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Preface

When students at MIT competed against each other in the first real-time graphical com-
puter game Spacewar in 1962 (Graetz 1981), probably none of them could have dreamt
how realistic and complex computer games would develop in five decades and how large
a business would grow around them. Commercial arcade games such as Pong and Space
Invaders arrived in the 1970s, and home computers brought computer games within
the reach of all enthusiasts in the 1980s. Since then game development has grown from
small amateur enterprises into an industry, which is now – in spite of popular claims –
the second largest branch of the entertainment industry, steadily narrowing the lead of
the film industry (Newzoo 2014; Statista 2016).

Games are also becoming ever more pervasive in our lives. Smartphones and mobile
gaming are a handy pastime in almost any situation, and technological advances in aug-
mented and virtual reality along with internet of things are pushing forward the fron-
tiers of gaming. This has coincided with a change in the ecosystem for game distribution
from bricks-and-mortar stores into digital online stores and new monetization meth-
ods. Single-player mode – which is an anomaly in the known 5000-year history of games
starting from the Egyptian Senet and the Sumerian Royal Game of Ur – is no longer the
standard playmode, and networking can now bring massive numbers of players together
to participate in the same game. We have witnessed the rise of gamification and applica-
tion areas outside of pure entertainment to assist, guide, rehabilitate and teach children,
youngsters, adults and elders alike. Game development has also become more democ-
ratized, because the development platforms make it easy and quick for everyone to cre-
ate digital games. Finally, there is more knowledge and research on various aspects of
games from design to productization, and modern game developers are more educated
and aware of the possibilities of their medium. Behind the seven established forms of
art (Canudo, 1988a,b; Hegel 1975), games are truly emerging as the eighth art form.

The first edition of this book was published ten years ago in 2006. It was a time
before smartphones, tablets, digital distribution and social networks. Massive multi-
player games such as World of Warcraft and Eve Online had just been released and were
gathering momentum, the social media of today were still in their infancy, and the verb
‘to google’ had just been added to the Oxford English Dictionary. The single-player PC
games delivered in DVDs were the top of the line, and mobile games resembled simple
games from the early 1980s. If we were back then careful in asserting that computer
games are a valid topic for academic research, there is today no argument as to their
importance.



xx Preface

Despite the changes, something still remains the same: the algorithms and networking
making it all possible. Game programming is not an isolated field of study but intersects
many essential research areas of ‘traditional’ computer science. Solving an algorithmic
or networking problem is always more than just getting it done as quickly as possible; it
is about analysing what is behind the problem and what possibilities there are to solve it.
This is the the motivation for this book, and our intention – right from the beginning –
has been to provide the reader with a glance into the world of computer games as seen
from the perspective of a computer scientist.

We assume that the reader is familiar with the fundamentals of algorithms and data
structures (e.g. complexity analysis and graph theory). In a case of uncertainty, the reader
can consult basic textbooks such as Introduction to Algorithms (Cormen et al. 2001) and,
of course, the ever inspirational The Art of Computer Programming (Knuth 1998a,b,c,
2011). We describe classical game algorithms and review problems encountered in com-
mercial computer games. Thus, in selecting material for this book we have walked a
tight-rope between these two worlds. The current selection may seem a bit of a ragbag,
but the common factor in the choice of the topics has been a combination of algorithmic
and practical interest.

Going through the original LATEX files of the first edition, we were pleasantly surprised
how fresh many of the ideas have remained. Hardly anything was outdated; rather the
problems the developers are facing today are still the same. It also inspired us to continue
and expand the work with a similar mindset. We have tried again to pick relevant topics
from both academic literature and trade journals, forum posts and blogs to squeeze out
their essence. We have still refrained from tying our hands with a particular platform (of
which there have been many throughout the past decade) and programming language
(of which there have been equally many). We are aware that that has been a common
critique over the years, but we have strived to unlock the timeless beauty that many of the
ideas conceal. Granted, there are many things that escape our grasp or which we could
only briefly introduce, which is why we provide references to the works of the wiser and
better informed. Also, the exercises at the end of each chapter hide many gold nuggets
and possibilities for expanding one’s thoughts and even venturing into uncharted waters.

Revising and expanding this book has been a fun process, and a hard process – a task
one gladly undertakes once a decade.
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



Introduction

Let us play a little thought game. Get a pen and paper. Choose any game you know, and
think about the elements required to make it work. Write down a list of these elements.
Be as specific or indiscriminate as you want. Once you have finished, choose another
game and think about it. Try to find items in the list of the first game that correspond to
the second game and mark them. If there are features in the second game that the first
one does not have, add them to the list. Repeat this procedure for two or three more
games. Next, take the five most common items in your list and compare them to the
following list. For each corresponding item you get one point.

The key elements of a game are:
� players who are willing to participate in the game;
� rules which define the limits of the game;
� goals which the players try to achieve during the game;
� opponents or opposing forces which prevent the player from achieving the goals;
� a representation of the game in the real world.

How many points did you score?
The five components we have listed seem to be present in every game, and the rela-

tionships between them form three aspects of a game, which are illustrated in Figure 1.1
(Smed and Hakonen 2003, 2005b):

(i) Challenge. Rules define the game and, consequently, the goal of the game. When
players decide to participate in the game, they agree to follow the rules. The goal
motivates the players and drives the game forward, because achieving a goal in the
game gives the players enjoyment.

(ii) Conflict. The opponent (which can include unpredictable humans and random pro-
cesses) obstructs the players from achieving the goal. Because the players do not
have a comprehensive knowledge of the opponent, they cannot determine precisely
the opponent’s effect on the game.

(iii) Play. The rules are abstract but they correspond to real-world objects. This repre-
sentation concretizes the game to the players.

The challenge aspect alone is not enough for a definition of a game, because games
are also about conflict. For example, a crossword puzzle may be a challenge in its own
right but there is hardly any conflict in solving it – unless someone erases the letters
or changes the hints or keeps a record of the time to solve the puzzle. Obviously, the
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conflict arises from the presence of an opponent, which aims to obstruct the player from
achieving the goal. The opponent does not have to be a human but it can be some ran-
dom process (e.g. throw of dice or shuffling of the deck of cards). The main feature of
the opponent is that it is non-deterministic to the player: because the player cannot
predict exactly what another human being or a random process will do, outwitting or
outguessing the opponent becomes an important part of the game.

Challenge and conflict aspects are enough for defining a game in an abstract sense.
However, in order to be played the game needs to be concretized into a representation.
This representation can be a board and plastic pieces as well as non-tactile words or
three-dimensional graphics rendered on a computer screen. Even the players themselves
can be the representation, as in the children’s game of tag. Regardless of the representa-
tion there must exist a clear correspondence to the rules of the game.

Let us take the game of poker as an example. The players agree to follow the rules,
which state (among other things) what cards there are in a deck, how many cards one
can change, and how the hands are ranked. The rules also define the goal, having as good
a hand as possible when the cards are laid on the table, which is the player’s motivation.
The other players are opponents, because they try to achieve a better hand to win –
or, at least, to give such an impression. Also, the randomness of the deck caused by
shuffling opposes the player, who cannot determine what cards will be dealt next. The
game takes a concrete form in a deck of plastic-coated cards (or pixels on the screen),
which represent the abstractions used in the rules.

One of the earliest written collection of games, Libro de los juegos (‘Book of games’),
commissioned by King Alfonso X of Castile, León and Galicia and completed in Toledo
1283, divides the games into three groups: games of skill (e.g. chess), games of chance
(e.g. dice games) and games combining skill and chance (e.g. backgammon). This divi-
sion reflects the conflict aspect and the type of the opponent.

Huizinga’s definition of play from his classical work Homo Ludens, the playful human,
captures most of the features we listed earlier:

[Play] is an activity which proceeds within certain limits of time and space, in a
visible order, according to rules freely accepted, and outside the sphere of neces-
sity or material utility. The play-mood is one of rapture and enthusiasm, and is
sacred or festive in accordance with the occasion. A feeling of exaltation and ten-
sion accompanies the action, mirth and relaxation follow. (Huizinga 1955, p. 132)
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Moreover, Huizinga’s idea of a magic circle tries to capture the complete game (or play)
experience, which resides outside ordinary life.

Caillois (2001) builds upon Huizinga’s work and divides games further into four forms:

� agon (competition) describes games where the aim is to beat the opponent and luck
does not play a significant role (e.g. chess);

� alea (chance) describes games where luck or chance is the decisive factor on the out-
come (e.g. Roulette);

� mimicry (role-play) describes games where the players go through an adventure with
their characters in a game world (e.g. Dungeons & Dragons);

� ilinx (vertigo) describes games that affect the player’s observations or movements (e.g.
Dance Dance Revolution).

Games are usually a combination of the aforementioned forms. Moreover, Caillois notes
that games form a continuum from structured, rule-governed games (ludus) to sponta-
neous, unstructured play ( paidia).

Wittgenstein argues that it is impossible to define a game: ‘For how is the concept of
a game bounded? What still counts as a game and what no longer does? Can you give
the boundary? No.’ (Wittgenstein 2009, Aphorism 68). Suits responds to Wittgenstein’s
challenge directly by giving the following definition:

To play a game is to attempt to achieve a specific state of affairs [prelusory goal],
using only means permitted by rules [lusory means], where the rules prohibit use
of more efficient in favour of less efficient means [constitutive rules], and where
the rules are accepted just because they make possible such activity [lusory atti-
tude]. I also offer the following simple and, so to speak, more portable version
of the above: playing a game is the voluntary attempt to overcome unnecessary
obstacles. (Suits 2014, p. 43)

Crawford (1984, Chapter 1) defines a game as ‘a closed formal system that subjectively
represents a subset of reality’. Accordingly, a game is self-sufficient, follows a set of rules,
and has a representation in the real world. These observations are echoed by the defini-
tions of Costikyan (2002, p. 24), who sees a game as ‘an interactive structure of endoge-
nous meaning that requires players to struggle toward a goal’, and by Salen and Zimmer-
man (2004, p. 80), for whom a game is ‘a system in which players engage in an artificial
conflict, defined by rules, that results in a quantifiable outcome’. A widely known, prac-
tical definition of a game, attributed to the game designer Sid Meier, states that a game
is a series of meaningful choices (Rollings and Morris 2000, p. 38). Schell (2015, p. 47)
shares this point of view, defining a game as ‘a problem-solving activity, approached with
a playful attitude’.

Apart from formal features, the gameplay also includes subjective elements such as an
immersion in the game world, a sense of purpose, and a sense of achievement from mas-
tering the game. One could argue that the sense of purpose is essential for the immer-
sion. What immerses us in a game (as well as in a book or a film) is the sense that there
is a purpose or motive beneath the surface. In a similar fashion, the sense of achieve-
ment is essential for the sense of purpose (i.e. the purpose of a game is to achieve goals,
points, money, recognition, etc.). From a human point of view, we get satisfaction in the
process of nearing a challenging goal and finally achieving it – and then realizing that
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we can relive that feeling. These aspects, however, are outside the scope of our current
discussion, and we turn our focus to a subset of games, namely computer games.

. Anatomy of Computer Games

Computer games are a subset of games. To be more precise, let us define a computer
game as a game that is carried out with the help of a computer program. This definition
leaves us some leeway, since it does not imply that the whole game takes place in the
computer. For example, a game of chess can be played on the screen or on a real-world
board, regardless of whether the opponent is a computer program. Also, location-based
games (see Chapter 11) further obscure the traditional role of a computer game by incor-
porating real-world objects into the game world.

In effect, a computer program in a game can act in three roles:

(i) coordinating the game process (e.g. realizing a participant’s move in a chess game
according to the rules);

(ii) illustrating the situation (e.g. displaying the chessboard and pieces on screen); and
(iii) participating as a fellow-player.

This role division closely resembles the Model–View–Controller (MVC) architectural
pattern for computer programs. MVC was originally developed within the Smalltalk
community (Krasner and Pope 1988) and was later adopted as a basis for object-oriented
programming in general (Gamma et al. 1995). The basic idea is that the representation
of the underlying application properties (Model) should be separated from the way it is
presented to the user (View) and from the way the user interacts with it (Controller).
Figure 1.2 illustrates the MVC components and the data flow in a computer game.

The Model part includes software components which are responsible for the coordi-
nation role (e.g. evaluating the rules and upholding the game state). The rules and basic
entity information (e.g. physical laws) form the core structures. It remains unchanged
while the state instance is created and configured for each game process. The core struc-
tures need not cover all the rules, because they can be instantiated. For example, the core
structures can define the basic mechanism and properties of playing cards (e.g. suits and
values) and the instance data can provide the additional structures required for a game
of poker (e.g. ranking of the hands, staking, and resolving ties).

The View part handles the illustration role. A proto-view provides an interface into
the Model. It is used for creating a synthetic view for a synthetic player or for rendering
a view to an output device. The synthetic view can be preprocessed to suit the needs
of the synthetic player (e.g. board coordinates rather than an image of the pieces on
a board). Although rendering is often identified with visualization, it may also include
audification and other forms of sensory feedback. The rendering can have some user-
definable options (e.g. graphics resolution or sound quality).

The Controller part includes the components for the participation role. Control logic
affects the Model and keeps up the integrity (e.g. by excluding illegal moves suggested
by a player). The human player’s input is received through an input device filtered by
driver software. The configuration component provides instance data, which is used
in generating the initial state for the game. The human player participates in the data
flow by perceiving information from the output devices and performing actions through



1 Introduction 

Driver

Input
device device

Output

Synthetic
player

action

Core structuresState instance

Proto−viewControl logic

Configuration Rendering

OptionsScriptInstance data

Human player

perception

CONTROLLER VIEW

view

MODEL

Synthetic

Figure . Model, View and Controller in a computer game.

the input devices. Although the illustration in Figure 1.2 includes only one player, nat-
urally there can be multiple players participating in the data flow, each with their own
output and input devices. Moreover, the computer game can be distributed among sev-
eral computer nodes rather than residing inside a single node. Conceptually, this is not a
problem since the components in the MVC can also be thought to be distributed (i.e. the
data flows run through the network rather than inside a single computer). In practice,
however, networked computer games provide their own challenges (see Section 1.4).

. Game Development

In the game industry, the production process of games is called game development and
the people participating in this process are collectively known as game developers. This
group is diverse and houses talents with different skills and backgrounds, but typically
the game industry recognizes seven professional disciplines (Novak 2007, pp. 302–321):
� production – managing the practical challenges of the game development process;
� marketing – raising and maintaining awareness of the game among the (potential)

players;
� testing and quality assurance – ensuring the stability and playability of the game;
� design – handling the mechanics behind the rules and play of the game;
� art – creating the visual components of the game;
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� audio – creating the sounds and aural environments for the game;
� programming – implementing the game in a digital form.

During game development, the producer and game designer play the pivotal roles. The
game designer is the one with a vision of the game, which is to be carried from inception
to conclusion. The producer is the counterpart who has to work with the realities –
schedule, budget – to enable the project to materialize. They often work in tandem, the
producer being the external link (e.g. to the customer or publisher) and the designer
the internal link (i.e. to the rest of the development team). The artists (both visual and
audio) design and create the assets that the game uses, and the programmers’ task is to
implement the game mechanics and the user interfaces. The game testers and quality
assurance provide feedback to the development team by taking care that the game is
playable, bug-free, enjoyable, and ready to be marketed to the customers.

A large commercial game project can take 2–4 years of work, throughout which the
game development involves 50–150 people, possibly in several countries and production
sites. For example, the production of Grand Theft Auto V took 5 years, involved over
300 people and cost £170 million. Requiring both technical and artistic expertise, even
smaller projects require cooperation between several specialized professionals. Never-
theless, the finished game should be a cohesive whole, which delivers the vision of the
game designer to the players.

From the game designer’s perspective the game can be divided into the basic parts
as illustrated in Figure 1.3 (Adams 2014). The three fundamental components are the
player who plays the game, the user interface that presents the game to the player, and
the core mechanics implementing the rules and the game artificial intelligence (AI). The
core mechanics generates challenges that the user interface (through a camera model)
converts to output for the player. Conversely, the player’s input is conveyed through the
user interface (based on the interaction model) and converted to actions for the core
mechanics. Gameplay is then the challenges and actions, and together with the user
interface they define the gameplay mode, of which a game can have several.

interaction
modelmodel

camera

player

inputoutput

user interface

actionschallenges

core mechanics

mode
gameplay

gameplay

Figure . Basic design parts of a game.
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1.2.1 Phases of development

Figure 1.4 illustrates the phases of a typical game development project (Novak 2007,
pp. 334–346). In the concept phase, a game idea is concretized into a concept docu-
ment, which is used (as a sales pitch) in order to raise funding for the production. If
a publisher accepts the concept, the game idea will be refined in the pre-production
phase, in which the game designer creates a game design document. This represents a
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‘blueprint’ of the game for the production. Additionally, other documents such as a tech-
nical design document, an art style guide or a production plan can be generated during
the pre-production phase.

After the pre-production phase, the project must get approval from the publisher
before entering the production phase, where the actual game development takes place.
Once the production phase is over, the game moves first to the alpha phase, which con-
centrates on ensuring playability, and then to the beta phase, where the aim is to stabilize
the game by eliminating bugs. Finally, in the gold phase the game code and other assets
are finalized before publishing. The game might also require certification from the pub-
lisher for market acceptance. At the same time, the game can be localized to other lan-
guages so that all the versions can be published simultaneously. In order to market the
forthcoming game, playable demos can be made public before the final product is ready.

When the game has been published, it enters the post-production phase, where bugs
and design flaws can be patched and the game can be updated according to possible new
requirements. The game can be ported to other platforms or extended by creating new
material for the players. Finally, the game developers can issue a postmortem document
where they analyse the project.

Digital distribution and ideas from lean development have changed this model slightly
into a more iterative process. Once the game has been published online, the develop-
ment can revert back to production phase to include new content or even new game
mechanisms based on feedback and metric data from players (more on this in Chap-
ter 14). This means that the production process is not as heavy as in the traditional,
game-as-a-product distribution model which aims to deliver a finished game. Lean and
iterative production, which is common especially in mobile games, changes this into a
game-as-a-service distribution model, where the game is never finished but continu-
ously growing and transforming.

1.2.2 Documentation

To maintain the original vision a game development project is built upon game docu-
ments, which provide all the departments – from management to engineering and arts –
with a single vision (Rouse 2004, pp. 206–319). Therefore, the documentation serves two
purposes: it is a record of the design decisions, and it is a means of communication that
conveys the game design to all participants in the project. The documentation can have
any format suitable for the game production; for example, it can be, apart from text, a
collection of thematic images, sounds, video and other items. The purpose is to compile
and convey the business idea, product identity and value proposition of the game.

Figure 1.5 summarizes the typical documents created and used during a game devel-
opment project (Schell 2015, pp. 425–432):
� game design overview – a short summary of the game written for the company’s man-

agement;
� game design document – a detailed description of the game mechanics and interfaces;
� story overview – a description of the setting, characters, and actions that will take

place in the game;
� technical design document – a specification of the technology used, for the engineer-

ing department;
� pipeline overview – instructions on how the art assets will be integrated into the game;
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� system limitations – a summary of the technical limitations for the design department;
� art style guide – guidelines for the arts department to create a single, consistent look

and feel;
� concept art overview – a summary of the outlook of the game;
� game budget – a spreadsheet for keeping track of costs;
� production plan – a schedule for the game project;
� story style guide – guidelines of the story-world for the writing department;
� script – dialogues for the game characters;
� game tutorial and manual – instructions on how to play the game;
� game walkthrough – a guide written by players to help other players to play the game.

The game design document (GDD) is the central written resource for the game design.
It is typically a 50–200-page reference guide to the whole game development process
(Novak 2007, pp. 368–370). It specifies the mechanics of the game, the rules of play,
and the theme of the outlook (Chandler 2008, pp. 252–257). A GDD is not static but
continually edited and updated by the designers and developers during the production
phase. Nevertheless, the GDD should remain up to date even after the production phase
because it will still be needed in localizing the game to new languages. If the game is
ported to a new platform, the GDD provides a source of information for the (possibly
third-party) team carrying out the conversion. Also, a GDD is a valuable asset when
designing a follow-up or an extension to the original game.

1.2.3 Other considerations

Although defining what makes a game enjoyable is subjective, we can list some features
that alluring computer games seem to have. Of course our list is far from complete and
open to debate, but we want to raise certain issues which are interesting in their own
right but which – unfortunately – fall outside the scope of this book.
� Customization. A good game has an intuitive interface that is easy to learn. Because

players have their own preferences, they should be allowed to customize the user
interface to their own liking. For example, the interface should adapt dynamically to
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the needs of a player so that in critical situations the player has more detailed control.
If a player can personalize her avatar (e.g. customize the characteristics to correspond
to her real-world persona), it can increase immersion in the game.

� Tutorial. The first problem a player faces is learning how the game works, which
includes both the user interface and the game world. Tutorials are a convenient
method for teaching the game mechanics to the player, where the player can learn
the game by playing it in an easier and possibly assisted mode.

� Profiles. To keep the game challenging as the player progresses, it should support dif-
ferent difficulty levels which provide new challenges. Typically, this feature is imple-
mented by increasing certain attributes of the enemies: their number, their accuracy,
and their speed. The profile can also include the player’s preferences of the type of
game (e.g. whether it should focus on action or adventure).

� Modifications. Games gather communities around them, and members of the com-
munity start providing new modifications (or ‘mods’) and add-ons to the original
game. A modification can be just a graphical enhancement (e.g. new textures) or can
enlarge the game world (e.g. new levels). Also, the original game developers them-
selves can provide extension packs, which usually include new levels, playing charac-
ters, and objects, and perhaps some improvement of the user interface.

� Replaying. Once is not enough. We take pictures and videotape our lives. The same
applies also to games. Traditionally, many games provide the option to take screen
captures, but replays are also an important feature. Replaying can be extended to cover
the whole game, and the recordings allow the players to relive and memorize the high-
lights of the game, and to share them with friends and the whole game community.

It is important to recognize beforehand what software development mechanisms are
published to the players and with what interfaces. The game developers typically imple-
ment special software for creating content for the game. These editing tools are a valu-
able surplus to the final product. If the game community can create new variations of
the original game, the longevity of the game increases. Furthermore, the inclusion of the
developing tools is an inexpensive way – since they are already implemented – to enrich
the contents of the final product.

Let us turn the discussion around and ask what makes a bad computer game. It can be
summed up in one word: limitation. Of course to some extent limitation is necessary –
we are, after all, dealing with limited resources. Moreover, the rules of the game are all
about limitation, although their main function is to impose the goals for the game. The
art of making games is to balance the means and limitations so that this equilibrium
engrosses the human player. How do limitations manifest themselves in the program
code? The answer is the lack of parameters: the more things are hard-coded, the lesser
the possibilities to add and support new features. Rather than closing down possibilities,
a good game – like any good computer program! – should be open and modifiable for
both the developer and the player.

. Synthetic Players

A synthetic player is a computer-generated actor in the game. It can be an opponent, a
non-player character which participates in some limited way (like a supporting actor), or
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a deus ex machina which can control natural forces or godly powers and thus intervene
or generate the game events.

Because everything in a computer game revolves around the human player, the game
world is anthropocentric. Regardless of the underlying method for decision-making (see
Chapter 9), the synthetic player is bound to show certain behaviour in relation to the
human player, which can range from simple reactions to general attitudes and even com-
plex intentions. As we can see in Figure 1.2, the data flow of the human player and the
synthetic player resemble each other, which allows us to project human-like features
onto the synthetic player.

We can argue that, in a sense, there should be no difference between the players
whether they are humans or computer programs; if they are to operate on the same
level, both should ideally have the same powers of observation and the same capabilities
to cope with uncertainties (see Chapter 10). Ideally, the synthetic players should be in a
similar situation to their human counterparts, but of course a computer program is no
match for human ingenuity. This is why synthetic players rarely display real autonomy
but appear to behave purposefully (e.g. in Grand Theft Auto III pedestrians walk around
without any real destination).

The more open (i.e. the less restrictive) the game world is, the more complex the syn-
thetic players are. This trade-off between the Model and the Controller software com-
ponents is obvious: if we remove restricting code from the core structures, we have to
reinstate it in the synthetic players. For example, if the players can hurt themselves by
walking into fire, the synthetic player must know how to avoid it. Conversely, if we rule
out fire as a permitted area, path finding (see Chapter 7) for a synthetic player becomes
simpler.

Let us take a look at two external features that a casual player is most likely to notice
first in a synthetic player: humanness and stance. These are also relevant to the design
of the synthetic player by providing a framework for the game developers and program-
mers.

1.3.1 Humanness

The success of networked multiplayer games can be, at least in part, explained by the
fact that the human players provide something that the synthetic ones still lack. This
missing factor is the human traits and characteristics – flaws as much as (or even more
than) strengths: fear, rage, compassion, hesitation, and emotions in general. Even minor
displays of emotion can make the synthetic player appear more human. For instance,
in Half-Life and Halo the synthetic players who have been taken by surprise do not act
with superhuman coolness but show fear and panic appropriate to the situation; actually,
the reaction time should be 0.2–0.4 seconds (Rabin 2015). We, as human beings, are
quite apt to read humanness into the decisions even when there is nothing but naı̈ve
algorithms behind them. Sometimes a game, such as NetHack, even gathers around a
community that starts to tell stories of the things that synthetic players have done and
to interpret them in human terms.

A computer game comprising just synthetic players could be as interesting to watch
as a movie or television show (Charles et al. 2002). In other words, if the game world
is fascinating enough to observe, it is likely that it is also enjoyable to participate in –
which is one of the key factors in games like The Sims and Singles, where the synthetic
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players seem to act (more or less) with a purpose and the human player’s influence is, at
best, only indirect.

There are also computer games that do not have human players at all. Already back in
the 1980s Core War demonstrated that programming synthetic players to compete with
each other can be an interesting game itself (Dewdney 1984). Since then some games
have tried to use this approach, but, by and large, AI programming games have been only
by-products of ‘proper’ games. For example, Age of Empires II includes the possibility of
creating scripts for computer players, which allows games to be organized where pro-
grammers compete as to who creates the best AI script. The whole game is then carried
out by a computer while the humans remain as observers. Although the programmers
cannot affect the outcome during the game, they are more than just enthusiastic watch-
ers: They are the coaches and the parents, and the synthetic players are the protégés and
the children.

1.3.2 Stance

The computer-controlled player can have different stances (or attitudes) towards the
human player. Traditionally, the synthetic player has been seen only in the role of an
enemy. As an enemy the synthetic player must provide challenge and demonstrate intel-
ligent (or at least purposeful) behaviour. Although the enemies may be omniscient or
cheat when the human player cannot see them, it is important to keep the illusion that
the synthetic player is at the same level as the human player.

When the computer acts as an ally, its behaviour must adjust to the human point of
view. For example, a computer-controlled reconnaissance officer should provide intel-
ligence in a visually accessible format rather than overwhelm the player with lists of
raw variable values. In addition to accessibility, the human players require consistency,
and even incomplete information (as long as it remains consistent) can have some value
to them. The help can even be concrete operations as in Neverwinter Nights or Star
Wars: Battlefront where the computer-controlled team-mates respond to the player’s
commands.

The computer has a neutral stance when it acts as an observer (e.g. camera director or
commentator) or a referee (e.g. judging rule violations in a sports game) (Martel 2014;
Siira 2004). Here, the behaviour depends on the context and conventions of the role. In
a sports game, for example, the camera director program must heed the camera place-
ments and cuts dictated by television programme practice. Refereeing provides another
kind of challenge, because some rules can be hard to judge. Finally, synthetic players
can be used to carry on the plot, to provide atmosphere, or simply to act as extras (de
Sevin et al. 2015). Nevertheless, as we shall see next, they may have an important role
in assisting immersion in the game world and directing the gameplay.

. Multiplaying

What keeps us interested is – surprise. Humans are extremely creative at this, whereas
a synthetic player can be lacking in humanness. One easy way to limit the resources
dedicated to the development of synthetic players is to make the computer game a mul-
tiplayer game.
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The first real-time multiplayer games usually limited the number of players to two,
because the players had to share the same computer by dividing either the screen (e.g.
Pitstop II ) or the playtime among the participating players (e.g. Formula One Grand
Prix). Also, the first networked real-time games connected two players over a modem
(e.g. Falcon A.T.). Although text-based networked multiplayer games started out in the
early 1980s with multi-user dungeons (Bartle 1990), real-time multiplayer games (e.g.
Quake) became common in the 1990s as local area networks (LANs) and the Internet
became more widespread. These two development lines were connected when online
game sites (e.g. Ultima Online) started to provide real-time multiplayer games for a large
number of players sharing the same game world.

On the technical level, networking in multiplayer computer games depends on achiev-
ing a balance between the consistency and responsiveness of a distributed game world
(see Chapter 12). The problems are due to the inherent technical limitations (see Chap-
ter 11). As the number of simultaneous players increases, scalability of the chosen
network architecture become critical. Although related research work on interactive
real-time networking has been done in military simulations and networked virtual envi-
ronments (Smed et al. 2002, 2003b), the prevention of cheating is a unique problem for
computer games due to the conflicting motivations and interests of the participants (see
Chapter 13).

Nowadays, commercially published computer games are expected to offer a multi-
player option, and, at the same time, online game sites are expected to support an ever
increasing number of users. Similarly, the new game console releases rely heavily on the
appeal of online gaming, and a whole new branch of mobile entertainment has emerged
with the intention to develop distributed multiplayer games for wireless applications.

The possibility of having multiple players enriches the game experience – and com-
plicates the software design process – because of the interaction between the players,
both synthetic and human. Moreover, the players do not have to be opponents but they
can cooperate. Although more common in single-player computer games, it is possible
to include a story-like plot in a multiplayer game, where the players are cooperatively
solving the story (e.g. No One Lives Forever 2 and Neverwinter Nights).

In the design of massively multiplayer online games, the two main game design
approaches are called theme-park and playground – or, alternatively, rollercoaster and
sandbox. A theme-park (or rollercoaster), such as World of Warcraft, provides the play-
ers with top-down generated challenges. The set-up and goal of a challenge are precon-
ceived by the game designers, but there is much leeway as to how the players actually
reach the goal. In contrast, a playground (or sandbox), such as Eve Online, relies on the
emergence of player-originated stories and the social media connecting the game com-
munity. The game world is like a playground allowing all kinds of plays and events to
unfold. The stories are then told by the community (retrospectively) the same way as
reporters and historians do in the real world. Let us next look at storytelling from a
broader perspective.

. Interactive Storytelling

Storytelling is one of the oldest human activities. We learn from a very young age to use
stories and narratives to communicate ideas and to think about possibilities. In the oral



 Algorithms and Networking for Computer Games

tradition of storytelling, a bard would adapt a story depending on the audience – even
the structure of the story could vary within a certain confines. Only with the advent of
the written media did storytelling become ‘petrified’ and come to mean the process of an
author crafting a reproducible composition. ‘Interactive storytelling’ has taken the orig-
inal meaning emphasizing the reactive and performative aspects of storytelling, where
the aim is to generate dramatically compelling stories based on the user’s input (Smed
2014).

Research on interactive digital storytelling (IDS) began in the 1980s with the seminal
work of Brenda Laurel (1991). She took ideas from the world of theatre and applied them
to computer interfaces in general and to IDS in particular. Formally put, an IDS applica-
tion is ‘designed for users (interactors) to take part in a concrete interactive experience,
structured as a story represented in a computer’ (Peinado and Gervás 2007).

The core question at the heart of interactive storytelling is the narrative paradox, in
which the ‘pre-authored plot structure conflicts with the freedom of action and inter-
action characteristics of the medium of real-time interactive graphical environment’
(Aylett and Louchart 2007), causing a tension between the interactor’s freedom and
well-formed stories (Adams 2013). Simply put, the more freedom the interactor has,
the less control the author has, and vice versa.

1.5.1 Approaches

The research on IDS has revolved around two distinct approaches. The author-centric
approach likens IDS to theatre, where the author sets up the story-world and a
computer-controlled drama manager directs its characters. A drama manager modifies
how the computer-controlled characters react and tries to lead the story in a direction
that the author has intended. It tries to change the situation so that the user is going
in the direction of the intended story. This can be realized, for example, by limiting the
stage and possible actions in the story-world such as in Façade where story happens in
an apartment during a soirée involving an interactor and two characters having domes-
tic problems (Mateas 2002).

The character-centric approach to IDS believes in emergence by allowing the charac-
ters in the story-world to be autonomous. Therefore, the key question is to model the
mental factors that affect on how the characters act. The author’s influence is limited
in creating and setting up the story-world. After that, the story-world runs without the
author’s influence, and the story – hopefully – emerges from the interaction between
the computer-controlled characters and the human interactor.

To compare the two approaches Riedl (2004, p.12–14) proposes two measures:
� plot coherence – the perception that the main events of a story are causally relevant

to the outcome of the story;
� character believability – the perception that the events of a story are reasonably moti-

vated by the beliefs, desires and goals of the characters.

Clearly, the author-centric approach allows us to have strong plot coherence, because of
the drama manager’s influence. The downside is, however, that character believability is
weakened if the actions of the characters seem to be compelled to follow the author’s will.
The problem is then finding subtlety so that the influence does not feel too forced upon
the user. In implementation, the main concern is that an IDS system must observe the
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reactions of the user as well as the situation in the story-world to recognize what pattern
fits the current situation: is the story getting boring and should there be a surprise twist
in the plot, or has there been too much action and the user would like to have a moment
of peace to rest and regroup? Since we aim to tell a story to the human users, we must
ensure that the world around them remains purposeful.

Conversely, the character-centric approach has (and requires) strong character believ-
ability. This means that plot coherence is weaker, because the story emerges from the
bottom up from the characters’ aspirations. Although the idea of emergent narrative of
the character-centric approach seems to solve the narrative paradox, it is unlikely that it
is enough for implementing a satisfying IDS system. Realistic actions are not necessarily
dramatically interesting, if the characters have no dramatic intelligence. Therefore, the
argument is that the author’s presence is necessary, because without the author’s artistic
control we would end up having the chaos of everyday life.

Recently, the discussion has evolved to include a hybrid approach, where the charac-
ters are autonomous but they can communicate with one another outside of the story-
world (Swartjes et al. 2008). These two modes of the character are called in-character
(IC) and out-of-character (OOC). They are used, for example, in live action role-playing
where the participants can act IC (i.e. within the role they are playing) or drop to OOC
when they are being themselves. Also, in improvisational theatre the actors can convey
OOC information using indirect communication (e.g. an actor can say ‘Hello, son!’, cuing
the other actor to assume the role of son). For example, Weallans et al. (2012) present a
hybrid approach called distributed drama management, where the characters act on an
IC level and reflect on their actions on an OOC level. A character proposes a set of pos-
sible actions to a drama manager, which selects dramatically the best alternative. Here,
the drama manager is no longer pushing the characters to follow its lead but supports
their decision-making through OOC communication.

1.5.2 Storytelling in games

The International Game Developers Association (2004) says that ‘[a]ny game featuring
both characters and a story in which one or more narrative aspects changes interac-
tively can be considered an interactive story.’ The simplest narrative aspect that can be
interactive is the plot, which can vary in response to the player’s actions. Another pos-
sibility is that the player’s actions affect and change the non-player character’s attitude
and personality (e.g. if the player acts in a friendly manner, the non-player character also
becomes more friendly and helpful towards the player). A third possibility is to have a
varying theme, where the player’s behaviour in the story-world trims the theme, making
the story, for example, more romantic, thrilling or violent.

According to Costikyan (2002), a game is not a story: while a story progresses linearly,
a game must provide an illusion of free will. Obviously, the player must have a range
of actions to choose from at each stage. More formally, let us consider the story in a
game as a directed graph where the episodes (or levels) are vertices and the possible
transitions edges (Figure 1.6). This means that the greater the fan-out of a vertex is,
the more freedom the player has in the story-world. The simplest game stories use a
linear structure, where the story unfolds as an episodic sequence. A game may offer
only a little room for the story to deviate – as in Dragon’s Lair where, at each stage, the
players can choose from several alternative actions of which all but one lead to certain
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Figure . The story structure can be illustrated as a graph, where episodes (or levels) are represented
as vertices and transitions as directed edges. (a) In a linear structure, the story always unfolds the same
way. (b) In a branching structure, each transition leads to a unique episode. (c) In parallel paths,
although the episodes can branch, they can also conjoin, limiting the number of episodes.

death. Nevertheless, this is the most commonly used structure to tell a story in computer
games: An episode has a fixed starting point and ending point (e.g. a ‘boss monster’ at
the end of the level) between which the player can proceed freely. For instance, in Max
Payne or Diablo II the plot lines of the previous chapter are concluded at the transition
point, and new alternatives are introduced for the next one. The episodes follow one
another linearly in a pre-authored order, and they are linked, for example, by cut-scenes.
Linear story structure is the cheapest to produce, which is why it is popular even today.
The obvious drawback is that the player has no influence on how the story unfolds and
the story can feel like it has been pasted over the game. In the worst case, the elaborate
cut-scene videos and complex plot twists only bore the player who skips them in order
to get right into the action.

In theory, branching structure would be optimal for IDS, because each decision has a
unique outcome. However, combinatorial explosion prevents us from using it in prac-
tice. The only way to make it feasible is to have conjoining edges that bring two or more
vertices (i.e. episodes) together, leading to a structure called parallel paths. The story
is again presented in an episodic manner, but at the transition point, where the story
of the previous episode is concluded, the player gets to choose from alternative paths
for the next episode. Although the paths can take players to different routes, eventually
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they conjoin in a major story point. For example, given a task, a player can choose to
fight to achieve his aims or to take a diplomatic path avoiding violence altogether. An
early example of this is Indiana Jones and the Fate of Atlantis, where in mid-game the
player has to choose one of three possible paths – team, wits or fists – which converge
before the end. Although the paths could lead to the same outcome, the episodes leading
there can be totally different. This of course means that the game will have content that
a player cannot see in one play. For a game publisher this means that it seemingly gets
less value for its investment, which is why there is a pressure for the game designers to
limit the amount of parallel paths in a game. However, there are commercially successful
games such as Heavy Rain and The Walking Dead as well as critically acclaimed games
such as 80 Days and Her Story using this approach.

. Outline of the Book

The intention of our book is to look at the algorithmic and networking problems present
in commercial computer games from the perspective of a computer scientist. As the
title implies, this book divides into two parts: algorithms and networking. This empha-
sis in topic selection leaves out components of Figure 1.2 which are connected to the
human-in-the-loop. Most noticeably we omit topics concerning graphics and human
interaction – which is not to say that they are in any way less important or less interest-
ing than the current selection of topics. Also, game design as well as ludological aspects
of computer games fall outside the scope of this book.

The topics of the book are based on the usual problems that we have seen game devel-
opers encountering in game programming. We review the theoretical background of
each problem and review the existing methods for solving them. The given algorithmic
solutions are not provided in any specific programming language but in pseudocode
format, which can be easily rewritten in any programming language and – more impor-
tantly – which emphasizes the algorithmic idea behind the solution. The algorithmic
notation used is described in detail in Appendix A. We also present a practical approach
to vectors and matrices in Appendix B.

We have also included examples from real-world computer games to clarify different
uses for the theoretical methods. In addition, each chapter is followed by a set of exer-
cises which go over the main points of the chapter and extend the topics by introducing
new perspectives.

1.6.1 Algorithms

Part I of this book concentrates on typical algorithmic problems in computer games and
presents solution methods. The chapters address the following questions:

� Chapter 2, ‘Random Numbers’: How can we achieve the indeterminism required by
games using deterministic algorithms?

� Chapter 3, ‘Noise’: How can we make computation based on mathematics look more
life-like?

� Chapter 4, ‘Procedural Generation’: How can we create game content using algo-
rithms?
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� Chapter 5, ‘Tournaments’: How we can form a tournament to decide a ranking for a
set of contestants?

� Chapter 6, ‘Game Trees’: How can we build a synthetic player for perfect information
games?

� Chapter 7, ‘Path Finding’: How can we find a route in a (possibly continuous) game
world?

� Chapter 8, ‘Group Movement’: How can we steer a group of entities through the game
world?

� Chapter 9, ‘Decision-Making’: How can we make a synthetic player act intelligently
in the game world?

� Chapter 10, ‘Modelling Uncertainty: How can we model the uncertainties present in
decision-making?

1.6.2 Networking

Part II turns our attention to networking. Our aim is to describe the ideas behind dif-
ferent approaches rather than get too entangled in the technical details. The chapters
address the following questions:
� Chapter 11, ‘Communication Layers’: What are the technical limitations behind net-

working?
� Chapter 12, ‘Compensating Resource Limitations’: How can we cope with the inherent

communication delays and divide the network resources among multiple players?
� Chapter 13, ‘Cheating Prevention’: Can we guarantee a fair playing field for all players?
� Chapter 14, ‘Online Metrics’: What can we measure from the online player’s

behaviour?

. Summary

All games have a common basic structure comprising players, rules, goals, opponents
and representation. They form the challenge, play and conflict aspects of a game, which
are reflected, for instance, in the Model–View–Controller software architecture pattern.
The computer can participate in the game as a synthetic player, which can act in the
role of an opponent or a team-mate or have a neutral stance. For example, the synthetic
player must take the role of a story-teller, if we want to incorporate story-like features
into the game. Multiplaying allows other human players to participate in the same game
using networked computers.

Game development has matured from its humble beginnings and now resembles any
other industrialized software project. Widely accepted software construction practices
have been adopted in game development, and, at the same time, off-the-shelf com-
ponents (e.g. 3D engines and animation tools) have removed the burden to develop
all software components in-house. Moreover, modern game development tools such
as CryEngine, Unity and Unreal Engine have democratized the development process
and made it possible for people who are not so competent in programming to make
games. This maturity, however, does not mean that there is no room for artistic creativity
and technical innovations. There must be channels for bringing out novel and possibly
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radically different games, and, as in music and film industry, independent game pub-
lishing can act as a counterbalance to the mainstream. One could even argue that this
liberation of the game industry has brought about a fresh evolution pool of ways to make
business, already affecting the entertainment industry in the large.

Nevertheless, behind computer games are computer programs propelled by algo-
rithms and networking. Let us see what they have in store for us.

Exercises

- Take any simple computer game (e.g. Pac-Man) and discern what forms its chal-
lenge aspect (i.e. player, rules and goal), conflict aspect and play aspect.

- A crossword puzzle is not a game (or is it?). What can you do to make it more
game-like?

- Why do we need a proto-view component in the MVC decomposition?

- What kind of special skills and knowledge should game programmers have when
they are programming
(a) the Model part of the software components,
(b) the View part of the software components, or
(c) the Controller part of the software components?

- Let us look at a first-person shooter game (e.g. Doom or Quake). Discern the
required software components by using the MVC. What kind of modelling does
it require? What kind of View-specific considerations should be observed? How
about the Controller part?

- Deus ex machina (from Latin ‘god from the machine’) derives from ancient the-
atre, where the effect of the god’s appearing in the sky, to solve a crisis by divine
intervention, was achieved by means of a crane. If a synthetic player participates
the game as a deus ex machina, what kind of role will it have?

- What does ‘anthropocentrism’ mean? Are there non-anthropocentric games?

- The Sims includes an option of free will. By turning it off, the synthetic players do
nothing unless the player explicitly issues a command. Otherwise, they show their
own initiative and follow, for example, their urges and needs. How much free will
should a synthetic player have? Where it would serve best (e.g. in choosing a path
or choosing an action)?

- In the movie Stranger Than Fiction (2006), the protagonist realizes that his life
is happening in a fictional novel, and when he refuses to obey the voiceover, the
world tries to force him to follow the intended story. Does this represent an author-
centric or character-centric approach to interactive storytelling?
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- Take your favourite game and decompose its storytelling. Does it always tell
the same story or does it vary from one play instance to another? If the story
does not respond to the player’s actions, what could be done to make it more
interactive?

- Game development includes people with different talents (e.g. artists, program-
mers, designers and marketing people). What kind of communication problems
might arise when they work together on the same game project? What is the role
of a game programmer in a game project?

- Consider the differences and similarities of Figures 1.4 and 1.5 for a triple-A game
developed by hundreds of persons and an indie game developed by one person.

- Because game documents are living documents that change on almost a daily
basis, the biggest debate within the game industry is about the effectiveness of
creating extensive game documentation during the pre-production phase. Usually
many elements of the game change drastically during the production phase, and
the documents cannot keep up with the pace of change. The problems encoun-
tered in game documentation can be classified into five categories: (Rouse 2004,
pp. 374–379):
� Lack of content: The document does not provide enough reference material for

the production phase.
� Misplaced focus: The document provides data (e.g. backstory) that is irrelevant

to the production phase.
� Overspecification: The document goes too deeply into details, which will

become clear only in the production phase.
� Infeasible content: The document contains design decisions that are impossible

to realize in the game.
� Fossilization: The document is out of date and, subsequently, abandoned during

production.
Game documentation often does not support but hinders the work, because there
are no computer-aided tools for maintaining it. Instead, it comprises a bundle of
text documents without a clear maintenance scheme. To complicate matters fur-
ther, game documents – unlike, for example, film scripts – have no pre-defined for-
mats (Rouse 2004, pp. 355–359). Although there are document templates, many
game designers state that documents are different for every game and for every
team. For example, Schell (2015, p. 426) says outright that a ‘magic template [for
game documents] does not exist’.

How could this problem be solved? Think about game documentation in terms
of maintainability, accessibility and communicativeness. Also, take the concept
of ‘document medium’ as sufficiently wide to cover, for example, a whiteboard or
even an oral discussion.

- Many games are variations of the same structure. Consider Pac-Man and Snake.
Discern their common features and design a generic game which can be parame-
terized to be both games.
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- Judging rules can be difficult, even for an objective computer program. In football
(or soccer as some people call it) the official rules say that the referee can allow
play to continue if the team against which an offence has been committed has a
chance of an immediate, promising attack (i.e. advantage), and penalize the orig-
inal offence if the anticipated advantage does not ensue at that time (Fédération
Internationale de Football Association 2016). How would you implement this rule?
What difficulties are involved in it?

- The progression in the lattice of mission groups in Wing Commander resembles
the story structure shown in Figure 1.6(c). The player’s performance in the mis-
sions branches in the story, and piling failures drive the player further away from
the hope of a victory. However, with later successes it is still possible to get back
to the path of victory.

With such second chances in mind, analyse the aspects of failure and failing in
general in computer games. For example, in games like Super Meat Boy and Dwarf
Fortress losing is an integral part of the game experience but, on the other hand,
in NetHack death is permanent and the game feels intentionally brutally lost. How
does the presence of failing define and complement the other features of a game?
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Algorithms
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Random Numbers

One of the most difficult problems in computer science is implementing a truly random
number generator – even D.E. Knuth devotes a whole chapter of his The Art of Computer
Programming to the topic (Knuth 1998b, Chapter 3). The difficulty stems partly from
how we understand the word ‘random’, since no single number in itself is random. Hence,
the task is not to simulate randomness but to generate a virtually infinite sequence of
statistically independent random numbers uniformly distributed inside a given interval
(Park and Miller 1988).

Because algorithms are deterministic, they cannot generate truly random numbers –
except with the help of some outside device like processor-embedded circuits. Rather
the numbers are generated with arithmetic operations, and, therefore, the sequences
are not random but appear to be – hence, they are often called pseudo-random. It
is quite easy to come up with methods like von Neumann’s middle-square method,
where we take the square of the previous random number and extract the middle
digits; for example, if we are generating four-digit numbers, the sequence can include
a subsequence:

ri = 8269
ri+1 = 3763 (r2

i = 68376361)
ri+2 = 1601 (r2

i+1 = 14160169)
⋮

However, if we analyse this method more carefully, it will soon become clear why it
is hardly satisfactory for the current purpose. This holds also for many other ad hoc
methods, and Knuth sums up his own toils on the subject by exclaiming that ‘random
numbers should not be generated with a method chosen at random’ (Knuth 1998b, p. 6).

Since every random number generator based on arithmetic operations has its in-built
characteristic regularities, we cannot guarantee it will work everywhere. This problem is
due to the fact that the pseudo-random number sequence produced is fixed and devised
separately from its actual use contexts. Still, empirical testing and application-specific
analysis can provide safety measures against deficiencies (Hellekalek 1998). The goal is
to find such methods that produce sequences that are unlikely to get ‘synchronized’ to
their contexts. Other aspects that may affect the design of random number generators
are the speed of the algorithm, ease of implementation, parallelization, and portability
across platforms.

Algorithms and Networking for Computer Games, Second Edition. Jouni Smed and Harri Hakonen.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Before submerging into the wonderful world of pseudo-random numbers, let us take
a small detour and acknowledge that sometimes we can do quite well without ran-
domness. Most people will hardly consider the sequence S = ⟨0, 1, 2, 3, 4, 5, 6, 7⟩ ran-
dom, because it is easy to come up with a rule that generates it: Si+1 = (Si + 1) mod m.
But how about the sequence R = ⟨0, 4, 2, 6, 1, 5, 3, 7⟩? There seems to be no direct rela-
tionship between two consecutive values, but as a whole the sequence has a struc-
ture: even numbers precede odd numbers. A bit-aware reader may soon realize that
Ri = Bit-Reverse(i, 3) is a simple model that explains R. How about the sequence
Q = ⟨0, 1, 3, 2, 6, 7, 5, 4⟩? It seems to have no general structure, but the difference
between consecutive pairs is always one, which is typical for a binary-reflected Gray
code. From these simple examples we can see that sequences can have properties that
are useful in certain contexts. If these characteristics are not used or observed – or
even discovered! – the sequence can appear to be random. To make a distinction, these
random-like (or ‘randomish’) numbers are usually called quasi-random numbers. Quasi-
randomness can be preferable to pseudo-randomness, for example, when we want to
have a sequence that has a certain inherent behaviour or when we can calculate the
bijection of a value and its index in the sequence.

. Linear Congruential Method

At the turn of the 1950s D.H. Lehmer proposed an algorithm for generating random
numbers. This algorithm is known as the linear congruential method, and since its incep-
tion it has quite firmly stood the test of time. The algorithm is simple to implement and
requires only a rigorous choice of four fixed integer parameters:

modulus: m (0 < m)
multiplier: a (0 ≤ a < m)
increment: c (0 ≤ c < m)

starting value: X0 (0 ≤ X0 < m)

On the basis of these parameters, we can now obtain a sequence of random numbers by
setting

Xi+1 = (aXi + c) mod m (0 ≤ i). (2.1)

This recurrence produces a repeating sequence of numbers denoted by ⟨Xi⟩i≥0. More
generally, let us define

b = a − 1

and assume that

a ≥ 2, b ≥ 1.

We can now generalize Equation (2.1) to

Xi+k = (akXi + (ak − 1)c∕b) mod m (k ≥ 0, i ≥ 0), (2.2)

which expresses the (i + k)th term directly in terms of the ith term.
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Algorithm 2.1 describes two implementation variants of the linear congruential
method defined by Equation (2.1). The first one can be used when a(m − 1) does not
exceed the largest integer that can be represented by the machine word. For example, if
m is one-word integer, the product a(m − 1) must be evaluated within a two-word inte-
ger. The second variant can be applied when (m mod a) ≤ ⌊m∕a⌋. The idea is to express
the modulus in the form m = aq + p to guarantee that the intermediate evaluations
always stay within the interval (−m, m). For a further discussion on implementation,

Algorithm 2.1 Linear congruential method for generating random integer numbers
within the interval [0, m).

out: random integer r (0 ≤ r ≤ m − 1)
constant: modulus m; multiplier a; increment c; starting value X0 (1 ≤ m ∧ 0 ≤

a, c, X0 ≤ m − 1 ∧ a ≤ imax∕(m − 1), where imax is the largest possible
integer value)

local: previously generated random number x (initially x = X0)
1: r ← (a ⋅ x) mod m
2: Modulo-Sum

Modulo-Sum(

Modulo-Sum

r ← (r, c, m)
3: x ← r
4: return r

out: random integer r (0 ≤ r ≤ m − 1)
constant: modulus

without intermediate overflows in [0, m – 1]

m; multiplier a; increment c; starting value X0 (1 ≤ m ∧ 0 ≤

a, c, X0 ≤ m − 1 ∧ (m mod a) ≤ ⌊m∕a⌋)
local: previously generated random number x (initially x = X0)
1: q ← m div a
2: p ← m mod a
3: r ← a ⋅ (x mod q) − p ⋅ (x div q)
4: if r < 0 then
5: r ← r + m
6: end if
7: r ← (r, c, m)
8: x ← r
9: return r

x, y, m)
in: addends x and y; modulo m (0 ≤ x, y ≤ m − 1)
out: value (x + y) mod m
1: if x ≤ m − 1 − y then
2: return x + y
3: else
4: return x − (m − y)
5: end if

Random()

Random()
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Figure . If m = 10 and w = 4, the Monte Carlo method does not provide a uniform distribution.

see Wichmann and Hill (1982), L’Ecuyer (1988), Park and Miller (1988), L’Ecuyer and
Côté (1991), Bratley et al. (1983, pp. 201–202), and Knuth (1998b, Exercises 3.2.1.1-9
and 3.2.1.1-10).

Because computer numbers have a finite accuracy, m is usually set close to the max-
imum value of the computer’s integer number range. If we want to generate random
floating point numbers where Ui is distributed between zero (inclusive) and one (exclu-
sive), we can use the fraction Ui = Xi∕m instead and call this routine Random-Unit().

What if we want a random integer number within a given interval of length w (0 <
w ≤ m)? A straightforward solution would be to use the Monte Carlo approach and
let Yi = Xi mod w or – to put it another way – to let Yi = ⌊Uiw⌋. The problem with
this method is that the distribution is not guaranteed to be uniform (see Figure 2.1),
but Monte Carlo methods allow the approximateness of the solution to be reduced at
the cost of running time. In this case we could increase the range of the original ran-
dom number, for example, by generating several random numbers and combining them,
which would make the distribution more uniform but require more computation.

The Las Vegas approach guarantees exactness and gives a simple solution, a uniform
distribution, to our problem. This method partitions the original interval

[0, m − 1] =
w−1⋃
i=0

[
i
⌊m

w

⌋
, (i + 1)

⌊m
w

⌋
− 1

]
∪
[
w
⌊m

w

⌋
, m − 1

]
,

where i gives the value in the new interval (0 ≤ i ≤ w − 1). The last interval (if it exists)
is excess and considered invalid (see Figure 2.2). Algorithm 2.2 implements this parti-
tioning by using integer division. If a generated number falls within the excess range,
a new one is generated until it is valid. The obvious downside is that the termination

excess

w

m = 10
987654321

320 1
= 4

0

Figure . The Las Vegas method distributes the original interval uniformly by defining the excess
area as invalid.
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of the algorithm is not guaranteed. Nevertheless, if we consider the worst case where
w = m

2 + 1, the probability of not finding a solution after i rounds is of magnitude 1∕2i.

Algorithm 2.2 Las Vegas method for generating random integer numbers within the
interval [ ,u).

in: lower bound
Random-Integer(ℓ, u)

Random()

Random()

(0 ≤ ); upper bound u ( < u ≤ + m)
out: random integer r ( ≤ r < u)
constant: modulus m used in
local: the largest value w in the subinterval [0,u − ] ⊆ [0, m − 1]
1: w ← u −
2: repeat
3: r ← div (m div w)
4: until r < w
5: r ← r +
6: return r

ℓ

ℓ ℓ
ℓ

ℓ ℓ

ℓ
ℓ

ℓ

2.1.1 Choice of parameters

Although the linear congruential method is simple to implement, the tricky part is
choosing values for the four parameters. Let us have a look how they should be cho-
sen and how we can analyse their effect.

The linear congruential method generates a finite sequence of random numbers, after
which the sequence begins to repeat. For example, if m = 12 and X0 = a = c = 5, we get
the sequence

6, 11, 0, 5, 6, 11, 0, 5,…

The repeating cycle is called a period, and, obviously, we want it to be as long as possible.
Note that the values in the period of the linear congruential method are different, and
it is impossible to have repetitions – unless, for example, we rescale the interval with
Random-Integer(𝓁, u) or combine multiple sequences into one (Wichmann and Hill
1982). However, a long period does not guarantee randomness: the longest period of
length m can always be reached by letting a = c = 1 (but you can hardly call the gener-
ated sequence random). Luckily, there are other values which reach the longest period
as the following theorem shows.

Theorem 2.1.1 The linear congruential sequence defined by integer parameters m, a,
c, and X0 has period length m if and only if:

(i) the greatest common divisor of c and m is 1,
(ii) b is a multiple of each prime dividing m, and

(iii) if m is a multiple of 4, then b is also a multiple of 4.

We have denoted b = a − 1. For a proof, see Knuth (1998b, pp. 17–19).
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Modulus
Since the period cannot have more than m elements, the value of m should be large.
Ideally m should be imax + 1, where imax is the maximum value of the integer value range.
For example, if the machine word is unsigned and has 32 bits, we let m = (232 − 1) +
1 = 232. In this case the computation can eliminate the modulo operation completely.
Similarly, if m is a power of 2, the modulo operation can be replaced by a quicker bitwise-
and operation. Unfortunately, these m values do not necessarily provide us with good
sequences, even if Theorem 2.1.1 holds.

Primes or Mersenne primes are much better choices for the value of m. A Mersenne
prime is a prime of the form of 2n − 1; the first ten Mersenne primes have n =
2, 3, 5, 7, 13, 17, 19, 31, 61, 89. Quite conveniently, 231 − 1 is a Mersenne prime and thus
is often used with 32-bit machine words.

Multiplier
The multiplier a should be chosen to produce a period of maximum length. From The-
orem 2.1.1 it follows that if m is the product of distinct primes, only when a = 1 will we
get a full period. However, if m is divisible by a high power of some prime, we have more
choices for a. There is a fundamental problem with small a values: if Xi is small, Xi+1 will
probably also be small. As a rule of thumb, the multiplier a should reside between 0.01m
and 0.99m, and its binary representation should not have a simple, regular bit pattern.
For example, multipliers of the form a = 2x + 1 (2 ≤ x) have a regular bit pattern and,
therefore, tend to produce low-quality random sequences.

Increment
From Theorem 2.1.1 it also follows that the increment c can be chosen quite freely, as
long as it does not have a common factor with m (e.g. c = 1 or c = a). In many imple-
mentations c = 0, because it allows the elimination of one operation and makes the pro-
cessing a bit faster. However, as Theorem 2.1.1 indicates, this cuts down the length of
the period. Also, when c = 0, we must guarantee that X0 ≠ 0.

Starting value
The starting value (or seed) X0 determines from where in the sequence the numbers
are taken. A common oversight in the initialization is to always use the same seed value,
because it leads to the same sequence of generated numbers. Usually this can be avoided
by obtaining the seed value from the built-in clock of the computer, the last value from
the previous run, the user’s mouse movements, previously handled keystrokes, or some
other varying source.

2.1.2 Testing the randomness

Random number generators can be tested both empirically and theoretically. We omit
the theoretical discussion and go through some rudiments of empirical tests; curious
readers are referred to Knuth (1998b, Section 3.3). In most cases the following tests
are based on statistical tests (e.g. 𝜒2 or Kolmogorov–Smirnov) and they aim to provide
some quantitative measures for randomness, when choosing between different param-
eter settings. Nevertheless, one should bear in mind that although a random sequence
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might behave well in an existing test, there is no guarantee that it will pass a further test;
each test gives us more confidence but can never banish our doubts.

Frequency test Are numbers distributed uniformly according to their frequencies?
Serial test Are pairs (triplets, quadruplets, etc.) of successive numbers uniformly dis-

tributed in an independent manner?
Gap test Given a range of numbers, what is the distribution of the gaps between their

occurrences in the sequence?
Poker test Group the sequence into poker hands each comprising five consecutive inte-

gers. Are the hands distributed as random poker hands should be?
Coupon collector’s test What is the length of sequence required to get a complete set

of given integers?
Permutation test Divide the sequence into groups of a given size. How often do diff-

erent permutations occur?
Run test How long are the monotone segments (run-ups or run-downs of consecutive

numbers) of the sequence?
Collision test If numbers are categorized with a hash function, how many collisions

occur?
Birthday spacings test If the numbers are hashed, how long are the spacings between

them?
Spectral test If pairs (triplets, quadruples, etc.) of successive numbers are treated as

points in a hypercube, how uniformly do they fill it?

The spectral test is an important (and yet quite intuitive) test for analysing linear con-
gruential random number generators. Moreover, we can rest assured that all good gen-
erators will pass the test and bad ones are likely to fail it. Although it is an empirical test
and requires computation, it resembles theoretical tests in the sense that it deals with
the properties of the full period.

Suppose we have a sequence of period m and we take t consecutive numbers of the
sequence so that we have a set of points

{(Xi, Xi+1,… , Xi+t−1) | 0 ≤ i < m}

in t-dimensional space. For example, if t = 2 we can draw the points in a two-
dimensional plane (see Figure 2.3). In this case one can easily discern the parallel lines
into which the points fall. This is an inherent property of the linear congruential meth-
ods. When t increases, the periodic accuracy decreases as there are fewer hyperplanes
where the points can reside. In contrast, a truly random sequence would have the same
accuracy in all dimensions.

2.1.3 Using the generators

Although the programmer implementing a random number generator must understand
the theory behind the method, the user also has responsibilities. If one does not know
the assumptions behind the linear congruential method, it can easily become a random
number ‘degenerator’. To prevent this from happening, let us go through some common
pitfalls lurking in pseudo-random numbers generated by Equation (2.1).
� If X0 ≠ 0, the largest range of multiplicative linear congruential method Xi+1 =

aXi mod m is [1, m − 1]. However, the range of Ui = Xi∕m is not necessarily (0, 1),
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Figure . Two-dimensional spectral test results for
the case where m = 256, a = 21, and c = 11.

if 1∕m rounds to value 0.0 or (m − 1)∕m rounds to value 1.0. In other words, when
converting random integers to decimal values, the characteristics of floating point
arithmetic such as rounding must be considered and documented.

� Even if the sequence ⟨Xi⟩i≥0 is well tested and appears to be random, it does not imply
that ⟨ f (Xi)⟩i≥0 is also random. For this reason, one should not extract bits from Xi and
expect them to have random properties. In fact, in linear congruential generators the
least significant bits tend to be less random than the most significant bits.

� The (pseudo-)randomness of a sequence ⟨Xi⟩i≥0 does not imply any randomness for
combinations (e.g. values in ⟨ f (Xi, Xj)⟩i,j≥0) or aggregations (e.g. pairs in ⟨(Xi, Xj)⟩).
For example, if we take a bitwise exclusive-or of two pseudo-random numbers, the
outcome can be totally non-random.

� If we select any subsequence of non-consecutive numbers from ⟨Xi⟩i≥0, we cannot
expect (without inspecting) this subsequence to have the same level of randomness.
This is important especially when the same random number generator is shared
among many subsystems.

What is common to all of these situations is the fact that when the user modi-
fies the sequence produced, she takes the role of the supplier with its accompanying
responsibilities.

Although the theoretical and test results concerning a pseudo-random sequence do
not automatically apply to a sequence derived from it, in practice long continuous blocks
behave similarly to the whole sequence. When we test the pseudo-randomness of a
sequence, the local interrelationships are also measured and verified. This allows us
define multiple parallel random number generators from a single generator. Assume that
the original generator R = ⟨Xi⟩i≥0 has a period of length p and we need k parallel gen-
erators Sj ( j = 0,… , k − 1). If we require that the parallel generators Sj must be disjoint
and with equal lengths, they can have at most 𝓁 = ⌊ p∕k⌋ numbers from R. Now, if we
define

Sj = ⟨X𝓁j, X𝓁j+1,… , X𝓁j+(𝓁−1)⟩ = ⟨X𝓁j+i⟩𝓁−1
i=0 , (2.3)

subsequence Sj can be produced with the same implementation as R just by setting the
seed to X𝓁j. Common wisdom says that the number of values generated from a linear
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Table . Seed values X𝓁j of 12 parallel pseudo-random number generators Sj for five multiplicative
linear congruential methods with multiplier a. The subsequences are 𝓁 = ⌊(231 − 2)∕12⌋ =
178 956 970 values apart from each other.

Multiplier a of the generator
Block Starting
number j index 𝓵j          

0 0 1 1 1 1 1
1 178 956 970 1 695 056 031 129 559 008 289 615 684 128 178 418 1 694 409 695
2 357 913 940 273 600 077 1 210 108 086 1 353 057 761 947 520 058 521 770 721
3 536 870 910 1 751 115 243 881 279 780 1 827 749 946 1501 823 498 304 319 863
4 715 827 880 2 134 894 400 1 401 015 190 1 925 115 505 406 334 307 1 449 974 771
5 894 784 850 1 522 630 933 649 553 291 9 087 743 539 991 689 69 880 877
6 1 073 741 820 939 811 632 388 125 325 1 242 165 306 1 290 683 230 994 596 602
7 1 252 698 790 839 436 708 753 392 767 1 088 988 122 1 032 093 784 1 446 470 955
8 1 431 655 760 551 911 115 1 234 047 880 1 487 897 448 390 041 908 1 348 226 252
9 1 610 612 730 1 430 160 775 1 917 314 738 535 616 434 2 115 657 586 1 729 938 365

10 1 789 569 700 1 729 719 750 615 965 832 1 294 221 370 1 620 264 524 2 106 684 069
11 1 968 526 670 490 674 121 301 910 397 1 493 238 629 1 789 935 850 343 628 718

congruential method should not exceed one thousandth of p (Knuth 1998b, p. 185), and
thus we can have k ≥ 1000 parallel generators from only one generator. For example,
if p = 231 − 2, we can define one thousand consecutive blocks of length 𝓁 = 2 147 483
each. However, there are dependencies both within a block and between the blocks.
Although a single block reflects the random-like properties of the original sequence,
the block-wise correlations remain unknown until they are tested (Entacher 1999).

Table 2.1 presents five well-tested multiplicative linear congruential methods and par-
titions them into 12 blocks of numbers. All of these generators have a Mersenne prime
modulo m = 231 − 1 = 2 147 483 647, increment c = 0, and the same period length p =
231 − 2. The multiplier a = 16 807 = 75 is presented by Lewis et al. (1969), 39 373 by
L’Ecuyer (1988), 41 358 = 2 ⋅ 3 ⋅ 61 ⋅ 113 by L’Ecuyer et al. (1993), and both 48 271 and
69 621 = 3 ⋅ 23 ⋅ 1009 by Park and Miller (1988). All these generators can be imple-
mented with the second variant of Algorithm 2.1. The blocks can be used as paral-
lel generators, and we can draw about 2 million random numbers from each of them.
For example, the seed of S5 for the generator Xi+1 = 41 358 ⋅ Xi mod (231 − 1) (where
X0 = 1) is X894 784 850 = 9 087 743. The values of Table 2.1 can also be used for verifying
the implementations of these five generators.

. Discrete Finite Distributions

Non-uniform random numbers are usually produced by combining uniform random
numbers creatively (Knuth 1998b, Section 3.4). Distributions are usually described using
a probability function of a random variable X. Assume the set of possible values of a vari-
able X is {X0, X1,… , Xn−1} and the probability that binding X = Xi occurs is known to
be pi = P(X = Xi). If the constraint

∑n−1
i=0 pi = 1 holds, the discrete probability distribu-

tion of X is well defined, and we call the function P(X) having the values p0, p1,… , pn−1
a probability function of a discrete random variable X. The function P(X) identifies the
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probability distribution and the ones that reappear most often are named along with
their characteristic parameters.

Instead of listing the probabilities explicitly, a finite discrete distribution of events can
be also defined by a formula. For example, suppose we have a trial where an event e
occurs independently with probability p and does not occur with probability 1 − p. Then
we repeat this trial n times, fixing both n and p. To describe the probability that e hap-
pens exactly t times out of n, a random variable X can be introduced to count these
occurrences; in other words, the possible values of X are {0, 1,… , n − 1, n}. Now, it can
be shown that the probability function is

pt = P(X = t) =
(

n
t

)
pt(1 − p)n−t =

n! pt(1 − p)n−t

t!(n − t)!

for t = 0, 1,… , n, with fixed n ∈ N and p ∈ [0, 1]. This is called the binomial distribution
Bin(n, p) of X, also denoted by X ∼ Bin(n, p).

Another fundamental discrete probability distribution is the Poisson distribution
Pois(𝜇) of X. This distribution is defined with respect to a fixed unit of some measure-
ment such as a specific time interval, a certain area of a region or an observation of an
attribute value. The disjoint events occur independently in this measurement unit and
X counts the occurrences without an upper limit (i.e. X ∈ N). The distribution param-
eter 𝜇 is the average number of events in each measurement unit, which means that
the rate of events is also fixed. When we require also that the probability of an event is
proportional to the size of the measurement unit and the events do not coincide, the
probability function becomes

pc = P(X = c) = 𝜇ce−𝜇

c!
for c ∈ N, with 0 < 𝜇 ∈ R per fixed measurement unit. To understand this better, sup-
pose a mining colony operates on an asteroid and they can handle 12 haulers in one
rotation period of the asteroid. The average number of haulers arriving is 7 per period.
In this case the measurement unit is the rotation period, X is a counter for the haulers
arriving on the period, and 𝜇 = 7 assuming the haulers’ routes are independent. The
probability that there is at least one hauler orbiting on hold in a given period is

P(12 < X) = 1 − P(X ≤ 12) = 1 −
12∑

c=0
pc = 1 −

12∑
c=0

7ce−7

c!

= 1 − 14603038643
13685760e7 ≈ 1 − 0.9730 = 0.0270.

Algorithm 2.3 (Knuth 1998b, p. 137) generates a random value X ∼ Pois(𝜇) by simu-
lating the occurrences of the events, given the rate 𝜇. For this reason, the loop at lines
4–7 runs on average 𝜇 + 1 times, making the algorithm quite feasible for 0 < 𝜇 ≲ 20.

The combination of an abstract notion of a measurement unit and the independence of
the events makes the Poisson distribution conveniently practical when we want to gen-
erate randomness. As an example, let us populate a bounded two-dimensional space
 = [0,𝓁]2 with n points placed in uniformly random positions. Assume the space is
attached with a fixed frame (i.e. the origin, x- and y-axes) so that each position can be
referred to uniquely with Cartesian coordinates. The independence of the axes (e.g. the
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Algorithm 2.3 A random count of events based on the Poisson distribution when there
are on average independent events per a measurement unit.

in: average number of events (0 ∈ R) for a unit of measurement
out: number of pseudo-events n (n ∈ N) for the measurement unit
1: t← e− ⊳ Termination limit value.
2: n ← −1
3: p ← 1 ⊳ Accumulating product.
4: repeat ⊳ Simulation of the event occurrences.
5: n ← n + 1
6: p ← p ⋅ () ⊳ Random unit value ∈ [0, 1).
7: until p ≤ t
8: return n

Random-Poisson(μ)

Random-Unit()

μ

μ μ

μ

independence of their spatial properties such as density) allows us to generate a ran-
dom coordinate in [0,𝓁] for both of the axes separately, and when these coordinates are
combined the pair in [0,𝓁]2 is also uniformly random. This allocation is repeated for all
n points, and Figure 2.4(a) illustrates one possible outcome when the space is a plane
[0, 600]2.

In this approach, the population of the space is grounded only after the last point
has been placed. The uniform randomness is drawn from the whole range [0,𝓁] for
both axes and the last point can land on any position within [0,𝓁]2. However, it can
be shown that we can achieve this property of ‘global’ uniform randomness considering
a space  of any fixed size as long as its properties are similar to the global one. It
is especially worth noting that this applies to spaces  that are smaller than  , which
means that the uniform randomness can be generated from decisions that are as ‘local’ as
we want. These two approaches produce results with the same properties, the difference
being that in the local one the subspaces can be populated independently, for example,
in parallel or sequentially one by one.

The method relies on two features, and we utilize them here without further justi-
fication: the space has Cartesian coordinates and the Poisson distribution X ∼ Pois(𝜇)
has exactly the required properties. Now, let us fix the measurement unit to subspace
0 = [0,𝓁∕6]2 ⊂  which is a (6 ⋅ 6)th part of the whole space . Because the population
of n points in is distributed uniformly randomly, on average there are n∕62 points in0
giving us 𝜇 = n∕62. Furthermore, since the points in0 must also be uniformly random,
we have the following population step. Generate a random number X0 ∼ Pois(n∕62).
Then interpret the value of X0 as a number of points, and place that many points uni-
formly randomly into 0. Repeat for all of the disjoint subspaces i of  so that their
union covers the whole of  . To simplify the calculations, bookkeeping and the effort of
partitioning  , the shapes of the subspaces i are often regular such as squares or cubes
(but not necessarily equally sized). This is also convenient with the prerequisites of the
Cartesian coordinate system.

Obviously, the result visualized in Figure 2.4(b) is similar to that in Figure 2.4(a),
as well as that in Figure 2.4(c) where the subdivision has 900 parts and 𝜇 = n∕302.
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(a) (b)

(c) (d)

Figure . A plane of size 600 × 600 units consisting of n randomly generated points. (a) n = 3000
with discrete uniform distribution (DU) over the whole plane. (b) n = 3048 over the partition of 36
subplanes, each with DU of X ∼ Pois(3000∕(6 ⋅ 6)) points; X varies in [70, 107]. (c) n = 2977 over the 900
subplanes, each with DU of X ∼ Pois(3000∕(30 ⋅ 30)) points; X varies in [0, 11]. (d) n = 2994 in 400
uniformly randomly placed subplanes, each with DU of X ∼ Pois(3000∕(20 ⋅ 20)) points; X varies in
[2, 16].

Actually, Figure 2.4(a) can also be considered as X ∼ Pois(n) where by chance X = n.
The cost of locality when generating the points is that the Poisson values Xi ∼ Pois(𝜇i)
must be calculated for each i, and the actual total number of the points

∑
i Xi cannot

be predetermined to be exactly n. Fortunately, since the values Xi are independent it can
be shown that(∑

i
Xi

)
∼ Pois

(∑
i
𝜇i

)
= Pois(n) (2.4)
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and, thus,
∑

i Xi tends to be close to n. Equation (2.4) has another consequence as it
justifies the fact that the points can also be generated in layers.

When uniform randomness of the whole is handled in parts, the generation process
is simpler to parameterize. Parameterization can be used to change the uniformity into
structural features, as illustrated in Figure 2.4(d): instead of tiling  regularly with i,
each square-shaped i is placed in a uniform random position in without crossing the
outer borders. Just randomizing the positions of randomness yields thinning or thicken-
ing in some regions. There are also other adjustment possibilities that can be triggered
by some criterion. For example, the size of i or the 𝜇 attached to it can change on some
regions of  . Also, there could be predetermined attractor or repeller positions for the
placement of i.

As we have seen so far, producing suitable random numbers for a specific situation
can be a tedious task requiring formulation of a proper distribution and then devising
an algorithm for it, or finding suitable parameters for an existing algorithm. Even listing
the probabilities explicitly {p0, p1,… , pn−1} and constraining them with

∑n−1
i=0 pi = 1 is

not always practical. For instance, if the probabilities are changing over time or if they are
derived from separate calculations, the constraints can require an extra normalization
step – but this can be avoided by relaxation: instead of a probability, each elementary
event is given a weight value.

Algorithm 2.4 selects a random number r from a finite set {0, 1,… , n − 1}. Each pos-
sible choice is associated with a weight, and the value r is selected with the probability
Wr∕

∑n−1
i=0 Wi. For example, for a uniform distribution DU(n) each choice has the prob-

ability 1∕n, which is achieved using weights W = ⟨c, c,… , c⟩ for any positive integer c.
A simple geometric distribution Geom( 1

2 ), modelling the number of failures until the
first success (where the success and failure are equiprobable), has probability 1∕2r+1 for

Algorithm 2.4
sequence of weights.

Generating a random number from a distribution described by a finite

Random-From-Weights(W)

Random-Integer

in: sequence of nweights W describing the distribution (Wi ∈ N for i = 0,… , (n−
1) ∧ 1 ≤ Σn−1

i=0 Wi)
out: randomly selected index r according to W (0 ≤ r ≤ m − 1)
1: ∣S∣ ← n ⊳ Reserve space for

Collect prefix sums.

n integers.
2: S0 ← W0
3: for i ← 1… (n − 1) do ⊳
4: Si ← Si−1 + Wi
5: end for
6: k← (1, Sn−1 + 1) ⊳ Random k ∈ [1, Sn−1].
7: if k ≤ S0 then
8: r ← 0
9: else

10: r ← smallest index i for which Si−1 < k ≤ Si when i = 1,… , n − 1
11: end if
12: return r
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a choice r, and it can be constructed using weights W = ⟨2n−1, 2n−2,… , 2n−1−r ,… , 1⟩.
In general, W can be in any order and Wi = 0 denotes that i cannot be selected.

Because the sequence S in Algorithm 2.4 is non-descending, line 10 can be imple-
mented efficiently using a binary search that favours the leftmost of equal values (i.e.
the one with the smallest index). Furthermore, lines 8 and 10 can be collapsed into one
line by introducing a sentinel S−1 ← 0. Conversely, we can speed up the algorithm by
replacing the sequence S with a Huffman tree, which gives an optimal search branching
(Knuth 1998a, Section 2.3.4.5). If speed is absolutely crucial and many random numbers
are generated from the same distribution, Walker’s alias method can provide a better
implementation (Kronmal and Peterson 1979; Matias et al. 1993).

. Random Shuffling

In random shuffling we want to generate a random permutation, where all permutations
have a uniform random distribution. We can even consider random shuffling as inverse
sorting, where we are not aiming for permutations fulfilling some sorting criterion but
all permutations. Although methods based on card shuffling or other real-world ana-
logues can generate random permutations, their distribution can be far from uniform.
Hence, better methods are needed.

Suppose we have an ordered set S = ⟨s1,… , sn⟩ to be shuffled. If n is small, we can
enumerate all possible n! permutations and obtain a random permutation quickly by
generating a random integer between 1 and n!. Algorithm 2.5 produces all permuta-
tions of ⟨0,… , n − 1⟩. To optimize, we can unroll the while loop at lines 23–28, because
it is entered at most twice. For 3 ≤ n, the body of the while loop at lines 18–22 is entered
at most n − 2 times in every 2nth iteration of the repeat loop. Also, line 29 is unneces-
sary when n ≥ 2. For a further discussion and other solution methods, see Knuth (2011,
Section 7.2.1.2) and Sedgewick (1977).

In most cases, generating all the permutations is not a practical approach (e.g. 9! >
216, 13! > 232 and 21! > 264). Instead, we can shuffle S by doing random sampling with-
out replacement. Initially, let an ordered set R = ⟨ ⟩. Select a random element iteratively
from S and transfer it to R, until S = ⟨ ⟩. To convince ourselves that the distribution of
the permutations generated is uniform, let us analyse the probabilities of element selec-
tions. Every element has a probability 1∕n of being selected into the first position. The
element selected cannot appear in any other position, and the subsequent positions are
filled with the remaining n − 1 elements. Because the selections are independent, the
probability of any generated ordered set is

1∕n ⋅ 1∕(n − 1) ⋅ 1∕(n − 2) ⋅… ⋅ 1∕1 = 1∕n! .

Hence, the generated ordered sets have a uniform distribution, since there are exactly
n! possible permutations. Algorithm 2.6 implements this approach by constructing the
solution in-place within the ordered set R.

Let us take a look at why the more ‘naturalistic’ methods often fail. Figure 2.5 illus-
trates a riffle shuffle, which is a common method when a human dealer shuffles playing
cards. Knowledge about shuffling has been used by gamblers – which is why nowadays
casinos use mechanisms employing other strategies, which, in turn, can turn out to be
surprisingly inadequate (Mackenzie 2002) – and magicians in card tricks. Let us look at
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Algorithm 2.5 Generating all permutations.

All-Permutations(n)
in: number of elements n (1 ≤ n)
out: sequence R containing all permutations of the sequence ⟨0, 1,… , (n − 1)⟩

(∣R∣ = n!)
local: index r of the result sequence
1: ∣R∣ ← n! ⊳ Reserve space for n! sequences.
2: for i ← 0… (n − 1) do ⊳ Initialize C, O, and S of length n.
3: Ci ← 0; Oi ← 1; Si ← i
4: end for
5: r ← 0
6: repeat
7: j ← n − 1
8: s ← 0
9: q ← Cj + Oj

10: for i ← 0… (n − 2) do
11: Rr ← copy S; r ← r + 1
12: ← j − Cj + s; ← j − q + s
13: swap S ↔ S
14: Cj ← q
15: q ← Cj + Oj
16: end for
17: Rr ← copy S; r ← r + 1

18: while q < 0 do
19: Oj ← −Oj
20: j ← j − 1
21: q ← Cj + Oj
22: end while
23: while q = (j + 1) and j ≠ 0 do
24: s ← s + 1
25: Oj ← −Oj
26: j ← j − 1
27: q ← Cj + Oj
28: end while
29: if j ≠ 0 then
30: ← j − Cj + s; ← j − q + s
31: swap S ↔ S
32: Cj ← q
33: end if
34: until j = 0
35: return R

β
β

α
α

β
β

α
α
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Algorithm 2.6

S
in: ordered set S
out: R
1: R ← copy S
2: for i ← 0… (∣R∣ − 2) do
3: j ← Random-Integer(i, ∣R∣)

shuffled ordered set

Random shuffle

Shuffle(  )

4: swap Ri ↔ Rj
5: end for
6: return R
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Figure . In riffle shuffle the deck is divided into two packets, which are riffled together by
interleaving them.

a simplification of a card trick named ‘Premo’ (Bayer and Diaconis 1992). Suppose we
have a deck of cards arranged in the following order:

2
♥

3
♥

4
♥

5
♥

6
♥

7
♥

8
♥

9
♥

10
♥

J
♥

Q
♥

K
♥

A
♥

2
♦

3
♦

4
♦

5
♦

6
♦

7
♦

8
♦

9
♦

10
♦

J
♦

Q
♦

K
♦

A
♦

2
♣

3
♣

4
♣

5
♣

6
♣

7
♣

8
♣

9
♣

10
♣

J
♣

Q
♣

K
♣

A
♣

2
♠

3
♠

4
♠

5
♠

6
♠

7
♠

8
♠

9
♠

10
♠

J
♠

Q
♠

K
♠

A
♠

A magician gives the deck to a spectator and asks her to give it two riffle shuffles. Next,
the spectator is asked to remove the top (here the leftmost) card, memorize its value,
and insert it into the pack. The magician has now a deck, which could look like this:
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Glancing at the deck, the magician can easily determine what is the chosen card.1 After
two shuffles the deck has four rising sequences of cards (hint: look at each suit), and the
inserted card is very likely to break one such run. In fact, if the magician has only one
guess, the probability of success is 0.997. The original Premo trick allows the spectator
to do three riffle shuffles. If the magician has one guess, the probability of success is still
as high as 0.839; with two guesses it increases to 0.943. However, if the spectator does
four riffle shuffles, the probability of success with one and two guesses drops to 0.288
and 0.471, respectively. This is known as a cut-off phenomenon, where the ‘randomness’
of the deck suddenly increases at some point during the shuffling (Aldous and Diaconis
1986). How should one then shuffle? For a deck of 52 cards, the consensus is that at

1 Answer:Thekingofclubs.
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least seven riffle shuffles is enough for most purposes – assuming the players have mere
human cognitive and computational skills.

. Summary

If we try to generate random numbers using a deterministic method we end up gen-
erating pseudo-random numbers. The linear congruential method – which is basically
just a recursive multiplication equation – is one of the simplest, oldest and most studied
of such methods. Pseudo-randomness differs in many respects from true randomness,
and common sense does not always apply when we are generating pseudo-random num-
bers. For example, a pseudo-random sequence cannot usually be modified and operated
as freely as a true random sequence. Therefore, the design of a pseudo-random num-
ber generator must be done with great care – and this means that the user also has to
understand the underlying limitations.

We can insert randomness to a deterministic algorithm to have a controlled variation
of its output. This enables us, for example, to create game worlds that resemble the real
world but still include randomly varying attributes. Moreover, we can choose a deter-
ministic algorithm randomly, which can be a good decision-making policy when we do
not have any guiding information on what the next step should be. A random decision is
the safest choice in the long run, since it reduces the likelihood of making bad decisions
(as well as good ones).

Exercises

- A friend gives you the following random number generator:

out: random integer
My-Random()

r
constant: modulus m; starting value X0
local: previously generated random number x (initially x = X0)
1: if x mod 2 = 0 then
2: r ← (x + 3) ⋅ 5
3: else if x mod 3 = 0 then
4: r ← (x + 5) ⊞ 314159265 ⊳ Bitwise exclusive-or.
5: else if x mod 5 = 0 then
6: r ← x2

7: else
8: r ← x + 7
9: end if

10: r ← r mod m; x ← r
11: return r

How can you verify how well (or poorly) it works?

- In the design of random number generators (p. 27) parallelization and portability
across platforms were mentioned. Why are they important issues?
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- The Las Vegas approach is not guaranteed to terminate. What is the probability
that the repeat loop of Algorithm 2.2 continues after 100 rounds when m = 100
and w = 9?

- An obvious variant to the linear congruential method is to choose its parameters
randomly. Is the result of this new algorithm more random than the original?

- Random number generators are as good as they perform on the tests. What would
happen if someone came up with a test where the linear congruential method
performs poorly?

- Does the following algorithm produce a unit vector (i.e. with length 1) starting
from the origin towards a random direction? Verify your answer by a writing pro-
gram that visualizes the angle distributions with respect to x-axis.

out: unit vector (x , y ) towards a random direction
1: x ← 2 ⋅ − 1
2: y ← 2 ⋅ − 1
3: ←

√
x2 + y2 ⊳ Distance from (0, 0) to (x, y).

4: return (x∕ , y∕ ) ⊳ Scale to the unit circle.

Random-Unit()
Random-Unit()

My-Vector()

ℓ
ℓ ℓ

′ ′

- Let us define functions c and s from domain (0, 1) × (0, 1) to codomain R:

c(x, y) =
√
−2 ln x cos(2𝜋y), s(x, y) =

√
−2 ln x sin(2𝜋y).

