

Vincent	Zimmer,	Suresh	Marisetty,	Michael	Rothman
Beyond	BIOS
Developing	with	the	Unified	Extensible	Firmware	Interface

ISBN	978-1-5015-1478-4
e-ISBN	(PDF)	978-1-5015-0569-0
e-ISBN	(EPUB)	978-1-5015-0583-6

Library	of	Congress	Cataloging-in-Publication	Data
A	CIP	catalog	record	for	this	book	has	been	applied	for	at	the	Library	of	Congress.

Bibliographic	information	published	by	the	Deutsche	Nationalbibliothek
The	Deutsche	Nationalbibliothek	lists	this	publication	in	the	Deutsche	Nationalbibliografie;	detailed	bibliographic	data	are	available
on	the	Internet	at	http://dnb.dnb.de.

©	2017	Walter	de	Gruyter	Inc.,	Boston/Berlin

www.degruyter.com

http://dnb.dnb.de
http://www.degruyter.com

Acknowledgements
The	authors	recognize	 the	efforts	and	contribution	of	 the	 two	men	and	a	dog:	Mark	Doran,	Ken
Reneris,	and	Andrew	Fish,	who	conceived	and	hatched	EFI.

The	 authors	 recognize	 and	 thank	 the	 other	 original	 Framework	 (Tiano)	 architects	 Andrew
Fish,	Bob	Hale,	Mike	Kinney,	Barnes	Cooper,	Will	Stevens,	Krithivas,	ER	Uber,	Mahesh	Natu,
Rahul	 Khanna,	 Jim	 Ewertz,	 Kirk	 Brannock,	 and	 others	 whose	 names	 are	 lost	 to	 time	 and	 the
team’s	 intrepid	 leader,	Mark	Doran.	We	 thank	 Isaac	Oram,	 John	Lambino,	 and	 the	entire	Tiano
Architecture	Team	(TAT)	team	for	fleshing	out	and	enhancing	the	architecture.	Thank	you	to	 the
Tiano	engineering	team	for	their	patience	while	implementing	the	first	versions	and	to	our	internal
and	external	customers.	The	innovation	in	this	book	is	from	these	fertile	brains.	Also,	many	of	this
team	will	recall	over	ten	years	of	“design	discussions”	at	R&R.

We	thank	our	managers,	past	and	present,	for	giving	us	the	chance	and	the	time	to	work	on	the
architecture	 and	 this	book	 including	Doug	Fisher,	Richard	Wirt,	Stu	Goossen,	Mike	Richmond,
Kah	Loh,	Jeff	Griffen,	Michael	Greene,	Ju	Lu,	and	Ron	Story.

We	acknowledge	the	ever-supportive	marketing	team:	Shala,	Laurie,	Harry,	Fadi,	Elmer,	and
Bailey.

No	 Intel	 book	 is	 published	 without	 peer	 review.	We’d	 like	 to	 thank	 all	 the	 reviewers	 for
identifying	errors	and	for	providing	valuable	 insight	and	encouragement	along	the	way.	Without
their	help,	this	book	would	not	have	been	a	success.	From	Intel,	these	individuals	participated,	at
one	 time	 or	 another,	 in	 the	 review	 of	 this	 project:	 Rob	 Branch,	 Mallik	 Bulusu,	 Brad	 Davis,
Michael	 Krau,	 John	 Suresh	 Kumar,	 Matthew	 Parrish,	 Mike	 Richmond,	 Lee	 Rosenbaum,	 and
Sudhakar	Otturu.	Other	reviewers	included	Cameron	Esfahani	from	Apple	Computer	Corporation,
Todd	Greene	 from	QLogic	Corporation,	 Penny	Huang	 from	Micro-Star	 International	Company,
Limited,	Jimmy	Hwang	from	American	Megatrends,	Incorporated,	and	Dong	Wei	from	Hewlett-
Packard	Development	Company,	L.P.

A	book	like	this	describes	the	efforts	of	a	large	number	of	talented	individuals.	The	authors
would	 like	 to	 thank	all	of	 them	for	 their	efforts	and	support.	Please	accept	our	apologies	 if	we
missed	you.	We	can	only	say	that	space	is	as	limited	here	as	it	 is	in	ROMs	and	time	as	limited
here	as	it	is	in	schedules.	We’ll	try	to	fix	it	in	the	next	release.

Preface
There	are	two	mistakes	one	can	make	on	the	road	to	truth…not	going	all	the	way,	and	not	starting.

Buddha

This	 is	a	book	about	a	new	way	 to	 solve	an	old	 set	of	problems	 that	are	persistent	as	well	 as
fundamental,	but	not	always	well	understood:	How	should	you	boot	a	computer?	What	sits	at	the
reset	 vector?	What	 can	 the	 operating	 system	 count	 on	when	 it	 is	 loaded	 and	 initially	 receives
control?	What	should	the	internal	structures	be	between	these	two	endpoints?	How	can	the	same
basic	 structure	work	 for	 handhelds	 and	megaservers?	How	 do	we	 convince	 ourselves	 today’s
design	will	work	10	or	20	years	from	now?	How	much	will	it	cost	to	switch?	How	much	will	it
cost	steady	state?	What	comes	after	BIOS	(Basic	Input/	Output	System)?

Beyond	BIOS	 is	a	book	about	a	largely	invisible	subject.	The	general	user,	if	they	have	any
view	 of	 BIOS	 at	 all,	 tends	 to	 view	 it	 as	 ten	 unnecessary	 seconds	 on	 the	 way	 to	 booting	 the
operating	system	or	as	setup.	The	community	that	knows	and	uses	the	BIOS	has	tended	to	view	it
as	an	uncontrolled	place	of	kludge,	myth,	bug,	 and	 legend.	The	very	 small	 community	of	BIOS
developers	 has	 viewed	 their	 code	 not	 only	 as	 highly	 mutable	 and	 embodying	 much	 of	 the
compatibility	that	has	made	the	PC	and	its	offspring	so	successful,	but	also	as	their	livelihood.

This	 is	 a	 book	 that	 is	 about	what	 comes	 after	BIOS,	which	we	 call	 the	Unified	Extensible
Firmware	Interface	(UEFI)	and	Platform	Initialization	(PI).	In	doing	so,	it	must	also	be	a	book	at
least	partly	about	what	a	BIOS	or	its	replacement	is	called	upon	to	do.	It	 is	not	a	cookbook	on
how	to	port	 the	PI	from	platform	to	platform.	It	 is	not	a	 rehash	of	 the	specifications.	 Instead,	 it
tries	 to	 fit	 in	 the	middle	 ground	 between	 specifications	 and	 cookbook.	 It	 tries	 to	 focus	 on	 the
concepts	and	constructs	that	are	cross-platform	and	implied,	if	not	stated,	by	the	architecture.	It	is
supposed	to	help	to	get	to	some	of	the	“why”	behind	the	specs	and	make	the	porting	work	make
some	sense.

This	book	is	a	child	of	its	time.	Both	the	UEFI	and	the	PI	are	under	the	control	of	the	UEFI
Forum,	an	industry-wide	group	in	which	you	are	encouraged	to	participate.	Beyond	BIOS	mainly
focuses	on	the	current	state	of	the	PI	and	UEFI	since	the	2005	formation	of	the	Forum,	its	working
groups,	and	its	sub-teams.	This	is	not	to	say	that	this	is	only	a	history	book	or	a	simple	summary
of	the	standard.	Instead,	we	believe	it	remains	valuable	as	an	introduction	to	the	newer	versions
of	the	specifications	no	matter	who	“has	the	pen.”

If	you	find	this	book	to	be	useful,	then	we	encourage	you	to	obtain	Harnessing	the	UEFI	Shell:
Moving	the	Platform	beyond	DOS	by	Rothman,	Zimmer	and	Lewis,	De|G	Press,	February	2017.

The	Chapters

Chapter	1	provides	a	description	of	the	evolution.

The	 rest	 of	 the	 book	 is	 organized	 into	 two	 major	 sections.	 The	 earlier	 chapters	 present	 an
introduction	to	UEFI,	and	the	later	chapters	cover	the	Platform	Initialization.

Chapter	2	provides	an	overview	of	the	basic	UEFI	architecture.	This	is	a	must-read	for	anyone
seeking	an	understanding	of	the	Unified	Extensible	Firmware	Interface	(UEFI).

Chapter	3	describes	the	UEFI	driver	model.	This	is	important	for	vendors	writing	device	drivers
for	 output	 devices	 (such	 as	 video),	 input	 devices	 (such	 as	 keyboards	 or	 mice),	 networking
adapters,	 and	 block	devices.	These	 drivers	 can	 be	 stored	 in	 the	 host-bus	 adapter,	 the	 platform
ROM,	or	loaded	from	the	UEFI	system	partition.

Chapter	4	describes	of	series	of	commonly	used	UEFI	protocols.	This	chapter	complements	the
earlier	two	chapters	and	includes	data	on	additional	boot	services	application	interfaces.

Chapter	5	 includes	 information	 on	 the	UEFI	 runtime	 operational	 environment.	 This	 chapter	 is
important	 for	 operating	 system	 vendors	 who	 need	 to	 interact	 with	 the	 platform	 during	 the
operating	system	execution.

Chapter	6	describes	UEFI	input	and	output	console	services.	This	chapter	provides	details	on	the
particular	capabilities,	interfaces,	and	relationships	of	the	console	services.

Chapter	 7	 includes	 a	 list	 of	 different	 platforms	 and	 the	 Platform	 Initialization-based
implementations.	 This	 chapter	 demonstrates	 the	 flexibility	 of	 the	 Platform	 Initialization	 by
mapping	the	infrastructure	to	widely	varying	hardware	platforms.

Chapter	 8	 describes	 the	 basics	 of	 the	 Platform	 Initialization	 Driver	 Execution	 Environment
(DXE).	This	 is	 important	 to	 read	 for	 anyone	working	on	 the	 phase	 of	 execution	 prior	 to	UEFI
service	availability	but	after	early	pre-EFI	initialization	(PEI).

Chapter	 9	 describes	 some	 common	 UEFI	 interfaces.	 This	 chapter	 includes	 information	 on
interfaces	that	are	important	for	both	UEFI	and	DXE	development.

Chapter	10	describes	UEFI	and	platform	initialization	issues	around	security	and	platform	trust.
This	is	important	because	beyond	the	basic	UEFI	and	Platform	Initialization	specifications,	which
describe	 mechanism,	 further	 discussion	 is	 included	 on	 composition	 and	 construction	 of
technology.

Chapter	 11	 describes	 Boot	 Device	 Selection	 (BDS).	 This	 includes	 the	 policy	 by	 which

Framework	platforms	decide	look-and-feel,	in	addition	to	how	to	boot.

Chapter	12	 describes	 the	 various	 boot	 flows	 that	 can	 occur	within	 a	 platform.	 These	 include
power-event	restarts,	and	so	on.

Chapter	13	describes	the	Pre-EFI	Initialization	environment.	This	is	the	phase	of	execution	that
occurs	after	reset	and	is	responsible	for	the	early	hardware	state	and	memory	initialization.

Chapter	14	 includes	 information	 on	 emulation	 of	 a	 firmware	 environment	within	 an	 operating
system.

Chapter	 15	 describes	 mechanisms	 and	 capabilities	 for	 reducing	 platform	 boot	 time.	 Since
“visible”	firmware	is	often	broken	firmware,	decreasing	time	for	a	system	restart	is	key.

Chapter	16	describes	 the	application	of	 firmware	 for	an	embedded	boot	 solution.	The	bulk	of
shipping	 systems	 are	 embedded	 computing	 environments,	 so	 the	 use	 of	 UEFI	 and	 Platform
Initialization	for	this	class	of	system	is	becoming	more	important.

Chapter	17	includes	details	on	manageability.	The	platform	and	firmware	play	a	pivotal	role	in
both	 bare-metal,	 OS-absent	 scenarios	 and	 also	 as	 a	 complement	 to	 OS	 runtime	manageability
usages.

The	Appendixes	include	source	code	data	types	and	commonly-used	interfaces.

Contents
Acknowledgements
Preface

Chapter	1	–	Introduction
Terminology
Short	History	of	EFI
EFI	Becomes	UEFI—The	UEFI	Forum
PIWG	and	USWG
Platform	Trust/Security
Embedded	Systems:	The	New	Challenge
How	the	Boot	Process	Differs	between	a	Normal	Boot	and	an	Optimized/Embedded	Boot

Summary

Chapter	2	–	Basic	UEFI	Architecture
Objects	Managed	by	UEFI-based	Firmware
UEFI	System	Table
Handle	Database
Protocols
Working	with	Protocols
Multiple	Protocol	Instances
Tag	GUID

UEFI	Images
Applications
OS	Loader
Drivers

Events	and	Task	Priority	Levels
Summary

Chapter	3	–	UEFI	Driver	Model
Why	a	Driver	Model	Prior	to	OS	Booting?
Driver	Initialization
Host	Bus	Controllers
Device	Drivers
Bus	Drivers
Platform	Components
Hot	Plug	Events
Pseudo	Code

Device	Driver
Bus	Driver	that	Creates	All	of	Its	Child	Handles	on	the	First	Call	to	Start()
Bus	Driver	that	Is	Able	to	Create	All	or	One	of	Its	Child	Handles	on	Each	Call	to	Start():

Additional	Innovations
Security
Manageability
Networking

Summary

Chapter	4	–	Protocols	You	Should	Know
EFI	OS	Loaders
Device	Path	and	Image	Information	of	the	OS	Loader
Accessing	Files	in	the	Device	Path	of	the	OS	Loader
Finding	the	OS	Partition
Getting	the	Current	System	Configuration
Getting	the	Current	Memory	Map
Getting	Environment	Variables
Transitioning	to	an	OS	Kernel
Summary

Chapter	5	–	UEFI	Runtime
Isn’t	There	Only	One	Kind	of	Memory?
How	Are	Runtime	Services	Exposed?
Time	Services
Why	Abstract	Time?
Get	Time
Set	Time
Get	Wakeup	Time
Set	Wakeup	Time

Virtual	Memory	Services
Set	Virtual	Address	Map
ConvertPointer

Variable	Services
GetVariable
GetNextVariableName
SetVariable

Miscellaneous	Services
Reset	System
Get	Next	High	Monotonic	Count
UpdateCapsule
QueryCapsuleCapabilities

Summary

Chapter	6	–	UEFI	Console	Services
Simple	Text	Input	Protocol
Simple	Text	Input	Ex	Protocol
Simple	Text	Output	Protocol
Remote	Console	Support
Console	Splitter
Network	Consoles
Summary

Chapter	7	–	Different	Types	of	Platforms
Summary

Chapter	8	–	DXE	Basics:	Core,	Dispatching,	and	Drivers
DXE	Core
Hand-Off	Block	(HOB)	List
DXE	Architectural	Protocols
EFI	System	Table
EFI	Boot	Services	Table
EFI	Runtime	Services	Table
DXE	Services	Table

Global	Coherency	Domain	Services
GCD	Memory	Resources
GCD	I/O	Resources

DXE	Dispatcher
The	a	priori	File
Dependency	Grammar

DXE	Drivers
Boot	Device	Selection	(BDS)	Phase
Console	Devices
Boot	Devices
Boot	Services	Terminate

Summary

Chapter	9	–	Some	Common	UEFI	and	PI	Functions
Architectural	Protocol	Examples
CPU	Architectural	Protocol
Real	Time	Clock	Architectural	Protocol
Timer	Architectural	Protocol
Reset	Architectural	Protocol
Boot	Device	Selection	Architectural	Protocol
Variable	Architectural	Protocol
Watchdog	Timer	Architectural	Protocol

PCI	Protocols

PCI	Host	Bridge	Resource	Allocation	Protocol
PCI	Root	Bridge	I/O
PCI	I/O

Block	I/O
Disk	I/O
Simple	File	System
EFI	File	Protocol

Configuration	Infrastructure
Using	the	Configuration	Infrastructure
Driver	Model	Interactions
Provisioning	the	Platform
Summary

Chapter	10	–	Platform	Security	and	Trust
Trust	Overview
Trusted	Platform	Module	(TPM)	and	Measured	Boot
What	Is	a	Trusted	Building	Block	(TBB)?
What	Is	the	Point	of	Measurements?

UEFI	Secure	Boot
UEFI	Executable	Verification

UEFI	Networking
UEFI	User	Identification	(UID)
Hardware	Evolution:	SRTM-to-DRTM
Platform	Manufacturer
Vulnerability	Classification
Roots	of	Trust/Guards
Summary

Chapter	11	–	Boot	Device	Selection
Firmware	Boot	Manager
Related	Definitions

Globally-Defined	Variables
Default	Behavior	for	Boot	Option	Variables
Boot	Mechanisms
Boot	via	Simple	File	Protocol
Boot	via	LOAD_FILE	Protocol

Summary

Chapter	12	–	Boot	Flows
Defined	Boot	Modes
Priority	of	Boot	Paths
Reset	Boot	Paths
Intel®	Itanium®	Processor	Reset

Non-Power-On	Resets
Normal	Boot	Paths
Basic	G0-to-S0	and	S0	Variation	Boot	Paths
S-State	Boot	Paths

Recovery	Paths
Discovery
General	Recovery	Architecture

Special	Boot	Path	Topics
Special	Boot	Paths
Special	Intel	Itanium®	Architecture	Boot	Paths
Intel	Itanium®	Architecture	Access	to	the	Boot	Firmware	Volume

Architectural	Boot	Mode	PPIs
Recovery
Discovery

Summary

Chapter	13	–	Pre-EFI	Initialization	(PEI)
Scope
Rationale
Overview

Phase	Prerequisites
Temporary	RAM
Boot	Firmware	Volume
Security	Primitives

Concepts
PEI	Foundation
Pre-EFI	Initialization	Modules	(PEIMs)
PEI	Services
PEIM-to-PEIM	Interfaces	(PPIs)
Simple	Heap
Hand-Off	Blocks	(HOBs)

Operation
Dependency	Expressions
Verification/Authentication
PEIM	Execution
Memory	Discovery
Intel®	Itanium®	Processor	MP	Considerations
Recovery
S3	Resume
The	“Terse	Executable”	and	Cache-as-RAM
Example	System

Summary

Chapter	14	–	Putting	It	All	Together–Firmware	Emulation
Virtual	Platform
Emulation	Firmware	Phases

Hardware	Pass-Through
Summary

Chapter	15	–	Reducing	Platform	Boot	Times
Proof	of	Concept
Marketing	Requirements
What	Are	the	Design	Goals?
Platform	Policy
What	Are	the	Supported	OS	Targets?
Do	We	Have	to	Support	Legacy	Operating	Systems?
Do	We	Have	to	Support	Legacy	Option	ROMs?
Are	We	Required	to	Display	an	OEM	Splash	Screen?
What	Type	of	Boot	Media	Is	Supported?
What	Is	the	BIOS	Recovery/Update	Strategy?
When	Processing	Things	Early
Is	There	a	Need	for	Pre-OS	User	Interaction?

Additional	Details
Adjusting	the	BIOS	to	Avoid	Unnecessary	Drivers
What	Is	the	Boot	Target?
Steps	Taken	in	a	Normal	and	Optimized	Boot
Loading	a	Boot	Target
Organizing	the	Flash	Effectively
Minimize	the	Files	Needed

Summary
The	Primary	Adjustments
Suggested	Next	Steps

Chapter	16	–	Embedded	Boot	Solution
CE	Device	Landscape
CE	Device	Boot	Challenges
In-Vehicle	Infotainment
Other	Embedded	Platforms
Generic	Requirements
Boot	Strategies
Power	Management
Boot	Storage	Devices
Security
Manageability
Summary

Chapter	17	–	Manageability
Overall	Management	Framework
Dynamic	In-Band
Out-of-Band
Distributed	Management	Task	Force	(DMTF)

UEFI	Error	Format	Standardization
UEFI	Error	Format	Overview
Error	Record	Types

Windows	Hardware	Error	Architecture	and	the	Role	of	UEFI
Technology	Intercepts:	UEFI,	IPMI,	Intel®	AMT,	WS-MAN
Intelligent	Platform	Management	Interface	(IPMI)
Intel®	Active	Management	Technology	(Intel	AMT)
Web	Services	Management	Protocol	(WS-MAN)
Other	Industry	Initiatives

The	UEFI/IPMI/Intel®	AMT/WS-MAN	Bridge
IPMI	Error	Records	to	UEFI
UEFI	Error	Records	to	IPMI
Intel®	AMT	and	IPMI
Future	Work

Configuration	Namespace
Namespace	Entries

Summary

Appendix	A	–	Data	Types

Appendix	B	–	Status	Codes

Index

Chapter	1	–	Introduction
The	suddenness	of	the	leap	from	hardware	to	software	cannot	but	produce	a	period	of	anarchy	and	collapse,	especially	in	the
developed	countries.

—Marshall	McLuhan

This	chapter	provides	an	overview	of	the	evolution	of	the	Extensible	Firmware	Interface	(EFI)	to
the	Unified	Extensible	Firmware	Interface	(UEFI)	and	from	the	Intel	Framework	specifications	to
the	UEFI	Platform	Initialization	(PI)	specifications.	Note	the	omission	of	the	word	“Framework”
from	the	title	of	the	present	volume.	Some	of	the	changes	that	have	occurred	since	the	first	edition
of	this	book	include	the	migration	of	much	of	the	Intel	Framework	specification	content	into	the
five	 volumes	 of	 the	 UEFI	 Platform	 Initialization	 (PI)	 specifications,	 which	 are	 presently	 at
revision	1.5	and	can	be	found	at	the	Web	site	www.uefi.org.	In	addition	to	the	PI	evolution	from
Framework,	additional	capabilities	have	evolved	in	both	the	PI	building-block	specifications	and
in	 the	UEFI	specification.	The	UEFI	specification	 itself	has	evolved	 to	revision	2.6	 in	 the	 time
since	the	first	edition	of	this	text,	as	well.

When	we	discuss	UEFI,	we	need	to	emphasize	that	UEFI	is	a	pure	interface	specification	that
does	not	dictate	how	the	platform	firmware	is	built;	the	“how”	is	relegated	to	PI.	The	consumers
of	UEFI	include	but	are	not	 limited	to	operating	system	loaders,	 installers,	adapter	ROMs	from
boot	devices,	pre-OS	diagnostics,	utilities,	and	OS	runtimes	 (for	 the	small	 set	of	UEFI	 runtime
services).	In	general,	though,	UEFI	is	about	booting,	or	passing	control	to	a	successive	layer	of
control,	namely	an	operating	system	loader,	as	shown	in	Figure	1.1.	UEFI	offers	many	interesting
capabilities	and	can	exist	as	a	limited	runtime	for	some	application	set,	in	lieu	of	loading	a	full,
shrinkwrapped	multi-address	 space	operating	 system	 like	Microsoft	Windows†,	Apple	OS	X†,
HP-UX†,	or	Linux,	but	that	is	not	the	primary	design	goal.

http://www.uefi.org

Figure	1.1:	Where	EFI	and	UEFI	Fit	into	the	Platform	Boot	Flow

PI,	on	 the	other	hand,	should	be	 largely	opaque	 to	 the	pre-OS	boot	devices,	operating	systems,
and	 their	 loaders	 since	 it	 covers	 many	 software	 aspects	 of	 platform	 construction	 that	 are
irrelevant	to	those	consumers.	PI	instead	describes	the	phases	of	control	from	the	platform	reset
and	 into	 the	 success	 phase	 of	 operation,	 including	 an	 environment	 compatible	 with	 UEFI,	 as
shown	in	Figure	1.2.	In	fact,	the	PI	DXE	component	is	the	preferred	UEFI	core	implementation.

Figure	1.2:	Where	PI	and	Framework	Fit	into	the	Platform	Boot	Flow

Within	 the	 evolution	 of	 Framework	 to	 PI,	 some	 things	 were	 omitted	 from	 inclusion	 in	 the	 PI
specifications.	 As	 a	 result	 of	 these	 omissions,	 some	 subjects	 that	 were	 discussed	 in	 the	 first

edition	of	Beyond	BIOS,	 such	as	 the	compatibility	 support	module	 (CSM),	have	been	 removed
from	the	second	edition	in	order	to	provide	space	to	describe	the	newer	PI	and	UEFI	capabilities.
This	omission	is	both	from	a	scope	perspective,	namely	that	 the	PI	specification	didn’t	want	 to
codify	 or	 include	 the	 CSM,	 but	 also	 from	 a	 long-term	 perspective.	 Specifically,	 the	 CSM
specification	 abstracted	 booting	 on	 a	 PC/AT	 system.	 This	 requires	 an	 x86	 processor,	 PC/AT
hardware	complex	(for	example,	8254,	8259,	RTC).	The	CSM	also	inherited	other	conventional
BIOS	 boot	 limitations,	 such	 as	 the	 2.2-TB	 disk	 limit	 of	Master	Boot	Record	 (MBR)	 partition
tables.	 For	 a	 world	 of	 PI	 and	 UEFI,	 you	 get	 all	 of	 the	 x86	 capabilities	 (IA-32	 and	 x64,
respectively),	 ARM†,	 Itanium®,	 and	 future	 CPU	 bindings.	 Also,	 via	 the	 polled	 driver	 model
design,	UEFI	APIs,	and	the	PI	DXE	architectural	protocols,	the	platform	and	component	hardware
details	are	abstracted	from	all	consumer	software.	Other	minor	omissions	also	include	data	hub
support.	The	latter	has	been	replaced	by	purpose-built	infrastructure	to	fill	the	role	of	data	hub	in
Framework-based	 implementations,	 such	 as	 SMBIOS	 table	 creation	 and	 agents	 to	 log	 report
status	code	actions.

What	 has	 happened	 in	 PI	 beyond	 Framework,	 though,	 includes	 the	 addition	 of	 a
multiprocessor	 protocol,	 Itanium	 E-SAL	 and	MCA	 support,	 the	 above-listed	 reportstatus	 code
listener	and	SMBIOS	protocol,	an	ACPI	editing	protocol,	and	an	SIO	protocol.	With	Framework
collateral	 that	 moved	 to	 PI,	 a	 significant	 update	 was	 made	 to	 the	 System	Management	 Mode
(SMM)	protocol	and	infrastructure	to	abstract	out	various	CPU	and	chipset	implementations	from
the	more	generic	 components.	On	 the	DXE	 front,	 small	 cleanup	was	added	 in	 consideration	of
UEFI	2.3	incompatibility.	Some	additions	occurred	in	the	PEI	foundation	for	the	latest	evolution
in	buses,	such	as	PCI	Express†.	In	all	of	these	cases,	 the	revisions	of	the	SMM,	PEI,	and	DXE
service	 tables	 were	 adjusted	 to	 ease	 migration	 of	 any	 SMM	 drivers,	 DXE	 drivers,	 and	 PEI
module	(PEIM)	sources	to	PI.	In	the	case	of	 the	firmware	file	system	and	volumes,	 the	headers
were	 expanded	 to	 comprehend	 larger	 file	 and	 alternate	 file	 system	 encodings,	 respectively.
Unlike	the	case	for	SMM	drivers,	PEIMs,	and	DXE	drivers,	these	present	a	new	binary	encoding
that	isn’t	compatible	with	a	pure	Framework	implementation.

The	notable	aspect	of	the	PI	is	the	participation	of	the	various	members	of	the	UEFI	Forum,
which	will	be	described	below.	These	participants	represent	the	consumers	and	producers	of	PI
technology.	 The	 ultimate	 consumer	 of	 a	 PI	 component	 is	 the	 vendor	 shipping	 a	 system	 board,
including	multinational	companies	such	as	Apple,	Dell,	HP,	IBM,	Lenovo,	and	many	others.	The
producers	 of	 PI	 components	 include	 generic	 infrastructure	 producers	 such	 as	 the	 independent
BIOS	vendors	(IBVs)	like	AMI,	Insyde,	Phoenix,	and	others.	And	finally,	the	vendors	producing
chipsets,	CPUs,	and	other	hardware	devices	like	AMD,	ARM,	and	Intel	would	produce	drivers
for	 their	 respective	 hardware.	 The	 IBVs	 and	 the	 OEMs	 would	 use	 the	 silicon	 drivers,	 for
example.	 If	 it	 were	 not	 for	 this	 business-to-business	 transaction,	 the	 discoverable	 binary
interfaces	and	separate	executable	modules	(such	as	PEIMs	and	DXE	drivers)	would	not	be	of
interest.	 This	 is	 especially	 true	 since	 publishing	 GUID-based	 APIs,	 marshalling	 interfaces,
discovering	and	dispatching	code,	and	so	on	take	some	overhead	in	system	board	ROM	storage
and	 boot	 time.	Given	 that	 there’s	 never	 enough	ROM	 space,	 and	 also	 in	 light	 of	 the	 customer
requirements	for	boot-time	such	as	the	need	to	be	“instantly	on,”	this	overhead	must	be	balanced
by	the	business	value	of	PI	module	enabling.	If	only	one	vendor	had	access	to	all	of	the	source
and	 intellectual	 property	 to	 construct	 a	 platform,	 a	 statically	 bound	 implementation	 would	 be
more	 efficient,	 for	 example.	 But	 in	 the	 twenty-first	 century	 with	 the	 various	 hardware	 and

software	participants	in	the	computing	industry,	software	technology	such	as	PI	is	key	to	getting
business	done	in	light	of	the	ever-shrinking	resource	and	time-to-market	constraints	facing	all	of
the	UEFI	forum	members.

There	 is	 a	 large	 body	 of	 Framework-based	 source-code	 implementations,	 such	 as	 those
derived	or	dependent	upon	EDK	I	(EFI	Developer	Kit,	which	can	be	found	on	www.tianocore.or
g.	These	 software	 artifacts	 can	be	 recompiled	 into	 a	UEFI	2.6,	PI	 1.5-compliant	 core,	 such	 as
UDK2015	(the	UEFI	Developer	Kit	revision	2015),	via	the	EDK	Compatibility	Package	(ECP).
For	new	development,	though,	the	recommendation	is	to	build	native	PI	1.5,	UEFI	2.6	modules	in
the	 UDK2015	 since	 these	 are	 the	 specifications	 against	 which	 long-term	 silicon	 enabling	 and
operating	system	support	will	occur,	respectively.

http://www.tianocore.org

Terminology

The	following	list	provides	a	quick	overview	of	some	of	the	terms	that	may	be	encountered	later
in	the	book	and	have	existed	in	the	industry	associated	with	the	BIOS	standardization	efforts.

UEFI	 Forum.	 The	 industry	 body,	 which	 produces	 UEFI,	 Platform	 Initialization	 (PI),	 and
other	specifications.
UEFI	Specification.	The	firmware-OS	interface	specification.
EDK.	 The	 EFI	 Development	 Kit,	 an	 open	 sourced	 project	 that	 provides	 a	 basic
implementation	 of	 UEFI,	 Framework,	 and	 other	 industry	 standards.	 It,	 is	 not	 however,	 a
complete	BIOS	solution.	An	example	of	this	can	be	found	at	www.tianocore.org.
UDK.	The	UEFI	Development	Kit	is	the	second	generation	of	the	EDK	(EDK	II),	which	has
added	a	variety	of	codebase	related	capabilities	and	enhancements.	The	 inaugural	UDK	is
UDK2015,	with	the	number	designating	the	instance	of	the	release.
Framework.	 A	 deprecated	 term	 for	 a	 set	 of	 specifications	 that	 define	 interfaces	 and	 how
various	platform	components	work	 together.	What	 this	 term	 referred	 to	 is	 now	effectively
replaced	by	the	PI	specifications.
Tiano.	 An	 obsolete	 codename	 for	 an	 Intel	 codebase	 that	 implemented	 the	 Framework
specifications.

http://www.tianocore.org

Short	History	of	EFI

The	 Extensible	 Firmware	 interface	 (EFI)	 project	 was	 developed	 by	 Intel,	 with	 the	 initial
specification	 released	 in	 1999.	 At	 the	 time,	 it	 was	 designed	 as	 the	 means	 by	 which	 to	 boot
Itanium-based	 systems.	 The	 original	 proposal	 for	 booting	 Itanium	 was	 the	 SAL	 (System
Architectural	Layer)	SAL_PROC	interface,	with	an	encapsulation	of	the	PC/AT	BIOS	registers	as
the	 arguments	 and	 parameters.	 Specifically,	 the	 means	 to	 access	 the	 disk	 in	 the	 SAL_PROC
proposal	 was	 “SAL_PROC	 (0x13,	 0x2,	…)”,	 which	 is	 aligned	 with	 the	 PC/AT	 conventional
BIOS	call	of	“int13h.”

Given	the	opportunity	to	clean	up	the	boot	interface,	various	proposals	were	provided.	These
included	 but	 were	 not	 limited	 to	 Open	 Firmware	 and	 Advanced	 RISC	 Computing	 (ARC).
Ultimately,	though,	EFI	prevailed	and	its	architecture-neutral	interface	was	adopted.

The	initial	EFI	specification	included	both	an	Itanium	and	IA-32	binding.	EFI	evolved	from
the	EFI	1.02	interface	into	EFI1.10	in	2001.	EFI1.10	introduced	the	EFI	Driver	model.

With	the	advent	of	64-bit	computing	on	IA-32	(for	example,	x64)	and	the	industry’s	need	to
have	a	commonly	owned	specification,	 the	UEFI	2.0	specification	appeared	 in	2005.	UEFI	2.0
was	largely	the	same	as	EFI	1.0,	but	also	included	the	modular	networking	stack	APIs	for	IPv4
and	the	x64	binding.

In	Figure	1.3	we	illustrate	the	evolution	of	the	BIOS	from	its	legacy	days	through	2016.

Figure	1.3:	BIOS	Evolution	Timeline

EFI	Becomes	UEFI—The	UEFI	Forum

Regarding	 the	UEFI	Forum,	 there	 are	various	 aspects	 to	how	 it	manages	both	 the	UEFI	and	PI
specifications.	 Specifically,	 the	 UEFI	 forum	 is	 responsible	 for	 creating	 the	 UEFI	 and	 PI
specifications.	When	the	UEFI	Forum	first	formed,	a	variety	of	factors	and	steps	were	part	of	the
creation	process	of	the	first	specification:

The	UEFI	forum	stakeholders	agree	on	EFI	direction
Industry	commitment	drives	need	for	broader	governance	on	specification
Intel	and	Microsoft	contribute	seed	material	for	updated	specification
FI	1.10	components	provide	starting	drafts
Intel	agrees	to	contribute	EFI	test	suite

As	this	had	established	the	framework	of	the	specification	material	that	was	produced,	which	the
industry	used,	the	forum	itself	was	formed	with	several	thoughts	in	mind:

The	UEFI	Forum	is	established	as	a	Washington	non-profit	Corporation
– Develops,	promotes	and	manages	evolution	of	Unified	EFI	Specification
– Continue	to	drive	low	barrier	for	adoption

The	Promoter	members	for	the	UEFI	forum	are:
– AMD,	AMI,	Apple,	Dell,	HP,	IBM,	Insyde,	Intel,	Lenovo,	Microsoft,	Phoenix

The	UEFI	Forum	has	a	form	of	tiered	Membership:
– Promoters,	Contributors	and	Adopters
– More	information	on	the	membership	tiers	can	be	found	at:	www.uefi.org

The	UEFI	Forum	has	several	work	groups:
– Figure	1.4	illustrates	the	basic	makeup	of	the	forum	and	the	corresponding	roles.

http://www.uefi.org

Figure	1.4:	Forum	group	hierarchy

Sub-teams	 are	 created	 in	 the	 main	 owning	 workgroup	 when	 a	 topic	 of	 sufficient	 depth
requires	a	lot	of	discussion	with	interested	parties	or	experts	in	a	particular	domain.	These
teams	are	collaborations	amongst	many	companies	who	are	 responsible	 for	addressing	 the
topic	 in	 question	 and	 bringing	 back	 to	 the	 workgroup	 either	 a	 response	 or	 material	 for
purposes	of	 inclusion	 in	 the	main	working	specification.	Some	examples	of	sub-teams	 that
have	been	created	are	as	follows	as	of	this	book	publication:
– UCST	–	UEFI	Configuration	Sub-team

Chaired	by	Michael	Rothman
Responsible	 for	 all	 configuration	 related	 material	 and	 the	 team	 has	 been
responsible	for	the	creation	of	the	UEFI	configuration	infrastructure	commonly
known	as	HII,	which	is	in	the	UEFI	Specification.

– UNST	–	UEFI	Networking	Sub-team
Chaired	by	Vincent	Zimmer
Responsible	 for	 all	 network	 related	material.	 The	 team	has	 been	 responsible
for	 the	 update/inclusion	 of	 the	 network	 related	 material	 in	 the	 UEFI
specification,	most	notably	the	IPv6	network	infrastructure.

– USHT	–	UEFI	Shell	Sub-team
Chaired	by	Michael	Rothman
Responsible	 for	 all	 command	 shell	 related	 material.	 The	 team	 has	 been
responsible	 for	 the	 creation	 of	 the	 UEFI	 Shell	 specification	 and	 continue	 to
maintain	the	contents	as	technology	evolves.

– USST	–	UEFI	Security	Sub-team
Chaired	by	Vincent	Zimmer
Responsible	for	all	security	related	material.	The	team	has	been	responsible	for
the	added	security	infrastructure	in	the	UEFI	specification.

PIWG	and	USWG

The	Platform	Initialization	Working	Group	(PIWG)	is	the	portion	of	the	UEFI	forum	that	defines
the	various	specifications	 in	 the	PI	corpus.	The	UEFI	Specification	Working	Group	(USWG)	is
the	 group	 that	 evolves	 the	 main	 UEFI	 specification.	 Figure	 1.5	 illustrates	 the	 layers	 of	 the
platform	and	what	the	scope	that	the	USWG	and	PIWG	cover.

Figure	1.5:	PI/UEFI	layering

Over	 time,	 these	 specifications	 have	 evolved.	 Below	 we	 enumerate	 the	 recent	 history	 of
specifications	and	the	work	associated	with	each:

UEFI	2.1
– Roughly	one	year	of	Specification	work

Builds	on	UEFI	2.0
– New	content	area	highlights:

Human	Interface	Infrastructure
Hardware	Error	Record	Support
Authenticated	Variable	Support
Simple	Text	Input	Extensions
Absolute	Pointer	Support

UEFI	2.2
– Follow-on	material	from	existing	2.1	content

Backlog	that	needed	more	gestation	time

– Security/Integrity	related	enhancements
Provide	 service	 interfaces	 for	 UEFI	 drivers	 that	 want	 to	 operate	 with	 high
integrity	implementations	of	UEFI

– Human	Interface	Infrastructure	enhancements
Further	 enhancements	 pending	 to	 help	 interaction/configuration	 of	 platforms
with	standards-based	methodologies.

– Networking
IPv6,	PXE+,	IPsec

– Various	other	subject	areas	possible
– More	boot	devices,	more	authentication	support,	more	networking	updates,	etc.
UEFI	2.3
– ARM	binding
– Firmware	management	protocol
UEFI	2.4
– Disk	IO2	was	added	as	symmetry	to	Block	IO2
– AIP	Protocol	(FCoE/Image/iSCSI)
– Timestamp	Protocol
– RNG/Entropy	Protocol
– FMP	delivery	via	capsule
– Capsule	on	Disk
UEFI	2.5
– HASH2	Protocol
– ESRT
– Smart	Card	Reader
– IPV6	for	UNDI
– Inline	Cryptographic	Interface	Protocol
– Persistent	Memory	Types
– PKCS7	Signature	Verification	Services
– AArch64
– NVMe	Pass-through	Protocol
– HTTP	Boot
– Bluetooth	Support
– REST	Protocol
– Smartcard	Edge	Protocol
– Regular	Expression	Protocol
– x-UEFI	Keyword	Support
– Transport	Layer	Security(TLS)	support
UEFI	2.6
– SD/eMMC	Pass-through	Protocol
– FontEx/Font	Glyph	Generator	protocol
– Wireless	MAC	Connection	Protocol
– RAM	Disk	Protocol

To	complement	the	layering	picture	in	Figure	1.5,	Figure	1.6	shows	how	the	PI	elements	evolve
into	 the	UEFI.	 The	 left	 half	 of	 the	 diagram	with	 SEC,	 PEI,	 and	DXE	 are	 described	 by	 the	 PI

specifications.	 BDS,	 UEFI+OS	 Loader	 handshake,	 and	 RT	 are	 the	 province	 of	 the	 UEFI
specification.

Figure	1.6:	Where	PI	and	Framework	Fit	into	the	Platform	Boot	Flow

In	addition,	as	time	has	elapsed,	the	specifications	have	evolved.	Figure	1.7	is	a	timeline	for	the
specifications	and	the	implementations	associated	with	them.

Figure	1.7:	Specification	and	Codebase	Timeline

Platform	Trust/Security

Recall	 that	PI	allowed	for	business-to-business	engagements	between	component	providers	and
system	 builders.	UEFI,	 on	 the	 other	 hand,	 has	 a	 broader	 set	 of	 participants.	 These	 include	 the
operating	 system	 vendors	 that	 built	 the	OS	 installers	 and	UEFI-based	 runtimes;	 BIOS	 vendors
who	provide	UEFI	implementations;	platform	manufacturers,	such	as	multi-national	corporations
who	ship	UEFI-compliant	boards;	 independent	software	vendors	who	create	UEFI	applications
and	diagnostics;	 independent	hardware	vendors	who	create	drivers	 for	 their	adapter	cards;	and
platform	owners,	whether	a	home	PC	user	or	corporate	IT,	who	must	administer	the	UEFI-based
system.

PI	differs	from	UEFI	in	the	sense	that	the	PI	components	are	delivered	under	the	authority	of
the	 platform	manufacturer	 and	 are	 not	 typically	 extensible	 by	 third	 parties.	UEFI,	 on	 the	 other
hand,	 has	 a	 mutable	 file	 system	 partition,	 boot	 variables,	 a	 driver	 load	 list,	 support	 of
discoverable	option	ROMs	in	host-bus	adapters	(HBAs),	and	so	on.	As	such,	PI	and	UEFI	offer
different	issues	with	respect	to	security.	Chapter	10	treats	this	topic	in	more	detail,	but	in	general,
the	security	dimension	of	the	respective	domains	include	the	following:	PI	must	ensure	that	the	PI
elements	 are	 only	 updateable	 by	 the	 platform	 manufacturer,	 recovery,	 and	 PI	 is	 a	 secure
implementation	of	UEFI	features,	including	security;	UEFI	provides	infrastructure	to	authenticate
the	 user,	 validate	 the	 source	 and	 integrity	 of	 UEFI	 executables,	 network	 authentication	 and
transport	security,	audit	 (including	hardware-based	measured	boot),	and	administrative	controls
across	UEFI	policy	objects,	including	write-protected	UEFI	variables.

A	fusion	of	these	security	elements	in	a	PI	implementation	is	shown	in	Figure	1.8.

Figure	1.8:	Trusted	UEFI/PI	stack

Embedded	Systems:	The	New	Challenge

As	the	UEFI	took	off	and	became	pervasive,	a	new	challenge	has	been	taking	shape	in	the	form	of
the	 PC	 platform	 evolution	 to	 take	 on	 the	 embedded	 devices,	 more	 specifically	 the	 consumer
electronic	 devices,	 with	 a	 completely	 different	 set	 of	 requirements	 driven	 by	 user	 experience
factors	 like	 instant	power-on	for	various	embedded	operating	systems.	Many	of	 these	operating
systems	required	customized	firmware	with	OS-specific	firmware	interfaces	and	did	not	fit	well
into	the	PC	firmware	ecosystem	model.

The	challenge	now	is	 to	make	the	embedded	platform	firmware	have	similar	capabilities	to
the	 traditional	 model	 such	 as	 the	 being	 OS-agnostic,	 being	 scalable	 across	 different	 platform
hardware,	 and	 being	 able	 to	 lessen	 the	 development	 time	 to	 port	 and	 to	 leverage	 the	 UEFI
standards.

How	the	Boot	Process	Differs	between	a	Normal	Boot	and	an	Optimized/Embedded	Boot

Figure	 1.9	 indicates	 that	 between	 the	 normal	 boot	 and	 an	 optimized	 boot,	 there	 are	 no	 design
differences	 from	a	UEFI	 architecture	 point	 of	 view.	Optimizing	 a	 platform’s	performance	does
not	mean	that	one	has	to	violate	any	of	the	design	specifications.	It	should	also	be	noted	that	to
comply	 with	 UEFI,	 one	 does	 not	 need	 to	 encompass	 all	 of	 the	 standard	 PC	 architecture,	 but
instead	the	design	can	limit	itself	to	the	components	that	are	necessary	for	the	initialization	of	the
platform	itself.	Chapter	2	in	the	UEFI	2.6	specification	does	enumerate	the	various	components
and	conditions	that	comprise	UEFI	compliance.

Figure	1.9:	Architectural	Boot	Flow	Comparison

Summary

We	 have	 provided	 some	 rationale	 in	 this	 chapter	 for	 the	 changes	 from	 Beyond	 BIOS:
Implementing	 the	 Unified	 Extensible	 Firmware	 Interface	 with	 Intel’s	 Framework	 to	 Beyond
BIOS:	Implementing	UEFI	–	the	Unified	Extensible	Firmware	Interface.	These	elements	include
the	 industry	 members’	 ownership	 and	 governance	 of	 the	 UEFI	 specification.	 Beyond	 this	 sea
change,	the	chapter	describes	the	migration	of	Framework	to	PI	and	the	evolution	of	PI	over	the
former	Framework	feature	set.	In	addition,	 the	section	describes	the	evolution	of	UEFI	to	UEFI
2.6	 from	UEFI	2.0	matter	 in	 the	 first	 edition.	Finally,	 some	of	 the	codebase	 technology	 to	help
realize	implementations	of	this	technology	was	discussed.

So	fasten	your	seatbelt	and	dive	into	a	journey	through	industry	standard	firmware.

Chapter	2	–	Basic	UEFI	Architecture
I	believe	in	standards.	Everyone	should	have	one.

—George	Morrow

The	 Unified	 Extensible	 Firmware	 Interface	 (UEFI)	 describes	 a	 programmatic	 interface	 to	 the
platform.	 The	 platform	 includes	 the	 motherboard,	 chipset,	 central	 processing	 unit	 (CPU),	 and
other	components.	UEFI	allows	for	pre-operating	system	(pre-OS)	agents.	Pre-OS	agents	are	OS
loaders,	diagnostics,	and	other	applications	that	the	system	needs	for	applications	to	execute	and
interoperate,	 including	 UEFI	 drivers	 and	 applications.	 UEFI	 represents	 a	 pure	 interface
specification	against	which	the	drivers	and	applications	interact,	and	this	chapter	highlights	some
of	 the	architectural	aspects	of	 the	 interface.	These	architectural	aspects	 include	a	set	of	objects
and	interfaces	described	by	the	UEFI	Specification.

The	cornerstones	for	understanding	UEFI	applications	and	drivers	are	several	UEFI	concepts	that
are	 defined	 in	 the	 UEFI	 2.6	 Specification.	 Assuming	 you	 are	 new	 to	 UEFI,	 the	 following
introduction	explains	a	few	of	the	key	UEFI	concepts	in	a	helpful	framework	to	keep	in	mind	as
you	study	the	specification:

Objects	 managed	 by	 UEFI-based	 firmware	 -	 used	 to	 manage	 system	 state,	 including	 I/O
devices,	memory,	and	events
The	 UEFI	 System	 Table	 -	 the	 primary	 data	 structure	 with	 data	 information	 tables	 and
function	calls	to	interface	with	the	systems
Handle	database	and	protocols	-	the	means	by	which	callable	interfaces	are	registered
UEFI	images	-	the	executable	content	format	by	which	code	is	deployed
Events	-	the	means	by	which	software	can	be	signaled	in	response	to	some	other	activity
Device	paths	-	a	data	structure	that	describes	the	hardware	location	of	an	entity,	such	as	the
bus,	spindle,	partition,	and	file	name	of	an	UEFI	image	on	a	formatted	disk.

Objects	Managed	by	UEFI-based	Firmware

Several	different	types	of	objects	can	be	managed	through	the	services	provided	by	UEFI.	Some
UEFI	drivers	may	need	to	access	environment	variables,	but	most	do	not.	Rarely	do	UEFI	drivers
require	 the	 use	 of	 a	monotonic	 counter,	watchdog	 timer,	 or	 real-time	 clock.	 The	UEFI	 System
Table	 is	 the	most	 important	data	structure,	because	it	provides	access	 to	all	UEFI-provided	the
services	and	to	all	the	additional	data	structures	that	describe	the	configuration	of	the	platform.

UEFI	System	Table

The	 UEFI	 System	 Table	 is	 the	 most	 important	 data	 structure	 in	 UEFI.	 A	 pointer	 to	 the	 UEFI
System	Table	is	passed	into	each	driver	and	application	as	part	of	its	entry-point	handoff.	From
this	 one	 data	 structure,	 an	 UEFI	 executable	 image	 can	 gain	 access	 to	 system	 configuration
information	and	a	rich	collection	of	UEFI	services	that	includes	the	following:

UEFI	Boot	Services
UEFI	Runtime	Services
Protocol	services

The	 UEFI	 Boot	 Services	 and	 UEFI	 Runtime	 Services	 are	 accessed	 through	 the	 UEFI	 Boot
Services	Table	and	the	UEFI	Runtime	Services	Table,	respectively.	Both	of	these	tables	are	data
fields	in	the	UEFI	System	Table.	The	number	and	type	of	services	that	each	table	makes	available
is	fixed	for	each	revision	of	the	UEFI	specification.	The	UEFI	Boot	Services	and	UEFI	Runtime
Services	are	defined	in	the	UEFI	2.6	Specification.

Protocol	services	are	groups	of	related	functions	and	data	fields	that	are	named	by	a	Globally
Unique	 Identifier	 (GUID),	 a	 16-byte,	 statistically-unique	 entity	 defined	 in	 Appendix	 A	 of	 the
UEFI	2.6	Specification.	Typically,	protocol	services	are	used	 to	provide	software	abstractions
for	devices	such	as	consoles,	disks,	and	networks,	but	they	can	be	used	to	extend	the	number	of
generic	services	that	are	available	in	the	platform.	Protocols	are	the	mechanism	for	extending	the
functionality	of	UEFI	firmware	over	time.	The	UEFI	2.6	Specification	defines	over	30	different
protocols,	 and	 various	 implementations	 of	 UEFI	 firmware	 and	 UEFI	 drivers	 may	 produce
additional	protocols	to	extend	the	functionality	of	a	platform.

Handle	Database

The	 handle	 database	 is	 composed	 of	 objects	 called	 handles	 and	 protocols.	 Handles	 are	 a
collection	of	one	or	more	protocols,	and	protocols	are	data	structures	that	are	named	by	a	GUID.
The	data	structure	for	a	protocol	may	be	empty,	may	contain	data	fields,	may	contain	services,	or
may	contain	both	services	and	data	fields.	During	UEFI	initialization,	the	system	firmware,	UEFI
drivers,	and	UEFI	applications	create	handles	and	attach	one	or	more	protocols	 to	 the	handles.
Information	in	the	handle	database	is	global	and	can	be	accessed	by	any	executable	UEFI	image.

The	handle	database	is	the	central	repository	for	the	objects	that	are	maintained	by	UEFI-based
firmware.	The	handle	database	is	a	list	of	UEFI	handles,	and	each	UEFI	handle	is	identified	by	a
unique	 handle	 number	 that	 is	maintained	 by	 the	 system	 firmware.	A	 handle	 number	 provides	 a
database	 “key”	 to	 an	 entry	 in	 the	 handle	 database.	 Each	 entry	 in	 the	 handle	 database	 is	 a
collection	of	one	or	more	protocols.	The	types	of	protocols,	named	by	a	GUID,	that	are	attached
to	an	UEFI	handle	determine	the	handle	type.	An	UEFI	handle	may	represent	components	such	as
the	following:

Executable	images	such	as	UEFI	drivers	and	UEFI	applications
Devices	such	as	network	controllers	and	hard	drive	partitions
UEFI	services	such	as	UEFI	Decompression	and	the	EBC	Virtual	Machine

Figure	 2.1	 below	 shows	 a	 portion	 of	 the	 handle	 database.	 In	 addition	 to	 the	 handles	 and
protocols,	 a	 list	 of	 objects	 is	 associated	 with	 each	 protocol.	 This	 list	 is	 used	 to	 track	 which
agents	 are	 consuming	 which	 protocols.	 This	 information	 is	 critical	 to	 the	 operation	 of	 UEFI
drivers,	 because	 this	 information	 is	 what	 allows	 UEFI	 drivers	 to	 be	 safely	 loaded,	 started,
stopped,	and	unloaded	without	any	resource	conflicts.

Figure	2.1:	Handle	Database

Figure	2.2	shows	the	different	types	of	handles	that	can	be	present	in	the	handle	database	and	the
relationships	between	the	various	handle	 types.	All	handles	reside	 in	 the	same	handle	database
and	the	types	of	protocols	that	are	associated	with	each	handle	differentiate	the	handle	type.	Like
file	system	handles	in	an	operating	system	context,	the	handles	are	unique	for	the	session,	but	the
values	can	be	arbitrary.	Also,	like	the	handle	returned	from	an	fopen	function	in	a	C	library,	the
value	does	not	necessarily	serve	a	useful	purpose	in	a	different	process	or	during	a	subsequent
restart	in	the	same	process.	The	handle	is	just	a	transitory	value	to	manage	state.

Figure	2.2:	Handle	Types	Handle

Protocols

The	 extensible	 nature	 of	UEFI	 is	 built,	 to	 a	 large	 degree,	 around	 protocols.	 UEFI	 drivers	 are
sometimes	confused	with	UEFI	protocols.	Although	 they	are	closely	 related,	 they	are	distinctly
different.	 A	UEFI	 driver	 is	 an	 executable	 UEFI	 image	 that	 installs	 a	 variety	 of	 protocols	 of
various	handles	to	accomplish	its	job.

A	UEFI	protocol	 is	a	block	of	 function	pointers	and	data	structures	or	APIs	 that	have	been
defined	by	a	specification.	At	a	minimum,	the	specification	must	define	a	GUID.	This	number	is
the	protocol’s	real	name;	boot	services	like	LocateProtocol	uses	this	number	to	find	his	protocol
in	 the	handle	database.	The	protocol	often	 includes	a	set	of	procedures	and/	or	data	structures,
called	the	protocol	interface	structure.	The	following	code	sequence	is	an	example	of	a	protocol
definition.	Notice	how	it	defines	two	function	definitions	and	one	data	field.

Figure	2.3	shows	a	single	handle	and	protocol	from	the	handle	database	 that	 is	produced	by	an
UEFI	driver.	The	protocol	is	composed	of	a	GUID	and	a	protocol	interface	structure.	Many	times,
the	UEFI	driver	 that	produces	a	protocol	 interface	maintains	additional	private	data	fields.	The
protocol	interface	structure	itself	simply	contains	pointers	to	the	protocol	function.	The	protocol
functions	 are	 actually	 contained	 within	 the	 UEFI	 driver.	 An	 UEFI	 driver	 might	 produce	 one
protocol	or	many	protocols	depending	on	the	driver’s	complexity.

Figure	2.3:	Construction	of	a	Protocol

Not	all	protocols	are	defined	in	the	UEFI	2.6	Specification.	The	EFI	Developer	Kit	II	(EDKII)
includes	many	protocols	that	are	not	part	of	the	UEFI	2.6	Specification.	This	project	can	be	found
at	http://www.tianocore.org.	These	protocols	provide	the	wider	range	of	functionality	that	might
be	 needed	 in	 any	 particular	 implementation,	 but	 they	 are	 not	 defined	 in	 the	 UEFI	 2.6
Specification	because	they	do	not	present	an	external	interface	that	is	required	to	support	booting
an	OS	or	writing	an	UEFI	driver.	The	creation	of	new	protocols	is	how	UEFI-based	systems	can
be	 extended	 over	 time	 as	 new	 devices,	 buses,	 and	 technologies	 are	 introduced.	 For	 example,
some	protocols	that	are	in	the	EDK	II	but	not	in	the	UEFI	2.6	Specification	are:

Varstore	–	interface	to	abstract	storage	of	UEFI	persistent	binary	objects
ConIn	–	service	to	provide	a	character	console	input
	ConOut	–	service	to	provide	a	character	console	output
StdErr	–	service	to	provide	a	character	console	output	for	error	messaging
PrimaryConIn	–	the	console	input	with	primary	view
VgaMiniPort	–	a	service	that	provides	Video	Graphics	Array	output
UsbAtapi	–	a	service	to	abstract	block	access	on	USB	bus

The	UEFI	Application	Toolkit	 also	contains	a	number	of	UEFI	protocols	 that	may	be	 found	on
some	platforms,	such	as:

PPP	Daemon	–	Point-to-Point	Protocol	driver
Ramdisk	–	file	system	instance	on	a	Random	Access	Memory	buffer
TCP/IP	–	Transmission	Control	Protocol	/	Internet	Protocol
The	 Trusted	 Computing	 Group	 interface	 and	 platform	 specification,	 such	 as:	 –	 EFI	 TCG
Protocol	–	interaction	with	a	Trusted	Platform	Module	(TPM).

http://www.tianocore.org

The	OS	 loader	and	drivers	should	not	depend	on	 these	 types	of	protocols	because	 they	are	not
guaranteed	to	be	present	in	every	UEFI-compliant	system.	OS	loaders	and	drivers	should	depend
only	on	protocols	that	are	defined	in	the	UEFI	2.6	Specification	and	protocols	that	are	required
by	platform	design	guides	such	as	Design	Implementation	Guide	for	64-bit	Server.

The	 extensible	 nature	 of	 UEFI	 allows	 the	 developers	 of	 each	 platform	 to	 design	 and	 add
special	protocols.	Using	 these	protocols,	 they	can	expand	 the	capabilities	of	UEFI	and	provide
access	to	proprietary	devices	and	interfaces	in	congruity	with	the	rest	of	the	UEFI	architecture.

Because	 a	 protocol	 is	 “named”	 by	 a	 GUID,	 no	 other	 protocols	 should	 have	 that	 same
identification	number.	Care	must	be	taken	when	creating	a	new	protocol	to	define	a	new	GUID	for
it.	 UEFI	 fundamentally	 assumes	 that	 a	 specific	 GUID	 exposes	 a	 specific	 protocol	 interface.
Cutting	and	pasting	an	existing	GUID	or	hand-modifying	an	existing	GUID	creates	the	opportunity
for	a	duplicate	GUID	to	be	introduced.	A	system	containing	a	duplicate	GUID	inadvertently	could
find	 the	new	protocol	 and	 think	 that	 it	 is	 another	protocol,	 crashing	 the	 system	as	a	 result.	For
these	 types	of	 bugs,	 finding	 the	 root	 cause	 is	 also	very	difficult.	The	GUID	allows	 for	 naming
APIs	 without	 having	 to	 worry	 about	 namespace	 collision.	 In	 systems	 such	 as	 PC/AT	 BIOS,
services	were	added	as	an	enumeration.	For	example,	the	venerable	Int15h	interface	would	pass
the	 service	 type	 in	 AX.	 Since	 no	 central	 repository	 or	 specification	 managed	 the	 evolution	 of
Int15h	 services,	 several	 vendors	 defined	 similar	 service	 numbers,	 thus	making	 interoperability
with	operating	systems	and	pre-OS	applications	difficult.	Through	the	judicious	use	of	GUIDs	to
name	 APIs	 and	 an	 association	 to	 develop	 the	 specification,	 UEFI	 balances	 the	 need	 for	 API
evolution	with	interoperability.

Working	with	Protocols

Any	 UEFI	 code	 can	 operate	 with	 protocols	 during	 boot	 time.	 However,	 after	 Exit-
BootServices()	 is	called,	the	handle	database	is	no	longer	available.	Several	UEFI	boot	time
services	work	with	UEFI	protocols.

Multiple	Protocol	Instances

A	handle	may	have	many	protocols	attached	to	it.	However,	it	may	have	only	one	protocol	of	each
type.	In	other	words,	a	handle	may	not	have	more	than	one	instance	of	the	exact	same	protocol.
Otherwise,	it	would	make	requests	for	a	particular	protocol	on	a	handle	nondeterministic.

However,	 drivers	 may	 create	 multiple	 instances	 of	 a	 particular	 protocol	 and	 attach	 each
instance	to	a	different	handle.	The	PCI	I/O	Protocol	fits	this	scenario,	where	the	PCI	bus	driver
installs	a	PCI	I/O	Protocol	instance	for	each	PCI	device.	Each	instance	of	the	PCI	I/O	Protocol	is
configured	with	data	values	that	are	unique	to	that	PCI	device,	including	the	location	and	size	of
the	UEFI	Option	ROM	(OpROM)	image.

Also,	each	driver	can	install	customized	versions	of	the	same	protocol	as	long	as	they	do	not
use	the	same	handle.	For	example,	each	UEFI	driver	installs	the	Component	Name	Protocol	on	its
driver	 image	 handle,	 yet	 when	 the	 EFI_COMPONENT_NAME2_PROTOCOL.GetDriverName()

function	is	called,	each	handle	returns	the	unique	name	of	the	driver	that	owns	that	image	handle.
The	 EFI_COMPONENT_NAME2_PROTOCOL.GetDriverName()	 function	 on	 the	 USB	 bus	 driver
handle	returns	“USB	bus	driver”	for	the	English	language,	but	on	the	PXE	driver	handle	it	returns

“PXE	base	code	driver.”

Tag	GUID

A	protocol	may	be	nothing	more	 than	a	GUID.	 In	 such	cases,	 the	GUID	 is	called	a	 tag	GUID.
Such	protocols	 can	 serve	useful	 purposes	 such	 as	marking	 a	device	handle	 as	 special	 in	 some
way	or	allowing	other	UEFI	images	to	easily	find	the	device	handle	by	querying	the	system	for	the
device	handles	with	that	protocol	GUID	attached.	The	EDKII	uses	the	HOT_PLUG_DEVICE_GUID
in	this	way	to	mark	device	handles	that	represent	devices	from	a	hot-plug	bus	such	as	USB.

UEFI	Images

All	UEFI	 images	 contain	 a	 PE/COFF	header	 that	 defines	 the	 format	 of	 the	 executable	 code	 as
required	by	the	Microsoft	Portable	Executable	and	Common	Object	File	Format	Specification
(Microsoft	 2008).	The	 target	 for	 this	 code	 can	be	 an	 IA-32	processor,	 an	 Itanium®	processor,
x64,	 ARM,	 or	 a	 processor	 agnostic,	 generic	 EFI	 Byte	 Code	 (EBC).	 The	 header	 defines	 the
processor	 type	and	 the	 image	 type.	Presently	 there	are	 three	processor	 types	and	 the	 following
three	image	types	defined:

UEFI	applications	–	images	that	have	their	memory	and	state	reclaimed	upon	exit.
UEFI	Boot	Service	drivers	–	images	that	have	their	memory	and	state	preserved	throughout
the	 pre-operating	 system	 flow.	 Their	 memory	 is	 reclaimed	 upon	 invocation	 of
ExitBootServices()	by	the	OS	loader.
UEFI	Runtime	drivers	–	images	whose	memory	and	state	persist	throughout	the	evolution	of
the	machine.	These	 images	 coexist	with	 and	 can	 be	 invoked	 by	 an	UEFI-aware	 operating
system.

The	 value	 of	 the	UEFI	 Image	 format	 is	 that	 various	 parties	 can	 create	 binary	 executables	 that
interoperate.	For	example,	the	operating	system	loader	for	Microsoft	Windows†	and	Linux	for	an
UEFI-aware	OS	build	is	simply	an	UEFI	application.	In	addition,	third	parties	can	create	UEFI
drivers	 to	 abstract	 their	 particular	 hardware,	 such	 as	 a	 networking	 interface	 host	 bus	 adapter
(HBA)	 or	 other	 devices.	 UEFI	 images	 are	 loaded	 and	 relocated	 into	 memory	 with	 the	 Boot
Service	gBS->LoadImage().	Several	supported	storage	locations	for	UEFI	images	are	available,
including	the	following:

Expansion	ROMs	on	a	PCI	card
	System	ROM	or	system	flash
A	media	device	such	as	a	hard	disk,	floppy,	CD-ROM,	or	DVD
A	LAN	boot	server

In	 general,	UEFI	 images	 are	 not	 compiled	 and	 linked	 at	 a	 specific	 address.	 Instead,	 the	UEFI
image	contains	relocation	fix-ups	so	the	UEFI	image	can	be	placed	anywhere	in	system	memory.
The	Boot	Service	gBS->LoadImage()	does	the	following:

Allocates	memory	for	the	image	being	loaded
Automatically	applies	the	relocation	fix-ups	to	the	image
Creates	 a	 new	 image	 handle	 in	 the	 handle	 database,	 which	 installs	 an	 instance	 of	 the
EFI_LOADED_IMAGE_PROTOCOL

This	 instance	of	 the	EFI_LOADED_IMAGE_PROTOCOL	 contains	 information	about	 the	UEFI	 image
that	was	loaded.	Because	this	information	is	published	in	the	handle	database,	it	is	available	to
all	UEFI	components.
After	 an	UEFI	 image	 is	 loaded	with	gBS->LoadImage(),	 it	 can	be	 started	with	 a	 call	 to	gBS-
>StartImage().	 The	 header	 for	 an	UEFI	 image	 contains	 the	 address	 of	 the	 entry	 point	 that	 is
called	by	gBS->StartImage().	The	entry	point	always	receives	the	following	two	parameters:

The	image	handle	of	the	UEFI	image	being	started

A	pointer	to	the	UEFI	System	Table

These	two	items	allow	the	UEFI	image	to	do	the	following:
Access	all	of	the	UEFI	services	that	are	available	in	the	platform.
Retrieve	 information	about	where	 the	UEFI	 image	was	 loaded	from	and	where	 in	memory
the	image	was	placed.

The	operations	that	the	UEFI	image	performs	in	its	entry	point	vary	depending	on	the	type	of	UEFI
image.	Figure	2.4	shows	the	various	UEFI	image	types	and	the	relationships	between	the	different
levels	of	images.

Figure	2.4:	Image	Types	and	Their	Relationship	to	One	Another

Table	2.1:	Description	of	Image	Types

Type	of	Image Description
Application A	UEFI	image	of	type	EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION.	This

image	is	executed	and	automatically	unloaded	when	the	image	exits	or
returns	from	its	entry	point.

OS	loader A	special	type	of	application	that	normally	does	not	return	or	exit.
Instead,	it	calls	the	UEFI	Boot	Service	gBS->ExitBootServices()	to
transfer	control	of	the	platform	from	the	firmware	to	an	operating
system.

Driver A	UEFI	image	of	type	EFI_IMAGE_SUBSYSTEM_BOOT_SER-VICE_DRIVER
or	EFI_IMAGE_SUBSYS-TEM_RUNTIME_DRIVER.	If	this	image	returns
EFI_SUCCESS,	then	the	image	is	not	unloaded.	If	the	image	returns	an
error	code	other	than	EFI_SUCCESS,	then	the	image	is	automatically
unloaded	from	system	memory.	The	ability	to	stay	resident	in	system
memory	is	what	differentiates	a	driver	from	an	application.	Because
drivers	can	stay	resident	in	memory,	they	can	provide	services	to	other
drivers,	applications,	or	an	operating	system.	Only	the	services	produced

by	runtime	drivers	are	allowed	to	persist	past	gBS-
>ExitBootServices().

Service	driver A	driver	that	produces	one	or	more	protocols	on	one	or	more	new
service	handles	and	returns	EFI_SUCESS	from	its	entry	point.

Initializing	driver A	driver	that	does	not	create	any	handles	and	does	not	add	any	protocols
to	the	handle	database.	Instead,	this	type	of	driver	performs	some
initialization	operations	and	returns	an	error	code	so	the	driver	is	unloaded
from	system	memory.

Root	bridge	driver A	driver	that	creates	one	or	more	physical	controller	handles	that	contain
a	Device	Path	Protocol	and	a	protocol	that	is	a	software	abstraction	for
the	I/O	services	provided	by	a	root	bus	produced	by	a	core	chipset.	The
most	common	root	bridge	driver	is	one	that	creates	handles	for	the	PCI
root	bridges	in	the	platform	that	support	the	Device	Path	Protocol	and	the
PCI	Root	Bridge	I/O	Protocol.

EFI	1.02	driver A	driver	that	follows	the	EFI	1.02	Specification.	This	type	of	driver
does	not	use	the	UEFI	Driver	Model.	These	types	of	drivers	are	not
discussed	in	detail	in	this	document.	Instead,	this	document	presents
recommendations	on	converting	EFI	1.02	drivers	to	drivers	that	follow
the	UEFI	Driver	Model.

UEFI	Driver	Model	driver A	driver	that	follows	the	UEFI	Driver	Model	that	is	described	in	detail	in
the	UEFI	2.6	Specification.	This	type	of	driver	is	fundamentally
different	from	service	drivers,	initializing	drivers,	root	bridge	drivers,	and
EFI	1.02	drivers	because	a	driver	that	follows	the	UEFI	Driver	Model	is
not	allowed	to	touch	hardware	or	produce	device-related	services	in	the
driver	entry	point.	Instead,	the	driver	entry	point	of	a	driver	that	follows
the	UEFI	Driver	Model	is	allowed	only	to	register	a	set	of	services	that
allow	the	driver	to	be	started	and	stopped	at	a	later	point	in	the	system
initialization	process.

Device	driver A	driver	that	follows	the	UEFI	Driver	Model.	This	type	of	driver
produces	one	or	more	driver	handles	or	driver	image	handles	by	installing
one	or	more	instances	of	the	Driver	Binding	Protocol	into	the	handle
database.	This	type	of	driver	does	not	create	any	child	handles	when	the
Start()	service	of	the	Driver	Binding	Protocol	is	called.	Instead,	it	only
adds	additional	I/O	protocols	to	existing	controller	handles.

Bus	driver A	driver	that	follows	the	UEFI	Driver	Model.	This	type	of	driver
produces	one	or	more	driver	handles	or	driver	image	handles	by	installing
one	or	more	instances	of	the	Driver	Binding	Protocol	in	the	handle
database.	This	type	of	driver	creates	new	child	handles	when	the
Start()	service	of	the	Driver	Binding	Protocol	is	called.	It	also	adds	I/O
protocols	to	these	newly	created	child	handles.

Hybrid	driver A	driver	that	follows	the	UEFI	Driver	Model	and	shares	characteristics
with	both	device	drivers	and	bus	drivers.	This	distinction	means	that	the
Start()	service	of	the	Driver	Binding	Protocol	will	add	I/O	protocols	to
existing	handles	and	it	will	create	child	handles.

Applications

A	UEFI	application	starts	execution	at	its	entry	point,	then	continues	execution	until	it	reaches	a
return	from	its	entry	point	or	it	calls	the	Exit()	boot	service	function.	When	done,	the	image	is
unloaded	 from	memory.	 Some	 examples	 of	 common	UEFI	 applications	 include	 the	UEFI	 shell,
UEFI	shell	commands,	flash	utilities,	and	diagnostic	utilities.	It	is	perfectly	acceptable	to	invoke
UEFI	applications	from	inside	other	UEFI	applications.

OS	Loader

A	special	type	of	UEFI	application,	called	an	OS	boot	loader,	calls	the	Exit-BootServices()
function	when	 the	OS	 loader	 has	 set	 up	 enough	of	 the	OS	 infrastructure	 to	be	 ready	 to	 assume
ownership	of	the	system	resources.	At	Exit-BootServices(),	the	UEFI	core	frees	all	of	its	boot
time	services	and	drivers,	leaving	only	the	run-time	services	and	drivers.

Drivers

UEFI	drivers	differ	from	UEFI	applications	in	that	the	driver	stays	resident	in	memory	unless	an
error	 is	 returned	 from	 the	 driver’s	 entry	 point.	 The	UEFI	 core	 firmware,	 the	 boot	manager,	 or
other	UEFI	applications	may	load	drivers.

EFI	1.02	Drivers
Several	types	of	UEFI	drivers	exist,	having	evolved	with	subsequent	levels	of	the	specification.
In	 EFI	 1.02,	 drivers	 were	 constructed	 without	 a	 defined	 driver	 model.	 The	 UEFI	 2.6
Specification	provides	a	driver	model	that	replaces	the	way	drivers	were	built	 in	EFI	1.02	but
that	still	maintains	backward	compatibility	with	EFI	1.02	drivers.	EFI	1.02	immediately	started
the	 driver	 inside	 the	 entry	 point.	 Following	 this	 method	 meant	 that	 the	 driver	 searched
immediately	for	supported	devices,	 installed	the	necessary	I/O	protocols,	and	started	the	timers
that	were	needed	to	poll	the	devices.	However,	this	method	did	not	give	the	system	control	over
the	driver	loading	and	connection	policies,	so	the	UEFI	Driver	Model	was	introduced	in	Section
10.1	of	the	UEFI	2.6	Specification	to	resolve	these	issues.

The	Floating-Point	 Software	Assist	 (FPSWA)	driver	 is	 a	 common	 example	 of	 an	EFI	 1.02
driver;	 other	 EFI	 1.02	 drivers	 can	 be	 found	 in	 the	 EFI	 Application	 Toolkit	 1.02.12.38.	 For
compatibility,	EFI	1.02	drivers	can	be	converted	to	UEFI	2.6	drivers	that	follow	the	UEFI	Driver
Model.

Boot	Service	and	Runtime	Drivers
Boot-time	drivers	 are	 loaded	 into	 area	 of	memory	 that	 are	marked	 as	EfiBootServicesCode,
and	 the	 drivers	 allocate	 their	 data	 structures	 from	memory	marked	 as	EfiBootServicesData.
These	 memory	 types	 are	 converted	 to	 available	 memory	 after	 gBS->ExitBootServices()	 is
called.

Runtime	 drivers	 are	 loaded	 in	 memory	 marked	 as	 EfiRuntimeServices-Code,	 and	 they
allocate	their	data	structures	from	memory	marked	as	Efi-RuntimeServicesData.	These	 types
of	 memory	 are	 preserved	 after	 gBS->ExitBootServices()	 is	 called,	 thereby	 enabling	 the
runtime	driver	to	provide	services	to	an	operating	system	while	the	operating	system	is	running.
Runtime	 drivers	 must	 publish	 an	 alternative	 calling	 mechanism,	 because	 the	 UEFI	 handle
database	does	not	persist	into	OS	runtime.	The	most	common	examples	of	UEFI	runtime	drivers
are	 the	Floating-Point	Software	Assist	driver	(FPSWA.efi)	and	 the	network	Universal	Network
Driver	Interface	(UNDI)	driver.	Other	than	these	examples,	runtime	drivers	are	not	very	common.
In	addition,	the	implementation	and	validation	of	runtime	drivers	is	much	more	difficult	than	boot
service	 drivers	 because	UEFI	 supports	 the	 translation	 of	 runtime	 services	 and	 runtime	 drivers
from	a	physical	addressing	mode	to	a	virtual	addressing	mode.	With	this	translation,	the	operating

system	can	make	virtual	calls	 to	 the	 runtime	code.	The	OS	 typically	 runs	 in	virtual	mode,	so	 it
must	 transition	into	physical	mode	to	make	the	call.	Transitions	into	physical	mode	for	modern,
multiprocessor	operating	systems	are	expensive	because	 they	entail	 flushing	 translation	 look-up
blocks	(TLB),	coordinating	all	CPUs,	and	other	tasks.	As	such,	UEFI	runtime	offers	an	efficient
invocation	mechanism	because	no	transition	is	required.

Events	and	Task	Priority	Levels

Events	are	another	type	of	object	that	is	managed	through	UEFI	services.	An	event	can	be	created
and	destroyed,	and	an	event	can	be	either	in	the	waiting	state	or	the	signaled	state.	A	UEFI	image
can	do	any	of	the	following:

Create	an	event.
Destroy	an	event.
Check	to	see	if	an	event	is	in	the	signaled	state.
Wait	for	an	event	to	be	in	the	signaled	state.
Request	that	an	event	be	moved	from	the	waiting	state	to	the	signaled	state.

Because	UEFI	does	not	support	 interrupts,	 it	can	present	a	challenge	 to	driver	writers	who	are
accustomed	to	an	interrupt-driven	driver	model.	Instead,	UEFI	supports	polled	drivers.	The	most
common	 use	 of	 events	 by	 an	 UEFI	 driver	 is	 the	 use	 of	 timer	 events	 that	 allow	 drivers	 to
periodically	poll	a	device.	Figure	2.5	 shows	 the	different	 types	of	events	 that	are	 supported	 in
UEFI	and	the	relationships	between	those	events.

Figure	2.5:	Event	Types	and	Relationships

Table	2.2:	Description	of	Event	Types

Type	of	Events Description
Wait	event An	event	whose	notification	function	is	executed	whenever	the

event	is	checked	or	waited	upon.
Signal	event An	event	whose	notification	function	is	scheduled	for	execution

whenever	the	event	goes	from	the	waiting	state	to	the	signaled
state.

Exit	Boot	Services	event A	special	type	of	signal	event	that	is	moved	from	the	waiting
state	to	the	signaled	state	when	the	UEFI	Boot	Service
ExitBootServices()	is	called.	This	call	is	the	point	in	time	when

ownership	of	the	platform	is	transferred	from	the	firmware	to	an
operating	system.	The	event’s	notification	function	is	scheduled
for	execution	when	Exit-BootServices()	is	called.

