is processed is really what affects performance.

When Processing Things Early

Frequently during recovery one cannot presume that the target OS is working. For a reasonable
platform design, someone would need to design a means by which to update or recover the BIOS
without the assistance of the OS. This would lead to user scenarios #2 or #3 listed above.

The question an engineer should ask themselves is, how do you notify the BIOS that the
platform is in recovery mode? Depending on what the platform policy prescribes, this method can
vary greatly. One option is to always probe a given set of possible data repositories (such as USB
media, a CD, or maybe even the network) for recovery content. The act of always probing is
typically a time-consuming effort and not conducive to quick boot times.

There is definitely the option of having a platform-specific action, which is easy and quick to
probe that “turns on” the recovery mode. How to turn on the recovery mode (if such a concept
exists for the platform) is very platform-specific. Examples of this are holding down a particular
key (maybe associated with a GPIO), flipping a switch (equivalent of moving a jumper), which
can be probed for, and so on. These methods are highly preferable since they allow a platform to
run without much burden (no extensive probing for update/ recovery.)

Is There a Need for Pre-OS User Interaction?

Normally the overall goal is to boot the target OS as quickly as possible and the only expected
user interaction is with the OS. That being said, the main reason for people today to interact with
the BIOS is to launch the BIOS setup. Admittedly, some settings are within this environment that
are unique and cannot be properly configured outside of the BIOS. However at least one major
OEM (if not more) has chosen to ship millions of UEFI-based units without exposing what is
considered a BIOS setup. It might be reasonable to presume for some platforms that the
established factory default settings are sufficient and require no user adjustments. Most OEMs do
not go this route. However, it is certainly possible for an OEM to expose “applets” within the OS
to provide some of the configurability that would have otherwise been exposed in the pre-OS
timeframe.

With the advent of UEFI 2.1, and more specifically the HII (Human Interface Infrastructure)
content in that specification, the ability for configuration data in the BIOS to be exposed to the OS
was made possible. This makes it possible for many of the BIOS settings to have methods

exposed and configured in nontraditional (pre-OS) ways.

If it is deemed unnecessary to interact with the BIOS, there is very little reason (except as
noted in prior sections) for the BIOS to probe for a hot key. This only takes time from a platform
boot without being a useful feature of the platform.

Additional Details

When it comes time to address some codebase issues, the marketing requirements clearly define
the problem space an engineer has to design around. With that information, several methods can
help that are fairly typical of a UEFI-based platform. These are not the only methods, but they are
the ones that most any UEFI codebase can use.

Adjusting the BIOS to Avoid Unnecessary Drivers

It is useful to understand the details of how we avoided executing some of the extra drivers in our
platform. It is also useful to reference the appropriate sections in the UEFI specification to better
understand some of the underlying parts that cannot, for conciseness, be covered in this chapter.

The BDS phase of operations is where various decisions are made regarding what gets
launched and what platform policy is enacted. That being said, this is the code (regardless of
which UEFI codebase you use) that will frequently get the most attention in the optimizations. If
we refer again to the boot times for our proof of concept, it should be noted that the BDS phase
was where the majority of time was reduced. Most of the reduction had to do with optimizations
as well as some of the design choices that were made and the phase of initialization where that
activity often takes place.

At its simplest, the BDS phase is the means by which the BIOS completes any required
hardware initialization so that it can launch the boot target. At its most complex, you can add a
series of platform-specific, extensive, value-added hardware initializations that are not required
for launching the boot target.

What Is the Boot Target?

The boot target is defined by something known as an EFI device path (see UEFI specification).
This device path is a binary description of where the required boot target is physically located.
This gives the BIOS sufficient information to understand what components of the platform need to
be initialized to launch the boot target.

Below is an example of just such a boot target:

Acpi (PNPOA03,0) /Pci(1F|1) /Ata(Primary,Master) /HD(Part3, Si
g00110011) /** \EFI\Boot'’/''OSLoader.efi’’

Steps Taken in a Normal and Optimized Boot

Figure 15.5 indicates that between the non-optimized boot and an optimized boot, there are no
design differences from a UEFI architecture point of view. In addition, Figure 15.6 shows how
significantly the behavior of the platform might be in each of the contrasting scenarios, however
optimizing a platform’s boot performance does not mean that one has to violate any of the design
specifications.

SEC Phase

Pre-memory eary initialization, microcode

patching, and MTRR programming.

SEC Phase

Pre-mamary aarly initialization, microcoda
patching, and MTRR programming.

kL 4
h 4
FEI Phase CFI Phaze:

Dispatchas anly minimal PEI drivers.
Pre-memary early inftialization, microcode
patching, and MTRR programming.

Dispatches various PEI drivers. Pre-memory early |
initialization, microcode patching, and MTRR programming. |

: X
ol ", Pl
w o e -,
Yos <‘Amwehnm . v " Arewe inan ™,
-§3 Boot mode?- = *.53 Boot mode 2"
\.\‘ /, ‘-\.‘\ ’/a
o M
VS Resume Vector Of'3 Resume Veclor
No Mo
DXE +BDS Ph DXE + BOS Phase

Discover the drivers available to the platform,
Dispatch only the minimal drivers required to
baot the target.

Discover all drivers available to the platform.
Dispateh all drivers encountered.

Non-Optimized Boot Optimized Boot

Figure 15.5: Architectural Boot Flow Comparison

Find VGA device Connect PCI root bridge and
InstallOpRom

1 1

Connect Consoles

Connect Consoles

l l

Connect All drivers Diagnostics

I l

Diagnostics Boot
l |

FrontPage For a normal boot, the figure on the
I left illustrates a common set of

SR S operations during the boot. The figure

I above shows an optimized boot. Both

are accomplishing the same basic goal
- launching the boot target

Boot

Figure 15.6: Functional Boot Flow Comparison

Loading a Boot Target

The logic associated with the BDS optimization focuses solely on the minimal behavior
associated with initializing the platform and launching the OS loader. When customizing the
platform BDS, you can avoid calling routines that attempt to connect all drivers to all devices
recursively, such as BdsConnectAll(), and instead only connect the devices directly associated
with the boot target. Figure 15.7 illustrates an example of that logic.

- ——
-

{ i %
/ e
1 Connect PCI root bridge and
| InstallOpRom

Figure 15.7: Deconstructing the BDS launch of the Boot Target

Organizing the Flash Effectively

In a BIOS that complies with the PI specification, there is a flash component concept known as an
firmware volume (FV). This is typically an accumulation of BIOS drivers. It would be reasonable
to expect that these FVs are organized into several logical collections that may or may not be
associated with their phase of operations or functions. There are two major actions that the core
initiates associated with drivers. The first one is when a driver is dispatched (loaded into
memory from flash), and the second one is when a driver is connected to a device. Platform
policy could dictate that the DXE core avoids finding unnecessary drivers. For instance, if the
USB device boot is not needed, the USB-related drivers could be segregated to a specific FV, and
material associated with that FV would not be dispatched.

Minimize the Files Needed

Since one of the slowest I/O resources in a platform is normally the flash part on which the BIOS
is stored, it is a very prudent idea to minimize the amount of space that a BIOS occupies. The less
space a BIOS occupies, the shorter the time is for routines within the BIOS to read content into
faster areas of the platform (such as memory). This can be done by minimizing the drivers that are
required by the platform, and pruning can typically be accomplished by a proper study of the
marketing requirements.

Summary

Ultimately, the level of performance optimization that is achievable is largely subject to the
requirements of the platform. Given sufficient probing, there are almost always methods to
achieve boot speed gains using some of the techniques highlighted in this chapter. Here are some
of the highlights of items to focus on and areas within each BIOS codebase that deserve further
investigation.

The Primary Adjustments

Based on various conditions in a platform, the boot behavior can be adjusted to speed up the boot
process. Much of this occurs in the BDS, but some areas of optimization may vary per each
individual codebase.
B Focus on the marketing requirements
— Based on the marketing requirements, many decisions that affect boot performance can
be made. Open dialog between marketing and engineering helps with this.
B Minimize the use of slow media
— Scanning for firmware component in a flash device can be very slow. Optimize
routines that touch slow media.
B No need to poll for setup pages or even initialize a console in some cases.
— Polling for keys or user interaction can be minimized in the BDS.
B Not all hardware needs to be initialized. Often only the hardware directly associated with
the valid boot target needs to be initialized.
B Tweaks
— Only initiate activity that the BIOS must do; the OS is often going to repeat what the
BIOS just did.
— If no hardware changes are detected there is no need to re-enumerate various
subcomponents.
— It may not be a need to probe boot options if we cache the last known valid boot
option.

Suggested Next Steps

Some common procedures can be applied to all platforms:
B Make full use of platform cache
— Especially in PEI phase where the code is XIP (eXecute-In-Place), caching the flash
region can contribute significantly to code fetch and execution improvements.
B Minimize the use of slow media
— Scanning for a firmware component in a flash device can be very slow. Optimize
routines that touch slow media. For instance, the variable region is normally stored in
flash and it is very time-consuming to traverse the whole flash region for each variable
search. It would be a reasonable optimization to use memory-based cache to store the

whole variable region or just the variable index to speed up the variable search time.
B Analyze drivers that spend time blocking the boot progress. More often than not, these
drivers can gain improvements in performance with minor adjustments.

— If hard disk spin-up time is a blocking factor in the platform boot times, the BIOS
owner could adjust some of the logic to initiate the disk spinup in an earlier stage of the
boot logic to mitigate some of this slowdown and avoid a blocking behavior. Using an
EFI event for such an optimization may be very reasonable.

First focus optimization work on the components that the BIOS spends the most time on. Usually
more optimization results can be achieved in these components.

Chapter 16 — Embedded Boot Solution

Unless you try to do something beyond what you have already mastered, you will never grow
—Ralph Waldo Emerson

The expected market segment opportunity beyond 2012 for embedded systems will be over 10
billion USD. Some examples of this focused segment, as shown in Figure 16.1, include: in-
vehicle infotainment (IVI) for automotive use, print imaging (enterprise printing solutions),
industrial control, residential or premise service gateways (PSG), home control, media phones
(MPs), set top boxes, mobile Internet devices (MIDs) and physical security/ digital security and
surveillance (video analytics systems and IP cameras).

Figure 16.1: Embedded Usage Examples

This chapter describes the boot firmware challenges and solutions for these market segments. The
primary focus is to cover the platform boot solution, which includes standard PC BIOS,
bootloaders (also known as steploaders), initial program loaders (IPLs, also known as second-
stage bootloaders), and OS boot driver components for running a shrinkwrap and/or industry
standard embedded OS.

CE Device Landscape

The Intel® Atom™ processor family of low power embedded processors are making their way
into many lower power platforms, the key being MIDs (mobile Internet devices), netbooks and a
variety of embedded markets as enumerated above. Some of these segments are targeted towards
consumers, following the Consumer Electronics (CE) device model paradigm. One of the key
attributes of a CE device is the positive end-user experience, which is of paramount importance.
The user experience is based on such factors as:

Battery life/ low thermal dissipation for fanless device operation

Small device form factor/ footprint for portability

Ease of use

Low bill of material (BOM) resulting in lower end-user cost

Interoperability with other CE devices

The time between power-on and the user interface becoming active, also known as boot
latency to user interface/ human machine interface (U/HMI)

CE Device Boot Challenges

Traditional CE devices from OEMs were fully customized solutions with OEM specific
hardware and software components that were uniquely tuned for a particular use model such as
smart phones or MIDs. In this case, custom platforms were developed top-down from scratch for
pre-determined usage models with customized applications, middleware, device drivers, OS,
system boot firmware and tightly coupled companion boot devices/ hardware. With each new
platform development, the software solution had to be recreated.

The use of Intel® architecture would help reduce this re-development, reducing time to
market and cost. One of the value propositions and advantages of using both Intel architecture
based processor family System on a Chip (SoC) solutions and platforms is the wide availability
of standard platform building blocks from Intel and external ecosystem suppliers providing
hardware, software, BIOS, applications, development tools, and so on.

As many of these platform building blocks migrated from a standard PC to embedded SoC
segments, they posed some interesting challenges to directly map to the top-down CE device use
model. It takes optimization of more than a dozen system hardware and software components
across the system stack to achieve the desired CE goals, with the boot firmware being a key
component of it. Figure 16.2 identifies some of the components in the boot path that contribute to
the overall system boot latency as needed for the CE devices.

The following is a short list of some key components that contribute to the overall boot latency to
UI active time.