If we have two independent uniform random numbers U0, U1 ∈ (0, 1), then
c(U0, U1) and s(U0, U1) are independent random numbers from the standard nor-
mal distribution N(0, 1), that is, with mean 0 and standard deviation 1 (Box and
Muller 1958). In other words, if we aggregate combinations of independent uni-
form values, we have a normally distributed two-dimensional ‘cloud’ C of points
around the origin:

C = ⟨(c(U2i, U2i+1), s(U2i, U2i+1))⟩i≥0.

However, if we use any linear congruential method for generating these uniform
values (i.e. U2i = X2i∕m and U2i+1 = X2i+1∕m), the independence requirement is
not met. Curiously, in this case all the points in C fall on a single two-dimensional
spiral and, therefore, cannot be considered normally distributed (Bratley et al.
1983). The effect can be analysed mathematically. To demonstrate how hard it
is to recognize this defect experimentally, implement a program that draws the
points of C using the linear congruential generator a = 75, c = 0, and m = 231 − 1
(Lewis et al. 1969). How about the following example generators:
� a = 799, c = 0, and m = 211 − 9 (L’Ecuyer 1999)
� a = 137, c = 187, and m = 28 (Knuth 1998b, p. 94)
� a = 78, c = 0, and m = 27 − 1 (Entacher 1999).
What can be learned from this exercise?
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- Suppose we are satisfied with the linear congruential method with parameter val-
ues a = 799, c = 0, and m = 2039 = 211 − 9 (L’Ecuyer 1999). If we change the mul-
tiplier a to value 393, what happens to the sequence generated? Can you explain
why? What does this mean when we test the randomness of these two generators?

- Explain why parallel pseudo-random number generators such as that given in
Equation (2.3) should not overlap.

- Assume that we have a pseudo-random number sequence R = ⟨Xi⟩i≥0 with a
period of length p. We define k parallel generators Sj ( j = 0,… , k − 1) of length
𝓁 = ⌊ p∕k⌋ from R:

Sj = ⟨X𝓁i+j⟩𝓁−1
i=0 .

Does Sj also have pseudo-random properties?

- Let us call a die phantom if it produces the same elementary events – possibly
with different probabilities – as an ordinary die. For example, if an ordinary hexa-
hedral die gives integer values from [1, 6], the expression |x − y| + 1 defines its
phantom variant for integers x, y ∈ [1, 6]. The probability distribution of these
phantom outcomes is depicted in Figure 2.6.

|x− y| + 1 1 2

2
4

6
8

10

6

3 4 5 6

Figure . Probability distribution of a phantom die |x − y| + 1 when x and y are integers
from [1, 6].

In the game Phantom Cube Die a player can freely stack 6 ⋅ 6 = 36 tokens in six
piles labelled with integers [1, 6]. The player casts two ordinary dice to determine
the outcome e of the phantom die and removes one token from the pile labelled e.
The game ends when the phantom die gives the label of an empty pile. The score
is the number of phantom die throws.

The challenge is to place the tokens so that the player can continue casting
the die as long as possible. It is worth noting that although Figure 2.6 repre-
sents the probability distribution of the phantom die, it does not give the optimal
token placement. Find a better way to stack the tokens and explain this poltergeist
phenomenon.

- Interestingly, in the first edition of The Art of Computer Programming (1969)
Knuth presents – albeit with some concern – Ulam’s method, which simulates
how a human shuffles cards. This was removed from subsequent editions, and
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Knuth dismisses such methods as ‘miserably inadequate’ (Knuth 1998b, p. 145).
Ulam’s method for shuffling works as follows:

S
in: ordered set S
out: R
constant: number of permutation generating subroutines

shuffled ordered set
p; number of repe-

titions r
1: R ← copy S
2: for i ← 1… r do
3: case 1, p + 1) of
4: 1: R ← 1(R)
5: 2: R ← 2(R)
6: …
7: p: R ← p(R)
8: end case
9: end for

10: return R

Ulam-Shuffle(  )

Random-Integer(

Permutation-

Permutation-
Permutation-

The method uses a fixed number ( p) of subroutines, each of which apply a certain
permutation to the elements. Shuffling is done by selecting and applying randomly
one of these permutations and by repeating this r times.

What is the fundamental problem with this method?

- The random points in Figure 2.4(a) are uniformly randomly placed in the bounded
two-dimensional plane, positions in which are referred to with Cartesian coordi-
nates. The placement method generates a uniform random coordinate for both
of the x and y dimensions and then pairs them up without adjustments to give
a two-dimensional coordinate. It can be shown that this process produces uni-
formly random two-dimensional placement.

Let us also apply this idea to the polar coordinate system. In this two-
dimensional system, a position is defined by two measurements, the distance r
from some fixed reference position 𝔭 and the angle 𝜃 from a fixed reference direc-
tion â, counterclockwise. This gives polar coordinates of the form (r, 𝜃) for all
positions.

Polar coordinates can be converted to Cartesian coordinates by superimposing
𝔭 with the Cartesian origin (0, 0) and â with the x-axis, and the mapping becomes
(r, 𝜃) ↦ (r cos 𝜃, r sin 𝜃). Now, we are able to generate r and 𝜃 uniformly randomly,
for example as follows:

rmax)
in: largest distance possible rmax
out: a Cartesian coordinate (x, y) ∈ R

2

1: r ← ⋅ rmax ⊳
⊳
∈ [0, rmax).

2: ← ⋅ 2 ∈ [0, 2 ) radians.
3: return (r cos , r sin )

My-Position(

Random-Unit()
Random-Unit()

θθ
θ ππ
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We then expect that the result is a uniformly randomly populated circle. Verify by
experimentation whether the expectation agrees with the actual result. Speculate
on the reasons for the outcome.

- In Section 2.2, a discrete finite distribution is defined by listing the weight values
Wr for each elementary event r. Obviously, W is not a unique representation for
the distribution, because, for example, W = {1, 2, 3} and W ′ = {2, 4, 6} define the
same distribution. This ambiguity can complicate, for example, equality compar-
isons. Design an algorithm Canonical-Form-Of-Weights(W ) which returns
a unique representation for W .

- When the number of elementary events n is small, we could implement line 10 in
Algorithm 2.4 with a simple sequential search. The efficiency of the whole algo-
rithm depends on how fast this linear search finds the smallest index i for which
Si−1 < k ≤ Si. How would you organize the weight sequence W before the prefix
sums are calculated? To verify your solution, implement a program that finds a
permutation for the given weight sequence that minimizes the average number of
sequential steps required (i.e. increments of i). Also try out different distributions.

- In Algorithm 2.5 the result sequence R is formed in lines 10–17. This locality can
be used when designing an iterator variant Next-Permutation(S). Describe
this algorithm, which returns the next sequence after the previously generated
sequence S.

- In a perfect shuffle a deck of cards is divided exactly in half, and the cards in
each half are interleaved alternately together. This can be done two ways: in an
in-shuffle the bottom half is interleaved on top (1234 5678 → 51627384); and in
an out-shuffle the top half is interleaved on top (1234 5678 → 15263748).

Take an ordinary deck of 52 cards and sort it into a recognizable order. Do con-
secutive out-shuffles for the deck and observe how the order changes (alterna-
tively, if you feel more agile, write a computer program that simulates the shuf-
fling). What happens eventually?

- Casinos have devised different automated mechanical methods for shuffling
cards. One such method divides the deck into seven piles by placing each card
randomly either on the top or on the bottom of one pile (i.e. each card has 14
possible places to choose from). Then the piles are put together to form the
shuffled deck.

Is this a good method? Can a gambler utilize this information to his advantage?
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Noise

The real world is rarely smooth, pretty and perfect, but objects wobble and hobble, have
dents and stains, and the world is full of imperfections. On the other hand, mathemat-
ics provides a faultless world where everything follows the equations and everyone is
in their place. For the observer, orderly boundaries, trajectories, transitions or arrange-
ments can induce an undesirable ambiance of sterility. Despite the fact that mathematics
can be used to model the world, a world built solely on mathematical precision does not
look real enough!

To depart from the ideal presentation we can add smooth non-repetitive variations
to the generation process to make it look more organic. This is a kind of magic trick,
because the underlying computation does not vanish but is masked to resemble the real-
world phenomena. One source for such variations are noise generators. Although the
presence of noise in data is usually considered a problem and much effort is used to
remove it (e.g. noise reduction functions), here we are actually aiming in the opposite
direction: to add artificially generated noise to the data.

Let us assume a characteristic parameter c that produces some original true out-
come h(c). For example, c can be a world coordinate, a moment in time, the current
velocity or a colour measurement, and, correspondingly, h(c) can be a density, heading,
the pitch of the wind passing by, or a colour correction or adjustment. Clearly, c can
also be a composition of many measurements, and determining what kind of c would
be beneficial is part of finding an ingenious application for the noise. Often the final
result is based on many parameters ci and the corresponding functions hi(ci) need to be
aggregated.

Noise generators can be grouped into methods independent of or dependent on h(c).
We can describe an independent generator simply as n(c) and a dependent generator as
n(c, h(c)). In other words, a noise generator is a proper function that always returns the
same value for the same given input. There are several ways to combine the noise to the
original true outcome, and, thus, we confine ourselves to generators of the form n(c).

. Applying Noise

When a true outcome h(c) and a noise generator n(c) are synthesized, the outcome gen-
erated is denoted g(c) for each c. The simplest way to change the ‘value’ of h(c) by the
‘value’ of n(c) is a linear combination (i.e. addition and multiplication). Let us assume

Algorithms and Networking for Computer Games, Second Edition. Jouni Smed and Harri Hakonen.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Table . Translation and scaling of h(c)
with n(c). To describe how n(c) affects the
direction of change with respect to the
original h(c), we assume 0 < n(c) < 1.
Horizontal refers to the domain of h(c)
increasing to the left, and vertical to its
codomain increasing in the upward
direction. The changes are similar to the
functions on the x- and y-axes of the
Cartesian coordinates.

horizontal vertical

translation
left h(c + n(c)) up h(c) + n(c)

right h(c − n(c)) down h(c) − n(c)

scaling
stretch h(c ⋅ n(c)) h(c)∕n(c)
shrink h(c∕n(c)) h(c) ⋅ n(c)

that these two operations and their inverse functions are well defined for the ‘values’
and also for c. Fitting the value domains and codomains of h(c), n(c), and c can require
coercing and mapping, but the core intention is to preserve the smoothness of change
in them (i.e. a small variation in the input causes relatively small effect on the output) by
letting the noise generator determine the amount of the whole ripple from h(c) to g(c).
To keep the notation simple, we assume from now on that those domains and codomains
are already fitted, for example, into R. This allows us to consider the basic function trans-
formations (i.e. translation and scaling) as methods of synthesis.

Table 3.1 collects the fundamental transformations and their effects. The horizon-
tal noise drifts the domain of h(c) and the vertical noise the image of h(c) within the
codomain. Some details of Table 3.1 deserve further explanation:

� The horizontal translation h(c + n(c)) moves h(c) to the left: in place of c, the value
c + n(c) on its right is used, meaning the function shifts in the opposite direction.

� Contracting c stretches h(c) horizontally.
� Horizontal scaling preserves the y intercepts and vertical scaling the x intercepts.
� With negative multipliers, −h(c) is a reflection of h(c) in the x-axis and similarly h(−c)

in the y-axis.

The basic forms of Table 3.1 can be combined into a generic form as follows. Let 𝔞, 𝔭, 𝔣,
and 𝔟 represent the possible slots for the noise generators. Now,

g(c) = 𝔞 ⋅ h((c − 𝔭)𝔣) + 𝔟 (3.1)

coalesces all the transformations. Although g(c) is not necessarily periodic, the effects
of the slots on g(c) can be related to wave terminology: 𝔞 corresponds to amplitude, 𝔣
frequency, 𝔭 phase shift, and 𝔟 baseline shift. It is worth noting that we prefer here the
positive noise values directed towards Cartesian Quadrant I, hence the subtraction in
the term (c − 𝔭).

From now on, we fix the codomain of n(c) to [−1, 1] ⊂ R, which means that the noise
generators yield values that stay within the signed unit interval. This restriction – easily
liftable by translation and scaling – makes the noise composable. In other words, the
noise slots in Equation (3.1) now have well-defined contributions to g(c), and we can
anticipate the outcome if we adjust the n(c) terms plugged in using similar function
transformations. Figure 3.1 demonstrates an outcome of one such experiment.
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Figure . Application of noise to a regular recurrence with two perturbed sine functions. On the left,
two perpendicular sine waves are merged by weighting them linearly. The amount of noise rippling
the waves increases linearly to the right.

. Origin of Noise

Since a noise generator n(c) is a function, it depends solely on the information content
of c. How, then, we can fabricate a variation on it using some fixed method? If variation
means dissimilarity of n(c) from nearby n(c ± Δc), perhaps randomization that stems
from c would be useful, as long as c ± Δc produces a different result. To achieve this a
random number r can be assigned for each c (e.g. with Algorithm 2.1), by inventing a
mapping from c to the starting value X0 of the random number generator. We denote
the initialization of X0 as routine Set-Seed(∙).

As an aside, the random number generators utilized by the noise generators become
degenerators as discussed in Section 2.1.3: because a random number generator is
shared among all the references to c, each invocation of Set-Seed(∙) resets the random
sequence, possibly ruining the illusion of randomness. However, for a noise generator
this is not a problem, because only the first number of the subsequence is consumed by
each n(c), making the situation similar to the case (𝓁 = 1) ⇒ Sj = ⟨Xj⟩ in Equation (2.3).
Therefore, a suitable hash function would also suffice.

The next question is how to map c to X0. With computers it is reasonable to assume
that c can be converted to a sequence of integer numbers Z that represents c quite
uniquely. Then the mapping in question is about aggregating Z to one integer k, but,
at the same time, avoiding as much as possible any introduction of periodicity or other
repeated patterns. The progress of these mappings from a characteristic parameter c to
a random number r and, finally, to n(c) can be summarized as

c ↦ Z ↦ k = X0 ↦ r ↦ n(c) ∈ [−1, 1]. (3.2)

Of course k can be used directly to represent the randomness r attached to c, provided
it behaves as such. Here, we aggregate Z by calculating its Morton code (Morton 1966,
Chapter 5). Simply put, a Morton code is a function that interleaves the bit represen-
tations of the integers in a sequence Z. For example, if Z = ⟨ 10, 3 ⟩ = ⟨ 10102, 00112 ⟩,
the code is 0 1 0 0 1 1 1 0 = 010011102 = 78. For non-negative integers, the most signifi-
cant bits (MSBs) can be padded with 0-bits, as we did with the value 3. When negative
integers are included, some sign representation must be selected, such as the prevailing
two’s complement where the MSBs of the negative numbers become padded with 1-bits.

Algorithm 3.1 converts a sequence Z to a Morton code. In addition to the parame-
ter Z, it accepts a parameter b for controlling the number of the least significant bits
interleaved from each integer of Z. The utility routine Bits-Required(n) determines
the number of effective bits (i.e. the number of bits that are not considered as padding).
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Algorithm 3.1 Morton code for interleaving a sequence of integers.

Z, b)
in: sequence Z of n integers ∈ Z (in two’s complement representation); number

ficant bits in Z are grouped to the least significant bits of the result)

of effective bits b (0 ≤ b or )nil
out: value r ∈ Z consisting of interleaved bits of the integers in Z (the least signi-

local: bit mask m; sequence S of bit shift amounts (∣S∣ = n)
1: m ← 1 ⊳ Left-shifting bit mask.
2: ∣S∣ ← n ⊳ Reserve space for n integers.
3: for i ← 0 … (n − 1) do
4: Si ← i
5: end for
6: if b = then
7: if Z has negative values then error b cannot be end if
8: b ← max { min Z), max Z) }
9: end if

10: r ← 0
11: for c ← 0 … (b − 1) do ⊳ Repeat b times (c not used).
12: for i ← 0 … (n − 1) do
13: r ← r ⊔ ((Zi ⊓ m) ≪ Si)
14: Si ← Si + n − 1
15: end for
16: m ← m ≪ 1
17: end for
18: return r ⊳ Integer of nb bits.

n)
in: integer n ∈ Z

out: n, assumingnumber of effective bits required for n is in two’s complement
representation

1: if n = 0 then return 1 end if
2: if n < 0 then n ← −n end if
3: return 1 + ⌊lg(n − 1)⌋

Morton-Code(

Bits-Required(

Bits-Required(

Bits-Required(

nil
nil

From now on, to simplify the presentation we concentrate on number sequences con-
sisting of natural numbers instead of signed integers. In the context of noise generation,
this is not such a restriction because the outcome is still similarly randomish and, if
needed, the value intervals can be shifted along the number line.

Given a sequence N of natural numbers representing a characteristic parameter c, a
straightforward realization of Equation (3.2) is given in Algorithm 3.2. If the noise n(c)
generated has artefacts, the outcome can be adjusted by assigning another value to the
internal constant S0.
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Algorithm 3.2 A discrete-domain noise generator that returns a random value for the
given sequence of natural numbers. The sequence specifies one data position.

N)
in: sequence

random floating point value
N of natural numbers

out: ∈ [−1, 1] ⊂ R

constant: modulus m in Algorithm 2.1; adjustment seed S0 of the noise generation
1: N, ) + S0)
2: r ← () ⊳ r ∈ [0, m − 1] ⊂ N.
3: s ← r∕(m − 1) ⊳ s ∈ [0, 1] ⊂ R, endpoints included.
4: return 2s − 1

Noise-Random(

Random
Set-Seed(Morton-Code( nil

(b)(a)

Figure . (a) The result of NOISE-RANDOM(⟨i, j⟩) where 0 ≤ i, j ≤ (640 − 1) with scaling [−1, 1] ⊂ R to the
greyscale values [0, 255] ⊂ N. (b) Detail from the top-left part of (a) zoomed in by magnification 32
revealing the individual pixels [0, 19] × [0, 19] on the discrete integer grid of image coordinates.

. Visualization

The properties of noise generators are often visualized with two-dimensional greyscale
images where the noise value −1 corresponds to black, 1 to white, and intermediate
values are mapped linearly to grey tones.1 In this context, c has the structure of a pixel
coordinate c = (i, j), where i is the row and j is the column index of the pixel (i, j ∈ N).
The coordinates can be rigged to Noise-Random(N) simply by mapping (i, j) to N =⟨i, j⟩. Figure 3.2 depicts the typical features of Noise-Random(⟨i, j⟩). One of them is
the unfortunate lack of coherence between neighbouring values, which can be seen in
how the values n(c) and n(c ± Δc) vary too randomly (see also the discussion on terrain

1 Exercise 3-6 demonstrates common pitfalls when converting a floating point interval into an integer interval.
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generation in Section 4.1). However, there are two observations to be made that take us
forward, and they are the core of noise generation.

Firstly, the problem in Figure 3.2(a) is it has too high a frequency and the image is a
plain random shock of white noise that has such fine granularity that it does not present
any structure. Figure 3.2(b) also has randomness, but because of zooming in on the pixel
grid, it has much lower image frequencies and clear regions of equal greyness. At the
very extreme, with a magnification of 640, we would be able to see only one pixel (at a
time, when shifting over discrete rows and columns) and the frequency element would
have disappeared totally; then the only variation is the randomness in a pixel value. The
situation is similar to image processing: high-pass filtering emphasizes the edges and
low-pass filtering blurs the image. This means the dominant frequencies of any noise
must be within some useful bandwidth, preferably a rather narrow one.

Secondly, what if Figure 3.2(b) is not considered as a zoom-in of (a) but as a result of
another noise generator producing a two-dimensional step function? Actually, such an
image generator is trivial to describe:

1: return ⟨⌊i∕32⌋, ⌊ j∕32⌋⟩)Noise-Random(

For example, recalling Table 3.1, the expression ⌊i∕32⌋ = ⌊i ⋅ 1∕32⌋ stretches the image
in the i direction by collecting the values for the coordinates i ∈ {32k, 32k + 1, … , 32k +
31} from 32k only, for k ∈ N. Moreover, Figure 3.2(b) can be seen as an instance of a step
function that is defined also for all intermediate values, and, more generally, as a result
of a simple two-dimensional interpolation over an integer grid.

Since many interpolation methods are known, there are multiple options for noise
generation in n dimensions: take a regular integer grid of random numbers, zoom in to a
suitable frequency bandwidth, and interpolate the intermediate values of the grid with a
convenient method. Here, the core idea is to place the randomness onto the positions of
the n-dimensional integer grid, and then interpolate the fractional parts with a suitable
granularity. This makes interpolation elementary for the noise generation and, thus, we
may go into the details.

. Interpolation

Interpolation is a method that determines new values between given values. For exam-
ple, if we know two values a0 and a1 and their positions x0 and x1, interpolation can be
used to determine the values at when xt ∈ [x0, x1]. In other words, interpolation defines
a function f (∙) that has the follows properties:

a0 = f (x0), a1 = f (x1), and at = f (xt) when xt ∈ [x0, x1].

Naturally, these conditions are loose and there are infinitely many choices of f (∙) and,
consequently, to determine the intermediate values at .

Interpolation can be generalized to methods that consider further the known data
positions beyond the nearest ones, but with noise generation we allow only the local sur-
roundings to contribute to the position of interest. In other words, a noise is defined as
a piecewise function over regular intervals [xi, xi+1], and each piece alone is the domain
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utilized in an interpolation function one at a time. It turns out that the downsides of pre-
ferring locality can be mitigated by selecting a suitable interpolation method together
with aggregating more than one value from the neighbourhood into one. To achieve
those compensations we first cover some interpolation methods, starting with elemen-
tary utility routines for converting values, then introduce well-known one-dimensional
interpolation curves f (∙) and, finally, show how to apply them to yield two-dimensional
curves f (∙, ∙). The step that generalizes interpolation to higher dimensions is similar but
more laborious.

It is convenient to describe an interpolation method as a function 𝜚(t) confined to the
unit square [0, 1]2 ⊂ R

2. The idea is to normalize the ends and the intermediate positions
xt ∈ [x0, x1] to the unit interval t ∈ [0, 1] and to define 𝜚(t) ∈ [0, 1] to be the proportion
weight between the values a0 = f (x0) and a1 = f (x1) contributing to the value at at xt . It
is customary to interpret 𝜚(t) as the weight of x1 over x0, meaning that when 𝜚(t) = 0 the
value at xt is a0 and when 𝜚(t) = 1 it is a1. Furthermore, we require 𝜚(0) = 0 and 𝜚(1) = 1
to ensure a0 = f (x0) and a1 = f (x1). This whole set-up can be depicted as follow:

1

0 1t

(t)

x0 x1xt

a0

a1
at

To simplify the value conversions involved, let us first describe the utility routines.

3.4.1 Utility routines for value conversions

Operating with the unit interval [0, 1] is so established that there are some well-known
utility routines for commonly occurring value conversions. Algorithm 3.3 introduces
one way to define the concepts of clamping, wrapping, stepping, rescaling, and lerping a
value both to and from the unit interval. In general, clamping restricts the given value
x to a specified interval I ⊂ R, wrapping returns the quotient of x modulo I, stepping
classifies x to 0 or 1 by a fixed threshold, rescaling maps x linearly into I, and lerp-
ing calculates fraction values linearly from I. As already mentioned, we have selected
I = [0, 1].

It is worth noting how Unit-Wrap behaves with negative values. For example, Unit-
Wrap(−1.1) returns 0.9 because ⌊−1.1⌋ = −2. If Unit-Wrap is defined in terms of
extracting the integer part of x ∈ R, that is

int(x) = sgn(x)⌊ |x| ⌋,

the definition of routine Unit-Wrap changes to

1: x← x − int(x)
2: if x < 0 then x← x + 1 end if
3: return x
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Algorithm 3.3 Utility routines for converting a value.

x)
in: value x ∈ R

out: min {max {0, x}, 1} ∈ [0, 1]
1: if x < 0 then return 0 else if 1 < x then return 1 else return x end if

x)
in: value x ∈ R

out: fractional part ∈ [0, 1) of x
1: return x − ⌊x⌋

x)
in: value x ∈ R

out: value 0 when x ≤ 0, otherwise 1
1: return if 0 < x then return 1 else return 0 end if

xmin, xmax, x)
in: value x ∈ [xmin, xmax] ⊂ R (xmin < xmax)
out: x linearly rescaled onto [0, 1]
1: return (x − xmin)∕(xmax − xmin)

a0, a1, t)
in: values a0, a1 ∈ R; mixing weight t ∈ [0, 1] ⊂ R

out: linear interpolation between a0 and a1 by their mixing weight t, especially a0
when t = 0, and a1 when t = 1

1: return a0(1 − t) + a1t

Unit-Clamp(

Unit-Wrap(

Unit-Step(

Unit-Rescale(

Unit-Lerp(

where line 2 compensates for the inequality of operations ⌊∙⌋ and int(∙) for the negative
numbers. Obviously, if the values treated are always non-negative, this distinction is not
needed.

The routines of Algorithm 3.3 can be used to derive generalizations. For example,
Step(x, xt) can be defined as

1: return x − xt)Unit-Step(

and scaling x ∈ [xmin, xmax] linearly onto [x′
min, x′

max] can be computed as

1: return (xmin, xmax, (xmin, xmax, x))′ ′Unit-Lerp Unit-Rescale

which we can name Rescale(x′
min, x′

max, xmin, xmax, x). Curiously, the lerp interpola-
tion within the unit interval is its own generalization with respect to parameter t:
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for values t ∈ R ⧵ [0, 1] it linearly extrapolates x along the line via the data positions
(x0, a0) and (x1, a1). When the prerequisite t ∈ [0, 1] is relaxed to x ∈ R, Unit-Lerp
is aliased to Lerp. The extensions Clamp and Wrap are discussed in Exercises 3-9
and 3-10.

These utility routines are useful because they replace simple and often used control
structures by data-oriented routine signatures, and the definitions using them become
more declarative. In other words, the data that affect the outcome have clear entry
points in the descriptions at appropriately high level. However, as with all concep-
tualizations, they have advantages only when one is familiar with them. To demon-
strate the effect, consider Algorithm 3.4 which generates the black-and-white image in
Figure 3.3.

Algorithm 3.4 A method for generating Figure 3.3. Primitive routine pixel is used to
assign a greyscale colour into the given image.

img)
in: empty pixel image img of h rows and w columns
out: img, 0 for black and 255 for white colourfilled greyscale image
1: for i ← 0 … (h − 1) do
2: for j ← 0 … (w − 1) do
3: r ← i∕h ; c ← j∕w ⊳ Normalize to ∈ [0, 1) ⊂ R.
4: wr ← 0, 0.194, r)
5: wc ← 0, 0.250, c)
6: dr ← (−0.02, 0, (0.1, wc))
7: dc ← ( 0.02, 0, (0.1, wr))
8: vr ← wr, 0.05 + dr) − wr, 0.2 + dr)
9: vc ← wc, 0.05 + dc) − wc, 0.2 + dc)

10: v ← 1 − vrvc) ⋅ 255 ⊳ v ∈ {0, 255}
11: pixel(img, i, j) ← v ⊳ Set pixel colour into row i, column j.
12: end do
13: end do

Grid-Of-Distortions(

Step(
Step(
Step(
Step
Step

Unit-Step(
Step(

Unit-Lerp(
Unit-Lerp(
Wrap(
Wrap(

Figure . A grid of distorted squares inside a square-sized image,
generated with Algorithm 3.4.
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Figure . Simple interpolation functions 𝜚(t) for t ∈ [0, 1] ⊂ R: (a) value-hold 0, (b) nearest-neighbour
STEP(t, 1

2
), (c) linear t, (d) cosine 1

2
(1 − cos(𝜋t)), (e) smoothstep −2t3 + 3t2, and (f ) smootherstep

6t5 − 15t4 + 10t3.

3.4.2 Interpolation in a single parameter

Figure 3.4 illustrates well-known interpolation functions described as variants of the
function 𝜚(t) over t ∈ [0, 1]. The value-hold function in Figure 3.4(a), considered from
left to right, replicates the held value a0 till the next one, a1, is encountered. This is the
interpolation that is implicitly used when a noise image is zoomed in, as with Figure
3.2(b). The effect is due to the floor function ⌊∙⌋.

Since the value-hold is almost function Step(t, 1), the nearest-neighbour function
in Figure 3.4(b) is almost just a translation of it by displacement 1

2 and, correspond-
ingly, the effect resembles the rounding of a value. When a noise is derived from a
uniform integer grid, the interpolation gives a Voronoi diagram of squares with the
known data values at the midpoints.

Figure 3.4(c) represents the identity function 𝜚(t) = t weighting linearly the mixing of
a0 and a1 for at (i.e. at = Unit-Lerp(a0, a1, t)). This observation gives us the general
mapping from any 𝜚(t) to its corresponding at = f (xt):

at = Unit-Lerp(a0, a1, 𝜚(t)) (3.3)

where the parameter t ∈ [0, 1] is equal to Unit-Rescale(x0, x1, xt). Observe that the
function f (∙) is defined by Equation (3.3), making it only an alias notion. The endpoints
are given as x0 and x1 with their values a0 and a1, respectively. The interpolation posi-
tions xt ∈ [x0, x1] are mapped to t ∈ [0, 1] and then 𝜚(t) determines the mix of values a0
and a1 to value at for xt . Algorithm 3.5 shows how this idea can be used to interpolate
one-dimensional noise.
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Algorithm 3.5 A noise generator over the unit-length intervals [n, n + 1] ⊂ R (n ∈ N)
that interpolates the random noise values placed at the integer positions n and n + 1.

xt)
in: position 0 ≤ xt ∈ R

out: interpolated noise value ∈ R

1: xw ← ⌊xt⌋ ⊳ Integer (‘wholes’) part of xt .
2: xf ← xt − xw ⊳ Fractional part ∈ [0, 1) of xt .
3: a0 ← ⟨xw⟩)
4: a1 ← ⟨xw + 1⟩)
5: return a0, a1, xf )

a0, a1, t)
in: reference values a0, a1 ∈ R; mixing weight t ∈ [0, 1] ⊂ R

out: interpolated value ∈ [a0, a1]
local: an interpolation function : [0, 1] ↦ R (e.g. one of in Figure 3.4)
1: return a0, a1, (t))

Noise-Interpolation-1(

Noise-Random(
Value-Interpolation-1(

Value-Interpolation-1(

Noise-Random(

Unit-Lerp( ϱ
ϱ

To have a nonlinear but continuous 𝜚(t) the rate of change must decrease and increase.
If flatness of the values is needed near the endpoints and steepness in the middle region,
the cosine function can be adjusted by horizontal and vertical shrinking and codomain
reversion for this purpose (see Figure 3.4(d)).

A cubic Hermite spline has a basis function similar to the cosine interpolation func-
tion, as can be seen by comparing Figure 3.4(e) to Figure 3.4(d). Their difference is at
most only slightly more than 1% for t ∈ [0, 1]. Because this function is a simple cubic
polynomial and it can be calculated with three multiplications and one subtraction, it
has been given the widely known nickname ‘smoothstep’.

The smootherstep function in Figure 3.4(f ) has more curvature near the endpoints,
and the maximum difference from the cosine interpolation is about 4% and from the
smoothstep about 5%. It can be calculated with five multiplications, one addition, and
one subtraction.

We can compare and rank the interpolation functions by their continuity. The ratio-
nale is that since in our case the given datapoints are random, the relevant random-
ness does not disappear when an interpolation yields continuous results. Also, to avoid
deficiencies the seam between the interpolation intervals should be smooth (i.e. the
derivatives of the piecewise interpolations should match at the known data positions).
Because the changes in the interpolation values are driven by 𝜚(t), we can require that,
for instance, functions at 𝜚(1) and 1 − 𝜚(0) match smoothly when they are adjacent.

The ‘value-hold’ and ‘nearest-neighbour’ functions are discontinuous on [0, 1] caus-
ing jumps in the resulting data, and for this reason they are rarely used intentionally.
The ‘linear’ function is continuous and gives a linear ramp of values. However, at the
endpoints it is not smooth in general, because the constant derivatives of the adjacent
intervals can differ, causing sudden changes between the interpolation intervals. The
sharp edges themselves are not necessarily a problem, but in this case they occur regu-
larly, which breaks the illusion of noise.
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The ‘cosine’, ‘smoothstep’, and ‘smootherstep’ functions have first derivative equal to 0
at both endpoints, matching them over the adjacent intervals. Despite this, the cosine
and smoothstep interpolations can have visible bends at the interval boundaries because
the changes in the changes – their second derivatives – do not match. Smootherstep
has both first and second derivatives equal to 0, and this is why it is suggested when
smoothness is critical (Perlin 2002).

3.4.3 Interpolation in two parameters

An interpolation over a two-dimensional integer grid can be constructed from a one-
dimensional interpolation 𝜚(∙). Let us consider four values a(0,0), a(1,0), a(1,1), and a(0,1)
at the corner positions of the unit square [0, 1]2 ⊂ R

2. We want to interpolate a value
a(x,y) at (x, y) when 0 ≤ x, y ≤ 1. The idea is to calculate two 𝜚(∙)-interpolated values,
for instance, in the direction of the x-axis, and then take their 𝜚(∙)-interpolation in the
direction of the y-axis. One actual arrangement of this is

a(0,0)

a(0,1)

a(1,0)

a(1,1)

a(x,y)

xf
yf

where xf is the fractional part of x, and yf of y. Of course in the unit square xf = x and
yf = y, but we introduce this notation here for more general situations. The white circles
are the horizontal interpolations of the values at the corners with mixing weight xf and
the grey circle is the vertical interpolation with weight yf .

Algorithm 3.6 connects this method to two-dimensional noise generation. The
routine Value-Interpolation-1 defined in Algorithm 3.5 utilizes any of the one-
dimensional interpolation functions 𝜚(∙).

Algorithm 3.6 A noise generator over the unit-sized intervals [m, m+1]×[n, n+1] ⊂ R
2

(m, n ∈ N) that interpolates the random noise values placed at the integer positions
(m, n), (m + 1, n), (m + 1, n + 1), and (m, n + 1).

x, y)
in: position (x, y) ∈ R

2 in the Cartesian Quadrant I (0 ≤ x, y)
out: interpolated noise value ∈ R

1: xw ← ⌊x⌋ ; xf ← x − xw ⊳ Integer and fractional parts of x
2: yw ← ⌊ y⌋ ; yf ← y − yw ⊳ . . . and y.
3: a00 ← ⟨xw , yw ⟩)
4: a10 ← ⟨xw + 1, yw ⟩)
5: a11 ← ⟨xw + 1, yw + 1⟩)
6: a01 ← ⟨xw , yw + 1⟩)
7: a□0 ← a00, a10, xf )
8: a□1 ← a01, a11, xf )
9: return a□0, a□1, yf )

Noise-Interpolation-2(

Noise-Random(
Noise-Random(
Noise-Random(
Noise-Random(
Value-Interpolation-1(
Value-Interpolation-1(
Value-Interpolation-1(
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(c)(b)(a)

(f)(e)(d)

Figure . The effect of applying the interpolation functions in Figure 3.4 to the noise values placed
on an integer grid. The grid is generated by Algorithm 3.2 (see also Figure 3.2) and then zoomed in by
magnification 64: (a) value-hold, (b) nearest-neighbour, (c) linear, (d) cosine, (e) smoothstep, and (f )
smootherstep.

Figure 3.5 visualizes the two-dimensional outcome of Algorithm 3.6 using each of
the one-dimensional interpolation functions in Figure 3.4. The discrete-domain noise
generator for the integer grid values is Noise-Random, which we also used for Figure
3.2. For this reason, Figure 3.5(a) depicting the value-hold function is the same as the
upper-left quarter of Figure 3.2(b), and it can be used as the base image for comparisons.
However, note that all the images in Figure 3.5 are on R

2
⩾0 whereas Figure 3.2(b) is a

zoom-in of N
2.

The method that generalizes one-dimensional interpolation of noise to two dimen-
sions can also be applied for three dimensions and beyond. In three dimensions, we have
a unit cube and the interpolation process has three phases – one for each dimension –
and in total seven one-dimensional value interpolations.



 Algorithms and Networking for Computer Games

. Composition of Noise

The overall variation of randomness in Figure 3.5(f ) is continuous but it can still have
regions that are – or at least seem to be – flat. For a noise, it is too smooth and calls for
random variations that form the details. In nature, variations tend to present themselves
recursively at different scales (see also the discussion on L-systems in Section 4.3). This
idea can also be copied into noise generation: an interpolated noise is scaled to differ-
ent layers and then the layers are composed into one. This method forms recursively
self-similar features in the noise, making it more useful, for example, when zooming in
towards the integer grid.

Algorithm 3.7 defines one way to compose a number of nesting layers 𝓁 of a noise
for the given characteristic parameter c. The noise for each layer is drawn from a single
generator, A-Noise(c), so that a layer has its own particular frequency f and amplitude
a. This generator can use any method that yields proper noise for c.

Algorithm 3.7 Composition of the values of a noise generator by varying both amplitude
and frequency with exponentiation.

c, , a0, f0)
in: characteristic parameter c; number of nesting layers (1 ≤ ); initial amp-

litude a0 ∈ R; initial frequency f0 ∈ R

out: composed noise value ∈ [−1, 1] ⊂ R

local: largest cumulative amplitude rmax possible
1: r ← 0 ⊳ Result accumulator.
2: rmax ← 0
3: for i ← 0 … ( − 1) do ⊳ The base noise is i = 0.
4: a ← ai

0
5: f← f i

0
6: r ← r + a ⋅ c ⋅ f ) ⊳ Any noise generator returning ∈ [−1, 1].
7: rmax ← rmax + a ⊳ r ∈ [−rmax, rmax].
8: end for
9: return r∕rmax

Noise-Composition(

A-Noise(

ℓ
ℓ ℓ

ℓ

The change in f and a is defined as a geometric progression starting from parameters
f0 and a0. Since the layers are combined together simply with an addition operation, the
composition result can be accumulated during the generation of the layers.

Although the parameters of Noise-Composition have quite liberal domains, in prac-
tice 𝓁 ∈ [3, 7] ⊂ N layers suffice. Also, it is common that the higher the frequency, the
lower the amplitude, meaning 1 < f0 and 0 < a0 < 1. In some application contexts, it is
advantageous if the features between the layers match. In such a case, f0 can be cho-
sen so that the geometric progression produces multiples; for example, when f0 = 2,
the frequencies of the layers meet recursively at the factors of 2. If such a resonance is
unwanted, f0 can be an irrational number (e.g.

√
5).

Algorithm 3.7 has a variant that produces composite noise with discontinuous edges
at each noise layer, forming gnarly-like features. Its definition is as Algorithm 3.7 but
with the following replacement lines:
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6: r ← r + ∣a ⋅ c ⋅ f )∣
7: rmax ← rmax + ∣a∣

9: return 2(r∕rmax) − 1

A-Noise(

Perlin (1985) calls this composition variant turbulence, which is why we call it Noise-
Turbulence(c,𝓁, a0, f0). Figure 3.6 depicts these compositions when c = (x, y) is a posi-
tion in Cartesian Quadrant I. The noise generator with the frequency and amplitude
adjustments is a ⋅ Noise-Interpolation-2(x ⋅ f , y ⋅ f ). Note that when the parameters

= 1

= 2

= 3

= 4

Figure . Two noise composition methods of nesting layers 𝓁, initial amplitude a0 = 1
2

, and initial
frequency f0 = 2. The left column is by NOISE-COMPOSITION and the right one by NOISE-TURBULENCE.
The noise generator is NOISE-INTERPOLATION-2 with the one-dimensional smootherstep interpolation
function.
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𝓁, a0, and f0 are fixed, the noise composition methods have the signature of the noise
generators.

. Periodic Noise

So far our goal has been noise generation without periodicity. However, there are situ-
ations where the noise ought to be generated only once and then stored for later use or
cached for frequent access. To achieve this only a subset  of all the possible values 
of characteristic parameter c must be selected. In other words, the noise n(c) is defined
only for a specific region

 = (the preselected characteristics) ⊂ 

that creates crisp boundaries. Unfortunately, this also limits the usability of the noise
since the control logic structures accessing the noise must be confined to .

In this case, the technique of modular arithmetic becomes valuable. As discussed with
Equation (3.2), c often has a numeric representation c ↦ … ↦ k (k ∈ N ⊂ Z) that allows
us to refine  as

′ = { (c ↦ k) mod k0 | k0 = (preselected value ∈ N ⧵ {0}) }

for all possible c ∈ , avoiding the abrupt boundaries. Now, only the noise results for the
values ∈ [0, k0 − 1] ⊂ N need to be calculated and the whole space of the characteristic
parameter becomes tiled by the noise determined by ′.

As an example, let us consider a two-dimensional case where c = (x, y) is a position on
a plane (x, y ∈ R⩾0). First, we adapt the idea of′ directly to the generation of the under-
lying integer grid of random values by wrapping Noise-Random of Algorithm 3.2 with
Noise-Tiled-Random of Algorithm 3.8. Then this discrete tiling generator can be used
by an noise interpolator (e.g. Noise-Interpolation-2) that feeds a noise compositor
(e.g. Noise-Turbulence). This results in periodic noise as illustrated in Figure 3.7.

Algorithm 3.8 A discrete-domain noise generator that returns a random value for the
given integer position (i, j). Primitive routine cached is used as a memento storage for
the already calculated noise values.

i, j)
in: position (i, j) ∈ N

2 in the Cartesian Quadrant I (0
random floating point value

{0}; adjustment offsets

≤ i, j)
out: ∈ [−1, 1] ⊂ R

constant: region boundaries i , j ∈ N ⧵ i0, j0 ∈ N

1: i′ ← (i + i0) mod i
2: j′ ← ( j + j0) mod j
3: r ← cached(⟨i′, j′⟩)
4: if r ≠ then return r end if
5: r ← ⟨i′, j′⟩)
6: cached(⟨i′, j′⟩) ← r
7: return r

Noise-Tiled-Random(

ℓ
ℓ

ℓ ℓ

nil
Noise-Random(
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Figure . Tiling of a plane with a periodic
noise.

Another method for generating periodic noise would be to map some already gen-
erated noise to its periodic variant. In particular, the opposite edges of the region
of interest are matched together. For instance, suppose the region is the unit square
[0, 1]2 ⊂ R

2. Then we could select the noise values on the edges (0, 0)(1, 0) and (0, 0)(0, 1)
as the reference values towards which the noise near the opposite sides (0, 1)(1, 1) and
(1, 0)(1, 1), respectively, is coerced by a suitable interpolation function. This approach
produces a new generation of noise, where the structures on the opposite edges
are morphed together and the region can be tiled. However, this approach has at
least two complexities. Firstly, it is tricky to match the second derivatives over the
edges. Secondly, the interpolation can introduce artefacts not present in the origi-
nal source of the noise. To summarize, it is much easier to create periodicity than to
reconstruct it.

. Perlin Noise

Noise generated from a discrete integer grid of random numbers is called value noise.
However, as Ken Perlin shows in his seminal papers (Perlin 1985, 2001, 2002; Perlin and
Hoffert 1989), which have planted and cultivated the field of noise generation, value
noise is not always sufficient. One inherent problem with value noise functions is that
their local minimum and maximum are always at the positions of the integer grid. The
noise compositions break this regularity by adding detail, but they do not mitigate the
effect on the low frequencies as can be seen in Figure 3.6.

One of Perlin’s fundamental ideas is to improve the properties of the generated noise
by embedding more information into the process. Instead of filling the positions of the
integer grid with plain random numbers, we use random unit vectors. These vectors
represent directed unit gradients that affect the interpolation of the values between the
integer grid. For this reason, the outcome of this kind of approach is called gradient
noise, one type of which is Perlin noise.
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To define Perlin noise, we first need a method for generating uniformly random n-
dimensional unit vectors. These can be constructed from the data returned by the util-
ity routine Random-On-Unit-Sphere(n) in Algorithm 3.10, which in turn requires
random numbers from the standard normal distribution N(0, 1). To generate them we
utilize Marsaglia’s polar method because it provides convenient intermediate data for
this task, in addition to two random numbers, with one invocation. Hence, the rou-
tine for generating numbers from N(0, 1) is called Random-Normal-01-Pair, which
is split into two parts in Algorithm 3.9. The rationale for the actual calculations in these
two algorithms is discussed by Brown (1956, p. 302), Box and Muller (1958), Marsaglia
(1962), Marsaglia and Bray (1964) and Knuth (1998b, pp. 135–136).

Algorithm 3.9 Marsaglia’s Polar method for generating a pair of independent random
numbers from the standard normal distribution N(0, 1).

out: sequence of two numbers X0 , X  ∈ R both of which are independent1
random numbers from the standard normal distribution N(0 , 1) (X0 ∼
N(0, 1), X1 ∼ N(0, 1))

1: ⟨x, y, s⟩←
2: if s ≈ 0 then ⊳ Is s so near 0 that 1∕s is too large?
3: return ⟨0, 0⟩
4: end if
5: c ←

√
−2 ⋅ ln(s)∕s

6: X0 ← x ⋅ c ; X1 ← y ⋅ c
7: return ⟨X0, X1⟩
out: sequence of three numbers x, y, s ∈ R so that position (x, y) is in a particular

way random inside the unit circle, and s = x2 + y2 (0 < s < 1)
1: repeat
2: x← 2 ⋅ − 1 ⊳ ∈ [−1, 1).
3: y ← 2 ⋅ − 1
4: s ← x2 + y2

5: until 0 < s and s < 1
6: return ⟨x, y, s⟩

Random-Normal-01-Pair()

Position-In-Unit-Circle()

Position-In-Unit-Circle()

Random-Unit()
Random-Unit()

The foundations of Perlin noise are analogous to those of value noise. A discrete grid
determines the positions of the randomly generated data that are then utilized to inter-
polate the intermediate values. That is, similarly to Noise-Random(N) in Algorithm
3.2, routine Noise-Random-Vector(N , n) in Algorithm 3.11 is able to populate each
position, determined by sequence N , by an n-dimensional uniformly random unit vec-
tor. Here, we prefer column vectors and, consequently, in the algorithms the vectors v⃗
are of the form [ v1 v2 … vn ]𝖳. These unit vectors are the source of randomness for
each intermediate position inside the grid’s regions.
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Algorithm 3.10 Las Vegas approach for generating a uniformly random position on the
n-dimensional unit sphere. For a uniformly random position in the sphere, map the
result as Ri ↦ Ri ⋅

n
√

n)
in: number of dimensions n (1 ≤ n ∈ N)
out: sequence of n numbers R = ⟨R0, R1, … , Rn−1⟩ (Ri ∈ R) so that position

(R0, R1, … , Rn−1) is uniformly random on the surface of the n-dimensional
unit sphere

local: total sum of the squares of the normal deviates
values are not yet scaled to the final ones)

= R2
0 + R2

1 + … + R2
n−1 (here

the Ri
1: d ← n ⊳ Number of dimensions remaining.
2: ∣R∣ ← n ⊳ Reserve space for n numbers ∈ R.
3: ← 0
4: while 2 ≤ d do ⊳ Traverse two dimensions at a time.
5: d ← d − 2
6: ⟨x, y, s⟩←
7: if s ≈ 0 then ⊳ Is s so near 0 that 1∕s is too large?
8: Rd ← 0 ; Rd+1 ← 0
9: else

10: q ← −2 ⋅ ln(s) ⊳ q = R2
d + R2

d+1.
11: ← + q
12: c ←

√
q∕s

13: Rd ← x ⋅ c ; Rd+1 ← y ⋅ c ⊳ Polar method by Marsaglia.
14: end if
15: end while
16: if d = 1 then ⊳ The given n is such an odd number.
17: ⟨x, y, s⟩←
18: if s ≈ 0 then ⊳ Is s so near 0 that 1∕s is too large?
19: R0 ← 0
20: else
21: R0 ← x ⋅

√
−2 ⋅ ln(s)∕s ⊳ Polar method by Marsaglia.

The final one,22: ← + R2
0 ⊳ R2

0.
23: end if
24: end if
25: if ≈ 0 then ⊳ Is s so near 0 that 1∕

√
is too large?

26: return n) ⊳ Las Vegas approach.
27: end if
28: for i ← 0 … (n − 1) do ⊳ Scaling of R onto the surface.
29: Ri ← Ri∕

√
30: end for
31: return R

Random-Unit().

Random-On-Unit-Sphere(

Position-In-Unit-Circle()

Position-In-Unit-Circle()

Random-On-Unit-Sphere(
𝜍

Ϛ

Ϛ

𝜍

𝜍

𝜍 𝜍

𝜍

𝜍
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Algorithm 3.11 A discrete-domain noise generator that returns an
dom vector for the given sequence of natural numbers. The sequence specifies one data

n-dimensional ran-

position.

N, n)
in: sequence N of natural numbers; number of dimensions n (1 ≤ n ∈ N)
out: uniformly random n-dimensional unit vector
constant: adjustment seed S0 of the noise generation
1: N, ) + S0)
2: R ← n)
3: return R0 R1 … Rn−1 ⊳ Interpret⊤ R as a vector.

Noise-Random-Vector(

Set-Seed(Morton-Code(

[ ]
Random-On-Unit-Sphere(

nil

To visualize Perlin noise we concretize it in two-dimensional space. The purpose of
this simplification, however, is to demonstrate the ideas involved. The algorithm consists
of simple vector manipulations and an interpolation phase. The basic vector operations,
discussed in detail in Appendix B, are well defined in any dimension – excluding the
cross product. Thus, the effort of generalization of the algorithm to higher dimensions
is concerned solely with the interpolation step (see Section 3.4).

As in Section 3.3, we fit the position (i, j) of the two-dimensional discrete grid N
2 to

the routine Noise-Random-Vector(N , n) by mapping (i, j) to N = ⟨i, j⟩. Also, we set
n = 2 because we are operating on a plane with two-dimensional vectors.

In general, the Perlin algorithm treats each region of the integer grid in the same way,
after a particular region of interest has been identified. For this reason, on a plane,
it is sufficient to consider the unit square only. Figure 3.8 exemplifies how the Per-
lin algorithm proceeds. The goal is to interpolate a noise value d(x,y) for the position
(x, y) ∈ [0, 1]2 with respect to the data at the ‘corners’ of the square. First, the integer grid
is filled by the uniformly random unit vectors that are generated with Noise-Random-
Vector. We denote these four vectors by â(□,□) where □ symbolizes values in {0, 1}.
Then the given position (x, y) is represented as four vectors v⃗(□,□), each having initial
point at the corresponding corner position (□, □) and terminal point at (x, y). Next, we
consider a corner (i, j) (i, j ∈ {0, 1}) and the two vectors attached to it. These vectors are
converted to a scalar value by the dot product d(i,j) = v⃗(i,j) ∙ â(i,j), which turns the situ-
ation into the ordinary interpolation task discussed in Section 3.4. As a result we have
the noise value d(x,y) specific to the position (x, y).

Now, what is the codomain of d(x,y)? Remembering that we require all noise values to
stay in [−1, 1] ⊂ R, let us analyse the values of Perlin noise in more detail. Equation (B.1)
in Appendix B gives us the following development for the corner values:

d(i,j) = v⃗(i,j) ∙ â(i,j) = ‖v⃗(i,j)‖ ‖â(i,j)‖ cos 𝜃 = ‖v⃗(i,j)‖ cos 𝜃

where i, j ∈ N, the notation ‖ ‖ can be considered as the length of a vector and 𝜃 as
the angle between two vectors. The codomain of the cosine function is [−1, 1] ⊂ R and‖v⃗(i,j)‖ ∈ [0,

√
2]. But if ‖v⃗(i,j)‖ =

√
2, the position of interest (x, y) must be at one of the

corners. Without loss of generality we can assume that the corner is (0, 0) (i.e. x = 0 and
y = 0). Now v⃗(0,0) = 0⃗, from which it follows that d(0,0) = 0. In other words, when (x, y)
is on the integer grid, its noise value d(x,y) = 0.
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‸
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Figure . The phases of a Perlin noise generator in the unit square [0, 1]2 ⊂ R
2. The positions at the

integer grid are (0, 0), (1, 0), (1, 1), and (0, 1). The position of interest is (x, y) for which we want to
determine a noise value. (a) The grid positions are populated with uniformly random unit vectors
â(□,□). These vectors are fixed for their positions. (b) Position (x, y) is used to define vectors v⃗(□,□) that
together are unique to it. (c) The noise values d(i,j) = v⃗(i,j) ∙ â(i,j) are calculated for the grid positions.
These values are specific to (x, y) in this particular grid region. (d) The values d(□,□) are interpolated to
the resulting noise value d(x,y) .

This kind of regularity would be alarming in value noise generators, but with gradient
noise it is barely distinguishable: The unit vectors â(□,□) turn the gradients affecting the
interpolation in random directions breaking the regular patterns. Actually, for a Perlin
noise generator, this result shows that the noise keeps a baseline and there is the possi-
bility of a narrow bandwidth.

Let us return to the codomain of d(x,y). Since all the positions in the integer grid give
d(x,y) = 0, the terminal point (x, y)∗ of v⃗(i,j) yielding the maximal ‖v⃗(i,j)‖ must be inside
the grid’s region, in the middle of it. This can be thought of as follows. If (x, y)∗ were
somewhere else, then it would be located asymmetrically with respect to the grid. Then,
if the maximal value exists, the asymmetry must be caused by favouring some direction
or measurement over another, which cannot be the case.

Consequently, the distance from (□, □) to (x, y)∗ is
√

2∕2 = 1∕
√

2, and‖v⃗(i,j)‖ ∈ [0, 1∕
√

2] from which d(x,y) ∈ [−1∕
√

2, 1∕
√

2]. In n-dimensional space, the
maximizing point is always on the longest diagonal, in the middle of the hypercube.
Because the length of the diagonal is

√
n, we have, in general,

codomain of Perlin method in R
n =

[
−
√

n
2

,
√

n
2

]
. (3.4)
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Algorithm 3.12 Perlin noise generator over the unit-sized intervals [m, m + 1] × [n, n +
1] ⊂ R

2 (m, n ∈ N) that interpolates the random noise vectors placed at the integer
positions (m, n), (m + 1, n), (m + 1, n + 1), and (m, n + 1).

x, y)
in: position (x, y) ∈ R

2 in Cartesian Quadrant I (0 ≤ x, y)
out: interpolated noise value ∈ R

constant: codomain scaler s for two-dimensional space (s =
√

2), see Equa-
tion (3.4)

1: xw ← ⌊x⌋ ; xf ← x − xw ⊳ Integer and fractional parts of x
2: yw ← ⌊ y⌋ ; yf ← y − yw ⊳ . . . and y.
3: â00 ← ⟨xw , yw ⟩, 2)
4: â10 ← ⟨xw + 1, yw ⟩, 2)
5: â11 ← ⟨xw + 1, yw + 1⟩, 2)
6: â01 ← ⟨xw , yw + 1⟩, 2)
7: p⃗ ←

[
x y

]
8: v⃗00 ← p⃗ −

[
xw yw

]
9: v⃗10 ← p⃗ −

[
xw + 1 yw

]
10: v⃗11 ← p⃗ −

[
xw + 1 yw + 1

]
11: v⃗01 ← p⃗ −

[
xw yw + 1

]
12: d00 ← v⃗00 ∙ â00
13: d10 ← v⃗10 ∙ â10
14: d11 ← v⃗11 ∙ â11
15: d01 ← v⃗01 ∙ â01
16: d□0 ← d00, d10, xf )
17: d□1 ← d01, d11, xf )
18: return d□0, d□1, yf ) ⋅ s

Noise-Perlin-2(

Noise-Random-Vector(
Noise-Random-Vector(
Noise-Random-Vector(
Noise-Random-Vector(

Value-Interpolation-1(
Value-Interpolation-1(
Value-Interpolation-1(

⊤

⊤

⊤

⊤

⊤

Thus, the values the Perlin method yields are scaled by multiplying them by 2∕
√

n. Algo-
rithm 3.12 defines a routine Noise-Perlin-2(x, y) for this process. It is worth noting its
similarities with the routine noise-interpolation-2(x, y) in Algorithm 3.6. Figure 3.9
collects assorted variations of Perlin noise. Observe how irregular the gradient noise in
Figure 3.9(a) seems compared to the value noise in Figure 3.6(a).

The actual implementations of Perlin noise generators are often extremely optimized,
and they can utilize, for example, elaborate array arrangements and permutations of
precomputed unit vectors. Moreover, there are many kinds of Perlin noise. We have
discussed here the so-called classic Perlin noise, but there is also a more sophisticated
method called simplex noise (see Perlin 2001).

. Worley Noise

Any source of randomness can be utilized by a noise generator, but it is the refining
method of the generator that determines the characteristics of the noise. From the per-
spective of noise generation, individual random numbers are inherently ‘local’ and it
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(b)(a)

(d)(c)

Figure . Variations of Perlin noise on a plane: (a) the original zoomed in to a region of 5 × 5 integer
grid positions; (b) composed (𝓁 = 3, a0 = 1

2
, f0 =

√
5); (c) periodic based on the original with 10 × 10

grid positions; and (d) turbulenced (𝓁 = 3, a0 = 1
2

, f0 =
√

5).

requires effort to account for their surrounding data. To tackle this the gradient noise
methods process random vectors and spread their randomness around regularly pre-
fixed reference positions. Consequently, compared to value noises, gradient noises have
quite different properties. But to enrich the field of noise generation, are there other
ways we can define randomness with effects beyond the local region? As a continuation
of this line of thought, the fixed positions that are beyond the nearest ones – from the
given input position – become interesting. However, locality has been the key ingredient
for both the feasibility of the calculations and the applicability of the noise.

Worley noise generators try to respond to these challenges. The core idea in Wor-
ley’s approach is to distil variation from the randomly pre-located points in a multidi-
mensional space. This has turned out to be a versatile method with a wide spectrum of
diverse outputs. For this reason, we introduce only some of its properties; for a deeper
view, we refer the reader to Worley (1996) and Ebert et al. (2002).

Given a position p, Worley’s method considers the distances from p to the n clos-
est pre-generated points in a multidimensional space. These pre-fixed points are called
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feature points and the distances between those and the position of interest p are denoted
fi( p) for 1 ≤ i ≤ n; that is, f1( p) is the distance of the closest feature point to p, f2( p) of
the second closest, and so on. Clearly, it follows from the definition of fi( p) that the non-
strict inequalities 0 ≤ f1( p) ≤ f1( p) ≤ … ≤ fn( p) always hold. When the fi( p) values are
calculated for p, the noise generator phase of the method maps some composition of
these fi( p) values onto [−1, 1] ⊂ R as the noise outcome.

The purpose of defining and setting n is a practical one, because it is used to limit the
regions of interest that need to be analysed for the noise generation. In other words, the
parameter n allows us to confine the search for the near feature points to a bounded
area. This is directly connected to the way Worley’s method generates the fixed feature
points: the space is divided into regular unit-sized regions and each region is filled with
c uniformly random points, where c ∼ Pois(𝜇). The parameter 𝜇 is the average num-
ber of points we want in each region. Since routines such as Random-Poisson(𝜇) in
Algorithm 2.3 can be slow, Worley (1996) recommends that c ≤ 9.

To fix a feature point into its location, the region of the point is uniquely identified
by its lowest integers: a point at the position (x, y) belongs to the region (⌊x⌋, ⌊y⌋). The
region identity is used as the seed for the randomization that places the points. Now the
feature points can be generated independently for each region as needed. The reason
why this works is discussed in Section 2.2; see also Figure 2.4. Additionally, if c is replaced
by max{1, c}, each region has at least one feature point. When the feature points are
searched to determine the fi( p) values for small n, it always suffices to consider only
the nearest regions of the region where the point p resides. The codomain restrictions
of c can be combined into Clamp(1, 9, c) when the Poisson random number generator
cannot be modified.

It is possible to enforce the locality without much loss from the principal proper-
ties in Worley noise. To simplify the discussion, let us assume from now on that we
are generating Worley noise in two-dimensional space, which is only a limitation of
the presentation. As an introduction to ensuring the locality, let us consider position
p = (x, y) = (2 + 𝜖, 2 + 𝜖), 0 < 𝜖 ≪ 1, which is located at the unit-sized region identified
uniquely by (⌊x⌋, ⌊y⌋) = (2, 2). All the feature points in that region are within distance√

2(1 − 𝜖) from p, since the diagonal has length
√

2 :

p

In other words, f1( p) <
√

2(1 − 𝜖). However, at least when

1 + 2𝜖 <
√

2(1 − 𝜖) ⟺ 𝜖 <

√
2 − 1√
2 + 2

≈ 0.12,

it is possible that the closest feature point to p is, for instance, (2 + 𝜖, 1 − 𝜖) of region
(2, 0) (i.e. it is the neighbour region of a neighbour of p, stressing the search of the nearest
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feature points). In this situation, we think in terms of practicality and declare that this
case has such an insignificant effect on the outcome that we can ignore it completely.
Hence, Worley’s method considers only the immediate neighbour regions of the region
where the position of interest is. On a plane it is possible to determine the distances
through f9( p) without the need to analyse the regions further away. This is sufficient in
most cases since the interesting variations occur already in n ≲ 4 (Worley 1996).

Routine Noise-Worley-2(x, y, n,𝜇) in Algorithm 3.13 generates Worley noise. Util-
ity routine Neighbours-2(x, y, n,𝜇) orchestrates the walkthrough of the regions and

Algorithm 3.13 Worley noise generator over a plane (continues in Algorithm 3.14).

x, y, n, )
in: position (x, y) in Cartesian Quadrant I (0 ≤ x, y ∈ R); nth closest point

(1 ≤ n ∈ N); average number of points in a region (0 ∈ R)
out: interpolated noise value ∈ [−1, 1] ⊂ R

constant: vmin, vmax] (this range de-
pends on n and )

1: xs ← x + 2 ; ys ← y + 2 ⊳ Enforce the neighbourhoods inside R
2
⩾0.

2: N ← xs, ys, n, ) ⊳ At most n feature points around (xs, ys).
3: v ← generator(N) ⊳ Determine the noise value.
4: return (−1, 1, vmin, vmax, vmin, vmax, v))

x, y, n, )
in: as in
out: sequence of the nearest feature points around (x, y) (at most n)
local: xw, yw) ∈ N

2 ; the longest distance dmax
from (x, y) within the nth feature point can reside

1: xw ← ⌊x⌋ ⊳ Integer (‘wholes’) part of x.
2: yw ← ⌊ y⌋ ⊳ . . . and of y.
3: dmax ← 4 ⋅ radius() ⊳ Cover all the neighbours in all cases.
4: R ← x, y, n, , dmax, xw, yw)
5: if n ≤ ∣R∣ then ⊳ Shrink the circle of interest?
6: dmax ← distance(Rn−1)
7: end if
8: for i ← −1 … 1 do ⊳ All the possible neighbour regions. . .
9: for j ← −1 … 1 do ⊳ . . . in all directions. . .

10: if i ≠ 0 and j ≠ 0 then ⊳ . . . but not our own one, (xw, yw).
11: R ← R ∥ x, y, n, , dmax, xw + i, yw + j)
12: R ← sub(sorted(R), 0, min{ n, ∣R∣ })
13: if n ≤ ∣R∣ then ⊳ Shrink the circle of interest?
14: dmax ← distance(Rn−1)
15: end if
16: end if
17: end for
18: end for
19: return R

Noise-Worley-2(

Neighbours-2(

Grid-Neighbours-2(

Grid-Neighbours-2(

Neighbours-2(
Noise-Worley-2

Rescale Clamp(

effective value range of the generated values [

identification of the current region (

<

μ

μ

μ

μ

μ

μ

μ

μ
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Algorithm 3.14 Worley noise generator over a plane (continued from Algorithm 3.13).

x, y, n, , dmax, xw, yw)
in: as in ; maximum distance from (x, y) that needs to be

considered ; region identification  (dmax xw, yw) ∈ N
2

out: as in but only for this region (xw, yw)
constant: adjustment seed S0 of the noise generation
1: R ← ⟨ ⟩
2: p ← (x, y) ⊳ The position of interest.
3: m ← (xw + 1–2

1–2, yw + ) ⊳ Midposition of the region.
4: if dmax + radius() < distance( p, m) then
5: return R ⊳ This region does not contribute.
6: end if
7: ⟨xw, yw⟩, ) + S0)
8: c ← ⊳ Algorithm 2.3, reset for (

A practical simplification.
feature points on-the-fly.

xw, yw).
9: c ← 1, 9, c) ⊳

10: for i ← 1 … c do ⊳ Generate c
11: xs ← ; ys ←
12: q ← (xw + xs, yw + ys) ⊳ A random ghost in the shell.
13: if distance( p, q) < dmax then
14: r ← create an entity that represents the relationship between p and q
15: distance(r) ← distance( p, q)
16: feature(r) ← q ⊳ Example: piggyback the feature point.
17: R ← R ∥ ⟨r⟩
18: end if
19: end for
20: return sub(sorted(R), 0, min{ n, ∣R∣ })

Grid-Neighbours-2(

Set-Seed(Morton-Code(
Random-Poisson(μ)

Random-Unit() Random-Unit()

Clamp(

Noise-Worley-2

Neighbours-2

μ

nil

routine Grid-Neighbours-2(x, y, n,𝜇, dmax, xw, yw) in Algorithm 3.14 generates and
selects the feature points in the given region. On a higher level, the process works as
follows, assuming we are interested only in the distances to the nth feature points:

1. Define the region of the position of interest (x, y) as 𝜉 = (⌊x⌋, ⌊y⌋).
2. Reset the seed of the underlying random number generator to 𝜉.
3. Generate the random feature points in the region 𝜉, which are fixed to the region.
4. Find all the n closest points (or as many as possible) in 𝜉.
5. Query the neighbouring regions of 𝜉 in a similar fashion.
6. Concatenate the results, select the nth closest (or, if none, the furthest) and output

the distance.

The Worley algorithm has many details and possibilities for adjustment, such as the
following:

� Since the Worley noise generator has parameters n and 𝜇, it actually describes a
family of algorithms. Furthermore, the method is parameterized by the distance
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metric distance(∙, ∙) which is used when the nearest points are searched. For example,
distance can be:

euclidean( p, q) =
√

( p1 − q1)2 + … + ( pn − qn)2 =

√√√√ n∑
i=1

( pi − qi)2;

manhattan( p, q) = |p1 − q1| + … + |pn − qn| =
n∑

i=1
|pi − qi|;

maximum( p, q) = max{ |p1 − q1|, … , |pn − qn| } =
n

max
i=1

|pi − qi|.
� The primitive routine radius() returns the radius length of the unit-sized region

for the distance(∙, ∙) used. For euclidean it is 1∕
√

2, for manhattan 1, and for
maximum 1

2 .
� The neighbourhood N consists of entities ri (0 ≤ i < |N|) that represent the relation-

ship between the position p = (x, y) and the feature point that is located distance fi( p)
away. The idea is that entity ri piggybacks all the data needed when the noise is gener-
ated in Noise-Worley-2. For this reason, the entity ri has at least attribute distance(∙)
that stores the value fi( p). Because there are many ways Worley’s method can derive
the actual noise values, ri is adjusted and annotated if necessary.

� Apart from the position, a feature point can have other attributes, such as an identity
or a random number, which can be used as an additional data source, when the ri
entities are created and their attributes are assigned. This practice is common with
Worley’s method because it allows the inclusion of new noise properties.

� The primitive routine generator(N) composes the ri entities into an appropriate value
in [vmin, vmax]. This codomain interval depends on the parameters n and 𝜇 and it
must be determined with a separate calibration phase. Suppose N = ⟨r1, r2, r3⟩. Then
a generator can map N , for example, as N ↦ distance(r1) or N ↦ distance(r2) −
distance(r1). In these cases, the source of the outcome can also be denoted by f1(∙)
or f2(∙) − f1(∙), respectively.

� The operation ∥ concatenates the sequences, sorted arranges the sequence of ri enti-
ties in a non-descending order by distance(∙), and sub(∙, 0, n) extracts n items from
the beginning of the given sequence.

� There are two simple optimizations in the routine Grid-Neighbours-2. First, the
neighbour regions that are too far away from the point of interest are filtered out
in lines 3–6. This selection could also be handled by Neighbours-2, but that
would need a separate filtering phase that would hinder parallelized implementa-
tions. Second, the value dmax is utilized to skip far away feature points (see line
13). To give a rough estimate of the efficacy of these filters with distance metric
euclidean:

when determining f1(∙) f2(∙) f3(∙) when 𝜇 = 3,
about 62% 45% 33% of regions are filtered out and

from the remaining regions 65% 61% 54% of feature points are skipped.

� The Worley noise generator presented here has many optimization points. For exam-
ple, the for loop in routine Grid-Neighbours-2 can be speeded up with a fixed sized
min-heap, together with the one-liner sub(sorted(R), 0, min{ n, |R| }).
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f1(∙)

f2(∙)

f3(∙)

Figure . Worley noise generated from the feature distance fi(∙), i = 1, 2, 3, with n = 3 and 𝜇 = 3. The
left column is by distance metric euclidean and the right one by maximum.

As a demonstration of the diverse outcomes of the Worley noise generator, Figure 3.10
depicts the outcome when primitive routine generator(N) maps N to the noise value by
taking into account fi(∙), i = 1, 2, 3. Because the feature points are the same for all the
images, the noise spaces resemble each other. The top-left image of Figure 3.10 is the
reason why Worley noise is considered to be a model representative of cell noise. Figure
3.11 presents how Worley noise can be manipulated and mixed.
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Figure . Worley noise generated by various mappings. The source values v in the left column are
the right column in Figure 3.10, modified by RUNG(1, −1, − 1

2
, v). In the right column the distance metric

is euclidean; the top image is generated from f2(∙) − f1(∙), the middle from f2(∙) ⋅ f1(∙), and the bottom
with turbulence (𝓁 = 3, a0 = 0.03, f0 = 1.97) from generator f2(∙) (n = 3,𝜇 = 3).
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. Summary

Real-world events usually include noise due to various factors present in the situation.
Using mathematical methods alone can make the game world to look too sterile and too
machine-like. The introduction of noise helps us to create an organic surface to mask
the underlying perfectness of the computations – to make it more life-like. Noise can be
applied almost everywhere and the methods can be used in making abstract decisions
as well as in generating graphical assets.

Noise generation can be based on random numbers (i.e. value noise), random unit
vectors (i.e. gradient noise such as Perlin noise) or randomly pre-located points (i.e. cell
noise such as Worley noise). Regardless of the approach chosen, the implementation of
a noise generator often requires a high level of optimization. More often than not, the
techniques used are intriguingly delicious pieces of ‘nerd chocolate’, but in this chap-
ter our goal has been to give a presentation that separates the concepts, encouraging
modification and twisting of the algorithms. Once a method fits its purpose it can be
optimized to the limits of pessimization.

Exercises

- Equation (3.1) demonstrates some basic ways to utilize noise generators. Con-
sider also other functions and their function compositions such as square roots,
exponents and logarithms. What are their domains and codomains? How do they
affect h(c)?

- Generate images similar to Figure 3.1. Hint: Suppose the image is h × w pixels,
the zoom-in factor is s, and the noise is n(i∕s, j∕s) ∈ [−1, 1] ⊂ R for pixel (i, j), i for
the rows and j the columns. Let p(i, j) = lerp(0, n(i∕s, j∕s), j∕w) be the amount of
perturbance at (i, j). Also, denote a(i, j) = sin(i∕(s + p(i, j))) and b(i, j) = sin( j∕(s +
p(i, j))). Now we can define g(i, j) = lerp(a(i, j), b(i, j), i∕h).

- Equation (3.2) summarizes an approach for attaching the randomness to c via a
random number generator. However, hash functions in general can provide a sim-
ilar effect. Experiment with various hash functions over the sequence of natural
numbers. For further details, see Cormen et al. (2001) and Knuth (1998c).

- Invent some simple h(c)-dependent noise generators n(c, h(c)) and try them out,
for example, on a chequered pattern.

- Assume that we have two original true outcomes h0(c) and h1(c) of a characteristic
parameter c. They can be blended linearly by

g(c) = h0(c)(1 − w) + h1(c)w

where w ∈ [0, 1] weights the share between h0(c) and h1(c). Instead of keeping
w constant it can be defined as a function of noise n(c): wc = (n(c) + 1)∕2. Apply
this idea to ruin mazes (see Section 4.2). What does c represent? How does the
frequency of n(c) affect the generated outcome g(c)?
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- If x ∈ [−1, 1] ⊂ R is a uniform random value, none of the following conversions
produce a uniformly random value ∈ [0, 255] ⊂ N. What is wrong with them?

(a)
⌊x + 1

2
⋅ 255

⌋
(c)

⌊⌊x + 1
2⌋ + 1
2

⋅ 255

⌋

(b)
⌊x + 1

2
⋅ 256

⌋
(d)

⌊⌊x + 1
2

+ 1
2

⌋
⋅ 255

⌋
(e)

⌊x + 1
2

⋅ 255 + 1
2

⌋
Devise a proper conversion and try it out. Hint: There are two common
approaches – one utilizes a small floating point value such as 10−9, and the other
makes an explicit check with if. What if the target interval has also negative values
(e.g. it is [−128, 127] ⊂ Z)?

- With images the characteristic parameter c is often defined as pixel coordinates
(i, j), 0 ≤ i, j. Assume the coordinates are merged into one value with the function
sk(i, j) = ki + j, where k is a fixed constant (e.g. 210). Next, sk(i, j) is used to gen-
erate the noise value n(i, j). What properties does n(i, j) have? To visualize your
answer, sketch a plane graph showing the regions of interest in the generated
noise.

- The bit manipulations in Algorithm 3.1 can be fine-tuned, especially when |Z| is
a constant or has a known upper bound. Consider alternatives for gathering the
bits and interleaving them, and ponder on their practicality when |Z| is fixed (e.g.
to 2, 3, or 8).

- Although the routines in Algorithm 3.3 are simple, they can be generalized easily
and their combined use tends to streamline many control structures of conditional
selections. For instance:
(a) Given x, xmin, xmax ∈ R so that xmin < xmax, utilize Unit-Clamp to define

a routine Clamp(xmin, xmax, x) which returns min {max {xmin, x}, xmax} ∈
[xmin, xmax]. Hint: conversion to the unit interval and back.

(b) Express the following selection logic as a one-liner with Unit-Lerp and
Unit-Step:

1: if xt < x then
2: return a1
3: else
4: return a0
5: end if

Note that this gives us a generalization for Step(x, xt) – let us just call it
Rung(a0, a1, x, xt).

(c) Graph the following function for x ∈ R, when a, x0, x1 ∈ R and x0 ≤ x1:

a ⋅ (Unit-Step(x − x0) − Unit-Step(x − x1))

What if x1 ≤ x0?
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(d) Suppose we have a function f (t) for t ∈ [0, 1] for which f (0) = f (1). What kind
of a function is

f (Unit-Wrap(x))

when x ∈ [− 3
2 , 3

2 ] ? How it could be scaled along the x-axis?

- Given x, x0, x1 ∈ R, we can generalize Unit-Wrap in Algorithm 3.3 to the routine
Wrap as follows (adapted from Graham et al. 1994, p. 82):

x0, x1, x)
in: values x0, x1, x ∈ R (x0 < x1)
out: fractional part ∈ [x0, x1) of x
1: ← x1 − x0 ⊳ Length of the target interval.
2: x′ ← x − x0 ⊳ Map [x0, x1] to [0, ].
3: i ← ⌊x′∕ ⌋ ⊳ “Integer” amount of x′ modulo .
4: r ← x′ − i ⊳ r = (x′ mod ).
5: return r + x0 ⊳ Map [0, ] to [x0, x1).

ℓ
ℓ

ℓ
ℓ

ℓ

ℓ ℓ

Wrap(

.

(a) Is the prerequisite x0 < x1 imperative or could it be relaxed to x0 ≠ x1?
(b) Does this one-liner define the same outcome:

1: return (x0, x1, x)) ⋅ (x1 − x0) + x0Unit-Wrap(Unit-Rescale

If there is a difference, what could cause it?

- The routine Unit-Lerp(a0, a1, t) in Algorithm 3.3 evaluates the expression a0(1 −
t) + a1t which is equal to a0 + (a1 − a0)t. However, with floating point values
these expressions do not always result in equal values because of rounding errors.
Also, due to floating point calculations before calling the routine, the input param-
eter t can be outside the unit interval, and then the indented interpolation turns
into an accidental extrapolation.
(a) Find some concrete floating point values when a0 + (a1 − a0)t is not within

[a0, a1] for t ∈ [0, 1]. Does this problem happen with a0(1 − t) + a1t ?
(b) Devise another definition for Unit-Lerp(a0, a1, t) that clamps both t and the

result value inside their proper intervals.

- Algorithm 3.6 utilizes two one-dimensional 𝜚(t)-interpolations in the x-axis direc-
tion and then joins those results by 𝜚(t)-interpolating them in the y-axis direction
(t ∈ [0, 1]).
(a) Show that when 𝜚(t) is a linear interpolation t, the interpolation result a( fx,fy)

inside the unit square (0 ≤ fx, fy ≤ 1) equals

a( fx,fy) =
[

1 − fx fx
] [a(0,0) a(0,1)

a(1,0) a(1,1)

] [
1 − fy

fy

]
.
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This generalizes linear interpolation to two dimensions and is called bilinear
interpolation. The term ‘bilinear’ refers to the linear sub-interpolations in the
x and y directions, but the total outcome is nonlinear.

(b) If the directions of the interpolations are swapped (i.e. the y-direction is inter-
polated first and then the x-direction) does the outcome change? With any
𝜚(t)? Why or why not?

(c) How about Perlin noise in Algorithm 3.12: is it invariant with respect to the
x- and y-directions?

- Algorithm 3.7 can be varied in many ways, for example:
(a) Instead of exponentiation at lines 4–5, the ith amplitude and frequency in the

iteration can be drawn from some functions a(i) and f (i). Experiment with var-
ious value combinations, for example, by implementing a(i) and f (i) as arrays
or lambda functions of a programming language of your choice. How does the
outcome differ when a(i) values are ascending or descending?

(b) Using only one noise generator A-Noise may introduce interference artefacts
to the composed noise values. One way to tackle this is to generate each nest-
ing layer from a different noise generator A-Noise i. To experiment with this,
let 𝓁 = 2, choose two generators A-Noise 0 and A-Noise 1, and generate the
noise image for each of the four combinations of nesting.

(c) The for loop terminates when all the nesting layers are generated, indepen-
dently of the development of the amplitudes and frequencies. Modify the
algorithm so that it terminates when a < 𝛿 or 1∕f < 𝛾 for given parameters
𝛿, 𝛾 ∈ R. Why is 1∕f a sensible expression for the termination condition on
frequency f ?

- Since Algorithm 3.7 returns a noise value in [−1, 1] for each c, it can be used
as a noise generator, for instance, by defining Noise-From-Composition(c)
as Noise-Composition(c, 4, 1

2 , 2). Speculate as to what kind of noise is produced
when that generator is used as A-Noise in another Noise-Composition. Then
experiment. What happens to the noise when this idea of ‘defining a new noise
generator from a noise compositor’ is repeated a few times? Tens of times? Hun-
dreds? What if 𝓁 is decreased along the dependency/invocation chain of these
algorithms (i.e. the chain ends for 𝓁 = 0 and A-Noise is returned without any
compositions)?

- The routine Noise-Tiled-Random in Algorithm 3.8 forms a periodic noise from
Noise-Random(N). Define a new routine Noise-Tiled-Random-Vector that
does the same to Noise-Random-Vector(N , n).

- Modify the routine Grid-Neighbours-2 in Algorithm 3.14 so that Worley noise
becomes tiled.

- Select any two-dimensional noise, fix a position p in it, and imagine a spiral cen-
tred at p. Take the noise values along the spiral and consider them as the height
modifiers of the horizon in some horizontal scenery. Since the noise is in the
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interval [−1, 1], the level of the horizon is kept by noise value 0. Consider a pleas-
ant theme and examine ways to decorate the landscape. How would you make the
scenery tileable?

- Minecraft generates the game world with a three-dimensional noise generator that
resembles the Perlin noise method. The noise value specifies, for instance, features
that relate to the density in the world. Discuss other uses for n-dimensional noise
generation where 3 ≤ n.

- Let us generate a Minecraftian cave system on a plane. We begin as in Exercise
3-17, but place a line segment randomly in the two-dimensional noise space. The
noise values along the line are interpreted, sequentially one at a time, as the vari-
ation in the direction we are caving a small line segment of length 𝓁 ∼ Pois(𝜇),
where 𝜇 is the average length of the corridors. The cave ends when the values in
the line segment in the noise space are exhausted.
(a) Craft an algorithm from the description above. Apply the concepts discussed

in this chapter. For example, the line segments can be walked by lerping.
(b) How can this two-dimensional method be to generalized to three dimensions?

Hint: More than half of the problem is already solved.
(c) This method has a fundamental flaw, not necessarily in its outcome, but in its

usability. What is the drawback? Devise another caving algorithm that does
not have the same problem.
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

Procedural Generation

Procedural generation refers to the creation of content algorithmically with or without
the user’s assistance (Roden and Parberry 2004; Smith 2015). Such content can be, for
example, a level that is unique and has not been defined by a human designer completely
in advance, as in NetHack, or even a universe comprising hundreds of planets with indi-
vidual attributes, as in Elite. Although procedural generation has been used widely in
games since the 1980s, the related research has increased only recently (Togelius et al.
2011, 2016). This increasing popularity of procedural generation has many explanations.
From the player’s perspective, it improves and enlivens the design by creating (possibly
perpetually) new content for them to enjoy. From the developer’s perspective, it saves
time and money in the development, especially when creating graphical assets for the
game. Lastly, it increases the longevity of the game as it provides new content even for
experienced players.

Procedural generation can used in various places. By randomizing the personality
models we can create new, interesting combinations of character traits. Moreover, it
allows us to make each character unique, possibly with a unique history and backstory.
And more than just individual character histories, it can be used to create even complex
histories of the game world. In level design, procedural generation allows the creation of
new, surprising and continuously entertaining levels, such as in Spelunky. Now, instead
of mastering the levels of a game, the players get into mastering a set of rules creating the
levels. Automatic creation of content also allows a novelty of exploration, which is emi-
nent in the procedurally generated game worlds of Age of Empires. This variation and
freshness can be nearly infinite; for example, No Man’s Sky offers a procedurally gen-
erated universe with over 1.8 × 1019 planets with their unique features. However, the
plethora of game assets should be accompanied by dependencies that root their mean-
ing and impact and, thus, make them engaging.

In this chapter, we will present methods from various areas. The terrain generation
methods of Section 4.1 imitate the way terrains form or look in the real world. In
Section 4.2 we focus on creating mazes by converting the task into a graph problem
and solving it using different methods. Section 4.3 describes the idea behind L-systems,
which can be used in creating various, often nature-related, patterns but also for pro-
ducing human-made artefacts and landscapes. Finally, we broaden the perspective to
creating complete game worlds procedurally in Section 4.4.

Algorithms and Networking for Computer Games, Second Edition. Jouni Smed and Harri Hakonen.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Figure . A height map divides the terrain into a grid: (a) the height values in a matrix; (b) the
corresponding greyscale picture; (c) the corresponding oblique greyscale picture.

. Terrain Generation

Random numbers can be used to generate the terrain for a game world. To simplify
this process, let us divide the terrain into discrete points (e.g. using a grid; see Section
7.1.1), each of which has a value representing the height of the terrain at that position.
These points form a height map, which is a matrix comprising the height values (see
Figure 4.1). Height maps are often illustrated with greyscale pictures, where brightness
is associated with the height (i.e. darker pixels represent lower and brighter pixels higher
ground).

Algorithm 4.1 gives a straightforward implementation where a randomly generated
number is assigned to each point in the height map. Unfortunately, the resulting terrain
is too noisy to resemble any landscape in the real world, as we can see in Figure 4.2(a).
To smoothen the terrain we can set a range within which the random value can vary
(see Algorithm 4.2). Since the range depends on the already assigned heights (i.e. the
neighbours to the west and north), the terrain generated has diagonal ridges going to
the south-east, as illustrated in Figure 4.2(b).

Algorithm 4.1 Generating simple random terrain.

out: height map H (H is rectangular)
constant: maximum height hmax
1: for x ← 0… (columns(H) − 1) do
2: for y ← 0… (rows(H) − 1) do
3: Hx,y ← ⋅ hmax ⊳ Hx,y ∈ [0, hmax).
4: end for
5: end for
6: return H

Simple-Random-Terrain()

Random-Unit()
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(b)(a)

(d)(c)

(f)(e)

Figure . Randomly generated terrains where hmax = 256. (a) Simple random terrain. (b) Limited
random terrain where dmax = 64. (c) Particle deposition terrain where m = 107, i = 1 and b = 4.
(d) Fault line terrain where f = 1000 and c = 2. (e) Circle hill terrain where c = 400, r = 32 and s = 16.
(f ) Midpoint displacement terrain using diamond-square where dmax = 128 and s = 1.
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Algorithm 4.2 Generating limited random terrain.

out: height map H (H is rectangular)
local: average height of northern and western neighbours a; height h
constant: maximum height ; maximum height differencehmax dmax
1: for x ← 0… (columns(H) − 1) do
2: for y ← 0… (rows(H) − 1) do
3: if x ≠ 0 and y ≠ 0 then
4: a ← H(x−1),y + Hx,(y−1) ∕2
5: else if x ≠ 0 and y = 0 then
6: a ← H(x−1),y
7: else
8: a ← ⋅ hmax
9: end if

10: h ← a + dmax ⋅ ( − 1∕2)
11: Hx,y ← max{0,min{h, hmax}} ⊳ Hx,y ∈ [0, hmax].
12: end for
13: end for
14: return H

Limited-Random-Terrain()

Random-Unit()

Random-Unit()

( (

Instead of generating random height values we can randomize the process of forma-
tion. In the particle deposition method ‘grains’ are dropped randomly on to the terrain
and allowed to pile up (see Algorithm 4.3). The height difference between neighbouring
points is limited. If the dropped grain causes the height difference to exceed this limit,
the grain falls down to a neighbouring point until it reaches an equilibrium (see Figure
4.3). The grains are dropped following Brownian movement (or motion), where the next
drop point is selected randomly from the neighbourhood of the current drop point. The
resulting terrain is illustrated in Figure 4.2(c).

Random numbers can also be used to select fault lines in the terrain. The height differ-
ence between the sides of a fault line is increased as shown in Figure 4.4. Algorithm 4.4
gives an implementation where we first randomly select two points (x0, y0) and (x1, y1).