Set	Virtual	Address	Map	event A	special	type	of	signal	event	that	is	moved	from	the	waiting
state	to	the	signaled	state	when	the	UEFI	Runtime	Service
SetVirtualAddressMap()	is	called.	This	call	is	the	point	in	time
when	the	operating	system	is	making	a	request	for	the	runtime
components	of	UEFI	to	be	converted	from	a	physical	addressing
mode	to	a	virtual	addressing	mode.	The	operating	system
provides	the	map	of	virtual	addresses	to	use.	The	event’s
notification	function	is	scheduled	for	execution	when
SetVirtualAddressMap()	is	called.

Timer	event A	type	of	signal	event	that	is	moved	from	the	waiting	state	to	the
signaled	state	when	at	least	a	specified	amount	of	time	has
elapsed.	Both	periodic	and	one-shot	timers	are	supported.	The
event’s	notification	function	is	scheduled	for	execution	when	a
specific	amount	of	time	has	elapsed.

Periodic	timer	event A	type	of	timer	event	that	is	moved	from	the	waiting	state	to	the
signaled	state	at	a	specified	frequency.	The	event’s	notification
function	is	scheduled	for	execution	when	a	specific	amount	of
time	has	elapsed.

One-shot	timer	event A	type	of	timer	event	that	is	moved	from	the	waiting	state	to	the
signaled	state	after	the	specified	timer	period	has	elapsed.	The
event’s	notification	function	is	scheduled	for	execution	when	a
specific	amount	of	time	has	elapsed.

The	following	three	elements	are	associated	with	every	event:
The	Task	Priority	Level	(TPL)	of	the	event
A	notification	function
A	notification	context

The	notification	 function	 for	a	wait	event	 is	executed	when	 the	state	of	 the	event	 is	checked	or
when	 the	 event	 is	 being	 waited	 upon.	 The	 notification	 function	 of	 a	 signal	 event	 is	 executed
whenever	the	event	transitions	from	the	waiting	state	to	the	signaled	state.	The	notification	context
is	passed	into	the	notification	function	each	time	the	notification	function	is	executed.	The	TPL	is
the	priority	at	which	the	notification	function	is	executed.	Table	2.3:	lists	the	four	TPL	levels	that
are	defined	today.	Additional	TPLs	could	be	added	later.	An	example	of	a	compatible	addition	to
the	 TPL	 list	 could	 include	 a	 series	 of	 “Interrupt	 TPLs”	 between	 TPL_NOTIFY	 and
TPL_HIGH_LEVEL	in	order	to	provide	interrupt-driven	I/O	support	within	UEFI.

Table	2.3:	Task	Priority	Levels	Defined	in	UEFI

Task	Priority	Level Description
TPL_APPLICATION The	priority	level	at	which	UEFI	images	are	executed.
TPL_CALLBACK The	priority	level	for	most	notification	functions.
TPL_NOTIFY The	priority	level	at	which	most	I/O	operations	are	performed.
TPL_HIGH_LEVEL The	priority	level	for	the	one	timer	interrupt	supported	in	UEFI.

TPLs	serve	the	following	two	purposes:
To	define	the	priority	in	which	notification	functions	are	executed
To	create	locks

For	priority	definition,	you	use	this	mechanism	only	when	more	than	one	event	is	in	the	signaled
state	at	 the	 same	 time.	 In	 these	cases,	 the	application	executes	 the	notification	 function	 that	has
been	registered	with	the	higher	priority	first.	Also,	notification	functions	at	higher	priorities	can
interrupt	the	execution	of	notification	functions	executing	at	a	lower	priority.

For	creating	locks,	code	running	in	normal	context	and	code	in	an	interrupt	context	can	access	the
same	data	 structure	because	UEFI	does	 support	 a	 single-timer	 interrupt.	This	 access	 can	cause
problems	and	unexpected	results	if	the	updates	to	a	shared	data	structure	are	not	atomic.	An	UEFI
application	or	UEFI	driver	that	wants	to	guarantee	exclusive	access	to	a	shared	data	structure	can
temporarily	raise	the	task	priority	level	to	prevent	simultaneous	access	from	both	normal	context
and	 interrupt	context.	The	application	can	create	a	 lock	by	 temporarily	 raising	 the	 task	priority
level	to	TPL_HIGH_LEVEL.	This	level	blocks	even	the	one-timer	interrupt,	but	you	must	take	care
to	minimize	 the	 amount	 of	 time	 that	 the	 system	 is	 at	 TPL_HIGH_LEVEL.	 Since	 all	 timer-based
events	 are	 blocked	 during	 this	 time,	 any	 driver	 that	 requires	 periodic	 access	 to	 a	 device	 is
prevented	from	accessing	its	device.	A	TPL	is	similar	to	the	IRQL	in	Microsoft	Windows	and	the
SPL	in	various	Unix	implementations.	A	TPL	describes	a	prioritization	scheme	for	access	control
to	resources.

Summary

This	chapter	has	introduced	some	of	the	basic	UEFI	concepts	and	object	types.	These	items	have
included	events,	protocols,	task	priority	levels,	image	types,	handles,	GUIDs,	and	service	tables.
Many	 of	 these	 UEFI	 concepts,	 including	 images	 and	 protocols,	 are	 used	 extensively	 by	 other
firmware	technology,	including	the	UEFI	Platform	Initialization	(PI)	building	blocks,	such	as	the
DXE	environment.	These	concepts	will	be	revisited	in	different	guises	in	subsequent	chapters.

Chapter	3	–	UEFI	Driver	Model
Things	should	be	made	as	simple	as	possible–but	no	simpler.

—Albert	Einstein

The	 Unified	 Extensible	 Firmware	 Interface	 (UEFI)	 provides	 a	 driver	 model	 for	 support	 of
devices	that	attach	to	today’s	industry-standard	buses,	such	as	Peripheral	Component	Interconnect
(PCI)	and	Universal	Serial	Bus	(USB),	and	architectures	of	tomorrow.	The	UEFI	Driver	Model	is
intended	 to	 simplify	 the	 design	 and	 implementation	 of	 device	 drivers,	 and	 produce	 small
executable	image	sizes.	As	a	result,	some	complexity	has	been	moved	into	bus	drivers	and	to	a
greater	 extent	 into	 common	 firmware	 services.	 A	 device	 driver	 needs	 to	 produce	 a	 Driver
Binding	Protocol	on	the	same	image	handle	on	which	the	driver	was	loaded.	It	then	waits	for	the
system	 firmware	 to	 connect	 the	 driver	 to	 a	 controller.	When	 that	 occurs,	 the	 device	 driver	 is
responsible	 for	 producing	 a	 protocol	 on	 the	 controller’s	 device	 handle	 that	 abstracts	 the	 I/O
operations	that	the	controller	supports.	A	bus	driver	performs	these	exact	same	tasks.	In	addition,
a	bus	driver	is	also	responsible	for	discovering	any	child	controllers	on	the	bus,	and	creating	a
device	handle	for	each	child	controller	found.

The	combination	of	firmware	services,	bus	drivers,	and	device	drivers	in	any	given	platform
is	 likely	 to	 be	 produced	 by	 a	 wide	 variety	 of	 vendors	 including	 Original	 Equipment
Manufacturers	(OEMs),	Independent	BIOS	Vendors	(IBVs),	and	Independent	Hardware	Vendors
(IHVs).	 These	 different	 components	 from	 different	 vendors	 are	 required	 to	 work	 together	 to
produce	a	protocol	for	an	I/O	device	than	can	be	used	to	boot	a	UEFI	compliant	operating	system.
As	 a	 result,	 the	 UEFI	 Driver	 Model	 is	 described	 in	 great	 detail	 in	 order	 to	 increase	 the
interoperability	of	these	components.

This	chapter	gives	a	brief	overview	of	the	UEFI	Driver	Model.	It	describes	the	entry	point	of
a	driver,	host	bus	controllers,	properties	of	device	drivers,	properties	of	bus	drivers,	and	how	the
UEFI	Driver	Model	can	accommodate	hot	plug	events.

Why	a	Driver	Model	Prior	to	OS	Booting?

Under	 the	UEFI	Driver	Model,	only	 the	minimum	number	of	I/O	devices	needs	 to	be	activated.
For	 example,	with	 today’s	BIOS-based	 systems,	 a	 server	with	dozens	of	SCSI	drives	needs	 to
have	those	drives	“spun-up”	or	activated.	This	is	because	the	BIOS	Int19h	code	does	not	know	a
priori	which	device	will	contain	the	operating	system	loader.	The	UEFI	Driver	Model	allows	for
only	activating	 the	subset	of	devices	 that	are	necessary	 for	booting.	This	makes	a	 rapid	system
restart	 possible	 and	 pushes	 the	 policy	 of	which	 additional	 devices	 need	 activation	 up	 into	 the
operating	 system.	 With	 the	 more	 aggressive	 boot	 time	 requirements	 more	 along	 the	 lines	 of
consumer	electronics	devices	being	pushed	to	all	open	platforms,	this	capability	is	imperative.

Driver	Initialization

The	file	for	a	driver	image	must	be	loaded	from	some	type	of	media.	This	could	include	ROM,
flash,	hard	drives,	floppy	drives,	CD-ROM,	or	even	a	network	connection.	Once	a	driver	image
has	 been	 found,	 it	 can	 be	 loaded	 into	 system	 memory	 with	 the	 Boot	 Service	 LoadImage().
LoadImage()	 loads	 a	 Portable	Executable/	Common	File	 Format	 (PE/COFF)	 formatted	 image
into	system	memory.	A	handle	is	created	for	the	driver,	and	a	Loaded	Image	Protocol	instance	is
placed	 on	 that	 handle.	 A	 handle	 that	 contains	 a	 Loaded	 Image	 Protocol	 instance	 is	 called	 an
Image	Handle.	At	this	point,	the	driver	has	not	been	started.	It	is	just	sitting	in	memory	waiting	to
be	started.	Figure	3.1	shows	the	state	of	an	image	handle	for	a	driver	after	LoadImage()	has	been
called.

Figure	3.1:	Image	Handle

After	a	driver	has	been	loaded	with	the	Boot	Service	LoadImage(),	 it	must	be	started	with	 the
Boot	Service	StartImage().	This	is	true	of	all	types	of	UEFI	applications	and	UEFI	drivers	that
can	be	loaded	and	started	on	an	UEFI	compliant	system.	The	entry	point	for	a	driver	that	follows
the	 UEFI	 Driver	 Model	 must	 follow	 some	 strict	 rules.	 First,	 it	 is	 not	 allowed	 to	 touch	 any
hardware.	Instead,	it	is	only	allowed	to	install	protocol	instances	onto	its	own	Image	Handle.	A
driver	that	follows	the	UEFI	Driver	Model	is	required	to	install	an	instance	of	the	Driver	Binding
Protocol	onto	its	own	Image	Handle.	It	may	optionally	install	the	Driver	Configuration	Protocol,
the	Driver	Diagnostics	Protocol,	or	the	Component	Name	Protocol.	In	addition,	if	a	driver	wishes
to	 be	 unloadable	 it	 may	 optionally	 update	 the	 Loaded	 Image	 Protocol	 to	 provide	 its	 own
Unload()	 function.	Finally,	 if	 a	driver	needs	 to	perform	any	special	operations	when	 the	Boot
Service	 ExitBootServices()	 is	 called,	 it	 may	 optionally	 create	 an	 event	 with	 a	 notification
function	 that	 is	 triggered	 when	 the	 Boot	 Service	 ExitBootServices()	 is	 called.	 An	 Image
Handle	that	contains	a	Driver	Binding	Protocol	instance	is	known	as	a	Driver	Image	Handle.	Fig
ure	 3.2	 shows	 a	 possible	 configuration	 for	 the	 Image	 Handle	 from	 Figure	 3.1	 after	 the	 Boot
Service	StartImage()	has	been	called.

Figure	3.2:	Driver	Image	Handle

Host	Bus	Controllers

Drivers	are	not	allowed	to	touch	any	hardware	in	the	driver's	entry	point.	As	a	result,	drivers	are
loaded	and	started,	but	 they	are	all	waiting	to	be	told	to	manage	one	or	more	controllers	 in	 the
system.	 A	 platform	 component,	 like	 the	 UEFI	 Boot	Manager,	 is	 responsible	 for	 managing	 the
connection	 of	 drivers	 to	 controllers.	 However,	 before	 even	 the	 first	 connection	 can	 be	 made,
some	 initial	 collection	 of	 controllers	 must	 be	 present	 for	 the	 drivers	 to	 manage.	 This	 initial
collection	of	controllers	is	known	as	the	Host	Bus	Controllers.	The	I/O	abstractions	that	the	Host
Bus	Controllers	provide	are	produced	by	firmware	components	that	are	outside	the	scope	of	the
UEFI	Driver	Model.	The	device	handles	for	the	Host	Bus	Controllers	and	the	I/O	abstraction	for
each	one	must	be	produced	by	the	core	firmware	on	the	platform,	or	an	UEFI	Driver	that	may	not
follow	the	UEFI	Driver	Model.	See	the	PCI	Host	Bridge	I/O	Protocol	description	in	Chapter	13
of	the	UEFI	2.6	specification	for	an	example	of	an	I/O	abstraction	for	PCI	buses.

A	platform	can	be	viewed	as	a	set	of	CPUs	and	a	set	of	core	chip	set	components	 that	may
produce	one	or	more	host	 buses.	Figure	3.3	 shows	a	platform	with	n	CPUs,	 and	 a	 set	 of	 core
chipset	components	that	produce	m	host	bridges.

Figure	3.3:	Host	Bus	Controllers

Each	host	bridge	is	represented	in	UEFI	as	a	device	handle	that	contains	a	Device	Path	Protocol
instance,	and	a	protocol	instance	that	abstracts	the	I/O	operations	that	the	host	bus	can	perform.
For	example,	a	PCI	Host	Bus	Controller	supports	the	PCI	Host	Bridge	I/O	Protocol.	Figure	3.4
shows	an	example	device	handle	for	a	PCI	Host	Bridge.

Figure	3.4:	Host	Bus	Device	Handle

A	PCI	Bus	Driver	could	connect	to	this	PCI	Host	Bridge,	and	create	child	handles	for	each	of	the
PCI	devices	in	the	system.	PCI	Device	Drivers	should	then	be	connected	to	these	child	handles,
and	 produce	 I/O	 abstractions	 that	 may	 be	 used	 to	 boot	 a	 UEFI	 compliant	 OS.	 The	 following
section	describes	the	different	types	of	drivers	that	can	be	implemented	within	the	UEFI	Driver
Model.	 The	UEFI	Driver	Model	 is	 very	 flexible,	 so	 not	 all	 the	 possible	 types	 of	 drivers	 are
discussed	 here.	 Instead,	 the	 major	 types	 are	 covered	 that	 can	 be	 used	 as	 a	 starting	 point	 for
designing	and	implementing	additional	driver	types.

Device	Drivers

A	device	driver	 is	not	allowed	to	create	any	new	device	handles.	 Instead,	 it	 installs	additional
protocol	interfaces	on	an	existing	device	handle.	The	most	common	type	of	device	driver	attaches
an	I/O	abstraction	to	a	device	handle	that	has	been	created	by	a	bus	driver.	This	I/O	abstraction
may	 be	 used	 to	 boot	 an	 UEFI	 compliant	 OS.	 Some	 example	 I/O	 abstractions	 would	 include
Simple	Text	Output,	Simple	Input,	Block	I/O,	and	Simple	Network	Protocol.	Figure	3.5	shows	a
device	 handle	 before	 and	 after	 a	 device	 driver	 is	 connected	 to	 it.	 In	 this	 example,	 the	 device
handle	is	a	child	of	the	XYZ	Bus,	so	it	contains	an	XYZ	I/O	Protocol	for	the	I/O	services	that	the
XYZ	bus	supports.	It	also	contains	a	Device	Path	Protocol	that	was	placed	there	by	the	XYZ	Bus
Driver.	The	Device	Path	Protocol	 is	not	required	for	all	device	handles.	 It	 is	only	required	for
device	handles	that	represent	physical	devices	in	the	system.	Handles	for	virtual	devices	do	not
contain	a	Device	Path	Protocol.

Figure	3.5:	Connecting	Device	Drivers

The	device	driver	that	connects	to	the	device	handle	in	Figure	3.5	must	have	 installed	a	Driver
Binding	Protocol	on	its	own	image	handle.	The	Driver	Binding	Protocol	contains	three	functions
called	Supported(),	Start(),	and	Stop().	The	Supported()	function	tests	to	see	if	the	driver
supports	 a	 given	 controller.	 In	 this	 example,	 the	 driver	will	 check	 to	 see	 if	 the	 device	 handle
supports	the	Device	Path	Protocol	and	the	XYZ	I/O	Protocol.	If	a	driver's	Supported()	function
passes,	 then	 the	 driver	 can	 be	 connected	 to	 the	 controller	 by	 calling	 the	 driver’s	 Start()
function.	The	Start()	 function	 is	what	 actually	 adds	 the	 additional	 I/O	 protocols	 to	 a	 device
handle.	 In	 this	 example,	 the	 Block	 I/O	 Protocol	 is	 being	 installed.	 To	 provide	 symmetry,	 the

Driver	Binding	 Protocol	 also	 has	 a	Stop()	 function	 that	 forces	 the	 driver	 to	 stop	managing	 a
device	 handle.	 This	 causes	 the	 device	 driver	 to	 uninstall	 any	 protocol	 interfaces	 that	 were
installed	in	Start().

The	Support(),	Start(),	 and	 Stop()	 functions	 of	 the	UEFI	Driver	 Binding	 Protocol	 are
required	to	make	use	of	the	new	Boot	Service	OpenProtocol()	 to	get	a	protocol	 interface	and
the	new	Boot	Service	CloseProtocol()	 to	 release	a	protocol	 interface.	OpenProtocol()	and
CloseProtocol()	update	the	handle	database	maintained	by	the	system	firmware	to	track	which
drivers	are	consuming	protocol	interfaces.	The	information	in	the	handle	database	can	be	used	to
retrieve	 information	 about	 both	 drivers	 and	 controllers.	 The	 new	 Boot	 Service
OpenProtocolInformation()	 can	 be	 used	 to	 get	 the	 list	 of	 components	 that	 are	 currently
consuming	a	specific	protocol	interface.

Bus	Drivers

Bus	 drivers	 and	 device	 drivers	 are	 virtually	 identical	 from	 the	UEFI	Driver	Model’s	 point	 of
view.	The	only	difference	is	that	a	bus	driver	creates	new	device	handles	for	the	child	controllers
that	the	bus	driver	discovers	on	its	bus.	As	a	result,	bus	drivers	are	slightly	more	complex	than
device	drivers,	but	this	in	turn	simplifies	the	design	and	implementation	of	device	drivers.	There
are	two	major	types	of	bus	drivers.	The	first	creates	handles	for	all	the	child	controllers	on	the
first	call	to	Start().	The	second	type	allows	the	handles	for	the	child	controllers	to	be	created
across	multiple	calls	 to	Start().	This	second	type	of	bus	driver	 is	very	useful	 in	supporting	a
rapid	boot	capability.	It	allows	a	few	child	handles	or	even	one	child	handle	to	be	created.	On
buses	 that	 take	a	 long	 time	 to	enumerate	all	of	 their	children	(such	as	SCSI),	 this	can	 lead	 to	a
very	 large	 time	 savings	 in	 booting	 a	 platform.	 Figure	 3.6	 shows	 the	 tree	 structure	 of	 a	 bus
controller	 before	 and	 after	Start()	 is	 called.	 The	 dashed	 line	 coming	 into	 the	 bus	 controller
node	represents	a	link	to	the	bus	controller's	parent	controller.	If	the	bus	controller	is	a	Host	Bus
Controller,	then	it	does	not	have	a	parent	controller.	Nodes	A,	B,	C,	D,	and	E	represent	the	child
controllers	of	the	bus	controller.

Figure	3.6:	Connecting	Bus	Drivers

A	bus	driver	that	supports	creating	one	child	on	each	call	to	Start()	might	choose	to	create	child
C	 first,	 and	 then	 child	 E,	 and	 then	 the	 remaining	 children	 A,B,	 and	 D.	 The	 Supported(),
Start(),	and	Stop()	functions	of	the	Driver	Binding	Protocol	are	flexible	enough	to	allow	this
type	of	behavior.

A	 bus	 driver	must	 install	 protocol	 interfaces	 onto	 every	 child	 handle	 that	 is	 creates.	 At	 a
minimum,	it	must	install	a	protocol	interface	that	provides	an	I/O	abstraction	of	the	bus's	services
to	the	child	controllers.	If	the	bus	driver	creates	a	child	handle	that	represents	a	physical	device,
then	the	bus	driver	must	also	install	a	Device	Path	Protocol	instance	onto	the	child	handle.	A	bus
driver	may	optionally	 install	 a	Bus	Specific	Driver	Override	Protocol	 onto	 each	 child	handle.
This	protocol	 is	used	when	drivers	are	connected	to	 the	child	controllers.	A	new	Boot	Service
ConnectController()	 uses	 architecturally	 defined	precedence	 rules	 to	 choose	 the	 best	 set	 of

drivers	for	a	given	controller.	The	Bus	Specific	Driver	Override	Protocol	has	higher	precedence
than	 a	 general	 driver	 search	 algorithm,	 and	 lower	 precedence	 than	 platform	 overrides.	 An
example	 of	 a	 bus	 specific	 driver	 selection	 occurs	with	 PCI.	A	PCI	Bus	Driver	 gives	 a	 driver
stored	in	a	PCI	controller's	option	ROM	a	higher	precedence	than	drivers	stored	elsewhere	in	the
platform.	Figure	3.7	shows	an	example	child	device	handle	that	has	been	created	by	the	XYZ	Bus
Driver	that	supports	a	bus	specific	driver	override	mechanism.

Figure	3.7:	Child	Device	Handle	with	a	Bus	Specific	Override

Platform	Components

Under	the	UEFI	Driver	Model,	the	act	of	connecting	and	disconnecting	drivers	from	controllers	in
a	platform	is	under	the	platform	firmware's	control.	This	will	typically	be	implemented	as	part	of
the	 UEFI	 Boot	 Manager,	 but	 other	 implementations	 are	 possible.	 The	 new	 Boot	 Services
ConnectController()	and	DisconnectController()	can	be	used	by	the	platform	firmware	to
determine	which	controllers	get	started	and	which	ones	do	not.	If	the	platform	wishes	to	perform
system	diagnostics	 or	 install	 an	 operating	 system,	 then	 it	may	 choose	 to	 connect	 drivers	 to	 all
possible	 boot	 devices.	 If	 a	 platform	 wishes	 to	 boot	 a	 pre-installed	 operating	 system,	 it	 may
choose	 to	 only	 connect	 drivers	 to	 the	 devices	 that	 are	 required	 to	 boot	 the	 selected	 operating
system.	The	UEFI	Driver	Model	supports	both	of	these	modes	of	operation	through	the	new	Boot
Services	ConnectController()	and	DisconnectController().	In	addition,	since	the	platform
component	 that	 is	 in	 charge	of	booting	 the	platform	has	 to	work	with	device	paths	 for	 console
devices	and	boot	options,	all	of	the	services	and	protocols	involved	in	the	UEFI	Driver	Model
are	optimized	with	device	paths	in	mind.

The	 platform	may	 also	 choose	 to	 produce	 an	 optional	 protocol	 named	 the	 Platform	Driver
Override	Protocol.	This	is	similar	to	the	Bus	Specific	Driver	Override	Protocol,	but	it	has	higher
priority.	This	gives	 the	platform	firmware	 the	highest	priority	when	deciding	which	drivers	are
connected	to	which	controllers.	The	Platform	Driver	Override	Protocol	is	attached	to	a	handle	in
the	system.	The	new	Boot	Service	ConnectController()	will	make	use	of	this	protocol	if	it	is
present	in	the	system.

Hot	Plug	Events

In	the	past,	system	firmware	has	not	had	to	deal	with	hot	plug	events	in	the	pre-boot	environment.
However,	with	the	advent	of	buses	like	USB,	where	the	end	user	can	add	and	remove	devices	at
any	 time,	 it	 is	 important	 to	make	sure	 that	 it	 is	possible	 to	describe	 these	 types	of	buses	 in	 the
UEFI	Driver	Model.	It	is	up	to	the	bus	driver	of	a	bus	that	supports	the	hot	adding	and	removing
of	 devices	 to	 provide	 support	 for	 such	 events.	 For	 these	 types	 of	 buses,	 some	 of	 the	 platform
management	 is	 going	 to	 have	 to	move	 into	 the	 bus	 drivers.	 For	 example,	 when	 a	 keyboard	 is
added	hot	 to	a	USB	bus	on	a	platform,	 the	end	user	would	expect	 the	keyboard	to	be	active.	A
USB	Bus	driver	could	detect	the	hot	add	event	and	create	a	child	handle	for	the	keyboard	device.
However,	since	drivers	are	not	connected	to	controllers	unless	ConnectController()	is	called
the	 keyboard	 would	 not	 become	 an	 active	 input	 device.	 Making	 the	 keyboard	 driver	 active
requires	 the	USB	Bus	 driver	 to	 call	 ConnectController()	 when	 a	 hot	 add	 event	 occurs.	 In
addition,	the	USB	Bus	driver	would	have	to	call	DisconnectController()	when	a	hot	remove
event	occurs.

Device	drivers	are	also	affected	by	these	hot	plug	events.	In	the	case	of	USB,	a	device	can	be
removed	without	any	notice.	This	means	 that	 the	Stop()	 functions	of	USB	device	drivers	must
deal	with	shutting	down	a	driver	for	a	device	that	is	no	longer	present	in	the	system.	As	a	result,
any	 outstanding	 I/O	 requests	 must	 be	 flushed	 without	 actually	 being	 able	 to	 touch	 the	 device
hardware.

In	 general,	 adding	 support	 for	 hot	 plug	 events	 greatly	 increases	 the	 complexity	 of	 both	 bus
drivers	and	device	drivers.	Adding	this	support	is	up	to	the	driver	writer,	so	the	extra	complexity
and	 size	 of	 the	 driver	 must	 be	 weighed	 against	 the	 need	 for	 the	 feature	 in	 the	 pre-boot
environment.

The	 two	 example	 code	 sequences	 below	 provide	 guidance	 on	 how	 a	 device	 driver	writer
might	discover	 if	 it	 in	 fact	manages	 the	candidate	hardware	device.	These	mechanisms	 include
looking	at	the	controller	handle	in	the	first	example	and	examining	the	device	path	in	the	second
example.

Pseudo	Code

The	algorithms	for	the	Start()	 function	for	 three	different	 types	of	drivers	are	presented	here.
How	the	Start()	function	of	a	driver	is	implemented	can	affect	how	the	Supported()	 function
is	 implemented.	 All	 of	 the	 services	 in	 the	 EFI_DRIVER_BINDING_PROTOCOL	 need	 to	 work
together	 to	make	sure	 that	all	 resources	opened	or	allocated	 in	Supported()	and	Start()	 are
released	in	Stop().

The	 first	algorithm	 is	a	 simple	device	driver	 that	does	not	create	any	additional	handles.	 It
only	attaches	one	or	more	protocols	to	an	existing	handle.	The	second	is	a	simple	bus	driver	that
always	 creates	 all	 of	 its	 child	 handles	 on	 the	 first	 call	 to	 Start().	 It	 does	 not	 attach	 any
additional	protocols	to	the	handle	for	the	bus	controller.	The	third	is	a	more	advanced	bus	driver
that	can	either	create	one	child	handles	at	a	time	on	successive	calls	to	Start(),	or	it	can	create
all	of	 its	child	handles	or	all	of	 the	 remaining	child	handles	 in	a	 single	call	 to	Start().	 Once
again,	it	does	not	attach	any	additional	protocols	to	the	handle	for	the	bus	controller.

Device	Driver

1.	 Open	all	required	protocols	with	OpenProtocol().	If	this	driver	allows	the	opened
protocols	to	be	shared	with	other	drivers,	then	it	should	use	an	Attribute	of
EFI_OPEN_PROTOCOL_BY_DRIVER.	If	this	driver	does	not	allow	the	opened	protocols	to
be	shared	with	other	drivers,	then	it	should	use	an	Attribute	of
EFI_OPEN_PROTOCOL_BY_DRIVER	|	EFI_OPEN_PROTOCOL_EXCLUSIVE.	It	must	use	the
same	Attribute	value	that	was	used	in	Supported().

2.	 	If	any	of	the	calls	to	OpenProtocol()	in	Step	1	returned	an	error,	then	close	all	of	the
protocols	opened	in	Step	1	with	CloseProtocol(),	and	return	the	status	code	from	the
call	to	OpenProtocol()	that	returned	an	error.

3.	 Ignore	the	parameter	RemainingDevicePath.

4.	 Initialize	the	device	specified	by	ControllerHandle.	If	an	error	occurs,	close	all	of	the
protocols	opened	in	Step	1	with	CloseProtocol(),	and	return	EFI_DEVICE_ERROR.

5.	 Allocate	and	initialize	all	of	the	data	structures	that	this	driver	requires	to	manage	the
device	specified	by	ControllerHandle.	This	would	include	space	for	public	protocols
and	space	for	any	additional	private	data	structures	that	are	related	to	ControllerHandle.
If	an	error	occurs	allocating	the	resources,	then	close	all	of	the	protocols	opened	in	Step
1	with	CloseProtocol(),	and	return	EFI_OUT_OF_RESOURCES.

6.	 Install	all	the	new	protocol	interfaces	onto	ControllerHandle	using
InstallProtocolInterface().	If	an	error	occurs,	close	all	of	the	protocols	opened	in
Step	1	with	CloseProtocol(),	and	return	the	error	from
InstallProtocolInterface().

7.	 Return	EFI_SUCCESS.

Bus	Driver	that	Creates	All	of	Its	Child	Handles	on	the	First	Call	to	Start()

1.	 Open	all	required	protocols	with	OpenProtocol().	If	this	driver	allows	the	opened
protocols	to	be	shared	with	other	drivers,	then	it	should	use	an	Attribute	of
EFI_OPEN_PROTOCOL_BY_DRIVER.	If	this	driver	does	not	allow	the	opened
protocols	to	be	shared	with	other	drivers,	then	it	should	use	an	Attribute	of
EFI_OPEN_PROTOCOL_BY_DRIVER	|	EFI_OPEN_PROTOCOL_EXCLUSIVE.	It	must	use	the
same	Attribute	value	that	was	used	in	Supported().

2.	 If	any	of	the	calls	to	OpenProtocol()	in	Step	1	returned	an	error,	then	close	all	of	the
protocols	opened	in	Step	1	with	CloseProtocol(),	and	return	the	status	code	from	the
call	to	OpenProtocol()	that	returned	an	error.

3.	 Ignore	the	parameter	RemainingDevicePath.
4.	 Initialize	the	device	specified	by	ControllerHandle.	If	an	error	occurs,	close	all	of	the

protocols	opened	in	Step	1	with	CloseProtocol(),	and	return	EFI_DEVICE_ERROR.
5.	 Discover	all	the	child	devices	of	the	bus	controller	specified	by	Controller-Handle.
6.	 If	the	bus	requires	it,	allocate	resources	to	all	the	child	devices	of	the	bus	controller

specified	by	ControllerHandle.
7.	 FOR	each	child	C	of	ControllerHandle
8.	 Allocate	and	initialize	all	of	the	data	structures	that	this	driver	requires	to	manage	the

child	device	C.	This	would	include	space	for	public	protocols	and	space	for	any
additional	private	data	structures	that	are	related	to	the	child	device	C.	If	an	error	occurs
allocating	the	resources,	then	close	all	of	the	protocols	opened	in	Step	1	with
CloseProtocol(),	and	return	EFI_OUT_OF_RESOURCES.

9.	 If	the	bus	driver	creates	device	paths	for	the	child	devices,	then	create	a	device	path	for
the	child	C	based	upon	the	device	path	attached	to	ControllerHandle.

10.	 Initialize	the	child	device	C.	If	an	error	occurs,	close	all	of	the	protocols	opened	in	Step
1	with	CloseProtocol(),	and	return	EFI_DEVICE_ERROR.

11.	 Create	a	new	handle	for	C,	and	install	the	protocol	interfaces	for	child	device	C.	This
may	include	the	EFI_DEVICE_PATH_PROTOCOL.

12.	 Call	OpenProtocol()	on	behalf	of	the	child	C	with	an	Attribute	of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

13.	 END	FOR
14.	 Return	EFI_SUCCESS.

Bus	Driver	that	Is	Able	to	Create	All	or	One	of	Its	Child	Handles	on	Each	Call	to	Start():

1.	 Open	all	required	protocols	with	OpenProtocol().	If	this	driver	allows	the	opened
protocols	to	be	shared	with	other	drivers,	then	it	should	use	an	Attribute	of
EFI_OPEN_PROTOCOL_BY_DRIVER.	If	this	driver	does	not	allow	the	opened	protocols	to
be	shared	with	other	drivers,	then	it	should	use	an	Attribute	of
EFI_OPEN_PROTOCOL_BY_DRIVER	|	EFI_OPEN_PROTOCOL_EXCLUSIVE.	It	must	use	the
same	Attribute	value	that	was	used	in	Supported().

2.	 If	any	of	the	calls	to	OpenProtocol()	in	Step	1	returned	an	error,	then	close	all	of	the
protocols	opened	in	Step	1	with	CloseProtocol(),	and	return	the	status	code	from	the
call	to	OpenProtocol()	that	returned	an	error.

3.	 Initialize	the	device	specified	by	ControllerHandle.	If	an	error	occurs,	close	all	of	the
protocols	opened	in	Step	1	with	CloseProtocol(),	and	return	EFI_DEVICE_ERROR.

4.	 IF	RemainingDevicePath	is	not	NULL,	THEN
5.	 C	is	the	child	device	specified	by	RemainingDevicePath.
6.	 Allocate	and	initialize	all	of	the	data	structures	that	this	driver	requires	to	manage	the

child	device	C.	This	would	include	space	for	public	protocols	and	space	for	any
additional	private	data	structures	that	are	related	to	the	child	device	C.	If	an	error	occurs
allocating	the	resources,	then	close	all	of	the	protocols	opened	in	Step	1	with
CloseProtocol(),	and	return	EFI_OUT_OF_RESOURCES.

7.	 If	the	bus	driver	creates	device	paths	for	the	child	devices,	then	create	a	device	path	for
the	child	C	based	upon	the	device	path	attached	to	ControllerHandle.

8.	 Initialize	the	child	device	C.
9.	 Create	a	new	handle	for	C,	and	install	the	protocol	interfaces	for	child	device	C.	This

may	include	the	EFI_DEVICE_PATH_PROTOCOL.
10.	 Call	OpenProtocol()	on	behalf	of	the	child	C	with	an	Attribute	of

EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
11.	 ELSE
12.	 Discover	all	the	child	devices	of	the	bus	controller	specified	by	Controller-Handle.
13.	 If	the	bus	requires	it,	allocate	resources	to	all	the	child	devices	of	the	bus	controller

specified	by	ControllerHandle.
14.	 FOR	each	child	C	of	ControllerHandle
15.	 Allocate	and	initialize	all	of	the	data	structures	that	this	driver	requires	to	manage	the

child	device	C.	This	would	include	space	for	public	protocols	and	space	for	any
additional	private	data	structures	that	are	related	to	the	child	device	C.	If	an	error	occurs
allocating	the	resources,	then	close	all	of	the	protocols	opened	in	Step	1	with
CloseProtocol(),	and	return	EFI_OUT_OF_RESOURCES.

16.	 If	the	bus	driver	creates	device	paths	for	the	child	devices,	then	create	a	device	path	for
the	child	C	based	upon	the	device	path	attached	to	ControllerHandle.

17.	 Initialize	the	child	device	C.
18.	 Create	a	new	handle	for	C,	and	install	the	protocol	interfaces	for	child	device	C.	This

may	include	the	EFI_DEVICE_PATH_PROTOCOL.
19.	 Call	OpenProtocol()	on	behalf	of	the	child	C	with	an	Attribute	of

EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
20.	 END	FOR
21.	 END	IF
22.	 Return	EFI_SUCCESS.

Listed	below	is	sample	code	of	the	Start()	function	of	device	driver	for	a	device	on	the	XYZ
bus.	 The	XYZ	 bus	 is	 abstracted	with	 the	 EFI_XYZ_IO_PROTOCOL.	 This	 driver	 does	 allow	 the
EFI_XYZ_IO_PROTOCOL	 to	 be	 shared	 with	 other	 drivers,	 and	 just	 the	 presence	 of	 the
EFI_XYZ_IO_PROTOCOL	 on	 ControllerHandle	 is	 enough	 to	 determine	 if	 this	 driver	 supports
ControllerHandle.	 This	 driver	 installs	 the	 EFI_ABC_IO_PROTOCOL	 on	ControllerHandle.	 The
gBS	and	gMyImageHandle	variables	are	initialized	in	this	driver’s	entry	point.

The	following	code	sequence	provides	a	generic	example	of	what	a	driver	can	do	in	its	start
routine	in	the	hope	of	particularizing	the	guidance	listed	above.

Additional	Innovations

In	addition	to	the	basic	capabilities	for	booting,	such	as	support	for	the	various	buses,	there	are
other	classes	of	feature	drivers	that	provide	capabilities	to	the	platform.	Some	examples	of	these
feature	drivers	include	security,	manageability,	and	networking.

Security

In	 addition	 to	 the	 bus	 driver-based	 architecture,	 the	 provenance	 of	 the	 UEFI	 driver	may	 be	 a
concern	 for	 some	 vendors.	 Specifically,	 if	 the	UEFI	 driver	 is	 loaded	 from	 a	 host-bus	 adapter
(HBA)	PCI	card	or	from	the	UEFI	system	partition,	the	integrity	of	the	driver	could	be	called	into
question.	As	such,	the	UEFI	2.6	Specification	describes	a	means	by	which	to	enroll	signed	UEFI
drivers	and	applications.	The	particular	signature	format	is	Authenticode,	which	is	a	well-known
usage	of	X509V2	certificates	and	PKCS#7	signature	formats.	The	use	of	a	well-known	embedded
signature	 format	 in	 the	 PE/COFF	 images	 of	 the	 UEFI	 drivers	 allows	 for	 interoperable	 trust,
including	the	use	of	Certificate	Authorities	(CAs),	such	as	Verisign,	 to	sign	the	executables	and
distribute	the	credentials.	More	information	on	the	enrollment	can	be	found	in	Chapter	27	of	the
UEFI	2.6	Specification.	Information	on	the	Windows	Authenticode	Portable	Executable	Signature
Format	 can	 be	 found	 at
http://www.microsoft.com/whdc/winlogo/drvsign/Authenticode_PE.mspx.

Other	 security	 features	 in	UEFI	2.6	 include	 the	User	 Identity	 (UID)	 infrastructure.	The	UID
allows	for	 the	 inclusion	of	credential	provider	drivers,	such	as	biometric	devices,	smart	cards,
and	other	authentication	methods,	into	a	user	manager	framework.	This	framework	will	allow	for
combining	the	factors	from	the	various	credential	providers	and	assigning	rights	to	different	UEFI
users.	One	use	case	could	include	only	the	administrator	having	access	to	the	USB	devices	in	the
pre-OS,	whereas	 other	 users	 could	 only	 access	 the	 boot	 loader	 on	 the	UEFI	 system	 partition.
More	information	on	UID	can	be	found	in	Chapter	31	of	the	UEFI	2.6	Specification.

Manageability

The	 UEFI	 driver	 model	 has	 also	 introduced	 the	 Driver	 Health	 Protocol.	 The	 Driver	 Health
Protocol	exposes	additional	capabilities	that	a	boot	manager	might	use	in	concert	with	a	device.
These	 capabilities	 include	 EFI_DRIVER_HEALTH_PROTOCOL.	 GetHealthStatus()	 and
EFI_DRIVER_HEALTH_PROTOCOL.Repair()	 services.	 The	 former	 will	 allow	 the	 boot
manager	 to	ascertain	 the	state	of	 the	device,	and	the	 latter	API	will	allow	for	 the	 invocation	of
some	recovery	operation.	An	example	of	the	usage	may	include	a	large	solid-state	disk	cache	or
redundant	array	of	inexpensive	disks	(RAID).	If	the	system	were	powered	down	during	operating
system	runtime	 in	an	 inconsistent	state,	 say	not	having	 the	RAID5	parity	disk	 fully	updated,	 the
driver	 health	 protocol	 would	 allow	 for	 exposing	 the	 need	 to	 synchronize	 the	 cache	 or	 RAID
during	the	pre-OS	without	“disappearing”	for	a	long	period	during	this	operation	and	making	the
user	 believe	 the	 machine	 had	 failed.	More	 information	 on	 the	 Driver	 Health	 Protocol	 can	 be
found	in	Chapter	10	of	the	UEFI	2.6	Specification.	In	addition	to	the	firmware	healthy	protocol,

http://www.microsoft.com/whdc/winlogo/drvsign/Authenticode_PE.mspx

there	have	been	evolutions	in	the	firmware	management	protocol	(FMP),	as	described	in	Chapter
22	of	the	UEFI	2.6	specification.	This	protocol	allows	for	host	processing	of	capsule	updates	by
devices.	As	such,	it	works	in	blended	scenarios	with	the	EFI	System	Resource	Table	(ESRT)	that
exposes	 updatable	 elements	 and	 the	 existing	 UpdateCapsule	 runtime	 service.	 This	 scenario	 is
shown	below.

Figure	3.8:	ESRT,	Capsule,	FMP

Networking

The	UEFI	driver	model	has	also	evolved	to	support	complex	device	hierarchies,	such	as	a	dual
IPV4	 and	 IPV6	modular	 network	 stack.	 Figure	3.8	 is	 a	 picture	 of	 the	 Internet	 Small	Computer
Systems	Interface	(iSCSI)	network	application	atop	both	the	IPV4	and	IPV6	network	stack.

Figure	3.9:	ISCSI	on	IPV4	and	IPV6

In	addition	to	the	ISCSI	usage	above,	the	UEFI	standard	now	has	support	for	HTTP	boot.

Figure	3.10:	HTTP	software	stack

Both	of	these	implementations	can	be	found	in	on	the	Tianocore	website	located	at	http://www.tia
nocore.org/.	HTTP	builds	upon	the	same	TCP	protocol	found	in	ISCSI,	but	unlike	the	earlier	PXE
based	upon	UDP	and	TFTP,	HTTP	provides	a	connectionoriented	download	experience.	Beyond
the	connection-oriented	nature	of	HTTP	boot,	the	scenario	adds	DNS	support	so	that	named	octets
like	aa.bb.cc.dd	are	not	needed	 for	entering	 the	boot	 server,	but	 instead	human-readable	names
like	 can	 be	 used.	And	 finally,	HTTP	 boot	 allows	 for	 being	 routable	 over	 Port	 80.	 In	 the	 past
TFTP-based	PXE	used	ports	that	were	typically	blocked	on	enterprise	routers.	In	summary,	HTTP
boot	makes	the	boot,	deployment,	and	recovery	scenarios	from	UEFI	truly	wide	area	network	and
internet-wide	capable.

A	common	use-case	for	booting	includes	the	following:

Figure	3.11:	HTTP	network	boot

One	 notable	 infrastructure	 element	 precipitated	 by	 this	 modular	 design	 includes	 the	 Service
Binding	Protocol	(SBP).	The	EFI_DRIVER_BINDING_PROTOCOL	allows	for	producing	a	set
of	 protocols	 related	 to	 a	 device	 via	 simple	 layering,	 but	 for	 more	 complex	 relationships	 like
graphs	and	trees,	the	driver	binding	protocol	was	found	to	be	deficient.	For	this	reason,	the	SBP
provides	a	member	function	to	create	a	child	handle	with	a	new	protocol	installed	upon	it.	This
allows	for	the	more	generalized	via	as	shown	in	Figure	3.8.

http://www.tianocore.org/

Summary

This	chapter	has	 introduced	 the	UEFI	driver	model	and	some	sample	drivers.	The	UEFI	driver
model	allows	for	support	of	modern	bus	architectures	in	addition	to	the	lazy	activation	of	devices
needed	 by	 boot	 for	 today’s	 platforms	 and	 designs	 in	 the	 future.	 The	 support	 for	 buses	 is	 key
because	 most	 of	 the	 storage,	 console,	 and	 networking	 devices	 are	 attached	 via	 an	 industry-
standard	bus	like	USB,	PCI,	and	SCSI.	The	architecture	described	is	general	enough	to	support
these	and	future	evolutions	 in	platform	hardware.	In	addition	to	access	 to	boot	devices,	 though,
there	are	other	features	and	innovations	that	need	to	be	surfaced	in	the	platform.	UEFI	drivers	are
the	 unit	 of	 delivery	 for	 these	 types	 of	 capabilities,	 and	 examples	 of	 networking,	 security,	 and
management	feature	drivers	were	reviewed.

Chapter	4	–	Protocols	You	Should	Know
Common	sense	ain’t	common.

—Will	Rogers

This	 chapter	 describes	 protocols	 that	 everyone	 who	 is	 working	 with	 the	 Unified	 Extensible
Firmware	 Interface	 (UEFI),	 whether	 creating	 device	 drivers,	 UEFI	 pre-OS	 applications,	 or
platform	firmware,	should	know.	The	protocols	are	illustrated	by	a	few	examples,	beginning	with
the	 most	 common	 exercise	 from	 any	 programming	 text,	 namely	 “Hello	 world.”	 The	 test
application	listed	here	is	the	simplest	possible	application	that	can	be	written.	It	does	not	depend
upon	 any	UEFI	Library	 functions,	 so	 the	UEFI	Library	 is	 not	 linked	 into	 the	 executable	 that	 is
generated.	This	 test	 application	 uses	 the	SystemTable	 that	 is	 passed	 into	 the	 entry	 point	 to	 get
access	to	the	UEFI	console	devices.	The	console	output	device	is	used	to	display	a	message	using
the	 OutputString()	 function	 of	 the	 SIMPLE_TEXT_OUTPUT_INTERFACE	 protocol,	 and	 the
application	 waits	 for	 a	 keystroke	 from	 the	 user	 on	 the	 console	 input	 device	 using	 the
WaitForEvent()	service	with	the	WaitForKey	event	in	the	SIMPLE_INPUT_INTERFACE	protocol.
Once	a	key	is	pressed,	the	application	exits.

To	execute	an	UEFI	application,	type	the	program’s	name	at	 the	UEFI	Shell	command	line.	The
following	examples	show	how	to	run	the	test	application	described	above	from	the	UEFI	Shell.
The	application	waits	for	the	user	to	press	a	key	before	returning	to	the	UEFI	Shell	prompt.	It	is
assumed	that	hello.efi	is	in	the	search	path	of	the	UEFI	Shell	environment.

EFI	OS	Loaders

This	section	discusses	the	special	considerations	that	are	required	when	writing	an	OS	loader.	An
OS	loader	 is	 a	 special	 type	 of	UEFI	 application	 responsible	 for	 transitioning	 a	 system	 from	 a
firmware	environment	into	an	OS	environment.	To	accomplish	this	task,	several	important	steps
must	be	taken:

1.	 The	OS	loader	must	determine	from	where	it	was	loaded.	This	determination	allows	an
OS	loader	to	retrieve	additional	files	from	the	same	location.

2.	 The	OS	loader	must	determine	where	in	the	system	the	OS	exists.	Typically,	the	OS
resides	on	a	partition	of	a	hard	drive.	However,	the	partition	where	the	OS	exists	may	not
use	a	file	system	that	is	recognized	by	the	UEFI	environment.	In	this	case,	the	OS	loader
can	only	access	the	partition	as	a	block	device	using	only	block	I/	O	operations.	The	OS
loader	will	then	be	required	to	implement	or	load	the	file	system	driver	to	access	files	on
the	OS	partition.

3.	 The	OS	loader	must	build	a	memory	map	of	the	physical	memory	resources	so	that	the	OS
kernel	can	know	what	memory	to	manage.	Some	of	the	physical	memory	in	the	system
must	remain	untouched	by	the	OS	kernel,	so	the	OS	loader	must	use	the	UEFI	APIs	to
retrieve	the	system’s	current	memory	map.

4.	 An	OS	has	the	option	of	storing	boot	paths	and	boot	options	in	nonvolatile	storage	in	the
form	of	environment	variables.	The	OS	loader	may	need	to	use	some	of	the	environment
variables	that	are	stored	in	nonvolatile	storage.	In	addition,	the	OS	loader	may	be
required	to	pass	some	of	the	environment	variables	to	the	OS	kernel.

5.	 The	next	step	is	to	call	ExitBootServices().	This	call	can	be	done	from	either	the	OS
loader	or	from	the	OS	kernel.	Special	care	must	be	taken	to	guarantee	that	the	most
current	memory	map	has	been	retrieved	prior	to	making	this	call.	Once
ExitBootServices()	had	been	called,	no	more	UEFI	Boot	Services	calls	can	be	made.
At	some	point,	either	just	prior	to	calling	Exit-BootServices()	or	just	after,	the	OS
loader	will	transfer	control	to	the	OS	kernel.

6.	 Finally,	after	ExitBootServices()	has	been	called,	the	UEFI	Boot	Services	calls	are	no
longer	available.	This	lack	of	availability	means	that	once	an	OS	kernel	has	taken	control
of	the	system,	the	OS	kernel	may	only	call	UEFI	Runtime	Services.

A	 complete	 listing	 of	 a	 sample	 application	 for	 an	 OS	 loader	 can	 be	 found	 below.	 The	 code
fragments	 in	 the	 following	 sections	 do	 not	 perform	 any	 error	 checking.	 Also,	 the	 OS	 loader
sample	application	makes	use	of	several	UEFI	Library	functions	to	simplify	the	implementation.

The	 output	 shown	 below	 starts	 by	 printing	 out	 the	 device	 path	 and	 the	 file	 path	 of	 the	OS
loader	 itself.	 It	 also	 shows	where	 in	memory	 the	OS	 loader	 resides	 and	 how	many	 bytes	 it	 is
using.	Next,	 it	 loads	 the	 file	OSKERNEL.BIN	 into	memory.	The	 file	OSKERNEL.BIN	 is	 retrieved
from	the	same	directory	as	the	image	of	the	OS	loader	sample	of	Figure	4.1.

Figure	4.1:	EFI	Loader	in	System	Diagram

The	next	section	of	the	output	shows	the	first	block	of	several	block	devices.	The	first	one	is	the
first	 block	 of	 the	 floppy	 drive	with	 a	 FAT12	 file	 system.	 The	 second	 one	 is	 the	Master	 Boot
Record	(MBR)	from	the	hard	drive.	The	third	one	is	the	first	block	of	a	large	FAT32	partition	on
the	same	hard	drive,	and	the	fourth	one	is	the	first	block	of	a	smaller	FAT16	partition	on	the	same
hard	drive.

The	final	step	shows	the	pointers	to	all	 the	system	configuration	tables,	 the	system’s	current
memory	map,	and	a	list	of	all	the	system’s	environment	variables.	The	very	last	step	shown	is	the
OS	loader	calling	ExitBootServices().

Device	Path	and	Image	Information	of	the	OS	Loader

The	following	code	fragment	shows	the	steps	that	are	required	to	get	the	device	path	and	file
path	 to	 the	 OS	 loader	 itself.	 The	 first	 call	 to	 HandleProtocol()	 gets	 the
LOADED_IMAGE_PROTOCOL	 interface	 from	 the	 ImageHandle	 that	was	passed	 into	 the	OS	 loader
application.	The	second	call	to	HandleProtocol()	gets	the	DEVICE_PATH_PROTOCOL	interface	to
the	device	handle	of	 the	OS	 loader	 image.	These	 two	calls	 transmit	 the	device	path	of	 the	OS
loader	image,	the	file	path,	and	other	image	information	to	the	OS	loader	itself.

Accessing	Files	in	the	Device	Path	of	the	OS	Loader

The	previous	section	shows	how	to	retrieve	the	device	path	and	the	image	path	of	the	OS	loader
image.	The	following	code	fragment	shows	how	to	use	this	information	to	open	another	file	called
OSKERNEL.BIN	that	resides	in	the	same	directory	as	the	OS	loader	itself.	The	first	step	is	to	use
HandleProtocol()	to	get	the	FILE_SYSTEM_PROTOCOL	 interface	to	 the	device	handle	retrieved
in	the	previous	section.	Then,	 the	disk	volume	can	be	opened	so	file	access	calls	can	be	made.
The	end	result	is	that	the	variable	CurDir	is	a	file	handle	to	the	same	partition	in	which	the	OS
loader	resides.

The	next	step	is	to	build	a	file	path	to	OSKERNEL.BIN	that	exists	in	the	same	directory	as	the	OS
loader	image.	Once	the	path	is	built,	the	file	handle	CurDir	can	be	used	to	call	Open(),	Close(),
Read(),	and	Write()	on	the	OSKERNEL.BIN	file.	The	following	code	fragment	builds	a	file	path,
opens	the	file,	reads	it	into	an	allocated	buffer,	and	closes	the	file.

Finding	the	OS	Partition

The	UEFI	 sample	environment	materializes	 a	BLOCK_IO_PROTOCOL	 instance	 for	 every	partition
that	 is	 found	 in	 a	 system.	 An	 OS	 loader	 can	 search	 for	 OS	 partitions	 by	 looking	 at	 all	 the
BLOCK_IO	 devices.	 The	 following	 code	 fragment	 uses	 LibLocateHandle()	 to	 get	 a	 list	 of
BLOCK_IO	device	handles.	These	handles	are	then	used	to	retrieve	the	first	block	from	each	one	of
these	 BLOCK_IO	 devices.	 The	 HandleProtocol()	 API	 is	 used	 to	 get	 the
DEVICE_PATH_PROTOCOL	and	BLOCK_IO_PROTOCOL	instances	for	each	of	the	BLOCK_IO	devices.
The	variable	BlkIo	is	a	handle	to	the	BLOCK_IO	device	using	the	BLOCK_IO_PROTOCOL	interface.
At	this	point,	a	ReaddBlocks()	call	can	be	used	to	read	the	first	block	of	a	device.	The	sample
OS	loader	just	dumps	the	contents	of	the	block	to	the	display.	A	real	OS	loader	would	have	to	test
each	block	read	to	see	if	it	is	a	recognized	partition.	If	a	recognized	partition	is	found,	then	the	OS
loader	can	implement	a	simple	file	system	driver	using	the	UEFI	API	ReadBlocks()	function	to
load	additional	data	from	that	partition.

Getting	the	Current	System	Configuration

The	system	configuration	is	available	through	the	SystemTable	data	structure	 that	 is	passed	 into
the	OS	loader.	The	operating	system	loader	is	an	UEFI	application	that	is	responsible	for	bridging
the	 gap	 between	 the	 platform	 firmware	 and	 the	 operating	 system	 runtime.	 The	 System	 Table
informs	 the	 loader	 of	many	 things:	 the	 services	 available	 from	 the	 platform	 firmware	 (such	 as
block	and	console	services	for	loading	the	OS	kernel	binary	from	media	and	interacting	with	the
user	prior	to	the	OS	drivers	are	loaded,	respectively)	and	access	to	industry	standard	tables	like
ACPI,	 SMBIOS,	 and	 so	 on.	 Five	 tables	 are	 available,	 and	 their	 structure	 and	 contents	 are
described	in	the	appropriate	specifications.

Getting	the	Current	Memory	Map

One	UEFI	Library	 function	 can	 retrieve	 the	memory	map	maintained	by	 the	UEFI	 environment.
While	 the	 loader	 is	 running,	 the	 memory	 has	 been	 managed	 by	 the	 platform	 firmware.	 It	 has
allocated	memory	for	both	firmware	usage	(boot	services	memory)	and	other	memory	that	needs
to	persist	into	the	OS	runtime	(runtime	memory).	Until	the	loader	passes	final	control	to	the	OS
kernel	and	invokes	Exit-BootServices(),	the	UEFI	platform	firmware	manages	the	allocation
of	memory.	The	means	 by	which	 the	OS	 loader	 and	 other	UEFI	 applications	 can	 ascertain	 the
allocation	of	memory	 is	via	 the	memory	map	services.	The	following	code	fragment	shows	 the
use	of	this	function	to	ascertain	the	memory	map,	and	it	displays	the	contents	of	the	memory	map.
An	OS	 loader	must	 pay	 special	 attention	 to	 the	MapKey	 parameter.	 Every	 time	 that	 the	 UEFI
environment	 modifies	 the	 memory	 map	 that	 it	 maintains,	 the	MapKey	 is	 incremented.	 An	 OS
loader	needs	to	pass	the	current	memory	map	to	the	OS	kernel.	Depending	on	what	functions	the
OS	 loader	 calls	 between	 the	 time	 the	 memory	 map	 is	 retrieved	 and	 the	 time	 that	 Exit-
BootServices()	is	called,	the	memory	map	may	be	modified.	In	general,	the	OS	loader	should
retrieve	 the	 memory	 map	 just	 before	 calling	 ExitBootServices().	 If	 ExitBootServices()
fails	because	the	MapKey	does	not	match,	then	the	OS	loader	must	get	a	new	copy	of	the	memory
map	and	try	again.

Getting	Environment	Variables

The	following	code	fragment	shows	how	to	extract	all	 the	environment	variables	maintained	by
the	UEFI	environment.	It	uses	the	GetNextVariableName()	API	to	walk	the	entire	list.

Transitioning	to	an	OS	Kernel

A	 single	 call	 to	 ExitBootServices()	 terminates	 all	 the	 UEFI	 Boot	 Services	 that	 the	 UEFI
environment	provides.	From	 that	point	on,	only	 the	UEFI	Runtime	Services	may	be	used.	Once
this	call	is	made,	the	OS	loader	needs	to	prepare	for	the	transition	to	the	OS	kernel.	It	is	assumed
that	 the	 OS	 kernel	 has	 full	 control	 of	 the	 system	 and	 that	 only	 a	 few	 firmware	 functions	 are
required	by	the	OS	kernel.	These	functions	are	the	UEFI	Runtime	Services.	The	OS	loader	must
pass	the	SystemTable	to	the	OS	kernel	so	that	the	OS	kernel	can	make	the	Runtime	Services	calls.
The	 exact	 mechanism	 that	 is	 used	 to	 transition	 from	 the	 OS	 loader	 to	 the	 OS	 kernel	 is
implementationdependent.	 It	 is	 important	 to	 note	 that	 the	OS	 loader	 could	 transition	 to	 the	OS
kernel	prior	to	calling	ExitBootServices().	 In	this	case,	 the	OS	kernel	would	be	responsible
for	calling	ExitBootServices()	before	taking	full	control	of	the	system.

Summary

This	chapter	has	provided	an	overview	of	some	common	protocols	and	their	demonstration	via	a
sample	operating	system	loader	application.	Given	that	UEFI	has	been	primarily	designed	as	an
operating	 system	 loader	 environment,	 this	 is	 a	 key	 chapter	 for	 demonstrating	 the	 usage	 and
capability	of	the	UEFI	service	set.

Chapter	5	–	UEFI	Runtime
Adding	manpower	to	a	late	software	project	makes	it	later.

—Brook’s	Law

This	 chapter	 describes	 the	 fundamental	 services	 that	 are	made	 available	 in	 an	UEFI-compliant
system.	The	services	are	defined	by	interface	functions	that	may	be	used	by	code	running	in	the
UEFI	 environment.	 Such	 code	 may	 include	 protocols	 that	 manage	 device	 access	 or	 extend
platform	capabilities.	In	this	chapter,	the	runtime	services	will	be	the	focus	of	discussion.	These
runtime	services	are	functions	that	are	available	both	during	UEFI	operation	and	when	the	OS	has
been	launched	and	running.

During	boot,	system	resources	are	owned	by	the	firmware	and	are	controlled	through	a	variety	of
system	services	that	expose	callable	APIs.	In	UEFI	there	are	two	primary	types	of	services:

Boot	Services	–	Functions	that	are	available	prior	to	the	launching	of	the	boot	target	(such	as
the	OS),	and	prior	to	the	calling	of	the	ExitBootServices()	function.
Runtime	 Services	 –	 Functions	 that	 are	 available	 both	 during	 the	 boot	 phase	 prior	 to	 the
launching	of	the	boot	target	and	after	the	boot	target	is	executing.

Figure	5.1	illustrates	the	phases	of	boot	operation	that	a	platform	evolves	through.

Figure	5.1:	Phases	of	Boot	Operation

In	 Figure	 5.1,	 it	 is	 clearly	 evident	 that	 the	 two	 previously	mentioned	 forms	 of	 services	 (Boot
Services	and	Runtime	Services)	are	available	during	the	early	launch	of	the	UEFI	infrastructure

and	 only	 the	 runtime	 services	 are	 available	 after	 the	 remainder	 of	 the	 firmware	 stack	 has
relinquished	 control	 to	 an	 OS	 loader.	 Once	 an	 OS	 loader	 has	 loaded	 enough	 of	 its	 own
environment	 to	 take	 control	 of	 the	 system’s	 continued	 operation	 it	 can	 then	 terminate	 the	 boot
services	with	a	call	to	ExitBootServices().

In	 principle,	 the	ExitBootServices()	 call	 is	 intended	 for	 use	 by	 the	 operating	 system	 to
indicate	 that	 its	 loader	 is	 ready	 to	 assume	 control	 of	 the	 platform	 and	 all	 platform	 resource
management.	 Thus,	 boot	 services	 are	 available	 up	 to	 this	 point	 to	 assist	 the	 OS	 loader	 in
preparing	 to	 boot	 the	 operating	 system.	 Once	 the	 OS	 loader	 takes	 control	 of	 the	 system	 and
completes	 the	operating	 system	boot	process,	only	 runtime	 services	may	be	called.	Code	other
than	the	OS	loader,	however,	may	or	may	not	choose	to	call	ExitBootServices().	This	choice
may	 in	part	depend	upon	whether	or	not	 such	code	 is	designed	 to	make	continued	use	of	UEFI
boot	services	or	the	boot	services	environment.

Isn’t	There	Only	One	Kind	of	Memory?

When	 UEFI	 memory	 is	 allocated,	 it	 is	 “typed”	 according	 to	 certain	 classifications	 which
designate	 the	 general	 purpose	 of	 a	 particular	memory	 type.	 For	 instance,	 one	might	 choose	 to
allocate	a	buffer	as	an	EfiRuntimeServicesData	buffer	if	it	was	desired	that	a	buffer	containing
some	 data	 remained	 available	 into	 the	 runtime	 phase	 of	 platform	 operations.	 When	 allocated
memory,	one	might	think	“Why	not	allocate	everything	as	a	runtime	memory	type	‘just	in	case’?”
Such	activity	is	hazardous	because	when	the	platform	transitions	from	Boot	Services	phase	into
Runtime	phase,	all	of	the	buffers	which	might	have	been	allocated	as	runtime	as	now	frozen	and
unavailable	 to	 the	OS.	Since	 there	 is	 an	 implicit	 assumption	 that	 items	which	 request	 runtime-
enabled	memory	know	what	 they	are	doing,	one	can	imagine	a	proliferation	of	memory	leaks	if
we	simply	assumed	a	single	type	of	memory	usage.	With	this	situation	in	mind,	UEFI	establishes	a
certain	set	of	memory	types	with	certain	expected	usage	associated	with	each.

Table	5.1:	UEFI	Memory	Types	and	Usage	Prior	to	ExitBootServices()

Mnemonic Description
EfiReservedMemoryType Not	used.
EfiLoaderCode The	code	portions	of	a	loaded	application.	(Note	that	UEFI	OS	loaders	are	UEFI

applications.)
EfiLoaderData The	data	portions	of	a	loaded	application	and	the	default	data	allocation	type	used	by	an

application	to	allocate	pool	memory.
EfiBootServicesCode The	code	portions	of	a	loaded	Boot	Services	Driver.
EfiBootServicesData The	data	portions	of	a	loaded	Boot	Serves	Driver,	and	the	default	data	allocation	type	used

by	a	Boot	Services	Driver	to	allocate	pool	memory.
EfiRuntimeServicesCode The	code	portions	of	a	loaded	Runtime	Services	Driver.
EfiRuntimeServicesData The	data	portions	of	a	loaded	Runtime	Services	Driver	and	the	default	data	allocation	type

used	by	a	Runtime	Services	Driver	to	allocate	pool	memory.
EfiConventionalMemory Free	(unallocated)	memory.
EfiUnusableMemory Memory	in	which	errors	have	been	detected.
EfiACPIReclaimMemory Memory	that	holds	the	ACPI	tables.
EfiACPIMemoryNVS Address	space	reserved	for	use	by	the	firmware.
EfiMemoryMappedIO Used	by	system	firmware	to	request	that	a	memory-mapped	IO	region	be	mapped	by	the	OS

to	a	virtual	address	so	it	can	be	accessed	by	UEFI	runtime	services.
EfiMemoryMappedIOPortSpace System	memory-mapped	IO	region	that	is	used	to	translate	memory	cycles	to	IO	cycles	by

the	processor.
EfiPalCode Address	space	reserved	by	the	firmware	for	code	that	is	part	of	the	processor.

Table	5.1	lists	memory	types	and	their	corresponding	usage	prior	to	launching	a	boot	target	(such
as	an	OS).	The	memory	types	that	would	be	used	by	most	runtime	drivers	would	be	those	with	the
keyword	“runtime”	in	them.

However,	 to	 better	 illustrate	 how	 these	memory	 types	 are	 used	 in	 the	 runtime	phase	 of	 the
platform	evolution,	Table	5.2	 illustrates	 how	 these	UEFI	Memory	 types	 are	 used	 after	 the	OS
loader	 has	 called	 ExitBootServices()	 to	 indicate	 the	 transition	 from	 the	 pre-boot,	 to	 the
runtime	phase	of	operations.

Table	5.2:UEFI	Memory	Types	and	Usage	after	ExitBootServices()

Mnemonic Description
EfiReservedMemoryType Not	used.
EfiLoaderCode The	Loader	and/or	OS	may	use	this	memory	as	they	see	fit.	Note:	the	OS	loader	that	called

Exit-BootServices()	is	utilizing	one	or	more	Efi-LoaderCode	ranges.
EfiLoaderData The	Loader	and/or	OS	may	use	this	memory	as	they	see	fit.	Note:	the	OS	loader	that	called

Exit-BootServices()	is	utilizing	one	or	more	Efi-LoaderData	ranges.
EfiBootServicesCode Memory	available	for	general	use.
EfiBootServicesData Memory	available	for	general	use.
EfiRuntimeServicesCode The	memory	in	this	range	is	to	be	preserved	by	the	loader	and	OS	in	the	working	and	ACPI

S1–S3	states.
EfiRuntimeServicesData The	memory	in	this	range	is	to	be	preserved	by	the	loader	and	OS	in	the	working	and	ACPI

S1–S3	states.
EfiConventionalMemory Memory	available	for	general	use.
EfiUnusableMemory Memory	that	contains	errors	and	is	not	to	be	used.
EfiACPIReclaimMemory This	memory	is	to	be	preserved	by	the	loader	and	OS	until	ACPI	is	enabled.	Once	ACPI	is

enabled,	the	memory	in	this	range	is	available	for	general	use.
EfiACPIMemoryNVS This	memory	is	to	be	preserved	by	the	loader	and	OS	in	the	working	and	ACPI	S1–S3

states.
EfiMemoryMappedIO This	memory	is	not	used	by	the	OS.	All	system	memorymapped	IO	information	should

come	from	ACPI	tables.
EfiMemoryMappedIOPortSpace This	memory	is	not	used	by	the	OS.	All	system	memorymapped	IO	port	space	information

should	come	from	ACPI	tables.
EfiPalCode This	memory	is	to	be	preserved	by	the	loader	and	OS	in	the	working	and	ACPI	S1–S3

states.	This	memory	may	also	have	other	attributes	that	are	defined	by	the	processor
implementation.

In	Table	5.2,	one	can	see	how	the	runtime	memory	types	are	preserved,	and	the	BootServices	type
of	memory	is	available	for	the	OS	to	reclaim	as	its	own.

How	Are	Runtime	Services	Exposed?

In	UEFI,	 firmware	services	are	exposed	 through	a	set	of	UEFI	protocol	definitions,	a	series	of
function	pointers	 in	 some	 special	 purpose	 service	 tables,	 and	 finally	 in	 the	UEFI	 configuration
table.	Of	 these	mechanisms	 that	are	used	 to	expose	 firmware	APIs,	only	 the	 following	 two	are
persistent	into	the	runtime	phase	of	computer	operations.

Runtime	Services	Table	-	The	UEFI	Runtime	Services	Table	contains	pointers	to	all	of	the
runtime	 services.	 All	 elements	 in	 the	 UEFI	 Runtime	 Services	 Table	 are	 prototypes	 of
function	pointers	 that	are	valid	after	 the	operating	system	has	 taken	control	of	 the	platform
with	a	call	to	ExitBootServices().
UEFI	Configuration	Table	-	The	UEFI	Configuration	Table	contains	a	set	of	GUID/	pointer
pairs.	The	number	of	entries	in	this	table	can	easily	grow	over	time.	That	is	why	a	GUID	is
used	to	identify	the	configuration	table	type.	This	table	may	contain	at	most	one	instance	of
each	table	type.

The	runtime	services	that	are	exposed	in	the	UEFI	Runtime	Services	Table	at	minimum	define	the
core	 required	 runtime	API	capabilities	of	an	UEFI-compliant	platform.	These	 functions	 include
services	that	expose	time,	virtual	memory,	and	variable	services	at	a	minimum.

The	 information	 exposed	 through	 the	 UEFI	 Configuration	 Table	 is	 going	 to	 vary	 widely
between	platform	implementations.	One	key	thing	to	note,	however,	is	that	the	GUID	associated
with	the	GUID/	pointer	pair	defines	how	one	interprets	the	data	to	which	the	pointer	is	pointing.
The	content	to	which	the	pointer	is	pointed	could	be	a	function/API,	a	table	of	data,	or	practically
anything	else.	Some	examples	of	the	type	of	information	that	can	be	exposed	through	this	table	are
SMBIOS,	ACPI,	and	MPS	tables,	as	well	as	function	prototypes	for	an	UNDI-compliant	network
card.	Figure	5.2	is	an	example	diagram	of	the	interactions	between	the	UEFI	Configuration	Table
and	an	example	function	prototype.

Figure	5.2:	Interactions	between	the	UEFI	Configuration	Table	and	a	Function	Prototype

Time	Services

This	section	describes	 the	core	UEFI	definitions	 for	 time-related	 functions	 that	are	specifically
needed	 by	 operating	 systems	 at	 runtime	 to	 access	 underlying	 hardware	 that	 manages	 time
information	 and	 services.	 The	 purpose	 of	 these	 interfaces	 is	 to	 provide	 runtime	 consumers	 of
these	 services	 an	 abstraction	 for	 hardware	 time	 devices,	 thereby	 relieving	 the	 need	 to	 access
legacy	hardware	devices	directly.	The	functions	listed	in	Table	5.3	 reside	 in	 the	UEFI	Runtime
Services	table.

Table	5.3:	Time-based	Functions	in	the	UEFI	Runtime	Services	Table

Name Type Description
GetTime Runtime Returns	the	current	time	and	date,	and	the	time-keeping	capabilities	of	the	platform.
SetTime Runtime Sets	the	current	local	time	and	date	information.
GetWakeupTime Runtime Returns	the	current	wakeup	alarm	clock	setting.
SetWakeupTime Runtime Sets	the	system	wakeup	alarm	clock	time.

Why	Abstract	Time?

For	a	variety	of	reasons	one	might	choose	to	abstract	the	access	to	the	platform	RealTime	Clock
(RTC).	 First,	 very	 poor	 standard	 mechanisms	 (if	 any)	 exist	 to	 access	 the	 platform’s	 RTC.	 A
variety	of	legacy	interrupts	might	serve	some	purposes,	but	typically	might	not	abstract	sufficient
information	to	be	particularly	useful.	If	a	user	wanted	to	talk	to	the	RTC	directly,	the	user	would
not	 typically	 know	 how	 to	 with	 the	 exception	 of	 using	 some	 of	 the	 standard	 IBM	 CMOS
directives.	Ultimately,	how	one	might	gain	access	to	this	fundamental	piece	of	information	(“What
time	is	it?”)	could	change	over	time.	With	that	in	mind,	one	needed	the	platform	to	provide	a	set
of	 abstractions	 so	 that	 the	 caller	 would	 not	 have	 to	 worry	 about	 the	 vagaries	 of	 varying
programming	 some	RTC	 to	 acquire	 time	 information	or	 to	depend	on	 some	poorly	documented
and	completely	nonstandard	set	of	legacy	interrupts	to	abstract	this	same	data.

Get	Time

Even	though	this	function	is	called	“GetTime”,	it	is	intended	to	return	the	current	time	as	well	as
the	date	 information	along	with	 the	capabilities	of	 the	current	underlying	 time-based	 hardware.
This	service	is	not	intended	to	provide	highly	accurate	timings	beyond	certain	described	levels.
During	the	Boot	Services	phase	of	platform	initialization,	there	are	other	means	by	which	to	do
accurate	 time	 stall	measurements	 (for	 example,	 see	 the	 Stall()	 boot	 services	 function	 in	 the
UEFI	specification).

Even	though	Figure	5.3	shows	the	smallest	granularity	of	 time	measurement	in	nanoseconds,
this	is	by	no	means	intended	as	an	indication	of	the	accuracy	of	the	time	measurement	of	which	the
function	is	capable.	The	only	thing	that	is	guaranteed	by	the	call	to	this	function	is	that	it	returns	a
time	that	was	valid	during	the	call	 to	 the	function.	This	guarantee	 is	more	understandable	when
one	thinks	about	the	processing	time	for	the	call	 to	traverse	various	levels	of	code	between	the

caller	 and	 the	 service	 function	actually	 talking	 to	 the	hardware	device	and	 this	data	 then	being
passed	 back	 to	 the	 caller.	 Since	 this	 is	 a	 call	 initiated	 during	 the	 runtime	 phase	 of	 platform
operations,	the	highly	accurate	timers	that	are	needed	for	small	granularity	timing	events	would	be
provided	by	alternate	(likely	OS-based)	solutions.

Figure	5.3	Example	Time	Definition

Set	Time

This	function	provides	the	ability	to	set	the	current	time	and	date	information	on	the	platform.

Get	Wakeup	Time

This	function	provides	the	abstraction	for	obtaining	the	alarm	clock	settings	for	the	platform.	This
is	often	used	to	determine	if	a	platform	has	been	set	for	being	woken	up,	and	if	so,	at	what	time	it
should	be	woken	up.

Set	Wakeup	Time

Setting	a	system	wakeup	alarm	causes	the	system	to	wake	up	or	power	on	at	the	set	time.	When
the	alarm	fires,	 the	alarm	signal	 is	 latched	until	acknowledged	by	calling	SetWakeupTime()	 to
disable	the	alarm.	If	the	alarm	fires	before	the	system	is	put	into	a	sleeping	or	off	state,	since	the
alarm	signal	is	latched	the	system	will	immediately	wake	up.

Virtual	Memory	Services

This	section	contains	function	definitions	for	 the	virtual	memory	support	 that	may	be	optionally
used	 by	 an	 operating	 system	 at	 runtime.	 If	 an	 operating	 system	 chooses	 to	make	UEFI	 runtime
service	calls	 in	a	virtual	addressing	mode	 instead	of	 the	 flat	physical	mode,	 then	 the	operating
system	must	use	the	services	in	this	section	to	switch	the	UEFI	runtime	services	from	flat	physical
addressing	to	virtual	addressing.	Table	5.4	lists	the	virtual	memory	services	functions	that	UEFI
provides.

Table	5.4:	Virtual	Memory	Services

Name Type Description
SetVirtualAddressMap Runtime Used	by	an	OS	loader	to	convert	from	physical	addressing	to	virtual	addressing.
ConvertPointer Runtime Used	by	UEFI	components	to	convert	internal	pointers	when	switching	to	virtual

addressing.

By	using	these	functions,	the	platform	provides	a	mechanism	by	which	components	that	will	exist
during	 the	 runtime	phase	 of	 operations	 can	 adjust	 their	 own	data	 references	 to	 the	 new	virtual
addresses	that	the	runtime	caller	has	supplied.	This	makes	it	possible	for	the	underlying	firmware
component(s)	to	adjust	from	a	physical	address	mode	to	virtual	address	mode	entity.

This	conversion	applies	to	all	functions	in	the	runtime	services	table	as	well	as	the	pointers	in
the	UEFI	 System	 Table.	 However,	 this	 is	 not	 necessarily	 the	 case	 for	 the	UEFI	 Configuration
Table.	In	the	UEFI	Configuration	Table,	one	is	dealing	with	GUID/	pointer	pairs,	and	since	 the
pointers	 are	 all	 physical	 to	 start	 with	 in	 the	 firmware,	 one	 might	 think	 that	 the	 pointers	 are
converted	 during	 the	 transition	 to	 the	 runtime	 phase	 of	 platform	 operations,	 right?	 In	 this
particular	case,	you	would	be	wrong.