B Platform power sequencing latencies, such as stabilization of PLL/ Clocks, voltage
regulators, and power rails

Speed of bus interface to boot device, such as Serial Peripheral Interface (SPI) and Low Pin
Count (LPC)

Access latency of storage device for firmware, such as NOR/NAND Flash

Access latency of mass storage device, such as HDD, SSD, MMC/ SD

Splash screen latency

Latencies associated with boot firmware or bootloader execution

Initial program load latencies, such as second stage OS boot loader (also known as IPL)
Partitioning of the firmware and OS boot components across the storage device, such as
NOR, SDD, HD, and MMC

Use of file system type for storing the boot image, such as ROM, FAT, and EXT3

Latency of graphics and audio device startup if required

Figure 16.2 shows various boot components across the system stack that need to be optimized and
aligned to get to the end goal of low boot latency as desired by a CE device user. Moreover, many
of these components have interdependencies for them to function effectively. For example: the fast
splash screen needs to provide a seamless handoff to the graphics driver, and the block storage
device must power-on early in firmware before a handoff to IPL.

Figure 16.2: End-to-End Boot Latency Dependency Components

A case study of one of the CE device usages for IVI with typical boot requirements follows. The
fast boot requirements for most other CE segments are considered to be a subset of IVI, which has
the most stringent requirements of all.

In-Vehicle Infotainment

An IVI user expects an instant power-on experience, similar to that of most consumer appliances
like TVs. To meet this same expectation, one of the key requirements of the IVI platform is the
sub-second cold boot time, which helps facilitate the user experience when the ignition key/button
is turned on. The typical boot latency requirements are as illustrated in Figure 16.3.

Fower On to CPU Reset < 20 ms*™*

0OS Hand Off < 1000 ms . FM Radio < 550 ms
Rear View Camera < 1000 ms (OEM) CEEEEEEE 4 Rear View Camera < 1000 ms

----------------- PDC, Beep < 2000 ms

Human Machine Interface (Ul) Legend:

<5000-6000 ms B Bootloader Dependency
I OS Dependency

BN OEM Hardware Dependency
—P Main Boot Path

=== OEM Software Path

Navigation On < 8000 to 15000 ms

Figure 16.3: Typical CE Device Boot Latency Requirements

Within the requirements highlighted above, there are multiple key latency checkpoints where the
boot firmware plays a key role. These include:

Power-on to splash screen active. The time between hardware power-on and splash screen
active is key because it helps improve the user perception with an early audio/visual
experience. This is accomplished by displaying a static image bitmap or a logo on the
display device. The pre-OS boot environment is where this typically gets activated,
immediately after the memory initialization is done. Several of the initialization functions are
needed to enable the display to occur in parallel while the boot firmware is busy performing
its other unrelated boot functions in the background, such as memory and chipset
initialization. Once the splash screen is enabled, the firmware typically does a handshake
with the OS environment for a seamless handoff of the splash screen display status and
related information, such as frame buffer physical address and display mode. If the firmware
can hand-off to the OS in less than 50-100 ms, it is possible to leave this function for the OS
to enable, thereby making it a post-OS boot feature.

Power-on to rear view camera active. This is another operation that may have to get
activated in the background and be presented to the user with a motion image from the rear
view camera. This function is typically used when backing up an automobile and the function
needs to be activated upon entering reverse (“R” gear). In some use cases, video from an

embedded camera may be preferred in place of a static splash screen image. The
initialization and activation of the camera interface can be done in parallel with bootloader
flows through hardware state machine assist. The event generation and notification
mechanism (“R”) also needs to be enabled early on in the boot sequence.

B Power-on to the boot storage device active. The time between these functions impacts the
speed at which the OS can be shadowed and launched by the Initial Program Load. This is
typically done in the early firmware boot sequence as part of the chipset initialization, to
hide the boot device ready latency such as hard disk spin-up, eMMC/ SD device ready, and
SO on.

B Power-on to OS handoff (IPL). This function is done in the background and is a measure of
overall firmware latency of the boot firmware. All actions beyond this fall into the OS boot
domain for a typical bootloader.

B OEM-specific functions. Other OEM device-specific functions such as Controller Area
Network (CAN)/Media Oriented Systems Transport (MOST) interface activation, FM radio
activation, and TPM measured boot, are orthogonal to the core platform functions and are
managed by OEM-specific hardware/ firmware. Typically the events from CAN and data
over MOST can be used as trigger events for operation of functions such as rear view
camera activation.

All other boot latency checkpoints illustrated are outside the scope of the boot firmware and have
a dependency on the kernel components and device drivers that are associated with the key boot
devices: storage (such as NAND), audio, graphics, video, and so on.

Other Embedded Platforms

As noted above, IVI is just one of the many embedded segments with rapid boot time
requirements. The interesting thing to note is that when all the segments are taken into
consideration, the fundamental common denominator across all of them is the boot firmware,
which needs to work with a variety of operating systems including Fedora Linuxf{, QNXT,

Microsoft XP Embeddedy, Microsoft WinCET, WindRiver Automotive Grade Linux{, Microsoft

Automotivet (based on Win CE), WindRiver VxWorkst, Microsoft Windows XP7, Microsoft

Vista Embeddedf, 4690/DOS{, MeeGoT, SuSef, Microsoft Windows for Point-of-Sales

(WEPQS) T, Win7eT, and Win8. For a typical CE platform, the boot firmware must support

interoperability with multiple types of OS IPLs as follows:

B ACPI-compliant UEFI BIOS with an UEFI OS IPL (such as eLilo): this is typically used
with aftermarket products that may run an embedded version of a shrinkwrap OS such as
Standard Embedded Linux or Window XPe that requires PC compatibility and is readily
available from the BIOS vendors or original device manufacturers (ODM).

B Embedded OS IPL: this solution is meant to work with an OS that does not rely on the PC
BIOS compatibility such as an embedded OS and some variants of Linux. This approach
requires specialized IPL that is customized for the platform topology and the nonstandard
secondary storage device such as managed NAND (also known as an eMMC device).

Note Reducing the bill of material cost of a CE platform is quite critical, hence consolidating the SPI Flash (NOR) and

NAND storage to one device like eMMC is beneficial. However, this comes with some challenges for Intel boot

architecture and the firmware flow that depends on various aspects such as execute in place ROM (XIP), secure
and writeprotected regions offered by SPI flash controllers, and so on.

Generic Requirements

Traditional platforms typically have boot latencies to Ul active times that average 10— 40
seconds. Getting this UI active latency down to below 5-6 seconds, with an active splash screen
in less than 500 ms is a big challenge. To reduce time to market and product development costs, it
is highly desired to develop one boot firmware and OS solution that can scale across different CE
device platforms from each of the OEMs with varying topologies, but based on the same SoC
core. Many optimizations were done to both the BIOS and bootloader solutions to fit into the IVI
platform and the same can be easily extended to any CE device. The key being the reordering and
early initialization of user-visible I/O like display activation, initial program load (IPL) boot
menus, enabling processor cache usage at boot as high speed RAM (CAR), and so on.

The basic or generic bootloader for any CE device model requires the following attributes:

B Low Boot Latency. The generic boot requirements for a CE device can be summarized as:
power-on to OS handoff in less than one second and splash screen in less than 500 ms.

B Footprint. The firmware code size needs to be small, reusable, and portable across all
platforms using the same SoC without modifications, such as a size of less than 384 KB.

B Reliability. The bootloader must provide interoperability across a variety of operating
systems, including shrinkwrap, embedded real-time operating systems, and so on.

B Cost optimization. The solution must minimize the platform bill of material cost through
consolidation of multiple storage devices like SPI Flash and Secure Digital Input Output
(SDIO) managed NAND.

B Lifecycle. The bootloader should have a typical lifecycle of 5 years.

Figure 16.4 illustrates the common initialization flows encountered in a typical platform
initialization.

Reset Vector
FOOO:FFFD

Switch to
Protected Mode

CPU basic
Inltlallzation

Chipset basic
Inltitalization

Memory
configuration

Inltalize stack,
Jjump to advanced
Inttlalization

Basic Init

Clear legacy RAM

Board specHic
pre-Inltallzaton

initallze and
enable
Interrupts

Inltalize

Set up Interrupt
minde

Advanced Cache
initdalization

Shadow
ROM 1o RAM

Miscellaneous
device
initializaton

Config SIO
enabl Ial con
- optional

Infdalize kbd/
mouse - optonal

Start system
Hmers

initlallze
SMRAM

Configure PCI
resgurces

Advanced Init

Inltlallze SATA
optional

Find and Inltlallze
video OPROM -
optlonal

Fnd and Inltlallze
expansion ROMS

Inttalize
MEMOry map

optonal

inftlallze MP
tables

Call user Init
functhons

Boot to 05
or RTOS

Services

Runtime

Figure 16.4: Typical Intel® Architecture CE Device Firmware Boot Flow

Boot Strategies

To fit most of the usage models described above, different CE device boot strategies are adopted,
namely Fixed Topology Systems, Binary Modules model and Simplified bootloader, as described
below:
B Fixed Topology Systems. This strategy uses standard ACPI-compliant UEFI BIOS with a
fixed platform topology and a compliant IPL, such as eLilo. This is typically used with
aftermarket products that may run an embedded version of a shrinkwrap OS, but with varying
I/ O devices that are chosen by the end customer (such as Standard Embedded Linux or
Window XPe). The BIOS is required to provide PC compatibility and is readily available
from independent BIOS vendors (IBV) or Original Device Manufacturers (ODM). This
solution provides the most flexibility for seamless addition of I/ O for each of the OEM
machine topologies, but at the expense of higher boot latencies. Many of the initialization
sequences in the boot path are optimized to reduce the latencies significantly in the order of
5-10 seconds. Some of the noncritical PC BIOS functions such as PCle device enumeration,
OptionROM scanning, memory testing, POST, and video BIOS usage may be eliminated or
simplified during the boot sequence. The disabling of these and other functions helps reduce
boot latencies significantly. Refer to the white paper on one such implementation and the
optimizations done for it:
http://download.intel.com/design/intarch/papers/320497.pdf
Binary Modules with Configuration. This is the most highly optimized solution for the CE
platform for low boot latencies and is tightly coupled to the functions on the SoC. Since the
functions of the SoC do not change across different OEM implementations, one single
firmware image compiled from a set of object libraries would suffice to boot all platforms
built around the SoC. The OEM may use a development kit, which would allow
customization facilitated through a set of exposed application programming interfaces (APIs)
in the objects. These object API’s could perform basic and advanced initialization and
control tasks like the following:
— Processor initialization (including multiprocessor support, cache configuration, and
control)
— Chipset and memory initialization
— Core libraries for I/ O initialization such as PCI resource allocation, and IDE HD
initialization.
— Flash Storage (NOR, NAND), Super I/ O support
— Pre-boot graphics (splash screen) support where available

This solution is primarily meant to work with an OS, which does not rely on the PC BIOS
compatibility, such as an embedded OS and some variants of Linux. The boot latencies achieved
are deterministically optimized for a fixed CE device model built around the same SoC. The goal
of this approach is to allow the OS to enable other standard non-boot and OEM-specific I/ O
device enabling through the use of loadable device drivers in the OS. Refer to the white paper on
one such approach and the optimizations done for it:

http://download.intel.com/design/intarch/papers/320497.pdf

http://download.intel.com/design/intarch/papers/323246.pdf

B Simplified Bootloader. This is the third category of firmware bootloader that has a subset of
functionality of the above two mechanisms. In this type of implementation, the bootloader
firmware consists of the basic initialization functionality of the CPU, flash, and the DRAM
subsystem. The subsequent portion of chipset hardware and I/O device initialization is left
for the OS hardware abstraction layer (HAL) to deal with, essentially moving much of the
firmware platform initialization function to the OS. This gives the OS more control to
optimize the boot latencies by allowing it to touch or initialize devices on a demand basis,
thereby eliminating the latency associated with non-boot related platform device
initialization. The major disadvantage of this approach is that for every new SoC and
platform topology, the HAL component for each OS needs to be rewritten and this is a major
undertaking,

http://download.intel.com/design/intarch/papers/323246.pdf

Power Management

Traditional Intel architecture platforms support various power management capabilities to
conserve power of battery powered devices and to reduce thermal dissipation for AC powered
devices. The CE device will leverage from the same power states as defined in the ACPI
specification (Sx) and (Dx), but with or without ACPI support in the firmware. A simplified
ACPI table or its equivalent, with a capability to communicate standby (S3) state wake-up vector
information between the OS and the firmware is the minimum requirement for this usage model.

As highlighted earlier, one of the key design goals of the CE device is a fast boot in the order
of seconds. Typically, any resumption from Suspend/ Hibernate back to active state involves
restoring the previous state. In certain CE device use cases, the Resume from Sleep (suspend to
RAM) could be used for sub-second fast boot purposes. However, Sleep mode is undesirable for
some CE device use cases like IVL, due to the battery drain from DRAM leakage current in an
extended park scenario or a need to avoid inadvertently restoring one user context for another for
a rental car scenario. This makes the fast cold boot with a completely fresh state on every power-
on a key requirement for the CE device architecture.