(c)(b)(a)

Figure . In particle deposition, each dropped grain falls down until it reaches an equilibrium. If the
threshold b = 1, the grey grain moves downwards until its height difference with respect to its
neighbourhood is at most b.
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Algorithm 4.3 Generating particle deposition terrain.

m)
in: number of movements m
out: height map H (H is rectangular)
1: p ← ⟨ (0, columns(H)), (0, rows(H))⟩
2: for i ← 1…m do
3: ⟨p′, i′⟩← (H, p) ⊳ Increase if can still grow.i′ Hp′

4: Hp′ ← Hp′ + i′

5: p ← (H, p)
6: end for
7: return H

H, p)
in: height map H; position p
out: neighbouring position of p
1: case of
2: 0 : return H, p)
3: 1 : return H, p)
4: 2 : return H, p)
5: 3 : return H, p)
6: end case

H, p)
in: height map H; position p
out: pair ⟨position, increase⟩
constant: increase i; maximum height hmax
1: i′ ← min{hmax − Hp , i} ⊳ Proper amount for increase.
2: n ← H, p, i′)
3: if n = then return ⟨p, i′⟩
4: else return H, n)
5: end if

H, p, i′)
in: height map H; position p; increase if can still growi′ Hp
out: neighbour of

height difference threshold
p which exceeds b or otherwise

constant: b
1: e ← H, p); w ← H, p)
2: s ← H, p); n ← H, p)
3: if Hp + i′ − He > b then return e
4: if Hp + i′ − Hw > b then return w
5: if Hp + i′ − Hs > b then return s
6: if Hp + i′ − Hn > b then return n
7: return

Particle-Deposition-Terrain(

Random-Integer

Random-Integer(0, 4)
East-Neighbour(

East-Neighbour(

North-Neighbour(

North-Neighbour(

Unbalanced-Neighbour(

South-Neighbour(

South-Neighbour(

West-Neighbour(

West-Neighbour(

Increase

Brownian-Movement

Brownian-Movement

Increase(

Increase(

Unbalanced-Neighbour(

Random-Integer

nil

nil

nil
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(b)(a) (c)

Figure . Fault lines are selected randomly. The terrain is raised on one side of the fault line and
lowered on the other.

To calculate the fault line going through these points we form a vector v⃗ with compo-
nents v⃗x = x1 − x0 and v⃗y = y1 − y0. After that, for each point (x, y) in the terrain, we can
form a vector w⃗ for which w⃗x = x − x0 and w⃗y = y − y0. When we calculate the cross
product u⃗ = v⃗ × w⃗, we know depending on the sign of u⃗z whether to lower or lift the
terrain at the point (x, y):

u⃗z = v⃗xw⃗y − v⃗yw⃗x.

An example of the fault line terrain can be seen in Figure 4.2(d).

Algorithm 4.4 Generating fault line terrain.

out: height map H (H is rectangular)
constant: maximum height hmax; number of fault lines

Initialize the terrain to flat.
f ; fault change c

1: H ← hmax∕2) ⊳
2: for i ← 1… f do
3: x0 ← 0, columns(H))
4: y0 ← 0, rows(H))
5: x1 ← 0, columns(H))
6: y1 ← 0, rows(H))
7: for x ← 0… (columns(H) − 1) do
8: for y ← 0… (rows(H) − 1) do
9: if (x1 − x0) ⋅ (y − y0) − (y1 − y0) ⋅ (x − x0) > 0 then

10: Hx,y ← min{Hx,y + c, hmax}
11: else
12: Hx,y ← max{Hx,y − c, 0}
13: end if
14: end for
15: end for
16: end for
17: return H

Fault-Line-Terrain()

Random-Integer(
Random-Integer(
Random-Integer(
Random-Integer(

Level-Terrain(
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Instead of fault lines, we can use hills to simulate real-world terrain formation. Ran-
dom numbers can be used to select locations for the hills. Algorithm 4.5 gives a simple
method, where every hill is in a circle with the same diameter and the height increase is
based on the cosine function. The resulting terrain is shown in Figure 4.2(e).

Algorithm 4.5 Generating circle hill terrain.

out: height map H (H is rectangular)
constant: maximum height hmax; number of circles c; circle radius r; circle height

increase s
local: centre of the circle (x , y )
1: for i ← 1… c do
2: x ← 0, columns(H))
3: y ← 0, rows(H))
4: for x ← 0… (columns(H) − 1) do
5: for y ← 0… (rows(H) − 1) do
6: d ← (x − x)2 + (y′ − y)2

7: if d < r2 then
8: a ← (s∕2) ⋅ (1 + cos( d∕r2))
9: Hx,y ← min{Hx,y + a, hmax}

10: end if
11: end for
12: end for
13: end for
14: return H

Circle-Hill-Terrain()

Random-Integer(
Random-Integer(
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The random midpoint displacement method, introduced by Fournier et al. (1982),
starts by setting heights for the corner points of the terrain. Then it subdivides the region
inside iteratively in two steps (see Figure 4.5):

(i) Diamond step: Taking a square of four corner points, generate a random value at
the diamond point (i.e. the centre of the square), where the two diagonals meet.
The value is calculated by averaging the four corner values and by adding a random
displacement value.

(ii) Square step: Taking each diamond of four corner points, generate a random value at
the square point (i.e. the centre of the diamond). The value is calculated by averaging
the corner values and adding a random displacement value.

Variations on these steps are presented by Miller (1986) and Lewis (1987).
To make the implementation easier we limit the size of the height map to n × n, where

n = 2k + 1
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(b)

(d)

(a)

(c)

Figure . Midpoint displacement method consists of the diamond step, shown in (a) and (c), and the
square step, shown in (b) and (d). The circles represent the values calculated.

when the integer k ≥ 0. Algorithm 4.6 gives an implementation, where the subroutine
Displacement(H, x, y, S, d) returns the height value for position (x, y) in height map H,

d + 1
4
⋅

3∑
i=0

H(x+S2i),(y+S2i+1),

in which S defines the point offsets from (x, y) in the square or diamond, and d is the
current height displacement.

In addition to the methods described here, there are approaches such as fractal noise
(Perlin 1985) and stream erosion (Kelley et al. 1988) for terrain generation. Moreover,
existing height maps can be modified using image processing methods (e.g. sharpening
and smoothing).

. Maze Algorithms

Labyrinths and mazes have intrigued humans since ancient times. The most famous
labyrinth is recorded in the myth of the Minotaur living at the centre of a labyrinth
designed by Daedalus and his son Icarus by order of King Minos of Crete. Although
the terms ‘labyrinth’ and ‘maze’ are sometimes used interchangeably, they differ in their
meaning (Gazzard 2013, p. 25–34): a labyrinth has a unicursal path (i.e. there is one
path from the beginning to the end), whereas a maze has a multicursal path (i.e. it offers
choices for the path), as illustrated in Figure 4.6. A labyrinth is, therefore, a special case
of a maze, which is why we will use the term ‘maze’ in the rest of this section.
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Algorithm 4.6 Generating midpoint displacement terrain.

out: height map H (columns(H) = rows(H) = n = 2k + 1 when k ≥ 0)
constant: maximum displacement dmax; smoothness s
1: initialize H0,0, Hcolumn(H)−1,0, H0,row(H)−1 and Hcolumn(H)−1,row(H)−1
2: m ← (n − 1); c ← 1; d ← dmax
3: while m ≥ 2 do
4: w ← m∕2; x ← w
5: for i ← 0… (c − 1) do ⊳ Centres.
6: y ← w
7: for j ← 0… (c − 1) do
8: Hx,y ← H, x, y, ⟨−w,−w,−w,+w,+w,−w,+w,+w⟩, d)(
9: y ← y + m

10: end for
11: x ← x + m
12: end for
13: x ← x − w; t← w
14: for p ← 0… (c − 1) do ⊳ Borders.
15: H0,t ← H, 0, t, ⟨ 0, −w, 0, +w, +w, 0, +w, 0⟩, d)
16: Ht,0 ← H, t, 0, ⟨−w, 0, +w, 0, 0, +w, 0, +w⟩, d)
17: Ht,x ← H, t, x, ⟨−w, 0, +w, 0, 0, −w, 0, −w⟩, d)
18: Hx,t ← H, x, t, ⟨ 0, −w, 0, +w, −w, 0, −w, 0⟩, d)
19: t← t + m
20: end for
21: x ← m
22: for i ← 0… (c − 2) do ⊳ Middle horizontal.
23: y ← w
24: for j ← 0… (c − 1) do
25: Hx,y ← H, x, y, ⟨−w, 0,+w, 0, 0,−w, 0,+w⟩, d)
26: y ← y + m
27: end for
28: x ← x + m
29: end for
30: x ← w
31: for i ← 0… (c − 1) do ⊳ Middle vertical.
32: y ← m
33: for j ← 0… (c − 2) do
34: Hx,y ← H, x, y, ⟨−w, 0,+w, 0, 0,−w, 0,+w⟩, d)
35: y ← y + m
36: end for
37: x ← x + m
38: end for
39: m ← m∕2; c ← c ⋅ 2; d ← d ⋅ 2−s

40: end while
41: return H

Midpoint-Displacement-Terrain()

Displacement

Displacement(
Displacement(
Displacement(
Displacement(

Displacement(

Displacement(
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Figure . Comparison of a labyrinth and a maze: (a) a labyrinth has only one path from s to r,
whereas (b) a maze offers choices along the way.

In computer games, mazes have two functions (Gazzard 2013, pp. 38–41). First, they
can make the space appear larger by having multiple paths restricting the movement.
For example, in Pac-Man the structure of the level is formed by a maze and the player
has to follow it when moving around. Second, if a maze offers generative or emergent
paths, it can lead to differences from play to play. For example, the randomly appearing
fruits in Pac-Man create emergent paths for the player to follow.

Although there is a wide variety of methods for creating mazes such as genetic algo-
rithms (Ashlock et al. 2011) and cellular automata (LifeWiki 2014), we focus here on
methods based on graphs. There is a natural connection between graphs and mazes.
Possible connections can be presented as a graph G = (V , E), where the vertices V rep-
resent the cells (or rooms) and the edges E all the possible connections between the cells
(see Figure 4.7). Since a graph models the connections, not the actual placement of ver-
tices nor rendering, considering a maze as a graph allows us to segregate visualizations
into another phase.

A maze algorithm returns a set W ⊆ E which includes all the connections blocked by
walls (i.e. the remaining connections in the maze form the set M = E ⧵ W ). The outcome
of a maze-generating algorithm can be affected in three ways, for example, to have open
spaces or to reserve areas for special use. First, the generator does not consider vertices
or edges that are not in the given parameter G. In other words, the paths in the gener-
ated mazes pass through the given vertices only. Second, the resulting set of walls W can

Figure . A square and hexagonal grid as a graph.
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(c)(b)(a)

Figure . Procedurally created mazes: (a) depth-first algorithm; (b) randomized Kruskal’s algorithm;
and (c) randomized Prim’s algorithm.

be post-processed. Removing a wall creates – in addition to more space – more paths,
whereas adding a wall can prevent any walk into a sub-maze. Third, the algorithms can
be guided towards certain structures by providing a pre-planned random number gen-
erator or modifying the method to take into account weighted vertices or edges.

In the following we present three variants based on depth-first search, Kruskal’s algo-
rithm, and Prim’s algorithm. The generation of mazes is based on the idea of removing
the walls from the path; at the beginning all the possible passage locations are blocked
by walls. A path is generated by selecting a chain of walls to be removed. Figure 4.8 illus-
trates examples of mazes created with these methods. For a more detailed discussion on
maze algorithms, we recommend the book by Buck (2015).

4.2.1 Depth-first algorithm

A natural candidate for creating mazes is depth-first search which, can be implemented
iteratively or recursively. In the iterative variant (see Algorithm 4.7), we use a stack as
a data structure for holding a backtrack of vertices along the path. At the beginning,
we select an arbitrary cell (i.e. vertex) as the current one and mark it visited. Then we
randomly select an unvisited cell from its neighbourhood and remove the wall between
the current cell and the selected neighbour. The algorithm will move next to the selected
neighbour and the current cell is pushed into the stack. If, at some point, the current
cell has only visited neighbours, we have reached a dead-end and have to backtrack by
retrieving a cell from the stack. This is iterated until all the cells have been visited.

In practice, the depth-first algorithm creates a randomly twisting tunnel until it
reaches a dead-end. Then it backtracks the cells along the tunnel until it can start con-
structing a new tunnel in another direction. The resulting maze has a low branching
factor because the tunnels tend to be long, as illustrated in Figure 4.8(a).

We can easily modify the algorithm to handle a given initial situation by removing
walls from the set W beforehand. These removed walls can represent open spaces or
can be regarded as areas reserved for special use.

4.2.2 Randomized Kruskal’s algorithm

From the perspective of graph theory, mazes can be viewed as spanning trees. A span-
ning tree T of a graph G is an acyclic connected subgraph of G that includes all the
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Algorithm 4.7
G)

in: undirected connection graph

Generating a maze using depth-first algorithm.

G = (V,E)
out: walls W ⊆ E
local: unvisited cells C ⊆ V ; sequence S used as a stack for backtracking
1: C ← copy V ⊳ All the cells are unvisited.
2: W ← copy E ⊳ All the connections have walls.
3: S ← ⟨ ⟩ ⊳ Empty stack.
4: select c ∈ C randomly
5: C ← C ⧵ {c} ⊳ Mark visited.
6: repeat
7: N ← neighbourhood(c) ∩ C ⊳ Exclude the already visited cells.
8: if N = ∅ then ⊳ Dead-end, select another cell.
9: if ∣S∣ ≥ 1 then

10: c ← (S)
11: end if
12: else
13: select n ∈ N randomly
14: W ← W ⧵ {(c, n)} ⊳ Remove the wall.
15: (S, c)
16: c ← n
17: C ← C ⧵ {n} ⊳ Mark visited.
18: end if
19: until C = ∅ ⊳ All the cells have been visited.
20: return W

Depth-First-Maze(

Stack-Pop

Stack-Push

vertices of G. If the edges have weights, a minimum spanning tree (MST) connects the
vertices with a minimum total weight of the edges. There are many methods for finding
MSTs, one of earliest being a greedy algorithm presented by J.B. Kruskal (1956). Simply
put, the idea of it is to iteratively choose the edge with the minimum weight (solving ties
arbitrarily). If the edge connects two subtrees (i.e. it does not create a cycle), it is added
to the MST.

We can simplify Kruskal’s algorithm to create mazes by omitting the weights and
choosing the next edge randomly (or by assigning random values to the edges). This
randomized Kruskal’s algorithm (see Algorithm 4.8) goes randomly through the set of
walls. If the cells that the selected wall divides belong to distinct sets (i.e. sub-mazes), the
wall is removed and the two sets are combined (i.e. the sub-mazes are merged together).
This is continued until the algorithm has gone through all the walls.

Figure 4.8(b) illustrates a labyrinth created by a randomized Kruskal’s algorithm.
It tends to create fairly easily solvable mazes with regular patterns. The randomized
Kruskal’s algorithm also allows mazes to be created using initial patterns that are then
connected (Buck 2015, pp. 166–171).
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Algorithm 4.8 Generating a maze using randomized Kruskal’s algorithm.

G)
in: undirected connection graph G = (V,E)
out: walls W ⊆ E
local: set of sets of connected cells M
1: W ← copy E ⊳ All the connections have walls.
2: M ← ∅
3: for all c ∈ V do
4: M ← M ∪ {{c}} ⊳ Initially all cells are isolated.
5: end for
6: for all w ∈ W do
7: (c1, c2) ← w ⊳ The ends of the edge.
8: S1 ∈ M such thatfind

find
c1 ∈ S1

9: S2 ∈ M such that c2 ∈ S2
10: if S1 ≠ S2 then ⊳ Are the cells disconnected?
11: W ← W ⧵ {w} ⊳ Remove the wall.
12: M ← M ⧵ {S1, S2}
13: M ← M ∪ {S1 ∪ S2} ⊳ Combine the sets.
14: end if
15: end for
16: return W

Randomized-Kruskal-Maze(

4.2.3 Randomized Prim’s algorithm

MSTs are also the basis for a method presented by R.C. Prim (1957). The method starts
with an arbitrary vertex and adds it to a set of visited vertices. Then the algorithm
chooses among the neighbouring cells of the visited vertices an unvisited vertex with
the lowest connecting edge weight. The edge is added to the MST and the selected ver-
tex is added to the set of visited vertices. This is repeated until all the vertices have been
visited.

Again, the algorithm can be simplified to create mazes by omitting the weights (or
assigning them randomly) and making random selections (see Algorithm 4.9). The
mazes created by this randomized Prim’s algorithm are stylistically similar to those cre-
ated by Kruskal’s algorithm as illustrated in Figure 4.8(c).

. L-Systems

An L-system, named after its inventor A. Lindenmayer (1968a,b), is a string rewriting
system, where complex objects are defined by successively replacing parts of a simple
object using a set of rules. In an L-system, the rules (or productions) are applied in par-
allel and simultaneously replacing all the symbols, whereas in formal grammars the pro-
duction is applied sequentially (Prusinkiewicz and Lindenmayer 1990).
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Algorithm 4.9 Generating a maze using randomized Prim’s algorithm.

G)
in: undirected connection graph G = (V,E)
out: walls W ⊆ E
local: visited cells C ⊆ V ; set of walls to check out L
1: C ← ∅ ⊳ All the cells are unvisited.
2: W ← copy E ⊳ All the connections have walls.
3: L ← ∅
4: select c ∈ V randomly
5: for all w ∈ W do ⊳ Initialize L with the neighbours of c.
6: if c ∈ ends(w) then
7: L ← L ∪ {w}
8: end if
9: end for

10: while L ≠ ∅ do
11: select ∈ L randomly
12: if ∣ends( ) ∩ C∣ ≤ 1 then ⊳ Both ends not already visited.
13: C ← C ∪ ends( )
14: W ← W ⧵ { } ⊳ Remove the wall.
15: for all w ∈ W do
16: if ends(w) ∩ ends( ) ≠ ∅ then
17: if w ∉ W
18: L ← L ∪ {w} ⊳ Add the neighbouring walls.
19: end if
20: end if
21: end for
22: end if
23: L ← L ⧵ { }
24: end while
25: return W

Randomized-Prim-Maze(
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Formally, let V denote an alphabet, V ∗ the set of all words over V , and V+ the set of
non-empty words. Now, an L-system is an ordered triplet G = ⟨V ,𝜔, P⟩ where

� V is the alphabet (i.e. a set of symbols),
� 𝜔 ∈ V+ is the axiom (i.e. start or initiator), and
� P ⊂ V × V ∗ is a finite set of production rules.

A rule (a,𝜒) ∈ P can be written a → 𝜒 , where a is called the predecessor and 𝜒 the
successor. If there is no rule for a given predecessor a ∈ V , then we assume an identity
production a → a. If a ∈ V is not on the left-hand side of any of the rules in P, then a is
said to be a constant (or terminal).

An L-system can be defined to be context-free, where the rules refer only to individ-
ual symbols, or context-sensitive. A context-free L-system is deterministic, if there is
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only one production rule a → 𝜒 for each symbol a ∈ V . If there are multiple rules for
a symbol, the L-system is stochastic and we can map a probability distribution to the
rules. These probabilities are then used to choose the production rule, which allows a
stochastic L-system to create variations while keeping the general features intact.

4.3.1 Examples

Let us assume the following deterministic, context-free L-system:

⎧⎪⎨⎪⎩
V = {0, 1}
𝜔 = 1
P = {(0 → 1), (1 → 10)}

For the sake of argument, we can call the symbol 0 a new pair of rabbits and 1 a mature
pair. The rules then mean that in the next iteration a new pair becomes a mature pair,
and a mature pair remains mature and produces a new pair of rabbits.

The L-system begins with the axiom 1, and in the first iteration it applies the produc-
tion 1 → 10 to it. In the second iteration, we can apply the same rule to the leading 1
and the rule 0 → 1 to the trailing 0. The first seven iterations of the L-system generate
the following sequences:

S0 = 1
S1 = 10
S2 = 101
S3 = 10110
S4 = 10110101
S5 = 1011010110110
S6 = 101101011011010110101
S7 = 1011010110110101101011011010110110

In this case, the L-system generates Fibonacci words, where the number of 0-bits in the
sequence Sn equals the Fibonacci number Fn, the number of 1-bits equals Fn+1, and the
length of the sequence |Sn| = Fn+2. To illustrate the sequences generated we can use the
fractal formulation by Monnerot-Dumaine (2009) shown in Figure 4.9:

1: for i ← 0… ∣Sn∣ do
2: if (Sn)i = 1
3: if even(i) then
4: if odd(i) then
5: end if
6:
7: end for

Turn-Left

Draw-Segment

Turn-Right

Lindenmayer’s motivation for creating L-systems was biological: to capture cell divi-
sion in multicellular organisms. Various kinds of images and models can be created by
using L-systems such as models and textures of plants, plant-like arabesques and other
ornaments.
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S4 S5 S6

S7 S8 S9

Figure . Fibonacci words as fractals.

Although the definition of L-system does not specify a data structure, we can represent
them as strings with brackets to limit the branching (Prusinkiewicz and Lindenmayer
1990, pp. 24–27):
� [ pushes the current position and direction to the stack, and
� ] pops the position and direction from the stack.

Figure 4.10 illustrates the L-system

⎧⎪⎨⎪⎩
V = {x, f ,+,−, [, ]}
𝜔 = x
P =

{
(x → f [+f ] f [−x] + x), f → ff

}
When generating the graphical representation, the symbols + and − mean a turn of 25
degrees to the right or left, respectively, and the symbols x and f refer to drawing a line
segment.

4.3.2 City generation

Many games include a large-scale three-dimensional environment, whose manual gen-
eration process by level designers and game artists – taking into account modern graph-
ical requirements – is a long and expensive process. Procedural generation is often the
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Figure . Plant created with an L-system after eight
iterations.

most cost-effective solution allowing the game environments first to be generated pro-
cedurally and then to be refined and polished manually (Watson et al. 2008).

Kelly and McCabe (2006) list the following criteria for procedural city generation tech-
niques:
� How realistic are the generated cities in comparison to real cityscapes?
� Is the generated content in the scale of a city?
� Does the generation method provide variation?
� What input is required from the user?
� What is the computational efficiency of the method?
� How much control does the user have to influence the city generation?
� Does the method work in real time or offline only?

Typical methods for city generation are based on grid and geometric primitives, archi-
tectural templates, L-systems, agent-based systems, and split grammars (Wang and Hua
2006; Kelly and McCabe 2006). L-systems are ranked among the most flexible, their only
downside being the computational requirements, because as the iteration increases, the
number of variables to be replaced, and thus the complexity, increases exponentially.

Parish and Müller (2001) in their seminal work present an L-system for creating urban
environments based on a hierarchical set of comprehensible and extendable rules. The
approach follows the general pattern of Kelly and McCabe (2007) who divide procedural
city generation into three stages:
� primary road generation (based on the main traffic flow),
� secondary road generation (in areas closed by the primary roads), and
� building generation (in areas closed by the primary and secondary roads).

The idea is that the primary roads are based on the user’s input, after which the sec-
ondary roads are generated automatically. Then the areas are subdivided into lots where
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Figure . Road patterns: (a) basic rule; (b) New York rule; (c) Paris rule; (d) San Francisco rule.

the buildings are placed. The input includes geographic (e.g. elevation and land type) and
sociostatistical (e.g. population density) influence maps (see Section 9.3). The city gen-
eration is carried out by using two L-systems, one for creating the streets and another
for creating the buildings.

The road and street network generation is a context-sensitive L-system, which takes
into account the existing land shapes and the influence maps. The rule set includes global
goals to create initial, tentative road segments, and local constraints which are used in
refinement. Stretches of road are drawn first to meet the global goals, and, next, these
interim plans are finalized to follow the local constraints (e.g. roads going around bodies
of water and connecting and intersecting roads).

The global goals follow one of the following four road patterns (see Figure 4.11):

1. Basic rule: there is no superimposed pattern but the roads follow the population den-
sity, which is typical of older cities.

2. New York rule: the roads follow a global and local angle (i.e. chequered pattern) and
the blocks reside within given maximum and minimum lengths.

3. Paris rule: the roads follow a radial track around a centre.
4. San Francisco rule: the main roads follow the least elevation, connected by short

smaller streets following the steepest elevation.

The local constraints grow the roads together and forms loops. These constraints ensure
that there is a crossing when two streets intersect, or if a road ends close to an existing
crossing, it is extended to the crossing.

The second L-system creates allotments for buildings. It includes modules for trans-
formation (scale, move), extrusion, branching, termination, and geometric templates.
The shape of a building is created by dividing it into sections resting on top of one
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Figure . Creating buildings by extruding.

another. The top section of a building is given a geometrically simple form, and the three-
dimensional form is made by extruding it downwards (see Figure 4.12). At the beginning
of the next section of the building, the geometric shape changes, and the extrusion pro-
cess is continued until all sections have been created.

. Hierarchical Universe Generation

Suppose we have a two-dimensional galaxy which we want to populate with stars (see
Figure 4.13). Moreover, suppose the galaxy is finite and discrete, where each position
(x, y) can represent either a star or void space. Let d be the density of the galaxy (i.e. the
ratio between stars and void). We can now enumerate each position, for example, row
by row, starting from the origin: (0, 0), (0, 1), ..., (0, ymax), (1, 0), (1, 1), ..., (xmax, ymax). By

(0, 0)

max,y max)(x
Figure . The positions in a two-dimensional
galaxy are enumerated row by row, starting from
the origin.
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using this order we generate a random number from the interval [0, 1) for each position.
If the generated number is greater than the density, the position is empty; otherwise, it is
populated with a star and we generate a random number for it. This method is illustrated
in the first part of Algorithm 4.10, which assumes that we have a function Set-Seed(v)
for (re)setting the seed value used in Algorithm 2.1 (i.e. after the call x = v). If we want to
conserve memory (as always, with the cost of computation time), we could use Equation
(2.2) to generate a random number for a given position immediately without the need
to generate the whole galaxy at once.

Algorithm 4.10 Methods for generating stars and planets.

v)
in: seed value v of the galaxy
out: matrix G of seed values for the stars
constant: maximum horizontal value xmax; maximum vertical value ymax; density

d (0 ≤ d ≤ 1)
1: rows(G) ← xmax + 1 ⊳ Rows for the x-axis.
2: columns(G) ← ymax + 1 ⊳ Columns for the y-axis.
3: v)
4: for x ← 0… xmax do
5: for y ← 0… ymax do
6: if < d then
7: Gx,y ← ⊳ Create a star.
8: else
9: Gx,y ← ⊳ Void space.

10: end if
11: end for
12: end for
13: return G

v)
in: seed value v of the star system
out: ordered set P of seed values for the planets
constant: minimum number of planets pmin; maximum number of planets pmax
local: number of planets p
1: v)
2: p ← pmin, pmax + 1)
3: for i ← 0… (p − 1) do
4: Pi ←
5: end for
6: return P

Create-Stars(

Create-Planets(

Set-Seed(
Random-Integer(

Random()

Random()
Random-Unit()

Set-Seed(

nil

Each star is now associated with a random number, which is used as a new seed
value when creating star-related characteristics such as name, size, and composition
(see Figure 4.14). These characteristics can be extended to the planets in the star
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Figure . The seed value is used to create the characteristics of the star including the rest of the star
system.

system, as the second part of Algorithm 4.10 illustrates. We could continue refining this
hierarchy into smaller and smaller details (from a planet to continents to states to towns
to citizens, etc.), always using a seed value generated on the upper level as a basis for the
next level (Lecky-Thompson 1999).

If we have constructed a galaxy in this way, we can compress it down to the initial
seed value, which is then stored for later use. Since the pseudo-random numbers are
deterministic, we can create the very same galaxy, down to the smallest details, time
and again from this one number.

. Summary

Procedural generation is akin to data decompression where we expand the compressed
information until we have achieved the required level of detail. However, in contrast to
compression, we usually do not have the detailed information at the beginning but it is
hidden inside the algorithm and the initial values. There are two ways to get out this
hidden information:

� Teleological algorithms attempt to simulate the physical processes which result in the
desired procedural output (Barr 1991).

� Ontogenetic algorithms attempt to duplicate the end result of a physical process with-
out emulating the intermediate steps (Ebert et al. 2002).

Obviously, teleological algorithms – such as L-systems – have the benefit that their
parameters can easily be tweaked to create new, emergent results that maintain the origi-
nal design intent. This, however, comes at the cost of extra processing time. Ontogenetic
algorithms – such as the terrain generation methods – are faster in achieving the result,
but require much more fine-tuning and are not so robust to parameter variations.

In the end, what matters is how the player perceives the procedurally generated con-
tent. Realism might not be the only factor but – as always – ensuring playability remains
the main concern.
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Exercises

- What possible drawbacks does procedural generation have? How does it affect
the game design process?

- In Algorithm 4.3 the routine Unbalanced-Neighbour favours the neighbours
in the order east, west, south and north. Randomize the scanning order of the
neighbourhood.

- The midpoint displacement method limits the size of the terrain to n × n, where
n = 2k + 1 when k ≥ 0. How we can use it to generate arbitrary sized terrains?

- In Algorithm 4.6 the ‘middle horizontal’ and ‘middle vertical’ double loops have
similar loop indices (the ranges and the initial values differ only slightly). Collapse
these loops together by introducing two extra loops with range i = 0,… , (c − 1).
Then collapse these two extra loops to include the ‘borders’ loop. Implement these
two variants and compare their running times.

The ‘centres’ double loop generates every index pair in the matrix H. If the posi-
tions Hi,j and Hj,i are updated together and the diagonal of H is traversed separately,
the range of the inner loop of ‘centres’ can be cut to j = 0,… , i − 1. Also, the diag-
onal loop can be embedded into the ‘borders’ loop. Implement this third variant
(with great care). Are these optimizations worth the effort? Continue this code
tweaking until it becomes code pessimization. After that, give the fastest variant
to your friends and let them ponder what it does.

- The difference between a labyrinth and a maze is that a labyrinth has only one
way through whereas a maze offer a choice of paths. If there is only one path in a
labyrinth, how can you get lost in it? Where can you use labyrinths in a computer
game?

- What happens if you add portals to a maze? A portal allows the player to jump
from one cell to another even if they are not connected or even if there is a wall
between them. From the player’s perspective, what do portals add to the challenge
of a maze?

- Algorithm 4.7 creates a depth-first maze iteratively. Rewrite the algorithm to use
recursion instead.

- What if you were to use breadth-first search to create a maze. What kind of mazes
it would create and why they would not be useful?

- In the graph-based maze algorithms, only a graph is given as parameter. Why it
is not necessary to give any entry nor exit vertices?

- The maze algorithms presented do not produce cycles. Modify the algorithms so
that mazes have cycles. Consider various ways to control the distribution of the
walls punctured with holes in the mazes.
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- What is the benefit of using stochastic L-systems in procedural generation?

- Implement an L-system using brackets and re-create Figure 4.10. Make changes in
the production rules governing the outcome and observe the results. How much
pre-thought is required in creating natural looking plants?

- Is the list of criteria for city generation techniques in Section 4.3.2 sufficient? How
would you prioritize the criteria?

- Take a terrain generated with a method from Section 4.1 and apply one of the
road patterns illustrated in Figure 4.11 to it. You can also use an influence map
(see Section 9.3) as a starting point.

- In 1984 David Braben and Ian Bell released a computer game on interstellar trad-
ing. In addition to the trading system and three-dimensional space simulation,
they managed to fit eight galaxies filled with hundreds of stars, each with unique
characteristics, into the 32 kB memory of a BBC Micro computer. The game is
called Elite, and it uses procedural generation quite cleverly to compress the whole
game world.

Algorithm 4.11 presents the name generation algorithm used in Elite. Study
how it works, when we call it with the original hexadecimal parameter values for
the first galaxy. (Hint: The eighth name in the sequence should be Lave, where the
game begins.)

Algorithm 4.11 Name generation of Elite.

D, w0, w1, w2, m)
in: digram sequence D; seed values w0, w1, w2 ∈ B

16; amount of generated
names m

out: sequence of names P
1: |P|← m
2: for i ← 0…m do
3: ← w0 ⊓ 004016 ≠ 0 ⊳ Is bit 6 set?
4: R ← ⟨ ⟩
5: for n = 0… 3 do
6: q ← (w2 ≫ 8) ⊓ 001F16
7: if (Dq ≠ and (n < 3 or )) then
8: R ← R ∥ Dq
9: end if

10: t← (w0 + w1 + w2) mod 1000016
11: w0 ← w1; w1 ← w2; w2 ← t
12: end for
13: Pm ← R
14: end for
15: return P

Elite-Names(

nil

ℓ

ℓ
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Figure . Generation of numbers in Elite.

D = {nil, LE, XE, GE, ZA, CE, BI, SO, US, ES, AR, MA, IN, DI, RE, A,
ER, AT, EN, BE, RA, LA, VE, TI, ED, OR, QU, AN, TE, IS, RI, ON}

w0 = 5A4A16
w1 = 024816
w2 = B75316
m = 255

The generation uses a Pisano period (i.e. Fibonacci numbers taken modulo
1000016) to generate the values. In addition to generating its name, the values are
used to generate different attributes of the planet such as its coordinates, radius,
economy and government type (see Figure 4.15).

- Random numbers can be used to create names. Instead of creating random strings
of characters, names usually follow certain rules. Select a set of real-world names
(e.g. from J.R.R. Tolkien’s world or from an atlas) and devise a set of rules that they
follow. Design and implement a method that creates new names based on the set
of rules and random numbers.

- The starmap generation of Algorithm 4.10 creates a static galaxy. How would you
implement a dynamic galaxy where every planet orbits around its star and rotates
around its axis (i.e. at a given global startime the planet has a position and orien-
tation)? What if we have an even more dynamic galaxy, where existing heavenly
bodies can die and new ones can be born?
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Tournaments

The seven brothers of Jukola – Juhani, Tuomas, Aapo, Simeoni, Timo, Lauri and Eero –
have decided to find out who is best at the game of Kyykkä. To do this the brothers need
a series of matches, a tournament, and have to set down the rules for the form of the
tournament (see Figure 5.1). They can form a scoring tournament, where everybody
has one match against everybody else, in total 21 matches. To determine their relative
order, a ranking, the brothers can agree to aggregate the match outcomes together by
awarding two points to the winner and no points for the loser of a match, or one point
each if the result is even and the match is a tie. When all the matches have been played,
the brother with the most points will be the champion.

Another possibility is that they organize the event as a cup (or single elimination) tour-
nament of three rounds and six matches, where the loser of each match (ties are resolved
by arm-wrestling) is dropped from the competition, until there is only one contestant
left. Apart from the champion, the rankings of the other players are not so obvious.
Also, if the number of contestants is not a power of 2, the incomplete pairing has to be
handled fairly in the first round. Should the brothers have a ranking from the last year’s
tournament, the pairing can be organized so that the best-ranked players can meet only
at the later stages of the tournament.

The brothers can settle the championship with a hill-climbing tournament, where the
reigning champion from the previous year’s tournament has to defend his title in a series
of six matches. If he loses a match, the winner becomes the new reigning champion and
continues the series. The winner of the last match is crowned the champion of the whole
tournament. Obviously, the previous year’s champion has the hard task of maintaining
the title, because that requires six consecutive wins, whereas the last man in line can
become champion by winning just one match.

Although the application area of tournament algorithms seems to be confined to
sports games only, they provide us with a general approach to determining a partial
order between the participants and, therefore, we can apply them to a much wider range
of problems. The (possibly incomplete) ranking information can be used, for instance,
in game balancing (e.g. testing synthetic players by putting them in a duel, or adjust-
ing point award schemes), in heuristic search (e.g. selecting suboptimal candidates for a
genetic algorithm or an evolving system), in group behaviour (e.g. modelling the peck-
ing order in a flock), and in learning player characteristics (e.g. managing overall history
knowledge about strengths and weaknesses).

Algorithms and Networking for Computer Games, Second Edition. Jouni Smed and Harri Hakonen.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Figure . Tournaments for the seven brothers. (a) In a scoring tournament, everybody has one match
against everybody else. (b) In an elimination tournament (or a cup), the players are paired and only the
winners get to the next round. (c) In a hill-climbing tournament, the reigning champion defends the
title against players who have not yet had the possibility of becoming the champion.

Formally put, a tournament is a competition where the players have one-on-one
matches to resolve their relative fitnesses. Here, ‘player’ is a general term and can refer to
an individual or a team. The result of a tournament is an ordering of the players’ relative
fitnesses. This information is often simplified into a ranking of the players, where the
players are assigned a ranking number, and the smaller the rank, the better the player.
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Ranking can also be partial, which means that only some of the players can be ordered in
comparison to the others. Even in these incomplete rankings, the result usually includes
the player with the smallest rank, the champion, who is sometimes called – especially
by scholars – the king.

Planning and organizing a tournament in the real world involves many constraints
concerning costs, venue bookings, the time spent travelling to the tournament sites, risk
management, and other limited resources (Smith et al. 2006). In this chapter we omit
these practical concerns and limit our focus to scheduling the players of a tournament
into matches of two players, which is called pairing.

As we saw earlier with the seven brothers’ tournament, depending on how one
match relates to the other matches, tournaments can be divided into three main
categories:

� In a rank adjustment tournament (i.e. challenge or extended tournament), a match is
a challenge for a rank exchange and is quite independent of the other challenges.

� In an elimination tournament, the purpose of a match is to eliminate one player from
the upcoming matches.

� In a scoring tournament, a player gets a reward if she succeeds in a match.

This categorization, however, is not strict, because these characterizing features are
often combined together. For example, a season-wide ranking list can be used for assign-
ing players either to preliminary qualifying rounds (i.e. elimination matches) or directly
into the actual point-awarding matches. For an analysis of the predictive power of the
tournament formats, see Ryvkin and Ortmann (2008).

But before getting into the details of these tournaments, a few words about the nota-
tion we use in this chapter. Let us denote the set of n players in a tournament by P.
We can label these players with indices p0, p1, … , pn−1, and player pi can be referred
to simply as player i. If player i has a rank, we denote it by rank(i), and the ranks are
enumerated consecutively starting from 0. The set of players having the same rank
r is denoted with rankeds(P, r), or rankeds(r) if the set of players is clear from the
context. If this set is a singleton (i.e. rankeds(P, r) = {p}), we simply use the notation
ranked(r) to refer to p directly. A match (or a duel) between players i and j, denoted
with match(i, j), has the outcomes i, j or tie for the cases where i wins, j wins, or
there is no winner or loser, respectively. The match function itself does not change
the ranks of the players, because the ranking rules are specific to the tournament.
Furthermore, we assume that winning is transitive: if player q wins against player r
and p wins against q, then by our definition p also wins against r. This indirect win-
ning allows us to have different kinds of matching structures, especially in elimination
tournaments.

. Rank Adjustment Tournaments

In a rank adjustment tournament, we have a set of players, who already have a ranking,
and we want to organize a tournament, where this ranking is adjusted according to the
match outcomes. Since the ranking can be updated immediately after each match, this
kind of tournament suits ongoing (i.e. seasonless) competitions, and the player pairings
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do not have to be coordinated in any specific way. A round in a rank adjustment tour-
nament can have 0, 1, … , ⌊n∕2⌋ independent matches at the same time. This makes it
possible to insert or remove a tournament player without ruining the intuitiveness of
the rank order.

We can set up the initial ranking of the players in P by using a ranking structure S (see
Algorithm 5.1). The ranking structure S has size m = |S|, which defines the number of
different ranks, 0, 1, … , m − 1. The value Si indicates how many players have the same
rank i in the tournament. In other words, in a proper ranking Si = |rankeds(i)|.
Algorithm 5.1 Constructing initial ranking in rank adjustment tournaments.

P, S)
in: set P of n unranked players in the tournament; sequence S of m non-negative

integers in which defines the number of players that have the same rank Si i
(Σm−1

i=0 Si = n)
out: set R of ranked players having the ranking structure S
local: match sequences M and M′ of players
1: R ← copy P
2: M ← enumeration(R) ⊳ Order R to M in some way.
3: for i ← 0 … (S0 − 1) do
4: rank(Mi) ← 0 ⊳ Declare Mi an initial champion.
5: end for
6: c ← S0
7: for r ← 1 … (m − 1) do
8: W ← rankeds(R, r − 1) ⊳ The runners-up.
9: M′ ← enumeration(W )

10: for i ← 0 … (Sr − 1) do
11: rank(Mc+i) ← r
12: j ← i mod ∣M′∣
13: if rank(M′

j ) ≠ r then
14: R ← (R, M′

j , Mc+i) ⊳ Update ranks of M′
j and Mc+i.

15: end if
16: end for
17: c ← c + Sr
18: end for
19: return R

Initial-Rank-Adjustment(

Ladder-Match

Algorithm 5.1 uses routine enumeration to define some order on the given set, which
can be, for example, a random order generated by function Shuffle described in Algo-
rithm 2.6. The algorithm also uses Ladder-Match described in Algorithm 5.2 to join
the next subset of players into an existing rank structure (i.e. among the least successful
players ranked so far). A new player exchanges rank with an already ranked opponent
only if she wins the match. Because Algorithm 5.1 lets the players compete for the initial
ranking, it is one of the simplest fair initialization methods. If fairness is unnecessary,
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Algorithm 5.2 Match in a ladder tournament.

P, p, q)
in: set P of players in the ladder structure; players p and q ( p, q ∈ P∧1 ≤ rank(q)−

rank(p) ≤ 2)
out: set R of players after p and q have had a match
1: m ← match( p, q)
2: if m = or m = p then ⊳ Nothing changes.
3: return P
4: else ⊳ Rank exchange.
5: R ← P ⧵ { p, q}
6: p′ ← copy p ; q′ ← copy q
7: rank(p′) ← rank(q)
8: rank(q′) ← rank(p)
9: return R ∪ {p′, q′}

10: end if

Ladder-Match(

tie

the body of the algorithm becomes even simpler. For example, we can assign each player
a random rank from structure S:

1: R ← (P)
2: c ← 0
3: for r ← 0 … (m − 1) do
4: for i ← 0 … (Sr − 1) do
5: rank(Rc+i) ← r
6: end for
7: c ← c + Sr
8: end for
9: return R

Shuffle

Ladder tournaments
In a ladder tournament, a player can improve her rank by winning against another player
who is ranked higher. A general ladder tournament orders the players P into a single
chain according to their ranks: the first player in the chain, ranked(0), is the champion,
player ranked(1) is the first runner-up, and so forth. Algorithm 5.2 describes the re-
ranking rule Ladder-Match for a given pair of players. A match can be arranged only
between players whose ranks differ by one or two. Also, the possible rank exchange
affects only the two players participating in the match. We can relax these two prop-
erties to allow less localized changes in the tournament ranking: the rank difference
can be greater, or when a better-ranked player p loses to a worse-ranked player q, it
also affects the ranks between them (i.e. the players ranked(rank( p)), ranked(rank( p)
+ 1), … , ranked(rank(q)). To realize this generalized re-ranking we can use, for example,
list update techniques (Albers and Mitzenmacher 1998; Bachrach and El-Yaniv 1997).
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Hill-climbing tournament
A hill-climbing tournament – which is sometimes called a top-of-the-mountain tour-
nament or a last man standing tournament – is a special ladder tournament, where
the reigning champion defends the title against challengers. The tournament has n − 1
rounds each having one match as described in Algorithm 5.3, which sequences the play-
ers and arranges a match between the reigning champion and the next player who has
not yet participated. In other words, the matches obey the following invariant: after
round i = 0, … , (n − 1) − 1 we know that the player ranked((n − 1) − i − 1) has won
(directly or indirectly) against the players with ranks less than or equal to (n − 1) − i.
This reigning champion can be seen as a ‘hill climber’ among the other players.

Algorithm 5.3 Hill climbing tournament.

P)
in: set P of n unranked players (1 ≤ n)
out: set R of ranked players which has a champion ranked(R, 0)
local: ranking structure S; reigning champion c
1: S ← ⟨1, 1, … , 1⟩ ⊳ Initialize n values.
2: R ← (P, S)
3: c ← ranked(R, n − 1) ⊳ The tailender in R.
4: for r′ ← 0 … (n − 2) do
5: r ← (n − 2) − r′ ⊳ For each rank from the bottom to the top.
6: R ← (R, ranked(R, r), c)
7: c ← ranked(R, r)
8: end for
9: return R

Hill-Climbing-Tournament(

Initial-Rank-Adjustment

Ladder-Match

Algorithm 5.3 assumes that the players are unranked and the initial order is gener-
ated using Algorithm 5.1. However, there are other ways to arrange the players into the
match sequence. For example, we can produce a uniformly distributed random permu-
tation Shuffle(⟨0, 1, … , n − 1⟩) and use it for the initial ranks. Alternatively, the ini-
tial ranking can be based on ranks from previous competitions. If the players are then
arranged in a descending rank order, the reigning champion has only one match, the last
one, whereas the bottom-ranked player has to win against all the other players to clear
her way to the championship match. Conversely, an ascending rank order requires that
the reigning champion wins all (n − 1) matches to keep the title. In short, we can set the
reactivity of the championship race by initialization: descending order is conservative,
random order is democratic, and ascending order is challenging.

Pyramid tournaments
A general pyramid tournament relaxes the ladder tournament by allowing players to
share the same rank. Assume that the ranks are 0, … , m − 1 and m ≤ n = |P|. The pyra-
mid ranking usually has a structure where

1 = |rankeds(0)| < |rankeds(1)| < … < |rankeds(m − 1)|
and

m−1∑
i=0

|rankeds(i)| = n.
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In this case, there is only one champion, and the set of ranked players grows as the
rank index increases. Algorithm 5.4 defines re-ranking rule Pyramid-Match for
two players participating in a match. There are two kind of matches. In a peer match
both players have the same rank, and the winner gets the status peerWinner. A rank
challenge match requires that the challenger has the peerWinner status; otherwise, the
match is similar to Ladder-Match in Algorithm 5.2, with the difference that the rank
difference is exactly one.

Algorithm 5.4 Match in a pyramid tournament.

P, p, q)
in: set P of players in the pyramid structure; players p and q (p, q ∈ P ∧

((rank(p) = rank(q) ∧ ¬peerWinner(q)) ∨ (rank(p) = rank(q) − 1 ∧
peerWinner(q))))

out: set R of players after p and q have had a match
local: match outcome m
1: R ← P ⧵ {p, q}
2: m ← match(p, q)
3: if rank(p) = rank(q) then ⊳ Peer match.
4: if (m = p and not peerWinner(p)) or

((m = q or m = ) and peerWinner(p)) then
5: p′ ← copy p
6: peerWinner(p′) ← (m = p)
7: else
8: p′ ← p
9: end if

10: if m = q then
11: q′ ← copy q
12: peerWinner(q′) ←
13: else
14: q′ ← q
15: end if
16: return R ∪ {p′, q′}
17: else ⊳ Rank challenge match.
18: q′ ← copy q
19: peerWinner(q′) ←
20: if m = p or m = then ⊳ No rank changes.
21: return R ∪ {p, q′}
22: else ⊳ Rank exchange.
23: p′ ← copy p
24: peerWinner(p′) ←
25: rank(p′) ← rank(q)
26: rank(q′) ← rank(p)
27: return R ∪ {p′, q′}
28: end if
29: end if

Pyramid-Match(

tie

true

false

false

tie
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King-of-the-hill tournament
A king-of-the-hill tournament specializes the general pyramid tournament in the same
way as the hill-climbing tournament specializes the general ladder tournament. Assume
that the m-level pyramid has the form |rankeds(i)| = 2i for all i ∈ [0, m − 1], and
m ≤ n. This means that the number of player pairings at level i + 1 is equal to the num-
ber of players at the level i. Algorithm 5.5 describes how the matches are organized into
2(m − 1) rounds. There are two rounds of matches for each pyramid level, except for
the champion level 0. At level (i + 1), 2i matches are held to find the peer winners. Then
these winners face the players at level i in a rank challenge match.

Algorithm 5.5 King of the hill tournament.

P)
in: set P of n unranked players (1 ≤ n ∧ (n + 1) is a power of two)
out: set R of ranked players which has a champion ranked(R, 0)
constant: number of pyramid levels m (m = lg(n + 1))
local: ranking structure S; match sequences M and M′ of players
1: S ← ⟨20, 21, 22, … , 2m−1⟩ ⊳ Initialize

From the bottom to the first runner-up.

m values.
2: R ← (P, S)
3: for r ′ ← 1 … (m − 1) do
4: r ← (m − 1) − (r ′ − 1) ⊳
5: M ← enumeration(rankeds(R, r)) ⊳ Arrange the set into an order.
6: ← ∣M∣
7: for i ← 0 … ( ∕2 − 1) do ⊳ Determine the peer winners.
8: peerWinner(M2i) ←
9: peerWinner(M2i+1) ←

10: R ← (R, M2i, M2i+1)
11: end for
12: M ← all peer winner players in rankeds(R, r)
13: M′ ← enumeration(rankeds(R, r − 1)) ⊳ Arrange the set into an order.
14: for i ← 0 … ( ∕2 − 1) do ⊳ Determine the rank exchanges.
15: R ← (R, M′

i , Mi)
16: end for
17: end for
18: return R

King-Of-The-Hill-Tournament(

Initial-Rank-Adjustment(

false
false

Pyramid-Match

Pyramid-Match
ℓ

ℓ
ℓ

. Elimination Tournaments

In an elimination tournament (or a knockout tournament) the loser of a match is elim-
inated from the tournament and the winner continues to the next round. This means
that the match cannot end in a tie but must always have a winner and a loser, which can
be decided by an extra tiebreak competition such as overtime play and penalty kicks in
football, or a re-spotted black ball in snooker. Also, multiple matches can be combined
into a best-of-m match series (when m is odd), where the winner is the first one to win
(m + 1)∕2 matches.
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Random selection tournament
The simplest elimination tournament is the random selection tournament, where a ran-
domly selected player is declared champion without any matches being played. The ran-
dom selection is drawn from a distribution that can be given as a weight sequence for
Algorithm 5.6 (for details on assigning weight sequences, see Section 2.2).

Algorithm 5.6 Random selection tournament.

P, W )
in: sequence P of n unranked players (1 ≤ n); sequence W of player weights

(∣W ∣ = n ∧ Wi ∈ N for i = 0, … , n − 1 ∧ 1 ≤ Σn−1
k=0Wk)

out: set R of ranked players which has a champion ranked(R, 0) and the rest of the
players have rank 1

1: R ← copy P
2: k← (W )
3: c ← Rk
4: rank(c) ← 0
5: for all p ∈ (R ⧵ {c}) do
6: rank(p) ← 1
7: end for
8: return R

Random-Selection-Tournament(

Random-From-Weights

Random pairing tournament
In a random pairing tournament the champion is decided by randomly selecting one of
the first round winners. This is implemented in Algorithm 5.7, which uses Algorithm
5.6 for random drawing.

Algorithm 5.7 Random pairing tournament.

P)
in: set P of n unranked players (1 ≤ n)
out: set R of ranked players which has a champion ranked(R, 0) and the rest of the

players have a rank 1
local: match sequence M of players
1: W ← ⟨0, 0, … , 0⟩ ⊳ Initialize n values.
2: M ← enumeration(P) ⊳ Order P to M in some way.
3: for i ← 0 … ((n div 2) − 1) do
4: m ← match(M2i, M2i+1)
5: Wm ← 1 ⊳ Set the winner’s weight to 1.
6: end for
7: R ← (M, W )
8: return R

Random-Pairing-Tournament(

Random-Selection-Tournament
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Figure . A bracket for an elimination tournament
with 16 players (circles), which has 15 matches
(squares).

Single elimination tournament
A single elimination tournament – which is perhaps better known as a cup tournament –
resembles a complete binary tree: leaf nodes represent the players and the internal nodes
represent the matches. The winner of a match proceeds to the parent of the correspond-
ing internal node (i.e. to the next match). The organization of the matches can be visu-
alized with a diagram called a bracket, which illustrated in Figure 5.2. By observing the
binary tree structure we have the following properties:

� For n = 2x players, where x = 0, 1, … , we have n − 1 matches organized into lg n = x
rounds.

� If the rounds are indexed from 0, then round i has 2x−1−i = n∕2i+1 matches.
� After each round the number of participants remaining is halved.

Round x − 3, which has four matches, is called the quarter-final, round x − 2 with two
matches is the semifinal, and the last round x − 1 having only one match is the final.

If the number of players n is not a power of 2, we cannot pair the players in every
round. This means that some players may proceed to the next round without a match,
and such a player is said to receive a bye. If we handle the byes by adding them as virtual
players that automatically lose their matches, we can increase n to the nearest higher
power of 2 by including 2⌈lg n⌉ − n byes in the tournament bracket.

Due to the hierarchical organization of matches, the future player pairings depend
strongly on the initial pairings. For instance, if the players are assigned to the matches
as in Figure 5.2, it is not possible to have both match(0, 2) and match(1, 3). This inherent
property of the single elimination tournament becomes a problem, if we have some a
priori knowledge about the player strengths and expect that it is possible for all of the
t top-ranked players to reach round lg (n∕t). To analyse this reachability criterion we
must first consider how initial pairing is done.

The process of assigning the players into the initial match pairs is called seeding
(Groh et al. 2012). We can formulate it as follows. Given a bracket with consecu-
tively indexed placeholders for the n players, the seeding is an arrangement of player
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indices {0, 1, … , n − 1} into a sequence R so that player Ri is put into the bracket posi-
tion i. The bracket positions define the first round matches to be match(R2i, R2i+1) for
i ∈ [0, n∕2 − 1]. Now we can analyse the reachability criterion by setting the player index
to be equal to the player’s rank.

When the pre-tournament ranking cannot be estimated, we can use a random seeding.
Hence, the probability that the two best players are able to reach the final is 1

2 ⋅ n
n−1 . A

simple implementation for Random-Seeding(n) is

1: return (⟨0, 1, … , n − 1⟩)Shuffle

Table 5.1 presents the three most commonly used deterministic seedings for 16 player
ranks, which fulfil the reachability criterion (i.e. the top-ranked players have the best
possibilities of proceeding to the next round). The first column contains the place
index in the bracket (as a decimal number and a binary radix). The standard seeding
is bijective (i.e. SSi

= i) and can be generated with Algorithm 5.8. In the ordered stan-
dard seeding, the mapping sequence of the standard seeding is sorted such that it is
in ascending order as far as possible without violating the reachability criterion. Quite
surprisingly, Algorithm 5.9 produces this sequence with a simple control flow. Both
of these standard seedings reward past success by pairing the top-ranked players with
the bottom-ranked ones: the initial matches are match(ranked(i), ranked(n − 1 − i)) for
i ∈ [0, n∕2 − 1]. If this is considered to be unfair play, Algorithm 5.10 provides a method
for equitable seeding, where each initial match has the same rank difference n∕2. Bit
enthusiasts may appreciate the observation that this sequence can be generated easily
by reversing the bits of the placeholder indices – perhaps this property could be called
‘bitectivity’.

Table . Three common deterministic seeding types for an elimination
tournament of 16 players. Instead of player indices the seedings are defined
by predetermined ranks.

Placeholder index Standard Ordered standard Equitable

0 (0000) 0 0 0 (0000)
1 (0001) 15 15 8 (1000)
2 (0010) 8 7 4 (0100)
3 (0011) 7 8 12 (1100)
4 (0100) 4 3 2 (0010)
5 (0101) 11 12 10 (1010)
6 (0110) 12 4 6 (0110)
7 (0111) 3 11 14 (1110)
8 (1000) 2 1 1 (0001)
9 (1001) 13 14 9 (1001)

10 (1010) 10 6 5 (0101)
11 (1011) 5 9 13 (1101)
12 (1100) 6 2 3 (0011)
13 (1101) 9 13 11 (1011)
14 (1110) 14 5 7 (0111)
15 (1111) 1 10 15 (1111)
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Algorithm 5.8 Standard seeding for an elimination bracket.

n)
in: number of players n (2 ≤ n ∧ n is a power of 2)
out: sequence R of n ranks indicating the initial match pairings between players

ranked(R2i) and ranked(R2i+1), when i = 0, … , n∕2 − 1
1: R ← ⟨0, −1, −1, … , −1⟩ ⊳ Initialize n values.
2: return (R, 2, 0, n − 1)

R, n′, , )
in: sequence R of n ranks; number of players n′ at the current bracket level (1 ≤

<n′ ∧ n′ is a power of 2); interval [ , ] of R under construction (0 ≤ ≤

∣R∣)
out: sequence of ranks R
1: if = then return R end if
2: if R = −1 then
3: R ← (n′ − 1) − R
4: else
5: R ← (n′ − 1) − R
6: end if
7: ← ( − − 1)∕2
8: R ← (R, 2 ⋅ n′, , + )
9: R ← (R, 2 ⋅ n′, + + 1, )

10: return R

Internal-Standard-Seeding

Internal-Standard-Seeding(

Internal-Standard-Seeding
Internal-Standard-Seeding

Standard-Seeding(
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Algorithm 5.9 Ordered standard seeding for an elimination bracket.

n)
in: number of players n (2 ≤ n ∧ n is a power of 2)
out: sequence R of n ranks indicating the initial match pairings between players

ranked(R2i) and ranked(R2i+1), when i = 0, … , n∕2 − 1
1: ∣R∣ ← n ⊳ Reserve space for n integers.
2: R0 ← 0
3: return (R, 2, 0, n − 1)

R, n′, , )
in: sequence R of n ranks; number of players n′ at current bracket level (1 ≤ n′∧n′

is a power of 2); interval [ , ] of R under construction (0 ≤ ≤ ∣R∣)
out: sequence of ranks R
1: if = then return R end if
2: ← ( − − 1)∕2
3: R ← (R, 2 ⋅ n′, , + )
4: R + +1 ← (n′ − 1) − R
5: R ← (R, 2 ⋅ n′, + + 1, )
6: return R

Ordered-Standard-Seeding(

Internal-Ordered-Standard-Seeding(

Internal-Ordered-Standard-Seeding(

Internal-Ordered-Standard-Seeding(

Internal-Ordered-Standard-Seeding(
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Algorithm 5.10 Equitable seeding for an elimination bracket.

n)
in: number of players n (2 ≤ n ∧ n is a power of 2)
out: sequence R of n ranks indicating the initial match pairings between players

ranked(R2i) and ranked(R2i+1), when i = 0, … , n∕2 − 1
1: w ← 1 + ⌊lg(n − 1)⌋ ⊳ Bits required for the value (n − 1).
2: ∣R∣ ← n ⊳ Reserve space for n integers.
3: for i ← 0 … (n − 1) do
4: Ri ← (i, w)
5: end for
6: return R

x, w)
in: -bit integer value xwith bit representation b −1 … b1b0; number of the lower-

most bits w (0 ≤ w ≤ )
out: integer value in which the w lowermost bits are reversal of the w lowermost

bits in x
1: return -bit integer value 0 … 0b0b1 … bw−1

Equitable-Seeding(

Bit-Reverse

Bit-Reverse(
λ

λ

λ

λ

The allocation of byes in the elimination bracket is another possible source of unfair-
ness. There are two practical suggestions:

(i) The byes should have the bottom ranks (i.e. they are paired with the best players).
(ii) The byes should be restricted to the first round (i.e. the number of players in the

second round is a power of 2).

While this seems sensible for both of the standard seedings, realizing it in the equitable
seeding turns out to be different, because the 𝓁 = 2⌈lg n⌉ − n byes should have ranks
n∕2, … , n∕2 + 𝓁 − 1.

Let us return to the single elimination tournament, which is implemented in Algo-
rithm 5.11. It assumes that the players P are already ranked, and the function call
A-Seeding produces a rank ordering, for example, by applying one of the four seed-
ing algorithms described earlier. Although the players have initially unique ranks, the
only outcome of the tournament is the champion. It is clear why the runners-up are
hard to decide; for instance, the first runner-up has lost to the champion (not neces-
sarily the final). To sort the runners-up we would have to organize a mini-tournament
of lg n players before we know the silver medallist. Naturally, we can give the players
a score for each match won, which is then used to adjust the already existing ranking,
especially if there are many tournaments in a season.

In real-world sports games, a fair assessment of ranks for all players before the tourna-
ment can be too demanding a task. To compensate and to reduce the effect of seeding we
can introduce a random element into the pairing. For example, if we are able to deter-
mine the best four players (regardless of their relative ranking), we can place them in
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Algorithm 5.11 Single elimination tournament.

P)
in: sequence P of n ranked players (1 ≤ n ∧ n is a power of 2 ∧ P is a permutation

of ⟨0, 1, … , n − 1⟩)
out: set R of ranked players which has a champion ranked(R, 0) and the rest of the

players have rank 1; attribute wins(i) indicates the number of wins for player
i

local: sequence S of initial match indices
1: R ← copy P
2: S ← (n) ⊳ Seeding as a rank order.
3: ∣M∣ ← n ⊳ Reserve space for n players.
4: for i ← 0 … (n − 1) do ⊳ Assign the initial order.
5: Mi ← ranked(R, Si) ⊳ The player with rank Si.
6: end for
7: for r ← 0 … ((lg n) − 1) do ⊳ For each round.
8: ∣M′∣ ← n∕2r+1 ⊳ Reserve space for the winners.
9: for i ← 0 … (n∕2r+1 − 1) do ⊳ For each match.

10: M′
i ← match(M2i, M2i+1)

11: end for
12: for all p ∈ (M ⧵ M′) do ⊳ The runners-up.
13: rank(p) ← 1
14: wins(p) ← r
15: end for
16: M ← M′

17: end for
18: p ← the single value in M
19: rank(p) ← 0 ⊳ The champion.
20: wins(p) ← lg n
21: return R

Single-Elimination-Tournament(

A-Seeding

the sub-brackets of the tournament according to a deterministic seeding, after which the
rest of the (unranked) players are seeded randomly to the whole bracket. Another pos-
sibility is to re-seed the players before each round, the rationale being that wins provide
us with information on the players’ current strength.

When the players are equally matched (i.e. there is not much difference in their level
of fitness), the single elimination tournament has the disadvantage that the match out-
comes are susceptible to mistakes, relapses, accidents and other unpredictable mishaps.
To compensate for this ‘randomness’ the players can of course have multiple matches
(e.g. a best-of-m match series) but there are also variants of the elimination tourna-
ment that provide a more robust result. In a double elimination tournament the player
is eliminated from the competition after lost two matches. The matches are organized
into a winners’ bracket and a losers’ bracket (or a consolation bracket) – naturally there
are specific rules for assigning a loser to the losers’ bracket. The brackets are then
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used as in the single elimination tournament, and the winner of each bracket gets to
the final.

. Scoring Tournaments

Instead of adjusting the ranking directly, the ranks can be decided based on a scoring
table. Points are awarded to the winner of a match, while the loser gets none, and in a tie
the points are shared by both players. These scoring tournaments measure the overall
fitness among the players better, and the matches are less dependent on one another.
We can even arrange for the same pairs to have multiple matches during the season,
which, in the long run, should make the ranking reflect the true fitness order of the
players better. This, however, can present the problem of unimportant matches, which
are expected to have no influence on the tournament outcome (Scarf and Shi 2008), or
even dead rubbers that are completely meaningless.

Scoring can be included in any tournament type and provides an easy way to combine
different tournament types into one, hybrid tournament. For example, in the prelimi-
nary matches the players can be grouped into 16 disjoint pools where they play three
random pairing tournaments. Players receive one point for a win and half a point for
a tie. If several players have the highest score in a pool, the pool champion is selected
randomly. The preliminary champions are then seeded into an elimination tournament,
which decides the champion of the whole tournament.

Let us begin with the round robin tournament, which is the basis for many scoring
tournaments. The round robin tournament itself does not impose any specific scoring
mechanism but describes how to organize the matches such that every player meets
the other players exactly once with a minimum number of rounds. To describe the idea
behind the algorithm we convert the match allocation to a graph problem.

An undirected graph G = (V , E) with vertices V and edges E is called complete if every
vertex is connected to another vertex by an edge and no vertex has a loop. In other words,
for all v ∈ V we have |neighbourhood(v)| = |V | − 1 ∧ (v, v) ∉ E. A complete graph with
n vertices is called a clique and is denoted by Kn. Without loss of generality, we can place
the vertices on the perimeter of a circle so as to have a polygonal representation of the
graph and enumerate the vertices clockwise as in Figure 5.3. Let us identify a vertex with
its number. If we set a vertex to be a player and an edge to be a match, Kn represents all
the match pairings in a round robin tournament for n players.

5

0

6 1

4 3

2

Figure . A clique graph representation of the matches in a
round robin tournament with seven players.
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Because the players are allowed to participate in at most one match at a time, we still
have to schedule the matches into the rounds. If n is odd, the edges E of Kn can be
partitioned into (n − 1)∕2 disjoint sets. Let us define a perimeter distance 𝜋 of the edge
( p, q) as 𝜋( p, q) = min{|p − q|, n − |p − q|}. If we define a subset of undirected edges
with a perimeter distance i as

Π(V , i) = {( p, q) |𝜋( p, q) = i ∧ p, q ∈ V }, (5.1)

the edge set of Kn becomes a disjoint union

E =
(n−1)∕2⋃

i=1
Π(V , i), (5.2)

where each Π(V , i) has exactly n members. In other words, if n is odd, Equation (5.2)
provides us with a convenient way to partition all the n(n − 1)∕2 possible pairings into
n rounds with (n − 1)∕2 matches each. When assigning matches for a round, we select
only the unused pairings with different perimeter distances. Because a player faces the
other players exactly once and each player ‘rests’ for one match (i.e. has a bye for one
round), this scheduling gives a solution with a minimum number of rounds.

We have some leeway when selecting the unused player pairings for a round. We can
partition the sets Π(V , i) into n rounds as illustrated in Figure 5.4. In round r ∈ [0, n − 1],
the player with the index r is given a bye, and the matches for the round are

match((r + k) mod n, (r + n − k) mod n) (5.3)

for k ∈ [1, (n − 1)∕2] (note that k is just a match enumeration, not a perimeter length).
As Figure 5.4 illustrates, each edge belongs to one round only and every edge gets
selected to some round. Table 5.2 lists the whole schedule round by round for seven
players. The ‘resting’ column shows the player with the bye, and, as already mentioned,
it equals the round index.

The observant reader might already have noticed that the presented method does not
work at all, if the number of players is even. Fortunately, we can easily transform the

(a) (b)
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Figure . A partition of the matches into two rounds of a round robin tournaments with seven
players: (a) the matches for the initial round; (b) the matches for the next round.
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Table . A straightforward organization
of matches in a round robin tournament
with seven players.

Round Matches Resting

0 1 – 6 2 – 5 3 – 4 0
1 2 – 0 3 – 6 4 – 5 1
2 3 – 1 4 – 0 5 – 6 2
3 4 – 2 5 – 1 6 – 0 3
4 5 – 3 6 – 2 0 – 1 4
5 6 – 4 0 – 3 1 – 2 5
6 0 – 5 1 – 4 2 – 3 6

scheduling problem with an even n to a problem with an odd n. If n is even, we divide
the set of players P = {p0, p1, … , pn−1} into two sets

P = S ∪ P ′ (5.4)

where S is a singleton and set P ′ equals P ⧵ S. We can always let S = {pn−1}. Because set
P ′ has an odd number of players, Equation (5.3) schedules their matches. The resting
player of P ′ is then paired with the player in S. For example, to determine the matches
for eight players, we pair the eighth player p7 with the resting player in Table 5.2.

Algorithm 5.12 returns the matches in a round robin tournament, when the round
index and the number of players is given. The resulting sequence R consists of ⌊n∕2⌋
pairs of player indices that define the matches. If n is odd, the sequence also includes an
extra entry Rn−1 for the resting player.

Algorithm 5.12 Straightforward pairings for a round robin tournament.

r, n)
in: round index r (0 ≤ r ≤ 2 ⋅ ⌊(n − 1)∕2⌋); number of players n (1 ≤ n)
out: sequence R of n player indices indicating the match pairings between players

R2i and R2i+1, when i = 0, … , ⌊n∕2⌋ − 1; if n is odd, Rn−1 indicates the resting
player

1: ∣R∣ ← n ⊳ Reserve space for n player indices.
2: Rn−1 ← r ⊳ The resting player when n is odd.
3: n′ ← n
4: if n is even then
5: R(n−1)−1 ← n − 1 ⊳ The player in the singleton set.
6: n′ ← n − 1 ⊳ Transform the problem to ‘n is odd’.
7: end if
8: for k← 1 … ((n′ − 1)∕2) do
9: i ← 2(k − 1)

10: Ri ← (r + k) mod n′

11: Ri+1 ← (r + n′ − k) mod n′

12: end for
13: return R

Simple-Round-Robin-Pairings(
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Table . A normalized organization of
matches in a round robin tournament with
seven players.

Round Matches Resting Modulo

0 1 – 6 2 – 5 3 – 4 0 0
1 5 – 3 6 – 2 0 – 1 4 1
2 2 – 0 3 – 6 4 – 5 1 2
3 6 – 4 0 – 3 1 – 2 5 3
4 3 – 1 4 – 0 5 – 6 2 4
5 0 – 5 1 – 4 2 – 3 6 5
6 4 – 2 5 – 1 6 – 0 3 6

If the players face each other once, the round robin tournament has n(n − 1)∕2
matches in total. For instance, if n = 100, a full tournament requires 4950 matches.
Instead of generating and storing the match pairings into a data structure, it would be
more convenient to have a combination rule linking the player indices and the round
index. Based on this rule, we could answer directly questions such as:

(i) Who is the resting player (i.e. the opponent of the player in the singleton set in
Equation (5.4)) in the given round?

(ii) Given two players, in which round they will face one another?

Since Algorithm 5.12 is based on Equation (5.3), we have a simple invariant for a round
r: the sum of the player indices equals 2r mod n whenever n is odd. Unfortunately, this
regularity does not seem to give a direct answer to question (ii) (e.g. if n = 7, the sums are
0, 2, 4, 6, 1, 3, 5 for rounds 0, 1, … , 6, respectively). However, we can use the sum to define
the match organization. For example, sorting the rounds listed in Table 5.2 according to
the sum of player indices modulo n gives us Table 5.3. Let us call this match schedule
normalized round robin pairings.

Algorithm 5.13 describes a method for generating pairings for a round in a normalized
round robin tournament. Also, it defines a function Resting that gives an answer to
question (i), and a function Round answering question (ii).

An algorithm generating the match pairings is in key position in the algorithm that
organizes the round robin tournament. The concept of the sorted sequence of kings
approximates the player rankings in a round robin tournament without having to resort
to a scoring mechanism (Wu and Sheng 2001). Nevertheless, it is quite common to
reward players when they excel in their matches, and Algorithm 5.14 realizes such a
tournament. The algorithm uses a function A-Round-Robin-Pairings which can be
any method that generates proper pairings (e.g. Algorithms 5.12 and 5.13).

. Summary

Tournaments compare the participants to rank them in a relative order or, at least, to
find out who is best. The comparison of two competitors is carried out in a match, and
its outcome contributes in a specified way to the rankings. Since there are no regulations
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Algorithm 5.13 Normalized pairings for a round robin tournament.

r, n)
in: round index r (0 ≤ r ≤ 2 ⋅ ⌊(n − 1)∕2⌋); number of players n (1 ≤ n)
out: sequence R of n player indices indicating the match pairings between players

R2i and R2i+1, when i = 0, … , ⌊n∕2⌋ − 1; if n is odd, Rn−1 indicates the resting
player

1: ∣R∣ ← n ⊳ Reserve space for n player indices.
2: s ← (r, n) ⊳ The resting player when n is odd.
3: Rn−1 ← s
4: n′ ← n
5: if n is even then
6: R(n−1)−1 ← n − 1 ⊳ The player in the singleton set.
7: n′ ← n − 1 ⊳ Transform the problem to ‘n is odd’.
8: end if
9: for k← 1 … ((n′ − 1)∕2) do

10: i ← 2(k − 1)
11: Ri ← (s + k) mod n′

12: Ri+1 ← (n − (s + k) + r) mod n′

13: end for
14: return R

r, n)
in: round index r (0 ≤ r ≤ 2 ⋅ ⌊(n − 1)∕2⌋); number of players n (1 ≤ n)
out: index of the resting player (when n is odd) or the opponent of the singleton

player (when n is even)
1: return (r ⋅ ((n + 1) div 2)) mod n

p, q, n)
in: player indices p and q (0 ≤ p, q ≤ n − 1 ∧ p ≠ q); number of players n (1 ≤ n)
out: index of the round in where the players p and q have a match
1: if n is even and (p = n − 1 or q = n − 1) then
2: o ← p + q − (n − 1) ⊳ Opponent of the singleton player.
3: return (2o) mod (n − 1)
4: else
5: t ← 2 ⋅ ((n − 1) div 2) + 1 ⊳ Number of rounds.
6: return (p + q) mod t
7: end if

Normalized-Round-Robin-Pairings(

Resting

Resting(

Round(

on how the matches and ranks should affect each other, we are free to compose a tourna-
ment that suits our needs. However, if we want both a simple tournament structure and
an effective comparison method, we can choose from three different approaches: rank
adjustment, competitor elimination, and point scoring. In practice, a tournament event
often combines these concepts so that consecutive rounds have a justifiable assignment
of one-to-one matches.
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Algorithm 5.14 Round robin tournament including a scoring for the match results.

P)
in: sequence P of n players (1 ≤ n)
out: sequence R of n players with attribute score(i)
constant: score points for a winner w, for a loser , for a tie t
local: number of rounds t
1: R ← copy P
2: for all p ∈ R do
3: score(p) ← 0
4: end for
5: if n is even then
6: t ← n − 1
7: else
8: t ← n
9: end if

10: for r ← 0 … (t − 1) do
11: M ← (r, n)
12: for i ← 0 … ((n div 2) − 1) do
13: p ← M2i
14: q ← M2i+1
15: m ← match(Rp, Rq)
16: if m = p then
17: score(p) ← score(p) + w
18: score(q) ← score(q) +
19: else if m = q then
20: score(p) ← score(p) +
21: score(q) ← score(q) + w
22: else
23: score(p) ← score(p) + t
24: score(q) ← score(q) + t
25: end if
26: end for
27: if n is odd then
28: player Rn−1 receives a bye
29: end if
30: end for
31: return

Round-Robin-Tournament(

A-Round-Robin-Pairings

ℓ

ℓ

ℓ

In a rank adjustment tournament, a match is seen as a challenge where the winner
gets a better rank than the looser. Because ranks are persistent, this approach suits the
case where the rank order must be upheld constantly, the set of participants changes
often, and there are no competition seasons. In an elimination tournament, a match
win provides entrance to the next round, while the loser goes out of the tournament. The
tournament structure can include random elements, for instance, in making the initial
pairings or the final drawings. Because the participants can be ordered only partially, the
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Table . Characteristic features of tournaments for n players. The matches for initial rank
adjustments are not taken into account. However, we assume that the single elimination tournament
is set up by a standard seeding order. In general, we assume 2 ≤ n, except that for the king-of-the-hill
tournament we require that n + 1 is a power of 2. The round index i is from the interval [0, r − 1].

Hill climbing King of the hill Single elimination Round robin

all matches n − 1 n − 1 n − 1 n(n − 1)∕2
all rounds (= r) n − 1 2(lg(n + 1) − 1) ⌈lg n⌉ n if n is odd;

n − 1 otherwise
matches of the champion ∈ [1, r] ∈ [1, r] ∈ [r − 1, r] n − 1
matches in round i 1 2⌊(r−1−i)∕2⌋ n − 2⌈lg n⌉−1 if i = 0;

2⌈lg n⌉−(i+1) if i ≥ 1
⌊n∕2⌋

purpose of the event is often only to determine the champion. A scoring tournament
makes the matches more independent of one another by accumulating the outcomes
using a points system. Since the participants are ranked according to their point tallies,
we can balance the number of the matches and the fairness of the final ordering.

Table 5.4 summarizes the characteristic properties of four tournament types. Their
overall structure can be measured in terms of the total number of matches, the number
of rounds required to determine the champion, the number of matches before one can
become the champion, and the number of matches in a given round. The hill-climbing
tournament is the simplest due to the linear scheduling of the matches. The king-of-the-
hill and the elimination tournament are based on a tree-like structure and, thus, have a
logarithmic number of rounds with respect to the number of players. The round robin
tournament is the most demanding by all measures because every player has a match
with every other player.

Although tournaments are often associated with sports games, they can be used in
any context that evaluates a set of objects against each other. These methods have intu-
itive consequences, they are very customizable, and they have an inherent property of
managing partial ordering.

Exercises

- Draw a bracket for a hill-climbing tournament (see Algorithm 5.3) and for a king-
of-the-hill tournament (see Algorithm 5.5).

- Algorithm 5.3 organizes a hill-climbing tournament and ranks the players. If we
only want to find the champion, the algorithm can be simplified by unfolding the
function calls Initial-Rank-Adjustment and Ladder-Match and by remov-
ing the unnecessary steps. Implement these changes and name the algorithm
Simple-Hill-Climbing-Tournament(P).

- Draw a bracket of match pairings for Simple-Hill-Climbing-Tournament(P)
when |P| = 8 (see Exercise 5-2).
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- Algorithm 5.5 uses routine enumeration to arrange the players into some order
so that they can be paired to the matches. If the order is random, the operation
resembles Random-Seeding (see p. 124). Rewrite Algorithm 5.5 by substituting
enumeration with Random-Seeding.

- Algorithm 5.5 defines the king-of-the-hill tournament. Simplify the algorithm for
finding the champion only (see Exercise 5-2). Call this new algorithm Simple-
King-Of-The-Hill-Tournament(P).

- Draw a bracket for Simple-King-Of-The-Hill-Tournament(P) when |P| = 15
(see Exercise 5-5).

- In the real world, a player p can decline a rank adjustment tournament match with
a less ranked player q. After d rejections the player p is considered to lose to q. We
have considered only the case where d = 0. Generalize Algorithm 5.2 for the case
d > 0.

- In a rank adjustment tournament the number of revenge matches r is usually lim-
ited. This means that a player cannot face the same player more than r times in
a row. We considered only the case where r = ∞. Generalize Algorithm 5.2 to
account for finite r values.

- Removing a player p from a rank adjustment tournament empties the rank
rank( p). Invent at least three different strategies to handle the empty slots in a
ranking structure.

- A ladder tournament L can be split into two separate ladder tournaments L′ and
L′′ by assigning each player either to L′ or L′′. The new ranks of the players
are adjusted so that they do not contradict the relative rankings in L. However,
there are many ways to define the inverse operation, joining two tournaments of
disjoint players. Design an algorithm Join-Ladder-Tournaments(L′, L′′) that
gives both tournaments equal value. This means, for example, that the joining
does not force the champion of L′′ to compete against the worst players in L′

before she can have a match with the champion of L′.

- Exercise 5-10 tackles the problem of splitting and joining ladder tournaments.
How can these operations be defined in an elimination tournament?

- In the pyramid tournament the player status peerWinner can be seen as a token
that is assigned to player p, and it can only be lost in a match. If the players’ ranks
change often, this tokenization can be unfair: if p competes only occasionally, he
keeps the peerWinner status even if all the other peer players have been re-ranked.
Devise a better strategy for controlling peerWinner status in such situations.

- Solving the organization of the matches of a tournament resembles the (parallel)
selection algorithms. For example, the structure of the hill-climbing tournament
is similar to searching for a maximum of n values sequentially (see Exercise 5-2).
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Algorithm 5.15 describes how to search for a maximum value in parallel. What
tournament structure does it resemble?

Algorithm 5.15 Maximum value in parallel.

P)
in: sequence P of n values (1 ≤ n)
out: maximum value of P
local: amount of pairs h
1: if n = 1 then
2: return P0
3: else
4: h ← n div 2
5: if n is odd then ⊳ Reserve space for Q.
6: ∣Q∣ ← h + 1
7: Qh ← Pn−1
8: else
9: ∣Q∣ ← h

10: end if
11: for i ← 0 … (h − 1) do ⊳ In parallel for each i.
12: Qi ← max{P2i, P2i+1}
13: end for
14: return (Q)
15: end if

Parallel-Max(

Parallel-Max(

- In a best-of-m match series between two players (e.g. p and q) the winner is the
first one to win ⌈(m + 1)∕2⌉ matches. Suppose we have in total n players ranked
uniquely from [0, n − 1] so that ranked(0) is the champion and ranked(n − 1) is
the tail-ender. If we define that for one match

P(match( p, q) = p) = 1
2
⋅
(

1 +
rank(q) − rank( p)

n

)
when rank( p) < rank(q), what is the probability that p wins the best-of-m series?

- The random selection tournament (see Algorithm 5.6) and the random pairing
tournament (see Algorithm 5.7) provide similar types of results. However, the
latter method seems to be under-defined because the pairwise matches provide
us with information about the relative strengths between the players. Should we
rephrase the output as follows: ‘set R of ranked players which has a champion
ranked(R, 0), the initial match winners with rank 1, and the rest of the players
with rank 2’?

- If you answered ‘yes’ to Exercise 5-15, redesign the elimination tournament algo-
rithms presented. In particular, remove attribute wins(∙) from Algorithm 5.11. If
you answered ‘no’, complement all the elimination tournament algorithms with
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attribute wins(∙). Finally, give the opposite answer to Exercise 5-15 and redo this
exercise.

- The three common deterministic seeding methods – standard seeding, ordered
standard seeding, and equitable seeding – for an elimination tournament are
listed in Table 5.1. To prevent the same matches from occurring in successive
tournaments (and to introduce an element of surprise), we can apply these seed-
ing methods only partially. The t = 2x top players are seeded as before, but the
rest are placed randomly. Refine the deterministic seeding algorithms to include
the parameter t.

- In a single elimination tournament (see Algorithm 5.11) the seeding initializes
the match pairs for the first round. Design an algorithm Single-Elimination-
Seeding-Tournament(P) where the seeding is applied before every round.
Analyse and explain the effects of different seeding methods.

- In the bracket of a single elimination tournament we have allocated the players to
the initial matches by labelling the player placeholders by player indices or equiv-
alently by ranks (see Figure 5.2 and Table 5.1). In practice it would be convenient
to also identify the matches. Design an algorithm that gives a unique label for each
match in the bracket so that the label is independent of the actual players in the
match.

- Design and describe a general m-round winner tournament, Round-Winner-
Tournament(P, m), for players P, where in each round 0, 1, … , m − 1 the play-
ers are paired randomly and the winners continue to the next round. After round
m − 1 the champion is selected randomly from the remaining players. Interest-
ingly, this tournament structure has the following special cases: m = 0 is a random
selection tournament, m = 1 is a random pairing tournament, and m = lg |P| is a
single elimination seeding tournament as in Exercise 5-18.

- Assume that a single elimination tournament has n = 2x players and the num-
ber of rounds is x. How many single elimination tournaments must we have so
that the total number of matches equals the number of matches in a round robin
tournament?
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Game Trees

Many classical games such as chess, draughts and Go are perfect information games,
because the players can always see all the possible moves. In other words, there is no hid-
den information among the participants but they all know exactly what has been done
in the previous turns and can devise strategies for the next turns from equal grounds.
In contrast, poker is an example of a game in which the players do not have perfect
information, since they cannot see the opponents’ hands. Random events are another
source of indeterminism: although there is no hidden information in backgammon, dice
provide an element of chance which changes the nature of information from perfect to
probabilistic. Because perfect information games can be analysed using combinatorial
methods, they have been widely studied and were the first games to have computer-
controlled opponents.

This chapter concentrates on two-player perfect information zero-sum games. A
game has the zero-sum property when one player’s gain equals another player’s loss,
whereas in a non-zero-sum game one player gains more than the other loses. All possi-
ble plays of a perfect information game can be represented in a game tree: the root node
is the initial position, its successors are the positions the first player can reach in one
move, their successors are the positions resulting from the second player’s responses,
and so forth. Alternatively, a game position can be seen as a state from the set of all legal
game positions, and a move defines the transition from one state to another. The leaves
of the game tree represent terminal positions where the outcome of the game – win,
loss, or draw – can be determined. Each path from the root to a leaf node represents a
complete play instance of the game. Figure 6.1 illustrates a partial game tree for the first
two moves of noughts and crosses.

In two-player perfect information games, the first player of the round is commonly
called max and the second player min. Hence, a game tree contains two types of nodes,
max nodes and min nodes, depending on which player must make a move in the given
situation. A ply is the length of the path between two nodes (i.e. the number of moves
required to get from one node to another). For example, one round in a two-player game
equals two plies in a game tree. Considering the root node, max nodes have even plies
and min nodes odd plies. Due to notational conventions the root node has no ply num-
ber (i.e. the smallest ply number is 1), and the leaves, despite having no moves, are still
labelled as max or min nodes. In graphical illustrations max nodes are often represented
with squares and min nodes with circles. Nevertheless, we have chosen to illustrate max
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Figure . Partial game tree for the first two moves of noughts and crosses. The tree has been
simplified by removing symmetrical positions.

and min nodes with triangles ▽ and △, because these glyphs bear a resemblance to the
equivalent logical operators ∨ and ∧.

Having touched upon the fundamentals, we are now ready for the problem statement.
Given a node v in a game tree, find a winning strategy for player max (or min) from node
v, or, equivalently, show that max (or min) can force a win from node v. To tackle this
problem we review in the following sections the minimax method, which allows us to
analyse both whole and partial game trees, and alpha-beta pruning, which often reduces
the number of nodes expanded during the search for a winning strategy. Monte Carlo
tree search reduces the search space even more radically by using random sampling.
Finally, we look at how we can include random elements in a game tree to model games
of chance.

. Minimax

Let us start by thinking of the simplest possible subgame, where we have a max node v
whose children are all leaves. We can be sure that the game ends in one move if the game-
play reaches node v. Since the aim is (presumably) to win the game, max will choose the
node that leads to the best possible outcome from his perspective: if there is a leaf lead-
ing to a win position, max will select it and win the game; if a win is not possible but a
draw is, he will choose it; otherwise, max will lose no matter what he does. Conversely,
due to the zero-sum property, if v belongs to min, she will do her utmost to minimize
max’s advantage. We know now the outcome of the game for the nodes one ply above
the leaves, and we can analyse the outcome of the plies above that recursively using the
same method until we reach the root node. This strategy for determining successive
selections is called the minimax method, and the sequence of moves which minimax
deduces to be optimal for both sides is called the principal variation. The first move in
the principal variation is the best decision for the player who is assigned to the root of
the game tree.