The	GUID	portion	of	 the	GUID/pointer	pair	defines	 the	state	of	 the	pointer	 itself.	 In	 theory,
one	might	have	a	particular	GUID	that	during	runtime	has	a	virtual	address	pointer	paired	with	it,
but	the	next	GUID’	in	the	table	might	very	well	be	a	physical	pointer.	This	is	because	the	UEFI
Configuration	Table	can	often	be	used	to	advertise	certain	pieces	of	information	and	the	consumer
of	this	information	might	have	reason	for	interpreting	the	pointer	as	a	physical	pointer	even	though
the	 OS	 has	 converted	 all	 other	 pertinent	 data	 to	 virtual	 addresses.	 In	 addition,	 the	 UEFI
Configuration	 Table	 often	 might	 be	 pointing	 to	 a	 runtime	 enabled	 function	 prototype.	 In	 most
cases,	the	pointers	for	this	function	would	be	converted,	while	other	items	that	might	be	pointed	at
by	 the	UEFI	Configuration	Table	 (Data	Tables,	 for	 instance)	might	have	no	 reason	 to	have	any
data	be	converted.

Set	Virtual	Address	Map

By	calling	this	service,	 the	agent	 that	 is	 the	owner	of	 the	system’s	memory	map	(the	component
that	 called	 ExitBootServices())	 can	 change	 the	 runtime	 addressing	 mode	 of	 the	 underlying
UEFI	 firmware	 from	physical	 to	virtual.	The	 inputs	of	course	are	 the	new	virtual	memory	map
which	 shows	 an	 array	 of	 memory	 descriptors	 that	 have	 mapping	 information	 for	 all	 runtime
memory	ranges.

When	 this	 service	 is	 called,	 all	 runtime-enabled	 agents	 will	 in	 turn	 be	 called	 through	 a
notification	event	triggered	by	the	SetVirtualAddressMap()	function.

ConvertPointer

The	 ConvertPointer	 function	 is	 used	 by	 an	 UEFI	 component	 during	 the	 Set-

VirtualAddressMap()	operation.	When	the	platform	has	passed	control	to	an	OS	loader	and	it
in	 turn	 calls	 SetVirtualAddressMap(),	 a	 function	 is	 called	 in	 most	 runtime	 drivers	 that
responds	 to	 the	 virtual	 address	 change	 event	 that	 is	 triggered.	 This	 function	 uses	 the
ConvertPointer	service	to	convert	 the	current	physical	pointer	 to	an	appropriate	virtual	address
pointer.	All	pointers	that	the	component	has	allocated	should	be	updated	using	this	mechanism.

Variable	Services

Variables	 are	 defined	 as	 key/value	 pairs	 that	 consist	 of	 identifying	 information,	 attributes,	 and
some	 quantity	 of	 data.	 Variables	 are	 intended	 for	 use	 as	 a	 means	 to	 store	 data	 that	 is	 passed
between	 the	 UEFI	 environment	 implemented	 in	 the	 platform	 and	 UEFI	 OS	 loaders	 and	 other
applications	that	run	in	the	UEFI	environment.

Although	 the	 implementation	 of	 variable	 storage	 is	 not	 specifically	 defined	 for	 a	 given
platform,	variables	must	be	able	 to	persist	across	reboots	of	 the	platform.	This	 implies	 that	 the
UEFI	 implementation	 on	 a	 platform	must	 arrange	 it	 so	 that	 variables	 passed	 in	 for	 storage	 are
retained	and	available	for	use	each	time	the	system	boots,	at	least	until	they	are	explicitly	deleted
or	 overwritten.	 Provision	 of	 this	 type	 of	 nonvolatile	 storage	 may	 be	 very	 limited	 on	 some
platforms,	so	variables	should	be	used	sparingly	 in	cases	where	other	means	of	communicating
information	cannot	be	used.	Table	5.5	lists	the	variable	services	functions	that	UEFI	provides.

Table	5.5:	Variable	Services

Name Type Description
GetVariable Runtime Returns	the	value	of	a	variable.
GetNextVariableName Runtime Enumerates	the	current	variable	names.
SetVariable Runtime Sets	the	value	of	a	variable.

GetVariable

This	 function	returns	 the	value	of	a	given	UEFI	variable.	Since	a	 fully	qualified	UEFI	variable
name	is	composed	of	both	a	human-readable	text	value	paired	with	a	GUID,	a	vendor	can	create
and	manage	its	own	variables	without	 the	risk	of	name	conflicts	by	using	its	own	unique	GUID
value.	For	 instance,	one	can	easily	have	 three	variables	named	“Setup”	 that	 are	wholly	unique
assuming	that	each	of	these	“Setup”	variables	has	a	different	numeric	GUID	value.

One	of	the	key	items	to	note	in	the	definition	of	an	UEFI	variable	is	that	each	one	has	some
attributes	associated	with	it.	These	attributes	are	treated	as	a	bit	field,	which	implies	that	none,
any,	or	all	of	the	bits	can	be	activated	at	any	given	time.	In	the	case	of	UEFI	variables,	however,
there	are	three	defined	attribute	bits	to	be	aware	of:

Nonvolatile	–	a	variable	 that	has	 this	attribute	activated	 is	defined	 to	be	persistent	across
platform	resets.	It	should	also	be	noted	that	 the	explicit	absence	of	 this	bit	being	activated
indicates	 that	 the	 variable	 is	 volatile,	 and	 is	 therefore	 a	 temporary	 variable	 that	 will	 be
absent	once	the	system	resets	or	the	variable	is	deleted.
BootService	 –	 a	 variable	 that	 has	 this	 attribute	 activate	 provides	 read/write	 access	 to	 it
during	 the	 BootService	 phase	 of	 the	 platform	 evolution.	 This	 simply	means	 that	 once	 the
platform	 enters	 the	 runtime	 phase,	 the	 data	 will	 no	 longer	 be	 able	 to	 be	 set	 through	 the
SetVariable	service.
Runtime	–	a	variable	that	has	this	attribute	activated	must	also	have	the	BootService	attribute
activated.	With	this,	the	variable	is	accessible	during	all	phases	of	the	platform	evolution.

GetNextVariableName

Since	the	UEFI	variable	repository	is	very	similar	in	concept	to	a	file	system,	the	ability	to	parse
the	 repository	 is	 provided	 by	 the	 GetNextVariableName	 service.	 This	 service	 enumerates	 the
current	variable	names	in	the	platform,	and	with	each	subsequent	call	to	the	service	the	previous
results	can	be	passed	into	the	interface,	and	on	output	the	interface	returns	the	next	variable	name
data.	 Once	 the	 entire	 list	 of	 variables	 has	 been	 returned,	 a	 subsequent	 call	 into	 the	 service
providing	the	previous	“last”	variable	name	will	provide	the	equivalent	of	a	“Not	Found”	error.

It	should	be	noted	that	this	service	is	affected	by	the	phase	of	platform	operations.	Variables
that	 do	 not	 have	 the	 runtime	 attribute	 activated	 are	 allocated	 typically	 from	 some	 type	 of
BootServices	 memory.	 Since	 this	 is	 the	 case,	 once	 Exit-BootServices()	 is	 performed	 to
signify	the	transition	into	the	runtime	phase,	these	variables	will	no	longer	show	up	in	the	search
list	that	GetNextVariableName	provides.

One	other	behavior	that	should	be	noted	is	that	one	might	conceive	that	if	a	variable	has	the
ability	 to	 be	 named	 the	 same	 human-readable	 name	 (such	 as	 “Setup”)	 and	 the	 only	 thing	 that
differs	is	the	GUID,	one	could	seed	the	search	mechanism	for	this	service	by	walking	a	common
GUID-based	list	of	variables.	This	is	not	the	case.	The	usage	of	this	service	is	typically	initiated
with	a	 call	 that	 starts	with	a	pointer	 to	a	Null	Unicode	 string	as	 the	human-readable	name;	 the
GUID	is	ignored.	Instead,	the	entire	list	of	variables	must	be	retrieved,	and	the	caller	may	act	as	a
filter	if	you	choose	to	have	it	do	so.

SetVariable

UEFI	 variables	 are	 often	 used	 to	 provide	 a	 means	 by	 which	 to	 save	 platform-based	 context
information.	For	instance,	when	the	platform	initializes	the	I/O	infrastructure	and	has	probed	for
all	known	console	output	devices,	 it	will	 likely	construct	a	ConOutDev	global	variable.	These
global	variables	have	a	unique	purpose	 in	 the	platform	since	 they	have	a	 specific	architectural
role	to	play	with	a	specific	purpose.	Table	5.6	shows	some	of	the	defined	global	variables.

Table	5.6:Global	Variables

Variable	Name Attribute Description
LangCodes BS,	RT The	language	codes	that	the	firmware	supports.	This	value	is	deprecated.
Lang NV,	BS,

RT
The	language	code	that	the	system	is	configured	for.	This	value	is	deprecated.

Timeout NV,	BS,
RT

The	firmware	boot	manager’s	timeout,	in	seconds,	before	initiating	the	default	boot
selection.

PlatformLangCodes BS,	RT The	language	codes	that	the	firmware	supports.
PlatformLang NV,	BS,

RT
The	language	code	that	the	system	is	configured	for.

ConIn NV,	BS,
RT

The	device	path	of	the	default	input	console.

ConOut NV,	BS,
RT

The	device	path	of	the	default	output	console.

ErrOut NV,	BS,
RT

The	device	path	of	the	default	error	output	device.

ConInDev BS,	RT The	device	path	of	all	possible	console	input	devices.
ConOutDev BS,	RT The	device	path	of	all	possible	console	output	devices.

ErrOutDev BS,	RT The	device	path	of	all	possible	error	output	devices.

The	examples	 in	Table	5.6	 show	some	of	 the	common	global	variables,	 their	descriptions,	and
their	attributes.	Some	of	the	noted	differences	are	the	presence	or	absence	of	the	NV	(nonvolatile)
attribute.	 This	 simply	means	 that	 the	 values	 associated	with	 these	 variables	 are	 not	 persistent
across	platform	resets	and	their	values	are	determined	during	the	initialization	phase	of	platform
operations.	Unlike	variables	that	are	persistent,	robust	implementations	of	UEFI	enable	the	setting
of	 volatile	 variables	 in	 memory-backed	 store,	 and	 do	 not	 necessarily	 have	 the	 storage	 size
sensitivities	 that	 the	 other	 variables	 have	 that	 are	 stored	 in	 a	 fixed	 hardware	 with	 often	 very
limited	storage	capacity.

Software	should	only	use	a	nonvolatile	variable	when	absolutely	necessary.	It	should	be	noted
that	a	variable	has	no	concept	of	a	zero-byte	data	payload.	All	variables	must	contain	at	least	1
byte	of	data,	 since	 the	 service	definition	 stipulates	 that	 the	means	by	which	you	delete	a	 target
variable	is	by	calling	the	SetVariable()	service	with	a	zero	byte	data	payload.

There	are	certain	rules	that	should	definitely	be	noted	when	it	comes	to	the	use	of	the	attributes:
Attributes	 are	 only	 applied	 to	 a	 variable	 when	 the	 variable	 is	 created.	 If	 a	 preexisting
variable	 is	 rewritten	 with	 different	 attributes,	 the	 result	 is	 indeterminate	 and	 may	 vary
between	implementations.	The	correct	method	of	changing	the	attributes	of	a	variable	is	 to
delete	the	variable	and	recreate	it	with	different	attributes.
Setting	a	data	variable	with	no	access	attributes	or	a	zero	size	data	payload	causes	it	to	be
deleted.
Runtime	access	to	a	data	variable	implies	boot	service	access.
Once	ExitBootServices()	 is	performed,	data	variables	that	did	not	have	the	runtime	access
attribute	set	are	no	 longer	visible.	This	 simply	enforces	 the	paradigm	 that	once	 in	 runtime
phase,	variables	without	the	runtime	attribute	are	not	to	be	read	from.
Once	 ExitBootServices()	 is	 performed,	 only	 variables	 that	 have	 the	 runtime	 and	 the
nonvolatile	 access	 attributes	 set	 can	 be	 set	 with	 a	 call	 to	 the	 SetVariable()	 service.	 In
addition,	variables	that	have	runtime	access	but	that	are	not	nonvolatile	are	now	read-only
data	variables.	The	reason	for	 this	situation	is	 that	once	the	platform	firmware	has	handed
off	control	to	another	agent	(such	as	the	OS),	it	no	longer	controls	the	memory	services	and
cannot	 further	 allocate	 services	 that	 might	 be	 backed	 by	 memory.	 Since	 the	 SetVariable
service	typically	uses	memory	to	spill	content	to	store	a	volatile	variable,	this	capability	is
no	longer	available	during	the	runtime	phase	of	operations.

By	providing	a	mechanism	for	shared	data	content	such	as	an	UEFI	variable,	the	use	of	variables
can	 be	 seen	 as	 a	 fairly	 flexible	 and	 highly	 available	 mechanism	 for	 firmware	 components	 to
communicate.	The	variables	shown	in	Table	5.6	are	some	of	the	architectural	variables	that	steer
the	behavior	of	a	platform.	In	 this	case	aspects	of	 the	platform	configuration	can	be	seen	in	 the
data	reflected	by	these	variables.	Another	usage	of	the	variable	services	can	be	to	use	the	volatile
(one	 must	 stress	 volatile,	 and	 not	 nonvolatile)	 variable	 as	 means	 by	 which	 two	 disparate
components	 can	 have	 a	 common	 repository	 that	 is	 independent	 of	 a	 nonvolatile	 backing	 store
(such	as	a	hard	disk),	yet	can	act	as	a	temporary	repository	of	data	such	as	registry	content	that	is
discovered	 by	 one	 agent	 and	 retrieved	 by	 another.	 This	 infrastructure	 provides	 for	 a	 lot	 of

flexibility	in	implementation.

Miscellaneous	Services

This	section	contains	the	remaining	function	definitions	for	runtime	services	that	were	not	talked
about	in	previous	sections	but	are	required	to	complete	a	compliant	implementation	of	an	UEFI
environment.	The	services	that	are	in	this	section	are	as	listed	in	Table	5.7.

Table	5.7:	Miscellaneous	Services

Name Type Description
GetNextHighMonotonicCount Runtime Returns	the	next	high	32	bits	of	the	platform’s	monotonic	counter.
ResetSystem Runtime Resets	the	entire	platform.
UpdateCapsule Runtime Pass	capsules	to	the	firmware.	The	firmware	may	process	the	capsules	immediately	or

return	a	value	to	be	passed	into	Reset-System()	that	will	cause	the	capsule	to	be
processed	by	the	firmware	as	part	of	the	reset	process.

QueryCapsuleCapabilities Runtime Returns	if	the	capsule	can	be	supported	via	UpdateCapsule()

Reset	System

This	service	provides	a	caller	the	ability	to	reset	the	entire	platform	including	all	processors	and
devices,	and	reboots	the	system.	This	service	provides	the	ability	to	stipulate	three	types	of	rests:

Cold	 Reset	 –	 A	 call	 to	 the	 ResetSystem()	 service	 stipulating	 a	 cold	 reset	 will	 cause	 a
system-wide	reset.	This	sets	all	circuitry	within	 the	system	to	 its	 initial	state.	This	 type	of
reset	is	asynchronous	to	system	operation	and	operates	without	regard	to	cycle	boundaries.
This	is	tantamount	to	a	system	power	cycle.
Warm	Reset	–	Calling	the	ResetSystem()	service	stipulating	a	warm	reset	will	also	cause	a
system-wide	initialization.	The	processors	are	set	to	their	initiate	state,	and	pending	cycles
are	 not	 corrupted.	 This	 difference	 should	 be	 noted,	 since	 memory	 is	 not	 typically
reinitialized	 and	 the	 machine	 may	 be	 rebooting	 without	 having	 cleared	 memory	 that
previously	 existed.	There	 are	 a	 lot	 of	 examples	of	 this	 usage	model,	 and	 implementations
vary	on	exactly	what	platforms	choose	to	do	with	this	type	of	feature.	If	the	system	does	not
support	this	reset	type,	then	a	Cold	Reset	must	be	performed.
Reset	 Shutdown	 –	 Calling	 the	 ResetSystem()	 service	 stipulating	 a	 Reset	 Shutdown	 will
cause	 the	system	 to	enter	a	power	 state	equivalent	 to	 the	ACPI	G2/S5	or	G3	states.	 If	 the
system	does	not	support	this	reset	type,	then	when	the	system	is	rebooted,	it	should	exhibit
the	same	attributes	as	having	booted	from	a	Cold	Reset.

Get	Next	High	Monotonic	Count

The	platform	provides	a	service	to	get	the	platform	monotonic	counter.	The	platform’s	monotonic
counter	is	comprised	of	two	32-bit	quantities:	the	high	32	bits	and	the	low	32	bits.	During	boot
service	 time	 the	 low	 32-bit	 value	 is	 volatile:	 it	 is	 reset	 to	 zero	 on	 every	 system	 reset	 and	 is
increased	by	1	on	every	call	 to	GetNextMonotonicCount().	The	high	32-bit	value	is	nonvolatile
and	 will	 be	 increased	 by	 1	 whenever	 the	 system	 resets	 or	 whenever	 the	 low	 32-bit	 count
overflows.

Since	 the	GetNextMonotonicCount()	 service	 is	 available	 only	 at	 boot	 services	 time,	 and	 if	 the
operating	 system	wishes	 to	 extend	 the	 platform	monotonic	 counter	 to	 runtime,	 it	may	 do	 so	 by
utilizing	 the	 GetNextHighMonotonicCount()	 runtime	 service.	 To	 do	 this,	 before	 calling
ExitBootServices()	 the	 operating	 system	 would	 call	 Get-NextMonotonicCount()	 to	 obtain	 the
current	 platform	 monotonic	 count.	 The	 operating	 system	 would	 then	 provide	 an	 interface	 that
returns	the	next	count	by:

	Adding	1	to	the	last	count.
	Before	the	lower	32	bits	of	the	count	overflows,	call	GetNextHighMonotonic-Count().	This
will	increase	the	high	32	bits	of	the	platform’s	nonvolatile	portion	of	the	monotonic	count	by
1.

This	function	may	only	be	called	at	runtime.

UpdateCapsule

This	 runtime	 function	 allows	 a	 caller	 to	 pass	 information	 to	 the	 firmware.	 UpdateCapsule	 is
commonly	used	 to	update	 the	 firmware	FLASH	or	 for	 an	operating	 system	 to	have	 information
persist	across	a	system	reset.	Other	usage	models	such	as	updating	platform	configuration	are	also
possible	depending	on	the	underlying	platform	support.

A	capsule	 is	 simply	 a	 contiguous	 set	 of	 data	 that	 starts	with	 an	EFI_CAPSULE_HEADER.
The	CapsuleGuid	field	in	the	header	defines	the	format	of	the	capsule.

The	capsule	contents	are	designed	to	be	communicated	from	an	OS-present	environment	to	the
system	 firmware.	 To	 allow	 capsules	 to	 persist	 across	 system	 reset,	 a	 level	 of	 indirection	 is
required	 for	 the	 description	 of	 a	 capsule,	 since	 the	OS	 primarily	 uses	 virtual	memory	 and	 the
firmware	at	boot	 time	uses	physical	memory.	This	 level	of	abstraction	 is	accomplished	via	 the
EFI_CAPSULE_BLOCK_DESCRIPTOR.	 The	 EFI_CAPSULE_BLOCK_DESCRIPTOR	 allows
the	 OS	 to	 allocate	 contiguous	 virtual	 address	 space	 and	 describe	 this	 address	 space	 to	 the
firmware	as	a	discontinuous	set	of	physical	address	ranges.	The	firmware	is	passed	both	physical
and	 virtual	 addresses	 and	 pointers	 to	 describe	 the	 capsule	 so	 the	 firmware	 can	 process	 the
capsule	immediately	or	defer	processing	of	the	capsule	until	after	a	system	reset.

Depending	on	the	intended	consumption,	the	firmware	may	process	the	capsule	immediately.
If	 the	 payload	 should	 persist	 across	 a	 system	 reset,	 the	 reset	 value	 returned	 from
QueryCapsuleCapabilities	must	be	passed	 into	ResetSystem()	 and	will	 cause	 the	 capsule	 to	be
processed	by	the	firmware	as	part	of	the	reset	process.

QueryCapsuleCapabilities

This	 runtime	 function	 allows	 a	 caller	 to	 check	 whether	 or	 not	 a	 particular	 capsule	 can	 be
supported	by	the	platform	prior	to	sending	it	to	the	UpdateCapsule	routine.	Many	of	these	checks
are	based	on	the	type	of	capsule	being	passed	and	their	associated	flag	values	contained	within
the	capsule	header.

Summary

This	chapter	has	introduced	some	of	the	basic	UEFI	runtime	capabilities.	These	are	unique	in	that
they	 are	 the	 few	 aspects	 of	 the	 firmware	 that	 will	 reside	 in	 the	 system	 even	 when	 the	 target
software	(such	as	the	operating	system)	is	running.	These	are	the	functions	that	can	be	leveraged
any	time	during	the	platform’s	evolution	from	pre-OS	through	the	runtime	phases.

Chapter	6	–	UEFI	Console	Services
Never	test	for	an	error	condition	you	don’t	know	how	to	handle.

—Steinbach’s	Guideline	for	Systems	Programming

This	 chapter	 describes	 how	UEFI	 extends	 the	 traditional	 boundaries	 of	 console	 support	 in	 the
pre-boot	phase	and	provides	a	series	of	software	layering	approaches	that	are	commonly	used	in
UEFI-compliant	platforms.	Most	platforms,	at	minimum,	would	have	a	 text-based	console	 for	a
user	 to	 either	 locally	 or	 remotely	 interact	 with	 the	 system.	 A	 variety	 of	 mechanisms	 can
accomplish	this	communication	in	UEFI.	Whether	it	is	through	a	remote	interface,	through	a	local
keyboard	and	monitor,	or	even	a	remote	network	connection,	each	has	a	common	root	that	can	be
thought	of	as	the	basic	UEFI	console	support.	This	support	is	used	to	handle	input	and	output	of
text-based	information	intended	for	the	system	user	during	the	operation	of	code	in	the	UEFI	boot
services	environment.	These	console	definitions	are	split	into	three	types	of	console	devices:	one
for	input,	and	one	each	for	normal	output	and	errors.

These	 interfaces	 are	 specified	 by	 function	 call	 definitions	 to	 allow	maximum	 flexibility	 in
implementation.	For	example,	a	compliant	 system	 is	not	 required	 to	have	a	keyboard	or	 screen
directly	 connected	 to	 the	 system.	 As	 long	 as	 the	 semantics	 of	 the	 functions	 are	 preserved,
implementations	may	direct	information	using	these	interfaces	in	any	way	that	succeeds	in	passing
the	information	to	the	system	user.

The	UEFI	console	 is	built	out	of	 two	primary	protocols:	UEFI	Simple	Text	 Input	and	UEFI
Simple	 Text	 Output.	 These	 two	 protocols	 implement	 a	 basic	 text-based	 console	 that	 allows
platform	 firmware,	 UEFI	 applications,	 and	 UEFI	 OS	 loaders	 to	 present	 information	 to	 and
receive	 input	 from	 a	 system	 administrator.	 The	 UEFI	 console	 consists	 of	 16-bit	 Unicode
characters,	 a	 simple	 set	 of	 input	 control	 characters	 known	 as	 scan	 codes,	 and	 a	 set	 of	 output-
oriented	programmatic	 interfaces	 that	 give	 functionality	 equivalent	 to	 an	 intelligent	 terminal.	 In
the	UEFI	2.1	specification,	an	extension	to	the	Simple	Text	Input	protocol	was	introduced	(now
referred	to	as	Simple	Text	Input	Ex),	which	greatly	expanded	the	supportable	keys	as	well	as	state
information	 that	 can	be	 retrieved	 from	 the	keyboard.	This	 text-based	 set	 of	 interfaces	 does	not
inherently	support	pointing	devices	on	input	or	bitmaps	on	output.

To	ensure	greatest	interoperability,	the	UEFI	Simple	Text	Output	protocol	is	recommended	to
support	 at	 least	 the	 printable	 basic	 Latin	 Unicode	 character	 set	 to	 enable	 standard	 terminal
emulation	 software	 to	 be	 used	 with	 a	 UEFI	 console.	 The	 basic	 Latin	 Unicode	 character	 set
implements	 a	 superset	 of	ASCII	 that	 has	been	 extended	 to	16-bit	 characters.	This	provides	 the
maximum	 interoperability	 with	 external	 terminal	 emulations	 that	 might	 otherwise	 require	 the
conversion	of	text	encoding	to	be	down-converted	to	a	set	of	ASCII	equivalents.

UEFI	has	a	variety	of	system-wide	references	to	consoles.	The	UEFI	System	Table	contains
six	console-related	entries:

ConsoleInHandle	 –	 The	 handle	 for	 the	 active	 console	 input	 device.	 This	 handle	 must
support	the	UEFI	Simple	Text	Input	protocol	and	the	UEFI	Simple	Text	Input	Ex	protocol.
ConIn	–	A	pointer	to	the	UEFI	Simple	Text	Input	protocol	interface	that	is	associated	with

ConsoleInHandle.
ConsoleOutHandle	 –	 The	 handle	 for	 the	 active	 console	 output	 device.	 This	 handle	must
support	the	UEFI	Simple	Text	Output	protocol.
ConOut	–	A	pointer	to	the	UEFI	Simple	Text	Output	protocol	interface	that	is	associated	with
ConsoleOutHandle.
StandardErrorHandle	 –	 The	 handle	 for	 the	 active	 standard	 error	 console	 device.	 This
handle	must	support	the	UEFI	Simple	Text	Output	protocol.
StdErr	–	A	pointer	to	the	UEFI	Simple	Text	Output	protocol	interface	that	is	associated	with
StandardErrorHandle.

Other	 system-wide	 references	 to	 consoles	 in	 UEFI	 are	 contained	 within	 the	 global	 variable
definitions.	Some	of	the	pertinent	global	variable	definitions	in	UEFI	are:

ConIn	–	The	UEFI	global	variable	that	contains	the	device	path	of	the	default	input	console.
ConInDev	–	The	UEFI	global	variable	that	contains	the	device	path	of	all	possible	console
input	devices.
	 ConOut	 –	 The	 UEFI	 global	 variable	 that	 contains	 the	 device	 path	 of	 the	 default	 output
console.
	ConOutDev	–	The	UEFI	global	variable	that	contains	the	device	path	of	all	possible	console
output	devices.
ErrOut	 –	 The	 UEFI	 global	 variable	 that	 contains	 the	 device	 path	 of	 the	 default	 error
console.
ErrOutDev	–	The	UEFI	global	variable	that	contains	the	device	path	of	all	possible	console
output	devices.

Figure	6.1	illustrates	the	software	layering	discussed	so	far.	An	UEFI	application	or	driver	that
wants	 to	 communicate	 through	 a	 text	 interface	 can	 use	 the	 active	 console	 shown	 in	 the	 UEFI
System	Table	to	call	the	interface	that	supports	the	appropriate	text	input	or	text	output	protocol.
During	initialization,	the	system	table	is	passed	to	the	launched	UEFI	application	or	driver,	and
this	component	can	then	immediately	start	using	the	console	in	question.

Figure	6.1:	Initial	Software	Layering

To	further	describe	these	interactions,	it	is	necessary	to	delve	a	bit	deeper	into	what	these	text	I/O
interfaces	really	look	like	and	what	they	are	effectively	responsible	for.

Simple	Text	Input	Protocol

The	Simple	Text	Input	Protocol	defines	the	minimum	input	required	to	support	a	specific	ConIn
device.	This	interface	provides	two	basic	functions	for	the	caller:

Reset	–	This	function	resets	the	input	device	hardware.	As	part	of	the	initialization	process,
the	 firmware/	 device	 makes	 a	 quick	 but	 reasonable	 attempt	 to	 verify	 that	 the	 device	 is
functioning.	This	hardware	verification	process	is	implementation-specific	and	is	left	up	to
the	firmware	and/	or	UEFI	driver	to	implement.
	 ReadKeyStroke	 –	 This	 function	 reads	 the	 next	 keystroke	 from	 the	 input	 device.	 If	 no
keystroke	is	pending,	the	function	returns	a	UEFI	Not	Ready	error.	If	a	keystroke	is	pending,
a	 UEFI	 key	 is	 returned.	 A	 UEFI	 key	 is	 composed	 of	 a	 scan	 code	 as	 well	 as	 a	 Unicode
character.	The	Unicode	character	is	the	actual	printable	character	or	is	zero	if	the	key	is	not
represented	by	a	printable	character,	such	as	the	control	key	or	a	function	key.

When	 reading	 a	 key	 from	 the	 ReadKeyStroke()	 function,	 an	 UEFI	 Input	 Key	 is	 retrieved.	 In
traditional	firmware,	all	PS/2	keys	had	a	hardware	specific	scan	code,	which	was	the	sole	item
firmware	 dealt	 with.	 In	 UEFI,	 things	 have	 been	 changed	 a	 bit	 to	 facilitate	 the	 reasonable
transaction	 of	 this	 data	 both	with	 local	 and	 remote	 users.	 The	 data	 sent	 back	 has	 two	 primary
components:

Unicode	Character	–	The	Simple	Text	 Input	protocol	defines	an	 input	 stream	 that	contains
Unicode	 characters.	 This	 value	 represents	 the	 Unicode-encoded	 16-bit	 value	 that
corresponds	to	the	key	that	was	pressed	by	the	user.	A	few	Unicode	characters	have	special
meaning	and	are	thus	defined	as	supported	Unicode	control	characters,	as	described	in	Table
6.1.

Table	6.1:	UEFI-supported	Unicode	Control	Characters

Mnemonic Unicode Description
Null U+0000 Null	character	ignored	when	received.
BS U+0008 Backspace.	Moves	cursor	left	one	column.	If	the	cursor	is	at	the	left	margin,	no

action	is	taken.
TAB U+0x0009 Tab.
LF U+000A Linefeed.	Moves	cursor	to	the	next	line.
CR U+000D Carriage	Return.	Moves	cursor	to	left	margin	of	the	current	line.

Scan	Code	-	The	input	stream	supports	UEFI	scan	codes	in	addition	to	Unicode	characters.	If
the	scan	code	is	set	 to	0x00	then	the	Unicode	character	 is	valid	and	should	be	used.	If	 the
UEFI	scan	code	is	set	to	a	value	other	than	0x00,	it	represents	a	special	key	as	defined	in	Ta
ble	6.2.

Table	6.2:	UEFI-supported	Scan	Codes

UEFI	Scan	Code Description
0x00 Null	scan	code.
0x01 Move	cursor	up	1	row.
0x02 Move	cursor	down	1	row.

0x03 Move	cursor	right	1	column.
0x04 Move	cursor	left	1	column.

UEFI	Scan	Code Description
0x05 Home.
0x06 End.
0x07 Insert.
0x08 Delete.
0x09 Page	Up.
0x0a Page	Down.
0x0b Function	1.
0x0c Function	2.
0x0d Function	3.
0x0e Function	4.
0x0f Function	5.
0x10 Function	6.
0x11 Function	7.
0x12 Function	8.
0x13 Function	9.
0x14 Function	10.
0x17 Escape.

The	ReadKeyStroke	function	provides	the	additional	capability	to	signal	an	UEFI	event	when	a
key	 has	 been	 received.	 To	 leverage	 this	 capability,	 one	must	 use	 either	 the	 WaitForEvent	 or
CheckEvent	services.	The	event	to	pass	into	these	services	is	the	following:

WaitForKey	 –	 The	 event	 to	 use	 when	 calling	 WaitForEvent()	 to	 wait	 for	 a	 key	 to	 be
available.

The	 activity	 being	 handled	 by	 the	 Simple	 Text	 Input	 protocol	 is	 very	 similar	 to	 the	 INT	 16h
services	 that	were	 available	 in	 legacy	 firmware.	 Some	 of	 the	 primary	 differences	 are	 that	 the
legacy	 firmware	 service	 returned	 only	 the	 ASCII	 equivalent	 8-bit	 value	 for	 the	 key	 that	 was
pressed	along	with	the	hardware-specific	(such	as	PS/2)	scan	codes.

Simple	Text	Input	Ex	Protocol

The	 Simple	 Text	 Input	 Ex	 protocol	 provides	 the	 same	 functionality	 that	 the	 Simple	 Text	 Input
protocol	produced	and	adds	a	series	of	additional	capabilities.	This	interface	provides	a	few	new
basic	functions	for	the	caller:

ReadKeyStrokeEx	–	This	function	reads	the	next	keystroke	from	the	input	device.	It	operates
in	a	fashion	similar	to	the	ReadKeyStroke	from	the	Simple	Text	Input	protocol,	except	it	has
the	ability	to	extract	a	series	of	extended	keystrokes	that	were	not	previously	possible	(See	
Table	 6.3	 and	 Table	 6.4).	 This	 includes	 both	 shift	 state	 (for	 example,	 Left	 Control	 key
pressed,	Right	Shift	pressed,	and	so	on),	and	toggle	information	(for	example,	Caps	Lock	is
turned	 on).	 If	 no	 keystroke	 is	 pending,	 the	 function	 returns	 an	 EFI	 Not	 Ready	 error.	 If	 a
keystroke	is	pending,	a	UEFI	key	is	returned.
Key	Registration	Capabilities	–	This	set	of	functions	provides	for	the	ability	to	register	and
unregister	 a	 set	 of	 keystrokes	 so	 that	 when	 a	 user	 hits	 the	 same	 keystroke,	 a	 notification
function	is	called.	This	is	useful	in	the	case	where	there	is	a	desire	to	have	a	particular	hot-
key	 registered	 and	 then	 associated	with	 a	 particular	 piece	 of	 software.	 This	 capability	 is
often	associated	with	the	KEY####	UEFI	global	variable,	which	associated	a	key	sequence
with	a	particular	BOOT####	variable	target.
SetState	–	This	function	allows	the	settings	of	certain	state	data	for	a	given	input	device.
This	data	often	encompasses	information	such	as	whether	or	not	Caps	Lock,	Num	Lock,	or
Scroll	Lock	are	active.

Table	6.3:	Simple	Text	Input	Ex	Keyboard	Shift	States

Key	Shift	State	Mask
Value

Description

0x80000000 If	high	bit	is	on,	then	the	state	value	is	valid.	For	devices	that	are	not	capable	of	producing	shift	state
values,	this	value	will	be	off.

0x01 Right	Shift	key	is	pressed
0x02 Left	Shift	key	is	pressed
0x04 Right	Control	key	is	pressed
0x08 Left	Control	key	is	pressed
0x10 Right	Alt	key	is	pressed
0x20 Left	Alt	key	is	pressed
0x40 Right	logo	key	is	pressed
0x80 Left	logo	key	is	pressed

Key	Shift	State	Mask	Value Description
0x100 Menu	key	is	pressed
0x200 System	Request	(SysReq)	key	is	pressed

Table	6.4:	Simple	Text	Input	Ex	Keyboard	Toggle	States

Keyboard	ToggleState	Mask	Value Description
0x80 If	high	bit	is	on,	then	the	state	value	is	valid.	For	devices	that	are

not	capable	of	representing	toggle	state	values,	this	value	will	be
off.

0x01 Scroll	Lock	is	active
0x02 Num	Lock	is	active
0x04 Caps	Lock	is	active

Simple	Text	Output	Protocol

The	Simple	Text	Output	protocol	is	used	to	control	text-based	output	devices.	It	is	the	minimum
required	 protocol	 for	 any	 handle	 supplied	 as	 the	 ConOut	 or	 StdOut	 device.	 In	 addition,	 the
minimum	supported	text	mode	of	such	devices	is	at	least	80	×	25	characters.

A	 video	 device	 that	 supports	 only	 graphics	 mode	 is	 required	 to	 emulate	 text	 mode
functionality.	Output	strings	 themselves	are	not	allowed	 to	contain	any	control	codes	other	 than
those	 defined	 in	 Table	 6.1.	 Positional	 cursor	 placement	 is	 done	 only	 via	 the
SetCursorPosition()	function.	It	is	highly	recommended	that	text	output	to	the	StdErr	device	be
limited	 to	 sequential	 string	 outputs.	 That	 is,	 it	 is	 not	 recommended	 to	 use	 ClearScreen()	 or
SetCursorPosition()	on	output	messages	to	StdErr,	so	that	this	data	can	be	clearly	captured
or	viewed.

The	Simple	Text	Output	protocol	also	has	a	pointer	to	some	mode	data,	as	shown	in	Figure	6.
2.	This	mode	data	 is	 used	 to	 determine	what	 the	 current	 text	 settings	 are	 for	 the	 given	device.
Much	of	this	information	is	used	to	determine	what	the	current	cursor	position	is	as	well	as	the
given	foreground	and	background	color.	In	addition,	one	can	stipulate	whether	a	cursor	should	be
visible	or	not.

Figure	6.2:	Mode	Structure	for	UEFI	Simple	Text	Output	Protocol

The	Simple	Text	Output	protocol	also	has	a	variety	of	text	output	related	functions;	however,	this
chapter	focuses	on	some	of	the	most	commonly	used	ones:

	 OutputString	 –	 Provides	 the	 ability	 to	write	 a	NULL-terminated	Unicode	 string	 to	 the
output	device	and	have	it	displayed.	All	output	devices	must	also	support	some	of	the	basic
Unicode	 drawing	 characters	 listed	 in	 the	UEFI	 2.1	 Specification.	 This	 is	 the	most	 basic
output	mechanism	on	an	output	device.	The	string	is	displayed	at	the	current	cursor	location
on	the	output	device(s)	and	the	cursor	is	advanced	according	to	the	rules	listed	in	Table	6.3.

Table	6.5:	Cursor	Advancement	Rules

Mnemonic Unicode Description
Null U+0000 Ignore	the	character,	and	do	not	move	the	cursor.
BS U+0008 If	the	cursor	is	not	at	the	left	edge	of	the	display,	then	move	the	cursor	left	one	column.
LF U+000A If	the	cursor	is	at	the	bottom	of	the	display,	then	scroll	the	display	one	row,	and	do	not	update	the

cursor	position.	Otherwise,	move	the	cursor	down	one	row.

CR U+000D Move	the	cursor	to	the	beginning	of	the	current	row.
Other U+XXXX Print	the	character	at	the	current	cursor	position	and	move	the	cursor	right	one	column.	If	this	moves

the	cursor	past	the	right	edge	of	the	display,	then	the	line	should	wrap	to	the	beginning	of	the	next	line.
This	is	equivalent	to	inserting	a	CR	and	an	LF.	Note	that	if	the	cursor	is	at	the	bottom	of	the	display,
and	the	line	wraps,	then	the	display	will	be	scrolled	one	line.

By	providing	an	abstraction	 that	allows	a	console	device,	such	as	a	video	driver,	 to	produce	a
text	interface,	this	can	be	compared	to	legacy	firmware	support	for	INT	10h.	The	producer	of	the
Simple	Text	Output	 interface	 is	 responsible	 for	 converting	 the	Unicode	 text	 characters	 into	 the
appropriate	glyphs	for	that	device.	In	the	case	where	an	unrecognized	Unicode	character	has	been
sent	 to	 the	 OutputString()	 API,	 the	 result	 is	 typically	 a	 warning	 that	 indicates	 that	 these
characters	were	skipped.

SetAttribute	 –	 This	 function	 sets	 the	 background	 and	 foreground	 colors	 for	 both	 the
OutputString()	 and	ClearScreen()	 functions.	A	 variety	 of	 foreground	 and	 background
colors	 are	 defined	 by	 the	UEFI	2.1	Specification.	 The	 color	mask	 can	 be	 set	 even	 if	 the
device	is	in	an	invalid	text	mode.	Devices	that	support	a	different	number	of	text	colors	must
emulate	the	specified	colors	to	the	best	of	the	device’s	capabilities.
ClearScreen	 –	This	 function	 clears	 the	output	device(s)	 display	 to	 the	 currently	 selected
background	color.	The	cursor	position	is	set	to	(0,0).
SetCursorPosition	–	This	function	sets	the	current	coordinates	of	the	cursor	position.	The
upper	left	corner	of	the	screen	is	defined	as	coordinate	(0,0).

Remote	Console	Support

The	previous	sections	of	this	chapter	described	some	of	the	text	input	and	output	protocols,	and
used	some	examples	that	were	generated	through	local	devices.	UEFI	also	supports	many	types	of
remote	console.	This	support	leverages	the	pre-existing	local	interfaces	but	enables	the	routing	of
this	data	to	and	from	devices	outside	of	the	platform	being	executed.

When	 a	 remote	 console	 is	 instantiated,	 it	 typically	 results	 from	 UEFI	 constructing	 an	 I/O
abstraction	that	a	console	driver	latches	onto.	In	this	case,	the	discussion	initially	concerns	serial
interface	consoles.	A	variety	of	console	 transport	protocols,	such	as	PC	ANSI,	VT-100,	and	so
on,	describe	the	format	of	the	data	that	is	sent	to	and	from	the	machine.

The	console	driver	 responsible	 for	producing	 the	Text	 I/O	 interfaces	acts	as	a	 filter	 for	 the
I/O.	For	example,	when	a	remote	key	is	pressed,	this	might	require	a	variety	of	pieces	of	data	to
be	 constructed	 and	 sent	 from	 the	 remote	 device	 and	 upon	 receipt,	 the	 console	 driver	 needs	 to
interpret	this	information	and	convert	it	into	the	corresponding	UEFI	semantics	such	as	the	UEFI
scan	 code	 and	 Unicode	 character.	 The	 same	 is	 true	 for	 any	 application	 running	 on	 the	 local
machine	that	prints	a	message.	This	message	is	received	by	the	console	driver	and	translated	to
the	remote	terminal	type	semantics.

Table	6.6	gives	examples	of	how	an	UEFI	scan	code	can	be	mapped	to	ANSI	X3.64	terminal,
PC-ANSI	terminal,	or	an	AT	101/102	keyboard.	PC	ANSI	terminals	support	an	escape	sequence
that	 begins	with	 the	ASCII	 character	 0x1b	 and	 is	 followed	 by	 the	ASCII	 character	 0x5B,	 “[“.
ASCII	 characters	 that	 define	 the	 control	 sequence	 that	 should	 be	 taken	 follow	 the	 escape
sequence.	The	escape	sequence	does	not	contain	spaces,	but	spaces	are	used	in	Table	6.6	for	ease
of	 reading.	 For	 additional	 information	 on	 UEFI	 terminal	 support,	 see	 the	 latest	 UEFI
Specification.

Table	6.6:	Sample	Conversion	Table	for	UEFI	Scan	Codes	to	other	Terminal	Formats

Table	6.7	shows	some	of	the	PC	ANSI	and	ANSI	X3.64	control	sequences	for	adjusting	display/
text	display	attributes	for	text	displays.

Table	6.7:	Example	Control	Sequences	that	Can	Be	Used	in	Console	Drivers

PC	ANSI	Codes ANSI	X3.64	Codes Description
ESC	[2	J CSI	2	J Clear	Display	Screen.
ESC	[0	m CSI	0	m Normal	Text.
ESC	[1	m CSI	1	m Bright	Text.
ESC	[7	m CSI	7	m Reversed	Text.
ESC	[30	m CSI	30	m Black	foreground,	compliant	with	ISO	Standard	6429.
ESC	[31	m CSI	31	m Red	foreground,	compliant	with	ISO	Standard	6429.
ESC	[32	m CSI	32	m Green	foreground,	compliant	with	ISO	Standard	6429.
ESC	[33	m CSI	33	m Yellow	foreground,	compliant	with	ISO	Standard	6429.
ESC	[34	m CSI	34	m Blue	foreground,	compliant	with	ISO	Standard	6429.

Figure	 6.3	 illustrates	 the	 software	 layering	 for	 a	 remote	 serial	 interface	 with	 Text	 I/O
abstractions.	The	primary	difference	between	this	illustration	and	one	that	exhibits	the	same	Text
I/O	abstractions	on	local	devices	is	that	this	one	has	one	additional	layer	of	software	drivers.	In
the	former	examples,	the	local	device	was	discovered	by	an	agent,	launched,	and	it	in	turn	would
establish	a	set	of	Text	 I/O	abstractions.	 In	 the	 remote	case,	 the	 local	device	 is	a	 serial	device,
which	has	a	console	driver	that	is	layered	onto	it,	and	it	in	turn	would	establish	a	set	of	Text	I/O

abstractions.

Figure	6.3:	Remote	Console	Software	Layering

Console	Splitter

The	 ability	 to	 describe	 a	 variety	 of	 console	 devices	 poses	 interesting	 new	 possibilities.	 In
previous	generations	of	firmware,	one	had	a	single	means	by	which	one	could	describe	what	the
Text	I/O	sources	and	targets	were.	Now	the	UEFI	variables	that	specify	the	active	consoles	are
specified	by	a	device	path.	In	this	case,	these	device	paths	are	multi-instance,	meaning	that	more
than	one	target	device	could	be	the	active	input	or	output.	For	instance,	if	one	wanted	to	be	able	to
have	an	application	print	text	to	the	local	screen	as	well	as	to	the	screen	of	a	remote	terminal,	it
would	 be	 highly	 impractical	 for	 anyone	 to	 customize	 their	 software	 to	 accommodate	 that
particular	 scenario.	 In	 the	 solution	 that	 UEFI	 provides	 with	 its	 console	 splitting/	 merging
capability,	an	application	can	simply	use	the	standard	text	interfaces	that	UEFI	provides	and	the
console	splitter	routes	the	text	requests	 to	the	appropriate	 target	or	 targets.	This	works	for	both
input	as	well	as	output	streams.

This	 is	 how	 it	 works:	 when	 the	 UEFI-compliant	 platform	 initializes,	 the	 console	 splitter
installs	 itself	 in	 the	UEFI	System	Table	 as	 the	primary	 active	 console.	 In	doing	 so,	 it	 can	 then
proceed	 to	monitor	 the	platform	as	other	UEFI	 text	 interfaces	get	 installed	as	protocols	and	 the
console	splitter	keeps	a	running	tally	of	 the	user	selected	devices	for	a	given	console	variable,
such	as	ConOut,	ConIn,	or	ErrOut.

Figure	6.4	illustrates	a	scenario	where	an	application	is	calling	UEFI	text	interfaces,	which	in
turn	 calls	 the	 UEFI	 System	 Table	 console	 interfaces.	 These	 interfaces	 belong	 to	 the	 console
splitter,	 and	 the	 console	 splitter	 then	 sends	 the	 text	 I/O	 requests	 from	 the	 application	 to	 the
platform-configured	consoles.

Figure	6.4:	Software	Layering	Description	of	the	UEFI	Console	Splitter

Network	Consoles

UEFI	 also	 provides	 the	 ability	 to	 establish	 data	 connections	 with	 remote	 platforms	 across	 a
network.	 Given	 the	 appropriate	 installed	 drivers,	 one	 could	 also	 enable	 an	 UEFI-compliant
platform	to	support	a	text	I/O	set	of	abstractions.	Similar	to	previously	discussed	concepts	where
the	hardware	interface	(for	example,	serial	device,	keyboard,	video,	network	interface	card)	has
an	abstraction,	other	components	build	on	top	of	this	hardware	abstraction	to	provide	a	working
software	stack.

Some	network	components	that	UEFI	might	include	are	as	follows:
Network	Interface	Identifier	–	This	is	an	optional	protocol	that	is	produced	by	the	Universal
Network	Driver	Interface	(UNDI)	and	is	used	to	produce	the	Simple	Network	Protocol.	This
protocol	 is	 only	 required	 if	 the	 underlying	 network	 interface	 is	 a	 16-bit	UNDI,	 32/64-bit
software	UNDI,	or	hardware	UNDI.	It	is	used	to	obtain	type	and	revision	information	about
the	underlying	network	interface.
Simple	Network	Protocol	 –	This	 protocol	 provides	 a	 packet	 level	 interface	 to	 a	 network
adapter.	It	additionally	provides	services	to	initialize	a	network	interface,	transmit	packets,
receive	packets,	and	close	a	network	interface.

To	 illustrate	 what	 a	 common	 network	 console	 might	 look	 like,	 you	 could	 describe	 an	 initial
hardware	abstraction	that	talks	directly	to	the	network	interface	controller	(NIC)	produced	by	an
UNDI	driver.	This	in	turn	has	a	Simple	Network	Protocol	that	layers	on	top	of	UNDI.	It	provides
basic	 network	 abstraction	 interfaces	 such	 as	 Send	 and	 Receive.	 On	 top	 of	 this,	 a	 transport
protocol	might	be	 installed	such	as	a	TCP/IP	stack.	As	with	most	 systems,	once	an	established
transport	mechanism	is	provided,	one	can	build	all	sorts	of	extensions	into	the	platform	such	as	a
Telnet	 daemon	 to	 allow	 remote	 users	 to	 log	 into	 the	 system	 through	 a	 network	 connection.
Ultimately,	 this	 daemon	 would	 produce	 and	 be	 responsible	 for	 handling	 the	 normal	 Text	 I/O
interfaces	already	described	in	this	chapter.

Figure	6.5	illustrates	an	example	where	a	remote	machine	is	able	to	access	the	EFI-compliant
platform	 through	 a	 network	 connection.	 Providing	 the	 top	 layer	 of	 the	 software	 stack
(EFI_SIMPLE_TEXT_IN	and	EFI_SIMPLE_TEXT_OUT)	as	the	interoperable	surface	area	that
applications	talk	to	allows	for	all	standard	UEFI	applications	to	seamlessly	leverage	the	console
support	in	a	platform.	Couple	this	with	console	splitting	and	merging	as	inherent	capabilities	and
you	have	the	ability	to	interact	with	the	platform	in	a	much	more	robust	manner	without	requiring
a	lot	of	specially	tuned	software	to	enable	it.

Figure	6.5:	Example	of	Network	Console	Software	Layering

Summary

In	conclusion,	UEFI	provides	a	very	robust	means	of	describing	 the	various	possible	 input	and
output	 console	 possibilities.	 It	 can	 also	 support	 console	 representations	 through	 a	 gamut	 of
protocols	such	as	terminal	emulators	(such	as	ANSI/VT100)	as	well	as	remote	network	consoles
leveraging	wider	variations	of	the	underlying	UEFI	network	stack.

Chapter	7	–	Different	Types	of	Platforms
Variety's	the	very	spice	of	life,	that	gives	it	all	its	flavor.

—William	Cowper

This	 chapter	 describes	 different	 platform	 types	 and	 instantiations	 of	 the	 Platform	 Initialization
(PI),	such	as	embedded	system,	laptop,	smart	phone,	netbook,	tablet,	PDA,	desktop,	and	server.	In
addition	 to	providing	a	“BIOS	replacement”	for	platforms	that	are	commonly	referred	 to	as	 the
Personal	 Computer,	 the	 PI	 infrastructure	 can	 be	 used	 to	 construct	 a	 boot	 and	 initialization
environment	 for	 servers,	 handheld	 devices,	 televisions,	 and	 so	 on.	 These	 sundry	 devices	may
include	 the	more	 common	 IA-32	 processors	 in	 the	 PC,	 but	 also	 feature	 the	 lower-power	 Intel
Atom®	processor,	or	the	mainframe-class	processors	such	as	the	Itanium®-based	systems.	This
chapter	examines	the	PEI	modules	and	DXE	drivers	that	are	necessary	to	construct	a	standard	PC
platform.	Then	a	subset	of	these	modules	used	for	emulation	and	Intel	Atom-based	netbooks	and
smart	phones	is	described.

Figure	 7.1	 is	 a	 block	 diagram	 of	 a	 typical	 system,	 showing	 the	 various	 components,
integrating	 the	 CPU	 package,	 south	 bridge,	 and	 super	 I/O,	 beyond	 other	 possible	 components.
These	blocks	represent	components	manufactured	on	the	system	board.	Each	silicon	and	platform
component	will	 have	 an	 associated	module	 or	 driver	 to	 handle	 the	 respective	 initialization.	 In
addition	to	the	components	on	the	system	board,	the	initial	system	address	map	of	the	platform	has
specific	 region	 allocations.	 Figure	 7.2	 shows	 the	 system	 address	 map	 of	 the	 PC	 platform,
including	memory	 allocation.	 The	 system	 flash	 in	 this	 platform	 configuration	 is	 1	megabyte	 in
size.	The	system	flash	appears	at	the	upper	end	of	the	32-bit	address	space	in	order	to	allow	the
Intel®	Core	i7™	processor	to	fetch	the	first	opcodes	from	flash	upon	reset.	The	reset	vector	lies
16	bytes	from	the	end	of	the	address	space.	In	the	SEC,	the	initial	opcodes	of	the	SEC	file	allow
for	 initial	 control	 flow	 of	 the	 PI-based	 platform	 firmware.	 From	 the	 SEC,	 a	 collection	 of
additional	modules	is	executed.	The	Intel	Core	i7	processor	has	both	the	central	processing	unit
(CPU),	or	core,	and	portions	of	the	chipset,	or	uncore.	The	latter	elements	include	the	integrated
memory	controller	(IMC)	and	the	system	bridge,	such	as	to	PCI.

Figure	7.1:	Typical	PC	System

Figure	7.2:	System	Address	Map

Before	going	through	the	various	components	of	the	PC	firmware	load,	a	few	other	platforms	will
be	 reviewed.	These	 include	 the	wireless	personal	digital	 assistant,	which	can	be	a	 low-power
x64	or	IA-32	CPU	or	an	Intel	Atom	processor/	system-on-a-chip	(SoC).	The	platforms	then	scale
up	to	a	server.	This	is	shown	in	Figure	7.3.

Figure	7.	3:	Span	of	Systems

Figure	7.4	shows	a	series	of	non-PCs,	such	as	 tablets	and	smart	phones.	The	former	 includes	a
touch	 screen	 and	 integrated	 peripherals,	 such	 as	 3G,	Wi-Fi†	 and	 LTE/Wi-MAX†	 radios.	 The
latter	devices,	namely	the	smart	phones,	are	highly	integrated	devices	with	GPS,	several	radios,
touch	 screens,	 accelerometers,	 and	 some	NAND	 storage.	Within	 all	 of	 these	 devices,	 an	 Intel
Atom-based	system	on	a	chip	and	a	specific	collection	of	PEI	modules	(PEIMs)	and	DXE	drivers
execute	to	initialize	the	local	hardware	complex.	Then	the	DXE-based	UEFI	core	would	boot	a
UEFI-aware	 version	 of	 an	 embedded	 operating	 system,	 such	 as	 MeeGo†	 or	 VxWorks†.	 This
demonstrates	 how	 the	 platform	 concept	 can	 span	 many	 different	 topologies.	 These	 topologies
include	the	classical,	open-architecture	PC	and	the	headless,	closed	embedded	system	of	an	I/O
board.

Figure	7.4:	An	Intel	Atom®-based	System

Now	let’s	examine	the	components	for	 the	PC	in	Figure	7.1	 in	greater	detail.	The	PEI	phase	of
execution	runs	immediately	after	a	restart	event,	such	as	a	power-on	reset,	resume	from	hibernate,

and	so	on.	The	PEI	modules	execute	in	place	from	the	flash	store,	at	least	until	the	main	memory
complex	(such	as	DRAM)	has	been	initialized.

Figure	7.5	displays	the	collection	of	PEIMs	for	the	PC	platform.	Different	business	interests
would	 supply	 the	 modules.	 For	 example,	 in	 the	 platform	 codenamed	 Lakeport,	 Intel	 would
provide	 the	 Intel™	 Core™	 i7	 CPU	 with	 an	 integrated	 Memory	 Controller	 Hub	 Memory
Controller	PEIM	and	the	PCH	(Platform	Controller	Hub)	PEIM.	The	PCH	is	also	known	as	the
“South	Bridge.”	In	addition,	for	the	SMBUS	(System	management	bus)	attached	to	the	PCH,	there
would	 be	 a	 PCH-specific	 SMBUS	 PEIM.	 The	 status	 code	 PEIM	would	 describe	 a	 platform-
specific	means	by	which	to	emit	debug	information,	such	as	an	8-bit	code	emitted	to	I/O	port	80-
hex

Figure	7.5:	Components	of	PEI	on	PC

The	SMBUS	PEIM	for	the	PCH	listed	in	Figure	7.5	provides	a	standard	interface,	or	PEIM-to-
PEIM	interface	(PPI),	as	shown	in	Figure	7.6.	This	allows	the	memory	controller	PEIM	to	use	the
SMBUS	 read	 command	 in	 order	 to	 get	 information	 regarding	 the	 dual-inline	 memory	 module
(DIMM)	 Serial	 Presence	 Detect	 (SPD)	 data	 on	 the	 memory.	 The	 SPD	 data	 includes	 the	 size,
timing,	and	other	details	about	the	memory	modules.	The	memory	initialization	PEIM	will	use	the
EFI_PEI_SMBUS_PPI	so	that	the	GMCH-specific	memory	initialization	module	does	not	need	to
know	which	component	provides	the	SMBUS	capability.	In	fact,	many	integrated	super	I/O	(SIO)
components	 also	provide	an	SMBUS	controller,	 so	 this	platform	could	have	 replaced	 the	PCH
SMBUS	PEIM	with	an	SIO	SMBUS	PEIM	without	having	to	modify	the	memory	controller	PEIM.

Figure	7.6:	Code	Fragment	for	a	PEIM	PPI

Many	implementations	are	possible	beyond	the	EFI_PEI_SMBUS_PPI	shown	earlier.	Figure	7.7
shows	a	code	fragment	that	implements	the	SMBUS	read	operation	for	the	PCH	component	listed
earlier.	Note	the	use	of	the	CPU	I/O	abstraction	for	performing	the	I/O	operations	against	the	PCH
component.	The	fact	that	the	logic	is	written	in	C	means	that	this	same	PCH	on	an	Intel	Atom	or
Itanium-based	 system	 could	 reuse	 the	 same	 source	 code	 through	 a	 simple	 compilation	 for	 the
target	microarchitecture.

Figure	7.7:	Code	Fragment	of	PEIM	Implementation

Beyond	 the	PEI	phase,	 the	DXE	core	 requires	a	 series	of	platform-,	CPU-,	and	chipsetspecific
drivers	 in	 order	 to	 provide	 a	 fully-instantiated	 set	 of	 DXE/EFI	 services.	 Figure	 7.8	 lists	 the
collection	of	architectural	protocols	that	are	necessary	for	the	PC	platform	under	study.

Figure	7.8:	Architectural	Protocols

The	 fact	 that	 the	 DXE	 Foundation	 does	 not	 presume	 anything	 about	 the	 timekeeping	 logic,
interrupt	 controller,	 instruction	 set,	 and	 so	 on,	means	 that	 the	DXE	Foundation	C	 code	 can	 be
retargeted	for	a	large	class	of	platforms	without	reengineering	the	Foundation	code	itself.	Instead,
a	different	collection	of	the	architectural	protocols	(APs)	can	affect	the	Foundation	port.

One	 aspect	 of	 the	 system	 that	 needs	 to	 be	 abstracted	 is	 the	 management	 of	 time.	 The
timekeeping	hardware	on	a	PC/AT	compatible	chipset,	 such	as	 the	8254	 timer,	differs	 from	the
CPU-integrated	timer-counter	(ITC)	on	the	Itanium	processor	or	the	timekeeping	logic	specific	to
the	 Intel	 Atom	 processor.	 As	 such,	 in	 order	 to	 have	 a	 single	 implementation	 of	 the	 DXE
Foundation	 watchdog-timer	 logic,	 the	 access	 to	 CPU/chipset-specific	 timing	 hardware	 is
implemented	 via	 the	 Timer	 Architectural	 Protocol.	 This	 AP	 has	 a	 series	 of	 services,	 such	 as
getting	and	 setting	 the	 time	period.	The	 setting	of	 the	 time	period	will	be	 reviewed	across	our
reference	class	of	platforms.

To	 begin,	 Figure	 7.9	 provides	 an	 instance	 of	 the	 set	 timer	 service	 for	 the	NT32	 platform.
NT32	is	a	virtual	PI	platform	that	executes	upon	a	32-bit	Microsoft	Windows	system	as	a	user-
mode	 process.	 It	 is	 a	 “soft”	 platform	 in	 that	 the	 platform	 capabilities	 are	 abstracted	 through
Win32	services.	As	such,	the	implementation	of	this	AP	service	doesn’t	access	an	I/O	controller
or	chipset	control/status	registers.	Instead,	the	AP	invokes	a	series	of	Win32	services	to	provide
mutual	exclusion	and	an	operating	system	thread	to	emulate	the	timer	action.

Figure	7.9:	NT32	Architectural	Protocol

The	NT32	implementation	is	radically	different	from	a	bare-metal	PI	implementation.	An	instance
of	a	hardware	implementation	can	be	found	in	Figure	7.10.	Herein	the	memorymapped	registers
of	 an	 Intel	Atom	 system	on	 a	 chip	 are	 accessed	by	 the	 same	AP	 set	 timer	 interface.	The	DXE
Foundation	 cannot	 discern	 the	 difference	 between	 the	 virtual	 NT32	 platform	 service	 and	 the
actual	hardware	instance	for	an	Intel	Atom	processor.

Figure	7.10:	AP	from	Intel®	Atom™

Finally,	 for	 the	 PC/AT	 and	 the	 circa	 mid-1980s	 ISA	 I/O	 hardware,	 there	 is	 an	 additional
implementation	of	the	AP	service.	Figure	7.11	shows	the	same	set	timer	service	when	accessing
the	 8254	 timer-counter	 and	 then	 registering	 an	 interrupt	with	 the	 8259	 Programmable	 Interrupt
Controller	(PIC).	This	is	often	referred	to	as	a	PC/	AT	version	of	the	AP	since	all	PCs	since	the
PC-XT	have	supported	these	hardware	interfaces.	For	the	PC	example	in	this	chapter,	these	ISA
I/O	resources	are	supported	by	 the	PCH	component,	versus	discrete	components	 in	 the	original
PC.

Fig7.11:	AP	for	PC/AT

Beyond	 the	many	 implementation	options	 for	an	AP	 to	provide	 the	breadth	of	platform	porting,
additional	capabilities	in	DXE	support	various	platform	targets.	In	UEFI,	the	interaction	with	the
platform	 occurs	 through	 the	 input	 and	 output	 console	 services.	 The	 console	 input	 for	 a	 PC	 is
typically	a	PS/2	or	USB	keyboard,	and	the	output	is	a	VGA	or	enhanced	video	display.	But	the
I/O	card	studied	earlier	has	no	traditional	“head”	or	display.	These	deeply	embedded	platforms
may	only	have	a	 simple	serial	 interface	 to	 the	system.	 Interestingly,	 the	same	PC	hardware	can
also	run	without	a	traditional	display	and	interact	with	the	user	via	a	simple	serial	interface.	Figur

e	7.12	displays	a	console	stack	for	an	UEFI	system	built	upon	a	serial	interface.

Figure	7.12:	Console	Stack	on	a	PC

In	order	 to	build	out	 this	stack,	 the	boot-device	selection	(BDS)	or	 the	UEFI	shell	provides	an
application	or	command	line	 interface	(CLI)	 to	 the	user.	The	Simple	Input	and	output	protocols
are	published	via	a	console	driver	that	layers	upon	the	Serial	I/O	protocol.	For	the	PCI-based	PC,
a	PCI	 root	bridge	protocol	allows	access	 to	 the	 serial	port	control	and	status	 registers;	 for	 the
Intel	 Atom	 platform	 with	 an	 internallyintegrated	 UART/	 serial	 port,	 an	 alternate	 low-level
protocol	may	exist	to	access	these	same	registers.

For	this	platform	layering,	the	components	listed	in	Figure	7.13	describe	the	DXE	and	UEFI
components	 needed	 to	 build	 out	 this	 console	 stack.	 Just	 as	 in	 the	 case	 of	 the	 PEI	 modules,
different	interests	can	deliver	the	DXE	and	UEFI	drivers.	For	example,	the	Super	I/O	vendor	may
deliver	the	ISA	ACPI	driver,	the	silicon	vendor	PCI	root	bridge	(such	as	the	GMCH	in	this	PC),	a
platform	 console	 driver,	 and	 then	 a	 set	 of	 reusable	 components	 based	 upon	 the	 PC/AT	 ISA
hardware.

Figure	7.13:	Components	for	Console	Stack

Beyond	 the	 console	 components,	 several	 other	 PEI	modules	 and	DXE	 components	 need	 to	 be
included	 into	 the	 firmware	volume.	These	other	 components,	 listed	 in	Figure	7.14,	 provide	 for
other	capabilities.	These	include	the	platform-specific	means	by	which	to	store	UEFI	variables,
platform	policy	for	security,	and	configuration.

Figure	7.14:	DXE	Drivers	on	a	PC

The	UEFI	variables	can	be	stored	in	various	regions	of	the	flash	part	(or	a	service	processor	on	a
server),	so	a	driver	needs	 to	abstract	 this	store.	For	security,	 the	vendor	may	demand	that	field
component	 updates	 be	 signed	 or	 that	 modules	 dispatched	 be	 hash-extended	 into	 a	 Trusted
Platform	Module	(TPM).	The	security	driver	will	abstract	these	security	capabilities.

A	 final	 feature	 to	 describe	 the	 component	 layering	 of	DXE	 drivers	 is	 support	 for	 the	 disk
subsystem,	namely	the	Integrated	Device	Electronics	(IDE)	and	a	UEFI	file	system.	The	protocol
layering	for	the	disk	subsystem	up	to	the	file	system	instance	are	shown	in	Figure	7.15.

Figure	7.15:	IDE	Stack

The	same	UEFI	shell	or	BDS	resides	at	the	top	of	the	protocol	layering.	Instances	of	the	simple
file	 system	 (FS)	protocol	provide	 the	 read/write/open/close	 capability	 to	 applications.	The	FS
protocols	layer	atop	disk	I/O	protocol.	A	disk	I/O	provides	bytelevel	access	to	a	sector-oriented
block	 device.	 As	 such,	 disk	 I/O	 is	 a	 software-only	 driver	 that	 provides	 this	 mapping	 from
hardware-specific	 block	 I/O	 abstractions.	 The	 disk	 I/O	 layer	 binds	 to	 a	 series	 of	 block	 I/O
instances.	 The	 block	 I/O	 protocol	 is	 published	 by	 the	 block	 device	 interest,	 such	 as	 the	 PCH
driver	 in	DXE	that	abstracts	 the	Serial	AT-Attachment	 (SATA)	disk	controller	 in	 the	PCH.	The
disk	driver	uses	the	PCI	Block	I/O	protocol	to	access	the	control	and	status	registers	in	the	PCH
component.

The	components	that	provide	these	capabilities	in	the	file	system	stack	can	be	found	in	Figure	
7.16.	The	 file	 system	components	 include	 the	File	Allocation	Table	 (FAT)	driver,	a	driver	 that
provides	FAT12/16/32	support.	FAT	is	the	original	file	system	for	MS-DOS	on	the	original	PC
that	has	been	extended	over	 time,	culminating	 in	 the	32-bit	 evolution	of	FAT	 in	Windows95	as
FAT32.	 In	 addition,	 providing	 different	 performance	 options	 of	 the	 storage	 channel	 can	 be
abstracted	 via	 the	 IDE	 Controller	 Initialization	 component.	 This	 provides	 an	 API	 so	 that	 a
platform	setup/	configuration	program	or	diagnostic	can	change	the	PCH	settings	of	this	feature.

Figure	7.16:	Components	for	IDE	Init

This	 same	 console	 stack	 for	 the	 serial	 port	 and	 file	 system	 stack	 for	 the	SATA	controller	 only
depends	upon	the	PCH	components,	a	PCI	abstraction,	and	appropriate	support	components.	As
such,	putting	this	same	PCH,	or	a	logically-equivalent	version	of	this	chip	integrated	into	another
application-specific	 integrated	circuit	 (ASIC),	will	admit	reuse	of	 these	same	binaries	on	other
like	systems	(such	as	an	x64	desktop	to	an	x64	server).	Beyond	this	binary	reuse	across	IA32	and
x64	 platform	 classes,	 the	 C	 code	 allows	 for	 reuse.	 The	 use	 of	 this	 PCH,	 whether	 the	 literal
component	or	 the	aforementioned	 logical	 integration,	on	 the	 Itanium	Processor,	can	occur	via	a
recompilation	of	the	component	C	code	with	the	Itanium	Processor	as	the	target	for	the	binary.

Figure	7.17:	Intel	®	FSP

Beyond	the	platforms	listed	above,	there	is	an	increasing	focus	on	open	source.	This	open	source
of	a	UEFI	conformant	core,	such	as	one	based	upon	the	EFI	Developer	Kit	II,	must	be	tempered
with	 the	 need	 to	 preserve	 intellectual	 property.	As	 such,	 one	 approach	 to	 deployment	 to	 open
source	core	plus	closed	source	binary	includes	leveraging	the	Intel	®	Firmware	Support	Package,
or	Intel	FSP.	The	idea	behind	the	Intel	FSP	is	to	encapsulate	low-level	flows,	such	as	the	memory
initialization	PEIM’s,	into	a	well-defined	binary.

This	is	the	familiar	layering	diagram	with	the	Green	H	of	the	generic	EDKII	UEFI	core,	the
yellow	line	designating	the	UEFI	API	conformance,	the	newly	introduced	element	of	the	Intel	FSP
at	 the	 bottom,	 and	 finally,	 the	 platform	 drivers.	 The	 platform	 drivers	 include	 board	 specific
PEIM’s	and	DXE	drivers	that	encapsulate	board	specific	details	like	GPIO	programming,	ACPI
tables,	and	silicon	drivers	based	upon	public	documentation.

The	Intel	FSP	will	allow	for	a	work	flow	wherein	a	developer	can	take	an	open	source	set	of
schematics,	 such	 as	 the	 Minnow	 Board	 Max	 for	 the	 Intel®	 Atom®	 E3800-series	 CPU,	 and
combine	with	the	EDKII	core	and	platform	code	from	GitHub,	along	with	the	Intel	®	FSP	binary
from	an	alternate	public	 repository.	These	elements	can	be	combined	 together	 to	provide	a	 full
platform	bootable	solution.

The	original	Intel	FSP	was	used	by	several	open	source	boot	environments,	such	as	coreboot,

U-Boot,	 and	 EDKII.	 There	 was	 inconsistency	 in	 the	 interface	 implementation	 that	 was
retrospectively	locked	down	into	what	was	called	Intel	FSP	1.0.	This	entailed	separating	out	the
generic	interfaces	to	the	Intel	FSP	from	the	system	on	a	chip	(SOC)	specific	details.	From	1.0	the
architecture	was	evolved	slightly	to	1.1	to	ease	integration.

Figure	7.18:	Intel	®	FSP1.0	versus	1.1

Figure	7.19:	Intel	®	FSP	2.0

Finally,	 the	 need	 for	 memory-mapped	 tables	 in	 1.0	 and	 1.1,	 and	 dependency	 upon	 memory-

mapped	SPI-attached	SPI	NOR,	led	to	decoupling	the	header.	This	led	to	the	definition	of	the	Intel
FSP	2.0	now	seem	in	the	market.

From	 a	 code	 re-use,	 the	 Intel	 FSP	 re-uses	 the	 PI	 Firmware	Volume	 (FV)	 and	 internal	 PEI
Modules.	So	even	 though	the	aggregate	Intel	FSP	is	a	 large	binary,	 the	 internal	contents	are	PI-
based	art,	as	shown	below.

Figure	7.20:	Intel	®	FSP	binary

Intel	 FSP2.0	 comprehends	 a	 world	 of	 source	 plus	 binary.	 This	 is	 not	 the	 only	 path	 to
implementation,	of	course.	The	Intel	Galileo	Quark-based	EDKII	firmware	is	fully	open	source,
for	example.

Summary

This	 chapter	 has	 provided	 an	 overview	 of	 some	 platforms	 that	 are	 based	 upon	 UEFI	 and	 PI
firmware	 technology.	 The	 power	 of	 the	 abstractions	 of	 the	 interfaces	 comes	 into	 play	 as	 the
firmware	 can	 be	 implemented	 on	 a	 PC/AT	 system,	 Itanium,	 and	 non-PC/AT	 system	 on	 a	 chip
(SoC).	In	addition	to	the	portability	of	the	abstractions,	this	chapter	has	also	shown	have	various
modules	 are	 integrated	 in	order	 to	provide	 a	 full	 console	 and	 storage	 stack.	 It	 is	 through	 these
detailed	platform	realizations	 that	 the	composition	of	 the	 industry	APIs	and	 their	 interoperation
comes	into	light.

Chapter	8	–	DXE	Basics:	Core,	Dispatching,	and	Drivers
I	do	not	fear	computers.	I	fear	the	lack	of	them.

—Isaac	Asimov

This	 chapter	 describes	 the	 makeup	 of	 the	 Driver	 Execution	 Environment	 (DXE)	 and	 how	 it
operates	during	the	platform	evolution.	In	addition,	it	describes	some	of	the	fundamental	concepts
of	 how	 information	 is	 handed	 off	 between	 phases	 of	 the	 platform	 boot	 process	 and	 how	 the
underlying	components	are	 launched.	The	 launching	description	also	provides	some	insight	 into
how	launch	orders	are	constructed,	since	they	do	deviate	from	what	is	commonly	referred	to	as
POST	tables	in	legacy	firmware.

The	 DXE	 phase	 contains	 an	 implementation	 of	 UEFI	 that	 is	 compliant	 with	 the	 PI	 (Platform
Initialization)	Specification.	As	a	result,	both	the	DXE	Core	and	DXE	drivers	share	many	of	the
attributes	of	UEFI	images.	The	DXE	phase	is	the	phase	where	most	of	the	system	initialization	is
performed.	 The	 Pre-EFI	 Initialization	 (PEI)	 phase	 is	 responsible	 for	 initializing	 permanent
memory	in	the	platform	so	the	DXE	phase	can	be	loaded	and	executed.	The	state	of	the	system	at
the	end	of	the	PEI	phase	is	passed	to	the	DXE	phase	through	a	list	of	position-independent	data
structures	called	Hand-Off	Blocks	(HOBs).	The	DXE	phase	consists	of	several	components:

DXE	Core
DXE	Dispatcher
DXE	Drivers

The	DXE	Core	produces	a	set	of	Boot	Services,	Runtime	Services,	and	DXE	Services.	The	DXE
Dispatcher	 is	 responsible	 for	discovering	and	executing	DXE	drivers	 in	 the	correct	order.	The
DXE	drivers	are	responsible	for	initializing	the	processor,	chipset,	and	platform	components	as
well	as	providing	software	abstractions	for	console	and	boot	devices.	These	components	work
together	to	initialize	the	platform	and	provide	the	services	required	to	boot	an	OS.	The	DXE	and
Boot	Device	Selection	(BDS)	phases	work	together	to	establish	consoles	and	attempt	the	booting
of	 operating	 systems.	 The	 DXE	 phase	 is	 terminated	 when	 an	 OS	 successfully	 begins	 its	 boot
process—that	 is,	when	 the	BDS	 phase	 starts.	Only	 the	 runtime	 services	 provided	 by	 the	DXE
Core	and	services	provided	by	runtime	DXE	drivers	are	allowed	to	persist	into	the	OS	runtime
environment.	The	result	of	DXE	is	the	presentation	of	a	fully	formed	UEFI	interface.

Figure	8.1	shows	 the	phases	 that	a	platform	with	UEFI	compatible	 firmware	goes	 through	on	a
cold	boot.	This	chapter	covers	the	following:

Transition	from	the	PEI	to	the	DXE	phase
The	DXE	phase
The	DXE	phase’s	interaction	with	the	BDS	phase

Figure	8.1:	Platform	Boot	Phases

DXE	Core

The	DXE	Core	 is	 designed	 to	 be	 completely	 portable	with	 no	 processor,	 chipset,	 or	 platform
dependencies.	This	portability	is	accomplished	by	incorporating	several	features:

The	DXE	Core	depends	only	upon	a	HOB	list	 for	 its	 initial	 state.	This	single	dependency
means	that	the	DXE	Core	does	not	depend	on	any	services	from	a	previous	phase,	so	all	the
prior	phases	can	be	unloaded	once	the	HOB	list	is	passed	to	the	DXE	Core.
The	DXE	Core	does	not	contain	any	hard-coded	addresses.	As	a	result,	the	DXE	Core	can
be	 loaded	 anywhere	 in	 physical	 memory,	 and	 it	 can	 function	 correctly	 no	 matter	 where
physical	 memory	 or	 where	 firmware	 volumes	 are	 located	 in	 the	 processor’s	 physical
address	space.
The	 DXE	 Core	 does	 not	 contain	 any	 processor-specific,	 chipset-specific,	 or	 platform-
specific	information.	Instead,	the	DXE	Core	is	abstracted	from	the	system	hardware	through
a	 set	 of	 architectural	 protocol	 interfaces.	 These	 architectural	 protocol	 interfaces	 are
produced	by	a	set	of	DXE	drivers	that	are	invoked	by	the	DXE	Dispatcher.

Below	is	an	illustration	showing	how	data	is	handed	off	between	the	PEI	and	DXE	phases.