Boot Storage Devices

Another factor that plays a significant role in helping reduce the overall boot latency is the choice
of the boot storage device and the system interconnect to it, such as LPC and IDE.

Firmware is typically stored on a flash device, which can take the form of NOR, Raw NAND
or Managed NAND (MMC-NAND). Each of these is connected through different system
interfaces like LPC/SPI, Open NAND Flash Interface (ONFI), or SDIO. Depending on the
combination of the bus interface and storage device used, the read throughputs can vary anywhere
from 1.5 MB/s to 52 MB/s at the time of writing of this book. It is to be noted that to satisfy the
Intel architecture platform boot sequence and legacy compatibility, XIP flash (NOR) is best.
NAND is a block storage device and does not lend itself very well as the XIP memory. The
mitigation to overcome this NAND limitation is to use SRAM caches in the path to the processor
or the NAND accesses redirected in hardware to DRAM, where the firmware is shadowed ahead
of time. The look-ahead shadowing of NAND content to DRAM does introduce additional
latencies in the boot path.

In the case of software partitioning, an IPL which is part of the OS and includes the kernel
may be stored on a secondary block storage device, such as a hard disk (HD), solid state drive
(SSD) or a managed/unmanaged NAND. There are spin-up times associated with HD and power-
on to device ready latencies associated with SSD/NAND and these contribute to the boot
latencies as well.

To help keep the platform BOM cost low, it is highly desirable to consolidate the storage
device used for the boot firmware, OS, and user applications/data. While NOR flash does offer
some speed advantages, the NAND flash offers both a cost and performance advantage that is
well balanced. The latest managed NAND version based on the MMC 4.4 specification offers
quite a few capabilities to allow the unified storage use case, such as boot block for firmware
storage, user Storage, and security features. It is quite possible to achieve this unified boot
storage CE device use model with some changes in the Intel architecture platform hardware and
firmware flows. This is illustrated in Figure 16.5.

i
|
i
]
|
!
! Top 1IMB
! Boot Partiion
| (NOR Latendies)
: T WFFFFFFFF
| L]
|
E Boot FW
=
|
s i "
. G
JAddress Range |
oamy S !
- A e 1
e
|
|
! FFEZ00
|
|
I n oo
|
-y i
SoospIo i
\Block Storage |
', Deviee |
" i i

User NAND
(eMMC)

1-32GB

i -

]

‘Address Range,

.
S

K
| Blo

5

SPI 1
Legacy -
(XIP)

SDIO

ck Smmge.:_p
Device .

Bo

Partitions

e

if
H

Write Protected E
Urprotected (h

Figure 16.5: Typical Intel® Architecture Storage Device Consolidation Model

Security

Different embedded segments have varying security requirements collectively categorized as

Security. These security requirements apply to two different usage models, which are orthogonal

to each other:

B Security as it relates to platform defense against attacks from hackers and malware.

B Security as it relates to encryption/decryption of network packets (example: IP-Sec/SSL,
Voice SRTP)

SoC-based embedded platforms are targeted to support “open and closed device” usage models.
This means that the user will be able to download and install any native application on the
device. This puts these devices on par with the standard PC as far as threats from viruses and
malware are concerned. This is where the security for defense against attacks becomes a key
platform feature, with the boot firmware playing a key role in establishing a chain of trust.

Since the CE platforms are targeted to support “open and closed device” usage models, it
requires special attention for two key aspects of security. First, the system must have a tamper-
resistant software environment to protect against malicious attacks, and second, it must offer the
ability to playback DRM protected content such as Blu-rayf without being compromised. Table 1
6.1 shows the usage and threat model of a typical CE device.

Table 16.1: Usage Model and Security Threats

CE Usage Model Threats

Internet Connectivity Malware attack, DoS Attacks, packet replay/reuse, etc.
Secure Internet Transaction Steal privacy sensitive data

DRM Content Usage Steal DRM protected content

Browser Usage Malware attack, phishing

Software Downloads/Updates Change OS/software stack

Device Management DoS attack, Illegal device connections
ID Management Dictionary attacks, stolen privacy data
One Time Provisioning Steal OEM data, unauthorized activation
Full Featured OS All of the above

Biometrics (Finger print sensor) Steal user data, authentication credentials

Based on the usage model described in Table 16.1, the assets on the platform that need to be

protected from a hacker are as follows:

B Platformresources including: CPU, memory, and network (3G, WiMax, Wi-Fi)

B Privacy sensitive data including: ID, address book, location, e-mails, DRM protected
copyrighted content such as music and video

B Trusted services including: financial, device management and provisioning, trusted kernel
components

Based on the techniques needed for threat mitigation, one of the fundamental mechanisms to
achieve security is to make the software tamper-resistant (TRS). TRS goal is achieved by having
platform and software mechanisms in place to check for software integrity, both at system boot

and runtime. The high level overview of this is as follows:

B Boot Time. This is typically accomplished through a mechanism called measured boot,
where the core platform software components (firmware or OS) are checked for
unauthorized changes.

B Runtime. This runtime security protection is typically achieved by having software agents
monitoring the system against attacks (for example, anti-virus software) and also by securing
through application sandboxing, which restricts the application accesses to limited resources
and contains the malware attack impact to the restricted domain.

In addition, any runtime software updates or patching will be limited to trusted software from
trusted entities, which may be digitally signed for authenticity.

The mitigation against the security threats requires the embedded platform security architecture to
use a combination of hardware and software security ingredients such as:

B Measured boot with TPM coupled with appropriate hardware-based Root of Trust (RoT);
examples: Intel® Trusted Execution Technology (Intel TXT) or BootROM as Root of Trust.
DRM content protection based on commercial media players executing on Intel architecture
Application isolation through OS-based mechanisms

Trusted domains and isolation through OS-based mechanism

OEM/OSYV trusted binaries, which are digitally signed by an authentic source

Secure storage and key management through TPM assist

Anti-virus through third party software libraries and application design

Device management/ provisioning through industry standard mechanisms

BootROM RoT: To provide Measured Boot functionality, an embedded platform can support
BootROM as hardware RoT and a trusted platform module (TPM) can be used to securely store
measurements. Some SPI-Flash controllers support write-protection of the flash device at reset
through hardware based auto configuration. Additionally, SPI Flash devices from various vendors
allow for boot block write protection through strap pin configuration. Any of these techniques can
be used to protect the firmware boot block from being tampered by malware.

In compliance with the TCG specification, the boot firmware is divided into two parts. The
first part is the boot block, which is a very small firmware component that includes the minimal
platform initialization firmware and TPM driver. The rest of the boot firmware is contained in the
subsequent portions of the flash.

The Intel architecture CE device can include other platform-specific firmware that is outside
the context of the core BIOS or firmware. An example of this is the p-Unit (microcontroller) that
is used for smart power management for the SoC device. This is configured as the first entity
where the platform execution begins after reset. Other CE devices may have similar processing
elements. Any measured boot mechanism must assure the integrity of such firmware and make it
part of the overall trust chain. Figure 16.6 is an example of the trust boundary for a typical Intel
architecture CE device.

Trust Boundary

CRTM in Bootloader
BootROM 0S Loader |
(HW RoT) IBIOS | : App

Figure 16.6: Typical Intel® Architecture CE Device Trust Boundary

The BootBlock can be burned into ROM so that it cannot be modified and hence can act as a
hardware RoT. Core Root of Trust for Measurement (CRTM) is the root of trust from which
integrity measurements begin within a trusted CE device platform. The platform manufacturer
provides CRTM logic for each trusted platform. The CRTM logic can be changed, but only under
controlled conditions by the OEM.

The OS loader, kernel, and drivers will be measured as part of the CE device measured boot
flow. The details of a typical chain of trust for measurement with a TPM device and PCRx is as
illustrated in Figure 16.7 and are outlined as follows:
B CRTM measures firmware (bootloader or BIOS)

— Stores the measurement in PCR-0

— Standard OS handoff tables like ACPI, E820, and EFI measurements are stored in

PCR-1

— Any option ROM measurements are stored in PCR-2
B Bootloader/BIOS measures OS Initial Program Load (IPL)

— Stores the measurement in PCR-4
B OS loader measures kernel, including kernel command line and drivers

— Stores the measurement in PCR-8

— Each OS can use different implementations

— If the measurements are changed, the OS may fail to boot or alert the user.

Coming out of
System resat

Y
1
p-Unit fetches 2K boot block code from BIOS Flash
through SPI interface in Legacy unit

b J

1
p-Unit initializes non-CPU part of Morth Complax i
{i.e. H/A/B/D) and DDR RCOMP |

¥

|
p-Unit de-assarts 1A CPU resat and Securily |
Processor resael & Awails for 1A Wakeaup |

|

1A CPU comes out of reset and executes Security Processor coming oul of reset,
BIOS code from SFI1 Flaah CRTM and starts program axecution from
masked ROM
X

E - Firmwara initializes DDR controller and DRAM. ¥
|« Firmware measures and shadows x86 flirmware into DDR Security Processor does the followings:
| Memory. & |nitialize all hardware and saftware
| = Firmware measures and shadows p-Unit fimmware into a varsion number soft copies
E portion al the DDR mamory. = Clear all maskable Interrupts
|- Firmware switchas to exacute from DRAM mamaory. = [nitialize owners ol IPC shared
| = Firmware programs p-Unit address redirection to DDR mamory (SEC initially owns the IPC

| = Firmware initiates p-LUinit wakeup to fetch its code from DDR shared memaory)

' ol = |Invalidate all keys in hardware and
software key ladders
¥ = Sat all intearnal devices to idle states
1A CPLU downloads codes o Security Processor (AES, DES, HASH, RNG, EAL)
(i) Blu-ray application codes, - * |nitialize all DMA channels
() Firmware Palches = [nitialize all SRAM. including EAL,

SeP Timears
s Read S0OC chip unigue 1D {(G64-bil
sarial number} and store locally
= Decrypt PSK or SSK if necessary
= Initialize the RMNG and CTRDRBG
- Enable maskable interrupt

¥
Security Processor asserts Input ready
and wait for host commands

Figure 16. 7: Typical Intel® Architecture CE Device Measured Boot Flow

Measured Boot Latency: Measured boot introduces latencies in the boot path of a CE device due
to the following:

B TPM initialization

B Calculation of SHA1 checksum of various binaries

B Appending the checksum in TPM PCR

The measure boot components of the TPM are distributed across the standard firmware boot flow
The CRTM algorithm would play a key role in optimizing for the CE device fast boot. It is
beyond the scope of this chapter to describe the various techniques that can be used for this
optimization. However, a carefully designed CRTM might use a combination of the following:

B Execute-in-place (out of flash) with processor caches enabled

B Measure only portions of firmware after it is shadowed into memory or before

M anageability

The manageability framework, also known as the Device Management (DM) framework,
provides services on the client platform for use by IT personnel remotely. These services
facilitate key device management functions such as provisioning, platform configuration changes,
system logs, event management, software inventory, and software/ firmware updates. The actual
services enabled on a particular platform are a CE OEM choice. The following sections describe
the two key frameworks in use for a CE device, namely OMA-DM and AMT.

Open Mobile Alliance - Device Management (OMA-DM) is one of the popular protocols that
would allow manufacturers to cleanly build DM applications that fit well into the CE device
usage model. Many of the standard operating systems support OMA-DM or a variation of it with
enhanced security. The data transport for OMA-DM is typically over a wireless connectivity such
as WiMax, 3G/4G, and so on. This protocol can run well on top of the transport layers such as
HTTPS, OBEX, and WAP-WSP. The CE device platform would be able to support this, as long
as the OEM supports the connectivity and the client services.

The other possible framework for manageability is Intel® Active Management Technology
(Intel AMT). Intel AMT provides a full featured DASH-compliant manageability solution that can
discover failures, proactively alert, remotely heal-recover, and protect. Intel AMT Out of Band
(OOB) device management allows remote management regardless of device power or OS state.
Remote troubleshooting and recovery could significantly reduce OEM service calls. Proactive
alerting decreases downtime and minimizes time to repair.

In the manageability space, making DASH-compliant manageability on CE platform is
opportunity that allows OEM differentiation and provides a much richer manageability features.

Summary

The need for a boot solution that is low cost, has a small footprint, offers low boot latencies, and
is platform-agnostic provides an exciting opportunity to ISVs and OSVs to develop and deliver
such tool kits. This also creates opportunities for CE device OEMs to provide creative solutions
of their own, making their products more competitive and unique. In addition, device vendors can
take advantage of opportunities to provide hardware IP (Intellectual Property) that are self-
initializing, thereby relieving the boot software from doing the same and giving back some time to
improve latencies.