We can assign numeric values to the nodes: let a win for max be assigned +1, a win for
min −1, and a draw 0. Because we know the outcome of the leaves, we can immediately
assign values to them. Then minimax propagates the value up the tree according to the
following rules:

(i) If the node is labelled max, assign the maximum value of its children to it.
(ii) If the node is labelled min, assign the minimum value of its children to it.
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Figure . Game tree for Division Nim with seven matches. To reduce size, identical nodes in a ply
have been combined.

The assigned value indicates the value of the best outcome that a player can hope to
achieve – assuming the opponent also uses minimax.

As an example let us look at a simplification of the game of Nim called Division Nim.
Initially, there is one heap of matches on the table. On each turn a player must divide
one heap into two non-empty heaps that have different numbers of matches (e.g. for a
heap of six matches the only allowed divisions are 5–1 and 4–2). The player who cannot
make a move loses the game. Figure 6.2 illustrates the complete game tree for a game
with seven matches.

Figure 6.3 illustrates the same game tree but now with values assigned. The two leaves
labelled min are assigned to+1, because in those positions min cannot make a move and
loses; conversely, the only max leaf is assigned to −1, because it represents a position
where max loses. By using the aforementioned rules, we can assign values to all internal
nodes, and, as we can see in the root node, max, who has the first move, loses the game
because min can always force the game to end in the max leaf node.

The function that gives a value to every leaf node is called a utility function (or pay-off
function). In many cases, this value can be determined solely from the properties of the
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Figure . Complete game tree with valued
nodes for Division Nim with seven matches.

leaf. For example, in Division Nim if the leaf ’s ply from the root is odd, its value is +1;
otherwise, the value is −1. However, as pointed out by Michie (1966), the value of a leaf
can also depend on the nodes preceding it up to the initial root. When assigning values
to a leaf node vi, we take max’s perspective and assign a positive value to a win by max,
negative for a loss, and zero for a draw. Let us denote this function by value(vi). Now,
the minimax value for a node v can be defined with a simple recursion

minimax(v) =

⎧⎪⎪⎨⎪⎪⎩

value(v), if v is a leaf,
min

u∈children(v)
{minimax(u)}, if v is a min node,

max
u∈children(v)

{minimax(u)}, if v is a max node,
(6.1)

where children(v) gives the set of successors of node v. Algorithm 6.1 implements this
recurrence by determining backed-up values for the internal nodes after the leaves have
been evaluated.

Both Equation (6.1) and its implementation in Algorithm 6.1 have almost similar sub-
parts for the min and max nodes. Knuth and Moore (1975) give a more compact for-
mulation for the minimax method called negamax, where both node types are handled
identically. The idea is first to negate the values assigned to the min nodes and then to
take the maximum value as in the max nodes. Algorithm 6.2 gives an implementation
for the negamax method.

6.1.1 Analysis

When analysing game tree algorithms, some simplifying assumptions are made about
the features of the game tree. Let us assume that each internal node has the same branch-
ing factor (i.e. number of children), and we search the tree to some fixed depth before
which the game does not end. We can now estimate how much time the minimax (and
negamax) method uses, because it is proportional to the number of expanded nodes. If
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Algorithm 6.1 Minimax.

v)
in: node v
out: utility value of node v
1: if children(v) = ∅ then ⊳ v is a leaf.
2: return value(v)
3: else if label(v) = then ⊳ v is a node.
4: e ← +∞
5: for all u ∈ children(v) do
6: e ← min{e, (u)}
7: end for
8: return e
9: else ⊳ v is a node.

10: e ← −∞
11: for all u ∈ children(v) do
12: e ← max{e, (u)}
13: end for
14: return e
15: end if

Minimax(

Minimax

Minimax

min min

max

Algorithm 6.2 Negamax.

v)
in: node v
out: utility value of node v
1: if children(v) = ∅ then ⊳ v is a leaf.
2: ← value(v)
3: if label(v) = then ← − end if
4: return
5: else ⊳ v is a or node.
6: e ← −∞
7: for all u ∈ children(v) do
8: e ← max{e, − (u)}
9: end for

10: return e
11: end if

Negamax(

Negamax

min

minmax

ℓℓ
ℓ

ℓ

the branching factor is b and the depth is d, the number of expanded nodes (the initial
node included) is

1 + b + b2 +… + bd = 1 − bd+1

1 − b
= bd+1 − 1

b − 1
.

Hence, the overall running time is O(bd).
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There are two ways to speed up the minimax method: we can try to reduce b by prun-
ing the game tree, which is the idea behind alpha-beta pruning described in Section 6.2,
or we can try to reduce d by limiting the search depth, which we shall study next.

6.1.2 Partial minimax

The minimax method gives the best zero-sum move available for the player at any node
in the game tree. This optimality is, however, subject to the utility function used in the
leaves and the assumption that both players utilize the same minimax method for their
moves. In practice, the game trees are too large for computing the perfect information
from the leaves up, and we must limit the search to a partial game tree by stopping the
search and handling internal nodes as if they were leaves. For example, we can stop after
sequences of n moves and guess how likely it is for the player to win from that position.
This depth-limiting approach is called an n-move look-ahead strategy, where n is the
number of plies included in the search.

In a partial minimax method, such as n-move look-ahead, the internal nodes where
the node expansion is stopped are referred to as frontier nodes (or horizon nodes or tip
nodes). Because the frontier nodes do not represent the final positions of the game, we
have to estimate whether they lead to a win, loss or draw by using a heuristic evaluation
function (or static evaluation function or estimation function). Naturally, it can use more
than the values +1, 0, −1 to imply the likelihood of the outcome. After the evaluation,
the estimated values are propagated up the tree using minimax. At best, the evaluation
function correctly estimates the backed-up utility function values and the frontier node
behaves as a leaf node. Unfortunately, this is rarely the case and we can end up selecting
non-optimal moves.

Evaluation function
Devising an appropriate evaluation function is essential for the partial minimax method
to be of any use. First, it implants domain-specific information into the general search
method by assigning a merit value to a game state. This means that the range of the
evaluation function must be wide enough so that we can distinguish relevant game situ-
ations. Second, theoretical analysis of the partial minimax shows that errors in the eval-
uation function start to dominate the root value when the look-ahead depth n increases,
and to tackle this the evaluation function should be derived using a suitable methodol-
ogy for the problem. Also, static evaluation functions often analyse just one game state
at a time, which makes it hard to identify strategic issues and to maintain consistency of
consecutive moves, because strategy is about setting up goals with different time scales.

We can also define an evaluation function for the leaf nodes. This can be accomplished
simply by including the utility function in the evaluation function (and possibly rescaling
the range of the utility function). An evaluation function e(s, p) for a player p is usually
formed by combining numerical measurements mi(s, p) of the most important proper-
ties in the game state s. These measurements define terms tk(s, p) that often have one of
the following substructures:
� A single measurement mi(s, p) alone defines a term value. These are mainly derived

from a game state, but nothing prevents us from using the move history as a measure-
ment. For example, the ply number of the game state can be used to emphasize the
effect of a measurement for more offensive or defensive play.
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(a)

(b)

(c)

Figure . Evaluation function e(∙) in noughts and
crosses. (a) MAX (crosses) has six possible winning lines,
whereas MIN (noughts) has five: e(∙) = 6 − 5 = 1. (b) MAX
has four possible winning lines and MIN has five e(∙) =
4 − 5 = −1. (c) Forced win by MAX, hence e(∙) = +∞

� The difference between measurements mi(s, p) − mj(s, q) is used to estimate opposing
features between players p and q, and often the measure is about the balance of the
same property (i.e. i = j). For example, if mi(s, p) gives the centre of mass of p’s pieces,
the term |mi(s, p) − mi(s, q)| reflects the degree of conflicting interests in the game
world. In noughts and crosses, the evaluation function can estimate the number of
win nodes in the non-leaf subtrees of the current node (see Figure 6.4).

� The ratio of measurements mi(s, p)∕mj(s, q) combines properties that are not nec-
essarily conflicting, and the term often represents some form of advantage over the
other player. In draughts, for example, a heuristic can consider the piece advantage,
because it is likely that having more pieces than your opponent will lead to a better
outcome.

The evaluation function aggregates these terms, maintaining the zero-sum property:
e(s, max) = −e(s′, min) where s′ is a state which resembles state s but where the min
and max roles are reversed. For example, A.L. Samuel’s classical heuristic for draughts
(Samuel 1959) evaluates board states with a weighted sum of 16 heuristic measures (e.g.
piece locations, piece advantage, centre control, and piece mobility). An evaluation func-
tion in the form of a weighted linear sum

e(s, p) =
∑

k
wktk(s, p) (6.2)

best suits the cases where the terms are independent. In practice, such terms are hard
to devise, because a state can present many conflicting advantages and disadvantages
at the same time. Samuel (1959, 1967) describes different ways to handle terms that are
dependent, interacting, nonlinear, or otherwise combinational.

Apart from the selection of measurements and terms, evaluation functions akin to
Equation (6.2) pose other questions:
� How many terms should we have? If there are too few terms, we can fail to recognize

some aspects of the play leading to strategic mistakes. On the other hand, too many
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terms can result in erratic moves, because a critical term can be overrun by a group
of irrelevant ones.

� What magnitude should the weights have? Samuel (1959) reduces this problem to
determining how to orient towards the inherent goals and strategies of the game. The
terms that define the dominant game goals (e.g. winning the game) should have the
largest weights. A medium weight indicates that the term relates to subgoals (e.g.
capturing enemy pieces). The smallest weights are assigned to terms which guide
the search towards achieving intermediate goals (e.g. moving pieces to opportunis-
tic positions).

� Which weight values lead to the best outcome? Determining the weights can be seen
an optimization problem for the evaluation function over all possible game situations.
For simple games, assigning the weights manually can lead to satisfactory evaluation,
but more complex games require automatized weight adjusting as well as proper val-
idation and verification strategies.

� How can the loss of ‘tendency’ information be avoided? For example, in turn-based
games the goodness or badness of a given game situation depends on whose turn it
is. This kind of information is easily lost when the evaluation function is based on a
weighted sum of terms.

The partial minimax method assumes that game situations can be ranked by giving them
a single numeric value. In the real world decision-making is rarely this simple. Humans
are – at least in their favourite expertise domain – apt to ponder on multidimensional
‘functions’ and can approximately grade and compare the pros and cons of different
selections. Moreover, humans tend to consider the positional and material advantages
and their balance. Moves that radically change both of these measurements are hard to
evaluate and compare using any general single-value scheme. For example, losing the
queen in chess usually weakens winning possibilities radically, but in certain situations
sacrificing the queen can lead to a better endgame.

Controlling the search depth
Evaluation to a fixed ply depth can be seriously misleading, because a heuristically
promising path can lead later on to an unfavourable situation. This is called the hori-
zon effect, and a usual way to counteract it is to do a staged search, where we search
several plies deeper from nodes that look exceptionally good (one should always look a
gift horse in the mouth).

If the game has often-occurring game states, the time used in the search can be traded
for larger memory consumption by storing triples ⟨state, state value, best move from
state⟩ in a transposition table. Transposition tables implement one of the simplest learn-
ing strategies, rote learning. If the frontier node’s value is already stored, the effective
search depth is increased without extra stage searches. Transposition tables also give
an efficient implementation for iterative deepening, where the idea is to apply n-move
look-ahead with increasing values for n = 1, 2,… until time or memory constraints are
exceeded.

The look-ahead depth need not be the same for every node, but it can vary according
to the phase of the game or the branching factor. A chain of unusually narrow sub-
trees is easier to follow deeper, and they often relate to tactical situations that do not
allow mistakes. Moreover, games can be divided into phases (e.g. opening, midgame
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and endgame) that correlate to the number of pieces and their positions on the board.
The strategies employed in each phase differ somewhat, and the search method should
adapt to these different requirements.

No matter how cleverly we change the search depth, it does not entirely remove
the horizon effect – it only widens the horizon. Another weakness of the look-ahead
approach is that the evaluations that take place deep in the tree can be biased by their
very depth: we want an estimate of minimax but, in reality, we get a minimax of esti-
mates. Also, the search depth introduces another bias, because the minimax value for
the root node gets distorted towards win in odd plies and towards loss in even plies,
which is caused by errors in the evaluation function. A survey of other approaches to
cope with the horizon effect – including identification of quiescent nodes and using null
moves – is presented by Abramson (1989).

At first sight, it seems that the deeper partial minimax searches the game tree, the
better it performs. Perhaps counter-intuitively, the theory derived for analysing the par-
tial minimax method warns that this assumption is not always justified. Assume that we
are using an n-move look-ahead heuristic in a game tree that has a uniform branching
factor b and depth d, and the leaf values are generated from a uniform random distribu-
tion. Now, we have three theorems about the partial search, which can be summarized
as follows:
� Minimax convergence theorem. As n increases, it is likely that the root value converges

to only one value that is given by a function of b and d.
� Last player theorem. The root values backed up from odd and even n frontiers can-

not be compared with each other. In other words, values from different plies can be
compared only if the same player has made the last move.

� Minimax pathology theorem. When n increases, the probability of selecting a non-
optimal move increases. This result seems to be caused by the combination of the
uniformity assumptions on branching, depth and leaf value distribution. Removing
any of these assumptions seems to result in non-pathology. Fortunately, this is often
the case in practice.

Although the partial minimax method is easy to derive from the minimax method just
by introducing one count-down parameter into the recursion, theoretical results show
that these two methods differ considerably. Theory also cautions us not to assume too
much, and the development of partial minimax methods belongs more to the area of
experimentation, verification and hindsight.

. Alpha-Beta Pruning

When we are expanding a node in minimax, we already have available more information
than the basic minimax uses due to the depth-first search order. For example, if we are
expanding min’s node, we know that in order to end up in this node, max has to choose
it in the previous ply. Assume that the max node in the previous ply has already found
a choice that provides a result of 4 (see Figure 6.5). Therefore, the min node we are
currently expanding will not be selected by max if its result is less than 4. With this in
mind, we descend to its children, and because we are expanding a min node, we want
to find the minimum among them. If at any point this minimum becomes smaller than
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Figure . Pruning the game tree. MAX node A has the
maximum value 4 when it expands node B. If the minimum
value of node B gets below 4, node B can be discarded from
the search and unexpanded children can be omitted.

or equal to 4, we can stop immediately and prune this branch of the game tree. Why?
Because in the previous ply max has a choice that leads to at least as good a result, this
part of the tree will not be selected. Thus, by removing branches that do not offer good
move candidates we can reduce the actual branching factor and the number of expanded
nodes.

Alpha-beta pruning is a search method that keeps track of the best move for each
player while it proceeds in a depth-first fashion in the game tree. During the search it
observes and updates two values, alpha and beta. The alpha value is associated with max
and can never decrease; the beta value is associated with min and can never increase.
If in a max node alpha has value 4, it means that max does not have to consider any of
the children that have a value less than or equal to 4; alpha is the worst result that max
can achieve from that node. Similarly, a min node that has a beta value of 6 can omit
children that have a value of 6 or more. In other words, the value of a backed-up node
is not less than alpha and not greater than beta. Moreover, the alpha value of a node is
never less than the alpha value of its ancestors, and the beta value of a node is never
greater than the beta value of its ancestors.

The alpha-beta method prunes subtrees off the original game tree, observing the
following rules:

(i) Prune below any min node having a beta value less than or equal to the alpha value
of any of its max ancestors.

(ii) Prune below any max node having an alpha value greater than or equal to the beta
value of any of its min ancestors.

Algorithm 6.3 describes a minimax method which employs alpha-beta pruning. Initially,
the algorithm is called with the parameter values 𝛼 = −∞ and 𝛽 = +∞. Algorithm 6.4
describes a variant of alpha-beta pruning using negamax instead.

Let us go through an example, which is illustrated in Figure 6.6. First, we recurse
through nodes A and B passing the initial values 𝛼 = −∞ and 𝛽 = +∞, until for max
node C we get values −3 and −2 from the leaves. We return 𝛼 = −2 to B, which calls D
with parameters 𝛼 = −∞ and 𝛽 = −2. Checking the first leaf gives 𝛼 = +5, which fulfils
the pruning condition 𝛼 ≥ 𝛽. We can prune all other leaves of node D, because we know
min will never choose D when it is in node B. In node B, 𝛽 = −2 which is returned to
node A as a new 𝛼 value. Second, we call node E with parameters 𝛼 = −2 and 𝛽 = +∞.
The leaf value −5 below node F has no effect, and F returns −2 to node E, which fulfils
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Algorithm 6.3 Alpha-beta pruning using minimax.

v, , )
in: node v; alpha value ; beta value
out: utility value of node v
1: if children(v) = ∅ then ⊳ v is a leaf.
2: return value(v)
3: else if label(v) = then ⊳ v is a node.
4: for all u ∈ children(v) do
5: e ← u, , )
6: if e then
7: ← e
8: end if
9: if ≤ then

10: return Prune.
11: end if
12: end for
13: return
14: else ⊳ v is a node.
15: for all u ∈ children(v) do
16: e ← u, , )
17: if e then
18: ← e
19: end if
20: if ≤ then
21: return Prune.
22: end if
23: end for
24: return
25: end if
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the pruning condition 𝛽 ≤ 𝛼. Third, we recurse nodes leaving from G with 𝛼 = −2 and
𝛽 = +∞. In node H, we update 𝛼 = +1, which becomes the 𝛽 value for G. Because the
first leaf node of I fulfils the pruning condition, we can prune all other branches leaving
it. Finally, node G returns the 𝛽 value to the root node A, which becomes its 𝛼 value and
+1 is the result for the whole tree.

6.2.1 Analysis

The efficiency of alpha-beta pruning depends on the order in which the children are
expanded. Preferably, we would like to consider them in non-decreasing value order in
min nodes and in non-increasing order in max nodes. If the orders are reversed, it is
possible that alpha-beta cannot prune anything and reduces to plain minimax.

Reverting to the best case, let us analyse, using the negamax variant, how many nodes
alpha-beta pruning expands. Suppose that at depth d − 1 alpha-beta can prune as often
as possible so that each node at depth d − 1 needs to expand only one child at depth
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Algorithm 6.4 Alpha-beta pruning using negamax.

v, , )
in: node v; alpha value ; beta value
out: utility value of node v
1: if children(v) = ∅ then ⊳ v is a leaf.
2: ← value(v)
3: if label(v) = then ← − end if
4: return
5: else ⊳ v is a or node.
6: for all u ∈ children(v) do
7: e ← − u,− ,− )
8: if ≤ e then
9: return e ⊳ Prune.

10: end if
11: if e then
12: ← e
13: end if
14: end for
15: return
16: end if
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d before the rest get pruned away. The only exception are the nodes belonging to the
principal variation (or the optimum path), but we leave them out in our analysis. At
depth d − 2 we cannot prune any nodes, because no child returns a value less than the
value of beta it was originally passed, which at d − 2 is negated and becomes less than
or equal to alpha. Continuing upwards, at depth d − 3 all nodes (except the principal
variation) can be pruned, at depth d − 4 no nodes can be pruned, and so forth.

If the branching factor of the tree is b, the number of nodes increases by a factor of
b at half of the plies of the tree and stays almost constant at the other half. Hence, the
total amount of expanded nodes is Ω(bd∕2) = Ω(

√
bd). In other words, in the best case

alpha-beta allows the number of branches to be reduced to the square root of its original
value and lets minimax search twice the original depth in the same time.

6.2.2 Principal variation search

For alpha-beta pruning to be more effective the interval (𝛼, 𝛽) should be as small as
possible. In aspiration search, we limit the interval artificially and are ready to handle
cases where the search fails and we have to revert to the original values. The search fails
at internal node v if all of its subtrees have their minimax values outside the assumed
range (𝛼′, 𝛽′) (i.e. every subtree value e ∉ (𝛼′, 𝛽′)). Because the minimax (and negamax)
method with alpha-beta pruning always returns values within the search interval, the
out-of-range value e can be used to recognize a failed search. As noted by Fishburn
(1983), we can add a fail-soft enhancement to the search by returning a value e that gives
the best possible estimate of the actual alpha-beta range (i.e. e is as close as possible to
it with respect to the information gathered in the failed search).
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Figure . An example of alpha-beta pruning: (a) searching subtree B; (b) searching subtree E; (c)
searching subtree G. The values of 𝛼 and 𝛽 represent the situation when a node has been searched.

Principal variation search–introduced by Finkel and Fishburn (1982) and renamed by
Marsland and Campbell (1982) – does the search even more intelligently. A node in a
game tree belongs to one of the following types:

(i) 𝛼-node where every move has e ≤ 𝛼 and none of them gets selected;
(ii) 𝛽-node where every move has e ≥ 𝛽;

(iii) principal variation node where one or more moves has e > 𝛼 but none of them has
e ≥ 𝛽.

Principal variation search assumes that whenever we find a principal variation move
when searching a node, we have a principal variation node. This assumption means
that we will not find a better move for the node in the remaining children. Simply put,
once we have found a good move (i.e. which is between 𝛼 and 𝛽), we search the rest
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of the moves assuming that they are all bad, which can be done much more quickly
than searching for a good move among them. This can be verified by using a narrow
alpha-beta interval (𝛼, 𝛼 + 𝜀), which is called a null window. The value 𝜀 is selected so
that the values encountered cannot fall inside the interval (𝛼, 𝛼 + 𝜀). If this principal
variation assumption fails and we find a better move, we have to re-search it normally
without assumptions, but this extra effort is often compensated by the savings gained.
Algorithm 6.5 concretizes this idea.

Algorithm 6.5 Principal variation search using negamax.

v, , )
in: node v; alpha value ; beta value
out: utility value of node v
local: value t for null-window test
1: if children(v) = ∅ then ⊳ v is a leaf.
2: ← value(v)
3: if label(v) = then ← − end if
4: return
5: else ⊳ v is a or node.
6: w ← some node w ′ ∈ children(v)
7: e ← − (w,− ,− )
8: for all u ∈ children(v) ⧵ {w} do
9: if ≤ e then

10: return e ⊳ Prune.
11: end if
12: if e then
13: ← e
14: end if
15: t← − (u,−( + ),− )
16: if e < t then
17: if t ≤ or ≤ t then
18: e ← t
19: else ⊳ Not a principal variation node.
20: e ← − (u,− ,−t)
21: end if
22: end if
23: end for
24: return e ⊳ Fail-soft enhancement.
25: end if
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. Monte Carlo Tree Search

Classic game tree algorithms rely on the definition of an evaluation function used for
estimating the utility values of the nodes in the game tree (i.e. how each node relates
to the outcome of the game instance). If the evaluation is heuristic – as it is in most
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practical situations – its accuracy is crucial for both the feasibility of the calculations and
the usability of the outcomes. This accuracy is pursued by uncovering and aggregating as
much information as possible from the problem itself and the game situation at hand. For
this reason, each problem becomes attached to a domain-specific evaluation function,
and tailoring it can be considered as an art form of inventive data and control structures.

However, as observed by Abramson (1987), the unbiased value of a game instance
itself is known at the end of the game, at the leaf node, and the internal nodes of the
game tree can be seen as a model of the probability distribution of the consequences
among the possible choices during gameplay. In other words, evaluating a node is about
calculating the expected value of all the leaf nodes reachable from it. Consequently, since
there are probability distributions involved, random sampling is one general approach
that can be considered when estimating those values.

Applying randomization and statistics to a game tree avoids the problem of defining
an explicit evaluation function – instead it can be approximated by repeating gameplay
trials and collecting statistical values from the outcomes until some criterion terminates
the sampling. To guide the upcoming value probing, the game tree is used for bookkeep-
ing what moves (i.e. transitions from the nodes to their child nodes) have been tried out.
Moreover, the tree nodes store the calculated value estimates for the moves and, hence,
also for the move sequences. This makes the game tree partial with respect to the possi-
ble moves in the game: the frontier consists of the nodes that have only untried moves.
It is worth noting that these frontier nodes can be internal nodes or leaf nodes of the
whole game tree.

The most important goal is to gather evidence to weed out the poor moves from the
beneficial ones. By repeating the sampling, the estimates in the partial game tree become
more accurate and the tree of tried-out moves grows gradually in the best-first search
manner. The convergence of the value assessments can be accelerated by incorporat-
ing domain-specific features, but that is an optimization refinement not a prerequisite.
When the method is terminated, the result is the most valued move from the root node.

These and certain other ideas, supported by theoretical developments, have led to
a family of algorithms that are known as Monte Carlo tree search (MCTS); see Coulom
(2007) and Browne et al. (2012). At a high level, all these methods consist of the following
main phases:

1. Selection. Descend from root node vr of the game tree to a node vd that preferably
does not terminate the game (i.e. it is not a leaf in the whole game tree) and has at
least one move that has not yet been tried.

Node vd can be an internal node or a frontier node, and it is used for collecting more
information about the moves from vr to vd and, thus, it expands the partial game tree.
If vd is a leaf, the bookkeeping is updated and a new iteration can be started.

The descent is driven by a suitable selection method such as a uniformly random
one or a more refined one. If the selection favours some nodes over others, the game
tree tends to become asymmetric, which may even reveal properties in the problem
itself with respect to the selection method.

2. Expansion. Select an untried move of vd and insert the corresponding node vn as a
new child of vd.

Node vn is always a frontier node since none of its moves have been tried out.
It is also possible to expand multiple untried moves at once. The selection of a
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move can be random or it can be based on, for example, some domain-specific
information.

Also, if the game has states that can be arrived from many different sources,
this phase can access a memento storage that caches the situations already
evaluated.

3. Simulation. Run the game starting from the game situation corresponding to node vn
to the end. Determine a reward value e for the outcome of the terminated game from
max’s perspective (since max starts the game).

The value e can be of any applicable type, for instance, {−1, 0,+1}, [0, 1] ⊂ R, R,
or even a vector. The gameplay is simulated outside the MCTS game tree by some
method, for example, by generating random but valid moves or using a domain-
specific game logic.

Because the intention is to assess vn, many gameplays can be run from it and their
outcomes composed. However, the estimates of the nodes near the root – which are
the ones we are most interested in – already become refined when the frontier moves
further away from the root.

4. Backpropagation. Update the statistical bookkeeping data of all the nodes in the path
between vn and vr to reflect the new information gained from the outcome e.

The next iteration loop utilizes this updated information to gather more evi-
dence on what are the favourable moves. Depending on the problem, the length
of the game, length(vr ⇝ vn) + (number of iterations in the simulation phase), can
affect the accuracy of e. For instance, the longer plays can have more uncertainties
than the shorter ones. This can be taken into account in the backpropagation.

5. Termination. Stop the iteration when some condition is met, for instance, when time
or memory limits are exceeded.

Each repetition of phases (1)–(4) improves the estimations stored in the continu-
ously growing partial game tree and the results are usable after each iteration. Deter-
mining the most valuable outcome depends on the problem.

The selection and expansion phases together are often called as the tree policy and the
simulation phase is called the default policy.

One of the most popular variants of MCTS algorithms is upper confidence bounds
applied to trees (UCT) by Kocsis and Szepesvári (2006). This variant is defined for the
selection phase of MCTS. There are two opposing forces in the selection of a node v. To
obtain a precise value estimate for v we must run many simulations for it. Nevertheless,
to ensure the selection does not ignore some other good alternative v ′ by favouring v,
we must also estimate the other nodes in the partial game tree.

The balance between the currently suboptimal and currently optimal choices is
referred to as the exploration–exploitation dilemma and its properties are studied by
formulating the dilemma in terms of so-called bandit problems. One of these problems
has a solution method UCB1 (Auer et al. 2002), which has greatly influenced UCT and
explains its current popularity. One of the central observations is that no matter how
many iterations are run, UCB1 does not fix on a subset of the nodes but keeps on explor-
ing. This property is also inherited by UCT, meaning it finds the most valuable nodes
eventually. Moreover, it can be proven that UCT converges to minimax given enough
time and memory (Kocsis and Szepesvári 2006), and this proof of convergence does not
assume domain knowledge in UCT.
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To understand and appreciate the key ingredient in UCT we next introduce the multi-
armed bandit problem and UCB1. Then we go on to describe UCT itself.

Multi-armed bandit problem
Suppose we are in a situation where we have to choose from k independent actions, and
then we perform the one selected and measure the outcome. Unfortunately the out-
comes are generated by some unknown process that we are not able to discover. Next,
we iterate the same procedure until some termination condition is triggered.

The outcomes have the same codomain so we can aggregate them into one cumulative
sum and strive to maximize it. Since we do not know the underlying process producing
the outcomes, we have to balance between repeating the most rewarding actions found
so far and experimenting with the actions that are carried out less frequently. Why?
Because we are unable to distinguish the optimal actions from the suboptimal ones,
and this leads to inevitable estimation errors, especially in the early iterations. Now, we
have to gather more information and hone our decision-making on the forthcoming
iterations. The properties of this kind of dilemma can be defined and analysed in the
form of various bandit problems. Here we describe one of these.

A multi-armed bandit problem can be defined as follows. A gambler has exclusive
access to k slot-machines – each a one-armed bandit – that work independently but
do not necessarily yield the same winnings. The gambler’s objective is to maximize the
earnings when the slot-machines are operated one at a time.

More formally, the ith slot-machine (0 ≤ i < k) represents a random variable iX of
an unknown distribution Di with an unknown expectation 𝜇i. Pulling the lever of the
ith bandit the jth time (1 ≤ j) yields reward iXj. This also means that we have already
received the rewards ⟨iX1, iX2,… , iXj−1⟩ from machine i at some point, possibly inter-
leaved with the rewards from the other machines. All the machines and the rewards are
independent of each other.

The gambler’s decision-making can be modelled as algorithm , which forms over
time a sequence of chosen machines together with their rewards. This sequence of spe-
cific iXj values is the information that is available when choosing the next machine to
be tried. Assume n plays have been completed and let Ti(n) denote the number of times
the ith machine has been played by  during those n plays. Clearly,

∑k−1
i=0 Ti(n) = n. The

objective of algorithm  is to minimize the gambler’s regret rn,

min
n∈N

rn = n ⋅ 𝜇∗ −
k−1∑
i=0

(E[Ti(n)] ⋅ 𝜇i), (6.3)

of not being able to have the most lucrative cumulative reward due to the hidden
distributions Di. The best possible expected reward from a single machine is 𝜇∗ =
max {𝜇0,𝜇1,… ,𝜇k−1} and the expected number of plays of machine i during the n plays
is E[Ti(n)].

Since the actual reward distributions are unknown for , choosing the next machine
to play is difficult. However, Auer et al. (2002) have shown that Algorithm 6.6 is one
method that can be applied when allocating the actions to the machines. They present
also other methods, but UCB1 is the one that has inspired the development of UCT.

Line 7 of Algorithm 6.6 selects some machine i that maximizes the given expression.
Note how the exploitation of the profitable machine is encouraged by Ri∕Ti: The better
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Algorithm 6.6 Algorithm UCB1 for the multi-armed bandit problem. Primitive routine
play(i) returns a reward of the machine i (0 ≤ i < k), which can change in each invoca-
tion.

UCB1(k, nmax)
in: number of machines k (1 ≤ k ∈ N); number of plays nmax (k ≤ nmax ∈ N)
out: total reward after nmax plays (depending on the use context any information

gathered could be returned, e.g. a sequence of average rewards w̄i = Ri∕Ti)
local: number of plays n so far (n ∈ N); sequence T of counters for the number of

times each machine has beenplayed (
∑k−1

i=0 Ti = n); sequence R of cumulative
reward counters for each machine

1: ∣T ∣ ← k ; ∣R∣ ← k ⊳ Reserve space for k values in T and R.
2: for i ← 0… (k − 1) do ⊳ Initialize T and R by playing each machine once.
3: Ti ← 1
4: Ri ← play(i)
5: end for
6: for n ← (k + 1)… nmax do ⊳ Play nmax times in total.
7: i ← argmax0≤j<k (Rj∕Tj) +

√
(2 ⋅ ln n)∕Tj

)
8: Ti ← Ti + 1
9: Ri ← Ri + play(i)

10: end do
11: return∑

(

k−1
i=0 Ri

the reward Rj the more it is utilized, but, at the same time, the more it is selected the
less inviting it is. The exploration aspect is reinforced by the term

√
(2 ⋅ ln n)∕Ti which

steadily increases the attraction of all the machines that are not played. For a detailed
rationalization of the form of the whole expression, see Auer et al. (2002).

UCT variant of Monte Carlo tree search
It is up to the selection phase of MCTS to find a node vd that reveals more information
about the moves from the root node vr . To descend from a node one of its child nodes
must be chosen over the other ones. UCT considers this situation as a multi-armed ban-
dit problem where the moves to the child nodes are the lever pulls and the outcome of
the subsequent simulation is the received reward. However, there is one significant dif-
ference, the underlying probability distribution Di of move i changes when it is on the
backpropagation path. Fortunately, this drift can be compensated for by slightly modify-
ing the expression at line 7 of Algorithm 6.6, as proved by Kocsis and Szepesvári (2006):

Ri
Ti

+

√
2 ⋅ ln n

Ti

changes
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

to

Ri
Ti

+ w ⋅

√
ln n
Ti

, (6.4)

where w (0 < w ∈ R) is an appropriate constant that balances the exploitation and explo-
ration terms. The actual value of w depends on the problem and the codomain of the
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rewards. The derivation of Equation (6.4) is based on certain assumptions that can be
considered valid in most circumstances.

UCT is defined in Algorithm 6.7, which continues in Algorithm 6.8. The description
of the method is based on the following details:

Algorithm 6.7 UCT variant of Monte Carlo tree search. The details are discussed in the
body text, including the possibility of a division by zero in . Continues in
Algorithm 6.8.

vr)
in: root node vr
out: the most valued node v∗ representing the best move found
1: while continue() do ⊳ Resources still available?
2: vd ← vr)
3: vn ← vd)
4: e ← vn)
5: e, vn)
6: end while
7: return vr) ⊳ Determine v∗ from the root node.

v)
in: node v
constant: exploration constant c (c ∈ R>0), depends on the problem and the codo-

main of the reward values, for example, c ≈
√

etical considerations when value(∙) ∈ [0, 1] ⊂ R

1: u← v
2: while children(u) ≠ ∅ do ⊳ Is u playable?
3: if untrieds(u) ≠ ∅ then ⊳ Is at least one move untried in u?
4: return u
5: else
6: u← u, c) ⊳ Descend in the game tree.
7: end if
8: end while
9: return u ⊳ Game is ended at u.

v, w)
in: node v (children(v) ≠ ∅) ; exploration weight w (0 < w ∈ R)
out: a child node of v that maximizes the given function, and if there are many such

child nodes a uniformly random one of those
1: n ← visits(v)
2: if label(v) = then
3: return argmax

u∈children(v)

(
value(u)
visits(u)

+ w ⋅

√
ln n

visits(u)

)
4: else ⊳ v is node.
5: return argmin

u∈children(v)

(
value(u)
visits(u)

− w ⋅

√
ln n

visits(u)

)
6: end if

UCT-Monte-Carlo-Tree-Search(

UCT-Selection(
UCT-Expansion(
UCT-Simulation(

UCT-Backpropagation(

UCT-Termination(

UCT-Selection(

UCT-Child(

UCT-Child(

UCT-Child

max

min

2 satisfies certain theor-
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Algorithm 6.8 Continued from Algorithm 6.7.

v)
in: node v
out: a node vn ∈ children(v) to be tried (untrieds(vn) = children(vn)) or the given v

if such node does not exist
1: if children(v) = ∅ or untrieds(v) = ∅ then
2: return v ⊳ No (untried) moves at v.
3: end if
4: vn ← some node ∈ untrieds(v) ⊳ Choose an untried move.
5: untrieds(v) ← untrieds(v) ⧵ {vn} ⊳ Move from v to vn.
6: visits(vn) ← 0
7: value(vn) ← 0
8: return vn

v)
in: node v
out: value of v obtained by a simulated gameplay
1: u← v
2: while children(u) ≠ ∅ do ⊳ Is u playable?
3: u← some node ∈ children(u) ⊳ Choose any valid move.
4: end while
5: e ← value(u) ⊳ On ’s perspective.
6: return e ⊳ Game is ended at u with value e.

e, v)
in: value e ; node v
1: u← v
2: repeat ⊳ From v to the root node.
3: visits(u) ← visits(u) + 1
4: value(u) ← value(u) + e
5: u← parent(u)
6: until v =

v)
in: node v (children(v) ≠ ∅)
out: the most valued node from v
1: return v, 0)

UCT-Expansion(

UCT-Simulation(

UCT-Backpropagation(

UCT-Termination(

UCT-Child(

nil

max

� The selection of the best move – the most valued child node – is part of the algorithm.
For this reason the routine UCT-Monte-Carlo-Tree-Search returns a child node
of the root node vr , not the utility value of vr .

� The method constructs a partial game tree that is grown iteratively until the condition
continue() fails. The attribute label(∙) discerns the max and min nodes in the tree;
max has the first turn.
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� The attribute children(v) is a set of nodes such that u ∈ children(v) exactly when v has
a move that leads to u. Also, the moves in v precede all the moves of the nodes in
children(v). The nodes represent the possible states in the game.

� The partial game tree partitions the moves into those that have already been tried
by UCT and those that are still untried. This separation is bookkept by the set
untrieds(v) ⊆ children(v): membership u ∈ untrieds(v) means that node v has a move
leading to u that has not yet been considered.

For the frontier nodes vn of the partial tree, untrieds(vn) = children(vn). When all
the moves from v have been handled at least once, then untrieds(v) = ∅.

� Each node v has also two attributes for bookkeeping the data UCT collects from the
simulations for ranking the nodes: visits(v) counts how many times v has been con-
sidered and value(v) accumulates the estimations made.

Note that at line 3 and 5 of UCT-Child the maximization and minimization are over
all the child nodes of v, including u ∈ untrieds(v) for which visits(u) = 0 (or nil when
v is on the frontier). There are options to resolve this undefined issue. For instance,
the situation can be interpreted to yield the result +∞ for max’s v (and −∞ for min’s),
which enforces all the nodes in children(v) so that they are considered before descending
to their child nodes. Alternatively, the undefined case can be evaluated for some other
value that results in an effective selection of the nodes.

To sum up, UCT has many adjustment possibilities to fit it to a particular problem:
� the termination condition continue();
� the exploration constant w that depends on the problem and the codomain of value(∙);
� the prioritization of the available moves in UCT-Expansion;
� the method that plays the game to the end in UCT-Simulation;
� the determination of the best result in UCT-Termination.

These and other enhancements and variations are discussed by Browne et al. (2012)
along with an introduction to assorted applications. The MCTS methods, including
UCT in particular, are versatile algorithms and they have demonstrated their feasibility
when solving hard problems such as Go (Gelly and Silver 2011). This approach has pro-
vided us with a way to trade rigorous domain specificity against blind consumption of
runtime resources, allowing us to seek out new ways to balance between those extremes
and, at the same time, to learn more about the problems themselves.

. Games of Chance

Diced noughts and crosses is a generalization of ordinary noughts and crosses. The game
is played on an m × m grid with a die of n equally probable sides. The player who has
𝓁 tokens in a row is the winner. In each turn a player first selects a subset S of empty
squares on the grid and then distributes n ‘reservation marks’ on them. The number of
marks in an empty square s is denoted by marks(s). Next, the player casts the die for
each s ∈ S. Let us assume that the outcome of the die is d. The player places her token
on s if d ≤ marks(s). In other words, each mark on a square increases the probability of
capturing it by 1∕n, and if marks(s) = n, the capture is certain. By way of comparison, in
noughts and crosses a legal move is always certain, but in diced noughts and crosses a
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Figure . An extract from a general game tree for copper noughts and crosses consists of a MAX node
(the labile triangle), MIN nodes (the stable triangles) and CHANCE nodes (the squares).

move is only a player’s suggestion that can be rejected with probability 1 − d∕marks(∙).
We get ordinary noughts and crosses with parameters m = 𝓁 = 3 and n = 1. The variant
where n = 2 can be played using a coin and we name it copper noughts and crosses.

Due to non-deterministic moves, the game tree of copper noughts and crosses can-
not be drawn as a minimax tree as in Figure 6.1. However, the outcome of a random
event can be calculated by considering its expected value. This idea can be used to
generalize the game trees by introducing chance nodes (Michie 1966). Figure 6.7 illus-
trates how to evaluate a move in copper noughts and crosses from the perspective of
max. Suppose that the grid has |S| empty squares. The player can select |S| certain
moves u0,… , u|S|−1 that can be evaluated as in an ordinary minimax tree. Coin toss-
ing is used when the player’s marks m0 and m1 are on different squares. Because we do
not have to care about the identity of the marks, there are |S|(|S| − 1)∕2 combinations to
consider. A chance node ci (i ∈ [0,… , |S|(|S| − 1)∕2 − 1]) has four possible outcomes:
the token can be placed on both marks, only on m0, only on m1, or both marks are
void. Because each of these events happen with probability 1

4 , the value of ci can be
calculated by 1

4 ⋅ (e(ui,0) + e(ui,1) + e(ui,2) + e(ui,3)), where e(∙) represents the utility
value of the subtree.

Game trees resembling Figure 6.7 are called ∗-minimax trees (Ballard 1983). Their
utility value is given by

emm(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

value(v), if v is a leaf,
min

u∈children(v)
{emm(u)}, if v is a min node,

max
u∈children(v)

{emm(u)}, if v is a max node,∑
u∈children(v)

(P(u) ⋅ emm(u)), if v is a chance node,

(6.5)

which is a generalization of Equation (6.1). Here, emm(∙) is an abbreviation for the
expectiminimax value. The chance nodes often cause a combinatorial explosion in the
branching factor of the game trees, which prevents us from implementing Equation
(6.5) similarly to Algorithm 6.1. Because the chance nodes do not affect the evaluation
of min and max nodes, the evaluation method can use alpha-beta pruning, but even this
observation does not help much if the chance nodes have the largest branching factor.
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Interestingly, it is also possible to utilize the information gathered by the depth-first
search order in the chance nodes. To do this we assume that for the leaf nodes value(∙)
can be bounded within a constant interval [𝓁min,𝓁max] (Ballard 1983). Suppose we
are calculating the value of a chance node c within the given interval (𝛼, 𝛽) and we are
about to descend to its child node ui. In other words, we have already evaluated the
child nodes u0,… , ui−1, and nodes ui+1,… will be evaluated later. Node c will not be
selected by its parent, if either of the following inequalities holds:

i−1∑
k=0

(P(uk) ⋅ emm(uk)) + P(ui) ⋅ emm(ui) + 𝓁max ⋅

(
1 −

i∑
k=0

P(uk)

)
≤ 𝛼, (6.6)

i−1∑
k=0

(P(uk) ⋅ emm(uk)) + P(ui) ⋅ emm(ui) + 𝓁min ⋅

(
1 −

i∑
k=0

P(uk)

)
≥ 𝛽. (6.7)

The first term of the summation is already known, the middle term is to be calculated
next, and the last one gives the worst estimate for the remaining nodes. By reorganizing
the terms we get the inequalities

emm(ui) ≤
𝛼 −

∑i−1
k=0(P(uk) ⋅ emm(uk)) − 𝓁max ⋅

(
1 −

∑i
k=0 P(uk)

)
P(ui)

, (6.8)

emm(ui) ≥
𝛽 −

∑i−1
k=0(P(uk) ⋅ emm(uk)) − 𝓁min ⋅

(
1 −

∑i
k=0 P(uk)

)
P(ui)

. (6.9)

respectively, and due to the direction of these inequalities the expressions on the
right-hand side can be used as alpha-beta values for the node ui. The alpha-beta values
for the child nodes can be calculated incrementally from the following recurrences:{E0 = 0

Ek = Ek−1 + P(uk−1) ⋅ emm(uk−1)

{D0 = 1 − P(u0)
Dk = Dk−1 − P(uk)

In other words, for child node ui we get the interval bounds

𝛼i =
𝛼 − Ei − 𝓁max ⋅ Di

P(ui)
, (6.10)

𝛽i =
𝛽 − Ei − 𝓁min ⋅ Di

P(ui)
. (6.11)

Note that Ek + P(uk) ⋅ emm(uk) also gives the final result of c at the last child node uk .
Algorithm 6.9 implements this alpha-beta pruning for every node in a ∗-minimax tree
with the fail-soft enhancement.

The drawback of Algorithm 6.9 is that it expects the worst from the unvisited children
of the chance nodes and, thus, the alpha-beta pruning begins to have an effect only later
in the evaluation. However, in practice these children tend to have the same proper-
ties. This is why Ballard (1983) considers Algorithm 6.9 as a starting point (called Star1)
and presents various effective sampling (or probing) strategies for the child nodes that
supplement the depth-first idea and lead to narrower alpha-beta intervals. Hauk et al.
(2005) provide further insights into the topic.
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Algorithm 6.9 Expectiminimax using alpha-beta pruning and fail-soft enhancement.

v, , )
in: node v; alpha value ; beta value
out: utility value of node v
constant: the range of value(∙) for a leaf node is [ min, max]
1: if children(v) = ∅ then ⊳ v is a leaf.
2: return value(v)
3: else if label(v) = then ⊳ v is a node.
4: d ← 1
5: s ← 0
6: for all u ∈ children(v) do
7: d ← d − P(u)
8: ′ ← max{ min, ( − s − max ⋅ d)∕P(u)}
9: ′ ← min{ max, ( − s − min ⋅ d)∕P(u)}

10: e ← (u, ′, ′)
11: s ← s + P(u) ⋅ e
12: if e ≤ then
13: return s + max ⋅ d
14: end if
15: if ≤ e then
16: return s + min ⋅ d
17: end if
18: end for
19: return s
20: else if label(v) = then ⊳ v is a node.
21: e ← +∞
22: for all u ∈ children(v) do
23: if e then ← e end if
24: t← (u, , )
25: if t < e then e ← t end if
26: if e ≤ then return e end if
27: end for
28: return e
29: else ⊳ v is a node.
30: e ← −∞
31: for all u ∈ children(v) do
32: if e then ← e end if
33: t← (u, , )
34: if e < t then e ← t end if
35: if ≤ e then return e end if
36: end for
37: return e
38: end if

Expecti-Alpha-Beta(

Expecti-Alpha-Beta

Expecti-Alpha-Beta
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. Summary

In zero-sum perfect information games, the minimax method provides us with the opti-
mal gameplay. However, if we cannot build the whole game tree for the game, we have
to reduce its size either by limiting the search depth or cutting the branches. In a partial
game tree, the depth is reduced artificially by making the internal nodes leaves. This can
be done using a heuristic to estimate their outcome, which of course can lead to sub-
optimal results. The branching factor can be reduced with alpha-beta pruning, which
cuts off nodes that cannot provide a better outcome than the current best result. If we
set tighter limits for the pruning (as in principal variation search), we can improve the
running even further. With Monte Carlo tree search we can reduce the search space
considerably without an evaluation function. A game tree can also include probabilistic
elements, which can be handled by modelling them as chance nodes.

Game trees can be used in many classical board games, and they have been studied
widely. There are many game-specific improvements that allow, for example, the open-
ing and closing moves to be chosen from a set of precalculated alternatives. Neverthe-
less, in the middle of the gameplay where the number of possible situations is much
greater, the methods revert back to building game trees to find the best move for the
next round.

Exercises

- The most famous non-zero-sum game is prisoner’s dilemma, where two prisoners
(i.e. players), accused of the same crime, have two possible moves:
� cooperate with the other prisoner and keep silent during the interrogation;
� defect and rat on the other prisoner.
The moves have the following pay-offs:

You cooperate You defect

I cooperate 6 months’ imprisonment 10 years’ imprisonment
I defect Freedom 5 years’ imprisonment

Not knowing the opponent’s move, each prisoner must now select a move and
face the consequences.

In iterated prisoner’s dilemma these encounters are repeated, and the players
try to minimize the sum of the prison sentences. The players remember all pre-
vious encounters. Devise a strategy for iterated prisoner’s dilemma. Try out both
egoistic and altruistic approaches.

- Assume we have the game trees of Figures 6.8 and 6.9, where player max has
the first move. Show how to solve the winner of the games using the minimax
method. Illustrate how the algorithm operates with the given game trees.

- In practice we are interested not only in the evaluation value of the root node but
also in the best move from it. Devise a simple method that extends the game tree
algorithms presented to support this.
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winlosswin drawloss

loss win draw

drawloss

Figure . A game tree with three possible outcomes (from the perspective of MAX): win,
draw, loss.

- In the game tree algorithms presented, the moves are generated implicitly by the
statement u ∈ children(v). Concretize these algorithms by introducing a prim-
itive routine child(v) that iterates all the nodes in children(v) one by one and
returns nil when they are exhausted.

- In Exercise 6-4 we concretize the game tree algorithms with an iterator abstrac-
tion. In this exercise use the following state changing functions instead:

move(v) Iterates all the possible moves from node v of player label(v)
and returns nil when they are exhausted.

apply(v, m) Returns the successor node of v for move m.
cancel(u, m) Yields the parent node of u when move m is taken back.

You can assume that a move is reversible (i.e. v = cancel(apply(v, m), m)).

0 −1−4+4

+2 −3

−1 +2

−40

Figure . A game tree with outcomes in the range [−4,+4].
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Figure . Partial game tree for One-Two-Three Nim.

- Draw a complete game tree for Division Nim with eight matches. Analyse the
outcome using minimax.

- In Division Nim the heap cannot be divided into equal halves. Factor Division
Nim relaxes this constraint by allowing a heap of 2n matches to be divided into
two heaps of n matches, if n has a common prime factor with the player’s turn
number. The turns are numbered consecutively starting from zero. Give a com-
plete game tree for Factor Division Nim with seven matches and assign the values
‘win’, ‘loss’, and ‘draw’ to the nodes.

- One-Two-Three Nim is another simplification of Nim. It starts with a heap of
n matches and on each turn a player removes one, two or three matches from
the heap. The player to pick the last match wins. Draw a complete game tree
and analyse the outcome using minimax for this variant of Nim when n = 6 (see
Figure 6.10).

- Extend the game tree of Exercise 6-8 for n = 9. Observe how wins and losses
behave in max and min nodes. Can you design an evaluation function that gives
for each node a perfect estimate of the utility function? If so, how does this affect
playing One-Two-Three Nim?

- In Nim proper, there are initially several heaps of matches. On each turn a
player selects one heap and removes at least one match from that heap. The
player to pick the last match wins. Draw a complete game tree and analyse the
outcome using minimax for Nim with three heaps having 1, 2 and 3 matches
(see Figure 6.11).

- Poker is an imperfect information game. Why is it that the minimax method can-
not be used to solve it?

- Minimax assumes that the players are rational and try to win. If this is not true,
does the method still work?

- When searching a game tree, which would be preferable situation: having a large
d or a large b (i.e. having a deep or a wide game tree)?

- Minimax can expand (bd+1 − 1)∕(b − 1) nodes in a game tree with a branching
factor b and depth d. Obviously, the branching factor depends on the game: in
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Figure . Partial game tree for Nim with heaps of size 1, 2 and 3.

draughts each position has on average three possible moves, in chess about 30,
and in Go there are hundreds of possible moves. Assume that expanding a node
takes 1 ms of computation time. How long does it take to evaluate a game tree
when b ∈ {3, 30, 300} and d ∈ {2, 4, 8, 16}?

- Equation (6.1) defines the minimax value for a node as a recursive function. Give
a similar definition for negamax.

- Assume that in noughts and crosses min (playing noughts) is using a one-move
look-ahead heuristic with the evaluation function of Figure 6.4. Player max has
made the first move by putting a cross in a corner (see the left subtree in Fig-
ure 6.1), and min has to select one of the five possible moves by estimating the
outcome of the next ply. What move does min select and why?

If on the next turn max puts a cross in the opposite corner, what is min’s next
move? How does the game end and why?

- A compact transposition table does not include redundant game state informa-
tion. Design an algorithm that normalizes the game states of noughts and crosses
so that rotations and mirror images are represented only by one game state as in
Figure 6.1.

- Some turn-based games allow the same state (e.g. the same board situation) to
occur many times. How would you make them unique so that they can be differ-
entiated in the game tree algorithms?

- Show how alpha-beta pruning works on the game tree of Figure 6.9. Does the
expanding order of nodes in the first ply from the root affect the overall number
of pruned nodes?

- In the expansion phase of MCTS, it is possible to consider multiple untried moves
of the selected node at once. For example, one could bundle similar moves and
observe whether their outcomes are also similar. On the other hand, the results of
the different moves cover the decision space more. Consider situations or prob-
lems where expanding many moves at once would be useful.
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- The simulation phase of MCTS can be driven, for instance, by choosing the moves
randomly or by utilizing some domain-specific method. Ponder the following
aspects:
(a) The problem with random play is that the evaluations of the outcomes are

inaccurate, a player rarely chooses a random move and an opponent hardly
ever passes up the opportunity to benefit from such a move. However, with
enough repetitions estimation becomes more accurate without the need for
domain knowledge.

(b) An intelligent playing method yields inherently more accurate estimations
since it utilizes information about the problem domain. But still the result
can be biased because of a poor move at the beginning of the trial game, and
if such moves are systematic the repetitions do not refine the results – on the
contrary.

In general, ‘either/or’ thinking tends to have ‘both/and’ as a viable alternative.
Devise a method that incorporates both of these simulation approaches.

- Assume the unknown distributions Di associated with Equation (6.3) are equal,
that is, D = Di and 𝜇 = 𝜇i (0 ≤ i < k). What can be said about rn?

- Algorithm 6.6 defines the routine UCB1 that simulates the choices in the multi-
armed bandit problem. Let us define another routine non-UCB1 that replaces
line 7 with a random selection:

7: i ← 0, k) ⊳ Random i ∈ [0, k − 1].Random-Integer(

Implement both of these methods and compare their outcomes with various dis-
tributions generated, for example, by Algorithm 2.4.

- The multi-armed bandit problem is described from the human point of view:
there are machines acting randomly and we want to learn their possible dissim-
ilarities and benefit from them. Let us turn the tables. If a computer, identified
as C-64, had consciousness, it would arguably consider the humans to act even
more randomly.
(a) Thus, C-64 could see a sequence of humans as a row of bandits, and when

C-64 acts, the values of the humans’ responses are drawn from some
unknown distribution. The objective is of the form ‘who likes this thing’.

(b) Alternatively, if there is only one petty human, the bandits would be the types
of actions towards that human. Then the hidden distributions are the human’s
likings of C-64’s various actions. The objective is of the form ‘which of these
things is liked’.

Assume that C-64 has k consumption items that can be thrown to a player, sup-
porting different play styles in a game. The reward for the action could be mea-
sured, for instance, by how soon the player uses that particular item.

Ponder situations where this kind of turned-table approach could work and
where it would not. Invent more applications for the bandit problem.

- The UCT method defined in Algorithms 6.7 and 6.8 can have a slightly more
compact presentation. Try out different ways to reorganize the control logic into
routines.
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Figure . An example of n2-Pile Flipflop where n = 6. Round pieces represent the tokens for
FLIP, FLOP or empty pieces for NEUTRAL; square pieces represent the fixed tokens. When a FLOP
token is added to a pile, all the piles along the marked lines are reversed. The reversing line
ends at another FLOP token, at a fixed FLIP token, or at the end of the board.

- The two-player game n2-Pile Flipflop is played on an n × n board. Initially, each
square of the board has a token with the value neutral. Player Flip has 5n flip
tokens and ⌈√n ⌉ fixed flip tokens, and player Flop has 5n flop tokens and⌈√n ⌉ fixed flop tokens. Player Flip starts the game. On each turn, a player can
put one token on top of any pile that does not yet have a fixed token. The top-
most token of a pile is said to control the pile. When a token is added, all piles on
the two horizontal, two vertical, and four diagonal lines starting from the added
token are reversed (i.e. the undermost token is turned up to be the topmost and
controls the pile). The reversing line ends at the player’s other control token, at
the opponent’s fixed token, or at the end of the board (see Figure 6.12). The game
ends when either of the players has run out of tokens or cannot add a token to
the board. The player controlling more piles at the end is the winner.

Write a program that plays n2-Pile Flipflop. If n = 1, player Flip wins. Is there
a winning strategy for other n values?

- Simplify Algorithm 6.9 by assuming that the event probabilities in a chance node
are uniform. In other words, each chance node c has n children ui for which
P(ui) = 1∕n.

- In copper noughts and crosses all the chance moves are marked and fixed before
the coin is tossed for both of them. Let us change this rule. First, the player makes
a mark in an empty square and then the coin is used to resolve the capture. Then
the second mark is handled in the same way. Draw a simple game tree for this
variant.
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

Path Finding

As in the real world, finding a path from one place to another is a common – if not
the most common – algorithmic problem in computer games. Although the problem
can seem fairly simple to us humans (most of the time), a surprising amount of the total
computation time in many commercial computer games is spent in solving path-finding
problems. The reasons for this are the ever-increasing complexity of game world envi-
ronments and the number of entities that must be calculated. Moreover, if the environ-
ment changes dynamically (e.g. old paths becomes blocked and new ones are opened),
routes cannot be solved beforehand but only reactively on the spot as the game pro-
gresses. Real-time interaction imposes even further constraints, because the feedback
to the human player should be almost instant and the path must be found before he gets
too impatient to wait any longer.

The problem statement of path finding is simple: given a starting point s and a goal
point r, find a path from s to r minimizing a given criterion. Usually this cost function
is travelling time, which can depend on the distance, the type of terrain, or the mode
of travel. We can think of path finding either as a search problem – find a path that
minimizes the cost – or as an optimization problem – minimize the cost subject to the
constraint of the path. Consequently, graph search methods can be seen as optimization
methods, where the constraints are given implicitly in the form and weights of the graph.
Although we can use general optimization methods such as simplex, they lose the graph-
like qualities of the path-finding problem, which is why we mainly focus on the search
problem throughout this chapter.

In an ideal case, we would do path finding in a continuous game world and solve the
route from s to r straightforwardly. Unfortunately, this is rarely a realistic option, since
the search space gets too complex. Instead, we discretize the search space by restricting
the possible waypoints into a finite set and reducing the paths to connections between
them. In other words, we form a graph where the vertices are the waypoints and the
edges are the connections. We have thus reduced the original problem to finding a path
in a graph (see Figure 7.1). The idea resembles travelling in the real world: move to the
closest waypoint (airport, bus stop, underground station, harbour, etc.), go through way-
points until closest to the destination, exit the final waypoint, and proceed to the desti-
nation.

This approach gives us a three-step method. First, we show how the game world can be
discretized. On the basis of the discretization we can form a graph, and the path-finding
problem is transformed into finding the minimum path in the graph. Although there

Algorithms and Networking for Computer Games, Second Edition. Jouni Smed and Harri Hakonen.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Figure . Real-world path finding is reduced to a graph problem by discretizing the search space into
waypoints. The waypoints are the vertices and the connections between them the edges of the graph.

are several algorithms to solve this problem, we concentrate on A* algorithm, which
uses a heuristic estimate function to enhance the search. Finally, when the minimum
path in the graph has been found, it has to be realized as movements in the game world
considering how realistic the movements look to the human observing them.

. Discretization of the Game World

The first step in solving the path-finding problem in a continuous world is to discretize it.
The type of game world usually gives an indication of how this discretization should be
done. We can immediately come up with intuitive choices for waypoints: doorways, cen-
tres of the room, along the walls, corners, and around the obstacles (Tozour 2003). Once
the waypoints have been selected, we establish whether there is a connection between
them based on the geometry of the game world. The connection can be associated with
cost based on the distance or type of environment, and this cost is set to be the weight
of the edge.

Although the waypoints can be laid down manually during the level design, it should
preferably be an automatic process. Two common approaches to achieve this are to
superimpose a grid on the game world, or to use a navigation mesh which observes
the underlying geometry.

7.1.1 Grid

We can place a grid, which is a tiling of polygons (i.e. tessellation), over the game world.
To simplify, we consider only grids where each tile shares at most one edge with a neigh-
bouring tile (see Figure 7.2). Now, the centre of a tile represents a waypoint, and its
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Figure . A square grid is laid over the game world. If the majority of the world inside a tile is open,
the tile is included in the waypoints.

neighbourhood, composed of the adjacent tiles, forms the possible connections to other
waypoints. The world inside the tile defines whether it is included in the waypoints and
what are its connections to other waypoints (Uras and Koenig 2015).

Grids usually support random-access lookup, because each tile should be accessible
in a constant time. The drawback of this approach is that a grid does not pay attention
to the actual geometry of the game world. For instance, some parts of the world may
get unconnected if the granularity of the grid is not fine enough. Also, storing the grid
requires memory, but we can reduce this requirement, for example, by using hierarchical
lookup tables (van der Sterren 2003).

There are exactly three regular tessellations, composed of either equilateral trian-
gles, squares or regular hexagons (see Figure 7.3). When we are defining a neighbour-
hood for triangular and square grids, we must first decide whether we consider only
the tiles adjacent to the edges of a tile or also the tiles which share a corner point with
the tile. Figure 7.4 illustrates the situation in a square grid: in the former case we have
four-connectivity (i.e. a tile has at most four neighbours), and in the latter case eight-
connectivity. An obvious problem of eight-connectivity is that diagonal moves are longer
than vertical or horizontal ones, which should be taken into account in distance cal-
culations. Because hexagonal grids allow only six-connectivity and the neighbours are
equidistant, they are often used in strategy and role-playing games (Jahn and Loviscach
2008).

Figure . The square grid, triangular grid, and hexagonal grid are the only regular two-dimensional
tessellations.
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(b)(a)

Figure . A square grid allows (a) four-connectivity and (b) eight-connectivity.

Instead of assigning the waypoints to the centre of the tiles, we can use the corners
of the tiles. Now the neighbourhood is determined along the edges and not over them.
However, these two waypoint assignments are dual to each other, since they can be con-
verted in both directions. For the regular tessellations the conversion is simple, because
we can consider the centre of a tile as a corner point of the dual grid and vice versa, and –
as we can see in Figure 7.3 – the square grid is the dual shape of itself and the triangular
and hexagonal grids are dual shapes of each other.

7.1.2 Navigation mesh

A navigation mesh is a convex partitioning of the game world geometry. In other words,
it is a set of convex polygons that covers the game world, where all adjacent polygons
share only two points and one edge, and no polygon overlaps another polygon. Each
polygon (or shared edge) represents a waypoint that is connected to the adjacent poly-
gons (see Figure 7.5). Convexity guarantees that we can move in a straight line inside a

(b)(a)

Figure . A navigation mesh is a convex partitioning of the game world geometry. (a) The waypoints
have been placed in the middle of each polygon. (b) The centre of each shared edge is a waypoint.
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Figure . After triangulation, the Hertel–Mehlhorn method begins to remove non-essential edges to
form a convex partition. (a) Edge e1 is non-essential, because it divides only convex angles at points p2
and p5. If it is removed, the resulting polygon ⟨p1, p2, p3, p5⟩ will be convex. (b) When e1 has been
removed, edge e2 becomes essential and cannot be removed, because it divides a concave angle at
point p5.

polygon (e.g. from the current position to the first waypoint, and from the final waypoint
to the destination) and from one polygon to another.

By using dynamic programming we can solve the convex partition problem (i.e. min-
imize the number of convex polygons needed to cover the original polygon) optimally
in O(r2n log n) time, where n is the number of points (i.e. vertices) and r the number of
notches (i.e. points whose interior angle is concave; r ≤ n − 3) (Keil 1985). The Hertel–
Mehlhorn heuristic finds a convex partition in O(n + r log r) time, and the resulting
partition has at most four times the number of polygons as the optimum solution (Her-
tel and Mehlhorn 1985). The method, described in Algorithm 7.1, first triangulates the
original polygon. Although a simple polygon can be triangulated in O(n) time (Chazelle
1991), Seidel’s algorithm provides a simpler randomized algorithm with expected
O(n log∗n) running time (Seidel 1991). After triangulation, the Hertel–Mehlhorn
removes non-essential edges between convex polygons (see Figure 7.6).

Algorithm 7.1 Hertel–Mehlhorn method for convex partition.

P)
in: polygon P
out: convex partition R
1: R ← P)
2: for all e ∈ E(R) ⧵ E(P) do ⊳ Edges added by triangulation.
3: if not e divides a concave angle in R then
4: E(R) ← E(R) ⧵ {e}
5: end if
6: end for
7: return R

Convex-Partition(

Triangulate(
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. Finding the Minimum Path

After the game world has been discretized, the problem of path finding has been trans-
posed into that of path finding in a finite graph. The waypoints are the vertices of the
graph, the connections are the edges, and if each connection is associated with a cost
(e.g. travelling time), this is assigned to the weight of the edge.

We have a set of well-known graph algorithms for solving the shortest path problem
(let |V | be the number of vertices and |E| the number of edges); for details, see Cormen
et al. (2001).
� Breadth-first search. Expand all vertices at distance k from the start vertex before pro-

ceeding to any vertices at distance k + 1. Once this frontier has reached the goal ver-
tex, the shortest path has been found. The running time is O(|V | + |E|).

� Depth-first search. Expand an undiscovered vertex in the neighbourhood of the most
recently expanded vertex, until the goal vertex has been found. The running time is
Θ(|V | + |E|).

� Dijkstra’s algorithm. Find the shortest paths from a single start vertex to all other ver-
tices in a directed graph with non-negative weights. A straightforward implementa-
tion yields a running time O(|V |2), which can be improved to O(|V | log |V | + |E|)
with a proper choice of data structure.

We can improve the methods by guiding the search heuristically so that as few vertices
as possible are expanded during the search. For instance, best-first search orders the ver-
tices in the neighbourhood of a vertex according to a heuristic estimate of their closeness
to the goal. Despite the use of a heuristic, best-first returns the optimal solution because
no vertex is discarded. Naturally, we can decrease the running time if we give up opti-
mality: beam search is based on best-first search but it expands only the most promising
candidates in the neighbourhood, thus allowing suboptimal solutions (see Figure 7.7).

In the remainder of this section we consider the properties of a heuristic evaluation
function used in guiding the search. Also, we describe and analyse the A* algorithm,

(c)

v 1v

2 4

3

1v

2

(b)(a)

Figure . Expanding the vertices in the neighbourhood. (a) Breadth-first search does not consider
the order in which the neighbourhood of vertex v is expanded. (b) Best-first search uses a heuristic
function to rank the neighbours but does not exclude any of them. (c) Beam search expands only a
subset of the neighbourhood.
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which is the de facto method for path finding in commercial computer games. The basic
graph notation used in this section is introduced in Appendix A. The cost of moving (i.e.
the sum of weights along a path) from vertex v to vertex u is stored in g(v ⇝ u). Also,
we need two distinguished vertices: a start vertex s ∈ V and a goal vertex r ∈ V . Obvi-
ously, we are interested in the cases where s ≠ r, and we want to find a path minimizing
g(s ⇝ r).

7.2.1 Evaluation function

The vertex chosen for expansion is always the one minimizing the evaluation function

f (v) = g(s ⇝ v) + h(v ⇝ r), (7.1)

where g(s ⇝ v) estimates the minimum cost from the start vertex s to vertex v, and h(v ⇝
r) is a heuristic estimate of the cost from v to the goal vertex r. Hence, f (v) estimates
the minimal cost of the path from the start vertex to the goal vertex passing through
vertex v.

Let g∗(s ⇝ v) denote the exact cost of the shortest path from s to v, and h∗(v ⇝ r) the
exact cost of the shortest path from v to r. Now, f ∗(v) = g∗(s ⇝ v) + h∗(v ⇝ r) gives the
exact cost of the optimal path from s to r through vertex v. Ideally, we would use the
function f ∗ in our algorithm, because then we would not have to expand any unneces-
sary vertices. Unfortunately, for most search problems, such an oracle function h∗ does
not exist or is too costly to compute.

The value of the cost function g(s ⇝ v) is calculated as the actual cost from the start
vertex s to vertex v along the cheapest path found so far. If the graph G is a tree, g(s ⇝ v)
will give the exact cost, because there is only one path leading from s to v. In gen-
eral graphs, the cost function g(s ⇝ v) can err only in overestimating the minimal cost,
and its value can be adjusted downwards if a cheaper path to v is found. If we let the
evaluation function f (v) = g(s ⇝ v) and assume a cost of one unit for each move, we
get breadth-first search, because shorter paths will be preferred over the longer ones;
instead, if we let f (v) = −g(s ⇝ v), we get depth-first search, since vertices deeper in the
graph will now have a lower cost.

The heuristic function h carries information which is usually based on knowledge
from outside the graph. It can be defined in any way appropriate to the problem domain
(see Figure 7.8). Obviously, the closer the heuristic estimate is to the actual cost, the less
our algorithm will expand superfluous vertices. If we disregard h and our search is based
solely on the value of g, we have cheapest-first search, where the algorithm will always
choose the vertex nearest to the start vertex. Conversely, an algorithm using only the
function h gives us best-first search.

7.2.2 Properties

Let us define Algorithm A – a name due to tradition – as a best-first search using the
evaluation function of Equation (7.1). A search algorithm is admissible if it is guaranteed
to find a solution path of minimal cost if any solution path exists (e.g. breadth-first search
is admissible). If Algorithm A uses the optimal evaluation function f ∗, we can prove
that it is admissible. In reality, however, the heuristic function h is an estimate. Let us
define Algorithm A* as Algorithm A which uses such an estimate. It can be proven that
Algorithm A* is admissible if it satisfies the following condition: the value of h(v ⇝ r)
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Figure . An example of a heuristic function. If
the weight of an edge is the distance between the
vertices using Manhattan metric, a heuristic
function h can estimate them with truncated
Euclidean distances.

must not overestimate the cost of getting from vertex v to the goal vertex r. In other
words,

∀ v ∈ V : h(v ⇝ r) ≤ h∗(v ⇝ r). (7.2)

If the heuristic is locally admissible, it is said to be monotonic. In this case, when the
search moves through the graph, the evaluation function f will never decrease, since
the actual cost is not less than the heuristic cost. Obviously, any monotonic heuristic is
also admissible. If Algorithm A* is monotonic, it finds the shortest path to any vertex the
first time it is expanded. In other words, if the search rediscovers a vertex, we know that
the new path will not be shorter than the one found previously. This allows us to signif-
icantly simplify the implementation of the algorithm, because we can omit the closed
list employed by general search strategies.

Let us state an optimality result for Algorithm A*:

Theorem 7.2.1 The first path from start vertex s to goal vertex r found by monotonic
Algorithm A* is optimal.

Proof: We use a proof by contradiction. Suppose we have an undiscovered vertex v for
which f (v) < g(s ⇝ r). Let u be a vertex lying along the shortest path from s to v. Due to
admissibility, we have f (u) ≤ f (v), and because u also must be undiscovered, f (r) ≤ f (u).
In other words, f (r) ≤ f (u) ≤ f (v). Because r is the goal vertex, we have h(r ⇝ r) = 0 and
f (r) = g(s ⇝ r). From this it follows that g(s ⇝ r) ≤ f (v), which is a contradiction. This
means that there exist no undiscovered vertices that are closer to the start vertex s than
the goal vertex r.

Although h is sufficient to be a lower estimate on h∗, the more closely it approximates h∗,
the better the search algorithm will perform. We can now compare two A* algorithms
with respect to their informedness. Algorithm 1 using function h1 is said to be more
informed than algorithm 2 using function h2 if

∀ v ∈ V ⧵ {r} : h1(v ⇝ r) ≥ h2(v ⇝ r). (7.3)

This means that 1 will never expand more vertices than are expanded by 2. Because
of informedness, there is no better approach than Algorithm A* in the sense that no
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other search strategy with access to the same amount of outside knowledge can do any
less work than A* and still be sure of finding the optimal solution.

7.2.3 Algorithm A*

Algorithm 7.2 describes an implementation of Algorithm A*. As mentioned earlier,
monotonicity of the evaluation function means that we need only update an open list of
the candidate vertices (lines 15–20), and the algorithm can terminate when it has found
the goal vertex (lines 10–12).

Algorithm 7.2 Algorithm A* for a monotonic evaluation function.

G, s, r)
in: graph G = (V, E); start vertex s; goal vertex r
out: mapping : V → V
local: open list S; cost function g(u ⇝ v); heuristic lower bound estimate h(u ⇝ v)
1: for all v ∈ V do ⊳ Initialization.
2: g(s ⇝ v) ←∞
3: (v) ←
4: end for
5: g(s ⇝ s) ← 0
6: S ← {s}
7: precalculate h(s ⇝ r)
8: while S ≠ ∅ do ⊳ Search.
9: v ← vertex v ′ v ′ v ′∈ S that minimizes g(s ⇝ ) + h( ⇝ r)

10: if v = r then ⊳ Is the goal reached?
11: return
12: end if
13: S ← S ⧵ {v}
14: for all u ∈ successors(v) do
15: if (u) = or else (u ∈ S and

g(s ⇝ v) + weight(v, u) < g(s ⇝ u)) then ⊳ Open u.
16: S ← S ∪ {u}
17: g(s ⇝ u) ← g(s ⇝ v) + weight(v, u)
18: (u) ← v
19: precalculate h(u ⇝ r)
20: end if
21: end for
22: end while
23: error no path from s to r exists

A-Star(

nil

nil

π

π

π

π

π

Figure 7.9 gives an example of how Algorithm A* works: (a) The weight of an edge
describes the distance between its endpoints in the Manhattan metric. (b) First, start
vertex s is selected, and its successors a and b are added to the set S (i.e. they are opened).
The heuristic measure takes the maximum of the vertical and horizontal distance to the
goal vertex. Because f (b) < f (a), vertex b gets selected next. (c) The algorithm opens
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Figure . An example of Algorithm A*. The boxes next to a vertex v represent the values 𝜋(v),
g(s ⇝ v), and h(v ⇝ r). Filled circles indicate the selected vertices.

the successors of vertex b. Vertex e is the most promising candidate and gets selected.
(d) Vertex e does not have undiscovered successors, because d has already been opened
by b. The remaining candidates have the same value, so the algorithm selects c arbitrarily.
Vertex f is opened. (e) Vertex a has the lowest value but has no undiscovered successors.
Instead, vertex d gets selected and g is opened. (f ) Of two remaining candidates, vertex
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g gets selected, and goal vertex r is found. The optimum path is s → b → d → g → r and
its cost is 12.

Apart from optimality, there may be practical considerations when implementing
Algorithm A*. First, the computational effort depends on the difficulty of computing the
function h. If we use a less informed – and computationally less intensive – heuristic, we
may go through more vertices but, at the same time, the total computation requirement
may be smaller. Second, we may content ourselves with finding a solution reasonably
close to the optimum. In such a case, we can use a function that evaluates accurately
in most cases but sometimes overestimates the cost to the goal, thus yielding an inad-
missible algorithm. Third, we can weight (or even change) the heuristic function when
the search has proceeded far from the source vertex s. For example, we can use a more
precise heuristic for the nearby vertices and approximate the magnitude for the faraway
ones. For dynamic graphs (i.e. the waypoints and their relationships can change in the
game world), this can be even the best approach, because it is likely that we will have
to search for a new path after a while. To summarize, the choice of the function h and
the resulting heuristic power of Algorithm A* depend on a compromise among these
practical considerations.

If we can make assumptions on the properties of the graph, it is possible to optimize
Algorithm A* further. For example, if the graph is based on a grid, we can prune the
search space by using jump point search (Harabor and Grastien 2012). The basic idea is
to combine open areas into a single route that covers all equivalent paths, which allows
us to avoid computing paths for that area and jump over it. Another approach for opti-
mizing the running time – at the cost of memory – it is to compute all possible paths
beforehand and access this information, in a constant time, when finding a path.

. Realizing the Movement

After the path has been solved in a graph, it must be realized in the game world.
Although the solution may be optimal in the graph, it may be unrealistic or aesthet-
ically displeasing in the game world (Patel 2003). For example, consider the situation
illustrated in Figure 7.10, where a game character has to move from one room to

(b)

r

(a)

r

ss

Figure . (a) The path through the waypoints may have sharp and unrealistic turns. (b) Sharp turns
can be smoothed out when the movement is realized.
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Figure . Line-of-sight testing allows
the original path (dotted line) to be
improved by skipping waypoints (solid
line). It is not necessary to visit the
waypoints, and the heading can be
changed immediately whenever a farther
waypoint becomes visible (dashed line).

another. Because the character goes through the waypoints, the resulting path has sharp
turns instead of smooth movement. This stems from the selection of the waypoints
with respect to the intended movement: The more artificial or ‘virtual’ the waypoint
is, the more unrealistic the movement through it looks. Of course sharp turns at the
wall extensions and beside the doorframes may be realistic, if the game character is
under fire.

Naturally, we can use Bézier curves or B-splines (Watt 2000) instead of following the
path in straight lines, but there are simpler approaches. One possibility is to use line-of-
sight testing to reduce the number of waypoints the character has to visit (Snook 2000).
Figure 7.11 illustrates the situation. Instead of heading to the next waypoint in the path,
the character chooses the farthest waypoint it can see and heads there. This is repeated
until the destination is reached. The path followed can be further reduced by changing
the heading so that it is always towards the farthest visible waypoint.

To avoid (possibly dynamic) obstacles we can use the avoidance rule of the flocking
algorithm (see Section 8.1) and assign obstacles a repulsion vector (Johnson 2003). Fig-
ure 7.12 illustrates a situation, where an obstacle is blocking the direct path. To avoid it
the character’s velocity vector combines two components, the desired direction towards
the destination and the repulsion away from the obstacle, which is enough to steer
the character past the obstacle. In other words, force vectors (and vector fields) are a
convenient balancing mechanism between local actualizations (i.e. reactive behaviour
in the continuous world) and global intentions (i.e. planning in the discretization of
the world).

Because path finding can be a time-consuming task, a special care must be taken when
it is accessed through a user interface. When players give orders to a game character,
they expect it to respond immediately, even if the path finding required to comply with
the order is not yet finished. One solution is to get the character moving in the general
direction of the destination (or animate that it is preparing to move), while the full path
is still being calculated (Higgins 2002). When the path finding is ready, the character,
which has moved somewhat, is redirected to the path found.
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(a)Figure . Avoiding dynamic obstacles. (a) The
straight path from s to r is obstructed. (b) The desired
direction d⃗ towards the destination and the
repulsion direction r⃗ away from the obstacle are
combined to form the velocity vector v⃗.

. Summary

The future path for path finding is still unsolved. Many alternative methods have been
proposed, but the three-stage approach presented in this chapter is still the standard
approach in commercial computer games. Its main advantage is that we decompose the
problem into more manageable subproblems, each of which has set readily available,
reliable and reasonably fast solution methods.

Reactive agents from robotics have been proposed for solving the path-finding prob-
lem. They reduce the solution method to simple reactive rules akin to the flocking algo-
rithm, and the emerging behaviour finds a path for the agent. At the moment the intel-
ligence of these methods is at the level of insects, and, no matter how intelligent insects
can be, designing a usable method for computer games seems a difficult task.

Analytical approaches take the opposite approach and say that more is better. They
try to solve path finding straightforwardly by modelling all related factors – which may
sound good in theory, but in practice some relevant details may escape precise mathe-
matical formulation.

A third approach suggested to solve path finding is AI processors. The idea is that the
usual methods for solving AI problems – including path finding – can be made into a
hardware component much like graphics processing units (GPUs), which would take
away many time-consuming tasks from the software (Google Brain Team 2016). Never-
theless, the method used in the AI processor has to be based on some existing software
solution – possibly the one presented here.

Exercises

- Imagine that you had to describe a route to a blindfolded person and describe how
to get
(a) from kitchen to living room,
(b) from home to work/school,
(c) from home to Rome.
Be as accurate as necessary in your description.
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- A monkey is in a cage formed by grid with square-shaped cells (see Figure 7.13).
He is hungry but he cannot reach the banana dangling from the ceiling. There is a
box inside the cage, and the monkey can reach the banana if the box is underneath
the banana. If the monkey is beside the box, he can lift it to one of his neighbouring
tiles. The problem is to find a sequence of moves such that the monkey can get
the banana from any given initial situation. The monkey sees the whole situation
and can select the following operations: move to a tile in the grid, lift the box to
a neighbouring tile, get onto the box, get down from the box, and reach for the
banana.

X

M

B

Figure . Monkey (M), box (X) and banana (B) in a cage formed by a square grid.

Express this monkey-in-a-cage problem as a path-finding problem and design an
algorithm to solve it.

- Waypoints can be laid down manually by the game world designer. What benefits
and drawbacks does this have over the automated waypoint assigning process?

- Prove that there are only three regular two-dimensional edge-sharing tessella-
tions.

- To have random-access lookup a grid should have a scheme for numbering the
tiles. For example, a square grid has rows and columns which give a natural num-
bering for the tiles. Devise schemes for triangular and hexagonal grids. Use the
numbering scheme to define a rule for determining the neighbourhood (i.e. adja-
cent tiles) of a given tile in the grid. For example, if we have a four-connected
square grid, where the indices are i for rows and j for columns, the neighbour-
hood of tile ⟨i, j⟩ can be defined as

neighbourhood(⟨i, j⟩) = {⟨i ± 1, j⟩, ⟨i, j ± 1⟩}.
- A hexagonal grid is not so straightforward to represent on a screen (i.e. using

square pixels). Devise an algorithm for displaying it.

- Let us connect Exercise 7-5 and Exercise 7-6 and define a mapping 𝜏 from a posi-
tion in a continuous game world to its corresponding tile number. For example,
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if we are using a square grid with edge length 𝓁, we can define 𝜏 : R
2 → ⟨N, N⟩

straightforwardly as

𝜏 : (x, y) ↦ ⟨⌊x∕𝓁⌋, ⌊ y∕𝓁⌋⟩.
Write algorithms that calculate 𝜏 for triangular and hexagonal grids.

- Triangulate the game world of Figure 7.14. Then apply the Hertel–Mehlhorn
method and remove excess edges.

Figure . A game world as a polygon.

- For what kind of search problems are breadth-first and depth-first best suited?

- In the n-queens problem, n queens must be placed on an n × n chessboard so that
they do not threaten each other. Figure 7.15 gives one solution to the eight-queens
problem, which has in total (omitting rotations and mirror images) 12 different
solutions. Formulate the n-queens problem as a search problem.

Figure . One possible solution to the eight-queens problem.

- If we had an oracle function h∗(v ⇝ r) which gives the exact cost of getting from
v to r, how could we solve the minimum path search problem? Why is such a
function so hard to form?
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- Although the A* algorithm works better with a more informed heuristic function,
the overall computation time may be smaller with a less informed heuristic. How
can that be possible?

- What happens to the paths if we use an inadmissible search algorithm?

- What other aesthetic considerations are there in movement realization besides
smooth movements and obstacle avoidance?

- Assume we have the game world of Figure 7.16. A player wants to move from the
point s to the point r using only the white area (i.e. the path cannot go into the grey
area). How would you solve this path-finding problem? Describe the three phases
of the approach in general terms. Select a method for each phase and apply them
to the given problem instance to find a path from s to r.

s

r

Figure . Two-dimensional game world in which the white area represents open space.
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

Group Movement

Instead of moving single entities, games often have groups of entities that have to be
transported cohesively through the game world. Solving the path-finding problem for
each individual entity would be a waste of effort – especially as path finding can be
a computationally intensive operation. Moreover, it could lead to situations where the
group does not look and behave like a group at all but a random collection of individu-
als. The aim of the group movement methods presented in this chapter is to solve this
problem.

We can differentiate three approaches to group movement: flocks, formations and
social groups (Mars and Chanut 2015). Flocks are naturally occurring phenomena where
complex group behaviour emerges from individual entities. For example, the movement
of a flock of birds, a school of fish or a swarm of bees has no central coordination. Con-
versely, formations are tightly coordinated (human) groups with a specific structure. A
military troop moving in close order is a perfect example of a formation.

The third approach is to model the movement of social groups of people (Moussaı̈d
et al. 2010; Peters and Ennis 2009). As we can readily observe, the majority of people in
a public area are moving in small groups often engaged in a conversation. Depending
on the density (i.e. how crowded the space is) these groups can take one of three forms
(see Figure 8.1):
� When the group has enough space, people typically move abreast of each other so

that they can keep up with the conversation equally.
� When the density increases, the group folds forward to form a V-shape, again mini-

mizing the disturbance to the communication.
� When the space gets too crowded, the group reorganizes itself into a row so that nav-

igation gets easier.
In this chapter, we focus on flocks and formations. Flocking algorithms take an entity-
centred view, where force vectors model the urges affecting the game characters’ deci-
sions. Formations can be modelled using various techniques, of which we will describe
behaviour-based steering, fuzzy logic control and mass–spring systems.

. Flocking

Whenever we see a flock of birds flying, the whole flock seems to react as an autonomous
entity rather than as a collection of separate individual birds. Still, we can be quite
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(b)(a) (c)

Figure . Human groups tend to move (a) side by side in low-density surroundings, (b) in a V-shape
in moderate-density surroundings and (c) in a row in high-density surroundings.

sure that each bird in the flock reacts individually to the changes in the flockmates and
the surroundings. The flocking algorithm, introduced by C.W. Reynolds (1987), tries to
emulate this phenomenon in a computer program. The resulting behaviour resembles
various natural group movements such as schools of fish, herds of sheep, swarms of bees,
or – most interestingly – crowds of humans.

The core of the flocking algorithm consists of four steering behaviour rules, which
give a group of autonomous agents (or boids) a realistic form of group behaviour (see
Figure 8.2):

(i) Separation. Steer to avoid crowding local flockmates. A boid should maintain a
certain distance from nearby boids to avoid collisions with them.

(ii) Alignment. Steer towards the average heading of local flockmates. A boid should
move in the same direction as the nearby boids and match its velocity accordingly.

(iii) Cohesion. Steer to move towards the average position of local flockmates. A boid
should stay close to the nearby flockmates.

(iv) Avoidance. Steer to avoid running into local obstacles or enemies. A boid should
escape dangers when they occur.

As we can see, separation and alignment are complementary rules, which ensure that
the boids are free to move inside the flock without collision. Separation is based on
the relative position of the flockmates, ignoring their velocity. Conversely, alignment is
based only on the velocity of the flockmates, ignoring their position. Alignment sustains
the separation between the boids, and it can be thought of as a predictive separation: if
the boid manages to match its velocity with that of its neighbours, it is unlikely that it
will collide with any of them in the near future. Simply put, separation serves to establish
the minimum separation distance, and alignment tends to maintain it.