Figure	8.2:	Early	Initialization	Illustrating	a	Handoff	between	PEI	and	DXE

The	DXE	Core	produces	the	EFI	System	Table	and	its	associated	set	of	EFI	Boot	Services	and

EFI	Runtime	Services.	The	DXE	Core	also	contains	the	DXE	Dispatcher,	whose	main	purpose	is
to	 discover	 and	 execute	 DXE	 drivers	 stored	 in	 firmware	 volumes.	 The	 order	 in	 which	 DXE
drivers	are	executed	is	determined	by	a	combination	of	the	optional	a	priori	file	(see	the	section
on	the	DXE	dispatcher)	and	the	set	of	dependency	expressions	that	are	associated	with	the	DXE
drivers.	The	firmware	volume	file	format	allows	dependency	expressions	to	be	packaged	with	the
executable	 DXE	 driver	 image.	 DXE	 drivers	 utilize	 a	 PE/COFF	 image	 format,	 so	 the	 DXE
Dispatcher	must	also	contain	a	PE/COFF	loader	to	load	and	execute	DXE	drivers.

The	DXE	Core	must	also	maintain	a	handle	database.	A	handle	database	 is	a	 list	of	one	or
more	 handles,	 and	 a	 handle	 is	 a	 list	 of	 one	 or	more	 unique	 protocol	 GUIDs.	 A	 protocol	 is	 a
software	 abstraction	 for	 a	 set	 of	 services.	 Some	 protocols	 abstract	 I/O	 devices,	 and	 other
protocols	abstract	a	common	set	of	system	services.	A	protocol	typically	contains	a	set	of	APIs
and	some	number	of	data	fields.	Every	protocol	is	named	by	a	GUID,	and	the	DXE	Core	produces
services	 that	 allow	 protocols	 to	 be	 registered	 in	 the	 handle	 database.	As	 the	DXE	Dispatcher
executes	DXE	drivers,	additional	protocols	are	added	to	the	handle	database	including	the	DXE
Architectural	Protocols	that	are	used	to	abstract	the	DXE	Core	from	platform-specific	details.

Hand-Off	Block	(HOB)	List

The	HOB	 list	 contains	 all	 the	 information	 that	 the	DXE	Core	 requires	 to	 produce	 its	memory-
based	services.	The	HOB	list	contains	information	on	the	boot	mode,	the	processor’s	instruction
set,	and	 the	memory	 that	was	discovered	 in	 the	PEI	phase.	 It	also	contains	a	description	of	 the
system	memory	that	was	initialized	by	the	PEI	phase,	along	with	information	about	the	firmware
devices	 that	were	 discovered	 in	 the	 PEI	 phase.	 The	 firmware	 device	 information	 includes	 the
system	memory	locations	of	the	firmware	devices	and	of	the	firmware	volumes	that	are	contained
within	 those	firmware	devices.	The	firmware	volumes	may	contain	DXE	drivers,	and	 the	DXE
Dispatcher	is	responsible	for	loading	and	executing	the	DXE	drivers	that	are	discovered	in	those
firmware	volumes.	Finally,	the	HOB	list	may	contain	the	I/	O	resources	and	memory-mapped	I/	O
resources	that	were	discovered	in	the	PEI	phase.

Figure	8.3	shows	an	example	HOB	list.	The	first	entry	 in	 the	HOB	list	 is	always	 the	Phase
Handoff	 Information	Table	 (PHIT)	HOB	 that	 contains	 the	boot	mode.	The	 rest	 of	 the	HOB	 list
entries	can	appear	in	any	order.	This	example	shows	the	different	types	of	system	resources	that
can	be	described	 in	 a	HOB	 list.	The	most	 important	ones	 to	 the	DXE	Core	 are	 the	HOBs	 that
describe	system	memory	and	 the	HOBs	 that	describe	 firmware	volumes.	A	HOB	list	 is	always
terminated	by	an	end-of-list	HOB.	The	one	additional	HOB	type	that	is	not	shown	in	Figure	8.3	is
the	GUID	extension	HOB	that	allows	a	PEIM	to	pass	private	data	to	a	DXE	driver.	Only	the	DXE
driver	that	recognizes	the	GUID	value	in	the	GUID	extension	HOB	can	understand	the	data	in	that
HOB.	The	HOB	entries	are	all	designed	 to	be	position-independent.	This	 independence	allows
the	DXE	Core	to	relocate	the	HOB	list	to	a	different	location	if	it	is	not	suitable	to	the	DXE	Core.

Figure	8.3:	HOB	List

DXE	Architectural	Protocols

The	 DXE	 Core	 is	 abstracted	 from	 the	 platform	 hardware	 through	 a	 set	 of	 DXE	Architectural
Protocols.	The	DXE	Core	consumes	these	protocols	 to	produce	the	EFI	Boot	Services	and	EFI
Runtime	 Services.	 DXE	 drivers	 that	 are	 loaded	 from	 firmware	 volumes	 produce	 the	 DXE
Architectural	Protocols.	This	design	means	that	the	DXE	Core	must	have	enough	services	to	load
and	start	DXE	drivers	before	even	a	single	DXE	driver	is	executed.

The	DXE	Core	is	passed	a	HOB	list	that	must	contain	a	description	of	some	amount	of	system
memory	and	at	 least	one	firmware	volume.	The	system	memory	descriptors	 in	the	HOB	list	are
used	to	initialize	the	UEFI	services	that	require	only	memory	to	function	correctly.	The	system	is
also	 guaranteed	 to	 be	 running	 on	 only	 one	 processor	 in	 flat	 physical	 mode	 with	 interrupts
disabled.	The	firmware	volume	is	passed	to	the	DXE	Dispatcher,	which	must	contain	a	read-only
FFS	driver	to	search	for	the	a	priori	file	and	any	DXE	drivers	in	the	firmware	volumes.	When	a
driver	is	discovered	that	needs	to	be	loaded	and	executed,	the	DXE	Dispatcher	uses	a	PE/COFF
loader	to	load	and	invoke	the	DXE	driver.	The	early	DXE	drivers	produce	the	DXE	Architectural
Protocols,	 so	 the	 DXE	 Core	 can	 produce	 the	 full	 complement	 of	 EFI	 Boot	 Services	 and	 EFI
Runtime	Services.	Figure	8.4	shows	the	HOB	list	being	passed	to	the	DXE	Core.	The	DXE	Core
consumes	the	services	of	the	DXE	Architectural	Protocols	shown	in	the	figure	and	then	produces
the	EFI	System	Table,	EFI	Boot	Services	Table,	and	the	EFI	Runtime	Services	Table.

Figure	8.4:	DXE	Architectural	Protocols

Figure	8.4	 shows	 all	 the	major	 components	 present	 in	 the	DXE	phase.	The	EFI	Boot	Services
Table	and	DXE	Services	Table	shown	on	the	left	are	allocated	from	UEFI	boot	services	memory.
This	allocation	means	that	the	EFI	Boot	Services	Table	and	DXE	Services	Table	are	freed	when
the	OS	runtime	phase	is	entered.	The	EFI	System	Table	and	EFI	Runtime	Services	Table	on	the
right	are	allocated	from	EFI	Runtime	Services	memory,	and	they	do	persist	 into	the	OS	runtime
phase.

The	DXE	Architectural	Protocols	shown	on	the	left	in	Figure	8.4	are	used	to	produce	the	EFI
Boot	Services.	The	DXE	Core,	DXE	Dispatcher,	and	 the	protocols	shown	on	 the	 left	are	 freed
when	the	system	transitions	to	the	OS	runtime	phase.	The	DXE	Architectural	Protocols	shown	on
the	right	are	used	to	produce	the	EFI	Runtime	Services.	These	services	persist	in	the	OS	runtime
phase.	The	Runtime	Architectural	Protocol	 in	 the	middle	 is	special.	This	protocol	provides	 the
services	that	are	required	to	transition	the	runtime	services	from	physical	mode	to	virtual	mode
under	 the	direction	of	an	OS.	Once	 this	 transition	 is	complete,	 these	 services	can	no	 longer	be
used.

The	following	is	a	brief	summary	of	the	DXE	Architectural	Protocols:

Security	 Architectural	 Protocol:	 Allows	 the	 DXE	 Core	 to	 authenticate	 files	 stored	 in
firmware	volumes	before	they	are	used.
CPU	 Architectural	 Protocol:	 Provides	 services	 to	 manage	 caches,	 manage	 interrupts,
retrieve	the	processor’s	frequency,	and	query	any	processor-based	timers.
Metronome	 Architectural	 Protocol:	 Provides	 the	 services	 required	 to	 perform	 very	 short
calibrated	stalls.
Timer	 Architectural	 Protocol:	 Provides	 the	 services	 required	 to	 install	 and	 enable	 the
heartbeat	timer	interrupt	required	by	the	timer	services	in	the	DXE	Core.
BDS	Architectural	Protocol:	Provides	an	entry	point	that	the	DXE	Core	calls	once	after	all

of	the	DXE	drivers	have	been	dispatched	from	all	of	the	firmware	volumes.	This	entry	point
is	the	transition	from	the	DXE	phase	to	the	BDS	phase,	and	it	is	responsible	for	establishing
consoles	and	enabling	the	boot	devices	required	to	boot	an	OS.
Watchdog	 Timer	 Architectural	 Protocol:	 Provides	 the	 services	 required	 to	 enable	 and
disable	a	watchdog	timer	in	the	platform.
Runtime	 Architectural	 Protocol:	 Provides	 the	 services	 required	 to	 convert	 all	 runtime
services	and	runtime	drivers	from	physical	mappings	to	virtual	mappings.
Variable	Architectural	Protocol:	Provides	the	services	to	retrieve	environment	variables	and
set	volatile	environment	variables.
Variable	Write	Architectural	Protocol:	Provides	the	services	to	set	nonvolatile	environment
variables.
Monotonic	Counter	Architectural	Protocol:	Provides	the	services	required	by	the	DXE	Core
to	manage	a	64-bit	monotonic	counter.
	 Reset	 Architectural	 Protocol:	 Provides	 the	 services	 required	 to	 reset	 or	 shutdown	 the
platform.
Status	 Code	 Architectural	 Protocol:	 Provides	 the	 services	 to	 send	 status	 codes	 from	 the
DXE	Core	or	DXE	drivers	to	a	log	or	device.
Real	Time	Clock	Architectural	Protocol:	Provides	the	services	to	retrieve	and	set	the	current
time	and	date	as	well	as	the	time	and	date	of	an	optional	wakeup	timer.

EFI	System	Table

The	DXE	Core	 produces	 the	EFI	System	Table,	which	 is	 consumed	by	 every	DXE	driver	 and
executable	 image	 invoked	 by	 BDS.	 It	 contains	 all	 the	 information	 that	 is	 required	 for	 these
components	 to	 use	 the	 services	 provided	 by	 the	 DXE	 Core	 and	 any	 previously	 loaded	 DXE
driver.	Figure	8.5	shows	the	various	components	that	are	available	through	the	EFI	System	Table.

Figure	8.5:	EFI	System	Table	and	Related	Components

The	DXE	Core	produces	the	EFI	Boot	Services,	EFI	Runtime	Services,	and	DXE	Services	with
the	 aid	 of	 the	DXE	Architectural	 Protocols.	 The	 EFI	 System	Table	 provides	 access	 to	 all	 the
active	 console	 devices	 in	 the	 platform	 and	 the	 set	 of	 EFI	 Configuration	 Tables.	 The	 EFI
Configuration	Tables	are	an	extensible	list	of	tables	that	describe	the	configuration	of	the	platform
including	 pointers	 to	 tables	 such	 as	 DXE	 Services,	 the	 HOB	 list,	 ACPI,	 System	Management
BIOS	(SMBIOS),	and	the	SAL	System	Table.	This	list	may	be	expanded	in	the	future	as	new	table
types	are	defined.	Also,	through	the	use	of	the	Protocol	Handle	Services	in	the	EFI	Boot	Services
Table,	any	executable	image	can	access	the	handle	database	and	any	of	the	protocol	interfaces	that
have	been	registered	by	DXE	drivers.

When	the	transition	to	the	OS	runtime	is	performed,	the	handle	database,	active	consoles,	EFI
Boot	 Services,	 and	 services	 provided	 by	 boot	 service	 DXE	 drivers	 are	 terminated.	 This
termination	frees	more	memory	for	use	by	the	OS	and	leaves	the	EFI	System	Table,	EFI	Runtime
Services	Table,	and	the	system	configuration	tables	available	in	the	OS	runtime	environment.	You
also	have	the	option	of	converting	all	of	the	EFI	Runtime	Services	from	a	physical	address	space
to	an	operating	system	specific	virtual	address	space.	This	address	space	conversion	may	only	be
performed	once.

EFI	Boot	Services	Table

The	following	is	a	brief	summary	of	the	services	that	are	available	through	the	EFI	Boot	Services
Table:

Task	Priority	Services:	Provides	services	 to	 increase	or	decrease	 the	current	 task	priority
level.	This	 priority	mechanism	 can	 be	 used	 to	 implement	 simple	 locks	 and	 to	 disable	 the
timer	 interrupt	 for	 short	periods	of	 time.	These	 services	depend	on	 the	CPU	Architectural
Protocol.
	Memory	Services:	 Provides	 services	 to	 allocate	 and	 free	 pages	 in	 4	KB	 increments	 and
allocate	and	free	pool	on	byte	boundaries.	It	also	provides	a	service	to	retrieve	a	map	of	all
the	current	physical	memory	usage	in	the	platform.
	 Event	 and	 Timer	 Services:	 Provides	 services	 to	 create	 events,	 signal	 events,	 check	 the
status	of	events,	wait	for	events,	and	close	events.	One	class	of	events	is	timer	events,	which
supports	 periodic	 timers	 with	 variable	 frequencies	 and	 one-shot	 timers	 with	 variable
durations.	These	 services	 depend	 on	 the	CPU	Architectural	 Protocol,	 Timer	Architectural
Protocol,	Metronome	Architectural	Protocol,	and	Watchdog	Timer	Architectural	Protocol.
	Protocol	Handler	Services:	Provides	services	to	add	and	remove	handles	from	the	handle
database.	 It	 also	 provides	 services	 to	 add	 and	 remove	 protocols	 from	 the	 handles	 in	 the
handle	 database.	 Additional	 services	 are	 available	 that	 allow	 any	 component	 to	 look	 up
handles	in	the	handle	database	and	open	and	close	protocols	in	the	handle	database.
	 Image	 Services:	 Provides	 services	 to	 load,	 start,	 exit,	 and	 unload	 images	 using	 the
PE/COFF	image	format.	These	services	depend	on	the	Security	Architectural	Protocol.
	Driver	Support	Services:	Provides	services	to	connect	and	disconnect	drivers	to	devices	in
the	platform.	These	services	are	used	by	the	BDS	phase	to	either	connect	all	drivers	to	all
devices,	or	to	connect	only	the	minimum	number	of	drivers	to	devices	required	to	establish

the	consoles	and	boot	an	OS.	The	minimal	connect	strategy	is	how	a	fast	boot	mechanism	is
provided.

EFI	Runtime	Services	Table

The	 following	 is	 a	 brief	 summary	 of	 the	 services	 that	 are	 available	 through	 the	 EFI	 Runtime
Services	Table:

Variable	 Services:	 Provides	 services	 to	 lookup,	 add,	 and	 remove	 environment	 variables
from	nonvolatile	storage.	These	services	depend	on	the	Variable	Architectural	Protocol	and
the	Variable	Write	Architectural	Protocol.
Real	Time	Clock	Services:	Provides	services	to	get	and	set	the	current	time	and	date.	It	also
provides	 services	 to	 get	 and	 set	 the	 time	 and	 date	 of	 an	 optional	 wakeup	 timer.	 These
services	depend	on	the	Real	Time	Clock	Architectural	Protocol.
Reset	Services:	Provides	services	to	shut	down	or	reset	the	platform.	These	services	depend
on	the	Reset	Architectural	Protocol.
Status	Code	Services:	Provides	services	to	send	status	codes	to	a	system	log	or	a	status	code
reporting	device.	These	services	depend	on	the	Status	Code	Architectural	Protocol.
Virtual	Memory	Services:	Provides	services	that	allow	the	runtime	DXE	components	to	be
converted	from	a	physical	memory	map	to	a	virtual	memory	map.	These	services	can	only	be
called	once	in	physical	mode.	Once	the	physical	to	virtual	conversion	has	been	performed,
these	services	cannot	be	called	again.	These	services	depend	on	the	Runtime	Architectural
Protocol.

DXE	Services	Table

The	 following	 is	 a	 brief	 summary	of	 the	 services	 that	 are	 available	 through	 the	DXE	Services
Table:

Global	Coherency	Domain	Services:	Provides	services	to	manage	I/O	resources,	memory-
mapped	 I/O	 resources,	 and	 system	memory	 resources	 in	 the	 platform.	 These	 services	 are
used	to	dynamically	add	and	remove	these	resources	from	the	processor’s	Global	Coherency
Domain	(GCD).
	 DXE	 Dispatcher	 Services:	 Provides	 services	 to	 manage	 DXE	 drivers	 that	 are	 being
dispatched	by	the	DXE	Dispatcher.

Global	Coherency	Domain	Services

The	 Global	 Coherency	 Domain	 (GCD)	 Services	 are	 used	 to	 manage	 the	 memory	 and	 I/O
resources	visible	to	the	boot	processor.	These	resources	are	managed	in	two	different	maps:

GCD	memory	space	map
GCD	I/O	space	map

If	memory	or	I/O	resources	are	added,	removed,	allocated,	or	freed,	then	the	GCD	memory	space
map	 and	 GCD	 I/O	 space	 map	 are	 updated.	 GCD	 Services	 are	 also	 provided	 to	 retrieve	 the
contents	of	these	two	resource	maps.

The	 GCD	 Services	 can	 be	 broken	 up	 into	 two	 groups.	 The	 first	 manages	 the	 memory
resources	visible	to	the	boot	processor,	and	the	second	manages	the	I/O	resources	visible	to	the
boot	 processor.	 Not	 all	 processor	 types	 support	 I/O	 resources,	 so	 the	 management	 of	 I/O
resources	may	not	be	required.	However,	since	system	memory	resources	and	memory-mapped	I/
O	resources	are	required	to	execute	the	DXE	environment,	the	management	of	memory	resources
is	always	required.

GCD	Memory	Resources

The	Global	Coherency	Domain	 (GCD)	Services	used	 to	manage	memory	 resources	 include	 the
following:

The	GCD	Services	used	to	retrieve	the	GCD	memory	space	map	include	the	following:

The	GCD	memory	space	map	is	initialized	from	the	HOB	list	that	is	passed	to	the	entry	point	of
the	 DXE	Core.	 One	HOB	 type	 describes	 the	 number	 of	 address	 lines	 that	 are	 used	 to	 access
memory	resources.	This	information	is	used	to	initialize	the	state	of	the	GCD	memory	space	map.
Any	memory	regions	outside	this	initial	region	are	unavailable	to	any	of	the	GCD	Services	that
are	used	to	manage	memory	resources.	The	GCD	memory	space	map	is	designed	to	describe	the
memory	address	space	with	as	many	as	64	address	lines.	Each	region	in	the	GCD	memory	space
map	can	begin	and	end	on	a	byte	boundary.	Additional	HOB	types	describe	the	location	of	system
memory,	 the	 location	 memory	 mapped	 I/O,	 the	 location	 of	 firmware	 devices,	 the	 location	 of
firmware	volumes,	 the	location	of	reserved	regions,	and	the	location	of	system	memory	regions
that	 were	 allocated	 prior	 to	 the	 execution	 of	 the	 DXE	 Core.	 The	 DXE	 Core	 must	 parse	 the

contents	of	the	HOB	list	to	guarantee	that	memory	regions	reserved	prior	to	the	execution	of	the
DXE	Core	are	honored.	As	a	result,	the	GCD	memory	space	map	must	reflect	the	memory	regions
described	 in	 the	 HOB	 list.	 The	 GCD	 memory	 space	 map	 provides	 the	 DXE	 Core	 with	 the
information	required	to	initialize	the	memory	services	such	as	AllocatePages(),	FreePages(),
AllocatePool(),	FreePool(),	and	GetMemoryMap().

A	memory	 region	described	by	 the	GCD	memory	space	map	can	be	 in	one	of	 several	different
states:

Nonexistent	memory
System	memory
Memory-mapped	I/O
Reserved	memory

These	 memory	 regions	 can	 be	 allocated	 and	 freed	 by	 DXE	 drivers	 executing	 in	 the	 DXE
environment.	In	addition,	a	DXE	driver	can	attempt	to	adjust	the	caching	attributes	of	a	memory
region.	 Figure	 8.6	 shows	 the	 possible	 state	 transitions	 for	 each	 byte	 of	 memory	 in	 the	 GCD
memory	 space	map.	The	 transitions	 are	 labeled	with	 the	GCD	Service	 that	 can	move	 the	 byte
from	one	state	to	another.	The	GCD	services	are	required	to	merge	similar	memory	regions	that
are	adjacent	to	each	other	into	a	single	memory	descriptor,	which	reduces	the	number	of	entries	in
the	GCD	memory	space	map.

Figure	8.6:	GCD	Memory	State	Transitions

GCD	I/O	Resources

The	 Global	 Coherency	 Domain	 (GCD)	 Services	 used	 to	 manage	 I/O	 resources	 include	 the

following:

The	GCD	Services	used	to	retrieve	the	GCD	I/O	space	map	include	the	following:

The	GCD	I/O	space	map	is	initialized	from	the	HOB	list	that	is	passed	to	the	entry	point	of	the
DXE	Core.	One	HOB	 type	 describes	 the	 number	 of	 address	 lines	 that	 are	 used	 to	 access	 I/O
resources.	 This	 information	 is	 used	 to	 initialize	 the	 state	 of	 the	GCD	 I/O	 space	map.	Any	 I/O
regions	outside	this	initial	region	are	not	available	to	any	of	the	GCD	Services	that	are	used	to
manage	 I/O	 resources.	The	GCD	I/O	space	map	 is	designed	 to	describe	 the	 I/O	address	 space
with	as	many	as	64	address	lines.	Each	region	in	the	GCD	I/O	space	map	can	begin	and	end	on	a
byte	boundary.

An	I/O	region	described	by	the	GCD	I/O	space	map	can	be	in	several	different	states.	These
include	nonexistent	I/O,	I/O,	and	reserved	I/O.	These	I/O	regions	can	be	allocated	and	freed	by
DXE	drivers	executing	in	the	DXE	environment.	Figure	8.7	shows	 the	possible	state	 transitions
for	each	byte	of	I/O	in	the	GCD	I/O	space	map.	The	transitions	are	labeled	with	the	GCD	Service
that	can	move	the	byte	from	one	state	to	another.	The	GCD	Services	are	required	to	merge	similar
I/O	regions	that	are	adjacent	to	each	other	into	a	single	I/O	descriptor,	which	reduces	the	number
of	entries	in	the	GCD	I/O	space	map.

Figure	8.7:	GCD	I/O	State	Transitions

DXE	Dispatcher

After	the	DXE	Core	is	initialized,	control	is	handed	to	the	DXE	Dispatcher.	The	DXE	Dispatcher
is	 responsible	 for	 loading	 and	 invoking	 DXE	 drivers	 found	 in	 firmware	 volumes.	 The	 DXE
Dispatcher	searches	for	drivers	in	the	firmware	volumes	described	by	the	HOB	list.	As	execution
continues,	other	firmware	volumes	might	be	located.	When	they	are,	the	DXE	Dispatcher	searches
them	for	drivers	as	well.

When	 a	 new	 firmware	 volume	 is	 discovered,	 a	 search	 is	made	 for	 its	 a	 priori	 file.	 The	 a
priori	file	has	a	fixed	file	name	and	contains	the	list	of	DXE	drivers	that	should	be	loaded	and
executed	 first.	 There	 can	 be	 at	 most	 one	 a	 priori	 file	 per	 firmware	 volume,	 although	 it	 is
acceptable	to	have	no	a	priori	file	at	all.	Once	the	DXE	drivers	from	the	a	priori	file	have	been
loaded	and	executed,	the	dependency	expressions	of	the	remaining	DXE	drivers	in	the	firmware
volumes	are	evaluated	to	determine	the	order	in	which	they	will	be	loaded	and	executed.	The	a
priori	 file	 provides	 a	 strongly	 ordered	 list	 of	 DXE	 drivers	 that	 are	 not	 required	 to	 use
dependency	expressions.	The	dependency	expressions	provide	a	weakly	ordered	execution	of	the
remaining	DXE	drivers.	Before	each	DXE	driver	 is	executed,	 it	must	be	authenticated	with	 the
Security	Architectural	Protocol.	This	authentication	prevents	DXE	drivers	with	unknown	origins
from	being	executed.

Control	 is	 transferred	from	the	DXE	Dispatcher	 to	 the	BDS	Architectural	Protocol	after	 the
DXE	drivers	in	the	a	priori	file	and	all	the	DXE	drivers	whose	dependency	expressions	evaluate
to	 TRUE	 have	 been	 loaded	 and	 executed.	 The	 BDS	Architectural	 Protocol	 is	 responsible	 for
establishing	 the	 console	 devices	 and	 attempting	 the	 boot	 of	 operating	 systems.	As	 the	 console
devices	are	established	and	access	to	boot	devices	is	established,	additional	firmware	volumes
may	be	discovered.	If	the	BDS	Architectural	Protocol	is	unable	to	start	a	console	device	or	gain
access	 to	 a	 boot	 device,	 it	 reinvokes	 the	 DXE	 Dispatcher.	 This	 invocation	 allows	 the	 DXE
Dispatcher	to	load	and	execute	DXE	drivers	from	firmware	volumes	that	have	been	discovered
since	the	last	time	the	DXE	Dispatcher	was	invoked.	Once	the	DXE	Dispatcher	has	loaded	and
executed	 all	 the	 DXE	 drivers	 it	 can,	 control	 is	 once	 again	 returned	 to	 the	 BDS	Architectural
Protocol	 to	 continue	 the	 OS	 boot	 process.	 Figure	 8.8	 illustrates	 this	 basic	 flow	 between	 the
Dispatcher,	its	launched	drivers,	and	the	BDS.

Figure	8.8:	The	Handshake	between	the	Dispatcher	and	Other	Components

The	a	priori	File

The	a	priori	file	is	a	special	file	that	may	be	present	in	a	firmware	volume.	The	rule	is	that	there
may	be	at	most	one	a	priori	file	per	firmware	volume	present	in	a	platform.	The	a	priori	file	has	a
known	GUID	file	name,	so	the	DXE	Dispatcher	can	always	find	the	a	priori	file.	Every	time	the
DXE	Dispatcher	discovers	a	firmware	volume,	it	first	looks	for	the	a	priori	file.	The	a	priori	file
contains	the	list	of	DXE	drivers	that	should	be	loaded	and	executed	before	any	other	DXE	drivers
are	 discovered.	The	DXE	drivers	 listed	 in	 the	 a	 priori	 file	 are	 executed	 in	 the	 order	 that	 they
appear.	 If	 any	 of	 those	 DXE	 drivers	 have	 an	 associated	 dependency	 expression,	 then	 those
dependency	expressions	are	ignored.

The	purpose	of	the	a	priori	file	is	to	provide	a	deterministic	execution	order	of	DXE	drivers.
DXE	drivers	that	are	executed	solely	based	on	their	dependency	expression	are	weakly	ordered,
which	means	that	the	execution	order	is	not	completely	deterministic	between	boots	or	between
platforms.	Some	cases,	however,	require	a	deterministic	execution	order.	One	example	would	be
to	list	the	DXE	drivers	that	are	required	to	debug	the	rest	of	the	DXE	phase	in	the	a	priori	file.
These	DXE	drivers	that	provide	debug	services	might	have	been	loaded	much	later	if	only	their
dependency	expressions	were	considered.	By	 loading	 them	earlier,	more	of	 the	DXE	Core	and
DXE	drivers	can	be	debugged.	Another	example	is	to	use	the	a	priori	file	to	eliminate	the	need
for	 dependency	 expressions.	 Some	 embedded	 platforms	may	 require	 only	 a	 few	DXE	 drivers
with	a	highly	deterministic	execution	order.	The	a	priori	file	can	provide	this	ordering,	and	none
of	the	DXE	drivers	would	require	dependency	expressions.	The	dependency	expressions	do	have
some	 amount	 of	 firmware	 device	 overhead,	 so	 this	 method	 might	 actually	 conserve	 firmware
space.	The	main	purpose	of	 the	a	priori	 file	 is	 to	provide	a	greater	degree	of	 flexibility	 in	 the
firmware	design	of	a	platform.

Dependency	Grammar

A	DXE	driver	 is	 stored	 in	a	 firmware	volume	as	 a	 file	with	one	or	more	 sections.	One	of	 the
sections	must	 be	 a	 PE/COFF	 image.	 If	 a	DXE	 driver	 has	 a	 dependency	 expression,	 then	 it	 is
stored	in	a	dependency	section.	A	DXE	driver	may	contain	additional	sections	for	compression
and	security	wrappers.	The	DXE	Dispatcher	can	 identify	 the	DXE	drivers	by	 their	 file	 type.	 In
addition,	 the	 DXE	 Dispatcher	 can	 look	 up	 the	 dependency	 expression	 for	 a	 DXE	 driver	 by
looking	for	a	dependency	section	in	a	DXE	driver	file.	The	dependency	section	contains	a	section
header	followed	by	the	actual	dependency	expression	that	is	composed	of	a	packed	byte	stream	of
opcodes	and	operands.

Dependency	expressions	stored	in	dependency	sections	are	designed	to	be	small	to	conserve
space.	 In	 addition,	 they	 are	 designed	 to	 be	 simple	 and	 quick	 to	 evaluate	 to	 reduce	 execution
overhead.	These	two	goals	are	met	by	designing	a	small,	stackbased	instruction	set	to	encode	the
dependency	expressions.	The	DXE	Dispatcher	must	implement	an	interpreter	for	this	instruction
set	to	evaluate	dependency	expressions.	Table	8.1	gives	a	summary	of	the	supported	opcodes	in
the	dependency	expression	instruction	set.

Table	8.1:	Supported	Opcodes	in	the	Dependency	Expression	Instruction	Set

Opcode Description
0x00 BEFORE	<File	Name	GUID>
0x01 AFTER	<File	Name	GUID>
0x02 PUSH	<Protocol	GUID>
0x03 AND
0x04 OR
0x05 NOT
0x06 TRUE
0x07 FALSE
0x08 END
0x09 SOR

Because	multiple	dependency	expressions	may	evaluate	to	TRUE	at	 the	same	time,	 the	order	in
which	the	DXE	drivers	are	loaded	and	executed	may	vary	between	boots	and	between	platforms
even	 though	 the	 contents	 of	 their	 firmware	 volumes	 are	 identical.	 This	 variation	 is	 why	 the
ordering	is	weak	for	 the	execution	of	DXE	drivers	 in	a	platform	when	dependency	expressions
are	used.

DXE	Drivers

DXE	drivers	have	two	subclasses:
DXE	drivers	that	execute	very	early	in	the	DXE	phase
DXE	drivers	that	comply	with	the	UEFI	Driver	Model

The	execution	order	of	 the	 first	 subclass,	 the	 early	DXE	drivers,	 depends	on	 the	presence	 and
contents	 of	 an	 a	 priori	 file	 and	 the	 evaluation	 of	 dependency	 expressions.	 These	 early	 DXE
drivers	typically	contain	processor,	chipset,	and	platform	initialization	code.	They	also	typically
produce	the	DXE	Architectural	Protocols	that	are	required	for	the	DXE	Core	to	produce	its	full
complement	of	EFI	Boot	Services	and	EFI	Runtime	Services.	To	support	the	fastest	possible	boot
time,	as	much	initialization	as	possible	should	be	deferred	to	the	second	subclass	of	DXE	drivers,
those	that	comply	with	the	UEFI	Driver	Model.

The	DXE	 drivers	 that	 comply	with	 the	 UEFI	Driver	Model	 do	 not	 perform	 any	 hardware
initialization	 when	 they	 are	 executed	 by	 the	 DXE	 Dispatcher.	 Instead,	 they	 register	 a	 Driver
Binding	Protocol	interface	in	the	handle	database.	The	set	of	Driver	Binding	Protocols	are	used
by	the	BDS	phase	to	connect	the	drivers	to	the	devices	required	to	establish	consoles	and	provide
access	 to	boot	devices.	The	DXE	Drivers	 that	 comply	with	 the	UEFI	Driver	Model	ultimately
provide	 software	 abstractions	 for	 console	 devices	 and	 boot	 devices	 but	 only	 when	 they	 are
explicitly	asked	to	do	so.

All	DXE	drivers	may	consume	the	EFI	Boot	Services	and	EFI	Runtime	Services	to	perform
their	functions.	However,	the	early	DXE	drivers	need	to	be	aware	that	not	all	of	these	services
may	be	 available	when	 they	 execute	because	not	 all	 of	 the	DXE	Architectural	Protocols	might
have	 been	 registered	 yet.	 DXE	 drivers	must	 use	 dependency	 expressions	 to	 guarantee	 that	 the
services	and	protocol	interfaces	they	require	are	available	before	they	are	executed.

The	DXE	drivers	that	comply	with	the	UEFI	Driver	Model	do	not	need	to	be	concerned	with
this	possibility.	These	drivers	simply	register	the	Driver	Binding	Protocol	in	the	handle	database
when	 they	 are	 executed.	 This	 operation	 can	 be	 performed	 without	 the	 use	 of	 any	 DXE
Architectural	Protocols.	The	BDS	phase	will	not	be	entered	until	 all	of	 the	DXE	Architectural
Protocols	are	registered.	If	the	DXE	Dispatcher	does	not	have	any	more	DXE	drivers	to	execute
but	 not	 all	 of	 the	 DXE	 Architectural	 Protocols	 have	 been	 registered,	 then	 a	 fatal	 error	 has
occurred	and	the	system	will	be	halted.

Boot	Device	Selection	(BDS)	Phase

The	Boot	Device	Selection	 (BDS)	Architectural	 Protocol	 executes	 during	 the	BDS	phase.	The
BDS	 Architectural	 Protocol	 is	 discovered	 in	 the	 DXE	 phase,	 and	 it	 is	 executed	 when	 two
conditions	are	met:

All	of	 the	DXE	Architectural	Protocols	have	been	 registered	 in	 the	handle	database.	This
condition	is	required	for	the	DXE	Core	to	produce	the	full	complement	of	EFI	Boot	Services
and	EFI	Runtime	Services.
The	 DXE	 Dispatcher	 does	 not	 have	 any	 more	 DXE	 drivers	 to	 load	 and	 execute.	 This
condition	occurs	only	when	all	 the	a	priori	files	from	all	 the	firmware	volumes	have	been
processed	and	all	the	DXE	drivers	whose	dependency	expression	have	evaluated	to	TRUE
have	been	loaded	and	executed.

The	BDS	Architectural	Protocol	 locates	and	 loads	various	applications	 that	execute	 in	 the	pre-
boot	 services	 environment.	 Such	 applications	might	 represent	 a	 traditional	 OS	 boot	 loader	 or
extended	services	that	might	run	instead	of	or	prior	to	loading	the	final	OS.	Such	extended	pre-
boot	services	might	include	setup	configuration,	extended	diagnostics,	flash	update	support,	OEM
services,	or	the	OS	boot	code.

Vendors	 such	 as	 IBVs,	 OEMs,	 and	 ISVs	 may	 choose	 to	 use	 a	 reference	 implementation,
develop	 their	 own	 implementation	 based	 on	 the	 reference,	 or	 develop	 an	 implementation	 from
scratch.

The	BDS	phase	performs	a	well-defined	set	of	tasks.	The	user	interface	and	user	interaction	that
occurs	on	different	boots	and	different	platforms	may	vary,	but	the	boot	policy	that	the	BDS	phase
follows	 is	very	 rigid.	This	boot	policy	 is	 required	so	OS	 installations	will	behave	predictably
from	platform	to	platform.	The	tasks	include	the	following:

Initialize	console	devices	based	on	the	ConIn,	ConOut,	and	StdErr	environment	variables
Attempt	 to	 load	 all	 drivers	 listed	 in	 the	 Driver####	 and	 DriverOrder	 environment
variables.
Attempt	to	boot	from	the	boot	selections	listed	in	the	Boot####	and	BootOrder	environment
variables.

If	the	BDS	phase	is	unable	to	connect	a	console	device,	load	a	driver,	or	boot	a	boot	selection,	it
is	 required	 to	 reinvoke	 the	 DXE	 Dispatcher.	 This	 invocation	 is	 required	 because	 additional
firmware	volumes	may	have	been	discovered	while	attempting	to	perform	these	operations.	These
additional	 firmware	 volumes	 may	 contain	 the	 DXE	 drivers	 required	 to	 manage	 the	 console
devices	 or	 boot	 devices.	 Once	 all	 of	 the	 DXE	 drivers	 have	 been	 dispatched	 from	 any	 newly
discovered	firmware	volumes,	control	is	returned	to	the	BDS	phase.	If	the	BDS	phase	is	unable	to
make	any	additional	forward	progress	in	connecting	the	console	device	or	the	boot	device,	then
the	 connection	 of	 that	 console	 device	 or	 boot	 selection	 fails.	When	 a	 failure	 occurs,	 the	BDS
phase	moves	on	to	the	next	console	device,	driver	load,	or	boot	selection.

Console	Devices

Console	devices	are	abstracted	through	the	Simple	Text	Output	and	Simple	Input	Protocols.	Any
device	that	produces	one	or	both	of	these	protocols	may	be	used	as	a	console	device	on	a	UEFI-
based	platform.	Several	types	of	devices	are	capable	of	producing	these	protocols,	including	the
following:

VGA	Adapters:	These	adapters	can	produce	a	text-based	display	that	is	abstracted	with	the
Simple	Text	Output	Protocol.
Video	Adapters:	These	adapters	can	produce	a	Graphics	Output	Protocol	(GOP)	which	is	a
graphical	interface	that	supports	Block	Transfer	(BLT)	operations.	A	text-based	display	that
produces	the	Simple	Text	Output	Protocol	can	be	simulated	on	top	of	a	GOP	display	by	using
BLT	 operations	 to	 send	Unicode	 glyphs	 into	 the	 frame	 buffer.	 GOP	 is	 also	 the	means	 by
which	graphics	is	typically	rendered	to	the	local	video	device.
Serial	Terminal:	A	serial	terminal	device	can	produce	both	the	Simple	Input	and	Simple	Text
Output	Protocols.	Serial	terminals	are	very	flexible,	and	they	can	support	a	variety	of	wire
protocols	such	as	PC	ANSI,	VT-100,	VT-100+,	and	VTUTF8.
Telnet:	 A	 telnet	 session	 can	 produce	 both	 the	 Simple	 Input	 and	 Simple	 Text	 Output
Protocols.	Like	the	serial	 terminal,	a	variety	of	wire	protocols	can	be	supported	including
PC	ANSI,	VT-100,	VT-100+,	and	VTUTF8
Remote	 Graphical	 Displays	 (HTTP):	 A	 remote	 graphical	 display	 can	 produce	 both	 the
Simple	 Input	 and	 Simple	 Text	 Output	 Protocols.	 One	 possible	 implementation	 could	 use
HTTP,	so	standard	Internet	browsers	could	be	used	to	manage	a	UEFI-based	platform.

Boot	Devices

Several	types	of	boot	devices	are	supported	in	UEFI:
Devices	that	produce	the	Block	I/	O	Protocol	and	are	formatted	with	a	FAT	file	system
Devices	that	directly	produce	the	File	System	Protocol
Devices	that	directly	produce	the	Load	File	Protocol
Disk	 devices	 typically	 produce	 the	 Block	 I/	 O	 Protocol,	 and	 network	 devices	 typically
produce	the	Load	File	Protocol.

A	UEFI	implementation	may	also	choose	to	include	legacy	compatibility	drivers.	These	drivers
provide	the	services	required	to	boot	a	traditional	OS,	and	the	BDS	phase	could	then	also	support
booting	a	traditional	OS.

Boot	Services	Terminate

The	BDS	phase	is	terminated	when	an	OS	loader	is	executed	and	an	OS	is	successfully	booted.
An	 OS	 loader	 or	 an	 OS	 kernel	 may	 call	 a	 single	 service	 called	 Exit-BootServices()	 to
terminate	the	BDS	phase.	Once	this	call	is	made,	all	of	the	boot	service	components	are	freed	and
their	resources	are	available	for	use	by	the	OS.	When	the	call	to	ExitBootServices()	 returns,
the	Runtime	(RT)	phase	has	been	entered.

Summary

In	conclusion,	the	DXE	phase	encompasses	the	establishing	of	the	entire	infrastructure	necessary
for	UEFI	compliant	components	to	operate.	This	includes	the	establishment	of	the	service	tables
and	other	requisite	architectural	protocols.	As	the	DXE	phase	completes	and	passes	control	to	the
BDS,	the	platform	then	proceeds	to	complete	any	initialization	required	to	launch	of	boot	target.

Chapter	9	–	Some	Common	UEFI	and	PI	Functions
Never	let	the	future	disturb	you.	You	will	meet	it,	if	you	have	to,	with	the	same	weapons	of	reason	which	today	arm	you	against
the	present.

—Marcus	Aurelius	Antoninus

UEFI	provides	a	variety	of	functions	that	are	used	for	drivers	and	applications	to	communication
with	the	underlying	UEFI	components.	Many	of	the	designs	for	interfaces	have	historically	been
short-sighted	 due	 to	 their	 inability	 to	 predict	 changes	 in	 technology.	 An	 example	 of	 such
shortsightedness	might	be	where	a	disk	interface	assumed	that	a	disk	might	never	have	more	than
8	gigabytes	of	space	available.	It	is	often	hard	to	predict	what	changes	technology	might	provide.
Many	famous	statements	have	been	made	that	fret	about	how	a	personal	computer	might	never	be
practical,	or	assure	readers	that	640	kilobytes	of	memory	would	be	more	than	anyone	would	ever
need.	With	these	poor	past	predictions	in	mind,	one	can	attempt	to	learn	from	such	mistakes	and
design	interfaces	that	are	robust	enough	for	common	practices	today,	and	make	the	best	attempt	at
predicting	how	one	might	use	these	interfaces	years	from	today.

This	chapter	describes	a	selection	of	common	interfaces	that	show	up	in	UEFI	as	well	as	the	PI
specifications:

Architectural	Protocols:	 These	 are	 a	 set	 of	 protocols	 that	 abstract	 the	 platform	hardware
from	the	UEFI	drivers	and	applications.	They	are	unusual	only	in	that	they	are	the	protocols
that	are	going	to	be	used	by	the	UEFI	compatible	firmware	implementation.	These	protocols
in	their	current	form	were	introduced	into	the	PI	specifications.
PCI	Protocols:	These	protocols	abstract	all	aspects	of	 interaction	with	 the	underlying	PCI
bus,	 enumeration	 of	 said	 bus,	 as	 well	 as	 resource	 allocation.	 These	 interfaces	 were
introduced	for	UEFI,	and	would	be	present	in	both	UEFI	and	PI	implementations.
Block	I/O:	This	protocol	is	used	to	abstract	mass	storage	devices	to	allow	code	running	in
the	EFI	Boot	Services	environment	to	access	them	without	specific	knowledge	of	the	type	of
device	or	controller	 that	manages	 the	device.	This	 interface	was	 introduced	for	UEFI,	and
would	be	present	in	both	UEFI	and	PI	implementations.
Disk	I/O:	This	protocol	is	used	to	abstract	the	block	accesses	of	the	Block	I/O	protocol	to	a
more	general	offset-length	protocol.	The	firmware	is	responsible	for	adding	this	protocol	to
any	Block	 I/O	 interface	 that	 appears	 in	 the	 system	 that	 does	 not	 already	 have	 a	Disk	 I/O
protocol.	 File	 systems	 and	 other	 disk	 access	 code	 utilize	 the	 Disk	 I/O	 protocol.	 This
interface	 was	 introduced	 for	 UEFI,	 and	 would	 be	 present	 in	 both	 UEFI	 and	 PI
implementations.
Simple	 File	 System:	 This	 protocol	 allows	 code	 running	 in	 the	 EFI	 Boot	 Services
environment	 to	 obtain	 file-based	 access	 to	 a	 device.	 The	 Simple	 File	 System	 protocol	 is
used	 to	 open	 a	 device	 volume	 and	 return	 an	EFI_FILE	 handle	 that	 provides	 interfaces	 to
access	 files	 on	 a	 device	 volume.	 This	 interface	was	 introduced	 for	 UEFI,	 and	would	 be
present	in	both	UEFI	and	PI	implementations.

Architectural	Protocol	Examples

A	variety	of	architectural	protocols	exist	in	the	platform.	These	protocols	function	just	like	other
protocols	 in	 every	 way.	 The	 only	 difference	 is	 that	 these	 protocols	 are	 consumed	 by	 the
platform’s	core	services	and	the	remainder	of	the	drivers	and	applications	in	turn	call	these	core
services	 to	 act	 on	 the	 platform	 in	 various	ways.	 Generally,	 the	 only	 users	 of	 the	 architectural
protocols	are	the	core	services	themselves.	The	architectural	protocols	abstract	the	hardware	and
are	the	only	agents	in	the	system	that	would	typically	talk	directly	to	the	hardware	in	the	pre-boot
environment.	 Everything	 else	 in	 the	 system	 would	 communicate	 with	 a	 core	 service	 to
communicate	any	sort	of	requests	to	the	hardware.	Figure	9.1	illustrates	this	high-level	software
handshake.

Figure	9.1:	Platform	Software	Flow	Diagram

To	 show	more	 clearly	 how	 some	 of	 these	 architectural	 protocols	 are	 designed	 and	 how	 they
operate,	 several	 key	 examples	 will	 be	 examined	 in	 further	 detail.	 Note	 that	 the	 following
examples	 are	 not	 the	 full	 set	 of	 architectural	 protocols	 but	 are	 used	 to	 illustrate	 some	 of	 their
functionality.	For	the	full	set,	please	refer	to	the	appropriate	DXE	specifications.

CPU	Architectural	Protocol

The	CPU	Architectural	Protocol	 is	used	 to	abstract	processor-specific	 functions	 from	 the	DXE
Foundation.	 This	 includes	 flushing	 caches,	 enabling	 and	 disabling	 interrupts,	 hooking	 interrupt
vectors	 and	 exception	 vectors,	 reading	 internal	 processor	 timers,	 resetting	 the	 processor,	 and
determining	 the	 processor	 frequency.	 This	 protocol	 must	 be	 produced	 by	 a	 boot	 service	 or
runtime	DXE	driver	 and	may	only	be	consumed	by	 the	DXE	Foundation	and	DXE	drivers	 that

produce	 architectural	 protocols.	 By	 allowing	 this	 protocol	 to	 be	 produced	 by	 a	 boot	 service
driver,	it	is	evident	that	this	abstraction	will	not	persist	when	the	platform	has	the	boot	services
terminated	by	launching	a	boot	target	such	as	an	operating	system.

The	GCD	memory	space	map	is	initialized	by	the	DXE	Foundation	based	on	the	contents	of
the	HOB	list.	The	HOB	list	contains	the	capabilities	of	the	different	memory	regions,	but	it	does
not	contain	their	current	attributes.	The	DXE	driver	that	produces	the	CPU	Architectural	Protocol
is	 responsible	 for	 maintaining	 the	 current	 attributes	 of	 the	 memory	 regions	 visible	 to	 the
processor.

This	means	that	the	DXE	driver	that	produces	the	CPU	Architectural	Protocol	must	seed	the
GCD	memory	space	map	with	the	initial	state	of	the	attributes	for	all	the	memory	regions	visible
to	 the	 processor.	 The	 DXE	 Service	 SetMemorySpaceAttributes()	 allows	 the	 attributes	 of	 a
memory	 range	 to	be	modified.	The	Set-MemorySpaceAttributes()	DXE	Service	 is	 implemented
using	the	SetMemoryAttributes()	service	of	the	CPU	Architectural	Protocol.

To	 initialize	 the	 state	of	 the	attributes	 in	 the	GCD	memory	space	map,	 the	DXE	driver	 that
produces	 the	 CPU	 Architectural	 Protocol	 must	 call	 the	 DXE	 Service	 Set-
MemorySpaceAttributes()	for	all	the	different	memory	regions	visible	to	the	processor	passing	in
the	 current	 attributes.	 This,	 in	 turn,	will	 call	 back	 to	 the	 SetMemoryAttributes()	 service	 of	 the
CPU	Architectural	 Protocol,	 and	 all	 of	 these	 calls	must	 return	EFI_SUCCESS,	 since	 the	DXE
Foundation	 is	 only	 requesting	 that	 the	 attributes	 of	 the	 memory	 region	 be	 set	 to	 their	 current
settings.	This	forces	the	current	attributes	in	the	GCD	memory	space	map	to	be	set	to	these	current
settings.	 After	 this	 initialization	 is	 complete,	 the	 next	 call	 to	 the	 DXE	 Service
GetMemorySpaceMap()	will	correctly	show	the	current	attributes	of	all	 the	memory	regions.	In
addition,	any	future	calls	 to	 the	DXE	Service	SetMemorySpaceAttributes()	will	 in	 turn	call	 the
CPU	Architectural	Protocol	to	see	if	those	attributes	can	be	modified,	and	if	they	can,	the	GCD
memory	space	map	will	be	updated	accordingly.

The	CPU	Architectural	Protocol	uses	the	following	protocol	definition:

FlushDataCache	-	Flushes	a	range	of	the	processor’s	data	cache.	If	the	processor	does	not
contain	 a	data	 cache,	 or	 the	data	 cache	 is	 fully	 coherent,	 then	 this	 function	 can	 just	 return
EFI_SUCCESS.	If	the	processor	does	not	support	flushing	a	range	of	addresses	from	the	data
cache,	then	the	entire	data	cache	must	be	flushed.	This	function	is	used	by	the	root	bridge	I/O
abstractions	to	flush	data	caches	for	DMA	operations.
EnableInterrupt	-	Enables	interrupt	processing	by	the	processor.	See	the	Enable-Interrupt()
function	 description.	 This	 function	 is	 used	 by	 the	 Boot	 Service	 RaiseTPL()	 and
RestoreTPL().
DisableInterrupt	 -	 Disables	 interrupt	 processing	 by	 the	 processor.	 See	 the	 Disable-
Interrupt()	 function	 description.	 This	 function	 is	 used	 by	 the	 Boot	 Service	 RaiseTPL()
andRestoreTPL().
GetInterruptState	-	Retrieves	the	processor’s	current	interrupt	state.
Init	 -	 Generates	 an	 INIT	 on	 the	 processor.	 This	 function	 may	 be	 used	 by	 the	 Reset
Architectural	 Protocol	 depending	 upon	 a	 specified	 boot	 path.	 If	 a	 processor	 cannot
programmatically	generate	an	INIT	without	help	from	external	hardware,	 then	this	function
returns	EFI_UNSUPPORTED.
RegisterInterruptHandler	 -	 Associates	 an	 interrupt	 service	 routine	 with	 one	 of	 the
processor’s	 interrupt	 vectors.	 This	 function	 is	 typically	 used	 by	 the
EFI_TIMER_ARCH_PROTOCOL	to	hook	the	timer	interrupt	in	a	system.	It	can	also	be	used
by	the	debugger	to	hook	exception	vectors.
GetTimerValue	-	Returns	the	value	of	one	of	the	processor’s	internal	timers.
SetMemoryAttributes	-	Attempts	to	set	the	attributes	of	a	memory	region.
NumberOfTimers	–	Gives	the	number	of	timers	that	are	available	in	a	processor.	The	value
in	this	field	is	a	constant	that	must	not	be	modified	after	the	CPU	Architectural	Protocol	is
installed.	All	consumers	must	treat	this	as	a	read-only	field.
	DmaBufferAlignment	–	Gives	the	size,	in	bytes,	of	the	alignment	required	for	DMA	buffer
allocations.	This	is	typically	the	size	of	the	largest	data	cache	line	in	the	platform.	This	value
can	be	 determined	by	 looking	 at	 the	 data	 cache	 line	 sizes	 of	 all	 the	 caches	 present	 in	 the
platform,	and	returning	the	largest.	This	is	used	by	the	root	bridge	I/O	abstraction	protocols
to	guarantee	that	no	two	DMA	buffers	ever	share	the	same	cache	line.	The	value	in	this	field
is	a	constant	that	must	not	be	modified	after	the	CPU	Architectural	Protocol	is	installed.	All
consumers	must	treat	this	as	a	read-only	field.

Real	Time	Clock	Architectural	Protocol

The	Real	Time	Clock	Architectural	Protocol	provides	the	services	required	to	access	a	system’s
real	time	clock	hardware.	This	protocol	must	be	produced	by	a	runtime	DXE	driver	and	may	only
be	consumed	by	the	DXE	Foundation.

The	 DXE	 driver	 that	 produces	 this	 protocol	 must	 be	 a	 runtime	 driver.	 This	 driver	 is
responsible	 for	 initializing	 the	GetTime(),	SetTime(),	GetWakeupTime(),	 and	SetWakeupTime()
fields	 of	 the	 EFI	 Runtime	 Services	 Table.	 See	 the	 section	 “Time	 Services”	 in	 Chapter	 5	 for
details	 on	 these	 services.	 After	 the	 four	 fields	 of	 the	 EFI	 Runtime	 Services	 Table	 have	 been
initialized,	 the	driver	must	 install	 the	Real	Time	Clock	Architectural	Protocol	on	a	new	handle
with	a	NULL	interface	pointer.	The	installation	of	this	protocol	informs	the	DXE	Foundation	that

the	real	time	clock-related	services	are	now	available	and	that	the	DXE	Foundation	must	update
the	32-bit	CRC	of	the	EFI	Runtime	Services	Table.

Timer	Architectural	Protocol

The	Timer	Architectural	Protocol	provides	the	services	to	initialize	a	periodic	timer	interrupt	and
to	register	a	handler	that	is	called	each	time	the	timer	interrupt	fires.	It	may	also	provide	a	service
to	 adjust	 the	 rate	 of	 the	 periodic	 timer	 interrupt.	When	 a	 timer	 interrupt	 occurs,	 the	 handler	 is
passed	 the	 amount	 of	 time	 that	 has	 passed	 since	 the	 previous	 timer	 interrupt.	 This	 protocol
enables	the	use	of	the	SetTimer()	Boot	Service.	This	protocol	must	be	produced	by	a	boot	service
or	runtime	DXE	driver	and	may	only	be	consumed	by	the	DXE	Foundation	or	DXE	drivers	that
produce	other	DXE	Architectural	Protocols.	By	allowing	this	protocol	to	be	produced	by	a	boot
service	driver,	 it	 is	evident	 that	 this	abstraction	will	not	persist	when	the	platform	has	the	boot
services	terminated	by	launching	a	boot	target,	such	as	an	operating	system.

RegisterHandler	 -	 Registers	 a	 handler	 that	 is	 called	 each	 time	 the	 timer	 interrupt	 fires.
TimerPeriod	defines	the	minimum	time	between	timer	interrupts,	so	TimerPeriod	is	also	the
minimum	time	between	calls	to	the	registered	handler.
SetTimerPeriod	 -	 Sets	 the	 period	 of	 the	 timer	 interrupt	 in	 100	 nanosecond	 units.	 This
function	is	optional	and	may	return	EFI_UNSUPPORTED.	If	this	function	is	supported,	then
the	timer	period	is	rounded	up	to	the	nearest	supported	timer	period.
GetTimerPeriod	-	Retrieves	the	period	of	the	timer	interrupt	in	100	nanosecond	units.
GenerateSoftInterrupt	-	Generates	a	soft	timer	interrupt	that	simulates	the	firing	of	the	timer
interrupt.	This	service	can	be	used	to	invoke	the	registered	handler	if	the	timer	interrupt	has
been	masked	for	a	period	of	time.

Reset	Architectural	Protocol

The	Reset	Architectural	Protocol	provides	the	service	required	to	reset	a	platform.	This	protocol
must	be	produced	by	a	runtime	DXE	driver	and	may	only	be	consumed	by	the	DXE	Foundation.
This	 driver	 is	 responsible	 for	 initializing	 the	ResetSystem()	 field	 of	 the	EFI	Runtime	Services
Table.	After	 this	 field	 of	 the	EFI	Runtime	Services	Table	 has	 been	 initialized,	 the	 driver	must
install	 the	 Reset	 Architectural	 Protocol	 on	 a	 new	 handle	 with	 a	 NULL	 interface	 pointer.	 The
installation	 of	 this	 protocol	 informs	 the	DXE	 Foundation	 that	 the	 reset	 system	 service	 is	 now
available	and	that	the	DXE	Foundation	must	update	the	32-bit	CRC	of	the	EFI	Runtime	Services

Table.

Boot	Device	Selection	Architectural	Protocol

The	 Boot	 Device	 Selection	 (BDS)	 Architectural	 Protocol	 transfers	 control	 from	 DXE	 to	 an
operating	system	or	a	system	utility,	as	illustrated	in	Figure	9.2.	This	protocol	must	be	produced
by	a	boot	service	or	runtime	DXE	driver	and	may	only	be	consumed	by	the	DXE	Foundation.	By
allowing	this	protocol	to	be	produced	by	a	boot	service	driver,	it	is	evident	that	this	abstraction
will	not	persist	when	the	platform	has	the	boot	services	terminated	by	launching	a	boot	target	such
as	an	operating	system.

If	not	enough	drivers	have	been	initialized	when	this	protocol	is	used	to	access	the	required
boot	device(s),	then	this	protocol	should	add	drivers	to	the	dispatch	queue	and	return	control	back
to	the	dispatcher.	Once	the	required	boot	devices	are	available,	then	the	boot	device	can	be	used
to	load	and	invoke	an	OS	or	a	system	utility.

Figure	9.2:	Basic	Dispatch	and	BDS	Software	Flow

Entry	-	The	entry	point	to	BDS.	See	the	Entry()	function	description.	This	call	does	not	take
any	parameters,	and	the	return	value	can	be	ignored.	If	it	returns,	then	the	dispatcher	must	be
invoked	 again,	 if	 it	 never	 returns,	 then	 an	 operating	 system	 or	 a	 system	 utility	 have	 been

invoked.

Variable	Architectural	Protocol

The	Variable	Architectural	 Protocol	 provides	 the	 services	 required	 to	 get	 and	 set	 environment
variables.	This	protocol	must	be	produced	by	a	runtime	DXE	driver	and	may	be	consumed	only
by	 the	 DXE	 Foundation.	 This	 driver	 is	 responsible	 for	 initializing	 the	 GetVariable(),
GetNextVariableName(),	 and	 SetVariable()	 fields	 of	 the	 EFI	 Runtime	 Services	 Table.	 See	 the
section	“Variable	Services”	in	Chapter	5	for	details	on	these	services.	After	the	three	fields	of	the
EFI	 Runtime	 Services	 Table	 have	 been	 initialized,	 the	 driver	 must	 install	 the	 Variable
Architectural	Protocol	on	 a	new	handle	with	 a	NULL	 interface	pointer.	The	 installation	of	 this
protocol	 informs	 the	DXE	Foundation	 that	 the	 read-only	 and	 the	 volatile	 environment	 variable
related	services	are	now	available	and	that	the	DXE	Foundation	must	update	the	32-bit	CRC	of
the	EFI	Runtime	Services	Table.	 The	 full	 complement	 of	 environment	 variable	 services	 is	 not
available	until	both	 this	protocol	and	Variable	Write	Architectural	Protocol	are	 installed.	DXE
drivers	that	require	read-only	access	or	read/write	access	to	volatile	environment	variables	must
have	this	architectural	protocol	in	their	dependency	expressions.	DXE	drivers	that	require	write
access	to	nonvolatile	environment	variables	must	have	the	Variable	Write	Architectural	Protocol
in	their	dependency	expressions.

Watchdog	Timer	Architectural	Protocol

The	Watchdog	Timer	Architectural	Protocol	is	used	to	program	the	watchdog	timer	and	optionally
register	 a	 handler	 when	 the	 watchdog	 timer	 fires.	 This	 protocol	 must	 be	 produced	 by	 a	 boot
service	 or	 runtime	 DXE	 driver	 and	 may	 be	 consumed	 only	 by	 the	 DXE	 Foundation	 or	 DXE
drivers	 that	 produce	 other	 DXE	 Architectural	 Protocols.	 If	 a	 platform	 wishes	 to	 perform	 a
platform-specific	 action	when	 the	watchdog	 timer	 expires,	 then	 the	DXE	 driver	 containing	 the
implementation	of	 the	BDS	Architectural	Protocol	 should	use	 this	protocol's	RegisterHandler()
service.

This	 protocol	 provides	 the	 services	 required	 to	 implement	 the	 Boot	 Service
SetWatchdogTimer().	 It	 provides	 a	 service	 to	 set	 the	 amount	 of	 time	 to	 wait	 before	 firing	 the
watchdog	 timer,	 and	 it	 also	 provides	 a	 service	 to	 register	 a	 handler	 that	 is	 invoked	when	 the
watchdog	 timer	 fires.	 This	 protocol	 can	 implement	 the	watchdog	 timer	 by	 using	 the	 event	 and
timer	 Boot	 Services,	 or	 it	 can	make	 use	 of	 custom	 hardware.	When	 the	watchdog	 timer	 fires,
control	 will	 be	 passed	 to	 a	 handler	 if	 a	 handler	 has	 been	 registered.	 If	 no	 handler	 has	 been
registered,	or	the	registered	handler	returns,	then	the	system	will	be	reset	by	calling	the	Runtime
Service	ResetSystem().

RegisterHandler	-	Registers	a	handler	that	is	invoked	when	the	watchdog	timer	fires.
SetTimerPeriod	 -	 Sets	 the	 amount	 of	 time	 in	 100	 nanosecond	 units	 to	 wait	 before	 the
watchdog	 timer	 is	 fired.	 If	 this	 function	 is	 supported,	 then	 the	 watchdog	 timer	 period	 is
rounded	up	to	the	nearest	supported	watchdog	timer	period.
GetTimerPeriod	-	Retrieves	the	amount	of	time	in	100	nanosecond	units	that	the	system	will
wait	before	the	watchdog	timer	is	fired.

PCI	Protocols

This	section	describes	a	series	of	protocols	that	are	all	related	to	abstracting	various	aspects	of
PCI	related	interaction	such	as	resource	allocation	and	I/O.

PCI	Host	Bridge	Resource	Allocation	Protocol

The	PCI	Host	Bridge	Resource	Allocation	Protocol	is	used	by	a	PCI	bus	driver	to	program	a	PCI
host	bridge.	The	registers	inside	a	PCI	host	bridge	that	control	configuration	of	PCI	root	buses	are
not	 governed	 by	 the	 PCI	 specification	 and	 vary	 from	 chipset	 to	 chipset.	 The	 PCI	Host	Bridge
Resource	Allocation	Protocol	implementation	is	therefore	specific	to	a	particular	chipset.

Each	PCI	host	bridge	is	composed	of	one	or	more	PCI	root	bridges,	and	hardware	registers
are	 associated	 with	 each	 PCI	 root	 bridge.	 These	 registers	 control	 the	 bus,	 I/O,	 and	 memory
resources	that	are	decoded	by	the	PCI	root	bus	that	the	PCI	root	bridge	produces	and	all	the	PCI
buses	that	are	children	of	that	PCI	root	bus.

The	PCI	Host	Bridge	Resource	Allocate	Protocol	allows	for	future	innovation	of	the	chipsets.
It	abstracts	 the	PCI	bus	driver	 from	the	chipset	details.	This	design	allows	system	designers	 to
make	 changes	 to	 the	 host	 bridge	 hardware	 without	 impacting	 a	 platform	 independent	 PCI	 bus
driver.

Figure	 9.3	 shows	 a	 platform	 with	 a	 set	 of	 processors	 (CPUs)	 and	 a	 set	 of	 core	 chipset
components	that	produce	n	host	bridges.	Most	systems	with	one	PCI	host	bus	controller	contain	a
single	instance	of	the	PCI	Host	Bridge	Allocation	Protocol.	More	complex	systems	may	contain
multiple	instances	of	this	protocol.

Figure	9.3:	Example	Host	Bus	Controllers

Figure	9.4	shows	how	the	PCI	Host	Bridge	Resource	Allocation	Protocol	is	used	to	identify	the
associated	PCI	 root	 bridges.	After	 the	 steps	 shown	 in	 Figure	9.4	 are	 completed,	 the	 PCI	Host
Bridge	Resource	Allocation	Protocol	 can	 then	be	queried	 to	 identify	 the	device	handles	of	 the

associated	PCI	root	bridges.

Figure9.4:	Producing	the	PCI	Host	Bridge	Resource	Allocation	Protocol

Sample	Desktop	System	with	One	PCI	Root	Bridge

Figure	9.5	shows	an	example	of	a	PCI	host	bus	with	one	PCI	root	bridge.	This	PCI	root	bridge
produces	one	PCI	local	bus	that	can	contain	PCI	devices	on	the	motherboard	and/	or	PCI	slots.
This	 setup	 would	 be	 typical	 of	 a	 desktop	 system.	 In	 this	 system,	 the	 PCI	 root	 bridge	 needs
minimal	setup.	Typically,	the	PCI	root	bridge	decodes	the	following:

The	entire	bus	range	on	Segment	0
The	entire	I/	O	space	of	the	processor
All	the	memory	above	the	top	of	system	memory

The	firmware	for	this	platform	would	produce	the	following:
One	instance	of	the	PCI	Host	Bridge	Resource	Allocation	Protocol
One	instance	of	PCI	Root	Bridge	I/O	Protocol

Figure	9.5:	Desktop	System	with	One	PCI	Root	Bridge

Sample	Server	System	with	Four	PCI	Root	Bridges

Figure	9.6	shows	an	example	of	a	larger	server	with	one	PCI	host	Bus	with	four	PCI	root	bridges
(RBs).	 The	 PCI	 devices	 that	 are	 attached	 to	 the	 PCI	 root	 bridges	 are	 all	 part	 of	 the	 same
coherency	domain,	which	means	they	share	the	following:

A	common	PCI	I/O	space
A	common	PCI	memory	space
A	common	PCI	pre-fetchable	memory	space

As	a	result,	each	PCI	root	bridge	must	get	resources	out	of	a	common	pool.	Each	PCI	root	bridge
produces	one	PCI	 local	bus	 that	can	contain	PCI	devices	on	 the	motherboard	or	PCI	slots.	The
firmware	for	this	platform	would	produce	the	following:

One	instance	of	the	PCI	Host	Bridge	Resource	Allocation	Protocol
Four	instances	of	the	PCI	Root	Bridge	I/	O	Protocol

Figure	9.6:	Server	System	with	Four	PCI	Root	Bridges

Sample	Server	System	with	2	PCI	Segments

Figure	9.7	shows	an	example	of	a	server	with	one	PCI	host	bus	and	two	PCI	root	bridges	(RBs).
Each	of	these	PCI	root	bridges	is	on	a	different	PCI	segment,	which	allows	the	system	to	have	up
to	512	PCI	buses.	A	single	PCI	segment	is	limited	to	256	PCI	buses.	These	two	segments	do	not
share	the	same	PCI	configuration	space,	but	they	do	share	the	following,	which	is	why	they	can	be
described	with	a	single	PCI	host	bus:

A	common	PCI	I/O	space
A	common	PCI	memory	space
A	common	PCI	pre-fetchable	memory	space

The	firmware	for	this	platform	would	produce	the	following:
One	instance	of	the	PCI	Host	Bridge	Resource	Allocation	Protocol
Two	instances	of	the	PCI	Root	Bridge	I/O	Protocol

Figure	9.7:	Server	System	with	2	PCI	Segments

Figure	9.8:	Sample	Server	System	with	Two	PCI	Host	Buses

Figure	9.8	shows	a	server	system	with	two	PCI	host	buses	and	one	PCI	root	bridge	(RB)	per	PCI
host	bus.	Like	the	server	system	with	2	PCI	segments,	this	system	supports	up	to	512	PCI	buses,

but	the	following	resources	are	not	shared	between	the	two	PCI	root	bridges:
PCI	I/O	space
PCI	memory	space
PCI	pre-fetchable	memory	space

The	firmware	for	this	platform	would	produce	the	following:
Two	instances	of	the	PCI	Host	Bridge	Resource	Allocation	Protocol
Two	instances	of	the	PCI	Root	Bridge	I/O	Protocol

PCI	Root	Bridge	I/O

The	interfaces	provided	in	the	PCI	Root	Bridge	I/O	Protocol	are	for	performing	basic	operations
to	memory,	 I/O,	 and	 PCI	 configuration	 space.	 The	 system	 provides	 abstracted	 access	 to	 basic
system	resources	to	allow	a	driver	to	have	a	programmatic	method	to	access	these	basic	system
resources.

The	PCI	Root	Bridge	 I/O	Protocol	allows	for	 future	 innovation	of	 the	platform.	 It	abstracts
device-specific	 code	 from	 the	 system	 memory	 map.	 This	 allows	 system	 designers	 to	 make
changes	 to	 the	 system	 memory	 map	 without	 impacting	 platform-independent	 code	 that	 is
consuming	basic	system	resources.

PCI	Root	Bridge	I/O	Protocol	instances	are	either	produced	by	the	system	firmware	or	by	an
UEFI	driver.	When	a	PCI	Root	Bridge	I/O	Protocol	is	produced,	it	is	placed	on	a	device	handle
along	with	 an	EFI	Device	Path	Protocol	 instance.	The	PCI	Root	Bridge	 I/O	Protocol	 does	not
abstract	access	to	the	chipset-specific	registers	that	are	used	to	manage	a	PCI	Root	Bridge.	This
functionality	is	hidden	within	the	system	firmware	or	the	UEFI	driver	that	produces	the	handles
that	represent	the	PCI	Root	Bridges.

ParentHandle	–	Gives	 the	EFI_HANDLE	of	 the	PCI	Host	Bridge	of	which	 this	PCI	Root
Bridge	is	a	member.
PollMem	-	Polls	an	address	in	memory	mapped	I/O	space	until	an	exit	condition	is	met,	or	a
timeout	occurs.
PollIo	-	Polls	an	address	in	I/O	space	until	an	exit	condition	is	met,	or	a	timeout	occurs.
Mem	-	Allows	reads	and	writes	for	memory	mapped	I/O	space.
Io	-	Allows	reads	and	writes	for	I/O	space.
Pci	-	Allows	reads	and	writes	for	PCI	configuration	space.
CopyMem	 -	Allows	one	 region	of	PCI	 root	bridge	memory	space	 to	be	copied	 to	another
region	of	PCI	root	bridge	memory	space.

Map	-	Provides	the	PCI	controller–specific	addresses	needed	to	access	system	memory	for
DMA.
Unmap	-	Releases	any	resources	allocated	by	Map().
	AllocateBuffer	-	Allocates	pages	that	are	suitable	for	a	common	buffer	mapping.
FreeBuffer	–	Frees	pages	that	were	allocated	with	AllocateBuffer().
Flush	-	Flushes	all	PCI	posted	write	transactions	to	system	memory.
GetAttributes	 -	 Gets	 the	 attributes	 that	 a	 PCI	 root	 bridge	 supports	 setting	 with
SetAttributes(),	and	the	attributes	that	a	PCI	root	bridge	is	currently	using.
SetAttributes	-	Sets	attributes	for	a	resource	range	on	a	PCI	root	bridge.
Configuration	-	Gets	the	current	resource	settings	for	this	PCI	root	bridge.
SegmentNumber	-	The	segment	number	that	this	PCI	root	bridge	resides.

PCI	I/O

The	interfaces	provided	in	the	PCI	I/O	Protocol	are	for	performing	basic	operations	to	memory,
I/O,	 and	 PCI	 configuration	 space.	 The	 system	 provides	 abstracted	 access	 to	 basic	 system
resources	 to	 allow	 a	 driver	 to	 have	 a	 programmatic	 method	 to	 access	 these	 basic	 system
resources.	The	main	goal	of	this	protocol	is	to	provide	an	abstraction	that	simplifies	the	writing
of	device	drivers	for	PCI	devices.	This	goal	is	accomplished	by	providing	the	following	features:

A	 driver	 model	 that	 does	 not	 require	 the	 driver	 to	 search	 the	 PCI	 busses	 for	 devices	 to
manage.	 Instead,	 drivers	 are	 provided	 the	 location	 of	 the	 device	 to	 manage	 or	 have	 the
capability	to	be	notified	when	a	PCI	controller	is	discovered.
A	 device	 driver	 model	 that	 abstracts	 the	 I/O	 addresses,	 Memory	 addresses,	 and	 PCI
Configuration	addresses	from	the	PCI	device	driver.	Instead,	BAR	(Base	Address	Register)
relative	addressing	is	used	for	I/O	and	Memory	accesses,	and	device	relative	addressing	is
used	for	PCI	Configuration	accesses.	The	BAR	relative	addressing	 is	specified	 in	 the	PCI
I/O	services	as	a	BAR	index.	A	PCI	controller	may	contain	a	combination	of	32-bit	and	64-
bit	 BARs.	 The	 BAR	 index	 represents	 the	 logical	 BAR	 number	 in	 the	 standard	 PCI
configuration	header	starting	from	the	first	BAR.	The	BAR	index	does	not	represent	an	offset
into	the	standard	PCI	Configuration	Header	because	those	offsets	will	vary	depending	on	the
combination	and	order	of	32-bit	and	64-bit	BARs.
The	Device	Path	for	 the	PCI	device	can	be	obtained	from	the	same	device	handle	 that	 the
PCI	I/O	Protocol	resides.
The	PCI	Segment,	PCI	Bus	Number,	PCI	Device	Number,	and	PCI	Function	Number	of	the
PCI	device	if	they	are	required.	The	general	idea	is	to	abstract	these	details	away	from	the
PCI	device	driver.	However,	if	these	details	are	required,	then	they	are	available.
Details	on	any	nonstandard	address	decoding	that	are	not	covered	by	the	PCI	device’s	Base
Address	Registers.
Access	to	the	PCI	Root	Bridge	I/O	Protocol	for	the	PCI	Host	Bus	for	which	the	PCI	device
is	a	member.
A	copy	of	the	PCI	Option	ROM	if	it	is	present	in	system	memory.
	 Functions	 to	 perform	 bus	 mastering	 DMA.	 This	 includes	 both	 packet	 based	 DMA	 and
common	buffer	DMA.

PollMem	-	Polls	an	address	in	PCI	memory	space	until	an	exit	condition	is	met,	or	a	timeout
occurs.
PollIo	-	Polls	an	address	in	PCI	I/O	space	until	an	exit	condition	is	met,	or	a	timeout	occurs.
Mem	-	Allows	BAR	relative	reads	and	writes	for	PCI	memory	space.
Io	-	Allows	BAR	relative	reads	and	writes	for	PCI	I/O	space.
Pci	-	Allows	PCI	controller	relative	reads	and	writes	for	PCI	configuration	space.
CopyMem	-	Allows	one	region	of	PCI	memory	space	to	be	copied	to	another	region	of	PCI
memory	space.
Map	 -	 Provides	 the	PCI	 controller–specific	 address	 needed	 to	 access	 system	memory	 for
DMA.
Unmap	-	Releases	any	resources	allocated	by	Map().
AllocateBuffer	-	Allocates	pages	that	are	suitable	for	a	common	buffer	mapping.
FreeBuffer	-	Frees	pages	that	were	allocated	with	AllocateBuffer().
Flush	-	Flushes	all	PCI	posted	write	transactions	to	system	memory.
GetLocation	-	Retrieves	this	PCI	controller’s	current	PCI	bus	number,	device	number,	and
function	number.
Attributes	 -	 Performs	 an	 operation	 on	 the	 attributes	 that	 this	 PCI	 controller	 supports.	The
operations	 include	 getting	 the	 set	 of	 supported	 attributes,	 retrieving	 the	 current	 attributes,
setting	the	current	attributes,	enabling	attributes,	and	disabling	attributes.
GetBarAttributes	 -	 Gets	 the	 attributes	 that	 this	 PCI	 controller	 supports	 setting	 on	 a	 BAR
using	SetBarAttributes(),	and	retrieves	the	list	of	resource	descriptors	for	a	BAR.

SetBarAttributes	-	Sets	the	attributes	for	a	range	of	a	BAR	on	a	PCI	controller.
RomSize	–	Gives	the	size,	in	bytes,	of	the	ROM	image.
RomImage	 –	 Returns	 a	 pointer	 to	 the	 in	memory	 copy	 of	 the	 ROM	 image.	 The	 PCI	 Bus
Driver	is	responsible	for	allocating	memory	for	the	ROM	image,	and	copying	the	contents	of
the	ROM	to	memory.	The	contents	of	this	buffer	are	either	from	the	PCI	option	ROM	that	can
be	 accessed	 through	 the	 ROM	 BAR	 of	 the	 PCI	 controller,	 or	 from	 a	 platform-specific
location.	The	Attributes()	function	can	be	used	to	determine	from	which	of	these	two	sources
the	RomImage	buffer	was	initialized.

Block	I/O

The	Block	 I/O	Protocol	 is	 used	 to	 abstract	mass	 storage	 devices	 to	 allow	 code	 running	 in	 the
UEFI	boot	services	environment	to	access	them	without	specific	knowledge	of	the	type	of	device
or	 controller	 that	manages	 the	 device.	 Functions	 are	 defined	 to	 read	 and	write	 data	 at	 a	 block
level	 from	mass	 storage	devices	as	well	 as	 to	manage	 such	devices	 in	 the	UEFI	boot	 services
environment.