The challenge that remains to be addressed is a single boot firmware solution that can boot
both shrinkwrap operating systems that require PC compatibility and embedded operating
systems. There are multiple challenges to be addressed with innovative solutions like supporting
security features, manageability, and a unified storage device like an eMMC, all with the key low
boot latency attribute. Finally, there are opportunities for the OS vendors to come up with
innovative optimizations within the OS boot flows to achieve faster boots.

Chapter 17 — Manageability

I came, I saw, I conquered

—Julius Caesar

RAS is a critical requirement for enterprise class servers, which includes high availability server
platforms. System uptime is measured against the goal of “five nines,” which represents 99.999
percent availability. One of the key aims of manageability software is to help achieve this goal,
by implementing functions like dynamic error detection, correction, hardware failure prediction,
and the taking of corrective actions like replacing or turning off failing components before the
failure actually happens. In addition, other noncritical manageability functions enable IT personal
to remotely manage a system by performing such operations as remote power up/ down,
diagnostics, and inventory management. Manageability software can be part of the inline system
software (the SMI handler in BIOS and OS) or inline OS user-level application software running
on the local processor or on a remote system.

This chapter describes the enhanced Intel® architecture platform dynamic error handling
framework, a system-level error management infrastructure that is now an integral part of most
industry standard server class operating systems. In addition to the above framework, different
remote manageability standards are introduced, by comparing and contrasting various aspects and
their interoperability at a platform level in achieving the five nines goal.

Overall Management Framework

A robust reporting of platform errors to the OS and a remote management of the platform are
considered fundamental building blocks that enable OS-level decision making for various error
types and possible actions by remote IT personnel upon notification of the associated events. The
framework encompasses a collection of components internal to the OS, platform chipset fabric,
and more specifically an enhanced firmware interface for communicating hardware error
information between the OS and the platform.

By standardizing the interfaces and error reporting through which hardware errors are
presented to, configured for, signaled to, and reported through the framework, the management
software would be presented with a myriad of opportunities. The two categories of error/event
types that need active management in a platform are illustrated in Figure 17.1 and can be
enumerated as in-band and out-of-band mechanisms.

Local Manageability Application Remote Manageability Application

. WHEA Operating System

EFI IPMI

In-Band Errors Out-of-Band Errors
Standard IA Platform HW Manageability HW

Figure 17.1: Manageability Domains

The various classes of manageability implementations handing these two classes of errors/ events
are as follows:

Traditional UEFI/BIOS power-on self tests/ diagnostics (POST)

UEFI/BIOS based dynamic error functions coupled with SMI/PMI! for dynamic error
management

Server baseboard management controllers (BMC) Out-Of-Band (OOB) Intelligent Platform
Management Interface (IPMI) implementations

Client/Mobile Intel® Active Management Technology (Intel AMT) OOB implementations
OS based dynamic error management

Dynamic in-band errors like 1XECC, 2xECC on memory or PClet corrected/ uncorrected impact

the running system and its uptime attribute in the near to immediate future depending on the
severity, while out-of-band errors due to peripheral system components like fan failure, thermal
trips, intrusion detection, and so on are not fatal. While in-band errors need immediate system
attention and error handling to maintain the uptime, most out-of-band errors would need the
attention of manageability software for deferred handling. However, over a period of time both
categories of errors/ events, if not handled properly, will impact the system uptime.

Dynamic In-Band

In-Band error management is typically handled by software that is part of the standard system

software stack consisting of system BIOS (SMI/PMI), operating system, device drivers/ACPI

control methods, and user mode manageability applications running on the target system. The key

technologies that are covered in this context are as follows:

B Standardized UEFI error format

B Various platform error detection, reporting, and handling mechanisms

B Windows Hardware Error Architecture (WHEA) as an example that leverages UEFI
standards.

Out-of-Band

Out-of-band error management is handled by out-of-band firmware such as, for example,
firmware running on BMCs conforming to IPMI standards. The key technologies that are covered
in this space are:

B [PMI

B Intel AMT

B DMTF and DASH as they relate to IPMI and Intel AMT

IPMI is prevalent on server class platforms through the use of an industry standard management
framework or protocol like WS-MAN. The following section focuses more on the in-band error
domain and the most recent advancements, followed by out-of-band error management technology
domain(s) and a way to bridge the two in a seamless way at the target platform level: servers,
desktop client, mobile, and so on.

The other domain of management for client and mobile system is through the Intel AMT
feature, which allows IT to better discover, heal, and protect their networked client and desktop
computing assets using built-in platform capabilities and popular third-party management and
security applications. Intel AMT today is primarily based on the out-of-band implementations as
explained above and allows access to information on a central repository stored in the platform
nonvolatile memory (NVM).

Distributed Management Task Force (DMTF)

The DMTF is an industry organization that is leading the development, adoption, and promotion
of interoperable management initiatives and standards. Further details on this will be covered
later in this chapter.

UEFI Error Format Standardization

In this section, we delve into the first level details of the in-band errors and their handling based
on the UEFT standard.

On most platforms, standard higher level system software like shrink-wrap operating systems
directly log available in-band system dynamic error information from the processor and chipset
architectural error registers to a nonvolatile storage. These errors are signaled at system runtime
through various event notification mechanisms like machine check exception on Intel®
architecture processors (example: int-18) or NMI, system management interrupt (SMI) or
standard interrupts like ACPI defined SCI. The challenge is and always has been to get non-
architectural information from the platform, which is typically not visible to a standard OS, but to
the system-specific firmware only. Partial platform error information from the architectural
sources (such as Machine Check Bank machine specific registers (MSR) as in x86 processor or
as returned by the processor firmware PAL on Itanium®) alone is not sufficient for detailed and
meaningful error analysis or corrective action. Moreover, neither the OS nor other third party
manageability software has knowledge about how to deal with raw information from the platform,
or how to parse and interpret it for meaningful error recovery or manageability healing actions.

The Figure 17.2 illustrates a typical dynamic error handling on most platforms with shrink-
wrap OS implementations, for two different error-handling components of notification/signaling
and logging. In this model, a component of the OS kernel directly logged the error information
from the processor architectural registers, while platform firmware logged non-architectural error
information to a nonvolatile storage for its private usage, with no way to communicate this back
to the OS and vice versa. Both the platform events (SMI) and processor events (MCE) are
decoupled from each other.

OS Error Handling Components

Machine Check
Exception
OS Legacy

Interface (MCE)

|
|
: Native OS
: MSR
: Access
|
A 4
Processor [== = Platform

Figure 17.2: Traditional OS Error Reporting Stack

To make the system error reporting solution complete, the manageability software will have to be

provided with the following:

B Processor error logs

B Implementation-specific hardware error logs, such as from platform chipset

B Industry Standard Architecture hardware error logs, such as PCle Advance Error Reporting
registers (AER)

B Systemevent logs (SELs) as logged by BMC-IPMI implementations

As can be seen in Figure 17.3, there is a coordination challenge between different system
software components managing errors for different platform hardware functions. Some of the
error events (such as interrupts, for example) managed by platform entities not visible to the OS
may eventually get propagated to the OS level, but with no associated information. Therefore, an
OS is also expected to handle an assortment of hardware error events from several different
sources, with limited information and knowledge of their control path, configuration, signaling,
error log information, and so on. This creates synchronization challenges across the platform
software components when accessing the error resources, especially when they are shared
between firmware and OS, such as in the case of I/O devices like PCI or PCle. For example when
the OS does receive a platform-specific error event/interrupt like NMI, it would have no clue
about what caused it and how to deal with it.

Fiw Cnntralleq_nggi_ng-Saltings
/J_.-:' ' " -"--.._

Errck DefoctonEnable , * .

{ == et ol B |FIW Error Logs (HIW)
~ 1 gt - CSRs:
£z | 5 Wlﬂ.e | | - Comected erors
/ b | £ Tk 11 | = Uncorrected errors o
| g ., -
| “| § SN CSR Reads
| T T
| y | &
| .'. w
1 0
| L

| 1

R Lo
| F/W Contralled Signaling-Settings o 4w e
Platiorm Erorg e e

e

[* EfwareBIOS SN * |

|. -S.\‘:I tpat:g - : 5 -.‘: il
| . i . o -) 3
| 'u:'_“_‘f':n'ﬁ s B, S Operating System

. - - -

MCERR
- | = SMI Intesrupt

gnal P _'.-"'

Configurable Platform Hardware

Figure 17.3: Traditional OS Error Reporting Stack

Based on this state of OS error handling and the identified needs for future enhancements, a new
architecture framework has been defined. This framework is based on the top-down approach,
with the OS usage model driving various lower level system component behaviors and interfaces.

Error management includes two different components, namely error notification/signaling and
error logging/reporting, for all system errors. The fundamental component of this architecture is a
model for error management, which includes an architected platform firmware interface to the
OS. This interface was defined to facilitate the platform to provide error information to the OS in
a standardized format. This firmware-based enhanced error reporting will coexist with legacy OS
implementations, which are based on direct OS access to the architected processor hardware
error control and status registers, such as the processor machine check (MC) Banks.

The architected interface also gives the OS an ability to discover the platform’s error
management capabilities and a way to configure it for the chosen usage model with the help of
standardized error objects. This enables the OS to make the overall system error handling policy
management decisions through appropriate system configuration and settings.

To facilitate abstracted error signaling and reporting for most common platform inband errors,

namely those emanating from the processor and chipset, a new UEFI/ACPI Error Interface

extension was defined with the following goals:

B Achieve error reporting abstraction for architectural and non-architectural platform
functional hardware

B An access mechanism for storage/retrieval of error records to the platform NVM, for

manageability software use

B Allowing freedom of platform implementation, including firmware based preprocessing of
errors

B Allow discovery of platform error sources, its capabilities and configurability through
firmware assist

B Standardized error log formats for key hardware

Figure 17.4 illustrates various components with UEFI extensions to satisfy the above goals.

OS Error Handling Components

Machine Check
Exception

Industry Standard Technology Interface (API)

PMI

Error
Handler

Processor e LLE Platform

Figure 17.4: OS Error Reporting Stack with UEFI Standardization

Non-Goals: The UEFI specification did not cover the following:

B Details of the platform hardware design or signal routing

B OS or other system software error handling implementations or error handling policies
B Usage model of this interface

B Standardized error log formats for all hardware

UEFI Error Format Overview

The error interface consists of a set of OS runtime APIs implemented by system firmware

accessed through UEFI or a SMI runtime interface mechanisms. These standardized APIs will

provide the following capabilities:

B Error reporting to OS through standardized error log formats as defined by other
specifications

B The ability to store OS and OEM specific records to the platform nonvolatile storage in a
standardized way and manage these records based on an implementation-specific usage
model

B Ability to discover platform implementation capabilities and their configuration through
standardized platform specific capability record representation

This specification only covers the runtime API details. It is based on coordination between
different system stack components through architected interfaces and flows. It requires
cooperation between system hardware, firmware, and software components. The platform
nonvolatile storage services are the minimum required features for this error model.

Error Record Types

The API provides services to support different predefined record types. Each record type being
acessed is identified by an architected unique Record ID, which is managed by the interface.
These Record IDs will remain constant across all implementations, allowing different software
implementations to interoperate in a seamless way. Record types can include GUIDs representing
records belonging to different categories as follows:

1. Notification Types. Standard GUIDs as defined in the common error record format for
each of the error record types, which are associated with information returned for
different event notification types (examples: NMI, MCE, and so on).

2. Creator Identifier. This can correspond to the CreatorID GUID as specified in the
common error record format or other additional vendor defined GUID.

3. Error Capability. This is a GUID as defined by the platform vendor for platform
implemented error feature capability discovery and configuration record types.

Error Notification Type

Error notification type records are based on notification types that are associated with standard
event signaling/ interrupts, each of which is identified by an architecturally assigned GUID and
are defined below:

Corrected Machine Check (CMC)

Corrected Platform Error (CPE)

Machine Check Exception (MCE)

PCI Express error notification (PCle)

Initilization (INIT)

Non-Maskable Interrupt (NMI)

Boot

DMAr

Recently enhancements to the UEFI includes ARM64 processor and platform specific error
notification types with the associated error records & section as follows:

B Synchronous External Abort (SEA)

B Asynchronous Error Interrupt (SEI)

B Platform Error Interrupt (PEI)

Creator Identifier

Creator ID record types are associated with event notification types, but the actual creator of the
error record can be one of the system software entities. This creator ID is a GUID value pre-
assigned by the system software vendor. This value may be overwritten in the error record by
subsequent owners of the record than the actual creators, if it is manipulated. The standard creator
IDs defined are as follows:

B Platform Firmware as defined by the firmware vendor

B OS vendor

B OEM

An OS saved record to the platform nonvolatile storage will have an ID created by the OS, while
platform-generated records will have a firmware creator ID. The creator ID has to be specified
during retrival of the error record from platform storage. Other system software vendors (OS or
OEM) must define a valid GUID.