Cohesion keeps a group of boids together, because it urges each boid to get to the
centre of the flock. If the boids have limited perception, the centre means the centre
of the nearby flockmates – but, cumulatively, this still keeps the whole flock cohesive.
When a boid is inside the flock (i.e. the surrounding population density is the same in
all directions), it does not have to adjust its heading or velocity due to the cohesion rule.
However, when a boid is at the boundary of the flock, the centre resides on one side,
forcing the boid towards the flock.

Avoidance allows the boids to avert collisions with entities not belonging to the flock.
Although cohesion keeps the flock together, sometimes it has to split apart to go around
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(d)

(a) (b)

(c)

Figure . Steering behaviour rules. (a) Separation: do not crowd flockmates. (b) Alignment: move in
the same direction as flockmates. (c) Cohesion: stay close to flockmates. (d) Avoidance: avoid obstacles
and enemies.

an obstacle or to evade a hunter. When a flock splits, the resulting smaller flocks are
drawn together again by cohesion. Later on when the obstacle has been passed or the
hunter has withdrawn, the bifurcated flock can reunite.

Flocking is a stateless algorithm, because no history information needs to be main-
tained from update to update. Each boid re-evaluates its environment at every update
cycle. There is no centralized control among the boids, but each acts individually, allow-
ing the emergent behaviour built into the system to unfold.

Algorithm 8.1 gives an implementation for flocking. The four steering behaviour rules
are described in Algorithm 8.2 using the following auxiliary function:

v⃗)
1: if v⃗ = 0⃗ then return a random unit vector
2: else return v⃗∕‖v⃗‖ end if

Unit-Vector(

The function returns a unit vector in the direction of v⃗, or a unit vector pointing at a
random direction if v⃗ is a zero vector.

This is a sequential method to update a set of boids to their next position. Another
possibility is to have a concurrent method, where each boid is moved simultaneously
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Algorithm 8.1 Flocking algorithm.

B, A)
in: set B A of avoidable elements
out: updated set of boids R
constant: separation weight ws; alignment weight wa; cohesion weight wc; avoid-

ance weight wv; maximum velocity vm
local: set F of boids to be updated; boid f ; updated boid b; acceleration vector

a⃗; set V = visible(S, x) of elements from S visible to x
1: F ← copy B
2: R ← ∅
3: while F ≠ ∅ do ⊳ Update each boid once.
4: f← a boid from F
5: F ← F ⧵ f
6: V ← visible(F ∪ R, f )
7: a⃗ ← 0⃗
8: if V = ∅ or leader(B) = f then
9: realize an individual movement

10: else ⊳
11: a⃗ ← a⃗ + ws⋅ V, f )
12: a⃗ ← a⃗ + wa⋅ V, f )
13: a⃗ ← a⃗ + wc⋅ V, f )
14: end if
15: a⃗ ← a⃗ + wv⋅ (visible(A, f ), f )
16: b ← copy f ⊳ The boid is updated.
17: velocity(b) ← velocity(b) + a⃗
18: if ∣velocity(b)∣ > vm then ⊳ Is velocity too high?
19: velocity(b) ← vm⋅ (velocity(b))
20: end if
21: position(b) ← position(b) + velocity(b)
22: R ← R ∪ {b}
23: end while
24: return R

Flock(

Separation(

Cohesion(

Avoidance

Unit-Vector

There are visible flockmates.

of boids in a flock; set

Alignment(

before the position updates are committed. Both require O(n) time given that the visi-
bility test runs in constant time, but the concurrent method consumes twice the space.
However, because flocking is a reactive process, the sequential method provides suffi-
cient results.

After release, boids that see one another begin to flock together. Due to cohesion they
will stay near one another but always maintain separation from their flockmates. When
the flock is forming, the boids begin to align themselves in approximately the same direc-
tion and to move approximately at the same speed with the arbitrary flock leader. Indi-
vidual boids and smaller flocks join to become larger flocks, but an obstacle can split
flocks into smaller ones.
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Algorithm 8.2 Steering behaviour rules.

M, f )
in: set M f
out: normalized correction vector
constant: ds
1: m ← M nearest to f
2: v⃗ ← position(m) − position(f )
3: r ← 1 − 2 ⋅ ds∕(‖v⃗‖ + ds) ⊳ lim‖v⃗‖→0 r = −1, lim‖v⃗‖→∞ r = 1,

and r = 0 if ‖v⃗‖ = ds.
4: return r ⋅ v⃗)

M, f )
in: set M f
out:
1: m ← M nearest to f
2: return (velocity(m))

M, f )
in: set M f
out: unit vector towards the centre, or zero vector if already there
1: v⃗ ← 0⃗
2: for all m ∈ M do ⊳
3: v⃗ ← v⃗ + position(m)
4: end for
5: v⃗ ← v⃗∕∣M∣
6: v⃗ ← position(v) − position( f )
7: if v⃗ ≠ 0⃗ then return v⃗) ⊳ Not at the centre.
8: else return 0⃗ end if

A, f )
in: set A of objects to be avoided; boid f
out: unit vector indicating avoidance, or zero vector if nothing to avoid
constant: avoidance distance da
1: a ← the object in A nearest to f
2: v⃗ ← position( f ) − position(a)
3: if ‖v⃗‖ < da then return v⃗) ⊳ Is the object close enough?
4: else return 0⃗ end if

Separation(
of flockmates; boid

of flockmates; boid

of flockmates; boid
unit vector of the heading of the nearest flockmate

Iterate over the flockmates.

ideal flockmate separation distance
the flockmate in

the flockmate in

Unit-Vector(

Alignment(

Cohesion(

Unit-Vector

Unit-Vector(

Unit-Vector(

Avoidance(

Behavioural urges suggest which way the boid should steer. These urges can be viewed
as acceleration requests, which can conflict with each other. The requests are collected,
prioritized, and aggregated to form the acceleration to be realized. Prioritization can
be implemented, for example, by associating the requests with weights describing
their importance. For instance, avoidance can have a large weight for prey, because it
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represents a critical situation that must be handled promptly, whereas predators need
to avoid (almost) nothing.

Since flocking is inherently reactive, the behaviour of the boids can be refined by
injecting more impulses. For example, Hartman and Benes (2006) introduce a new rule,
change of leadership, to complement the alignment: a random boid on the edge suddenly
darts away from the flock, drawing the nearby boids with it. After a short while the dart-
ing boid slows down, the other rules kick in and the ordinary flocking continues until
the same happens again.

. Formations

Path-finding (see Chapter 7) focuses on finding a route for individual game entities.
As the number of entities to move increases, computing individual paths for each of
them becomes a more and more onerous task. Also, many games assume that a group of
characters move in a pre-defined formation. For example, a real-time strategy game can
include hundreds of units on a battlefield. Controlling the units on a higher level allows
the player to control even larger groups with less effort. Operating with groups that
have specific structures enriches the gameplay by increasing variability; for example,
by allowing tactics such as locally strengthened or even intentionally weakened ranks.
Formations can also improve the visual appeal and realism of a game, because the units
seem to move in a natural-looking way rather than in unorganized groups (Mars and
Chanut 2015).

We can discern three stages in coordinating formations:

1. Define a control structure for the formation.
2. Find a path for the whole formation.
3. Steer the individual entities.

The control structure gives a model to the formation and defines how to calculate the
places of the entities in a formation. Figure 8.3 illustrates basic formation types, which
can be realized using a control structure based, for instance, on following a leader or the
average position of the neighbours.

(d)

(h)(g)(f)(e)

(c)(b)(a)

Figure . Basic formation types: (a) column, (b) line, (c) wedge, (d) vee, (e) box, (f ) right flank, (g) left
flank, and (h) diamond.
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In path finding, we search for the shortest viable path from a start position to a goal
position (Bjore 2014). When we have found a path, the formation is guided through the
game world using a steering method, which aims to keep the entities as close to their
intended place in the formation as possible. If the environment does not allow them to
maintain a specified formation, it should allow the entities to deviate and later return to
their designated positions.

8.2.1 Coordinating formations

There are a variety of methods for modelling and controlling formations. In this sec-
tion, we first look at different approaches to model formations, which are classified
according to how the point of reference of an entity in a formation is calculated. Then
we study obstacle avoidance and, finally, how to maintain the correct position in a
formation.

Modelling formations
Different control structures for modelling formations can be classified according to how
the position of an entity in a formation is defined (see Figure 8.4):

(a) In a leader-referenced formation, the position of an entity is defined in relation to the
position of the leader, and the movement of the formation is based on the movement
of the leader (Balch and Arkin 1998). If the leader does not receive enough updates
about the pace from the other entities, it can cause the formations to disperse when
some entities lag behind without the leader slowing down.

(b) In a unit-centre-referenced formation, the position of an entity depends on the aver-
age position of the entities (Balch and Arkin 1998). This can be difficult, because
purposeful movement requires that all the entities move towards the destination.
One possibility would be to generate a virtual leader at the midpoint and apply the
control structure of item (a).

(c) In a neighbour-referenced formation, the position of an entity is defined in relation
to a pre-selected neighbour entity (Balch and Arkin 1998; Fredslund and Matarić
2002; Naffin and Sukhatme 2004).

(f)

(c)(b)

(e)

(a)

(d)

Figure . Formation models: (a) leader referenced, (b) unit-centre referenced, (c) neighbour
referenced, (d) social potentials, (e) virtual structure, and (f ) virtual leaders.
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(d) In a formation using social potentials, each entity has a given number of attachment
sites, which attract other entities (Balch and Hybinette 2000). We can change the
shape of the formation by changing the configuration of the attachment sites. Social
potentials scale up well even to larger formations, but with some attachment point
configurations the shape of the resulting formation can be ambiguous. Moreover, if
the formation gets divided (e.g. to avoid an obstacle) and comes back together, the
shape of the formation may be different than before the division.

(e) In a virtual structure formation, the position of an entity is bound to a geometric
form (Lewis and Tan 1997; Young et al. 2001). When this virtual structure moves,
we try first to adapt the structure to the current positions of the entities, and then to
move the structure towards the goal. Then all the entities are moved towards their
new positions in the formation.

(f ) In a virtual leaders formation, the entities try to maintain a given distance to one
another and to one or many virtual leaders (Ögren et al. 2002). Consequently, the
formation is not necessarily ambiguous but it can, for example, revolve around a
virtual leader so that the formation stays together. We can add more virtual leaders
to define the positions of the entities more closely.

Obstacle avoidance
We can divide the obstacles the formation encounters along the route into three groups
according to their size:
� equal to or larger than the formation,
� smaller than the formation, and
� canyons.

We can omit the obstacles belonging to the first group, because it can be solved either
by rerouting by path finding, or by overcoming the obstacles by reducing the route into
clearly separated phases. For example, a river can be crossed via a bridge, forded in a spe-
cialized formation, or crossed by raft after some tree felling. The second group is more
problematic, because it could be possible for a formation – as a whole – to travel through
an area with smaller obstacles such as woods and rocks, but the individual entities have
to be able to move around them. We can solve this by applying local path finding, which
guarantees that an individual entity has an optimal path around an obstacle but does
not ensure that the formation stays cohesive. Another possibility is obstacle avoidance,
where the entities try to keep in their designated positions but move so that they do not
collide with the obstacles. One way to realize this is to set repulsion which is directed
away from the centre of an obstacle. If we observe that a collision is about to occur,
the entity is steered away from the obstacle (Reynolds 1999), or the formation can be
divided into two groups that avoid the obstacle from different sides and, having passed
the obstacle, merge into one formation again (Pottinger 1999a,b).

When a formation meets a canyon or a narrow passage, it usually has to disassemble or
change its size or type (e.g. into a column) to pass through (Pottinger 1999a). In the game
Force 21, if the formation is located so that some entities would be inside an obstacle,
these positions are relocated along the route from the centre of the formation so that
each entity finds a free position (van Verth et al. 2000). Also, convex optimization can
be used in coordinating large-scale formations in polygonal environments (Derenick
and Spletzer 2007).
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(c)(b)(a)

Figure . Strategies for realizing the movement into the formation: (a) entities move first into the
formation and then to the destination; (b) entities move to a formation rally-point along the way to the
destination and move from there to the destination; and (c) entities move into a formation at the
destination.

Maintaining the formation
The complexity of assigning optimal positions for n entities in a formation is O(n!). For
this reason, we have to approximate, for example, by sorting the entities according to
their distance to the closest available position and assigning the positions in this order
(Dawson 2002). We can simplify the approximation further by using the distance to the
centre of the formation as a sorting criterion – or even define sub-formations and their
corresponding centres.

Once all entities have been assigned a position, they can be moved into the formation
using one of the three different strategies illustrated in Figure 8.5 (Dawson 2002):

1. The formation is located in the centre of the entities, and the entities move first into
the formation before they start moving towards the destination as a formation.

2. Entities move individually to a rally-point located near the destination and from there
continue as a formation. It is possible that entities closer to the destination arrive at
the rally-point earlier and have to stop and wait for the others.

3. Entities use path finding and move individually to the correct positions in a formation
at the destination. This approach guarantees that the entities will be in a formation at
the destination, but movement of the entities can appear senseless and the benefits
of moving in a formation are lost.

Let us assume that the path for the formation has already been found (e.g. given by a
human player or a higher-level decision-making system) and we must now steer the
group using a control structure. We next present three prominent approaches to coor-
dinate formations: a steering behaviour-based method, a fuzzy logic controller, and a
mass–spring system. For a more detailed analysis of their behaviour, see Laasonen and
Smed (2012).

8.2.2 Behaviour-based steering

Behaviour-based steering is based on the flocking algorithm (see Section 8.1), where the
steering behaviour rules model the entity’s urge to move in a certain direction (Reynolds
1987, 1999). Behaviour-based steering is a stateless algorithm that does not need to
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dead zone

controlled zone

ballistic zone Figure . Zones for the magnitude of the control vector for
maintaining the formation: the control vector is maximum in the
ballistic zone, zero in the dead zone, and decreases linearly in the
controlled zone the closer the entity gets to the dead zone.

maintain any extra information. Moreover, there is no centralized control for the forma-
tion, but the behaviour emerges from simple individual rules. If we use the unit-centre-
referenced control structure as the formation model, the behaviour-based steering can
include the following rules (Laasonen and Smed 2012):

(i) Seeking the target. This control vector is directed to the entity’s correct position in
the formation.

(ii) Maintaining the formation. Depending on the distance to their assigned places, the
entities can be in one of three zones (see Figure 8.6): in the ballistic zone the control
vector has the maximal length, whereas in the controlled zone the length of the
control vector changes linearly from maximum to zero, and in the dead zone the
control vector has length zero. The dead zone represents the ideal area for an entity
in the formation.

(iii) Avoiding other entities. This control vector is directed in the opposite direction from
the other entities.

(iv) Avoiding obstacles. If there are obstacles in the current direction of the entity, we
choose the closest one and set the control vector to avoid it.

(v) Noise. Depending solely on reactive behaviour can lead the entities to get stuck on a
local maximum or minimum or to revert to a cyclic behaviour. To avoid this we can
add noise by creating a control vector in a random direction. This noise remains
constant for a predefined duration.

8.2.3 Fuzzy logic control

To cope with the uncertainty of the formation’s actual state, we can create a rule-base
using fuzzy sets (see Section 10.2). This fuzzy logic control comprises if—then rules
using fuzzy sets as predicates in the following form (Yager and Filev 1994):

1: if U1 is B11 and U2 is B12 and … and Un is B1n then V is D1
2: …
3: if U1 is Bm1 and U2 is Bm2 and … and Un is Bmn then V is Dm

where U1,… , Un are parameters and B11,… ,Bmn and D1,… , Dm are fuzzy sets. The
result of the output V can be computed as follows:

1. For each rule, compute the degree to which it gets fired.
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2. Compute the result of the rule.
3. Aggregate the results as an output.

In order to realize a fuzzy decision, we have to defuzzify it to get a crisp result (see
Section 10.2.3).

To coordinate the entities in a formation, we assign one fuzzy logic controller for steer-
ing (Laasonen and Smed 2012). In plain language, the rules for the controller are as fol-
lows:
� If the entity is far from the correct formation place and its sensors detect no obstacles,

then the steering controller tries to steer towards the formation place.
� If the sensors detect no obstacles, then the steering controller steers towards the next

waypoint.
� If a sensor detects an obstacle, the steering controller tries to steer in the opposite

direction of the sensor.

The inputs for the fuzzy logic controller are the magnitude of the collision, Cm; the direc-
tion of the collision, Cd; the entity’s magnitude, Em; the entity’s direction, Ed; the centre
of the visible formation, Fc; the entity’s correct location in the visible formation, F𝓁 ; and
the distance to the correct location in the formation, Fd. Let us also define the fuzzy
sets Sd (towards the destination), Sf (towards the formation), Sa (away from the entity’s
direction), Sr (steep right) and S𝓁 (steep left). To approximate the distance we define the
fuzzy sets Zb (ballistic zone) and Zc (controlled zone). We also define the quantitative
fuzzy sets Qx (very large), Q𝓁 (large) and Qs (small). The result is steering R.

The steering controller has four types of rules:
� Seeking the target

1: if Fd is Zc and Cm is Qs and Em is Qs then R is Sd
2: if F is Qs and Cm is Qs then R is Sd
3: if Fc is Qs and Cm is Qs then R is Sd

ℓ

� Staying in the formation

1: if Fc is Q and F is Q and Fd is Zb and Cm is Qs and Em is Qs then
R is Sf

ℓ ℓ ℓ

� Obstacle avoidance

1: if Cd is S and Cm is Qx then R is Sr
2: if Cd is Sr and Cm is Qx then R is S

ℓ
ℓ

� Avoid other entities

1: if Em is Q then R is Saℓ

The resulting fuzzy sets can be defuzzified into crisp values to be used as direction, for
example, with the mean-of-maxima method (see Section 10.2.3).
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Figure . An example of a mass–spring
system. The circles represent point masses, the
dashed lines the structural springs, the solid
lines the shear springs, and the bold lines the
flexion springs.

8.2.4 Mass–spring systems

Spring models are often used in game physics to simulate soft objects, but we can also
use them in coordinating formations. One can imagine that there are invisible springs
between the entities that can flex but still maintain the overall structure intact. A mass–
spring system comprises point masses and springs connecting them. Each spring causes
the force F = −kx, where k is a spring coefficient and x the distance from the static state.
To build a structure we need three kinds of springs as illustrated in Figure 8.7 (Wang and
Devarajan 2004):
� Structural springs model the interaction between different parts of the object.
� Shear springs model the resistance against bending.
� Flexion springs model the shearing resistance.

To coordinate a formation we define first a set of springs between the n entities. If we
simply create a spring between all n(n − 1)∕2 entity pairs, we can end up having exces-
sive springs, slow update times, and possibly too rigid a formation. Therefore, it is often
enough to have horizontal, vertical and diagonal springs between the neighbouring enti-
ties (Wang and Devarajan 2004). We select one of the entities as a leader of the forma-
tion, which acts as a fixed point in the formation unaffected by the spring forces. To move
the formation we apply a constant force to the leader, pulling it towards the destination,
while the rest of the formation follows because of the spring forces.

To calculate the changes in a mass–spring system, let x(t) be the position of an entity
at a given time t and v(t) its velocity. Moreover, let F(v, x, t) be the force caused by the
springs at a given time when the element has the given velocity and position. The task is
now to calculate for each element a new position and velocity for the time step t + Δt.
One of the simplest methods is explicit (or forward) Euler integration (Nealen et al.
2006):

x(t + Δt) = x(t) + Δtv(t),
v(t + Δt) = v(t) + ΔtF(v(t), x(t), t).
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Although explicit integration is simple to implement, it is stable only when Δt is small.
To solve this we can use implicit (or backward) integration, where we have the term
t + Δt on both sides of the equation:

x(t + Δt) = x(t) + Δtv(t + Δt),
v(t + Δt) = v(t) + ΔtF(v(t + Δt), x(t + Δt), t).

This is stable for large values Δt, but the downside is that now we have to solve an alge-
braic system of equations at each time step. We improve this by combining the explicit
and implicit integrations into a forward–backward integration:

v(t + Δt) = v(t) + ΔtF(v(t), x(t), t),
x(t + Δt) = x(t) + Δtv(t + Δt).

Here, we update first v using forward integration and then x using backward integration.
This variant is more stable than explicit integration and, moreover, it does not incur any
extra computation.

. Summary

Finding a balance between individual control and conforming to group behaviour
can be challenging – also in real life. Flocking algorithms emphasize the individual
behaviour which gives birth to group-level phenomena, which we can then label as
group behaviour. However, as with any emergent system, designing a particular group
behaviour is a next to impossible task, and often the only approach available to the devel-
oper is trial and error. Emergent systems are nevertheless highly robust and well suited
to dynamically changing conditions. Formations, on the other hand, are more brittle as
they are often fine-tuned to specific conditions. For the developer, they offer much more
control as the individual entities are subjected to the overall order.

Exercises

- Observe people moving in groups, for example, in a shopping mall. Keep a record
of how the groups are formed. Do your observations comply with the social
groups presented on page 175?

- The passageways to high-traffic exits, (e.g. in football stadiums or railway stations)
are often designed to have asymmetrical structures before the actual exit. If the
passageway were symmetrical, what kind of problem could it cause to the flow of
exiting people (especially in an emergency situation)?

- Consider what would happen if we left out one of the flocking behaviour rules?
Are some rules more essential to flocking than others?

- The steering behavioural urges Separation and Alignment presented in Algo-
rithm 8.2 consider only the nearest flockmate. Rewrite both routines so that the
boid observes the n nearest flockmates.
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- What happens if a flock does not have a leader? What happens if the leader drifts
to the middle of the flock?

- Flocking can be used to realize the solution of a path-finding problem for a group
of entities so that the leader follows the path and the other members of the group
follow the leader. Are there groups which this approach does not suit?

- Let us assume we have a box formation with nine entities which has to go through
a canyon (see Figure 8.8). Which of the steering methods – behaviour-based,
fuzzy logic control or mass–spring system – would work best in this situation
and why? Which steering method would be the worst?

Figure . A box formation facing a canyon.

- In a mass–spring system, the number of springs required depends on the for-
mation configuration. If we create springs between all entity pairs, we keep the
formation stable regardless of its type. The fewer springs we have, the less eager
the entities are to keep their place in the formation. If we restrict the number of
springs to include only structural and shear springs, what formation types (see
Figure 8.3) can we create reliably?

- Consider the following groups and decide whether they are best modelled as a
flock or a formation:
� Children playing football.
� Professional athletes playing football.
� A band of guerrillas in a jungle.
� A band of gorillas in a jungle.
� The band Gorillaz in a jungle.

- Is there a viable approach for designing an emergent system other than trial and
error?
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Decision-Making

The border between the game world and the entities inhabiting it is often blurred. In
Chapter 1 we separated them conceptually and called the computer-controlled entities
synthetic players. At the implementation level we are often forced by limited computing
resources to accept some merging between the game world and the computer-generated
entities inhabiting it. However, this is not necessarily a problem, since the human player
is mainly interested in the other human players and the synthetic players with a recog-
nizable identity. Moreover, the action and interaction in a computer game – as in any
other form of storytelling – do not require so many participants to be compelling.

Naturally, if we are to have synthetic players in a game, they must be able to make
appropriate decisions as the game progresses. Decision-making covers various topics –
even path finding, game trees and tournaments, which we discussed in the previous
chapters, can be seen as making a decision on what to do. In fact, almost any algorithmic
method can be used in decision-making (e.g. sorting can be used when deciding on an
attack against the opponent with the smallest army). For this reason, we can cover only
a limited number of approaches and methods here.

We begin by taking a broader look at decision-making in computer games, which helps
us to understand where different methods are best suited. This general discussion is
then followed by a review of finite state machines, and we analyse their role in decision-
making. Then we present influence maps which model the game world and its attributes
as force fields to guide the decision-making process. Finally, we take a look at automated
planning where we want to find a sequence of actions to reach a given goal.

. Background

The AI system of a computer game comprises two parts: pattern recognition and
decision-making system (Kaukoranta et al. 2003). In Figure 9.1, the world, which can be
real or simulated, consists of primitive events and states (phenomena) that are passed to
pattern recognition. The information abstracted from the current (and possibly the pre-
vious) phenomena is then forwarded to the decision-making system. The world allows
a set of possible actions, and the decision-making system chooses the ones to carry out.

Because game worlds exist only virtually, computer games differ from the usual
pattern recognition applications. We can omit certain problems that affect real-world
pattern recognition (e.g. coping with noisy sensor data or unreliable actuators). This

Algorithms and Networking for Computer Games, Second Edition. Jouni Smed and Harri Hakonen.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Figure . The primitive events and states originating from the world are used in pattern recognition
and stored for later use. The decision-making system uses the observations made in pattern
recognition to choose an appropriate action among the possibilities allowed by the world.

does not mean that the game world is wholly deterministic – if it were, we would hardly
need a decision-making system. The two sources of indeterminism, as we saw in Chapter
1, are the built-in randomness and the human players’ actions in the game world.

The synthetic player can act in different roles (e.g. reading the game in an ice hockey
match, identifying threats during a campaign, or recognizing Proppian fairy-tale pat-
terns in storytelling). Apart from the design considerations presented in Section 1.3, the
role affects the level of decision-making, the use of the modelled knowledge, and the
chosen method. These attributes set boundaries for the computational complexity and
the quality required from the decision-making.

9.1.1 Levels of decision-making

Decision-making problems are classically divided into three levels: strategic, tactical,
and operational. On the strategic level, decisions are made for a long period of time and
are based on a large amount of data. The nature of the decisions is usually speculative
(e.g. what-if scenarios), and the cost of a wrong decision is high. For example, a strategy
for a war remains stable and should be based on all available information. Instead of
considering the interactions of the soldiers in the field, the terrain is analysed to identify
regions that provide an advantage (e.g. hills provide the upper hand for defence, whereas
narrow passages are suitable for ambushes). This information is then used in planning
the manoeuvres to minimize the risks and to maximize the effect. A poor decision at
this level dooms every soldier. Clearly, some details must be left out in the process, and
this quantization always includes a possibility that some vital information is lost. To
avoid quantization problems, the results of pattern recognition should have as high a
quality as possible. This is not an unreasonable demand, because strategic decisions are
infrequent and the computing can be done offline or in the background.
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The tactical level acts as an intermediary between strategic and operational levels.
Tactical decisions usually consider a group of entities and their cooperation. For exam-
ple, the decisions for a battle concentrate only on the engaging battalions and the condi-
tions in the battleground. They weigh and predict events at the current focus points and
in the dominated areas and, based on the advantages gained at the strategic level, resolve
the conflicts as they occur. Ultimately, the aim of tactical decisions is to follow through
the plan made at the strategic level. Although tactical decisions affect directly a limited
set of entities, a poor decision can escalate to ruin the chosen strategy. Because tactical
decisions are made more frequently than strategic decisions, there is less time available
for decision-making. The results must be delivered in real time and their quality cannot
be as high as at the strategic level.

The operational level is concrete and closely connected with the properties of the
game world. Although the number of decision-making entities at this level is high, the
decisions consists of choosing short-term actions among a given set of alternatives. For
example, a soldier must decide whether to shoot, dodge, or charge. Because the compu-
tational power must be divided among numerous atomic entities, the decision-making
method must be reactive and run in real time.

Let us consider football as an example of the levels of decision-making. On the strate-
gic level, there are the choices of how to win the game (e.g. whether to play offensively
or defensively). On the tactical level, the choices concern carrying out the strategy in the
best possible way (e.g. whether to use man-marking defence or space-marking defence).
On the operational level, the choices are simple and concrete (e.g. where should the
player position himself and if he has the ball, whether to dribble it, kick it at the goal
or pass it to another player). The problem is how to choose what to do (i.e. decision-
making) and on what grounds (i.e. pattern recognition). It is fairly simple at the oper-
ational level – dribble if you have an opening, pass if you can do it safely – but it gets
harder and harder as the level of abstraction rises.

9.1.2 Modelled knowledge

Based on the information provided by pattern recognition, the decision-making system
forms a model about the world. Because models are always simplifications, they are sub-
ject to uncertainty (see Chapter 10). Nevertheless, they are useful because the modelled
knowledge can be seen as a mechanism, which is used in conceptualizing and concretiz-
ing the important phenomena and in predicting events as well as producing them.

The model does not have to be confined only to the opponent and the game world but
can cover the actions and reactions of the synthetic player itself. Whenever the synthetic
player makes a decision, the outcome produces feedback – positive or negative, direct or
indirect – which can be used in learning (Evans 2002). For example, in Black & White the
computer-controlled pet creature learns from other entities’ reactions, from feedback
from the human player, or from its own experiences. Hence, the rule ‘Do not eat trees’
can be derived either from the villagers’ disapproval for wasting resources, from a sharp
slap by the owner, or from the resulting stomach ache.

The complexity of the world can be simplified with generators, which label the events
and states with symbols. For example, the punches in a boxing game can go through a
generator that produces the symbols ‘jab’, ‘uppercut’, ‘cross’, and ‘hook’. Now, we can con-
struct a model for the behaviour of the generator from the generated symbol sequence.
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Figure . The model over a sequence S of symbols from the alphabet Σ = {J, U, C, H} can be used in
(a) prediction and (b) production.

Modelling recognizes the underlying dependencies between symbols, which are typi-
cally stronger between symbols that are close to each other. Often a short-term history
is sufficient, but the model gets more accurate if we increase the length of the modelling
context at the cost of run time.

The decision-making system can use the modelled knowledge in two ways to do tem-
poral reasoning (see Figure 9.2): prediction and production. In prediction, we want to
know what symbol the generator will produce next. By storing the previous primitives
we can use pattern recognition to take into account not only spatial but also tempo-
ral properties. The observation passed to decision-making system can be a probability
distribution of the symbols that occur rather than a single symbol. For example, if we
have constructed a model of the opponent’s punch series, we can compute what is the
most likely punch the opponent will throw next, and use this prediction to calculate an
effective counteraction.

In production, we use the model of a generator to produce symbols. This is no longer
pattern recognition but decision-making in the form of pattern generation. For exam-
ple, we can use the model to imitate the actions of a human player (Alexander 2002).
Returning to our boxing example, we can model the punch series of a real-world boxer,
and use the model when selecting the next punch for a computer-controlled boxer. Of
course we could construct the model simply by observing the human opponent’s moves
and start mimicking them.

9.1.3 Methods

As computer games become ever more complex, the methods of conventional ‘hard’
computing are becoming less effective. Whereas hard computing is founded on
precision and categorizing, soft computing, a term coined by L.A. Zadeh, stresses the
tolerance for approximation, partial truth, imprecision, and uncertainty. It describes
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methodologies that try to solve problems arising from the complexity of the nat-
ural world, which include probabilistic reasoning (e.g. Bayesian networks), genetic
algorithms, neural networks, and fuzzy logic. We do not strictly adhere to Zadeh’s clas-
sification but discuss soft computing methods related to optimization and adaptation.
One can readily see that these methods have their counterparts in the human mind:
imagination does optimization and memory learns by adaptation.

Optimization
The term ‘optimization’ literally means the making the best of something. Mathemati-
cally speaking, optimization problems comprise three elements: an objective function
which we want to minimize or maximize, a set of variables which affect the value of the
objective function, and a set of constraints which limit the set of feasible variable values
(see Figure 9.3). The goal is to find, among the feasible solutions, the one that gives an
optimum value of the objective function.

A decision-making problem can be formed as an optimization problem provided that
we have a (preferably non-complex) objective function to rank the solution candidates.
Since optimization algorithms work iteratively, they are usually time-consuming and
are therefore used offline or during preprocessing. For example, to balance civilizations
and units in Age of Empires II, battles with different troop combinations were tested by
using a combat comparison simulator (Street et al. 2001). Here, the attributes (such as
armour, hit points, damage, and range) are the variables, which are constrained by the
range of permitted values. The objective function is to minimize the difference in the
number of victories in the simulator battles, and the attributes are changed to even out
discrepancies.

The use of optimization techniques assumes an inherent knowledge of the problem
domain. Usually we can make good use of this knowledge by implementing heuristic
rules to guide the search for more promising variable values. In other words, effective
heuristics attack the dominating variables. For example, if archers seem to have the
upper hand in the combat simulator, a heuristic rule can increase the damage done
by their counter-unit. The problem with this type of hill-climbing heuristic, which
iteratively tries to find a better solution among the neighbouring solution candidates,

solution
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Figure . An objective function gives the optimality of a solution. The goal is to find the global
optimum, but the search space is usually scattered with local optima.
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is that the search can get stuck in a local optimum before finding the global optimum
(see Figure 9.3). For example, instead of increasing the damage of the counter-unit, a
better balance could be achieved by increasing the range of their weapons. To escape
the lure of local optima a gamut of approaches have been developed with the likes of
tabu search (Glover 1989) and simulated annealing (Kirkpatrick et al. 1983).

Local optima can be avoided by having multiple search traces instead of one. Genetic
algorithms have a population of candidate solutions, which go through stages resem-
bling natural selection (Goldberg 1989). The objective function is used to weed out the
weak candidates, thus allowing the best ones to breed a new population. The variable
values of the solution are encoded in the genes. Genetic algorithms work well when the
variables are independent of each other, because the genetic operations like crossover
and mutation are more likely to produce feasible solutions. In the worst case the vari-
ables have strong dependencies (e.g. they form a sequence), and most of the offspring
would not represent a feasible solution.

Swarm algorithms, which are based on flocking algorithms (see Section 8.1), present
another approach with multiple search traces (Kennedy et al. 2001). Whereas in genetic
algorithms the solution is encoded in the population, in swarm algorithms the members
of the population ‘fly’ in the search space. Because of avoidance they keep a minimum
distance from each other and cover a larger area than a single search trace, and because
they fly as a swarm, they tend to progress as a unit towards better solutions. As a way
to escape local optima, the members can never slow down under a minimum veloc-
ity, which can allow them to fly past and free from a local optimum, especially if it is
crowded.

The suitability of optimization methods depends mainly on the level of decision-
making. When making strategic analysis, we have to scrutinize a vast amount of data.
Consequently, there are many variables and (combinatorial) interdependencies between
them. In their natural state, the problems are computationally hard to tackle, but if we
weaken our criterion for optimality by, for example, reducing interdependencies, genetic
algorithms become a viable option. Although the problem setting at the tactical level is
somewhat easier – there are fewer interdependent variables and simpler combinato-
rial problems – the method must be more responsive. Because of the computational
demands inherent in making the method more responsive, multiple search traces are
not useful and we should devise heuristic search rules. The reactivity of the operational
level dictates that we can only solve problems with a few variables or a simple objective
function.

Adaptation
Adaptation can be defined as an ability to make appropriate responses to changed or
changing circumstances. In a sense, adaptation resembles learning a skill in the real
world. When we learn to ride a bike, we do not receive, for example, the physical for-
mulae describing the motions and forces involved. Instead, we get simple – and possibly
painful – feedback of success or failure. Based on this we adapt our behaviour and try
again until we get it right.

Generally speaking, the difference between adaptation and optimization is that opti-
mization searches for a solution for a given function, whereas adaptation searches for a
function behind given solutions (see Figure 9.4). The assumption behind this is that the
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Figure . To model the underlying generator, the function is fitted to the solution samples according
to the feedback.

more the function adapts to the solution domain, the better it corresponds to the origi-
nator of the modelled data. Adaptation is useful when the factors or mechanisms behind
the phenomena are unknown or dynamic. The downside is that we have to sample the
search space to cover it sufficiently, and the more dimensions (i.e. measured attributes)
it has, the sparser our sample gets due to combinatorial explosion.

Since the task of pattern recognition is to abstract significant observations and rules
from the given data, it can usually be expressed as an adaptation problem. In other
words, a pattern recognition method is initially a blank slate, which then begins to
adapt to the characteristics of the world. This learning process involves self-modification
according to the response from the environment. For example, influence maps (see Sec-
tion 9.3) are a simple and statistical way to implement adaptive pattern recognition.
Based on experience we change the values in the map: if we get casualties at some point,
we decrease the relevant value to avoid this in the future; otherwise, if it turns out to be
safe, we increase the value.

Neural networks provide a method to adapt in situations where we do not have back-
ground knowledge of dependencies (Freeman and Skapura 1991). They work in two dif-
ferent operation modes: training and execution. These are separate phases in supervised
learning, where a trainer provides feedback for all sample cases, and the neural network
constructs an input–output mapping accordingly. In unsupervised learning, the neural
network – for example, a self-organizing map (Kohonen 1995) – adapts to the structure
inherent in the input without any a priori classification of observations. If the input is
a time series, hidden Markov models (Rabiner and Juang 1986) turn out to be useful
because they can adapt to recurring multidimensional structures.

We can use supervised or unsupervised learning chiefly at the strategic level because
of their computational demands. The tactical level, however, is more dynamic and the
results of pattern recognition are less thorough. Here, we should use methods such as
hidden Markov models that yield results whose credibility can be evaluated. At the oper-
ational level, there are two possibilities: we have stochastic interpretation for input data
or we use a ready-adapted neural network. One feature is common to all levels: even
after we have learned a skill, we can still try to hone it to perfection.
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Figure . A statechart diagram for a finite state machine for a simple patrol robot. The start state is
‘Homing’ and there is no final state, because the robot remains operational until it is destroyed.

. Finite State Machines

A finite state machine (FSM) is an algorithm described as a mechanism of a finite num-
ber of discrete states and directed transitions between them. The control flow of the
FSM algorithm pauses in a state, and the outgoing transitions from this current state
determine the next possible states. Each transition is labelled with an event name (e.g.
referring to some actual event in the game world). When the event occurs, the corre-
sponding transition from the current state is triggered and the succeeding state becomes
the current state. In other words, the FSM algorithm moves from state to state in dis-
crete steps. The set of all possible events is the input set of the FSM. Although the events
can be asynchronous, the FSM handles them one at a time through a queue.

An FSM can be depicted as a statechart, which is a directed graph where vertices
denote the states and edges the transitions. Furthermore, each state must be reachable
from the start state by following the transitions. Figure 9.5 illustrates possible high-level
states for a patrol robot. The states could flow as follows. At the beginning the robot
is in the ‘Homing’ state, and when it is fully operational, it moves to ‘Patrolling’. The
robot follows its patrol route until it encounters an enemy. Depending on the resistance
encountered the robot initiates an ‘Attacking’, ‘Defending’, or ‘Retreating’ manoeuvre.
The robot’s raison d’être is patrolling, and it can deviate from this behaviour only when
it desperately needs repairing. Because we do not want to give the enemy a chance to
find the route to the robot’s home base, the robot heads back home only after it has
shaken off any trailing enemies. If the robot is on the verge of destruction, it tries to
follow a delaying engagement by swapping between ‘Defending’ and ‘Retreating’.

An FSM is an established way to describe and implement AI for synthetic players,
because it
� gives a visual overall view of the behaviour (as in Figure 9.5);
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� decomposes the control flow of the FSM algorithm spatially and temporally into dis-
crete parts;

� introduces terminology by naming the states, input events, and transitions of the FSM
algorithm;

� defines what are the valid relationships between the sequential and concurrent events
and possibly their corresponding actions;

� is a perspicuous and concrete model for synchronizing internal and external events
(i.e. defining interaction);

� can be formulated in a different ways, which have expressive power equal to that of
any other computation model;

� provides a formalism that in certain cases can be used for automatic FSM simplifica-
tion, verification, or validation;

� can be used as a subpart within other methods (e.g. in decision-making);
� can be combined with other concepts (e.g. state and event stacking), probabilities, and

fuzziness;
� is straightforward to implement and trace once devised; and
� has various implementation variants that allow a balance to be found between effi-

ciency and compactness.

FSMs originate from mathematics – to be precise, from the theory of computabil-
ity and complexity. The theoretical concepts behind FSMs include deterministic and
non-deterministic finite automata, finite transducers, pushdown automata, pushdown
transducers, extended finite state machines, and Turing machines with variants. These
concepts introduce the following utility properties that an FSM can include (see
Figure 9.6).

(i) An FSM can act as an acceptor or a recognizer that maps the input sequence to a
Boolean value. In this role, the FSM has a set of final states which return true to
indicate that the input sequence has the property defined by the FSM. For example,
Figure 9.6(a) defines the states for an item of merchandise in an auction.

(ii) An FSM can be used as a transducer or an interpreter that transforms the input
sequence to an output sequence (i.e. it generates a symbol response for each input
event). Now, the design question is what data sequence corresponds to the input
sequence. For example, the FSM in Figure 9.6(b) converts a binary input sequence
to a binary sequence that indicates the starts of the bit-runs. The conversion is
denoted by the transition label i∕o, where i is the next input bit and o the output
bit. Hence, sequence 001110000101 outputs sequence 101001000111.

(iii) A transition can include an action or procedure that is executed when the transi-
tion gets triggered. This property makes an FSM a computator that maps the input
sequence to an action sequence (or behaviour). The computational nature of the
actions allows the FSM to interact with its surroundings. The action (or sequence
of actions) is appended to the event trigger of the transition label with the nota-
tion event/action. Figure 9.6(c) illustrates a well-known traversal strategy for closed
acyclic mazes: ‘Keep your right hand on the wall and you will go along every wall
once and arrive back at the starting location.’ To simplify the problem assume that
the maze is laid out on a square grid and the walls are four-connected. Our walk
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Figure . Three independent properties that an FSM can include: (a) an acceptor, (b) a transducer,
and (c) a computator.

is also four-connected and we can go forward (‘go’) or make 90◦ turns (i.e. ‘left’ or
‘right’). These actions are selected according to our sensor events: the neighbouring
left, front, or right squares can be clear or blocked by a wall.

9.2.1 Computational FSM

Mathematical models for FSMs differ considerably from computational software models
for FSMs. A computational FSM has numerous definitions, but perhaps the one most
widely used is the FSM model of Unified Modeling Language (UML) notation (Object
Management Group 2005). In this section, we use the following fundamental parts from
UML:

Action An atomic (i.e. conceptually instantaneous) transaction that consists of compu-
tation (e.g. function calls or sending of signals). The action cannot be interrupted by
an event but runs to completion.

Guard A Boolean expression that expresses a condition (enclosed in square brackets)
that must be fulfilled before any action can be executed.

State An identifiable status or condition in which the FSM algorithm can pause and
persist for a period of time. A state is depicted as a rectangle with rounded corners,
and the state name is placed inside the state border.
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The state can have an entry action (executed when the state becomes the current
state) and an exit action (executed before the triggered transition is handled), which
are noted with keywords ‘entry’ and ‘exit’:

entry / action(arguments)
exit / action(arguments)

In addition to actions, a state can run a non-atomic activity, which can be any kind of
computation that continues until the FSM is interrupted by an event. This activity is
specified by the keyword ‘do’:

do / computable activity

Current state The state where the FSM resides and waits for an event to occur. When
a state becomes a current state, it is entered and when a transition triggers the state is
exited. A deterministic FSM has only one current state at a time.

Initial state The default start of an FSM. Because of determinism an FSM has only
one initial state, which is a pseudo-state because it can never become the current
state. The initial state is denoted by a black filled circle with one outgoing triggerless
transition, an initial transition, to the actual start state.

Start state The target of the initial transition and thus it is the default initialization for
the current state indicator.

Final state A pseudo-state indicating that the FSM is terminated. An FSM can have
zero or more final states, which are illustrated with a black filled circle surrounded by
an unfilled circle.

Event An occurrence of phenomena that is given an identity. The event can trigger (or
fire) a transition. In general, an event can be
� a signal that can be dispatched asynchronously (i.e. it does not block the control

flow of the invocator),
� a method call that is invoked synchronously (i.e. it blocks the control flow of the

caller),
� a time period, or
� a change in the situation.
Because signal and call events differ at the software client end only, they are illustrated
similarly: the event and its content are denoted by a name and a list of arguments.
The time event includes the keyword ‘after’ and an expression for the time period.
The change event is described simply by a Boolean condition.

Transition A quaternary relationship between two states (called the source and the tar-
get), a specified event, and an action. When the source state is the current state and
the event occurs, the action is executed and the target state becomes the current state.
In a self-transition the source and target are the same, but the entry and exit actions
are executed similarly to ordinary transitions. A transition is illustrated as a directed
edge from the source state to the target state. The edge label can be of the form

event(arguments) [guard] / action(arguments)

where the action is executed only when the event has occurred and the supplementing
guard evaluates to true.

A transition that lacks event and guard is called a triggerless transition (or com-
pletion transition or epsilon transition). It is fired and followed immediately after the
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source state becomes the current state and the possible state actions are finished. If
a transition connects the initial state directly to the final state, it can include a guard
and an action but not an event.

Local variable A reference to shared data structures that the FSM can use in calculation.
Local variables are often used for gathering information about the input instance.

To support stepwise refinement and modularity the states of an FSM can be hierarchical,
which means that a single state can contain one or more FSMs. Hierarchical structure
makes it possible to hide irrelevant details and to support reuse. Typically, a state is
refined to substates if its ‘do’ activity is complex but has discrete phases for event han-
dling.

A state without any subparts is called a simple state. If a state contains concurrent sub-
FSMs, it is called a composite state and the current state is defined as a combination of
the current states of the nested FSMs. A state that is assigned to nest one FSM is called a
submachine state and the current state is defined for each nesting level at the same time.
Due to hierarchical decomposition of the states, there are level-preserving transitions
and level-crossing transitions. The incoming transitions of these types to a non-simple
state s poses the question what are the states of the nested FSMs when s becomes the
current state. Because s defines the environment for its sub-FSMs, we can consider that
any sub-FSM M is instantiated when s is entered. In this case the start state of M is
indicated by its initial state.

In addition to modularity, hierarchical states provide a way to denote many-to-one
communication: a transition from a non-simple state can be triggered by any of its sub-
states. In other words, if an FSM does not have a proper transition for an event at the
current state level, the event is delegated upwards to the enclosing FSM. A many-to-one
transition can be an outgoing transition (i.e. the consequent state is not in the source
sub-FSM) or an incoming transition (i.e. the resulting state is back in the sub-FSM). In
both cases the exit and entry actions are executed.

Sometimes it is convenient to store the current states of the sub-FSMs of s, where
the execution continues when s is re-entered. For this purpose, we can define two pseu-
dostates, a shallow and deep history state. A shallow history state of a sub-FSM M rep-
resents the most recent current state c of M and the incoming transitions to this history
state are directed to c. A deep history state resembles the shallow history state but is
applied recursively to every nested level. The shallow history node is illustrated with a
circled H and the deep history node with a circled H*.

Figure 9.7 gives an example of an FSM for a generic pull-down menu logic, in which
each menu item can be attached by a help document and related to advertisement ani-
mations. The menu is constructed and its n items are indexed uniquely from 0 to n − 1
when the FSM is instantiated. The local variable e is used to refer to the entry index of
the current item; naturally the actual implementation can use other methods to access
the menu item behaviour. The menu logic relies on the events ‘next’ and ‘previous’ which
are guarded by the conditions on the current entry index. The current entry index wraps
over from the last menu item to the first (or from the first entry to thee last) by consum-
ing an extra ‘next’ (or ‘previous’) event without any actions.

In addition to the traversing logic, the FSM models the activation of a menu item with
the state ‘Execution’. When the control flow returns, the event ‘done’ activates the transi-
tion to the history state, which forces the menu into the same state where the execution
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Figure . A generic FSM for a single pull-down menu with an online help logic.
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was triggered. The composite state ‘Guide’ has concurrent substates ‘Document’ and
‘Animation’ and is instantiated for one menu item at a time by the event ‘help’. When
‘Guide’ becomes active, both its sub-FSMs are run simultaneously. ‘Guide’ has a local
variable ‘gui’ that refers to an object that can set up a help text for a given menu item,
scroll the text at given speed, and run advertisement animations in the background. The
scrolling text can be affected by events ‘ahead’ and ‘back’, and the cumulative scrolling
speed (negative for scrolling backwards) is stored in the local variable s. It is worth not-
ing that scrolling back the text when it is at the beginning depends solely on the object
referred through ‘gui’ and not the FSM itself. Scrolling can be paused at any time and
restored by toggling ‘pause’. When the state ‘Guide::Document’ receives the event ‘exit’,
it sends ‘exit’ signal to its co-FSM ‘Guide::Animation’ to finish the advertisement ani-
mation. When the sub-FSMs reach their final states, the triggerless transition (i.e. the
rightmost transition in the diagram) is triggered.

The FSM presented does not describe how it should be implemented, how the menu is
laid out on the screen, or how the user input is conveyed to the FSM. From the perspec-
tive of the FSM, these issues are irrelevant because it only defines the operation logic
for the menu. In other words, the FSM notation – like the pseudocode used elsewhere
in this book – is a convention to describe algorithmic behaviour.

9.2.2 Mealy and Moore machines

The UML description for FSMs allows an action to be attached both to a state and a
transition. This approach is a mix of Mealy machine and Moore machine models. In a
Mealy machine an action can be located only in a transition and thus the next action is
derived from both the current state and an input event. In a Moore machine an action
can only be as an entry action of a state, which means that the next action is derived solely
from the target state. Figure 9.8 illustrates the difference between these two machine

entry / 1

titi

taa

taa / 1

taa / 0ti / 0Start

Ti

taataa

ti taaStart
ti

Ti

entry / 0

taa

(a)

Ti sequence

entry / 1

ti / 1

Taa
taa / 0

ti / 0

Taa

entry / 0

(b)
ti

Taa sequence

Figure . Detecting breaks in the repeating rhythm of ‘ti’ and ‘taa’ with (a) a Mealy machine, and (b) a
Moore machine. The irregular beat outputs value 1.
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types. Let us call a state that has an entry action a Moore state; otherwise we call the
state a Mealy state.

The two machine types have equal expressive power, but in practice the Mealy for-
mulation tends to yield a smaller number of states – which is also the reason why they
are sometimes much harder to understand. If the Mealy and Moore models are equiva-
lent, why does UML include them both? The rationale is that the models have different
benefits and drawbacks with respect to the problem that is solved by the FSM. When
a notation supports both models, an experienced and careful designer can determine
the proper balance between the models and have a combination of the best properties.
Although the structure of the FSM of mixed machine models depends strongly on the
application, some guidelines should be followed in the design (see Figure 9.7):
� The Mealy and Moore machine models do not include exit actions. Both the the-

ory and widely accepted FSM design practices indicate that the behaviour of an FSM
should not be built on the exit actions. About the only acceptable use for exit actions
is to end something critical such as freeing resources, cancelling timers, or finishing
synchronization blocks. Otherwise, the exit action should be independent of the FSM
logic.

� Triggerless transitions should be avoided, because they blur the concept of current
state. The alias name of the transition – a completion transition – expresses its
adequate context of use: when the task is finished, we want to end up in the com-
pletion state.

� In a Moore state, the triggering of a self-transition or a level-crossing transition also
runs the exit and entry actions. If this behaviour is not desired, the state should be
converted to a Mealy state. This gives us a method for testing the ‘Mooreness’ of a
state: If some (imaginary) self-transition or level-crossing transition can cause prob-
lems with the entry and exit actions, the actions are too loosely connected to the state
and should be relocated. In other words, if an action is attached to a state, the action
must be an inherent property of that state without exception.

� Apart from many-to-one transitions, the level-crossing transitions should be avoided
because they break the encapsulation between the FSM hierarchy levels. Also, the
execution sequence for the ‘entry’, ‘do’, and ‘exit’ actions becomes too tedious to follow.
Strict information hiding and encapsulation result in a more understandable form of
modularity.

� If an application allows many alternative structures for the FSM, some transitions
tend to become similar to one another and seem to emulate the role of a non-existent
state. However, a transition cannot be used as a state (i.e. the FSM cannot be between
states). Documenting the rationale behind the chosen FSM design (e.g. why and how
the structure gives the solution) helps to keep the Mealy and Moore approaches in
balance.

9.2.3 Implementation

Up to now we have described FSMs mainly from the perspective of the supplier
who implements the software component. In software development, we must also
take into account the client who gives the technical and intentional environment to
the component by using it. This line of thinking leads to various module realization
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Figure . An FSM as a software object has a static structure, dynamic context, a fixed interface, and a
use environment.

techniques – such as design by contract principle (Meyer 1997) – that bring these two
conceptual participants together. This discussion is a part of a larger philosophy of soft-
ware development which – regrettably! – falls outside the scope of this book. Neverthe-
less, let us discern the main software components of an FSM:
� a set of relationships between the states, transitions, events, and actions;
� control logic that handles the instantiation and termination, implements the event

dispatching mechanisms, keeps track of state changes, and invokes the action execu-
tions;

� local data structures that can be accessed by the actions and activities of a state, by
the guards and actions of a transition, and by the possible sub-FSMs;

� software client interface that describes the responsibilities of the FSM and how it is
connected to the use environment (e.g. the application).

Figure 9.9 illustrates how these elements can be grouped according to their role. The
structure objects describe the FSM as static data, the context objects manage the dynam-
ics of the FSM, and the environment models a software client that uses the FSM through
a designed interface. Discerning the three roles makes it easier to transfer an FSM to
a pseudocode algorithm (and back). Moreover, it guides the direct implementation of
an FSM (especially hierarchical states). For instance, we can deduce that if a state can
have a sub-FSM, the interface part of Figure 9.9 must inherit the same properties as the
states have. Why? Because in this case the state also fulfils the environment role for its
sub-FSM.

The context role is important when we are defining an FSM. The context realizes the
interface for the software clients (and possibly for other users through middleware inter-
faces) and describes how the dynamic memory is used to control the FSM implemen-
tation. This means that the FSM context gives us some freedom for designing FSMs
in an object-oriented software system. In particular, local variables make it possible to
transfer responsibilities from the FSM to the data object structures. In other words, we
can simplify, for example, FSM communication by using object sharing and collapse
combinatorial FSM substructures to member functions. We have already used member
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Figure . A combinatorial FSM that waits for signals ‘e’, ‘f’, and ‘g’ before proceeding. (a) Many-to-one
signalling for detecting all erroneous situations is managed by a composite state. (b) The same FSM is
collapsed by using a choice point and three Boolean guards.

functions in Figure 9.7, where the properties of ‘gui’ are defined to support the FSM logic
of the menu.

To sum up, there are two kinds of freedom for managing complexity in an FSM: nested
states and local variables. Let us take an example and assume that we have to wait for
three different signals ‘e’, ‘f ’ and ‘g’ (in any order) before we can proceed in the transition
sequence. Figure 9.10(a) models this behaviour between the states ‘Wait’ and ‘Continue’.
The ‘Error’ state and nesting are used to collect invalid signalling. As we can see, the
FSM has repetitive substructures, which usually indicate that with proper indirection
constructs we could have designed a simpler solution. If we introduce three Boolean
variables for the signals, we can check that each of them has occurred exactly once.
Figure 9.10(b) illustrates the resulting FSM. The diamond represents a multiselection
choice point of the disjointly guarded branches. Because Boolean flags and other mode
variables rapidly ruin understandability, a better alternative is to introduce an object
with two member routines that hide the accounting logic. Now, we use a procedure to
keep a record of the encountered signals, and call a three-valued query function in the
choice point to select the suitable transition branch.

9.2.4 Discussion

Computer games often use FSMs to control the behaviour of synthetic players. In other
words, the FSM describes the ‘main loop’ of a synthetic player and the necessary activ-
ities are hooked into the states and transitions as actions (e.g. Figure 9.6(c) gives a
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complete decision-making logic for a friendly minotaur). However, this kind of approach
suits only for synthetic players whose behaviour can be defined and described directly
in discrete terms. When considering FSM as an implementation, one must heed the
following principles:

� The structure of an FSM is essentially static and defies modifications to its config-
uration. The purpose of an FSM is to define sequential and parallel relationships to
achieve the intended behaviour for every possible input sequence. Since it gets harder
to preserve the integrity of a complex FSM for all input instances, automatic modifi-
cations become troublesome to implement. In other words, the behaviour of an FSM
is not very parametric at the FSM structure level.

� An FSM introduces a sequential control memory of reactive behaviours, which are
triggered by an event. The current state is a memoryless representation of every pos-
sible transition chain leaving from the start state. Because the set of succeeding actions
is determined solely by the current state, responding to (possibly numerous) excep-
tional situations that have not been taken into account beforehand is an onerous task.

� The states of an FSM are mutually exclusive at the same hierarchy level, and each
deterministic FSM is exactly in one certain state. Since there is no ‘between states’
condition, a normal FSM is not well suited to situations where states should be con-
tinuous or have degrees of variation. Although states can describe proposition logic,
operations more suitable for predicate logic (e.g. comparing game situations) are dif-
ficult to model with FSMs.

� If one state machine is used for modelling independent properties, it can easily cause
a combinatorial explosion in the number of states or transitions. For example, if we
model a ranger in a role-playing game so that she can wander in the wilderness, eat
when hungry, and illuminate her surroundings with a torch, the all-in-one FSM solu-
tion resembles that given in Figure 9.11. By using this approach the number of states
and transitions multiply for each new property the ranger has. This seems to imply
that the independent features should be modelled with separate FSMs, and they must
be managed by some higher-level context, which controls what FSMs are informed
when an event occurs. Alternatively, all the separated FSMs can be constructed to
discard unknown events as in Figure 9.12.
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Figure . An FSM that joins two
independent properties together.
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Figure . Two concurrent FSMs where the
properties are disjoint. The FSMs discard every
unknown event by the transition labelled as
<<any>>.

� FSMs tend to raise the risk of ‘total rewriting’ in the iterative software development
processes. This problem stems from the fact that the software gets built up gradually:
it is possible that the required set of states is not known when the first FSMs are
sketched and their dominant structures are fixed. Because the FSMs are often highly
cohesive, they are rarely patchable and, instead, they should be restructured – with
enthusiastic effort.

Based on these observations it looks quite obvious that FSMs are not at their best in
controlling the synthetic player directly but in keeping up the state of the entity. If we
take a closer look at the decision-making component of a synthetic player (see Figure
9.1), the synthetic player’s decision-making is based on a sense of self, others, the world,
and the causality of the actions and events. When the decision-making system compares
the appropriate actions, it tries to manage time-related issues as follows: the history
repository models the past, the present is upheld by defining what the current state
means, and the future is understood through the dynamic models of information and
rules. FSMs have properties that are needed when we are implementing any of these
supportive tasks. First, a state in an FSM represents all possible transition walks from the
initial state (i.e. a state is a compressed image of the past). Second, the FSM maintains
the current state that is recursively defined according to its nesting structure. Third,
the outgoing transitions from the current state determine the set of possible actions in
the future. On the other hand, FSMs lack many capabilities that are useful in realizing
intelligent behaviour.

By limiting the scope of FSMs to supporting components for decision-making (e.g.
pattern recognition) rather than decision-making itself, the purpose of FSMs becomes
clearer and their implementation more manageable. For each specific sequential or
concurrent task, we can design an FSM of our own that is relatively independent of
other FSMs. This leads to better software modularity because it adheres the principle
of ‘low coupling and high cohesion’. Due to modularity the decision-making subsystem
becomes more adaptable. As AI programmers know, this property is essential because
general decision-making methods must be adjusted, tuned, and made robust until they
become practical in the application.
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. Influence Maps

An influence map is a discrete representation of the synthetic player’s knowledge of the
world. In a sense, grids and navigation meshes, which are discussed in Section 7.1, are
influence maps representing the cost of travelling. However, an influence map can also
provide the decision-making system with other kinds of strategic and tactical informa-
tion. The idea of using influence maps (or spheres of influence) in the game of Go was
introduced by A.L. Zobrist (1969). Because of its simplicity, the method is widely used
especially in real-time strategy games such as Age of Empires II (Pottinger 2000).

Each influence map collects information about a certain type of effect in the game
world (e.g. strengths and positions of military troops or deposits of natural resources).
Influence is a twofold function, because it can indicate repulsiveness or alluring-
ness: enemy troops should be avoided (i.e. their influence is repulsive), and untapped
resources should be capitalized upon (i.e. their influence is alluring). Influence maps also
allow inferences to be made about the characteristics of different locations in the game
world (e.g. finding strategic control points and pointing out weaknesses in the enemy’s
defence). For a discussion of different strategic and tactical dispositions for outmanoeu-
vring the opponent, see Woodcock (2002) and Mark (2015).

Although an influence map overlays the game world, it does not have to follow its
geography. However, for the sake of argument, we assume that the map is divided into
tiles with a regular grid. As in path finding, the granularity of the grid is a trade-off
between accuracy and computational demands. Each tile in the grid holds numeric
information on the corresponding area of the game world. The tile can represent allur-
ingness with positive values and repulsiveness with negative values.

Influence maps are constructed in two phases (see Figure 9.13). Initially, the tiles where
the given influence exists are assigned a corresponding value. Then the influence is prop-
agated over the map by spreading the influence already allocated to the tiles to the neigh-
bouring tiles. The influence has a fall-off that diminishes (usually linearly or exponen-
tially) its effect when it is spread. Moreover, if the influence map includes floating point
values, there should be some cut-off point so that minuscule influence values, which
have little if no effect at all, do not get spread all over the map.

Influence maps based on terrain or other static features of the game world can be
created beforehand. Unfortunately, most of the influences are dynamic in nature and the
maps need to be updated periodically. As a remedy, we can categorize the maps based
on the rate of changes so that the more animate ones are updated more frequently. Also,
lazy evaluation, where the values are updated only when the influence map is accessed,
may improve the overall performance.

It is possible to generalize influence maps to graphs. For example, consider the game
Hunt the Wumpus (Yob 1975), which has become a classic in AI research. Although the
game world is usually simplified into a grid, G. Yob, the game creator, was bored with
grid-based games, and the squashed dodecahedron depicted in Figure 9.14 was his orig-
inal design for the game world. The subsequent versions of the game included a diverse
set of game worlds based on, for example, torus surfaces and Möbius strips. Fundamen-
tally, the game world comprises a graph, where the vertices represent the rooms and
the edges are the tunnels between two rooms (see Figure 9.14). The somewhat simpli-
fied rules of the game are as follows. A hunter roams inside this world, equipped with a
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Figure . Let the circled tile represent the strength and position of own troops and squared tiles
enemy’s troops. (a) After the initial influence values have been assigned, their effect is propagated over
the map. The fall-off halves the influence in the neighbouring tiles. (b) The same is done to the
influence map based on the enemy’s troops. (c) By aggregating the two influence maps, we get a new
influence map which combines the troop information. (d) The resulting map demarcates, for example,
the frontier between the players.

limited supply of arrows, in search of a wumpus. At each turn, the hunter must decide
between two actions: move through a tunnel into a new room, or shoot an arrow through
the tunnel to a neighbouring room. If the hunter moves to the same room as the wum-
pus, it eats him and the game is lost; if the hunter shoots an arrow to the room where the
wumpus is lurking, he kills it and wins the game. There are also other hazards hidden
in the game world: if the hunter encounters bats, they will carry him into a randomly
selected room. If there is a pit in the room, the hunter will fall into it and the game is
over. Luckily, the hunter can sense if there is danger in any of the neighbouring rooms
(although he does not know in which one): he can smell the wumpus, hear the noise of
the bats, and feel the draft from the pit.
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Figure . The game world of Hunt the Wumpus is a graph, where the vertices are the rooms and the
edges the tunnels connecting them. The hunter (H) moves from room to room avoiding bats (B) and
pits (P), and is ready to shoot the wumpus (W).

Algorithm 9.1 describes a simple decision-making system for the hunter, which
is based on influence maps. The hunter maintains four influence maps – bats, pit,
wumpus, and visited rooms – which are updated based on sense data and discoveries.
Here, a large value means repulsion. All maps are initialized to the value 1. When the
hunter enters a room and nothing happens, we know that there are no bats, pit, nor
wumpus there, and the associated map positions are set to the value 0. The visited map,
which encourages the hunter to choose undiscovered rooms, is updated so that the
value of the current room is doubled. If the hunter perceives any sensory information
about the neighbourhood, all neighbouring rooms are updated by doubling the current
values in the relevant influence map. The hunter makes a decision based on two rules:
if any of the neighbouring rooms exceeds a given threshold value in the wumpus map,
the hunter will shoot an arrow into that room. Otherwise, he will move to the room for
which the sum of influence map values is the smallest. Hence, the hunter tries to avoid
possible dangers and already visited rooms.

. Automated Planning

Automated planning is about devising actions to achieve a given objective. Formally
speaking, a planning problem assumes that the world has a unique initial state, a goal
state, a set of available operations and a set of constraints limiting the planning. The
aim is to create a sequence of operations changing the world from the initial state to
the goal state while observing the constraints. Usually we can assume that the world is
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Algorithm 9.1

v)
in: current room v ∈ V
out: action ⟨a ∈ { , },u ∈ neighbourhood(v)⟩
constant: threshold ts for shooting an arrow
local: bats, pit, wumpus, and visited (initially

∀u ∈ V : bats(u) = pit(u) = wumpus(u) = visited(u) = 1)
1: bats(v) ← pit(v) ← wumpus(v) ← 0
2: visited(v) ← 2 ⋅ visited(v)
3: for all u ∈ neighbourhood(v) do
4: if noise(v) then
5: bats(u) ← 2 ⋅ bats(u)
6: else
7: bats(u) ← 0
8: end if
9: if draft(v) then

10: pit(u) ← 2 ⋅ pit(u)
11: else
12: pit(u) ← 0
13: end if
14: if smell(v) then
15: wumpus(u) ← 2 ⋅ wumpus(u)
16: else
17: wumpus(u) ← 0
18: end if
19: end for
20: w ← vertex w ′ ∈ neighbourhood(v) that maximizes wumpus(w ′)
21: if wumpus(w) ≥ ts and arrows left then
22: wumpus(w) ← 0
23: return ⟨ , w⟩

24: end if
25: u← u′ ∈ neighbourhood(v) which minimizes bats(u′) + pit(u′) + wumpus(u′)

+ visited(u′)
26: return ⟨ ,u⟩

Wumpus-Hunter-React(

shoot move

move

influence maps

Decision-making for a wumpus hunter using influence maps.

shoot

limited, finite, deterministic, static (i.e. there are no outside events changing the world)
and completely observable (i.e. we can find out the truth value of any condition related
to the world).

Planning systems based on logic were created already in the 1950s for specific applica-
tion areas, but the most influential system, Stanford Research Institute Problem Solver
(STRIPS), was developed to solve general planning problems and its notation forms the
basis for modern planning systems (Fikes and Nilsson 1971). To improve the efficiency
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and usability later systems introduced abstraction, where the less important details are
hidden at the beginning, allowing the planning system to focus on the difficult parts of
the problem (Sacerdoti 1974). Then the planning opens the abstractions and solves the
details. This approach allowed different levels of abstraction to be created, leading to
conceptual hierarchies. We humans tend to use the same approach when solving com-
plex planning problems by abstracting and dividing them into smaller parts. This allows
us to focus first on the essentials. Once we know the solution at a higher level, it is eas-
ier to work out the details. Often we divide the problem into subproblems, which we
solve apart from the other subproblems – like the approach to path finding presented
in Chapter 7.

Here, we focus on hierarchical task networks (HTNs), which have been widely used
in many games for a range of purposes, from modelling synthetic player behaviour
(Humphreys 2015; Wallace 2003) to generating interactive narrative (Cavazza et al.
2001; Riemer 2015). Another common approach for automated planning in games is
goal-oriented action planning, which is an improvement on STRIPS allowing emergent
behaviour to be generated in real time (Orkin 2003).

In HTNs, tasks are divided into primitive tasks that can be carried out directly and
compound (i.e. non-primitive or abstracted) tasks that the planning system has to figure
out how to perform. The planning system comprises (Erol et al. 1994a):
� a task network that represents the problem to be solved;
� a set of operations that indicates the action corresponding to each primitive task;
� a set of methods that tells how to perform the compound tasks.

Figure 9.15 illustrates a simple HTN for a guard, who is patrolling an area equipped
with a bow and sword. The highest-level compound task is ‘Guard’, which has three
methods ‘Attack’, ‘Heal’ and ‘Patrol’. Each method has a precondition: ‘Attack’ requires
that the guard has seen an enemy, ‘Heal’ requires that the guard is wounded, and for
‘Patrol’ the precondition is true, which means that it is always applicable. When selecting
a method, we are basically selecting a search strategy (e.g. depth-first or breadth-first).
For simplicity’s sake, let us assume that we have prioritized the methods so that ‘Attack’
is evaluated first, followed by ‘Heal’ and ‘Patrol’ (top-down order in the figure). If the
world state satisfies the precondition, we select the method; otherwise, we continue to
the next method. ‘Patrol’ is the final choice if no other method is selected.

If we look next at the compound state ‘Attack’, we can see that it has two methods lead-
ing to either ‘Ranged attack’ or ‘Melee attack’. If the guard has neither bow and arrow
nor sword, neither of these plans is selected and the selection rolls back to ‘Guard’ and
ultimately leads to ‘Patrol’. ‘Ranged attack’ has a higher priority and it has three primi-
tive subtasks that are connected to the operations in the game world. Hence, the result-
ing sequence of operations would be ‘Move to shooting distance’, ‘Prepare the bow’ and
‘Shoot an arrow’.

To solve the planning problem Algorithm 9.2 presents a simplified version of an HTN;
for a more general approach, see Erol et al. (1994b). The algorithm starts from the initial
task, which in our example would be ‘Guard’. The tasks to be processed are stored in a
stack, where we pop out one task for each iteration. If the task is a compound task, we go
through its methods and select one for which the precondition is true. All the subtasks –
both primitive and compound – of that method are pushed to the stack and we save the
current situation for a possible rollback. If no suitable method is found, we roll back to
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Algorithm 9.2 Simple hierarchical task network algorithm.

i)
in: initial task i
out: sequence of operations O
local: sequence R used as a stack for backtracking; sequence T used as a stack for

task to be processed
1: O ← ⟨ ⟩; R ← ⟨ ⟩; T ← ⟨ ⟩ ⊳ Empty sequences.
2: (T , i)
3: repeat
4: t← (T)
5: if compound(t) then
6: M ← methods(t)
7: select m ∈ M so that precondition(m) =
8: if m ≠ then
9: for all s ∈ subtasks(m) do

10: (T , s)
11: end for
12: (R, ⟨t, T, O⟩) ⊳ Save for rollback.
13: else ⊳ No suitable method found.
14: if R ≠ ∅ then
15: ⟨t, T, O⟩ ← (R) ⊳ Roll back.
16: else
17: error no plan exists
18: end if
19: end if
20: else ⊳ Primitive task.
21: if precondition(t) = then
22: O ← O ∥ ⟨operation(t)⟩
23: else
24: if R ≠ ∅ then
25: ⟨t, T, O⟩ ← (R)
26: else
27: error no plan exists
28: end if
29: end if
30: end if
31: until T = ∅
32: return O

Simple-HTN(

Stack-Push

Stack-Push

Stack-Push

Stack-Pop

Stack-Pop

Stack-Pop

nil
true

true

the previous saved situation – unless there is nothing to roll back, in which case there
is no viable plan. For a primitive task, the algorithm first ensures that its precondition
holds and then adds the associated operation to the resulting sequence of operations. If
the precondition is false, then we roll back to the previous situation and continue from
there. Again, if the rollback is not possible, the planning fails.
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Figure . Guard’s decision-making represented as a hierarchical task network using the and–or tree
notation.

. Summary

The technical requirements and expectations on synthetic players are constantly
increasing. Whereas in the traditional turn-based games the computer opponent can
think (almost) as long as it takes, nowadays games mostly require real-time response.
This puts considerable computational strain on the synthetic player, because it can no
longer take too long to find an optimal strategy but must react promptly. Response is the
keyword – even to such an extent that game developers tend to think that it is better to
have hordes of mindless cannon-fodder than to grant synthetic players a shred of intelli-
gence. In the past the main reason for this was that the decision-making was not given a
fair share of the overall processing resources. Surprisingly, even today AI in commercial
computer games can require a significant amount of the available processor capacity.

Distribution of processing has become more important now that games using net-
working are more common. This may present one solution to the dilemma of achieving
both real-time response and intelligence: instead of running the synthetic players on
one machine, they can be distributed so that the cumulative computational power
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of the networked nodes is utilized. For example, Homeworld uses this technique and
distributes the computer-controlled opponents among the participating computers.

Distribution naturally begs the question as to how autonomous the synthetic play-
ers should be. As long as we can rely on the network there is no problem, but if nodes
can drop out and join at any time, distributed synthetic players must display autonomy.
This means two things. First, the synthetic player must be persistent, because it can be
migrated to or re-created at another node if the one where it is currently run gets cut
off. Second, the synthetic player must be self-sufficient, because it cannot rely on outside
processes but should be able to operate on its own. This is not necessarily a drawback,
because autonomy can lead to smaller and better design, and complex behaviour can
emerge from seemingly simple autonomous agents.

A corollary of autonomy is that the synthetic players must have a way to communicate
explicitly with each other. Because there is no central intelligence controlling them, they
have to inform others on their decisions, indicate their plans, and negotiate with each
other – just like we humans do in the real world. Of course these communication skills
may come in handy also when interacting with the human players.

Exercises

- Consider the process of doing the groceries. What strategic, tactical and opera-
tional decisions are involved in it?

- Humans are predictable players. Verify this claim by implementing a modeller for
rock–paper–scissors, which analyses the sequence of human opponent’s choices
and predicts the next move. Analysis could be based on statistical data (i.e. it is
likely that the human player favours a certain choice), or sequential data (i.e. it is
likely that the human player repeats a certain sequence of choices).

- Consider the following problems. Which of the them should be solved with opti-
mization and which with adaptation?
(a) Deciding which building to construct next in a real-time strategy game.
(b) Driving a jeep in a convoy.
(c) Selecting the contents of a backpack in a role-playing game.
(d) Casting a spell against a known enemy.
(e) Casting a spell against an unknown enemy.

- Execute the FSM illustrated in Figure 9.6(c) for the maze given in Figure 9.16.
The starting location is at (5, f) and the heading is north.

- Let us analyse the maze circulator of Exercise 9-4. Assume that a maze does not
include unnecessary wall tiles. Given a m × n maze with w wall tiles, what is the
maximum number of events keeping us in the state ‘Searching for a wall’? How
about remaining in the state ‘Following the wall’ for one walk cycle around the
maze? Give at least two reasons why this kind of knowledge about an FSM is
useful.
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Figure . A closed acyclic maze on a square grid. The maze has walls (dark tiles) and an
interior (white tiles), which are four-connected.

- The right-hand rule modelled in the FSM of Figure 9.6(c) benefits left-handers
(including the authors). Is it possible to define an equivalent rule for right-
handers?

- Figure 9.6(c) describes the FSM with natural language, which is typical in the
high-level design phase of a software development process. Refine the FSM so
that it is closer to the implementation by incorporating more formal handling
of the sensory events sensor(l, f , r). Boolean variables l, f , and r indicate whether
there is a wall on the neighbouring left, front, or right tile. Also introduce a
simple local variable interface for executing actions ‘go forward’, ‘turn left 90◦’,
and ‘turn right 90◦’.

- Inspired and amazed by the mazes you decide to implement a stealth-based game
called ‘Metal Hear Oil’, in which the player secretly dwells in a maze-like world
populated by hostile but nearsighted robots. Fortunately, each robot gives visual
feedback about its internal state through a row of lights etched on its occiput.
By observing the robot the player can learn how it reacts to the surroundings
according to the sensory stimuli. You can even intensify the mood by including
movable façade walls.

The robot’s control logic is based on an FSM similar to the one in Exercise 9-7.
Modify this FSM and its local variable interface so that the robot recognizes the
following game world situations and flashes its backlights accordingly: ‘in a con-
vex corner’, ‘in a concave corner’, ‘in a corridor’, ‘in a dead end’, ‘beside the player’,
and ‘facing the player’. In the last two cases the robot also gives an intruder alert.

- Assume that the game world is an infinite square grid. Figure 9.17 defines an
acceptor FSM for events ‘north’, ‘east’, ‘south’, and ‘west’ that model unit steps
towards the principal compass points. What is the general condition when the
FSM terminates? Also give more descriptive names to the states.

- At first glance the menu FSM given in Figure 9.7 seems to serve only the user
interface subsystem and have little – if anything – to do with decision-making.
To counter this let us put aside the menu logic and just focus on the events, states
and transactions. Consider a bartender in a small and cosy bar serving drinks to
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Figure . An acceptor FSM on a square grid.

customers, entertaining them with stories, managing the bar bookkeeping, and
occasionally doing some maintenance work. Use the skeleton of the menu FSM
to define a control logic for this simple but busy synthetic bartender.

You can use this alternative view in Exercises 9-11 to 9-14.

- Implement the ‘Guide::Document’ state of Figure 9.7 using the pseudocode nota-
tion and the case–of control structure.

- The ‘Main menu’ state in Figure 9.7 is a Mealy machine. Redesign it as a Moore
machine.

- The ‘Guide::Document’ state in Figure 9.7 has one anonymous state that contains
a sub-FSM with ‘Paused’ and ‘Browsing’ states. This sub-FSM is a combination
of Mealy and Moore machine models. Change it to a pure Mealy model that does
not have any incoming transitions from the superstate.

- Figure 9.7 describes an FSM for a simple but generic pull-down menu. Supple-
ment it with the following features:
(a) In the original FSM, the help documentation of a menu item is accessed

through the main menu. Change the FSM so that it is possible to go through
all item documentations without leaving the ‘Guide’ state.

(b) The original FSM is designed to handle only one pull-down menu. Or is it?
How would you proceed if your application required multiple disjoint sub-
menus with various nesting levels?

- Figure 9.8 defines a Mealy machine and a Moore machine for detecting the
rhythm breaks ‘ti’–‘ti’ and ‘taa’–‘taa’. Device a Mealy machine and a Moore
machine for detecting the subsequences of the form ‘ti’–‘taa’–‘taa’–‘ti’ from any
given input.
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- Study Figure 9.9 and give a condition for when it is possible to share an FSM
substructure among multiple FSM structures. The condition should be necessary
and sufficient. Give at least two reasons why shared sub-FSMs are beneficial.

- Model a simple pocket calculator with an FSM that uses floating point values
and operators ‘+’, ‘−’, ‘∗’, and ‘∕’. To avoid parentheses the expressions are given
using reverse Polish notation and evaluated using a stack as a data structure. For
example, (3 + 1)∕4 can be given to the FSM as the input events ‘3’, ‘1’, ‘+’, ‘4’, ‘∕’,
‘print’. The event ‘print’ outputs the topmost value of the stack without other side-
effects. Is the FSM notation suited to this kind of problem? Would an algorithmic
pseudocode be easier to understand? Can you generalize your observation by
considering only the FSM structure? If you can, what consequences does it have
concerning decision-making methods?

- The structure of the FSM of Exercise 9-9 can also be interpreted as a model for
a specific walking pattern in a square grid. Supplement it by introducing suitable
frequency counters so that it can be used for predicting the player’s movements.
What kind of software client interface should the FSM have? How can it be used
for producing randomized square grid walks with respect to the model?

- Table 9.1 defines the states for a player on the move as a combination of step and
heading directions. How can you model this matrix with an FSM? Is it worth the
effort?

Table . The states of a player on the move in terms of a step direction and a heading
direction. The directions are absolute in the game world (i.e. they are not relative to the
player). The ‘Forward step’ state is denoted by ‘F’, ‘Backward step’ by ‘B’, ‘Left sidestep’ by
‘L’, and ‘Right sidestep’ by ‘R’.

Heading towards

Step towards north east south west

north F L B R
east R F L B
south B R F L
west L B R F

- In Section 9.2 we do not describe how the FSM context of Figure 9.9 actually
receives the events. There are two opposite approaches for conveying signals,
routine calls, time delays, and condition changes to an FSM. In a pull approach
the FSM actively polls the events that can affect it. In a push approach the FSM
is passive until it is given an indication about the events. Of course each event
type can have its own delivering logic, and the approaches can be combined.
What object-oriented design patterns – for example, from the catalogue by
Gamma et al. (1995) – can be used when implementing these pull and push
approaches?
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- Let us continue Exercise 9-20. What object-oriented design patterns would you
use when implementing the hierarchical FSMs? Note that the State design pat-
tern of Gamma et al. (1995) is not necessarily the best way to implement an FSM
state.

- Influence maps – like any discretization – can lead to quantization problems,
where relevant details get lost because of the coarseness of the model. How can
this problem be tackled?

- Influence maps are often closely connected to path finding. Explain why and how.

- Influence maps are often used in path finding. In the game of Goldrush (see Fig-
ure 9.18) the game world is formed by a square grid, where each tile has a height.
Piles of gold have been scattered randomly in the world, and a gold-digger, start-
ing from home, must find a path through all the piles and ending up back home.
The game world also includes towers, which can shoot arrows to the north, south,
east and west. The accuracy of a tower depends on the distance d to the gold-
digger, and the probability of a hit is 1∕2d. Going uphill or being shot reduces the
gold-digger’s vitality. Design a method that helps the gold-digger to find a path
that conserves his vitality as much as possible.

H

T

G

T

T GG

GT

Figure . Game world for Goldrush. The gold-digger starts from home (H) and must visit all
gold piles (G) and return home. The towers (T) shoot arrows to the four principal compass
points. The colour of a tile illustrates the height of the terrain (i.e. the lighter the colour, the
higher the ground). To conserve his vitality the gold-digger should avoid travelling uphill and
getting too close to the towers.

- Trace the wumpus hunter’s decisions using Algorithm 9.1 in the game world of
Figure 9.14. What happens if you change the multiplier of the influence map
visited(∙) from 2 to 1 1

2 or 2 1
2 ?
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- Algorithm 9.1 does not always lead the hunter to the wumpus. Design a game
world where the hunter can get stuck. Update the algorithm so that the hunter
can escape these situations.

- If the game world of Hunt the Wumpus were a Möbius strip, what would that
mean for the hunter’s decision-making?

- The bats and the wumpus in Hunt the Wumpus do not move. If they could wan-
der around in the cave (as in the original game), what would that mean for the
hunter’s decision-making?

- Let us add two new features to the guard’s behaviour modelled as an HTN in
Figure 9.15:
� If there is more than one enemy, the guard sounds an alarm and waits for

backup troops before attacking.
� If the guard observes a wounded companion in arms and has a healing potion,

he uses the potion to heal the companion’s wounds.
Restructure the HTN and prioritize the new features. Devise the necessary sub-
tasks.

- Line 7 of Algorithm 9.2, where the method is selected, is the key to searching the
HTN. Instead of prioritizing the methods, what other possibilities could we use?
How would they affect the behaviour of the algorithm?
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Modelling Uncertainty

Because decision-making is based on a model of the world, it is often subject to uncer-
tainties. The dictionary gives us two meanings for the word ‘uncertainty’: something
that is uncertain, or the state of being uncertain. In the first case we usually talk about
probability (like the outcome of casting a die), whereas in the latter case the uncertainty
concerns our own abilities or possibility to classify objects. If you draw a circle freehand,
there is uncertainty about whether it is a circle. However, that uncertainty has nothing
to do with probability. This possibilistic uncertainty brings forth problems of classifica-
tion, and we face them everyday. In their purest form, they present themselves assorites
paradoxes: when does a heap of sand cease to be a heap if we remove one grain of sand
at a time from it?

In this chapter we look at both probabilistic and possibilistic uncertainty. Statistical
reasoning models beliefs based on the probability of events, whereas fuzzy sets help us
model the possibility of events by allowing partial membership in a set. Fuzziness can be
embedded in ‘classical’ solution methods, and, as an example, we present how constraint
satisfaction problems can be fuzzified.

. Statistical Reasoning

Sometimes we do not have enough evidence for full certainty, and we have to make deci-
sions based on beliefs. This situation can occur when we are facing random events (e.g.
throwing dice or drawing cards from a shuffled deck) or when we have only statistical
knowledge on the chain of events. In the latter case, the belief in the likelihood of an
event can be based on statistical data. In this section we go through some techniques
for modelling probabilistic or statistical knowledge.

10.1.1 Bayes’ theorem

Bayes’ theorem, introduced by T. Bayes in the eighteenth century, provides a method to
calculate conditional probabilities. Suppose that we have a hypothesis H and evidence
E, and we know a priori the probabilities of the hypothesis P(H), the evidence P(E),
and the evidence assuming the hypothesis is true P(E|H). Bayes’ theorem gives us the
probability of the hypothesis based on the evidence:

P(H|E) = P(H ∩ E)
P(E)

, (10.1)

Algorithms and Networking for Computer Games, Second Edition. Jouni Smed and Harri Hakonen.
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which we can rewrite as

P(H|E) = P(E|H) ⋅ P(H)
P(E)

. (10.2)

More generally, if we have a set of n hypotheses {H0, H1, … , Hn−1}, Bayes’ theorem can
be restated as

P(Hi|E) =
P(E|Hi) ⋅ P(Hi)∑n−1

j=0 (P(E|Hj) ⋅ P(Hj))
(10.3)

provided that the whole event space equals
⋃n−1

i=0 Hi, Hi ∩ Hj = ∅ when i ≠ j, and
P(E) > 0.

Bayes’ theorem has assumptions which restrict its usability. First, all the statistical data
regarding the evidence with the various hypotheses are assumed to be known. Because
Bayesian reasoning requires complete and up-to-date probabilities, we have to adjust
them whenever we find a new connection between a hypothesis and the evidence. Sec-
ond, the terms P(E|Hi) must be independent of one another (i.e. the hypotheses are
alternative explanations for the evidence). Both of these assumptions can be quite prob-
lematic to establish in the real world.

Let us take a simple (but instructive) example of Bayes’ theorem. Suppose there is a
10% probability that an alpha-tested computer game has a bug in it. From past experi-
ence we have observed that the likelihood of a detected bug resulting from an actual bug
in the program is 90%. The likelihood of detecting a bug when it is not present (e.g. it is
caused by the test arrangement) is 10%. Now, the components are:

� H – there is a bug in the code;
� E – a bug is detected in the test;
� E|H – a bug is detected in the test given that there is a bug in the code;
� H|E – there is a bug in the code given that a bug is detected in the test.

The known probabilities are:

P(H) = 0.10,
P(E|H) = 0.90,

P(E|¬H) = 0.10.

By using the law of total probability we can calculate for partitions H and ¬H ,

P(E) = P(E|H) ⋅ P(H) + P(E|¬H) ⋅ P(¬H) = 0.18.

To get the probability of detecting an actual bug in the code, we apply Equation (10.2)
and get

P(H|E) = 0.5.