The	Block	interface	constructs	a	logical	abstraction	of	the	storage	device.	Figure	9.9	shows
how	 a	 typical	 device	 that	 has	 multiple	 partitions	 will	 have	 a	 variety	 of	 Block	 interfaces
constructed	on	 it.	For	example,	a	partition	 that	 is	a	 logical	designation	of	how	a	disk	might	be
apportioned	will	have	a	block	interface	for	it.	It	should	be	noted	that	a	particular	storage	device
will	have	a	block	interface	that	has	a	scope	that	spans	the	entire	storage	device,	and	the	logical
partitions	will	have	a	scope	that	is	a	subset	of	the	device.	For	instance,	in	the	example	shown	in	F
igure	9.8,	 Block	 I/	O	 #1	 has	 access	 to	 the	 entire	 disk,	while	Block	 I/	O	 #2	 has	 its	 first	 LBA
starting	at	the	physical	location	of	the	partition	it	is	associated	with.

Fig.	9.9:	Software	Layering	of	the	Storage	Device

– Revision	-	The	revision	to	which	the	block	IO	interface	adheres.	All	future	revisions	must	be
backward	 compatible.	 If	 a	 future	 version	 is	 not	 backward	 compatible	 it	 is	 not	 the	 same
GUID.

– Media	 -	 A	 pointer	 to	 the	 EFI_BLOCK_IO_MEDIA	 data	 for	 this	 device.	 Type
EFI_BLOCK_IO_MEDIA	is	defined	in	the	next	code	sample.

– Reset	-	Resets	the	block	device	hardware.
– ReadBlocks	-	Reads	the	requested	number	of	blocks	from	the	device.
– WriteBlocks	-	Writes	the	requested	number	of	blocks	to	the	device.
– FlushBlocks	 -	 Flushes	 and	 cache	 blocks.	 This	 function	 is	 optional	 and	 only	 needs	 to	 be

supported	on	block	devices	that	cache	writes.

Disk	I/O

The	Disk	I/O	protocol	is	used	to	abstract	the	block	accesses	of	the	Block	I/O	protocol	to	a	more
general	offset-length	protocol.	The	firmware	is	responsible	for	adding	this	protocol	to	any	Block
I/O	 interface	 that	 appears	 in	 the	 system	 that	 does	 not	 already	 have	 a	 Disk	 I/O	 protocol.	 File
systems	and	other	disk	access	code	utilize	the	Disk	I/O	protocol.

The	disk	I/O	functions	allow	I/O	operations	that	need	not	be	on	the	underlying	device’s	block
boundaries	or	alignment	requirements.	This	is	done	by	copying	the	data	to/from	internal	buffers	as
needed	to	provide	 the	proper	requests	 to	 the	block	I/O	device.	Outstanding	write	buffer	data	 is
flushed	by	using	the	Flush()	function	of	the	Block	I/O	protocol	on	the	device	handle.

The	firmware	automatically	adds	a	Disk	I/O	interface	to	any	Block	I/O	interface	that	is	produced.
It	also	adds	file	system,	or	logical	block	I/O,	interfaces	to	any	Disk	I/O	interface	that	contains	any
recognized	file	system	or	logical	block	I/O	devices.	UEFI	compliant	firmware	must	automatically
support	the	following	required	formats:

The	UEFI	FAT12,	FAT16,	and	FAT32	file	system	type.
The	legacy	master	boot	record	partition	block.	(The	presence	of	this	on	any	block	I/O	device
is	optional,	but	if	it	is	present	the	firmware	is	responsible	for	allocating	a	logical	device	for
each	partition).
The	extended	partition	record	partition	block.
The	El	Torito	logical	block	devices.
The	 Disk	 I/O	 interface	 provides	 a	 very	 simple	 interface	 that	 allows	 for	 a	 more	 general
offset-length	abstraction	of	the	underlying	Block	I/O	protocol.

Revision	-	The	revision	to	which	the	disk	I/O	interface	adheres.	All	future	revisions	must	be
backwards	compatible.	 If	a	 future	version	 is	not	backwards	compatible,	 it	 is	not	 the	same
GUID.
ReadDisk	-	Reads	data	from	the	disk.
WriteDisk	-	Writes	data	to	the	disk.

Simple	File	System

The	Simple	File	System	protocol	allows	code	running	in	the	UEFI	boot	services	environment	to
obtain	file-based	access	to	a	device.	The	Simple	File	System	protocol	is	used	to	open	a	device
volume	and	return	an	EFI	File	Handle	that	provides	interfaces	to	access	files	on	a	device	volume.
This	protocol	 is	a	bit	different	 from	most,	 since	 its	use	exposes	a	 secondary	protocol	 that	will
directly	 act	 on	 the	 device	 on	 top	 of	 which	 the	 Simple	 File	 System	 was	 layered.	 Figure	 9.10
illustrates	this	concept.

Figure	9.10:	Simple	File	System	Software	Layering

Revision	 -	The	version	of	 the	EFI	Simple	File	System	Protocol.	The	version	specified	by
this	 specification	 is	 0x00010000.	All	 future	 revisions	must	 be	 backward	 compatible.	 If	 a
future	version	is	not	backward	compatible,	it	is	not	the	same	GUID.
OpenVolume	-	Opens	the	volume	for	file	I/O	access.

EFI	File	Protocol

On	requesting	the	file	system	protocol	on	a	device,	the	caller	gets	the	instance	of	the	Simple	File
System	protocol	to	the	volume.	This	interface	is	used	to	open	the	root	directory	of	the	file	system
when	needed.	The	caller	must	Close()	the	file	handle	to	the	root	directory	and	any	other	opened
file	 handles	 before	 exiting.	 While	 open	 files	 are	 on	 the	 device,	 usage	 of	 underlying	 device
protocol(s)	that	the	file	system	is	abstracting	must	be	avoided.	For	example,	when	a	file	system	is
layered	on	a	DISK_IO	/	BLOCK_IO	protocol,	direct	block	access	 to	 the	device	 for	 the	blocks
that	comprise	the	file	system	must	be	avoided	while	open	file	handles	to	the	same	device	exist.

A	file	system	driver	may	cache	data	relating	to	an	open	file.	A	Flush()	function	is	provided
that	flushes	all	dirty	data	in	the	file	system,	relative	to	the	requested	file,	to	the	physical	medium.
If	the	underlying	device	may	cache	data,	the	file	system	must	inform	the	device	to	flush	as	well.

Revision	 -	 The	 version	 of	 the	 EFI_FILE	 interface.	 The	 version	 specified	 by	 this
specification	 is	 0x00010000.	 Future	 versions	 are	 required	 to	 be	 backward	 compatible	 to
version	1.0.
	Open	-	Opens	or	creates	a	new	file.
Close	-	Closes	the	current	file	handle.
Delete	-	Deletes	a	file.
Read	-	Reads	bytes	from	a	file.
Write	-	Writes	bytes	to	a	file.
GetPosition	-	Returns	the	current	file	position.
SetPosition	-	Sets	the	current	file	position.
GetInfo	-	Gets	the	requested	file	or	volume	information.
SetInfo	-	Sets	the	requested	file	information.
Flush	-	Flushes	all	modified	data	associated	with	the	file	to	the	device.

Configuration	Infrastructure

The	 modern	 UEFI	 configuration	 infrastructure	 that	 was	 first	 described	 in	 the	 UEFI	 2.1
specification	is	known	as	the	Human	Interface	Infrastructure	(HII).	HII	includes	the	following	set
of	services:

Database	 Services.	 A	 series	 of	 UEFI	 protocols	 that	 are	 intended	 to	 be	 an	 inmemory
repository	of	specialized	databases.	These	database	services	are	focused	on	differing	types
of	information:
– Database	Repository	 –	 This	 is	 the	 interface	 that	 drivers	 interact	with	 to	manipulate

configuration	related	contents.	It	is	most	often	used	to	register	data	and	update	keyboard
layout	related	information.

– String	Repository	–	This	is	the	interface	that	drivers	interact	with	to	manipulate	string-
based	data.	It	is	most	often	used	to	extract	strings	associated	with	a	given	token	value.

– Font	 Repository	 –	 The	 interface	 to	 which	 drivers	 may	 contribute	 font-related
information	 for	 the	 system	 to	 use.	 Otherwise,	 it	 is	 primarily	 used	 by	 the	 underlying
firmware	to	extract	the	built-in	fonts	to	render	text	to	the	local	monitor.	Note	that	since
not	 all	 platforms	 have	 inherent	 support	 for	 rendering	 fonts	 locally	 (think	 headless
platforms),	general	purpose	UI	designs	should	not	presume	this	capability.

– Image	 Repository	 –	 The	 interface	 to	 which	 drivers	 may	 contribute	 image-related
information	for	the	system	to	use.	This	is	for	purposes	of	referencing	graphical	items	as
a	component	of	a	user	interface.	Note	that	since	not	all	platforms	have	inherent	support
for	 rendering	 images	 locally	 (think	 headless	 platforms),	 general	 purpose	 UI	 designs
should	not	presume	this	capability.

Browser	Services.	The	interface	that	is	provided	by	the	platform’s	BIOS	to	interact	with	the
built-in	browser.	This	service’s	look-and-feel	is	implementation-specific,	which	allows	for
platform	differentiation.
Configuration	Routing	Services.	The	interface	that	manages	the	movement	of	configuration
data	 from	drivers	 to	 target	 configuration	applications.	 It	 then	 serves	 as	 the	 single	 point	 to
receive	configuration	information	from	configuration	applications,	routing	the	results	to	the
appropriate	drivers.
Configuration	 Access	 Services.	 The	 interface	 that	 is	 exposed	 by	 a	 driver’s	 configuration
handler	and	is	called	by	the	configuration	routing	services.	This	service	abstracts	a	driver’s
configuration	settings	and	also	provides	a	means	by	which	the	platform	can	call	the	driver	to
initiate	driver-specific	operations.

Using	the	Configuration	Infrastructure

The	overview	 introduced	 the	components	of	 the	UEFI	configuration	 infrastructure.	This	 section
discusses	 with	 a	 bit	 more	 detail	 how	 one	 goes	 about	 using	 aspects	 of	 this	 infrastructure.	 The
following	 steps	 are	 initiated	 by	 a	 driver	 that	 is	 concerned	 with	 using	 the	 configuration
infrastructure:

Initialize	 hardware.	 The	 primary	 job	 of	 a	 device	 driver	 is	 typically	 to	 initialize	 the
hardware	that	it	owns.	During	this	process	of	physically	initializing	the	device,	the	driver	is
also	responsible	for	establishing	the	proper	configuration	state	information	for	that	device.
These	typically	include	doing	the	following:
– Installing	 required	 protocols.	 Protocols	 are	 interfaces	 that	 will	 be	 used	 to

communicate	 with	 the	 driver.	 One	 of	 the	 more	 pertinent	 protocols	 associated	 with
configuration	would	be	the	Configuration	Access	protocol.	This	is	used	by	the	system
BIOS	and	agents	in	the	BIOS	to	interact	with	the	driver.	This	is	also	the	mechanism	by
which	 a	 driver	 can	 provide	 an	 abstraction	 to	 a	 proprietary	 nonvolatile	 storage	 that
under	normal	circumstances	would	not	be	usable	by	anyone	other	than	the	driver	itself.
This	is	how	configuration	data	can	be	exposed	for	add-in	devices	and	others	can	send
configuration	update	requests	without	needing	direct	knowledge	of	that	device.

– Creating	an	EFI	device	path	on	an	EFI	handle.	A	device	path	is	a	binary	description
of	 the	 device	 and	 typically	 how	 it	 is	 attached	 to	 the	 system.	This	 provides	 a	 unique
name	for	the	managed	device	and	will	be	used	by	the	system	to	refer	to	the	device	later.

Register	Configuration	Content.	One	of	 the	latter	parts	of	 the	driver	 initialization	(once	a
device	 path	 has	 been	 established)	 is	 the	 registration	 of	 the	 configuration	 data	 with	 the
underlying	UEFI-compatible	BIOS.	The	configuration	data	typically	consists	of	sets	of	forms
and	strings	that	contain	sufficient	information	for	the	platform	to	render	pages	for	a	user	to
interact	with.	It	should	also	be	noted	that	now	that	the	configuration	data	is	encapsulated	in	a
binary	format,	what	was	previously	an	opaque	meaningless	set	of	data	is	now	a	well-known
and	exportable	set	of	data	that	greatly	expands	the	configurability	of	the	device	by	both	local
and	remote	agents	as	well	as	BIOS	and	OS-present	components.
Respond	 to	 Configuration	 Event.	 Once	 the	 initialization	 and	 registration	 functions	 have
completed,	 the	driver	 could	potentially	 remain	dormant	until	 called	upon.	A	driver	would
most	often	be	called	upon	to	act	on	a	configuration	event.	A	configuration	event	is	an	event
that	occurs	when	a	BIOS	component	calls	upon	one	of	the	interfaces	that	the	driver	exposed
(such	 as	 the	 Configuration	 Access	 protocol)	 and	 sends	 the	 driver	 a	 directive.	 These
directives	 typically	would	be	something	akin	 to	“give	me	your	current	settings”	or	“adjust
setting	X’s	value	to	a	5”.

Much	more	detail	on	this	particular	infrastructure	is	covered	later	in	the	book.

Driver	Model	Interactions

The	drivers	 that	 interact	with	 the	UEFI	configuration	infrastructure	are	often	compliant	with	 the
UEFI	driver	model,	as	the	examples	shown	in	Figure	9.11	and	Figure	9.12.	Since	driver	model
compliance	is	very	common	(and	highly	recommended)	for	device	drivers,	several	examples	are
shown	 below	 that	 describe	 in	 detail	 how	 such	 a	 driver	 would	 most	 effectively	 leverage	 the
configuration	infrastructure.

Figure	9.11:	A	Single	Driver	that	Is	Registering	Its	Configuration	Data	and	Establishing	Its	Environment	in	a
Recommended	Fashion

Step	1.	During	driver	initialization,	install	services	on	the	controller	handle.
Step	2.	During	driver	 initialization,	 discover	 the	managed	device.	Create	 a	 device	handle
and	then	install	various	services	on	it.
Step	3.	During	driver	initialization,	configuration	data	for	the	device	is	registered	with	the
HII	 database	 (through	 the	 NewPackageList()	 API)	 using	 the	 device’s	 device	 handle.	 A
unique	HII	handle	is	created	during	the	registration	event.
Step	4.	During	 system	operation,	when	a	configuration	event	occurs,	 the	 system	addresses
(through	 the	Configuration	Access	protocol)	 the	configuration	services	associated	with	 the
device.

Figure	9.12:	A	Single	Driver	that	Is	Managing	Multiple	Devices,	Registering	Its	Configuration	Data,	and	Establishing
Its	Environment	in	a	Recommended	Fashion

Step	1.	During	driver	initialization,	install	services	on	the	controller	handle.
Step	 2.	 During	 driver	 initialization,	 discover	 the	 managed	 device(s).	 Create	 device
handle(s)	and	then	install	various	services	on	them.
Step	3.	During	driver	initialization,	configuration	data	for	each	device	is	registered	with	the
HII	 database	 (through	 the	 NewPackageList()	 API)	 using	 each	 device’s	 device	 handle.	 A
unique	HII	handle	is	created	during	the	registration	event.
Step	4.	During	 system	operation,	when	a	configuration	event	occurs,	 the	 system	addresses
(through	 the	Configuration	Access	protocol)	 the	configuration	services	associated	with	 the
driver.	 In	 this	 example,	 the	 configuration	 services	 will	 be	 required	 to	 disambiguate
references	to	each	of	its	managed	devices	by	the	passed	in	HII	handle.

Provisioning	the	Platform

Figure	9.13	is	an	illustration	that	builds	on	the	previously	introduced	concepts	and	shows	how	the
remote	interaction	would	introduce	the	concept	of	bare-metal	provisioning	(putting	content	on	a
platform	without	the	aid	of	a	formal	operating	system).	This	kind	of	interaction	could	be	used	in
the	manufacturing	environment	to	achieve	the	provisioning	of	the	platform	or	in	the	after-market
environment	where	one	is	remotely	managing	the	platform	and	updating	it.

Figure	9.13:	Remote	Interaction	Occurs	with	a	Target	System;	the	System	in	Turn	Accesses	the	Configuration
Abstractions	Associated	with	a	Device	or	Set	of	Devices

Step	 1.	 Remote	 administrator	 sends	 a	 query	 to	 a	 target	 workstation.	 This	 query	 could
actually	be	a	component	of	a	broadcast	by	the	administrator	to	all	members	of	the	network.
Step	2.	Request	received	and	an	agent	(possibly	a	shell-based	one)	proxies	the	request	to	the
appropriate	device.
Step	3.	The	agent	responds	based	on	interaction	with	the	platform’s	underlying	configuration
infrastructure.

Summary

In	conclusion,	this	chapter	describes	a	series	of	the	common	protocols	one	would	encounter	in	a
UEFI	 enabled	 platform,	 and	 also	 highlights	 the	 common	 scenarios	 where	 one	 would	 leverage
their	 use.	 With	 these	 protocols,	 one	 should	 be	 armed	 well	 for	 the	 future	 environments	 (both
hardware	and	software)	that	will	be	encountered	as	the	platform	ecosystem	evolves.

Chapter	10	–	Platform	Security	and	Trust
We	will	bankrupt	ourselves	in	the	vain	search	for	absolute	security.

—Dwight	D.	Eisenhower

The	Unified	Extensible	Firmware	Interface	(UEFI)	and	Platform	Initialization	(PI)	specifications
describe	 the	platform	elements	 that	 take	control	of	 the	system	across	 the	various	 restart	events.
These	 elements	 are	 also	 responsible	 for	 ceding	 control	 to	 hypervisors,	 operating	 systems,	 or
staying	in	the	UEFI	boot	services	environment	as	the	“runtime.”	These	modules	and	drivers	can
provide	support	for	various	secure	boot	and	trusted	computing	scenarios.

Beyond	the	feature	drivers	and	boot	flow,	the	UEFI	and	PI	specifications	describe	interfaces
and	binary	 image	encoding	of	executable	modules	 for	purposes	of	 interoperability.	This	allows
for	 business-to-business	 engagements,	 such	 as	 a	 chipset	 or	CPU	vendor	 providing	drivers	 to	 a
system	board	vendor	for	purposes	of	building	a	whole	solution.	This	 is	 the	positive	side	of	 the
extensibility.	The	darker	side	of	extensibility,	though,	entails	the	need	to	have	some	assurance	that
the	 final	 system	 board	 design	meets	 various	 security	 goals,	 such	 as	 integrity,	 availability,	 and
confidentiality.	In	other	words,	how	can	the	platform	manufacturer	who	ships	a	system	board	have
confidence	that	the	UEFI	and	PI	modules	have	been	safely	composed?

This	 chapter	 describes	 some	 of	 the	 security	 and	 trusted	 computing	 capabilities.	 Then	 it
discusses	how	to	construct	and	integrate	elements.

Trust	Overview

We	begin	 the	 discussion	 of	 trusted	 platforms	with	 some	 background	 on	 trust—specifically,	 the
definition	of	trust,	and	some	related	concepts,	measurement	and	security:

Trust.	An	entity	can	be	trusted	if	it	always	behaves	in	the	expected	manner	for	the	intended
purpose.
Measurement.	The	process	of	obtaining	the	identity	of	an	entity.
Security.	Maintenance	 that	 ensures	 a	 state	 of	 inviolability	 from	 hostile	 acts	 or	 influences
(from	http://www.thefreedictionary.com/security).

In	 fact,	 trust	 is	 an	 amalgam	 of	 several	 elements	 of	 the	 platform	 that	 span	 the	 enterprise	 to
consumer,	including	reliability,	safety,	confidentiality,	integrity,	and	availability,	as	illustrated	in	
Figure	10.1.

http://www.thefreedictionary.com/security

Figure	10.1:	The	Elements	of	Trust

Where	should	the	solution	reside,	given	the	problems	to	be	solved	and	some	of	the	capabilities
like	security,	trust,	and	measurement	to	help	effect	the	solution?

In	 fact,	 the	 implementation	 of	 trust	 and	 security	 entail	 a	 security	 architecture	 that	 spans	 the
entire	 system,	 starting	 at	 the	 base	 with	 hardware	 and	 spanning	 all	 of	 the	 way	 to	 the	 end-user
application.

Figure	10.2	shows	all	of	the	layers	of	a	security	architecture.	The	network	layer	is	broken	out
with	a	few	examples,	such	as	protocols	(SSL,	IPSec);	this	chapter	does	not	delve	too	deeply	into
this	 layer.	 The	 firmware	 layer	 is	 highlighted	 to	 show	 that	 a	 single-layer	 of	 security	 is	 not
sufficient.

Figure	10.2:	All	Layers	of	a	Security	Architecture

In	 fact,	 the	 scope	 of	 this	 chapter	 largely	 addresses	 firmware.	 Some	 description	 of	 hardware
elements	and	interaction	are	provided.	Figure	10.3	highlights	the	area	that	this	chapter	discusses
in	more	depth.

Figure	10.3:	Layers	Examined	in	this	Chapter

As	 seen	 in	 Figure	 10.3,	 all	 layers	 are	 important,	 but	 if	 you	 do	 not	 have	 firmware/	 hardware
assurance,	you	cannot	have	a	security	architecture.	As	the	logicians	would	say,	it’s	“necessary	but
not	sufficient”	to	have	appropriate	design	in	these	layers.	And	as	will	be	described	later,	the	layer
of	hardware	and	firmware	provide	a	“root	of	trust”	for	the	rest	of	the	security	architecture.

So	 now	 that	 we	 have	 trust,	 security,	 measurement,	 and	 a	 layered	 picture	 of	 the	 security
architecture,	the	goals	of	the	security	architecture	and	assets	that	are	protected	are	as	follows.

The	first	security	goal	is	integrity,	and	this	entails	the	protection	of	content	and	information
from	 unauthorized	modification.	 The	 next	 goal	 is	 authenticity,	 and	 this	 provides	 guarantee	 or
assurance	in	the	source	of	the	code	or	data.	Another	important	goal	is	availability,	or	the	ability
to	 ensure	 behavior	 and	 the	 responsiveness	 of	 the	 system.	 Availability	 also	 protects	 from
destruction	or	denial	of	access.	And	finally,	another	goal	is	confidentiality,	or	 the	protection	of
information	from	unauthorized	access.

Through	 the	 subsequent	 discussion	 of	 trusted	 platforms	 and	 UEFI,	 some	 of	 these	 integrity,
authenticity,	and	availability	goals	will	be	discussed	in	more	detail.

It	 is	 outside	 the	 scope	 of	 this	 chapter	 to	 describe	 confidentiality	 since	 this	 is	 typically	 a
concern	 of	 higher-level	 applications,	 but	 errors	 in	 lower	 layers	 of	 the	 trusted	 platform	 may
imperil	 this	 goal.	 Specifically,	 this	 relates	 to	 the	 introduction	 of	 vulnerability	 via	 a	 flaw	 in
integrity	or	authenticity	 implementations	of	a	 layer	 that	wants	 to	provide	confidentiality	(say	an
application)	when	the	hardware	or	firmware	or	network	underneath	is	errant.

A	final	item	that	will	be	discussed	in	this	chapter	is	a	final	goal	that	spans	all	of	the	above,
namely	 assurance.	 By	 assurance	 we	 mean	 having	 some	 guarantee	 of	 the	 correctness	 of	 an
implementation.	And	for	this	study,	assurance	will	be	treated	in	detail	for	the	case	when	platform
firmware	and	trusted	computing	hardware	elements	are	the	embodiment	of	the	platform.

And	given	the	trust	definition	above,	we	see	that	these	features	are	especially	important	in	the
enterprise,	such	as	a	high-end	server,	where	reliability	and	safety	goals	are	co-equal	to	the	other
concerns	like	integrity	and	confidentiality.

Trusted	Platform	Module	(TPM)	and	Measured	Boot

In	building	out	the	hardware	layer	of	the	security	architecture,	one	problem	with	open	platforms	is
that	there	hasn’t	been	a	location	on	the	system	to	have	a	root	of	trust.	The	trusted	platform	module
(TPM)	and	 the	 infrastructure	around	this	component	are	an	 industry	attempt	 to	build	a	series	of
roots	of	trust	in	the	platform.

The	 maintenance	 and	 evolution	 of	 the	 capabilities	 of	 the	 TPM	 are	 managed	 through	 an
industry	 standards	 body	 known	 as	 the	 Trusted	 Computing	 Group	 (TCG).	 The	 TCG	 members
include	systems	manufacturers,	TPM	manufacturers,	CPU	and	chipset	vendors,	operating	system
vendors,	and	other	parties	that	contribute	hardware	and	software	elements	into	a	trusted	platform.
HP	and	IBM	are	examples	of	vendors	that	span	many	of	these	categories.	Intel	also	participates	in
the	TCG	as	CPU	and	chipset	vendor.

To	 begin,	what	 is	 a	 trusted	 platform	module?	 It	 features	 a	 series	 of	 protected	 regions	 and
capabilities.	Typically,	a	TPM	is	built	as	a	microcontroller	with	integrated	flash/	storage	that	is
attached	to	the	LPC	bus	on	PC,	but	it	can	also	be	a	virtual	device	or	more	deeply	integrated	in	the
platform	 chipset	 complex.	 The	 TPM	 interacts	 with	 system	 through	 a	 host	 interface.	 The	 TPM
Interface	Specification	(TIS)	in	the	TCG	PC	Client	working	group	describes	the	memory-mapped
I/O	 interfaces;	 the	 TIS	 is	 just	 one	 such	 interface.	 The	 TPM	 main	 specification	 describes	 the
ordinals	 or	 the	 byte	 stream	of	 commands	 that	 are	 sent	 into	 the	TPM.	These	 commands	 are	 the
required	actions	that	a	TPM	must	carry	out	in	service	of	the	host.	Figure	10.4	shows	some	of	the
specifications	that	describe	the	TPM	and	its	integration	into	the	platform.

Figure	10.4:	TCG	Specification	Hierarchy

The	 interoperability	 of	 the	 Trusted	 Computing	 elements	 is	 managed	 through	 the	 Trusted
Computing	Group	 (TCG)	and	a	 series	of	 specifications.	For	purposes	of	 this	 review,	 the	TPM
main	specification,	platform	design	guides,	protection	profiles,	and	the	UEFI	collateral	will	be	of
interest,	as	highlighted	above.

Figure	 10.6	 shows	 an	 instance	 of	 a	 TPM	 diagrammatically.	 Given	 the	 existence	 of	 the
specifications	 mentioned	 earlier,	 multiple	 vendors	 can	 provide	 conformant	 instances	 of	 this
technology	with	the	ability	to	differentiate	their	implementations.

Figure	10.5:	TPM	Overview

Figure	10.6	 is	 a	 picture	 of	 the	 elements	 that	 are	 typically	 found	within	 a	 TPM.	 The	 protected
execution	and	storage	of	 the	TPM	allow	for	hosting	 the	RSA	asymmetric	key	pairs,	such	as	 the
endorsement	key	(EK),	 the	attestation	 identity	key	(AIK),	and	storage	root	keys	(SRKs).	Recall
that	 in	 RSA	 cryptography,	 the	 public	 key	 can	 be	 known	 to	 all,	 but	 the	 private	 key	 must	 be
shrouded	from	users.	The	TPM	and	its	isolated	execution	can	both	host	the	key-pairs	and	keep	the
private	 RSA	 keys	 away	 from	 attacks/errant	 agents	 on	 the	 host.	 In	 today’s	 platforms	 without	 a
TPM,	only	a	custom	hardware	security	module	(HSM)	or	other	additional	hardware	can	be	used
for	 hosting	 key-pairs.	 But	 in	 these	 latter	 solutions,	 there	 is	 no	 guarantee	 on	 construction	 of
platform,	surety	of	the	host	interface,	and	so	on.	The	Trusted	Computing	Group	attempts	to	both
describe	the	requirements	on	the	TPM	and	the	binding	into	the	platform	in	order	to	have	a	trusted
building	block	(TBB)	via	design	guides,	protection	profiles,	conformance	tests,	and	so	on.

Figure	10.6:	TPM	Block	Diagram

What	Is	a	Trusted	Building	Block	(TBB)?

The	TBB	includes	the	components	that	make	up	the	platform.	These	can	include	the	TPM,	how	the
TPM	is	bound	to	the	platform,	flash	with	the	system	board	firmware,	and	portions	of	the	firmware
that	 must	 be	 trusted.	 The	 TBB	 goes	 beyond	 TPM	 ordinals.	 It	 leads	 into	 prescriptions	 on	 the
construction	of	the	physical	platform.	As	such,	it	is	not	just	an	issue	at	one	layer	of	the	stack.

A	S-CRTM	is	a	“static	core	root	of	trust	for	measurement.”	The	S-CRTM	is	the	portion	of	the
platform	firmware	that	must	be	“implicitly	trusted.”	The	S-CRTM	makes	the	first	measurements,
starts	TPM,	and	detects	physical	presence	per	the	TCG	privacy	model.

And	 it	 is	where	 the	S-CRTM	portion	of	 the	TBB	intersects	with	 the	platform	firmware	and
other	roots-of-trust	in	the	platform.	S-CRTM,	CRTM,	and	SRTM	are	used	interchangeably	later	in
the	section.

Following	is	a	quick	overview	to	clarify	the	roots-of-trust	in	the	platform	and	which	business
entity	delivers	them.

Taxonomy	of	terms	in	the	platform:
RTM

– Generic	term	for	“Root	of	Trust	for	Measurement”
– SRTM	 is	 the	 static	 root	 of	 trust	 for	 measurement	 (SRTM)	 –	 CRTM	 +	 unbreakable

measurement	chain	to	OS
– DRTM	is	the	dynamic	root	of	trust	for	measurement	(DRTM)
CRTM
– Static	 CRTM	 (S-CRTM)	 or	 CRTM.	 Portion	 of	 platform	 firmware	 that	 must	 be

implicitly	trusted.
RTR
– Root	of	trust	for	reporting
– These	are	the	Platform	Configuration	Registers	(PCRs)	in	the	TPM
– 20-byte	non-resettable	registers	to	store	the	state	or	measurements	of	code	+	data
– Typically	SHA1	(new	info	||	former	PCR	value),	where	“||”	is	the	catenation	of	data
RTS
– Root	of	trust	for	storage
– Endorsement	key	(EK)	–	unique	per	TPM
– Storage	root	keys	(SRKs)	–	used	by	OS	and	others	to	build	key	hierarchies
TPM	Owner
– Applies	the	authentication	value
– Several	commands	are	“owner	authorized”
SRTM
– Static	root	of	trust	for	measurement
– CRTM	(CRTM)	+	platform	firmware	measuring	all	code	and	data	prior	to	boot
– Records	 information	 into	 non-resettable	 or	 “static”	 PCRs	 (0-15);	 these	 static	 PCRs

zeroed	only	across	platform	reset
– Described	by	TCG	BIOS	and	UEFI	specifications
DRTM
– Dynamic	root	of	trust	for	measurement
– Initiative	the	measurement	later	in	boot.	Includes	resettable	PCRs	16	and	above;	these

resettable	PCRs	zeroed	upon	initiation	of	the	DRTM	launch
Physical	presence
– Administrative	 model	 of	 the	 TPM.	 Assertion	 by	 operator	 of	 presence	 in	 order	 to

perform	privacy	or	administrative	activities	with	the	TPM.

In	general,	a	hardware	instantiation	of	the	trusted	platform	module	(TPM)	is	a	passive	hardware
device	on	the	system	board.	It	serves	as	the	root	of	trust	for	storage	(RTS)	and	root	of	trust	for
reporting	 (RTR).	 The	 former	 is	 the	 use	 of	 the	 storage	 root	 key	 (SRK)	 and	 the	 Platform
Configuration	 Registers	 (PCRs).	 Figure	 10.7	 shows	 the	 synthesis	 of	 the	 various	 roots	 in	 the
platform.

Figure	10.7:	Functions	of	a	TPM

The	active	agent	on	 the	platform	 is	 the	 root	of	 trust	 for	measurement	 (RTM).	The	RTM	can	be
either	 static	 or	 dynamic	 (SRTM	 versus	 DRTM,	 respectively).	 The	 SRTM,	 on	 the	 other	 hand,
entails	a	trust	chain	from	the	platform	reset	vector	going	forward.

The	definition	of	the	SRTM	for	UEFI	is	defined	in	the	UEFI	TCG	Protocol	Specification	and
the	TCG	UEFI	Platform	Specification.	The	flow	of	the	SRTM	into	the	operating	system	is	shown
in	Figure	10.8.

Figure	10.8:	Boot	Flow	that	Includes	a	Static	Root	of	Trust

There	needs	to	be	UEFI	APIs	available	so	that	the	UEFI	OS	loader	can	continue	to	measure	the
operating	 system	 kernel,	 pass	 commands	 to	 the	 TPM	 to	 possibly	 unseal	 a	 secret,	 and	 perform
other	TPM	actions	prior	 to	 the	availability	of	 the	OS	TPM	driver.	 In	addition,	 this	API	can	be
installed	at	the	beginning	of	DXE	to	enable	measurement	of	the	DXE	and	UEFI	images.	Figure	10.
9	shows	where	the	UEFI	TCG	APIs	would	appear	relative	to	the	other	interfaces.

Figure	10.9:	UEFI	API	Layering

The	UEFI	 specifications	 are	 cross-listed	 in	 the	TCG	PC	and	Server	Working	Groups	 such	 that
both	consumer	and	enterprise-class	operating	systems	can	participate	in	this	boot	flow	behavior.

The	UEFI	TCG	Platform	specification	describes	which	objects	to	measure	in	an	UEFI	system,
such	 as	 the	 images,	 on-disk	 data	 structures,	 and	 UEFI	 variables.	 Figure	 10.10	 shows	 which
objects	in	a	UEFI	system	correspond	to	measures	in	PCRs.

Figure	10.10:	Measured	Objects	in	UEFI

Prior	to	the	UEFI	phase	of	platform	execution,	the	PI	describe	the	PEI	and	DXE	phases.	In	these
phases	the	CRTM	is	mapped	to	the	PEI	phase	and	what	is	thought	of	as	BIOS	POST	is	mapped	to
DXE.	There	are	interfaces	in	PEI	(namely,	the	PEIM-to-PEIM	interface,	or	PPI)	to	allow	for	fine-
grain	measurement	 in	 that	phase	of	execution,	 too.	Figure	10.11	 shows	one	possible	PEI-based
CRTM	and	the	flow	into	the	operating	system.

Figure	10.11:	SRTM	boot	flow

What	Is	the	Point	of	Measurements?

The	process	of	measurements	records	the	state	of	the	platform,	for	both	executable	code	and	data
hashes,	into	the	TPM’s	platform	configuration	registers	(PCRs).	These	PCRs	are	write-only	and
cleared	upon	a	platform	reset	(at	least	the	static	PCRs	for	SRTM).	The	PCRs	reflect	the	platform
state.	 They	 are	 used	 such	 that	 software,	 when	 installed	 upon	 the	 platform,	 can	 “seal”	 some
information	to	the	platform.	A	Seal	operation	is	like	an	encryption	that	also	includes	PCRs.	There
is	a	corresponding	Unseal	operation,	which	is	a	decryption	that	also	uses	the	PCRs

What	this	means	practically	is	that	if	the	state	of	the	platform	changes	between	the	installation
of	 some	 software	 (and	 the	 Seal	 operation)	 and	 successive	 invocations	 of	 software	 on	 later
restarts	(and	the	use	of	Unseal	operation),	unauthorized	changes	to	the	platform	in	the	interim	will
be	detected	(that	is,	PCRs	changed).

This	 is	 sort	 of	 the	 Resurrecting	 Duckling	 security	 model	 wherein	 the	 initial	 state	 of	 the
platform	(that	is,	PCR	values	upon	installing	application)	is	considered	safe	or	acceptable.

UEFI	offers	an	opportunity	here.	PI	and	UEFI	have	specification-based	components	written	in
a	high-level	 language	 (for	 example,	C).	The	 software	development	 lifecycle	 (SDL)	 for	drivers
and	other	system	software	can	be	applied,	as	can	static	analysis	tools	(such	as	Klockwork†	and
Coverity†).	Later	in	the	chapter	we’ll	talk	about	additional	practices	to	complement	the	SDL	that
address	domain-specific	issues	with	platform	firmware.

With	 all	 these	 elements	 of	 security	 and	 protections	 in	 place	 how	 the	 CRTM	 is	 updated
becomes	critical	and	much	more	challenging.	Since	the	CRTM	is	the	root,	and	is	itself	inherently
trusted,	it	must	be	a	very	controlled	and	secure	process.	The	TCG	describes	CRTM	maintenance
in	the	Trusted	Building	Block	(TBB)	protection	profile.	Either	the	CRTM	is	immutable,	or	never
changed	 in	 the	 field,	 or	 appropriate	 cryptographic	 techniques	 need	 to	 be	 employed	 in	 order	 to
update	the	CRTM.

Regarding	 the	 cryptographic-based	 update,	 Figure	 10.12	 shows	 a	 possible	 implementation
where	 the	 firmware	 volume	 (FV)	 update	 is	 enveloped	 using	 an	 RSA-2048/SHA-256-based
update.	 This	 is	 just	 one	 possible	 UEFI	 PI	 implementation	 that	 leverages	 the	 UEFI	 PI-based
firmware	volume	construct	and	the	WIN_CERT	that	can	be	found	in	the	UEFI	2.0	specification.

Figure	10.12:	Firmware	Volume	Update

As	noted	 above,	 a	 signed	 capsule	 is	 one	 implementation	path.	The	 system	 flash	 is	 not	 directly
updated	by	a	flash	utility	but	 instead	 the	CRTM	update	capsule	 is	stored	 in	a	staging	area.	The
next	time	the	CRTM	gains	control	of	the	system	(at	reset),	it	will	check	for	any	pending	updates.	If
updates	are	found,	they	will	be	validated	and	then	cryptographically	verified.	If	they	are	valid,	the
CRTM	update	can	be	applied.	It’s	important	to	note	that	when	validating	the	update	this	all	must
be	done	by	using	only	CRTM	code	and	data.	Code	or	data	outside	the	CRTM	cannot	be	trusted
until	verified.

UEFI	Secure	Boot

There	are	several	 terms	 that	will	be	 introduced	 in	 the	context	of	UEFI	and	 trust.	These	 include
executable	 verification,	 driver	 signing,	 user	 identification,	 network	 authentication,	 and
network	security.

To	 begin,	 the	 UEFI	 evolution	 described	 below	 appear	 as	 elements	 of	 the	 UEFI	 main
specification	 in	version	2.6.	These	features	entail	updates	 to	 the	boot	behavior	and	 the	features
briefly	treated	will	include	image	verification,	networking	enhancements	such	as	IPSec,	and	user
identification.

Figure	10.13	shows	where	in	the	stack	the	emergent	UEFI	features	described	in	this	chapter
exist,	namely	in	the	UEFI	Services	and	boot	manager.

Fig10.13:	UEFI	Software	Stack

UEFI	Executable	Verification

The	first	feature	from	UEFI	to	discuss	is	driver	signing	or	executable	verification.	Driver	signing:
Expands	the	types	of	signatures	recognized	by	UEFI
– SHA-1,	SHA-256,	RSA2048/SHA-1,	RSA2048/SHA-256	and	Authenticode
Standard	method	for	configuring	the	“known-good”	and	“known-bad”	signature	databases.
Provides	standard	behavior	when	execution	is	denied	to	provide	policy-based	updates	to	the
lists.

One	 evolution	 beyond	 the	 SRTM	 described	 in	 earlier	 chapters,	 is	 that	 UEFI	 can	 provide
“verification.”	Recall	that	the	SRTM	records	the	state	of	the	code	and	data	in	the	platform	such
that	a	later	entity	may	assess	the	measurements.	For	verification,	or	enforcement,	of	some	policy,
the	 UEFI	 firmware	 can	 act	 as	 a	 root-of-trust-for-enforcement	 (RTE)	 or	 root-of-trust-for-
verification	(RTV)	wherein	the	boot	process	can	change	as	part	of	policy.	This	policy	can	include
the	UEFI	image	verification	using	Authenticode-signed	images,	for	example.

Figure	10.14	shows	the	steps	necessary	for	signing	of	UEFI	images.	The	signing	can	include
RSA	asymmetric	encryption	and	the	hash	function	a	member	of	the	security	hash	algorithm	family.

Figure	10.14:	Driver	signing

This	preparation	would	happen	at	the	manufacturer	facility	or	could	be	facilitated	by	a	third	party,
such	as	VeriSign†	Certificate	Authority	(CA).

Once	the	signed	images	are	deployed	in	the	field,	whether	loaded	across	the	network,	from	a
host-bus	adapter	card,	or	via	the	UEFI	system	partition,	the	UEFI	2.6	firmware	verifies	the	image
integrity,	as	illustrated	in	Figure	10.15.

Fig10.15:	Verification	of	UEFI	images

The	figure	above	shows	a	single	 logical	 firmware	volume	from	the	system	board	manufacturer.
The	 characters	 on	 the	 left	 can	 either	 be	 the	 manufacturer	 provisioning	 and	 enrolling	 the	 keys
during	system	constructor,	or	 the	platform	owner	updating	the	database	(DB)	of	 the	keys	during
the	one-touch	provisioning.

The	 UEFI	 Secure	 boot	 flow	 has	 the	 DB	 and	 DBX	 for	 the	 allowed	 and	 disallowed	 UEFI
images,	respectively,	but	 it	does	not	 talk	about	boot	 time	verification	of	 the	underlying	PEI	and
DXE	FV.	For	that	a	hardware	verifier	 that	runs	prior	 to	the	PEI	FV	can	be	used.	This	logically
maps	 to	 the	PI	SEC	phase.	One	 embodiment	 of	 this	 hardware	 verification	of	 the	 system	board
vendor	PI	code	is	shown	below.

Fig.	10.16:	Verification	of	OEM	flow

This	flow	above	shows	the	UEFI	2.6	chapter	30	UEFI	Secure	boot	flow	on	the	right	hand	side,
along	with	a	hardware	verification	of	the	initial	block	on	the	left	hand	side,	including	reference	to
Intel®	 Device	 Protection	 with	 Boot	 Guard	 Technology.	 There	 are	 many	 other	 hardware
implementations	 beyond	 Intel	 Boot	 Guard	 for	 Intel	 ®	 Atom®	 class	 SOC’s	 and	 other	 vendor
SOC’s.	The	‘middle’	of	 the	diagram	shows	how	the	verification	action	must	be	continued,	with
one	embodiment	including	signed	firmware	volumes.

The	combination	of	robust	UEFI	implements	and	interoperable	trust	infrastructure	will	allow
for	evolving	the	extensibility	of	UEFI	in	a	safe,	robust	fashion.

UEFI	Networking

Another	 element	 that	 appears	 in	 UEFI	 entails	 additional	 network	 security,	 including	 IPsec
support.	Trusted	hardware	like	the	TPM	can	be	used	to	help	store	the	IPsec	credentials,	but	to	be
stronger,	assurance	around	the	UEFI	firmware	implementation	of	the	IPsec	cryptography	and	the
networking	code	will	need	to	follow	the	guidelines	in	the	preceding	chapter.	IPSec	can	be	used
for	platform	network	boot	to	harden	scenarios	such	as	ISCSI-based	provisioning.

Figure	10.17	 shows	 the	EFI	 IPsec	 implementation	using	 the	UEFI	 IPsec	protocol	 and	 IPV6
network	stack,	including	a	pre-deployed	security	association	(SA).

Figure	10.17:	UEFI	IPsec

IPsec	 in	 the	platform	will	 allow	 for	 performing	both	 an	 IPV4	and	 IPV6-based	 ISCSI	boot	 and
provisioning.	 Figure	 10.18	 shows	 an	 iSCSI	 layering	 on	 top	 of	 the	 UEFI	 network	 stack,	 for
example.

Figure	10.18:	An	iSCSI	Application	with	UEFI	Network	Stack

Beyond	 the	 IP6	 and	 IPsec	 UEFI	 interfaces,	 the	 wire-protocol	 for	 network	 booting	 has
commensurate	 evolution	 to	 the	 UEFI	 APIs.	 Specifically,	 in	 the	 DHCPv6	 extensions	 for	 IPV6
network	 booting,	 the	 boot	 file	 information	 is	 sent	 as	 a	 Uniform	 Resource	 Locator	 (URL);	 the
network	boot	option	details	are	described	in	both	the	UEFI	2.6	specification	and	in	IETF	Request
For	Comment	(RFC)	5970.	As	such,	 the	UEFI	client	machine	and	 the	boot	server	can	negotiate
various	 types	 of	 downloads,	 including	 TFTP,	 FTP,	 HTTP,	 NFS,	 or	 ISCSI.	 This	 allows	 the
network	capabilities	to	track	the	needs	of	the	market	and	the	machine’s	firmware	capabilities.

Beyond	IPSec,	the	Transport	Layer	Security	(TLS)	has	been	added	to	the	UEFI	Specification.
A	layering	of	this	new	protocol	for	purposes	of	secured	HTTP,	namely	HTTP-S,	is	shown	below.

Figure	10.19:	UEFI	TLS

TLS	allows	for	confidentiality	on	HTTP	boot	via	HTTP-S,	but	 it	can	be	used	for	other	usages.
These	 other	 usages	 include	 support	 for	 EAP-TLS	 for	 a	 WIFI	 supplicant,	 as	 shown	 in	 the
following	diagram	of	the	UEFI	2.6	WIFI	stack.

Figure	10.20:	UEFI	WIFI

Wherein	the	‘supplicant	driver’	would	produce	the	EFI_EAP_CONFIGURATION_PROTOCOL,
with	the	embodiment	can	include	EAP-TLS.

More	 details	 on	 the	 EFI_TLS_PROTOOCL	 can	 be	 found	 in	 chapter	 27	 of	 the	 UEFI	 2.6
specification.	More	details	on	the	UEFI	WIFI	support	can	be	found	in	chapter	25	of	the	UEFI	2.6
specification,	too.

UEFI	User	Identification	(UID)

A	final	ingredient	in	UEFI	includes	the	user	identity	support.	This	is	infrastructure	that	allows	for
loading	drivers	from	token	vendors	to	abstract	authentication	of	the	user,	including	many	factors,
and	a	policy	engine	to	assign	rights	to	certain	users.	This	can	include	limiting	service	access	for
certain	users.	Figure	10.21	shows	this	capability.

Figure	10.21:	User	Identity

Implementation	 of	 these	 UEFI	 features	 would	 also	 build	 upon	 and	 require	 the	 assurance/best
practices	 in	 firmware	 discussed	 earlier.	More	 information	 on	 the	 UEFI-based	 features	 can	 be
found	in	the	UEFI	main	specification.

Hardware	Evolution:	SRTM-to-DRTM

As	a	final	element	getting	introduced	into	the	platform	going	forward	is	the	dynamic	root	of	trust
for	measurement,	or	D-RTM.	The	D-RTM	provides	platform	hardware	capabilities	to	support	a
measured	launch	environment	(MLE).	An	S-RTM	and	D-RTM	feature	set	can	exist	on	the	same
platform,	or	each	feature	can	exist	independently.	Figure	10.22	compares	the	two	RTMs	and	their
temporal	evolution	and	features.

Figure	10.22:	DRTM	Boot	Flow

A	 DRTM	 implementation	 can	 also	 include	 a	 root-of-trust	 for	 verification	 (RTV),	 too.	 More
information	 on	 Intel’s	 D-RTM	 implementation	 can	 be	 found	 in	 the	 following	 book	 by	 David
Grawrock,	Dynamics	of	a	Trusted	Platform	from	Intel	Press.

Platform	Manufacturer

There	are	several	terms	that	will	be	introduced	in	order	to	facilitate	the	following	discussion.	The
first	includes	the	entity	that	produces	the	final	system	board	that	includes	the	collection	of	UEFI
and	PI	modules	shown	in	Figure	10.23.	This	will	be	called	 the	platform	manufacturer	 or	PM.
The	authority	to	perform	updates	or	changes	to	the	configuration	of	the	UEFI	and	PI	modules	that
ship	 from	 the	 factory	 are	 mediated	 by	 PM_AUTH	 or	 Platform	 Manufacturer	 Authority.
PM_AUTH	 essentially	 describes	 the	 administrative	 roles	 that	 an	 entity	 who	 authenticates	 or
proves	itself	to	be	the	PM	or	delegate	of	the	PM	can	perform.	These	actions	can	include	but	are
not	limited	to	the	update	of	modules,	firmware,	or	early	PI	settings.	PM_AUTH	typically	is	used
to	ensure	the	integrity	of	the	PI	and	UEFI	modules,	and	this	integrity,	or	ensuring	that	the	modules
came	from	the	manufacturer,	can	be	accomplished	via	cryptographic	updates	of	modules	or	signed
UEFI	capsules,	for	example.

As	noted	above,	integrity	forms	one	of	the	key	security	goals	of	the	platform.	If	a	third	party
can	replace	or	impersonate	a	PI	module	without	the	PM’s	knowledge,	there	is	an	opportunity	to
introduce	a	vulnerability	into	the	system.

Figure	10.23:	Overall	View	of	Boot	Time	Line

When	we	refer	to	PM_AUTH,	we	mean	“components	that	are	under	the	authority	of	the	Platform
manufacturer.”	This	can	include	provenance	of	the	PI	code	and	data	at	rest	(in	the	system	board
ROM	 container)	 and	 also	 the	 temporal	 state	 of	 the	 code	 in	 memory	 during	 system	 boot	 and
runtime.	 The	 PM_AUTH	 can	 include	 the	 PEI	 and	 DXE	 driver	 dispatch	 responsive	 to	 an	 S5
restart,	 the	SMM	code	 running	during	 the	operating	 system	 runtime	x64,	 and	data	 at	 rest	 in	 the
ROM	after	field	updates.

The	PM_AUTH	really	means	that	we	do	not	have	arbitrary	third	party	extensibility.	Arbitrary
third	party	code	could	include	an	operating	system	loader	deposited	on	the	EFI	System	Partition
during	a	post-ship	OS	install	or	upgrade,	a	PC/AT	option	ROM	from	a	host	bus	adapter	plugged
into	a	system.

So	 for	 this	model	 of	 integrity	 analysis,	 PM_AUTH	=	{SEC,	PEI	Core,	 PEIMs,	DXE	core,
DXE	drivers,	 firmware	volumes,	UEFI	variables	used	only	by	PEI	+	DXE,	BDS,	PMI,	SMM,
UEFI	runtime,	ACPI	tables,	SMBIOS	tables}.

Non-PM_AUTH	is	non-signed	UEFI	drivers	from	a	host-bus	adapter	(HBA),	nonsigned	UEFI
OS	loaders.

Vulnerability	Classification

There	are	several	terms	that	will	be	introduced	in	this	section.	These	include	spoofing,	tampering,
repudiation,	information	disclosure,	denial	of	service,	and	elevation	of	privilege.

In	 order	 to	 talk	 about	 platform	 security,	 some	 terms	 will	 be	 introduced.	 Specifically,	 a
vulnerability	in	a	software	or	firmware	product	can	subject	the	computer	on	which	it	is	running	to
various	attacks.	Attacks	may	be	grouped	in	the	following	categories:

Spoofing.	 An	 attacker	 pretends	 that	 he	 is	 someone	 else,	 perhaps	 in	 order	 to	 inflict	 some
damage	on	the	person	or	organization	impersonated.
Tampering.	An	attacker	is	able	to	modify	data	or	program	behavior.
Repudiation.	An	attacker,	who	has	previously	taken	some	action,	is	able	to	deny	that	he	took
it.
Information	Disclosure.	An	 attacker	 is	 able	 to	obtain	 access	 to	 information	 that	 he	 is	 not
allowed	to	have.
Denial	of	Service.	An	attacker	prevents	 the	system	attacked	from	providing	services	 to	 its
legitimate	users.	The	victim	may	become	bogged	down	in	fake	workload,	or	even	shut	down
completely.
Elevation	of	Privilege.	An	 attacker,	who	 has	 entered	 the	 system	 at	 a	 low	 privilege	 level
(such	as	a	user),	acquires	higher	privileges	(such	as	those	of	an	administrator).

Roots	of	Trust/	Guards

When	 discussing	 integrity,	 a	 more	 formal	 model	 helps	 define	 some	 of	 the	 terms.	 A	 popular
commercial	integrity	model	includes	that	defined	by	Clark-Wilson	(CW).	In	the	CW	model,	there
are	controlled	data	items	(CDIs)	and	uncontrolled	data	items	(UDIs).	The	former	must	have	some
administrative	control	for	changes,	whereas	the	latter	do	not.

An	example	of	a	UDI	can	include	a	UEFI	variable	like	the	language	code,	whereas	a	CDI	can
include	 authenticated	 variables	 such	 as	 the	 signature	 data	 base	 used	 for	managing	 the	 x509V3
certificates.	Figure	10.24	shows	an	example	of	a	CDI,	 such	as	UEFI	variables,	 and	 the	Guard.
Typically	 the	 caller	 would	 be	 a	 UEFI	 or	 OS	 application,	 the	 “request”	 would	 be	 the	 “set
variable,”	the	Guard	would	be	the	UEFI	implementation	of	the	variable	services,	and	the	variable
itself	could	include	the	EFI_VARIA-BLE_AUTHENTICATED_WRITE_ACCESS	bit	set.

Figure	10.24:	Example	of	a	CDI

Summary

This	 chapter	 has	 reviewed	 the	 static	 root	 of	 trust	 for	 measurement,	 or	 trusted	 boot,	 and	 the
associated	 trusted	 computing	 hardware,	 including	 the	 TPM.	 It	 then	 described	 other	 preventive
security	technology,	such	as	UEFI	secure	boot.

This	chapter	then	described	some	background	and	guidance	on	how	to	prepare	and	integrate
components	that	meet	the	platform	assurance	goals	and	also	realize	the	purported	capabilities	of
the	 security	 and	 trusted	computing	elements.	This	 includes	 the	 concepts	of	 trust	 and	 security.	 It
also	 reviewed	 trusted	 computing	 technology,	 such	 as	 the	 Trusted	 Platform	 Module,	 SRTM,
CRTM,	and	the	TBB.	Finally,	 the	 technology	in	 the	UEFI	2.6	specification	for	security,	such	as
driver	signing,	network	authentication,	and	user	identification	was	treated.

Chapter	11	–	Boot	Device	Selection
I	just	invent,	then	wait	until	man	comes	around	to	needing	what	I	invented.

—R.	Buckminster	Fuller

UEFI	has	over	time	evolved	a	very	basic	paradigm	for	establishing	a	firmware	policy	engine.	The
concept	 was	 developed	 from	 the	 concept	 of	 a	 single	 boot	 manager	 whose	 sole	 purpose	 was
exercising	the	policy	established	by	some	architecturally	defined	global	NVRAM	variables.	As
the	 firmware	 design	 evolved,	 and	 several	 distinct	 boot	 phases	 such	 as	 SEC,	 PEI,	DXE,	BDS,
Runtime,	and	Afterlife	were	defined,	the	BDS	(Boot	Device	Selection)	phase	became	a	distinct
boot	manager-like	phase.	In	this	chapter,	the	architectural	components	that	steer	the	policy	of	the
boot	manager	are	reviewed.	This	content	forms	the	architectural	basis	for	what	eventually	became
the	BDS	phase.

In	 fact,	 the	 differences	 between	 what	 is	 known	 as	 the	 boot	 manager	 in	 earlier	 firmware
designs	 and	what	 is	 known	 as	 the	BDS	 in	PI-based	 solutions	 is	 easy	 to	 illustrate.	 Figure	 11.1
shows	the	software	flow	in	an	early	firmware	design	environment,	and	Figure	11.2	shows	one	that
is	PI-compatible.

Figure	11.1:	Earlier	Firmware	Designs	with	a	Boot	Manager	Component

Figure	11.2:	PI-based	Solution	with	a	BDS	Component

As	you	can	see	from	comparing	the	two	figures,	there	is	much	overlap.	The	BDS	phase	subsumes
the	direction	described	in	this	chapter	and	is	further	explained	in	Chapter	8.

The	 UEFI	 boot	 manager	 is	 a	 firmware	 policy	 engine	 that	 can	 be	 configured	 by	modifying
architecturally	 defined	 global	 NVRAM	 variables.	 The	 boot	 manager	 attempts	 to	 load	 UEFI
drivers	 and	 UEFI	 applications	 (including	 UEFI	 OS	 boot	 loaders)	 in	 an	 order	 defined	 by	 the
global	NVRAM	variables.	The	platform	firmware	must	use	the	boot	order	specified	in	the	global
NVRAM	variables	for	normal	boot.	The	platform	firmware	may	add	extra	boot	options	or	remove
invalid	boot	options	from	the	boot	order	list.

The	platform	 firmware	may	also	 implement	value-added	 features	 in	 the	boot	manager	 if	 an
exceptional	condition	is	discovered	in	the	firmware	boot	process.	One	example	of	a	value-added
feature	would	be	not	loading	an	UEFI	driver	if	booting	failed	the	first	time	the	driver	was	loaded.
Another	example	would	be	booting	to	an	OEM-defined	diagnostic	environment	if	a	critical	error
was	discovered	during	the	boot	process.

The	boot	sequence	for	UEFI	consists	of	the	following:
The	platform	firmware	reads	the	boot	order	list	from	a	globally	defined	NVRAM	variable.
The	boot	order	list	defines	a	list	of	NVRAM	variables	that	contain	information	about	what	is
to	be	booted.	Each	NVRAM	variable	defines	a	Unicode	name	for	the	boot	option	that	can	be
displayed	to	a	user.
The	variable	also	contains	a	pointer	to	the	hardware	device	and	to	a	file	on	that	hardware
device	that	contains	the	UEFI	image	to	be	loaded.
The	 variable	might	 also	 contain	 paths	 to	 the	OS	 partition	 and	 directory	 along	with	 other
configuration-specific	directories.

The	 NVRAM	 can	 also	 contain	 load	 options	 that	 are	 passed	 directly	 to	 the	 UEFI	 image.	 The
platform	firmware	has	no	knowledge	of	what	is	contained	in	the	load	options.	The	load	options
are	set	by	higher	level	software	when	it	writes	to	a	global	NVRAM	variable	to	set	the	platform
firmware	boot	policy.	This	information	could	be	used	to	define	the	location	of	the	OS	kernel	if	it
was	different	than	the	location	of	the	UEFI	OS	loader.

Firmware	Boot	Manager

The	boot	manager	is	a	component	in	the	UEFI	firmware	that	determines	which	UEFI	drivers	and
UEFI	applications	should	be	explicitly	loaded	and	when.	Once	the	UEFI	firmware	is	initialized,
it	passes	control	to	the	boot	manager.	The	boot	manager	is	then	responsible	for	determining	what
to	load	and	any	interactions	with	the	user	that	may	be	required	to	make	such	a	decision.	Much	of
the	behavior	of	 the	boot	manager	 is	 left	up	 to	 the	firmware	developer	 to	decide,	and	details	of
boot	manager	 implementation	are	outside	 the	scope	of	 this	specification.	Likely	 implementation
options	might	include	any	console	interface	concerning	boot,	integrated	platform	management	of
boot	selections,	possible	knowledge	of	other	 internal	applications	or	recovery	drivers	 that	may
be	integrated	into	the	system	through	the	boot	manager.

Programmatic	 interaction	 with	 the	 boot	 manager	 is	 accomplished	 through	 globally	 defined
variables.	On	initialization,	the	boot	manager	reads	the	values	that	comprise	all	of	the	published
load	options	among	 the	UEFI	environment	variables.	By	using	 the	SetVariable()	 function	 the
data	that	contain	these	environment	variables	can	be	modified.

Each	load	option	entry	resides	in	a	Boot####	variable	or	a	Driver####	variable	where	the
####	 is	 replaced	 by	 a	 unique	 option	 number	 in	 printable	 hexadecimal	 representation	 using	 the
digits	 0–9,	 and	 the	 uppercase	 versions	 of	 the	 characters	 A–	 F	 (0000–FFFF).	 The	 ####	 must
always	 be	 four	 digits,	 so	 small	 numbers	 must	 use	 leading	 zeros.	 The	 load	 options	 are	 then
logically	ordered	by	an	array	of	option	numbers	listed	in	the	desired	order.	There	are	two	such
option	ordering	lists.	The	first	is	DriverOrder	that	orders	the	Driver####	load	option	variables
into	their	load	order.	The	second	is	BootOrder	that	orders	the	Boot####	load	options	variables
into	their	load	order.

For	example,	to	add	a	new	boot	option,	a	new	Boot####	variable	would	be	added.	Then	the
option	number	of	the	new	Boot####	variable	would	be	added	to	the	BootOrder	ordered	list	and
the	BootOrder	variable	would	be	rewritten.	To	change	boot	option	on	an	existing	Boot####,	only
the	Boot####	variable	would	need	 to	be	rewritten.	A	similar	operation	would	be	done	 to	add,
remove,	or	modify	the	driver	load	list.

If	 the	 boot	 via	 Boot####	 returns	 with	 a	 status	 of	 EFI_SUCCESS	 the	 boot	 manager	 stops
processing	the	BootOrder	variable	and	presents	a	boot	manager	menu	to	the	user.	If	a	boot	via
Boot####	returns	a	status	other	than	EFI_SUCCESS,	the	boot	has	failed	and	the	next	Boot####	in
the	BootOrder	variable	will	be	tried	until	all	possibilities	are	exhausted.

The	 boot	 manager	 may	 perform	 automatic	 maintenance	 of	 the	 database	 variables.	 For
example,	it	may	remove	unreferenced	load	option	variables,	any	unparseable	or	unloadable	load
option	 variables,	 and	 rewrite	 any	 ordered	 list	 to	 remove	 any	 load	 options	 that	 do	 not	 have
corresponding	load	option	variables.	In	addition,	the	boot	manager	may	automatically	update	any
ordered	 list	 to	place	any	of	 its	own	 load	options	where	 it	desires.	The	boot	manager	can	also,
based	 on	 its	 platform-specific	 behavior,	 provide	 for	 manual	 maintenance	 operations	 as	 well.
Examples	 include	choosing	 the	order	of	any	or	all	 load	options,	activating	or	deactivating	 load
options,	and	so	on.

The	boot	manager	is	required	to	process	the	Driver	load	option	entries	before	the	Boot	load
option	entries.	The	boot	manager	is	also	required	to	initiate	a	boot	if	the	boot	option	specified	by
the	BootNext	variable	as	 the	first	boot	option	on	 the	next	boot,	and	only	on	 the	next	boot.	The

boot	manager	 removes	 the	BootNext	variable	before	 transferring	control	 to	 the	BootNext	boot
option.	If	the	boot	from	the	Boot-Next	boot	option	fails,	the	boot	sequence	continues	utilizing	the
BootOrder	 variable.	 If	 the	 boot	 from	 the	 BootNext	 boot	 option	 succeeds	 by	 returning
EFI_SUCCESS,	the	boot	manager	will	not	continue	to	boot	utilizing	the	BootOrder	variable.

The	 boot	 manager	 must	 call	 LoadImage(),	 which	 supports	 at	 least
SIMPLE_FILE_PROTOCOL	 and	 LOAD_FILE_PROTOCOL	 for	 resolving	 load	 options.	 If
LoadImage()	succeeds,	the	boot	manager	must	enable	the	watchdog	timer	for	5	minutes	by	using
the	SetWatchdogTimer()	boot	service	prior	 to	calling	StartImage().	 If	a	boot	option	returns
control	to	the	boot	manager,	the	boot	manager	must	disable	the	watchdog	timer	with	an	additional
call	to	the	SetWatchdog-Timer()	boot	service.

If	the	boot	image	is	not	loaded	via	LoadImage(),	the	boot	manager	is	required	to	check	for	a
default	application	to	boot.	Searching	for	a	default	application	to	boot	happens	on	both	removable
and	fixed	media	types.	This	search	occurs	when	the	device	path	of	the	boot	image	listed	in	any
boot	option	points	directly	to	a	SIMPLE_FILE_SYSTEM	device	and	does	not	specify	the	exact
file	to	load.	The	file	discovery	method	is	explained	in	the	section	“Default	Behavior	for	Boot	Opt
ion	 Variables”	 later	 in	 this	 chapter.	 The	 default	 media	 boot	 case	 of	 a	 protocol	 other	 than
SIMPLE_FILE_SYSTEM	is	handled	by	the	LOAD_FILE_PROTOCOL	for	the	target	device	path
and	does	not	need	to	be	handled	by	the	boot	manager.

The	boot	manager	must	also	support	booting	from	a	short-form	device	path	that	starts	with	the
first	 element	 being	 a	 hard	 drive	media	 device	 path.	 The	 boot	manager	must	 use	 the	 GUID	 or
signature	and	partition	number	in	the	hard	drive	device	path	to	match	it	to	a	device	in	the	system.
If	the	drive	supports	the	GPT	partitioning	scheme	the	GUID	in	the	hard	drive	media	device	path	is
compared	with	the	UniquePartitionGuid	field	of	the	GUID	Partition	Entry.	If	the	drive	supports
the	PC-AT	MBR	scheme	the	signature	in	the	hard	drive	media	device	path	is	compared	with	the
UniqueMBRSignature	in	the	Legacy	Master	Boot	Record.	If	a	signature	match	is	made,	 then	the
partition	 number	 must	 also	 be	 matched.	 The	 hard	 drive	 device	 path	 can	 be	 appended	 to	 the
matching	 hardware	 device	 path	 and	 normal	 boot	 behavior	 can	 then	 be	 used.	 If	more	 than	 one
device	 matches	 the	 hard	 drive	 device	 path,	 the	 boot	 manager	 picks	 one	 arbitrarily.	 Thus,	 the
operating	 system	 must	 ensure	 the	 uniqueness	 of	 the	 signatures	 on	 hard	 drives	 to	 guarantee
deterministic	boot	behavior.

Each	 load	 option	 variable	 contains	 an	 EFI_LOAD_OPTION	 descriptor	 that	 is	 a	 bytepacked
buffer	 of	 variable-length	 fields.	 Since	 some	 of	 the	 fields	 are	 of	 variable	 length,	 an
EFI_LOAD_OPTION	cannot	be	described	as	a	standard	C	data	structure.	Instead,	the	fields	are
listed	here	in	the	order	that	they	appear	in	an	EFI_LOAD_OPTION	descriptor:

UINT32 Attributes;
UINT16 FilePathListLength;
CHAR16 Description[];
EFI_DEVICE_PATH FilePathList[];
UINT8 OptionalData[];
Attributes	 -	The	attributes	 for	 this	 load	option	entry.	All	unused	bits	must	be	zero	and	are
reserved	by	the	UEFI	specification	for	future	growth.	See	“Related	Definitions.”
FilePathListLength	 -	 Length	 in	 bytes	 of	 the	 FilePathList.	 OptionalData	 starts	 at	 offset
sizeof(UINT32)	 +	 sizeof(UINT16)	 +	 StrSize(Description)	 +	 FilePathListLength	 of	 the
EFI_LOAD_OPTION	descriptor.

Description	-	The	user	readable	description	for	the	load	option.	This	field	ends	with	a	Null
Unicode	character.
FilePathList	 -	A	packed	 array	 of	UEFI	 device	 paths.	The	 first	 element	 of	 the	 array	 is	 an
UEFI	device	path	 that	describes	 the	device	and	 location	of	 the	Image	for	 this	 load	option.
The	FilePathList[0]	is	specific	to	the	device	type.	Other	device	paths	may	optionally	exist	in
the	 FilePathList,	 but	 their	 usage	 is	 OSV	 specific.	 Each	 element	 in	 the	 array	 is	 variable
length,	and	ends	at	the	device	path	end	structure.	Because	the	size	of	Description	is	arbitrary,
this	data	structure	is	not	guaranteed	to	be	aligned	on	a	natural	boundary.	This	data	structure
may	have	to	be	copied	to	an	aligned	natural	boundary	before	it	is	used.
	OptionalData	-	The	remaining	bytes	in	the	load	option	descriptor	are	a	binary	data	buffer
that	is	passed	to	the	loaded	image.	If	the	field	is	zero	bytes	long,	a	Null	pointer	is	passed	to
the	loaded	image.	The	number	of	bytes	in	OptionalData	can	be	computed	by	subtracting	the
starting	offset	of	OptionalData	from	total	size	in	bytes	of	the	EFI_LOAD_OPTION.

Related	Definitions

Calling	SetVariable()	creates	a	load	option.	The	size	of	the	load	option	is	the	same	as	the	size
of	the	DataSize	argument	to	the	SetVariable()	call	that	created	the	variable.	When	creating	a
new	 load	 option,	 all	 undefined	 attribute	 bits	 must	 be	 written	 as	 zero.	 When	 updating	 a	 load
option,	 all	 undefined	 attribute	 bits	 must	 be	 preserved.	 If	 a	 load	 option	 is	 not	 marked	 as
LOAD_OPTION_ACTIVE,	 the	 boot	 manager	 will	 not	 automatically	 load	 the	 option.	 This
provides	 an	 easy	way	 to	 disable	 or	 enable	 load	 options	without	 needing	 to	 delete	 and	 reload
them.	 If	 any	 Driver####	 load	 option	 is	 marked	 as	 LOAD_OPTION_FORCE_RECONNECT,
then	 all	 of	 the	UEFI	 drivers	 in	 the	 system	will	 be	 disconnected	 and	 reconnected	 after	 the	 last
Driver####	 load	option	 is	processed.	This	allows	an	UEFI	driver	 loaded	with	a	Driver####
load	option	to	override	an	UEFI	driver	that	was	loaded	prior	to	the	execution	of	the	UEFI	Boot
Manager.

Globally-Defined	Variables

This	section	defines	a	set	of	variables	that	have	architecturally	defined	meanings.	In	addition	to
the	defined	data	content,	each	such	variable	has	an	architecturally	defined	attribute	that	indicates
when	the	data	variable	may	be	accessed.	The	variables	with	an	attribute	of	NV	are	nonvolatile.
This	 means	 that	 their	 values	 are	 persistent	 across	 resets	 and	 power	 cycles.	 The	 value	 of	 any
environment	variable	that	does	not	have	this	attribute	will	be	lost	when	power	is	removed	from
the	system	and	the	state	of	firmware	reserved	memory	is	not	otherwise	preserved.	The	variables
with	an	attribute	of	BS	are	only	available	before	ExitBootServices()	is	called.	This	means	that
these	environment	variables	can	only	be	retrieved	or	modified	in	the	preboot	environment.	They
are	 not	 visible	 to	 an	 operating	 system.	 Environment	 variables	 with	 an	 attribute	 of	 RT	 are
available	 before	 and	 after	ExitBootServices()	 is	 called.	Environment	 variables	 of	 this	 type
can	 be	 retrieved	 and	modified	 in	 the	 preboot	 environment,	 and	 from	 an	 operating	 system.	All
architecturally	defined	variables	use	the	EFI_GLOBAL_VARIABLE	VendorGuid:

To	 prevent	 name	 collisions	 with	 possible	 future	 globally	 defined	 variables,	 other	 internal
firmware	data	variables	that	are	not	defined	here	must	be	saved	with	a	unique	VendorGuid	other
than	EFI_GLOBAL_VARIABLE.	Table	11.1	lists	the	global	variables.

Table	11.	1:	Global	Variables

Variable
Name

Attribute Description

LangCodes BS,	RT The	language	codes	that	the	firmware	supports.
Lang NV,	BS,

RT
The	language	code	that	the	system	is	configured	for.

Timeout NV,	BS,
RT

The	firmwares	boot	manager’s	timeout,	in	seconds,	before	initiating	the	default	boot
selection.

ConIn NV,	BS,
RT

The	device	path	of	the	default	input	console.

ConOut NV,	BS,
RT

The	device	path	of	the	default	output	console.

ErrOut NV,	BS,
RT

The	device	path	of	the	default	error	output	device.

ConInDev BS,	RT The	device	path	of	all	possible	console	input	devices.
ConOutDev BS,	RT The	device	path	of	all	possible	console	output	devices.
ErrOutDev BS,	RT The	device	path	of	all	possible	error	output	devices.
Boot#### NV,	BS,

RT
A	boot	load	option,	where	####	is	a	printed	hex	value.	No	0x	or	h	is	included	in	the	hex	value.

BootOrder NV,	BS,
RT

The	ordered	boot	option	load	list.

BootNext NV,	BS,
RT

The	boot	option	for	the	next	boot	only.

BootCurrent BS,	RT The	boot	option	that	was	selected	for	the	current	boot.

Driver#### NV,	BS,
RT

A	driver	load	option,	where	####	is	a	printed	hex	value.

DriverOrder NV,	BS,
RT

The	ordered	driver	load	option	list.

The	 LangCodes	 variable	 contains	 an	 array	 of	 3-character	 (8-bit	ASCII	 characters)	 ISO-639-2
language	codes	 that	 the	 firmware	 can	 support.	At	 initialization	 time	 the	 firmware	 computes	 the
supported	languages	and	creates	this	data	variable.	Since	the	firmware	creates	this	value	on	each
initialization,	 its	 contents	are	not	 stored	 in	nonvolatile	memory.	This	value	 is	 considered	 read-
only.

The	 Lang	 variable	 contains	 the	 3-character	 (8-bit	 ASCII	 characters)	 ISO-639-2	 language
code	 for	 which	 the	 machine	 has	 been	 configured.	 This	 value	 may	 be	 changed	 to	 any	 value
supported	 by	 LangCodes;	 however,	 the	 change	 does	 not	 take	 effect	 until	 the	 next	 boot.	 If	 the
language	 code	 is	 set	 to	 an	 unsupported	 value,	 the	 firmware	 chooses	 a	 supported	 default	 at
initialization	and	sets	Lang	to	a	supported	value.

The	 Timeout	 variable	 contains	 a	 binary	UINT16	 (unsigned	 16-bit	 value)	 that	 supplies	 the
number	of	seconds	that	the	firmware	waits	before	initiating	the	original	default	boot	selection.	A
value	of	0	 indicates	 that	 the	default	boot	selection	 is	 to	be	 initiated	 immediately	on	boot.	 If	 the
value	is	not	present,	or	contains	the	value	of	0xFFFF,	then	firmware	waits	for	user	input	before
booting.	This	means	the	default	boot	selection	is	not	automatically	started	by	the	firmware.

The	ConIn,	ConOut,	and	ErrOut	 variables	 each	contain	an	EFI_DEVICE_PATH	descriptor
that	defines	the	default	device	to	use	on	boot.	Changes	to	these	values	do	not	take	effect	until	the
next	boot.	If	the	firmware	cannot	resolve	the	device	path,	it	is	allowed	to	automatically	replace
the	value(s)	as	needed	to	provide	a	console	for	the	system.

The	ConInDev,	ConOutDev,	and	ErrOutDev	variables	each	contain	an	EFI_DEVICE_PATH
descriptor	 that	 defines	 all	 the	 possible	 default	 devices	 to	 use	 on	 boot.	 These	 variables	 are
volatile,	and	are	set	dynamically	on	every	boot.	ConIn,	ConOut,	and	ErrOut	are	always	proper
subsets	of	ConInDev,	ConOutDev,	and	ErrOutDev.

Each	Boot####	 variable	 contains	 an	EFI_LOAD_OPTION.	Each	Boot####	 variable	 is	 the
name	“Boot”	appended	with	a	unique	four-digit	hexadecimal	number.	For	example,	Boot	0001,
Boot	0002,	Boot	0A02,	and	so	on.

The	BootOrder	 variable	 contains	 an	 array	of	UINT16s	 that	make	up	 an	ordered	 list	 of	 the
Boot####	options.	The	first	element	in	the	array	is	the	value	for	the	first	logical	boot	option,	the
second	element	is	the	value	for	the	second	logical	boot	option,	and	so	on.	The	BootOrder	order
list	is	used	by	the	firmware’s	boot	manager	as	the	default	boot	order.

The	BootNext	variable	is	a	single	UINT16	that	defines	the	Boot####	option	that	is	to	be	tried
first	on	the	next	boot.	After	the	BootNext	boot	option	is	tried	the	normal	BootOrder	list	is	used.
To	 prevent	 loops,	 the	 boot	 manager	 deletes	 this	 variable	 before	 transferring	 control	 to	 the
preselected	boot	option.

The	BootCurrent	 variable	 is	 a	 single	UINT16	 that	 defines	 the	 Boot####	 option	 that	was
selected	on	the	current	boot.

Each	Driver####	variable	contains	an	EFI_LOAD_OPTION.	Each	 load	option	variable	 is
appended	with	a	unique	number,	for	example	Driver0001,	Driver0002,	and	so	on.

The	 DriverOrder	 variable	 contains	 an	 array	 of	 unsigned	 16-bit	 values	 that	 make	 up	 an
ordered	list	of	the	Driver####	variable.	The	first	element	in	the	array	is	 the	value	for	the	first

logical	 driver	 load	 option,	 the	 second	 element	 is	 the	 value	 for	 the	 second	 logical	 driver	 load
option,	and	so	on.	The	DriverOrder	 list	 is	used	by	the	firmware’s	boot	manager	as	 the	default
load	order	for	UEFI	drivers	that	it	should	explicitly	load.