Error Capability
The error capability record type is associated with platform error capability reporting and
configuration. Error capability is reserved for discovering platform capabilities and its
configuration.

For further details on the APIs to get/ set/clear error records from the non-volatile storage on
the platform through UEF]I, refer to the UEFI 2.3 or above specification.

Windows Hardware Error Architecture and the Role of UEFI

Prior to the UEFI common error format standardization, most of the operating systems supported
several unrelated mechanisms for reporting hardware errors. The ability to determine the root
cause of hardware errors was hindered by the limited amount of error information logged in the
OS system event log. These mechanisms provided little support for error recovery and graceful
handing of uncorrected errors.

The fundamental basis for this architecture is the reporting of platform error log information
to the OS in a standardized format, so that it is made available to manageability software. In
addition, a standard access mechanism to this error information through UEFI and ACPI has also
been defined, both for Itanium and x86 platforms as a runtime UEFI API Get/ Set Variable. This
enabled all OS implementations such as Windows, Linux, HP-UX and platform BIOS
implementations to conform to one standard for easier coordination and synchronization during an
error condition. This is the fundamental building block that has enabled interoperability across
different manageability software, written either by the OS vendors, BIOS vendors, or third party
application vendors by allowing them to understand and speak the same language to communicate
error source discovery, configuration, and data format representation.

The Windows Hardware Error Architecture (WHEA), introduced with Windows Vista,
extends the previous hardware error reporting mechanisms and brings them together as
components of a coherent hardware error infrastructure. WHEA takes advantage of the additional
hardware error information available in today’s hardware devices and integrates much more
closely with the system firmware, namely the UEFI standardized error formats.

WHEA can be summarized in a nutshell as:

B UEFI Standardized Common error record format

— Management applications benefit

— Pre-boot and out-of-band applications

— Architecturally defined for processor, memory, PCle, and so on.

Error source discovery

— Fine-grained control of error sources

Common error handling flow

— All hardware errors processed by same code path

Hardware error abstractions became operating system first-class citizens

— Enables error source management

Firmware first error model

— Some errors may be handled in firmware before the OS is given control, like errata
management and error containment

As a result, WHEA provides the following benefits:

B Allows for more extensive error data to be made available in a standard error record format
for determining the root cause of hardware errors.

B Provides mechanisms for recovering from hardware errors to avoid bugchecking the system
when a hardware error is nonfatal.

B Supports user-mode error management applications and enables advanced computer health
monitoring by reporting hardware errors via Event Tracing for Windows (ETW) and by
providing an API for error management and control.

B s extensible, so that as hardware vendors add new and better hardware error reporting
mechanisms to their devices, WHEA allows the operating system to gracefully accommodate
the new mechanisms.

The UEFI standard has now defined error log formats for the most common platform components
like processor, memory, PCle, and so on, in addition to error source based discovery and
configuration through ACPI tables. These error formats provide a higher level of abstraction. It is
beyond the scope of this book to get into the details, but an overview of error log format is
illustrated in Figure 17.5. Each of the error events is associated with a record, consisting of
multiple error sections, where the sections conforms to standard platform error types like
processor, memory, PCle, and so on, identified by a pre-assigned GUID. The definition of the
format is scalable and allows for the support of other nonstandard OEM-specific formats,
including the IPMI SEL event section.

ra ™y
Provided by:
Management/Reporting Applications | Mie
ISVHV
WML Managesent Interface ETW Error Botifications Code Gen
w A
r""
Kernel
IR |
F'— J—
HAL ~ FLLHEH FCLSYS MITHEY
—a— —
Platform-Specific Hardware Error Driver ,
. Plug-in |
Hardware/Firmware (UEFI/ACPI)

Figure 17.5: WHEA Overview

The layout of the UEFI standardized error record format used by WHEA is illustrated in Figure 1
7.6.

Record Header

Section Descriptor

Section Descriptor

Section Descriptor

Seaction

Section

Section

Processor Error

Memory Error

PCle Error

OEM Specific

Figure 17.6: UEFI Standard Error Record Format

Some of the standard error sources and global controls covered by WHEA/UEFI are as described

in Table 17.1.

Table 17.1: Standard Error Sources and Global Controls Covered by WHEA/UEFI

Error Sources

System Interrupts and Exceptions: NMI, MCE, MCA, CMCI,
PCle, CPEI, SCI, INTx, BOOT

Standard Error For- mats

Processor, Platform Memory, PCle, PCI/PCI-X Bus, PCI
Component

It is beyond the scope of this chapter to go into the details of the dynamic error handling flow.
However, Figure 17.7 provides an overview of the error handling involving the firmware and OS

components.

Uncorrected/Corrected

:'" Hardware Error Event
I
I
]
I
e . OS Logs Errors &
! g 28 Cf;itinues
Processing Options: | !
1. Error Collection | A
from platform
2. Error Correction Ne Error Event :
Atlsmpt {QKI.MQWOW : walid ‘__,-' “K\"‘m Error Event
Migration, Mirraring | Error Interrupt Handler ‘ﬁf il Folling
4. Error Recovery Invoked .-""'.-' oll for Corrected
Attempt ———_Errors in Hardware or ,rﬂ—l
3. Predictive Failure | ~~._ Firmware -~
Analysis 5 T el
4. Messaging to | ; T
Management [j
Console | | |
5. Other OEM actions | | C:_lsanl‘zj:::r =—FErrors Found
— b |
el T
Firmware APl —< Error Logging? ?,s H;;Ti:arl;angr;::;s
Interface Enabled ey P L
: |

_ Through Direct
Firmware Error Architectural

ERICInE. Interinee Register Access

Yas

,-* ”"
08 Error ™.
< Handling

-5 chce ssful -~

ey i
T
MNo
v
Fa ™
! Reboot)
™, A

Figure 17. 7: Generic Error Handling Flow

Technology Intercepts: UEFI, IPMI, Intel® AMT, WS-MAN

The following sections delve into various other management technologies that relate to UEFI and
how these all can interoperate.

Intelligent Platform Management Interface (IPMI)

IPMI is a hardware level interface specification that is “management software neutral” providing
monitoring and control functions for server platforms, that can be exposed through standard
management software interfaces such as DMI, WMI, CIM, SNMP, and HPI. IPMI defines
common, abstracted, message-based interfaces between diverse hardware devices and the CPU.
IPMI also defines common sensors for describing the characteristics of such devices, which are
used to monitor out-of-band functions like fan/heat sink failures, and intrusion detection. Each
platform vendor offers differentiation through their own platform hardware implementation to
support IPMI, typically implemented with an embedded baseboard microcontroller (BMC) and
the associated firmware with a set of event sensors, as shown in Figure 17.8.

Remote ICMB Elnteli'ﬂ Chassis Management Bus)
Managerment Card

As48s

Transcewers
|
Sera
LAN Comre:
— Modem M.
I BRIDGE
{optional)
LAN Senial
PCl Management IPMB
, Bus I .
tertace Non-volatile Storage CI-MS%%HT
o PG BASEBOARD = SYSTEM EVENT LOG (SEL) MANAGE
Network = _¢9 MANAGEMENT _|*SEMSORJATARECOAD (S PRAIEL T4
o CONTROLLER « BASEBOARD FIELO-REFLACEABLE CONTROLLER)
Controlier (BMC) UNIT (FRU] INFO
Sensors & Control Circuitry |
FRU
Voltages. Temparatunes
szé\v s | et P & it . BEEPROM
Controlier Chassis
_ Sharing Private Management Busses Sansars
[- Temparatares e P
Motherboard Soin System Interface Supples
FRU
Controller PMI erty)| | cHassis BOARD
MESSAGES
speee = =S
MOTHERBOARD
MEMORT BSARD | moaan i BOARD

Figure 17.8: Typical IPMI Platform Implementation

IPMI has defined a set of standard sensors, which would monitor different platform functions and
generate events and report them through the system event log interface (SEL) as 16-byte error log

entries. Each of the sensors in turn is associated with Senor Data Record (SDR), which describes
the properties of the sensor, to let the manageability software discover its capability,
configurability and controllability and the error record associated with it. A set of predefined
controls for use by manageability software is also defined by the IPMI specification, in addition
to other OEM-defined controls through SDR. The standard sensors along with the standard
controls do allow a level of standardization for managing these out-of-band errors. Some of the
standard sensor and global controls are captured below in Table 17.2.

Table 17.2: IPMI Standard Sensor and Global Controls

Sensors Temp, Voltage, Current, Processor, Physical Security, Platform
Security, Processor, Power Supply, Power Unit, Cooling,
Memory, Drive Slot, BIOS POST, Watch Dog, System Event,
Critical Interrupt, Button/Switch, Add in Card, Chassis, Chipset,
FRU, Cable, System Reboot, Boot Error, OS Boot, OS Crash,
ACPI Power State, LAN, Platform Alert, Battery, Session
Audit

Global Control Cold Reset, Warm Reset, Set ACPI State

Intel® Active Management Technology (Intel AMT)

Intel AMT can be viewed as an orthogonal solution to IPMI and was originally developed with

capabilities for client system manageability by IT personnel in mind, as opposed to server

manageability. However, Intel AMT is making its way into the embedded and network appliance

market segments like point of sale terminals, print imaging, and digital signage. Intel AMT is a

hardware- and firmware-based solution connected to the system’s auxiliary power plane,

providing IT administrators with “any platform state” access. Figure 17.9 provides an illustration

of Intel AMT’s architecture. Intel AMT enables secure, remote management of systems through

unique built-in capabilities, including;

B OOB management that provides a direct connection to the Intel AMT subsystem, either
through the operating system’s network connection or via its TCP/IP firmware stack.

B Nonvolatile memory that stores hardware and software information, so IT staff can discover
assets even when end-user systems are powered off, using the OOB channel.

B System defense featuring inbound and outbound filters, combined with presence detection of
critical software agents, protects against malware attacks, and so on.

The most recent versions of the Intel AMT are DASH-compliant and facilitate interoperability
with remote management consoles that are DASH-compliant.

Architecture stack of Intel® AMT

Managed components

Intel AMT services

Security Network Storage s Event-
administration [administration §| administration s:\:ge manager
service service senvice service
Hardware- Remote- Local agent [I Remote agent NOG
asset control presence presence 8
service service service service Servion
WSDL description of Intel AMT services

Serialization (SOAP)

Transport (HTTP)

Connection (TLS)

Figure 17.9: Intel® AMT Architecture Stack

Intel AMT offering includes Manageability Engine hardware with the associated firmware, which
is integrated onto silicon as building blocks such as IOH or PCH. Intel AMT allows users to
remotely perform power functions, launch a serial over LAN session to access a system's BIOS
and enable IDE-Redirect to boot a system from a floppy, image, or CD/ DVD device installed
within the central monitor. Some of the key services provided through Intel AMT are as shown in
Table 17.3.

Table 17.3: Key Services Provided through Intel® AMT

Services Security Administration Interface, Network Administration
Interface, Hardware Asset Interface, Remote Control Interface,
Storage Interface, Event Management Interface, Storage
Administration Interface, Redirection Interface, Local Agent
Presence Interface, Circuit Breaker Interface, Network Time
Interface, General Info. Interface, Firmware Update Interface

Global Control Cold Reset, Warm Reset, Power Up and Down, Set
Power/ACPI State, Change ACL, Retrieve Hardware/Software
Inventory, Firmware Update, Set Clock, Set Firewall
Configuration, Configure Platform Events for Alert and Logging

Like IPMI, one of the key interfaces of Intel AMT is event management, which allows configuring
hardware and software events to generate alerts and to send them to a remote console and/or log
them locally.

Web Services Management Protocol (WS-MAN)

The growth and success of enterprise businesses hinges heavily on the ability to control costs
while expanding IT resources. WS-Management addresses the cost and complexity of IT

management by providing a common way for systems to access and exchange management
information across the entire IT infrastructure. By using Web services to manage IT systems,
deployments that support WS-Management will enable IT managers to remotely access devices
on their networks—everything from silicon components and handheld devices to PCs, servers,
and large-scale data centers. WS-Management is an open standard defining a SOAP-based
protocol for the management of remote systems, as illustrated in Figure 17.10.

: Remote Mgmt Access
ﬁ g lanagement
| s
] A |
= I
C @
® E
% ﬂ XML/SOAP
mm B e R R T AR B B R e
&
C
L

IPMI/AMT Driver !