To conclude, even if we can detect actual bugs 90% of the time, there is a fifty–fifty
chance that a detected bug is not in the actual code – which is not a reassuring result
for a programmer.
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Figure . A Bayesian network as a directed
acyclic graph.

10.1.2 Bayesian networks

Bayesian networks try to solve the independence problem by modelling the knowledge
in a modular fashion. Generally, propositions can affect each other in two alternative
ways:

(i) observing a cause changes the probabilities of its effects, or
(ii) observing an effect changes the probabilities of its causes.

The idea of a Bayesian network is to make a clear distinction between these two cases by
describing the cause-and-effect relationships with a directed acyclic graph. The vertices
represent a proposition or variable. The edges represent the dependencies as probabil-
ities, and the probability of a vertex is affected by the probabilities of its successors and
predecessors.

Let us take an example, where a guard is observing his surroundings. If he hears a
noise, its cause is either a sentry making the rounds or an intruder, who is likely to avoid
the time when the sentry is doing the rounds. The situation can be expressed as a graph,
illustrated in Figure 10.1. If we know the probabilities for the dependencies between the
vertices, we assign them to the edges or list them as in Table 10.1.

We still need a mechanism to compute the propagation between the vertices. Sup-
pose the guard hears a noise, what does it say about the probability of an intruder? The
propagation methods are based on the idea that the vertices have local effects. Instead
of trying to manage the complete graph, we can reduce the problem by focusing on one

Table . Probabilities for a Bayesian network.
H|E P(H|E)

Noise | Sentry ∧ Intruder 0.95
Noise | Sentry ∧ ¬Intruder 0.9
Noise | ¬Sentry ∧ Intruder 0.8
Noise | ¬Sentry ∧ ¬Intruder 0.1
Sentry | Round 1.0
Sentry | ¬Round 0.0
Intruder | Round 0.1
Intruder | ¬Round 0.9
Round 0.3
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Figure . Belief and plausibility.

subgraph at a time; for details, see Pearl (1986). Still, the problems of Bayesian reason-
ing – establishing the probabilities and updating them – remain, and Bayesian networks
are usually too static for practical use.

10.1.3 Dempster–Shafer theory

To address the problems of Bayesian reasoning, Dempster–Shafer theory (Shafer 1990)
allows beliefs about propositions to be represented as intervals

[belief, plausibility] ⊆ [0, 1].

Belief (Bel) gives the amount of belief that directly supports the proposition. Plausibility
(Pl), which is defined

Pl(A) = 1 − Bel(¬A),

describes how much the belief supporting the contradicting proposition ¬A reduces the
possibility of proposition A (i.e. Bel(A) ≤ Pl(A)). In particular, if Bel(¬A) = 1 (i.e. the
contradicting proposition is certain), then Pl(A) = 0 (i.e. A is not plausible) and the only
possible belief value is Bel(A) = 0 (i.e. A is not believable).

The belief–plausibility interval indicates how much information we have about the
propositions (see Figure 10.2). For example, suppose that the proposition ‘there is an
intruder’ has a belief of 0.3 and a plausibility of 0.8. This means that we have evidence
in supporting of the proposition being true with probability 0.3. The evidence contrary
to the hypothesis (i.e. ‘there is no intruder’) has probability 0.2, which means that the
hypothesis is possible up to the probability 0.8, since the remaining probability mass of
0.5 is essentially ‘indeterminate’. Additional evidence can reduce the interval – increase
the belief or decrease the plausibility – unlike in the Bayesian approach, where the prob-
abilities of the hypotheses are assigned beforehand. For instance, at the beginning when
we have no information about hypothesis A, we let Bel(A) = 0 and Pl(A) = 1. Now, any
evidence that supports A increases Bel(A) and any evidence that supports the contra-
dicting hypothesis decreases Pl(A).

Let us take an example and see how we use the belief function with a set of alternative
hypotheses. Suppose that we have four hypotheses, ‘weather’, ‘animal’, ‘trap’ and ‘enemy’
which form the set Θ = {W , A, T , E}. Our task is to assign a belief value to each element
of Θ. The evidence can affect one or more of the hypotheses. For example, evidence
‘noise’ supports hypotheses W , A and E.

Whereas Bayesian reasoning requires that we assign a conditional probability to each
combination of propositions, Dempster–Shafer theory operates with sets of hypotheses.
Amass function (or basic probability assignment) m(H), which is defined for all H ∈
℘(Θ) ⧵∅, indicates the current belief in the set H of hypotheses. Although the number
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of subsets is exponential and the sum of their probabilities should be 1, most of the
subsets will be ignored and their probability is zero.

Let us continue with our example. At the beginning we have no information at all, and
we let m(Θ) = 1 and all the subsets have the value 0. In other words, all hypotheses are
plausible and we have no evidence supporting any of them. Next, we observe a noise
and know this evidence points to the subset {W , A, E} (i.e. we believe that the noise is
caused by the weather, an animal or an enemy) with probability 0.6. The corresponding
mass function mn is

mn({W , A, E}) = 0.6, mn(Θ) = 0.4.

Note that the ‘excess’ probability 0.4 is not assigned to the complement of the subset but
to the set of all hypotheses.

We can now define belief for a set X of hypotheses with respect to m(∙) as

Bel(X) =
∑
Y⊆X

m(Y ) (10.4)

and its plausibility as

Pl(X) =
∑

Y∩X≠∅
m(Y ). (10.5)

To combine beliefs we can use Dempster’s rule. Let m1 and m2 be the mass functions
and X and Y subsets of Θ for which m1 and m2 have non-zero values. The combined
mass function m3 is

m3(Z) =
∑

X ∩Y=Z m1(X) ⋅ m2(Y )
1 −

∑
X ∩Y=∅ m1(X) ⋅ m2(Y )

. (10.6)

An implementation of this is given in Algorithm 10.1. Dempster’s rule can be used in
both chaining (e.g. A → B and B → C) and conjoining (e.g. A → C, B → C) multiple
propositions.

In our example, evidence ‘footprints’ (supporting the hypotheses ‘animal’, ‘trap’ and
‘enemy’) has the mass function mf , which is defined

mf ({A, T , E}) = 0.8, mf (Θ) = 0.2.

Assuming that the intersections X ∩ Y are non-empty, we get the combination mnf for
the two pieces of evidence directly from the numerator of Equation (10.6):

mnf ({A, E}) = 0.48, mnf ({A, T , E}) = 0.32,
mnf ({W , A, E}) = 0.12, mnf (Θ) = 0.08.

It is possible to get the same intersection set Z more than once, but in that case we just
add the mass functions together.

The situation gets a bit more complicated if the intersection of subsets is empty. The
numerator in Equation (10.6) ensures that the sum of different probabilities is 1 (pro-
vided that this also holds for m1 and m2). If some intersections are empty, the amount
given to the empty sets must be distributed to all non-empty sets, which is handled by
the denominator of Equation (10.6).
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Algorithm 10.1 Combining two mass functions.

m1, m2)
in: mapping m1 : ℘(Θ) ⧵ ∅ → [0, 1] (the domain elements with non-zero

range value is denoted by 1 ⊆ ℘(Θ) ⧵ ∅); mapping m2
ilarly as m1

out: combined mapping m3
constant: set of hypothesis Θ
1: for all M ∈ (℘(Θ) ⧵ {∅,Θ}) do
2: m3(M) ← 0
3: end for
4: m3(Θ) ← 1
5: 3 ← Θ
6: e ← 0
7: for all M1 ∈ 1 do ⊳ For pairs of members between1 and 2.
8: for all M2 ∈ 2 do
9: M3 ← M1 ∩ M2

10: p ← m1(M1) ⋅ m2(M2)
11: m3(Θ) ← m3(Θ) − p
12: if M3 = ∅ then ⊳ Excess for imaginary m3(∅).
13: e ← e + p
14: else ⊳ M3 contributes to 3.
15: m3(M3) ← m3(M3) + p
16: if M3 ∉ 3 then
17: 3 ←3 ∪ {M3}
18: end if
19: end if
20: end for
21: end for
22: if 0 < e < 1 then ⊳ Normalization.
23: for all M ∈ 3 do
24: m3(M) ← m3(M)∕(1 − e)
25: end for
26: end if
27: return m3

is defined sim-

Combined-Mass-Function(

Let us add mc to the mass functions, which describes the evidence ‘candy wrapper’:

mc({E}) = 0.6, mc({T}) = 0.3,
mc(Θ) = 0.1.

By combining functions mnf and mc we get the following result from the numerator:

mnfc′ ({E}) = 0.6, mnfc′ ({T}) = 0.12,
mnfc′ ({A, E}) = 0.048, mnfc′ ({A, T , E}) = 0.032,

mnfc′ ({W , A, E}) = 0.012, mnfc′ (Θ) = 0.008,
mnfc′ (∅) = 0.18.
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The denominator is 1 − mnfc′ (∅) = 0.82, and we use it to scale to get mnfc (rounded to
two decimal places):

mnfc({E}) = 0.73, mnfc({T}) = 0.15,
mnfc({A, E}) = 0.06, mnfc({A, T , E}) = 0.04,

mnfc({W , A, E}) = 0.01, mnfc(Θ) = 0.01.

From this it follows that if we have evidence ‘noise’, ‘footprints’ and ‘candy wrap-
per’, Equation (10.4) gives belief in the hypothesis ‘enemy’ Bel(E) = 0.73, and Equa-
tion (10.5) gives its plausibility Pl(E) = 0.85. In comparison, the combined hypothe-
sis ‘trap or enemy’ has belief Bel({T , E}) = 0.88 and plausibility Pl({T , E}) = 1, which
means that a human threat is a more likely explanation for the evidence than a natural
phenomenon.

. Fuzzy Sets

Fuzzy sets acknowledge uncertainty by allowing elements to have a partial membership
in a set. In contrast to classical sets with Boolean memberships, fuzzy sets admit that
some information is better than no information. Although multivalued logic was devel-
oped in the 1920s by J. Łukasiewicz, the term ‘fuzziness’ was coined forty years later.
In a seminal paper L.A. Zadeh (1965) applied Łukasiewicz’s multivalued logic to sets:
instead of belonging or not belonging to a set, in a fuzzy set an element belongs to a set
to a certain degree.

One should always bear in mind that fuzzy sets depend on the context: there can be no
universal agreement on a membership function, for example, on small (cars, humans,
nebulae), and, subjectively speaking, a small car may be something completely differ-
ent for a basketball player than for a racehorse jockey. Furthermore, fuzziness is not a
solution method in itself but we can use it in modelling to cope with uncertainty. For
example, we can describe the objective function using an aggregation of fuzzy sets (see
Figure 10.3). In effect, fuzziness allows us to do more fine-grained evaluations.
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Figure . Uncertain or complex dependencies can be modelled with fuzzy sets that cover the
solution space.
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10.2.1 Membership function

In classical (or ‘crisp’) set theory the elements of a set S are defined using a two-valued
characteristic function

𝜒S(x) =
{

1, ⟺ x ∈ S,
0, ⟺ x ∉ S.

In other words, all the elements x in the universe U either belong to S or not (and there
is nothing in between).

Fuzzy set theory extends the characteristic function by allowing an element to have
a degree to which it belongs to a set. This degree is called a membership in a set, and a
fuzzy set is a class where every element has a membership value.

Theorem 10.2.1 Let U be a set (universe) and  a lattice,  = ⟨L,∨,∧, 1, 0⟩. A fuzzy
set A in the universe U is defined by a membership function 𝜇A,

𝜇A : U → L. (10.7)

Each element x ∈ U has an associated membership function value 𝜇A(x) ∈ L, which is
the membership value of the element x. If 𝜇A(x) = 0, x does not belong to the set A. If
𝜇A(x) = 1, x belongs to the set A. Otherwise, (i.e. if 𝜇A(x) ≠ 0, 1) x belongs partly to the
set A.

This general definition of a fuzzy set is usually used in a limited form, where we let the
lattice  be L = [0, 1] ⊂ R, 0 = 0 and 1 = 1. In other words, the membership function
is defined on a real number range [0, 1], and the fuzzy set A in universe U is defined by
the membership function

𝜇A : U → [0, 1],

which assigns to each element x ∈ U a membership value 𝜇A(x) in the fuzzy set A.
Another way to interpret the membership value is to think of it as the truth value of
the statement ‘x is an element of the set A’. For example, Figure 10.4 illustrates different
fuzzy sets for a continuous U . Here the universe is distance d in metres, and the sets
describe the accuracy of different weapons with respect to the distance to the target.

Sword

d )

Bow
Spear

9080706050403020100
0

0.5

1

d

μ(

Figure . Membership functions 𝜇sword, 𝜇spear and 𝜇bow for the attribute ‘accuracy’ of weapons with
respect to the distance (in metres) to the target.
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When defining fuzzy sets we inevitably face the question how one should assign the
membership functions. Suggested methods include:

� Real-world data. Sometimes we can apply physical measurements, and we can assign
the membership function values to correspond to the real-world data. Also, if we have
statistical data on the modelled attribute, they be can used for defining the member-
ship functions.

� Subjective evaluation. Because fuzzy sets often model human cognitive knowledge,
the definition of a membership function can be guided by human experts. They can
draw or select among predefined membership functions the one corresponding to
their knowledge. Even questionnaires or psychological tests can be used when defin-
ing more complex functions.

� Adaptation. The membership functions can be dynamic and evolve over time, using
the feedback from the input data. This kind of a hybrid system can use, for example,
neural networks or genetic algorithms for adaptation as the nature of the attribute
modelled becomes clear.

The beauty (and agony) of fuzzy sets is that there are an infinite number of possible
different membership functions for the same attribute. Although by tweaking the mem-
bership function we can get a more accurate response, in practice even simple functions
work surprisingly well as long as the general trend of the function reflects the informa-
tion modelled. For example, if we are modelling the attribute ‘young’, it is sufficient that
the membership value decreases as the age increases.

10.2.2 Fuzzy operations

The logical fuzzy operations∨ (i.e. disjunction) and∧ (i.e. conjunction) are often defined
using max{𝜇A(∙),𝜇B(∙)} and min{𝜇A(∙),𝜇B(∙)}, although they can be defined in various
alternative ways using t-norms and t-conorms (Yager and Filev 1994). Also, negation can
be defined in many ways, but the usual choice is 1 − 𝜇A(∙). All classical set operations
have fuzzy counterparts.

Theorem 10.2.2 Let A, B and C be fuzzy sets in the universe U. Further, assume that
all operations have the value range [0, 1]. We can now define, for each element x ∈ U,

Union C = A ∪ B ⟺ 𝜇C(x) = max{𝜇A(x),𝜇B(x)}, (10.8)
Intersection C = A ∩ B ⟺ 𝜇C(x) = min{𝜇A(x),𝜇B(x)}, (10.9)

Complement C = A∁ ⟺ 𝜇C(x) = 1 − 𝜇A(x). (10.10)

Figure 10.5 illustrates the use of fuzzy set operations for a discrete U . The universe
consists of three elements (swordsman, spearman, and archer) and they have three
attributes (mobility, strength, and expensiveness). The union of mobility and strength
describes the set of mobile or strong soldiers, whereas the intersection describes the set
of mobile and strong soldiers. The intersection of the complement of expensiveness and
strength gives the set of inexpensive and strong soldiers.
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Figure . Fuzzy operations for different attributes. (a) The membership function for mobility. (b) The
membership function for strength. (c) The membership function for the union of mobility and
strength. (d) The membership function for the intersection of mobility and strength. (e) The
membership function for expensiveness. (f ) The membership function for the intersection of the
complement of expensiveness and strength.
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10.2.3 Defuzzification

Occasionally it is necessary to form, or defuzzify, a crisp value from a fuzzy set. If Y is a
fuzzy set, let us denote y∗ the defuzzified value of the fuzzy set Y . We can use different
methods in defuzzification (Yager and Filev 1994):
� Maximum grade. Select an element y ∈ Y with the greatest membership value 𝜇Y ( y).
� Centre of area. Calculate the centre of the area indicated by the membership function:

y∗ =
∫Y y𝜇Y ( y) dy
∫Y 𝜇Y ( y) dy

. (10.11)

� Mean of maxima. Select the elements that have the greatest membership value and
calculate their mean,

y∗ = 1|J∗| ∑y∈J∗
y, (10.12)

where J∗ is the set of all the members in Y that have greatest degree of membership
𝜇Y ( y).

� Random generation. Transform the fuzzy set into a probability distribution and
choose a crisp value randomly using this probability distribution. A straightforward
way to do this is to normalize Y , and then the probability of an element y is

P( y) =
𝜇Y ( y)∑|Y |

i=1 𝜇Y ( yi)
. (10.13)

When we have converted the fuzzy set into a probability distribution, we divide the
unit interval into n sections so that each member yi in the set Y corresponds to one
section Ri = [ai, bi], where a1 = 0, b1 = P1, ai = bi−1 and bi = ai + Pi for all i > 1.
Then we randomly select a number r from the range [0, 1]. If r ∈ Ri, then y∗ = yi.

. Fuzzy Constraint Satisfaction Problem

Fuzzy optimization originates from ideas proposed by Bellman and Zadeh (1970), who
introduced the concepts of fuzzy constraints, fuzzy objective and fuzzy decision. Fuzzy
decision-making in general is concerned with deciding on future actions based on vague
or uncertain knowledge (Fullér and Carlsson 1996; Herrera and Verdegay 1997). The
problem in making decisions under uncertainty is that the bulk of the information we
have about the possible outcomes, the value of new information, and the dynamically
changing conditions are typically vague, ambiguous or otherwise unclear. In this section
we focus on multiple-criteria decision-making, which refers to making decisions in the
presence of multiple and possibly conflicting criteria.

In a constraint satisfaction problem (CSP) one must find states or objects in a system
that satisfy a number of constraints or criteria. A CSP consists of
� a set of n variables X,
� a domain Di (i.e. a finite set of possible values) for each variable xi in X, and
� a set of constraints restricting the feasibility of the tuples (x0, x1,… , xn−1) ∈

D0 ×⋯ × Dn−1.
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Figure . A monkey puzzle of 3 × 4 tiles.
The monkey is depicted as an arrow with
separated tail and head ends. The solution is
an arrangement of the tiles so that tiles are
not rotated (i.e. the black circle stays in the
upper left corner of each tile) and all the tails
and heads match (i.e. form a one-directed
arrow) inside the 3 × 4 rectangle.

A solution is an assignment of a value in Di to each variable xi such that every constraint
is satisfied. Because a CSP lacks an objective function, it is not an optimization problem.
As an example of a CSP, Figure 10.6 illustrates a monkey puzzle problem (Harel 1987, pp.
153–155). The 3 ⋅ 4 = 12 tile positions identify the variables, the tiles define the domain
set, and the requirement that all the monkey halves must match defines (3 − 1) ⋅ 4 + 3 ⋅
(4 − 1) = 17 constraints.

Unfortunately, the problems modelled are not always as discrete and easy to form.
Fuzzy sets have also been proposed for extending CSPs so that partial satisfaction of
the constraints is possible. The constraints can be more or less relaxable or subject to
preferences. These flexible constraints are either soft constraints, which express pref-
erences among solutions, or prioritized constraints that can be violated if they conflict
with constraints with a higher priority (Dubois et al. 1996).

In the fuzzy constraint satisfaction problem (FCSP) both types of flexible constraints
are regarded as local criteria that give (possibly partial) rank orderings to instantiations
and can be represented by means of fuzzy relations (Guesgen 1994; Slany 1995). A fuzzy
constraint represents the constraints as well as the criteria by the fuzzy subsets Ci of the
set S of possible decisions. If Ci is a fuzzy constraint and the corresponding membership
function 𝜇Ci

for some decision s ∈ S yields 𝜇Ci
(s) = 1, then decision s totally satisfies

the constraint Ci, while 𝜇Ci
(s) = 0 means that it totally violates Ci (i.e. s is infeasible). If

0 < 𝜇Ci
(s) < 1, s satisfies Ci only partially. Hence, a fuzzy constraint gives a rank ordering

for the feasible decisions much like an objective function.
More formally, the FCSP is a five-tuple

P = ⟨V , C𝜇 , W , T , U⟩
which comprises the following elements:
� a set of variables V ;
� a set U of universes (domains) for each variable in V ;
� a set C𝜇 of constraints where each constraint is a membership function 𝜇 from the

value assignments to the range [0, 1] and has an associated weight wc representing its
importance or priority;

� a weighting scheme W (i.e. a function that combines a constraint satisfaction degree
𝜇(c) with w to yield the weighted constraint satisfaction degree 𝜇w(c));

� an aggregation function T that produces a single partial order on value assignments.
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Figure . The set-up of Dog Eat Dog for three players. Player p1 has the enemy p2 and the prey p3,
player p2 has the enemy p3 and the prey p1, and player p3 has the enemy p1 and the prey p2. The
dashed circles represent the limit of the players’ visual range and dotted circles their olfactory range.
Players p1 and p2 can see one another but cannot smell the pond. Player p3 does not see the other
players but can smell the pond. The game world is a rectangle of size w × h.

Let us go through the FCSP stages using the game Dog Eat Dog as an example (see
Figure 10.7). Players move inside a closed two-dimensional playfield. Each player has one
prey, which is to be hunted, and one enemy, which is to be avoided. The playfield also
includes a pond, which restores the player’s health. Initially, the players and the pond
are placed at random positions in the playfield. The players have two senses: they can
see other players or smell the pond. However, the senses have limitations: the farther
away an object is, the noisier the player’s sensory data become, until beyond a cut-off
distance the player receives no sensory input from the object. The players have no con-
trol over their velocities, but they get set randomly for each turn. Instead, the player’s
only decision at every turn is to choose a direction in which to move.

10.3.1 Modelling the criteria as fuzzy sets

Each criterion associated with the problem can be fuzzified by defining a membership
function which corresponds to the intuitive ‘rule’ behind the criterion. In our example,
we need membership functions to describe different attributes. Intuitively, the rules are
simple:

� If the visual observation of the enemy is reliable, then avoid the enemy.
� If the visual observation of the prey is reliable, then chase the prey.
� If the olfactory observation of the pond is reliable, then go to the pond.
� If the visual observation of the enemy is reliable, then stay in the centre of the playfield.

Although we have given the rules as if–then statements, the first (i.e. if ) part defines
the importance given to the second (i.e. then) part. For example, the first rule could be
rewritten ‘The more reliable the visual observation of the enemy is, the more important
it is to avoid the enemy’. We return to this when we are discussing weighting.
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Figure . Membership function 𝜇a(𝜃) for the attraction of the direction 𝜃. The complement 1 − 𝜇a(𝜃)
gives a membership value for avoidance.

First, let us define a membership function 𝜇a(𝜃) for the ‘attraction’ of direction 𝜃 given
in radians (see Figure 10.8). If n ∈ Z, direction 𝜃 = 2n𝜋 − 𝜋 is towards the target, for
which 𝜇a(𝜃) = 1; direction 𝜃 = 2n𝜋 is away from the target, for which 𝜇a(𝜃) = 0. The
rest of the function is defined linearly between these points. For ‘avoidance’ we do not
have to define a new membership function, but we can use the complement of attraction,
1 − 𝜇a(𝜃).

Since the players’ senses are unreliable, we can model them conveniently with fuzzy
sets. Figure 10.9 gives simple linear membership function 𝜇s(d) for reliability of visual
input at distance d. The membership value starts at 1 and decreases as the distance
increases, until beyond the visual cut-off distance s the membership value is 0. The mem-
bership function 𝜇o(d) for reliability of olfactory input is defined in similar fashion.

Getting trapped in the side or corner of the playfield is a bad move, especially when the
enemy is chasing. The closer the player is to the centre of the playfield, the better it can
manoeuvre away from the enemy. Figure 10.10 illustrates a two-parameter membership
function 𝜇c(x, y) for the centralness of the position (x, y) in the playfield.
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Figure . Membership functions for the reliability of sensory inputs: 𝜇s(d) for the reliability of visual
input at the distance d, and 𝜇o(d) for the reliability of olfactory input at the distance d.
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Figure . Membership function 𝜇c(x, y) for the centralness of position (x, y).

10.3.2 Weighting the importance of criteria

Our set of rules includes importance, which can be realized by weighting the corre-
sponding fuzzy sets. Weights ensure that the important criteria have a greater effect
on the decision than the less important ones. In our example, we want to weight the
avoidance of the enemy and attraction of prey with the reliability of the visual observa-
tion. Similarly, the attraction of the pond is weighted with the reliability of the olfactory
observation, and the attraction of the centre with the reliability of the visual observation
of the enemy.

Weighting can be based on an interpretation of the fuzzy implication as a boundary
which guarantees that a criterion has at least a certain fulfilment value. If a fuzzy crite-
rion Ci has a weight wi ∈ [0, 1], where a greater value wi corresponds to a greater impor-
tance, the weighted value of a criterion is obtained from the implication wi → Ci. The
weighting operation can be defined classically (i.e. A → B ⟺ ¬A ∨ B), which gives us
the rule max{(1 − wi), Ci}.

We can also use the weighting scheme defined by Yager (1981), where the weighted
membership value 𝜇w

C(x) of a criterion C is defined as:

𝜇w
C(x) =

{
1, if 𝜇C(x) = 0 and w = 0,
(𝜇C(x))w, otherwise.

In the case w = 0 the criterion is ‘turned off’ because the corresponding weighted mem-
bership value always equals 1 (i.e. it does not affect the overall aggregated result).

10.3.3 Aggregating the criteria

To make the decision the different criteria must be aggregated together. Although we can
use any fuzzy conjunction operator, it is usually preferable that the aggregator has com-
pensatory properties, because then the effect of one poorly satisfied criterion is not so
drastic on the overall result. Mean-based operators have this property, and the ordered
weighted averaging (OWA) operator, proposed by Yager (1988), is particularly useful,
because the amount of compensation can be freely adjusted.

An OWA operator of dimension n is a mapping F : R
n → R, which has an associated

weight sequence W = ⟨w0, w1,… , wn−1⟩ where each weight wi ∈ [0, 1], 0 ≤ i ≤ (n − 1),
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and
∑n−1

i=0 wi = 1. Furthermore, F(a0,… , an−1) =
∑n−1

j=0 wjbj where bj is the ( j + 1)th
largest element of the sequence A = ⟨a0,… , an−1⟩. A fundamental aspect of this oper-
ator is the reordering step. An aggregate ai is not associated with a particular weight
wi, but rather a weight is associated with a particular ordered position of the aggregate.
Algorithm 10.2 gives an implementation of the OWA operator.

Algorithm 10.2 Ordered weighted aggregation.

OWA(M, W )
in: sequence of membership values M; sequence of weights W
out: aggregated result
1: V ← copy M
2: sort V into non-increasing order
3: r ← 0
4: for i ← 0… (∣V ∣ − 1) do
5: r ← r + Wi ⋅ Vi
6: end for
7: return r

By setting the weight sequence W we can get different aggregation operators rang-
ing from conjunction W = ⟨0, 0,… , 1⟩ = min{A} to disjunction W = ⟨1, 0, 0,… , 0⟩ =
max{A} and average W = ⟨1∕n, 1∕n,… , 1∕n⟩. One possibility is to use the ‘soft-and’
operator (Slany 1994), where the weight sequence is

wi =
2(i + 1)
n(n + 1)

.

This weight distribution yields a fair compensation, which in our Dog Eat Dog example
is better than imposing strict rules on the evaluation of the optimality of the direction.

10.3.4 Making a decision

We are now ready for the actual decision-making (see Algorithm 10.3). The player
decides on the direction by first evaluating possible choices one by one, and then choos-
ing the best one. The evaluation follows the phases laid out in this section (and the rou-
tines Weight-Criterion and Soft-And-Weights are defined accordingly). First, we
calculate the distances and directions to the enemy, prey and pond. That information is
used for weighting the four criteria – avoid the enemy, chase the prey, go to the pond,
and stay in the centre – which are finally aggregated together to form evaluation value
for the desirability of the given direction.

Surprisingly, even a small number of direction choices leads to good results – of course
as long as they allow the player to move within the two-dimensional playfield. Also, if
we increase the level of noise in the observations, the players can cope with it quite well
without any modification of their decision-making. Naturally, if the environment gets
too noisy (i.e. the observations get too random), it becomes almost impossible to form
a coherent picture of what is going on.
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Algorithm 10.3 Fuzzy decision-making for Dog Eat Dog.

out: best direction b
local: best evaluation eb; direction candidate ; evaluation e of the direction
constant: number of directions s
1: b ← 0; eb ← 0
2: ← −
3: for i ← 1… s do ⊳ Check each direction.
4: e ← )
5: if e > eb then
6: b ←
7: eb ← e
8: end if
9: ← + 2 ∕s

10: end for
11: return b

)
in: direction candidate
out: evaluation of the direction
constant: enemy position E; prey position P; pond position W ; own position O; at-

traction membership function a; reliability of sight membership func-
tion s; reliability of smell membership function o; centralness mem-
bership function c

1: dx ← Ex − Ox; dy ← Ey − Oy

2: e ←
√

d2
x + d2

y ⊳ Distance to the enemy.
3: de ← sgn(dy) ⋅ arccos(dx∕ e) ⊳ Direction to the enemy.
4: dx ← Px − Ox; dy ← Py − Oy

5: p ←
√

d2
x + d2

y ⊳ Distance to the prey.
6: dp ← sgn(dy) ⋅ arccos(dx∕ p) ⊳ Direction to the prey.
7: dx ← Wx − Ox; dy ← Wy − Oy

8: w ←
√

d2
x + d2

y ⊳ Distance to the pond.
9: dw ← sgn(dy) ⋅ arccos(dx∕ w) ⊳ Direction to the pond.

10: me ← 1 − a(de − ), s( e))
11: mp ← a (dp − ), s( p))
12: mw ← a (dw − ), o( w))
13: mc ← c (Ox + cos( ), Oy + sin( )), s( e))
14: return OWA(⟨me, mp, mw, mc⟩,
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. Summary

As the complexity of the game world increases, it becomes more difficult to model it
accurately. In fact, adhering to precision tends to make the model less usable, because
modelling is not about collecting detailed information but abstracting (from Latin
abstrahere, ‘to drag away’) knowledge from the details. Therefore, the model should
tolerate uncertainties – both probabilistic and possibilistic – rather than single them
out.

The key to knowledge is conciseness: having some information – albeit not perfect
and complete – is better than having no information or having too much information.
If we humans were to follow perfect and complete information all the time, we would
hardly be able to make any decisions at all. Instead, we are able and willing to base our
actions on beliefs, conjectures, rules of thumb, hunches, and even sheer guesswork.

Exercises

- Whenever we discretize an attribute, we get exposed to sorites paradoxes (deriv-
ing from the Greek word soros, ‘heap’). Consider the case where you first see
a lone enemy soldier wandering towards your area. Is that an invasion? What
if another does the same, then another, and so forth? When does the invasion
begin, and – more importantly – when should you make the decision and start
ringing the alarm bells?

- For the following questions, is the uncertainty probabilistic or possibilistic?
(a) Is the vase broken?
(b) Was the vase broken by a burglar?
(c) Is there a burglar in the closet?
(d) Is the burglar in the closet a man?
(e) Is the man in the closet a burglar?

- We can improve the software development practices of the example given on
page 222 by investing in either the implementation or testing phase. Which
improvement yields a better result: the probability of catching an actual bug
increases from 90% to 95%, or the probability of bugs being caused by the test
arrangement decreases from 10% to 5%?

- Let us extend the Bayesian network of Figure 10.1. The noise could be caused by
a dog who is likely to bark if a sentry or an intruder is on the move. Assume that
the probability of barking because of a sentry is 0.3 and because of an intruder is
0.6 (and sometimes the dog barks just because he is lonely). Add this information
to the Bayesian network and recalculate the values in Table 10.1.

- Explain (intuitively) how the terms ‘plausibility’ and ‘doubt’ presented in Figure
10.2 relate to one another.

- Model the situation of Exercise 10-4 using Dempster–Shafer theory.
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- Why is the empty set excluded from the mass function?

- Let us add to the example given on page 225 the new evidence ‘eaten leaves’ with
mass function me:

me({A}) = 0.85, me({E}) = 0.1,
me(Θ) = 0.05.

Replace the evidence ‘candy wrapper’ with this new evidence and determine a
new combined mass function mnfe. What are the belief and plausibility of the
hypotheses ‘enemy’ and ‘animal’?

What are the beliefs and plausibilities, if we observe all four pieces of evidence
‘noise’, ‘footprints’, ‘candy wrapper’ and ‘eaten leaves’?

- Figure 10.4 gives fuzzy sets for the accuracy of weapons and Figure 10.5 the
attributes of infantry. Given that we know the distance to the enemy and the
current economic situation, how can this information be combined for making
the decision on what kind of troops to train.

- Model the criteria affecting the decision-making of a race driver as fuzzy sets.

- Formulate the n-queens problem of Exercise 7-10 as a constraint satisfaction
problem.

- Write an algorithm that solves the monkey puzzle of Figure 10.6. How many
solutions does it have? What is the time complexity of the program?

- A monkey puzzle tile has four monkey halves that can be labelled north (N), east
(E), south (S), and west (W). In addition to the shape of the border rectangle,
these halves determine what edges can be placed next to one other. There is also
another way to define how the tiles can be placed: each tile corner (i.e. compass
directions NE, SE, SW, and NW) has a monkey quarter. If we abstract this quar-
ter, for example, with a letter, only the tiles with the same letter in their touch-
ing corners can be adjacent. Figure 10.11 illustrates one valid solution for this

po
az

qp
ba

rq
sb

az
cy

ba
dc

sb
td

cy
wx

dc
vw

td
uv

Figure . Monkey puzzle variant where the tiles can be adjacent only when their corner
letters match.
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quarter monkey puzzle. Are the two monkey puzzle representations equivalent
in the sense that if we have a pile of ‘half monkey’ tiles H , it is possible to define
a pile of ‘quarter monkey’ tiles Q that gives exactly the same set of solutions for
the puzzle (and vice versa)?

- Is is possible to formulate the monkey puzzle problems of Exercises 10-12 and
10-13 as a fuzzy constraint satisfaction problems?

- Let us denote the quarter monkeys of Exercise 10-13 by numbers. To evaluate the
solution we observe the difference in the corner numbers: the closer the num-
bers, the better the solution. Formulate this generalization of the monkey puzzle
as a fuzzy constraint satisfaction problem.

- Formulate the gold-digger’s decision-making in Goldrush (see Exercise 9-24) as
a fuzzy constraint satisfaction problem.
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Part II

Networking
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

Communication Layers

When multiple participants take part in the same activity such as a game, they interact
through some shared-space technology. Figure 11.1 illustrates a broad classification of
shared-space technologies by Benford et al. (1998). The transportation axis indicates the
level to which the participants leave behind their local space (i.e. whether they remain
in the physical world or leave their body behind), and the artificiality axis represents
the level to which a space is computer generated or from the real world. The model
also includes a third dimension, spatiality, but as it is not as strongly portrayed together
with the other two dimensions it is often omitted (Suovuo et al. 2015). By using the
dimensions of transportation and artificiality, we can discern four main categories:
� Physical reality resides in the local, physical world where things are tangible and the

participants are corporeal (e.g. children playing football in the yard).
� Telepresence allows the participants to be present at a real-world location but remote

from their physical location (e.g. remote-controlled drones with sensory feedback).
� Augmented reality overlays synthetic objects on the local environment (e.g. using the

camera of a mobile device and adding illustrative graphical elements to the video feed
displayed on the screen).

� Virtual reality allows the participants to be immersed in a remote, synthetic world
(e.g. adults playing football in a computer game).

Apart from physical reality, where interaction is immediate, other shared-space tech-
nologies require a distributed system – namely, computers and networks – so that the
participants can interact with each other.

Networked computer games mainly belong to the virtual reality category, although
location-based games (e.g. Ingress), which use wireless networking and mobile plat-
forms, have more in common with augmented reality. Nevertheless, what is universal to
all networked computer games is that they must be able to manage network resources,
cope with data loss and network failures, and maintain concurrency. In addition, net-
worked games differ from many other distributed applications (e.g. databases) in that
they are interactive real-time applications, where the players should experience and
share the same game world as if it exists locally in their computers.

To clarify conceptually how networked games work we can discern three communi-
cation layers:

(i) The physical platform induces resource limitations (e.g. bandwidth and latency)
that reflect the underlying infrastructure (e.g. cabling and hardware).

Algorithms and Networking for Computer Games, Second Edition. Jouni Smed and Harri Hakonen.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Figure . Classification of shared-space technologies by transportation and artificiality.

(ii) The logical platform builds upon the physical platform and provides architectures
for communication, data, and control (e.g. mutually exclusive data locks and com-
munication rerouting mechanisms).

(iii) The networked application adds context interpretation to the data (e.g. an integer
value represents a position) and orchestrates separate control flows together (e.g.
by managing synchronization and resolving deadlocks).

Operations on data – storing, processing, and transferring – have related concepts at
each level, which are illustrated in Table 11.1. Normally, there is not much we can do
to change the physical platform – except perhaps invest in new hardware. The logical
platform is intended for system designers, since it provides programming language level
abstractions like data entities and communication channels. The networked application
is built upon the logical platform and is related to the end-users. Let us now go through
each of these levels in more detail.

. Physical Platform

Networking is subject to resource limitations (e.g. physical, technical and computa-
tional), which set boundaries on what is possible to do. Once we have established a
network of connections between a set of nodes (i.e. the computers in the network), we
need a technique for transmitting the data from one node to another. The content and
delivery of information are expressed using a protocol, which defines the form of the
data transmission so that the nodes can understand it.

Table . Layers of networking with respect to data.

Operation on data

Level Storing Processing Transferring

Physical platform Memory Processor Network
Logical platform Data entity Control process Communication channel
Networked application State Integrity control Multisource support
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11.1.1 Resource limitations

Networked applications face three resource limitations (Singhal 1996):

� network bandwidth,
� network latency, and
� the nodes’ processing power for handling the network traffic.

These resources refer to the technical attributes of the underlying network and impose
physical restrictions, which the networked application cannot overcome and which
must be considered in its design.

Bandwidth refers to the transmission capacity of a communication line such as a net-
work. Simply put, bandwidth is the proportion of the amount of data transmitted or
received per time unit, measured as bits per second. The bandwidth can range from tens
of megabits per second (Mbps) in wireless local area networks (WLANs) up to 100 giga-
bits per second in wide area networks (WANs) using optical cables. In addition to how
often and how large messages are sent, bandwidth requirements depend on the amount
and distribution of users and the transmission technique, as we will see in Section 11.1.2.

Networking latency indicates the length of time (or delay) that incurs when a mes-
sage gets from one designated node to another. The variance of latency over time (i.e.
jitter) is another feature that affects networked applications. Latency cannot be totally
eliminated. For example, speed-of-light propagation delays and the slowdown of elec-
trical signal in a cable alone yield a latency of 25–30 ms for crossing the Atlantic. More-
over, routing, queuing and packet handling delays add tens of milliseconds to the over-
all latency – which is partly due to nodes processing the traffic. It should be noted that
latency and bandwidth are not necessarily related: we can have a high-bandwidth net-
work that has a low latency and vice versa.

Claypool and Claypool (2006) recognize two effects of latency for the players:
� the precision required to complete the action (e.g. sniping needs higher precision than

using a machine gun); and
� the deadline by which it has to be completed (e.g. casting a spell has a tighter deadline

than moving).

For interactive real-time systems such as computer games, the rule of thumb is that
latency between 0.1 and 1.0 seconds is acceptable. For instance, the Distributed Inter-
active Simulation (DIS) standard used in military simulations specifies that the network
latency should be less than 100 ms (Neyland 1997). Latency affects the user’s perfor-
mance nonlinearly: Continuous and fluid control is possible when the latency does not
exceed 200 ms, after which the interaction becomes more observational and cognizant.
Consequently, the threshold when latency becomes inconvenient for the player depends
on the type of the game. The thresholds for different game genres – illustrated in Figure
11.2 – can be listed as follows (Bettner and Terrano 2001; Chang et al. 2010; Claypool
and Claypool 2006; Fritsch et al. 2005; Ida et al. 2010):
� first-person games (e.g. first-person shooters), 100 ms;
� third-person games (e.g. role-playing and sport games), 500 ms;
� omnipresent games (e.g. real-time strategy games), 1000 ms.
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Figure . The effect of latency on the performance in different game types (Claypool and Claypool
2006). The players’ threshold for latency is around the performance level 0.75.

The higher the latency is, the more important it is that it remains constant, which means
that jitter should be low. Interestingly, experiments on collaborative virtual environ-
ments have yielded similar results (Chen et al. 2005; Park and Kenyon 1999; Shirmo-
hammadi and Georganas 2001).

11.1.2 Transmission techniques and protocols

Transmission techniques can be divided into three types (see Figure 11.3):

� Unicasting is communication between a single sender and a single receiver, which
allows the traffic to be controlled and directed from point to point. If the same message
is intended for multiple receivers, unicasting wastes bandwidth by sending redundant
messages.

c2c1c4c3c2c1

NetworkNetworkNetwork

(a) (c)(b)

c0 c0 c0

c4c3c2c1c4c3

Figure . Transmission techniques. (a) In unicasting, the message is sent to a single receiver. (b) In
multicasting, the message is sent to one or more receivers that have joined a multicast group. (c) In
broadcasting, the message is sent to all nodes in the network.
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� Multicasting is communication between a single sender and multiple receivers, which
allows receivers to subscribe to groups that interest them. The sender does not need
to know all the subscribers but sends only one message, which is received by multiple
receivers belonging to the group. Because no duplicate messages are sent down the
same distribution path, multicasting provides an efficient way to transmit information
among a large number of nodes.

� Broadcasting is communication between a single sender and all recipients, which
means that every node has to receive and process every broadcast message. Obviously,
this leads to problems as the number of participants grows, which is why broadcast
transmissions are not guaranteed on WANs.

A protocol is a set of rules that two applications can follow in order to communicate with
each other. In networking, the protocol includes definitions on the message format (i.e.
understanding what the other endpoint is transmitting), message semantics (i.e. what
the node can assume and deduce when it receives a packet), and error behaviour (i.e.
what the node can do if something goes wrong). For example, the Internet Protocol (IP)
comprises low-level protocols that guide the messages from source to destination node,
hiding the actual transmission path (Defense Advanced Research Projects Agency 1981).
Networked applications rarely use the IP directly but the protocols that are written on
top of the IP. The most common among them are the Transmission Control Protocol
(TCP/IP) and the User Datagram Protocol (UDP/IP):
� TCP/IP provides a reliable point-to-point connection by dividing the data into net-

work packets. To extract the data the receiver sorts the packets in the correct order,
discards duplicates, and asks the sender to retransmit lost or corrupted packets. Nat-
urally, this reliability results in processing time and larger packets. Also, because the
transmission is sequential, it is hard to have random access to the data.

� UDP/IP provides a connectionless best-effort delivery, which means that transmission
and receiving are immediate. Because it does not guarantee that data are in order (or
received at all) or that data are not corrupted, the transmission is unreliable. How-
ever, the packets contain minimal header information, are easy to process, and can
be sent to multiple hosts, which means UDP/IP can be used also in broadcasting and
multicasting.

. Logical Platform

Whereas the physical platform sees the network as nodes that are connected together
physically, the logical platform defines how the messages flow in this network. The log-
ical platform defines architectures for communication, data, and control.

11.2.1 Communication architecture

The communication architecture can be chosen from different models, which can be
arranged as communication graphs according to their degree of deployment (see Fig-
ure 11.4). In a communication graph, the nodes represent the processes running on
remote computers and the edges denote that the nodes can exchange messages. The
simplest configuration has only a single node (i.e. one computer and no network). For
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Figure . Communication architectures as degrees of deployment: (a) a single node; (b) a
peer-to-peer architecture; (c) a client–server architecture; and (d) a server-network architecture.

example, two or more players can participate in the same game, if the screen is split so
that they each have their own view.

In a peer-to-peer architecture, we have a set of equal nodes connected by a network.
Since no node is more special than the others, they must be connected to each other (at
least latently). There is no intermediary and each node can transmit its messages to every
node in the network. Peer-to-peer was widely used in the first networked computer
games, because it is quite straightforward to realize and to expand from a single-player
game. However, it does not scale up easily due to the lack of hierarchical structure. It is
useful when the number participants is small or they communicate in a LAN.

In a client–server architecture, one node is promoted to the role of server. Now all
communication is handled through this server node, while the other nodes remain in the
role of client. Each client sends packets to the other clients through the server. Although
the server slows down the message delivery, we get benefits because we can control the
packet flow: we do not have to send all packets to all players (see Section 12.6), and we
can aggregate multiple packets into a single packet and smooth out the packet flow (see
Section 12.2). Moreover, the client–server architecture allows administration features
to be implemented, because the server has a special message routing position.

In a server-network (or server pool) architecture, there are several interconnected
servers. Here, the communication graph can be thought of as a peer-to-peer network of
servers over a set of client–server subnetworks. A client is connected to a local server,
which is connected to the remote servers and, through them, to the remote clients. Of
course we can extend the server network hierarchically so that servers themselves act
as clients to higher-level servers. The server network reduces the capacity requirements
imposed on a server. In consequence, this provides better scalability but increases the
complexity of handling the network traffic.
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Figure . Data and control architectures. (a) In a centralized data architecture, one (data server)
node stores all the data. (b) In a replicated architecture, each node manages a replica of all the data. (c)
In a distributed architecture, the data are partitioned among the nodes.

11.2.2 Data and control architecture

Two attributes define the models for data and control architecture: consistency and
responsiveness (see Section 12.1.1). To achieve high consistency, the architecture must
guarantee that processes running on remote nodes are tightly coupled. This usually
requires high bandwidth, low latency, and a small number of remote nodes. To achieve
high responsiveness (or timeliness), the queries made to the data must be responded to
quickly, which leads to loosely coupled nodes. In this case, the nodes include more com-
putation to reduce the bandwidth and latency requirements. In reality, an architecture
cannot achieve both high consistency and high responsiveness at the same time, and the
choice of architecture is a trade-off between these two attributes.

Figure 11.5 illustrates three fundamental data and control architectures:
� In a centralized architecture, only one node holds all the data.
� In a replicated architecture, a copy of the same data exists in all nodes.
� In a distributed architecture, each node holds a subset of the data.

A centralized architecture can be seen as a shared database that keeps the system con-
sistent at all times. Obviously, it is likely to lack responsiveness, which is elemental
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for real-time networked applications like computer games. Distributed and replicated
architectures are more suitable, because they allow higher responsiveness. The distinc-
tion between these architectures is that a distributed architecture adapts more easily, for
instance, to player-controlled entities, whose behaviour is unpredictable and for whom
there can be only one source of commands (Chang 1996; Verna et al. 2000). Conversely,
synthetic players are usually predictable and need not send frequent control messages,
and a replicated architecture provides a better alternative (see Section 12.5). In short,
indeterminism leads to distribution and determinism to replication.

. Networked Application

A networked application is built on a logical platform. Real-time, interactive networked
applications have been researched in the fields of military simulations, virtual environ-
ments, and computer games (Smed et al. 2002, 2003b). The key technical issues in their
design are:
� scalability (i.e. the ability to adapt to resource changes);
� persistence (i.e. leaving and entering the game world);
� collaboration between players (i.e. upholding integrity when sharing an object).

Scalability concerns how to construct an online application that dynamically adapts to
varying numbers of players and how to allocate the computation of synthetic players
among the nodes. This can be achieved only if we can utilize the network of nodes
(i.e. hardware parallelism) for implementing asynchronous computation (i.e. software
concurrency) of the networked application (see Section 12.1.2). Scaling up a networked
application brings forth two complementary views: each new participant naturally bur-
dens the communication resources but, at the same time, also offers additional compu-
tational power to the whole application.

Persistence concerns how a remote node can coexist with an application. Initially, the
application has a state and the attaching node must be configured to conform to this
state (e.g. when players join an online server, they receive the object data correspond-
ing to the current situation). Throughout the gameplay the node and application live in
symbiosis, which is supported by the underlying logical platform. For example, when a
node leaves the application, the application must have a mechanism to uphold the game
state by forwarding the node’s responsibilities. On the other hand, if a node is abruptly
disconnected, the networked application loses the objects maintained by the node. To
sum up, persistence must account, among other things, for configuration management,
error detection and recovery, and administration on both the application and node.

Collaboration usually means that there are team members that act together to achieve
a shared goal (e.g. eliminate the other team or overcome some common obstacles). To
support collaboration the networked application has to provide a player with rich and
accurate information about the other participants (Benford et al. 2001; Shirmoham-
madi and Georganas 2001). Technically, collaboration requires that the communication
between players is prioritized: The closer two entities are in the game world, the more
they communicate with each other. However, the distance between team members does
not have to be defined in spatial terms (e.g. they can have implicit knowledge about each
other’s status or they can share a dedicated communication channel). Clearly, a team is
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an application-level concept. Because the concept of collaboration distance can be com-
plex, cooperation consumes more resources than confrontation.

. Summary

We have presented the communication as three layers – physical, logical, and appli-
cation. This follows from the idea that some parts can be implemented as a software
engine (e.g. graphics engines). Here, the logical layer acts as an engine, which provides
the basic concepts and mechanisms for advanced distributed computing. We can think
of the logical layer as a toolbox (derived from research and standards), which combines
the networked application with the physical layer. In practice, to achieve this we have to
select and possibly hybridize the basic approaches.

Figure 11.6 gives an example of the three communication layers. It illustrates a
networked application from the perspective of login management. The control of
the access permissions and session log maintenance are centralized by using a server
network (i.e. nodes s0, s1, and s2), to which the clients (i.e. nodes c0, c1 and c2) subscribe.
The servers s1 and s2 provide the application state which is replicated in the other
satellite servers over the Internet. For example, s0 serves the clients in the local LAN
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Figure . An example of the three communication layers to implement authentication and account
management features. The physical platform consists of nodes (circles), data stores (cylinders), and
cabling (lines). The logical platform includes a server-network (i.e. a communication architecture),
distributed and replicated data (i.e. a data architecture), and timing functionality (i.e. a control
architecture).
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(e.g. c0) and possibly other geographically near clients (e.g. c1). To supervise the game
the console clients (e.g. c2) can connect directly to the server. The state data are
distributed to the clients so that the clients are more responsive. Consequently, the
networked application becomes more reliable, because we can tolerate a single point of
server failure while having an unreliable or high-latency connection to a server. Finally,
the workload of the networked application is balanced by dedicating the node t for
timing purposes only (e.g. sending clock signals and providing dispatching services).

To summarize, the physical layer, stemming from the underlaying hardware, tells us
what we can do. The networked application layer, derived from the design specification
of the game, tells us what we should to do. Most of the important decisions concerning
resource utilization are then made on the logical layer. However, the compensatory
techniques of the next chapter provide us with additional margin in the design and
implementation.

Exercises

- Consider the children’s game of tag. How would you implement it in different
shared-space technologies?

- Latency cannot be completely eliminated. What does this mean for the design of
a networked application?

- The two effects of latency – precision and deadline – manifest themselves in dif-
ferent ways. Consider the following actions and how much they depend on pre-
cision and deadline:
(a) driving a race car;
(b) driving a tank;
(c) fighting with a bow and arrow;
(d) fighting with a sword;
(e) constructing a building;
(f) upgrading a building.

- Multicasting and broadcasting can be simulated using unicasting. How can this
be done? What problems arise in doing it?

- In positive acknowledgement scheme, the receiver sends an acknowledgement
message every time it receives a message, whereas in negative acknowledgement
scheme an acknowledgment message is sent, if the receiver has not received the
message. What problems are included in these schemes? How would you solve
them?

- Internet Protocol version 4 (IPv4) was deployed on 1 January 1983. The address
format in IPv4 is a 32-bit numeric value often expressed with four octets from the
interval [0, 255] separated by periods. At the time of writing, Internet Protocol
version 6 (IPv6), with addresses 128 bits wide, is still in the process of slowly
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replacing IPv4. In theory, how many IP addresses can be assigned in IPv4 and
IPv6?

- Which protocol, TCP/IP or UDP/IP, is better suited to the following situations:
(a) Updating the player’s current position.
(b) Informing that the player changed his weapon.
(c) Indicating that the player fired a weapon.
(d) Informing that the player got hit.
(e) Informing that a new player joined the game.
(f) Chatting with other players.

- Compare the communication architectures (i.e. peer-to-peer, client–server, and
server-network), and data and control architectures (i.e. centralized, distributed
and replicated). Analyse their usability together and explain in what kind of situ-
ations they are useful.

- In Amaze (Berglund and Cheriton 1985) multiple players roam in a Pac-Man-like
maze and try to shoot one another. You are updating this idea to meet the current
twenty-first-century standard by designing an online Amaze game to be run over
the Internet. The game would be ongoing and the players can form teams and
participate from all over the world. Devise a design for this game and list the
possible problems stemming from the physical and logical platform.

- Suppose that a networked application distributes autonomous synthetic play-
ers to the participating nodes to balance the workload. In other words, a syn-
thetic player b resides only in one node c and participates in the game similarly
to the human players. If node c is abruptly cut off from the game, not only does
the human player disappear from the game world but also the synthetic players
assigned to that node. What are the problems when we are implementing a single
point (i.e. node) of failure capability for distributed synthetic players?

- The game 2n-Gong, where 2 ≤ n, takes place in a regular polygon of 2n sides
(see Figure 11.7). The game consists of 2n players who each have one side as a
dedicated goal to defend. Each player controls a paddle by moving it parallel to
his own goal. The goal of the game is to score points by bouncing the ball into
the other players’ goals. All collisions are elastic and the ball follows its trajectory
continuously (i.e. there is no kickoff after a goal). If a player scores an own goal,
his score is reduced.

Design and describe how 2n-Gong operates on the three communication lay-
ers. You can assume that the game runs on a LAN and the human players’ nodes
are connected using peer-to-peer. By default each paddle is controlled by a syn-
thetic player. When a human player joins the game, she replaces a randomly
selected synthetic player. When a human player leaves the game, a synthetic
player takes over the control again. If there are no synthetic players left to be
replaced, the joining player becomes an observer of the game until some other
human player leaves the game.
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Figure . The game 2n-Gong with n = 3 has six players indicated by numbers [0, 5]. Each
player controls a paddle (rectangle) that can be used to bounce the ball (circle).

- Physical platforms can be organized in different ways. For example, we can have
an Ethernet LAN that has a single coaxial cable shared by all nodes, or a hub
connecting the nodes with twisted pair cables into a star-like network. Moreover,
the number of nodes and their capabilities can also vary from LAN to LAN. If
we want to run a massive networked application over a diverse set of physical
platforms, we have to implement a workload balancing mechanism for the logical
platform to make it more dynamic.

How can we make communication and data and control architectures more
dynamic in the following cases? Approach the problem from the point of view
of roles, responsibilities and functionalities and consider how they are intercon-
nected.
(a) Dynamic communication: If we have a server network on a LAN, how can

we increase and decrease the number of servers on the fly without informing
clients of this change?

(b) Dynamic data: Suppose the data are distributed among the nodes on a WAN
and we want to keep the overall delay of the data updates low. How can we
realize handing over the data ownership (and its location site) to the node
that is geographically nearest to the source of the update messages?

(c) Dynamic control: Suppose we have peer-to-peer nodes on a LAN. The most
time-consuming features of the networked application are implemented as
autonomous components, which are runnable entities that implement some
functionality with a fixed use interface. How can we transfer a component
from a node with a high workload to a more idle one?

You can refer to the terminology of patterns presented by Buschmann et al.
(1996), and enthusiastic readers might even want to acquaint themselves with
Schmidt et al. (2000).
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Compensating Resource Limitations

Because a networked application has limited resources at its disposal, we have to find
ways to utilize them effectively. The amount of resources required in a networked appli-
cation is directly related to how much information has to be sent and received by each
participating computer and how quickly it has to be delivered by the network. Singhal
and Zyda (1999) formulate this rule as the information principle equation

Resources = M × H × B × T × P (12.1)

where M is the number of messages transmitted, H is the average number of destination
nodes for each message, B is the average amount of network bandwidth required for a
message to each destination, T is the timeliness with which the network must deliver
messages to each destination (large values of T imply a need for a small delay and vice
versa), and P is the number of processor cycles required to receive and process each
message. These measures can be illustrated as a radar diagram as shown in Figure 12.1.

If the resource requirements are fixed, we have a certain level of qualities (e.g. respon-
siveness or scalability) in the application. In this case Equation (12.1) has many possi-
ble solutions for given ‘resources’ and a system designer can use it as a tool to balance
implementation requirements and restrictions. When we intensify the expenditure of
one resource, we have to compensate it in some way. This means that another variable
in the equation decreases or the quality of experience of the gameplay becomes weaker
(e.g. movements become jerkier). The choice of which variables are increased and which
variables are used for compensating depends naturally on the application’s requirements
and resource bottlenecks. For example, if the number of players increases, the band-
width (B) requirement also increases, because each additional player must receive the
initial game state and the updates that other users are already receiving. Each new player
introduces new interactions with the existing players and requires additional processing
power from the existing players, which means that H and P increase. Also, if we want
to keep Equation (12.1) in balance, we have to send fewer messages (M) or allow more
delay (T) in our communication.

In this chapter we present different compensation methods which try to reduce
resource requirements, usually by increasing processing. Processing power can be used,
for example, to compress the outgoing messages or to filter out the recipients who are
interested in receiving them. But before reviewing the compensation methods we must
look at two aspects affecting the choice of method: the balance between consistency and
responsiveness, and achieving scalability in computation and communication.

Algorithms and Networking for Computer Games, Second Edition. Jouni Smed and Harri Hakonen.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Figure . The information principle equation as a radar
diagram.

. Aspects of Compensation

If we look at the terms in Equation (12.1), we can recognize two questions that resource
compensation must address: how to achieve a balance between consistency and respon-
siveness (i.e. how to reduce T) and how to scale up to include more players in the game
(i.e. how to reduce H). Since these two aspects form the basis for resource compensation,
let us study both of them more closely.

12.1.1 Consistency and responsiveness

Consistency refers to the similarity of the nodes’ view to the data in the other nodes
belonging to a network. Absolute consistency means that each node has uniform infor-
mation, and to guarantee this we have to wait until everybody has received the infor-
mation update before we can proceed. Responsiveness refers to the time it takes for an
update event to be registered conceptually by the nodes, and to have high responsive-
ness we may have to proceed before everybody has physically received the information
update. Consistency and responsiveness are not independent of each other. Tradition-
ally, responsiveness has always been subject to consistency requirements in database
research. However, because of real-time interaction, responsiveness becomes a more
important element in networked computer games and we may have to compromise
consistency. Consistency and responsiveness can have different requirements within
the same game (Savery 2014, pp. 14–16). For example, life-and-death decisions usually
require both high consistency and responsiveness, whereas trading in-game resources
requires high consistency but can tolerate low responsiveness. Conversely, tracking an
avatar’s movements requires high responsiveness but can tolerate lower consistency.

To achieve high consistency a data and control architecture must guarantee that pro-
cesses running on remote nodes are tightly coupled. This usually requires high band-
width, low latency, and a small number of remote nodes. To achieve high responsive-
ness the queries made to the data must be responded to quickly, which requires loosely
coupled nodes. In this case, the nodes must include more computation to reduce the
bandwidth and latency requirements. In reality, a network architecture cannot achieve
both high consistency and high responsiveness at the same time, and the choice of archi-
tecture is essentially a trade-off between these two attributes (Singhal and Zyda 1999).



12 Compensating Resource Limitations 

network

globallocal

o

local iglobal

globalilocal

o

relaynode

Figure . A data and control architecture defines how messages are relayed between local and
remote nodes in a communication architecture.

At the extremes, the game world is either consistent, where all nodes maintain identical
information, or dynamic, where information changes rapidly.

To clarify, we can discern three parts in data and control architectures: the local node,
the network, and the relay connecting them (Smed et al. 2002). Figure 12.2 illustrates
the situation in which a networked application running in a local node sends control
messages to a relay and receives data messages from it. In turn, the relay communicates
with the relays of other nodes through a network. Here, a relay is a logical concept which
illustrates how the control affects the data.

The relay acts as an intermediary between the local node and the network, and its
structure defines how consistent and how responsive the architecture can be. Obviously,
the messages flow from ilocal to oglobal, and a stream from iglobal to olocal must also exist.
Let f and g be operations that the relay does on the messages upon sending and receiving
(e.g. compression and decompression or encryption and decryption). This gives us the
minimum form, a two-way relay (see Figure 12.3a), where oglobal = f (ilocal) and olocal =
g(iglobal). The two-way relay is the model used, for instance, in distributed databases
and centralized systems. All new local messages are relayed to the network, and they do
not appear in the local node until a message from the network is received. For example,
a dumb terminal sends the characters typed on the keyboard to a mainframe, which
sends back the characters to be displayed on the monitor. The two-way relay allows us
to achieve high consistency, because all messages have to go through the network, where
a centralized server or a group of peers can confirm and establish a consistent set of data.
However, the two-way relay cannot guarantee high responsiveness, because it depends
on the available networking resources.

To overcome this limitation we can bridge the two flows with an operation h, which
forms a short-circuit relay (see Figure 12.3b), where oglobal = f (ilocal) as before, but

iglobal
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oglobal
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Figure . A relay has two basic alternatives for its structure: (a) A two-way relay sends the local
control messages to the network, which sends back data messages to the node. (b) A short-circuit
relay sends the local control messages to the network and passes them locally back to the node.
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olocal = g(iglobal) × h(ilocal). The locally originated messages are now passed back into the
local output inside the relay. We do not have to wait for the messages to pass the net-
work and return to us, but we short-circuit them back locally. This short-circuiting can
be realized with immediate feedback as in the DIS standard (Neyland 1997), acknowl-
edgements (Frécon and Stenius 1998), or buckets delaying the arrival of local messages
(Diot and Gautier 1999). Clearly, we can now achieve high responsiveness, but it comes
at a price: the local data can become inconsistent with the other nodes. This means that
some kind of rollback or negotiation mechanism is required to solve the inconsistencies
when they become a problem.

It is important to differentiate these two structures. A high-consistency architecture
requires a two-way relay, because all updates require confirmation from the other nodes.
On the other hand, high responsiveness entails a short-circuit relay, because the local
control messages must appear promptly in the local data. With this in mind, we can
now look at the three data and control architectures: centralized, distributed, and repli-
cated. In a centralized architecture, the relay mostly conveys local control to the network
and receives data from it, which is reversed in a distributed architecture. In a replicated
architecture, the local input and output are a mixture of control and data messages. Each
architecture also has characteristic problems: in a centralized architecture, access to the
data may take time; in a distributed architecture, the allocation of the data fragments
between the nodes must be handled properly; in a replicated architecture, updating the
data in each replica can be tricky.

A networked application often has a hybrid architecture, where the system function-
alities have their own implementation logic. For example, login authentication relies
mostly on the client–server approach but configurations that affect the GUI represen-
tation are convenient to distribute to each node. By assigning designated relay types to
each functionality we can identify and manage this variety of architecture choices in
one application. From this perspective the relays can be seen as a part of the logical
communication layer (see Section 11.2) and they define dedicated points for architec-
ture realization and modification (e.g. in a form of interfaces). For example, the relays
can be implemented so that they not only forward messages but also serve as a backbone
for monitoring and administrating features of the whole networked application.

12.1.2 Scalability

Scalability is the ability to adapt to resource changes. In computer games this concerns,
for example, how to construct an online server that dynamically adapts to varying num-
bers of players, or how to allocate the computation of synthetic players among the nodes.
To achieve this kind of scalability there must be physical (i.e. hardware-based) paral-
lelism that enables logical (i.e. software) concurrency of computation.

Serial and parallel execution
The potential speedup obtained by applying multiple nodes is bounded by the system’s
inherently sequential computations. Pipelining is a typical way to optimize such consec-
utive operations. Now the operations are chunked and allocated to a chain of nodes, and
the data flow to a node gets processed and then forwarded to the next node. Because
each node runs simultaneously, the theoretical speedup is no more than the number of
nodes. In practice, pipelining requires that data are transmitted quickly between nodes
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and are available when needed, which means that it does not go well with interaction
or remote nodes. Thus, the time required by the serially executed parts of a networked
application cannot be reduced by parallel computation.

The theoretical speedup S is achieved by non-centralized control and can be measured
by

S(n) = T(1)
T(n)

≤
T(1)

T(1)∕n
= n (12.2)

where T(1) is the execution time with one node and T(n) with n nodes. The execution
time can be divided into a serial part Ts and parallel part Tp. Let Ts + Tp = 1 and 𝛼 =
Ts∕(Ts + Tp). If the system is parallelized optimally, Equation (12.2) can be rewritten as

S(n) =
Ts + Tp

Ts + Tp∕n
= 1

𝛼 + (1 − 𝛼)∕n
≤

1
𝛼
. (12.3)

This is called Amdahl’s law for a fixed problem setting (Gustafson 1988). For example,
if 5% of the program must be executed serially (i.e. 𝛼 = 0.05), the maximum speedup
obtainable is 20.

Ideally, the serial part should be non-existent so that everything can be computed in
parallel. However, in that case there cannot exist any coordination between the nodes.
The only example of such multiplayer computer games is where each player is playing
their own game regardless of the others. The other extreme is that there is no parallel
part with respect to the game state, which is the case in a round robin or a turn-based
game. Between these extremes are the games which provide real-time interaction and
which, consequently, comprise both parallel and serial computation (see Figure 12.4).

For the serial parts, the nodes must agree on the sequence of events. The simplest way
to realize this is to utilize a client–server architecture, where the server can control the
communication by forwarding, filtering and modifying the messages. It should be noted
that even in a peer-to-peer architecture the network acts like a server (i.e. the peers share
the same serializing communication channel), unless the nodes are connected to each
other by a direct physical cable or they communicate by multicasting.

To concretize, let us calculate the communication capacity in a client–server architec-
ture using unicast. Suppose that each client sends 5 packets per second using the IPv6
communication protocol in a 10 Mbps Ethernet. Each packet takes at least a frame of
size 68 ⋅ 8 + 26 ⋅ 8 = 752 bits (or 94 bytes). Let d equal the number of bits in a message, f
the transmission frequency, n the number of unicast connections, and C the maximum
capacity of the communication channel. Obviously, the condition

d ⋅ f ⋅ n ≤ C

must hold. By using values d = 752 + 32 (i.e. the payload comprises one 32-bit integer
value), f = 5 and C = 107, we can solve the upper bound for the number of clients. Thus,
if we are using a client–server architecture, one server can provide serializability for at
most 2551 clients. In reality the update frequency is higher and the payload much larger
and, consequently, the estimate on the number of clients is highly optimistic. Moreover,
client communication requires computation power from the server.
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Figure . Serial and parallel execution in computer games. (a) Separate real-time games can run in
parallel but without interaction. (b) A turn-based game is serialized and interactive but not real-time,
unless the turns are very short. (c) An interactive real-time game runs both in serial and in parallel.

Communication capacity
Because the coordination of serialized parts requires communication, scalability is lim-
ited by the communication capacity requirements of the chosen deployment. Let us
assume that clients are allowed to send messages freely at any moment (i.e. asyn-
chronous messaging). In the worst case, all nodes try to communicate at the same time
and the network architecture must handle this traffic without saturation.

Table 12.1 collects the magnitudes of communication capacity requirements for dif-
ferent deployment architectures (see Figure 11.4). Obviously, a single node needs no
networking. In peer-to-peer, when all n nodes have direct connections to the other

Table . Communication capacity requirements for different deployment
architectures when the network has n nodes and m servers.

Deployment architecture Capacity requirement

Single node 0
Peer-to-peer O(n)…O(n2)
Client–server O(n)
Peer-to-peer server-network O(n∕m + m)…O(n∕m + m2)
Hierarchical server-network O(n)
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nodes or the communication is handled by multicasting, the magnitude of the commu-
nication capacity is O(n); otherwise, the peers use unicasting, which yields O(n2). In a
client–server architecture, the server end requires a capacity of O(n), because each client
has a dedicated connection to it. In a server-network architecture, the server pool has
m servers, and n clients are divided evenly among them. If the servers are connected as
peer-to-peer, the server communication requires O(m)…O(m2) in addition to O(n∕m)
capacity for client communication. If the servers are connected hierarchically (e.g. as a
tree), the server at the root is the bottleneck requiring a capacity of O(n).

In an earlier example we calculated that a server can support up to 2551 clients. This
demonstrates that, in practice, linear capacity requirement is too large. Therefore, the
heart of scalability is to achieve sublinear communication. In effect, this means that a
client cannot be aware of all the other clients all the time.

To guarantee sublinear communication in a hierarchical server-network we must limit
the communication between the servers. Suppose that the hierarchy is a k-ary tree. If
we can now guarantee that a server sends to its parent a fraction 1∕k of its children’s
messages, we have a logarithmic capacity requirement (i.e. communication in the root
is O(log n)). Now the problem is how to realize this reduction. This is where the com-
pensatory techniques provide an answer. Children’s messages can be compressed and
aggregated if we can guarantee that the size reduction is 1∕k on each server level – which
is quite unlikely. A more usable solution is, at each step, to apply first interest manage-
ment (e.g. refrain from passing messages whose potential receivers are already inside the
subtree; see Section 12.6), and then select one of the outgoing messages for the server to
pass on. For each suppressed message, the nodes can approximate the information (e.g.
by using dead reckoning; see Section 12.3).

Parallelizing the game world
When the game has to support massively multiple players, the game world is often
parallelized. The two most common approaches are zoning and instancing (see Figure
12.5).

In zoning, the game world is divided into independent, disjoint zones which are pro-
cessed in parallel on dedicated servers. Usually the zones follow the game world geog-
raphy (e.g. valleys, islands or planets). When the player enters a zone, the client is con-
nected to the respective zone server. The server handles the communication between
the clients residing in the same zone but there is no communication from the client to
the other servers and their clients. The only exception is when the player moves from
one zone to another and the servers exchange the responsibility for the client.

Zoning scales up well – provided that the game world is easy to subdivide – and it
is used in many massively multiplayer online games. For example, in Eve Online each
star system is a zone with its own server (dedicated servers for high-load star systems,
shared ones for low-load star systems). In addition, the servers are connected to a main
database to maintain overall consistency.

In instancing, certain areas of the game world are maintained by multiple, indepen-
dent servers (or shards) each holding its own copy of the area. These areas are usually
highly populated by the players (e.g. dungeons or market places), which is why they
need to scale up. Because the players in different, parallel instances (i.e. servers) cannot
communicate with one another and the interaction is limited, a group of players playing
together is usually allocated to the same instance. For example, World of Warcraft uses
instancing to service the players.
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Figure . Game world parallelization where the clients ci are connected to the servers sj managing
regions A–D: (a) By dividing the game world into zones we can assign a separate server for each zone.
(b) Certain regions of the game world can be copied into parallel servers which run independently of
one another.

. Protocol Optimization

Since every message sent to the network incurs a processing penalty, we can improve
the resource usage by reducing the size of each message or the number of messages.

12.2.1 Message compression

The networked application can save bandwidth at the cost of computational power by
compressing the messages. Since the purpose of compression is to reduce the number of
bits needed to represent particular information, it provides us with an intuitive approach
to minimize network traffic. With respect to Equation (12.1), we are reducing the average
packet size (B) but due to encoding and decoding processes the computational work (P)
increases.

Compression techniques can be classified according to their ability to preserve the
information content (see Table 12.2). Lossless techniques preserve all information, and

Table . Compression technique categories.

Compression Lossless Lossy

Internal Encode the message in a more efficient
format and eliminate redundancy
within it.

Filter irrelevant information or reduce
the detail of the transmitted
information.

External Avoid retransmitting information that
is identical to that sent in the
previous messages.

Avoid retransmitting information that
is similar to that sent in the previous
messages.
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the reconstructed data are exactly the same as the data before compression. To achieve a
higher compression ratio we can employ lossy compression techniques, where the idea
is to leave out less relevant information so that the distortion in the reconstructed data
remains unnoticeable. For further information on compression methods, see Witten
et al. (1999).

Based on how compression operates on data in a sequence of messages, we can divide
the techniques into internal and external. Internal compression concentrates on the
information content of one message without references to other, previously transmitted
messages, which is why it is suitable for unreliable network transmission protocols (e.g.
UDP). On the other hand, external compression can utilize information that has been
already transmitted and can be assumed to be available to the receivers. For example, we
can transmit delta (i.e. the amount of change) or transition information, which is likely
to require fewer bits than the absolute information, or give reference pointers to a previ-
ously transmitted message if the same message occurs again. External compression can
consider a large amount of data at a time and thus can better observe redundancy in the
information flow and allow better compression ratios than internal compression. How-
ever, because of the references to the previous packets, external compression requires a
reliable transmission protocol (e.g. TCP).

12.2.2 Message aggregation

Message aggregation reduces transmission frequency by merging information from
multiple messages. Bundling up messages saves bandwidth because there is less header
information but requires extra computation and weakens the responsiveness. In the
terms of Equation (12.1), the number of messages (M) and timeliness (T) decrease, the
average message size (B) increases, and the overall bandwidth consumption is reduced
at slight processing cost (P).

Message aggregation needs a criterion that indicates when we have collected enough
messages to be sent as a one merged message. In the timeout-based approach, all mes-
sages that are initiated before a fixed time period are merged. This approach guarantees
an upper bound on the delay caused by aggregation. Now bandwidth savings depend
on the message initiation rate, and in the worst case no savings are made because no
messages (or only one) are initiated during the period. In the quorum-based approach,
a fixed number of messages are always merged. Because the transmission of the merged
message is delayed until enough messages have been initiated, there is no guarantee for
the transmission delay. Although bandwidth savings are predictable, long transmission
delays can hinder the gameplay. The limitations of both approaches can be compen-
sated by combining them. In this hybrid approach, merging occurs whenever one of the
conditions is fulfilled: either the time period expires or there are enough messages to
merge.

. Dead Reckoning

Dead reckoning dates back to navigational techniques used to estimate a ship’s current
position based on a known start position, travelling velocity and elapsed time. In
networked applications, dead reckoning is used to reduce bandwidth consumption by
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Figure . Dead reckoning is used to calculate positions between the update messages. The actual
movement (indicated by the grey arrow) differs from the movement predicted by dead reckoning
(black arrows). The dotted lines indicate a position change caused by the update message which has
to be corrected using a convergence method.

sending update messages less frequently and estimating the state information between
the updates (see Figure 12.6). Apart from extrapolating the current state from past
states, the state update can include additional information for predicting how the state
will change in the future.

Dead reckoning is normally used to reduce positional information, and dead reckon-
ing algorithms mainly focus on predicting the entity’s movement. In terms of network
traffic, this suits many games very well; for example, in a first-person shooter game over
a half of the network traffic may be updates related to movement (Savery 2014, p. 15).

With respect to Equation (12.1), dead reckoning transmits update messages less fre-
quently, which reduces M and T , but the nodes have to compensate this by computing
predictions, which increases P. When the next update message arrives, the predicted
value can differ from the actual value, which can cause disruptive visual effects. To min-
imize this the difference can be corrected by converging it, over time, closer to the true
value.

12.3.1 Prediction

The most common prediction technique is to use derivative polynomials. If the state
information represents a position p, the first two derivatives have natural interpreta-
tions as velocity v and acceleration a. State updates using zero-order derivative polyno-
mials comprise only position information and no prediction information. In the case of
first-order derivative polynomials, we transmit the velocity of an entity in addition to its
position:

p(t) = p(0) + v(0)t. (12.4)

To improve the accuracy of the prediction we can add acceleration to the transmitted
information:

p(t) = p(0) + v(0)t + 1
2

a(0)t2. (12.5)

This second-order polynomial (see Algorithm 12.1) models moving vehicles quite accu-
rately, but the first-order polynomial is more suitable for less predictably moving entities
such as human characters. The reason for this is that high-order polynomials are sen-
sitive to errors, because the derivative information must be accurate. The prediction is
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more sensitive for high-order terms, and a small inaccuracy in them can result in sig-
nificant deviations that might make the prediction worse. In other words, we must have
a better model for high-order terms – but higher-order derivatives must be often esti-
mated or tracked over time, because it is hard to get accurate instantaneous information.
For example, although acceleration models how a car responds to the throttle, a third-
order polynomial (i.e. jerk) would require some insight into the mind of the driver (i.e. his
decision-making process). Also, with higher-order polynomials, more information has
to be transmitted, which means that the computational complexity increases (i.e. each
additional term requires a few extra operations) and each additional term consumes the
bandwidth resources.

Algorithm 12.1 Second order prediction of a position.

S, t)
in: state information S; time stamp t
out: predicted state value
1: d ← t − time(S)
2: v ← velocity(prediction(S))
3: a ← acceleration(prediction(S))
4: return state(S) + vd + ad2∕2

Prediction-Second-Order(

We can omit the derivative polynomials altogether and use the known history to
extrapolate the data. The position history-based dead reckoning protocol transmits
only the absolute positions, and the entity’s instantaneous velocity and acceleration are
approximated by using the update history (Singhal 1996). The method evaluates the
motion over the three most recent position updates and chooses dynamically between
first-order and second-order polynomials: if acceleration is small or substantial, we use
a first-order polynomial; otherwise, we use a second-order polynomial. The rationale
behind this is to reduce the inaccuracies caused by the acceleration term. For example,
if the entity’s acceleration changes often, an incorrect value is likely to be applied to the
prediction at some point and it might be safer to be content with first-order prediction
at that time.

Naturally, prediction can be specialized to suit the entity in question. Derivative poly-
nomials do not take into account what the entity is currently doing, what the entity is
capable of doing, or who is controlling the entity. For instance, cars and aeroplanes –
albeit obeying the same laws of physics – could have different prediction algorithms
based on their overall behaviour. By including entity-specific information in the dead
reckoning technique we can achieve more accurate and natural movement (Krumm-
Heller and Taylor 2000). However, this can be time-consuming and maintaining several
different algorithms requires a special care.

The transmission frequency for updates need not be constant but the messages can
be sent only when dead reckoning exceeds some error threshold (see Algorithm 12.2).
By taking advantage of the knowledge about the computations at remote nodes, the
source node can reduce the required state update rate. Because the source can use the
same prediction algorithm as the remote nodes, it is enough to transmit updates only
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when the actual position and the predicted position differ significantly. This reduces
the update rate if the prediction algorithm is reasonably accurate. The source node can
even dynamically balance its network transmission resources so that when bandwidth
is limited, it increases the error threshold according to the distance between the objects
(Aggarwal et al. 2004; Cai et al. 1999; Duncan and Gračanin 2003; Hakiri et al. 2010;
Lee et al. 2000; Shim and Kim 2001; Zhang et al. 2004) or the update interval (Hanawa
and Yonekura 2006; Yu and Choy 2001). In the case of high latency, the error can be
estimated using three-way interpolated simulation (de Carpentier and Bidarra 2005) and
dead reckoning can be used to improve the behaviour of computer-controlled players
(Bai et al. 2009).

Algorithm 12.2 Constructing dead reckoning messages.

s, t, P, Q)
in: state value s; time stamp t; prediction informationP; previously sent state

Q
out: new update message U or if not necessary
constant:
1: if ∣s − (Q, t)∣ < then
2: return ⊳
3: end if
4: state(U) ← s
5: time(U) ← t
6: prediction(U) ← P
7: return U

Dead-Reckoning-Message(

Prediction

nil

nil

difference threshold

Difference below the threshold.
ℓ
ℓ

12.3.2 Convergence

When a node using a dead reckoning technique receives an update message, the pre-
dicted state of the entity is likely to differ from the state based on the information just
arrived. In this case, the entity has to be updated to this new state using a convergence
technique. The simplest technique is zero-order convergence (or snap), where the entity
is changed immediately to a new state without any smoothing adjustments (e.g. visual
corrections). However, this can cause annoyingly jerky or even impossible (e.g. through
a wall) changes, which are known in many networked games as ‘warping’.

A good convergence technique corrects errors quickly and as unnoticeably as possible.
To achieve this we must select a convergence period within which we want to correct
the error. If the state represents a position of an entity, we can pick a convergence point
along the new predicted path so that after the convergence period the displayed position
coincides with the prediction. After that, we render the entity as if it travels between its
current displayed position and the convergence point. When the entity has reached the
convergence point, it begins to follow the new predicted path – until a new update is
received and the convergence procedure is repeated (see Algorithm 12.3).
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Algorithm 12.3 Using dead reckoning messages.

S, t)
in: state information S; time stamp t
out: state value
constant: convergence period c
1: t′ ← time(current(S))
2: t″ ← t′ + c
3: if t > t″ then
4: return state(current(S)), t)
5: else
6: s′ ← state(previous(S)), t′)
7: s″ ← state(current(S)), t″ )
8: return s′, t′, s″ , t″ , t)
9: end if

Dead-Reckoning-Value(

Prediction(

Prediction(
Prediction(

Convergence(

In linear convergence, the entity is moved along a direct path from the current position
s′ to the convergence point s′′. The velocity is determined by fixing the start time t′ when
the entity is at s′ and the target time t′′ for arriving at s′′. In terms of Algorithm 3.3, on
time stamp t (t′ ≤ t ≤ t′′) the entity is converged at position (see Figure 12.7)

Unit-Lerp(s′, s′′, Unit-Rescale(t′, t′′, t)) = Rescale(s′, s′′, t′, t′′, t).

Although linear convergence is clearly better than zero-order convergence, it can still
make unnatural turns when leaving the previously predicted path and entering the
new predicted path. To smooth out these problems, more sophisticated curve-fitting

t = 2:p(4, 4)

t = 2:p(7, 3)

t = 1:p(3, 1), v(4, 2)

t = 2.5:p(9, 4)

Received att = 2:

t = 0:p(0, 0), v(2, 2)

Linear convergence path

New predicted path

Current predicted path

Snap

t = 1:p(2, 2)

Figure . Dead reckoning comprises prediction and convergence. Open circles represent predicted
information about the entity’s position p at given time t. The closed circle represents the entity’s
received position p and velocity v at given time t when the communication delay is 1 s. In zero-order
convergence (or snap), the position is corrected immediately at t = 2 to the new predicted path. In
linear convergence, the change is made smoothly along a linear convergence path during a
convergence period of 0.5 s.
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(b)(a)

Figure . Locational problems caused by dead reckoning. (a) If prediction is not used with collision
detection, the ship following its predicted path can pass through a wall. (b) If the predicted path has
led the ship to the wrong side of a wall, convergence has to correct the situation, possibly letting the
ship pass through the wall.

techniques can be applied. The idea is to select, in addition to the current position and
convergence point, a number of points along the previously predicted path and the new
predicted path. The curve is fitted to go through all the selected points, and it is used as
a path to shift the entity to its new predicted path. For example, in the case of a third-
order curve (cubic spline), we pick one additional point on the previously predicted path
before the current position and another additional point along the new predicted path
after the convergence point. High-order curves provide smooth transition from the old
path to the new path, but they can computationally intensive for some applications.

Although convergence helps to make errors less noticeable, there are situations where
dead reckoning causes locational problems that cannot be solved otherwise than by
letting visual disruptions occur. These problems can stem both from prediction and
convergence, as illustrated in Figure 12.8. When repairing inconsistencies Savery (2014,
pp. 101–109) observes that the further the correction is from the player’s locus of atten-
tion, the less noticeable it is. Furthermore, experimental data indicate that smooth cor-
rections using convergence are superior to warping, unless the corrections become very
large.

. Local Perception Filters

Local perception filters (LPFs) hide communication delays by exploiting human percep-
tual limitations (Ryan and Sharkey 1999; Sharkey et al. 1998). Whereas in dead reckoning
we try to maintain a consistent view by predicting the state, LPFs allow temporal distor-
tions in the view and entities can be rendered at slightly out-of-date locations based on
the underlying communication delays. Half-Life is the earliest example of a similar idea
where remote state information is shown delayed while the local player is presented in
the real timeframe (Bernier 2001). Naturally, we want to make these temporal distortions
of the game world as unnoticeable as possible. Although we describe LPFs in visualiza-
tion terms, the underlaying idea is more general, because the application’s control logic
and proto-view (see Section 1.1) can also perceive the out-of-date state instance.

The entities of a game world can be separated into two classes:

(i) Players are indeterministic entities (e.g. controlled by human players), whose
behaviour cannot be predicted. Based on the communication delay, we divide the
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players to local players (e.g. sharing the same computer) and remote players (e.g.
players connected by a network).

(ii) Passive entities are deterministic entities whose behaviour follows, for example, the
laws of physics (e.g. projectiles) or which are otherwise predictable (e.g. buildings).

Interaction means, theoretically speaking, that the interacting entities must commu-
nicate with each other to resolve the outcome. If the communication delay between
entities is negligible (e.g. they reside in the same computer), the interaction seems cred-
ible. On the other hand, networking incurs communication delays which can hinder the
interaction between remote players.

LPFs address the problem of delays by discerning the actual situation from the ren-
dered situation. The rendered situation, which is perceived by the player, need not coin-
cide with the current actual situation, but it can comprise some out-of-date information.
The amount of this temporal distortion is easy to determine for players: local players are
rendered using up-to-date state information, while a remote player with a communica-
tion delay of d seconds is rendered using the known, d-seconds-old state information.

To preserve the causality the temporal distortion of the passive entities changes
dynamically. The nearer a passive entity is to a local player, the closer it has to be ren-
dered to its current state, because it is possible that the player will interact with it. Con-
versely, a passive entity nearing a remote player must be rendered closer to that remote
player’s time, because if there is an interaction between the remote player and the pas-
sive entity, the outcome is rendered after the communication delay. In other words, the
rendered remote interactions, albeit occurring in real time, have happened in the past,
and only when the local player itself participates in the interaction must it happen in the
present time.

Figure 12.9 gives an example in which the player controlling the white ship shoots
a bullet (i.e. a passive entity) towards the grey ship controlled by a remote player. The
players’ views are not entirely consistent with each other. At the beginning the white ship
renders the bullet in the actual position but as it closes on the grey ship it begins to lag
behind the actual position. Conversely, when the grey ship first learns about the bullet, it
has already travelled some distance. For example, let us assume that the communication
delay between the ships is 0.5 seconds and the bullet travels in 2.0 seconds from the
white ship to the grey ship. When the white ship fires, it sees the bullet immediately,
but then the rendered bullet starts to drag behind the actual position. After 2.0 seconds
the bullet has arrived at the grey ship, but it is rendered as though it has travelled only
1.5 seconds. It takes 0.5 seconds for the grey ship’s reaction to be conveyed to the white
ship, and once that message arrives, after 2.5 seconds, the bullet is rendered near the grey
ship and reaction occurs at an appropriate moment. From the grey ship’s perspective the
chain of events is different. When it learns about the bullet, it has already travelled 0.5
seconds, but it is rendered coming from the white ship. The rendered bullet must now
catch up with the actual bullet so that at 2.0 seconds both the rendered and actual bullet
arrive at the grey ship, which can then react and send its reaction to the white ship.