Default	Behavior	for	Boot	Option	Variables

The	default	 state	of	globally	defined	variables	 is	 firmware	vendor	specific.	However,	 the	boot
options	require	a	standard	default	behavior	in	the	exceptional	case	that	valid	boot	options	are	not
present	on	a	platform.	The	default	behavior	must	be	 invoked	any	 time	 the	BootOrder	 variable
does	not	exist	or	only	points	to	nonexistent	boot	options.

If	 no	 valid	 boot	 options	 exist,	 the	 boot	 manager	 enumerates	 all	 removable	 UEFI	 media
devices	 followed	by	all	 fixed	UEFI	media	devices.	The	order	within	 each	group	 is	undefined.
These	 new	 default	 boot	 options	 are	 not	 saved	 to	 nonvolatile	 storage.	 The	 boot	 manager	 then
attempts	 to	 boot	 from	 each	 boot	 option.	 If	 the	 device	 supports	 the	 SIMPLE_FILE_SYSTEM
protocol,	then	the	removable	media	boot	behavior	(see	the	section	“Removable	Media	Boot	Beha
vior”)	 is	 executed.	 Otherwise	 the	 firmware	 attempts	 to	 boot	 the	 device	 via	 the	 LOAD_FILE
protocol.

It	is	expected	that	this	default	boot	will	load	an	operating	system	or	a	maintenance	utility.	If
this	 is	 an	 operating	 system	 setup	 program	 it	 is	 then	 responsible	 for	 setting	 the	 requisite
environment	variables	for	subsequent	boots.	The	platform	firmware	may	also	decide	to	recover
or	set	to	a	known	set	of	boot	options.

Boot	Mechanisms

UEFI	 can	boot	 from	a	device	using	 the	SIMPLE_FILE_SYSTEM	protocol	 or	 the	LOAD_FILE
protocol.	A	 device	 that	 supports	 the	SIMPLE_FILE_SYSTEM	protocol	must	materialize	 a	 file
system	 protocol	 for	 that	 device	 to	 be	 bootable.	 If	 a	 device	 does	 not	 support	 a	 complete	 file
system,	 it	may	produce	 a	LOAD_FILE	protocol	 that	 allows	 it	 to	 create	 an	 image	directly.	The
boot	manager	will	attempt	to	boot	using	the	SIMPLE_FILE_SYSTEM	protocol	first.	If	that	fails,
then	the	LOAD_FILE	protocol	will	be	used.

Boot	via	Simple	File	Protocol

When	booting	via	the	SIMPLE_FILE_SYSTEM	protocol,	the	FilePath	parameter	will	start	with	a
device	path	 that	 points	 to	 the	device	 that	 “speaks”	 the	SIMPLE_FILE_SYSTEM	protocol.	The
next	 part	 of	 the	 FilePath	 will	 point	 to	 the	 file	 name,	 including	 subdirectories	 that	 contain	 the
bootable	 image.	 If	 the	 file	name	 is	a	null	device	path,	 the	 file	name	must	be	discovered	on	 the
media	using	the	rules	defined	for	removable	media	devices	with	ambiguous	file	names	(see	the
section	"Removable	Media	Boot	Behavior").

The	format	of	the	file	system	specified	by	UEFI	is	contained	in	the	UEFI	specification.	While
the	 firmware	must	 produce	 a	SIMPLE_FILE_SYSTEM	protocol	 that	 understands	 the	UEFI	 file
system,	any	file	system	can	be	abstracted	with	the	SIMPLE_FILE_SYSTEM	protocol	interface.

Removable	Media	Boot	Behavior

On	a	removable	media	device,	it	is	not	possible	for	the	FilePath	to	contain	a	file	name	including
subdirectories.	The	FilePath	is	stored	in	nonvolatile	memory	in	the	platform	and	cannot	possibly
be	 kept	 in	 sync	with	 a	media	 that	 can	 change	 at	 any	 time.	 A	 FilePath	 for	 a	 removable	media
device	will	point	to	a	device	that	“speaks”	the	SIMPLE_FILE_SYSTEM	protocol.	The	FilePath
will	not	contain	a	file	name	or	subdirectories.

The	 system	 firmware	 will	 attempt	 to	 boot	 from	 a	 removable	 media	 FilePath	 by	 adding	 a
default	file	name	in	the	form	\EFI\BOOT\BOOT{machine	type	shortname}.EFI.	Where	machine
type	short-name	 defines	 a	PE32+	 image	 format	 architecture.	Each	 file	only	contains	one	UEFI
image	type,	and	a	system	may	support	booting	from	one	or	more	images	types.	Table	11.2	lists	the
UEFI	image	types.

Table	11.2:	UEFI	Image	Types

Architecture File	name	convention PE	Executable	machine	type*
IA-32 BOOTIA32.EFI 0x14c
x64 BOOTx64.EFI 0x8664
Itanium®	architecture BOOTIA64.EFI 0x200
ARM†	architecture BOOTARM.EFI 0x01c2

Note:	The	PE	Executable	machine	type	is	contained	in	the	machine	field	of	the	COFF	file	header
as	defined	in	the	Microsoft	Portable	Executable	and	Common	Object	File	Format	Specification,

Revision	6.0.
A	media	may	support	multiple	architectures	by	simply	having	a	\EFI\BOOT\	BOOT{	machine

type	short-name}.EFI	file	of	each	possible	machine	type.

Non-removable	Media	Boot	Behavior

On	a	non-removable	media	device,	it	is	possible	for	the	FilePath	to	contain	a	file	name	including
subdirectories.	 The	 FilePath	will	 be	 used	 for	 the	 boot	 target	 and	 the	 platform	will	 launch	 the
target	according	to	normal	system	policy.

The	 platform	 policy	 will	 leverage	 the	 BOOT####	 variables	 referenced	 by	 the	 BootOrder
variable	in	the	system.	These	BOOT####	variables	are	the	ones	which	contain	the	FilePath	data
for	the	boot	target	and	are	what	typically	are	used	for	the	boot	process	to	occur.

Boot	via	LOAD_FILE	Protocol

When	booting	via	the	LOAD_FILE	protocol,	the	FilePath	is	a	device	path	that	points	to	a	device
that	 “speaks”	 the	 LOAD_FILE	 protocol.	 The	 image	 is	 loaded	 directly	 from	 the	 device	 that
supports	 the	LOAD_FILE	 protocol.	 The	 remainder	 of	 the	 FilePath	 contains	 information	 that	 is
specific	to	the	device.	UEFI	firmware	passes	this	device-specific	data	to	the	loaded	image,	but
does	not	use	it	 to	load	the	image.	If	 the	remainder	of	the	FilePath	is	a	null	device	path	it	 is	 the
loaded	image's	responsibility	to	implement	a	policy	to	find	the	correct	boot	device.

The	 LOAD_FILE	 protocol	 is	 used	 for	 devices	 that	 do	 not	 directly	 support	 file	 systems.
Network	devices	commonly	boot	in	this	model	where	the	image	is	materialized	without	the	need
of	a	file	system.

Network	Booting
Network	 booting	 is	 described	 by	 the	 Preboot	 eXecution	 Environment	 (PXE)	 BIOS	 Support
Specification	 that	 is	 part	 of	 the	Wired	 for	Management	 Baseline	 specification.	 PXE	 specifies
UDP,	DHCP,	 and	 TFTP	 network	 protocols	 that	 a	 booting	 platform	 can	 use	 to	 interact	with	 an
intelligent	system	load	server.	UEFI	defines	special	 interfaces	 that	are	used	 to	 implement	PXE.
These	 interfaces	 are	 contained	 in	 the	 PXE_BASE_CODE	 protocol	 defined	 in	 the	 UEFI
specification.

Future	Boot	Media

Since	UEFI	defines	an	abstraction	between	the	platform	and	the	operating	system	and	its	loader	it
should	be	possible	to	add	new	types	of	boot	media	as	technology	evolves.	The	OS	loader	will	not
necessarily	 have	 to	 change	 to	 support	 new	 types	 of	 boot.	 The	 implementation	 of	 the	 UEFI
platform	services	may	change,	but	the	interface	will	remain	constant.	The	operating	system	will
require	 a	 driver	 to	 support	 the	 new	 type	 of	 boot	media	 so	 that	 it	 can	make	 the	 transition	 from
UEFI	boot	services	to	operating	system	control	of	the	boot	media.

Summary

In	conclusion,	this	chapter	indicates	the	mechanism	by	which	a	UEFI	compliant	system	determines
what	the	boot	target(s)	is	and	in	what	order	such	execution	would	occur.	This	methodology	also
provides	a	cooperative	mechanism	that	is	highly	extensible	and	that	third	parties	(such	as	an	OS
vendor)	can	use	for	their	own	installation	and	execution.

Chapter	12	–	Boot	Flows
Two	roads	diverged	in	a	wood….

—Robert	Frost,	“The	Road	Less	Taken”

The	restart	of	a	system	admits	to	many	possibilities,	or	paths	of	execution.	The	restart	of	a	CPU
execution	 for	a	given	CPU	can	have	many	causes	and	different	environment	 states	 that	 impinge
upon	it.	These	can	include	requests	to	the	firmware	for	an	update	of	the	flash	store,	resumption	of
a	power	management	event,	initial	startup	of	the	system,	and	other	possible	restarts.	This	chapter
describes	some	of	these	possible	flows	and	how	the	UEFI	PI	handles	the	events.

To	 begin,	 the	 normal	 code	 flow	 in	 the	UEFI	 PI	 passes	 through	 a	 succession	 of	 phases,	 in	 the
following	order:

1.	 SEC
2.	 PEI
3.	 DXE
4.	 BDS
5.	 Runtime
6.	 Afterlife

This	chapter	describes	alternatives	to	this	ordering,	which	can	also	be	seen	in	Figure	12.1.

Figure	12.1:	Ordering	of	UEFI	PI	Execution	Phases

The	PEI	Foundation	is	unaware	of	the	boot	path	required	by	the	system.	It	relies	on	the	PEIMs	to
determine	the	boot	mode	and	to	take	appropriate	action	depending	on	the	mode.	To	implement	this

determination	of	the	boot	mode,	each	PEIM	has	the	ability	to	manipulate	the	boot	mode	using	the
PEI	 Service	 SetBootMode()	 described	 in	 the	 discussion	 of	 PEI	 in	 Chapter	 13.	 Note	 that	 the
PEIM	does	not	change	the	order	in	which	PEIMs	are	dispatched	depending	on	the	boot	mode.

Defined	Boot	Modes

The	 list	 of	 possible	 boot	 modes	 and	 their	 corresponding	 priorities	 is	 shown	 in	 the	 following
section.	 UEFI	 PI	 architecture	 avoids	 defining	 an	 upgrade	 path	 specifically,	 should	 new	 boot
modes	need	be	defined.	This	is	necessary	as	the	nature	of	those	additional	boot	modes	may	work
in	conjunction	with	or	may	conflict	with	the	previously	defined	boot	modes.

Priority	of	Boot	Paths

Within	a	given	PEIM,	a	priority	of	 the	boot	modes	must	be	observed,	as	shown	in	Figure	12.2.
The	priority	ordering	of	the	sources	of	boot	mode	should	be	as	follows	(from	highest	priority	to
lowest):

Figure	12.2:	Priority	of	the	Boot	Modes

Table	12.1	 lists	 the	 assumptions	 that	 can	 and	 cannot	 be	made	 about	 the	 system	 for	 each	 sleep
state.

Table	12.1:	Boot	Path	Assumptions

System	State Description Assumptions
R0 Cold	Boot Cannot	assume	that	the	previously	stored

configuration	data	is	valid.
R1 Warm	Boot May	assume	that	the	previously	stored

configuration	data	is	valid.
S3 ACPI	Save	to	RAM	Resume The	previously	stored	configuration	data

is	valid	and	RAM	is	valid.	RAM
configuration	must	be	restored	from
nonvolatile	storage	(NVS)	before	RAM
may	be	used.	The	firmware	may	only
modify	previously	reserved	RAM.	There
are	two	types	of	reserved	memory.	One
is	the	equivalent	of	the	BIOS	INT15h,
E820	type-4	memory	and	indicates	that
the	RAM	is	reserved	for	use	by	the
firmware.	The	suggestion	is	to	add
another	type	of	memory	that	allows	the
OS	to	corrupt	the	memory	during	runtime
but	that	may	be	overwritten	during
resume.

S4,
S5

Save	to	Disk	Resume,
“Soft	Off”

S4	and	S5	are	identical	from	a	PEIM's
point	of	view.	The	two	are	distinguished	to
support	follow-on	phases.	The	entire
system	must	be	reinitialized	but	the	PEIMs
may	assume	that	the	previous
configuration	is	still	valid.

Boot	on	Flash	Update This	boot	mode	can	be	either	an	INIT,	S3,
or	other	means	by	which	to	restart	the
machine.	If	it	is	an	S3,	for	example,	the
flash	update	cause	will	supersede	the	S3
restart.	It	is	incumbent	upon	platform
code,	such	as	the	Memory	Initialization
PEIM,	to	determine	the	exact	cause	and
perform	correct	behavior	(that	is,	S3	state
restoration	versus	INIT	behavior).

Reset	Boot	Paths

The	 following	 sections	 describe	 the	 boot	 paths	 that	 are	 followed	 when	 a	 system	 encounters
several	different	types	of	reset.

Intel®	Itanium®	Processor	Reset

Intel®	Itanium®	architecture	contains	enough	hooks	to	authenticate	PAL-A	and	PAL-B	code	that	is
distributed	by	the	processor	vendor.	The	internal	microcode	on	the	processor	silicon,	which	starts
up	on	a	PowerGood	reset,	finds	the	first	layer	of	processor	abstraction	code	(called	PAL-A)	that
is	located	in	the	Boot	Firmware	Volume	(BFV)	using	architecturally	defined	pointers	in	the	BFV.
It	 is	 the	 responsibility	 of	 this	 microcode	 to	 authenticate	 that	 the	 PAL-A	 code	 layer	 from	 the
processor	 vendor	 has	 not	 been	 tampered	with.	 If	 the	 authentication	of	 the	PAL-A	 layer	 passes,
control	 then	 passes	 to	 the	 PAL-A	 layer,	 which	 then	 authenticates	 the	 next	 layer	 of	 processor
abstraction	 code	 (called	 PAL-B)	 before	 passing	 control	 to	 it.	 In	 addition	 to	 this
microarchitecture-specific	 authentication,	 the	 SEC	 phase	 of	 UEFI	 PI	 is	 still	 responsible	 for
locating	the	PEI	Foundation	and	verifying	its	authenticity.

In	 an	 Itanium-based	 system,	 it	 is	 also	 imperative	 that	 the	 firmware	modules	 in	 the	BFV	be
organized	such	that	at	least	the	PAL-A	is	contained	in	the	fault-tolerant	regions.	This	processor-
specific	PAL-A	authenticates	 the	PAL-B	code,	which	 is	 usually	 contained	 in	 the	 regions	of	 the
firmware	 system	 that	 do	 not	 support	 fault-tolerant	 updates.	 The	 PAL-A	 and	 PAL-B	 binary
components	are	always	visible	to	all	the	processors	in	a	node	at	the	time	of	power-on;	the	system
fabric	should	not	need	to	be	initialized.

Non-Power-On	Resets

Non-power-on	resets	can	occur	for	many	reasons.	Some	PEI	and	DXE	system	services	reset	and
reboot	the	entire	platform,	including	all	processors	and	devices.	It	is	important	to	have	a	standard
variant	of	this	boot	path	for	cases	such	as	the	following:

Resetting	the	processor	to	change	frequency	settings
Restarting	hardware	to	complete	chipset	initialization
Responding	to	an	exception	from	a	catastrophic	error

This	reset	is	also	used	for	Configuration	Values	Driven	through	Reset	(CVDR)	configuration.

Normal	Boot	Paths

A	traditional	BIOS	executes	POST	from	a	cold	boot	(G3	to	S0	state),	on	resumes,	or	in	special
cases	 like	 INIT.	 UEFI	 covers	 all	 those	 cases	 but	 provides	 a	 richer	 and	 more	 standardized
operating	environment

The	basic	code	flow	of	the	system	needs	to	be	changeable	due	to	different	circumstances.	The
boot	path	variable	satisfies	this	need.	The	initial	value	of	the	boot	mode	is	defined	by	some	early
PEIMs,	but	it	can	be	altered	by	other,	later	PEIMs.	All	systems	must	support	a	basic	S0	boot	path.
Typically	a	system	has	a	richer	set	of	boot	paths,	including	S0	variations,	S-state	boot	paths,	and
one	or	more	special	boot	paths.

The	architecture	for	multiple	boot	paths	presented	here	has	several	benefits:
The	 PEI	 Foundation	 is	 not	 required	 to	 be	 aware	 of	 system-specific	 requirements	 such	 as
multi-processor	 capability	 and	 various	 power	 states.	 This	 lack	 of	 awareness	 allows	 for
scalability	and	headroom	for	future	expansion.
Supporting	the	various	paths	only	minimally	impacts	the	size	of	the	PEI	Foundation.
The	PEIMs	required	to	support	the	paths	scale	with	the	complexity	of	the	system.

Note	 that	 the	Boot	Mode	Register	 becomes	 a	 variable	 upon	 transition	 to	 the	DXE	 phase.	 The
DXE	phase	can	have	additional	modifiers	that	affect	the	boot	path	more	than	the	PEI	phase.	These
additional	modifiers	can	indicate	if	the	system	is	in	manufacturing	mode,	chassis	intrusion,	or	AC
power	loss	or	if	silent	boot	is	enabled.

In	 addition	 to	 the	 boot	 path	 types,	 modifier	 bits	 might	 be	 present.	 The	 recoveryneeded
modifier	is	set	if	any	PEIM	detects	that	it	has	become	corrupted.

Basic	G0-to-S0	and	S0	Variation	Boot	Paths

The	basic	S0	boot	path	is	boot	with	full	configuration.	This	path	setting	informs	all	PEIMs	to	do
a	full	configuration.	The	basic	S0	boot	path	must	be	supported.

The	UEFI	PI	architecture	also	defines	several	optional	variations	to	the	basic	S0	boot	path.	The
variations	that	are	supported	depend	on	the	following:

Richness	of	supported	features
If	the	platform	is	open	or	closed
Platform	hardware

For	example,	a	closed	system	or	one	 that	has	detected	a	chassis	 intrusion	could	support	a	boot
path	that	assumes	no	configuration	changes	from	last	boot	option,	thus	allowing	a	very	rapid	boot
time.	 Unsupported	 variations	 default	 to	 basic	 S0	 operation.	 The	 following	 are	 the	 defined
variations	to	the	basic	boot	path:

Boot	 with	 minimal	 configuration:	 This	 path	 is	 for	 configuring	 the	 minimal	 amount	 of
hardware	to	boot	the	system.
Boot	assuming	no	configuration	changes:	This	path	uses	the	last	configuration	data.

Boot	with	full	configuration	plus	diagnostics:	This	path	also	causes	any	diagnostics	to	be
executed.
Boot	 with	 default	 settings:	 This	 path	 uses	 a	 known	 set	 of	 safe	 values	 for	 programming
hardware.

S-State	Boot	Paths

The	following	optional	boot	paths	allow	for	different	operation	for	a	resume	from	S3,	S4,	and	S5:
S3	 (Save	 to	 RAM	 Resume):	 Platforms	 that	 support	 S3	 resume	 must	 take	 special	 care	 to
preserve/restore	memory	and	critical	hardware.
S4	(Save	to	Disk):	Some	platforms	may	want	to	perform	an	abbreviated	PEI	and	DXE	phase
on	a	S4	resume.
S5	(Soft	Off):	Some	platforms	may	want	an	S5	system	state	boot	to	be	differentiated	from	a
normal	boot—for	example,	if	buttons	other	than	the	power	button	can	wake	the	system.

An	S3	 resume	needs	 to	be	explained	 in	more	detail	because	 it	 requires	cooperation	between	a
G0-to-S0	boot	path	and	an	S3	resume	boot	path.	The	G0-to-S0	boot	path	needs	to	save	hardware
programming	information	that	the	S3	resume	path	needs	to	retrieve.	This	information	is	saved	in
the	Hardware	Save	Table	using	predefined	data	structures	to	perform	I/O	or	memory	writes.	The
data	is	stored	in	a	UEFI	equivalent	of	the	INT15	E820	type	4	(firmware	reserved	memory)	area
or	a	firmware	device	area	that	is	reserved	for	use	by	UEFI.	The	S3	resume	boot	path	code	can
access	this	region	after	memory	has	been	restored.

Recovery	Paths

All	of	the	previously	described	boot	paths	can	be	modified	or	aborted	if	the	system	detects	that
recovery	is	needed.	Recovery	is	the	process	of	reconstituting	a	system’s	firmware	devices	when
they	 have	 become	 corrupted.	 The	 corruption	 can	 be	 caused	 by	 various	 mechanisms.	 Most
firmware	 volumes	 on	 nonvolatile	 storage	 devices	 (flash,	 disk)	 are	 managed	 as	 blocks.	 If	 the
system	loses	power	while	a	block,	or	semantically	bound	blocks,	are	being	updated,	the	storage
might	 become	 invalid.	 On	 the	 other	 hand,	 the	 device	 might	 become	 corrupted	 by	 an	 errant
program	 or	 by	 errant	 hardware.	 The	 system	 designers	must	 determine	 the	 level	 of	 support	 for
recovery	 based	 on	 their	 perceptions	 of	 the	 probabilities	 of	 these	 events	 occurring	 and	 their
consequences.

The	following	are	some	reasons	why	system	designers	may	choose	not	to	support	recovery:
A	 system’s	 firmware	 volume	 storage	 media	 might	 not	 support	 modification	 after	 being
manufactured.	It	might	be	the	functional	equivalent	of	ROM.
Most	 mechanisms	 of	 implementing	 recovery	 require	 additional	 firmware	 volume	 space,
which	might	be	too	expensive	for	a	particular	application.
A	system	may	have	enough	firmware	volume	space	and	hardware	features	that	the	firmware
volume	can	be	made	sufficiently	fault	tolerant	to	make	recovery	unnecessary.

Discovery

Discovering	 that	 recovery	 is	 required	may	be	done	using	 a	PEIM	 (for	 example,	 by	 checking	 a
“force	recovery”	jumper)	or	the	PEI	Foundation	itself.	The	PEI	Foundation	might	discover	that	a
particular	PEIM	has	not	validated	correctly	or	that	an	entire	firmware	has	become	corrupted.

General	Recovery	Architecture

The	concept	behind	recovery	is	to	preserve	enough	of	the	system	firmware	so	that	the	system	can
boot	to	a	point	where	it	can	do	the	following:

Read	a	copy	of	the	data	that	was	lost	from	chosen	peripherals.
Reprogram	the	firmware	volume	with	that	data.

Preserving	the	recovery	firmware	is	a	function	of	the	way	the	firmware	volume	store	is	managed,
which	 is	 generally	 beyond	 the	 scope	 of	 this	 book.	 For	 the	 purpose	 of	 this	 description,	 it	 is
expected	 that	 the	PEIMs	and	other	contents	of	 the	 firmware	volumes	 required	 for	 recovery	are
marked.	The	architecture	of	the	firmware	volume	store	must	then	preserve	marked	items,	either	by
making	 them	 unalterable	 (possibly	with	 hardware	 support)	 or	must	 protect	 them	 using	 a	 fault-
tolerant	update	process.	Note	that	a	PEIM	is	required	to	be	in	a	fault-tolerant	area	if	it	indicates	it
is	required	for	recovery	or	if	a	PEIM	required	for	recovery	depends	on	it.	This	architecture	also
assumes	that	it	is	fairly	easy	to	determine	that	firmware	volumes	have	become	corrupted.

The	PEI	Dispatcher	then	proceeds	as	normal.	If	it	encounters	PEIMs	that	have	been	corrupted

(for	 example,	 by	 receiving	 an	 incorrect	 hash	 value),	 it	 itself	 must	 change	 the	 boot	 mode	 to
recovery.	Once	set	to	recovery,	other	PEIMs	must	not	change	it	to	one	of	the	other	states.	After	the
PEI	 Dispatcher	 has	 discovered	 that	 the	 system	 is	 in	 recovery	 mode,	 it	 will	 restart	 itself,
dispatching	 only	 those	 PEIMs	 that	 are	 required	 for	 recovery.	 A	 PEIM	 can	 also	 detect	 a
catastrophic	condition	or	a	forced-recovery	event	and	inform	the	PEI	Dispatcher	that	it	needs	to
proceed	with	a	recovery	dispatch.	A	PEIM	can	alert	the	PEI	Foundation	to	start	recovery	by	OR-
ing	the	BOOT_IN_RECOVERY_MODE_MASK	bit	onto	the	present	boot	mode.	The	PEI	Foundation	then
resets	the	boot	mode	to	BOOT_IN_RECOVERY_MODE	and	starts	the	dispatch	from	the	beginning	with
BOOT_IN_RECOVERY_MODE	as	the	sole	value	for	the	mode.

It	 is	 possible	 that	 a	 PEIM	 could	 be	 built	 to	 handle	 the	 portion	 of	 the	 recovery	 that	would
initialize	the	recovery	peripherals	(and	the	buses	they	reside	on)	and	then	to	read	the	new	images
from	the	peripherals	and	update	the	firmware	volumes.

It	is	considered	far	more	likely	that	the	PEI	will	transition	to	DXE	because	DXE	is	designed
to	 handle	 access	 to	 peripherals.	 This	 transition	 has	 the	 additional	 benefit	 that,	 if	 DXE	 then
discovers	 that	 a	 device	 has	 become	 corrupted,	 it	 may	 institute	 recovery	 without	 transferring
control	back	to	the	PEI.

If	the	PEI	Foundation	does	not	have	a	list	of	what	it	is	to	dispatch,	how	does	it	know	whether
an	area	of	invalid	space	in	a	firmware	volume	should	have	contained	a	PEIM	or	not?	It	seems	that
the	PEI	Foundation	may	discover	most	corruption	as	an	incidental	result	of	its	search	for	PEIMs.
In	 this	 case,	 if	 the	 PEI	 Foundation	 completes	 its	 dispatch	 process	without	 discovering	 enough
static	system	memory	to	start	DXE,	then	it	should	go	into	recovery	mode.

Special	Boot	Path	Topics

The	 remaining	sections	 in	 this	chapter	discuss	 special	boot	paths	 that	might	be	available	 to	all
processors	or	specific	considerations	that	apply	only	for	Intel	Itanium	processors.

Special	Boot	Paths

The	following	are	special	boot	paths	in	the	UEFI	PI	architecture.	Some	of	these	paths	are	optional
and	others	are	processor-family	specific.

Forced	recovery	boot:	A	jumper	or	an	equivalent	mechanism	indicates	a	forced	recovery.
Intel	Itanium	architecture	boot	paths:	See	the	next	section.
Capsule	 update:	 This	 boot	mode	 can	 be	 an	 INIT,	 S3,	 or	 some	 other	means	 by	which	 to
restart	 the	machine.	 If	 it	 is	 an	 S3,	 for	 example,	 the	 capsule	 cause	will	 supersede	 the	 S3
restart.	 It	 is	 incumbent	 upon	 platform	 code,	 such	 as	 a	 memory	 initialization	 PEIM,	 to
determine	 the	 exact	 cause	 and	 perform	 the	 correct	 behavior—that	 is,	 S3	 state	 restoration
versus	INIT	behavior.

Special	Intel	Itanium®	Architecture	Boot	Paths

The	architecture	requires	the	following	special	boot	paths:
Boot	after	INIT:	An	INIT	has	occurred.
Boot	after	MCA:	A	Machine	Check	Architecture	(MCA)	event	has	occurred.

Intel	Itanium	processors	possess	several	unique	boot	paths	that	also	invoke	the	dispatcher	located
at	 the	System	Abstraction	Layer	 entry	point	SALE_ENTRY.	The	processor	 INIT	and	MCA	are
two	asynchronous	events	that	start	up	the	SEC	code/dispatcher	in	an	Itanium-based	system.	The
UEFI	PI	 security	module	 is	 transparent	during	all	 the	code	paths	except	 for	 the	 recovery	check
call	 that	 happens	 during	 a	 cold	 boot.	 The	PEIMs	 or	DXE	drivers	 that	 handle	 these	 events	 are
architecture-aware	and	do	not	return	the	control	to	the	core	dispatcher.	They	call	their	respective
architectural	handlers	in	the	OS.

Intel	Itanium®	Architecture	Access	to	the	Boot	Firmware	Volume

Figure	12.3	shows	the	reset	boot	path	that	an	Intel	Itanium	processor	follows.	Figure	12.4	shows
the	boot	flow.

Figure	12.3:	Intel®	Itanium®	Architecture	Resets

Figure	12.4:	Intel®	Itanium®	Processor	Boot	Flow	(MP	versus	UP	on	Other	CPUs)

In	Intel	Itanium	architecture,	the	microcode	starts	up	the	first	layer	of	the	PAL	code,	provided	by
the	processor	vendor,	which	resides	in	the	Boot	Firmware	Volume	(BFV).	This	code	minimally
initializes	 the	processor	 and	 then	 finds	 and	 authenticates	 the	 second	 layer	of	PAL	code	 (called
PAL-B).	The	location	of	both	PAL-A	and	PAL-B	can	be	found	by	consulting	either	the	architected
pointers	 in	 the	ROM	near	 the	4-gigabyte	 region	or	 by	 consulting	 the	Firmware	 Interface	Table
(FIT)	 pointer	 in	 the	ROM.	The	PAL	 layer	 communicates	with	 the	OEM	boot	 firmware	using	 a

single	entry	point	called	SALE_ENTRY.

The	 Intel	 Itanium	 architecture	 defines	 the	 initialization	 described	 above.	 In	 addition,	 however,
Itanium-based	systems	that	use	the	UEFI	PI	architecture	must	do	the	following:

A	“special”	PEIM	must	be	resident	in	the	BFV	to	provide	information	about	the	location	of
the	other	firmware	volumes.
The	 PEI	 Foundation	 will	 be	 located	 at	 the	 SALE_ENTRY	 point	 on	 the	 BFV.	 The	 Intel
Itanium	architecture	PEIMs	may	reside	in	the	BFV	or	other	firmware	volumes,	but	a	special
PEIM	must	 be	 resident	 in	 the	BFV	 to	 provide	 information	 about	 the	 location	 of	 the	 other
firmware	volumes.
The	BFV	of	a	particular	node	must	be	accessible	by	all	the	processors	running	in	that	node.
All	the	processors	in	each	node	start	up	and	execute	the	PAL	code	and	subsequently	enter	the
PEI	 Foundation.	 The	 BFV	 of	 a	 particular	 node	must	 be	 accessible	 by	 all	 the	 processors
running	in	that	node.	This	distinction	also	means	that	some	of	the	PEIMs	in	the	Intel	Itanium
architecture	boot	path	will	be	multi-processor-aware.
Firmware	modules	in	a	BFV	must	be	organized	such	that	PAL-A,	PAL-B,	and	FIT	binaries
are	always	visible	to	all	the	processors	in	a	node	at	the	time	of	power-on.
These	binaries	must	be	visible	without	any	initialization	of	the	system	fabric.

Table	12.2	lists	the	values	and	descriptions	of	the	boot	modes.

Table	12.2:	Boot	Mode	Register

REGISTER	BIT(S) VALUES DESCRIPTIONS
MSBit-0 000000b Boot	with	full	configuration

000001b Boot	with	minimal	configuration
000010b Boot	assuming	no	configuration	changes	from	last	boot
000011b Boot	with	full	configuration	plus	diagnostics
000100b Boot	with	default	settings
000101b Boot	on	S4	resume
000110b Boot	in	S5	resume
000111b-001111b Reserved	for	boot	paths	that	configure	memory
010000b Boot	on	S2	resume
010001b Boot	on	S3	resume
010010b Boot	on	flash	update	restart
010011b-011111b Reserved	for	boot	paths	that	preserve	memory	context
100000b Boot	in	recovery	mode
100001b-111111b Reserved	for	special	boots

Architectural	Boot	Mode	PPIs

In	 the	PEI	chapter	 the	concept	of	an	PEIM-to-PEIM	interface	 (PPI)	 is	 introduced	as	 the	unit	of
interoperability	 in	 this	 phase	 of	 execution.	 PEI	 modules	 can	 ascertain	 the	 boot	 mode	 via	 the
GetBootMode	service	once	the	module	is	dispatched,	but	a	system	designer	may	not	want	a	PEIM
to	even	run	unless	 in	a	given	boot	mode.	A	possible	hierarchy	of	boot	mode	PPIs	abstracts	 the
various	 producers	 of	 the	 boot	 mode.	 It	 is	 a	 hierarchy	 in	 that	 there	 should	 be	 an	 order	 of
precedence	in	which	each	mode	can	be	set.	The	PPIs	and	their	respective	GUIDs	are	described	in
Required	Architectural	PPIs	for

the	PEI	phase	that	can	be	found	in	the	PEI	Core	Interface	Specification	and	Optional	Architectural
PPIs.	 The	 hierarchy	 includes	 the	 master	 PPI,	 which	 publishes	 a	 PPI	 depended	 upon	 by	 the
appropriate	PEIMs,	and	some	subsidiary	PPI.	For	PEIMs	that	require	that	the	boot	mode	is	finally
known,	the	Master	Boot	Mode	PPI	can	be	used	as	a	dependency.

Table	12.3	lists	the	architectural	boot	mode	PPIs.

Table	12.3:	Architectural	Boot	Mode	PPIs

PPI	Name Required	or	Optional? PPI	Definition	in	Section...
Master	Boot	Mode	PPI Required Architectural	PPIs:	Required

Architectural	PPIs
Boot	in	Recovery	Mode	PPI Optional Architectural	PPIs:	Optional	Architectural

PPIs

Recovery

This	 section	 describes	 platform	 firmware	 recovery.	 Recovery	 is	 an	 option	 to	 provide	 higher
RASUM	 (Reliability,	 Availability,	 Serviceability,	 Usability,	 Manageability)	 in	 the	 field.
Recovery	 is	 the	process	of	 reconstituting	a	 system’s	 firmware	devices	when	 they	have	become
corrupted.	The	corruption	can	be	caused	by	various	mechanisms.	Most	firmware	volumes	(FVs)
in	nonvolatile	storage	(NVS)	devices	(flash	or	disk,	for	example)	are	managed	as	blocks.	If	the
system	loses	power	while	a	block,	or	semantically	bound	blocks,	are	being	updated,	the	storage
might	become	invalid.	On	the	other	hand,	an	errant	program	or	hardware	could	corrupt	the	device.
The	system	designers	must	determine	the	level	of	support	for	recovery	based	on	their	perceptions
of	the	probabilities	of	these	events	occurring	and	the	consequences.

Discovery

Discovering	 that	 recovery	 is	 required	may	be	done	using	 a	PEIM	 (for	 example,	 by	 checking	 a
“force	recovery”	jumper)	or	the	PEI	Foundation	itself.	The	PEI	Foundation	might	discover	that	a
particular	PEIM	has	not	validated	correctly	or	that	an	entire	firmware	has	become	corrupted.

Note At	this	point	a	physical	reset	of	the	system	has	not	occurred.	The	PEI	Dispatcher	has	only	cleared	all	state
information	and	restarted	itself.

It	is	possible	that	a	PEIM	could	be	built	to	handle	the	portion	of	the	recovery	that	would	initialize
the	recovery	peripherals	(and	the	buses	they	reside	on)	and	then	to	read	the	new	images	from	the
peripherals	and	update	the	FVs.

It	is	considered	far	more	likely	that	the	PEI	will	transition	to	DXE	because	DXE	is	designed
to	handle	access	to	peripherals.	This	has	the	additional	benefit	that,	if	DXE	then	discovers	that	a
device	has	become	corrupted,	 it	may	 institute	 recovery	without	 transferring	control	back	 to	 the
PEI.

Since	the	PEI	Foundation	does	not	have	a	list	of	what	to	dispatch,	how	does	it	know	if	an	area
of	 invalid	 space	 in	 an	 FV	 should	 have	 contained	 a	 PEIM	 or	 not?	 The	 PEI	 Foundation	 should
discover	most	corruption	as	an	incidental	result	of	its	search	for	PEIMs.	In	this	case,	if	the	PEI
Foundation	completes	 its	dispatch	process	without	discovering	enough	static	system	memory	 to
start	DXE,	then	it	should	go	into	recovery	mode.

Summary

This	chapter	has	described	the	various	boot	modes	that	the	UEFI	PI	firmware	can	support.	This
concept	 is	 important	 to	understand	as	both	a	provider	of	PEI	modules	and	DXE	drivers,	 along
with	platform	integrators.	The	former	constituency	needs	to	design	their	code	to	handle	the	boot
modes	appropriately,	whereas	the	latter	group	of	engineers	needs	to	understand	how	to	compose	a
set	of	modules	and	drivers	for	the	respective	boot	paths	of	a	resultant	system.

Chapter	13	–	Pre-EFI	Initialization	(PEI)
Small	is	Beautiful

—E.F.	Schumacher

The	 UEFI	 Platform	 Initialization	 (PI)	 pre-EFI	 initialization	 (PEI)	 phase	 of	 execution	 has	 two
primary	 roles	 in	 a	 platform’s	 life:	 determine	 the	 source	 of	 the	 restart	 and	 provide	 a	minimum
amount	of	permanent	memory	for	the	ensuing	DXE	phase.	Words	such	as	small	and	minimal	are
often	 used	 to	 describe	 PEI	 code	 because	 of	 hardware	 resource	 constraints	 that	 limit	 the
programming	 environment.	 Specifically,	 the	 Pre-EFI	 Initialization	 (PEI)	 phase	 provides	 a
standardized	 method	 of	 loading	 and	 invoking	 specific	 initial	 configuration	 routines	 for	 the
processor,	chipset,	and	system	board.	The	PEI	phase	occurs	after	the	Security	(SEC)	phase.	The
primary	 purpose	 of	 code	 operating	 in	 this	 phase	 is	 to	 initialize	 enough	 of	 the	 system	 to	 allow
instantiation	of	the	Driver	Execution	Environment	(DXE)	phase.	At	a	minimum,	the	PEI	phase	is
responsible	 for	 determining	 the	 system	 boot	 path	 and	 initializing	 and	 describing	 a	 minimum
amount	 of	 system	 RAM	 and	 firmware	 volume(s)	 that	 contain	 the	 DXE	 Foundation	 and	 DXE
Architectural	Protocols.	As	an	application	of	Occam’s	razor	 to	 the	system	design,	 the	minimum
amount	of	activity	should	be	orchestrated	and	located	in	this	phase	of	execution;	no	more,	no	less.

Scope

The	PEI	phase	 is	 responsible	 for	 initializing	enough	of	 the	 system	 to	provide	a	 stable	base	 for
subsequent	 phases.	 It	 is	 also	 responsible	 for	 detecting	 and	 recovering	 from	 corruption	 of	 the
firmware	storage	space	and	providing	the	restart	reason	(bootmode).

Today’s	PC	generally	 starts	execution	 in	a	very	primitive	 state,	 from	 the	perspective	of	 the
boot	 firmware,	 such	 as	 BIOS	 or	 the	UEFI	 PI.	 Processors	might	 need	 updates	 to	 their	 internal
microcode;	 the	 chipset	 (the	 chips	 that	 provide	 the	 interface	 between	 processors	 and	 the	 other
major	 components	of	 the	 system)	 require	 considerable	 initialization;	 and	RAM	requires	 sizing,
location,	 and	 other	 initialization.	 The	 PEI	 phase	 is	 responsible	 for	 initializing	 these	 basic
subsystems.	The	PEI	phase	is	intended	to	provide	a	simple	infrastructure	by	which	a	limited	set	of
tasks	can	easily	be	accomplished	to	transition	to	the	more	advanced	DXE	phase.	The	PEI	phase	is
intended	 to	 be	 responsible	 for	 only	 a	 very	 small	 subset	 of	 tasks	 that	 are	 required	 to	 boot	 the
platform;	in	other	words,	it	should	perform	only	the	minimal	tasks	that	are	required	to	start	DXE.
As	improvements	in	the	hardware	occur,	some	of	these	tasks	may	migrate	out	of	the	PEI	phase	of
execution.

Rationale

The	design	 for	PEI	 is	 essentially	 a	miniature	version	of	DXE	 that	 addresses	many	of	 the	 same
issues.	The	PEI	phase	consists	of	several	parts:

A	PEI	Foundation
One	or	more	Pre-EFI	Initialization	Modules	(PEIMs)

The	 goal	 is	 for	 the	 PEI	 Foundation	 to	 remain	 relatively	 constant	 for	 a	 particular	 processor
architecture	 and	 to	 support	 add-in	 modules	 from	 various	 vendors	 for	 particular	 processors,
chipsets,	platforms,	and	other	components.	These	modules	usually	cannot	be	coded	without	some
interaction	between	one	another	and,	even	if	they	could,	it	would	be	inefficient	to	do	so.

PEI	is	unlike	DXE	in	that	DXE	assumes	that	reasonable	amounts	of	permanent	system	RAM	are
present	and	available	for	use.	PEI	instead	assumes	that	only	a	limited	amount	of	temporary	RAM
exists	and	that	it	could	be	reconfigured	for	other	uses	during	the	PEI	phase	after	permanent	system
RAM	has	been	 initialized.	As	such,	PEI	does	not	have	 the	 rich	 feature	set	 that	DXE	does.	The
following	are	the	most	obvious	examples	of	this	difference:

DXE	has	a	rich	database	of	loaded	images	and	protocols	bound	to	those	images.
PEI	lacks	a	rich	module	hierarchy	such	as	the	DXE	driver	model.

Overview

The	PEI	phase	consists	of	some	Foundation	code	and	specialized	drivers	known	as	PEIMs	that
customize	the	PEI	phase	operations	to	the	platform.	It	is	the	responsibility	of	the	Foundation	code
to	 dispatch	 the	 plug-ins	 in	 a	 sequenced	 order	 and	 provide	 basic	 services.	 The	 PEIMs	 are
analogous	 to	 DXE	 drivers	 and	 generally	 correspond	 to	 the	 components	 being	 initialized.	 It	 is
expected	that	common	practice	will	be	that	the	vendor	of	the	component	will	provide	the	PEIM,
possibly	in	source	form	so	the	customer	can	quickly	debug	integration	problems.

The	implementation	of	the	PEI	phase	is	more	dependent	on	the	processor	architecture	than	any
other	UEFI	PI	phase.	In	particular,	the	more	resources	that	the	processor	provides	at	its	initial	or
near	initial	state,	the	richer	the	PEI	environment	will	be.	As	such,	several	parts	of	the	following
discussion	note	 requirements	 for	 the	architecture	but	are	otherwise	 left	 less	completely	defined
because	they	are	specific	to	the	processor	architecture.

PEI	 can	 be	 viewed	 from	 both	 temporal	 and	 spatial	 perspectives.	 Figure	 13.1	 provides	 the
overall	UEFI	PI	boot	phase.	The	spatial	view	of	PEI	can	be	found	in	Figure	13.2.	This	picture
describes	 the	 layering	of	 the	UEFI	PI	components.	This	figure	has	often	been	referred	 to	as	 the
“H”.	PEI	compromises	 the	 lower	half	of	 the	“H”.	The	 temporal	perspective	entails	“when”	 the
PEI	foundation	and	its	associated	modules	execute.	Figure	13.3	highlights	the	portions	of	Figure	1
3.1	that	include	PEI.

Figure	13.1:	Overall	Boot	Flow

Figure	13.2:	System	Components

Figure	13.3:	Portion	of	the	Overall	Boot	Flow	and	Components	for	PEI

Phase	Prerequisites

The	following	sections	describe	the	prerequisites	necessary	for	the	successful	completion	of	the
PEI	phase.

Temporary	RAM

The	PEI	Foundation	requires	that	the	SEC	phase	initialize	a	minimum	amount	of	scratch	pad	RAM
that	can	be	used	by	the	PEI	phase	as	a	data	store	until	system	memory	has	been	fully	initialized.
This	scratch	pad	RAM	should	have	access	properties	similar	 to	normal	system	RAM—through
memory	cycles	on	 the	 front	side	bus,	 for	example.	After	system	memory	 is	 fully	 initialized,	 the
temporary	RAM	may	be	reconfigured	for	other	uses.	Typical	provision	for	the	temporary	RAM	is
an	architectural	mode	of	the	processor’s	internal	caches.

Boot	Firmware	Volume

The	Boot	Firmware	Volume	(BFV)	contains	the	PEI	Foundation	and	PEIMs.	It	must	appear	in	the
memory	address	space	of	 the	system	without	prior	firmware	 intervention	and	 typically	contains
the	reset	vector	for	the	processor	architecture.

The	 contents	 of	 the	 BFV	 follow	 the	 format	 of	 the	 UEFI	 PI	 flash	 file	 system.	 The	 PEI
Foundation	follows	the	UEFI	PI	flash	file	system	format	to	find	PEIMs	in	the	BFV.	A	platform-
specific	PEIM	may	inform	the	PEI	Foundation	of	 the	 location	of	other	firmware	volumes	in	 the
system,	which	 allows	 the	 PEI	 Foundation	 to	 find	 PEIMs	 in	 other	 firmware	 volumes.	 The	 PEI
Foundation	and	PEIMs	are	named	by	unique	IDs	in	the	UEFI	PI	flash	file	system.

The	PEI	Foundation	and	some	PEIMs	required	for	recovery	must	either	be	locked	into	a	non-
updateable	BFV	or	be	able	to	be	updated	using	a	fault-tolerant	mechanism.	The	UEFI	PI	flash	file
system	 provides	 error	 recovery;	 if	 the	 system	 halts	 at	 any	 point,	 either	 the	 old	 (pre-update)
PEIM(s)	or	the	newly	updated	PEIM(s)	are	entirely	valid	and	the	PEI	Foundation	can	determine
which	is	valid.

Security	Primitives

The	SEC	phase	provides	an	interface	to	the	PEI	Foundation	to	perform	verification	operations.	To
continue	the	root	of	trust,	the	PEI	Foundation	will	use	this	mechanism	to	validate	various	PEIMs.

Concepts

The	following	sections	describe	the	concepts	in	the	PEI	phase	design.

PEI	Foundation

The	PEI	Foundation	is	a	single	binary	executable	that	is	compiled	to	function	with	each	processor
architecture.	It	performs	two	main	functions:

Dispatching	PEIMs
Providing	a	set	of	common	core	services	used	by	PEIMs

The	PEI	Dispatcher’s	job	is	to	transfer	control	to	the	PEIMs	in	an	orderly	manner.	The	common
core	services	are	provided	through	a	service	table	referred	to	as	the	PEI	Services	Table.	These
services	do	the	following:

Abstract	management	of	the	temporary	RAM.
Provide	common	functions	to	assist	the	PEIMs	in	the	following:
– Finding	other	files	in	the	FFS
– Reporting	status	codes
– Preparing	the	handoff	state	for	the	next	phase	of	the	UEFI	PI

When	 the	 SEC	 phase	 is	 complete,	 SEC	 invokes	 the	 PEI	 Foundation	 and	 provides	 the	 PEI
Foundation	with	several	parameters:

The	 location	and	size	of	 the	BFV	so	 that	 the	PEI	Foundation	knows	where	 to	 look	 for	 the
initial	set	of	PEIMs.
A	minimum	amount	of	temporary	RAM	that	the	PEI	phase	can	use
A	 verification	 service	 callback	 to	 allow	 the	 PEI	 Foundation	 to	 verify	 that	 PEIMs	 that	 it
discovers	are	authenticated	to	run	before	the	PEI	Foundation	dispatches	them

The	 PEI	 Foundation	 assists	 PEIMs	 in	 communicating	 with	 each	 other.	 The	 PEI	 Foundation
maintains	 a	 database	 of	 registered	 interfaces	 for	 the	 PEIMs,	 as	 shown	 in	 Figure	 13.4.	 These
interfaces	 are	 called	 PEIM-to-PEIM	 Interfaces	 (PPIs).	 The	 PEI	 Foundation	 provides	 the
interfaces	to	allow	PEIMs	to	register	PPIs	and	to	be	notified	(called	back)	when	another	PEIM
installs	a	PPI.

Figure	13.4:	How	a	PPI	Is	Registered

The	 PEI	Dispatcher	 consists	 of	 a	 single	 phase.	 It	 is	 during	 this	 phase	 that	 the	 PEI	 Foundation
examines	 each	 file	 in	 the	 firmware	 volumes	 that	 contain	 files	 of	 type	 PEIM.	 It	 examines	 the
dependency	 expression	 (depex)	 within	 each	 firmware	 file	 to	 decide	 if	 a	 PEIM	 can	 run.	 A
dependency	expression	is	code	associated	with	each	driver	that	describes	the	dependencies	that
must	be	satisfied	for	that	driver	to	run.	The	binary	encoding	of	dependency	expressions	for	PEIMs
is	the	same	as	that	of	dependency	expressions	associated	with	a	DXE	driver.

Pre-EFI	Initialization	Modules	(PEIMs)

Pre-EFI	 Initialization	 Modules	 (PEIMs)	 are	 executable	 binaries	 that	 encapsulate	 processor,
chipset,	 device,	 or	 other	 platform-specific	 functionality.	 PEIMs	 may	 provide	 interface(s)	 that
allow	other	 PEIMs	 or	 the	PEI	Foundation	 to	 communicate	with	 the	PEIM	or	 the	 hardware	 for
which	 the	 PEIM	 abstracts.	 PEIMs	 are	 separately	 built	 binary	modules	 that	 typically	 reside	 in
ROM	and	are	therefore	uncompressed.	A	small	subset	of	PEIMs	exist	that	may	run	from	RAM	for
performance	reasons.	These	PEIMs	reside	in	ROM	in	a	compressed	format.	PEIMs	that	reside	in
ROM	 are	 execute-in-place	 modules	 that	 may	 consist	 of	 either	 position-independent	 code	 or
position-dependent	code	with	relocation	information.

PEI	Services

The	PEI	Foundation	establishes	a	system	table	named	the	PEI	Services	Table	that	is	visible	to	all
PEIMs	in	the	system.	A	PEI	service	is	defined	as	a	function,	command,	or	other	capability	that	is
manifested	by	the	PEI	Foundation	when	that	service’s	initialization	requirements	are	met.	Because
the	PEI	phase	has	no	permanent	memory	available	until	nearly	the	end	of	the	phase,	the	range	of
services	 created	 during	 the	 PEI	 phase	 cannot	 be	 as	 rich	 as	 those	 created	 during	 later	 phases.
Because	the	location	of	the	PEI	Foundation	and	its	temporary	RAM	is	not	known	at	build	time,	a
pointer	to	the	PEI	Services	Table	is	passed	into	each	PEIM’s	entry	point	and	also	to	part	of	each
PPI.	The	PEI	Foundation	provides	the	following	classes	of	services:

PPI	Services:	Manages	PPIs	to	facilitate	inter-module	calls	between	PEIMs.	Interfaces	are

installed	and	tracked	on	a	database	maintained	in	temporary	RAM.
Boot	Mode	Services:	Manages	the	boot	mode	(S3,	S5,	normal	boot,	diagnostics,	and	so	on)
of	the	system.
HOB	Services:	Creates	data	structures	called	Hand-Off	Blocks	(HOBs)	that	are	used	to	pass
information	to	the	next	phase	of	the	UEFI	PI.
Firmware	Volume	Services:	Scans	 the	FFS	 in	 firmware	volumes	 to	 find	PEIMs	and	other
firmware	files	in	the	flash	device.
PEI	Memory	Services:	Provides	a	collection	of	memory	management	services	for	use	both
before	and	after	permanent	memory	has	been	discovered.
Status	 Code	 Services:	 Common	 progress	 and	 error	 code	 reporting	 services,	 that	 is,	 port
080h	or	a	serial	port	for	simple	text	output	for	debug.
Reset	Services:	Provides	a	common	means	by	which	to	initiate	a	restart	of	the	system.

PEIM-to-PEIM	Interfaces	(PPIs)

PEIMs	may	invoke	other	PEIMs	through	interfaces	named	PEIM-to-PEIM	Interfaces	(PPIs).	The
interfaces	 themselves	 are	 named	 using	 Globally	 Unique	 Identifiers	 (GUIDs)	 to	 allow	 the
independent	 development	 of	modules	 and	 their	 defined	 interfaces	 without	 naming	 collision.	 A
GUID	 is	 a	128-bit	value	used	 to	differentiate	 services	 and	 structures	 in	 the	boot	 services.	The
PPIs	 are	 defined	 as	 structures	 that	 may	 contain	 functions,	 data,	 or	 a	 combination	 of	 the	 two.
PEIMs	must	register	their	PPIs	with	the	PEI	Foundation,	which	manages	a	database	of	registered
PPIs.	A	 PEIM	 that	wants	 to	 use	 a	 specific	 PPI	 can	 then	 query	 the	 PEI	 Foundation	 to	 find	 the
interface	it	needs.	The	two	types	of	PPIs	are:

Services
Notifications

PPI	services	allow	a	PEIM	to	provide	functions	or	data	for	another	PEIM	to	use.	PPI	notifications
allow	a	PEIM	to	register	for	a	callback	when	another	PPI	is	registered	with	the	PEI	Foundation.

Simple	Heap

The	 PEI	 Foundation	 uses	 temporary	 RAM	 to	 provide	 a	 simple	 heap	 store	 before	 permanent
system	memory	 is	 installed.	 PEIMs	may	 request	 allocations	 from	 the	 heap,	 but	 no	mechanism
exists	to	free	memory	from	the	heap.	Once	permanent	memory	is	installed,	the	heap	is	relocated	to
permanent	system	memory,	but	the	PEI	Foundation	does	not	fix	up	existing	data	within	the	heap.
Therefore,	a	PEIM	cannot	store	pointers	in	the	heap	when	the	target	is	other	data	within	the	heap,
such	as	linked	lists.

Hand-Off	Blocks	(HOBs)

Hand-Off	Blocks	 (HOBs)	 are	 the	 architectural	mechanism	 for	 passing	 system	 state	 information
from	 the	 PEI	 phase	 to	 the	 DXE	 phase	 in	 the	 UEFI	 PI	 architecture.	 A	 HOB	 is	 simply	 a	 data
structure	 (cell)	 in	 memory	 that	 contains	 a	 header	 and	 data	 section.	 The	 header	 definition	 is
common	for	all	HOBs	and	allows	any	code	using	this	definition	to	know	two	items:

The	format	of	the	data	section
The	total	size	of	the	HOB

HOBs	 are	 allocated	 sequentially	 in	 the	 memory	 that	 is	 available	 to	 PEIMs	 after	 permanent
memory	has	been	 installed.	A	series	of	core	services	 facilitate	This	sequential	 list	of	HOBs	 in
memory	is	referred	to	as	the	HOB	list.	This	first	HOB	in	the	HOB	list	must	be	the	Phase	Handoff
Information	Table	(PHIT)	HOB	that	describes	the	physical	memory	used	by	the	PEI	phase	and	the
boot	mode	discovered	during	the	PEI	phase,	as	illustrated	in	Figure	13.5.

Figure	13.5:	The	HOB	List

Only	PEI	components	are	allowed	to	make	additions	or	changes	to	HOBs.	Once	the	HOB	list	is
passed	into	DXE,	it	 is	effectively	read-only	for	DXE	components.	The	ramifications	of	a	read-
only	HOB	 list	 for	DXE	 is	 that	 handoff	 information,	 such	 as	 boot	mode,	must	 be	 handled	 in	 a
unique	fashion;	if	DXE	were	to	engender	a	recovery	condition,	it	would	not	update	the	boot	mode
but	instead	would	implement	the	action	using	a	special	type	of	reset	call.	The	HOB	list	contains
system	 state	 data	 at	 the	 time	of	PEI-to-DXE	handoff	 and	does	 not	 represent	 the	 current	 system
state	 during	 DXE.	 DXE	 components	 should	 use	 services	 that	 are	 defined	 for	 DXE	 to	 get	 the
current	system	state	instead	of	parsing	the	HOB	list.

As	 a	 guideline,	 it	 is	 expected	 that	HOBs	passed	between	PEI	 and	DXE	will	 follow	 a	 one
producer–to–one	consumer	model.	 In	other	words,	 a	PEIM	will	 produce	 a	HOB	 in	PEI,	 and	a
DXE	Driver	will	 consume	 that	HOB	 and	 pass	 information	 associated	with	 that	HOB	 to	 other
DXE	components	that	need	the	information.	The	methods	that	the	DXE	Driver	uses	to	provide	that
information	 to	 other	 DXE	 components	 should	 follow	 mechanisms	 defined	 by	 the	 DXE
architecture.

Operation

PEI	phase	operation	consists	of	invoking	the	PEI	Foundation,	dispatching	all	PEIMs	in	an	orderly
manner,	 and	discovering	and	 invoking	 the	next	phase,	 as	 illustrated	 in	Figure	13.6.	During	 PEI
Foundation	initialization,	the	PEI	Foundation	initializes	the	internal	data	areas	and	functions	that
are	 needed	 to	 provide	 the	 common	 PEI	 services	 to	 PEIMs.	 During	 PEIM	 dispatch,	 the	 PEI
Dispatcher	 traverses	 the	 firmware	 volume(s)	 and	 discovers	 PEIMs	 according	 to	 the	 flash	 file
system	definition.	The	PEI	Dispatcher	then	dispatches	PEIMs	if	the	following	criteria	are	met:

The	PEIM	has	not	already	been	invoked.
The	PEIM	file	is	correctly	formatted.
The	PEIM	is	trustworthy.
The	PEIM’s	dependency	requirements	have	been	met.

After	dispatching	a	PEIM,	the	PEI	Dispatcher	continues	traversing	the	firmware	volume(s)	until
either	all	discovered	PEIMs	have	been	invoked	or	no	more	PEIMs	can	be	invoked	because	the
requirements	listed	above	cannot	be	met	for	any	PEIMs.	Once	this	condition	has	been	reached,	the
PEI	Dispatcher’s	job	is	complete	and	it	invokes	an	architectural	PPI	for	starting	the	next	phase	of
the	UEFI	PI,	the	DXE	Initial	Program	Load	(IPL)	PPI.

Figure	13.6:	PEI	Boot	Flow

Dependency	Expressions

The	sequencing	of	PEIMs	is	determined	by	evaluating	a	dependency	expression	associated	with
each	PEIM.	This	Boolean	expression	describes	the	requirements	that	are	necessary	for	that	PEIM
to	run,	which	imposes	a	weak	ordering	on	the	PEIMs.	Within	this	weak	ordering,	the	PEIMs	may
be	initialized	in	any	order.	The	GUIDs	of	PPIs	and	the	GUIDs	of	file	names	are	referenced	in	the
dependency	expression.	The	dependency	expression	is	a	representative	syntax	of	operations	that
can	be	performed	on	a	plurality	of	dependencies	to	determine	whether	the	PEIM	can	be	run.	The
PEI	Foundation	evaluates	this	dependency	expression	against	an	internal	database	of	run	PEIMs
and	registered	PPIs.	Operations	that	may	be	performed	on	dependencies	are	the	logical	operators
AND,	OR,	and	NOT	and	the	sequencing	operators	BEFORE	and	AFTER.

Verification/Authentication

The	PEI	Foundation	is	stateless	with	respect	to	security.	Instead,	security	decisions	are	assigned
to	platform-specific	components.	The	two	components	of	interest	that	abstract	security	include	the
Security	 PPI	 and	 a	 Verification	 PPI.	 The	 purpose	 of	 the	 Verification	 PPI	 is	 to	 check	 the
authentication	status	of	a	given	PEIM.	The	mechanism	used	therein	may	include	digital	signature
verification,	 a	 simple	 checksum,	 or	 some	 other	 OEM-specific	 mechanism.	 The	 result	 of	 this
verification	is	returned	to	the	PEI	Foundation,	which	in	turn	conveys	the	result	to	the	Security	PPI.
The	Security	PPI	decides	whether	to	defer	execution	of	the	PEIM	or	to	let	the	execution	occur.	In
addition,	 the	 Security	 PPI	 provider	 may	 choose	 to	 generate	 an	 attestation	 log	 entry	 of	 the
dispatched	PEIM	or	provide	some	other	security	exception.

PEIM	Execution

PEIMs	run	to	completion	when	invoked	by	the	PEI	Foundation.	Each	PEIM	is	invoked	only	once
and	must	perform	its	job	with	that	invocation	and	install	other	PPIs	to	allow	other	PEIMs	to	call	it
as	necessary.	PEIMs	may	also	register	for	a	notification	callback	if	it	is	necessary	for	the	PEIM	to
get	control	again	after	another	PEIM	has	run.

Memory	Discovery

Memory	discovery	 is	 an	 important	 architectural	 event	during	 the	PEI	phase.	When	a	PEIM	has
successfully	discovered,	initialized,	and	tested	a	contiguous	range	of	system	RAM,	it	reports	this
RAM	to	the	PEI	Foundation.	When	that	PEIM	exits,	the	PEI	Foundation	migrates	PEI	usage	of	the
temporary	RAM	to	real	system	RAM,	which	involves	the	following	two	tasks:

The	PEI	Foundation	must	switch	PEI	stack	usage	from	temporary	RAM	to	permanent	system
memory.
The	PEI	Foundation	must	migrate	the	simple	heap	allocated	by	PEIMs	(including	HOBs)	to
real	system	RAM.

Once	 this	 process	 is	 complete,	 the	 PEI	 Foundation	 installs	 an	 architectural	 PPI	 to	 notify	 any
interested	PEIMs	that	real	system	memory	has	been	installed.	This	notification	allows	PEIMs	that
ran	before	memory	was	installed	to	be	called	back	so	that	they	can	complete	necessary	tasks—
such	as	building	HOBs	for	the	next	phase	of	DXE—in	real	system	memory.

Intel®	Itanium®	Processor	MP	Considerations

This	 section	 gives	 special	 consideration	 to	 the	 PEI	 phase	 operation	 in	 Intel	 Itanium	 processor
family	multiprocessor	(MP)	systems.	In	Itanium-based	systems,	all	of	the	processors	in	the	system
start	up	simultaneously	and	execute	the	PAL	initialization	code	that	is	provided	by	the	processor
vendor.	Then	all	 the	processors	call	 into	 the	UEFI	PI	start-up	code	with	a	request	for	recovery
check.	The	start-up	code	allocates	different	chunks	of	 temporary	memory	for	each	of	 the	active
processors	and	sets	up	stack	and	backing	store	pointers	in	the	allocated	temporary	memory.	The
temporary	 memory	 could	 be	 a	 part	 of	 the	 processor	 cache	 (cache	 as	 RAM),	 which	 can	 be
configured	by	 invoking	a	PAL	call.	The	start-up	code	 then	starts	dispatching	PEIMs	on	each	of
these	processors.	One	of	the	early	PEIMs	that	runs	in	MP	mode	is	the	PEIM	that	selects	one	of	the
processors	as	the	boot-strap	processor	(BSP)	for	running	the	PEIM	stage	of	the	booting.

This	BSP	continues	 to	 run	PEIMs	until	 it	 finds	permanent	memory	 and	 installs	 the	memory
with	the	PEI	Foundation.	Then	the	BSP	wakes	up	all	the	processors	to	determine	their	health	and
PAL	 compatibility	 status.	 If	 none	 of	 these	 checks	 warrants	 a	 recovery	 of	 the	 firmware,	 the
processors	are	returned	to	the	PAL	for	more	processor	initialization	and	a	normal	boot.

The	UEFI	PI	start-up	code	also	gets	triggered	in	an	Itanium-based	system	whenever	an	INIT
or	a	Machine	Check	Architecture	(MCA)	event	occurs	in	the	system.	Under	such	conditions,	the
PAL	code	outputs	status	codes	and	a	buffer	called	the	minimum	state	buffer.	A	UEFI	PI-specific
data	pointer	 that	points	 to	 the	 INIT	and	MCA	code	data	 area	 is	 attached	 to	 this	minimum	state
buffer,	which	contains	details	of	the	code	to	be	executed	upon	INIT	and	MCA	events.	The	buffer
also	holds	some	important	variables	needed	by	the	start-up	code	to	make	decisions	during	these
special	hardware	events.

Recovery

Recovery	 is	 the	process	of	 reconstituting	a	 system’s	 firmware	devices	when	 they	have	become
corrupted.	 The	 corruption	 can	 be	 caused	 by	 various	 mechanisms.	 Most	 firmware	 volumes	 on
nonvolatile	storage	devices	are	managed	as	blocks.	If	 the	system	loses	power	while	a	block	or
semantically	 bound	 blocks	 are	 being	 updated,	 the	 storage	might	 become	 invalid.	 On	 the	 other
hand,	the	device	might	become	corrupted	by	an	errant	program	or	by	errant	hardware.	Assuming
PEI	lives	in	a	fault-tolerant	block,	it	can	support	a	recovery	mode	dispatch.

A	PEIM	or	the	PEI	Foundation	itself	can	discover	the	need	to	do	recovery.	A	PEIM	can	check
a	“force	recovery”	jumper,	for	example,	to	detect	a	need	for	recovery.	The	PEI	Foundation	might
discover	that	a	particular	PEIM	does	not	validate	correctly	or	that	an	entire	firmware	volume	has
become	corrupted.

The	concept	behind	recovery	 is	 that	enough	of	 the	system	firmware	 is	preserved	so	 that	 the
system	can	boot	to	a	point	that	it	can	read	a	copy	of	the	data	that	was	lost	from	chosen	peripherals
and	then	reprogram	the	firmware	volume	with	that	data.

Preservation	of	the	recovery	firmware	is	a	function	of	the	way	the	firmware	volume	store	is
managed.	In	the	UEFI	PI	flash	file	system,	PEIMs	required	for	recovery	are	marked	as	such.	The
firmware	 volume	 store	 architecture	 must	 then	 preserve	 marked	 items,	 either	 by	 making	 them
unalterable	 (possibly	 with	 hardware	 support)	 or	 protect	 them	 using	 a	 fault-tolerant	 update
process.

Until	recovery	mode	has	been	discovered,	the	PEI	Dispatcher	proceeds	as	normal.	If	the	PEI
Dispatcher	encounters	PEIMs	 that	have	been	corrupted	 (for	example,	by	 receiving	an	 incorrect
hash	value),	it	must	change	the	boot	mode	to	recovery.	Once	set	to	recovery,	other	PEIMs	must	not
change	it	to	one	of	the	other	states.	After	the	PEI	Dispatcher	has	discovered	that	the	system	is	in
recovery	mode,	it	will	restart	itself,	dispatching	only	those	PEIMs	that	are	required	for	recovery.
It	is	also	possible	for	a	PEIM	to	detect	a	catastrophic	condition	or	to	be	a	forced-recovery	detect
PEIM	and	 to	 inform	 the	PEI	Dispatcher	 that	 it	needs	 to	proceed	with	a	 recovery	dispatch.	The
recovery	dispatch	is	completed	when	a	PEIM	finds	a	recovery	firmware	volume	on	a	recovery
media	and	 the	DXE	Foundation	 is	started	from	that	 firmware	volume.	Drivers	within	 that	DXE
firmware	volume	can	perform	the	recovery	process.

S3	Resume

The	PEI	phase	on	S3	resume	(save-to-RAM	resume)	differs	in	several	fundamental	ways	from	the
PEI	phase	on	a	normal	boot.	The	differences	are	as	follows:

The	memory	subsection	is	restored	to	its	pre-sleep	state	rather	than	initialized.
System	memory	owned	by	the	OS	is	not	used	by	either	the	PEI	Foundation	or	the	PEIMs.
The	DXE	phase	is	not	dispatched	on	a	resume	because	it	would	corrupt	memory.
The	PEIM	 that	would	normally	 dispatch	 the	DXE	phase	 instead	uses	 a	 special	Hardware
Save	Table	to	restore	fundamental	hardware	back	to	a	boot	configuration.	After	restoring	the
hardware,	the	PEIM	passes	control	to	the	OS-supplied	resume	vector.
The	DXE	 and	 later	 phases	 during	 a	 normal	 boot	 save	 enough	 information	 in	 the	UEFI	 PI
reserved	memory	or	a	firmware	volume	area	for	hardware	to	be	restored	to	a	state	that	the
OS	 can	 use	 to	 restore	 devices.	 This	 saved	 information	 is	 located	 in	 the	 Hardware	 Save
Table.

The	“Terse	Executable”	and	Cache-as-RAM

The	flash	storage	where	the	PEI	modules	and	core	execute	has	several	constraints.	The	first	is	that
the	amount	of	 flash	allocated	 for	PEI	 is	 limited.	This	stems	both	 from	the	economics	of	system
board	 design	 and	 from	 the	 fact	 that	 the	 PEI	 phase	 supports	 critical	 operations,	 such	 as	 crisis
recovery	and	early	memory	initialization.	These	robustness	requirements	mean	that	many	systems
have	two	instances	of	PEI:	a	backup	and/	or	truly	read-only	one	that	never	changes	and	may	only
be	used	for	recovery	and	a	security	root-of-trust,	and	a	second	PEI	block	used	for	normal	boots
that	 is	 the	dual	of	 the	former	one.	Also,	 the	execute-in-place	(XIP)	nature	of	code-fetches	 from
flash	means	that	PEI	is	not	as	performant	as	DXE	modules	that	are	loaded	into	host	memory.	In
order	 to	minimize	 the	 amount	 of	 space	 occupied	 by	 the	 PEI	 firmware	 volume	 (FV),	 the	 Terse
Executable	 (TE)	 image	 format	 was	 designed.	 The	 TE	 image	 format	 is	 a	 strict	 subset	 of	 the
Portable	Executable/	Common	File	Format	(PE/COFF)	image	used	by	UEFI	applications,	UEFI
drivers,	and	DXE	drivers.

The	advantages	of	having	TE	as	a	subset	of	PE	include	the	ability	to	use	standard,	available
tools,	such	as	linkers,	which	can	be	used	during	the	development	process.	Only	during	the	final
phases	of	the	FV	image	creation	does	the	tool	chain	need	to	convert	the	PE	image	into	a	TE.	This
similarity	extends	to	the	headers	and	the	relocation	records.	In	order	to	have	an	in-situ	agent,	such

as	a	debugger	nub,	distinguish	between	the	PE	and	TE	images,	the	signature	field	has	been	slightly
modified.	For	the	PE,	 the	signature	is	“MZ”	for	Mark	Zbikowski,	 the	designer	of	 the	Microsoft
DOS†	image	format,	the	origin	of	the	PE/COFF	image.	For	the	TE	image,	the	signature	is	“VZ”,
as	found	at	the	end	of	Volume	1	of	the	UEFI	PI	specification:

This	 one	 character	 difference	 allows	 for	 sharing	 of	 debug	 scripts	 and	 code	 that	 only	 need	 to
distinguish	 between	 the	 PE	 and	 TE	 via	 this	 one	 character	 of	 the	 signature	 field.	 Although	 the
development	and	design	team	eschewed	use	of	proper	names	in	code	or	the	resultant	binaries,	the
“VZ”	and	“Vincent	Zimmer”	association	appeared	harmless,	especially	given	the	interoperability
advantages.

In	addition	to	the	TE	image,	the	“temporary	memory”	used	during	PEI	is	another	innovation	on
Intel	 architecture	 platforms.	 Recall	 that	 the	 goal	 of	 PEI	 is	 to	 provide	 a	 basic	 system	 fabric
initialization	and	some	subset	of	memory	that	will	be	available	 throughout	DXE,	UEFI,	and	the
operating	 system	 runtime.	 In	 order	 to	 program	 a	 modern	 CPU,	 memory	 controller,	 and
interconnect,	thousands	of	lines	of	C	code	may	be	required.	In	the	spirit	of	using	standard	tools	to
write	 this	 code,	 though,	 some	 memory	 store	 prior	 to	 the	 permanent	 Dynamic	 RAM	 (DRAM)
needed	to	be	found.

Other	 approaches	 to	 this	 challenge	 in	 the	 past	 include	 the	 Coreboot	 use	 of	 the	 read-only-
memory	 C	 compiler	 (romcc),	 or	 a	 compiler	 that	 uses	 processor	 registers	 as	 the	 “temporary
memory.”	This	approach	has	proven	difficult	to	maintain	and	entails	a	custom	compiler.	The	other
approach	is	to	have	dedicated	memory	on	the	platform	immediately	available	after	reset.	Given
the	economics	of	modern	systems	and	the	transitory	usage	of	this	store,	the	use	of	discrete	memory
as	 a	 scratchpad	 has	 proven	 difficult	 to	 provide	 in	 anything	 other	 than	 the	 high-end	 system	 or
extremely	low-end,	nontraditional	systems.	The	approach	taken	for	the	bulk	of	Intel	architecture
systems	is	to	use	the	processor	cache	as	a	memory	store,	or	cache-as-RAM	(CAR).	Although	the
initialization	sequence	is	unique	per	architecture	instance	(for	example,	Itanium®	versus	Core2®
versus	Core	i7®),	the	end	result	is	some	directly	addressable	memory	after	exiting	the	SEC	phase
and	 entering	 PEI.	 As	 a	 result,	 PEIMs	 and	 a	 PEI	 core	 can	 be	 written	 in	 C	 using	 commonly
available	 C	 compilers,	 such	 as	 Microsoft	 cl.exe	 in	 Visual	 Studio†	 and	 the	 GNU	 C	 compiler
(GCC)	available	in	the	open	source	community.	The	UEFI	Developer	Kit,	such	as	the	PEI	core	in
the	Module	Development	Environment	 (MDE)	module	package	at	www.tianocore.org	 provides
such	as	example	of	a	generic	PEI	Core	source	collection.

Example	System

All	of	 the	concepts	 regarding	PEI	can	be	 synthesized	when	 reviewing	a	 specific	platform.	The
following	list	represents	an	865	system	with	all	of	the	associated	system	components.	This	same
system	is	also	shown	in	Figure	13.7,	which	includes	the	actual	silicon	components.	Figure	13.8
provides	 an	 idealized	 version	 of	 this	 same	 system.	 The	 components	 in	 the	 latter	 figure	 have
corresponding	PEIMs	 to	abstract	both	 the	 initialization	of	and	services	by	 the	components.	For
each	of	these	components,	one	to	several	PEI	Modules	can	be	delivered	that	abstract	the	specific
component’s	behavior.	An	example	of	these	components	can	include:

http://www.tianocore.org

Pentium®	4	processor	PEIM:	Initialization	and	CPU	I/O	service
PCI	Configuration	PEIM:	PCI	Configuration	PPI
ICH	PEIM:	ICH	initialization	and	the	SMBUS	PPI
Memory	 initialization	 PEIM:	 Reading	 SPD	 through	 the	 SMBUS	 PPI,	 initialization	 of	 the
memory	controller,	and	reporting	memory	available	to	the	PEI	core
Platform	PEIM:	Creation	of	the	flash	mode,	detection	of	boot	mode
DXE	IPL:	Generic	services	to	launch	DXE,	invoke	S3	or	recovery	flow

Figure	13.7:	Specific	System

Figure	13.8:	Idealization	of	Actual	System

Figure	13.9:	Instance	of	a	PPI

What	is	notable	about	a	PPI	is	that	it	is	like	an	EFI	protocol	in	that	it	has	member	services	and/or
static	data.	The	PPI	is	named	by	a	GUID	and	can	have	several	 instances.	The	SMBUS	PPI,	for
example,	could	be	implemented	for	SMBUS	controllers	in	the	ICH,	in	another	vendor’s	integrated
Super	I/O	(SIO),	or	other	component.	Figure	13.10	illustrates	an	instance	of	an	SMBUS	PPI	for
an	Intel	ICH.

Figure	13.10:	Code	that	Supports	a	PPI	Service

Summary

This	 chapter	 has	 provided	 an	 overview	 of	 the	 PEI	 phase	 of	 the	 UEFI	 PI	 environment.	 PEI
provides	 a	 unique	 combination	 of	 software	 modularity	 so	 that	 various	 business	 interests	 can
provide	 modules,	 while	 at	 the	 same	 time	 have	 purpose-built	 technologies	 to	 support	 the
robustness	and	resource	constraints	of	such	an	early	phase	of	machine	execution.	Aspects	of	PEI
discussed	 in	 this	chapter	 include	 the	concept	of	 temporary	memory,	 the	PEI	Core	services,	PEI
relative	to	other	UEFI	PI	components,	recovery,	and	some	sample	PEI	modules.

Chapter	14	–	Putting	It	All	Together—Firmware	Emulation
An	expert	is	a	man	who	has	made	all	the	mistakes	which	can	be	made	in	a	very	narrow	field.