IPMI/AMT HW Interface

|rm BMC/ME

and monitoring hiw

Figure 17.10: WS-MAN Management Build Blocks Overview

All desktop, mobile, and server implementations that are compliant with DASH and support WS-
MAN can be remotely managed over the same infrastructure like the management console
applications.

Other Industry Initiatives

The Distributed Management Task Force, Inc. (DMTF) is the industry organization leading the
development, adoption, and promotion of interoperable management initiatives and standards.
DMTF management technologies include the Common Diagnostic Model (CDM) initiative, the
Desktop Management Interface (DMI), the System Management BIOS (SMBIOS), the Systems
Management Architecture for Server Hardware (SMASH) initiative, Web-Based Enterprise
Management (WBEM)—including protocols such as CIM-XML and Web Services for
Management (WS-Management)— which are all based on the Common Information Model
(CIM). Information about the DMTF technologies and activities can be found at www.dmtf.org.

http://www.dmtf.org

The UEFI/TPMI/Intel® AMT/WS-MAN Bridge

This part of the analysis brings out the way these different management technologies and
interfaces can be bridged together, either with the already available hooks in them or with some
yet-to-be-defined extensions, as illustrated in Figure 17.11.

The previous section discussed the UEFI industry standard specification covering the common
error formats for in-band errors and how manageability software running on top of the OS can
take immediate corrective action through the abstracted interface. However, the common event
log format for out-of-band errors is not covered by UEFI, but is left to the individual platform
vendors to implement through either IPMI or Intel AMT interfaces.

Core building blocks simplify and integrate in-band and remote
out-of-band management

In-Band * IPMI is the platform
Management instrumentation solution
Software « EFl is the preferred platform
= | Out-of-Band provisioning and virtualization
perating System Management solution
Software + CIM is the preferred in-band
CiM management framework

« BMC/MMC is the central point
of managing the server as a

single unit
IPMI * HPI is the platform
Hardware management API for telco and
and Firmware]] Baseboard/ non-CIM environments

Modular

Management
Compute Node Controller
Hardware

Figure 17.11: Management Build Blocks Linking IPMI, HPI, UEFI, and WHEA

IPMI Error Records to UEFI

UEFT can act as a conduit for all the SEL event log information for out-of-band errors logged by
IPMI and provide it to UEFI, encapsulated as a UEFI standardized OEM-specific error format to
the OS. This requires a private platform-specific interface between UEFI and the IPMI firmware
layers for exchange of this information. It is also possible for the UEFI to extend and define yet
another error format for IPMI SEL logs identified with a new GUID. This way, an OS or
manageability application would be able to get complete platform errors for in-band and out-of-
band errors in a standardized format through one single UEFI-based interface. UEFI can intercept
the IPMI sensor events through the firmware first model as defined by Microsoft WHEA and
provide the SEL logs to the OS. This type of extension can be modeled along the Itanium

Processor Machine Check Architecture specification for IPMI error logging and is an area of
opportunity of future standardization effort.

UEFI Error Records to IPMI

The IPMI has already defined standard event sensors like Processor, Memory, System Event,
Chipset and Platform Alert. It is also possible to define a new UEFI or WHEA sensor type for
IPMI and channel the UEFI defined standard error formatted information over to IPMI,
encapsulated as OEM-specific data of a variable size. IPMI SEL log size is currently defined to
be 16-bytes and hence would require a change in IPMI specification to support variable size SEL
log size. This way, a remote or local manageability application would be able to get complete in-
band and out-of-band error information through one single IPMI.

Intel® AMT and IPMI

These two interfaces, which were defined with different usage models in mind, do have an
overlap in functionality. Intel AMT defines an entire hardware and firmware framework for client
system management, while IPMI only defined the firmware interface without any hardware
support for server system manageability. IPMI can be implemented on the hardware needed for
Intel AMT if the ME hardware becomes a standard feature on all Intel solutions or chipsets.

Future Work

Table 17.4 shows the four areas of potential work for standardization that offers interesting

possibilities:

B Bridge over the Intel AMT/IPMI functionality over to the UEFI-OS error reporting

B Bridge over of the OS-UEFI error management over to the Intel AMT/IPMI functionality

B Manageability application leveraging from WS-MAN or other similar abstracted interfaces
with a unified error reporting and management for the entire platform, either obtained
through the OS or Intel AMT/IPMI

Table 17.4: Manageability and error management standards and possible future work.

Error Management Feature UEFI/WHEA IPMI AMT WS-MAN

Bridging Over Possibilities IPMI/AMT AMT IPMI UEFI/WHEA

Configuration Namespace

The UEFI platform configuration infrastructure has been designed to facilitate the extraction of
meaningful configuration data whether manually or via a programmatic (script-based) mechanism.
By discerning meaning from what might otherwise be opaque data objects, the UEFI platform
configuration infrastructure makes it possible to manage the configuration of both motherboard-
specific as well as add-in device configuration settings.

Associating meaning with a question
To achieve programmatic configuration each configuration-related IFR op-code must be capable
of being associated with some kind of meaning (e.g. “Set iSCSI Initiator Name”).

Below is an illustration that depicts an EFI_IFR_QUESTION_HEADER. Each configuration-
related IFR op-code is preceded with such a header, and the 3rd byte in the structure is
highlighted because it becomes the lynchpin upon which meaning can be associated to the op-
code.

Byte Byte Byte Byte

offset O Prompt Token #
offset 4

offset 8

Figure 17.12: Sample IFR Op-code encoding

Prompt Token and a new language

Given that for every configurable registered item in the HII Database (see
EFI_HII_ DATABASE_PROTOCOL) there will at least exist a set of IFR forms and a
corresponding set of strings. Think of the IFR forms as a web page, each of which is represented
by an IFR op-code. These pairs of op-codes and strings are sufficient to contain all the metadata
required for a browser or a programmatic component (e.g. driver, script, etc.) to render a Ul or
configure a component in the platform.

Since another inherent feature of the UEFI configuration infrastructure is localization, each of
the IFR op-codes make references to their related strings via a Token abstraction. This allows a
reference to a string (e.g. Token #22) to be language agnostic.

Within the HII database, multiple sets of strings can be registered such that any given
component might support one or more languages. These languages typically are associated with
user-oriented translations such as Chinese, English, Spanish, etc. Given this inherent capability to
associate op-codes with strings, it should also be mentioned that for a registered HII component
(handle), each of the Prompt Token numbers are required to be unique if they are to be correctly
managed or script-enabled. To be clear, this doesn’t mean that each Prompt Token must be

globally unique across the entire HII database, it must be unique within the scope of the HII
handle being referenced.

There is a concept introduced in 29.2.11.2 (Working with a UEFI Configuration Language)
that speaks of a language that isn’t intended to be displayed or user visible. This is a key concept
that allows data to be seamlessly introduced into the HII database content without perturbing the
general flow or design of any existing IFR.

Below is an illustration which demonstrates the use of the x-UEFI-ns language. It is defined as
the platform configuration language used by this specification and the keyword namespace further
defined in this registry.

In the example, we have an English (as spoken in the US) string, a Spanish (as spoken in
Mexico) string, and a UEFI platform configuration string. The latter string’s value is
“iSCSlIInitiatorName” and this keyword is an example of what would be the interoperability used
to manage and extract meaning from the configuration metadata in the platform.

string Token #1

string Token #2

3 "

4 . STrin i 2 " aa
¢ . S - o what is the iSCSI Initiator Name?

Token #4 Representation

String Token #n

string Token #1

string Token #2

string string

& —_____/__.———-— Sokan 44 Representation Que es ¢]1 nombre del i5CSI Imitiavor
e

<

string Token #n

string Token #1 . ¢
STring string

: : iSCSIInitiatorname
String Tny Token #4 Representation

o .

4
\}i-* -
+
string Token #n
Figure 17.13

For example, a utility (or administrator) may query the platform to determine if a platform has
exposed “iSCSlInitiatorName” within the configuration data. Normally, there would be no
programmatic way of determining whether this platform contained this data object by simply
examining the op-codes. However, with a namespace definition in place, a program can do the
following to solve this issue:
1. Collect a list of all of the HII handles maintained by the HII database.
2. For each of the registered HII database entries, look to see if any strings are registered
within the x-UEFI-ns language name.
a. If so, look for a string match of “iSCSIInitiatorName” in any of the strings for a
particular HII handle
i. If none are found, go to the next HII handle and execute 2a again.
ii. If there are no more HII handles, then this platform doesn’t currently expose

“iSCSIInitiatorName” as a programmatically manageable object.

If a match is found, then note the String Token value (e.g. 4).

4. Proceed to search through that HII handle’s registered IFR forms for a configuration op-
code that has a matching Prompt Token value (e.g. 4).

5. Once discovered, the configuration op-code contains all of the information needed to
understand where that iSCSI Initiator Name information is stored.
a. This allows a program to optionally extract the current settings as well as optionally

set the current settings.

w

Even though the above steps are an illustration of what one might have to do to extract the
information necessary to match a Keyword to its associated value, there are facilities defined in
the EFI_HII_ CONFIG_ROUTING_PROTOCOL, and more specifically the ExtractConfig() and
RouteConfig() functions to facilitate the getting and setting of keyword values.

Software Layering

Below is an illustration which shows a common sample implementation’s interaction between
agents within a UEFI-enabled platform. Some implementations may vary on the exact details.

1. Any application which wants to get or set any of the values abstracted by a keyword can
interact with the API’s that are defined within the UEFI specification. It would be the
responsibility of this application to construct and interpret keyword strings that are
passed or returned from the API’s.

2. An agent within the system will expose the EFI_CONFIG_KEYWORD_HANDLER _
PROTOCOL interface with its GetData() and SetData() functions. These services will
interact both with the application that called it and the underlying routing routines within
the system.

3. The EFI_HII_CONFIG_ROUTING_PROTOCOL is intended to act as a mechanism by
configuration reading or writing directives are proxied to and from the appropriate
underlying device(s) that have exposed configuration access abstractions.

4. Configurable items in the platform will expose an EFI_HII_ CONFIG_ACCESS_
PROTOCOL interface that allows the setting or retrieving of configuration data.

5. The component in the platform which has exposed configuration access abstractions.

Application

(e.g. Browser, Management App)

EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL

EFI_HII_CONFIG_ROUTING_PROTOCOL

EFI_HII_CONFIG_ACCESS_PROTOCOL

Device
(e.g. Motherboard, Add-in Card, etc.)

Figure 17.14

Namespace Entries

This document establishes the UEFI Platform Configuration language as:

x-UEFI-ns
The keywords defined in this UEFI Configuration Namespace registry should all be discoverable
within the platform configuration language of “x-UEFI-ns”.

Alternate Storage and Namespaces

Although this namespace registry deals solely with the keywords associated with the x-UEFI-ns
platform configuration namespace, the underlying configuration infrastructure supports
abstractions that encompass alternate x-UEFI-* namespace usages.

x-UEFI-CompanyName

If a company wanted to expose some additional keywords for their own private use, they must use
one of the ID’s referenced in the PNP and ACPI ID Registry.

For example, if Intel wanted to expose some additional settings, they would use: x-UEFI-
INTC.

Handling Multi-instance values

There are some keywords which may support multiple instances. This simply means that a given

defined keyword may be exposed multiple times in the system. Since instance values are exposed
as a “:#” (# is a placeholder for a one to four digit decimal number) suffix to the keyword, with
the “#” holding the place of an instance value, we typically use that value as a means of directly
addressing that keyword. However, if there are multiple agents in the system exposing a multi-
instance keyword, one might see several copies of something like “iSCSIInitiatorName:1”
exposed.

Under normal circumstances, an application would interact with the keyword handler
protocol to retrieve the keyword it desired via the GetData() function. What is retrieved would be
any instances that match the keyword request.

For instance, when retrieving the iSCSIInitiatorName:1 keyword, the keyword protocol
handler will search for any instances of the keyword and return to the caller what it found.

The illustration below shows an example of the returned keyword string fragments based on
what the keyword protocol handler discovered.

In the case of iSCSIInitiatorName:1, the illustration shows how multiple controllers exposed
the same keyword and even the same instance values. The response fragments below illustrate
how the “PATH=" value would correspond to the device path for a given device and each of
those device paths uniquely identify the controller responding to the request. This gives the caller
sufficient information to uniquely adjust a keyword [via a SetData() call] by specifying the
appropriate device path for the controller in the keyword string.