Each player has its own perception of the game world, where all entities, in addition
to spatial coordinates (x, y, z), are associated with a time delay (t), thus forming a 3 1

2 -
dimensional coordinate system. The local player is at the current time t = 0, and remote
players are assigned t values according to their communication delays. Once we have
assigned these values, we can define a temporal contour (or causal surface) over the game
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Figure . An example of local perception
filters with two stationary players (white and
grey ship) and one moving passive entity (a
bullet shot by the white ship). On the left,
from top to bottom, are the rendered views
from the white ship’s perspective; on the
right are the corresponding views from the
grey ship’s perspective. Dashed ovals
indicate the actual position of the bullet and
black rectangles its rendered position. As the
bullet closes on the grey ship, the white ship
perceives it to slow down, while the grey
ship perceives it to gain speed.

world for each player. The temporal contour defines suitable t values for each spatial
point. Figure 12.10 illustrates one possible temporal contour for the white ship of the
previous example. When the bullet leaves the white ship, t = 0, but the t value increases
as the bullet closes on the grey ship, until they both have the same t value.

The changes in the movement of a passive entity caused by the temporal contour
should be minimal and smooth. Moreover, all interactions between players and passive
entities should appear to be realistic and consistent (e.g. preserve causality of events).
The requirements for temporal contours can be summarized into three rules:

(i) Player should be able to interact in real time with nearby entities.
(ii) Player should be able to view remote interactions in real time, although they can be

out of date.
(iii) Temporal distortions in the player’s perception should be as unnoticeable as

possible.

x

t

y

Figure . The 2 1
2

-dimensional temporal
contour from the white ship’s perspective. The
bullet travels ‘uphill’ until it reaches the t value
of the grey ship.



12 Compensating Resource Limitations 

The most important limitation of LPFs, which follows from the first rule, is that
a player cannot interact directly with a remote player. The players can engage in an
exchange of passive entities (e.g. bullets, arrows, missiles or insults) but they cannot
get into a mêlée with each other. In fact, the closer the players get to each other the
more noticeable the temporal distortion becomes, until they reach a critical proximity,
when even interaction using passive entities becomes impossible.

The underlying assumption behind LPFs is that we know the exact communication
delays between the players. In reality, latency and the amount of traffic in a network tend
to vary over time, which means that the height of the peaks of the temporal contour must
reflect these changes. If this jitter becomes too high, the passive entities begin to bounce
back and forth in time instead of making smooth temporal transitions. Also, because
remote players define the temporal contour, any sudden changes in their position or
existence can cause drastic effects in the rendered view. For example, if a nearby remote
player leaves the game world, it no longer affects the temporal contour and some passive
entities may suddenly jump forward in time to match the updated temporal contour.

In the following subsections we study first how to define linear temporal contours
in the case of two players, and then extend the discussion to cover multiple players.
Then we present how LPFs can be used to realize the bullet time effect in a multiplayer
computer game.

12.4.1 Linear temporal contour

Let us first look at a case where we have only two players, p and r, and one passive
entity e. The players and the passive entity have a spatial location, and the players are
associated with a communication delay, which is due to the network latency and cannot
be reduced. If i and j are players or entities, let 𝛿(i, j) denote the spatial distance between
them and d(i, j) the delay from the perspective of i. The communication delay between
players does not have to be the same in both directions but we can allow d(i, j) ≠ d( j, i).

In the case of two players, the delay function d for the entity e must have the
properties

d( p, e) =
{0, if 𝛿( p, e) = 0,

d( p, r), if 𝛿(r, e) = 0.
(12.6)

Simply put, if e and p are at the same position, the delay to p is zero, and if e and r are at
the same position, the delay from p is the same as the communication delay from p to r.

The rest of the function can be defined, for example, linearly as

d( p, e) = d( p, r) ⋅ max
{

1 − 𝛿(r, e)
𝛿( p, r)

, 0
}

, (12.7)

which is illustrated in Figure 12.11. The delay function now defines a symmetrical tem-
poral contour around r, which the entities must follow when they are rendered. This is
not the only possibility, and the delay function can even be asymmetric (i.e. the slope
does not have to be the same in all directions).

Let us take an example, which is illustrated in Figure 12.12, where player p shoots a bul-
let e towards player r. If we look at the situation from the perspective of player p, initially
the distance to the bullet 𝛿( p, e) = 0 and the delay d( p, e) = 0. The delay increases as the
bullet closes on r, until d( p, e) = d( p, r) when 𝛿(r, e) = 0. Once the bullet has passed r,
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Figure . Examples of the linear delay function of Equation (12.7) defining the temporal contour in
(a) a one-dimensional game world and (b) a two-dimensional game world.
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Figure . Player p shoots at player r in a one-dimensional world. (a) The temporal contour from the
perspective of player p. The corresponding values on the t-axis illustrate the delay (i.e. the temporal
difference) between the actual and rendered position at each actual spatial point on the x-axis. (b) The
temporal contour from the perspective of player r.
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the delay falls back to zero. Player p perceives the temporal contour so that the bullet
moves more slowly when it is climbing ‘uphill’ and faster when it is going ‘downhill’. From
the perspective of player r, the bullet initially has delay d(r, e) = d(r, p), which reduces
to d(r, e) = 0 when 𝛿(r, e) = 0. In other words, player r perceives the bullet as moving
faster than its actual speed until it has passed the player.

If we define the temporal contour observing the constraints of Equation (12.6), we may
notice a slight visual flaw in the rendered outcome. Assume player p shoots a bullet e
towards remote player r. The bullet slows down, and when 𝛿(r, e) = 0, the delay function
has reached its maximum and d( p, e) = d( p, r). However, when the actual bullet reaches
r, the rendered bullet of p is still short of reaching r (see the bottom left frame of Figure
12.9). Because the temporal contour is already at its peak value, the bullet begins to
speed up before it is rendered at r. This can look disruptive, because the change happens
before the bullet is rendered to interact with the remote player. Intuitively, acceleration
should occur only after the bullet has passed the remote player. From the perspective of
player r, the rendering has a similar problem. Once r learns about the bullet, its rendered
position is not next to p but some way forward along the trajectory. Simply put, the
problem is that the delay function is defined using actual positions, whereas it should
also observe the movement of the entity during the communication delay. This means
that each individual entity requires a slight refinement of the temporal contour to reduce
these perceptual disruptions.

To solve the problem, let us first introduce the function 𝛿e(t), which represents the
distance that the entity e travels in the time t. Obviously, the function is based on the
velocity and acceleration information, but the given generalization suffices for our cur-
rent use. Let us now define a shadow r′ of player r that has the property

𝛿(r, r′) = 𝛿e(d( p, r)). (12.8)

The shadow r′ represents the position where the entity e actually resides when player p
is rendering it at the position of remote player r. Now we can rewrite Equation (12.6) as

d( p, e) =
{0, if 𝛿( p, e) = 0,

d( p, r), if 𝛿(r′, e) = 0.
(12.9)

Simply put, this means that we push the peak of the temporal contour forward a distance
𝛿e(d( p, r)) to r′, which is illustrated in Figure 12.13. The reason why we want to use the
actual spatial positions is that they, unlike the rendered positions, are consistent among
all players.

When we have multiple remote players, they each have their own delay functions, and
to get the temporal contour we must aggregate them. To realize the aggregation we can
use the following approaches (see Figure 12.14):

� Try to minimize the number of entities that are not in the local time (i.e. whose delay is
not zero). This means that once an entity has passed a remote player, its delay returns
to zero. The aim of this approach is to maintain the situation as close to the actual
situation as possible, and it is best suited when there is a lot of interaction between
the entities. The drawback is that an entity may bounce back and forth between local
and remote time, which can make its movements look jerky.
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Figure . Temporal contours are adjusted by the distance the entity travels in the communication
delay. (a) The corrected temporal contour of player p, where the peak is pushed forward to r′. (b) The
corrected temporal contour of player r, where the peak is pushed forward to p′.

� Try to minimize the number of delay changes. Once an entity has reached some delay
level, it remains unchanged unless it begins to approach a new remote player. This
helps to reduce bouncing between different times, which is common especially if there
are several remote players along the path of the entity. The drawback is that the ren-
dered view, in its entirety, does not remain as close to the actual situation as in the
first approach.

Once we have formed the temporal contour, it is used similarly as in the case of two
players.
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Figure . Two approaches to aggregate the temporal contour of player p, when there are two
remote players r and q. (a) Minimize the number of entities that are not in local time. (b) Minimize the
number of delay changes.
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12.4.2 Adding bullet time to the delays

In the bullet time effect, a player can get more reaction time by slowing down the sur-
rounding game world. Whereas the bullet time effect is quite easy to implement in a
single-player game (e.g. Max Payne), simply by slowing down the rendering, in mul-
tiplayer games the bullet time effect – if used at all – is implemented by speeding up
the player rather than slowing down the environment. For instance, force speed in Jedi
Knight II implements the bullet time effect differently in the single-player mode than in
the multiplayer mode. The reason for this is obvious: if one player could slow down the
time of its surroundings, it would be awkward for the other players within the influence
area because, rather than enhancing the gameplay of the player using the bullet time, it
would only hinder the gameplay of the other human players.

Since the player using bullet time has more time to react to the events of the sur-
rounding game world, the delay between the bullet-timed player and the other players
increases. This is quite straightforward to include in LPFs (Smed et al. 2005): in addi-
tion to real-world communication delays, we have artificial, player-initiated delays –
the bullet time – which are then used to form the temporal contours. The outcome is
that entities approaching a bullet-timed player slow down and entities coming from a
bullet-timed player speed up. Obviously, the game design should prevent the players
from overusing bullet time by making it a limited resource which can be used only for
a short period. Also, incorporating the temporal distortions as an integral part of the
game could lead to new and intriguing game designs.

Let us denote by b( p) the bullet time of player p. As in the previous section, assume
we have two players, p and r, and a bullet e shot by player p. Figure 12.15 illustrates
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Figure . Player p shoots player r, and player p is using bullet time. (a) The temporal contour of
player p. (b) The temporal contour of player r.



 Algorithms and Networking for Computer Games

the players’ temporal contours when player p is using bullet time. From the perspective
of player p, when the bullet reaches r the delay is d( p, r) − b( p). As before, the delay
function represents the temporal difference between the actual entity and the rendered
entity. However, whereas normally the delay values are positive (i.e. the actual posi-
tion is ahead of the rendered position), bullet time can lead to negative delay values
(i.e. the rendered position is ahead of the actual position). This becomes more obvious
when we consider the same situation from the perspective of player r. When the bullet
reaches player r, the delay is −b( p) because the bullet time, in effect, takes away time
from player r. Naturally, collision detection and other reactions must be based on this
rendered entity rather than the actual entity, which is still on the way to the target.

Like normal temporal contours, bullet-timed temporal contours also require refining
to avoid visual disruptions. The bullet time shadow r′′ of player r corrects the temporal
contour based on the movement of e: for player p, r′′ must have the property

𝛿(r, r′′) = 𝛿e(d( p, r) − b( p)), (12.10)

and for player r, r′′ must have the property

𝛿(r, r′′) = 𝛿e(b( p)). (12.11)

In Figure 12.16 player r is using bullet time while being shot by player p. In this case,
the bullet time b(r) is added to the normal communication delay in the temporal con-
tour of player p, which means that the delay is d( p, r) + b(r) when the bullet reaches r.
Conversely, player r has the delay b(r) when the bullet reaches it. Again, to refine the
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Figure . Player p shoots player r, and player r is using bullet time. (a) The temporal contour of
player p. (b) The temporal contour of player r.
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temporal contours, we must calculate the bullet time shadow r′′. For player p, r′′ must
have the property

𝛿(r, r′′) = 𝛿e(d( p, r) + b( p)), (12.12)

and for player r, r′′ must have the property

𝛿(r, r′′) = 𝛿e(b(r)). (12.13)

Bullet-timed temporal contours can be generalized to include multiple players in the
same way as normal temporal contours.

. Synchronized Simulation

In synchronized (or simultaneous) simulation we have a replicated architecture with
absolute consistency, where all players have their own copy of the game world and
these replicas are always identical (i.e. synchronized) to one another. For example, Age
of Empires II uses communication turns (see Figure 12.17) and synchronized simulation
to support up to eight players and 1600 controllable entities (Bettner and Terrano 2001).
A similar kind of a bucket synchronization is also proposed by Zhao et al. (2009).

To reduce the number of messages sent among the nodes we try to keep the game
states as synchronized as possible. The events in the game world can be divided to

(i) deterministic (events generated by the simulation) and
(ii) indeterministic (commands issued by a synthetic or human player).

Because each simulation run can generate the same deterministic information, only
non-deterministic commands must be distributed among the participants. We reduce
the communication even further if each node runs the same synthetic players. The only
unpredictable events are then generated by the human players; they are the only ones
that need to be transmitted over the network.
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Figure . Communication turns in synchronized simulation delay the execution of both local and
remote commands so that they occur at the same time in all nodes. The rounds have an equal
duration. The commands from round rj (a, b and c) are executed two rounds later in round rj+2.
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To achieve indeterminism in the synthetic player’s decision-making we can use
pseudo-random numbers. Now the computer-issued commands – albeit determinis-
tic – appear to be arbitrary enough. Ideally, the simultaneously run simulations agree
on the seed value at the beginning, and then pass on only the commands issued by the
human players. Of course a real-world implementation also requires consistency checks
and recovery mechanisms in case some input gets lost.

Consider a simple game, Guess a Number. At the beginning each player chooses one
number within a given interval. Next, a randomly selected player from the remaining
players guesses a number and all the other players that have chosen that number drop
out of the game. This is repeated until only one player, the winner, remains. Algorithm
12.4 describes an implementation of this game, where the players can be controlled
by either humans or the computer. Moreover, the algorithm can be run in a network,
and the execution will be synchronized. The only information that must be distributed
among the computers is the human players’ input.

Algorithm 12.4 Synchronized simulation for Guess a Number.

H, C)
in: set of human participants H ; set of computer participants C
out: winner w
constant: minimum number nmin; maximum number nmax
local: guessed number g
1: agree on the seed value v with the participating nodes
2: v)
3: for all h ∈ H do
4: number(h) ← the chosen number of the human participant h
5: end for
6: for all c ∈ C do
7: number(c) ← nmin, nmax + 1)
8: end for
9: P ← copy H ∪ C

10: repeat
11: select p ∈ P randomly
12: if p ∈ H then ⊳ Human guesses.
13: g ← guess from the human participant p
14: else ⊳ Computer guesses.
15: g ← nmin, nmax + 1)
16: end if
17: for all q ∈ P ⧵ {p} do
18: if number(q) = g then
19: P ← P ⧵ {q}
20: end if
21: end for
22: until ∣P∣ = 1
23: w ← the single value in P
24: return w

Guess-Number(

Set-Seed(

Random-Integer(

Random-Integer(
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. Interest Management

The entities usually produce update packets that are relevant only to a minority of the
nodes. Therefore, an obvious way to save bandwidth is to disseminate update packets
only to those nodes that are interested in them. This interest management (IM) includes
techniques that allow the nodes to express interest in a subset of relevant information
(Benford et al. 2001; Morse et al. 2000). Liu and Theodoropoulos (2014) observe that an
IM technique must provide

� filtering precision (i.e. find a minimal set of relevant data),
� runtime efficiency (i.e. minimize the computational overhead), and
� event-capturing ability (i.e. capture and report all the relevant events to ensure con-

sistency).

The approaches to IM can be based on auras (i.e. the entity’s spatiality), zones (i.e. the
tessellation of the game world into disjoint areas), visibility (i.e. the spatial structures of
the game world), or class (i.e. other than spatial attributes of the entity) (Heger 2013; Liu
and Theodoropoulos 2014). Boulanger et al. (2006) provide results from a comparison
of different IM schemes. With respect to Equation (12.1), IM techniques aim to reduce
the average number of messages (M) and bandwidth use (B) per message. This requires
more organizing between the nodes, and, consequently, more processing (P).

12.6.1 Aura-based interest management

An aura is an expression of data interest, which usually correlates with the sensing capa-
bilities of the entity being modelled. Simply put, an aura is a subspace where interaction
occurs; see Figure 12.18(a). Thus, when two players’ auras intersect, they can be mutu-
ally aware of each other’s actions and should receive update messages from each other.
Awareness can be based on senses like seeing or hearing and we can have separate auras
for different media (e.g. visual and aural awareness). To simplify computation we can
add extents that approximate the actual aura such as bounding boxes.

(a)

(b)

Figure . Aura-based interest management.
(a) When two entities’ auras intersect, they are
aware of each other and receive update
messages. (b) With focus (dashed areas) and
nimbus (grey areas) the awareness need not be
symmetric. The grey ship’s focus intersects the
white ship’s nimbus, which means that the grey
ship receives update messages from the white
ship. Because the white ship’s focus does not
intersect the grey ship’s nimbus, it does not
receive update messages from the grey ship.
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Filtering update messages with auras is always symmetric, but an aura can be divided
further into a focus and a nimbus, where focus represents an observing entity’s interest
and nimbus an observed entity’s wish to be seen in a given medium (Benford et al. 1994;
Greenhalgh 1998). Thus, the player’s focus must intersect with another player’s nimbus
in order to be aware of him; see Figure 12.18(b). For example, in hide-and-seek the nim-
bus of the hiding person could be smaller than that of the seeker, and the seeker cannot
interact with the hider. At the same time, the hider can observe the seeker if the seeker’s
nimbus is larger and intersects the hider’s focus.

12.6.2 Zone-based interest management

Zone-based (also called cell-based, grid-based or region-based) interest management
tessellates the game world into disjoint zones. This tessellation can be static (i.e. done
beforehand and remaining constant) or dynamic (i.e. changing according to the game
state). Moreover, the tessellation does not have to be regular, but the zones can follow
the topology of the game world (Quax 2007). The players are assigned to the zones, for
example, based on their position, so that the zones represent their area of interest (see
Figure 12.19). Now, the zones define how messages are propagated in such a way that
the players receive only updates related to the zones of interest to them. In other words,
zones present an approximation of the player’s interest – and, in this way, the aura-based
approach can be combined with zones so that an entity is interested in the zones inside
its aura (Han et al. 2008).

A natural implementation for zones is to assign each zone to a multicast group of
its own. Now, all entities within the zone transmit updates to the corresponding mul-
ticast address. Typically entities subscribe to groups corresponding to their own zone
and the neighbouring zone. This kind of extrinsic filtering is computationally less inten-
sive, because the receivers of a message are determined merely based on its network
attributes (e.g. address). In contrast, the aura-based approach represents intrinsic filter-
ing, which uses the application-specific data content of an update message to determine
which nodes need to receive it. This filtering provides fine-grained information delivery,
but message processing may require a considerable amount of time.

12.6.3 Visibility-based interest management

Aura- and zone-based interest management can turn out to be excessively crude mod-
els, especially for indoor environments with small, confined spaces limiting visibility

Figure . In zone-based interest management the entities express interest in their nearby zones.
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and, consequently, the need for direct communication. Potentially visible sets provide
an approach to analyse the environment and determine cells (e.g. rooms) within it (Airey
et al. 1990; Teller and Séquin 1991). All the cells that are visible from a given cell, for
example, through openings and portals, form its potentially visible set. An obvious
approach now would be to limit the interest of an entity to those entities residing in
its corresponding potentially visible set.

The frontier set approach utilizes a similar idea but oppositely to potentially visible
sets (Steed and Angus 2005; Steed and Zhu 2008). A frontier defines regions that are
guaranteed to be hidden from each other. Let the set C consist of all the cells of interest.
For a subset B ⊆ C, function s(B) gives a set of cells that can be seen from any of the cells
in B:

s(B) = {c | c ∈ C ∧ (c can be seen from some cell in B)}.

Suppose we are interested in the relationship of cells a ∈ C and b ∈ C. A frontier of these
two cells is a pair of sets Fa→b ⊂ C and Fb→a ⊂ C which mutually have the following
property:{

Fa→b ∩ s(Fb→a) = ∅

s(Fa→b) ∩ Fb→a = ∅.

That is, for any cell d ∈ Fa→b, that particular d cannot be seen from any of the cells
in Fb→a and for any cell e ∈ Fb→a, that e cannot be seen from any of the cells in Fa→b.
Clearly, the sets Fa→b and Fb→a are disjoint. Also, if the cells a and b have a line of sight,
the frontier sets are empty. This means that as long as entity e1 resides in Fa→b and entity
e2 resides in Fb→a, they cannot see one another and need not exchange any updates (see
Figure 12.20). The frontier sets can be created beforehand as they usually stay static
throughout the game – unless it is possible to create new openings in the game world.

12.6.4 Class-based interest management

Whereas the previous approaches emphasize spatiality, interest management can also be
based on other characteristics of the entities. For example, we can utilize the visual lim-
itations of the players to reduce the set of interesting entities. As humans can only focus
on a small number of objects at once, we can try to detect where the player’s attention
is focused and only send updates from those entities. The downside is that the player’s
interest changes often, which means that this set of entities of interest must also change
frequently. For the entities outside the focus, it is enough to send rudimentary informa-
tion and their state can be extrapolated.

For example, Bharambe et al. (2008) limit the size of the interest set to five entities. To
rank the entities of interest they measure proximity (i.e. players are more likely to pay
attention to nearby entities), aim (i.e. players are more likely to pay attention to entities
they are aiming at) and recency of interaction (i.e. players are more likely to pay atten-
tion to entities that they have recently interacted with). When combining these met-
rics it is important to also consider the player’s state to set the corresponding weights.
For instance, a player with a mêlée weapon typically focuses more on nearby entities,
whereas the attention of a player with a ranged weapon is on more distant entities.
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Figure . Examples of frontier sets. (a) The players are in cells c and g and the frontier sets are
Fc→g = {c, f , i} and Fg→c = {a, b, d, g}. The cells e and h do not belong to the frontier: if e ∈ Fg→c it could
be seen from i ∈ Fc→g, and similarly for the case h ∈ Fc→g. (b) The players are in cells e and f and the
frontier sets are Fe→f = {a, b, d, e, g} and Ff→e = {c, f}. (c) The players are in cells c and h and the
frontier sets are Fc→h = {c} and Fh→c = {a, b, d, e, g, h}. (d) The players are in cells d and h and can
possibly see one another; the frontier sets are Fd→h = ∅ and Fh→d = ∅.

. Compensation by Game Design

Achieving real-time responses is a major hurdle, for example, for mobile platforms,
because of their limited processing power, memory capacity, display capabilities, and
communication channels. In particular, the resources for handling the network commu-
nication impose restrictions on real-time communication, which the application cannot
overcome and which must be considered in the game design. Although we can wait
and hope for improvements in the underlying technology, we can take a more proactive
view and use game design as a way of reducing communication requirements (Smed and
Hakonen 2006).

Real-time communication is not the only method to allow multiple players to partici-
pate in a game simultaneously. For example, the oldest form of non-real-time multiplay-
ing, dating back from the 1970s, is a high-score list which provides an after-game place
for the players to meet and compete by comparing their results. It is still a viable form
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of interaction, and the competition can be distributed so that the participants provide
their results which are then compiled to form the final standings.

Let us look the three game design concepts, which are based on different levels of
decision-making: operational, tactical and strategic (see Section 9.1.1, p. 190). These
correspond to the time span and abstractness of the decisions: operational decisions
are concrete and frequently issued commands, tactical decisions comprise instructions
aimed at a given situation, and strategic decisions focus on long-term planning. For each
concept, we outline how light-weight communication can be used so that the game still
remains enjoyable for everyone to play.

12.7.1 Short active turns

The simplest way to achieve interaction is to serialize the game events so that each player
has a turn when it comes to making decisions. Thus, in a turn-based game the players
have active turns followed by passive turns where they are observing the game progress.
If the player’s decisions are carried out immediately, this active turn cannot be too long
so that all the players have an equal chance to interact and the waiting times remain
reasonable. Whereas the active turns matter most to the player, we should smooth out
their difference with respect to the passive ones. This means that the game design should
make the players also find the compulsory passive turns interesting and captivating.

Figure 12.21 illustrates how the gameplay works. Each turn has a predefined length.
When the active player is taking a turn, the passive players can view statistics, prepare
for their turn, or customize the presentation of the game content (e.g. the type of filler
material shown). When the active player has completed her turn, she can watch a replay
or post-turn animation or get comments from the coach. Meanwhile, the relevant data
are transferred to the other players, who can then render it. There is no need for a server,
but the communication can be based on a peer-to-peer architecture. However, joining
requires a way to handle the participation management so that the players can connect
with one another.

The main requirement for such a game design is that the player’s operational decisions
are made within short time intervals (i.e. active turns). Natural candidates for this kind
of a game are certain fast-paced and turn-taking-based sports events such as javelin,
long jump, ski jumping, and darts. Such games also retain the excitement in the pas-
sive turns, because it is interesting to watch and anticipate other players’ turns. More-
over, this makes it easy to generate relevant filler material (e.g. statistics or slow motion
replays) to be shown during the passive turns.
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transmission ttransmissiontransmission
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fillerrender turn 2
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render turn 1

render turn 1

render turn 1

active turn 2

active turn 1

Figure . Each player has a short active turn followed by passive turns in which the other players
take their turn.
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Figure . Players p1, p2 and p3 issue tactical instructions to the corresponding avatars a1, a2 and a3.

12.7.2 Semi-autonomous avatars

Instead of operational commands, we can raise the abstraction level to tactical com-
mands, which means that they are not so time-sensitive. This demonstrates the idea
of compensating communication with computation. Let us elaborate by using a sim-
ple shooter as an example. Rather than giving commands like ‘move forward’, ‘turn left’
or ‘shoot’, which require prompt communication, the avatars can be semi-autonomous,
with the players giving them tactical instructions such as ‘attack’, ‘flee’ or ‘guard’ (see
Figure 12.22). The avatars then carry out these tactics the best they can. However, their
response is not immediate and the outcome can be something other than the player
expected. This resembles the characters of The Sims, which have limited free will to
carry out the player’s commands.

Semi-autonomous avatars provide a way to realize light-weight communication in
a client–server architecture. The players (i.e. clients) send tactical commands to the
server, which updates the situation and returns the game events. High latency can be
compensated by slowing down the pace of the game or by gathering the commands
of a certain period and issuing them simultaneously like the SMS television games
(Seppänen 2003). Because the computational burden now lies in the server, we can even
allow the players to code the operational level logic themselves as in Core War (Dewdney
1984) or AIsHockey (Smed et al. 2003a).

To summarize, this concept requires the game design to have a clear separation
between the tactical and operational level. In order to have intelligent avatars the game
world should be non-complex (e.g. a limited arena) or the set of actions in the tactical
level should be limited. For example, team sports games provide natural command inter-
faces that accept tactical commands like ‘attack on the right side’, ‘defence go forward’,
or ‘increase pressure’.

12.7.3 Interaction via proxies

The gameplay at the strategic level does not require the participating players to be
present at the same time. The players can set proxies that later on interact with other
players on their behalf, and, conversely, they encounter proxies set by other players. For
example, the bone files of NetHack allow the player to interact with the ghost of another
player, who has died earlier at that level. The ghost then acts as a proxy for the deceased
player, but that player himself does not interact with the active player. In addition to
fully autonomous avatars, the proxies can be game entities (e.g. mechanistic objects or
gizmos) and can even include programmable parts.

As an example, let us introduce a novel game called Entrappers (see Figure 12.23). The
game comprises levels generated and stored in a server. When a player enters a level, she
gets either a computer-generated or previously stored level. A stored level can contain
traps set by previous players (i.e. the traps act as their proxies). The player is alone in the



12 Compensating Resource Limitations 

{ }

{c}

c{ }

1 2{c, p , p  }

c{ }

1{c, p }

1{c, p }

2{c, p  }

2{c, p  } c{ }

c{ }

c{ }

c{ }

c{ }

2{c, p  }

1{c, p }

start
p2

p1

p2

p1
p1

p2

p1

p2

c

Figure . A level layout for the game Entrappers. The columns represent level alternatives for a
player. The arrows indicate the routes already taken by players p1 and p2. Inside each level are traps set
by the computer (c) or the players.

level and only when she exits is the level – containing the possible modifications and
new traps she has set – stored back in the server. The player is credited immediately
with clearing the level and indirectly over time when somebody else falls into a trap set
by her.

This concept requires the game design to allow unrestricted play time for the players
(i.e. they can join and leave whenever they want and the rewards are collected over time).
Moreover, the gameplay lacks immediate human interaction, which also restricts the
game design. However, from these restrictions it follows that we can implement a form of
light-weight communication that allows games to be organized with massively multiple
players.

. Summary

The basic idea of compensation techniques is to replace communication with computa-
tion. If we want to reduce network traffic, we can do so at the cost of processing power: in
dead reckoning we compute predictions and correct them, in synchronized simulation
we re-create the deterministic events, and in interest management we select to whom
to send the updates.

The compensation techniques address two aspects: the consistency–responsiveness
dichotomy and scalability. To balance consistency and responsiveness we must choose
which is more important to us, because one can be achieved only by sacrificing the other.
In computer games, unlike many other networked applications, we may have to give up
the consistency requirement to get better responsiveness. Scalability is about dividing
the resources among multiple participants, whether they are human or synthetic players.
It begs the questions which parts of the program can be run in serial or parallel and what
is the communication capacity of the chosen communication architecture.

Dead reckoning and local perception filters provide more responsiveness by sacri-
ficing consistency, whereas synchronized simulation retains consistency at the cost of
responsiveness and scalability. Interest management aims to provide scalability, but
managing the entities’ interests reduces the responsiveness as well as introducing incon-
sistencies among the nodes. Despite all these compensation methods, the fact remains
that whatever we do we cannot completely hide the resource limitations – but if we
are lucky, we can select the places where they occur so that the nuisance they cause is
tolerable.
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Savery (2014) presents experimental results for different compensation methods. The
consistency metrics used include

� state divergence (i.e. how consistent the players’ views are),
� propagation delay (i.e. the time from one player performing an action to the other

player perceiving it),
� corrections (i.e. the number and magnitude of modifications required to repair incor-

rect state information),
� response time (i.e. the time from performing an action to seeing it), and
� animation delay (i.e. the rate of on-screen updates).

The test results indicate that dead reckoning has the best overall balance between the
metrics and works well if modest divergence and occasional corrections are allowed. The
worst case for dead reckoning is if the avatar can have erratic movements that are hard to
predict (which is quite typical in first-person shooter games). Synchronized simulation
is a good choice if the game has low state divergence, which requires few corrections (e.g.
real-time strategy games where the player’s control is indirect). The biggest downside
is in the growing response time which starts hindering the playing experience. The LPF
performs poorly on state divergence but really well on corrections. It is recommended if
the game requires fast response and players seeing the same things (although displaced
in time).

Although we cannot escape technical limitations, we can change the resource require-
ments by altering the game design cleverly. By considering the different decision-making
levels we can steer the game design so that it is possible to combine the need for multi-
player support with light-weight communication.

Exercises

- If we decide to send update messages less often and include several updates to
each message, what does this mean in the light of Equation (12.1)? What if we
send the messages to only those who are really interested in receiving them?

- Why is processing power included in the network resource limitations?

- Suppose you have 12 computers with equal processing and networking capa-
bilities. You can freely arrange and cable them in a peer-to-peer, client–server
or server-network (e.g. three servers connected peer-to-peer with three clients
each) architecture. With respect to Equation (12.1), compare the resource
requirements of these communication architectures. Then consider how real-
izable are they on the Internet.

- To achieve consistency the players have to reach an agreement on the game state.
However, this opens the door to distributed consensus problems. Let us look
at one of them, called the two-generals problem. Two generals have to agree
whether to attack a target. They have couriers carrying messages to and fro, but
the message delivery is unreliable. Is it possible for them to be sure that they have
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an agreement on what do? For a further discussion on consensus problems, see
Lamport and Lynch (1990).

- Why is it that we can have sublinear communication? What are the results of
using it?

- The game world can be parallelized by zoning (i.e. dividing it into zones and
assigning a server to each zone) or instancing (i.e. creating copies of certain areas
which run in parallel in separate servers). Observe massive multiplayer online
games and determine which approach they are using. Is the game genre or the
game design reflected in the approach chosen?

- Assume that we are sending update messages about the three-dimensional posi-
tion (x, y, z) to other players. The coordinates are expressed using 32 bits, but
the actual changes are of magnitude [−10,+10]. To have more bandwidth, how
would you compress this network traffic?

- Assume that we have a centralized architecture, where all players report their
coordinates to a server. Explain how timeout-based and quorum-based message
aggregations work in such an environment. Assume we have 12 players, and their
update interval ranges from 0.1 to 3 seconds. Which approach would be recom-
mended?

- Consider the following entities. How easy or difficult is it to predict their future
position in 1 second, in 5 seconds, and in 1 minute?
(a) A rabbit
(b) A human being
(c) A sports car
(d) A jeep
(e) An aeroplane.

- Why does a first-order polynomial (e.g. velocity) give better predictions, if the
second-order derivative (e.g. acceleration) is small or substantial?

- If we do not use a convergence technique, the game character can ‘warp’, for
example, through a wall. Does a convergence technique remove visually impos-
sible moves?

- Compare dead reckoning and local perception filters by considering their visual
and temporal fidelities.

- What other possibilities are there to define the temporal contour? What would
be a theoretically ideal temporal contour?

- In Pong two players at opposite ends try to hit with a paddle a ball bouncing
between them. How can we use local perception filters to hide communication
delays between the players?
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- One way to hide technical limitations is to incorporate them as a part of the game
design. Instead of hiding communication delays, local perception filters could be
used to include temporal distortions. Devise a game design that does so.

- In local perception filters, a critical proximity is the distance between players
when interaction using entities becomes impossible. Assume that we are using
linear temporal contours. Define the critical proximity using the terms of Section
12.4.

- The bullet time effect opens the door to temporal cheating. Consider the situa-
tion in which players s, n and t stand in line. Player s shoots at t, who cannot use
bullet time. What happens if player n, who is between s and t, uses the bullet time
effect?

- Assume we have a game that uses synchronized simulation. If we want to extend
the game by including new players, which will become the limiting factor first:
the number of human players or the number of synthetic players?

- Interest management reduces update messages between entities that are not
aware of one another. Can this lead to problems with consistency?

- In order to use auras, foci and nimbi a entity has to be at least aware of the exis-
tence of other entities. How can you implement this? (Hint: First select a suitable
communication architecture.)

- Devise an algorithm for assigning frontier sets (see Figure 12.20).

- Take an operational-level game (e.g. a first-person shooter) and redesign it to
use semi-autonomous avatars. What tactical commands would the player issue?
Would the game be still playable? What would be the effect on network commu-
nication?

- Implement the game Entrappers (see p. 284 and Figure 12.23).
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Cheating Prevention

There are many reasons why a player might feel motivated to cheat and, as in real life,
any player can turn into a cheat if the rewards are large enough and the risk of getting
caught is small. Common motivations for cheating are (Consalvo 2007)
� lack of skill or time (i.e. the player cheats to overcome a part of the game which is too

difficult or time-consuming),
� money (i.e. the player cheats to win prize money or to create virtual assets to trade

with real-world money),
� boredom (i.e. the player wants to skip uninteresting content),
� fun (i.e. the player gets entertainment from cheating),
� causing havoc (i.e. the player cheats to ruin the other players’ game experience),
� experimentation and exploration (i.e. the player wants to find out all the content and

secret areas),
� extending the life span of the game (i.e. the player wants to continue to play after the

original content is finished),
� creativity (i.e. the player cheats to create new experiences such as mods or total con-

versions),
� non-conformity (i.e. the player seeks to do forbidden things or rebel against authority),

and
� fame (i.e. the player seeks recognition and prestige by cheating to win the game or

from inventing a way to cheat).

Sometimes even the concept of cheating can have different definitions from player to
player: for some players even using hints constitutes cheating, whereas for others any-
thing goes.

As online gaming has grown into a lucrative business, greed has become a driving
force behind cheating. Cheating occurs because of the financial gain from selling virtual
assets (e.g. special items or ready-made game characters). Naturally, potential financial
losses, caused directly or indirectly by cheats, are a major concern among online gaming
sites and the main motivation to implement countermeasures against cheating. On the
other hand, game sites can sometimes even postpone fixing detected cheating problems,
because the possibility of cheating can attract players to participate in the game.

For many games, the end user licence agreement and terms of service often contain
clauses that prohibit cheating. Moreover, to make enforcement possible they may also
include invasive clauses whereby the player agrees to be monitored (e.g. with the help of
spyware). For example, World of Warcraft searches the process list of the host computer

Algorithms and Networking for Computer Games, Second Edition. Jouni Smed and Harri Hakonen.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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for known ways of cheating and sends the data back to Blizzard. Game companies’ stance
on cheating varies, but the usual punishment involves blocking or banning the cheating
client. Legal action is the final form of cheat prevention. However, legislation is often
intended to prevent piracy and is ill-suited to cheating prevention.

Cheating prevention has three distinct goals (Smed et al. 2002; Yan and Choi 2002):

� to protect sensitive information,
� to provide a level playing field, and
� to uphold a sense of justice inside the game world.

Each of these goals can be viewed from a technical or social perspective. Sensitive infor-
mation (e.g. players’ accounts) can be accessed, for instance, by cracking passwords or
by pretending to be an administrator and asking players to give their passwords (Watte
2008). A level playing field can be compromised, for instance, by tampering with the
network traffic or by colluding with other players. The sense of justice can be violated,
for instance, by abusing inexperienced and ill-equipped players or by ganging up and
controlling parts of the game world.

In this chapter we look at different ways to cheat in online multiplayer games and
review some algorithmic countermeasures that aim to prevent them.

. Technical Exploitations

In a networked multiplayer game, a cheat can attack the clients, the servers, or the
network connecting them. Figure 13.1 illustrates typical types of attack (Hoglund and
McCraw 2007; Kirmse and Kirmse 1997). On the client side, the attack can take place
over the client (e.g. using macros or triggering keyboard events for control and reading
pixel values from the user interface), under the client (e.g. hacking a driver to access the
video memory or tampering with the network traffic), or in the client (e.g. altering the
code in the client’s memory). Game servers are vulnerable to network attacks as well
as physical attacks such as theft or vandalism. Third-party attacks on clients or servers
include IP spoofing (e.g. intercepting packets and replacing them with forged ones)
and denial-of-service attacks (e.g. blocking networking of some player so that he gets

Denial-of-service attack

or theft

Attacks through
other ports

Physical attack

Packet
tampering

Compromised
software

or data files
Modified memoryengineering

Social

ServerClientUser

Collusion

IP spoofing

Internet

Figure . Typical attacks in a networked multiplayer game.
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dropped from the game). In the following we review common technical exploitations
used in online cheating – but it is worth remembering that sometimes the player
can be the weakest link against attacks such as collusion (see Section 13.2) or social
engineering.

13.1.1 Packet tampering

In first-person shooter games, a usual way to cheat is to enhance the player’s reactions
with reflex augmentation (Kirmse 2000). For example, an aiming proxy can monitor the
network traffic and keep a record of the opponents’ positions. When the cheat fires,
the proxy uses this information and sends additional rotation and movement control
packets before the fire command, thus improving the aim. Alternatively, in packet inter-
ception the proxy prevents certain packets from reaching the cheat. For example, if the
packets containing damage information are suppressed, the cheat becomes invulnera-
ble. In a packet replay attack, the same packet is sent repeatedly. For example, if a weapon
can be fired only once per second, the cheat might send the fire command packet a hun-
dred times a second to boost its firing rate.

A common method for breaking the control protocol is to change bytes in a packet
and observe the effects. A straightforward way to prevent this is to use checksums. For
this purpose, we can use message-digest algorithms, which are one-way functions that
transform a message of any length into a constant length message digest (or fingerprint).
These algorithms are used to guarantee the integrity of the data as follows. A sender cre-
ates a message and computes its message digest. The message digest (possibly encrypted
with the sender’s private key or receiver’s public key) is attached to the message, and the
whole message is sent to a receiver. The receiver extracts the message digest (possibly
decrypting it), computes the message digest for the remaining message, and compares
both message digests.

Preferably, no one should be able – or at least it should be computationally infeasible –
to produce two messages having the same message digest or to produce the original
message from a given message digest. However, a digest algorithm has the weakness that
if two messages A and B have the same message digest, it cannot authenticate which is
the original message. If a cheat can find two messages that produce the same message
digest, she could use a collision attack. For example, in algorithm MD5 developed by
R.L. Rivest (1992), producing digests of length 128 bits, it is possible even to append the
same payload P to both messages M and N (M ≠ N) so that the message digests remain
the same (i.e. MD5(M ∥ P) = MD5(N ∥ P)). For this reason, MD5 can be used to detect
accidental corruptions but not intentional ones (Wang and Yu 2005).

There are two weaknesses that cannot be prevented with checksums alone: a cheat can
reverse-engineer the checksum algorithm or can mount an attack with packet replay. If
the command packets are encrypted, the cheat has less chance of recording and forging
information. However, preventing a packet replay attack requires that the packets carry
some state information so that even packets with a similar payload appear to be different.
Instead of serial numbering, pseudo-random numbers, discussed in Section 2.1, provide
a better alternative. Random numbers can also be used to modify the packets so that
even identical packets do not appear the same. Dissimilarity can be further induced by
adding a variable amount of junk data to the packets, which eliminates the possibility of
analysing their contents by size.
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Figure . Assume the senders must time-stamp (i.e. include the value s in) their outgoing messages,
and the latency between the players is 3 time units. (a) If both players are fair, p1 can be sure that the
message from p2, which has the time-stamp t + 2, was sent before the message issued at t has arrived.
(b) If p2 has a latency of 1 time unit but pretends that it is 3, look-ahead cheating using forged
time-stamps allows p2 to base decisions on information that it should not have.

13.1.2 Look-ahead cheating

In peer-to-peer architecture, all nodes uphold the game state, and the players’ time-
stamped actions must be conveyed to all nodes. This opens up the possibility of look-
ahead cheating, where the cheat gains an unfair advantage by delaying his actions – as if
he had a high latency – to see what the other players do before choosing his action. The
cheat then forges the time-stamped packets so that they seem to be issued before they
actually were (see Figure 13.2). To prevent this we review two methods: the lockstep
protocol and active objects.

Lockstep protocol
The lockstep protocol tackles the problem by requiring that each player first announces
a commitment to an action; when everyone has received the commitments, the play-
ers reveal their actions, which can then be checked against the original commitments
(Baughman and Levine 2001). The commitment must meet two requirements: it cannot
be used to infer the action, but it should be easy to compare whether an action corre-
sponds to a commitment. An obvious choice for constructing the commitments is to
calculate a hash value for the action.

Algorithm 13.1 describes an implementation of the lockstep protocol, which uses the
auxiliary functions introduced in Algorithm 13.2. The details of the function Hash are
omitted, but hints for its implementation can be found in Knuth (1998c, Section 6.4).
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Algorithm 13.1 Lockstep protocol.

, a, P)
in: local player ; action a; set of remote players P
out: set of players’ actions R
local: commitment C; action A; set of commitments S
1: C ← ⟨ , a)⟩
2: C, P) ⊳ Announce commitment.
3: S ← {C}
4: S ← S ∪ P) ⊳ Get other players’ commitments.
5: P) ⊳ Wait until everyone is ready.
6: A ← ⟨ , a⟩
7: A, P) ⊳ Announce action.
8: R ← {A}
9: R ← R ∪ P) ⊳ Get other players’ actions.

10: for all A ∈ R do
11: C ← the commitment C ′ ∈ S for which C ′

0 = A0
12: if C1 ≠ A1) then ⊳
13: error player A0 cheats
14: end if
15: end for
16: return R

Lockstep(ℓ

Hash(

Hash( Are commitment and action different?

Send-All(

Send-All(

Receive-All(

Receive-All(

Synchronize(

ℓ

ℓ

ℓ

It is evident that the game progresses at the pace of the slowest player because of the
synchronization. This may be suitable for a turn-based game, which is not time-critical,
but if we want to use the lockstep protocol in a real-time game, the turns have to be
short or there has to be a time limit within which a player must announce the action or
pass that turn altogether.

To overcome this drawback, we can use an asynchronous lockstep protocol, where each
player advances in time asynchronously from the other players but enters into a lockstep
mode whenever interaction is required. The mode is defined by a sphere of influence
surrounding each player, which outlines the game world that can possibly be affected by
a player at the next turn (or subsequent turns). If two players’ spheres of influence do
not intersect, they cannot affect each other at the next turn, and hence their decisions
will not affect each other when the next game state is computed and they can proceed
asynchronously.

In the pipelined lockstep protocol, synchronization is loosened by having a buffer of
size p in which the incoming commitments are stored (Lee et al. 2002); in basic lock-
step, p = 1. Instead of synchronizing at each turn, the players can send several com-
mitments, which are pipelined, before the corresponding opponents’ commitments are
received. In other words, when player i has received the commitments C j

n of all other
players j for time frame n, she announces her action Ai

n (see Figure 13.3). The pipeline
may include commitments for the frames n,… , (n + p − 1), when player i can announce
commitments Ci

n,… , Ci
n+p−1 before having to announce action Ai

n. However, this opens
up the possibility of reintroducing look-ahead cheating. If a player announces her action
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Algorithm 13.2 Auxiliary methods for the lockstep protocol.

m, R)
in: message m; set of recipients R
1: for all r ∈ R do
2: send m to r
3: end for

S)
in: set of senders S
out: set of messages M
1: M ← ∅
2: for all s ∈ S do
3: received(s) ←
4: end for
5: repeat
6: receive message m from s ∈ S
7: received(s) ←
8: M ← M ∪ {m}
9: until ∀s ∈ S : received(s)

10: return M

H)
in: set of remote hosts H
1: ∅, H)
2: H)

Send-All(

Receive-All(

false

true

Synchronize(

Send-All(
Receive-All(

earlier than required by the protocol, the other players can change both their commit-
ments and actions based on that knowledge. This can be counteracted with an adaptive
pipeline protocol, where the idea is to measure the actual latencies between the players
and to grow or shrink the pipeline size accordingly (Cronin et al. 2003).

Active objects
The lockstep protocol requires the players to send two transmissions – one for the com-
mitment and one for the action – at each turn. Let us now address the question whether
we can use only one transmission and still detect look-ahead cheating. A single transmis-
sion means that the action must be included in the outgoing message, but the receiver is
allowed to view it only after he has replied with his own action. But this leaves open the
question how a player can make sure that the exchange of messages in another player’s
computer has not been compromised. It is possible that he is a cheat who intercepts and
alters the outgoing messages or has hacked the communication system.

We can use active objects to secure the exchange of messages which happens in a
possibly ‘hostile’ environment (Smed and Hakonen 2005a). Now the player (or the orig-
inator) provides an active object, a delegate, which includes program code to be run by
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Figure . Lockstep and pipeline lockstep protocols. (a) The lockstep protocol synchronizes after
each turn and waits until everybody has received all commitments. (b) The pipelined lockstep protocol
has a fixed size buffer (here the size is 3), which holds several commitments.

the other player (or the host). The delegate then acts as a trusted party for the originator
by guaranteeing the message exchange in the host’s system.

Let us illustrate the idea using the game rock–paper–scissors as an example. Player p
goes through the following stages:

(i) Player p decides on the action ‘paper’, puts this message inside a box and locks it.
The key to the box can be generated by the delegate of player p at player r’s end,
since p’s delegate has been sent beforehand to player r.

(ii) Player p gives the box to the delegate of player r, which closes it inside another box
before sending it to player r. Thus, when the message is sent out from the delegate,
player p cannot tamper with its contents.

(iii) Once the double-boxed message has been sent, the delegate of player r generates
a key and gives it to player p. This key will open the box enclosing the incoming
message from player r.

(iv) When player p receives a double-boxed message originating from player r, he can
open the outer box, closed by his own delegate, and the inner box using the key he
received from the delegate of player r.

(v) Player p can now view the action of player r.

At the same time, player r goes through the following stages:

(i) Player r receives a box from player p. She can open the outer box, closed by her own
delegate, but not the inner box.
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(ii) To get the key to the inner box, player r must inform the delegate of player p of her
action. Player r chooses ‘rock’, puts it in a box and passes it to the delegate.

(iii) When the message has been sent, player r receives the key to the inner box from
the delegate of player p.

(iv) Player r can now view the action of player p.

Although we can trust, at least to some extent, our delegates, there still remain two
problems to be solved. First, the delegate must ensure that it really has a connection to
its originator, which seems to incur extra talk-back communication. Second, although
we have secured one-to-one exchange of messages, there is no guarantee that the player
does not alter its action when it sends a message to a third player.

Let us tackle first the problem of ensuring the communication channel. Ideally, the
delegate, once started, should contact the originator and convey a unique identification
of itself. This identification should be a combination of dynamic information (e.g. the
memory address where the delegate is located or the system time when the delegate
was created) and static information (e.g. a built-in identification number or the Internet
address of the node where the delegate is being run). Dynamic information is needed to
prevent a cheating host from creating a copy of the delegate and using that as a surrogate
to work out how it operates. Static information helps ensure that the delegate has not
been moved somewhere else or replaced after the communication check.

If we could trust the run environment where the delegate resides, there would be no
need to do any check-ups at all. On the other hand, in a completely hostile environment
we would have to ensure the communication channel every time, and there would be no
improvement over the lockstep protocol. To reduce the number of check-up messages
the delegate can initiate them randomly with some parameterized probability. In prac-
tice, this probability can be relatively low – especially if the number of turns in the game
is high. Rather than detecting attempts to cheat, this incurs a threat of being detected:
although a player can get away with cheating, in the long run attempts to cheat are likely
to be noticed. Moreover, as the number of participating players increases, so also does
the possibility of getting caught.

A similar approach helps us to solve the problem of preventing a player from sending
differing actions to the other players. Rather than detecting an inconsistent action in the
current turn, the players can ‘gossip’ among themselves about the actions taken in the
previous turns. The information exchanged can then be compared with the recorded
actions from the previous turns, and any discrepancy indicates that somebody has
cheated. Although the gossip can comprise all earlier actions, it is enough to include
only a small, randomly chosen subset of them – especially if the number of participants
is high. This gossiping does not require any extra transmissions because it can be piggy-
backed in the ordinary messages. Naturally, a cheat can send a false gossip about other
players, which means that if the action and the gossip differ, the veridicality of the gossip
has to be confirmed (e.g. by asking randomly selected players).

Other approaches
Mogaki et al. (2007) present a cheating-prevention protocol, which uses time-stamp
servers, that would minimize the latency to the actual delay between the players. Each
player sends the action to the other players and a hash of the action to the time-stamp
server, which returns the hash signed with a time-stamp and serial number. These
hashes and signatures are then used to verify the actions after the game is over. The
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proposed protocol, however, makes two strong assumptions: there must be time-stamp
servers near every player, and there cannot be any communication breakdowns.

Ferretti (2008) proposes a method for detecting look-ahead cheating, where we have
one trusted player p𝓁 amongst the participants. This trusted player can check whether
player pi is cheating by artificially increasing the delay of the outgoing messages from
p𝓁 to pi and observing the delays from pi to p𝓁 . If player pi is not cheating, the delays
should not change, whereas if pi is using look-ahead cheating, the response delays will
increase as the artificial delay increases.

13.1.3 Cracking and other attacks

Networking is not the only target for attacks, but the cheat can affect the game through
the software or even through the hardware (Pritchard 2000). Cracked client software
may allow the cheat to gain access to the replicated, hidden game data (e.g. the status
of other players). On the surface, this kind of passive cheating does not tamper with
the network traffic, but the cheat can base her decisions on more accurate knowledge
than she is supposed to have. For example, typical exposed data in real-time strategy
games are the variables controlling the visible area on the screen (i.e. the fog of war). This
problem is also common in first-person shooters where, for instance, a compromised
graphics rendering driver may allow the player to see through walls.

Strictly speaking, these information exposure problems stem from the software and
cannot be prevented with networking alone. Clearly, the sensitive data should be
encoded and its location in the memory should be hard to detect. Nevertheless, it is
always susceptible to ingenious hackers and, therefore, requires some additional coun-
termeasures. In a centralized architecture, an obvious solution is to utilize the server,
which can check whether a client issuing a command is actually aware of the object
with which it is operating. For example, if a player has not seen the opponent’s base,
he cannot give an order to attack it – unless he is cheating. When the server detects
cheating, it can drop the cheating client. A democratized version of the same method
can be applied in a replicated architecture: every node checks the validity of every other
node’s commands (e.g. by using gossiping as in Section 13.1.2), and if some discrepancy
is detected, the nodes vote on whether its source should be debarred from participat-
ing in the game. In addition, hardware-based methods (Feng et al. 2008) or behaviour
analysis (Laurens et al. 2007) can be used in ensuring that a client is not comprised.

Network traffic and software are not the only vulnerable places in a computer game,
but design defects can create loopholes, which cheats are apt to exploit. For example, if
the clients are designed to trust each other, the game is unshielded from client authority
abuse. In that case, a compromised client can exaggerate the damage caused by a cheat,
and the rest accept this information as such. Although this problem can be tackled by
using checksums to ensure that each client has the same binaries, it is more advisable to
alter the design so that the clients can issue command requests, which the server puts
into operation. Naturally, this schema can be hybridized or randomized so that only
some operations are centralized using some control exchange protocol.

In addition to poor design, distribution – especially the heterogeneity of network
environments – can be the source of unexpected behaviour. For instance, there may
be features that emerge only when the latency is extremely high or when the server is
under a denial-of-service attack (i.e. an attacker sends it a large number of spurious
requests).
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. Collusion

Many games assume that the players are rivals and, therefore, the rules forbid collu-
sion, where two or more opposing players cooperate covertly towards a common goal.
Imperfect information games, where each player has access only to a limited amount of
information, especially forbid collusion by sharing information. For example, in poker
the judgements are based on the player’s ability to infer information from the bets, thus
outwitting the opponents. If the players are physically present, it is easier to detect any
attempts at collusion (e.g. coughs, hand signals, or coded language). For example, in
bridge all attempts to collude are monitored by the other players as well as the judges.
However, the anonymity of multiplayer online games makes collusion detection a diffi-
cult problem.

The colluders can share knowledge or resources among themselves, which means that
collusion can take many forms. Cooperating players can engage in soft play and refrain
from attacking one another. A gang of players can ambush and rob other players in a
role-playing game. A novice chess player can resort to an expert – human or computer
program – to make better moves. Participants in a tournament can pre-arrange the out-
come of their matches to eliminate other players. Players belonging to the same clan can
send numerous and apparently independent complaints to the administrator to get an
innocent player banned. A friend participating as a spectator in a first-person shooter
game can scout the arena and reveal the location of the enemy.

The terms and rules of an online poker site usually stipulate that anyone attempting
to collude will be permanently prohibited from using the services provided by the site
and their account will be terminated immediately. Collusion detection is mainly based
on investigating complaints from other players, although some sites use methods for
analysing the game data to find play patterns typical of collusion. Poker players can col-
lude in two ways. In active collusion, colluding players play more aggressively than they
normally would (e.g. outbet non-colluding players). In passive collusion, colluding play-
ers play more cautiously than they normally would (e.g. only the one with the strongest
hand continues while the others fold). Active collusion can be detected afterwards by
analysing the game data, but it is next to impossible to discern passive collusion from
cautious normal play (Johansson et al. 2003).

Collusion also applies to other types of games, because a gang of cooperating players
can share information that they normally would not have or they can ambush and rob
other players. It is also possible in tournaments, and the type of tournament dictates
how effective it can be (Murdoch and Zieliński 2004). For example, in a scoring tour-
nament colluding players play normally against other players and agree who is going to
win the match where they face one another and score more points (see Table 13.1). In a

Table . Winners in a scoring tournament,
where all players have equal strength and
play optimally. If players c0 and c1 collude so
that c0 always wins, player c0 scores more
points than a non-colluding player.

p c c

p — draw draw
c0 draw — c0
c1 draw c0 —
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hill-climbing tournament, colluding players can gain benefit by affecting the result of
initial matches (see Figure 13.4).

Collusion in games has been studied mainly in card games (Johansson et al. 2003;
Mazrooei et al. 2013; Vallvè-Guionnet 2005; Yampolskiy 2007, 2008; Yan 2010), bridge
(Yan 2003), first-person shooters (Laasonen and Smed 2015; Laasonen et al. 2011;
VanderKnyff et al. 2009), soft play (Islam et al. 2009; Palshikar and Apte 2008), and
anti-communities (Chen et al. 2013, 2014; Yu and Chen 2013). Outside the field of
computer games collusion has been addressed in multiple choice examinations (Ercole
et al. 2002), covert communication channels (Zander et al. 2008), stock market trading
(Palshikar and Apte 2008), grid computing (Staab and Engel 2009), social moderation
(Lou et al. 2009) and spectrum auctions (Zhou and Zheng 2010).

13.2.1 Classification

Let us look at the types of collusion in which the cheating players can engage. Cheat-
ing players use collusion to encourage the non-colluding players to misjudge a game
situation and even overreact in it. Typically, there are two styles of play: in active style
the colluders play aggressively and in passive style they are more cautious than nor-
mally. These styles can change during the game flow and also swapped between the col-
luders. The colluders gain the advantage by recognizing who should play in what style
and when.

When players decide to collude, they make an agreement on the terms of collusion
(Smed et al. 2006). This agreement has four components:

Consent How do the players agree on collusion?
� Express collusion. The colluders make an explicit hidden agreement on cooperation

before or during the game.
� Tacit collusion. The colluders have made no agreement but act towards a mutually

beneficial goal (e.g. try to force the weakest player out of the game).
Scope What areas of the game will the collusion affect?

� Total collusion. The colluders cooperate in all areas of the game.
� Partial collusion. The colluders cooperate only in certain areas and compete in oth-

ers (e.g. sharing resource pools but competing elsewhere).

(b)
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Figure . Collusion in a hill-climbing tournament, where c0 and c1 can win against p0, p0 can win
against p1, and p1 can win against c0 and c1. (a) If everyone plays normally, p1 wins the tournament.
(b) If players c0 and c1 collude, c0 can deliberately lose his match so that c1 will get an easier opponent
later in the tournament.
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Bot
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Figure . Players and participants are the partakers of a game. The relationship is usually assumed
to be one-to-one, but one human participant can control two or more players, a player can be
controlled by a computer program (i.e. a bot), or two or more participants (e.g. a sweatshop).

Duration When does the collusion begin and end?
� Enduring. The collusion agreement lasts for the duration of the game.
� Opportunistic. Collusion agreements are formed, disbanded, and altered continu-

ously.
Content What is being exchanged, traded, or donated in the collusion?

� Knowledge. The colluders share expertise (e.g. inside information on the game
mechanics), in-game information (e.g. the colluders inform one another of the
whereabouts of the non-colluding players) or stance (e.g. the colluders agree on
soft play against one another).

� Resources. The colluders share in-game resources (e.g. donating digital assets to one
another) or extra-game resources (e.g. a sweatshop is playing a character which will
be sold later for real-world money).

This classification is not sufficient for online computer games, because we must also
discern the roles of the partakers – players and participants – of the game (Smed et al.
2007). A player in a game can be controlled by one or more participants, and a partici-
pant can control one or more players in a game (see Figure 13.5). This means that there
are two types of collusion: collusion among the players, which happens inside the game;
and collusion among the participants, which happens outside the game. To detect player
collusion, we have to analyse whether the players’ behaviour diverges from what is rea-
sonably expected. To detect participant collusion, we have to analyse the participants
behind the players to detect whether they are colluding.

This gives a fine-grained classification of collusion types:

Participant identity collusion How is a single player perceived to participate in a game?
� Player controller collusion. Many participants are controlling one player (e.g. two

participants controlling the same character alternatively).
� Self-collusion. One participant is controlling many players (e.g. one participant con-

trols many players at a poker table).
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Inter-player collusion How are the participants affecting the game?
� Spectator collusion. Co-colluder provides a different type of information (e.g. ghost

scouting, post-game information).
� Assistant collusion. Co-colluder plays (possibly sacrificially) to assist the other to

win (e.g. as a sidekick, passive scout, or spy).
� Association collusion. Colluders achieve individual goals by engaging in coopera-

tion.
Game instance collusion How do factors outside the game instance affect the game?

� Multigame collusion. Players of different game instances collude (e.g. finding a suit-
able server, studying the game properties or fixing tournament match results).

� Insider collusion. The co-colluder is a game administrator or game developer that
reveals or modifies the workings of the game instance.

Because collusion prevention requires that collusion is first detected, let us next take a
closer look at what is required from collusion detection.

13.2.2 Collusion detection

Only the organizer of an online game, who has full information on the game, can take
countermeasures against collusion. These countermeasures fall into two categories:
tracking (i.e. determining who the players actually are) and styling (i.e. analysing how
the players play the game). Unfortunately, there are no pre-emptive or real-time coun-
termeasures against collusion. Although tracking can be done in real time, it alone is
not sufficient. Physical identity does not reflect who is actually playing the game, and
a cheat can always avoid network location tracking with rerouting techniques. Styling
allows one to find out if there are players who participate often in the same games and,
over a long period, profit more than they should. For example, online poker sites usually
do styling by analysing the betting patterns and investigating the cases where the over-
all win percentage is higher than expected. However, this analysis requires a sufficient
amount of game data, and collusion can be detected only afterwards.

The general approach to detect collusion works as follows (Smed et al. 2007):

1. Generate game data with different numbers of players, colluders, game types, and
collusion strategies.

2. Devise detection methods.
3. Run the detection method against the data to get results.
4. Compare accuracy: how many (if any) of the colluders were detected?
5. Compare swiftness: how quickly were the colluders detected?

When comparing collusion detection methods, we should observe the following two
properties:

(i) Accuracy. How justified is the suspicion raised by the detection method?
(ii) Swiftness. How early is the suspicion raised?

Naturally, accuracy is important so that normal behaviour does not set off an alarm
and cause uncalled-for inspection or unjust punishment. Swiftness is usually related
to accuracy so that the less accurate the detection is, the more swiftly the suspicion is
raised.
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Figure . Collusion is detected when the observed results using a measure m deviate significantly
from the expected results re. Suspicion arises at the moment ts when the results are getting either too
‘good’ and cross the threshold rg or too ‘bad’ and cross the threshold rb.

Let us try to interpret these properties in a somewhat more formal – but simple –
manner (see Figure 13.6). Suppose that our detection is based on applying some numeric
function m to the participants P of the game and some game data D. Let Q ⊆ P and let rg
be some chosen threshold value for the best possible play. If m(Q, D) > rg , we decide that
the players in the set Q are colluding. In this framework the questions to be asked are:

(i) How is the value of m related to the probability that Q really contains colluders?
(ii) How much data D is needed before rg is exceeded?

Ideally, we would like to have a measure that indicates as early as possible when players
are colluding or when their behaviour is showing suspicious traits. Should the detection
happen before collusion actually gives any notable gain for the colluders, we have man-
aged to prevent it altogether. How then to find such methods? From an intuitive point
of view, any abnormal behaviour in a game should raise suspicion. This is the case espe-
cially when the results of some of the players get too good (i.e. exceeding the threshold
rg) or too bad (i.e. going under the threshold rb) in comparison to their playing skills (the
latter would indicate a case of assistant collusion). The function m could then indicate
the (absolute) difference between the expected behaviour (e.g. wins in a card game) and
the observed behaviour.

How, then, is Q selected? Instead of inspecting all |℘(P)| − |P| different colluder sets,
we can limit |Q| to a certain range, depending on the collusion pay-off of the game.
Figure 13.7 illustrates the pay-off of collusion with respect to the number of colluders. As
the number of colluders increases, the total amount of pay-off also increases. However,
when the pay-off is divided among the colluders, there exists an optimum where the pay-
off per colluder is greatest. For example, robbery is more effective when there are many
robbers in a gang, but a big gang of robbers has to focus on big heists to provide everyone
with a large amount of loot. When we are detecting colluders, |Q| can be limited near to
this optimum. For the game design this means that it is possible to discourage large-scale
collusion by pushing down the peak of the curve. For example, if robbery is allowed in
the game but a part of the loot is damaged (or otherwise loses its value), the optimum
size of a gang of robbers is reduced.
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Figure . The pay-off of collusion per colluder increases until the optimum number of colluders is
reached, after which it asymptotically approaches the fair play pay-off.

Preventing collusion in multiplayer online games is possible – either by making it dif-
ficult to engage in collusion in the first place or by increasing the risk of getting caught
afterwards. Consequently, the countermeasures are based on either prevention or detec-
tion. The benefits are immediate: the players in multiplayer online games can be sure
that there are no illicit alliances, gangs, clans or cooperation among rivals and every-
body has a level playing field, which is one of the main goals of cheating prevention.

There is a need for a third-party organization that grants and manages player licenses,
and, for example, Zetterström (2005) calls for an anti-cheating organization for online
multiplayer games equivalent to the anti-doping organization WADA in sports. Such
an organization could provide authentication of players and monitor their progress (e.g.
maintain player rankings) but it would also provide a way to weed out players who sys-
tematically break the rules. Nevertheless, an institution of this kind cannot exist without
gaining the members’ trust on privacy and security issues.

. Rule Violations

The definition of a game states that the players agree to follow the rules of the game
(see Chapter 1). We can then say that all players not adhering to the rules are cheats.
For example, collusion where two or more opposing players play towards a common
goal is explicitly forbidden in many games. However, the situation is not always so black
and white, because the rules can leave certain questions unanswered. The makers of
the rules are fallible and can fail to foresee all possible situations that a complex system
like a computer game can generate. If a player then exploits these loopholes, it can be
hard to judge whether it is just creative gameplay or cheating. Ultimately, the question
of upholding justice in a game world boils down to the question what is the ethical code
that the players agree and can be expected to follow.

Although players may act in accordance with the rules of a game, they can cheat
by acting against the spirit of the game. For example, in online role-playing games,
killing and stealing from other players are common problems that need to be solved
(Sanderson 1999). The players committing these ‘crimes’ are not necessarily cheating,
because they can operate well within the rules of the game. For example, in the online
version of Terminus different gangs have ended up owning different parts of the game
world, where they assault all trespassers. Nonetheless, we may consider an ambush by
a more experienced and better-equipped player on a beginner cheating, because it is
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neither fair nor justified. Moreover, it can make the challenge of the game impossible
or harder than the game designer originally intended.

There are different approaches to handle this problem. Ultima Online originally left
the policing of the game to the players, but eventually this led to gangs of player killers
who terrorized the whole game. This was counteracted with a rating system, where
everybody is initially innocent, but any misconduct against other players (including the
synthetic ones) brands the player as a criminal. Each crime increases the bounty on their
head, ultimately preventing them from entering shops. The only way to clear one’s name
is not to commit crimes for a given time. EverQuest uses a different approach, where the
players can mark themselves able to attack and be attacked by other players, or com-
pletely unable to engage in such activities. This approach has become more and more
the norm for online games today.

Killing and stealing are not the only ways to harm another player. There are other,
non-violent ways to offend such as blocking exits, interfering with fights, and verbal
abuse. The main methods used against these kinds of attacks are filtering (e.g. banning
messages from annoying players), or reporting them to the administrator of the game –
which of course opens up the possibility of collusion, where players belonging to the
same clan send numerous and apparently independent complaints about a player. One
can of course ask whether this kind of behaviour is cheating but a feature of the game,
and then concede that everything allowed by the game rules is acceptable and cannot
be considered as cheating (Kimppa and Bissett 2005).

. Summary

Multiplayer computer games thrive on fair play. Nothing can be more off-putting than
an unfair game world, where beginners are robbed as soon as they start, where some
players have superhuman reflexes, or where an unsuspecting player is cheated out of his
money. Cheating prevention is then crucial to guarantee the longevity and enjoyment
of the computer game.

Networked computer games present unique security problems because of the real-
time interactivity. Since the data need to be secure for a relatively short period of time,
the methods do not have to be as tightly secure as in other contexts. At the same time,
the methods should be fast to compute, since all extra computation slows down the
communication between the players.

It is impossible to prevent all cheating. Some forms are so subtle that they are hard to
observe and judge using technical methods alone – they might even escape the human
moral compass. For good or bad, computer games always reflect the real world behind
them.

Exercises

- Is it possible to catch reflex augmentation cheating by monitoring the net-
work traffic and events in the game world alone? Can this lead to problematic
situations?

- What data and control architecture is the most susceptible to packet intercep-
tion? How it can be improved to prevent this kind of cheating?
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- The easiest way to prevent packet replay cheating is to include some state infor-
mation in each packet. Why should this information not be a linearly increasing
serial number but a pseudo-random number?

- Describe how the lockstep protocol works when we have three or more players.

- When using active objects, even a small amount of gossiping can help to catch
a cheat. Suppose that a cheat who forges 10% of his messages participates in a
game. What is the probability of his getting caught, if the other players gossip
about the choices made in one previous turn and if there are
(a) 10 players, 60 turns and 1% gossip
(b) 10 players, 60 turns and 10% gossip
(c) 100 players, 60 turns and 1% gossip
(d) 10 players, 360 turns and 1% gossip.

- What countermeasures do we have against using illicit information (e.g. remov-
ing the fog of war or using a compromised graphics rendering device) in central-
ized, distributed and replicated architectures?

- Is it possible to collude in a perfect information game?

- Active collusion means that cheats take more risks than they normally would,
because they have knowledge that the risk is not as high as it appears to be (e.g.
the colluding players raise the stake by outbetting one another). In passive collu-
sion, cheats take fewer risks than they normally would, because they have knowl-
edge that the risk is higher than it appears to be (e.g. colluding players fold when
a co-colluder has a better hand). State why active collusion can be recognized
whereas passive collusion is difficult to discern from normal play.

- In the game of Fortress Circle each player places their own fortress somewhere
in a circular playground (see Figure 13.8). The players proceed in random order.
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Figure . An example of the situation after the first round of Fortress Circle with eight
players. Each player’s fortress dominates the area around it.
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A fortress dominates the area around it, which extends up to the area of the
two neighbouring fortresses (i.e. the borderline is the midpoint between the two
fortresses). The player who dominates the largest area at the end wins.

Assume that m players are playing Fortress Circle and there are n colluding
players (n < m). If the colluders want to maximize the area they dominate, what
kind of a strategy should they use? In this case, what would be the pay-off for
each individual colluder?

What if instead of maximizing their own gain, the colluders aim to maximize
the losses of the non-colluding players? What would be the pay-offs for the whole
group and the individual colluders?

- Consider the following approaches to upholding justice in a game world. What
are their good sides? How difficult are they to implement technically? Can a cheat
abuse them?
(a) Human players handle the policing themselves (e.g. forming a militia).
(b) The game system records misconduct and brands offenders as criminals.
(c) Players themselves decide whether they can offend and be offended against.

- Is it possible to devise an algorithmic method to catch a player acting against the
spirit of the game?
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

Online Metrics

Nowadays metrics form an integral part of game design and development. Anything the
player does in an online game can be collected and analysed to enhance the design of
the game and to improve its revenue. This reflects the change brought about by digital
distribution, whereby games are no longer seen as products (i.e. something ready-made
that the user buys) but as a service (i.e. the user pays a fee in exchange for content).

This also affects how online games are developed. Whereas traditionally the aim of
game development was to prepare the product to meet the release date, online games are
constantly developed – even after they have been launched – and, for this reason, they
require a broad set of data collected continuously from the players. The development
embraces the ‘fail fast’ ideology, where games are often launched having only the main
features implemented so as to establish quickly whether the concept works (based on
user data). After the launch, the development continues as an iterative process through
three phases (Seufert 2014):

� implementing the features that were designed before the launch but were de-
prioritized over some other features;

� fixing bugs found after the launch;
� designing and implementing new features to increase the lifetime value and playability

of the game.

To carry out these tasks the developers need analysed data from the players’ behaviour
and progress, which form the basis for the decisions on where the development should
focus next. Based on the data the development team can ensure that the game develop-
ment is going in the right direction, and if it is not, then they can analyse the situation
and take corrective measures to affect the outcome.

Traditionally, the main monetization model for games has been retail sale (i.e. pre-
mium games). Before the advent of digital distribution, this would have meant paying
upfront for a hard copy of the game. This premium model has also been transported to
digital distribution (e.g. even successfully as in the case of Badland ), but online games
mainly employ other monetization models:

� Pay-to-play (P2P) games require the player to pay periodically (typically once a
month) for access to the game. A well-known example of this kind of subscription
model is World of Warcraft.

Algorithms and Networking for Computer Games, Second Edition. Jouni Smed and Harri Hakonen.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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� Free-to-play (F2P) or freemium games are provided free for the player. However, there
are many different business models for the sources of revenue. The most obvious ones
are advertising and in-application purchases, which can ease the player’s progression
in the game. Revenue can also be generated by selling cosmetic enhancements to the
players (usually without affecting the gameplay) or giving specialized account ser-
vices. One successful example of this model is Path of Exile.

� Pay-to-win (P2W) is an extreme variant of F2P, where the game content is available
to the player at the beginning, but at some point the player will hit a ‘pay wall’. A pay
wall is a challenge in the game that cannot be solved (or is very laborious) by playing
alone and requires the player to pay a certain amount. In some sense, P2W can turn
into P2P if these pay walls are encountered evenly during the gameplay.

The ease of progression is usually realized by offering the player a chance to avoid
‘grinding’ (i.e. repetition of the same tasks for a long period of time). Consequently,
game balancing has become the main challenge, because if players can speed up their
progression by investing more money, it can spoil the game for the non-paying players
(Koskenvoima and Mäntymäki 2015). Greedy and unethical incidents in F2P business
have led to a situation where F2P is viewed negatively by some games companies. To
ensure revenue, maintaining the players’ trust is vital – which, in turn, leads towards
more ethical game design (Alha et al. 2014; Kimppa et al. 2015).

Figure 14.1 contrasts the demand curves for a premium game and a freemium game
(Heijari 2014). In premium games, the biggest challenge is setting the price p at an
appropriate level so that the revenue (the shaded area in the figure) is maximized. The
higher the price, the fewer potential customers there are; setting the price lower can
increase the customer base but reduce the overall revenue. Ideally, the freemium model
allows the players to pay what they want, and the potential revenue (the shaded area)
is larger than in the premium model. This means that the game can have a large num-
ber of players who are not paying, whereas a minority of the players are ready to invest
higher sums in the game (Lescop and Lescop 2014). The top-tier players, comprising
less than 10% of the user base, often spend twenty times more money on the game than
an average player (Fields 2013).
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Figure . Demand curves of the purchase price and quantity (i.e. products sold) for (a) a premium
game and (b) a freemium game.
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Among the paying players there is a small but important minority who are willing
to put considerable sums of money into the game. These ‘whales’ – a name originat-
ing from casinos for a gambler who wagers large amounts of money – are often the
most important players as far as income is concerned. They are also much sought after
and the games often compete for the interest of the same whales (Shi et al. 2015). This
can sometimes lead to situation where the non-paying players are omitted in favour of
whales, which, in turn, can lead to the majority of players leaving the game altogether.

In many cases, the portion of non-paying players can be as high as 95% (Seufert 2014).
At first sight, non-paying players might not seem an important resource. However, hav-
ing a large player base is essential in generating awareness, popularity and community
around the game. The non-paying players can also provide free marketing if they spread
the word about the game, and they can serve also as content for the game by acting as
enemies to other paying and non-paying players alike. Business finds its way more easily
in cohesive crowds.

Liew (2008) provides a comprehensive list of business models for games, including the
following monetization methods for online games:
� Advertising relies on a large player base and frequent sessions. This requires a balance

in quantity so that the advertisements (banners or transition ads) do not interfere
with the player too much. Typically, the advertisements are provided by a third-party
supplier who acts as a broker between games company and advertisers. Offer walls,
where the player has to watch an advertising video in exchange for in-game resources,
are another way to increase the advertising revenue (Luton 2013).

� In-application purchases allow the players to transform real-world currency into
in-game resources. By making in-application purchases the players can make their
progress easier or customize their assets. The items can be classified into the follow-
ing groups (Weidemann 2014):
– permanent (e.g. armour), which the player owns until the end of the game unless

there is a trading system; or
– consumable (e.g. health kit), which has a one-time effect and needs to be replen-

ished regularly.
In addition, to increase variation in a game the players can be encouraged to explore
the content, different game mechanics, and playstyles by receiving samples of or rent-
ing the in-game equipment or other assets: the items can be used only temporarily,
but long enough for the player to try out their various features.

Buying can be direct, if the players get exactly what they want, or indirect, if the play-
ers have a virtual vending machine (e.g. gacha) which provides a random item (possi-
bly a rare and valuable one). The aim of all this effort is to lower the bar for spending
money on in-application purchases, because the earlier the players spend money, the
more likely they are to continue to do so in the future (Hanner and Zarnekow 2015).

� In merchandising the intellectual property of the game is used or licensed to produce
real-world items which are sold for profit.

Typically, these methods are not all used together; the selection depends on the game
and strategy of the company.

Next, we will look into four types of metrics related to player behaviour, monetiza-
tion, player acquisition and game sessions. These are the most important aspects when
considering improving the game design or monetization.
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Figure . Player groups: P all players, Pa
active players, Pp paying players, Ps players
who have started, and Pq acquired players.

. Players

In online game analytics, it is essential to recognize and differentiate players and how
and when they are playing the game. In the following, let us assume that P(t) is the set
of all players, Pa(t) the set of active players, and Ps(t) ⊆ Pa(t) the set of players starting
during the interval t (see Figure 14.2). The interval t can typically vary from one day (d)
to one month (m).

Daily active users (DAU) This is a basic metric tracking how many unique players have
played the game during a given day:

dau = |Pa(d)|. (14.1)

It is important to notice that this does not measure game sessions, but if the same player
has played the game four times during the day, it counts as one. Typically, dau is calcu-
lated as an average over seven days.

Monthly active users (MAU) This metric observes the long-term activity by summing the
numbers of unique players over a month:

mau = |Pa(m)|. (14.2)

Stickiness To measure how well the game retains the players we can calculate the num-
ber of daily active users as a proportion of the monthly active ones:

s = dau
mau

. (14.3)

The larger the value of s, the stickier the game (i.e. players keep returning to the game
regularly).

Peak concurrent users (PCU) There are often big variations in how many simultaneous
users the game has. The number at the busiest times might become a critical question,
especially if the game is run on dedicated servers with a limited computational and net-
working capacity.

Retention rate This metric indicates how well the game is able to keep the players play-
ing the game. For example, 10% monthly retention means that 10% of the players who
started to play the game a month ago are still playing today. More generally, to calculate
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x-day retention we calculate the proportion of players who started x days ago and are
still active:

rx =
|Ps(d − x)||Pa(d)| . (14.4)

In estimating the game’s success, retention is often the most important indicator,
because the players investing a lot of time in the game are also more likely to invest
money in it. Retention typically follows the so-called 40–20–10 rule, which means that
retention is 40% daily, 20% weekly, and 10% monthly (Ketola 2014).

Churn rate This metric is the dual of retention, because it indicates the proportion of
players who have left over a period of x days:

cx = 1 − rx. (14.5)

The vast majority of the players are ‘churners’, who play the game until they lose interest
in it. Normally, a player is considered churned (i.e. lost) after a week’s absence (Luton
2013).

. Monetization

To analyse the monetization we need to know how much the players are spending on
the game. Here, we assume that Pp(t) is the set of paying players and Pn(t) = P(t) ⧵ Pp(t)
the set of non-paying players during the interval t (see Figure 14.2). Also, let v(t) be the
total revenue during the interval t.

Average revenue per daily active user (ARPDAU) This metric tracks how much players are
spending on average in a day:

arpdau = v(d)
dau

. (14.6)

The game’s success is often measured based on this value. Furthermore, it is used to
make monetary decisions for the future.

Average revenue per user (ARPU) This metric is typically measured on a monthly basis:

arpu = v(m)
mau

. (14.7)

This value can be understood as the lifetime value (ltv) normalized to 30 days (Ketola
2014).

Average revenue per paying user (ARPPU) This metric follows how much the paying play-
ers spend on the game on average:

arppu = v(m)|Pp(m)| . (14.8)

For subscription-based games, arpu and arppu are practically equal as the active play-
ers have to pay subscription fees.
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Lifetime value (LTV) To measure how much a single player spends in total, we divide the
overall revenue by the number of players:

ltv = v|P| . (14.9)

An alternative way to define ltv is to multiply arpu by the average playtime of the
players. For a premium game, ltv then equals the purchase price multiplied by the num-
ber of customers.

ltv is often used in calculating the budget for player acquisition (Ketola 2014). Hanner
and Zarnekow (2015) provide a detailed analysis on game customer lifetime value.

Lifetime network value (LTNV) This counts in – or at least estimates – all the non-
monetary values that a user can bring (e.g. increased virality, nurturing of new players
or assisting to get a higher chart position).

Conversion rate (CVR) This metric tracks the proportion of non-paying players who have
become paying players (sometimes calculated over a week or month instead of a day):

cvr =
|Pp(d) ∩ Pn(d − 1)||P(d)| . (14.10)

For successful games, cvr is usually greater than 2% (Pulkkanen and Seppänen 2012).

. Acquisition

When a game gets new players, we can discern two groups:
� organic users who have come to the game with no direct involvement (e.g. because of

word-of-mouth recommendation, a feature story in the digital marketplace or a high
position in the charts);

� paid users who are directly acquired by investing money (e.g. via a third-party service
provider).

Let us denote by Pq(t) ⊂ Ps the set of acquired users during the interval t (see Figure 14.2)
and by q(t) the related investment in user acquisition.

Cost per acquisition (CPA) This metric measures how much it costs to attract a new user:

cpa =
q(t)|Pq(t)| . (14.11)

This is only straightforward for paid users. The cost of acquisition decreases the more
users the game already has (i.e. earlier users are more costly to acquire than later users).

Effective cost per acquisition (ECPA) This metric also considers the organic users:

ecpa =
q(t)|Ps(t)| . (14.12)

Obviously, ecpa is smaller than cpa.
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k-factor This metric – borrowed from epidemiology – measures the viral growth rate
of the user base. Let i be the number of invitations that each user sends to friends outside
P and c the conversion rate (i.e. how many of the invitations lead to action). Then

k = ic. (14.13)

If k = 1, the user base is in a steady state. If k > 1, the user base is growing exponentially,
and if k < 1, the user base is declining exponentially.

. Game Session

We can also observe what happens when the user is playing the game.

Entry event distribution (EED) This focuses on the first action the user performs when
launching the game. This can help the designers to understand what the players want
from the game or what their motivation is.

Exit event distribution (XED) We can also observe the last action the user performs before
leaving the game. This can help to understand why players are quitting the game.

Session length When we measure how long the player remains in the game, we can
compare it to how the designers envision the game (i.e. we can expect a casual game to
have short sessions, whereas a strategy game with complex and immersive campaigns
tends to have longer sessions). This also allows us to observe what happens after the
introduction of new features or a new localization into the game (Ekberg 2016).

Progression through game The observation can focus on how the players are progress-
ing through the game and its levels. This helps to discern, for instance, whether there
are levels that are too difficult and require much grinding. Data on the players’ progress
is also important when analysing the effect of the in-application purchases.

. Summary

Digital distribution and online games have turned around the old model of the game-
as-a-product into the game-as-a-service. Consequently, games are becoming ever more
metrics-driven as their revenue is generated gradually over their lifetime. The most suc-
cessful freemium games such as Clash of Clans and Candy Crush Saga thrive – apart
from their design and implementation values – on their focus on analysing the metrics
and paying heed to what the players are doing.

Games are no longer developed in isolation, but the design process is becoming more
iterative as the players can affect the fundamental features in the game. This means
that the developers have to be adaptable and open to new possibilities. Balancing this
with the vision of the game can turn out to be a big challenge – but conquering it will
take the game to the next level.
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Exercises

- Review the games you are currently playing the most. How did you learn about
them (e.g. via a feature article, the charts, or a recommendation)? What other
factors affected your choice to (a) try the game out and (b) continue playing it?

- Look at the lists of top downloaded and top crossing games at a digital market-
place. Categorize them based on whether they follow the premium or freemium
model. Which are the majority and why?

- Avoid doing what you would do normally when looking for a new game and check
out games outside the normal charts (e.g. by random selection or starting from
the bottom of the list). How do these games reflect to the most popular ones?
Why are they not so popular?

- What reasons could there be to publish a game as premium on a digital market-
place? What qualities must it have in comparison to freemium games?

- Assume that a game has 100,000 players. The dau is 20,000 and mau is 35,000.
How sticky is the game? What does this mean in more concrete terms?

- What are the benefits of the P2P model for the player? How does it affect the
game design?

- A typical game design for a freemium game follows the action–wait–reward–
upgrade loop. For example, in FarmVille the action is planting and harvesting
crops, the waiting means waiting for the crops to grow, the reward happens when
the player harvests the crops, and the upgrade is selling the crops for money and
buying a better tractor so as to make the harvesting easier.

Choose a freemium game and analyse how it utilizes this design. Why is it
beneficial for retention?

- What kind of indicators would we like to observe on the player’s progression in
an endless runner game?

- Consider the effect of releasing a new product build of a game. What kind of
impact could one expect to see on the metrics? Which would be the critical signs
to watch out for and which would be the positive ones?

- If we see games as a service, what does that entail for the way they are being
developed? How does it affect the players?