—Niels	Bohr

In	the	preceding	chapters,	various	stages	of	the	firmware	initialization	process	were	described.	In
addition,	various	possible	usage	models	have	been	described	that	can	be	implemented	on	a	target
hardware	 platform.	 By	 now	 it	 should	 have	 become	 evident	 that	 many	 of	 the	 UEFI	 firmware
interfaces	 do	 not	 in	 and	 of	 themselves	 talk	 directly	 to	 hardware;	 instead	 they	 actually	 talk	 to
underlying	 components	 that	 are	 responsible	 for	 talking	 to	 hardware.	 Traditionally,	 firmware
development	has	not	been	an	activity	that	could	be	performed	without	an	in-circuit	emulator	(ICE)
or	other	hardware	debug	facility.	Taking	into	consideration	UEFI’s	design	and	the	fact	that	very
few	 components	 in	 the	 firmware	 actually	 have	 direct	 interaction	 with	 hardware	 devices,	 it	 is
possible	to	introduce	a	mechanism	that	allows	the	emulation	of	vast	amounts	of	the	firmware	in	a
standard	deployment	operation	system	environment.

In	the	UEFI	sample	implementation,	a	new	target	platform	was	introduced	called	NT32.	This
environment	features	the	ability	to	run	much	of	the	firmware	code	as	an	application	running	from
the	 operating	 system,	 and	 provides	 the	 ability	 to	 establish	 a	 robust	 development	 and	 debug
environment.	 Much	 of	 the	 firmware	 codebase	 was	 developed	 initially	 using	 the	 emulation
environment	with	off-the-shell	compilers	and	debuggers,	and	without	the	need	of	a	real	hardware
debugger.	Of	course,	 this	emulation	has	 its	 limitations,	 since	some	components	of	 the	 firmware
must	talk	to	hardware.	It	is	much	more	difficult	to	emulate	such	components,	though	later	in	this
chapter,	 some	possibilities	are	discussed	 to	alleviate	 some	of	 this	 issue.	Figure	14.1	 shows	 an
example	of	a	firmware	emulation	environment	running	the	UEFI	shell	within	an	operating	system
context.

Figure	14.1:	An	Emulation	Environment	Contained	within	an	Operating	System	Environment

Virtual	Platform

This	NT32	platform	can	be	described	as	a	hardware-agnostic	platform	in	 that	 it	uses	operating
system	 APIs	 for	 its	 primary	 hardware	 abstractions.	 Figure	 14.2	 shows	 how	 the	 firmware
emulation	 environment	 gets	 launched.	 It	 is	 part	 of	 a	 normal	 boot	 process,	 and	will	 essentially
launch	 a	 firmware	 emulation	 environment	 as	 an	 application	 running	 from	 the	 operating	 system.
For	 most	 developers,	 this	 simply	 means	 launching	 a	 standard	 platform,	 loading	 an	 operating
system,	 and	 then	building	and	executing	 the	NT32	emulation	 environment	 as	 a	native	operating
system	 application.	 This	 application	 effectively	 executes	 the	 firmware	 that	 was	 built,	 and
emulates	the	launch	of	a	new	system.

Figure	14.2:	The	Normal	Boot	Process	Launching	an	Operating	System	that	Will	Launch	the	Emulation	Environment

In	Figure	14.3,	the	timeline	is	actually	intended	to	illustrate	the	emulated	firmware	timeline.	It	has
the	capability	of	processing	all	of	the	firmware	evolution	stages,	yet	of	course	certain	operations
are	 emulated	 due	 to	 lack	 of	 direct	 hardware	 initialization.	 An	 example	 would	 be	 the	 direct
initialization	of	memory,	which	would	be	somewhat	different	 in	 this	environment,	whereas	 in	a
real	platform,	this	process	would	be	much	more	involved.

Figure	14.3:	The	Firmware	Emulation	Environment	Itself

Emulation	Firmware	Phases

It	should	be	noted	that	the	emulation	environment	has	several	distinct	phases:
Establishing	a	WinNtThunk	capability	for	the	emulation	environment.
This	phase	constructs	a	means	by	which	firmware	components	can	make	reference	to	some
“hardware”	components.	This	 is	done	by	associating	 firmware-visible	constructs	 that	will
then	be	associated	with	operating	system	native	API	calls.
Figure	 14.4	 is	 an	 example	 where	 several	 firmware	 constructs	 are	 being	 associated	 with
operating	system	native	APIs.	For	example,	to	create	a	file,	we	establish	a	firmware	calling
mechanism	(such	as	WinNtCreateFile)	to	call	an	operating	system	API	known	as	CreateFile.
The	 following	examples	 illustrate	a	mechanism	of	associating	 firmware	calls	 to	Windows
APIs,	but	this	could	just	as	easily	happen	for	any	underlying	operation	system.

Figure	14.4:	Thunk	Protocol	that	Associates	Some	Firmware	Names	with	Operating	System	APIs

Construct	an	UEFI	hardware	API	handler	that	will	be	specific	to	the	emulation	platform.
In	Figure	14.5,	the	EFI_SERIAL_IO_PROTOCOL	interface	is	being	seeded	with	a	variety	of
information	 associated	 with	 platform	 specific	 function	 data.	 In	 this	 case,	 these	 platform-
specific	functions	are	tuned	to	the	emulation	environment.

Figure	14.5:	Establishing	an	UEFI	API	to	Call	Platform-Specific	Operations

Platform-specific	functions	(such	as	emulation	platform)	that	are	handling	the	calls	to	UEFI
interfaces	 and	 in	 turn	will	 call	 the	 established	WinNtThunk	APIs	 that	will	 end	up	making
operating	specific	API	calls.

Figure	 14.6	 features	 several	 calls	 that	 could	 occur	 from	within	 an	API	 handler	 to	 accomplish
several	tasks.

Figure	14.6:	Example	Calls	to	the	WinNtThunk	Protocol

In	 summary,	 Figure	 14.7	 shows	 the	 software	 logic	 contained	 within	 the	 operating	 system,
firmware	emulation	component,	and	their	associated	interaction	logic.	It	should	be	noted	that	this
logical	software	flow	has	three	primary	components:

Firmware	component	under	development
Basic	firmware	codebase
Firmware-to-Operating	System	thunk	code

Figure	14.7:	Firmware	Emulation	Software	Logic	Flow

Hardware	Pass-Through

As	 is	 evident	 through	 the	 previous	 examples,	 the	 underlying	 firmware	 can	 enable	 calling	 to
several	operating	system	APIs.	However,	since	the	firmware	emulation	environment	is	essentially
an	operating	system	application,	certain	functions	are	not	going	to	be	available.	This	is	true	since
most	operating	systems	have	the	concept	of	separating	a	user	space	from	a	more	privileged	kernel
space	to	prevent	applications	from	inadvertently	crashing	the	entire	operating	system.	Using	this
type	 of	 separation	 allows	 for	 the	 operating	 system	 to	 detect	 an	 error	 and	 simply	 kill	 the	 user
session	without	perturbing	the	remaining	portions	of	the	operating	system.

It	 is	 possible	 to	 introduce	 several	 extensions	 to	 what	 is	 currently	 defined	 in	 the	 sample
implementations	that	enable	even	further	capabilities.	An	operating	system	kernel	driver	could	be
constructed	to	facilitate	access	to	even	more	functions	than	would	otherwise	be	available.	This	of
course	 circumvents	 some	 of	 the	 inherent	 safety	 of	 the	 operating	 system	 and	 can	 introduce
inadvertent	 crashes	 when	 care	 is	 not	 taken.	 By	 constructing	 a	 kernel	 driver	 that	 can	 reserve
certain	hardware	resources	and	 is	able	 to	advertise	an	 interface	 that	 the	emulation	environment
can	call,	the	emulation	environment	can	allow	for	an	enhanced	penetration	into	the	hardware.

Figure	 14.8	 shows	 the	 logic	 flow	 associated	 with	 the	 various	 components	 and	 how	 they
interact.

Figure	14.8:	Software	Flow	for	Hardware	Enhanced	Firmware	Emulation

Summary

This	 chapter	 illustrated	 how	 the	 majority	 of	 the	 UEFI	 code	 can	 be	 run	 in	 an	 emulated
environment	 so	 that	 development	 can	 occur	 on	 some	modules	 even	 in	 the	 absence	 of	 physical
hardware	that	would	otherwise	have	been	necessary.	This	emulation,	which	is	publicly	available,
advances	the	accessibility	of	the	overall	UEFI	programming	infrastructure.	It	can	also	facilitate	a
wider	 distribution	 of	 its	 use	 due	 to	 the	 relative	 simplicity	 of	 establishing	 such	 a	 development
environment.

Chapter	15	–	Reducing	Platform	Boot	Times
All	problems	are	either	kernel	or	BIOS	problems	depending	on	which	context	you	are	running	in!

—Rothman’s	Axiom

This	 chapter	 presents	 a	 series	 of	methods	 that	 should	 enable	 a	BIOS	 engineer	 to	 optimize	 the
underlying	platform	firmware	so	that	it	can	reduce	a	platform’s	boot	speed.	However,	it	should	be
noted	 that	 the	 intent	 of	 this	 chapter	 is	 to	 illustrate	 how	 various,	 seemingly	 unrelated	 product
requirements	 can	 greatly	 affect	 the	 resulting	 platform	 boot	 performance.	 That	 being	 said,	 this
section	also	illustrates	how	the	platform	design	based	on	marketing	requirements,	coupled	with	a
properly	constructed	UEFI-compliant	firmware,	can	greatly	affect	the	performance	characteristics
of	a	platform.	Some	of	the	key	points	are:

How	specific	marketing	requirements	affect	boot	performance
Suggestions	 on	 what	 firmware	 engineering	 choices	 can	 be	 made	 to	 optimize	 for	 a	 given
platform	requirement.
Provide	 a	 realistic	 view	 of	what	 performance	 enhancements	 can	 be	 done	 in	 a	 production
firmware.
Establish	viable	next	steps.

This	 chapter	 focuses	 on	 specific	 aspects	 of	 a	 platform’s	 pre-O/S	 boot	 behavior	 and	 leverages
concepts	that	are	based	on	the	UEFI	firmware	architecture.

Some	of	 the	 fundamental	 things	 that	 need	 to	be	understood	 are	different	 phases	of	 platform
initialization	and	how	they	are	exercised	as	part	of	the	platform	boot	process.	The	following	flow
diagrams,	Figures	15.1,	15.2,	and	15.3,	illustrate	the	evolution	of	the	platform	initialization	from
the	first	moment	that	power	is	applied	until	the	point	where	the	BIOS	hands-off	to	the	target	O/S:

Figure	15.1:	SEC	Phase

Figure	15.2:	PEI	Phase

Figure	15.3:	DXE	and	BDS	Phase

Given	the	above	information,	the	remainder	of	the	chapter	focuses	on	the	important	elements	when
considering	how	to	best	optimize	some	of	the	aforementioned	behavior	so	a	platform	meets	both
its	technical	and	marketing	requirements	yet	achieves	an	optimal	boot	speed.

Proof	of	Concept

In	 the	proof	of	concept	 for	 this	chapter,	 the	overall	performance	numbers	used	are	measured	 in
microseconds	and	the	total	boot	time	is	described	in	seconds.	Total	boot	time	is	measured	as	the
time	between	the	CPU	first	having	power	applied	and	the	transferring	of	control	to	the	boot	target
(which	is	typically	the	OS).	This	chapter	does	not	focus	on	the	specifics	of	the	hardware	design
itself	since	the	steps	that	are	described	are	intended	to	be	platform-agnostic.	However,	for	those
who	absolutely	must	know	from	what	type	of	platform	some	of	the	numbers	are	derived,	they	are:

1.8-GHz	Intel®	Atom™-based	netbook	design
1	GB	DDR2	memory
2	MB	flash
Western	Digital†	80-GB	Scorpio	Blue	5400-RPM	drive	(normal	configuration)
Intel®	Solid	State	Drive	X25-E	(Intel®	X25E	SSD)	(in	optimized	configuration)

It	should	also	be	noted	that	this	proof	of	concept	was	intended	to	emulate	real-world	expectations
of	 a	 BIOS,	 meaning	 that	 nothing	 was	 done	 to	 achieve	 results	 that	 could	 not	 reasonably	 be
expected	 in	 a	mass-market	 product	 design.	 The	 steps	 that	were	 taken	 for	 this	 effort	 should	 be
easily	portable	to	other	designs	and	should	largely	be	codebase-independent.

Figure	15.4	 shows	 the	 performance	 numbers	 achieved	while	maintaining	 all	 of	 the	 various
platform/	marketing	requirements	for	this	particular	system.

Figure	15.4:	Performance	Measurement	Results	(Before/After)

The	next	several	sections	detail	 the	various	decisions	 that	were	made	for	 this	proof	of	concept
and	how	they	improved	the	boot	performance.

Marketing	Requirements

Admittedly,	marketing	 requirements	are	not	 the	 first	 thing	 that	comes	 to	mind	when	an	engineer
sits	down	to	optimize	a	BIOS’s	performance.	However,	the	reality	is	that	marketing	requirements
form	the	practical	limits	for	how	the	technical	solution	can	be	adjusted.

The	highlighted	 requirements	 are	 the	pivot	points	 in	which	an	engineer	 can	make	decisions
that	 ultimately	 affect	 performance	 characteristics	 of	 the	 system.	 Since	 this	 section	 details	 the
engineering	 responses	 to	 marketing-oriented	 requirements,	 it	 does	 not	 provide	 a	 vast	 array	 of
code	 optimization	 “tricks.”	 Unless	 there	 is	 a	 serious	 set	 of	 implementation	 bugs	 in	 a	 given
codebase,	 the	majority	of	boot	speed	improvements	are	achieved	from	following	the	guidelines
provided	in	this	section.	Not	to	worry	though,	there	are	codebase	independent	“tricks”	included
that	provide	additional	help.

What	Are	the	Design	Goals?

How	 does	 the	 user	 need	 to	 use	 the	 platform?	 Is	 it	 a	 “closed	 box”	 system?	 Is	 it	 a	 traditional
desktop?	Is	it	a	server?	How	the	platform	is	thought	of	ultimately	affects	what	the	user	expects.
Making	conscious	design	choices	to	either	enable	or	limit	some	of	these	expectations	is	where	the
platform	policy	can	greatly	affect	the	resulting	performance	characteristics.

Platform	Policy

One	of	 the	 first	 considerations	when	 looking	 at	 a	BIOS	 and	 the	 corresponding	 requirements	 is
whether	or	not	an	engineer	can	limit	the	number	of	variables	associated	with	what	the	user	can	do
“to”	the	system.	For	instance,	it	might	be	reasonable	to	presume	that	in	a	platform	with	no	add-in
slots,	a	user	will	not	be	able	to	boot	from	a	RAID	controller	since	the	user	cannot	physically	plug
one	in.

This	is	where	a	designer	enters	the	zone	of	platform	policy.	Even	though	a	platform	may	not
expose	 a	 slot,	 the	 platform	might	 expose	 a	USB	connection.	A	 conscious	 decision	needs	 to	 be
made	 for	 how	and	when	 these	 components	 are	used.	A	good	general	 performance	optimization
statement	would	be:

“If	you	can	put	off	doing	something	in	BIOS	that	the	OS	can	do—then	put	it	off!”

Since	a	user	can	connect	anything	from	a	record	player	to	a	RAID	chassis	via	USB,	the	user	might
think	that	they	would	be	able	to	boot	from	a	USB-connected	device	if	physically	possible.	Though
this	 is	physically	possible,	 it	 is	within	 the	purview	of	 the	platform	design	 to	enable	or	disable
such	a	behavior.

In	this	particular	platform,	the	decision	was	made	to	not	support	booting	from	USB	media	and
to	not	support	the	user	interrupting	the	boot	process.	This	means	that	during	the	DXE/BDS	phase,
the	BIOS	was	able	to	avoid	initializing	the	USB	infrastructure	to	get	keystrokes	and	this	resulted
in	a	savings	of	nearly	0.5	second	in	boot	time.

Note Even	though	0.5	second	of	boot	time	was	saved	by	eliminating	late	BIOS	USB	initialization,	upon	launching	the
platform	OS,	the	OS	was	able	to	interact	with	plugged-in	USB	devices	without	a	problem.

Platform	policy	ultimately	affects	how	an	engineer	responds	to	the	remaining	questions.

What	Are	the	Supported	OS	Targets?

Understanding	 the	 requirements	 of	 a	 particular	 platform-supported	 OS	 greatly	 affects	 what
optimization	paths	can	be	taken	in	the	BIOS.	Since	many	“open”	platforms	(platforms	without	a
fixed	 software	 or	 hardware	 configuration)	 have	 a	 wide	 variety	 of	 operating	 systems	 that	 they
choose	to	support,	 this	limits	some	of	the	choices	available.	In	the	case	of	the	proof-of-concept
platform,	only	two	main	operating	systems	were	required	to	be	supported.	This	enabled	the	author
to	make	a	few	choices	that	allowed	the	codebase	to	save	roughly	400	ms	of	boot	time	by	avoiding
the	 reading	 of	 some	 of	 the	 DIMM	 SPD	 data	 for	 creating	 certain	 SMBIOS	 records	 since	 they
weren’t	used	by	the	target	operating	systems.

Note Changes	in	the	BIOS	codebase	that	avoided	the	unnecessary	creation	of	certain	tables	saved	roughly	400	ms	in	the
boot	time.

Do	We	Have	to	Support	Legacy	Operating	Systems?

The	main	consideration	was	whether	a	particular	OS	target	was	UEFI-compliant	or	not.	If	all	the
OS	targets	were	UEFI-compliant,	 then	 the	platform	could	have	saved	roughly	0.5	second	in	 the
underlying	initialization	of	the	video	option	ROM.	In	this	case,	we	had	conflicting	requirements:
one	was	UEFI-compliant	 and	 one	was	 not.	 There	 are	 a	 variety	 of	 tricks	 that	 could	 have	 been
achieved	by	the	platform	BIOS	when	booting	the	UEFI-compliant	OS	but	for	purposes	of	keeping
fair	measurement	 numbers,	 the	 overall	 boot	 speed	 numbers	 reflect	 the	 overhead	 of	 supporting
legacy	operating	systems	as	well.

To	save	an	additional	0.5	second	or	more	of	boot	time	when	booting	a	UEFI-compliant	OS,
the	BDS	could	analyze	the	target	BOOT####	variable	to	determine	if	the	target	were	associated
with	an	OS	loader	and	thus	it	is	a	UEFI	target.	The	platform	in	this	case	at	least	has	the	option	to
avoid	some	of	the	overhead	associated	with	the	legacy	compatibility	support	infrastructure.

Do	We	Have	to	Support	Legacy	Option	ROMs?

Whether	or	not	to	launch	a	legacy	option	ROM	depends	on	several	possible	variables:
Does	the	motherboard	have	any	devices	built	in	that	have	a	legacy	option	ROM?
Does	the	platform	support	adding	a	device	that	requires	the	launch	of	a	legacy	option	ROM?
If	any	of	the	first	two	are	true,	does	the	platform	need	to	initialize	the	device	associated	with
that	option	ROM?

One	reason	why	launching	legacy	option	ROMs	is	fraught	with	peril	for	boot	performance	is	that
there	are	no	rules	associated	with	what	a	legacy	option	ROM	will	do	while	it	has	control	of	the

system.	In	some	cases,	the	option	ROM	may	be	rather	innocuous	regarding	boot	performance,	but
not	always.	For	example,	 the	 legacy	option	ROM	could	attempt	 to	 interact	with	 the	user	during
launch.	This	normally	involves	advertising	a	hot-key	or	 two	for	 the	user	 to	press,	which	would
delay	 the	 BIOS	 in	 finishing	 its	 job	 for	 however	 long	 the	 option	 ROM	 pauses	 waiting	 for	 a
keystroke.

For	 this	 particular	 situation,	we	 avoided	 the	 launching	 of	 all	 of	 the	 drivers	 in	 a	 particular
BIOS	and	 instead	opted	 to	 launch	only	 the	drivers	necessary	 for	 reaching	 the	boot	 target	 itself.
Since	 the	 device	we	were	 booting	 from	was	 a	SATA	device	 for	which	 the	BIOS	had	 a	 native
UEFI	driver,	there	was	no	need	to	launch	an	option	ROM.	This	action	alone	saved	approximately
three	seconds	on	the	platform.	More	details	associated	with	this	trick	and	others	are	in	the	section
“Additional	Details.”

Are	We	Required	to	Display	an	OEM	Splash	Screen?

This	is	often	a	crucial	element	for	many	platforms,	especially	from	a	marketing	point	of	view.	The
display	of	the	splash	screen	itself	typically	does	not	take	that	much	time.	Usually	initializing	the
video	device	 to	enable	 such	a	display	 takes	a	 sizable	amount	of	 time.	On	 the	proof-of-concept
platform,	it	would	typically	take	300	ms.	An	important	question	is	how	long	does	marketing	want
the	logo	to	be	displayed?	The	answer	to	this	question	will	focus	on	what	is	most	important	for	the
OEM	 delivering	 the	 platform.	 Sometimes	 speed	 is	 paramount	 (as	 it	 was	 with	 this	 proof	 of
concept),	and	the	splash	screen	can	be	eliminated	completely.	Other	times,	the	display	of	the	logo
is	deemed	much	more	 important	 and	all	 things	 stop	while	 the	 logo	 is	displayed.	An	engineer’s
hands	are	usually	tied	by	the	decisions	of	the	marketing	infrastructure.

One	could	leverage	the	UEFI	event	services	to	take	advantage	of	the	marketingdriven	delay	to
accomplish	other	things,	which	effectively	parallelizes	some	of	the	initialization.

What	Type	of	Boot	Media	Is	Supported?

In	 the	 proof	 of	 concept	 platform	 description,	 one	 element	 was	 a	 bit	 unusual.	 There	 was	 a
performance	 and	 a	 standard	 configuration	 associated	 with	 the	 drive	 attached	 to	 the	 system.
Though	it	may	not	be	obvious,	the	choice	of	boot	media	can	be	a	significant	element	in	the	boot
time	when	you	consider	 that	 some	drives	 require	1–5	 seconds	 (or	much	more)	 to	 spin	up.	The
characteristics	of	the	boot	media	are	very	important	since,	regardless	of	whatever	else	you	might
do	to	optimize	the	boot	process,	the	platform	still	has	to	read	from	the	boot	media	and	there	are
some	 inherent	 tasks	 associated	with	 doing	 that.	 Spin-up	 delays	 are	 one	 of	 those	 tasks	 that	 are
unavoidable	in	today’s	rotating	magnetic	media.

For	the	proof	of	concept,	the	boot	media	of	choice	was	one	which	incurs	no	spinup	penalty;
thus	a	solid	state	drive	(SSD)	was	chosen.	This	saved	about	two	seconds	from	the	boot	time.

What	Is	the	BIOS	Recovery/Update	Strategy?

How	a	 platform	handles	 a	BIOS	update	 or	 recovery	 can	 affect	 the	 performance	 of	 a	 platform.
Since	 this	 task	 may	 be	 accomplished	 in	 many	 ways,	 this	 may	 inevitably	 be	 one	 of	 those
mechanisms	that	has	significant	platform	variability.	There	are	a	few	very	common	ways	a	BIOS

update	is	achieved	from	a	user’s	perspective:
A	user	executes	an	OS	application,	which	they	likely	downloaded	from	the	OEM’s	Website.
This	will	eventually	cause	the	machine	to	reboot.
A	user	downloads	a	special	file	from	an	OEM’s	Website	and	puts	it	on	a	USB	dongle	and
reboots	the	platform	with	the	USB	dongle	connected.
A	user	 receives	or	creates	a	CD	or	 floppy	with	a	 special	 file	and	 reboots	 the	platform	 to
launch	the	BIOS	update	utility	contained	within	that	special	file.

These	user	scenarios	usually	resolve	into	the	BIOS,	during	the	initialization	caused	by	the	reboot,
reading	 the	update/	 recovery	 file	 from	a	particular	 location.	Where	 that	update/recovery	 file	 is
stored	and	when	it	is	processed	is	really	what	affects	performance.

When	Processing	Things	Early

Frequently	during	recovery	one	cannot	presume	that	 the	 target	OS	is	working.	For	a	reasonable
platform	design,	someone	would	need	to	design	a	means	by	which	to	update	or	recover	the	BIOS
without	the	assistance	of	the	OS.	This	would	lead	to	user	scenarios	#2	or	#3	listed	above.

The	 question	 an	 engineer	 should	 ask	 themselves	 is,	 how	 do	 you	 notify	 the	 BIOS	 that	 the
platform	is	in	recovery	mode?	Depending	on	what	the	platform	policy	prescribes,	this	method	can
vary	greatly.	One	option	is	to	always	probe	a	given	set	of	possible	data	repositories	(such	as	USB
media,	 a	CD,	 or	maybe	 even	 the	 network)	 for	 recovery	 content.	 The	 act	 of	 always	 probing	 is
typically	a	time-consuming	effort	and	not	conducive	to	quick	boot	times.

There	is	definitely	the	option	of	having	a	platform-specific	action,	which	is	easy	and	quick	to
probe	 that	“turns	on”	 the	recovery	mode.	How	to	 turn	on	 the	recovery	mode	(if	such	a	concept
exists	for	the	platform)	is	very	platform-specific.	Examples	of	this	are	holding	down	a	particular
key	(maybe	associated	with	a	GPIO),	flipping	a	switch	(equivalent	of	moving	a	jumper),	which
can	be	probed	for,	and	so	on.	These	methods	are	highly	preferable	since	they	allow	a	platform	to
run	without	much	burden	(no	extensive	probing	for	update/	recovery.)

Is	There	a	Need	for	Pre-OS	User	Interaction?

Normally	the	overall	goal	is	to	boot	the	target	OS	as	quickly	as	possible	and	the	only	expected
user	interaction	is	with	the	OS.	That	being	said,	the	main	reason	for	people	today	to	interact	with
the	BIOS	is	to	launch	the	BIOS	setup.	Admittedly,	some	settings	are	within	this	environment	that
are	unique	and	cannot	be	properly	configured	outside	of	the	BIOS.	However	at	 least	one	major
OEM	 (if	 not	more)	 has	 chosen	 to	 ship	millions	 of	UEFI-based	 units	without	 exposing	what	 is
considered	 a	 BIOS	 setup.	 It	 might	 be	 reasonable	 to	 presume	 for	 some	 platforms	 that	 the
established	factory	default	settings	are	sufficient	and	require	no	user	adjustments.	Most	OEMs	do
not	go	this	route.	However,	it	is	certainly	possible	for	an	OEM	to	expose	“applets”	within	the	OS
to	 provide	 some	 of	 the	 configurability	 that	would	 have	 otherwise	 been	 exposed	 in	 the	 pre-OS
timeframe.

With	the	advent	of	UEFI	2.1,	and	more	specifically	 the	HII	(Human	Interface	Infrastructure)
content	in	that	specification,	the	ability	for	configuration	data	in	the	BIOS	to	be	exposed	to	the	OS
was	 made	 possible.	 This	 makes	 it	 possible	 for	 many	 of	 the	 BIOS	 settings	 to	 have	 methods

exposed	and	configured	in	nontraditional	(pre-OS)	ways.
If	 it	 is	deemed	unnecessary	 to	 interact	with	 the	BIOS,	 there	 is	very	 little	 reason	 (except	as

noted	in	prior	sections)	for	the	BIOS	to	probe	for	a	hot	key.	This	only	takes	time	from	a	platform
boot	without	being	a	useful	feature	of	the	platform.

Additional	Details

When	it	comes	time	to	address	some	codebase	issues,	the	marketing	requirements	clearly	define
the	problem	space	an	engineer	has	to	design	around.	With	that	information,	several	methods	can
help	that	are	fairly	typical	of	a	UEFI-based	platform.	These	are	not	the	only	methods,	but	they	are
the	ones	that	most	any	UEFI	codebase	can	use.

Adjusting	the	BIOS	to	Avoid	Unnecessary	Drivers

It	is	useful	to	understand	the	details	of	how	we	avoided	executing	some	of	the	extra	drivers	in	our
platform.	It	is	also	useful	to	reference	the	appropriate	sections	in	the	UEFI	specification	to	better
understand	some	of	the	underlying	parts	that	cannot,	for	conciseness,	be	covered	in	this	chapter.

The	 BDS	 phase	 of	 operations	 is	 where	 various	 decisions	 are	 made	 regarding	 what	 gets
launched	 and	what	 platform	policy	 is	 enacted.	 That	 being	 said,	 this	 is	 the	 code	 (regardless	 of
which	UEFI	codebase	you	use)	that	will	frequently	get	the	most	attention	in	the	optimizations.	If
we	refer	again	to	the	boot	times	for	our	proof	of	concept,	it	should	be	noted	that	the	BDS	phase
was	where	the	majority	of	time	was	reduced.	Most	of	the	reduction	had	to	do	with	optimizations
as	well	as	some	of	the	design	choices	that	were	made	and	the	phase	of	initialization	where	that
activity	often	takes	place.

At	 its	 simplest,	 the	 BDS	 phase	 is	 the	 means	 by	 which	 the	 BIOS	 completes	 any	 required
hardware	initialization	so	that	 it	can	launch	the	boot	target.	At	its	most	complex,	you	can	add	a
series	of	platform-specific,	extensive,	value-added	hardware	initializations	that	are	not	required
for	launching	the	boot	target.

What	Is	the	Boot	Target?

The	boot	target	is	defined	by	something	known	as	an	EFI	device	path	(see	UEFI	specification).
This	device	path	is	a	binary	description	of	where	the	required	boot	target	is	physically	located.
This	gives	the	BIOS	sufficient	information	to	understand	what	components	of	the	platform	need	to
be	initialized	to	launch	the	boot	target.
Below	is	an	example	of	just	such	a	boot	target:

Steps	Taken	in	a	Normal	and	Optimized	Boot

Figure	15.5	 indicates	 that	between	 the	non-optimized	boot	 and	an	optimized	boot,	 there	 are	no
design	differences	from	a	UEFI	architecture	point	of	view.	In	addition,	Figure	15.6	shows	how
significantly	the	behavior	of	the	platform	might	be	in	each	of	the	contrasting	scenarios,	however
optimizing	a	platform’s	boot	performance	does	not	mean	that	one	has	to	violate	any	of	the	design
specifications.

Figure	15.5:	Architectural	Boot	Flow	Comparison

Figure	15.6:	Functional	Boot	Flow	Comparison

Loading	a	Boot	Target

The	 logic	 associated	 with	 the	 BDS	 optimization	 focuses	 solely	 on	 the	 minimal	 behavior
associated	 with	 initializing	 the	 platform	 and	 launching	 the	 OS	 loader.	 When	 customizing	 the
platform	BDS,	you	can	avoid	calling	 routines	 that	 attempt	 to	 connect	 all	 drivers	 to	 all	devices
recursively,	such	as	BdsConnectAll(),	and	instead	only	connect	the	devices	directly	associated
with	the	boot	target.	Figure	15.7	illustrates	an	example	of	that	logic.

Figure	15.7:	Deconstructing	the	BDS	launch	of	the	Boot	Target

Organizing	the	Flash	Effectively

In	a	BIOS	that	complies	with	the	PI	specification,	there	is	a	flash	component	concept	known	as	an
firmware	volume	(FV).	This	is	typically	an	accumulation	of	BIOS	drivers.	It	would	be	reasonable
to	 expect	 that	 these	FVs	 are	 organized	 into	 several	 logical	 collections	 that	may	 or	may	 not	 be
associated	with	their	phase	of	operations	or	functions.	There	are	two	major	actions	that	the	core
initiates	 associated	 with	 drivers.	 The	 first	 one	 is	 when	 a	 driver	 is	 dispatched	 (loaded	 into
memory	 from	 flash),	 and	 the	 second	 one	 is	 when	 a	 driver	 is	 connected	 to	 a	 device.	 Platform
policy	could	dictate	 that	 the	DXE	core	avoids	 finding	unnecessary	drivers.	For	 instance,	 if	 the
USB	device	boot	is	not	needed,	the	USB-related	drivers	could	be	segregated	to	a	specific	FV,	and
material	associated	with	that	FV	would	not	be	dispatched.

Minimize	the	Files	Needed

Since	one	of	the	slowest	I/O	resources	in	a	platform	is	normally	the	flash	part	on	which	the	BIOS
is	stored,	it	is	a	very	prudent	idea	to	minimize	the	amount	of	space	that	a	BIOS	occupies.	The	less
space	a	BIOS	occupies,	the	shorter	the	time	is	for	routines	within	the	BIOS	to	read	content	into
faster	areas	of	the	platform	(such	as	memory).	This	can	be	done	by	minimizing	the	drivers	that	are
required	 by	 the	 platform,	 and	 pruning	 can	 typically	 be	 accomplished	 by	 a	 proper	 study	 of	 the
marketing	requirements.

Summary

Ultimately,	 the	 level	 of	 performance	 optimization	 that	 is	 achievable	 is	 largely	 subject	 to	 the
requirements	 of	 the	 platform.	 Given	 sufficient	 probing,	 there	 are	 almost	 always	 methods	 to
achieve	boot	speed	gains	using	some	of	the	techniques	highlighted	in	this	chapter.	Here	are	some
of	the	highlights	of	items	to	focus	on	and	areas	within	each	BIOS	codebase	that	deserve	further
investigation.

The	Primary	Adjustments

Based	on	various	conditions	in	a	platform,	the	boot	behavior	can	be	adjusted	to	speed	up	the	boot
process.	Much	 of	 this	 occurs	 in	 the	 BDS,	 but	 some	 areas	 of	 optimization	 may	 vary	 per	 each
individual	codebase.

Focus	on	the	marketing	requirements
– Based	on	the	marketing	requirements,	many	decisions	that	affect	boot	performance	can

be	made.	Open	dialog	between	marketing	and	engineering	helps	with	this.
Minimize	the	use	of	slow	media
– Scanning	 for	 firmware	 component	 in	 a	 flash	 device	 can	 be	 very	 slow.	 Optimize

routines	that	touch	slow	media.
No	need	to	poll	for	setup	pages	or	even	initialize	a	console	in	some	cases.
– Polling	for	keys	or	user	interaction	can	be	minimized	in	the	BDS.
Not	all	hardware	needs	to	be	initialized.	Often	only	the	hardware	directly	associated	with
the	valid	boot	target	needs	to	be	initialized.
Tweaks
– Only	 initiate	activity	 that	 the	BIOS	must	do;	 the	OS	 is	often	going	 to	 repeat	what	 the

BIOS	just	did.
– If	 no	 hardware	 changes	 are	 detected	 there	 is	 no	 need	 to	 re-enumerate	 various

subcomponents.
– It	 may	 not	 be	 a	 need	 to	 probe	 boot	 options	 if	 we	 cache	 the	 last	 known	 valid	 boot

option.

Suggested	Next	Steps

Some	common	procedures	can	be	applied	to	all	platforms:
Make	full	use	of	platform	cache
– Especially	 in	PEI	phase	where	 the	code	 is	XIP	 (eXecute-In-Place),	 caching	 the	 flash

region	can	contribute	significantly	to	code	fetch	and	execution	improvements.
Minimize	the	use	of	slow	media
– Scanning	 for	 a	 firmware	 component	 in	 a	 flash	 device	 can	 be	 very	 slow.	 Optimize

routines	that	touch	slow	media.	For	instance,	the	variable	region	is	normally	stored	in
flash	and	it	is	very	time-consuming	to	traverse	the	whole	flash	region	for	each	variable
search.	It	would	be	a	reasonable	optimization	to	use	memory-based	cache	to	store	the

whole	variable	region	or	just	the	variable	index	to	speed	up	the	variable	search	time.
Analyze	 drivers	 that	 spend	 time	 blocking	 the	 boot	 progress.	 More	 often	 than	 not,	 these
drivers	can	gain	improvements	in	performance	with	minor	adjustments.
– If	 hard	 disk	 spin-up	 time	 is	 a	 blocking	 factor	 in	 the	 platform	 boot	 times,	 the	 BIOS

owner	could	adjust	some	of	the	logic	to	initiate	the	disk	spinup	in	an	earlier	stage	of	the
boot	logic	to	mitigate	some	of	this	slowdown	and	avoid	a	blocking	behavior.	Using	an
EFI	event	for	such	an	optimization	may	be	very	reasonable.

First	focus	optimization	work	on	the	components	that	the	BIOS	spends	the	most	time	on.	Usually
more	optimization	results	can	be	achieved	in	these	components.

Chapter	16	–	Embedded	Boot	Solution
Unless	you	try	to	do	something	beyond	what	you	have	already	mastered,	you	will	never	grow

—Ralph	Waldo	Emerson

The	expected	market	 segment	opportunity	beyond	2012	 for	 embedded	 systems	will	 be	over	10
billion	 USD.	 Some	 examples	 of	 this	 focused	 segment,	 as	 shown	 in	 Figure	 16.1,	 include:	 in-
vehicle	 infotainment	 (IVI)	 for	 automotive	 use,	 print	 imaging	 (enterprise	 printing	 solutions),
industrial	 control,	 residential	or	premise	 service	gateways	 (PSG),	home	control,	media	phones
(MPs),	set	top	boxes,	mobile	Internet	devices	(MIDs)	and	physical	security/	digital	security	and
surveillance	(video	analytics	systems	and	IP	cameras).

Figure	16.1:	Embedded	Usage	Examples

This	chapter	describes	the	boot	firmware	challenges	and	solutions	for	these	market	segments.	The
primary	 focus	 is	 to	 cover	 the	 platform	 boot	 solution,	 which	 includes	 standard	 PC	 BIOS,
bootloaders	(also	known	as	steploaders),	 initial	program	loaders	(IPLs,	also	known	as	second-
stage	 bootloaders),	 and	 OS	 boot	 driver	 components	 for	 running	 a	 shrinkwrap	 and/or	 industry
standard	embedded	OS.

CE	Device	Landscape

The	Intel®	Atom™	processor	family	of	low	power	embedded	processors	are	making	their	way
into	many	lower	power	platforms,	the	key	being	MIDs	(mobile	Internet	devices),	netbooks	and	a
variety	of	embedded	markets	as	enumerated	above.	Some	of	these	segments	are	targeted	towards
consumers,	 following	 the	 Consumer	 Electronics	 (CE)	 device	model	 paradigm.	One	 of	 the	 key
attributes	of	a	CE	device	is	the	positive	end-user	experience,	which	is	of	paramount	importance.
The	user	experience	is	based	on	such	factors	as:

Battery	life/	low	thermal	dissipation	for	fanless	device	operation
Small	device	form	factor/	footprint	for	portability
Ease	of	use
Low	bill	of	material	(BOM)	resulting	in	lower	end-user	cost
Interoperability	with	other	CE	devices
The	 time	 between	 power-on	 and	 the	 user	 interface	 becoming	 active,	 also	 known	 as	 boot
latency	to	user	interface/	human	machine	interface	(UI/HMI)

CE	Device	Boot	Challenges

Traditional	 CE	 devices	 from	 OEMs	 were	 fully	 customized	 solutions	 with	 OEM	 specific
hardware	and	software	components	that	were	uniquely	tuned	for	a	particular	use	model	such	as
smart	phones	or	MIDs.	In	this	case,	custom	platforms	were	developed	top-down	from	scratch	for
pre-determined	 usage	 models	 with	 customized	 applications,	 middleware,	 device	 drivers,	 OS,
system	 boot	 firmware	 and	 tightly	 coupled	 companion	 boot	 devices/	 hardware.	With	 each	 new
platform	development,	the	software	solution	had	to	be	recreated.

The	 use	 of	 Intel®	 architecture	 would	 help	 reduce	 this	 re-development,	 reducing	 time	 to
market	 and	 cost.	One	 of	 the	 value	 propositions	 and	 advantages	 of	 using	 both	 Intel	 architecture
based	processor	family	System	on	a	Chip	(SoC)	solutions	and	platforms	is	the	wide	availability
of	 standard	 platform	 building	 blocks	 from	 Intel	 and	 external	 ecosystem	 suppliers	 providing
hardware,	software,	BIOS,	applications,	development	tools,	and	so	on.

As	many	of	 these	platform	building	blocks	migrated	 from	a	 standard	PC	 to	 embedded	SoC
segments,	they	posed	some	interesting	challenges	to	directly	map	to	the	top-down	CE	device	use
model.	 It	 takes	 optimization	 of	 more	 than	 a	 dozen	 system	 hardware	 and	 software	 components
across	 the	 system	 stack	 to	 achieve	 the	 desired	 CE	 goals,	 with	 the	 boot	 firmware	 being	 a	 key
component	of	it.	Figure	16.2	identifies	some	of	the	components	in	the	boot	path	that	contribute	to
the	overall	system	boot	latency	as	needed	for	the	CE	devices.

The	following	is	a	short	list	of	some	key	components	that	contribute	to	the	overall	boot	latency	to
UI	active	time.

Platform	 power	 sequencing	 latencies,	 such	 as	 stabilization	 of	 PLL/	 Clocks,	 voltage
regulators,	and	power	rails
Speed	of	bus	interface	to	boot	device,	such	as	Serial	Peripheral	Interface	(SPI)	and	Low	Pin
Count	(LPC)
	Access	latency	of	storage	device	for	firmware,	such	as	NOR/NAND	Flash
Access	latency	of	mass	storage	device,	such	as	HDD,	SSD,	MMC/	SD
Splash	screen	latency
Latencies	associated	with	boot	firmware	or	bootloader	execution
Initial	program	load	latencies,	such	as	second	stage	OS	boot	loader	(also	known	as	IPL)
Partitioning	 of	 the	 firmware	 and	OS	 boot	 components	 across	 the	 storage	 device,	 such	 as
NOR,	SDD,	HD,	and	MMC
Use	of	file	system	type	for	storing	the	boot	image,	such	as	ROM,	FAT,	and	EXT3
Latency	of	graphics	and	audio	device	startup	if	required

Figure	16.2	shows	various	boot	components	across	the	system	stack	that	need	to	be	optimized	and
aligned	to	get	to	the	end	goal	of	low	boot	latency	as	desired	by	a	CE	device	user.	Moreover,	many
of	these	components	have	interdependencies	for	them	to	function	effectively.	For	example:	the	fast
splash	screen	needs	to	provide	a	seamless	handoff	to	the	graphics	driver,	and	the	block	storage
device	must	power-on	early	in	firmware	before	a	handoff	to	IPL.

Figure	16.2:	End-to-End	Boot	Latency	Dependency	Components

A	case	study	of	one	of	the	CE	device	usages	for	IVI	with	typical	boot	requirements	follows.	The
fast	boot	requirements	for	most	other	CE	segments	are	considered	to	be	a	subset	of	IVI,	which	has
the	most	stringent	requirements	of	all.

In-Vehicle	Infotainment

An	IVI	user	expects	an	instant	power-on	experience,	similar	to	that	of	most	consumer	appliances
like	TVs.	To	meet	 this	same	expectation,	one	of	 the	key	requirements	of	 the	IVI	platform	is	 the
sub-second	cold	boot	time,	which	helps	facilitate	the	user	experience	when	the	ignition	key/button
is	turned	on.	The	typical	boot	latency	requirements	are	as	illustrated	in	Figure	16.3.

Figure	16.3:	Typical	CE	Device	Boot	Latency	Requirements

Within	the	requirements	highlighted	above,	there	are	multiple	key	latency	checkpoints	where	the
boot	firmware	plays	a	key	role.	These	include:

Power-on	to	splash	screen	active.	The	time	between	hardware	power-on	and	splash	screen
active	 is	 key	 because	 it	 helps	 improve	 the	 user	 perception	 with	 an	 early	 audio/visual
experience.	 This	 is	 accomplished	 by	 displaying	 a	 static	 image	 bitmap	 or	 a	 logo	 on	 the
display	 device.	 The	 pre-OS	 boot	 environment	 is	 where	 this	 typically	 gets	 activated,
immediately	after	the	memory	initialization	is	done.	Several	of	the	initialization	functions	are
needed	to	enable	the	display	to	occur	in	parallel	while	the	boot	firmware	is	busy	performing
its	 other	 unrelated	 boot	 functions	 in	 the	 background,	 such	 as	 memory	 and	 chipset
initialization.	Once	 the	 splash	 screen	 is	 enabled,	 the	 firmware	 typically	does	 a	handshake
with	 the	 OS	 environment	 for	 a	 seamless	 handoff	 of	 the	 splash	 screen	 display	 status	 and
related	information,	such	as	frame	buffer	physical	address	and	display	mode.	If	the	firmware
can	hand-off	to	the	OS	in	less	than	50–100	ms,	it	is	possible	to	leave	this	function	for	the	OS
to	enable,	thereby	making	it	a	post-OS	boot	feature.
Power-on	 to	 rear	 view	 camera	 active.	 This	 is	 another	 operation	 that	 may	 have	 to	 get
activated	in	the	background	and	be	presented	to	the	user	with	a	motion	image	from	the	rear
view	camera.	This	function	is	typically	used	when	backing	up	an	automobile	and	the	function
needs	 to	be	activated	upon	entering	 reverse	 (“R”	gear).	 In	some	use	cases,	video	 from	an

embedded	 camera	 may	 be	 preferred	 in	 place	 of	 a	 static	 splash	 screen	 image.	 The
initialization	and	activation	of	the	camera	interface	can	be	done	in	parallel	with	bootloader
flows	 through	 hardware	 state	 machine	 assist.	 The	 event	 generation	 and	 notification
mechanism	(“R”)	also	needs	to	be	enabled	early	on	in	the	boot	sequence.
Power-on	to	the	boot	storage	device	active.	The	time	between	these	functions	impacts	the
speed	at	which	the	OS	can	be	shadowed	and	launched	by	the	Initial	Program	Load.	This	is
typically	done	 in	 the	 early	 firmware	boot	 sequence	 as	part	 of	 the	 chipset	 initialization,	 to
hide	the	boot	device	ready	latency	such	as	hard	disk	spin-up,	eMMC/	SD	device	ready,	and
so	on.
Power-on	to	OS	handoff	(IPL).	This	function	is	done	in	the	background	and	is	a	measure	of
overall	firmware	latency	of	the	boot	firmware.	All	actions	beyond	this	fall	into	the	OS	boot
domain	for	a	typical	bootloader.
OEM-specific	 functions.	 Other	 OEM	 device-specific	 functions	 such	 as	 Controller	 Area
Network	(CAN)/Media	Oriented	Systems	Transport	(MOST)	interface	activation,	FM	radio
activation,	and	TPM	measured	boot,	are	orthogonal	 to	 the	core	platform	functions	and	are
managed	 by	OEM-specific	 hardware/	 firmware.	Typically	 the	 events	 from	CAN	 and	 data
over	 MOST	 can	 be	 used	 as	 trigger	 events	 for	 operation	 of	 functions	 such	 as	 rear	 view
camera	activation.

All	other	boot	latency	checkpoints	illustrated	are	outside	the	scope	of	the	boot	firmware	and	have
a	dependency	on	the	kernel	components	and	device	drivers	that	are	associated	with	the	key	boot
devices:	storage	(such	as	NAND),	audio,	graphics,	video,	and	so	on.

Other	Embedded	Platforms

As	 noted	 above,	 IVI	 is	 just	 one	 of	 the	 many	 embedded	 segments	 with	 rapid	 boot	 time
requirements.	 The	 interesting	 thing	 to	 note	 is	 that	 when	 all	 the	 segments	 are	 taken	 into
consideration,	 the	 fundamental	 common	 denominator	 across	 all	 of	 them	 is	 the	 boot	 firmware,
which	 needs	 to	 work	 with	 a	 variety	 of	 operating	 systems	 including	 Fedora	 Linux†,	 QNX†,
Microsoft	XP	Embedded†,	Microsoft	WinCE†,	WindRiver	Automotive	Grade	Linux†,	Microsoft
Automotive†	 (based	 on	Win	 CE),	WindRiver	 VxWorks†,	Microsoft	Windows	 XP†,	Microsoft
Vista	 Embedded†,	 4690/DOS†,	 MeeGo†,	 SuSe†,	 Microsoft	 Windows	 for	 Point-of-Sales
(WEPOS)	 †,	Win7e†,	 and	Win8.	 For	 a	 typical	 CE	 platform,	 the	 boot	 firmware	 must	 support
interoperability	with	multiple	types	of	OS	IPLs	as	follows:

ACPI-compliant	UEFI	BIOS	with	 an	UEFI	OS	 IPL	 (such	 as	 eLilo):	 this	 is	 typically	 used
with	 aftermarket	 products	 that	may	 run	 an	 embedded	version	 of	 a	 shrinkwrap	OS	 such	 as
Standard	 Embedded	 Linux	 or	Window	XPe	 that	 requires	 PC	 compatibility	 and	 is	 readily
available	from	the	BIOS	vendors	or	original	device	manufacturers	(ODM).
Embedded	OS	IPL:	this	solution	is	meant	to	work	with	an	OS	that	does	not	rely	on	the	PC
BIOS	 compatibility	 such	 as	 an	 embedded	OS	 and	 some	 variants	 of	 Linux.	 This	 approach
requires	 specialized	 IPL	 that	 is	 customized	 for	 the	 platform	 topology	 and	 the	 nonstandard
secondary	storage	device	such	as	managed	NAND	(also	known	as	an	eMMC	device).

Note Reducing	the	bill	of	material	cost	of	a	CE	platform	is	quite	critical,	hence	consolidating	the	SPI	Flash	(NOR)	and
NAND	storage	to	one	device	like	eMMC	is	beneficial.	However,	this	comes	with	some	challenges	for	Intel	boot
architecture	and	the	firmware	flow	that	depends	on	various	aspects	such	as	execute	in	place	ROM	(XIP),	secure
and	writeprotected	regions	offered	by	SPI	flash	controllers,	and	so	on.

Generic	Requirements

Traditional	 platforms	 typically	 have	 boot	 latencies	 to	 UI	 active	 times	 that	 average	 10–	 40
seconds.	Getting	this	UI	active	latency	down	to	below	5–6	seconds,	with	an	active	splash	screen
in	less	than	500	ms	is	a	big	challenge.	To	reduce	time	to	market	and	product	development	costs,	it
is	highly	desired	to	develop	one	boot	firmware	and	OS	solution	that	can	scale	across	different	CE
device	 platforms	 from	each	of	 the	OEMs	with	 varying	 topologies,	 but	 based	on	 the	 same	SoC
core.	Many	optimizations	were	done	to	both	the	BIOS	and	bootloader	solutions	to	fit	into	the	IVI
platform	and	the	same	can	be	easily	extended	to	any	CE	device.	The	key	being	the	reordering	and
early	 initialization	 of	 user-visible	 I/O	 like	 display	 activation,	 initial	 program	 load	 (IPL)	 boot
menus,	enabling	processor	cache	usage	at	boot	as	high	speed	RAM	(CAR),	and	so	on.

The	basic	or	generic	bootloader	for	any	CE	device	model	requires	the	following	attributes:
Low	Boot	Latency.	The	generic	boot	requirements	for	a	CE	device	can	be	summarized	as:
power-on	to	OS	handoff	in	less	than	one	second	and	splash	screen	in	less	than	500	ms.
Footprint.	 The	 firmware	 code	 size	 needs	 to	 be	 small,	 reusable,	 and	 portable	 across	 all
platforms	using	the	same	SoC	without	modifications,	such	as	a	size	of	less	than	384	KB.
	 Reliability.	 The	 bootloader	 must	 provide	 interoperability	 across	 a	 variety	 of	 operating
systems,	including	shrinkwrap,	embedded	real-time	operating	systems,	and	so	on.
Cost	 optimization.	 The	 solution	must	minimize	 the	 platform	 bill	 of	material	 cost	 through
consolidation	 of	multiple	 storage	 devices	 like	 SPI	 Flash	 and	 Secure	Digital	 Input	Output
(SDIO)	managed	NAND.
Lifecycle.	The	bootloader	should	have	a	typical	lifecycle	of	5	years.

Figure	 16.4	 illustrates	 the	 common	 initialization	 flows	 encountered	 in	 a	 typical	 platform
initialization.

Figure	16.4:	Typical	Intel®	Architecture	CE	Device	Firmware	Boot	Flow

Boot	Strategies

To	fit	most	of	the	usage	models	described	above,	different	CE	device	boot	strategies	are	adopted,
namely	Fixed	Topology	Systems,	Binary	Modules	model	and	Simplified	bootloader,	as	described
below:

Fixed	Topology	Systems.	 This	 strategy	 uses	 standard	ACPI-compliant	UEFI	BIOS	with	 a
fixed	 platform	 topology	 and	 a	 compliant	 IPL,	 such	 as	 eLilo.	 This	 is	 typically	 used	 with
aftermarket	products	that	may	run	an	embedded	version	of	a	shrinkwrap	OS,	but	with	varying
I/	 O	 devices	 that	 are	 chosen	 by	 the	 end	 customer	 (such	 as	 Standard	 Embedded	 Linux	 or
Window	XPe).	The	BIOS	is	required	to	provide	PC	compatibility	and	is	readily	available
from	 independent	 BIOS	 vendors	 (IBV)	 or	 Original	 Device	 Manufacturers	 (ODM).	 This
solution	 provides	 the	most	 flexibility	 for	 seamless	 addition	 of	 I/	O	 for	 each	 of	 the	OEM
machine	 topologies,	 but	 at	 the	 expense	of	 higher	 boot	 latencies.	Many	of	 the	 initialization
sequences	in	the	boot	path	are	optimized	to	reduce	the	latencies	significantly	in	the	order	of
5–10	seconds.	Some	of	the	noncritical	PC	BIOS	functions	such	as	PCIe	device	enumeration,
OptionROM	scanning,	memory	testing,	POST,	and	video	BIOS	usage	may	be	eliminated	or
simplified	during	the	boot	sequence.	The	disabling	of	these	and	other	functions	helps	reduce
boot	 latencies	 significantly.	Refer	 to	 the	white	 paper	 on	 one	 such	 implementation	 and	 the
optimizations	done	for	it:
http://download.intel.com/design/intarch/papers/320497.pdf
Binary	Modules	with	Configuration.	This	is	the	most	highly	optimized	solution	for	the	CE
platform	for	low	boot	latencies	and	is	tightly	coupled	to	the	functions	on	the	SoC.	Since	the
functions	 of	 the	 SoC	 do	 not	 change	 across	 different	 OEM	 implementations,	 one	 single
firmware	image	compiled	from	a	set	of	object	libraries	would	suffice	to	boot	all	platforms
built	 around	 the	 SoC.	 The	 OEM	 may	 use	 a	 development	 kit,	 which	 would	 allow
customization	facilitated	through	a	set	of	exposed	application	programming	interfaces	(APIs)
in	 the	 objects.	 These	 object	 API’s	 could	 perform	 basic	 and	 advanced	 initialization	 and
control	tasks	like	the	following:
– Processor	 initialization	 (including	 multiprocessor	 support,	 cache	 configuration,	 and

control)
– Chipset	and	memory	initialization
– Core	 libraries	 for	 I/	 O	 initialization	 such	 as	 PCI	 resource	 allocation,	 and	 IDE	 HD

initialization.
– Flash	Storage	(NOR,	NAND),	Super	I/	O	support
– Pre-boot	graphics	(splash	screen)	support	where	available

This	 solution	 is	 primarily	 meant	 to	 work	 with	 an	 OS,	 which	 does	 not	 rely	 on	 the	 PC	 BIOS
compatibility,	such	as	an	embedded	OS	and	some	variants	of	Linux.	The	boot	latencies	achieved
are	deterministically	optimized	for	a	fixed	CE	device	model	built	around	the	same	SoC.	The	goal
of	 this	 approach	 is	 to	 allow	 the	OS	 to	 enable	 other	 standard	 non-boot	 and	OEM-specific	 I/	O
device	enabling	through	the	use	of	loadable	device	drivers	in	the	OS.	Refer	to	the	white	paper	on
one	such	approach	and	the	optimizations	done	for	it:

http://download.intel.com/design/intarch/papers/320497.pdf

http://download.intel.com/design/intarch/papers/323246.pdf
Simplified	Bootloader.	This	is	the	third	category	of	firmware	bootloader	that	has	a	subset	of
functionality	 of	 the	 above	 two	mechanisms.	 In	 this	 type	of	 implementation,	 the	bootloader
firmware	consists	of	the	basic	initialization	functionality	of	the	CPU,	flash,	and	the	DRAM
subsystem.	The	subsequent	portion	of	chipset	hardware	and	I/O	device	initialization	is	left
for	the	OS	hardware	abstraction	layer	(HAL)	to	deal	with,	essentially	moving	much	of	 the
firmware	 platform	 initialization	 function	 to	 the	 OS.	 This	 gives	 the	 OS	 more	 control	 to
optimize	the	boot	latencies	by	allowing	it	to	touch	or	initialize	devices	on	a	demand	basis,
thereby	 eliminating	 the	 latency	 associated	 with	 non-boot	 related	 platform	 device
initialization.	 The	 major	 disadvantage	 of	 this	 approach	 is	 that	 for	 every	 new	 SoC	 and
platform	topology,	the	HAL	component	for	each	OS	needs	to	be	rewritten	and	this	is	a	major
undertaking.

http://download.intel.com/design/intarch/papers/323246.pdf

Power	Management

Traditional	 Intel	 architecture	 platforms	 support	 various	 power	 management	 capabilities	 to
conserve	power	of	battery	powered	devices	and	to	reduce	thermal	dissipation	for	AC	powered
devices.	 The	 CE	 device	 will	 leverage	 from	 the	 same	 power	 states	 as	 defined	 in	 the	 ACPI
specification	 (Sx)	 and	 (Dx),	 but	 with	 or	 without	 ACPI	 support	 in	 the	 firmware.	 A	 simplified
ACPI	table	or	its	equivalent,	with	a	capability	to	communicate	standby	(S3)	state	wake-up	vector
information	between	the	OS	and	the	firmware	is	the	minimum	requirement	for	this	usage	model.

As	highlighted	earlier,	one	of	the	key	design	goals	of	the	CE	device	is	a	fast	boot	in	the	order
of	 seconds.	 Typically,	 any	 resumption	 from	 Suspend/	 Hibernate	 back	 to	 active	 state	 involves
restoring	the	previous	state.	In	certain	CE	device	use	cases,	the	Resume	from	Sleep	(suspend	to
RAM)	could	be	used	for	sub-second	fast	boot	purposes.	However,	Sleep	mode	is	undesirable	for
some	CE	device	use	cases	 like	 IVI,	due	 to	 the	battery	drain	 from	DRAM	leakage	current	 in	an
extended	park	scenario	or	a	need	to	avoid	inadvertently	restoring	one	user	context	for	another	for
a	rental	car	scenario.	This	makes	the	fast	cold	boot	with	a	completely	fresh	state	on	every	power-
on	a	key	requirement	for	the	CE	device	architecture.

Boot	Storage	Devices

Another	factor	that	plays	a	significant	role	in	helping	reduce	the	overall	boot	latency	is	the	choice
of	the	boot	storage	device	and	the	system	interconnect	to	it,	such	as	LPC	and	IDE.

Firmware	is	typically	stored	on	a	flash	device,	which	can	take	the	form	of	NOR,	Raw	NAND
or	 Managed	 NAND	 (MMC-NAND).	 Each	 of	 these	 is	 connected	 through	 different	 system
interfaces	 like	 LPC/SPI,	 Open	 NAND	 Flash	 Interface	 (ONFI),	 or	 SDIO.	 Depending	 on	 the
combination	of	the	bus	interface	and	storage	device	used,	the	read	throughputs	can	vary	anywhere
from	1.5	MB/s	to	52	MB/s	at	the	time	of	writing	of	this	book.	It	is	to	be	noted	that	to	satisfy	the
Intel	 architecture	 platform	 boot	 sequence	 and	 legacy	 compatibility,	 XIP	 flash	 (NOR)	 is	 best.
NAND	 is	 a	 block	 storage	 device	 and	 does	 not	 lend	 itself	 very	well	 as	 the	XIP	memory.	 The
mitigation	to	overcome	this	NAND	limitation	is	to	use	SRAM	caches	in	the	path	to	the	processor
or	the	NAND	accesses	redirected	in	hardware	to	DRAM,	where	the	firmware	is	shadowed	ahead
of	 time.	 The	 look-ahead	 shadowing	 of	 NAND	 content	 to	 DRAM	 does	 introduce	 additional
latencies	in	the	boot	path.

In	 the	case	of	software	partitioning,	an	 IPL	which	 is	part	of	 the	OS	and	 includes	 the	kernel
may	be	stored	on	a	secondary	block	storage	device,	such	as	a	hard	disk	(HD),	solid	state	drive
(SSD)	or	a	managed/unmanaged	NAND.	There	are	spin-up	times	associated	with	HD	and	power-
on	 to	 device	 ready	 latencies	 associated	 with	 SSD/NAND	 and	 these	 contribute	 to	 the	 boot
latencies	as	well.

To	 help	 keep	 the	 platform	BOM	cost	 low,	 it	 is	 highly	 desirable	 to	 consolidate	 the	 storage
device	used	for	the	boot	firmware,	OS,	and	user	applications/data.	While	NOR	flash	does	offer
some	 speed	 advantages,	 the	NAND	 flash	 offers	 both	 a	 cost	 and	 performance	 advantage	 that	 is
well	 balanced.	The	 latest	managed	NAND	version	based	on	 the	MMC	4.4	 specification	offers
quite	a	 few	capabilities	 to	allow	the	unified	storage	use	case,	such	as	boot	block	for	 firmware
storage,	 user	 Storage,	 and	 security	 features.	 It	 is	 quite	 possible	 to	 achieve	 this	 unified	 boot
storage	CE	device	use	model	with	some	changes	in	the	Intel	architecture	platform	hardware	and
firmware	flows.	This	is	illustrated	in	Figure	16.5.

Figure	16.5:	Typical	Intel®	Architecture	Storage	Device	Consolidation	Model

Security

Different	 embedded	 segments	 have	 varying	 security	 requirements	 collectively	 categorized	 as
Security.	These	security	requirements	apply	to	two	different	usage	models,	which	are	orthogonal
to	each	other:

Security	as	it	relates	to	platform	defense	against	attacks	from	hackers	and	malware.
Security	 as	 it	 relates	 to	 encryption/decryption	 of	 network	 packets	 (example:	 IP-Sec/SSL,
Voice	SRTP)

SoC-based	embedded	platforms	are	targeted	to	support	“open	and	closed	device”	usage	models.
This	 means	 that	 the	 user	 will	 be	 able	 to	 download	 and	 install	 any	 native	 application	 on	 the
device.	This	puts	 these	devices	on	par	with	 the	standard	PC	as	 far	as	 threats	 from	viruses	and
malware	 are	 concerned.	 This	 is	where	 the	 security	 for	 defense	 against	 attacks	 becomes	 a	 key
platform	feature,	with	the	boot	firmware	playing	a	key	role	in	establishing	a	chain	of	trust.

Since	 the	CE	platforms	 are	 targeted	 to	 support	 “open	 and	 closed	 device”	 usage	models,	 it
requires	special	attention	for	 two	key	aspects	of	security.	First,	 the	system	must	have	a	tamper-
resistant	software	environment	to	protect	against	malicious	attacks,	and	second,	it	must	offer	the
ability	to	playback	DRM	protected	content	such	as	Blu-ray†	without	being	compromised.	Table	1
6.1	shows	the	usage	and	threat	model	of	a	typical	CE	device.

Table	16.1:	Usage	Model	and	Security	Threats

CE	Usage	Model Threats
Internet	Connectivity Malware	attack,	DoS	Attacks,	packet	replay/reuse,	etc.
Secure	Internet	Transaction Steal	privacy	sensitive	data
DRM	Content	Usage Steal	DRM	protected	content
Browser	Usage Malware	attack,	phishing
Software	Downloads/Updates Change	OS/software	stack
Device	Management DoS	attack,	Illegal	device	connections
ID	Management Dictionary	attacks,	stolen	privacy	data
One	Time	Provisioning Steal	OEM	data,	unauthorized	activation
Full	Featured	OS All	of	the	above
Biometrics	(Finger	print	sensor) Steal	user	data,	authentication	credentials

Based	 on	 the	 usage	model	 described	 in	Table	16.1,	 the	 assets	 on	 the	 platform	 that	 need	 to	 be
protected	from	a	hacker	are	as	follows:

Platform	resources	including:	CPU,	memory,	and	network	(3G,	WiMax,	Wi-Fi)
Privacy	 sensitive	 data	 including:	 ID,	 address	 book,	 location,	 e-mails,	 DRM	 protected
copyrighted	content	such	as	music	and	video
Trusted	 services	 including:	 financial,	 device	management	 and	 provisioning,	 trusted	 kernel
components

Based	 on	 the	 techniques	 needed	 for	 threat	 mitigation,	 one	 of	 the	 fundamental	 mechanisms	 to
achieve	security	is	to	make	the	software	tamper-resistant	(TRS).	TRS	goal	is	achieved	by	having
platform	and	software	mechanisms	 in	place	 to	check	for	software	 integrity,	both	at	system	boot

and	runtime.	The	high	level	overview	of	this	is	as	follows:
Boot	 Time.	 This	 is	 typically	 accomplished	 through	 a	 mechanism	 called	measured	 boot,
where	 the	 core	 platform	 software	 components	 (firmware	 or	 OS)	 are	 checked	 for
unauthorized	changes.
Runtime.	This	 runtime	 security	protection	 is	 typically	 achieved	by	having	 software	 agents
monitoring	the	system	against	attacks	(for	example,	anti-virus	software)	and	also	by	securing
through	application	sandboxing,	which	restricts	the	application	accesses	to	limited	resources
and	contains	the	malware	attack	impact	to	the	restricted	domain.

In	 addition,	 any	 runtime	 software	 updates	 or	 patching	will	 be	 limited	 to	 trusted	 software	 from
trusted	entities,	which	may	be	digitally	signed	for	authenticity.

The	mitigation	against	the	security	threats	requires	the	embedded	platform	security	architecture	to
use	a	combination	of	hardware	and	software	security	ingredients	such	as:

Measured	boot	with	TPM	coupled	with	appropriate	hardware-based	Root	of	Trust	 (RoT);
examples:	Intel®	Trusted	Execution	Technology	(Intel	TXT)	or	BootROM	as	Root	of	Trust.
DRM	content	protection	based	on	commercial	media	players	executing	on	Intel	architecture
Application	isolation	through	OS-based	mechanisms
Trusted	domains	and	isolation	through	OS-based	mechanism
OEM/OSV	trusted	binaries,	which	are	digitally	signed	by	an	authentic	source
Secure	storage	and	key	management	through	TPM	assist
Anti-virus	through	third	party	software	libraries	and	application	design
Device	management/	provisioning	through	industry	standard	mechanisms

BootROM	 RoT:	 To	 provide	 Measured	 Boot	 functionality,	 an	 embedded	 platform	 can	 support
BootROM	as	hardware	RoT	and	a	trusted	platform	module	(TPM)	can	be	used	to	securely	store
measurements.	Some	SPI-Flash	controllers	 support	write-protection	of	 the	 flash	device	at	 reset
through	hardware	based	auto	configuration.	Additionally,	SPI	Flash	devices	from	various	vendors
allow	for	boot	block	write	protection	through	strap	pin	configuration.	Any	of	these	techniques	can
be	used	to	protect	the	firmware	boot	block	from	being	tampered	by	malware.

In	compliance	with	the	TCG	specification,	the	boot	firmware	is	divided	into	two	parts.	The
first	part	is	the	boot	block,	which	is	a	very	small	firmware	component	that	includes	the	minimal
platform	initialization	firmware	and	TPM	driver.	The	rest	of	the	boot	firmware	is	contained	in	the
subsequent	portions	of	the	flash.

The	Intel	architecture	CE	device	can	include	other	platform-specific	firmware	that	is	outside
the	context	of	the	core	BIOS	or	firmware.	An	example	of	this	is	the	p-Unit	(microcontroller)	that
is	 used	 for	 smart	 power	management	 for	 the	 SoC	device.	This	 is	 configured	 as	 the	 first	 entity
where	the	platform	execution	begins	after	reset.	Other	CE	devices	may	have	similar	processing
elements.	Any	measured	boot	mechanism	must	assure	the	integrity	of	such	firmware	and	make	it
part	of	the	overall	trust	chain.	Figure	16.6	is	an	example	of	the	trust	boundary	for	a	typical	Intel
architecture	CE	device.

Figure	16.6:	Typical	Intel®	Architecture	CE	Device	Trust	Boundary

The	BootBlock	 can	be	 burned	 into	ROM	so	 that	 it	 cannot	 be	modified	 and	hence	 can	 act	 as	 a
hardware	 RoT.	 Core	 Root	 of	 Trust	 for	Measurement	 (CRTM)	 is	 the	 root	 of	 trust	 from	which
integrity	 measurements	 begin	 within	 a	 trusted	 CE	 device	 platform.	 The	 platform	manufacturer
provides	CRTM	logic	for	each	trusted	platform.	The	CRTM	logic	can	be	changed,	but	only	under
controlled	conditions	by	the	OEM.

The	OS	 loader,	 kernel,	 and	drivers	will	 be	measured	 as	 part	 of	 the	CE	device	measured	boot
flow.	The	details	of	a	typical	chain	of	trust	for	measurement	with	a	TPM	device	and	PCRx	is	as
illustrated	in	Figure	16.7	and	are	outlined	as	follows:

CRTM	measures	firmware	(bootloader	or	BIOS)
– Stores	the	measurement	in	PCR-0
– Standard	 OS	 handoff	 tables	 like	 ACPI,	 E820,	 and	 EFI	 measurements	 are	 stored	 in

PCR-1
– Any	option	ROM	measurements	are	stored	in	PCR-2
Bootloader/BIOS	measures	OS	Initial	Program	Load	(IPL)
– Stores	the	measurement	in	PCR-4
OS	loader	measures	kernel,	including	kernel	command	line	and	drivers
– Stores	the	measurement	in	PCR-8
– Each	OS	can	use	different	implementations
– If	the	measurements	are	changed,	the	OS	may	fail	to	boot	or	alert	the	user.

Figure	16.	7:	Typical	Intel®	Architecture	CE	Device	Measured	Boot	Flow

Measured	Boot	Latency:	Measured	boot	introduces	latencies	in	the	boot	path	of	a	CE	device	due
to	the	following:

TPM	initialization
Calculation	of	SHA1	checksum	of	various	binaries
Appending	the	checksum	in	TPM	PCR

The	measure	boot	components	of	the	TPM	are	distributed	across	the	standard	firmware	boot	flow
The	 CRTM	 algorithm	 would	 play	 a	 key	 role	 in	 optimizing	 for	 the	 CE	 device	 fast	 boot.	 It	 is
beyond	 the	 scope	 of	 this	 chapter	 to	 describe	 the	 various	 techniques	 that	 can	 be	 used	 for	 this
optimization.	However,	a	carefully	designed	CRTM	might	use	a	combination	of	the	following:

Execute-in-place	(out	of	flash)	with	processor	caches	enabled
Measure	only	portions	of	firmware	after	it	is	shadowed	into	memory	or	before

Manageability

The	 manageability	 framework,	 also	 known	 as	 the	 Device	 Management	 (DM)	 framework,
provides	 services	 on	 the	 client	 platform	 for	 use	 by	 IT	 personnel	 remotely.	 These	 services
facilitate	key	device	management	functions	such	as	provisioning,	platform	configuration	changes,
system	logs,	event	management,	software	inventory,	and	software/	firmware	updates.	The	actual
services	enabled	on	a	particular	platform	are	a	CE	OEM	choice.	The	following	sections	describe
the	two	key	frameworks	in	use	for	a	CE	device,	namely	OMA-DM	and	AMT.

Open	Mobile	Alliance	-	Device	Management	(OMA-DM)	is	one	of	the	popular	protocols	that
would	 allow	manufacturers	 to	 cleanly	 build	DM	 applications	 that	 fit	 well	 into	 the	 CE	 device
usage	model.	Many	of	the	standard	operating	systems	support	OMA-DM	or	a	variation	of	it	with
enhanced	security.	The	data	transport	for	OMA-DM	is	typically	over	a	wireless	connectivity	such
as	WiMax,	3G/4G,	and	so	on.	This	protocol	can	run	well	on	top	of	the	transport	layers	such	as
HTTPS,	OBEX,	and	WAP-WSP.	The	CE	device	platform	would	be	able	to	support	this,	as	long
as	the	OEM	supports	the	connectivity	and	the	client	services.

The	 other	 possible	 framework	 for	manageability	 is	 Intel®	Active	Management	 Technology
(Intel	AMT).	Intel	AMT	provides	a	full	featured	DASH-compliant	manageability	solution	that	can
discover	failures,	proactively	alert,	 remotely	heal-recover,	and	protect.	 Intel	AMT	Out	of	Band
(OOB)	device	management	allows	remote	management	regardless	of	device	power	or	OS	state.
Remote	 troubleshooting	 and	 recovery	 could	 significantly	 reduce	OEM	 service	 calls.	 Proactive
alerting	decreases	downtime	and	minimizes	time	to	repair.

In	 the	 manageability	 space,	 making	 DASH-compliant	 manageability	 on	 CE	 platform	 is
opportunity	that	allows	OEM	differentiation	and	provides	a	much	richer	manageability	features.

Summary

The	need	for	a	boot	solution	that	is	low	cost,	has	a	small	footprint,	offers	low	boot	latencies,	and
is	platform-agnostic	provides	an	exciting	opportunity	to	ISVs	and	OSVs	to	develop	and	deliver
such	tool	kits.	This	also	creates	opportunities	for	CE	device	OEMs	to	provide	creative	solutions
of	their	own,	making	their	products	more	competitive	and	unique.	In	addition,	device	vendors	can
take	 advantage	 of	 opportunities	 to	 provide	 hardware	 IP	 (Intellectual	 Property)	 that	 are	 self-
initializing,	thereby	relieving	the	boot	software	from	doing	the	same	and	giving	back	some	time	to
improve	latencies.

The	challenge	that	remains	to	be	addressed	is	a	single	boot	firmware	solution	that	can	boot
both	 shrinkwrap	 operating	 systems	 that	 require	 PC	 compatibility	 and	 embedded	 operating
systems.	There	are	multiple	challenges	to	be	addressed	with	innovative	solutions	like	supporting
security	features,	manageability,	and	a	unified	storage	device	like	an	eMMC,	all	with	the	key	low
boot	 latency	 attribute.	 Finally,	 there	 are	 opportunities	 for	 the	 OS	 vendors	 to	 come	 up	 with
innovative	optimizations	within	the	OS	boot	flows	to	achieve	faster	boots.

Chapter	17	–	Manageability
I	came,	I	saw,	I	conquered

—Julius	Caesar

RAS	is	a	critical	requirement	for	enterprise	class	servers,	which	includes	high	availability	server
platforms.	System	uptime	is	measured	against	the	goal	of	“five	nines,”	which	represents	99.999
percent	availability.	One	of	the	key	aims	of	manageability	software	is	to	help	achieve	this	goal,
by	implementing	functions	like	dynamic	error	detection,	correction,	hardware	failure	prediction,
and	 the	 taking	of	 corrective	 actions	 like	 replacing	or	 turning	off	 failing	 components	 before	 the
failure	actually	happens.	In	addition,	other	noncritical	manageability	functions	enable	IT	personal
to	 remotely	 manage	 a	 system	 by	 performing	 such	 operations	 as	 remote	 power	 up/	 down,
diagnostics,	and	inventory	management.	Manageability	software	can	be	part	of	the	inline	system
software	(the	SMI	handler	in	BIOS	and	OS)	or	inline	OS	user-level	application	software	running
on	the	local	processor	or	on	a	remote	system.

This	 chapter	 describes	 the	 enhanced	 Intel®	 architecture	 platform	 dynamic	 error	 handling
framework,	a	 system-level	error	management	 infrastructure	 that	 is	now	an	 integral	part	of	most
industry	 standard	 server	 class	operating	 systems.	 In	 addition	 to	 the	above	 framework,	different
remote	manageability	standards	are	introduced,	by	comparing	and	contrasting	various	aspects	and
their	interoperability	at	a	platform	level	in	achieving	the	five	nines	goal.

Overall	Management	Framework

A	 robust	 reporting	 of	 platform	 errors	 to	 the	OS	 and	 a	 remote	management	 of	 the	 platform	 are
considered	fundamental	building	blocks	 that	enable	OS-level	decision	making	for	various	error
types	and	possible	actions	by	remote	IT	personnel	upon	notification	of	the	associated	events.	The
framework	encompasses	a	collection	of	components	 internal	 to	 the	OS,	platform	chipset	 fabric,
and	 more	 specifically	 an	 enhanced	 firmware	 interface	 for	 communicating	 hardware	 error
information	between	the	OS	and	the	platform.

By	 standardizing	 the	 interfaces	 and	 error	 reporting	 through	 which	 hardware	 errors	 are
presented	 to,	 configured	 for,	 signaled	 to,	 and	 reported	 through	 the	 framework,	 the	management
software	would	be	presented	with	a	myriad	of	opportunities.	The	two	categories	of	error/event
types	 that	 need	 active	 management	 in	 a	 platform	 are	 illustrated	 in	 Figure	 17.1	 and	 can	 be
enumerated	as	in-band	and	out-of-band	mechanisms.