Response from KeywordHandler.GetData()
'I'

Controller #1

*-UEFI-ns&PATH=123456789AB COEF &KEYWORDSISCSIInitiatorName:1
Controller #2 x-UEF-ns&PATH=987654321 ABCDEF&KEYWORDsISCSlinitiatorName:1

x-UEFI-ns&PATH=555544449ABCDEFEKEYWORD=I5CSlInitiatorName:1

Controller #3

"

Figure 17.15

Summary

In the case of manageability, the UEFI framework will help make platforms more robust and
reliable through remote management interfaces like Intel AMT, and WS-MAN, to meet the RAS
goal of five nines. This unified approach would be a win-win to all (OEM, IBV, OSV), to deliver
a great end user value and experience with a complete solution for in-band and out-of-band error
and event management.

The net result of the level of abstraction provided by UEFI/WHEA and Intel AMT/IPMI
technologies in security and manageability space will now enable many vendors to develop OS-
agnostic unified tools and application software for all embedded/client/server platforms. This
would allow them to spend their efforts on innovation with a rich set of features at the platform
level rather than on developing multiple platform-specific implementations for the same
manageability functionality.

Appendix A — Data Types

Table A.1 contains the set of base types that are used in all UEFI applications and EFI drivers.
Use these base types to build more complex unions and structures. The file EFIBIND.H in the
UDK 2010 located on www.tianocore.org contains the code required to map compiler-specific
data types to the UEFI data types. If you are using a new compiler, update only this one file; all
other EFI related sources should compile unmodified. Table A.2 contains the modifiers you can
use in conjunction with the UEFI data types.

Table A.1: Common EFI Data Types

Mnemonic Description

BOOLEAN Logical Boolean. 1-byte value containing a 0 for FALSE or a 1 for TRUE. Other values are
undefined.

INTN Signed value of native width. (4 bytes on IA-32, 8 bytes on Itanium®-based operations)

UINTN Unsigned value of native width. (4 bytes on IA-32, 8 bytes on Itanium®-based operations)

INT8 1-byte signed value.

UINT8 1-byte unsigned value.

INT16 2-byte signed value.

UINT16 2-byte unsigned value.

INT32 4-byte signed value.

UINT32 4-byte unsigned value.

INT64 8-byte signed value.

UINT64 8-byte unsigned value.

CHARS 1-byte Character.

CHARI16 2-byte Character. Unless otherwise specified all strings are stored in the UTF-16 encoding format
as defined by Unicode 2.1 and ISO/IEC 10646 standards.

VOID Undeclared type.

EFI_GUID 128-bit buffer containing a unique identifier value. Unless otherwise specified, aligned on a 64-bit
boundary.

EFI_STATUS Status code. Type INTN.

EFI_HANDLE A collection of related interfaces. Type VOID *.

EFI_EVENT Handle to an event structure. Type VOID *.

EFI_LBA Logical block address. Type UINT64.

EFI_TPL Task priority level. Type UINTN.

EFI_MAC_ADDRESS

32-byte buffer containing a network Media Access Control address.

EFI_IPv4_ADDRESS

4-byte buffer. An IPv4 Internet protocol address.

EFI_IPv6_ADDRESS

16-byte buffer. An IPv6 Internet protocol address.

EFI_IP_ADDRESS

16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 Internet protocol address.

<Enumerated Type>

Element of an enumeration. Type INTN.

sizeof (VOID *)

4 bytes on supported 32-bit processor instructions. 8 bytes on supported 64-bit processor
instructions.

Table A.2: Modifiers for Common EFI Data Types

http://www.tianocore.org

Mnemonic

Description

IN Datum is passed to the function.

ouT Datum is returned from the function.

OPTIONAL Datum is passed to the function is optional, and a NULL may be passed if the value is not supplied.

STATIC The function has local scope. This replaces the standard C static key word, so it can be overloaded for
debugging.

VOLATILE Declare a variable to be volatile and thus exempt from optimization to remove redundant or unneeded
accesses. Any variable that represents a hardware device should be declared as VOLATILE.

CONST Declare a variable to be of type const. This is a hint to the compiler to enable optimization and stronger type
checking at compile time.

EFIAPI Defines the calling convention for EFI interfaces. All EFI intrinsic services and any member function of a

protocol must use this modifier in the function definition.

Appendix B — Status Codes

Most UEFT interfaces return an EFI_STATUS code. Table B.1 lists the status code ranges. Tables
B.2, B.3, and B.4 list these codes for success, errors, and warnings, respectively. Error codes
also have their highest bit set, so all error codes have negative values. The range of status codes
that have the highest bit set and the next to highest bit clear are reserved for use by UEFI. The
range of status codes that have both the highest bit set and the next to highest bit set are reserved
for use by OEMs. Success and warning codes have their highest bit clear, so all success and
warning codes have positive values. The range of status codes that have both the highest bit clear
and the next to highest bit clear are reserved for use by UEFI. The range of status code that have
the highest bit clear and the next to highest bit set are reserved for use by OEMs.

Table B.1: EFI_STATUS Code Ranges

IA-32 Range Intel® Itanium® Description

ArchitectureRange
0x00000000 0x0000000000000000 - Success and warning codes reserved for use by UEFI main specification. See
“OXIFFFFFfT S ARARRRRRRRRRRR) Tables B.2 and B.4 for valid values in this range.
0x20000000 - 0x2000000000000000 - Success and warning codes reserved for use by the Platform Initialization
OX3FFFffff OX3FFfffffffffffff Architecture Specification.
0x40000000 0x4000000000000000- Success and warning codes reserved for use by OEMs.
-OX7FEFffff OX7FFfffffffffffff
0x80000000 0x8000000000000000 - Error codes reserved for use by the UEFI main specification. See Table B.3 for
-OXOfFFFfff OXOFFFfFfFffffffff valid values for this range.
0xa0000000 - Oxafffffffffffifff- Error codes reserved for use by the Platform Initialization Architecture
OXbfffffff OXbfffffffffffffff Specification.
eciclelolololc] 0xCc00EE00000000000 - Error codes reserved for use by OEMs.

-oxfFffffff OxFFFfffffffffffff

Table B.2: EFI_STATUS Success Codes (High Bit Clear)

Mnemonic Value Description
EFI_SUCCESS 0 The operation completed successfully.

Table B.3: EFI_STATUS Error Codes (High Bit Set)

Mnemonic Value Description

EFI_LOAD_ERROR 1 The image failed to load.

EFI_INVALID_PARAMETER 2

EFI_UNSUPPORTED 3 The operation is not supported.

EFI_BAD_BUFFER_SIZE 4 The buffer was not the proper size for the request
5

EFI_BUFFER_TOO_SMALL The buffer is not large enough to hold the requested data. The required buffer
size is returned in the appropriate parameter when this error occurs.

A parameter was incorrect.

EFI_NOT_READY
EFI_DEVICE_ERROR The physical device reported an error while attempting the operation.
EFI_WRITE_PROTECTED 8 The device cannot be written to.

There is no data pending upon return.

N

EFI_OUT_OF_RESOURCES 9 A resource has run out.

EFI_VOLUME_CORRUPTED 10 An inconsistency was detected on the file system causing the operation to fail.

EFI_VOLUME_FULL 1 The file system has no more space.

EFI_NO_MEDIA 12 The device does not contain any medium to perform the operation.

EFI_MEDIA_CHANGED 13 The medium in the device has changed since the last access.

EFI_NOT_FOUND 14 The item was not found.

EFI_ACCESS_DENIED 15 Access was denied.

EFI_NO_RESPONSE 16 The server was not found or did not respond to the request.

EFI_NO_MAPPING 17 A mapping to a device does not exist.

EFI_TIMEOUT 18 The timeout time expired.

EFI_NOT_STARTED 19 The protocol has not been started.

EFI_ALREADY_STARTED 20 The protocol has already been started.

EFI_ABORTED 21 The operation was aborted.

EFI_ICMP_ERROR 22 An ICMP error occurred during the network operation.

EFI_TFTP_ERROR 23 A TFTP error occurred during the network operation.

EFI_PROTOCOL_ERROR 24 A protocol error occurred during the network operation.

EFI_INCOMPATIBLE_VERSION 25 The function encountered an internal version that was incompatible with a version
requested by the caller.

EFI_SECURITY_VIOLATION 26 The function was not performed due to a security violation.

EFI_CRC_ERROR 27 A CRC error was detected.

EFI_END_ OF_MEDIA 28 Beginning or end of media was reached.

EFI_END_OF_FILE 31 The end of the file was reached.

EFI_INVALID_LANGUAGE 32 The language specified was invalid.

Table B.4: EFI_STATUS Warning Codes (High Bit Clear)

Mnemonic

Value Description

EFI_WARN_UNKNOWN_GLYPH

The Unicode string contained one or more characters that the device
could not render and were skipped.

EFI_WARN_DELETE_FAILURE

The handle was closed, but the file was not deleted.

EFI_WARN_WRITE_FAILURE

The handle was closed, but the data to the file was not flushed properly.

EFI_WARN_BUFFER_TOO_SMALL

IN

The resulting buffer was too small, and the data was truncated to the
buffer size.

Index

— Metronome Architectural Protocol 1, 2

— Real Time Clock Architectural Protocol 1, 2, 3
— Reset Architectural Protocol 1, 2, 3, 4

— Security Architectural Protocol 1, 2, 3

— Variable Architectural Protocol 1, 2, 3

— Watchdog Timer Architectural Protocol 1, 2, 3
ASCII1,2,3,4

Attributes

— Firmware Boot Manager 1, 2

— Authenticode 1, 2

BIOS 1,2, 3,4

Block I/0 Protocol 1, 2, 3, 4

Boolean Expression 1

Boot

— Devices 1, 2
— Firmware 1,

—mode 1, 2, 3, 4
— network booting 1, 2

— boot media 1, 2
— marketing requirements 1, 2, 3

— phase 1
Boot Firmware Volume (BFV) 1, 2, 3

® 6 6 &6 o o6 o o ¢ o oo o o o o o o o o ©°o O° o ©°o ©°o °o ©°o ©°o ©°o °o ©°o ©°o o o°o °o o °o o o o o
|
D
<
@)
=
=
o
=
<
\4'_“
=
o
w0
I~
i
o
~N
Co

— Processor Abstraction Layer (PAL) 1, 2, 3
— UEFI PI architecture 1

Boot Mode

— sleep state 1, 2

Bus

—driver1,2,3,4,5,6,7
Cache-as-RAM (CAR) 1

Central Processing Unit (CPU) 1, 2
Configuration Access Protocol 1, 2
Configuration Table 1, 2, 3
Console

—deV1ces 1,2,3,4,5,6

Consumer Electromcs (CE) Device
— firmware 1, 2

Controlled Data Items (CDis) 1
Controllers

— Host Bus Controllers 1, 2
Coreboot 1, 2

CPU Architectural Protocol 1, 2, 3
CRC1,2,3

Driver Execution Env1ronment (DXE) viii, 1, 2
— components 1, 2, 3

—corel, 2,3

— dispatcher 1, 2, 3, 4

—drivers 1,2, 3,4,5,6,7,8

— Foundation 1, 2, 3, 4

— handoff with Pre-EFT Initialization (PEI) 1

— initial programload (IPL) 1, 2, 3,4

— services table 1 2
Drivers 1, 2,3,4,5,6,7, 8

DXE Fo_un:iation 1,2,3
Dynamic RAM (DRAM) 1, 2, 3
EFI Runtime Services Table 1, 2, 3, 4

Elevation of Privilege 1
Embedded Operating Systems 1, 2
— UEFI Not Ready error 1

Event and Timer Services 1, 2
Events

—HotPlugl 2,3,4

FFS 1, 2
F1rmware12345678910 11,12, 13, 14, 15

Flush 1, 2, 3

Function Prototype 1, 2

Functions

— Allocate Buffer 1, 2, 3

—Close 1, 2, 3,4, 5, 6

—Flush1, 2,3

— Get Timer Period 1, 2

—Map 1,2

— Media 1
—Meml, 2, 3,4,5,6,7,8,252,9

— Set Variable 1, 2

Global Coherency Domain Services 1
GUID1,2,3,4,5,6,7,8,9

Hand-Off Block (HOB) 1

Handle 1, 2, 3,4,5,6,7,8,9, 10, 11
— driver image 1, 2

Handle Database 1, 2, 3

Hand-Off Block (HOB) 1, 2, 3
—list1,2,3,4,5,6,7,8

Host-Bus Adapter (HBA) viii, 1, 2, 3, 4
Host Bus Controllers 1, 2

Hot Plug Events 1, 2, 3

Image Handle 1, 2

Input/Output (1/0) 2

—text1/0 2, 3, 4

Intel® Active Management Technology (Intel AMT) 1, 2
— System on a Chip (SoC) 1, 2

Imel® Core iT"M processor 1, 2
Intelligent Platform Management Interface (IPMI) 1, 2, 3