- Archiving games is becoming ever more difficult. This is also true for other dig-
ital media; for instance, the web of the 1990s has been mainly studied from old
instructional videos and news clips. Can we still say that there is a definite state
(or artefact) that is the game? How can we archive online games for posterity so
that people can experience the game as it was originally played?
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Appendices
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A

Pseudocode Conventions

We describe the algorithms using a pseudocode format, which, for the most part, closely
follows the guidelines set by Cormen et al. (2001). The conventions are based on com-
mon data abstractions (e.g. sets, sequences, and graphs), and the control structures
resemble the Pascal programming language (Jensen et al. 1985). Since our aim is to
reveal the algorithmic ideas behind the implementations, we present the algorithms
using pseudocode instead of an existing programming language. This choice is backed
up by the following arguments:

� Although common programming languages (e.g. C, C++, Java, and scripting lan-
guages) share similar control structures, their elementary data structures differ sig-
nificantly in terms of both interface level and language philosophy. For example, if an
algorithm uses a data structure from STL of C++, a Java programmer has three alter-
natives: reformulate the code to use Java’s collection library, write a custom-made data
structure to serve the algorithm, or acquire a suitable third-party library. Apart from
the last option, programming effort is unavoidable, and by giving a general algorithmic
description we do not limit the choices on how to proceed with the implementation.

� Software development should account for change management issues. For instance,
sometimes the understandability of a code segment is more important than its effi-
ciency. Because of these underlying factors affecting the software development, we
content ourselves with conveying the idea as clearly as possible and leaving the imple-
mentation selections to the reader.

� The efficiency of a program depends on the properties of its input. Often code opti-
mizations favouring certain kind of inputs lead to ‘pessimization’ which disfavours
other kinds of inputs. In addition, optimizing a code that is not the bottleneck of
the whole system wastes development time, because the number of code lines has
increased and they also more difficult to test. These two observations lead us to give
only a general description of a method that can be moulded so that it suits the reader’s
situation best.

� The implementation of an algorithm is connected to its software context not only
through data representation but also through control flow. For example, time-
consuming code segments are often responsible for reporting their status to a moni-
toring subsystem. This means that algorithms should be modifiable and easy to aug-
ment to respond to software integration forces, which tend to become more tedious
when we are closer to the actual implementation language.

Algorithms and Networking for Computer Games, Second Edition. Jouni Smed and Harri Hakonen.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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� Presenting the algorithms in pseudocode has also a pedagogic rationale. There are
two opposing views as to how a new algorithm should be taught. First, the teacher
describes the overall behaviour of the algorithm (i.e. its substructures and their rela-
tions), which often requires explanations in a natural language. Second, to provide
guidance on how to proceed with the implementation, the teacher describes the
important details of the algorithm, which calls for a light formalism that can easily
be converted into programming code. The teacher’s task is to find a balance between
these two approaches. To support both approaches the pseudocode formalism with
simple data and control abstractions allows the teacher to explain the topics in natural
language when necessary.

The pseudocode notation tries to obey modern programming guidelines (e.g. avoiding
global side-effects). To indicate clearly what kind of effect the algorithm has in the system
we have adopted, liberally, the functional programming paradigm, where an algorithm
is described as a function that does not mutate its actual parameters, and side-effects are
allowed only in the local structures within a function. For this reason, the algorithms are
designed so that they are easy to understand – which sometimes means compromising
on efficiency that could be achieved using the imperative programming paradigm (i.e.
procedural programming with side-effects). Nevertheless, immutability does not mean
inefficiency, but sometimes it is the key to managing object aliasing (Hakonen et al. 2000)
or efficient concurrency (Hudak 1989). Immutability does not cause extra effort in the
implementation phase, because a functional description can be converted into a proce-
dural one just by leaving out copy operations. The reader has the final choice on how to
implement algorithms efficiently using the programming language of his or her choice.

Let us take an example of the pseudocode notation. Assume that we are interested in
changing a value so that some fraction 𝛼 of the previous change also contributes to the
outcome. In other words, we want to introduce an inertia-like property to the change
in the value of a variable. This can be implemented as linear momentum: if a change c
affects a value vt at time t, the outcome vt+1 is calculated as

vt+1 = vt + c + 𝛼(vt − vt−1) ⟺ Δvt+1 = c + 𝛼Δvt . (A.1)

The 𝛼 ∈ [0, 1] is called a momentum coefficient and 𝛼Δvt a momentum term. To keep a
record of the value generated, the history can be stored as a tail-growing sequence ⟨first
value, second value,…, most recent value⟩. Algorithm A.1 describes this method as a
function in the pseudocode format.

If the use context of Algorithm A.1 assigns the returned sequence back to the argu-
ment variable, for example,

1: V ← (V, c, )Linear-Momentum α

the copying in line 1 can be omitted by allowing a side-effect on the sequence V .
Let us take a closer look at the pseudocode notation. As in any other formal program-

ming language, we can combine primitive constants and operators to build up expres-
sions, control the execution flow with statements, and define a module as a routine. To
do this the pseudocode notation uses the reserved words listed in Table A.1.

Table A.2 lists the notational conventions used in the algorithm descriptions. The
constants false and true denote the truth values, and value nil is a placeholder for
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Algorithm A.1 Updating a value with a change value and a momentum term.

V, c, )
in: sequence of n values V = ⟨V0, V1,… , Vn−1⟩ (2 ≤ n); change c; momentum

(0 ≤ ≤ 1)
out: sequence of n + 1 values W n values are identical to V and the

last value is Wn = Wn−1 + c + (Wn−1 − Wn−2)
1: W ← copy V ⊳ Make a local copy from V .
2: W ← W ∥ ⟨Wn−1 + c + (Wn−1 − Wn−2)⟩ ⊳ Append a new value.
3: return W ⊳ Publish W as immutable.

Linear-Momentum(

coefficient
where the first

α

α α

α

α

Table A. Reserved words for
algorithms.

all div error not repeat while
and do for of return xor
case else if or then
copy end mod others until

an entity that is not yet known. The assignment operator ← defines a statement that
updates the structure on the left-hand side to a value evaluated on the right-hand side.
Equality can compared using operator =. To protect an object from side-effects, it can
be copied (or cloned) by the prefix operator copy. In a formal sense, the trinity of assign-
ment, equality and copy can be applied to the identity, shallow structure, or deep struc-
ture of an object. Furthermore, a mixture of these structure levels is possible. Because
the algorithms presented in this book do not have relationships across their software
interfaces (e.g. classes in object-oriented languages), we use these operations informally,
and if there is a possibility of confusion, we elaborate on it in a comment.

At first sight, the difference between primitive routines and algorithmic functions can
appear one of happenstance, but a primitive routine can be likened to an attribute of
an object or a trivial operation. For example, when operating with linearly orderable
entities, we can define predecessor(e) and successor(e) for the predecessor and successor
of e. The successor(∙) – where ∙ denotes a dummy variable – can be seen just as a function

Table A. Algorithmic conventions.
Notation Meaning

false, true Boolean constants
nil unique reference to non-existent

object
x ← y assignment
x = y comparison of equality
x ← copy y copying of object
⊳ Read me. comment
primitive(x) primitive routine for object x
Hello-World(x) algorithmic function call with

parameter x
mathematical(x) mathematical function with

parameter x
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Table A. Mathematical functions.
Notation Meaning

⌊x⌋ the largest integer n such that n ≤ x⌈x⌉ the smallest integer n such that x ≤ n
logb x logarithm to base b
ln x natural logarithm (b = e ≈ 2.71828)
lg x binary logarithm (b = 2)
max C maximum of a collection; similarly min C
tan x trigonometric tangent; similarly sin x

and cos x
arctan 𝛼 inverse of tangent; similarly arcsin 𝛼 and

arccos 𝛼

that extracts its result from the given argument. A primitive routine that indicates a
status can also be seen as an attribute that changes – and can be changed – during the
execution of an algorithm. For this reason, we can assign a value to a primitive routine.
For example, to mark a town t visited we can define a primitive routine visited(∙) to
characterize this status, and then assign

1: visited true(t) ←

If towns are modelled as software objects, the primitive routine visited(∙) can be imple-
mented as a member variable with appropriate get and set functions.

Sometimes the algorithms include functions originating from elementary mathemat-
ics. For example, we denote the sign of x by sgn(x), defined as

sgn(x) =
⎧⎪⎨⎪⎩
−1, if x < 0,

0, if x = 0,
1, if 0 < x.

(A.2)

Table A.3 lists the mathematical functions used throughout this book.

A. Changing the Flow of Control

The algorithms presented in this book run inside one control flow or thread. The com-
plete control command of the pseudocode is a statement, which is built from other sim-
pler statements or subparts called expressions. When a statement is evaluated, it does
not yield a value but affects the current state of the system. In contrast, the evaluation
of an expression produces a value but does not change the visible state of the system.

A.1.1 Expressions

Anything that yields a value after it is evaluated can be seen as an expression. The funda-
mental expressions are constants, variables, and primitive routines. An algorithm also
represents an expression, because it returns a value.
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Table A. Arithmetic operators.
Notation Meaning

x + y addition
x − y subtraction
x∕y division (y ≠ 0)
x ⋅ y multiplication, also as xy
n div m integer division
n mod m integer modulo

To change, aggregate and compare values we need operators (see Table A.4) which
can be used to build up more descriptive expressions. Although the pseudocode
operators originate mainly from mathematics, some of them are more related to com-
puter calculations. For example, if we have two integers x and y, the expression x div y is
equal to the integer part of x∕y so that the outcome is truncated towards −∞. The oper-
ator mod produces the remainder of this division, which means that the Boolean expres-
sion x= (x div y) ⋅ y + (x mod y) is always true. It should be noted that some mathematical
conventions are context sensitive. For example, for a value x, the operator |x| denotes its
absolute value, but for a set S, the operator |S| means its cardinality (i.e. the number of
its members). If the meaning of our notation is ambiguous, we clarify it with a comment.

The value of an arithmetic expression is stored in a variable or compared to another
value as a Boolean expression. To construct expressions from truth values we resort to
mathematical logic. We use the logical operators listed in Table A.5 in the main text,
and their algorithmic counterparts listed in Table A.6 in pseudocode. The conditional
logical operators and then and or else differ in that that their evaluation, proceeding
from left to right, is terminated immediately when the result can be inferred. There are
no reserved words for logical implication or equivalence, but, if necessary, they can be
formed as x ⇒ y ≡ ¬x ∨ y and x ⇔ y ≡ ¬(x ⊕ y).

Table A. Logical operators in the text.
Notation Meaning

¬x logical negation
x ∧ y logical and
x ∨ y logical or
x ⊕ y logical exclusive-or
x ⇒ y logical implication
x ⇔ y logical equivalence

Table A. Logical operators in algorithms.
Notation Meaning

not x logical negation
x and y logical and
x or y logical or
x xor y logical exclusive-or
x and then y conditional logical and
x or else y conditional logical or
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Table A. Bitwise operations in algorithms.
Notation Meaning

∼x bitwise negation
x ⊓ y bitwise and
x ⊔ y bitwise or
x ⊞ y bitwise exclusive-or
x ≪ s arithmetical left-shift
x ≫ s arithmetical right-shift
x ⋙ s logical right-shift

Table A.7 lists the bitwise operations used in the algorithmic descriptions. Arithmetic
shift operations preserve the sign of the operand, whereas logical right-shift can be used
only when operating with unsigned values.

A.1.2 Control structures

Pseudocode notation follows the widely accepted idea of structured programming,
where the control flow is described using sequence, selection, and repetition structures
(Dahl et al. 1972; Dijkstra 1968). However, we allow this rule of ‘single entry and single
exit points of control’ to be broken with an explicit return statement.

Sequence
A sequence of statements is indicated by writing the statements one after the other. If
there is more than one statement in the line, they are separated by a semicolon (;). For
example, swapping the values of variables x and y using a temporary variable t can be
written

1: t← x; x← y; y ← t

The line numbers are used only for reference purposes, and they do not imply any algo-
rithmic structure.

Many programming languages include a compound structure that combines multi-
ple statements into one. Because we do not scope the variables (e.g. define their life-
times), this construct is expressed only implicitly: Any statement can be replaced with
a sequence of statements without stating it explicitly.

Selection
To describe a branch in the control flow we have two selection structures. The first, the
if–then–else structure, proceeds according to the value of a Boolean expression: if the
value is true, the control flows to the then statement; otherwise, the control flows to the
else statement. The else branch is optional.

1: if Boolean expression then
2: statement0 ⊳ Executed only for true case.
3: else
4: statement1 ⊳ Executed only for false case.
5: end if
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The case–of construct defines a multi-selection that is based on the value of an arith-
metic expression. To indicate clearly which control branch is executed we require that
they are labelled with disjoint, constant-like values. Unlike in some programming lan-
guages, the control does not flow from one branch to another. The label others can be
used to indicate the branch ‘any other value not mentioned’. If the selection expression
returns a truth value, we prefer the if–then–else structure.

1: case expression of
2: constant0: statement0 ⊳ Control branch for value constant0.
3: constant1: statement1
4: ⋮
5: others: default statement
6: end case

If none of the branching labels match with the expression, the control moves directly to
the next statement following the case–of structure.

Repetition
To iterate statements we introduce one definite loop structure and two indefinite loop
structures. The definite loop is called the for–do structure and it is used when the num-
ber of iteration cycles can be calculated before entering the loop body.

1: for iteration statement do
2: statement
3: end for

The iteration statement has two variants. First, it can represent an enumeration by intro-
ducing a loop variable v that gets values sequentially from a given range [ f , t]: v ← f...t
(i.e. the initial value of v is f and the final value is t). Second, the iteration statement can
represent a sequential member selection over a collection C: all v ∈ C. This loop vari-
ant bounds v once to each member of C in an unspecified order. To preserve clarity, C
cannot be changed until the loop is finished.

As an example of the difference between these two for loops, let us find the maximum
value from a sequence S of n values. We denote the ith member of S by Si, for i ∈ [0, n −
1]. The most concrete algorithm for the problem is to define the order in which the
sequence S is traversed:

1: c ← S0
2: for i ← 1… (n − 1) do
3: if c < Si then c ← Si end if
4: end for
5: ⊳ Value in c is the maximum of S.
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If there is no need to restrict the way the algorithm can traverse S, the iteration statement
of the loop can be formed as a member selection:

1: c ← some member in S
2: S ′← S ⧵ {c}
3: for all m ∈ S ′ do
4: if c < m then c ← m end if
5: end for
6: ⊳ Value in c is the maximum of S.

Of course, finding a maximum from a linear structure is so trivial that we can express it
using the mathematical convention c ← max S.

To find the position of a maximum value we can use the primitive function indices(S)
that returns the set {0, 1,… , |S| − 1} of valid indices in S. The index set can be used for
iteration coordination:

1: I ← indices(S)
2: c ← some member in I
3: I ′ ← I ⧵ {c}
4: for all i ∈ I′ do
5: if Sc < Si then c ← i end if
6: end for
7: ⊳ Value Sc is some maximum of S.

We can express the same thing in mathematical notation as c ← arg max S.
If we cannot determine a close-form equation for the number of loop cycles, it is

preferable to use an indefinite loop structure instead. If it is possible that the loop body
is not visited at all, we use the while–do structure. The loop exits when the control flow
evaluates the Boolean expression as false.

1: while Boolean expression do
2: statement
3: end while

If the loop body is executed at least once, we use the repeat–until structure. The loop
exits when the control flow evaluates the Boolean expression as true.

1: repeat
2: statement
3: until Boolean expression

Control shortcuts
As a general rule, control structures with single entry and single exit points are easier
to maintain than structures that use control shortcuts. For this reason, we use only two
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statement-level mechanisms for breaking the control flow in the middle of an algorithm.
Normally, an algorithm ends with a return statement that forwards the control back to
the invoker of the algorithm, possibly including a return value:

1: return expression

We allow multiple return statements to be placed on any pseudocode line. When the
control flow reaches a return statement, it exits the algorithm and forwards the evalu-
ated value of the given expression immediately.

Another way to exit the algorithm is when an error has occurred and control flow
cannot proceed normally:

1: error description

Because the algorithm cannot fulfil its operative contract with the invoker, the situation
resembles exception handling, as is the way with many programming languages. The
invoker can catch errors using a case–of structure:

1: v ← (S)
2: case v of
3: error empty: v ← ⊳ Unexpected situation: ∣S∣ = 0.
4: end case

Average

undefined

A. Data Structures

The generality of the description of an algorithm follows from proper abstractions,
which is why we have abstracted data structures to fundamental data collections such
as sets, mappings and graphs. For accessing data from these data collections, we use
primitive routines and indexing abstractions.

A.2.1 Values and entities

The simplest datum is a value. Apart from the constants false, true and nil, we can
define other literals for special purposes. A value is the result of an expression and can be
stored in a variable. The values in the pseudocode notation do not imply any particular
implementation. For example, nil can be realized using a null pointer, integer value −1
or a sentinel object.

Values can be aggregated so that they form the attributes of an entity. These
attributes can be accessed through primitive routines. For example, to define an entity
e with physical attributes we can attach primitive routines location(e), size(e) and
weight(e) to it. Because an attribute concerns only the entity given as an argument,
the attribute can also be assigned. For example, to make e weightless we can assign
weight(e) ← 0. If an entity is implemented as a software record or object, the attributes
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Table A. Set notation used in the
text and in pseudocode.Notation Meaning

e ∈ S Boolean assertion: e is a member of S|S| cardinality (i.e. the number of elements)
∅ empty set
{x} singleton set
R ∪ S union set
R ∩ S intersection set
R ⧵ S difference set
R ⊂ S Boolean assertion: R is a proper subset of S
R × S Cartesian product
Sd set S × S ×⋯ × S of d-tuples
℘(S) power set of S

are natural candidates for member variables and the respective get and set member
functions.

A.2.2 Data collections

A collection imposes relationships between its entities. Instead of listing all commonly
used data structures, we take a minimalist approach and use only a few general collec-
tions. A collection has characteristic attributes and provides query operations. More-
over, it can be modified if it is a local structure in an algorithm. The elements of a data
structure must be initialized, and an element that has not been given a value cannot be
evaluated.

Sets
The simplest collection of entities (or values) is a set. The members of a set are unique
(i.e. they have different values) and they are not ordered in any way. Table A.8 lists the
usual set operations.

The set of natural numbers is N = {0, 1, 2,…}, the set of integer numbers is Z =
{… ,−2,−1, 0, 1, 2,…}, and the set of real numbers is R. In a similar fashion, we can
define the set B = {0, 1} for referring to binary numbers. We can now express, for exam-
ple, a 32-bit word by denoting w ∈ B

32, and refer to its ith bit as wi.
We can define a set also by using interval notation. For example, if it is clear from

the context that a set contains integers, the interval [0, 9] means the set {0, 1,… , 9}. To
indicate that the interval notation refers to real numbers we can write [0, 9] ⊂ R. The
ends of the interval can be closed, marked with a bracket [ or ], or open, marked with a
parenthesis ( or ).

The cardinality of a set is its attribute. If the final size of a (locally defined) set is known
beforehand, we can emphasize it by stating

1: ∣S∣ ← n ⊳ Reserve space for n values.

This idiom does not have any effect in the algorithm; it is merely a hint for implemen-
tation.
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Table A. Sequence notation used in
the text and in pseudocode. Notation Meaning

e ∈ S Boolean assertion: e is a member of S|S| length
indices(S) set {0, 1,… , |S| − 1} of valid indices
Si the ith element; i ∈ indices(S)⟨ ⟩ empty sequence
R ∥ S catenation sequence
sub(S, i, n) subsequence ⟨Si, Si+1,… , Si+n−1⟩;

0 ≤ n ≤ |S| − i

Sequences
To impose a linear ordering on a collection of n elements we define a sequence as
S = ⟨e0, e1,… , en−1⟩. Unlike a set, a sequence differentiates its elements with an index,
and, thus, it can contain multiple identical elements. We refer to the elements with sub-
scripts. For example, the ith element of S is denoted Si. The indexing begins at 0 – and
not at 1 – and the last valid index is |S| − 1. The cardinality of a sequence is equal to its
length (i.e. the number of elements in it). In addition to the notation presented in Table
A.9, we have a primitive routine enumeration(C), which gives some order to its argu-
ment collection C in the form of a sequence. In other words, enumeration(C) returns a
sequence S that is initialized by the following pseudocode:

1: ∣S∣ ← ∣C∣ ⊳ Reserve space for ∣C∣ elements.
2: i ← 0
3: for all e ∈ C do
4: Si ← e
5: i ← i + 1
6: end for
7: ⊳ Sequence S is initialized.

We can declare the length of a sequence S before it is initialized using a pseudocode
idiom but – unlike with sets – the assignment affects the algorithm by defining a valid
index range for S:

1: ∣S∣ ← n ⊳ Reserve space for n values.

The context of use can impose restrictions on the sequence structure. A sequence S of
n elements can play many roles:

� If S contains only unique elements, it can be seen as an ordered set.
� If the utilization of S does not depend on the element order, S can represent a multiset

(or bag). A multiset consists possibly multiple identical elements and does not give any
order to them.
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� If the length of S is constant (e.g. it is not changed by a catenation), S stands for an
n-tuple. This point of view is emphasized if the elements are of the same ‘type’ or the
tuple is part of a definition of some relation set.

� If S includes sequences, it defines a hierarchy. For example, a nesting of sequences
S = ⟨a, ⟨b, ⟨c, ⟨d, ⟨⟩⟩⟩⟩⟩ defines a list structure as recursive pairs ⟨datum, sublist⟩. The
element d can be accessed with the expression (((S1)1)1)0.

� If a sequence is not stored in a variable but we use it on the left of the assignment
operator, the sequence becomes a nameless record. This can be interpreted as a multi-
assignment operator with pattern matching. For example, to swap two values in vari-
ables x and y we can write

1: x, y ← y, x⟨ ⟩ ⟨ ⟩
This unification mechanism originates from the declarative programming paradigm.
However, this kind of use of sequences is discouraged, because it can lead to infinite
structures and illegible algorithms. Perhaps the only viable use for this kind of inter-
pretation is for receiving multiple values from a function:

1: ⟨r, ⟩← (x, y)
2: ⊳ Variables r and are assigned and can be used separately.

As-Polarα
α

This saves introducing an extra receiver variable and referring to its elements.

Although a sequence is one-dimensional structure, it can be extended to implement
tables or multidimensional arrays. For example, a hierarchical sequence T = ⟨⟨a, 0⟩,⟨b, 1⟩, ⟨c, 2⟩⟩ represents a table of three rows and two columns. An element can be
accessed through a proper selection of subsequences (e.g. the element c is at (T2)0). How-
ever, this row major notation is tedious and it is cumbersome to refer a whole column.
Instead of raising one dimension over another, we can make them equally important by
generalizing the one-dimensional indexing mechanism of the ordinary sequences.

Arrays
An array allows an element to be indexed in two or more dimensions. An element
in a two-dimensional array A is referred to as Ai,j, where i ∈ {0,… , rows(A) − 1} and
j ∈ {0,… , columns(A) − 1}. A single row can be obtained with row(A, i) and a column
with column(A, j). These row and column projections are ordinary sequences. For con-
venience’ sake, we let A⟨i,j⟩ = Ai,j, which allows us to refer to an element using a sequence.

For a t-dimensional array Ai0,i1,…,it−1
, the size of the array in dimension d (0 ≤ d ≤ t −

1) is defined as domain(A, d). Hence, for a two-dimensional array A we have rows(A) =
domain(A, 0) and columns(A) = domain(A, 1). An array Ai0,i1,…,it−1

is always rectangu-
lar: if we take any dimension d of A, the value domain(A, d) does not change for any valid
indices i0, i1,… , id−1, id+1,… , it−2, it−1.

Mappings
A mapping is a data structure that behaves like a function (i.e. it associates a sin-
gle result entity to a given argument entity). To distinguish mappings from primitive
functions, algorithms, and mathematical functions they are named with Greek letters.
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The definition also includes the domain and codomain of the mapping. For example,
𝜏 : [0, 7] × [0, 3] → B ∪ { false, true } defines a two-dimensional function that can
contain a mix of bits and truth values (e.g. 𝜏(6, 0) = 1 and 𝜏(4, 2) = false). It is worth
noting that a sequence S that has elements from the set R can be seen as a mapping
S : [0, |S| − 1] → R. In other words, we denote S : i ↦ r simply with the access notation
Si = r. Similarly, arrays can be seen as multiargument functions. However, the difference
between 𝜏(∙, ∙) and an array with eight rows and four columns is that the function does
not have to be rectangular.

Because a mapping is a data structure, it can be accessed and modified. A mapping
𝜇(k) = v can be seen as an associative memory, where 𝜇 binds a search key k to the
resulting value v. This association can be changed by assigning a new value to the key.
This leads us to define the following three categories of functions. A function 𝜇 : K → V
is undefined if it does not have any associations, which means that it cannot be used.
When 𝜇 is a local structure of an algorithm and its associations are under change, 𝜇 is
incomplete. A function is complete after it is returned from an algorithm where it was
incomplete.

To define partial functions we assume that nil can act as a placeholder for any entity
but cannot be declared into the codomain set explicitly. If mapping 𝜇 : K → V is unde-
fined, it can be made ‘algorithmically’ partial:

1: for all k ∈ K do
2: (k) ←
3: end for

nilμ

Now, each search key is bound to nil but not to any entity in the codomain V . The
separation of undefined and partial functions allows us to have explicit control over
incomplete functions: accessing an unbound search key means a fault in the algorithm,
but we can refer to the members of the set { k ∣ k ∈ K ∧ 𝜇(k) = nil }.

Mappings are useful when describing self-recursive structures. For example, if we
have V = {a, b, c, d}, a cycle can be defined with a successor mapping 𝜎 : V → V so that
𝜎(a) = b, 𝜎(b) = c, 𝜎(c) = d, and 𝜎(d) = a.

Graphs
To describe discrete elements and their relationships we use graphs. Graphs provide
us with a rich terminology that can be used to clarify a vocabulary for problem and
solution descriptions. Informally put, an undirected graph G = (V , E) (or a graph for
short) comprises a finite set of vertices V and a set of edges E ⊆ V × V . A vertex is illus-
trated with a circle and an edge with a line segment. An edge e = (u, v) ∈ E is undirected
and is considered identical to (v, u). An edge (v, v) is called a loop. The ends of an edge
e = (u, v) ∈ E are returned by the primitive routine ends(e) = {u, v}. If a vertex u is con-
nected to another vertex v (u ≠ v) by an edge, u is said to be adjacent to v. The set of
adjacent vertices of a vertex v is called a neighbourhood, and it is returned by the rou-
tine neighbourhood(v). A sequence W = ⟨e0, e1,… , en−1⟩ is called a walk of length n, if
ei = (vi, vi+1) ∈ E for i ∈ [0, n − 1]. If we are not interested in the intermediate edges of a
walk but only in its starting vertex and ending vertex, we denote v0 ⇝ vn. If v0 = vn, the
walk W is closed. The walk W is called a path if all of its vertices differ (i.e. vi ≠ vj when
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i ≠ j) and it does not contain loops. A closed walk that is a path, except for v0 = vn, is a
cycle. A graph without cycles is acyclic.

A directed graph (or digraph) changes the definition of the edge. An edge has a direc-
tion, which means that (u, v) ≠ (v, u) when u ≠ v. In this case, an edge e = (u, v) is illus-
trated with an arrow from u to v. The vertex v is the head and u the tail of the edge, and
we have routines head(e) and tail(e) to retrieve them. Naturally, ends(e) = {head(e)} ∪
{tail(e)}. In a directed graph, the successors of the vertex v are in a set returned by
the routine successors(v), and if v has no successors, then successors(v) = ∅. Similarly,
the predecessors of the vertex v are given by predecessors(v). The neighbourhood is the
union of adjacent vertices: neighbourhood(v) = successors(v) ∪ predecessor(v). Because
we allow loops, a vertex can be in its own neighbour. The definitions of the concepts
directed walk, directed path, and directed cycle are similar to their respective definitions
for undirected graphs.

In a weighted graph, derived from an undirected or directed graph, each edge has
an associated weight given by a weight function weight : E → R+. We let weight(e) and
weight(u, v) denote the weight of the edge e = (u, v) ∈ E.

A tree is an undirected graph where each possible vertex pair u and v is connected
with a unique path. In other words, the tree is acyclic and |E| = |V | − 1. A forest is a
disjoint collection of trees. We are often interested in a rooted tree, where one vertex
is called a root. We can call a vertex of a rooted tree a node. The root can be used as a
base for traversing the other nodes, and the furthermost nodes from the root are leaves.
The non-leaf nodes, the root included, are called internal nodes. The adjacent nodes of
node n away from the root are called the children of node n, denoted by children(n).
The unique node in neighbourhood(n) ⧵ children(n) is called the parent of node n. If
parent(n) = ∅, n is the root node.

A. Format of Algorithms

Algorithm A.2 gives an example of an algorithm written using pseudocode. The algo-
rithm iteratively solves Towers of Hanoi, and the solution can be generated with the
following procedure:

n)
in: number of discs n (0 ≤ n)
out: sequence of states from the initial state to final stateS
1: S ← ⟨ n)⟩
2: while turn(S) ≠ 2n − 1 do
3: S ← S ∥ ⟨ (S|S| – 1)⟩
4: end while
5: return S

Towers-of-Hanoi(

Initial-State(

Next-Move(

The details of how this algorithm works are left as an exercise for the interested reader.
However, we encourage the casual reader to study the notation used and to identify
conventions described in this appendix.
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Algorithm A.2 Iterative solution to Towers of Hanoi.

n)
in: number of discs n (0 ≤ n)
out: triplet S = ⟨s0, s1, s2⟩ representing the initial state
1: s0 ← ⟨n, n − 1,… , 1⟩; s1 ← s2 ← ⟨ ⟩
2: S ← ⟨s0, s1, s2⟩ ⊳ Start s0, goal s1, aid s2.
3: turn(S) ← 0
4: direction(S) ← 1 ⊳ Clockwise rotation.
5: if n is even then ⊳ Counterclockwise rotation.
6: direction(S) ← −1
7: end if
8: return S

S)
in: triplet S = ⟨s0, s1, s2⟩ representing the current game state
out: triplet R = ⟨r0, r1, r2⟩ representing the new game state
local: pole indices a, b, z ∈ {0, 1, 2}; disc numbers g, h ∈ [2, n]; last(Q) = Q∣Q∣−1, if

1 ≤ ∣Q∣, otherwise, last(Q) = +∞
1: R ← copy S ⊳ Now ri = si, 0 ≤ i ≤ 2.
2: direction(R) ← direction(S)
3: a ← the index of the pole where 1 ∈ ra
4: b ← (3 + a + direction(R)) mod 3
5: z ← (3 + a − direction(R)) mod 3
6: if turn(R) is even then ⊳ Move the smallest disc.
7: rb ← rb ∥ ⟨1⟩
8: ra ← sub(ra, 0, ∣ra∣ − 1)
9: else ⊳ Move the non-smallest disc.

10: g ← last(rb) ⊳ +∞, if ∣rb∣ = 0.
11: h ← last(rz) ⊳ +∞, if ∣rz∣ = 0.
12: if g < h then
13: rz ← rz ∥ ⟨g⟩
14: rb ← sub(rb, 0, ∣rb∣ − 1)
15: else if h < g then
16: rb ← rb ∥ ⟨h⟩
17: rz ← sub(rz, 0, ∣rz∣ − 1)
18: else
19: error
20: end if
21: end if
22: turn(R) ← turn(S) + 1
23: return R

Initial-State(

Next-Move(

already in the final state
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The signature of an algorithm includes the name of the algorithm and the arguments
passed to it. It is followed by a preamble which may include the following descriptions:

in: This section describes the call-by-value arguments passed to the algorithm. The most
important preconditions concerning an argument are given in parentheses. Because
an algorithm behaves as a function from the caller’s perspective, there is no need for
preconditions on the state of the system. If the algorithm has multiple arguments,
their descriptions are separated by semicolons.

out: This section outlines the result passed to the caller of the algorithm. In most cases
it is sufficient to give the postcondition in natural language. Because the algorithms
are functions, each algorithm must include a description of its return values.

constant: If an algorithm refers to constant values or structures through a symbolic
name, they are described in this section. The constraints are given in parentheses, and
multiple constants are separated by semicolons. The difference between an argument
and a constant of an algorithm depends on the point of view, and the constants do
not necessary have to be implemented using programming language constants.

local: Changes are allowed only to the entities created within the local scope of the
algorithm. This section describes the most important local variables and structures.

The preamble of an algorithm is followed by enumerated lines of pseudocode. The line
numbering serves only for reference purposes and does not impose any structure on the
pseudocode. For example, we can elaborate that line 3 of Next-Move in Algorithm A.2
can be implemented in O(1) time by introducing an extra variable.

A. Conversion to Existing Programming Languages

To concretize how an algorithm written in pseudocode can be implemented with an
existing programming language, let us consider the problem of converting a given ara-
bic number to the equivalent modern roman number. Modern roman numerals are the
letters M (for the value 1000), D (500), C (100), L (50), X (10), V (5), and I (1). For exam-
ple, 1989 = 1000 + (1000 − 100) + 50 + 3 ⋅ 10 + (10 − 1) is written as MCMLXXXIX.
Algorithm A.3 solves the conversion problem by returning a sequence R of multipli-
ers of ‘primitive’ numbers in P = ⟨1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1⟩. In our
example, 1989 becomes R = ⟨1, 1, 0, 0, 0, 0, 1, 0, 3, 1, 0, 0, 0⟩.

A Java programmer could implement Algorithm A.3 by modelling first the primitive
numbers with the enumeration type RomanNumeral. Each enum constant (I, IV,…, M) is
declared with its decimal value which can be accessed with the function getValue():
public enum RomanNumeral {

I( 1),
IV( 4), V( 5), IX( 9), X( 10),
XL( 40), L( 50), XC( 90), C( 100),
CD(400), D( 500), CM(900), M(1000);

private int value;
private RomanNumber(int v) { value = v; }

public int getValue() { return value; }
}
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Algorithm A.3 Conversion from an Arabic number to a modern Roman number.

n)
in: decimal number n (0 ≤ n)
out: sequence R = ⟨s0, s1,… , s12⟩ representing the structure of the roman

number (Ri = number of primitives Vi in n for i ∈ [0, 12])
constant: sequence P = ⟨1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1⟩ of primit-

ive roman numbers
local: remainder x to be converted (0 ≤ x ≤ n c for a primitive

roman numbers (for other than P0, 0 ≤ c ≤ 3)
1: ∣R∣ ← ∣P∣ ⊳ Reserve space for ∣P∣ = 13 values.
2: x← n
3: for i ← 0… (∣P∣ − 1) do
4: c ← x div Pi ⊳ Number of multiplicands Pi in x.
5: Ri ← c
6: x← x − c ⋅ Pi
7: end for
8: return R

Arabic-To-Roman(

); coefficient

The actual conversion is implemented as a static function toRoman(int) in the
class ArabicToRomanNumber. Note that the original algorithm has been modified as
follows:

� The conversion returns a string instead of a sequence of integers. Because a roman
number does not include zeros, the for loop at lines 3–7 is replaced by two nested
while loops. The inner loop takes care of possible repetitions of the same primitive
number.

� The precondition is strengthened to 1 ≤ n.
� To emphasize that the values 4000 ≤ n are cumbersome to express in roman numer-

als, the postcondition gives an estimate of how long the result string will be.

The actual Java code looks like this:

public class ArabicToRomanNumber {
/** Convert an arabic number to a modern roman number.

* @.pre 1 <= n
* @.post result.length() <= (n div 1000) + (3 * 4)
*/

public static String toRoman(int n) {
RomanNumeral[] primitives = {

RomanNumeral.M, RomanNumeral.CM, RomanNumeral.D,
RomanNumeral.CD, RomanNumeral.C, RomanNumeral.XC,
RomanNumeral.L, RomanNumeral.XL, RomanNumeral.X,
RomanNumeral.IX, RomanNumeral.V, RomanNumeral.IV,
RomanNumeral.I
};

int remainder = n;

mailto:@.pre
mailto:@.post
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StringBuffer result = new StringBuffer();
int i = 0;
while ( remainder != 0 ) {

while ( primitives[i].getValue() <= remainder ) {
result.append(primitives[i]);
remainder -= primitives[i].getValue();
}

++i;
}

String res = result.toString();
return res;
}

}

A programmer more accustomed to the quirks of the C programming language could
implement Algorithm A.3 by following the original form more closely. However, the
primitive sequence P has a regular structure and can be compressed to four values by
introducing a scaling variable. To include the possibility of memory allocation optimiza-
tions, the caller must provide the storage buffer for the roman number.

#include <string.h>

/* Convert an arabic number to a modern roman number.
* Pre: (the length of buffer is at least 13) and (0 <= n).
* Post: (result == buffer) and (result[0..12] represents

roman number).
*/

int* arabicToRoman(int* buffer, int n) {
memset(buffer, 0, 13 * sizeof(int));
/* Here: For all i: buffer[i] == 0. */
int conversions[] = { 1000, 900, 500, 400 };
int divider = 1;
int i = 0;
int value;
while ( n != 0 ) {

value = conversions[i % 4] / divider;
buffer[i] = n / value;
n -= buffer[i] * value;
++i;
if ( i % 4 == 0 ) divider *= 10;
}

return buffer;
}

The rise of the modern dynamic programming languages has made it possible to
experiment easily with various approaches and solutions without investing much time
or meticulous effort. For example, built-in data structures, higher-order routines and
runtime mechanisms for reflection keep the codebase compact and modifiable. And
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sometimes there is not even a need for further optimization because only the outcome
counts, or the actual bottleneck of the system is somewhere else.

A typical Ruby language implementation of Algorithm A.3 would be based on refin-
ing the integer numbers to support the conversion function directly. The refinement is
activated locally by the caller, preventing the monkey-patching from affecting the other
parts of the program. The actual conversion is about accumulating the result in steps,
and for this Ruby already has suitable operations.

module RomanFixnum
refine Fixnum do

def to_roman
i = self
{ ’M’ => 1000, ’CM’ => 900, ’D’ => 500, ’CD’ => 400,

’C’ => 100, ’XC’ => 90, ’L’ => 50, ’XL’ => 40,
’X’ => 10, ’IX’ => 9, ’V’ => 5, ’IV’ => 4,
’I’ => 1

}.reduce(’’) { |memo, (s, v)|
n, i = i.divmod(v)
memo << s * n

}
end

end
end

# Usage example:
using RomanFixnum
puts 2016.to_roman # Outputs string "MMXVI".
(0...16).each { |i| puts i.to_roman }

As we can see the Java, C and Ruby implementations include numerous language-
specific details that can be omitted from the pseudocode representation. When the
syntax and semantics of Ruby, C, C++, and Java seem as peculiar as Algol68, Cobol, and
Fortran do today, descriptions resembling Algorithm A.3 are likely to remain under-
standable in the future and can be reimplemented using the favourite programming
language of the time.
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B

Practical Vectors and Matrices

One of the most practical mathematical applications – together with geometry and
trigonometry – is modelling and calculating with points, vectors and matrices. An
algorithm-inclined game developer will encounter them from low-level graphics pro-
cessing to high-level decision-making. Each of these three areas has a long and rich
history of research, because they reveal answers to questions involving spatiality.

The amount of material on these topics is voluminous and solid, but, at the same time,
to become proficient with these tools requires dedication. To reduce this burden, our
aim here is to present the fundamentals of vectors and matrices in a practical manner.
We will not delve into their mathematical properties – however interesting they are in
their own right – but gather together and summarize the essentials. We introduce the
key concepts step by step and develop the ideas behind them. We begin with points and
vectors to see how and why they relate to each other. Then we take a peek at matrices
and clarify why it is worth the effort to study them.

A concrete example
The concept of a vector is simple but expressive, making it easy to grasp and to apply
to numerous problems. Sometimes it is impressive how a cunning plan with vectors
sidesteps the need for detailed derivations of equations or calculations. To demon-
strate the usefulness of vectors, let us consider a problem called the closest distance of
approach. If two vessels follow their own fixed line trajectory with their own steady
velocity, what is their closest possible distance?

To model the problem we use an arrow to point in the direction a vessel is heading.
Also, to represent the velocity of the vessel we encode it as the length of the arrow – the
scale could be such that a length of 1 cm corresponds to a velocity of 1 km/h. Given an
instance of the problem (e.g. you and a friend en route) we replace the vessels at their
specific positions, denoted ∙, with arrows as defined. For example, the situation in Figure
B.1(a) shows the short-term trajectories visualized with grey line segments.

However, because the vessels can have different velocities, the point where the trajec-
tory lines possibly cross is not the closest point in general. In addition to the directions,
we have to consider also the lengths of the arrows. To do this we observe that there is a
third partaker in the situation – the map. Since the map does not move, we can think of
it as a space that is fixed and then define a point of reference in it to serve as the origin
of that space, denoted ◦. Now it is time for a trick from the bag of vectors: a change of
reference point. We copy the arrow of ‘you’ and turn it around; it is intuitively clear that
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map

you
friend

map

you
friend
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Figure B. The problem of the closest distance of approach. (a) The reference point of the world is on
‘map’. (b) The reference point is on ‘you’.

the net effect to the vessel is zero (i.e. it does not move). To keep the arrangement consis-
tent with the earlier set-up, the turned arrow must be copied also to the other partakers,
resulting in Figure B.1(b). Vessel ‘you’ has become the origin and, hence, ‘map’ must be
on the move. The net effect of a set of arrows for ‘friend’ can be resolved by setting them
into a chain but keeping their directions. One of the arrows is set at the vessel’s position
and the rest are placed so that the nock of an arrow always matches the head of another
arrow. Then the chain of arrows can be replaced by a single arrow that goes from the
vessel’s position to the head of the last arrow in the chain. The dashed arrow in B.1(b)
depicts this all-in-one arrow. Now the situation has become static, and the problem is
about determining the distance from a point to a line, which is much easier to solve.
Actually, this simplification has some magnitude since we presented the problem on a
plane but the argumentation we made did not assume that. In other words, the method
works regardless of the dimensionality of the problem.

As a corollary, we can see from Figure B.1(b) that this development also proves why the
old sailor’s wisdom ‘constant bearing, decreasing range’ (i.e. a friend will collide when it
is getting closer but keeps its relative bearing) holds water: the dashed arrow then simply
points towards the observer.

B. Points and Vectors

When we want to refer to a position in a space, we need to fix a reference origin, an
ordered set of reference axes and a unit length. These three measures define all the posi-
tions in the space uniquely.1 For example, positions in Euclidean space can be referred
to with the familiar Cartesian coordinates that define the real-number axes x, y, and
z. We can also use other coordinate systems such as spherical coordinates, but we will
focus here on Cartesian coordinates.

1 Provided the axes are independent (i.e. none of the axes is defined in terms of the others) and the number of
axes equals the degrees of freedom in the space. We incorporate these requirements into the concept of ‘axis’
implicitly.
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Figure B. The same right-handed frame of the real-number axes x, y, and z from three viewing
angles. Arrows indicate positive directions. The axis pointing outwards, towards the rear left of the
reader, from this page is the (a) z-axis, (b) y-axis, and (c) x-axis.

The origin, the axes, and the unit length together form a frame of reference, or a
frame for short. To give a precise definition of a frame in n dimensions, we first have
to state the origin point and then state n other reference points at unit distance from
the origin along each intended axis. The order in which the reference points are stated
is significant. For example, in three dimensions the axes can be oriented two ways. In a
right-handed frame, the positive directions of the real-number axes are defined so that
the x-axis points to the right, the y-axis upwards, and the z-axis towards the reader as
illustrated in Figure B.2(a). In other words, if we orient ourselves along the positive x-
and y-axes, we will be looking in the direction of the negative z-axis. In the left-handed
frame, the z-axis is reversed, and we would be then looking along the positive z-axis.
For remainder of this chapter, we will use the right-handed frame since it is the standard
frame in mathematics and physics. Nevertheless, the left-handed system is frequently
utilized in some specific problem domains such as computer graphics.

A position is uniquely specified by its coordinates, which are an ordered tuple of real
numbers measuring the signed distances along the axes from the origin. This means that
on a plane the origin has coordinates (0, 0) and in a three-dimensional space (0, 0, 0). The
position (c1, c2, c3) can be located, with respect to the origin, by travelling first a distance
c1 along the first axis, then c2 along a line parallel to the second axis, and c3 along a line
parallel to the third axis.

To sum up so far, we fix a right-handed frame somewhere in the space to define the
concrete and unique coordinates for all the positions in that space. This is the setting
we then use to operate with points and vectors. However, it is important to understand
that both a point and a vector exist without being placed in any position, but they can
both be represented by positions.

This dissociation from coordinates emphasizes the relative nature of points and vec-
tors, because they are entities that can be operated without imposing, for instance, a
concept of dimension from the outside. Actually, dimensionality can be derived from
the world of vectors. To understand this we can think in the following manner. A point
is an entity that does not have any dimensional measurements such as width or volume
but can have other attributes (e.g. an identifying name p). It is useful to define a vector
as an entity that has a signed direction and a finite non-negative size (i.e. a magnitude).
To identify a vector v we use the notation v⃗. We can operate with vectors even in this
general form; for example, it is intuitive to expect the vector −v⃗ to have the same size as
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Figure B. Examples of applying a vector to a point. (a) v⃗ applied to point p fixes point q. (b) Visualizing
v⃗ + v⃗ using q as the midpoint. (c) The dashed arrow demonstrates the vector v⃗ + w⃗ applied to p.

v⃗ but the opposite direction, whereas the vector v⃗ + v⃗ = 2v⃗ has the same direction but
twice the size.

We can apply the vector v⃗ to the point p, and this binding fixes two points: the initial
point p with respect to v⃗ and the terminal point q with respect to v⃗. The point q is at
a distance equal to the size of v⃗ in the direction of v⃗ from p. To declare compactly the
application of v⃗ to p we can use the notation v⃗ = p⃗q, where we can interpret the equality
‘=’ as name aliasing. Importantly, the vector p⃗q is not at the point p, it is just applied
there – and it can be applied also to other points.

By using points we can present a vector as a directed line segment from the initial point
to the terminal point, which leads to more intuitive and fine-grained demonstrations as
illustrated in Figure B.3(a). Furthermore, adding this kind of a structure to the vectors
does not contradict the mathematics developed for vectors that do not refer to points.
Continuing the previous example, if v⃗ = p⃗q, then we can describe −v⃗ = q⃗p. Also, if v⃗ =
q⃗r, then we can express v⃗ + v⃗ = p⃗q + q⃗r = p⃗r = 2v⃗ as illustrated in Figure B.3(b). In this
case, it is convenient to choose q as the intermediate point to illustrate that 2v⃗ has to
have double the size of v⃗.

Exercising the freedom to choose the points to exemplify the properties of vectors, let
us observe the vector v⃗ + w⃗ in general. Imitating the previous example, let v⃗ = p⃗q and
w⃗ = q⃗r; see Figure B.3(c). To be consistent with v⃗ + v⃗ = 2v⃗, in this case also the point q
must be considered as an intermediate point only, which gives us the result v⃗ + w⃗ = p⃗r.
The size and direction of the vector p⃗r are described in the terms of v⃗ and w⃗, and p is
used as an application point. It is worth noting that if p⃗r is applied to q and v⃗ is applied
also to r, we have a parallelogram, or slanted rectangle, that demonstrates w⃗ + v⃗ = p⃗r.
In other words, two vectors can be added in any order. The sum operation generalizes
similarly to multiple vectors.

Assuming that we have arbitrary vectors v⃗ and w⃗, what can be said about their sum? If
w⃗ is actually equal to −v⃗, the initial and terminal points of the vector describing v⃗ + w⃗ =
v⃗ + (−v⃗) must be the same (i.e. p⃗q + q⃗p = p⃗p), which we can observe considering the
situation in Figure B.3(c). The resulting vector p⃗p is a vector applied to the point p. To
wriggle out of this space oddity where a vector returns back to its ground, we need to
define a unique vector 0⃗, which has neither size nor direction. Conversely, the sum vector
is longest when the summand vectors have the same direction.

The subtraction of two arbitrary vectors can be realized using summation and rever-
sion: If v⃗ + w⃗ = p⃗r, then by adding −v⃗ to both sides and simplifying 0⃗ away, we get
w⃗ = p⃗r + (−v⃗) = p⃗r − v⃗. The last equality can be seen as a definition for the difference
between two vectors. As a mnemonic, the terminal point r of vector p⃗r − p⃗q is pointed
by the minuend and the initial point q by the subtrahend.
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Figure B. Vectors applied to point p. (a) Vectors v⃗ and w⃗. (b) Vector v⃗ + w⃗. (c) Linear combination
vector av⃗ + bw⃗ of vectors v⃗ and w⃗ with scalers a, b ∈ R.

Scaling and adding vectors together can be seen as mechanisms that yield new vectors
from the already existing ones. For example, suppose we are given the vectors v⃗ and w⃗.
Their linear combination with scalers2 a, b ∈ R is a vector u⃗ = av⃗ + bw⃗ as illustrated in
Figure B.4(c). If we consider illustrations (a) and (b) in Figure B.4, they have the same
proportions, and the scaler instances depicted in (c) can be estimated as 0 < a < 1 and
1 < b. A linear combination is like a chain of vectors, where the vectors telescope in, out
and in reverse according to the scalers without changing their direction lines.

What can be said about u⃗ = av⃗ + bw⃗ ? If a, b = 0, then clearly u⃗ = 0⃗. Is it possible to
have u⃗ = 0⃗ also when a ≠ 0 or b ≠ 0? Yes it is. For example, assuming a ≠ 0 and w⃗ =
cv⃗ (c ≠ 0), we can select b = −a∕c ≠ 0, leading to u⃗ = av⃗ + bw⃗ = av⃗ + (−a∕c)cv⃗ = 0⃗. In
other words, if one of the given vectors is a linear combination of the other, there are
at least two ways to end up with 0⃗. This observation can be generalized to define linear
independence: the vectors in a finite set {v⃗1, v⃗2,… , v⃗n} are linearly independent only
when the equation

a1v⃗1 + a2v⃗2 +…+ anv⃗n = 0⃗

has the unique solution

a1 = a2 = … = an = 0

for ai ∈ R (i = 1,… , n).
Linearly independent vectors v⃗ and w⃗ are called a basis for all the vectors expressed

in the form av⃗ + bw⃗, and all those vectors can be referred to simply by stating their
unique components a and b, given v⃗ and w⃗. Let us consider a possibly infinite set of
vectors V . The dimension of V is the size of a maximal (finite) set L ⊆ V that is linearly
independent. L is not necessarily unique for V but its dimension is, and the vectors of L
can be used as a basis of V . The space we are arrowing to begins to show marks.

Up to this point, we have established the scaling of vectors by any real number
(av⃗, a ∈ R), the concept of a zero vector ( 0⃗ ), and the addition and subtraction of vec-
tors. However, these notions are limited if we want to compare vectors (i.e. measure how
their sizes or directions relate). Naturally, there are constructions where intuitive mea-
suring is possible, but it becomes vague in general. For example, suppose we have three
non-zero vectors p⃗q, q⃗r, and r⃗p of equal size. Since they form an equilateral triangle, it
is natural to expect that the internal angles are also equal, but is the measurement of the
angle actually 60◦ = 𝜋∕3 rad or something else? When vectors 3v⃗, 4v⃗, and 5v⃗ are chained

2 Not to be confused with ‘scalars’, which are real numbers defining a vector: if v⃗ = (x, y) then x and y are the
scalars of v⃗.
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into a cycle, we expect the angle opposite to 5v⃗ to be a right angle (90◦ = 𝜋∕2 rad). How
do we define such a property in general, independently of the scalers 3, 4, and 5?

The concepts of size and angle can be clarified not only by giving them more structure
but also by making them dependent. Sizes and angles can be defined independently and
in many ways, but since we want to utilize them together, only the sensible combina-
tions are of interest to us. For example, in practically useful definitions the summation
of angles behaves as angle(u⃗, v⃗) + angle(v⃗, w⃗) = angle(u⃗, w⃗), the angles are independent
of the sizes of the vectors angle(u⃗, v⃗) = angle(av⃗, bw⃗) (0 < a, b), and the angles have con-
tinuously unique values over the range [0,𝜋] rad.

Without delving into the mathematical details,3 it can be proven that when ‘size’ and
‘angle’ play nicely together, there also exists a concept called the inner product of two
vectors that becomes uniquely defined by this binding of nicety. Or, in the other direc-
tion, the size and angle depend on how an inner product is chosen. Since we are focus-
ing on Euclidean space, we do not define the requirements, or axioms, of a general inner
product here. Instead, we can confine ourselves to its Euclidean specialization called the
dot product, and this choice fixes the unique definition for it. Let us next lay down the
geometrical foundations by describing these central concepts and what kind of depen-
dencies we actually want.

The size of a vector v⃗ is a non-negative real number denoted by ‖v⃗‖, which is called
the norm of v⃗. A vector is called a unit vector when ‖v⃗‖ = 1. Since unit vectors are fre-
quently referred to, for instance, when specifying a direction, they can be declared with
the shorthand notation v̂. The hat ̂ can also be seen as a function that maps the vector
v⃗ to another vector v⃗∕‖v⃗‖. This means that the vector v⃗ heads ‖v⃗‖ units in the direction
v̂. Note that ‖−v⃗‖ = ‖v⃗‖, and only the zero vector 0⃗ has norm equal to 0.

The dot product is a function that maps a pair of vectors to a real number, ∙ : (v⃗, w⃗) ↦
𝛼 ∈ R, and we can use 𝛼 to derive the measurement for the angle between v⃗ and w⃗.
Following from the (unstated) axioms defining the inner product, and hence also the
dot product, the quotient (v⃗ ∙ w⃗)∕(‖v⃗‖ ‖w⃗‖) lies in [−1, 1] ⊂ R. Observing that the cosine
function has the convenient property cos 𝜃 : [0,𝜋] → [−1, 1], the angle 𝜃 between non-
zero vectors v⃗ and w⃗ can be defined as

cos 𝜃 = v⃗ ∙ w⃗‖v⃗‖ ‖w⃗‖ . (B.1)

Actually, 𝜃 is a function 𝜃(v⃗, w⃗), but since the vectors are clear from the context, we can
use the simpler notation.

Equation (B.1) has the following consequences:

� v⃗ ∙ w⃗ = w⃗ ∙ v⃗, since cos(𝜃) = cos(−𝜃).
� For unit vectors, cos 𝜃 = v̂ ∙ ŵ.
� When v⃗ ∙ w⃗ = 0, the vectors are perpendicular: 𝜃 = 1

2𝜋 (i.e. 90◦) or 3
2𝜋 (i.e. 270◦).

� Codirectional vectors have 𝜃 = 0, giving v⃗ ∙ w⃗ = ‖v⃗‖ ‖w⃗‖.

3 These are fascinating, and we warmly encourage the reader to seek out things like inner product space,
normed vector space, parallelogram identity and polarization identity and to see how neatly they fit together.
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Figure B. Vector components. (a) The vector v⃗ is projected in the direction ŵ so that the angle ∠prq
is a right angle. The projection is vector p⃗r = (v⃗ ∙ ŵ)ŵ. (b) The vector components of v⃗ in the direction
ŵ are v⃗∥ ŵ = p⃗r and v⃗

⊥ŵ = r⃗q = v⃗ − p⃗r = v⃗ − v⃗∥ ŵ .

� Equal vectors imply v⃗ ∙ v⃗ = ‖v⃗‖ ‖v⃗‖ = ‖v⃗‖2, which means that, in the terms of the dot
product, the norm is

‖v⃗‖ =
√

v⃗ ∙ v⃗ . (B.2)

Reversing the dependencies, if the measurements ‘angle’ and ‘norm’ are given, Equation
(B.1) can be used to define the dot product. It can even be proven that a ‘norm’ alone is
sufficient to express v⃗ ∙ w⃗. However, by introducing more structure into our geometry
it is possible to state v⃗ ∙ w⃗ without referring directly to the sizes of and angle between v⃗
and w⃗.

To appreciate Equation (B.1), let us assume that w⃗ is actually a unit vector ŵ used
just for specifying a direction, giving cos 𝜃 = (v⃗ ∙ ŵ)∕‖v⃗‖. Because the cosine of an angle
in a right-angled triangle is the ratio of the adjacent side length to the hypotenuse side
length, a vector (v⃗ ∙ ŵ)ŵ of size v⃗ ∙ ŵ = ‖v⃗‖ cos 𝜃 can be interpreted as the perpendicular
projection of v⃗ to the direction parallel to ŵ, which is visualized in Figure B.5(a). Since‖v⃗‖ ∈ R⩾0, the projected vector is in the same direction as or opposite direction to ŵ,
or it is a zero vector 0⃗. The projected vector is highly convenient and deserves its own
notation v⃗∥ ŵ, where the symbol ∥ refers to the parallel property. As it takes two to make
the perpendiculars, the other one is the share of v⃗ rejected from the projection, denoted
by v⃗⊥ŵ, where the symbol ⟂ portrays the perpendicular property. Figure B.5(b) summa-
rizes the implication of this: given a direction ŵ, any vector v⃗ can be decomposed into
the vector components that are parallel and perpendicular to ŵ:

v⃗ = v⃗∥ ŵ + v⃗⊥ŵ. (B.3)

Because the hat notation ̂ can be seen just as a function, the decomposition applies to
any vectors v⃗ and w⃗ (≠ 0⃗) giving v⃗∥ ŵ = v⃗∥ w⃗ due to

v⃗∥ ŵ = (v⃗ ∙ ŵ)ŵ =
(

v⃗ ∙ w⃗‖w⃗‖
)

w⃗‖w⃗‖ Eq(B.2)
=

(
v⃗ ∙ w⃗
w⃗ ∙ w⃗

)
w⃗ = v⃗∥ w⃗ ,

from which v⃗⊥w⃗ also follows. Furthermore, the equalities v⃗ ∙ w⃗ = v⃗∥ ŵ ‖w⃗‖ = w⃗∥ v̂ ‖v⃗‖
hold.

As a sidenote, projection helps us to justify the fact that the dot product over the
addition of vectors is distributive: (v⃗ + w⃗) ∙ u⃗ = v⃗ ∙ u⃗ + w⃗ ∙ u⃗ = u⃗ ∙ (v⃗ + w⃗); see Figure B.6
for a visual proof.
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Figure B. The sizes of the projection vectors onto u⃗ are additive,
implying distributivity (v⃗ + w⃗) ∙ u⃗ = v⃗ ∙ u⃗ + w⃗ ∙ u⃗.

If a set of linearly independent vectors {v⃗, w⃗} is the basis of some possibly infinite set
of vectors V , then, apparently, {v⃗∥ w⃗ , v⃗⊥w⃗} is also the basis of V . Is there some elemental
difference between these bases? Since the dot product is fundamental in our discussion,
let us connect it with the linear independence to see how the details interact. Suppose
n⃗ = a1v⃗ + b1w⃗ and m⃗ = a2v⃗ + b2w⃗ are in V . Then

n⃗ ∙ m⃗ = (a1v⃗ + b1w⃗) ∙ m⃗
∗
= (a1v⃗) ∙ m⃗ + (b1w⃗) ∙ m⃗

= (a1v⃗) ∙ (a2v⃗ + b2w⃗) + (b1w⃗) ∙ (a2v⃗ + b2w⃗)
∗
= (a1v⃗) ∙ (a2v⃗) + (a1v⃗) ∙ (b2w⃗) + (b1w⃗) ∙ (a2v⃗) + (b1w⃗) ∙ (b2w⃗)

= a1a2(v⃗ ∙ v⃗) + a1b2(v⃗ ∙ w⃗) + a2b1(w⃗ ∙ v⃗) + b1b2(w⃗ ∙ w⃗),

where the steps marked with ∗ follow from the distributivity and the last step from the
general equality (av⃗) ∙ w = ‖av⃗‖ ‖w⃗‖ cos(𝜃(av⃗, w⃗)) = a ‖v⃗‖ ‖w⃗‖ cos(𝜃(v⃗, w⃗)) = a(v⃗ ∙ w⃗),
where av⃗ and v⃗ stay in the same direction.

Although the basis vectors {v⃗, w⃗} are linearly independent, their ‘shares’ in the linearly
combined vectors of V ‘overlap’ when v⃗ ∙ w⃗ ≠ 0. However, when v⃗ ∙ w⃗ = 0, meaning v⃗ and
w⃗ are perpendicular, the dot product simplifies to

n⃗ ∙ m⃗ = a1a2(v⃗ ∙ v⃗) + b1b2(w⃗ ∙ w⃗).

Furthermore, remembering that v⃗ ∙ v⃗ = ‖v⃗‖ ‖v⃗‖ = ‖v⃗‖2 and setting ‖v̂‖ = 1, we end up
with basis vectors that are perpendicular unit vectors, and the dot product is simply

n⃗ ∙ m⃗ = a1a2 + b1b2 (B.4)

which also rephrases Equation (B.2) into the radical expression

‖n⃗‖ =
√

n⃗ ∙ n⃗ =
√

a2
1 + b2

1 .

What makes Equation (B.4) intriguing is that it does not include the basis vectors or the
angle of n⃗ and w⃗. In other words, the same equation applies to any basis that consists of
mutually perpendicular unit vectors, and it generalizes straightforwardly to any number
of basis vectors (i.e. all dimensions). This is the basis of the many benefits that we get
from using points and vectors.

In three-dimensional worlds, we can denote the mutually perpendicular unit vectors
as êx, êy, and êz, which correspond to the right-handed frame coordinates discussed ear-
lier. Now we can represent the vector v⃗ = aêx + bêy + ĉez as coordinates (a, b, c). Obvi-
ously, these coordinates do not refer to a position or a point but encode the vector v⃗ in a
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coordinate form. To avoid confusion between points and vectors – and to conform later
with matrices – we identify the vectors over êx, êy and êz with a column notation where
the components are written vertically. For example,

v⃗ =
⎡⎢⎢⎢⎣

a
b
c

⎤⎥⎥⎥⎦ , 0⃗ =
⎡⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎦ , êx =
⎡⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎦ , êy =
⎡⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎦ , êz =
⎡⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎦ .
We can represent a column vector v⃗ compactly in line form as [ a b c ]𝖳 where the sym-
bol 𝖳 reminds us that the components must actually be interpreted as written vertically.

All our preceding observations, operations and calculations also have representations
using column vectors. For example, given v⃗ = [ v1 v2 v3 ]𝖳 and w⃗ = [ w1 w2 w3 ]𝖳,

v⃗ ± w⃗ = [ v1 ± w1 v2 ± w2 v3 ± w3 ]𝖳,

av⃗ = [ av1 av2 av3 ]𝖳,

êx + êy + êz = 1⃗ = [ 1 1 1 ]𝖳.

It is worth remembering that when we select a representation for the vectors, the vec-
tors are not applied to points or positions. For example, 0⃗ = [ 0 0 0 ]𝖳 is not at the ori-
gin or at the position (0, 0, 0). However, the component values in a column vector can
be interpreted as displacements, and when the column vector is applied to a point the
displacements uniquely define the terminal point. For this reason it is natural that the
points are placed into positions, represented, for example, as coordinates. But in essence
the worlds of the displacements and the positions are separate, and mixing those realms
invites bewilderment.

A displacement measures the shortest distance from the initial point p to the terminal
point q (i.e. it demonstrates both size and direction), making the unification of displace-
ments and vectors sensible. The displacements can be combined and split to compo-
nents as vectors. The component values of a vector are equal to the differences of the
corresponding coordinates where the points reside. For example, if point p is at the posi-
tion ( p1, p2) and point q at (q1, q2), the displacement from p to q can be represented as
a vector s⃗ = [ q1 − p1 q2 − p2 ]𝖳 for which ‖s⃗‖ =

√
(q1 − p1)2 + (q2 − p2)2 .

Moving back and forth between the positions and displacements is tedious, but we can
get rid of the commuting by fixing a coordinate system and then introducing a position
vector. Its initial point is always at the origin of the space and its terminal point is at the
position we want to refer to. Now, instead of dealing with the positions, we substitute
them with the position vectors and operate only with them. In other words, the position
vectors represent the displacements from the origin and they are compatible with the
other displacement vectors discussed earlier.

This is a subtle but important realization, because when the positions are actually
represented as vectors, all vector operations apply to them. For example, the ‘difference’
between positions actually means the difference between their position vectors, yield-
ing a displacement. Also, applying a vector to a point is just the ordinary addition of the
position vector with the displacement vector, resulting in a position vector. The ben-
efit of this is uniformity, as we are dealing with vectors only. One of the drawbacks is
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the same uniformity: since both ‘positions’ and displacements are vectors, we have to
bookkeep which is which. Another drawback is that the position vectors depend on the
chosen coordinate system, whereas the displacement vectors do not.

The position vectors are valuable when dealing with time. For example, a three-
dimensional position r(t) as a function of time t can be modelled as r(t) = x(t)̂ex +
y(t)̂ey + z(t)̂ez where functions x(t), y(t), and z(t) define the separate components of the
change.

There is still one more curiosity with vectors in three-dimensional space, the cross
product of two vectors. Without going into a theoretical discussion, the definition of the
cross product turns out to have a similar form to the dot product in Equation (B.1):

sin 𝜃 = v⃗ ×w⃗
n̂ ‖v⃗‖ ‖w⃗‖ . (B.5)

However, the interpretation of Equation (B.5) is more detailed. Assume that we are given
the vectors v⃗ and w⃗ and the angle between them is 𝜃. Then v⃗ ×w⃗ is the vector which has
the direction n̂ and size ‖v⃗ ×w⃗‖ = ‖v⃗‖ ‖w⃗‖ sin 𝜃. The direction of the unit vector n̂ is
perpendicular to the plane defined by the linear combinations of v⃗ and w⃗. If the vectors
do not define the plane then the cross product is 0⃗. Because there are two perpendiculars
to a plane, the direction of n̂ is defined by the right-handed rule from v⃗ to w⃗:

× w

n
w

v→

‸

→

→

v→

This means that the cross product is not associative, but w⃗ ×v⃗ = −v⃗ ×w⃗. This change of
sign is understandable because the two perpendiculars to a plane must be in opposite
directions.

The fact that the cross product yields a perpendicular vector is often useful. Let us
consider an example in three-dimensional space where we have a camera at a position
vector c⃗. The point of interest the camera is looking at is at position vector p⃗. Also, we
fix the upward direction to êz. Then a⃗ = p⃗ − c⃗ is the displacement vector from c⃗ to p⃗.
Together with vectors

u⃗ = a⃗ × êz,

v⃗ = u⃗ × a⃗,

we can define the following right-handed frame of reference: the origin is at position
c⃗, the right direction is û, the up direction is v̂, and the viewing direction is −â. These
frame vectors are always perpendicular to each other, which means that we have defined
a local Cartesian coordinate system with respect to the camera just by a few simple
operations.
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B. Matrices

If vectors are treated as values, then matrices can be considered as functions that map
the given vectors to other ones. For example, a vector can be rotated around the origin of
the space with a certain kind of a matrix. Matrices can also be used to collect or augment
vectors into one bundle so that they can then be operated on together at the same time.
In both cases a matrix Mm,n is an array of terms, numbers or symbols arranged in m
rows and n columns denoted by

Mm,n =

⎡⎢⎢⎢⎢⎣
m1,1 m1,2 ⋯ m1,n
m2,1 m2,2 ⋯ m2,n
⋮ ⋮ ⋱ ⋮

mm,1 mm,2 ⋯ mm,n

⎤⎥⎥⎥⎥⎦
where 1 ≤ m, n ∈ N. We can omit the size subscript when it is clear from the context.
Since we allow both m = 1 and n = 1, we can consider row and column vectors as degen-
erate matrices of size 1 × n and m × 1, respectively. Also, it is possible to have a 1 × 1
matrix M1,1 and, depending on the convention used, it can be considered as a scalar.
However, we do not adopt this practice; to refer to M1,1 as a scalar we use m1,1 instead
to keep the semantics clear.

To be able to consider a vector as a special kind of a matrix, all the vector operations
must be maintained – not necessarily for all matrices but at least for the ones that are
vector-like. It is worth seeking linkages of the concepts between vectors and matrices,
because that induces a two-way effect: it enriches the world of matrices and, at the same
time, the expressive power of matrices can be used as a tool with vectors.

As with vectors, to add two matrices together we simply add the elements in corre-
sponding places. Naturally, this requires that the matrices are of the same size. When
adding matrices A and B, the elements of the resulting matrix C = A + B are defined as

ci,j = ai,j + bi,j .

Conversely, in matrix subtraction C = A − B the corresponding elements are subtracted:

ci,j = ai,j − bi,j .

A vector v⃗ can be scaled by multiplying it by r ∈ R : rv⃗. This generalizes directly to all
matrices, and C = rA is simply

ci,j = r ⋅ ai,j .

How about multiplication? With vectors we have the dot product v⃗ ∙ w⃗ and the cross
product v⃗ ×w⃗. The vector cross product can be represented with different concepts in
the realm of the matrices, but the other direction lacks standard definitions. The dot
product, however, can be generalized to a matrix operation which is called matrix mul-
tiplication. At first sight the definition of this operation seems quite baffling, but much
of the power of matrices springs from it. Let us begin by presenting matrix multiplica-
tion from point of view of matrices, and then we will clarify its simplicity and briefly
illuminate its connection to the vector dot product.
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Figure B. An instance of the matrix multiplication
defined by Equation (B.6): matrices of sizes 3 × 2 and
2 × 4 are multiplied together, resulting in a 3 × 4
matrix. The value c1,1 = a1,1b1,1 + a1,2b2,1, and for
example c2,4 = a2,1b1,4 + a2,2b2,4.

Matrix multiplication imposes limitations on the matrices operated upon. Let us con-
sider a matrix A of size m × n and a matrix B of size n × s, where 1 ≤ m, n, s. Observe that
the number of columns in A equals the number of rows in B. Multiplying these matrices
is defined to give as a result a matrix C of size m × s with elements

ci,j =
n∑

k=1
ai,kbk,j , (B.6)

where 1 ≤ i ≤ m and 1 ≤ j ≤ s. The index k runs over the columns of A and the rows of
B utilizing the aforementioned size requirement of the matrices being multiplied.

To give a mnemonic – and even a pen-and-paper method – for Equation (B.6), the
multiplication can be depicted as shown in Figure B.7. For example, to multiply

A3,2 =
⎡⎢⎢⎢⎣

a1,1 a1,2
a2,1 a2,2
a3,1 a3,2

⎤⎥⎥⎥⎦ and B2,4 =
[b1,1 b1,2 b1,3 b1,4

b2,1 b2,2 b2,3 b2,4

]

we place A to the left of the result matrix C3,4 and B above it. Each element in C is at the
intersection of one particular row of A and column of B.

The schema of Figure B.7 holds for all matrix shapes that can be multiplied. For exam-
ple, if a column matrix Bm,1 is multiplied by a row matrix A1,n, the result is Bm,1A1,n =
Cm,n, a matrix of size m × n. How about the other way around? The vectors must be of
the same length and, if so, multiplication gives

A1,mBm,1 = [ a1,1 a1,2 … a1,m ]

⎡⎢⎢⎢⎢⎣
b1,1
b2,1
⋮

bm,1

⎤⎥⎥⎥⎥⎦
= a1,1b1,1 + a1,2b2,1 +…+ a1,mbm,1

Eq(B.4)
= a⃗ ∙ b⃗

where both vectors a⃗ and b⃗ are the column vector interpretations of their corresponding
matrices A1,m and Bm,1. This gives us a hint that the matrix multiplication and the vector
dot product may have something in common.
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At first sight, the definition of matrix multiplication may seem convoluted, but it has
proved to be convenient. For example, assume that we have two sets of linear equations

x′′ = a3x′ + b3y′

y′′ = a4x′ + b4y′
and

x′ = a1x + b1y

y′ = a2x + b2y
(B.7)

and we want to represent x′′ and y′′ in terms of x and y. The substitution of x′ and y′ is
simply

x′′ = a3(a1x + b1y) + b3(a2x + b2y) = (a3a1 + b3a2)x + (a3b1 + b3b2)y

y′′ = a4(a1x + b1y) + b4(a2x + b2y) = (a4a1 + b4a2)x + (a4b1 + b4b2)y
(B.8)

but because matrix multiplication, as defined, gives us[a3 b3
a4 b4

] [a1 b1
a2 b2

]
=
[a3a1 + b3a2 a3b1 + b3b2

a4a1 + b4a2 a4b1 + b4b2

]
,

Equation (B.8) can also be represented compactly as[ x′′

y′′

]
=
[a3 b3

a4 b4

] [a1 b1
a2 b2

] [ x
y

]
. (B.9)

In other words, the situation in Equation (B.7) can be captured with Equation (B.9) with-
out the need for considering the details present in Equation (B.8).

To summarize, we can realize linear transformations just by using matrices. By doing
this we have them in a format that is easy to combine (by matrix multiplication) and
compute, which is why they are heavily used in, for example, computer graphics.

As we can see, for instance, in Equation (B.8) there are terms that resemble the calcu-
lations of the vector dot product. Let us look into this observation briefly. Consider the
ith row of A as a row vector a⃗i and the jth column of B as a column vector b⃗j. Clearly,
ci,j = a⃗i ∙ b⃗j:

A =

⎡⎢⎢⎢⎢⎣
a1,1 a1,2 ⋯ a1,n
a2,1 a2,2 ⋯ a2,n
⋮ ⋮ ⋱ ⋮

am,1 am,2 ⋯ am,n

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
a⃗1
a⃗2
⋮

a⃗m

⎤⎥⎥⎥⎥⎦
,

B =

⎡⎢⎢⎢⎢⎣
b1,1 b1,2 ⋯ b1,s
b2,1 b2,2 ⋯ b2,s
⋮ ⋮ ⋱ ⋮

bn,1 bn,2 ⋯ bn,s

⎤⎥⎥⎥⎥⎦
=
[

b⃗1 b⃗2 … b⃗s
]
,

C =

⎡⎢⎢⎢⎢⎣
a⃗1
a⃗2
⋮

a⃗m

⎤⎥⎥⎥⎥⎦
[

b⃗1 b⃗2 … b⃗s
]
=

⎡⎢⎢⎢⎢⎢⎣

a⃗1 ∙ b⃗1 a⃗1 ∙ b⃗2 ⋯ a⃗1 ∙ b⃗s

a⃗2 ∙ b⃗1 a⃗2 ∙ b⃗2 ⋯ a⃗2 ∙ b⃗s
⋮ ⋮ ⋱ ⋮

a⃗m ∙ b⃗1 a⃗m ∙ b⃗2 ⋯ a⃗m ∙ b⃗s

⎤⎥⎥⎥⎥⎥⎦
.
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In other words, matrix multiplication can be viewed as the generalization of the vector
dot product.

It is worth noting that matrix multiplication is not commutative – not only because
of the size requirements – but even if the sizes of A and B matched, AB ≠ BA. Otherwise,
the following rules apply for matrices:

A + B = B + A,

A + (B + C) = (A + B) + C,

A(BC) = (AB)C,

A(B + C) = AB + AC,

(A + B)C = AC + BC.

If A is of size n × n, we can define the power of the matrix Ak (1 ≤ k) as

Ak = AA⋯A
⏟⏟⏟

k

.

We can also define A0 = I, where I is the identity matrix

I =

⎡⎢⎢⎢⎢⎣
1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1

⎤⎥⎥⎥⎥⎦
.

Matrices have also an operation called transpose, which may, at first sight, appear to be
an artificial construction, but it is as important as the other operations. Transpose is
denoted by the superscript 𝖳 but does not relate to the power operation. If matrix A is
of size m × n, then its transpose matrix T = A 𝖳 is of size n × m, where the elements have
exchanged their rows and columns:

ti,j = aj,i .

Note that the elements on the main diagonal ai,i (1 ≤ i ≤ min{m, n}) of the matrix are
preserved. The transpose gives us yet another way to describe the dot product of two
column vectors when they are interpreted as matrices: v⃗ 𝖳w⃗.

To demonstrate how matrices hide the details and compact the method descriptions
we present two examples. The first one shows how to rotate any number of position
vectors with only one matrix multiplication. The second example discusses how to move
(i.e. translate) vectors by matrix multiplication.

Example on bundling column vectors to a single matrix
Assume we have the following asymmetric concave quadrilateral, enclosed in a con-
venient unit square that is easy to scale to an appropriate size. Let us call it acq
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and utilize its two-dimensional form to test visually our vector- and matrix-related
calculations.

(0,0) (1,0)

, 1)( 1
2

,   )( 1
4

1
4

The vertices of acq can be defined by the position vectors

q⃗0 = [ 0 0 ]𝖳, q⃗1 =
[

1
4

1
4

]𝖳
, q⃗2 = [ 1 0 ]𝖳, q⃗3 =

[
1
2 1

]𝖳
,

that form the endpoints of the counterclockwise sequence of line segments. To operate
with acq as an one entity, the column vectors can be augmented side by side into one
matrix,

A =

[
0 1

4 1 1
2

0 1
4 0 1

]
.

Now, to rotate acq about the origin we multiply it by a rotation matrix R2,2 that maps the
vectors into their proper positions: A′

2,4 = R2,2A2,4. Note that the rotation matrix must
be of size 2 × 2 because we want the result to have the same size as A.

In general, a rotation matrix R2,2 turns every vector [ x y ]𝖳 about the origin coun-
terclockwise by the given angle 𝛼 measured in radians. Since 𝛼 is the parameter of the
rotation, the general definition for the matrix is as follows:

R2,2( ) = cos − sin
sin cos

x
y

= x
y =

⋅ x + ⋅ y

⋅ x + ⋅ y
= x′

y′

αα α
α

α

To give some intuition as to how the x and y values are changed, we have also depicted
the trigonometric functions cos and sin in their domain [0, 2𝜋] ⊂ R.

If 𝛼 = 𝜋∕3 (60◦), the rotation matrix specializes to

R(𝜋∕3) =
⎡⎢⎢⎣

1
2 −

√
3

2√
3

2
1
2

⎤⎥⎥⎦ ,
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and then the actual application of the rotation gives

RA =
⎡⎢⎢⎣

1
2 −

√
3

2√
3

2
1
2

⎤⎥⎥⎦
[

0 1
4 1 1

2

0 1
4 0 1

]

=
⎡⎢⎢⎣

0 −
√

3
8 + 1

8
1
2 −

√
3

2 + 1
4

0
√

3
8 + 1

8

√
3

2

√
3

4 + 1
2

⎤⎥⎥⎦
which can be visualized as

.

If there are tens, hundreds or even more vectors to be rotated, this method consumes
both time and memory. Fortunately, some of the vectors can be left out of the bun-
dle matrix A. For example, q⃗0 is at the pivot of the rotation and, thus, its position does
not change. Also, q⃗2 is changed only by the leftmost column of the rotation matrix,
and this is why the third column of RA is identical to the first column of R (i.e. both q⃗0
and q⃗2 can be left out of the calculation and their rotated positions can be determined
by other and simpler means). The rationale is the same as with basis vectors: Linear
combinations define new vectors. Therefore, all such linear combinations that are effi-
cient to calculate are candidates for postponing their repositioning into a post-rotation
phase.

Example on translating column vectors by matrix multiplication
If there are many phases in the matrix calculations, it saves time and memory to have
all the constant matrices reduced and simplified as much as possible. For example, the
matrix multiplications can be pre-calculated, because the order of calculations does not
affect the outcome: A(BC) = (AB)C = ABC. This property has turned out to be crucial,
for instance, in modelling physics and developing graphics pipelines.

But there is a fundamental operation that cannot be represented as a matrix multipli-
cation: moving from one position to another. Moving a vector is also called translation.
In other words, if all the matrices are constant but the sequence of operations required
consists of an addition, the situation cannot be collapsed into one matrix only.

Fortunately, the restriction applies only within the dimension of concern. This means
that if we are in two dimensions, there are no 2 × 2 matrices for translation. However,
it is possible to have the same effect in three dimensions. Suppose we are moving the
position p⃗ = [ p1 p2 ]𝖳 by a displacement r⃗ = [ r1 r2 ]𝖳. If we define a translation matrix
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T3,3 so that it is I3,3 but its upper-right corner has the components of r⃗, and also an
augmented vector p⃗ ′ = [ p1 p2 1 ]𝖳, then

T p⃗ ′ =
⎡⎢⎢⎢⎣

1 0 r1
0 1 r2
0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

p1
p2
1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

p1 + r1
p2 + r2

1

⎤⎥⎥⎥⎦ .
Now, the effect of p⃗ + r⃗ focuses on the first components of the result vector. This idea is
an application of the so-called homogeneous coordinates. The other fundamental oper-
ations with matrices, including various projections, have similar interpretations in this
system, which unifies them all with matrix multiplication.

The homogeneous coordinates are just one example of the attractions the continents
of vectors and matrices have in store. Over their long history they have grown into a full
range of concepts and tools that can be applied in diverse contexts. And, on top of all
that, the explorer need not be a mathematician in order to benefit from them – and to
have fun at the same time.

B. Conclusion

To complete this short introduction to vectors and matrices we have devised Algo-
rithm B.1 that generates a fractal called Barnsley’s wreath (Edgar 1991). The fractal con-
sists entirely of hexagons that reproduce, translate (i.e. move) and rotate. The recursive
routine Barnsley-Wreath is initiated with the invocation

1: T ← W1,W2,W3,W4,W5,W6
2: img, T,D, d − 1)Barnsley-Wreath(

⟩⟨

utilizing the following matrices:

W1 =
⎡⎢⎢⎢⎣
− 1

2 0 1
2

0 1
2 0

0 0 1

⎤⎥⎥⎥⎦ , W2 =
⎡⎢⎢⎢⎣
− 1

2 0 − 1
4

0 1
2

√
3

4

0 0 1

⎤⎥⎥⎥⎦ , W3 =
⎡⎢⎢⎢⎣
− 1

2 0 − 1
4

0 1
2 −

√
3

4

0 0 1

⎤⎥⎥⎥⎦ ,

W4 =
⎡⎢⎢⎢⎣
− 1

4 0 − 1
4

0 1
4 0

0 0 1

⎤⎥⎥⎥⎦ , W5 =
⎡⎢⎢⎢⎣
− 1

4 0 1
8

0 1
4

√
3

8

0 0 1

⎤⎥⎥⎥⎦ , W6 =
⎡⎢⎢⎢⎣
− 1

4 0 1
8

0 1
4 −

√
3

8

0 0 1

⎤⎥⎥⎥⎦ ,

R =

[ 1
2 −

√
3

2√
3

2
1
2

]
, D =

⎡⎢⎢⎢⎣
0 1 0
0 0 0
1 1 1

⎤⎥⎥⎥⎦ .
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The matrices Wi (1 ≤ i ≤ 6) describe the transformations that change the positions and
orientations of the generated hexagons. The initial situation is defined by the matrix D
that contains two-column vectors of size 2 × 1 in its upper left-hand corner. The vertices
of the hexagons are produced by using the rotation matrix R.

The outcome of the algorithm is shown in Figure B.8 for the reader’s pleasure.

Algorithm B.1 Barnsley’s wreath fractal. Primitive routine polygon
given polygon with the RGBA colour 0A0A0A0A16.

img, T,D, d)
in: empty image img; sequence T of transformationmatrices (constant); augmen-

ted matrix D of reference vectors; depth of recursion d
out: img in Figure B.8
1: if d = 0 then ⊳ Terminate the recursion?
2: return
3: end if
4: ∣D′∣ ← ∣T ∣ ⊳ Reserve space for ∣T ∣ matrices.
5: for i ← 0… (∣T ∣ − 1) do ⊳ Apply all the transformations in T .
6: D′

i ← TiD ⊳ Transform the bundle of reference vectors.
7: polygon(img, D′

i)) ⊳ Draw the referred hexagons.
8: end for
9: for i ← 0… (∣D′∣ − 1) do ⊳ Descent in the recursion.

10: img, T, D′
i , d − 1)

11: end for

M)
in: matrix M of bundled column vectors
out: sequence of position vectors of the vertices of a hexagon
constant: rotation matrix R of ∕3 rad (60◦); centre position of a hexagon p⃗c
1: p⃗c ←

[m0,0 m1,0
]

⊳ Extract column vectors. . .
2: p⃗t ←

[
m1,0 m1,1

]
⊳ . . . of size 2 × 1 from M.

3: p⃗ ← p⃗t − p⃗c ⊳ Move to the origin.
4: V ← ⟨ p⃗ ⟩ ⊳ p⃗.
5: for i ← 1… 6 do ⊳ Create all the vertices of the hexagon.
6: p⃗ ← Rp⃗ ⊳ Rotate p⃗.
7: V ← V ∥ ⟨ p⃗ ⟩ ⊳ A new vertex position for the hexagon.
8: end for
9: for i ← 0… 6 do ⊳ Move the positions in V by p⃗c.

10: Vi ← Vi + p⃗c
11: end for
12: return V

Barnsley-Wreath(

filled greyscale image

draws and fills the

The first and the last position is at

Hexagon-Vertices(

Barnsley-Wreath(

Hexagon-Vertices(

π
⊤

⊤
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Figure B. Barnsley’s wreath.
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Humanness, 11–12
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∗-minimax tree, 150
Starmap generation, 104
Start state, 196, 199, 200, 206
Starting value, 26, 30
State, 196, 198, 207

composite, 200, 202
non-simple, 200
simple, 200
submachine, 200

State instance, 4
Statechart, 196
Statement, 320, 322
Static evaluation function, see Evaluation

function
Statistical reasoning, 221–227
Steering behaviour rules, 176
Steering method, 181, 188
Step, 54, 56, 77
Stepping, 53
Storytelling, 13, 189, 190



 Index

Stranger Than Fiction, 19
Styling, 301
Sublinear communication, 261, 287
Suits, Bernard, 3
Super Meat Boy, 21
Swarm algorithm, 194
Synchronize, 294
Synchronized simulation, 277–279, 285,
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Unicasting, 246, 252
Unified Modeling Language, 198, 202,

203
Uniform distribution, 28, 37, 38, 42, 137
Unit vector, 42, 63, 64, 66, 67, 177, 179,

342–346
Unit-Clamp, 54, 77
Unit-Lerp, 54, 55, 56, 77, 78, 267
Unit-Rescale, 54, 56, 78, 267
Unit-Step, 54, 77
Unit-Vector, 177
Unit-Wrap, 54, 78



Index 

Universe generation, 99–101
Upper confidence bounds applied to trees,

144, 145, 146–149
User Datagram Protocol, 247, 247, 253,

263
User interface, 9, 10, 170
Utility function, 131, 134, 155
Utility routines for value conversions,

53–55

v
Value noise, 63, 68, 69, 76
Value-Interpolation-1, 57, 58
Variable, 320
Vector, 337, 339, 340, 347

addition, 340
as coordinates, 344
column notation, 345
components, 345
cross product, 346, 347
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