Figure	17.1:	Manageability	Domains

The	various	classes	of	manageability	implementations	handing	these	two	classes	of	errors/	events
are	as	follows:

Traditional	UEFI/BIOS	power-on	self	tests/	diagnostics	(POST)
UEFI/BIOS	 based	 dynamic	 error	 functions	 coupled	 with	 SMI/PMI1	 for	 dynamic	 error
management
Server	baseboard	management	controllers	(BMC)	Out-Of-Band	(OOB)	Intelligent	Platform
Management	Interface	(IPMI)	implementations
Client/Mobile	Intel®	Active	Management	Technology	(Intel	AMT)	OOB	implementations
OS	based	dynamic	error	management

Dynamic	in-band	errors	like	1xECC,	2xECC	on	memory	or	PCIe†	corrected/	uncorrected	impact

the	 running	 system	 and	 its	 uptime	 attribute	 in	 the	 near	 to	 immediate	 future	 depending	 on	 the
severity,	while	out-of-band	errors	due	to	peripheral	system	components	like	fan	failure,	thermal
trips,	 intrusion	detection,	 and	 so	on	are	not	 fatal.	While	 in-band	errors	need	 immediate	 system
attention	 and	 error	 handling	 to	 maintain	 the	 uptime,	 most	 out-of-band	 errors	 would	 need	 the
attention	of	manageability	software	for	deferred	handling.	However,	over	a	period	of	 time	both
categories	of	errors/	events,	if	not	handled	properly,	will	impact	the	system	uptime.

Dynamic	In-Band

In-Band	 error	management	 is	 typically	 handled	 by	 software	 that	 is	 part	 of	 the	 standard	 system
software	 stack	 consisting	 of	 system	 BIOS	 (SMI/PMI),	 operating	 system,	 device	 drivers/ACPI
control	methods,	and	user	mode	manageability	applications	running	on	the	target	system.	The	key
technologies	that	are	covered	in	this	context	are	as	follows:

Standardized	UEFI	error	format
Various	platform	error	detection,	reporting,	and	handling	mechanisms
Windows	 Hardware	 Error	 Architecture	 (WHEA)	 as	 an	 example	 that	 leverages	 UEFI
standards.

Out-of-Band

Out-of-band	 error	 management	 is	 handled	 by	 out-of-band	 firmware	 such	 as,	 for	 example,
firmware	running	on	BMCs	conforming	to	IPMI	standards.	The	key	technologies	that	are	covered
in	this	space	are:

IPMI
Intel	AMT
DMTF	and	DASH	as	they	relate	to	IPMI	and	Intel	AMT

IPMI	is	prevalent	on	server	class	platforms	through	the	use	of	an	industry	standard	management
framework	or	protocol	like	WS-MAN.	The	following	section	focuses	more	on	the	in-band	error
domain	and	the	most	recent	advancements,	followed	by	out-of-band	error	management	technology
domain(s)	and	a	way	to	bridge	 the	 two	in	a	seamless	way	at	 the	 target	platform	level:	servers,
desktop	client,	mobile,	and	so	on.

The	 other	 domain	 of	 management	 for	 client	 and	 mobile	 system	 is	 through	 the	 Intel	 AMT
feature,	which	allows	IT	to	better	discover,	heal,	and	protect	their	networked	client	and	desktop
computing	 assets	 using	 built-in	 platform	 capabilities	 and	 popular	 third-party	 management	 and
security	applications.	Intel	AMT	today	is	primarily	based	on	the	out-of-band	implementations	as
explained	above	and	allows	access	to	information	on	a	central	repository	stored	in	the	platform
nonvolatile	memory	(NVM).

Distributed	Management	Task	Force	(DMTF)

The	DMTF	is	an	industry	organization	that	is	leading	the	development,	adoption,	and	promotion
of	 interoperable	management	 initiatives	 and	 standards.	 Further	 details	 on	 this	will	 be	 covered
later	in	this	chapter.

UEFI	Error	Format	Standardization

In	this	section,	we	delve	into	the	first	level	details	of	the	in-band	errors	and	their	handling	based
on	the	UEFI	standard.

On	most	platforms,	standard	higher	level	system	software	like	shrink-wrap	operating	systems
directly	log	available	in-band	system	dynamic	error	information	from	the	processor	and	chipset
architectural	error	registers	to	a	nonvolatile	storage.	These	errors	are	signaled	at	system	runtime
through	 various	 event	 notification	 mechanisms	 like	 machine	 check	 exception	 on	 Intel®
architecture	 processors	 (example:	 int-18)	 or	 NMI,	 system	 management	 interrupt	 (SMI)	 or
standard	 interrupts	 like	 ACPI	 defined	 SCI.	 The	 challenge	 is	 and	 always	 has	 been	 to	 get	 non-
architectural	information	from	the	platform,	which	is	typically	not	visible	to	a	standard	OS,	but	to
the	 system-specific	 firmware	 only.	 Partial	 platform	 error	 information	 from	 the	 architectural
sources	(such	as	Machine	Check	Bank	machine	specific	registers	(MSR)	as	in	x86	processor	or
as	returned	by	the	processor	firmware	PAL	on	Itanium®)	alone	is	not	sufficient	for	detailed	and
meaningful	 error	 analysis	 or	 corrective	 action.	Moreover,	 neither	 the	OS	 nor	 other	 third	 party
manageability	software	has	knowledge	about	how	to	deal	with	raw	information	from	the	platform,
or	how	to	parse	and	interpret	it	for	meaningful	error	recovery	or	manageability	healing	actions.

The	Figure	17.2	 illustrates	a	 typical	dynamic	error	handling	on	most	platforms	with	shrink-
wrap	OS	implementations,	 for	 two	different	error-handling	components	of	notification/signaling
and	 logging.	 In	 this	model,	 a	 component	of	 the	OS	kernel	directly	 logged	 the	error	 information
from	the	processor	architectural	registers,	while	platform	firmware	logged	non-architectural	error
information	to	a	nonvolatile	storage	for	its	private	usage,	with	no	way	to	communicate	this	back
to	 the	 OS	 and	 vice	 versa.	 Both	 the	 platform	 events	 (SMI)	 and	 processor	 events	 (MCE)	 are
decoupled	from	each	other.

Figure	17.2:	Traditional	OS	Error	Reporting	Stack

To	make	the	system	error	reporting	solution	complete,	the	manageability	software	will	have	to	be
provided	with	the	following:

Processor	error	logs
Implementation-specific	hardware	error	logs,	such	as	from	platform	chipset
Industry	Standard	Architecture	hardware	error	logs,	such	as	PCIe	Advance	Error	Reporting
registers	(AER)
System	event	logs	(SELs)	as	logged	by	BMC-IPMI	implementations

As	 can	 be	 seen	 in	 Figure	 17.3,	 there	 is	 a	 coordination	 challenge	 between	 different	 system
software	 components	 managing	 errors	 for	 different	 platform	 hardware	 functions.	 Some	 of	 the
error	events	(such	as	interrupts,	for	example)	managed	by	platform	entities	not	visible	to	the	OS
may	eventually	get	propagated	to	the	OS	level,	but	with	no	associated	information.	Therefore,	an
OS	 is	 also	 expected	 to	 handle	 an	 assortment	 of	 hardware	 error	 events	 from	 several	 different
sources,	with	 limited	 information	and	knowledge	of	 their	 control	path,	 configuration,	 signaling,
error	 log	 information,	 and	 so	 on.	 This	 creates	 synchronization	 challenges	 across	 the	 platform
software	 components	 when	 accessing	 the	 error	 resources,	 especially	 when	 they	 are	 shared
between	firmware	and	OS,	such	as	in	the	case	of	I/O	devices	like	PCI	or	PCIe.	For	example	when
the	OS	does	 receive	 a	 platform-specific	 error	 event/interrupt	 like	NMI,	 it	would	have	no	 clue
about	what	caused	it	and	how	to	deal	with	it.

Figure	17.3:	Traditional	OS	Error	Reporting	Stack

Based	on	this	state	of	OS	error	handling	and	the	identified	needs	for	future	enhancements,	a	new
architecture	 framework	has	been	defined.	This	 framework	 is	 based	on	 the	 top-down	approach,
with	the	OS	usage	model	driving	various	lower	level	system	component	behaviors	and	interfaces.

Error	management	includes	two	different	components,	namely	error	notification/signaling	and
error	logging/reporting,	for	all	system	errors.	The	fundamental	component	of	this	architecture	is	a
model	 for	 error	management,	which	 includes	 an	 architected	 platform	 firmware	 interface	 to	 the
OS.	This	interface	was	defined	to	facilitate	the	platform	to	provide	error	information	to	the	OS	in
a	standardized	format.	This	firmware-based	enhanced	error	reporting	will	coexist	with	legacy	OS
implementations,	 which	 are	 based	 on	 direct	 OS	 access	 to	 the	 architected	 processor	 hardware
error	control	and	status	registers,	such	as	the	processor	machine	check	(MC)	Banks.

The	 architected	 interface	 also	 gives	 the	 OS	 an	 ability	 to	 discover	 the	 platform’s	 error
management	capabilities	and	a	way	 to	configure	 it	 for	 the	chosen	usage	model	with	 the	help	of
standardized	error	objects.	This	enables	the	OS	to	make	the	overall	system	error	handling	policy
management	decisions	through	appropriate	system	configuration	and	settings.

To	 facilitate	 abstracted	 error	 signaling	 and	 reporting	 for	most	 common	platform	 inband	 errors,
namely	 those	 emanating	 from	 the	 processor	 and	 chipset,	 a	 new	 UEFI/ACPI	 Error	 Interface
extension	was	defined	with	the	following	goals:

Achieve	 error	 reporting	 abstraction	 for	 architectural	 and	 non-architectural	 platform
functional	hardware
An	 access	 mechanism	 for	 storage/retrieval	 of	 error	 records	 to	 the	 platform	 NVM,	 for

manageability	software	use
Allowing	 freedom	of	platform	 implementation,	 including	 firmware	based	preprocessing	of
errors
Allow	 discovery	 of	 platform	 error	 sources,	 its	 capabilities	 and	 configurability	 through
firmware	assist
Standardized	error	log	formats	for	key	hardware

Figure	17.4	illustrates	various	components	with	UEFI	extensions	to	satisfy	the	above	goals.

Figure	17.4:	OS	Error	Reporting	Stack	with	UEFI	Standardization

Non-Goals:	The	UEFI	specification	did	not	cover	the	following:
Details	of	the	platform	hardware	design	or	signal	routing
OS	or	other	system	software	error	handling	implementations	or	error	handling	policies
Usage	model	of	this	interface
Standardized	error	log	formats	for	all	hardware

UEFI	Error	Format	Overview

The	 error	 interface	 consists	 of	 a	 set	 of	 OS	 runtime	 APIs	 implemented	 by	 system	 firmware
accessed	 through	UEFI	 or	 a	 SMI	 runtime	 interface	mechanisms.	 These	 standardized	APIs	will
provide	the	following	capabilities:

Error	 reporting	 to	 OS	 through	 standardized	 error	 log	 formats	 as	 defined	 by	 other
specifications
The	ability	 to	store	OS	and	OEM	specific	records	 to	 the	platform	nonvolatile	storage	in	a
standardized	 way	 and	 manage	 these	 records	 based	 on	 an	 implementation-specific	 usage
model

Ability	 to	 discover	 platform	 implementation	 capabilities	 and	 their	 configuration	 through
standardized	platform	specific	capability	record	representation

This	 specification	 only	 covers	 the	 runtime	 API	 details.	 It	 is	 based	 on	 coordination	 between
different	 system	 stack	 components	 through	 architected	 interfaces	 and	 flows.	 It	 requires
cooperation	 between	 system	 hardware,	 firmware,	 and	 software	 components.	 The	 platform
nonvolatile	storage	services	are	the	minimum	required	features	for	this	error	model.

Error	Record	Types

The	API	provides	services	to	support	different	predefined	record	types.	Each	record	type	being
acessed	 is	 identified	 by	 an	 architected	 unique	 Record	 ID,	 which	 is	managed	 by	 the	 interface.
These	Record	IDs	will	 remain	constant	across	all	 implementations,	allowing	different	software
implementations	to	interoperate	in	a	seamless	way.	Record	types	can	include	GUIDs	representing
records	belonging	to	different	categories	as	follows:

1.	 Notification	Types.	Standard	GUIDs	as	defined	in	the	common	error	record	format	for
each	of	the	error	record	types,	which	are	associated	with	information	returned	for
different	event	notification	types	(examples:	NMI,	MCE,	and	so	on).

2.	 Creator	Identifier.	This	can	correspond	to	the	CreatorID	GUID	as	specified	in	the
common	error	record	format	or	other	additional	vendor	defined	GUID.

3.	 Error	Capability.	This	is	a	GUID	as	defined	by	the	platform	vendor	for	platform
implemented	error	feature	capability	discovery	and	configuration	record	types.

Error	Notification	Type
Error	notification	type	records	are	based	on	notification	types	that	are	associated	with	standard
event	signaling/	 interrupts,	each	of	which	is	 identified	by	an	architecturally	assigned	GUID	and
are	defined	below:

Corrected	Machine	Check	(CMC)
	Corrected	Platform	Error	(CPE)
Machine	Check	Exception	(MCE)
PCI	Express	error	notification	(PCIe)
Initilization	(INIT)
Non-Maskable	Interrupt	(NMI)
Boot
DMAr

Recently	 enhancements	 to	 the	 UEFI	 includes	 ARM64	 processor	 and	 platform	 specific	 error
notification	types	with	the	associated	error	records	&	section	as	follows:

Synchronous	External	Abort	(SEA)
Asynchronous	Error	Interrupt	(SEI)
Platform	Error	Interrupt	(PEI)

Creator	Identifier

Creator	ID	record	types	are	associated	with	event	notification	types,	but	the	actual	creator	of	the
error	 record	 can	be	one	of	 the	 system	software	 entities.	This	 creator	 ID	 is	 a	GUID	value	pre-
assigned	by	 the	 system	software	vendor.	This	value	may	be	overwritten	 in	 the	 error	 record	by
subsequent	owners	of	the	record	than	the	actual	creators,	if	it	is	manipulated.	The	standard	creator
IDs	defined	are	as	follows:

Platform	Firmware	as	defined	by	the	firmware	vendor
OS	vendor
OEM

An	OS	saved	record	to	the	platform	nonvolatile	storage	will	have	an	ID	created	by	the	OS,	while
platform-generated	records	will	have	a	firmware	creator	ID.	The	creator	ID	has	to	be	specified
during	retrival	of	the	error	record	from	platform	storage.	Other	system	software	vendors	(OS	or
OEM)	must	define	a	valid	GUID.

Error	Capability
The	 error	 capability	 record	 type	 is	 associated	 with	 platform	 error	 capability	 reporting	 and
configuration.	 Error	 capability	 is	 reserved	 for	 discovering	 platform	 capabilities	 and	 its
configuration.

For	further	details	on	the	APIs	to	get/	set/clear	error	records	from	the	non-volatile	storage	on
the	platform	through	UEFI,	refer	to	the	UEFI	2.3	or	above	specification.

Windows	Hardware	Error	Architecture	and	the	Role	of	UEFI

Prior	to	the	UEFI	common	error	format	standardization,	most	of	the	operating	systems	supported
several	 unrelated	mechanisms	 for	 reporting	 hardware	 errors.	 The	 ability	 to	 determine	 the	 root
cause	of	hardware	errors	was	hindered	by	the	limited	amount	of	error	information	logged	in	the
OS	system	event	log.	These	mechanisms	provided	little	support	for	error	recovery	and	graceful
handing	of	uncorrected	errors.

The	fundamental	basis	for	this	architecture	is	the	reporting	of	platform	error	log	information
to	 the	OS	 in	 a	 standardized	 format,	 so	 that	 it	 is	made	 available	 to	manageability	 software.	 In
addition,	a	standard	access	mechanism	to	this	error	information	through	UEFI	and	ACPI	has	also
been	defined,	both	for	Itanium	and	x86	platforms	as	a	runtime	UEFI	API	Get/	Set	Variable.	This
enabled	 all	 OS	 implementations	 such	 as	 Windows,	 Linux,	 HP-UX	 and	 platform	 BIOS
implementations	to	conform	to	one	standard	for	easier	coordination	and	synchronization	during	an
error	condition.	This	 is	 the	 fundamental	building	block	 that	has	enabled	 interoperability	across
different	manageability	software,	written	either	by	the	OS	vendors,	BIOS	vendors,	or	third	party
application	vendors	by	allowing	them	to	understand	and	speak	the	same	language	to	communicate
error	source	discovery,	configuration,	and	data	format	representation.

The	 Windows	 Hardware	 Error	 Architecture	 (WHEA),	 introduced	 with	 Windows	 Vista,
extends	 the	 previous	 hardware	 error	 reporting	 mechanisms	 and	 brings	 them	 together	 as
components	of	a	coherent	hardware	error	infrastructure.	WHEA	takes	advantage	of	the	additional
hardware	 error	 information	 available	 in	 today’s	 hardware	 devices	 and	 integrates	 much	 more
closely	with	the	system	firmware,	namely	the	UEFI	standardized	error	formats.

WHEA	can	be	summarized	in	a	nutshell	as:
UEFI	Standardized	Common	error	record	format
– Management	applications	benefit
– Pre-boot	and	out-of-band	applications
– Architecturally	defined	for	processor,	memory,	PCIe,	and	so	on.
Error	source	discovery
– Fine-grained	control	of	error	sources
Common	error	handling	flow
– All	hardware	errors	processed	by	same	code	path
Hardware	error	abstractions	became	operating	system	first-class	citizens
– Enables	error	source	management
Firmware	first	error	model
– Some	errors	may	be	handled	 in	 firmware	before	 the	OS	 is	 given	 control,	 like	 errata

management	and	error	containment

As	a	result,	WHEA	provides	the	following	benefits:
Allows	for	more	extensive	error	data	to	be	made	available	in	a	standard	error	record	format
for	determining	the	root	cause	of	hardware	errors.
Provides	mechanisms	for	recovering	from	hardware	errors	to	avoid	bugchecking	the	system
when	a	hardware	error	is	nonfatal.

Supports	user-mode	error	management	applications	and	enables	advanced	computer	health
monitoring	 by	 reporting	 hardware	 errors	 via	 Event	 Tracing	 for	Windows	 (ETW)	 and	 by
providing	an	API	for	error	management	and	control.
Is	 extensible,	 so	 that	 as	 hardware	 vendors	 add	 new	 and	 better	 hardware	 error	 reporting
mechanisms	to	their	devices,	WHEA	allows	the	operating	system	to	gracefully	accommodate
the	new	mechanisms.

The	UEFI	standard	has	now	defined	error	log	formats	for	the	most	common	platform	components
like	 processor,	 memory,	 PCIe,	 and	 so	 on,	 in	 addition	 to	 error	 source	 based	 discovery	 and
configuration	through	ACPI	tables.	These	error	formats	provide	a	higher	level	of	abstraction.	It	is
beyond	 the	 scope	 of	 this	 book	 to	 get	 into	 the	 details,	 but	 an	 overview	 of	 error	 log	 format	 is
illustrated	 in	 Figure	 17.5.	 Each	 of	 the	 error	 events	 is	 associated	 with	 a	 record,	 consisting	 of
multiple	 error	 sections,	 where	 the	 sections	 conforms	 to	 standard	 platform	 error	 types	 like
processor,	memory,	 PCIe,	 and	 so	 on,	 identified	 by	 a	 pre-assigned	GUID.	The	 definition	 of	 the
format	 is	 scalable	 and	 allows	 for	 the	 support	 of	 other	 nonstandard	 OEM-specific	 formats,
including	the	IPMI	SEL	event	section.

Figure	17.5:	WHEA	Overview

The	layout	of	the	UEFI	standardized	error	record	format	used	by	WHEA	is	illustrated	in	Figure	1
7.6.

Figure	17.6:	UEFI	Standard	Error	Record	Format

Some	of	the	standard	error	sources	and	global	controls	covered	by	WHEA/UEFI	are	as	described
in	Table	17.1.

Table	17.1:	Standard	Error	Sources	and	Global	Controls	Covered	by	WHEA/UEFI

Error	Sources System	Interrupts	and	Exceptions:	NMI,	MCE,	MCA,	CMCI,
PCIe,	CPEI,	SCI,	INTx,	BOOT

Standard	Error	For-	mats Processor,	Platform	Memory,	PCIe,	PCI/PCI-X	Bus,	PCI
Component

It	 is	beyond	 the	scope	of	 this	chapter	 to	go	 into	 the	details	of	 the	dynamic	error	handling	flow.
However,	Figure	17.7	provides	an	overview	of	the	error	handling	involving	the	firmware	and	OS
components.

Figure	17.	7:	Generic	Error	Handling	Flow

Technology	Intercepts:	UEFI,	IPMI,	Intel®	AMT,	WS-MAN

The	following	sections	delve	into	various	other	management	technologies	that	relate	to	UEFI	and
how	these	all	can	interoperate.

Intelligent	Platform	Management	Interface	(IPMI)

IPMI	is	a	hardware	level	interface	specification	that	is	“management	software	neutral”	providing
monitoring	 and	 control	 functions	 for	 server	 platforms,	 that	 can	 be	 exposed	 through	 standard
management	 software	 interfaces	 such	 as	 DMI,	 WMI,	 CIM,	 SNMP,	 and	 HPI.	 IPMI	 defines
common,	abstracted,	message-based	interfaces	between	diverse	hardware	devices	and	the	CPU.
IPMI	also	defines	common	sensors	for	describing	the	characteristics	of	such	devices,	which	are
used	 to	monitor	 out-of-band	 functions	 like	 fan/heat	 sink	 failures,	 and	 intrusion	 detection.	 Each
platform	 vendor	 offers	 differentiation	 through	 their	 own	 platform	 hardware	 implementation	 to
support	 IPMI,	 typically	 implemented	with	an	embedded	baseboard	microcontroller	 (BMC)	and
the	associated	firmware	with	a	set	of	event	sensors,	as	shown	in	Figure	17.8.

Figure	17.8:	Typical	IPMI	Platform	Implementation

IPMI	has	defined	a	set	of	standard	sensors,	which	would	monitor	different	platform	functions	and
generate	events	and	report	them	through	the	system	event	log	interface	(SEL)	as	16-byte	error	log

entries.	Each	of	the	sensors	in	turn	is	associated	with	Senor	Data	Record	(SDR),	which	describes
the	 properties	 of	 the	 sensor,	 to	 let	 the	 manageability	 software	 discover	 its	 capability,
configurability	 and	 controllability	 and	 the	 error	 record	 associated	with	 it.	A	 set	 of	 predefined
controls	for	use	by	manageability	software	is	also	defined	by	the	IPMI	specification,	in	addition
to	 other	 OEM-defined	 controls	 through	 SDR.	 The	 standard	 sensors	 along	 with	 the	 standard
controls	do	allow	a	level	of	standardization	for	managing	these	out-of-band	errors.	Some	of	the
standard	sensor	and	global	controls	are	captured	below	in	Table	17.2.

Table	17.2:	IPMI	Standard	Sensor	and	Global	Controls

Sensors Temp,	Voltage,	Current,	Processor,	Physical	Security,	Platform
Security,	Processor,	Power	Supply,	Power	Unit,	Cooling,
Memory,	Drive	Slot,	BIOS	POST,	Watch	Dog,	System	Event,
Critical	Interrupt,	Button/Switch,	Add	in	Card,	Chassis,	Chipset,
FRU,	Cable,	System	Reboot,	Boot	Error,	OS	Boot,	OS	Crash,
ACPI	Power	State,	LAN,	Platform	Alert,	Battery,	Session
Audit

Global	Control Cold	Reset,	Warm	Reset,	Set	ACPI	State

Intel®	Active	Management	Technology	(Intel	AMT)

Intel	AMT	can	be	viewed	as	an	orthogonal	solution	to	IPMI	and	was	originally	developed	with
capabilities	 for	 client	 system	 manageability	 by	 IT	 personnel	 in	 mind,	 as	 opposed	 to	 server
manageability.	However,	Intel	AMT	is	making	its	way	into	the	embedded	and	network	appliance
market	segments	 like	point	of	sale	 terminals,	print	 imaging,	and	digital	signage.	 Intel	AMT	is	a
hardware-	 and	 firmware-based	 solution	 connected	 to	 the	 system’s	 auxiliary	 power	 plane,
providing	IT	administrators	with	“any	platform	state”	access.	Figure	17.9	provides	an	illustration
of	 Intel	AMT’s	architecture.	 Intel	AMT	enables	 secure,	 remote	management	of	 systems	 through
unique	built-in	capabilities,	including:

OOB	 management	 that	 provides	 a	 direct	 connection	 to	 the	 Intel	 AMT	 subsystem,	 either
through	the	operating	system’s	network	connection	or	via	its	TCP/IP	firmware	stack.
Nonvolatile	memory	that	stores	hardware	and	software	information,	so	IT	staff	can	discover
assets	even	when	end-user	systems	are	powered	off,	using	the	OOB	channel.
System	defense	featuring	inbound	and	outbound	filters,	combined	with	presence	detection	of
critical	software	agents,	protects	against	malware	attacks,	and	so	on.

The	most	 recent	versions	of	 the	 Intel	AMT	are	DASH-compliant	 and	 facilitate	 interoperability
with	remote	management	consoles	that	are	DASH-compliant.

Figure	17.9:	Intel®	AMT	Architecture	Stack

Intel	AMT	offering	includes	Manageability	Engine	hardware	with	the	associated	firmware,	which
is	 integrated	 onto	 silicon	 as	 building	 blocks	 such	 as	 IOH	or	 PCH.	 Intel	AMT	 allows	 users	 to
remotely	perform	power	functions,	launch	a	serial	over	LAN	session	to	access	a	system's	BIOS
and	enable	 IDE-Redirect	 to	boot	a	 system	from	a	 floppy,	 image,	or	CD/	DVD	device	 installed
within	the	central	monitor.	Some	of	the	key	services	provided	through	Intel	AMT	are	as	shown	in	
Table	17.3.

Table	17.3:	Key	Services	Provided	through	Intel®	AMT

Services Security	Administration	Interface,	Network	Administration
Interface,	Hardware	Asset	Interface,	Remote	Control	Interface,
Storage	Interface,	Event	Management	Interface,	Storage
Administration	Interface,	Redirection	Interface,	Local	Agent
Presence	Interface,	Circuit	Breaker	Interface,	Network	Time
Interface,	General	Info.	Interface,	Firmware	Update	Interface

Global	Control Cold	Reset,	Warm	Reset,	Power	Up	and	Down,	Set
Power/ACPI	State,	Change	ACL,	Retrieve	Hardware/Software
Inventory,	Firmware	Update,	Set	Clock,	Set	Firewall
Configuration,	Configure	Platform	Events	for	Alert	and	Logging

Like	IPMI,	one	of	the	key	interfaces	of	Intel	AMT	is	event	management,	which	allows	configuring
hardware	and	software	events	to	generate	alerts	and	to	send	them	to	a	remote	console	and/or	log
them	locally.

Web	Services	Management	Protocol	(WS-MAN)

The	 growth	 and	 success	 of	 enterprise	 businesses	 hinges	 heavily	 on	 the	 ability	 to	 control	 costs
while	 expanding	 IT	 resources.	 WS-Management	 addresses	 the	 cost	 and	 complexity	 of	 IT

management	 by	 providing	 a	 common	 way	 for	 systems	 to	 access	 and	 exchange	 management
information	 across	 the	 entire	 IT	 infrastructure.	 By	 using	Web	 services	 to	 manage	 IT	 systems,
deployments	 that	support	WS-Management	will	enable	 IT	managers	 to	 remotely	access	devices
on	 their	 networks—everything	 from	 silicon	 components	 and	 handheld	 devices	 to	PCs,	 servers,
and	 large-scale	 data	 centers.	 WS-Management	 is	 an	 open	 standard	 defining	 a	 SOAP-based
protocol	for	the	management	of	remote	systems,	as	illustrated	in	Figure	17.10.

Figure	17.10:	WS-MAN	Management	Build	Blocks	Overview

All	desktop,	mobile,	and	server	implementations	that	are	compliant	with	DASH	and	support	WS-
MAN	 can	 be	 remotely	 managed	 over	 the	 same	 infrastructure	 like	 the	 management	 console
applications.

Other	Industry	Initiatives

The	Distributed	Management	Task	Force,	 Inc.	 (DMTF)	 is	 the	 industry	 organization	 leading	 the
development,	 adoption,	 and	 promotion	 of	 interoperable	 management	 initiatives	 and	 standards.
DMTF	management	 technologies	 include	 the	Common	Diagnostic	Model	 (CDM)	 initiative,	 the
Desktop	Management	 Interface	 (DMI),	 the	 System	Management	 BIOS	 (SMBIOS),	 the	 Systems
Management	 Architecture	 for	 Server	 Hardware	 (SMASH)	 initiative,	 Web-Based	 Enterprise
Management	 (WBEM)—including	 protocols	 such	 as	 CIM-XML	 and	 Web	 Services	 for
Management	 (WS-Management)—	 which	 are	 all	 based	 on	 the	 Common	 Information	 Model
(CIM).	Information	about	the	DMTF	technologies	and	activities	can	be	found	at	www.dmtf.org.

http://www.dmtf.org

The	UEFI/IPMI/Intel®	AMT/WS-MAN	Bridge

This	 part	 of	 the	 analysis	 brings	 out	 the	 way	 these	 different	 management	 technologies	 and
interfaces	can	be	bridged	together,	either	with	the	already	available	hooks	in	them	or	with	some
yet-to-be-defined	extensions,	as	illustrated	in	Figure	17.11.

The	previous	section	discussed	the	UEFI	industry	standard	specification	covering	the	common
error	 formats	 for	 in-band	errors	and	how	manageability	 software	 running	on	 top	of	 the	OS	can
take	 immediate	 corrective	 action	 through	 the	 abstracted	 interface.	However,	 the	 common	 event
log	 format	 for	out-of-band	errors	 is	not	covered	by	UEFI,	but	 is	 left	 to	 the	 individual	platform
vendors	to	implement	through	either	IPMI	or	Intel	AMT	interfaces.

Figure	17.11:	Management	Build	Blocks	Linking	IPMI,	HPI,	UEFI,	and	WHEA

IPMI	Error	Records	to	UEFI

UEFI	can	act	as	a	conduit	for	all	the	SEL	event	log	information	for	out-of-band	errors	logged	by
IPMI	and	provide	it	to	UEFI,	encapsulated	as	a	UEFI	standardized	OEM-specific	error	format	to
the	OS.	This	requires	a	private	platform-specific	interface	between	UEFI	and	the	IPMI	firmware
layers	for	exchange	of	this	information.	It	is	also	possible	for	the	UEFI	to	extend	and	define	yet
another	 error	 format	 for	 IPMI	 SEL	 logs	 identified	 with	 a	 new	 GUID.	 This	 way,	 an	 OS	 or
manageability	application	would	be	able	to	get	complete	platform	errors	for	in-band	and	out-of-
band	errors	in	a	standardized	format	through	one	single	UEFI-based	interface.	UEFI	can	intercept
the	 IPMI	 sensor	 events	 through	 the	 firmware	 first	 model	 as	 defined	 by	Microsoft	WHEA	 and
provide	 the	 SEL	 logs	 to	 the	 OS.	 This	 type	 of	 extension	 can	 be	 modeled	 along	 the	 Itanium

Processor	Machine	 Check	Architecture	 specification	 for	 IPMI	 error	 logging	 and	 is	 an	 area	 of
opportunity	of	future	standardization	effort.

UEFI	Error	Records	to	IPMI

The	 IPMI	 has	 already	 defined	 standard	 event	 sensors	 like	 Processor,	Memory,	 System	 Event,
Chipset	and	Platform	Alert.	 It	 is	also	possible	 to	define	a	new	UEFI	or	WHEA	sensor	 type	for
IPMI	 and	 channel	 the	 UEFI	 defined	 standard	 error	 formatted	 information	 over	 to	 IPMI,
encapsulated	as	OEM-specific	data	of	a	variable	size.	IPMI	SEL	log	size	is	currently	defined	to
be	16-bytes	and	hence	would	require	a	change	in	IPMI	specification	to	support	variable	size	SEL
log	size.	This	way,	a	remote	or	local	manageability	application	would	be	able	to	get	complete	in-
band	and	out-of-band	error	information	through	one	single	IPMI.

Intel®	AMT	and	IPMI

These	 two	 interfaces,	 which	 were	 defined	 with	 different	 usage	 models	 in	 mind,	 do	 have	 an
overlap	in	functionality.	Intel	AMT	defines	an	entire	hardware	and	firmware	framework	for	client
system	 management,	 while	 IPMI	 only	 defined	 the	 firmware	 interface	 without	 any	 hardware
support	 for	server	system	manageability.	 IPMI	can	be	 implemented	on	 the	hardware	needed	for
Intel	AMT	if	the	ME	hardware	becomes	a	standard	feature	on	all	Intel	solutions	or	chipsets.

Future	Work

Table	 17.4	 shows	 the	 four	 areas	 of	 potential	 work	 for	 standardization	 that	 offers	 interesting
possibilities:

Bridge	over	the	Intel	AMT/IPMI	functionality	over	to	the	UEFI-OS	error	reporting
Bridge	over	of	the	OS-UEFI	error	management	over	to	the	Intel	AMT/IPMI	functionality
Manageability	application	leveraging	from	WS-MAN	or	other	similar	abstracted	interfaces
with	 a	 unified	 error	 reporting	 and	 management	 for	 the	 entire	 platform,	 either	 obtained
through	the	OS	or	Intel	AMT/IPMI

Table	17.4:	Manageability	and	error	management	standards	and	possible	future	work.

Configuration	Namespace

The	UEFI	platform	configuration	 infrastructure	has	been	designed	 to	 facilitate	 the	 extraction	of
meaningful	configuration	data	whether	manually	or	via	a	programmatic	(script-based)	mechanism.
By	 discerning	meaning	 from	what	might	 otherwise	 be	 opaque	 data	 objects,	 the	UEFI	 platform
configuration	 infrastructure	makes	 it	possible	 to	manage	 the	configuration	of	both	motherboard-
specific	as	well	as	add-in	device	configuration	settings.

Associating	meaning	with	a	question
To	achieve	programmatic	configuration	each	configuration-related	IFR	op-code	must	be	capable
of	being	associated	with	some	kind	of	meaning	(e.g.	“Set	iSCSI	Initiator	Name”).

Below	is	an	illustration	that	depicts	an	EFI_IFR_QUESTION_HEADER.	Each	configuration-
related	 IFR	 op-code	 is	 preceded	 with	 such	 a	 header,	 and	 the	 3rd	 byte	 in	 the	 structure	 is
highlighted	 because	 it	 becomes	 the	 lynchpin	 upon	which	meaning	 can	 be	 associated	 to	 the	 op-
code.

Figure	17.12:	Sample	IFR	Op-code	encoding

Prompt	Token	and	a	new	language
Given	 that	 for	 every	 configurable	 registered	 item	 in	 the	 HII	 Database	 (see
EFI_HII_DATABASE_PROTOCOL)	 there	 will	 at	 least	 exist	 a	 set	 of	 IFR	 forms	 and	 a
corresponding	set	of	strings.	Think	of	the	IFR	forms	as	a	web	page,	each	of	which	is	represented
by	an	IFR	op-code.	These	pairs	of	op-codes	and	strings	are	sufficient	to	contain	all	the	metadata
required	for	a	browser	or	a	programmatic	component	(e.g.	driver,	script,	etc.)	to	render	a	UI	or
configure	a	component	in	the	platform.

Since	another	inherent	feature	of	the	UEFI	configuration	infrastructure	is	localization,	each	of
the	IFR	op-codes	make	references	to	their	related	strings	via	a	Token	abstraction.	This	allows	a
reference	to	a	string	(e.g.	Token	#22)	to	be	language	agnostic.

Within	 the	 HII	 database,	 multiple	 sets	 of	 strings	 can	 be	 registered	 such	 that	 any	 given
component	might	support	one	or	more	languages.	These	languages	typically	are	associated	with
user-oriented	translations	such	as	Chinese,	English,	Spanish,	etc.	Given	this	inherent	capability	to
associate	op-codes	with	strings,	it	should	also	be	mentioned	that	for	a	registered	HII	component
(handle),	each	of	the	Prompt	Token	numbers	are	required	to	be	unique	if	they	are	to	be	correctly
managed	 or	 script-enabled.	 To	 be	 clear,	 this	 doesn’t	 mean	 that	 each	 Prompt	 Token	 must	 be

globally	 unique	 across	 the	 entire	 HII	 database,	 it	 must	 be	 unique	 within	 the	 scope	 of	 the	 HII
handle	being	referenced.

There	 is	 a	 concept	 introduced	 in	 29.2.11.2	 (Working	with	 a	UEFI	Configuration	Language)
that	speaks	of	a	language	that	isn’t	intended	to	be	displayed	or	user	visible.	This	is	a	key	concept
that	allows	data	to	be	seamlessly	introduced	into	the	HII	database	content	without	perturbing	the
general	flow	or	design	of	any	existing	IFR.

Below	is	an	illustration	which	demonstrates	the	use	of	the	x-UEFI-ns	language.	It	is	defined	as
the	platform	configuration	language	used	by	this	specification	and	the	keyword	namespace	further
defined	in	this	registry.

In	 the	 example,	we	 have	 an	English	 (as	 spoken	 in	 the	US)	 string,	 a	 Spanish	 (as	 spoken	 in
Mexico)	 string,	 and	 a	 UEFI	 platform	 configuration	 string.	 The	 latter	 string’s	 value	 is
“iSCSIInitiatorName”	and	this	keyword	is	an	example	of	what	would	be	the	interoperability	used
to	manage	and	extract	meaning	from	the	configuration	metadata	in	the	platform.

Figure	17.13

For	example,	 a	utility	 (or	administrator)	may	query	 the	platform	 to	determine	 if	 a	platform	has
exposed	 “iSCSIInitiatorName”	 within	 the	 configuration	 data.	 Normally,	 there	 would	 be	 no
programmatic	 way	 of	 determining	 whether	 this	 platform	 contained	 this	 data	 object	 by	 simply
examining	 the	op-codes.	However,	with	a	namespace	definition	 in	place,	a	program	can	do	 the
following	to	solve	this	issue:
1. Collect	a	list	of	all	of	the	HII	handles	maintained	by	the	HII	database.
2. For	 each	 of	 the	 registered	HII	 database	 entries,	 look	 to	 see	 if	 any	 strings	 are	 registered

within	the	x-UEFI-ns	language	name.
a. If	 so,	 look	 for	 a	 string	 match	 of	 “iSCSIInitiatorName”	 in	 any	 of	 the	 strings	 for	 a

particular	HII	handle
i. If	none	are	found,	go	to	the	next	HII	handle	and	execute	2a	again.
ii. If	 there	 are	 no	 more	 HII	 handles,	 then	 this	 platform	 doesn’t	 currently	 expose

“iSCSIInitiatorName”	as	a	programmatically	manageable	object.
3. If	a	match	is	found,	then	note	the	String	Token	value	(e.g.	4).
4. Proceed	 to	 search	 through	 that	HII	 handle’s	 registered	 IFR	 forms	 for	 a	 configuration	 op-

code	that	has	a	matching	Prompt	Token	value	(e.g.	4).
5. Once	 discovered,	 the	 configuration	 op-code	 contains	 all	 of	 the	 information	 needed	 to

understand	where	that	iSCSI	Initiator	Name	information	is	stored.
a. This	allows	a	program	to	optionally	extract	 the	current	settings	as	well	as	optionally

set	the	current	settings.

Even	 though	 the	 above	 steps	 are	 an	 illustration	 of	 what	 one	 might	 have	 to	 do	 to	 extract	 the
information	necessary	to	match	a	Keyword	to	its	associated	value,	there	are	facilities	defined	in
the	EFI_HII_CONFIG_ROUTING_PROTOCOL,	 and	more	 specifically	 the	ExtractConfig()	 and
RouteConfig()	functions	to	facilitate	the	getting	and	setting	of	keyword	values.

Software	Layering

Below	 is	 an	 illustration	which	 shows	 a	 common	 sample	 implementation’s	 interaction	 between
agents	within	a	UEFI-enabled	platform.	Some	implementations	may	vary	on	the	exact	details.

1.	 Any	application	which	wants	to	get	or	set	any	of	the	values	abstracted	by	a	keyword	can
interact	with	the	API’s	that	are	defined	within	the	UEFI	specification.	It	would	be	the
responsibility	of	this	application	to	construct	and	interpret	keyword	strings	that	are
passed	or	returned	from	the	API’s.

2.	 An	agent	within	the	system	will	expose	the	EFI_CONFIG_KEYWORD_HANDLER_
PROTOCOL	interface	with	its	GetData()	and	SetData()	functions.	These	services	will
interact	both	with	the	application	that	called	it	and	the	underlying	routing	routines	within
the	system.

3.	 The	EFI_HII_CONFIG_ROUTING_PROTOCOL	is	intended	to	act	as	a	mechanism	by
configuration	reading	or	writing	directives	are	proxied	to	and	from	the	appropriate
underlying	device(s)	that	have	exposed	configuration	access	abstractions.

4.	 Configurable	items	in	the	platform	will	expose	an	EFI_HII_CONFIG_ACCESS_
PROTOCOL	interface	that	allows	the	setting	or	retrieving	of	configuration	data.

5.	 The	component	in	the	platform	which	has	exposed	configuration	access	abstractions.

Figure	17.14

Namespace	Entries

This	document	establishes	the	UEFI	Platform	Configuration	language	as:

x-UEFI-ns
The	keywords	defined	in	this	UEFI	Configuration	Namespace	registry	should	all	be	discoverable
within	the	platform	configuration	language	of	“x-UEFI-ns”.

Alternate	Storage	and	Namespaces
Although	this	namespace	registry	deals	solely	with	the	keywords	associated	with	the	x-UEFI-ns
platform	 configuration	 namespace,	 the	 underlying	 configuration	 infrastructure	 supports
abstractions	that	encompass	alternate	x-UEFI-*	namespace	usages.

x-UEFI-CompanyName

If	a	company	wanted	to	expose	some	additional	keywords	for	their	own	private	use,	they	must	use
one	of	the	ID’s	referenced	in	the	PNP	and	ACPI	ID	Registry.

For	 example,	 if	 Intel	 wanted	 to	 expose	 some	 additional	 settings,	 they	would	 use:	 x-UEFI-
INTC.

Handling	Multi-instance	values

There	are	some	keywords	which	may	support	multiple	instances.	This	simply	means	that	a	given

defined	keyword	may	be	exposed	multiple	times	in	the	system.	Since	instance	values	are	exposed
as	a	“:#”	(#	is	a	placeholder	for	a	one	to	four	digit	decimal	number)	suffix	to	the	keyword,	with
the	“#”	holding	the	place	of	an	instance	value,	we	typically	use	that	value	as	a	means	of	directly
addressing	 that	keyword.	However,	 if	 there	are	multiple	agents	 in	 the	system	exposing	a	multi-
instance	 keyword,	 one	 might	 see	 several	 copies	 of	 something	 like	 “iSCSIInitiatorName:1”
exposed.

Under	 normal	 circumstances,	 an	 application	 would	 interact	 with	 the	 keyword	 handler
protocol	to	retrieve	the	keyword	it	desired	via	the	GetData()	function.	What	is	retrieved	would	be
any	instances	that	match	the	keyword	request.

For	 instance,	 when	 retrieving	 the	 iSCSIInitiatorName:1	 keyword,	 the	 keyword	 protocol
handler	will	search	for	any	instances	of	the	keyword	and	return	to	the	caller	what	it	found.

The	illustration	below	shows	an	example	of	the	returned	keyword	string	fragments	based	on
what	the	keyword	protocol	handler	discovered.

In	the	case	of	iSCSIInitiatorName:1,	the	illustration	shows	how	multiple	controllers	exposed
the	 same	keyword	and	even	 the	 same	 instance	values.	The	 response	 fragments	below	 illustrate
how	 the	 “PATH=”	 value	would	 correspond	 to	 the	 device	 path	 for	 a	 given	 device	 and	 each	 of
those	device	paths	uniquely	identify	the	controller	responding	to	the	request.	This	gives	the	caller
sufficient	 information	 to	 uniquely	 adjust	 a	 keyword	 [via	 a	 SetData()	 call]	 by	 specifying	 the
appropriate	device	path	for	the	controller	in	the	keyword	string.

Figure	17.15

Summary

In	 the	 case	 of	 manageability,	 the	 UEFI	 framework	 will	 help	 make	 platforms	 more	 robust	 and
reliable	through	remote	management	interfaces	like	Intel	AMT,	and	WS-MAN,	to	meet	the	RAS
goal	of	five	nines.	This	unified	approach	would	be	a	win-win	to	all	(OEM,	IBV,	OSV),	to	deliver
a	great	end	user	value	and	experience	with	a	complete	solution	for	in-band	and	out-of-band	error
and	event	management.

The	 net	 result	 of	 the	 level	 of	 abstraction	 provided	 by	 UEFI/WHEA	 and	 Intel	 AMT/IPMI
technologies	in	security	and	manageability	space	will	now	enable	many	vendors	to	develop	OS-
agnostic	 unified	 tools	 and	 application	 software	 for	 all	 embedded/client/server	 platforms.	 This
would	allow	them	to	spend	their	efforts	on	innovation	with	a	rich	set	of	features	at	the	platform
level	 rather	 than	 on	 developing	 multiple	 platform-specific	 implementations	 for	 the	 same
manageability	functionality.

Appendix	A	–	Data	Types
Table	A.1	contains	the	set	of	base	types	that	are	used	in	all	UEFI	applications	and	EFI	drivers.
Use	 these	 base	 types	 to	 build	more	 complex	 unions	 and	 structures.	 The	 file	EFIBIND.H	 in	 the
UDK	2010	 located	on	www.tianocore.org	contains	 the	code	 required	 to	map	compiler-specific
data	types	to	the	UEFI	data	types.	If	you	are	using	a	new	compiler,	update	only	this	one	file;	all
other	EFI	related	sources	should	compile	unmodified.	Table	A.2	contains	the	modifiers	you	can
use	in	conjunction	with	the	UEFI	data	types.

Table	A.1:	Common	EFI	Data	Types

Mnemonic Description
BOOLEAN Logical	Boolean.	1-byte	value	containing	a	0	for	FALSE	or	a	1	for	TRUE.	Other	values	are

undefined.
INTN Signed	value	of	native	width.	(4	bytes	on	IA-32,	8	bytes	on	Itanium®-based	operations)
UINTN Unsigned	value	of	native	width.	(4	bytes	on	IA-32,	8	bytes	on	Itanium®-based	operations)
INT8 1-byte	signed	value.
UINT8 1-byte	unsigned	value.
INT16 2-byte	signed	value.
UINT16 2-byte	unsigned	value.
INT32 4-byte	signed	value.
UINT32 4-byte	unsigned	value.
INT64 8-byte	signed	value.
UINT64 8-byte	unsigned	value.
CHAR8 1-byte	Character.
CHAR16 2-byte	Character.	Unless	otherwise	specified	all	strings	are	stored	in	the	UTF-16	encoding	format

as	defined	by	Unicode	2.1	and	ISO/IEC	10646	standards.
VOID Undeclared	type.
EFI_GUID 128-bit	buffer	containing	a	unique	identifier	value.	Unless	otherwise	specified,	aligned	on	a	64-bit

boundary.
EFI_STATUS Status	code.	Type	INTN.
EFI_HANDLE A	collection	of	related	interfaces.	Type	VOID	*.
EFI_EVENT Handle	to	an	event	structure.	Type	VOID	*.
EFI_LBA Logical	block	address.	Type	UINT64.
EFI_TPL Task	priority	level.	Type	UINTN.
EFI_MAC_ADDRESS 32-byte	buffer	containing	a	network	Media	Access	Control	address.
EFI_IPv4_ADDRESS 4-byte	buffer.	An	IPv4	Internet	protocol	address.
EFI_IPv6_ADDRESS 16-byte	buffer.	An	IPv6	Internet	protocol	address.
EFI_IP_ADDRESS 16-byte	buffer	aligned	on	a	4-byte	boundary.	An	IPv4	or	IPv6	Internet	protocol	address.
<Enumerated	Type> Element	of	an	enumeration.	Type	INTN.
sizeof	(VOID	*) 4	bytes	on	supported	32-bit	processor	instructions.	8	bytes	on	supported	64-bit	processor

instructions.

Table	A.2:	Modifiers	for	Common	EFI	Data	Types

http://www.tianocore.org

Mnemonic Description
IN Datum	is	passed	to	the	function.
OUT Datum	is	returned	from	the	function.
OPTIONAL Datum	is	passed	to	the	function	is	optional,	and	a	NULL	may	be	passed	if	the	value	is	not	supplied.
STATIC The	function	has	local	scope.	This	replaces	the	standard	C	static	key	word,	so	it	can	be	overloaded	for

debugging.
VOLATILE Declare	a	variable	to	be	volatile	and	thus	exempt	from	optimization	to	remove	redundant	or	unneeded

accesses.	Any	variable	that	represents	a	hardware	device	should	be	declared	as	VOLATILE.
CONST Declare	a	variable	to	be	of	type	const.	This	is	a	hint	to	the	compiler	to	enable	optimization	and	stronger	type

checking	at	compile	time.
EFIAPI Defines	the	calling	convention	for	EFI	interfaces.	All	EFI	intrinsic	services	and	any	member	function	of	a

protocol	must	use	this	modifier	in	the	function	definition.

Appendix	B	–	Status	Codes
Most	UEFI	interfaces	return	an	EFI_STATUS	code.	Table	B.1	lists	the	status	code	ranges.	Tables
B.2,	B.3,	 and	B.4	 list	 these	 codes	 for	 success,	 errors,	 and	warnings,	 respectively.	Error	 codes
also	have	their	highest	bit	set,	so	all	error	codes	have	negative	values.	The	range	of	status	codes
that	have	 the	highest	bit	set	and	 the	next	 to	highest	bit	clear	are	 reserved	for	use	by	UEFI.	The
range	of	status	codes	that	have	both	the	highest	bit	set	and	the	next	to	highest	bit	set	are	reserved
for	 use	 by	OEMs.	 Success	 and	warning	 codes	 have	 their	 highest	 bit	 clear,	 so	 all	 success	 and
warning	codes	have	positive	values.	The	range	of	status	codes	that	have	both	the	highest	bit	clear
and	the	next	to	highest	bit	clear	are	reserved	for	use	by	UEFI.	The	range	of	status	code	that	have
the	highest	bit	clear	and	the	next	to	highest	bit	set	are	reserved	for	use	by	OEMs.

Table	B.1:	EFI_STATUS	Code	Ranges

IA-32	Range Intel®	Itanium®
ArchitectureRange

Description

0x00000000

-0x1fffffff

0x0000000000000000-

0x1fffffffffffffff
Success	and	warning	codes	reserved	for	use	by	UEFI	main	specification.	See
Tables	B.2	and	B.4	for	valid	values	in	this	range.

0x20000000	-

0x3fffffff

0x2000000000000000-

0x3fffffffffffffff
Success	and	warning	codes	reserved	for	use	by	the	Platform	Initialization
Architecture	Specification.

0x40000000

-0x7fffffff

0x4000000000000000-

0x7fffffffffffffff
Success	and	warning	codes	reserved	for	use	by	OEMs.

0x80000000

-0x9fffffff

0x8000000000000000-

0x9fffffffffffffff
Error	codes	reserved	for	use	by	the	UEFI	main	specification.	See	Table	B.3	for
valid	values	for	this	range.

0xa0000000	-

0xbfffffff

0xafffffffffffffff-

0xbfffffffffffffff
Error	codes	reserved	for	use	by	the	Platform	Initialization	Architecture
Specification.

0xc0000000

-0xffffffff

0xc000000000000000-

0xffffffffffffffff
Error	codes	reserved	for	use	by	OEMs.

Table	B.2:	EFI_STATUS	Success	Codes	(High	Bit	Clear)

Mnemonic Value Description
EFI_SUCCESS 0 The	operation	completed	successfully.

Table	B.3:	EFI_STATUS	Error	Codes	(High	Bit	Set)

Mnemonic Value Description
EFI_LOAD_ERROR 1 The	image	failed	to	load.
EFI_INVALID_PARAMETER 2 A	parameter	was	incorrect.
EFI_UNSUPPORTED 3 The	operation	is	not	supported.
EFI_BAD_BUFFER_SIZE 4 The	buffer	was	not	the	proper	size	for	the	request
EFI_BUFFER_TOO_SMALL 5 The	buffer	is	not	large	enough	to	hold	the	requested	data.	The	required	buffer

size	is	returned	in	the	appropriate	parameter	when	this	error	occurs.
EFI_NOT_READY 6 There	is	no	data	pending	upon	return.
EFI_DEVICE_ERROR 7 The	physical	device	reported	an	error	while	attempting	the	operation.
EFI_WRITE_PROTECTED 8 The	device	cannot	be	written	to.

EFI_OUT_OF_RESOURCES 9 A	resource	has	run	out.
EFI_VOLUME_CORRUPTED 10 An	inconsistency	was	detected	on	the	file	system	causing	the	operation	to	fail.
EFI_VOLUME_FULL 11 The	file	system	has	no	more	space.
EFI_NO_MEDIA 12 The	device	does	not	contain	any	medium	to	perform	the	operation.
EFI_MEDIA_CHANGED 13 The	medium	in	the	device	has	changed	since	the	last	access.
EFI_NOT_FOUND 14 The	item	was	not	found.
EFI_ACCESS_DENIED 15 Access	was	denied.
EFI_NO_RESPONSE 16 The	server	was	not	found	or	did	not	respond	to	the	request.
EFI_NO_MAPPING 17 A	mapping	to	a	device	does	not	exist.
EFI_TIMEOUT 18 The	timeout	time	expired.
EFI_NOT_STARTED 19 The	protocol	has	not	been	started.
EFI_ALREADY_STARTED 20 The	protocol	has	already	been	started.
EFI_ABORTED 21 The	operation	was	aborted.
EFI_ICMP_ERROR 22 An	ICMP	error	occurred	during	the	network	operation.
EFI_TFTP_ERROR 23 A	TFTP	error	occurred	during	the	network	operation.
EFI_PROTOCOL_ERROR 24 A	protocol	error	occurred	during	the	network	operation.
EFI_INCOMPATIBLE_VERSION 25 The	function	encountered	an	internal	version	that	was	incompatible	with	a	version

requested	by	the	caller.
EFI_SECURITY_VIOLATION 26 The	function	was	not	performed	due	to	a	security	violation.
EFI_CRC_ERROR 27 A	CRC	error	was	detected.
EFI_END_OF_MEDIA 28 Beginning	or	end	of	media	was	reached.
EFI_END_OF_FILE 31 The	end	of	the	file	was	reached.
EFI_INVALID_LANGUAGE 32 The	language	specified	was	invalid.

Table	B.4:	EFI_STATUS	Warning	Codes	(High	Bit	Clear)

Mnemonic Value Description
EFI_WARN_UNKNOWN_GLYPH 1 The	Unicode	string	contained	one	or	more	characters	that	the	device

could	not	render	and	were	skipped.
EFI_WARN_DELETE_FAILURE 2 The	handle	was	closed,	but	the	file	was	not	deleted.
EFI_WARN_WRITE_FAILURE 3 The	handle	was	closed,	but	the	data	to	the	file	was	not	flushed	properly.
EFI_WARN_BUFFER_TOO_SMALL 4 The	resulting	buffer	was	too	small,	and	the	data	was	truncated	to	the

buffer	size.

Index
ACPI	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14,	15,	16,	17,	18,	19
Allocate	Buffer	1,	2
API	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13
Applications	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14,	15,	16,	17
Architectural	Protocols	(APs)	1,	2,	3,	4,	5,	6,	7
–	CPU	Architectural	Protocol	1,	2
–	Driver	Execution	Environment	(DXE)	viii,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14
–	Metronome	Architectural	Protocol	1,	2
–	Real	Time	Clock	Architectural	Protocol	1,	2,	3
–	Reset	Architectural	Protocol	1,	2,	3,	4
–	Security	Architectural	Protocol	1,	2,	3
–	Timer	Architectural	Protocol	1,	2,	3,	4,	5
–	Variable	Architectural	Protocol	1,	2,	3
–	Watchdog	Timer	Architectural	Protocol	1,	2,	3
ASCII	1,	2,	3,	4
Attributes
–	Firmware	Boot	Manager	1,	2
–	Authenticode	1,	2
BIOS	1,	2,	3,	4
–	evolution	vi,	1,	2,	3,	4,	5,	6,	7,	8
Block	I/0	Protocol	1,	2,	3,	4
Boolean	Expression	1
Boot
–	Devices	1,	2
–	Firmware	1,	2,	3,	4
–	flow	1,	2,	3,	4,	5,	6,	7,	8
–	Loader	1,	2,	3,	4,	5
–	manager	1,	2,	3,	4,	5,	6
–	mode	1,	2,	3,	4
–	network	booting	1,	2
–	performance	1,	2,	3,	4,	5
–	boot	media	1,	2
–	marketing	requirements	1,	2,	3
–	optimized	1,	2,	3,	4,	5
–	EFI	Boot	Services	Table	1,	2
–	target	1,	2,	3,	4,	5,	6
–	variables	1,	2,	3
Boot	Device	Selection	(BOS)	ix,	1,	2,	3,	4,	5,	6
–	phase	1
Boot	Firmware	Volume	(BFV)	1,	2,	3

–	Processor	Abstraction	Layer	(PAL)	1,	2,	3
–	UEFI	PI	architecture	1
Boot	Mode
–	sleep	state	1,	2
Bus
–	driver	1,	2,	3,	4,	5,	6,	7
Cache-as-RAM	(CAR)	1
Central	Processing	Unit	(CPU)	1,	2
Configuration	Access	Protocol	1,	2
Configuration	Table	1,	2,	3
Console
–	devices	1,	2,	3,	4,	5,	6
–	services	1,	2,	3,	4,	5
Consumer	Electronics	(CE)	Device
–	firmware	1,	2
Controlled	Data	Items	(CDis)	1
Controllers
–	Host	Bus	Controllers	1,	2
Coreboot	1,	2
CPU	Architectural	Protocol	1,	2,	3
CRC	1,	2,	3
Dependency	Expression	1,	2,	3,	4,	5
Device	Drivers	1,	2,	3,	4,	5,	6
Device	Handle	1,	2,	3,	4,	5
Device	Path	Protocol	1,	2,	3,	4,	5
Distributed	Management	Task	Force	(DMTF)	1,	2
Driver	Binding	Protocol	1,	2,	3,	4,	5
Driver	Execution	Environment	(DXE)	viii,	1,	2
–	components	1,	2,	3
–	core	1,	2,	3
–	dispatcher	1,	2,	3,	4
–	drivers	1,	2,	3,	4,	5,	6,	7,	8
–	Foundation	1,	2,	3,	4
–	handoff	with	Pre-EFI	Initialization	(PEI)	1
–	initial	program	load	(IPL)	1,	2,	3,	4
–	phase	1,	2,	3,	4,	5,	6
–	services	table	1,	2
Drivers	1,	2,	3,	4,	5,	6,	7,	8
–	DXE	1,	2
–	PCI	1,	2,	3,	4,	5,	6,	7,	8,	9,	10
–	UEFI	1,	2
DXE	Foundation	1,	2,	3
Dynamic	RAM	(DRAM)	1,	2,	3
EFI	Runtime	Services	Table	1,	2,	3,	4

Elevation	of	Privilege	1
Embedded	Operating	Systems	1,	2
–	errors	1,	2,	3,	4,	5,	App	B
–	UEFI	Not	Ready	error	1
Event	and	Timer	Services	1,	2
Events
–	Hot	Plug	1,	2,	3,	4
Extensible	Firmware	Interface	(EFI)	1,	2,	3,	4,	5,	6
–	Driver	Execution	Environment	(DXE)	viii,	1,	2
–	system	table	1,	2,	3,	4,	5,	6,	7,	8
FFS	1,	2
Firmware	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14,	15
Firmware	Boot	Manager	1,	2
Firmware	Volume	(FV)	1,	2,	3,	4,	5
Flush	1,	2,	3
Function	Prototype	1,	2
Functions
–	Allocate	Buffer	1,	2,	3
–	Close	1,	2,	3,	4,	5,	6
–	Flush	1,	2,	3
–	Get	Timer	Period	1,	2
–	Map	1,	2
–	Media	1
–	Mem	1,	2,	3,	4,	5,	6,	7,	8,	252,	9
–	Set	Variable	1,	2
Global	Coherency	Domain	Services	1
GUID	1,	2,	3,	4,	5,	6,	7,	8,	9
Hand-Off	Block	(HOB)	1
Handle	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11
–	driver	image	1,	2
Handle	Database	1,	2,	3
Hand-Off	Block	(HOB)	1,	2,	3
–	list	1,	2,	3,	4,	5,	6,	7,	8
Host-Bus	Adapter	(HBA)	viii,	1,	2,	3,	4
Host	Bus	Controllers	1,	2
Hot	Plug	Events	1,	2,	3
Image	Handle	1,	2
Input/Output	(1/0)	2
–	text	1/0	2,	3,	4
Intel®	Active	Management	Technology	(Intel	AMT)	1,	2
–	System	on	a	Chip	(SoC)	1,	2
Imel®	Core	iT"M	processor	1,	2
Intelligent	Platform	Management	Interface	(IPMI)	1,	2,	3
Internet	Small	Computer	Systems	Interface	(iSCSI)	1,	2

Itanium	1,	2,	3,	4,	5,	6,	7,	8,	370,	9,	10,	App	A
Key/Value	Pairs	1
Lakeport	1
Map	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	App	A
Miscellaneous	Services	1
Module	Development	Environment	(MOE)	1
MPS	tables	1,	2
Multiprocessor	1,	2,	3,	4
Network	Console	1
Networking
UEFI	drivers	1,	2,	3,	4,	5,	6,	7,	8,	9
Network	Interface	Controller	1
NT1	Platform	2,	3,	4
emulation	1,	2,	3,	4
limitations	1,	2
WinNtThunk	capability	1,	2,	3
NULL	Interface	Pointer	1,	2
Open	Firmware	1,	2
Original	Equipment	Manufacturers	(OEMs)	1
OS	Kernel	1,	2,	3,	4
OS	Loader	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11
OS	Partition	1,	2
Output	Devices	viii,	1,	2,	3
Partition	viii,	1,	2,	3,	4,	5,	6,	7
PC	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12
PCI.	See	Peripheral	Component	Interconnect	(PCI)	1,	2,	3,	4,	5,	6,	7,	8,	9,	10
PCI	Protocols	1,	2,	3
PCI	Host	Bridge	Resource	Allocation	Protocol	1
Peripheral	Component	Interconnect	(PCI)	1,	2
–	bus	drivers	1,	2
–	buses	1,	2,	3,	4,	5,	6,	7,	8
–	base	address	registers	1
–	host	bus	controllers	1,	2
–	host	buses	1,	2
–	memory	space	1,	2,	3,	4
–	n	host	bridges	1
–	root	bridges	1,	2,	3
–	segments	1,	2,	3,	4
Platform	components	1,	2,	3,	4
Platform	Controller	Hub	(PCH)	1
Platform	Driver	Override	Protocol	1
Platform	Error	Reporting
–	in-band	errors	1,	2
–	intelligent	platform	management	interface	(IPMI)	1,	2

–	out-of-band	errors	1,	2,	3
Platform	Firmware	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13
–	initialization	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13
Platform	Initialization	(PI)	1,	2,	3,	4,	5
–	Specification	ix,	1
–	Unified	Extensible	Firmware	Interface	(UEFI)	1,	2
Platform	Manufacturer	(PM)	1,	2,	3,	4
Platform	Security	1,	2,	3
–	architecture	viii,	1,	2,	3,	4,	5,	6,	7
Portable	Executable/Common	File	Format	(PE/	COFF)	1,	2,	3
–	Driver	Execution	Environment	(DXE)	drivers	1
Preboot	eXecution	Environment	(PXE)	BIOS	1
Pre-EFI	Initialization	(PEI)	viii,	1,	2
–	Dispatcher	1,	2,	3
–	Foundation	1,	2,	3,	4,	5
–	Hand-Off	Block	(HOB)	list	1
–	PEI-to	DXE	handoff	1
–	modules	(PEIMs)	1,	2
–	operation	1,	2,	3,	4,	5,	6,	7,	8,	9
PEIM-to-PEIM	interface	(PPI)	1,	2
–	phase	1,	2,	3,	4,	5
Pre-operating	system	(pre-OS)	agents	1
Priori	File	1,	2,	3
Protocols
–	Device	Path	Protocol	1,	2,	3,	4,	5
–	Driver	Binding	Protocol	1,	2,	3,	4
Pseudo	code	1
Real	Time	Clock
–	architectural	protocols	(APs)	1
–	services	1,	2,	3,	4,	5,	6,	7,	8
Repudiation	1
Reset
–	architectural	protocols	(APs)	1
Samples
–	application	1,	2,	3,	4,	5,	6,	7,	8,	9
–	OS	loader	1,	2,	3,	4,	5,	6
System	configuration	1,	2,	3,	4
Scan	Codes	1,	2,	3
Security	ix,	1,	2,	3,	4,	5,	6,	7,	8
–	User	Identity	(UID)	infrastructure	1,	2
Simple	File	System	Protocol	1,	2,	3
Smart	phone	1,	2
SMBIOS	1,	2,	3,	4,	5,	6,	7
S-State	Boot	Path	1

Status	Code	architectural	protocols	(APs)	1
System	Address	Map	1
System	Management	Bus	(SMBUS)	1,	2,	3
System	Management	Mode	(SMM)	1,	2
System	Memory	descriptors	1,	2,	3,	4
System	Table	1,	2,	3,	4,	5
Extensible	Firmware	Interface	(EFI)	1,	2,	3,	4,	5
Tablet	1
Tampering	1
Telnet	1,	2
Terse	Executable	1
Text	Interface	1,	2
Thunk	Protocol	1
Timer	Architectural	Protocol	1,	2,	3
–	architectural	protocols	(APs)	1,	2,	3,	4,	5
Translation	Look-up	Blocks	(TLB)	1
Trusted	Building	Block	(TBB)	1,	2
Trusted	Computing	Group	(TCG)	1,	2
Trusted	Platform	Module	(T	PM)	1,	2,	3,	4,	5,	6
–	CRTM	1,	2,	3
–	DRTM	1,	2
–	measured	boot	1,	2,	3,	4
–	PCR	1,	2
–	platform	configuration	registers	(PCRs)	1,	2
–	RTM	1,	2
–	SRTM	1,	2
–	UEFI	Apis	1,	2,	3,	4
–	layering	1,	2,	3,	4,	5,	6,	7
UCST	-	UEFI	Configuration	Sub-team	1
UEFI	API	1,	2,	3,	4,	5,	6,	7
UEFI	Application	Toolkit	1,	2
UEFI	Boot	Manager	1,	2,	3
UEFI	Development	Kit	(UDK)	1
UEFI	Error	Format	Standardization	1
–	Windows	Hardware	Error	Architecture	(WHEA)	1,	2
UEFI	Forum	1,	2
UEFI	Image	1,	2,	3,	4,	5,	6
–	types	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14
UEFI	OS	loaders	1,	2,	3,	4
UEFI	runtime	services	table	1,	2
UEFI	Secure	Boot	1,	2,	3
UEFI	Shell	1,	2,	3,	4,	5
UEFI	Simple	Text	Input	1
UEFI	Simple	Text	Input	Ex	1

UEFI	Simple	Text	Output	1,	2
UEFI	Specification	1,	2,	3,	4,	5,	6,	7,	8,	9,	10
Unicode	Characters	1,	2
Unified	Extensible	Firmware	Interface	(UEFI)	applications	1,	2,	3,	4,	5,	6,	7,	8
architecture	1,	2,	3,	4
–	BIOS	1,	2
–	boot	manager	1,	2,	3,	4
–	boot	services	1,	2,	3,	4,	5,	6,	7,	8
–	components	1,	2,	3,	4
–	configuration	infrastructure	1,	2,	3
–	configuration	table	1,	2
–	driver	model	viii,	1,	2,	3,	4,	5
–	drivers	1,	2,	3,	4,	5,	6,	7,	8,	9
–	firmware	1,	2,	3,	4,	5,	6,	7
–	root-of-trust-for-verification	(RTV)	1
–	GUID	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13
–	memory	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11
–	Platform	Initialization	(PI)	ix,	1,	2,	3,	4,	5,	6,	7,	App	B
–	Components	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14,	15,	16
–	flash	file	system	1,	2
–	pre-operating	system	(pre-OS)	agents	1,	2,	3,	4,	5,	6,	7,	8
–	protocols	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13
–	security	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11
–	boot	1,	2,	3,	4,	5,	6,	7,	8,	9
–	console	1,	2,	3
–	runtime	1,	2,	3,	4,	5,	6
–	specifications	1
–	system	table	1,	2,	3,	4,	5,	6,	7,	8
Universal	Network	Driver	Interface	(UN	DI)	1,	2,	96
Variable	architectural	96,	1,	2
–	architectural	protocols	(APs)	1,	2,	3,	4,	5,	6
–	environment	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14,	15,	16,	17
–	firmware	boot	manager	1,	2
–	load	option	1
–	nonvolatile	1,	2,	3,	4,	5,	6,	7
–	NVRAM	1
–	services	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14,	15,	16
Variable	Write	1,	2
–	architectural	protocols	(APs)	1,	2,	3,	4,	5
Virtual	Address	1,	2,	3,	4,	5
Virtual	Memory	Services	1,	2
VT-1	2,	3
Web	Services	Management	Protocol	1
Windows	Hardware	Error	Architecture	(WHEA)	1,	2

WinNtThunk	Capability	1

Endnotes

1
SMI:	System	Management	Interrupt	of	x86	processor;	PMI:	Platform	Management	Interrupt	of	Itanium®	processor

	Title
	Copyright
	Acknowledgements
	Preface
	Contents
	Chapter 1 – Introduction
	Terminology
	Short History of EFI
	EFI Becomes UEFI—The UEFI Forum
	Platform Trust/Security
	Embedded Systems: The New Challenge
	How the Boot Process Differs between a Normal Boot and an Optimized/Embedded Boot

	Summary

	Chapter 2 – Basic UEFI Architecture
	Objects Managed by UEFI-based Firmware
	UEFI System Table
	Handle Database
	Protocols
	Working with Protocols
	Multiple Protocol Instances
	Tag GUID

	UEFI Images
	Applications
	OS Loader
	Drivers

	Events and Task Priority Levels
	Summary

	Chapter 3 – UEFI Driver Model
	Why a Driver Model Prior to OS Booting?
	Driver Initialization
	Host Bus Controllers
	Device Drivers
	Bus Drivers
	Platform Components
	Hot Plug Events
	Pseudo Code
	Device Driver
	Bus Driver that Creates All of Its Child Handles on the First Call to Start()
	Bus Driver that Is Able to Create All or One of Its Child Handles on Each Call to Start():

	Additional Innovations
	Security
	Manageability
	Networking

	Summary

	Chapter 4 – Protocols You Should Know
	EFI OS Loaders
	Device Path and Image Information of the OS Loader
	Accessing Files in the Device Path of the OS Loader
	Finding the OS Partition
	Getting the Current System Configuration
	Getting the Current Memory Map
	Getting Environment Variables
	Transitioning to an OS Kernel
	Summary

	Chapter 5 – UEFI Runtime
	Isn’t There Only One Kind of
	How Are Runtime Services Exposed?
	Time Services
	Why Abstract Time?
	Get Time
	Set Time
	Get Wakeup Time
	Set Wakeup Time

	Virtual Memory Services
	Set Virtual Address Map
	ConvertPointer

	Variable Services
	GetVariable
	GetNextVariableName
	SetVariable

	Miscellaneous Services
	Reset System
	Get Next High Monotonic Count
	UpdateCapsule
	QueryCapsuleCapabilities

	Summary

	Chapter 6 – UEFI Console Services
	Simple Text Input Protocol
	Simple Text Input Ex Protocol
	Simple Text Output Protocol
	Remote Console Support
	Console Splitter
	Network Consoles
	Summary

	Chapter 7 – Different Types of Platforms
	Summary

	Chapter 8 – DXE Basics: Core, Dispatching, and Drivers
	DXE Core
	Hand-Off Block (HOB) List
	DXE Architectural Protocols
	EFI System Table
	EFI Boot Services Table
	EFI Runtime Services Table
	DXE Services Table

	Global Coherency Domain Services
	GCD Memory Resources
	GCD I/O Resources

	DXE Dispatcher
	The a priori File
	Dependency Grammar

	DXE Drivers
	Boot Device Selection (BDS) Phase
	Console Devices
	Boot Devices
	Boot Services Terminate

	Summary

	Chapter 9 – Some Common UEFI and PI Functions
	Architectural Protocol Examples
	CPU Architectural Protocol
	Real Time Clock Architectural Protocol
	Timer Architectural Protocol
	Reset Architectural Protocol
	Boot Device Selection Architectural Protocol
	Variable Architectural Protocol
	Watchdog Timer Architectural Protocol

	PCI Protocols
	PCI Host Bridge Resource Allocation Protocol
	PCI Root Bridge I/O
	PCI I/O

	Block I/O
	Disk I/O
	Simple File System
	EFI File Protocol

	Configuration Infrastructure
	Using the Configuration Infrastructure
	Driver Model Interactions
	Provisioning the Platform
	Summary

	Chapter 10 – Platform Security and Trust
	Trust Overview
	Trusted Platform Module (TPM) and Measured Boot
	What Is a Trusted Building Block (TBB)?
	What Is the Point of Measurements?

	UEFI Secure Boot
	UEFI Executable Verification

	UEFI Networking
	UEFI User Identification (UID)
	Hardware Evolution: SRTM-to-DRTM
	Platform Manufacturer
	Vulnerability Classification
	Roots of Trust/Guards
	Summary

	Chapter 11 – Boot Device Selection
	Firmware Boot Manager
	Related Definitions

	Globally-Defined Variables
	Default Behavior for Boot Option Variables
	Boot Mechanisms
	Boot via Simple File Protocol
	Boot via LOAD_FILE Protocol

	Summary

	Chapter 12 – Boot Flows
	Defined Boot Modes
	Priority of Boot Paths
	Reset Boot Paths
	Intel® Itanium® Processor Reset
	Non-Power-On Resets

	Normal Boot Paths
	Basic G0-to-S0 and S0 Variation Boot Paths
	S-State Boot Paths

	Recovery Paths
	Discovery
	General Recovery Architecture

	Special Boot Path Topics
	Special Boot Paths
	Special Intel Itanium® Architecture Boot Paths
	Intel Itanium® Architecture Access to the Boot Firmware Volume Architectural Boot Mode PPIs

	Recovery
	Discovery

	Summary

	Chapter 13 – Pre-EFI Initialization (PEI)
	Scope
	Rationale
	Overview

	Phase Prerequisites
	Temporary RAM
	Boot Firmware Volume
	Security Primitives

	Concepts
	PEI Foundation
	Pre-EFI Initialization Modules (PEIMs)
	PEI Services
	PEIM-to-PEIM Interfaces (PPIs)
	Simple Heap
	Hand-Off Blocks (HOBs)

	Operation
	Dependency Expressions
	Verification/Authentication
	PEIM Execution
	Memory Discovery
	Intel® Itanium® Processor MP Considerations
	Recovery
	S3 Resume
	The “Terse Executable” and Cache-as-RAM
	Example System

	Summary

	Chapter 14 – Putting It All Together–Firmware Emulation
	Virtual Platform
	Emulation Firmware Phases

	Hardware Pass-Through
	Summary

	Chapter 15 – Reducing Platform Boot Times
	Proof of Concept
	Marketing Requirements
	What Are the Design Goals?
	Platform Policy
	What Are the Supported OS Targets?
	Do We Have to Support Legacy Operating Systems?
	Do We Have to Support Legacy Option ROMs?
	Are We Required to Display an OEM Splash Screen?
	What Type of Boot Media Is Supported?
	What Is the BIOS Recovery/Update Strategy?
	When Processing Things Early
	Is There a Need for Pre-OS User Interaction?

	Additional Details
	Adjusting the BIOS to Avoid Unnecessary Drivers
	What Is the Boot Target?
	Steps Taken in a Normal and Optimized Boot
	Loading a Boot Target
	Organizing the Flash Effectively
	Minimize the Files Needed

	Summary
	The Primary Adjustments
	Suggested Next Steps

	Chapter 16 – Reducing Platform Boot Times
	CE Device Landscape
	CE Device Boot Challenges
	In-Vehicle Infotainment
	Other Embedded Platforms
	Generic Requirements
	Boot Strategies
	Power Management
	Boot Storage Devices
	Security
	Manageability
	Summary

	Chapter 17 – Manageability
	Overall Management Framework
	Dynamic In-Band
	Out-of-Band
	Distributed Management Task Force (DMTF)

	UEFI Error Format Standardization
	UEFI Error Format Overview
	Error Record Types

	Windows Hardware Error Architecture and the Role of UEFI
	Technology Intercepts: UEFI, IPMI, Intel® AMT, WS-MAN
	Intelligent Platform Management Interface (IPMI)
	Intel® Active Management Technology (Intel AMT)
	Web Services Management Protocol (WS-MAN)
	Other Industry Initiatives

	The UEFI/IPMI/Intel® AMT/WS-MAN Bridge
	IPMI Error Records to UEFI
	UEFI Error Records to IPMI
	Intel® AMT and IPMI
	Future Work

	Configuration Namespace
	Namespace Entries

	Summary

	Appendix A – Data Types
	Appendix B – Status Codes
	Index