Internet Small Computer Systems Interface (iSCSI) 1, 2

Key/Value Palrs 1

Lakeport 1

Mlscellaneous Serv1ces 1

Module Development Environment (MOE) 1
MPS tables 1, 2

Multiprocessor 1, 2, 3, 4

Network Console 1

Networking

UEFI drivers 1, 2,3,4,5,6,7,8,9
Network Interface Controller 1

NT1 Platform 2, 3, 4

emulation 1, 2, 3, 4

limitations 1, 2

WinNtThunk capability 1, 2, 3

NULL Interface Pointer 1, 2

Open Firmware 1, 2

Original Equipment Manufacturers (OEMs) 1
OS Kernel 1, 2, 3, 4

OS Loader 1, 2, 3,4, 5,6, 7, 8,9, 10, 11
OS Partition 1, 2

Output Devices viii, 1, 2, 3

Partition viii, 1, 2, 3, , 6,7

PCI Protocols 1,2,3

PCI Host Bridge Resource Allocation Protocol 1
Peripheral Component Interconnect (PCI) 1, 2

— bus drivers 1, 2

—buses 1,2,3,4,5,6,7,8

— base address registers 1

— host bus controllers 1, 2

— host buses 1, 2

— memory space 1, 2, 3, 4

—n host bridges 1

—root bridges 1, 2, 3

—segments 1, 2, 3, 4

Platform components 1, 2, 3, 4

Platform Controller Hub (PCH) 1

Platform Driver Override Protocol 1

Platform Error Reporting

—in-band errors 1, 2

— intelligent platform management interface (IPMI) 1, 2

— out-of-band errors 1, 2, 3

— Specification ix, 1

— Unified Extensible Firmware Interface (UEFI) 1, 2
Platform Manufacturer (PM) 1, 2, 3, 4

Platform Security 1, 2, 3

Portable Executable/Common File Format (PE/ COFF) 1, 2, 3
— Driver Execution Environment (DXE) drivers 1
Preboot eXecution Environment (PXE) BIOS 1
Pre-EFTI Initialization (PEI) viii, 1, 2

— Dispatcher 1, 2, 3

— Hand-Off Block (HOB) list 1

— PEI-to DXE handoff 1

—modules (PEIMs) 1, 2

Pre-operating system (pre-OS) agents 1
Priori File 1, 2, 3

Protocols

— Driver Binding Protocol 1, 2, 3, 4
Pseudo code 1

Real Time Clock

— architectural protocols (APs) 1
Repudiation 1

Reset

— architectural protocols (APs) 1
Samples

System configuration 1, 2, 3, 4

Scan Codes 1, 2, 3

— User Identi_ty_(ﬁID_) infrastructure 1,2
Simple File System Protocol 1, 2, 3
Smart phone 1, 2

S-State Boot Path 1

Status Code architectural protocols (APs) 1
System Address Map 1

System Management Bus (SMBUS) 1, 2, 3
System Management Mode (SMM) 1, 2
System Memory descriptors 1, 2, 3, 4

Tablet 1

Tampering 1

Telnet 1, 2

Terse Executable 1

Text Interface 1, 2

Thunk Protocol 1

Timer Architectural Protocol 1, 2, 3
Translation Look-up Blocks (TLB) 1
Trusted Building Block (TBB) 1, 2
Trusted Computing Group (TCG) 1, 2
-CRTM1,2,3

—DRTM 1, 2

— measured boot 1, 2, 3, 4

—-PCR 1,2

— platform configuration registers (PCRs) 1, 2
—RIM], 2

—SRTM], 2

—UEFI Apis 1, 2, 3, 4

UEFTI Application Toolkit 1, 2

UEFI Boot Manager 1, 2, 3

UEFI Development Kit (UDK) 1

UEFI Error Format Standardization 1

— Windows Hardware Error Architecture (WHEA) 1, 2
UEFI Forum1, 2

UEFI runtime services table 1, 2
UEFI Secure Boot 1, 2, 3

UEFI Simple Text Input 1

UEFI Simple Text Input Ex 1

UEFI Simple Text Output 1, 2

architecture 1, 2, 3, 4
—-BIOS 1,2

— components 1, 2, 3, 4
— configuration infrastructure 1, 2, 3
— configuration table 1, 2

— root-of-trust-for-verification (RTV) 1

|
&
w)
=
o
&
I~
o
©
~N
e
L
—
©
—
—
—
N
|r—\

ix,1,2,3,4,5,6,7, App B

Universal Network Driver Interface (UN DI) 1, 2, 96
Variable architectural 96, 1, 2

— firmware boot manager 1, 2
— load option 1

Virtual Memory Services 1, 2

VI-12,3

Web Services Management Protocol 1

Windows Hardware Error Architecture (WHEA) 1, 2

e WinNtThunk Capability 1

Endnotes

1
SMI: System Management Interrupt of x86 processor; PMI: Platform Management Interrupt of Itanium® processor

	Title
	Copyright
	Acknowledgements
	Preface
	Contents
	Chapter 1 – Introduction
	Terminology
	Short History of EFI
	EFI Becomes UEFI—The UEFI Forum
	Platform Trust/Security
	Embedded Systems: The New Challenge
	How the Boot Process Differs between a Normal Boot and an Optimized/Embedded Boot

	Summary

	Chapter 2 – Basic UEFI Architecture
	Objects Managed by UEFI-based Firmware
	UEFI System Table
	Handle Database
	Protocols
	Working with Protocols
	Multiple Protocol Instances
	Tag GUID

	UEFI Images
	Applications
	OS Loader
	Drivers

	Events and Task Priority Levels
	Summary

	Chapter 3 – UEFI Driver Model
	Why a Driver Model Prior to OS Booting?
	Driver Initialization
	Host Bus Controllers
	Device Drivers
	Bus Drivers
	Platform Components
	Hot Plug Events
	Pseudo Code
	Device Driver
	Bus Driver that Creates All of Its Child Handles on the First Call to Start()
	Bus Driver that Is Able to Create All or One of Its Child Handles on Each Call to Start():

	Additional Innovations
	Security
	Manageability
	Networking

	Summary

	Chapter 4 – Protocols You Should Know
	EFI OS Loaders
	Device Path and Image Information of the OS Loader
	Accessing Files in the Device Path of the OS Loader
	Finding the OS Partition
	Getting the Current System Configuration
	Getting the Current Memory Map
	Getting Environment Variables
	Transitioning to an OS Kernel
	Summary

	Chapter 5 – UEFI Runtime
	Isn’t There Only One Kind of
	How Are Runtime Services Exposed?
	Time Services
	Why Abstract Time?
	Get Time
	Set Time
	Get Wakeup Time
	Set Wakeup Time

	Virtual Memory Services
	Set Virtual Address Map
	ConvertPointer

	Variable Services
	GetVariable
	GetNextVariableName
	SetVariable

	Miscellaneous Services
	Reset System
	Get Next High Monotonic Count
	UpdateCapsule
	QueryCapsuleCapabilities

	Summary

	Chapter 6 – UEFI Console Services
	Simple Text Input Protocol
	Simple Text Input Ex Protocol
	Simple Text Output Protocol
	Remote Console Support
	Console Splitter
	Network Consoles
	Summary

	Chapter 7 – Different Types of Platforms
	Summary

	Chapter 8 – DXE Basics: Core, Dispatching, and Drivers
	DXE Core
	Hand-Off Block (HOB) List
	DXE Architectural Protocols
	EFI System Table
	EFI Boot Services Table
	EFI Runtime Services Table
	DXE Services Table

	Global Coherency Domain Services
	GCD Memory Resources
	GCD I/O Resources

	DXE Dispatcher
	The a priori File
	Dependency Grammar

	DXE Drivers
	Boot Device Selection (BDS) Phase
	Console Devices
	Boot Devices
	Boot Services Terminate

	Summary

	Chapter 9 – Some Common UEFI and PI Functions
	Architectural Protocol Examples
	CPU Architectural Protocol
	Real Time Clock Architectural Protocol
	Timer Architectural Protocol
	Reset Architectural Protocol
	Boot Device Selection Architectural Protocol
	Variable Architectural Protocol
	Watchdog Timer Architectural Protocol

	PCI Protocols
	PCI Host Bridge Resource Allocation Protocol
	PCI Root Bridge I/O
	PCI I/O

	Block I/O
	Disk I/O
	Simple File System
	EFI File Protocol

	Configuration Infrastructure
	Using the Configuration Infrastructure
	Driver Model Interactions
	Provisioning the Platform
	Summary

	Chapter 10 – Platform Security and Trust
	Trust Overview
	Trusted Platform Module (TPM) and Measured Boot
	What Is a Trusted Building Block (TBB)?
	What Is the Point of Measurements?

	UEFI Secure Boot
	UEFI Executable Verification

	UEFI Networking
	UEFI User Identification (UID)
	Hardware Evolution: SRTM-to-DRTM
	Platform Manufacturer
	Vulnerability Classification
	Roots of Trust/Guards
	Summary

	Chapter 11 – Boot Device Selection
	Firmware Boot Manager
	Related Definitions

	Globally-Defined Variables
	Default Behavior for Boot Option Variables
	Boot Mechanisms
	Boot via Simple File Protocol
	Boot via LOAD_FILE Protocol

	Summary

	Chapter 12 – Boot Flows
	Defined Boot Modes
	Priority of Boot Paths
	Reset Boot Paths
	Intel® Itanium® Processor Reset
	Non-Power-On Resets

	Normal Boot Paths
	Basic G0-to-S0 and S0 Variation Boot Paths
	S-State Boot Paths

	Recovery Paths
	Discovery
	General Recovery Architecture

	Special Boot Path Topics
	Special Boot Paths
	Special Intel Itanium® Architecture Boot Paths
	Intel Itanium® Architecture Access to the Boot Firmware Volume Architectural Boot Mode PPIs

	Recovery
	Discovery

	Summary

	Chapter 13 – Pre-EFI Initialization (PEI)
	Scope
	Rationale
	Overview

	Phase Prerequisites
	Temporary RAM
	Boot Firmware Volume
	Security Primitives

	Concepts
	PEI Foundation
	Pre-EFI Initialization Modules (PEIMs)
	PEI Services
	PEIM-to-PEIM Interfaces (PPIs)
	Simple Heap
	Hand-Off Blocks (HOBs)

	Operation
	Dependency Expressions
	Verification/Authentication
	PEIM Execution
	Memory Discovery
	Intel® Itanium® Processor MP Considerations
	Recovery
	S3 Resume
	The “Terse Executable” and Cache-as-RAM
	Example System

	Summary

	Chapter 14 – Putting It All Together–Firmware Emulation
	Virtual Platform
	Emulation Firmware Phases

	Hardware Pass-Through
	Summary

	Chapter 15 – Reducing Platform Boot Times
	Proof of Concept
	Marketing Requirements
	What Are the Design Goals?
	Platform Policy
	What Are the Supported OS Targets?
	Do We Have to Support Legacy Operating Systems?
	Do We Have to Support Legacy Option ROMs?
	Are We Required to Display an OEM Splash Screen?
	What Type of Boot Media Is Supported?
	What Is the BIOS Recovery/Update Strategy?
	When Processing Things Early
	Is There a Need for Pre-OS User Interaction?

	Additional Details
	Adjusting the BIOS to Avoid Unnecessary Drivers
	What Is the Boot Target?
	Steps Taken in a Normal and Optimized Boot
	Loading a Boot Target
	Organizing the Flash Effectively
	Minimize the Files Needed

	Summary
	The Primary Adjustments
	Suggested Next Steps

	Chapter 16 – Reducing Platform Boot Times
	CE Device Landscape
	CE Device Boot Challenges
	In-Vehicle Infotainment
	Other Embedded Platforms
	Generic Requirements
	Boot Strategies
	Power Management
	Boot Storage Devices
	Security
	Manageability
	Summary

	Chapter 17 – Manageability
	Overall Management Framework
	Dynamic In-Band
	Out-of-Band
	Distributed Management Task Force (DMTF)

	UEFI Error Format Standardization
	UEFI Error Format Overview
	Error Record Types

	Windows Hardware Error Architecture and the Role of UEFI
	Technology Intercepts: UEFI, IPMI, Intel® AMT, WS-MAN
	Intelligent Platform Management Interface (IPMI)
	Intel® Active Management Technology (Intel AMT)
	Web Services Management Protocol (WS-MAN)
	Other Industry Initiatives

	The UEFI/IPMI/Intel® AMT/WS-MAN Bridge
	IPMI Error Records to UEFI
	UEFI Error Records to IPMI
	Intel® AMT and IPMI
	Future Work

	Configuration Namespace
	Namespace Entries

	Summary

	Appendix A – Data Types
	Appendix B – Status Codes
	Index

